1 /* Cache and manage frames for GDB, the GNU debugger.
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "inferior.h" /* for inferior_ptid */
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
39 #include "gdbthread.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
46 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
47 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
49 /* Status of some values cached in the frame_info object. */
51 enum cached_copy_status
53 /* Value is unknown. */
56 /* We have a value. */
59 /* Value was not saved. */
62 /* Value is unavailable. */
66 /* We keep a cache of stack frames, each of which is a "struct
67 frame_info". The innermost one gets allocated (in
68 wait_for_inferior) each time the inferior stops; current_frame
69 points to it. Additional frames get allocated (in get_prev_frame)
70 as needed, and are chained through the next and prev fields. Any
71 time that the frame cache becomes invalid (most notably when we
72 execute something, but also if we change how we interpret the
73 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
74 which reads new symbols)), we should call reinit_frame_cache. */
78 /* Level of this frame. The inner-most (youngest) frame is at level
79 0. As you move towards the outer-most (oldest) frame, the level
80 increases. This is a cached value. It could just as easily be
81 computed by counting back from the selected frame to the inner
83 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
84 reserved to indicate a bogus frame - one that has been created
85 just to keep GDB happy (GDB always needs a frame). For the
86 moment leave this as speculation. */
89 /* The frame's program space. */
90 struct program_space *pspace;
92 /* The frame's address space. */
93 struct address_space *aspace;
95 /* The frame's low-level unwinder and corresponding cache. The
96 low-level unwinder is responsible for unwinding register values
97 for the previous frame. The low-level unwind methods are
98 selected based on the presence, or otherwise, of register unwind
99 information such as CFI. */
100 void *prologue_cache;
101 const struct frame_unwind *unwind;
103 /* Cached copy of the previous frame's architecture. */
107 struct gdbarch *arch;
110 /* Cached copy of the previous frame's resume address. */
112 enum cached_copy_status status;
116 /* Cached copy of the previous frame's function address. */
123 /* This frame's ID. */
127 struct frame_id value;
130 /* The frame's high-level base methods, and corresponding cache.
131 The high level base methods are selected based on the frame's
133 const struct frame_base *base;
136 /* Pointers to the next (down, inner, younger) and previous (up,
137 outer, older) frame_info's in the frame cache. */
138 struct frame_info *next; /* down, inner, younger */
140 struct frame_info *prev; /* up, outer, older */
142 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
143 could. Only valid when PREV_P is set. */
144 enum unwind_stop_reason stop_reason;
146 /* A frame specific string describing the STOP_REASON in more detail.
147 Only valid when PREV_P is set, but even then may still be NULL. */
148 const char *stop_string;
151 /* A frame stash used to speed up frame lookups. Create a hash table
152 to stash frames previously accessed from the frame cache for
153 quicker subsequent retrieval. The hash table is emptied whenever
154 the frame cache is invalidated. */
156 static htab_t frame_stash;
158 /* Internal function to calculate a hash from the frame_id addresses,
159 using as many valid addresses as possible. Frames below level 0
160 are not stored in the hash table. */
163 frame_addr_hash (const void *ap)
165 const struct frame_info *frame = (const struct frame_info *) ap;
166 const struct frame_id f_id = frame->this_id.value;
169 gdb_assert (f_id.stack_status != FID_STACK_INVALID
171 || f_id.special_addr_p);
173 if (f_id.stack_status == FID_STACK_VALID)
174 hash = iterative_hash (&f_id.stack_addr,
175 sizeof (f_id.stack_addr), hash);
176 if (f_id.code_addr_p)
177 hash = iterative_hash (&f_id.code_addr,
178 sizeof (f_id.code_addr), hash);
179 if (f_id.special_addr_p)
180 hash = iterative_hash (&f_id.special_addr,
181 sizeof (f_id.special_addr), hash);
186 /* Internal equality function for the hash table. This function
187 defers equality operations to frame_id_eq. */
190 frame_addr_hash_eq (const void *a, const void *b)
192 const struct frame_info *f_entry = (const struct frame_info *) a;
193 const struct frame_info *f_element = (const struct frame_info *) b;
195 return frame_id_eq (f_entry->this_id.value,
196 f_element->this_id.value);
199 /* Internal function to create the frame_stash hash table. 100 seems
200 to be a good compromise to start the hash table at. */
203 frame_stash_create (void)
205 frame_stash = htab_create (100,
211 /* Internal function to add a frame to the frame_stash hash table.
212 Returns false if a frame with the same ID was already stashed, true
216 frame_stash_add (struct frame_info *frame)
218 struct frame_info **slot;
220 /* Do not try to stash the sentinel frame. */
221 gdb_assert (frame->level >= 0);
223 slot = (struct frame_info **) htab_find_slot (frame_stash,
227 /* If we already have a frame in the stack with the same id, we
228 either have a stack cycle (corrupted stack?), or some bug
229 elsewhere in GDB. In any case, ignore the duplicate and return
230 an indication to the caller. */
238 /* Internal function to search the frame stash for an entry with the
239 given frame ID. If found, return that frame. Otherwise return
242 static struct frame_info *
243 frame_stash_find (struct frame_id id)
245 struct frame_info dummy;
246 struct frame_info *frame;
248 dummy.this_id.value = id;
249 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
253 /* Internal function to invalidate the frame stash by removing all
254 entries in it. This only occurs when the frame cache is
258 frame_stash_invalidate (void)
260 htab_empty (frame_stash);
263 /* Flag to control debugging. */
265 unsigned int frame_debug;
267 show_frame_debug (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
270 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
273 /* Flag to indicate whether backtraces should stop at main et.al. */
275 static int backtrace_past_main;
277 show_backtrace_past_main (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
280 fprintf_filtered (file,
281 _("Whether backtraces should "
282 "continue past \"main\" is %s.\n"),
286 static int backtrace_past_entry;
288 show_backtrace_past_entry (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
291 fprintf_filtered (file, _("Whether backtraces should continue past the "
292 "entry point of a program is %s.\n"),
296 static unsigned int backtrace_limit = UINT_MAX;
298 show_backtrace_limit (struct ui_file *file, int from_tty,
299 struct cmd_list_element *c, const char *value)
301 fprintf_filtered (file,
302 _("An upper bound on the number "
303 "of backtrace levels is %s.\n"),
309 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
312 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
314 fprintf_unfiltered (file, "!%s", name);
318 fprint_frame_id (struct ui_file *file, struct frame_id id)
320 fprintf_unfiltered (file, "{");
322 if (id.stack_status == FID_STACK_INVALID)
323 fprintf_unfiltered (file, "!stack");
324 else if (id.stack_status == FID_STACK_UNAVAILABLE)
325 fprintf_unfiltered (file, "stack=<unavailable>");
327 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
328 fprintf_unfiltered (file, ",");
330 fprint_field (file, "code", id.code_addr_p, id.code_addr);
331 fprintf_unfiltered (file, ",");
333 fprint_field (file, "special", id.special_addr_p, id.special_addr);
335 if (id.artificial_depth)
336 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
338 fprintf_unfiltered (file, "}");
342 fprint_frame_type (struct ui_file *file, enum frame_type type)
347 fprintf_unfiltered (file, "NORMAL_FRAME");
350 fprintf_unfiltered (file, "DUMMY_FRAME");
353 fprintf_unfiltered (file, "INLINE_FRAME");
356 fprintf_unfiltered (file, "TAILCALL_FRAME");
359 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
362 fprintf_unfiltered (file, "ARCH_FRAME");
365 fprintf_unfiltered (file, "SENTINEL_FRAME");
368 fprintf_unfiltered (file, "<unknown type>");
374 fprint_frame (struct ui_file *file, struct frame_info *fi)
378 fprintf_unfiltered (file, "<NULL frame>");
381 fprintf_unfiltered (file, "{");
382 fprintf_unfiltered (file, "level=%d", fi->level);
383 fprintf_unfiltered (file, ",");
384 fprintf_unfiltered (file, "type=");
385 if (fi->unwind != NULL)
386 fprint_frame_type (file, fi->unwind->type);
388 fprintf_unfiltered (file, "<unknown>");
389 fprintf_unfiltered (file, ",");
390 fprintf_unfiltered (file, "unwind=");
391 if (fi->unwind != NULL)
392 gdb_print_host_address (fi->unwind, file);
394 fprintf_unfiltered (file, "<unknown>");
395 fprintf_unfiltered (file, ",");
396 fprintf_unfiltered (file, "pc=");
397 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
398 fprintf_unfiltered (file, "<unknown>");
399 else if (fi->next->prev_pc.status == CC_VALUE)
400 fprintf_unfiltered (file, "%s",
401 hex_string (fi->next->prev_pc.value));
402 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
403 val_print_not_saved (file);
404 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
405 val_print_unavailable (file);
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "id=");
409 fprint_frame_id (file, fi->this_id.value);
411 fprintf_unfiltered (file, "<unknown>");
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "func=");
414 if (fi->next != NULL && fi->next->prev_func.p)
415 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
417 fprintf_unfiltered (file, "<unknown>");
418 fprintf_unfiltered (file, "}");
421 /* Given FRAME, return the enclosing frame as found in real frames read-in from
422 inferior memory. Skip any previous frames which were made up by GDB.
423 Return FRAME if FRAME is a non-artificial frame.
424 Return NULL if FRAME is the start of an artificial-only chain. */
426 static struct frame_info *
427 skip_artificial_frames (struct frame_info *frame)
429 /* Note we use get_prev_frame_always, and not get_prev_frame. The
430 latter will truncate the frame chain, leading to this function
431 unintentionally returning a null_frame_id (e.g., when the user
432 sets a backtrace limit).
434 Note that for record targets we may get a frame chain that consists
435 of artificial frames only. */
436 while (get_frame_type (frame) == INLINE_FRAME
437 || get_frame_type (frame) == TAILCALL_FRAME)
439 frame = get_prev_frame_always (frame);
450 skip_tailcall_frames (struct frame_info *frame)
452 while (get_frame_type (frame) == TAILCALL_FRAME)
454 /* Note that for record targets we may get a frame chain that consists of
455 tailcall frames only. */
456 frame = get_prev_frame (frame);
464 /* Compute the frame's uniq ID that can be used to, later, re-find the
468 compute_frame_id (struct frame_info *fi)
470 gdb_assert (!fi->this_id.p);
473 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
475 /* Find the unwinder. */
476 if (fi->unwind == NULL)
477 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
478 /* Find THIS frame's ID. */
479 /* Default to outermost if no ID is found. */
480 fi->this_id.value = outer_frame_id;
481 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
482 gdb_assert (frame_id_p (fi->this_id.value));
486 fprintf_unfiltered (gdb_stdlog, "-> ");
487 fprint_frame_id (gdb_stdlog, fi->this_id.value);
488 fprintf_unfiltered (gdb_stdlog, " }\n");
492 /* Return a frame uniq ID that can be used to, later, re-find the
496 get_frame_id (struct frame_info *fi)
499 return null_frame_id;
501 gdb_assert (fi->this_id.p);
502 return fi->this_id.value;
506 get_stack_frame_id (struct frame_info *next_frame)
508 return get_frame_id (skip_artificial_frames (next_frame));
512 frame_unwind_caller_id (struct frame_info *next_frame)
514 struct frame_info *this_frame;
516 /* Use get_prev_frame_always, and not get_prev_frame. The latter
517 will truncate the frame chain, leading to this function
518 unintentionally returning a null_frame_id (e.g., when a caller
519 requests the frame ID of "main()"s caller. */
521 next_frame = skip_artificial_frames (next_frame);
522 if (next_frame == NULL)
523 return null_frame_id;
525 this_frame = get_prev_frame_always (next_frame);
527 return get_frame_id (skip_artificial_frames (this_frame));
529 return null_frame_id;
532 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
533 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
536 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
537 CORE_ADDR special_addr)
539 struct frame_id id = null_frame_id;
541 id.stack_addr = stack_addr;
542 id.stack_status = FID_STACK_VALID;
543 id.code_addr = code_addr;
545 id.special_addr = special_addr;
546 id.special_addr_p = 1;
553 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
555 struct frame_id id = null_frame_id;
557 id.stack_status = FID_STACK_UNAVAILABLE;
558 id.code_addr = code_addr;
566 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
567 CORE_ADDR special_addr)
569 struct frame_id id = null_frame_id;
571 id.stack_status = FID_STACK_UNAVAILABLE;
572 id.code_addr = code_addr;
574 id.special_addr = special_addr;
575 id.special_addr_p = 1;
580 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
582 struct frame_id id = null_frame_id;
584 id.stack_addr = stack_addr;
585 id.stack_status = FID_STACK_VALID;
586 id.code_addr = code_addr;
592 frame_id_build_wild (CORE_ADDR stack_addr)
594 struct frame_id id = null_frame_id;
596 id.stack_addr = stack_addr;
597 id.stack_status = FID_STACK_VALID;
602 frame_id_p (struct frame_id l)
606 /* The frame is valid iff it has a valid stack address. */
607 p = l.stack_status != FID_STACK_INVALID;
608 /* outer_frame_id is also valid. */
609 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
613 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
614 fprint_frame_id (gdb_stdlog, l);
615 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
621 frame_id_artificial_p (struct frame_id l)
626 return (l.artificial_depth != 0);
630 frame_id_eq (struct frame_id l, struct frame_id r)
634 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
635 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
636 /* The outermost frame marker is equal to itself. This is the
637 dodgy thing about outer_frame_id, since between execution steps
638 we might step into another function - from which we can't
639 unwind either. More thought required to get rid of
642 else if (l.stack_status == FID_STACK_INVALID
643 || r.stack_status == FID_STACK_INVALID)
644 /* Like a NaN, if either ID is invalid, the result is false.
645 Note that a frame ID is invalid iff it is the null frame ID. */
647 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
648 /* If .stack addresses are different, the frames are different. */
650 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
651 /* An invalid code addr is a wild card. If .code addresses are
652 different, the frames are different. */
654 else if (l.special_addr_p && r.special_addr_p
655 && l.special_addr != r.special_addr)
656 /* An invalid special addr is a wild card (or unused). Otherwise
657 if special addresses are different, the frames are different. */
659 else if (l.artificial_depth != r.artificial_depth)
660 /* If artifical depths are different, the frames must be different. */
663 /* Frames are equal. */
668 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
669 fprint_frame_id (gdb_stdlog, l);
670 fprintf_unfiltered (gdb_stdlog, ",r=");
671 fprint_frame_id (gdb_stdlog, r);
672 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
677 /* Safety net to check whether frame ID L should be inner to
678 frame ID R, according to their stack addresses.
680 This method cannot be used to compare arbitrary frames, as the
681 ranges of valid stack addresses may be discontiguous (e.g. due
684 However, it can be used as safety net to discover invalid frame
685 IDs in certain circumstances. Assuming that NEXT is the immediate
686 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
688 * The stack address of NEXT must be inner-than-or-equal to the stack
691 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
694 * If NEXT and THIS have different stack addresses, no other frame
695 in the frame chain may have a stack address in between.
697 Therefore, if frame_id_inner (TEST, THIS) holds, but
698 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
699 to a valid frame in the frame chain.
701 The sanity checks above cannot be performed when a SIGTRAMP frame
702 is involved, because signal handlers might be executed on a different
703 stack than the stack used by the routine that caused the signal
704 to be raised. This can happen for instance when a thread exceeds
705 its maximum stack size. In this case, certain compilers implement
706 a stack overflow strategy that cause the handler to be run on a
710 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
714 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
715 /* Like NaN, any operation involving an invalid ID always fails.
716 Likewise if either ID has an unavailable stack address. */
718 else if (l.artificial_depth > r.artificial_depth
719 && l.stack_addr == r.stack_addr
720 && l.code_addr_p == r.code_addr_p
721 && l.special_addr_p == r.special_addr_p
722 && l.special_addr == r.special_addr)
724 /* Same function, different inlined functions. */
725 const struct block *lb, *rb;
727 gdb_assert (l.code_addr_p && r.code_addr_p);
729 lb = block_for_pc (l.code_addr);
730 rb = block_for_pc (r.code_addr);
732 if (lb == NULL || rb == NULL)
733 /* Something's gone wrong. */
736 /* This will return true if LB and RB are the same block, or
737 if the block with the smaller depth lexically encloses the
738 block with the greater depth. */
739 inner = contained_in (lb, rb);
742 /* Only return non-zero when strictly inner than. Note that, per
743 comment in "frame.h", there is some fuzz here. Frameless
744 functions are not strictly inner than (same .stack but
745 different .code and/or .special address). */
746 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
749 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
750 fprint_frame_id (gdb_stdlog, l);
751 fprintf_unfiltered (gdb_stdlog, ",r=");
752 fprint_frame_id (gdb_stdlog, r);
753 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
759 frame_find_by_id (struct frame_id id)
761 struct frame_info *frame, *prev_frame;
763 /* ZERO denotes the null frame, let the caller decide what to do
764 about it. Should it instead return get_current_frame()? */
765 if (!frame_id_p (id))
768 /* Try using the frame stash first. Finding it there removes the need
769 to perform the search by looping over all frames, which can be very
770 CPU-intensive if the number of frames is very high (the loop is O(n)
771 and get_prev_frame performs a series of checks that are relatively
772 expensive). This optimization is particularly useful when this function
773 is called from another function (such as value_fetch_lazy, case
774 VALUE_LVAL (val) == lval_register) which already loops over all frames,
775 making the overall behavior O(n^2). */
776 frame = frame_stash_find (id);
780 for (frame = get_current_frame (); ; frame = prev_frame)
782 struct frame_id self = get_frame_id (frame);
784 if (frame_id_eq (id, self))
785 /* An exact match. */
788 prev_frame = get_prev_frame (frame);
792 /* As a safety net to avoid unnecessary backtracing while trying
793 to find an invalid ID, we check for a common situation where
794 we can detect from comparing stack addresses that no other
795 frame in the current frame chain can have this ID. See the
796 comment at frame_id_inner for details. */
797 if (get_frame_type (frame) == NORMAL_FRAME
798 && !frame_id_inner (get_frame_arch (frame), id, self)
799 && frame_id_inner (get_frame_arch (prev_frame), id,
800 get_frame_id (prev_frame)))
807 frame_unwind_pc (struct frame_info *this_frame)
809 if (this_frame->prev_pc.status == CC_UNKNOWN)
811 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
813 struct gdbarch *prev_gdbarch;
817 /* The right way. The `pure' way. The one true way. This
818 method depends solely on the register-unwind code to
819 determine the value of registers in THIS frame, and hence
820 the value of this frame's PC (resume address). A typical
821 implementation is no more than:
823 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
824 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
826 Note: this method is very heavily dependent on a correct
827 register-unwind implementation, it pays to fix that
828 method first; this method is frame type agnostic, since
829 it only deals with register values, it works with any
830 frame. This is all in stark contrast to the old
831 FRAME_SAVED_PC which would try to directly handle all the
832 different ways that a PC could be unwound. */
833 prev_gdbarch = frame_unwind_arch (this_frame);
837 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
840 CATCH (ex, RETURN_MASK_ERROR)
842 if (ex.error == NOT_AVAILABLE_ERROR)
844 this_frame->prev_pc.status = CC_UNAVAILABLE;
847 fprintf_unfiltered (gdb_stdlog,
848 "{ frame_unwind_pc (this_frame=%d)"
849 " -> <unavailable> }\n",
852 else if (ex.error == OPTIMIZED_OUT_ERROR)
854 this_frame->prev_pc.status = CC_NOT_SAVED;
857 fprintf_unfiltered (gdb_stdlog,
858 "{ frame_unwind_pc (this_frame=%d)"
859 " -> <not saved> }\n",
863 throw_exception (ex);
869 this_frame->prev_pc.value = pc;
870 this_frame->prev_pc.status = CC_VALUE;
872 fprintf_unfiltered (gdb_stdlog,
873 "{ frame_unwind_pc (this_frame=%d) "
876 hex_string (this_frame->prev_pc.value));
880 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
883 if (this_frame->prev_pc.status == CC_VALUE)
884 return this_frame->prev_pc.value;
885 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
886 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
887 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
888 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
890 internal_error (__FILE__, __LINE__,
891 "unexpected prev_pc status: %d",
892 (int) this_frame->prev_pc.status);
896 frame_unwind_caller_pc (struct frame_info *this_frame)
898 this_frame = skip_artificial_frames (this_frame);
900 /* We must have a non-artificial frame. The caller is supposed to check
901 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
903 gdb_assert (this_frame != NULL);
905 return frame_unwind_pc (this_frame);
909 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
911 struct frame_info *next_frame = this_frame->next;
913 if (!next_frame->prev_func.p)
915 CORE_ADDR addr_in_block;
917 /* Make certain that this, and not the adjacent, function is
919 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
921 next_frame->prev_func.p = -1;
923 fprintf_unfiltered (gdb_stdlog,
924 "{ get_frame_func (this_frame=%d)"
925 " -> unavailable }\n",
930 next_frame->prev_func.p = 1;
931 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
933 fprintf_unfiltered (gdb_stdlog,
934 "{ get_frame_func (this_frame=%d) -> %s }\n",
936 hex_string (next_frame->prev_func.addr));
940 if (next_frame->prev_func.p < 0)
947 *pc = next_frame->prev_func.addr;
953 get_frame_func (struct frame_info *this_frame)
957 if (!get_frame_func_if_available (this_frame, &pc))
958 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
963 static enum register_status
964 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
966 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
967 return REG_UNAVAILABLE;
973 frame_save_as_regcache (struct frame_info *this_frame)
975 struct address_space *aspace = get_frame_address_space (this_frame);
976 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
978 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
980 regcache_save (regcache, do_frame_register_read, this_frame);
981 discard_cleanups (cleanups);
986 frame_pop (struct frame_info *this_frame)
988 struct frame_info *prev_frame;
989 struct regcache *scratch;
990 struct cleanup *cleanups;
992 if (get_frame_type (this_frame) == DUMMY_FRAME)
994 /* Popping a dummy frame involves restoring more than just registers.
995 dummy_frame_pop does all the work. */
996 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1000 /* Ensure that we have a frame to pop to. */
1001 prev_frame = get_prev_frame_always (this_frame);
1004 error (_("Cannot pop the initial frame."));
1006 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1007 entering THISFRAME. */
1008 prev_frame = skip_tailcall_frames (prev_frame);
1010 if (prev_frame == NULL)
1011 error (_("Cannot find the caller frame."));
1013 /* Make a copy of all the register values unwound from this frame.
1014 Save them in a scratch buffer so that there isn't a race between
1015 trying to extract the old values from the current regcache while
1016 at the same time writing new values into that same cache. */
1017 scratch = frame_save_as_regcache (prev_frame);
1018 cleanups = make_cleanup_regcache_xfree (scratch);
1020 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1021 target's register cache that it is about to be hit with a burst
1022 register transfer and that the sequence of register writes should
1023 be batched. The pair target_prepare_to_store() and
1024 target_store_registers() kind of suggest this functionality.
1025 Unfortunately, they don't implement it. Their lack of a formal
1026 definition can lead to targets writing back bogus values
1027 (arguably a bug in the target code mind). */
1028 /* Now copy those saved registers into the current regcache.
1029 Here, regcache_cpy() calls regcache_restore(). */
1030 regcache_cpy (get_current_regcache (), scratch);
1031 do_cleanups (cleanups);
1033 /* We've made right mess of GDB's local state, just discard
1035 reinit_frame_cache ();
1039 frame_register_unwind (struct frame_info *frame, int regnum,
1040 int *optimizedp, int *unavailablep,
1041 enum lval_type *lvalp, CORE_ADDR *addrp,
1042 int *realnump, gdb_byte *bufferp)
1044 struct value *value;
1046 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1047 that the value proper does not need to be fetched. */
1048 gdb_assert (optimizedp != NULL);
1049 gdb_assert (lvalp != NULL);
1050 gdb_assert (addrp != NULL);
1051 gdb_assert (realnump != NULL);
1052 /* gdb_assert (bufferp != NULL); */
1054 value = frame_unwind_register_value (frame, regnum);
1056 gdb_assert (value != NULL);
1058 *optimizedp = value_optimized_out (value);
1059 *unavailablep = !value_entirely_available (value);
1060 *lvalp = VALUE_LVAL (value);
1061 *addrp = value_address (value);
1062 *realnump = VALUE_REGNUM (value);
1066 if (!*optimizedp && !*unavailablep)
1067 memcpy (bufferp, value_contents_all (value),
1068 TYPE_LENGTH (value_type (value)));
1070 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1073 /* Dispose of the new value. This prevents watchpoints from
1074 trying to watch the saved frame pointer. */
1075 release_value (value);
1080 frame_register (struct frame_info *frame, int regnum,
1081 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1082 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1084 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1085 that the value proper does not need to be fetched. */
1086 gdb_assert (optimizedp != NULL);
1087 gdb_assert (lvalp != NULL);
1088 gdb_assert (addrp != NULL);
1089 gdb_assert (realnump != NULL);
1090 /* gdb_assert (bufferp != NULL); */
1092 /* Obtain the register value by unwinding the register from the next
1093 (more inner frame). */
1094 gdb_assert (frame != NULL && frame->next != NULL);
1095 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1096 lvalp, addrp, realnump, bufferp);
1100 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1106 enum lval_type lval;
1108 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1109 &lval, &addr, &realnum, buf);
1112 throw_error (OPTIMIZED_OUT_ERROR,
1113 _("Register %d was not saved"), regnum);
1115 throw_error (NOT_AVAILABLE_ERROR,
1116 _("Register %d is not available"), regnum);
1120 get_frame_register (struct frame_info *frame,
1121 int regnum, gdb_byte *buf)
1123 frame_unwind_register (frame->next, regnum, buf);
1127 frame_unwind_register_value (struct frame_info *frame, int regnum)
1129 struct gdbarch *gdbarch;
1130 struct value *value;
1132 gdb_assert (frame != NULL);
1133 gdbarch = frame_unwind_arch (frame);
1137 fprintf_unfiltered (gdb_stdlog,
1138 "{ frame_unwind_register_value "
1139 "(frame=%d,regnum=%d(%s),...) ",
1140 frame->level, regnum,
1141 user_reg_map_regnum_to_name (gdbarch, regnum));
1144 /* Find the unwinder. */
1145 if (frame->unwind == NULL)
1146 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1148 /* Ask this frame to unwind its register. */
1149 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1153 fprintf_unfiltered (gdb_stdlog, "->");
1154 if (value_optimized_out (value))
1156 fprintf_unfiltered (gdb_stdlog, " ");
1157 val_print_optimized_out (value, gdb_stdlog);
1161 if (VALUE_LVAL (value) == lval_register)
1162 fprintf_unfiltered (gdb_stdlog, " register=%d",
1163 VALUE_REGNUM (value));
1164 else if (VALUE_LVAL (value) == lval_memory)
1165 fprintf_unfiltered (gdb_stdlog, " address=%s",
1167 value_address (value)));
1169 fprintf_unfiltered (gdb_stdlog, " computed");
1171 if (value_lazy (value))
1172 fprintf_unfiltered (gdb_stdlog, " lazy");
1176 const gdb_byte *buf = value_contents (value);
1178 fprintf_unfiltered (gdb_stdlog, " bytes=");
1179 fprintf_unfiltered (gdb_stdlog, "[");
1180 for (i = 0; i < register_size (gdbarch, regnum); i++)
1181 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1182 fprintf_unfiltered (gdb_stdlog, "]");
1186 fprintf_unfiltered (gdb_stdlog, " }\n");
1193 get_frame_register_value (struct frame_info *frame, int regnum)
1195 return frame_unwind_register_value (frame->next, regnum);
1199 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1201 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1202 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1203 int size = register_size (gdbarch, regnum);
1204 gdb_byte buf[MAX_REGISTER_SIZE];
1206 frame_unwind_register (frame, regnum, buf);
1207 return extract_signed_integer (buf, size, byte_order);
1211 get_frame_register_signed (struct frame_info *frame, int regnum)
1213 return frame_unwind_register_signed (frame->next, regnum);
1217 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1219 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1221 int size = register_size (gdbarch, regnum);
1222 gdb_byte buf[MAX_REGISTER_SIZE];
1224 frame_unwind_register (frame, regnum, buf);
1225 return extract_unsigned_integer (buf, size, byte_order);
1229 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1231 return frame_unwind_register_unsigned (frame->next, regnum);
1235 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1238 struct value *regval = get_frame_register_value (frame, regnum);
1240 if (!value_optimized_out (regval)
1241 && value_entirely_available (regval))
1243 struct gdbarch *gdbarch = get_frame_arch (frame);
1244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1245 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1247 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1255 put_frame_register (struct frame_info *frame, int regnum,
1256 const gdb_byte *buf)
1258 struct gdbarch *gdbarch = get_frame_arch (frame);
1262 enum lval_type lval;
1265 frame_register (frame, regnum, &optim, &unavail,
1266 &lval, &addr, &realnum, NULL);
1268 error (_("Attempt to assign to a register that was not saved."));
1273 write_memory (addr, buf, register_size (gdbarch, regnum));
1277 regcache_cooked_write (get_current_regcache (), realnum, buf);
1280 error (_("Attempt to assign to an unmodifiable value."));
1284 /* This function is deprecated. Use get_frame_register_value instead,
1285 which provides more accurate information.
1287 Find and return the value of REGNUM for the specified stack frame.
1288 The number of bytes copied is REGISTER_SIZE (REGNUM).
1290 Returns 0 if the register value could not be found. */
1293 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1298 enum lval_type lval;
1302 frame_register (frame, regnum, &optimized, &unavailable,
1303 &lval, &addr, &realnum, myaddr);
1305 return !optimized && !unavailable;
1309 get_frame_register_bytes (struct frame_info *frame, int regnum,
1310 CORE_ADDR offset, int len, gdb_byte *myaddr,
1311 int *optimizedp, int *unavailablep)
1313 struct gdbarch *gdbarch = get_frame_arch (frame);
1318 /* Skip registers wholly inside of OFFSET. */
1319 while (offset >= register_size (gdbarch, regnum))
1321 offset -= register_size (gdbarch, regnum);
1325 /* Ensure that we will not read beyond the end of the register file.
1326 This can only ever happen if the debug information is bad. */
1328 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1329 for (i = regnum; i < numregs; i++)
1331 int thissize = register_size (gdbarch, i);
1334 break; /* This register is not available on this architecture. */
1335 maxsize += thissize;
1338 error (_("Bad debug information detected: "
1339 "Attempt to read %d bytes from registers."), len);
1341 /* Copy the data. */
1344 int curr_len = register_size (gdbarch, regnum) - offset;
1349 if (curr_len == register_size (gdbarch, regnum))
1351 enum lval_type lval;
1355 frame_register (frame, regnum, optimizedp, unavailablep,
1356 &lval, &addr, &realnum, myaddr);
1357 if (*optimizedp || *unavailablep)
1362 gdb_byte buf[MAX_REGISTER_SIZE];
1363 enum lval_type lval;
1367 frame_register (frame, regnum, optimizedp, unavailablep,
1368 &lval, &addr, &realnum, buf);
1369 if (*optimizedp || *unavailablep)
1371 memcpy (myaddr, buf + offset, curr_len);
1386 put_frame_register_bytes (struct frame_info *frame, int regnum,
1387 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1389 struct gdbarch *gdbarch = get_frame_arch (frame);
1391 /* Skip registers wholly inside of OFFSET. */
1392 while (offset >= register_size (gdbarch, regnum))
1394 offset -= register_size (gdbarch, regnum);
1398 /* Copy the data. */
1401 int curr_len = register_size (gdbarch, regnum) - offset;
1406 if (curr_len == register_size (gdbarch, regnum))
1408 put_frame_register (frame, regnum, myaddr);
1412 gdb_byte buf[MAX_REGISTER_SIZE];
1414 deprecated_frame_register_read (frame, regnum, buf);
1415 memcpy (buf + offset, myaddr, curr_len);
1416 put_frame_register (frame, regnum, buf);
1426 /* Create a sentinel frame. */
1428 static struct frame_info *
1429 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1431 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1434 frame->pspace = pspace;
1435 frame->aspace = get_regcache_aspace (regcache);
1436 /* Explicitly initialize the sentinel frame's cache. Provide it
1437 with the underlying regcache. In the future additional
1438 information, such as the frame's thread will be added. */
1439 frame->prologue_cache = sentinel_frame_cache (regcache);
1440 /* For the moment there is only one sentinel frame implementation. */
1441 frame->unwind = &sentinel_frame_unwind;
1442 /* Link this frame back to itself. The frame is self referential
1443 (the unwound PC is the same as the pc), so make it so. */
1444 frame->next = frame;
1445 /* Make the sentinel frame's ID valid, but invalid. That way all
1446 comparisons with it should fail. */
1447 frame->this_id.p = 1;
1448 frame->this_id.value = null_frame_id;
1451 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1452 fprint_frame (gdb_stdlog, frame);
1453 fprintf_unfiltered (gdb_stdlog, " }\n");
1458 /* Info about the innermost stack frame (contents of FP register). */
1460 static struct frame_info *current_frame;
1462 /* Cache for frame addresses already read by gdb. Valid only while
1463 inferior is stopped. Control variables for the frame cache should
1464 be local to this module. */
1466 static struct obstack frame_cache_obstack;
1469 frame_obstack_zalloc (unsigned long size)
1471 void *data = obstack_alloc (&frame_cache_obstack, size);
1473 memset (data, 0, size);
1477 /* Return the innermost (currently executing) stack frame. This is
1478 split into two functions. The function unwind_to_current_frame()
1479 is wrapped in catch exceptions so that, even when the unwind of the
1480 sentinel frame fails, the function still returns a stack frame. */
1483 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1485 struct frame_info *frame = get_prev_frame ((struct frame_info *) args);
1487 /* A sentinel frame can fail to unwind, e.g., because its PC value
1488 lands in somewhere like start. */
1491 current_frame = frame;
1496 get_current_frame (void)
1498 /* First check, and report, the lack of registers. Having GDB
1499 report "No stack!" or "No memory" when the target doesn't even
1500 have registers is very confusing. Besides, "printcmd.exp"
1501 explicitly checks that ``print $pc'' with no registers prints "No
1503 if (!target_has_registers)
1504 error (_("No registers."));
1505 if (!target_has_stack)
1506 error (_("No stack."));
1507 if (!target_has_memory)
1508 error (_("No memory."));
1509 /* Traceframes are effectively a substitute for the live inferior. */
1510 if (get_traceframe_number () < 0)
1511 validate_registers_access ();
1513 if (current_frame == NULL)
1515 struct frame_info *sentinel_frame =
1516 create_sentinel_frame (current_program_space, get_current_regcache ());
1517 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1518 sentinel_frame, RETURN_MASK_ERROR) != 0)
1520 /* Oops! Fake a current frame? Is this useful? It has a PC
1521 of zero, for instance. */
1522 current_frame = sentinel_frame;
1525 return current_frame;
1528 /* The "selected" stack frame is used by default for local and arg
1529 access. May be zero, for no selected frame. */
1531 static struct frame_info *selected_frame;
1534 has_stack_frames (void)
1536 if (!target_has_registers || !target_has_stack || !target_has_memory)
1539 /* Traceframes are effectively a substitute for the live inferior. */
1540 if (get_traceframe_number () < 0)
1542 /* No current inferior, no frame. */
1543 if (ptid_equal (inferior_ptid, null_ptid))
1546 /* Don't try to read from a dead thread. */
1547 if (is_exited (inferior_ptid))
1550 /* ... or from a spinning thread. */
1551 if (is_executing (inferior_ptid))
1558 /* Return the selected frame. Always non-NULL (unless there isn't an
1559 inferior sufficient for creating a frame) in which case an error is
1563 get_selected_frame (const char *message)
1565 if (selected_frame == NULL)
1567 if (message != NULL && !has_stack_frames ())
1568 error (("%s"), message);
1569 /* Hey! Don't trust this. It should really be re-finding the
1570 last selected frame of the currently selected thread. This,
1571 though, is better than nothing. */
1572 select_frame (get_current_frame ());
1574 /* There is always a frame. */
1575 gdb_assert (selected_frame != NULL);
1576 return selected_frame;
1579 /* If there is a selected frame, return it. Otherwise, return NULL. */
1582 get_selected_frame_if_set (void)
1584 return selected_frame;
1587 /* This is a variant of get_selected_frame() which can be called when
1588 the inferior does not have a frame; in that case it will return
1589 NULL instead of calling error(). */
1592 deprecated_safe_get_selected_frame (void)
1594 if (!has_stack_frames ())
1596 return get_selected_frame (NULL);
1599 /* Select frame FI (or NULL - to invalidate the current frame). */
1602 select_frame (struct frame_info *fi)
1604 selected_frame = fi;
1605 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1606 frame is being invalidated. */
1608 /* FIXME: kseitz/2002-08-28: It would be nice to call
1609 selected_frame_level_changed_event() right here, but due to limitations
1610 in the current interfaces, we would end up flooding UIs with events
1611 because select_frame() is used extensively internally.
1613 Once we have frame-parameterized frame (and frame-related) commands,
1614 the event notification can be moved here, since this function will only
1615 be called when the user's selected frame is being changed. */
1617 /* Ensure that symbols for this frame are read in. Also, determine the
1618 source language of this frame, and switch to it if desired. */
1623 /* We retrieve the frame's symtab by using the frame PC.
1624 However we cannot use the frame PC as-is, because it usually
1625 points to the instruction following the "call", which is
1626 sometimes the first instruction of another function. So we
1627 rely on get_frame_address_in_block() which provides us with a
1628 PC which is guaranteed to be inside the frame's code
1630 if (get_frame_address_in_block_if_available (fi, &pc))
1632 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1635 && compunit_language (cust) != current_language->la_language
1636 && compunit_language (cust) != language_unknown
1637 && language_mode == language_mode_auto)
1638 set_language (compunit_language (cust));
1643 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1644 Always returns a non-NULL value. */
1647 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1649 struct frame_info *fi;
1653 fprintf_unfiltered (gdb_stdlog,
1654 "{ create_new_frame (addr=%s, pc=%s) ",
1655 hex_string (addr), hex_string (pc));
1658 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1660 fi->next = create_sentinel_frame (current_program_space,
1661 get_current_regcache ());
1663 /* Set/update this frame's cached PC value, found in the next frame.
1664 Do this before looking for this frame's unwinder. A sniffer is
1665 very likely to read this, and the corresponding unwinder is
1666 entitled to rely that the PC doesn't magically change. */
1667 fi->next->prev_pc.value = pc;
1668 fi->next->prev_pc.status = CC_VALUE;
1670 /* We currently assume that frame chain's can't cross spaces. */
1671 fi->pspace = fi->next->pspace;
1672 fi->aspace = fi->next->aspace;
1674 /* Select/initialize both the unwind function and the frame's type
1676 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1679 fi->this_id.value = frame_id_build (addr, pc);
1683 fprintf_unfiltered (gdb_stdlog, "-> ");
1684 fprint_frame (gdb_stdlog, fi);
1685 fprintf_unfiltered (gdb_stdlog, " }\n");
1691 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1692 innermost frame). Be careful to not fall off the bottom of the
1693 frame chain and onto the sentinel frame. */
1696 get_next_frame (struct frame_info *this_frame)
1698 if (this_frame->level > 0)
1699 return this_frame->next;
1704 /* Observer for the target_changed event. */
1707 frame_observer_target_changed (struct target_ops *target)
1709 reinit_frame_cache ();
1712 /* Flush the entire frame cache. */
1715 reinit_frame_cache (void)
1717 struct frame_info *fi;
1719 /* Tear down all frame caches. */
1720 for (fi = current_frame; fi != NULL; fi = fi->prev)
1722 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1723 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1724 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1725 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1728 /* Since we can't really be sure what the first object allocated was. */
1729 obstack_free (&frame_cache_obstack, 0);
1730 obstack_init (&frame_cache_obstack);
1732 if (current_frame != NULL)
1733 annotate_frames_invalid ();
1735 current_frame = NULL; /* Invalidate cache */
1736 select_frame (NULL);
1737 frame_stash_invalidate ();
1739 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1742 /* Find where a register is saved (in memory or another register).
1743 The result of frame_register_unwind is just where it is saved
1744 relative to this particular frame. */
1747 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1748 int *optimizedp, enum lval_type *lvalp,
1749 CORE_ADDR *addrp, int *realnump)
1751 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1753 while (this_frame != NULL)
1757 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1758 lvalp, addrp, realnump, NULL);
1763 if (*lvalp != lval_register)
1767 this_frame = get_next_frame (this_frame);
1771 /* Called during frame unwinding to remove a previous frame pointer from a
1772 frame passed in ARG. */
1775 remove_prev_frame (void *arg)
1777 struct frame_info *this_frame, *prev_frame;
1779 this_frame = (struct frame_info *) arg;
1780 prev_frame = this_frame->prev;
1781 gdb_assert (prev_frame != NULL);
1783 prev_frame->next = NULL;
1784 this_frame->prev = NULL;
1787 /* Get the previous raw frame, and check that it is not identical to
1788 same other frame frame already in the chain. If it is, there is
1789 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1790 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1791 validity tests, that compare THIS_FRAME and the next frame, we do
1792 this right after creating the previous frame, to avoid ever ending
1793 up with two frames with the same id in the frame chain. */
1795 static struct frame_info *
1796 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1798 struct frame_info *prev_frame;
1799 struct cleanup *prev_frame_cleanup;
1801 prev_frame = get_prev_frame_raw (this_frame);
1802 if (prev_frame == NULL)
1805 /* The cleanup will remove the previous frame that get_prev_frame_raw
1806 linked onto THIS_FRAME. */
1807 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1809 compute_frame_id (prev_frame);
1810 if (!frame_stash_add (prev_frame))
1812 /* Another frame with the same id was already in the stash. We just
1813 detected a cycle. */
1816 fprintf_unfiltered (gdb_stdlog, "-> ");
1817 fprint_frame (gdb_stdlog, NULL);
1818 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1820 this_frame->stop_reason = UNWIND_SAME_ID;
1822 prev_frame->next = NULL;
1823 this_frame->prev = NULL;
1827 discard_cleanups (prev_frame_cleanup);
1831 /* Helper function for get_prev_frame_always, this is called inside a
1832 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1833 there is no such frame. This may throw an exception. */
1835 static struct frame_info *
1836 get_prev_frame_always_1 (struct frame_info *this_frame)
1838 struct gdbarch *gdbarch;
1840 gdb_assert (this_frame != NULL);
1841 gdbarch = get_frame_arch (this_frame);
1845 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1846 if (this_frame != NULL)
1847 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1849 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1850 fprintf_unfiltered (gdb_stdlog, ") ");
1853 /* Only try to do the unwind once. */
1854 if (this_frame->prev_p)
1858 fprintf_unfiltered (gdb_stdlog, "-> ");
1859 fprint_frame (gdb_stdlog, this_frame->prev);
1860 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1862 return this_frame->prev;
1865 /* If the frame unwinder hasn't been selected yet, we must do so
1866 before setting prev_p; otherwise the check for misbehaved
1867 sniffers will think that this frame's sniffer tried to unwind
1868 further (see frame_cleanup_after_sniffer). */
1869 if (this_frame->unwind == NULL)
1870 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1872 this_frame->prev_p = 1;
1873 this_frame->stop_reason = UNWIND_NO_REASON;
1875 /* If we are unwinding from an inline frame, all of the below tests
1876 were already performed when we unwound from the next non-inline
1877 frame. We must skip them, since we can not get THIS_FRAME's ID
1878 until we have unwound all the way down to the previous non-inline
1880 if (get_frame_type (this_frame) == INLINE_FRAME)
1881 return get_prev_frame_if_no_cycle (this_frame);
1883 /* Check that this frame is unwindable. If it isn't, don't try to
1884 unwind to the prev frame. */
1885 this_frame->stop_reason
1886 = this_frame->unwind->stop_reason (this_frame,
1887 &this_frame->prologue_cache);
1889 if (this_frame->stop_reason != UNWIND_NO_REASON)
1893 enum unwind_stop_reason reason = this_frame->stop_reason;
1895 fprintf_unfiltered (gdb_stdlog, "-> ");
1896 fprint_frame (gdb_stdlog, NULL);
1897 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1898 frame_stop_reason_symbol_string (reason));
1903 /* Check that this frame's ID isn't inner to (younger, below, next)
1904 the next frame. This happens when a frame unwind goes backwards.
1905 This check is valid only if this frame and the next frame are NORMAL.
1906 See the comment at frame_id_inner for details. */
1907 if (get_frame_type (this_frame) == NORMAL_FRAME
1908 && this_frame->next->unwind->type == NORMAL_FRAME
1909 && frame_id_inner (get_frame_arch (this_frame->next),
1910 get_frame_id (this_frame),
1911 get_frame_id (this_frame->next)))
1913 CORE_ADDR this_pc_in_block;
1914 struct minimal_symbol *morestack_msym;
1915 const char *morestack_name = NULL;
1917 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1918 this_pc_in_block = get_frame_address_in_block (this_frame);
1919 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1921 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1922 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1926 fprintf_unfiltered (gdb_stdlog, "-> ");
1927 fprint_frame (gdb_stdlog, NULL);
1928 fprintf_unfiltered (gdb_stdlog,
1929 " // this frame ID is inner }\n");
1931 this_frame->stop_reason = UNWIND_INNER_ID;
1936 /* Check that this and the next frame do not unwind the PC register
1937 to the same memory location. If they do, then even though they
1938 have different frame IDs, the new frame will be bogus; two
1939 functions can't share a register save slot for the PC. This can
1940 happen when the prologue analyzer finds a stack adjustment, but
1943 This check does assume that the "PC register" is roughly a
1944 traditional PC, even if the gdbarch_unwind_pc method adjusts
1945 it (we do not rely on the value, only on the unwound PC being
1946 dependent on this value). A potential improvement would be
1947 to have the frame prev_pc method and the gdbarch unwind_pc
1948 method set the same lval and location information as
1949 frame_register_unwind. */
1950 if (this_frame->level > 0
1951 && gdbarch_pc_regnum (gdbarch) >= 0
1952 && get_frame_type (this_frame) == NORMAL_FRAME
1953 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1954 || get_frame_type (this_frame->next) == INLINE_FRAME))
1956 int optimized, realnum, nrealnum;
1957 enum lval_type lval, nlval;
1958 CORE_ADDR addr, naddr;
1960 frame_register_unwind_location (this_frame,
1961 gdbarch_pc_regnum (gdbarch),
1962 &optimized, &lval, &addr, &realnum);
1963 frame_register_unwind_location (get_next_frame (this_frame),
1964 gdbarch_pc_regnum (gdbarch),
1965 &optimized, &nlval, &naddr, &nrealnum);
1967 if ((lval == lval_memory && lval == nlval && addr == naddr)
1968 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1972 fprintf_unfiltered (gdb_stdlog, "-> ");
1973 fprint_frame (gdb_stdlog, NULL);
1974 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1977 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1978 this_frame->prev = NULL;
1983 return get_prev_frame_if_no_cycle (this_frame);
1986 /* Return a "struct frame_info" corresponding to the frame that called
1987 THIS_FRAME. Returns NULL if there is no such frame.
1989 Unlike get_prev_frame, this function always tries to unwind the
1993 get_prev_frame_always (struct frame_info *this_frame)
1995 struct frame_info *prev_frame = NULL;
1999 prev_frame = get_prev_frame_always_1 (this_frame);
2001 CATCH (ex, RETURN_MASK_ERROR)
2003 if (ex.error == MEMORY_ERROR)
2005 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2006 if (ex.message != NULL)
2011 /* The error needs to live as long as the frame does.
2012 Allocate using stack local STOP_STRING then assign the
2013 pointer to the frame, this allows the STOP_STRING on the
2014 frame to be of type 'const char *'. */
2015 size = strlen (ex.message) + 1;
2016 stop_string = (char *) frame_obstack_zalloc (size);
2017 memcpy (stop_string, ex.message, size);
2018 this_frame->stop_string = stop_string;
2023 throw_exception (ex);
2030 /* Construct a new "struct frame_info" and link it previous to
2033 static struct frame_info *
2034 get_prev_frame_raw (struct frame_info *this_frame)
2036 struct frame_info *prev_frame;
2038 /* Allocate the new frame but do not wire it in to the frame chain.
2039 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2040 frame->next to pull some fancy tricks (of course such code is, by
2041 definition, recursive). Try to prevent it.
2043 There is no reason to worry about memory leaks, should the
2044 remainder of the function fail. The allocated memory will be
2045 quickly reclaimed when the frame cache is flushed, and the `we've
2046 been here before' check above will stop repeated memory
2047 allocation calls. */
2048 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2049 prev_frame->level = this_frame->level + 1;
2051 /* For now, assume we don't have frame chains crossing address
2053 prev_frame->pspace = this_frame->pspace;
2054 prev_frame->aspace = this_frame->aspace;
2056 /* Don't yet compute ->unwind (and hence ->type). It is computed
2057 on-demand in get_frame_type, frame_register_unwind, and
2060 /* Don't yet compute the frame's ID. It is computed on-demand by
2063 /* The unwound frame ID is validate at the start of this function,
2064 as part of the logic to decide if that frame should be further
2065 unwound, and not here while the prev frame is being created.
2066 Doing this makes it possible for the user to examine a frame that
2067 has an invalid frame ID.
2069 Some very old VAX code noted: [...] For the sake of argument,
2070 suppose that the stack is somewhat trashed (which is one reason
2071 that "info frame" exists). So, return 0 (indicating we don't
2072 know the address of the arglist) if we don't know what frame this
2076 this_frame->prev = prev_frame;
2077 prev_frame->next = this_frame;
2081 fprintf_unfiltered (gdb_stdlog, "-> ");
2082 fprint_frame (gdb_stdlog, prev_frame);
2083 fprintf_unfiltered (gdb_stdlog, " }\n");
2089 /* Debug routine to print a NULL frame being returned. */
2092 frame_debug_got_null_frame (struct frame_info *this_frame,
2097 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2098 if (this_frame != NULL)
2099 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2101 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2102 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2106 /* Is this (non-sentinel) frame in the "main"() function? */
2109 inside_main_func (struct frame_info *this_frame)
2111 struct bound_minimal_symbol msymbol;
2114 if (symfile_objfile == 0)
2116 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2117 if (msymbol.minsym == NULL)
2119 /* Make certain that the code, and not descriptor, address is
2121 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2122 BMSYMBOL_VALUE_ADDRESS (msymbol),
2124 return maddr == get_frame_func (this_frame);
2127 /* Test whether THIS_FRAME is inside the process entry point function. */
2130 inside_entry_func (struct frame_info *this_frame)
2132 CORE_ADDR entry_point;
2134 if (!entry_point_address_query (&entry_point))
2137 return get_frame_func (this_frame) == entry_point;
2140 /* Return a structure containing various interesting information about
2141 the frame that called THIS_FRAME. Returns NULL if there is entier
2142 no such frame or the frame fails any of a set of target-independent
2143 condition that should terminate the frame chain (e.g., as unwinding
2146 This function should not contain target-dependent tests, such as
2147 checking whether the program-counter is zero. */
2150 get_prev_frame (struct frame_info *this_frame)
2155 /* There is always a frame. If this assertion fails, suspect that
2156 something should be calling get_selected_frame() or
2157 get_current_frame(). */
2158 gdb_assert (this_frame != NULL);
2159 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2161 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2162 sense to stop unwinding at a dummy frame. One place where a dummy
2163 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2164 pcsqh register (space register for the instruction at the head of the
2165 instruction queue) cannot be written directly; the only way to set it
2166 is to branch to code that is in the target space. In order to implement
2167 frame dummies on HPUX, the called function is made to jump back to where
2168 the inferior was when the user function was called. If gdb was inside
2169 the main function when we created the dummy frame, the dummy frame will
2170 point inside the main function. */
2171 if (this_frame->level >= 0
2172 && get_frame_type (this_frame) == NORMAL_FRAME
2173 && !backtrace_past_main
2175 && inside_main_func (this_frame))
2176 /* Don't unwind past main(). Note, this is done _before_ the
2177 frame has been marked as previously unwound. That way if the
2178 user later decides to enable unwinds past main(), that will
2179 automatically happen. */
2181 frame_debug_got_null_frame (this_frame, "inside main func");
2185 /* If the user's backtrace limit has been exceeded, stop. We must
2186 add two to the current level; one of those accounts for backtrace_limit
2187 being 1-based and the level being 0-based, and the other accounts for
2188 the level of the new frame instead of the level of the current
2190 if (this_frame->level + 2 > backtrace_limit)
2192 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2196 /* If we're already inside the entry function for the main objfile,
2197 then it isn't valid. Don't apply this test to a dummy frame -
2198 dummy frame PCs typically land in the entry func. Don't apply
2199 this test to the sentinel frame. Sentinel frames should always
2200 be allowed to unwind. */
2201 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2202 wasn't checking for "main" in the minimal symbols. With that
2203 fixed asm-source tests now stop in "main" instead of halting the
2204 backtrace in weird and wonderful ways somewhere inside the entry
2205 file. Suspect that tests for inside the entry file/func were
2206 added to work around that (now fixed) case. */
2207 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2208 suggested having the inside_entry_func test use the
2209 inside_main_func() msymbol trick (along with entry_point_address()
2210 I guess) to determine the address range of the start function.
2211 That should provide a far better stopper than the current
2213 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2214 applied tail-call optimizations to main so that a function called
2215 from main returns directly to the caller of main. Since we don't
2216 stop at main, we should at least stop at the entry point of the
2218 if (this_frame->level >= 0
2219 && get_frame_type (this_frame) == NORMAL_FRAME
2220 && !backtrace_past_entry
2222 && inside_entry_func (this_frame))
2224 frame_debug_got_null_frame (this_frame, "inside entry func");
2228 /* Assume that the only way to get a zero PC is through something
2229 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2230 will never unwind a zero PC. */
2231 if (this_frame->level > 0
2232 && (get_frame_type (this_frame) == NORMAL_FRAME
2233 || get_frame_type (this_frame) == INLINE_FRAME)
2234 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2235 && frame_pc_p && frame_pc == 0)
2237 frame_debug_got_null_frame (this_frame, "zero PC");
2241 return get_prev_frame_always (this_frame);
2245 get_frame_pc (struct frame_info *frame)
2247 gdb_assert (frame->next != NULL);
2248 return frame_unwind_pc (frame->next);
2252 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2255 gdb_assert (frame->next != NULL);
2259 *pc = frame_unwind_pc (frame->next);
2261 CATCH (ex, RETURN_MASK_ERROR)
2263 if (ex.error == NOT_AVAILABLE_ERROR)
2266 throw_exception (ex);
2273 /* Return an address that falls within THIS_FRAME's code block. */
2276 get_frame_address_in_block (struct frame_info *this_frame)
2278 /* A draft address. */
2279 CORE_ADDR pc = get_frame_pc (this_frame);
2281 struct frame_info *next_frame = this_frame->next;
2283 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2284 Normally the resume address is inside the body of the function
2285 associated with THIS_FRAME, but there is a special case: when
2286 calling a function which the compiler knows will never return
2287 (for instance abort), the call may be the very last instruction
2288 in the calling function. The resume address will point after the
2289 call and may be at the beginning of a different function
2292 If THIS_FRAME is a signal frame or dummy frame, then we should
2293 not adjust the unwound PC. For a dummy frame, GDB pushed the
2294 resume address manually onto the stack. For a signal frame, the
2295 OS may have pushed the resume address manually and invoked the
2296 handler (e.g. GNU/Linux), or invoked the trampoline which called
2297 the signal handler - but in either case the signal handler is
2298 expected to return to the trampoline. So in both of these
2299 cases we know that the resume address is executable and
2300 related. So we only need to adjust the PC if THIS_FRAME
2301 is a normal function.
2303 If the program has been interrupted while THIS_FRAME is current,
2304 then clearly the resume address is inside the associated
2305 function. There are three kinds of interruption: debugger stop
2306 (next frame will be SENTINEL_FRAME), operating system
2307 signal or exception (next frame will be SIGTRAMP_FRAME),
2308 or debugger-induced function call (next frame will be
2309 DUMMY_FRAME). So we only need to adjust the PC if
2310 NEXT_FRAME is a normal function.
2312 We check the type of NEXT_FRAME first, since it is already
2313 known; frame type is determined by the unwinder, and since
2314 we have THIS_FRAME we've already selected an unwinder for
2317 If the next frame is inlined, we need to keep going until we find
2318 the real function - for instance, if a signal handler is invoked
2319 while in an inlined function, then the code address of the
2320 "calling" normal function should not be adjusted either. */
2322 while (get_frame_type (next_frame) == INLINE_FRAME)
2323 next_frame = next_frame->next;
2325 if ((get_frame_type (next_frame) == NORMAL_FRAME
2326 || get_frame_type (next_frame) == TAILCALL_FRAME)
2327 && (get_frame_type (this_frame) == NORMAL_FRAME
2328 || get_frame_type (this_frame) == TAILCALL_FRAME
2329 || get_frame_type (this_frame) == INLINE_FRAME))
2336 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2342 *pc = get_frame_address_in_block (this_frame);
2344 CATCH (ex, RETURN_MASK_ERROR)
2346 if (ex.error == NOT_AVAILABLE_ERROR)
2348 throw_exception (ex);
2356 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2358 struct frame_info *next_frame;
2362 /* If the next frame represents an inlined function call, this frame's
2363 sal is the "call site" of that inlined function, which can not
2364 be inferred from get_frame_pc. */
2365 next_frame = get_next_frame (frame);
2366 if (frame_inlined_callees (frame) > 0)
2371 sym = get_frame_function (next_frame);
2373 sym = inline_skipped_symbol (inferior_ptid);
2375 /* If frame is inline, it certainly has symbols. */
2378 if (SYMBOL_LINE (sym) != 0)
2380 sal->symtab = symbol_symtab (sym);
2381 sal->line = SYMBOL_LINE (sym);
2384 /* If the symbol does not have a location, we don't know where
2385 the call site is. Do not pretend to. This is jarring, but
2386 we can't do much better. */
2387 sal->pc = get_frame_pc (frame);
2389 sal->pspace = get_frame_program_space (frame);
2394 /* If FRAME is not the innermost frame, that normally means that
2395 FRAME->pc points at the return instruction (which is *after* the
2396 call instruction), and we want to get the line containing the
2397 call (because the call is where the user thinks the program is).
2398 However, if the next frame is either a SIGTRAMP_FRAME or a
2399 DUMMY_FRAME, then the next frame will contain a saved interrupt
2400 PC and such a PC indicates the current (rather than next)
2401 instruction/line, consequently, for such cases, want to get the
2402 line containing fi->pc. */
2403 if (!get_frame_pc_if_available (frame, &pc))
2409 notcurrent = (pc != get_frame_address_in_block (frame));
2410 (*sal) = find_pc_line (pc, notcurrent);
2413 /* Per "frame.h", return the ``address'' of the frame. Code should
2414 really be using get_frame_id(). */
2416 get_frame_base (struct frame_info *fi)
2418 return get_frame_id (fi).stack_addr;
2421 /* High-level offsets into the frame. Used by the debug info. */
2424 get_frame_base_address (struct frame_info *fi)
2426 if (get_frame_type (fi) != NORMAL_FRAME)
2428 if (fi->base == NULL)
2429 fi->base = frame_base_find_by_frame (fi);
2430 /* Sneaky: If the low-level unwind and high-level base code share a
2431 common unwinder, let them share the prologue cache. */
2432 if (fi->base->unwind == fi->unwind)
2433 return fi->base->this_base (fi, &fi->prologue_cache);
2434 return fi->base->this_base (fi, &fi->base_cache);
2438 get_frame_locals_address (struct frame_info *fi)
2440 if (get_frame_type (fi) != NORMAL_FRAME)
2442 /* If there isn't a frame address method, find it. */
2443 if (fi->base == NULL)
2444 fi->base = frame_base_find_by_frame (fi);
2445 /* Sneaky: If the low-level unwind and high-level base code share a
2446 common unwinder, let them share the prologue cache. */
2447 if (fi->base->unwind == fi->unwind)
2448 return fi->base->this_locals (fi, &fi->prologue_cache);
2449 return fi->base->this_locals (fi, &fi->base_cache);
2453 get_frame_args_address (struct frame_info *fi)
2455 if (get_frame_type (fi) != NORMAL_FRAME)
2457 /* If there isn't a frame address method, find it. */
2458 if (fi->base == NULL)
2459 fi->base = frame_base_find_by_frame (fi);
2460 /* Sneaky: If the low-level unwind and high-level base code share a
2461 common unwinder, let them share the prologue cache. */
2462 if (fi->base->unwind == fi->unwind)
2463 return fi->base->this_args (fi, &fi->prologue_cache);
2464 return fi->base->this_args (fi, &fi->base_cache);
2467 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2471 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2473 if (fi->unwind == NULL)
2474 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2475 return fi->unwind == unwinder;
2478 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2479 or -1 for a NULL frame. */
2482 frame_relative_level (struct frame_info *fi)
2491 get_frame_type (struct frame_info *frame)
2493 if (frame->unwind == NULL)
2494 /* Initialize the frame's unwinder because that's what
2495 provides the frame's type. */
2496 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2497 return frame->unwind->type;
2500 struct program_space *
2501 get_frame_program_space (struct frame_info *frame)
2503 return frame->pspace;
2506 struct program_space *
2507 frame_unwind_program_space (struct frame_info *this_frame)
2509 gdb_assert (this_frame);
2511 /* This is really a placeholder to keep the API consistent --- we
2512 assume for now that we don't have frame chains crossing
2514 return this_frame->pspace;
2517 struct address_space *
2518 get_frame_address_space (struct frame_info *frame)
2520 return frame->aspace;
2523 /* Memory access methods. */
2526 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2527 gdb_byte *buf, int len)
2529 read_memory (addr, buf, len);
2533 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2536 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2539 return read_memory_integer (addr, len, byte_order);
2543 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2546 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2549 return read_memory_unsigned_integer (addr, len, byte_order);
2553 safe_frame_unwind_memory (struct frame_info *this_frame,
2554 CORE_ADDR addr, gdb_byte *buf, int len)
2556 /* NOTE: target_read_memory returns zero on success! */
2557 return !target_read_memory (addr, buf, len);
2560 /* Architecture methods. */
2563 get_frame_arch (struct frame_info *this_frame)
2565 return frame_unwind_arch (this_frame->next);
2569 frame_unwind_arch (struct frame_info *next_frame)
2571 if (!next_frame->prev_arch.p)
2573 struct gdbarch *arch;
2575 if (next_frame->unwind == NULL)
2576 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2578 if (next_frame->unwind->prev_arch != NULL)
2579 arch = next_frame->unwind->prev_arch (next_frame,
2580 &next_frame->prologue_cache);
2582 arch = get_frame_arch (next_frame);
2584 next_frame->prev_arch.arch = arch;
2585 next_frame->prev_arch.p = 1;
2587 fprintf_unfiltered (gdb_stdlog,
2588 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2590 gdbarch_bfd_arch_info (arch)->printable_name);
2593 return next_frame->prev_arch.arch;
2597 frame_unwind_caller_arch (struct frame_info *next_frame)
2599 next_frame = skip_artificial_frames (next_frame);
2601 /* We must have a non-artificial frame. The caller is supposed to check
2602 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2604 gdb_assert (next_frame != NULL);
2606 return frame_unwind_arch (next_frame);
2609 /* Gets the language of FRAME. */
2612 get_frame_language (struct frame_info *frame)
2617 gdb_assert (frame!= NULL);
2619 /* We determine the current frame language by looking up its
2620 associated symtab. To retrieve this symtab, we use the frame
2621 PC. However we cannot use the frame PC as is, because it
2622 usually points to the instruction following the "call", which
2623 is sometimes the first instruction of another function. So
2624 we rely on get_frame_address_in_block(), it provides us with
2625 a PC that is guaranteed to be inside the frame's code
2630 pc = get_frame_address_in_block (frame);
2633 CATCH (ex, RETURN_MASK_ERROR)
2635 if (ex.error != NOT_AVAILABLE_ERROR)
2636 throw_exception (ex);
2642 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2645 return compunit_language (cust);
2648 return language_unknown;
2651 /* Stack pointer methods. */
2654 get_frame_sp (struct frame_info *this_frame)
2656 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2658 /* Normality - an architecture that provides a way of obtaining any
2659 frame inner-most address. */
2660 if (gdbarch_unwind_sp_p (gdbarch))
2661 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2662 operate on THIS_FRAME now. */
2663 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2664 /* Now things are really are grim. Hope that the value returned by
2665 the gdbarch_sp_regnum register is meaningful. */
2666 if (gdbarch_sp_regnum (gdbarch) >= 0)
2667 return get_frame_register_unsigned (this_frame,
2668 gdbarch_sp_regnum (gdbarch));
2669 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2672 /* Return the reason why we can't unwind past FRAME. */
2674 enum unwind_stop_reason
2675 get_frame_unwind_stop_reason (struct frame_info *frame)
2677 /* Fill-in STOP_REASON. */
2678 get_prev_frame_always (frame);
2679 gdb_assert (frame->prev_p);
2681 return frame->stop_reason;
2684 /* Return a string explaining REASON. */
2687 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2691 #define SET(name, description) \
2692 case name: return _(description);
2693 #include "unwind_stop_reasons.def"
2697 internal_error (__FILE__, __LINE__,
2698 "Invalid frame stop reason");
2703 frame_stop_reason_string (struct frame_info *fi)
2705 gdb_assert (fi->prev_p);
2706 gdb_assert (fi->prev == NULL);
2708 /* Return the specific string if we have one. */
2709 if (fi->stop_string != NULL)
2710 return fi->stop_string;
2712 /* Return the generic string if we have nothing better. */
2713 return unwind_stop_reason_to_string (fi->stop_reason);
2716 /* Return the enum symbol name of REASON as a string, to use in debug
2720 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2724 #define SET(name, description) \
2725 case name: return #name;
2726 #include "unwind_stop_reasons.def"
2730 internal_error (__FILE__, __LINE__,
2731 "Invalid frame stop reason");
2735 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2739 frame_cleanup_after_sniffer (void *arg)
2741 struct frame_info *frame = (struct frame_info *) arg;
2743 /* The sniffer should not allocate a prologue cache if it did not
2744 match this frame. */
2745 gdb_assert (frame->prologue_cache == NULL);
2747 /* No sniffer should extend the frame chain; sniff based on what is
2749 gdb_assert (!frame->prev_p);
2751 /* The sniffer should not check the frame's ID; that's circular. */
2752 gdb_assert (!frame->this_id.p);
2754 /* Clear cached fields dependent on the unwinder.
2756 The previous PC is independent of the unwinder, but the previous
2757 function is not (see get_frame_address_in_block). */
2758 frame->prev_func.p = 0;
2759 frame->prev_func.addr = 0;
2761 /* Discard the unwinder last, so that we can easily find it if an assertion
2762 in this function triggers. */
2763 frame->unwind = NULL;
2766 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2767 Return a cleanup which should be called if unwinding fails, and
2768 discarded if it succeeds. */
2771 frame_prepare_for_sniffer (struct frame_info *frame,
2772 const struct frame_unwind *unwind)
2774 gdb_assert (frame->unwind == NULL);
2775 frame->unwind = unwind;
2776 return make_cleanup (frame_cleanup_after_sniffer, frame);
2779 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2781 static struct cmd_list_element *set_backtrace_cmdlist;
2782 static struct cmd_list_element *show_backtrace_cmdlist;
2785 set_backtrace_cmd (char *args, int from_tty)
2787 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2792 show_backtrace_cmd (char *args, int from_tty)
2794 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2798 _initialize_frame (void)
2800 obstack_init (&frame_cache_obstack);
2802 frame_stash_create ();
2804 observer_attach_target_changed (frame_observer_target_changed);
2806 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2807 Set backtrace specific variables.\n\
2808 Configure backtrace variables such as the backtrace limit"),
2809 &set_backtrace_cmdlist, "set backtrace ",
2810 0/*allow-unknown*/, &setlist);
2811 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2812 Show backtrace specific variables\n\
2813 Show backtrace variables such as the backtrace limit"),
2814 &show_backtrace_cmdlist, "show backtrace ",
2815 0/*allow-unknown*/, &showlist);
2817 add_setshow_boolean_cmd ("past-main", class_obscure,
2818 &backtrace_past_main, _("\
2819 Set whether backtraces should continue past \"main\"."), _("\
2820 Show whether backtraces should continue past \"main\"."), _("\
2821 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2822 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2823 of the stack trace."),
2825 show_backtrace_past_main,
2826 &set_backtrace_cmdlist,
2827 &show_backtrace_cmdlist);
2829 add_setshow_boolean_cmd ("past-entry", class_obscure,
2830 &backtrace_past_entry, _("\
2831 Set whether backtraces should continue past the entry point of a program."),
2833 Show whether backtraces should continue past the entry point of a program."),
2835 Normally there are no callers beyond the entry point of a program, so GDB\n\
2836 will terminate the backtrace there. Set this variable if you need to see\n\
2837 the rest of the stack trace."),
2839 show_backtrace_past_entry,
2840 &set_backtrace_cmdlist,
2841 &show_backtrace_cmdlist);
2843 add_setshow_uinteger_cmd ("limit", class_obscure,
2844 &backtrace_limit, _("\
2845 Set an upper bound on the number of backtrace levels."), _("\
2846 Show the upper bound on the number of backtrace levels."), _("\
2847 No more than the specified number of frames can be displayed or examined.\n\
2848 Literal \"unlimited\" or zero means no limit."),
2850 show_backtrace_limit,
2851 &set_backtrace_cmdlist,
2852 &show_backtrace_cmdlist);
2854 /* Debug this files internals. */
2855 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2856 Set frame debugging."), _("\
2857 Show frame debugging."), _("\
2858 When non-zero, frame specific internal debugging is enabled."),
2861 &setdebuglist, &showdebuglist);