1 /* Cache and manage frames for GDB, the GNU debugger.
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "inferior.h" /* for inferior_ptid */
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
45 #include "inline-frame.h"
47 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
48 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50 /* We keep a cache of stack frames, each of which is a "struct
51 frame_info". The innermost one gets allocated (in
52 wait_for_inferior) each time the inferior stops; current_frame
53 points to it. Additional frames get allocated (in get_prev_frame)
54 as needed, and are chained through the next and prev fields. Any
55 time that the frame cache becomes invalid (most notably when we
56 execute something, but also if we change how we interpret the
57 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
58 which reads new symbols)), we should call reinit_frame_cache. */
62 /* Level of this frame. The inner-most (youngest) frame is at level
63 0. As you move towards the outer-most (oldest) frame, the level
64 increases. This is a cached value. It could just as easily be
65 computed by counting back from the selected frame to the inner
67 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
68 reserved to indicate a bogus frame - one that has been created
69 just to keep GDB happy (GDB always needs a frame). For the
70 moment leave this as speculation. */
73 /* The frame's program space. */
74 struct program_space *pspace;
76 /* The frame's address space. */
77 struct address_space *aspace;
79 /* The frame's low-level unwinder and corresponding cache. The
80 low-level unwinder is responsible for unwinding register values
81 for the previous frame. The low-level unwind methods are
82 selected based on the presence, or otherwise, of register unwind
83 information such as CFI. */
85 const struct frame_unwind *unwind;
87 /* Cached copy of the previous frame's architecture. */
94 /* Cached copy of the previous frame's resume address. */
100 /* Cached copy of the previous frame's function address. */
107 /* This frame's ID. */
111 struct frame_id value;
114 /* The frame's high-level base methods, and corresponding cache.
115 The high level base methods are selected based on the frame's
117 const struct frame_base *base;
120 /* Pointers to the next (down, inner, younger) and previous (up,
121 outer, older) frame_info's in the frame cache. */
122 struct frame_info *next; /* down, inner, younger */
124 struct frame_info *prev; /* up, outer, older */
126 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
127 could. Only valid when PREV_P is set. */
128 enum unwind_stop_reason stop_reason;
131 /* A frame stash used to speed up frame lookups. */
133 /* We currently only stash one frame at a time, as this seems to be
134 sufficient for now. */
135 static struct frame_info *frame_stash = NULL;
137 /* Add the following FRAME to the frame stash. */
140 frame_stash_add (struct frame_info *frame)
145 /* Search the frame stash for an entry with the given frame ID.
146 If found, return that frame. Otherwise return NULL. */
148 static struct frame_info *
149 frame_stash_find (struct frame_id id)
151 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
157 /* Invalidate the frame stash by removing all entries in it. */
160 frame_stash_invalidate (void)
165 /* Flag to control debugging. */
169 show_frame_debug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
172 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 /* Flag to indicate whether backtraces should stop at main et.al. */
177 static int backtrace_past_main;
179 show_backtrace_past_main (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
182 fprintf_filtered (file, _("\
183 Whether backtraces should continue past \"main\" is %s.\n"),
187 static int backtrace_past_entry;
189 show_backtrace_past_entry (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
192 fprintf_filtered (file, _("\
193 Whether backtraces should continue past the entry point of a program is %s.\n"),
197 static int backtrace_limit = INT_MAX;
199 show_backtrace_limit (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
202 fprintf_filtered (file, _("\
203 An upper bound on the number of backtrace levels is %s.\n"),
209 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
212 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
214 fprintf_unfiltered (file, "!%s", name);
218 fprint_frame_id (struct ui_file *file, struct frame_id id)
220 fprintf_unfiltered (file, "{");
221 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
222 fprintf_unfiltered (file, ",");
223 fprint_field (file, "code", id.code_addr_p, id.code_addr);
224 fprintf_unfiltered (file, ",");
225 fprint_field (file, "special", id.special_addr_p, id.special_addr);
227 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
228 fprintf_unfiltered (file, "}");
232 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 fprintf_unfiltered (file, "NORMAL_FRAME");
240 fprintf_unfiltered (file, "DUMMY_FRAME");
243 fprintf_unfiltered (file, "INLINE_FRAME");
246 fprintf_unfiltered (file, "SENTINEL_FRAME");
249 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
252 fprintf_unfiltered (file, "ARCH_FRAME");
255 fprintf_unfiltered (file, "<unknown type>");
261 fprint_frame (struct ui_file *file, struct frame_info *fi)
265 fprintf_unfiltered (file, "<NULL frame>");
268 fprintf_unfiltered (file, "{");
269 fprintf_unfiltered (file, "level=%d", fi->level);
270 fprintf_unfiltered (file, ",");
271 fprintf_unfiltered (file, "type=");
272 if (fi->unwind != NULL)
273 fprint_frame_type (file, fi->unwind->type);
275 fprintf_unfiltered (file, "<unknown>");
276 fprintf_unfiltered (file, ",");
277 fprintf_unfiltered (file, "unwind=");
278 if (fi->unwind != NULL)
279 gdb_print_host_address (fi->unwind, file);
281 fprintf_unfiltered (file, "<unknown>");
282 fprintf_unfiltered (file, ",");
283 fprintf_unfiltered (file, "pc=");
284 if (fi->next != NULL && fi->next->prev_pc.p)
285 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
287 fprintf_unfiltered (file, "<unknown>");
288 fprintf_unfiltered (file, ",");
289 fprintf_unfiltered (file, "id=");
291 fprint_frame_id (file, fi->this_id.value);
293 fprintf_unfiltered (file, "<unknown>");
294 fprintf_unfiltered (file, ",");
295 fprintf_unfiltered (file, "func=");
296 if (fi->next != NULL && fi->next->prev_func.p)
297 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
299 fprintf_unfiltered (file, "<unknown>");
300 fprintf_unfiltered (file, "}");
303 /* Given FRAME, return the enclosing normal frame for inlined
304 function frames. Otherwise return the original frame. */
306 static struct frame_info *
307 skip_inlined_frames (struct frame_info *frame)
309 while (get_frame_type (frame) == INLINE_FRAME)
310 frame = get_prev_frame (frame);
315 /* Return a frame uniq ID that can be used to, later, re-find the
319 get_frame_id (struct frame_info *fi)
322 return null_frame_id;
327 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
329 /* Find the unwinder. */
330 if (fi->unwind == NULL)
331 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
332 /* Find THIS frame's ID. */
333 /* Default to outermost if no ID is found. */
334 fi->this_id.value = outer_frame_id;
335 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
336 gdb_assert (frame_id_p (fi->this_id.value));
340 fprintf_unfiltered (gdb_stdlog, "-> ");
341 fprint_frame_id (gdb_stdlog, fi->this_id.value);
342 fprintf_unfiltered (gdb_stdlog, " }\n");
346 frame_stash_add (fi);
348 return fi->this_id.value;
352 get_stack_frame_id (struct frame_info *next_frame)
354 return get_frame_id (skip_inlined_frames (next_frame));
358 frame_unwind_caller_id (struct frame_info *next_frame)
360 struct frame_info *this_frame;
362 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
363 the frame chain, leading to this function unintentionally
364 returning a null_frame_id (e.g., when a caller requests the frame
365 ID of "main()"s caller. */
367 next_frame = skip_inlined_frames (next_frame);
368 this_frame = get_prev_frame_1 (next_frame);
370 return get_frame_id (skip_inlined_frames (this_frame));
372 return null_frame_id;
375 const struct frame_id null_frame_id; /* All zeros. */
376 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
379 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
380 CORE_ADDR special_addr)
382 struct frame_id id = null_frame_id;
383 id.stack_addr = stack_addr;
385 id.code_addr = code_addr;
387 id.special_addr = special_addr;
388 id.special_addr_p = 1;
393 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
395 struct frame_id id = null_frame_id;
396 id.stack_addr = stack_addr;
398 id.code_addr = code_addr;
404 frame_id_build_wild (CORE_ADDR stack_addr)
406 struct frame_id id = null_frame_id;
407 id.stack_addr = stack_addr;
413 frame_id_p (struct frame_id l)
416 /* The frame is valid iff it has a valid stack address. */
418 /* outer_frame_id is also valid. */
419 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
423 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
424 fprint_frame_id (gdb_stdlog, l);
425 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
431 frame_id_inlined_p (struct frame_id l)
436 return (l.inline_depth != 0);
440 frame_id_eq (struct frame_id l, struct frame_id r)
443 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
444 /* The outermost frame marker is equal to itself. This is the
445 dodgy thing about outer_frame_id, since between execution steps
446 we might step into another function - from which we can't
447 unwind either. More thought required to get rid of
450 else if (!l.stack_addr_p || !r.stack_addr_p)
451 /* Like a NaN, if either ID is invalid, the result is false.
452 Note that a frame ID is invalid iff it is the null frame ID. */
454 else if (l.stack_addr != r.stack_addr)
455 /* If .stack addresses are different, the frames are different. */
457 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
458 /* An invalid code addr is a wild card. If .code addresses are
459 different, the frames are different. */
461 else if (l.special_addr_p && r.special_addr_p
462 && l.special_addr != r.special_addr)
463 /* An invalid special addr is a wild card (or unused). Otherwise
464 if special addresses are different, the frames are different. */
466 else if (l.inline_depth != r.inline_depth)
467 /* If inline depths are different, the frames must be different. */
470 /* Frames are equal. */
475 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
476 fprint_frame_id (gdb_stdlog, l);
477 fprintf_unfiltered (gdb_stdlog, ",r=");
478 fprint_frame_id (gdb_stdlog, r);
479 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
484 /* Safety net to check whether frame ID L should be inner to
485 frame ID R, according to their stack addresses.
487 This method cannot be used to compare arbitrary frames, as the
488 ranges of valid stack addresses may be discontiguous (e.g. due
491 However, it can be used as safety net to discover invalid frame
492 IDs in certain circumstances. Assuming that NEXT is the immediate
493 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
495 * The stack address of NEXT must be inner-than-or-equal to the stack
498 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
501 * If NEXT and THIS have different stack addresses, no other frame
502 in the frame chain may have a stack address in between.
504 Therefore, if frame_id_inner (TEST, THIS) holds, but
505 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
506 to a valid frame in the frame chain.
508 The sanity checks above cannot be performed when a SIGTRAMP frame
509 is involved, because signal handlers might be executed on a different
510 stack than the stack used by the routine that caused the signal
511 to be raised. This can happen for instance when a thread exceeds
512 its maximum stack size. In this case, certain compilers implement
513 a stack overflow strategy that cause the handler to be run on a
517 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
520 if (!l.stack_addr_p || !r.stack_addr_p)
521 /* Like NaN, any operation involving an invalid ID always fails. */
523 else if (l.inline_depth > r.inline_depth
524 && l.stack_addr == r.stack_addr
525 && l.code_addr_p == r.code_addr_p
526 && l.special_addr_p == r.special_addr_p
527 && l.special_addr == r.special_addr)
529 /* Same function, different inlined functions. */
530 struct block *lb, *rb;
532 gdb_assert (l.code_addr_p && r.code_addr_p);
534 lb = block_for_pc (l.code_addr);
535 rb = block_for_pc (r.code_addr);
537 if (lb == NULL || rb == NULL)
538 /* Something's gone wrong. */
541 /* This will return true if LB and RB are the same block, or
542 if the block with the smaller depth lexically encloses the
543 block with the greater depth. */
544 inner = contained_in (lb, rb);
547 /* Only return non-zero when strictly inner than. Note that, per
548 comment in "frame.h", there is some fuzz here. Frameless
549 functions are not strictly inner than (same .stack but
550 different .code and/or .special address). */
551 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
554 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
555 fprint_frame_id (gdb_stdlog, l);
556 fprintf_unfiltered (gdb_stdlog, ",r=");
557 fprint_frame_id (gdb_stdlog, r);
558 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
564 frame_find_by_id (struct frame_id id)
566 struct frame_info *frame, *prev_frame;
568 /* ZERO denotes the null frame, let the caller decide what to do
569 about it. Should it instead return get_current_frame()? */
570 if (!frame_id_p (id))
573 /* Try using the frame stash first. Finding it there removes the need
574 to perform the search by looping over all frames, which can be very
575 CPU-intensive if the number of frames is very high (the loop is O(n)
576 and get_prev_frame performs a series of checks that are relatively
577 expensive). This optimization is particularly useful when this function
578 is called from another function (such as value_fetch_lazy, case
579 VALUE_LVAL (val) == lval_register) which already loops over all frames,
580 making the overall behavior O(n^2). */
581 frame = frame_stash_find (id);
585 for (frame = get_current_frame (); ; frame = prev_frame)
587 struct frame_id this = get_frame_id (frame);
588 if (frame_id_eq (id, this))
589 /* An exact match. */
592 prev_frame = get_prev_frame (frame);
596 /* As a safety net to avoid unnecessary backtracing while trying
597 to find an invalid ID, we check for a common situation where
598 we can detect from comparing stack addresses that no other
599 frame in the current frame chain can have this ID. See the
600 comment at frame_id_inner for details. */
601 if (get_frame_type (frame) == NORMAL_FRAME
602 && !frame_id_inner (get_frame_arch (frame), id, this)
603 && frame_id_inner (get_frame_arch (prev_frame), id,
604 get_frame_id (prev_frame)))
611 frame_unwind_pc (struct frame_info *this_frame)
613 if (!this_frame->prev_pc.p)
616 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
618 /* The right way. The `pure' way. The one true way. This
619 method depends solely on the register-unwind code to
620 determine the value of registers in THIS frame, and hence
621 the value of this frame's PC (resume address). A typical
622 implementation is no more than:
624 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
625 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
627 Note: this method is very heavily dependent on a correct
628 register-unwind implementation, it pays to fix that
629 method first; this method is frame type agnostic, since
630 it only deals with register values, it works with any
631 frame. This is all in stark contrast to the old
632 FRAME_SAVED_PC which would try to directly handle all the
633 different ways that a PC could be unwound. */
634 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
637 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
638 this_frame->prev_pc.value = pc;
639 this_frame->prev_pc.p = 1;
641 fprintf_unfiltered (gdb_stdlog,
642 "{ frame_unwind_caller_pc (this_frame=%d) -> %s }\n",
644 hex_string (this_frame->prev_pc.value));
646 return this_frame->prev_pc.value;
650 frame_unwind_caller_pc (struct frame_info *this_frame)
652 return frame_unwind_pc (skip_inlined_frames (this_frame));
656 get_frame_func (struct frame_info *this_frame)
658 struct frame_info *next_frame = this_frame->next;
660 if (!next_frame->prev_func.p)
662 /* Make certain that this, and not the adjacent, function is
664 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
665 next_frame->prev_func.p = 1;
666 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
668 fprintf_unfiltered (gdb_stdlog,
669 "{ get_frame_func (this_frame=%d) -> %s }\n",
671 hex_string (next_frame->prev_func.addr));
673 return next_frame->prev_func.addr;
677 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
679 return frame_register_read (src, regnum, buf);
683 frame_save_as_regcache (struct frame_info *this_frame)
685 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
686 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
687 regcache_save (regcache, do_frame_register_read, this_frame);
688 discard_cleanups (cleanups);
693 frame_pop (struct frame_info *this_frame)
695 struct frame_info *prev_frame;
696 struct regcache *scratch;
697 struct cleanup *cleanups;
699 if (get_frame_type (this_frame) == DUMMY_FRAME)
701 /* Popping a dummy frame involves restoring more than just registers.
702 dummy_frame_pop does all the work. */
703 dummy_frame_pop (get_frame_id (this_frame));
707 /* Ensure that we have a frame to pop to. */
708 prev_frame = get_prev_frame_1 (this_frame);
711 error (_("Cannot pop the initial frame."));
713 /* Make a copy of all the register values unwound from this frame.
714 Save them in a scratch buffer so that there isn't a race between
715 trying to extract the old values from the current regcache while
716 at the same time writing new values into that same cache. */
717 scratch = frame_save_as_regcache (prev_frame);
718 cleanups = make_cleanup_regcache_xfree (scratch);
720 /* FIXME: cagney/2003-03-16: It should be possible to tell the
721 target's register cache that it is about to be hit with a burst
722 register transfer and that the sequence of register writes should
723 be batched. The pair target_prepare_to_store() and
724 target_store_registers() kind of suggest this functionality.
725 Unfortunately, they don't implement it. Their lack of a formal
726 definition can lead to targets writing back bogus values
727 (arguably a bug in the target code mind). */
728 /* Now copy those saved registers into the current regcache.
729 Here, regcache_cpy() calls regcache_restore(). */
730 regcache_cpy (get_current_regcache (), scratch);
731 do_cleanups (cleanups);
733 /* We've made right mess of GDB's local state, just discard
735 reinit_frame_cache ();
739 frame_register_unwind (struct frame_info *frame, int regnum,
740 int *optimizedp, enum lval_type *lvalp,
741 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
745 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
746 that the value proper does not need to be fetched. */
747 gdb_assert (optimizedp != NULL);
748 gdb_assert (lvalp != NULL);
749 gdb_assert (addrp != NULL);
750 gdb_assert (realnump != NULL);
751 /* gdb_assert (bufferp != NULL); */
753 value = frame_unwind_register_value (frame, regnum);
755 gdb_assert (value != NULL);
757 *optimizedp = value_optimized_out (value);
758 *lvalp = VALUE_LVAL (value);
759 *addrp = value_address (value);
760 *realnump = VALUE_REGNUM (value);
763 memcpy (bufferp, value_contents_all (value),
764 TYPE_LENGTH (value_type (value)));
766 /* Dispose of the new value. This prevents watchpoints from
767 trying to watch the saved frame pointer. */
768 release_value (value);
773 frame_register (struct frame_info *frame, int regnum,
774 int *optimizedp, enum lval_type *lvalp,
775 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
777 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
778 that the value proper does not need to be fetched. */
779 gdb_assert (optimizedp != NULL);
780 gdb_assert (lvalp != NULL);
781 gdb_assert (addrp != NULL);
782 gdb_assert (realnump != NULL);
783 /* gdb_assert (bufferp != NULL); */
785 /* Obtain the register value by unwinding the register from the next
786 (more inner frame). */
787 gdb_assert (frame != NULL && frame->next != NULL);
788 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
793 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
799 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
804 get_frame_register (struct frame_info *frame,
805 int regnum, gdb_byte *buf)
807 frame_unwind_register (frame->next, regnum, buf);
811 frame_unwind_register_value (struct frame_info *frame, int regnum)
813 struct gdbarch *gdbarch;
816 gdb_assert (frame != NULL);
817 gdbarch = frame_unwind_arch (frame);
821 fprintf_unfiltered (gdb_stdlog, "\
822 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
823 frame->level, regnum,
824 user_reg_map_regnum_to_name (gdbarch, regnum));
827 /* Find the unwinder. */
828 if (frame->unwind == NULL)
829 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
831 /* Ask this frame to unwind its register. */
832 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
836 fprintf_unfiltered (gdb_stdlog, "->");
837 if (value_optimized_out (value))
838 fprintf_unfiltered (gdb_stdlog, " optimized out");
841 if (VALUE_LVAL (value) == lval_register)
842 fprintf_unfiltered (gdb_stdlog, " register=%d",
843 VALUE_REGNUM (value));
844 else if (VALUE_LVAL (value) == lval_memory)
845 fprintf_unfiltered (gdb_stdlog, " address=%s",
847 value_address (value)));
849 fprintf_unfiltered (gdb_stdlog, " computed");
851 if (value_lazy (value))
852 fprintf_unfiltered (gdb_stdlog, " lazy");
856 const gdb_byte *buf = value_contents (value);
858 fprintf_unfiltered (gdb_stdlog, " bytes=");
859 fprintf_unfiltered (gdb_stdlog, "[");
860 for (i = 0; i < register_size (gdbarch, regnum); i++)
861 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
862 fprintf_unfiltered (gdb_stdlog, "]");
866 fprintf_unfiltered (gdb_stdlog, " }\n");
873 get_frame_register_value (struct frame_info *frame, int regnum)
875 return frame_unwind_register_value (frame->next, regnum);
879 frame_unwind_register_signed (struct frame_info *frame, int regnum)
881 struct gdbarch *gdbarch = frame_unwind_arch (frame);
882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
883 int size = register_size (gdbarch, regnum);
884 gdb_byte buf[MAX_REGISTER_SIZE];
885 frame_unwind_register (frame, regnum, buf);
886 return extract_signed_integer (buf, size, byte_order);
890 get_frame_register_signed (struct frame_info *frame, int regnum)
892 return frame_unwind_register_signed (frame->next, regnum);
896 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
898 struct gdbarch *gdbarch = frame_unwind_arch (frame);
899 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
900 int size = register_size (gdbarch, regnum);
901 gdb_byte buf[MAX_REGISTER_SIZE];
902 frame_unwind_register (frame, regnum, buf);
903 return extract_unsigned_integer (buf, size, byte_order);
907 get_frame_register_unsigned (struct frame_info *frame, int regnum)
909 return frame_unwind_register_unsigned (frame->next, regnum);
913 put_frame_register (struct frame_info *frame, int regnum,
916 struct gdbarch *gdbarch = get_frame_arch (frame);
921 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
923 error (_("Attempt to assign to a value that was optimized out."));
928 /* FIXME: write_memory doesn't yet take constant buffers.
930 gdb_byte tmp[MAX_REGISTER_SIZE];
931 memcpy (tmp, buf, register_size (gdbarch, regnum));
932 write_memory (addr, tmp, register_size (gdbarch, regnum));
936 regcache_cooked_write (get_current_regcache (), realnum, buf);
939 error (_("Attempt to assign to an unmodifiable value."));
943 /* frame_register_read ()
945 Find and return the value of REGNUM for the specified stack frame.
946 The number of bytes copied is REGISTER_SIZE (REGNUM).
948 Returns 0 if the register value could not be found. */
951 frame_register_read (struct frame_info *frame, int regnum,
958 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
964 get_frame_register_bytes (struct frame_info *frame, int regnum,
965 CORE_ADDR offset, int len, gdb_byte *myaddr)
967 struct gdbarch *gdbarch = get_frame_arch (frame);
972 /* Skip registers wholly inside of OFFSET. */
973 while (offset >= register_size (gdbarch, regnum))
975 offset -= register_size (gdbarch, regnum);
979 /* Ensure that we will not read beyond the end of the register file.
980 This can only ever happen if the debug information is bad. */
982 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
983 for (i = regnum; i < numregs; i++)
985 int thissize = register_size (gdbarch, i);
987 break; /* This register is not available on this architecture. */
992 warning (_("Bad debug information detected: "
993 "Attempt to read %d bytes from registers."), len);
1000 int curr_len = register_size (gdbarch, regnum) - offset;
1004 if (curr_len == register_size (gdbarch, regnum))
1006 if (!frame_register_read (frame, regnum, myaddr))
1011 gdb_byte buf[MAX_REGISTER_SIZE];
1012 if (!frame_register_read (frame, regnum, buf))
1014 memcpy (myaddr, buf + offset, curr_len);
1027 put_frame_register_bytes (struct frame_info *frame, int regnum,
1028 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1030 struct gdbarch *gdbarch = get_frame_arch (frame);
1032 /* Skip registers wholly inside of OFFSET. */
1033 while (offset >= register_size (gdbarch, regnum))
1035 offset -= register_size (gdbarch, regnum);
1039 /* Copy the data. */
1042 int curr_len = register_size (gdbarch, regnum) - offset;
1046 if (curr_len == register_size (gdbarch, regnum))
1048 put_frame_register (frame, regnum, myaddr);
1052 gdb_byte buf[MAX_REGISTER_SIZE];
1053 frame_register_read (frame, regnum, buf);
1054 memcpy (buf + offset, myaddr, curr_len);
1055 put_frame_register (frame, regnum, buf);
1065 /* Create a sentinel frame. */
1067 static struct frame_info *
1068 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1070 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1072 frame->pspace = pspace;
1073 frame->aspace = get_regcache_aspace (regcache);
1074 /* Explicitly initialize the sentinel frame's cache. Provide it
1075 with the underlying regcache. In the future additional
1076 information, such as the frame's thread will be added. */
1077 frame->prologue_cache = sentinel_frame_cache (regcache);
1078 /* For the moment there is only one sentinel frame implementation. */
1079 frame->unwind = sentinel_frame_unwind;
1080 /* Link this frame back to itself. The frame is self referential
1081 (the unwound PC is the same as the pc), so make it so. */
1082 frame->next = frame;
1083 /* Make the sentinel frame's ID valid, but invalid. That way all
1084 comparisons with it should fail. */
1085 frame->this_id.p = 1;
1086 frame->this_id.value = null_frame_id;
1089 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1090 fprint_frame (gdb_stdlog, frame);
1091 fprintf_unfiltered (gdb_stdlog, " }\n");
1096 /* Info about the innermost stack frame (contents of FP register) */
1098 static struct frame_info *current_frame;
1100 /* Cache for frame addresses already read by gdb. Valid only while
1101 inferior is stopped. Control variables for the frame cache should
1102 be local to this module. */
1104 static struct obstack frame_cache_obstack;
1107 frame_obstack_zalloc (unsigned long size)
1109 void *data = obstack_alloc (&frame_cache_obstack, size);
1110 memset (data, 0, size);
1114 /* Return the innermost (currently executing) stack frame. This is
1115 split into two functions. The function unwind_to_current_frame()
1116 is wrapped in catch exceptions so that, even when the unwind of the
1117 sentinel frame fails, the function still returns a stack frame. */
1120 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1122 struct frame_info *frame = get_prev_frame (args);
1123 /* A sentinel frame can fail to unwind, e.g., because its PC value
1124 lands in somewhere like start. */
1127 current_frame = frame;
1132 get_current_frame (void)
1134 /* First check, and report, the lack of registers. Having GDB
1135 report "No stack!" or "No memory" when the target doesn't even
1136 have registers is very confusing. Besides, "printcmd.exp"
1137 explicitly checks that ``print $pc'' with no registers prints "No
1139 if (!target_has_registers)
1140 error (_("No registers."));
1141 if (!target_has_stack)
1142 error (_("No stack."));
1143 if (!target_has_memory)
1144 error (_("No memory."));
1145 if (ptid_equal (inferior_ptid, null_ptid))
1146 error (_("No selected thread."));
1147 if (is_exited (inferior_ptid))
1148 error (_("Invalid selected thread."));
1149 if (is_executing (inferior_ptid))
1150 error (_("Target is executing."));
1152 if (current_frame == NULL)
1154 struct frame_info *sentinel_frame =
1155 create_sentinel_frame (current_program_space, get_current_regcache ());
1156 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1157 RETURN_MASK_ERROR) != 0)
1159 /* Oops! Fake a current frame? Is this useful? It has a PC
1160 of zero, for instance. */
1161 current_frame = sentinel_frame;
1164 return current_frame;
1167 /* The "selected" stack frame is used by default for local and arg
1168 access. May be zero, for no selected frame. */
1170 static struct frame_info *selected_frame;
1173 has_stack_frames (void)
1175 if (!target_has_registers || !target_has_stack || !target_has_memory)
1178 /* No current inferior, no frame. */
1179 if (ptid_equal (inferior_ptid, null_ptid))
1182 /* Don't try to read from a dead thread. */
1183 if (is_exited (inferior_ptid))
1186 /* ... or from a spinning thread. */
1187 if (is_executing (inferior_ptid))
1193 /* Return the selected frame. Always non-NULL (unless there isn't an
1194 inferior sufficient for creating a frame) in which case an error is
1198 get_selected_frame (const char *message)
1200 if (selected_frame == NULL)
1202 if (message != NULL && !has_stack_frames ())
1203 error (("%s"), message);
1204 /* Hey! Don't trust this. It should really be re-finding the
1205 last selected frame of the currently selected thread. This,
1206 though, is better than nothing. */
1207 select_frame (get_current_frame ());
1209 /* There is always a frame. */
1210 gdb_assert (selected_frame != NULL);
1211 return selected_frame;
1214 /* This is a variant of get_selected_frame() which can be called when
1215 the inferior does not have a frame; in that case it will return
1216 NULL instead of calling error(). */
1219 deprecated_safe_get_selected_frame (void)
1221 if (!has_stack_frames ())
1223 return get_selected_frame (NULL);
1226 /* Select frame FI (or NULL - to invalidate the current frame). */
1229 select_frame (struct frame_info *fi)
1233 selected_frame = fi;
1234 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1235 frame is being invalidated. */
1236 if (deprecated_selected_frame_level_changed_hook)
1237 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1239 /* FIXME: kseitz/2002-08-28: It would be nice to call
1240 selected_frame_level_changed_event() right here, but due to limitations
1241 in the current interfaces, we would end up flooding UIs with events
1242 because select_frame() is used extensively internally.
1244 Once we have frame-parameterized frame (and frame-related) commands,
1245 the event notification can be moved here, since this function will only
1246 be called when the user's selected frame is being changed. */
1248 /* Ensure that symbols for this frame are read in. Also, determine the
1249 source language of this frame, and switch to it if desired. */
1252 /* We retrieve the frame's symtab by using the frame PC. However
1253 we cannot use the frame PC as-is, because it usually points to
1254 the instruction following the "call", which is sometimes the
1255 first instruction of another function. So we rely on
1256 get_frame_address_in_block() which provides us with a PC which
1257 is guaranteed to be inside the frame's code block. */
1258 s = find_pc_symtab (get_frame_address_in_block (fi));
1260 && s->language != current_language->la_language
1261 && s->language != language_unknown
1262 && language_mode == language_mode_auto)
1264 set_language (s->language);
1269 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1270 Always returns a non-NULL value. */
1273 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1275 struct frame_info *fi;
1279 fprintf_unfiltered (gdb_stdlog,
1280 "{ create_new_frame (addr=%s, pc=%s) ",
1281 hex_string (addr), hex_string (pc));
1284 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1286 fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1288 /* Set/update this frame's cached PC value, found in the next frame.
1289 Do this before looking for this frame's unwinder. A sniffer is
1290 very likely to read this, and the corresponding unwinder is
1291 entitled to rely that the PC doesn't magically change. */
1292 fi->next->prev_pc.value = pc;
1293 fi->next->prev_pc.p = 1;
1295 /* We currently assume that frame chain's can't cross spaces. */
1296 fi->pspace = fi->next->pspace;
1297 fi->aspace = fi->next->aspace;
1299 /* Select/initialize both the unwind function and the frame's type
1301 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1304 fi->this_id.value = frame_id_build (addr, pc);
1308 fprintf_unfiltered (gdb_stdlog, "-> ");
1309 fprint_frame (gdb_stdlog, fi);
1310 fprintf_unfiltered (gdb_stdlog, " }\n");
1316 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1317 innermost frame). Be careful to not fall off the bottom of the
1318 frame chain and onto the sentinel frame. */
1321 get_next_frame (struct frame_info *this_frame)
1323 if (this_frame->level > 0)
1324 return this_frame->next;
1329 /* Observer for the target_changed event. */
1332 frame_observer_target_changed (struct target_ops *target)
1334 reinit_frame_cache ();
1337 /* Flush the entire frame cache. */
1340 reinit_frame_cache (void)
1342 struct frame_info *fi;
1344 /* Tear down all frame caches. */
1345 for (fi = current_frame; fi != NULL; fi = fi->prev)
1347 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1348 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1349 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1350 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1353 /* Since we can't really be sure what the first object allocated was */
1354 obstack_free (&frame_cache_obstack, 0);
1355 obstack_init (&frame_cache_obstack);
1357 if (current_frame != NULL)
1358 annotate_frames_invalid ();
1360 current_frame = NULL; /* Invalidate cache */
1361 select_frame (NULL);
1362 frame_stash_invalidate ();
1364 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1367 /* Find where a register is saved (in memory or another register).
1368 The result of frame_register_unwind is just where it is saved
1369 relative to this particular frame. */
1372 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1373 int *optimizedp, enum lval_type *lvalp,
1374 CORE_ADDR *addrp, int *realnump)
1376 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1378 while (this_frame != NULL)
1380 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1381 addrp, realnump, NULL);
1386 if (*lvalp != lval_register)
1390 this_frame = get_next_frame (this_frame);
1394 /* Return a "struct frame_info" corresponding to the frame that called
1395 THIS_FRAME. Returns NULL if there is no such frame.
1397 Unlike get_prev_frame, this function always tries to unwind the
1400 static struct frame_info *
1401 get_prev_frame_1 (struct frame_info *this_frame)
1403 struct frame_id this_id;
1404 struct gdbarch *gdbarch;
1406 gdb_assert (this_frame != NULL);
1407 gdbarch = get_frame_arch (this_frame);
1411 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1412 if (this_frame != NULL)
1413 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1415 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1416 fprintf_unfiltered (gdb_stdlog, ") ");
1419 /* Only try to do the unwind once. */
1420 if (this_frame->prev_p)
1424 fprintf_unfiltered (gdb_stdlog, "-> ");
1425 fprint_frame (gdb_stdlog, this_frame->prev);
1426 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1428 return this_frame->prev;
1431 /* If the frame unwinder hasn't been selected yet, we must do so
1432 before setting prev_p; otherwise the check for misbehaved
1433 sniffers will think that this frame's sniffer tried to unwind
1434 further (see frame_cleanup_after_sniffer). */
1435 if (this_frame->unwind == NULL)
1437 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1439 this_frame->prev_p = 1;
1440 this_frame->stop_reason = UNWIND_NO_REASON;
1442 /* If we are unwinding from an inline frame, all of the below tests
1443 were already performed when we unwound from the next non-inline
1444 frame. We must skip them, since we can not get THIS_FRAME's ID
1445 until we have unwound all the way down to the previous non-inline
1447 if (get_frame_type (this_frame) == INLINE_FRAME)
1448 return get_prev_frame_raw (this_frame);
1450 /* Check that this frame's ID was valid. If it wasn't, don't try to
1451 unwind to the prev frame. Be careful to not apply this test to
1452 the sentinel frame. */
1453 this_id = get_frame_id (this_frame);
1454 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1458 fprintf_unfiltered (gdb_stdlog, "-> ");
1459 fprint_frame (gdb_stdlog, NULL);
1460 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1462 this_frame->stop_reason = UNWIND_NULL_ID;
1466 /* Check that this frame's ID isn't inner to (younger, below, next)
1467 the next frame. This happens when a frame unwind goes backwards.
1468 This check is valid only if this frame and the next frame are NORMAL.
1469 See the comment at frame_id_inner for details. */
1470 if (get_frame_type (this_frame) == NORMAL_FRAME
1471 && this_frame->next->unwind->type == NORMAL_FRAME
1472 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1473 get_frame_id (this_frame->next)))
1477 fprintf_unfiltered (gdb_stdlog, "-> ");
1478 fprint_frame (gdb_stdlog, NULL);
1479 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1481 this_frame->stop_reason = UNWIND_INNER_ID;
1485 /* Check that this and the next frame are not identical. If they
1486 are, there is most likely a stack cycle. As with the inner-than
1487 test above, avoid comparing the inner-most and sentinel frames. */
1488 if (this_frame->level > 0
1489 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1493 fprintf_unfiltered (gdb_stdlog, "-> ");
1494 fprint_frame (gdb_stdlog, NULL);
1495 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1497 this_frame->stop_reason = UNWIND_SAME_ID;
1501 /* Check that this and the next frame do not unwind the PC register
1502 to the same memory location. If they do, then even though they
1503 have different frame IDs, the new frame will be bogus; two
1504 functions can't share a register save slot for the PC. This can
1505 happen when the prologue analyzer finds a stack adjustment, but
1508 This check does assume that the "PC register" is roughly a
1509 traditional PC, even if the gdbarch_unwind_pc method adjusts
1510 it (we do not rely on the value, only on the unwound PC being
1511 dependent on this value). A potential improvement would be
1512 to have the frame prev_pc method and the gdbarch unwind_pc
1513 method set the same lval and location information as
1514 frame_register_unwind. */
1515 if (this_frame->level > 0
1516 && gdbarch_pc_regnum (gdbarch) >= 0
1517 && get_frame_type (this_frame) == NORMAL_FRAME
1518 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1519 || get_frame_type (this_frame->next) == INLINE_FRAME))
1521 int optimized, realnum, nrealnum;
1522 enum lval_type lval, nlval;
1523 CORE_ADDR addr, naddr;
1525 frame_register_unwind_location (this_frame,
1526 gdbarch_pc_regnum (gdbarch),
1527 &optimized, &lval, &addr, &realnum);
1528 frame_register_unwind_location (get_next_frame (this_frame),
1529 gdbarch_pc_regnum (gdbarch),
1530 &optimized, &nlval, &naddr, &nrealnum);
1532 if ((lval == lval_memory && lval == nlval && addr == naddr)
1533 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1537 fprintf_unfiltered (gdb_stdlog, "-> ");
1538 fprint_frame (gdb_stdlog, NULL);
1539 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1542 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1543 this_frame->prev = NULL;
1548 return get_prev_frame_raw (this_frame);
1551 /* Construct a new "struct frame_info" and link it previous to
1554 static struct frame_info *
1555 get_prev_frame_raw (struct frame_info *this_frame)
1557 struct frame_info *prev_frame;
1559 /* Allocate the new frame but do not wire it in to the frame chain.
1560 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1561 frame->next to pull some fancy tricks (of course such code is, by
1562 definition, recursive). Try to prevent it.
1564 There is no reason to worry about memory leaks, should the
1565 remainder of the function fail. The allocated memory will be
1566 quickly reclaimed when the frame cache is flushed, and the `we've
1567 been here before' check above will stop repeated memory
1568 allocation calls. */
1569 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1570 prev_frame->level = this_frame->level + 1;
1572 /* For now, assume we don't have frame chains crossing address
1574 prev_frame->pspace = this_frame->pspace;
1575 prev_frame->aspace = this_frame->aspace;
1577 /* Don't yet compute ->unwind (and hence ->type). It is computed
1578 on-demand in get_frame_type, frame_register_unwind, and
1581 /* Don't yet compute the frame's ID. It is computed on-demand by
1584 /* The unwound frame ID is validate at the start of this function,
1585 as part of the logic to decide if that frame should be further
1586 unwound, and not here while the prev frame is being created.
1587 Doing this makes it possible for the user to examine a frame that
1588 has an invalid frame ID.
1590 Some very old VAX code noted: [...] For the sake of argument,
1591 suppose that the stack is somewhat trashed (which is one reason
1592 that "info frame" exists). So, return 0 (indicating we don't
1593 know the address of the arglist) if we don't know what frame this
1597 this_frame->prev = prev_frame;
1598 prev_frame->next = this_frame;
1602 fprintf_unfiltered (gdb_stdlog, "-> ");
1603 fprint_frame (gdb_stdlog, prev_frame);
1604 fprintf_unfiltered (gdb_stdlog, " }\n");
1610 /* Debug routine to print a NULL frame being returned. */
1613 frame_debug_got_null_frame (struct frame_info *this_frame,
1618 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1619 if (this_frame != NULL)
1620 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1622 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1623 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1627 /* Is this (non-sentinel) frame in the "main"() function? */
1630 inside_main_func (struct frame_info *this_frame)
1632 struct minimal_symbol *msymbol;
1635 if (symfile_objfile == 0)
1637 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1638 if (msymbol == NULL)
1640 /* Make certain that the code, and not descriptor, address is
1642 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1643 SYMBOL_VALUE_ADDRESS (msymbol),
1645 return maddr == get_frame_func (this_frame);
1648 /* Test whether THIS_FRAME is inside the process entry point function. */
1651 inside_entry_func (struct frame_info *this_frame)
1653 return (get_frame_func (this_frame) == entry_point_address ());
1656 /* Return a structure containing various interesting information about
1657 the frame that called THIS_FRAME. Returns NULL if there is entier
1658 no such frame or the frame fails any of a set of target-independent
1659 condition that should terminate the frame chain (e.g., as unwinding
1662 This function should not contain target-dependent tests, such as
1663 checking whether the program-counter is zero. */
1666 get_prev_frame (struct frame_info *this_frame)
1668 struct frame_info *prev_frame;
1670 /* There is always a frame. If this assertion fails, suspect that
1671 something should be calling get_selected_frame() or
1672 get_current_frame(). */
1673 gdb_assert (this_frame != NULL);
1675 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1676 sense to stop unwinding at a dummy frame. One place where a dummy
1677 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1678 pcsqh register (space register for the instruction at the head of the
1679 instruction queue) cannot be written directly; the only way to set it
1680 is to branch to code that is in the target space. In order to implement
1681 frame dummies on HPUX, the called function is made to jump back to where
1682 the inferior was when the user function was called. If gdb was inside
1683 the main function when we created the dummy frame, the dummy frame will
1684 point inside the main function. */
1685 if (this_frame->level >= 0
1686 && get_frame_type (this_frame) == NORMAL_FRAME
1687 && !backtrace_past_main
1688 && inside_main_func (this_frame))
1689 /* Don't unwind past main(). Note, this is done _before_ the
1690 frame has been marked as previously unwound. That way if the
1691 user later decides to enable unwinds past main(), that will
1692 automatically happen. */
1694 frame_debug_got_null_frame (this_frame, "inside main func");
1698 /* If the user's backtrace limit has been exceeded, stop. We must
1699 add two to the current level; one of those accounts for backtrace_limit
1700 being 1-based and the level being 0-based, and the other accounts for
1701 the level of the new frame instead of the level of the current
1703 if (this_frame->level + 2 > backtrace_limit)
1705 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1709 /* If we're already inside the entry function for the main objfile,
1710 then it isn't valid. Don't apply this test to a dummy frame -
1711 dummy frame PCs typically land in the entry func. Don't apply
1712 this test to the sentinel frame. Sentinel frames should always
1713 be allowed to unwind. */
1714 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1715 wasn't checking for "main" in the minimal symbols. With that
1716 fixed asm-source tests now stop in "main" instead of halting the
1717 backtrace in weird and wonderful ways somewhere inside the entry
1718 file. Suspect that tests for inside the entry file/func were
1719 added to work around that (now fixed) case. */
1720 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1721 suggested having the inside_entry_func test use the
1722 inside_main_func() msymbol trick (along with entry_point_address()
1723 I guess) to determine the address range of the start function.
1724 That should provide a far better stopper than the current
1726 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1727 applied tail-call optimizations to main so that a function called
1728 from main returns directly to the caller of main. Since we don't
1729 stop at main, we should at least stop at the entry point of the
1731 if (this_frame->level >= 0
1732 && get_frame_type (this_frame) == NORMAL_FRAME
1733 && !backtrace_past_entry
1734 && inside_entry_func (this_frame))
1736 frame_debug_got_null_frame (this_frame, "inside entry func");
1740 /* Assume that the only way to get a zero PC is through something
1741 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1742 will never unwind a zero PC. */
1743 if (this_frame->level > 0
1744 && (get_frame_type (this_frame) == NORMAL_FRAME
1745 || get_frame_type (this_frame) == INLINE_FRAME)
1746 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1747 && get_frame_pc (this_frame) == 0)
1749 frame_debug_got_null_frame (this_frame, "zero PC");
1753 return get_prev_frame_1 (this_frame);
1757 get_frame_pc (struct frame_info *frame)
1759 gdb_assert (frame->next != NULL);
1760 return frame_unwind_pc (frame->next);
1763 /* Return an address that falls within THIS_FRAME's code block. */
1766 get_frame_address_in_block (struct frame_info *this_frame)
1768 /* A draft address. */
1769 CORE_ADDR pc = get_frame_pc (this_frame);
1771 struct frame_info *next_frame = this_frame->next;
1773 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1774 Normally the resume address is inside the body of the function
1775 associated with THIS_FRAME, but there is a special case: when
1776 calling a function which the compiler knows will never return
1777 (for instance abort), the call may be the very last instruction
1778 in the calling function. The resume address will point after the
1779 call and may be at the beginning of a different function
1782 If THIS_FRAME is a signal frame or dummy frame, then we should
1783 not adjust the unwound PC. For a dummy frame, GDB pushed the
1784 resume address manually onto the stack. For a signal frame, the
1785 OS may have pushed the resume address manually and invoked the
1786 handler (e.g. GNU/Linux), or invoked the trampoline which called
1787 the signal handler - but in either case the signal handler is
1788 expected to return to the trampoline. So in both of these
1789 cases we know that the resume address is executable and
1790 related. So we only need to adjust the PC if THIS_FRAME
1791 is a normal function.
1793 If the program has been interrupted while THIS_FRAME is current,
1794 then clearly the resume address is inside the associated
1795 function. There are three kinds of interruption: debugger stop
1796 (next frame will be SENTINEL_FRAME), operating system
1797 signal or exception (next frame will be SIGTRAMP_FRAME),
1798 or debugger-induced function call (next frame will be
1799 DUMMY_FRAME). So we only need to adjust the PC if
1800 NEXT_FRAME is a normal function.
1802 We check the type of NEXT_FRAME first, since it is already
1803 known; frame type is determined by the unwinder, and since
1804 we have THIS_FRAME we've already selected an unwinder for
1807 If the next frame is inlined, we need to keep going until we find
1808 the real function - for instance, if a signal handler is invoked
1809 while in an inlined function, then the code address of the
1810 "calling" normal function should not be adjusted either. */
1812 while (get_frame_type (next_frame) == INLINE_FRAME)
1813 next_frame = next_frame->next;
1815 if (get_frame_type (next_frame) == NORMAL_FRAME
1816 && (get_frame_type (this_frame) == NORMAL_FRAME
1817 || get_frame_type (this_frame) == INLINE_FRAME))
1824 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1826 struct frame_info *next_frame;
1829 /* If the next frame represents an inlined function call, this frame's
1830 sal is the "call site" of that inlined function, which can not
1831 be inferred from get_frame_pc. */
1832 next_frame = get_next_frame (frame);
1833 if (frame_inlined_callees (frame) > 0)
1838 sym = get_frame_function (next_frame);
1840 sym = inline_skipped_symbol (inferior_ptid);
1843 if (SYMBOL_LINE (sym) != 0)
1845 sal->symtab = SYMBOL_SYMTAB (sym);
1846 sal->line = SYMBOL_LINE (sym);
1849 /* If the symbol does not have a location, we don't know where
1850 the call site is. Do not pretend to. This is jarring, but
1851 we can't do much better. */
1852 sal->pc = get_frame_pc (frame);
1857 /* If FRAME is not the innermost frame, that normally means that
1858 FRAME->pc points at the return instruction (which is *after* the
1859 call instruction), and we want to get the line containing the
1860 call (because the call is where the user thinks the program is).
1861 However, if the next frame is either a SIGTRAMP_FRAME or a
1862 DUMMY_FRAME, then the next frame will contain a saved interrupt
1863 PC and such a PC indicates the current (rather than next)
1864 instruction/line, consequently, for such cases, want to get the
1865 line containing fi->pc. */
1866 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1867 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1870 /* Per "frame.h", return the ``address'' of the frame. Code should
1871 really be using get_frame_id(). */
1873 get_frame_base (struct frame_info *fi)
1875 return get_frame_id (fi).stack_addr;
1878 /* High-level offsets into the frame. Used by the debug info. */
1881 get_frame_base_address (struct frame_info *fi)
1883 if (get_frame_type (fi) != NORMAL_FRAME)
1885 if (fi->base == NULL)
1886 fi->base = frame_base_find_by_frame (fi);
1887 /* Sneaky: If the low-level unwind and high-level base code share a
1888 common unwinder, let them share the prologue cache. */
1889 if (fi->base->unwind == fi->unwind)
1890 return fi->base->this_base (fi, &fi->prologue_cache);
1891 return fi->base->this_base (fi, &fi->base_cache);
1895 get_frame_locals_address (struct frame_info *fi)
1898 if (get_frame_type (fi) != NORMAL_FRAME)
1900 /* If there isn't a frame address method, find it. */
1901 if (fi->base == NULL)
1902 fi->base = frame_base_find_by_frame (fi);
1903 /* Sneaky: If the low-level unwind and high-level base code share a
1904 common unwinder, let them share the prologue cache. */
1905 if (fi->base->unwind == fi->unwind)
1906 return fi->base->this_locals (fi, &fi->prologue_cache);
1907 return fi->base->this_locals (fi, &fi->base_cache);
1911 get_frame_args_address (struct frame_info *fi)
1914 if (get_frame_type (fi) != NORMAL_FRAME)
1916 /* If there isn't a frame address method, find it. */
1917 if (fi->base == NULL)
1918 fi->base = frame_base_find_by_frame (fi);
1919 /* Sneaky: If the low-level unwind and high-level base code share a
1920 common unwinder, let them share the prologue cache. */
1921 if (fi->base->unwind == fi->unwind)
1922 return fi->base->this_args (fi, &fi->prologue_cache);
1923 return fi->base->this_args (fi, &fi->base_cache);
1926 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1930 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1932 if (fi->unwind == NULL)
1933 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1934 return fi->unwind == unwinder;
1937 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1938 or -1 for a NULL frame. */
1941 frame_relative_level (struct frame_info *fi)
1950 get_frame_type (struct frame_info *frame)
1952 if (frame->unwind == NULL)
1953 /* Initialize the frame's unwinder because that's what
1954 provides the frame's type. */
1955 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1956 return frame->unwind->type;
1959 struct program_space *
1960 get_frame_program_space (struct frame_info *frame)
1962 return frame->pspace;
1965 struct program_space *
1966 frame_unwind_program_space (struct frame_info *this_frame)
1968 gdb_assert (this_frame);
1970 /* This is really a placeholder to keep the API consistent --- we
1971 assume for now that we don't have frame chains crossing
1973 return this_frame->pspace;
1976 struct address_space *
1977 get_frame_address_space (struct frame_info *frame)
1979 return frame->aspace;
1982 /* Memory access methods. */
1985 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1986 gdb_byte *buf, int len)
1988 read_memory (addr, buf, len);
1992 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1997 return read_memory_integer (addr, len, byte_order);
2001 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2004 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2005 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2006 return read_memory_unsigned_integer (addr, len, byte_order);
2010 safe_frame_unwind_memory (struct frame_info *this_frame,
2011 CORE_ADDR addr, gdb_byte *buf, int len)
2013 /* NOTE: target_read_memory returns zero on success! */
2014 return !target_read_memory (addr, buf, len);
2017 /* Architecture methods. */
2020 get_frame_arch (struct frame_info *this_frame)
2022 return frame_unwind_arch (this_frame->next);
2026 frame_unwind_arch (struct frame_info *next_frame)
2028 if (!next_frame->prev_arch.p)
2030 struct gdbarch *arch;
2032 if (next_frame->unwind == NULL)
2034 = frame_unwind_find_by_frame (next_frame,
2035 &next_frame->prologue_cache);
2037 if (next_frame->unwind->prev_arch != NULL)
2038 arch = next_frame->unwind->prev_arch (next_frame,
2039 &next_frame->prologue_cache);
2041 arch = get_frame_arch (next_frame);
2043 next_frame->prev_arch.arch = arch;
2044 next_frame->prev_arch.p = 1;
2046 fprintf_unfiltered (gdb_stdlog,
2047 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2049 gdbarch_bfd_arch_info (arch)->printable_name);
2052 return next_frame->prev_arch.arch;
2056 frame_unwind_caller_arch (struct frame_info *next_frame)
2058 return frame_unwind_arch (skip_inlined_frames (next_frame));
2061 /* Stack pointer methods. */
2064 get_frame_sp (struct frame_info *this_frame)
2066 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2067 /* Normality - an architecture that provides a way of obtaining any
2068 frame inner-most address. */
2069 if (gdbarch_unwind_sp_p (gdbarch))
2070 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2071 operate on THIS_FRAME now. */
2072 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2073 /* Now things are really are grim. Hope that the value returned by
2074 the gdbarch_sp_regnum register is meaningful. */
2075 if (gdbarch_sp_regnum (gdbarch) >= 0)
2076 return get_frame_register_unsigned (this_frame,
2077 gdbarch_sp_regnum (gdbarch));
2078 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2081 /* Return the reason why we can't unwind past FRAME. */
2083 enum unwind_stop_reason
2084 get_frame_unwind_stop_reason (struct frame_info *frame)
2086 /* If we haven't tried to unwind past this point yet, then assume
2087 that unwinding would succeed. */
2088 if (frame->prev_p == 0)
2089 return UNWIND_NO_REASON;
2091 /* Otherwise, we set a reason when we succeeded (or failed) to
2093 return frame->stop_reason;
2096 /* Return a string explaining REASON. */
2099 frame_stop_reason_string (enum unwind_stop_reason reason)
2103 case UNWIND_NULL_ID:
2104 return _("unwinder did not report frame ID");
2106 case UNWIND_INNER_ID:
2107 return _("previous frame inner to this frame (corrupt stack?)");
2109 case UNWIND_SAME_ID:
2110 return _("previous frame identical to this frame (corrupt stack?)");
2112 case UNWIND_NO_SAVED_PC:
2113 return _("frame did not save the PC");
2115 case UNWIND_NO_REASON:
2116 case UNWIND_FIRST_ERROR:
2118 internal_error (__FILE__, __LINE__,
2119 "Invalid frame stop reason");
2123 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2127 frame_cleanup_after_sniffer (void *arg)
2129 struct frame_info *frame = arg;
2131 /* The sniffer should not allocate a prologue cache if it did not
2132 match this frame. */
2133 gdb_assert (frame->prologue_cache == NULL);
2135 /* No sniffer should extend the frame chain; sniff based on what is
2137 gdb_assert (!frame->prev_p);
2139 /* The sniffer should not check the frame's ID; that's circular. */
2140 gdb_assert (!frame->this_id.p);
2142 /* Clear cached fields dependent on the unwinder.
2144 The previous PC is independent of the unwinder, but the previous
2145 function is not (see get_frame_address_in_block). */
2146 frame->prev_func.p = 0;
2147 frame->prev_func.addr = 0;
2149 /* Discard the unwinder last, so that we can easily find it if an assertion
2150 in this function triggers. */
2151 frame->unwind = NULL;
2154 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2155 Return a cleanup which should be called if unwinding fails, and
2156 discarded if it succeeds. */
2159 frame_prepare_for_sniffer (struct frame_info *frame,
2160 const struct frame_unwind *unwind)
2162 gdb_assert (frame->unwind == NULL);
2163 frame->unwind = unwind;
2164 return make_cleanup (frame_cleanup_after_sniffer, frame);
2167 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2169 static struct cmd_list_element *set_backtrace_cmdlist;
2170 static struct cmd_list_element *show_backtrace_cmdlist;
2173 set_backtrace_cmd (char *args, int from_tty)
2175 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2179 show_backtrace_cmd (char *args, int from_tty)
2181 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2185 _initialize_frame (void)
2187 obstack_init (&frame_cache_obstack);
2189 observer_attach_target_changed (frame_observer_target_changed);
2191 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2192 Set backtrace specific variables.\n\
2193 Configure backtrace variables such as the backtrace limit"),
2194 &set_backtrace_cmdlist, "set backtrace ",
2195 0/*allow-unknown*/, &setlist);
2196 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2197 Show backtrace specific variables\n\
2198 Show backtrace variables such as the backtrace limit"),
2199 &show_backtrace_cmdlist, "show backtrace ",
2200 0/*allow-unknown*/, &showlist);
2202 add_setshow_boolean_cmd ("past-main", class_obscure,
2203 &backtrace_past_main, _("\
2204 Set whether backtraces should continue past \"main\"."), _("\
2205 Show whether backtraces should continue past \"main\"."), _("\
2206 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2207 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2208 of the stack trace."),
2210 show_backtrace_past_main,
2211 &set_backtrace_cmdlist,
2212 &show_backtrace_cmdlist);
2214 add_setshow_boolean_cmd ("past-entry", class_obscure,
2215 &backtrace_past_entry, _("\
2216 Set whether backtraces should continue past the entry point of a program."),
2218 Show whether backtraces should continue past the entry point of a program."),
2220 Normally there are no callers beyond the entry point of a program, so GDB\n\
2221 will terminate the backtrace there. Set this variable if you need to see \n\
2222 the rest of the stack trace."),
2224 show_backtrace_past_entry,
2225 &set_backtrace_cmdlist,
2226 &show_backtrace_cmdlist);
2228 add_setshow_integer_cmd ("limit", class_obscure,
2229 &backtrace_limit, _("\
2230 Set an upper bound on the number of backtrace levels."), _("\
2231 Show the upper bound on the number of backtrace levels."), _("\
2232 No more than the specified number of frames can be displayed or examined.\n\
2233 Zero is unlimited."),
2235 show_backtrace_limit,
2236 &set_backtrace_cmdlist,
2237 &show_backtrace_cmdlist);
2239 /* Debug this files internals. */
2240 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2241 Set frame debugging."), _("\
2242 Show frame debugging."), _("\
2243 When non-zero, frame specific internal debugging is enabled."),
2246 &setdebuglist, &showdebuglist);