Use XCNEW gdbarch_tdep
[external/binutils.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3    Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h"   /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47    If unwound, it returns the information needed to construct an
48    innermost frame.
49
50    The current frame, which is the innermost frame, can be found at
51    sentinel_frame->prev.  */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object.  */
59
60 enum cached_copy_status
61 {
62   /* Value is unknown.  */
63   CC_UNKNOWN,
64
65   /* We have a value.  */
66   CC_VALUE,
67
68   /* Value was not saved.  */
69   CC_NOT_SAVED,
70
71   /* Value is unavailable.  */
72   CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76    frame_info".  The innermost one gets allocated (in
77    wait_for_inferior) each time the inferior stops; sentinel_frame
78    points to it.  Additional frames get allocated (in get_prev_frame)
79    as needed, and are chained through the next and prev fields.  Any
80    time that the frame cache becomes invalid (most notably when we
81    execute something, but also if we change how we interpret the
82    frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83    which reads new symbols)), we should call reinit_frame_cache.  */
84
85 struct frame_info
86 {
87   /* Level of this frame.  The inner-most (youngest) frame is at level
88      0.  As you move towards the outer-most (oldest) frame, the level
89      increases.  This is a cached value.  It could just as easily be
90      computed by counting back from the selected frame to the inner
91      most frame.  */
92   /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93      reserved to indicate a bogus frame - one that has been created
94      just to keep GDB happy (GDB always needs a frame).  For the
95      moment leave this as speculation.  */
96   int level;
97
98   /* The frame's program space.  */
99   struct program_space *pspace;
100
101   /* The frame's address space.  */
102   struct address_space *aspace;
103
104   /* The frame's low-level unwinder and corresponding cache.  The
105      low-level unwinder is responsible for unwinding register values
106      for the previous frame.  The low-level unwind methods are
107      selected based on the presence, or otherwise, of register unwind
108      information such as CFI.  */
109   void *prologue_cache;
110   const struct frame_unwind *unwind;
111
112   /* Cached copy of the previous frame's architecture.  */
113   struct
114   {
115     int p;
116     struct gdbarch *arch;
117   } prev_arch;
118
119   /* Cached copy of the previous frame's resume address.  */
120   struct {
121     enum cached_copy_status status;
122     CORE_ADDR value;
123   } prev_pc;
124   
125   /* Cached copy of the previous frame's function address.  */
126   struct
127   {
128     CORE_ADDR addr;
129     int p;
130   } prev_func;
131   
132   /* This frame's ID.  */
133   struct
134   {
135     int p;
136     struct frame_id value;
137   } this_id;
138   
139   /* The frame's high-level base methods, and corresponding cache.
140      The high level base methods are selected based on the frame's
141      debug info.  */
142   const struct frame_base *base;
143   void *base_cache;
144
145   /* Pointers to the next (down, inner, younger) and previous (up,
146      outer, older) frame_info's in the frame cache.  */
147   struct frame_info *next; /* down, inner, younger */
148   int prev_p;
149   struct frame_info *prev; /* up, outer, older */
150
151   /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152      could.  Only valid when PREV_P is set.  */
153   enum unwind_stop_reason stop_reason;
154
155   /* A frame specific string describing the STOP_REASON in more detail.
156      Only valid when PREV_P is set, but even then may still be NULL.  */
157   const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups.  Create a hash table
161    to stash frames previously accessed from the frame cache for
162    quicker subsequent retrieval.  The hash table is emptied whenever
163    the frame cache is invalidated.  */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168    using as many valid addresses as possible.  Frames below level 0
169    are not stored in the hash table.  */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174   const struct frame_info *frame = (const struct frame_info *) ap;
175   const struct frame_id f_id = frame->this_id.value;
176   hashval_t hash = 0;
177
178   gdb_assert (f_id.stack_status != FID_STACK_INVALID
179               || f_id.code_addr_p
180               || f_id.special_addr_p);
181
182   if (f_id.stack_status == FID_STACK_VALID)
183     hash = iterative_hash (&f_id.stack_addr,
184                            sizeof (f_id.stack_addr), hash);
185   if (f_id.code_addr_p)
186     hash = iterative_hash (&f_id.code_addr,
187                            sizeof (f_id.code_addr), hash);
188   if (f_id.special_addr_p)
189     hash = iterative_hash (&f_id.special_addr,
190                            sizeof (f_id.special_addr), hash);
191
192   return hash;
193 }
194
195 /* Internal equality function for the hash table.  This function
196    defers equality operations to frame_id_eq.  */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201   const struct frame_info *f_entry = (const struct frame_info *) a;
202   const struct frame_info *f_element = (const struct frame_info *) b;
203
204   return frame_id_eq (f_entry->this_id.value,
205                       f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table.  100 seems
209    to be a good compromise to start the hash table at.  */
210
211 static void
212 frame_stash_create (void)
213 {
214   frame_stash = htab_create (100,
215                              frame_addr_hash,
216                              frame_addr_hash_eq,
217                              NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221    Returns false if a frame with the same ID was already stashed, true
222    otherwise.  */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227   struct frame_info **slot;
228
229   /* Do not try to stash the sentinel frame.  */
230   gdb_assert (frame->level >= 0);
231
232   slot = (struct frame_info **) htab_find_slot (frame_stash,
233                                                 frame,
234                                                 INSERT);
235
236   /* If we already have a frame in the stack with the same id, we
237      either have a stack cycle (corrupted stack?), or some bug
238      elsewhere in GDB.  In any case, ignore the duplicate and return
239      an indication to the caller.  */
240   if (*slot != NULL)
241     return 0;
242
243   *slot = frame;
244   return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248    given frame ID.  If found, return that frame.  Otherwise return
249    NULL.  */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254   struct frame_info dummy;
255   struct frame_info *frame;
256
257   dummy.this_id.value = id;
258   frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259   return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263    entries in it.  This only occurs when the frame cache is
264    invalidated.  */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269   htab_empty (frame_stash);
270 }
271
272 /* Flag to control debugging.  */
273
274 unsigned int frame_debug;
275 static void
276 show_frame_debug (struct ui_file *file, int from_tty,
277                   struct cmd_list_element *c, const char *value)
278 {
279   fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
280 }
281
282 /* Flag to indicate whether backtraces should stop at main et.al.  */
283
284 static int backtrace_past_main;
285 static void
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287                           struct cmd_list_element *c, const char *value)
288 {
289   fprintf_filtered (file,
290                     _("Whether backtraces should "
291                       "continue past \"main\" is %s.\n"),
292                     value);
293 }
294
295 static int backtrace_past_entry;
296 static void
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298                            struct cmd_list_element *c, const char *value)
299 {
300   fprintf_filtered (file, _("Whether backtraces should continue past the "
301                             "entry point of a program is %s.\n"),
302                     value);
303 }
304
305 static unsigned int backtrace_limit = UINT_MAX;
306 static void
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308                       struct cmd_list_element *c, const char *value)
309 {
310   fprintf_filtered (file,
311                     _("An upper bound on the number "
312                       "of backtrace levels is %s.\n"),
313                     value);
314 }
315
316
317 static void
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
319 {
320   if (p)
321     fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
322   else
323     fprintf_unfiltered (file, "!%s", name);
324 }
325
326 void
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
328 {
329   fprintf_unfiltered (file, "{");
330
331   if (id.stack_status == FID_STACK_INVALID)
332     fprintf_unfiltered (file, "!stack");
333   else if (id.stack_status == FID_STACK_UNAVAILABLE)
334     fprintf_unfiltered (file, "stack=<unavailable>");
335   else if (id.stack_status == FID_STACK_SENTINEL)
336     fprintf_unfiltered (file, "stack=<sentinel>");
337   else
338     fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339   fprintf_unfiltered (file, ",");
340
341   fprint_field (file, "code", id.code_addr_p, id.code_addr);
342   fprintf_unfiltered (file, ",");
343
344   fprint_field (file, "special", id.special_addr_p, id.special_addr);
345
346   if (id.artificial_depth)
347     fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
348
349   fprintf_unfiltered (file, "}");
350 }
351
352 static void
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
354 {
355   switch (type)
356     {
357     case NORMAL_FRAME:
358       fprintf_unfiltered (file, "NORMAL_FRAME");
359       return;
360     case DUMMY_FRAME:
361       fprintf_unfiltered (file, "DUMMY_FRAME");
362       return;
363     case INLINE_FRAME:
364       fprintf_unfiltered (file, "INLINE_FRAME");
365       return;
366     case TAILCALL_FRAME:
367       fprintf_unfiltered (file, "TAILCALL_FRAME");
368       return;
369     case SIGTRAMP_FRAME:
370       fprintf_unfiltered (file, "SIGTRAMP_FRAME");
371       return;
372     case ARCH_FRAME:
373       fprintf_unfiltered (file, "ARCH_FRAME");
374       return;
375     case SENTINEL_FRAME:
376       fprintf_unfiltered (file, "SENTINEL_FRAME");
377       return;
378     default:
379       fprintf_unfiltered (file, "<unknown type>");
380       return;
381     };
382 }
383
384 static void
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
386 {
387   if (fi == NULL)
388     {
389       fprintf_unfiltered (file, "<NULL frame>");
390       return;
391     }
392   fprintf_unfiltered (file, "{");
393   fprintf_unfiltered (file, "level=%d", fi->level);
394   fprintf_unfiltered (file, ",");
395   fprintf_unfiltered (file, "type=");
396   if (fi->unwind != NULL)
397     fprint_frame_type (file, fi->unwind->type);
398   else
399     fprintf_unfiltered (file, "<unknown>");
400   fprintf_unfiltered (file, ",");
401   fprintf_unfiltered (file, "unwind=");
402   if (fi->unwind != NULL)
403     gdb_print_host_address (fi->unwind, file);
404   else
405     fprintf_unfiltered (file, "<unknown>");
406   fprintf_unfiltered (file, ",");
407   fprintf_unfiltered (file, "pc=");
408   if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409     fprintf_unfiltered (file, "<unknown>");
410   else if (fi->next->prev_pc.status == CC_VALUE)
411     fprintf_unfiltered (file, "%s",
412                         hex_string (fi->next->prev_pc.value));
413   else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414     val_print_not_saved (file);
415   else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416     val_print_unavailable (file);
417   fprintf_unfiltered (file, ",");
418   fprintf_unfiltered (file, "id=");
419   if (fi->this_id.p)
420     fprint_frame_id (file, fi->this_id.value);
421   else
422     fprintf_unfiltered (file, "<unknown>");
423   fprintf_unfiltered (file, ",");
424   fprintf_unfiltered (file, "func=");
425   if (fi->next != NULL && fi->next->prev_func.p)
426     fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
427   else
428     fprintf_unfiltered (file, "<unknown>");
429   fprintf_unfiltered (file, "}");
430 }
431
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433    inferior memory.  Skip any previous frames which were made up by GDB.
434    Return FRAME if FRAME is a non-artificial frame.
435    Return NULL if FRAME is the start of an artificial-only chain.  */
436
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
439 {
440   /* Note we use get_prev_frame_always, and not get_prev_frame.  The
441      latter will truncate the frame chain, leading to this function
442      unintentionally returning a null_frame_id (e.g., when the user
443      sets a backtrace limit).
444
445      Note that for record targets we may get a frame chain that consists
446      of artificial frames only.  */
447   while (get_frame_type (frame) == INLINE_FRAME
448          || get_frame_type (frame) == TAILCALL_FRAME)
449     {
450       frame = get_prev_frame_always (frame);
451       if (frame == NULL)
452         break;
453     }
454
455   return frame;
456 }
457
458 struct frame_info *
459 skip_unwritable_frames (struct frame_info *frame)
460 {
461   while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
462     {
463       frame = get_prev_frame (frame);
464       if (frame == NULL)
465         break;
466     }
467
468   return frame;
469 }
470
471 /* See frame.h.  */
472
473 struct frame_info *
474 skip_tailcall_frames (struct frame_info *frame)
475 {
476   while (get_frame_type (frame) == TAILCALL_FRAME)
477     {
478       /* Note that for record targets we may get a frame chain that consists of
479          tailcall frames only.  */
480       frame = get_prev_frame (frame);
481       if (frame == NULL)
482         break;
483     }
484
485   return frame;
486 }
487
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
489    frame.  */
490
491 static void
492 compute_frame_id (struct frame_info *fi)
493 {
494   gdb_assert (!fi->this_id.p);
495
496   if (frame_debug)
497     fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
498                         fi->level);
499   /* Find the unwinder.  */
500   if (fi->unwind == NULL)
501     frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502   /* Find THIS frame's ID.  */
503   /* Default to outermost if no ID is found.  */
504   fi->this_id.value = outer_frame_id;
505   fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506   gdb_assert (frame_id_p (fi->this_id.value));
507   fi->this_id.p = 1;
508   if (frame_debug)
509     {
510       fprintf_unfiltered (gdb_stdlog, "-> ");
511       fprint_frame_id (gdb_stdlog, fi->this_id.value);
512       fprintf_unfiltered (gdb_stdlog, " }\n");
513     }
514 }
515
516 /* Return a frame uniq ID that can be used to, later, re-find the
517    frame.  */
518
519 struct frame_id
520 get_frame_id (struct frame_info *fi)
521 {
522   if (fi == NULL)
523     return null_frame_id;
524
525   if (!fi->this_id.p)
526     {
527       int stashed;
528
529       /* If we haven't computed the frame id yet, then it must be that
530          this is the current frame.  Compute it now, and stash the
531          result.  The IDs of other frames are computed as soon as
532          they're created, in order to detect cycles.  See
533          get_prev_frame_if_no_cycle.  */
534       gdb_assert (fi->level == 0);
535
536       /* Compute.  */
537       compute_frame_id (fi);
538
539       /* Since this is the first frame in the chain, this should
540          always succeed.  */
541       stashed = frame_stash_add (fi);
542       gdb_assert (stashed);
543     }
544
545   return fi->this_id.value;
546 }
547
548 struct frame_id
549 get_stack_frame_id (struct frame_info *next_frame)
550 {
551   return get_frame_id (skip_artificial_frames (next_frame));
552 }
553
554 struct frame_id
555 frame_unwind_caller_id (struct frame_info *next_frame)
556 {
557   struct frame_info *this_frame;
558
559   /* Use get_prev_frame_always, and not get_prev_frame.  The latter
560      will truncate the frame chain, leading to this function
561      unintentionally returning a null_frame_id (e.g., when a caller
562      requests the frame ID of "main()"s caller.  */
563
564   next_frame = skip_artificial_frames (next_frame);
565   if (next_frame == NULL)
566     return null_frame_id;
567
568   this_frame = get_prev_frame_always (next_frame);
569   if (this_frame)
570     return get_frame_id (skip_artificial_frames (this_frame));
571   else
572     return null_frame_id;
573 }
574
575 const struct frame_id null_frame_id = { 0 }; /* All zeros.  */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
578
579 struct frame_id
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581                         CORE_ADDR special_addr)
582 {
583   struct frame_id id = null_frame_id;
584
585   id.stack_addr = stack_addr;
586   id.stack_status = FID_STACK_VALID;
587   id.code_addr = code_addr;
588   id.code_addr_p = 1;
589   id.special_addr = special_addr;
590   id.special_addr_p = 1;
591   return id;
592 }
593
594 /* See frame.h.  */
595
596 struct frame_id
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
598 {
599   struct frame_id id = null_frame_id;
600
601   id.stack_status = FID_STACK_UNAVAILABLE;
602   id.code_addr = code_addr;
603   id.code_addr_p = 1;
604   return id;
605 }
606
607 /* See frame.h.  */
608
609 struct frame_id
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611                                           CORE_ADDR special_addr)
612 {
613   struct frame_id id = null_frame_id;
614
615   id.stack_status = FID_STACK_UNAVAILABLE;
616   id.code_addr = code_addr;
617   id.code_addr_p = 1;
618   id.special_addr = special_addr;
619   id.special_addr_p = 1;
620   return id;
621 }
622
623 struct frame_id
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
625 {
626   struct frame_id id = null_frame_id;
627
628   id.stack_addr = stack_addr;
629   id.stack_status = FID_STACK_VALID;
630   id.code_addr = code_addr;
631   id.code_addr_p = 1;
632   return id;
633 }
634
635 struct frame_id
636 frame_id_build_wild (CORE_ADDR stack_addr)
637 {
638   struct frame_id id = null_frame_id;
639
640   id.stack_addr = stack_addr;
641   id.stack_status = FID_STACK_VALID;
642   return id;
643 }
644
645 int
646 frame_id_p (struct frame_id l)
647 {
648   int p;
649
650   /* The frame is valid iff it has a valid stack address.  */
651   p = l.stack_status != FID_STACK_INVALID;
652   /* outer_frame_id is also valid.  */
653   if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
654     p = 1;
655   if (frame_debug)
656     {
657       fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658       fprint_frame_id (gdb_stdlog, l);
659       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
660     }
661   return p;
662 }
663
664 int
665 frame_id_artificial_p (struct frame_id l)
666 {
667   if (!frame_id_p (l))
668     return 0;
669
670   return (l.artificial_depth != 0);
671 }
672
673 int
674 frame_id_eq (struct frame_id l, struct frame_id r)
675 {
676   int eq;
677
678   if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679       && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680     /* The outermost frame marker is equal to itself.  This is the
681        dodgy thing about outer_frame_id, since between execution steps
682        we might step into another function - from which we can't
683        unwind either.  More thought required to get rid of
684        outer_frame_id.  */
685     eq = 1;
686   else if (l.stack_status == FID_STACK_INVALID
687            || r.stack_status == FID_STACK_INVALID)
688     /* Like a NaN, if either ID is invalid, the result is false.
689        Note that a frame ID is invalid iff it is the null frame ID.  */
690     eq = 0;
691   else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692     /* If .stack addresses are different, the frames are different.  */
693     eq = 0;
694   else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695     /* An invalid code addr is a wild card.  If .code addresses are
696        different, the frames are different.  */
697     eq = 0;
698   else if (l.special_addr_p && r.special_addr_p
699            && l.special_addr != r.special_addr)
700     /* An invalid special addr is a wild card (or unused).  Otherwise
701        if special addresses are different, the frames are different.  */
702     eq = 0;
703   else if (l.artificial_depth != r.artificial_depth)
704     /* If artifical depths are different, the frames must be different.  */
705     eq = 0;
706   else
707     /* Frames are equal.  */
708     eq = 1;
709
710   if (frame_debug)
711     {
712       fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713       fprint_frame_id (gdb_stdlog, l);
714       fprintf_unfiltered (gdb_stdlog, ",r=");
715       fprint_frame_id (gdb_stdlog, r);
716       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
717     }
718   return eq;
719 }
720
721 /* Safety net to check whether frame ID L should be inner to
722    frame ID R, according to their stack addresses.
723
724    This method cannot be used to compare arbitrary frames, as the
725    ranges of valid stack addresses may be discontiguous (e.g. due
726    to sigaltstack).
727
728    However, it can be used as safety net to discover invalid frame
729    IDs in certain circumstances.  Assuming that NEXT is the immediate
730    inner frame to THIS and that NEXT and THIS are both NORMAL frames:
731
732    * The stack address of NEXT must be inner-than-or-equal to the stack
733      address of THIS.
734
735      Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
736      error has occurred.
737
738    * If NEXT and THIS have different stack addresses, no other frame
739      in the frame chain may have a stack address in between.
740
741      Therefore, if frame_id_inner (TEST, THIS) holds, but
742      frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743      to a valid frame in the frame chain.
744
745    The sanity checks above cannot be performed when a SIGTRAMP frame
746    is involved, because signal handlers might be executed on a different
747    stack than the stack used by the routine that caused the signal
748    to be raised.  This can happen for instance when a thread exceeds
749    its maximum stack size.  In this case, certain compilers implement
750    a stack overflow strategy that cause the handler to be run on a
751    different stack.  */
752
753 static int
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
755 {
756   int inner;
757
758   if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759     /* Like NaN, any operation involving an invalid ID always fails.
760        Likewise if either ID has an unavailable stack address.  */
761     inner = 0;
762   else if (l.artificial_depth > r.artificial_depth
763            && l.stack_addr == r.stack_addr
764            && l.code_addr_p == r.code_addr_p
765            && l.special_addr_p == r.special_addr_p
766            && l.special_addr == r.special_addr)
767     {
768       /* Same function, different inlined functions.  */
769       const struct block *lb, *rb;
770
771       gdb_assert (l.code_addr_p && r.code_addr_p);
772
773       lb = block_for_pc (l.code_addr);
774       rb = block_for_pc (r.code_addr);
775
776       if (lb == NULL || rb == NULL)
777         /* Something's gone wrong.  */
778         inner = 0;
779       else
780         /* This will return true if LB and RB are the same block, or
781            if the block with the smaller depth lexically encloses the
782            block with the greater depth.  */
783         inner = contained_in (lb, rb);
784     }
785   else
786     /* Only return non-zero when strictly inner than.  Note that, per
787        comment in "frame.h", there is some fuzz here.  Frameless
788        functions are not strictly inner than (same .stack but
789        different .code and/or .special address).  */
790     inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
791   if (frame_debug)
792     {
793       fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794       fprint_frame_id (gdb_stdlog, l);
795       fprintf_unfiltered (gdb_stdlog, ",r=");
796       fprint_frame_id (gdb_stdlog, r);
797       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
798     }
799   return inner;
800 }
801
802 struct frame_info *
803 frame_find_by_id (struct frame_id id)
804 {
805   struct frame_info *frame, *prev_frame;
806
807   /* ZERO denotes the null frame, let the caller decide what to do
808      about it.  Should it instead return get_current_frame()?  */
809   if (!frame_id_p (id))
810     return NULL;
811
812   /* Check for the sentinel frame.  */
813   if (frame_id_eq (id, sentinel_frame_id))
814     return sentinel_frame;
815
816   /* Try using the frame stash first.  Finding it there removes the need
817      to perform the search by looping over all frames, which can be very
818      CPU-intensive if the number of frames is very high (the loop is O(n)
819      and get_prev_frame performs a series of checks that are relatively
820      expensive).  This optimization is particularly useful when this function
821      is called from another function (such as value_fetch_lazy, case
822      VALUE_LVAL (val) == lval_register) which already loops over all frames,
823      making the overall behavior O(n^2).  */
824   frame = frame_stash_find (id);
825   if (frame)
826     return frame;
827
828   for (frame = get_current_frame (); ; frame = prev_frame)
829     {
830       struct frame_id self = get_frame_id (frame);
831
832       if (frame_id_eq (id, self))
833         /* An exact match.  */
834         return frame;
835
836       prev_frame = get_prev_frame (frame);
837       if (!prev_frame)
838         return NULL;
839
840       /* As a safety net to avoid unnecessary backtracing while trying
841          to find an invalid ID, we check for a common situation where
842          we can detect from comparing stack addresses that no other
843          frame in the current frame chain can have this ID.  See the
844          comment at frame_id_inner for details.   */
845       if (get_frame_type (frame) == NORMAL_FRAME
846           && !frame_id_inner (get_frame_arch (frame), id, self)
847           && frame_id_inner (get_frame_arch (prev_frame), id,
848                              get_frame_id (prev_frame)))
849         return NULL;
850     }
851   return NULL;
852 }
853
854 static CORE_ADDR
855 frame_unwind_pc (struct frame_info *this_frame)
856 {
857   if (this_frame->prev_pc.status == CC_UNKNOWN)
858     {
859       if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
860         {
861           struct gdbarch *prev_gdbarch;
862           CORE_ADDR pc = 0;
863           int pc_p = 0;
864
865           /* The right way.  The `pure' way.  The one true way.  This
866              method depends solely on the register-unwind code to
867              determine the value of registers in THIS frame, and hence
868              the value of this frame's PC (resume address).  A typical
869              implementation is no more than:
870            
871              frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872              return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
873
874              Note: this method is very heavily dependent on a correct
875              register-unwind implementation, it pays to fix that
876              method first; this method is frame type agnostic, since
877              it only deals with register values, it works with any
878              frame.  This is all in stark contrast to the old
879              FRAME_SAVED_PC which would try to directly handle all the
880              different ways that a PC could be unwound.  */
881           prev_gdbarch = frame_unwind_arch (this_frame);
882
883           TRY
884             {
885               pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
886               pc_p = 1;
887             }
888           CATCH (ex, RETURN_MASK_ERROR)
889             {
890               if (ex.error == NOT_AVAILABLE_ERROR)
891                 {
892                   this_frame->prev_pc.status = CC_UNAVAILABLE;
893
894                   if (frame_debug)
895                     fprintf_unfiltered (gdb_stdlog,
896                                         "{ frame_unwind_pc (this_frame=%d)"
897                                         " -> <unavailable> }\n",
898                                         this_frame->level);
899                 }
900               else if (ex.error == OPTIMIZED_OUT_ERROR)
901                 {
902                   this_frame->prev_pc.status = CC_NOT_SAVED;
903
904                   if (frame_debug)
905                     fprintf_unfiltered (gdb_stdlog,
906                                         "{ frame_unwind_pc (this_frame=%d)"
907                                         " -> <not saved> }\n",
908                                         this_frame->level);
909                 }
910               else
911                 throw_exception (ex);
912             }
913           END_CATCH
914
915           if (pc_p)
916             {
917               this_frame->prev_pc.value = pc;
918               this_frame->prev_pc.status = CC_VALUE;
919               if (frame_debug)
920                 fprintf_unfiltered (gdb_stdlog,
921                                     "{ frame_unwind_pc (this_frame=%d) "
922                                     "-> %s }\n",
923                                     this_frame->level,
924                                     hex_string (this_frame->prev_pc.value));
925             }
926         }
927       else
928         internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
929     }
930
931   if (this_frame->prev_pc.status == CC_VALUE)
932     return this_frame->prev_pc.value;
933   else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934     throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935   else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936     throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
937   else
938     internal_error (__FILE__, __LINE__,
939                     "unexpected prev_pc status: %d",
940                     (int) this_frame->prev_pc.status);
941 }
942
943 CORE_ADDR
944 frame_unwind_caller_pc (struct frame_info *this_frame)
945 {
946   this_frame = skip_artificial_frames (this_frame);
947
948   /* We must have a non-artificial frame.  The caller is supposed to check
949      the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
950      in this case.  */
951   gdb_assert (this_frame != NULL);
952
953   return frame_unwind_pc (this_frame);
954 }
955
956 int
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
958 {
959   struct frame_info *next_frame = this_frame->next;
960
961   if (!next_frame->prev_func.p)
962     {
963       CORE_ADDR addr_in_block;
964
965       /* Make certain that this, and not the adjacent, function is
966          found.  */
967       if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
968         {
969           next_frame->prev_func.p = -1;
970           if (frame_debug)
971             fprintf_unfiltered (gdb_stdlog,
972                                 "{ get_frame_func (this_frame=%d)"
973                                 " -> unavailable }\n",
974                                 this_frame->level);
975         }
976       else
977         {
978           next_frame->prev_func.p = 1;
979           next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
980           if (frame_debug)
981             fprintf_unfiltered (gdb_stdlog,
982                                 "{ get_frame_func (this_frame=%d) -> %s }\n",
983                                 this_frame->level,
984                                 hex_string (next_frame->prev_func.addr));
985         }
986     }
987
988   if (next_frame->prev_func.p < 0)
989     {
990       *pc = -1;
991       return 0;
992     }
993   else
994     {
995       *pc = next_frame->prev_func.addr;
996       return 1;
997     }
998 }
999
1000 CORE_ADDR
1001 get_frame_func (struct frame_info *this_frame)
1002 {
1003   CORE_ADDR pc;
1004
1005   if (!get_frame_func_if_available (this_frame, &pc))
1006     throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1007
1008   return pc;
1009 }
1010
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1013 {
1014   if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015     return REG_UNAVAILABLE;
1016   else
1017     return REG_VALID;
1018 }
1019
1020 struct regcache *
1021 frame_save_as_regcache (struct frame_info *this_frame)
1022 {
1023   struct address_space *aspace = get_frame_address_space (this_frame);
1024   struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
1025                                                 aspace);
1026   struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1027
1028   regcache_save (regcache, do_frame_register_read, this_frame);
1029   discard_cleanups (cleanups);
1030   return regcache;
1031 }
1032
1033 void
1034 frame_pop (struct frame_info *this_frame)
1035 {
1036   struct frame_info *prev_frame;
1037   struct regcache *scratch;
1038   struct cleanup *cleanups;
1039
1040   if (get_frame_type (this_frame) == DUMMY_FRAME)
1041     {
1042       /* Popping a dummy frame involves restoring more than just registers.
1043          dummy_frame_pop does all the work.  */
1044       dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1045       return;
1046     }
1047
1048   /* Ensure that we have a frame to pop to.  */
1049   prev_frame = get_prev_frame_always (this_frame);
1050
1051   if (!prev_frame)
1052     error (_("Cannot pop the initial frame."));
1053
1054   /* Ignore TAILCALL_FRAME type frames, they were executed already before
1055      entering THISFRAME.  */
1056   prev_frame = skip_tailcall_frames (prev_frame);
1057
1058   if (prev_frame == NULL)
1059     error (_("Cannot find the caller frame."));
1060
1061   /* Make a copy of all the register values unwound from this frame.
1062      Save them in a scratch buffer so that there isn't a race between
1063      trying to extract the old values from the current regcache while
1064      at the same time writing new values into that same cache.  */
1065   scratch = frame_save_as_regcache (prev_frame);
1066   cleanups = make_cleanup_regcache_xfree (scratch);
1067
1068   /* FIXME: cagney/2003-03-16: It should be possible to tell the
1069      target's register cache that it is about to be hit with a burst
1070      register transfer and that the sequence of register writes should
1071      be batched.  The pair target_prepare_to_store() and
1072      target_store_registers() kind of suggest this functionality.
1073      Unfortunately, they don't implement it.  Their lack of a formal
1074      definition can lead to targets writing back bogus values
1075      (arguably a bug in the target code mind).  */
1076   /* Now copy those saved registers into the current regcache.
1077      Here, regcache_cpy() calls regcache_restore().  */
1078   regcache_cpy (get_current_regcache (), scratch);
1079   do_cleanups (cleanups);
1080
1081   /* We've made right mess of GDB's local state, just discard
1082      everything.  */
1083   reinit_frame_cache ();
1084 }
1085
1086 void
1087 frame_register_unwind (struct frame_info *frame, int regnum,
1088                        int *optimizedp, int *unavailablep,
1089                        enum lval_type *lvalp, CORE_ADDR *addrp,
1090                        int *realnump, gdb_byte *bufferp)
1091 {
1092   struct value *value;
1093
1094   /* Require all but BUFFERP to be valid.  A NULL BUFFERP indicates
1095      that the value proper does not need to be fetched.  */
1096   gdb_assert (optimizedp != NULL);
1097   gdb_assert (lvalp != NULL);
1098   gdb_assert (addrp != NULL);
1099   gdb_assert (realnump != NULL);
1100   /* gdb_assert (bufferp != NULL); */
1101
1102   value = frame_unwind_register_value (frame, regnum);
1103
1104   gdb_assert (value != NULL);
1105
1106   *optimizedp = value_optimized_out (value);
1107   *unavailablep = !value_entirely_available (value);
1108   *lvalp = VALUE_LVAL (value);
1109   *addrp = value_address (value);
1110   if (*lvalp == lval_register)
1111     *realnump = VALUE_REGNUM (value);
1112   else
1113     *realnump = -1;
1114
1115   if (bufferp)
1116     {
1117       if (!*optimizedp && !*unavailablep)
1118         memcpy (bufferp, value_contents_all (value),
1119                 TYPE_LENGTH (value_type (value)));
1120       else
1121         memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1122     }
1123
1124   /* Dispose of the new value.  This prevents watchpoints from
1125      trying to watch the saved frame pointer.  */
1126   release_value (value);
1127   value_free (value);
1128 }
1129
1130 void
1131 frame_register (struct frame_info *frame, int regnum,
1132                 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1133                 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1134 {
1135   /* Require all but BUFFERP to be valid.  A NULL BUFFERP indicates
1136      that the value proper does not need to be fetched.  */
1137   gdb_assert (optimizedp != NULL);
1138   gdb_assert (lvalp != NULL);
1139   gdb_assert (addrp != NULL);
1140   gdb_assert (realnump != NULL);
1141   /* gdb_assert (bufferp != NULL); */
1142
1143   /* Obtain the register value by unwinding the register from the next
1144      (more inner frame).  */
1145   gdb_assert (frame != NULL && frame->next != NULL);
1146   frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1147                          lvalp, addrp, realnump, bufferp);
1148 }
1149
1150 void
1151 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1152 {
1153   int optimized;
1154   int unavailable;
1155   CORE_ADDR addr;
1156   int realnum;
1157   enum lval_type lval;
1158
1159   frame_register_unwind (frame, regnum, &optimized, &unavailable,
1160                          &lval, &addr, &realnum, buf);
1161
1162   if (optimized)
1163     throw_error (OPTIMIZED_OUT_ERROR,
1164                  _("Register %d was not saved"), regnum);
1165   if (unavailable)
1166     throw_error (NOT_AVAILABLE_ERROR,
1167                  _("Register %d is not available"), regnum);
1168 }
1169
1170 void
1171 get_frame_register (struct frame_info *frame,
1172                     int regnum, gdb_byte *buf)
1173 {
1174   frame_unwind_register (frame->next, regnum, buf);
1175 }
1176
1177 struct value *
1178 frame_unwind_register_value (struct frame_info *frame, int regnum)
1179 {
1180   struct gdbarch *gdbarch;
1181   struct value *value;
1182
1183   gdb_assert (frame != NULL);
1184   gdbarch = frame_unwind_arch (frame);
1185
1186   if (frame_debug)
1187     {
1188       fprintf_unfiltered (gdb_stdlog,
1189                           "{ frame_unwind_register_value "
1190                           "(frame=%d,regnum=%d(%s),...) ",
1191                           frame->level, regnum,
1192                           user_reg_map_regnum_to_name (gdbarch, regnum));
1193     }
1194
1195   /* Find the unwinder.  */
1196   if (frame->unwind == NULL)
1197     frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1198
1199   /* Ask this frame to unwind its register.  */
1200   value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1201
1202   if (frame_debug)
1203     {
1204       fprintf_unfiltered (gdb_stdlog, "->");
1205       if (value_optimized_out (value))
1206         {
1207           fprintf_unfiltered (gdb_stdlog, " ");
1208           val_print_optimized_out (value, gdb_stdlog);
1209         }
1210       else
1211         {
1212           if (VALUE_LVAL (value) == lval_register)
1213             fprintf_unfiltered (gdb_stdlog, " register=%d",
1214                                 VALUE_REGNUM (value));
1215           else if (VALUE_LVAL (value) == lval_memory)
1216             fprintf_unfiltered (gdb_stdlog, " address=%s",
1217                                 paddress (gdbarch,
1218                                           value_address (value)));
1219           else
1220             fprintf_unfiltered (gdb_stdlog, " computed");
1221
1222           if (value_lazy (value))
1223             fprintf_unfiltered (gdb_stdlog, " lazy");
1224           else
1225             {
1226               int i;
1227               const gdb_byte *buf = value_contents (value);
1228
1229               fprintf_unfiltered (gdb_stdlog, " bytes=");
1230               fprintf_unfiltered (gdb_stdlog, "[");
1231               for (i = 0; i < register_size (gdbarch, regnum); i++)
1232                 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1233               fprintf_unfiltered (gdb_stdlog, "]");
1234             }
1235         }
1236
1237       fprintf_unfiltered (gdb_stdlog, " }\n");
1238     }
1239
1240   return value;
1241 }
1242
1243 struct value *
1244 get_frame_register_value (struct frame_info *frame, int regnum)
1245 {
1246   return frame_unwind_register_value (frame->next, regnum);
1247 }
1248
1249 LONGEST
1250 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1251 {
1252   struct gdbarch *gdbarch = frame_unwind_arch (frame);
1253   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1254   int size = register_size (gdbarch, regnum);
1255   gdb_byte buf[MAX_REGISTER_SIZE];
1256
1257   frame_unwind_register (frame, regnum, buf);
1258   return extract_signed_integer (buf, size, byte_order);
1259 }
1260
1261 LONGEST
1262 get_frame_register_signed (struct frame_info *frame, int regnum)
1263 {
1264   return frame_unwind_register_signed (frame->next, regnum);
1265 }
1266
1267 ULONGEST
1268 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1269 {
1270   struct gdbarch *gdbarch = frame_unwind_arch (frame);
1271   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1272   int size = register_size (gdbarch, regnum);
1273   struct value *value = frame_unwind_register_value (frame, regnum);
1274
1275   gdb_assert (value != NULL);
1276
1277   if (value_optimized_out (value))
1278     {
1279       throw_error (OPTIMIZED_OUT_ERROR,
1280                    _("Register %d was not saved"), regnum);
1281     }
1282   if (!value_entirely_available (value))
1283     {
1284       throw_error (NOT_AVAILABLE_ERROR,
1285                    _("Register %d is not available"), regnum);
1286     }
1287
1288   ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1289                                          byte_order);
1290
1291   release_value (value);
1292   value_free (value);
1293   return r;
1294 }
1295
1296 ULONGEST
1297 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1298 {
1299   return frame_unwind_register_unsigned (frame->next, regnum);
1300 }
1301
1302 int
1303 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1304                               ULONGEST *val)
1305 {
1306   struct value *regval = get_frame_register_value (frame, regnum);
1307
1308   if (!value_optimized_out (regval)
1309       && value_entirely_available (regval))
1310     {
1311       struct gdbarch *gdbarch = get_frame_arch (frame);
1312       enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1313       int size = register_size (gdbarch, VALUE_REGNUM (regval));
1314
1315       *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1316       return 1;
1317     }
1318
1319   return 0;
1320 }
1321
1322 void
1323 put_frame_register (struct frame_info *frame, int regnum,
1324                     const gdb_byte *buf)
1325 {
1326   struct gdbarch *gdbarch = get_frame_arch (frame);
1327   int realnum;
1328   int optim;
1329   int unavail;
1330   enum lval_type lval;
1331   CORE_ADDR addr;
1332
1333   frame_register (frame, regnum, &optim, &unavail,
1334                   &lval, &addr, &realnum, NULL);
1335   if (optim)
1336     error (_("Attempt to assign to a register that was not saved."));
1337   switch (lval)
1338     {
1339     case lval_memory:
1340       {
1341         write_memory (addr, buf, register_size (gdbarch, regnum));
1342         break;
1343       }
1344     case lval_register:
1345       regcache_cooked_write (get_current_regcache (), realnum, buf);
1346       break;
1347     default:
1348       error (_("Attempt to assign to an unmodifiable value."));
1349     }
1350 }
1351
1352 /* This function is deprecated.  Use get_frame_register_value instead,
1353    which provides more accurate information.
1354
1355    Find and return the value of REGNUM for the specified stack frame.
1356    The number of bytes copied is REGISTER_SIZE (REGNUM).
1357
1358    Returns 0 if the register value could not be found.  */
1359
1360 int
1361 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1362                      gdb_byte *myaddr)
1363 {
1364   int optimized;
1365   int unavailable;
1366   enum lval_type lval;
1367   CORE_ADDR addr;
1368   int realnum;
1369
1370   frame_register (frame, regnum, &optimized, &unavailable,
1371                   &lval, &addr, &realnum, myaddr);
1372
1373   return !optimized && !unavailable;
1374 }
1375
1376 int
1377 get_frame_register_bytes (struct frame_info *frame, int regnum,
1378                           CORE_ADDR offset, int len, gdb_byte *myaddr,
1379                           int *optimizedp, int *unavailablep)
1380 {
1381   struct gdbarch *gdbarch = get_frame_arch (frame);
1382   int i;
1383   int maxsize;
1384   int numregs;
1385
1386   /* Skip registers wholly inside of OFFSET.  */
1387   while (offset >= register_size (gdbarch, regnum))
1388     {
1389       offset -= register_size (gdbarch, regnum);
1390       regnum++;
1391     }
1392
1393   /* Ensure that we will not read beyond the end of the register file.
1394      This can only ever happen if the debug information is bad.  */
1395   maxsize = -offset;
1396   numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1397   for (i = regnum; i < numregs; i++)
1398     {
1399       int thissize = register_size (gdbarch, i);
1400
1401       if (thissize == 0)
1402         break;  /* This register is not available on this architecture.  */
1403       maxsize += thissize;
1404     }
1405   if (len > maxsize)
1406     error (_("Bad debug information detected: "
1407              "Attempt to read %d bytes from registers."), len);
1408
1409   /* Copy the data.  */
1410   while (len > 0)
1411     {
1412       int curr_len = register_size (gdbarch, regnum) - offset;
1413
1414       if (curr_len > len)
1415         curr_len = len;
1416
1417       if (curr_len == register_size (gdbarch, regnum))
1418         {
1419           enum lval_type lval;
1420           CORE_ADDR addr;
1421           int realnum;
1422
1423           frame_register (frame, regnum, optimizedp, unavailablep,
1424                           &lval, &addr, &realnum, myaddr);
1425           if (*optimizedp || *unavailablep)
1426             return 0;
1427         }
1428       else
1429         {
1430           struct value *value = frame_unwind_register_value (frame->next,
1431                                                              regnum);
1432           gdb_assert (value != NULL);
1433           *optimizedp = value_optimized_out (value);
1434           *unavailablep = !value_entirely_available (value);
1435
1436           if (*optimizedp || *unavailablep)
1437             {
1438               release_value (value);
1439               value_free (value);
1440               return 0;
1441             }
1442           memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1443           release_value (value);
1444           value_free (value);
1445         }
1446
1447       myaddr += curr_len;
1448       len -= curr_len;
1449       offset = 0;
1450       regnum++;
1451     }
1452
1453   *optimizedp = 0;
1454   *unavailablep = 0;
1455   return 1;
1456 }
1457
1458 void
1459 put_frame_register_bytes (struct frame_info *frame, int regnum,
1460                           CORE_ADDR offset, int len, const gdb_byte *myaddr)
1461 {
1462   struct gdbarch *gdbarch = get_frame_arch (frame);
1463
1464   /* Skip registers wholly inside of OFFSET.  */
1465   while (offset >= register_size (gdbarch, regnum))
1466     {
1467       offset -= register_size (gdbarch, regnum);
1468       regnum++;
1469     }
1470
1471   /* Copy the data.  */
1472   while (len > 0)
1473     {
1474       int curr_len = register_size (gdbarch, regnum) - offset;
1475
1476       if (curr_len > len)
1477         curr_len = len;
1478
1479       if (curr_len == register_size (gdbarch, regnum))
1480         {
1481           put_frame_register (frame, regnum, myaddr);
1482         }
1483       else
1484         {
1485           struct value *value = frame_unwind_register_value (frame->next,
1486                                                              regnum);
1487           gdb_assert (value != NULL);
1488
1489           memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1490                   curr_len);
1491           put_frame_register (frame, regnum, value_contents_raw (value));
1492           release_value (value);
1493           value_free (value);
1494         }
1495
1496       myaddr += curr_len;
1497       len -= curr_len;
1498       offset = 0;
1499       regnum++;
1500     }
1501 }
1502
1503 /* Create a sentinel frame.  */
1504
1505 static struct frame_info *
1506 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1507 {
1508   struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1509
1510   frame->level = -1;
1511   frame->pspace = pspace;
1512   frame->aspace = get_regcache_aspace (regcache);
1513   /* Explicitly initialize the sentinel frame's cache.  Provide it
1514      with the underlying regcache.  In the future additional
1515      information, such as the frame's thread will be added.  */
1516   frame->prologue_cache = sentinel_frame_cache (regcache);
1517   /* For the moment there is only one sentinel frame implementation.  */
1518   frame->unwind = &sentinel_frame_unwind;
1519   /* Link this frame back to itself.  The frame is self referential
1520      (the unwound PC is the same as the pc), so make it so.  */
1521   frame->next = frame;
1522   /* The sentinel frame has a special ID.  */
1523   frame->this_id.p = 1;
1524   frame->this_id.value = sentinel_frame_id;
1525   if (frame_debug)
1526     {
1527       fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1528       fprint_frame (gdb_stdlog, frame);
1529       fprintf_unfiltered (gdb_stdlog, " }\n");
1530     }
1531   return frame;
1532 }
1533
1534 /* Cache for frame addresses already read by gdb.  Valid only while
1535    inferior is stopped.  Control variables for the frame cache should
1536    be local to this module.  */
1537
1538 static struct obstack frame_cache_obstack;
1539
1540 void *
1541 frame_obstack_zalloc (unsigned long size)
1542 {
1543   void *data = obstack_alloc (&frame_cache_obstack, size);
1544
1545   memset (data, 0, size);
1546   return data;
1547 }
1548
1549 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1550
1551 struct frame_info *
1552 get_current_frame (void)
1553 {
1554   struct frame_info *current_frame;
1555
1556   /* First check, and report, the lack of registers.  Having GDB
1557      report "No stack!" or "No memory" when the target doesn't even
1558      have registers is very confusing.  Besides, "printcmd.exp"
1559      explicitly checks that ``print $pc'' with no registers prints "No
1560      registers".  */
1561   if (!target_has_registers)
1562     error (_("No registers."));
1563   if (!target_has_stack)
1564     error (_("No stack."));
1565   if (!target_has_memory)
1566     error (_("No memory."));
1567   /* Traceframes are effectively a substitute for the live inferior.  */
1568   if (get_traceframe_number () < 0)
1569     validate_registers_access ();
1570
1571   if (sentinel_frame == NULL)
1572     sentinel_frame =
1573       create_sentinel_frame (current_program_space, get_current_regcache ());
1574
1575   /* Set the current frame before computing the frame id, to avoid
1576      recursion inside compute_frame_id, in case the frame's
1577      unwinder decides to do a symbol lookup (which depends on the
1578      selected frame's block).
1579
1580      This call must always succeed.  In particular, nothing inside
1581      get_prev_frame_always_1 should try to unwind from the
1582      sentinel frame, because that could fail/throw, and we always
1583      want to leave with the current frame created and linked in --
1584      we should never end up with the sentinel frame as outermost
1585      frame.  */
1586   current_frame = get_prev_frame_always_1 (sentinel_frame);
1587   gdb_assert (current_frame != NULL);
1588
1589   return current_frame;
1590 }
1591
1592 /* The "selected" stack frame is used by default for local and arg
1593    access.  May be zero, for no selected frame.  */
1594
1595 static struct frame_info *selected_frame;
1596
1597 int
1598 has_stack_frames (void)
1599 {
1600   if (!target_has_registers || !target_has_stack || !target_has_memory)
1601     return 0;
1602
1603   /* Traceframes are effectively a substitute for the live inferior.  */
1604   if (get_traceframe_number () < 0)
1605     {
1606       /* No current inferior, no frame.  */
1607       if (ptid_equal (inferior_ptid, null_ptid))
1608         return 0;
1609
1610       /* Don't try to read from a dead thread.  */
1611       if (is_exited (inferior_ptid))
1612         return 0;
1613
1614       /* ... or from a spinning thread.  */
1615       if (is_executing (inferior_ptid))
1616         return 0;
1617     }
1618
1619   return 1;
1620 }
1621
1622 /* Return the selected frame.  Always non-NULL (unless there isn't an
1623    inferior sufficient for creating a frame) in which case an error is
1624    thrown.  */
1625
1626 struct frame_info *
1627 get_selected_frame (const char *message)
1628 {
1629   if (selected_frame == NULL)
1630     {
1631       if (message != NULL && !has_stack_frames ())
1632         error (("%s"), message);
1633       /* Hey!  Don't trust this.  It should really be re-finding the
1634          last selected frame of the currently selected thread.  This,
1635          though, is better than nothing.  */
1636       select_frame (get_current_frame ());
1637     }
1638   /* There is always a frame.  */
1639   gdb_assert (selected_frame != NULL);
1640   return selected_frame;
1641 }
1642
1643 /* If there is a selected frame, return it.  Otherwise, return NULL.  */
1644
1645 struct frame_info *
1646 get_selected_frame_if_set (void)
1647 {
1648   return selected_frame;
1649 }
1650
1651 /* This is a variant of get_selected_frame() which can be called when
1652    the inferior does not have a frame; in that case it will return
1653    NULL instead of calling error().  */
1654
1655 struct frame_info *
1656 deprecated_safe_get_selected_frame (void)
1657 {
1658   if (!has_stack_frames ())
1659     return NULL;
1660   return get_selected_frame (NULL);
1661 }
1662
1663 /* Select frame FI (or NULL - to invalidate the current frame).  */
1664
1665 void
1666 select_frame (struct frame_info *fi)
1667 {
1668   selected_frame = fi;
1669   /* NOTE: cagney/2002-05-04: FI can be NULL.  This occurs when the
1670      frame is being invalidated.  */
1671
1672   /* FIXME: kseitz/2002-08-28: It would be nice to call
1673      selected_frame_level_changed_event() right here, but due to limitations
1674      in the current interfaces, we would end up flooding UIs with events
1675      because select_frame() is used extensively internally.
1676
1677      Once we have frame-parameterized frame (and frame-related) commands,
1678      the event notification can be moved here, since this function will only
1679      be called when the user's selected frame is being changed.  */
1680
1681   /* Ensure that symbols for this frame are read in.  Also, determine the
1682      source language of this frame, and switch to it if desired.  */
1683   if (fi)
1684     {
1685       CORE_ADDR pc;
1686
1687       /* We retrieve the frame's symtab by using the frame PC.
1688          However we cannot use the frame PC as-is, because it usually
1689          points to the instruction following the "call", which is
1690          sometimes the first instruction of another function.  So we
1691          rely on get_frame_address_in_block() which provides us with a
1692          PC which is guaranteed to be inside the frame's code
1693          block.  */
1694       if (get_frame_address_in_block_if_available (fi, &pc))
1695         {
1696           struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1697
1698           if (cust != NULL
1699               && compunit_language (cust) != current_language->la_language
1700               && compunit_language (cust) != language_unknown
1701               && language_mode == language_mode_auto)
1702             set_language (compunit_language (cust));
1703         }
1704     }
1705 }
1706
1707 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1708    Always returns a non-NULL value.  */
1709
1710 struct frame_info *
1711 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1712 {
1713   struct frame_info *fi;
1714
1715   if (frame_debug)
1716     {
1717       fprintf_unfiltered (gdb_stdlog,
1718                           "{ create_new_frame (addr=%s, pc=%s) ",
1719                           hex_string (addr), hex_string (pc));
1720     }
1721
1722   fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1723
1724   fi->next = create_sentinel_frame (current_program_space,
1725                                     get_current_regcache ());
1726
1727   /* Set/update this frame's cached PC value, found in the next frame.
1728      Do this before looking for this frame's unwinder.  A sniffer is
1729      very likely to read this, and the corresponding unwinder is
1730      entitled to rely that the PC doesn't magically change.  */
1731   fi->next->prev_pc.value = pc;
1732   fi->next->prev_pc.status = CC_VALUE;
1733
1734   /* We currently assume that frame chain's can't cross spaces.  */
1735   fi->pspace = fi->next->pspace;
1736   fi->aspace = fi->next->aspace;
1737
1738   /* Select/initialize both the unwind function and the frame's type
1739      based on the PC.  */
1740   frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1741
1742   fi->this_id.p = 1;
1743   fi->this_id.value = frame_id_build (addr, pc);
1744
1745   if (frame_debug)
1746     {
1747       fprintf_unfiltered (gdb_stdlog, "-> ");
1748       fprint_frame (gdb_stdlog, fi);
1749       fprintf_unfiltered (gdb_stdlog, " }\n");
1750     }
1751
1752   return fi;
1753 }
1754
1755 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1756    innermost frame).  Be careful to not fall off the bottom of the
1757    frame chain and onto the sentinel frame.  */
1758
1759 struct frame_info *
1760 get_next_frame (struct frame_info *this_frame)
1761 {
1762   if (this_frame->level > 0)
1763     return this_frame->next;
1764   else
1765     return NULL;
1766 }
1767
1768 /* Return the frame that THIS_FRAME calls.  If THIS_FRAME is the
1769    innermost (i.e. current) frame, return the sentinel frame.  Thus,
1770    unlike get_next_frame(), NULL will never be returned.  */
1771
1772 struct frame_info *
1773 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1774 {
1775   gdb_assert (this_frame != NULL);
1776
1777   /* Note that, due to the manner in which the sentinel frame is
1778      constructed, this_frame->next still works even when this_frame
1779      is the sentinel frame.  But we disallow it here anyway because
1780      calling get_next_frame_sentinel_okay() on the sentinel frame
1781      is likely a coding error.  */
1782   gdb_assert (this_frame != sentinel_frame);
1783
1784   return this_frame->next;
1785 }
1786
1787 /* Observer for the target_changed event.  */
1788
1789 static void
1790 frame_observer_target_changed (struct target_ops *target)
1791 {
1792   reinit_frame_cache ();
1793 }
1794
1795 /* Flush the entire frame cache.  */
1796
1797 void
1798 reinit_frame_cache (void)
1799 {
1800   struct frame_info *fi;
1801
1802   /* Tear down all frame caches.  */
1803   for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1804     {
1805       if (fi->prologue_cache && fi->unwind->dealloc_cache)
1806         fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1807       if (fi->base_cache && fi->base->unwind->dealloc_cache)
1808         fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1809     }
1810
1811   /* Since we can't really be sure what the first object allocated was.  */
1812   obstack_free (&frame_cache_obstack, 0);
1813   obstack_init (&frame_cache_obstack);
1814
1815   if (sentinel_frame != NULL)
1816     annotate_frames_invalid ();
1817
1818   sentinel_frame = NULL;                /* Invalidate cache */
1819   select_frame (NULL);
1820   frame_stash_invalidate ();
1821   if (frame_debug)
1822     fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1823 }
1824
1825 /* Find where a register is saved (in memory or another register).
1826    The result of frame_register_unwind is just where it is saved
1827    relative to this particular frame.  */
1828
1829 static void
1830 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1831                                 int *optimizedp, enum lval_type *lvalp,
1832                                 CORE_ADDR *addrp, int *realnump)
1833 {
1834   gdb_assert (this_frame == NULL || this_frame->level >= 0);
1835
1836   while (this_frame != NULL)
1837     {
1838       int unavailable;
1839
1840       frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1841                              lvalp, addrp, realnump, NULL);
1842
1843       if (*optimizedp)
1844         break;
1845
1846       if (*lvalp != lval_register)
1847         break;
1848
1849       regnum = *realnump;
1850       this_frame = get_next_frame (this_frame);
1851     }
1852 }
1853
1854 /* Called during frame unwinding to remove a previous frame pointer from a
1855    frame passed in ARG.  */
1856
1857 static void
1858 remove_prev_frame (void *arg)
1859 {
1860   struct frame_info *this_frame, *prev_frame;
1861
1862   this_frame = (struct frame_info *) arg;
1863   prev_frame = this_frame->prev;
1864   gdb_assert (prev_frame != NULL);
1865
1866   prev_frame->next = NULL;
1867   this_frame->prev = NULL;
1868 }
1869
1870 /* Get the previous raw frame, and check that it is not identical to
1871    same other frame frame already in the chain.  If it is, there is
1872    most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1873    outermost, with UNWIND_SAME_ID stop reason.  Unlike the other
1874    validity tests, that compare THIS_FRAME and the next frame, we do
1875    this right after creating the previous frame, to avoid ever ending
1876    up with two frames with the same id in the frame chain.  */
1877
1878 static struct frame_info *
1879 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1880 {
1881   struct frame_info *prev_frame;
1882   struct cleanup *prev_frame_cleanup;
1883
1884   prev_frame = get_prev_frame_raw (this_frame);
1885
1886   /* Don't compute the frame id of the current frame yet.  Unwinding
1887      the sentinel frame can fail (e.g., if the thread is gone and we
1888      can't thus read its registers).  If we let the cycle detection
1889      code below try to compute a frame ID, then an error thrown from
1890      within the frame ID computation would result in the sentinel
1891      frame as outermost frame, which is bogus.  Instead, we'll compute
1892      the current frame's ID lazily in get_frame_id.  Note that there's
1893      no point in doing cycle detection when there's only one frame, so
1894      nothing is lost here.  */
1895   if (prev_frame->level == 0)
1896     return prev_frame;
1897
1898   /* The cleanup will remove the previous frame that get_prev_frame_raw
1899      linked onto THIS_FRAME.  */
1900   prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1901
1902   compute_frame_id (prev_frame);
1903   if (!frame_stash_add (prev_frame))
1904     {
1905       /* Another frame with the same id was already in the stash.  We just
1906          detected a cycle.  */
1907       if (frame_debug)
1908         {
1909           fprintf_unfiltered (gdb_stdlog, "-> ");
1910           fprint_frame (gdb_stdlog, NULL);
1911           fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1912         }
1913       this_frame->stop_reason = UNWIND_SAME_ID;
1914       /* Unlink.  */
1915       prev_frame->next = NULL;
1916       this_frame->prev = NULL;
1917       prev_frame = NULL;
1918     }
1919
1920   discard_cleanups (prev_frame_cleanup);
1921   return prev_frame;
1922 }
1923
1924 /* Helper function for get_prev_frame_always, this is called inside a
1925    TRY_CATCH block.  Return the frame that called THIS_FRAME or NULL if
1926    there is no such frame.  This may throw an exception.  */
1927
1928 static struct frame_info *
1929 get_prev_frame_always_1 (struct frame_info *this_frame)
1930 {
1931   struct gdbarch *gdbarch;
1932
1933   gdb_assert (this_frame != NULL);
1934   gdbarch = get_frame_arch (this_frame);
1935
1936   if (frame_debug)
1937     {
1938       fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1939       if (this_frame != NULL)
1940         fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1941       else
1942         fprintf_unfiltered (gdb_stdlog, "<NULL>");
1943       fprintf_unfiltered (gdb_stdlog, ") ");
1944     }
1945
1946   /* Only try to do the unwind once.  */
1947   if (this_frame->prev_p)
1948     {
1949       if (frame_debug)
1950         {
1951           fprintf_unfiltered (gdb_stdlog, "-> ");
1952           fprint_frame (gdb_stdlog, this_frame->prev);
1953           fprintf_unfiltered (gdb_stdlog, " // cached \n");
1954         }
1955       return this_frame->prev;
1956     }
1957
1958   /* If the frame unwinder hasn't been selected yet, we must do so
1959      before setting prev_p; otherwise the check for misbehaved
1960      sniffers will think that this frame's sniffer tried to unwind
1961      further (see frame_cleanup_after_sniffer).  */
1962   if (this_frame->unwind == NULL)
1963     frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1964
1965   this_frame->prev_p = 1;
1966   this_frame->stop_reason = UNWIND_NO_REASON;
1967
1968   /* If we are unwinding from an inline frame, all of the below tests
1969      were already performed when we unwound from the next non-inline
1970      frame.  We must skip them, since we can not get THIS_FRAME's ID
1971      until we have unwound all the way down to the previous non-inline
1972      frame.  */
1973   if (get_frame_type (this_frame) == INLINE_FRAME)
1974     return get_prev_frame_if_no_cycle (this_frame);
1975
1976   /* Check that this frame is unwindable.  If it isn't, don't try to
1977      unwind to the prev frame.  */
1978   this_frame->stop_reason
1979     = this_frame->unwind->stop_reason (this_frame,
1980                                        &this_frame->prologue_cache);
1981
1982   if (this_frame->stop_reason != UNWIND_NO_REASON)
1983     {
1984       if (frame_debug)
1985         {
1986           enum unwind_stop_reason reason = this_frame->stop_reason;
1987
1988           fprintf_unfiltered (gdb_stdlog, "-> ");
1989           fprint_frame (gdb_stdlog, NULL);
1990           fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1991                               frame_stop_reason_symbol_string (reason));
1992         }
1993       return NULL;
1994     }
1995
1996   /* Check that this frame's ID isn't inner to (younger, below, next)
1997      the next frame.  This happens when a frame unwind goes backwards.
1998      This check is valid only if this frame and the next frame are NORMAL.
1999      See the comment at frame_id_inner for details.  */
2000   if (get_frame_type (this_frame) == NORMAL_FRAME
2001       && this_frame->next->unwind->type == NORMAL_FRAME
2002       && frame_id_inner (get_frame_arch (this_frame->next),
2003                          get_frame_id (this_frame),
2004                          get_frame_id (this_frame->next)))
2005     {
2006       CORE_ADDR this_pc_in_block;
2007       struct minimal_symbol *morestack_msym;
2008       const char *morestack_name = NULL;
2009       
2010       /* gcc -fsplit-stack __morestack can continue the stack anywhere.  */
2011       this_pc_in_block = get_frame_address_in_block (this_frame);
2012       morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2013       if (morestack_msym)
2014         morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2015       if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2016         {
2017           if (frame_debug)
2018             {
2019               fprintf_unfiltered (gdb_stdlog, "-> ");
2020               fprint_frame (gdb_stdlog, NULL);
2021               fprintf_unfiltered (gdb_stdlog,
2022                                   " // this frame ID is inner }\n");
2023             }
2024           this_frame->stop_reason = UNWIND_INNER_ID;
2025           return NULL;
2026         }
2027     }
2028
2029   /* Check that this and the next frame do not unwind the PC register
2030      to the same memory location.  If they do, then even though they
2031      have different frame IDs, the new frame will be bogus; two
2032      functions can't share a register save slot for the PC.  This can
2033      happen when the prologue analyzer finds a stack adjustment, but
2034      no PC save.
2035
2036      This check does assume that the "PC register" is roughly a
2037      traditional PC, even if the gdbarch_unwind_pc method adjusts
2038      it (we do not rely on the value, only on the unwound PC being
2039      dependent on this value).  A potential improvement would be
2040      to have the frame prev_pc method and the gdbarch unwind_pc
2041      method set the same lval and location information as
2042      frame_register_unwind.  */
2043   if (this_frame->level > 0
2044       && gdbarch_pc_regnum (gdbarch) >= 0
2045       && get_frame_type (this_frame) == NORMAL_FRAME
2046       && (get_frame_type (this_frame->next) == NORMAL_FRAME
2047           || get_frame_type (this_frame->next) == INLINE_FRAME))
2048     {
2049       int optimized, realnum, nrealnum;
2050       enum lval_type lval, nlval;
2051       CORE_ADDR addr, naddr;
2052
2053       frame_register_unwind_location (this_frame,
2054                                       gdbarch_pc_regnum (gdbarch),
2055                                       &optimized, &lval, &addr, &realnum);
2056       frame_register_unwind_location (get_next_frame (this_frame),
2057                                       gdbarch_pc_regnum (gdbarch),
2058                                       &optimized, &nlval, &naddr, &nrealnum);
2059
2060       if ((lval == lval_memory && lval == nlval && addr == naddr)
2061           || (lval == lval_register && lval == nlval && realnum == nrealnum))
2062         {
2063           if (frame_debug)
2064             {
2065               fprintf_unfiltered (gdb_stdlog, "-> ");
2066               fprint_frame (gdb_stdlog, NULL);
2067               fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2068             }
2069
2070           this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2071           this_frame->prev = NULL;
2072           return NULL;
2073         }
2074     }
2075
2076   return get_prev_frame_if_no_cycle (this_frame);
2077 }
2078
2079 /* Return a "struct frame_info" corresponding to the frame that called
2080    THIS_FRAME.  Returns NULL if there is no such frame.
2081
2082    Unlike get_prev_frame, this function always tries to unwind the
2083    frame.  */
2084
2085 struct frame_info *
2086 get_prev_frame_always (struct frame_info *this_frame)
2087 {
2088   struct frame_info *prev_frame = NULL;
2089
2090   TRY
2091     {
2092       prev_frame = get_prev_frame_always_1 (this_frame);
2093     }
2094   CATCH (ex, RETURN_MASK_ERROR)
2095     {
2096       if (ex.error == MEMORY_ERROR)
2097         {
2098           this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2099           if (ex.message != NULL)
2100             {
2101               char *stop_string;
2102               size_t size;
2103
2104               /* The error needs to live as long as the frame does.
2105                  Allocate using stack local STOP_STRING then assign the
2106                  pointer to the frame, this allows the STOP_STRING on the
2107                  frame to be of type 'const char *'.  */
2108               size = strlen (ex.message) + 1;
2109               stop_string = (char *) frame_obstack_zalloc (size);
2110               memcpy (stop_string, ex.message, size);
2111               this_frame->stop_string = stop_string;
2112             }
2113           prev_frame = NULL;
2114         }
2115       else
2116         throw_exception (ex);
2117     }
2118   END_CATCH
2119
2120   return prev_frame;
2121 }
2122
2123 /* Construct a new "struct frame_info" and link it previous to
2124    this_frame.  */
2125
2126 static struct frame_info *
2127 get_prev_frame_raw (struct frame_info *this_frame)
2128 {
2129   struct frame_info *prev_frame;
2130
2131   /* Allocate the new frame but do not wire it in to the frame chain.
2132      Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2133      frame->next to pull some fancy tricks (of course such code is, by
2134      definition, recursive).  Try to prevent it.
2135
2136      There is no reason to worry about memory leaks, should the
2137      remainder of the function fail.  The allocated memory will be
2138      quickly reclaimed when the frame cache is flushed, and the `we've
2139      been here before' check above will stop repeated memory
2140      allocation calls.  */
2141   prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2142   prev_frame->level = this_frame->level + 1;
2143
2144   /* For now, assume we don't have frame chains crossing address
2145      spaces.  */
2146   prev_frame->pspace = this_frame->pspace;
2147   prev_frame->aspace = this_frame->aspace;
2148
2149   /* Don't yet compute ->unwind (and hence ->type).  It is computed
2150      on-demand in get_frame_type, frame_register_unwind, and
2151      get_frame_id.  */
2152
2153   /* Don't yet compute the frame's ID.  It is computed on-demand by
2154      get_frame_id().  */
2155
2156   /* The unwound frame ID is validate at the start of this function,
2157      as part of the logic to decide if that frame should be further
2158      unwound, and not here while the prev frame is being created.
2159      Doing this makes it possible for the user to examine a frame that
2160      has an invalid frame ID.
2161
2162      Some very old VAX code noted: [...]  For the sake of argument,
2163      suppose that the stack is somewhat trashed (which is one reason
2164      that "info frame" exists).  So, return 0 (indicating we don't
2165      know the address of the arglist) if we don't know what frame this
2166      frame calls.  */
2167
2168   /* Link it in.  */
2169   this_frame->prev = prev_frame;
2170   prev_frame->next = this_frame;
2171
2172   if (frame_debug)
2173     {
2174       fprintf_unfiltered (gdb_stdlog, "-> ");
2175       fprint_frame (gdb_stdlog, prev_frame);
2176       fprintf_unfiltered (gdb_stdlog, " }\n");
2177     }
2178
2179   return prev_frame;
2180 }
2181
2182 /* Debug routine to print a NULL frame being returned.  */
2183
2184 static void
2185 frame_debug_got_null_frame (struct frame_info *this_frame,
2186                             const char *reason)
2187 {
2188   if (frame_debug)
2189     {
2190       fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2191       if (this_frame != NULL)
2192         fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2193       else
2194         fprintf_unfiltered (gdb_stdlog, "<NULL>");
2195       fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2196     }
2197 }
2198
2199 /* Is this (non-sentinel) frame in the "main"() function?  */
2200
2201 static int
2202 inside_main_func (struct frame_info *this_frame)
2203 {
2204   struct bound_minimal_symbol msymbol;
2205   CORE_ADDR maddr;
2206
2207   if (symfile_objfile == 0)
2208     return 0;
2209   msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2210   if (msymbol.minsym == NULL)
2211     return 0;
2212   /* Make certain that the code, and not descriptor, address is
2213      returned.  */
2214   maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2215                                               BMSYMBOL_VALUE_ADDRESS (msymbol),
2216                                               &current_target);
2217   return maddr == get_frame_func (this_frame);
2218 }
2219
2220 /* Test whether THIS_FRAME is inside the process entry point function.  */
2221
2222 static int
2223 inside_entry_func (struct frame_info *this_frame)
2224 {
2225   CORE_ADDR entry_point;
2226
2227   if (!entry_point_address_query (&entry_point))
2228     return 0;
2229
2230   return get_frame_func (this_frame) == entry_point;
2231 }
2232
2233 /* Return a structure containing various interesting information about
2234    the frame that called THIS_FRAME.  Returns NULL if there is entier
2235    no such frame or the frame fails any of a set of target-independent
2236    condition that should terminate the frame chain (e.g., as unwinding
2237    past main()).
2238
2239    This function should not contain target-dependent tests, such as
2240    checking whether the program-counter is zero.  */
2241
2242 struct frame_info *
2243 get_prev_frame (struct frame_info *this_frame)
2244 {
2245   CORE_ADDR frame_pc;
2246   int frame_pc_p;
2247
2248   /* There is always a frame.  If this assertion fails, suspect that
2249      something should be calling get_selected_frame() or
2250      get_current_frame().  */
2251   gdb_assert (this_frame != NULL);
2252   
2253   /* If this_frame is the current frame, then compute and stash
2254      its frame id prior to fetching and computing the frame id of the
2255      previous frame.  Otherwise, the cycle detection code in
2256      get_prev_frame_if_no_cycle() will not work correctly.  When
2257      get_frame_id() is called later on, an assertion error will
2258      be triggered in the event of a cycle between the current
2259      frame and its previous frame.  */
2260   if (this_frame->level == 0)
2261     get_frame_id (this_frame);
2262
2263   frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2264
2265   /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2266      sense to stop unwinding at a dummy frame.  One place where a dummy
2267      frame may have an address "inside_main_func" is on HPUX.  On HPUX, the
2268      pcsqh register (space register for the instruction at the head of the
2269      instruction queue) cannot be written directly; the only way to set it
2270      is to branch to code that is in the target space.  In order to implement
2271      frame dummies on HPUX, the called function is made to jump back to where 
2272      the inferior was when the user function was called.  If gdb was inside 
2273      the main function when we created the dummy frame, the dummy frame will 
2274      point inside the main function.  */
2275   if (this_frame->level >= 0
2276       && get_frame_type (this_frame) == NORMAL_FRAME
2277       && !backtrace_past_main
2278       && frame_pc_p
2279       && inside_main_func (this_frame))
2280     /* Don't unwind past main().  Note, this is done _before_ the
2281        frame has been marked as previously unwound.  That way if the
2282        user later decides to enable unwinds past main(), that will
2283        automatically happen.  */
2284     {
2285       frame_debug_got_null_frame (this_frame, "inside main func");
2286       return NULL;
2287     }
2288
2289   /* If the user's backtrace limit has been exceeded, stop.  We must
2290      add two to the current level; one of those accounts for backtrace_limit
2291      being 1-based and the level being 0-based, and the other accounts for
2292      the level of the new frame instead of the level of the current
2293      frame.  */
2294   if (this_frame->level + 2 > backtrace_limit)
2295     {
2296       frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2297       return NULL;
2298     }
2299
2300   /* If we're already inside the entry function for the main objfile,
2301      then it isn't valid.  Don't apply this test to a dummy frame -
2302      dummy frame PCs typically land in the entry func.  Don't apply
2303      this test to the sentinel frame.  Sentinel frames should always
2304      be allowed to unwind.  */
2305   /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2306      wasn't checking for "main" in the minimal symbols.  With that
2307      fixed asm-source tests now stop in "main" instead of halting the
2308      backtrace in weird and wonderful ways somewhere inside the entry
2309      file.  Suspect that tests for inside the entry file/func were
2310      added to work around that (now fixed) case.  */
2311   /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2312      suggested having the inside_entry_func test use the
2313      inside_main_func() msymbol trick (along with entry_point_address()
2314      I guess) to determine the address range of the start function.
2315      That should provide a far better stopper than the current
2316      heuristics.  */
2317   /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2318      applied tail-call optimizations to main so that a function called 
2319      from main returns directly to the caller of main.  Since we don't
2320      stop at main, we should at least stop at the entry point of the
2321      application.  */
2322   if (this_frame->level >= 0
2323       && get_frame_type (this_frame) == NORMAL_FRAME
2324       && !backtrace_past_entry
2325       && frame_pc_p
2326       && inside_entry_func (this_frame))
2327     {
2328       frame_debug_got_null_frame (this_frame, "inside entry func");
2329       return NULL;
2330     }
2331
2332   /* Assume that the only way to get a zero PC is through something
2333      like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2334      will never unwind a zero PC.  */
2335   if (this_frame->level > 0
2336       && (get_frame_type (this_frame) == NORMAL_FRAME
2337           || get_frame_type (this_frame) == INLINE_FRAME)
2338       && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2339       && frame_pc_p && frame_pc == 0)
2340     {
2341       frame_debug_got_null_frame (this_frame, "zero PC");
2342       return NULL;
2343     }
2344
2345   return get_prev_frame_always (this_frame);
2346 }
2347
2348 struct frame_id
2349 get_prev_frame_id_by_id (struct frame_id id)
2350 {
2351   struct frame_id prev_id;
2352   struct frame_info *frame;
2353   
2354   frame = frame_find_by_id (id);
2355
2356   if (frame != NULL)
2357     prev_id = get_frame_id (get_prev_frame (frame));
2358   else
2359     prev_id = null_frame_id;
2360
2361   return prev_id;
2362 }
2363
2364 CORE_ADDR
2365 get_frame_pc (struct frame_info *frame)
2366 {
2367   gdb_assert (frame->next != NULL);
2368   return frame_unwind_pc (frame->next);
2369 }
2370
2371 int
2372 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2373 {
2374
2375   gdb_assert (frame->next != NULL);
2376
2377   TRY
2378     {
2379       *pc = frame_unwind_pc (frame->next);
2380     }
2381   CATCH (ex, RETURN_MASK_ERROR)
2382     {
2383       if (ex.error == NOT_AVAILABLE_ERROR)
2384         return 0;
2385       else
2386         throw_exception (ex);
2387     }
2388   END_CATCH
2389
2390   return 1;
2391 }
2392
2393 /* Return an address that falls within THIS_FRAME's code block.  */
2394
2395 CORE_ADDR
2396 get_frame_address_in_block (struct frame_info *this_frame)
2397 {
2398   /* A draft address.  */
2399   CORE_ADDR pc = get_frame_pc (this_frame);
2400
2401   struct frame_info *next_frame = this_frame->next;
2402
2403   /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2404      Normally the resume address is inside the body of the function
2405      associated with THIS_FRAME, but there is a special case: when
2406      calling a function which the compiler knows will never return
2407      (for instance abort), the call may be the very last instruction
2408      in the calling function.  The resume address will point after the
2409      call and may be at the beginning of a different function
2410      entirely.
2411
2412      If THIS_FRAME is a signal frame or dummy frame, then we should
2413      not adjust the unwound PC.  For a dummy frame, GDB pushed the
2414      resume address manually onto the stack.  For a signal frame, the
2415      OS may have pushed the resume address manually and invoked the
2416      handler (e.g. GNU/Linux), or invoked the trampoline which called
2417      the signal handler - but in either case the signal handler is
2418      expected to return to the trampoline.  So in both of these
2419      cases we know that the resume address is executable and
2420      related.  So we only need to adjust the PC if THIS_FRAME
2421      is a normal function.
2422
2423      If the program has been interrupted while THIS_FRAME is current,
2424      then clearly the resume address is inside the associated
2425      function.  There are three kinds of interruption: debugger stop
2426      (next frame will be SENTINEL_FRAME), operating system
2427      signal or exception (next frame will be SIGTRAMP_FRAME),
2428      or debugger-induced function call (next frame will be
2429      DUMMY_FRAME).  So we only need to adjust the PC if
2430      NEXT_FRAME is a normal function.
2431
2432      We check the type of NEXT_FRAME first, since it is already
2433      known; frame type is determined by the unwinder, and since
2434      we have THIS_FRAME we've already selected an unwinder for
2435      NEXT_FRAME.
2436
2437      If the next frame is inlined, we need to keep going until we find
2438      the real function - for instance, if a signal handler is invoked
2439      while in an inlined function, then the code address of the
2440      "calling" normal function should not be adjusted either.  */
2441
2442   while (get_frame_type (next_frame) == INLINE_FRAME)
2443     next_frame = next_frame->next;
2444
2445   if ((get_frame_type (next_frame) == NORMAL_FRAME
2446        || get_frame_type (next_frame) == TAILCALL_FRAME)
2447       && (get_frame_type (this_frame) == NORMAL_FRAME
2448           || get_frame_type (this_frame) == TAILCALL_FRAME
2449           || get_frame_type (this_frame) == INLINE_FRAME))
2450     return pc - 1;
2451
2452   return pc;
2453 }
2454
2455 int
2456 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2457                                          CORE_ADDR *pc)
2458 {
2459
2460   TRY
2461     {
2462       *pc = get_frame_address_in_block (this_frame);
2463     }
2464   CATCH (ex, RETURN_MASK_ERROR)
2465     {
2466       if (ex.error == NOT_AVAILABLE_ERROR)
2467         return 0;
2468       throw_exception (ex);
2469     }
2470   END_CATCH
2471
2472   return 1;
2473 }
2474
2475 void
2476 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2477 {
2478   struct frame_info *next_frame;
2479   int notcurrent;
2480   CORE_ADDR pc;
2481
2482   /* If the next frame represents an inlined function call, this frame's
2483      sal is the "call site" of that inlined function, which can not
2484      be inferred from get_frame_pc.  */
2485   next_frame = get_next_frame (frame);
2486   if (frame_inlined_callees (frame) > 0)
2487     {
2488       struct symbol *sym;
2489
2490       if (next_frame)
2491         sym = get_frame_function (next_frame);
2492       else
2493         sym = inline_skipped_symbol (inferior_ptid);
2494
2495       /* If frame is inline, it certainly has symbols.  */
2496       gdb_assert (sym);
2497       init_sal (sal);
2498       if (SYMBOL_LINE (sym) != 0)
2499         {
2500           sal->symtab = symbol_symtab (sym);
2501           sal->line = SYMBOL_LINE (sym);
2502         }
2503       else
2504         /* If the symbol does not have a location, we don't know where
2505            the call site is.  Do not pretend to.  This is jarring, but
2506            we can't do much better.  */
2507         sal->pc = get_frame_pc (frame);
2508
2509       sal->pspace = get_frame_program_space (frame);
2510
2511       return;
2512     }
2513
2514   /* If FRAME is not the innermost frame, that normally means that
2515      FRAME->pc points at the return instruction (which is *after* the
2516      call instruction), and we want to get the line containing the
2517      call (because the call is where the user thinks the program is).
2518      However, if the next frame is either a SIGTRAMP_FRAME or a
2519      DUMMY_FRAME, then the next frame will contain a saved interrupt
2520      PC and such a PC indicates the current (rather than next)
2521      instruction/line, consequently, for such cases, want to get the
2522      line containing fi->pc.  */
2523   if (!get_frame_pc_if_available (frame, &pc))
2524     {
2525       init_sal (sal);
2526       return;
2527     }
2528
2529   notcurrent = (pc != get_frame_address_in_block (frame));
2530   (*sal) = find_pc_line (pc, notcurrent);
2531 }
2532
2533 /* Per "frame.h", return the ``address'' of the frame.  Code should
2534    really be using get_frame_id().  */
2535 CORE_ADDR
2536 get_frame_base (struct frame_info *fi)
2537 {
2538   return get_frame_id (fi).stack_addr;
2539 }
2540
2541 /* High-level offsets into the frame.  Used by the debug info.  */
2542
2543 CORE_ADDR
2544 get_frame_base_address (struct frame_info *fi)
2545 {
2546   if (get_frame_type (fi) != NORMAL_FRAME)
2547     return 0;
2548   if (fi->base == NULL)
2549     fi->base = frame_base_find_by_frame (fi);
2550   /* Sneaky: If the low-level unwind and high-level base code share a
2551      common unwinder, let them share the prologue cache.  */
2552   if (fi->base->unwind == fi->unwind)
2553     return fi->base->this_base (fi, &fi->prologue_cache);
2554   return fi->base->this_base (fi, &fi->base_cache);
2555 }
2556
2557 CORE_ADDR
2558 get_frame_locals_address (struct frame_info *fi)
2559 {
2560   if (get_frame_type (fi) != NORMAL_FRAME)
2561     return 0;
2562   /* If there isn't a frame address method, find it.  */
2563   if (fi->base == NULL)
2564     fi->base = frame_base_find_by_frame (fi);
2565   /* Sneaky: If the low-level unwind and high-level base code share a
2566      common unwinder, let them share the prologue cache.  */
2567   if (fi->base->unwind == fi->unwind)
2568     return fi->base->this_locals (fi, &fi->prologue_cache);
2569   return fi->base->this_locals (fi, &fi->base_cache);
2570 }
2571
2572 CORE_ADDR
2573 get_frame_args_address (struct frame_info *fi)
2574 {
2575   if (get_frame_type (fi) != NORMAL_FRAME)
2576     return 0;
2577   /* If there isn't a frame address method, find it.  */
2578   if (fi->base == NULL)
2579     fi->base = frame_base_find_by_frame (fi);
2580   /* Sneaky: If the low-level unwind and high-level base code share a
2581      common unwinder, let them share the prologue cache.  */
2582   if (fi->base->unwind == fi->unwind)
2583     return fi->base->this_args (fi, &fi->prologue_cache);
2584   return fi->base->this_args (fi, &fi->base_cache);
2585 }
2586
2587 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2588    otherwise.  */
2589
2590 int
2591 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2592 {
2593   if (fi->unwind == NULL)
2594     frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2595   return fi->unwind == unwinder;
2596 }
2597
2598 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2599    or -1 for a NULL frame.  */
2600
2601 int
2602 frame_relative_level (struct frame_info *fi)
2603 {
2604   if (fi == NULL)
2605     return -1;
2606   else
2607     return fi->level;
2608 }
2609
2610 enum frame_type
2611 get_frame_type (struct frame_info *frame)
2612 {
2613   if (frame->unwind == NULL)
2614     /* Initialize the frame's unwinder because that's what
2615        provides the frame's type.  */
2616     frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2617   return frame->unwind->type;
2618 }
2619
2620 struct program_space *
2621 get_frame_program_space (struct frame_info *frame)
2622 {
2623   return frame->pspace;
2624 }
2625
2626 struct program_space *
2627 frame_unwind_program_space (struct frame_info *this_frame)
2628 {
2629   gdb_assert (this_frame);
2630
2631   /* This is really a placeholder to keep the API consistent --- we
2632      assume for now that we don't have frame chains crossing
2633      spaces.  */
2634   return this_frame->pspace;
2635 }
2636
2637 struct address_space *
2638 get_frame_address_space (struct frame_info *frame)
2639 {
2640   return frame->aspace;
2641 }
2642
2643 /* Memory access methods.  */
2644
2645 void
2646 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2647                   gdb_byte *buf, int len)
2648 {
2649   read_memory (addr, buf, len);
2650 }
2651
2652 LONGEST
2653 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2654                          int len)
2655 {
2656   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2657   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2658
2659   return read_memory_integer (addr, len, byte_order);
2660 }
2661
2662 ULONGEST
2663 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2664                            int len)
2665 {
2666   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2667   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2668
2669   return read_memory_unsigned_integer (addr, len, byte_order);
2670 }
2671
2672 int
2673 safe_frame_unwind_memory (struct frame_info *this_frame,
2674                           CORE_ADDR addr, gdb_byte *buf, int len)
2675 {
2676   /* NOTE: target_read_memory returns zero on success!  */
2677   return !target_read_memory (addr, buf, len);
2678 }
2679
2680 /* Architecture methods.  */
2681
2682 struct gdbarch *
2683 get_frame_arch (struct frame_info *this_frame)
2684 {
2685   return frame_unwind_arch (this_frame->next);
2686 }
2687
2688 struct gdbarch *
2689 frame_unwind_arch (struct frame_info *next_frame)
2690 {
2691   if (!next_frame->prev_arch.p)
2692     {
2693       struct gdbarch *arch;
2694
2695       if (next_frame->unwind == NULL)
2696         frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2697
2698       if (next_frame->unwind->prev_arch != NULL)
2699         arch = next_frame->unwind->prev_arch (next_frame,
2700                                               &next_frame->prologue_cache);
2701       else
2702         arch = get_frame_arch (next_frame);
2703
2704       next_frame->prev_arch.arch = arch;
2705       next_frame->prev_arch.p = 1;
2706       if (frame_debug)
2707         fprintf_unfiltered (gdb_stdlog,
2708                             "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2709                             next_frame->level,
2710                             gdbarch_bfd_arch_info (arch)->printable_name);
2711     }
2712
2713   return next_frame->prev_arch.arch;
2714 }
2715
2716 struct gdbarch *
2717 frame_unwind_caller_arch (struct frame_info *next_frame)
2718 {
2719   next_frame = skip_artificial_frames (next_frame);
2720
2721   /* We must have a non-artificial frame.  The caller is supposed to check
2722      the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2723      in this case.  */
2724   gdb_assert (next_frame != NULL);
2725
2726   return frame_unwind_arch (next_frame);
2727 }
2728
2729 /* Gets the language of FRAME.  */
2730
2731 enum language
2732 get_frame_language (struct frame_info *frame)
2733 {
2734   CORE_ADDR pc = 0;
2735   int pc_p = 0;
2736
2737   gdb_assert (frame!= NULL);
2738
2739     /* We determine the current frame language by looking up its
2740        associated symtab.  To retrieve this symtab, we use the frame
2741        PC.  However we cannot use the frame PC as is, because it
2742        usually points to the instruction following the "call", which
2743        is sometimes the first instruction of another function.  So
2744        we rely on get_frame_address_in_block(), it provides us with
2745        a PC that is guaranteed to be inside the frame's code
2746        block.  */
2747
2748   TRY
2749     {
2750       pc = get_frame_address_in_block (frame);
2751       pc_p = 1;
2752     }
2753   CATCH (ex, RETURN_MASK_ERROR)
2754     {
2755       if (ex.error != NOT_AVAILABLE_ERROR)
2756         throw_exception (ex);
2757     }
2758   END_CATCH
2759
2760   if (pc_p)
2761     {
2762       struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2763
2764       if (cust != NULL)
2765         return compunit_language (cust);
2766     }
2767
2768   return language_unknown;
2769 }
2770
2771 /* Stack pointer methods.  */
2772
2773 CORE_ADDR
2774 get_frame_sp (struct frame_info *this_frame)
2775 {
2776   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2777
2778   /* Normality - an architecture that provides a way of obtaining any
2779      frame inner-most address.  */
2780   if (gdbarch_unwind_sp_p (gdbarch))
2781     /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2782        operate on THIS_FRAME now.  */
2783     return gdbarch_unwind_sp (gdbarch, this_frame->next);
2784   /* Now things are really are grim.  Hope that the value returned by
2785      the gdbarch_sp_regnum register is meaningful.  */
2786   if (gdbarch_sp_regnum (gdbarch) >= 0)
2787     return get_frame_register_unsigned (this_frame,
2788                                         gdbarch_sp_regnum (gdbarch));
2789   internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2790 }
2791
2792 /* Return the reason why we can't unwind past FRAME.  */
2793
2794 enum unwind_stop_reason
2795 get_frame_unwind_stop_reason (struct frame_info *frame)
2796 {
2797   /* Fill-in STOP_REASON.  */
2798   get_prev_frame_always (frame);
2799   gdb_assert (frame->prev_p);
2800
2801   return frame->stop_reason;
2802 }
2803
2804 /* Return a string explaining REASON.  */
2805
2806 const char *
2807 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2808 {
2809   switch (reason)
2810     {
2811 #define SET(name, description) \
2812     case name: return _(description);
2813 #include "unwind_stop_reasons.def"
2814 #undef SET
2815
2816     default:
2817       internal_error (__FILE__, __LINE__,
2818                       "Invalid frame stop reason");
2819     }
2820 }
2821
2822 const char *
2823 frame_stop_reason_string (struct frame_info *fi)
2824 {
2825   gdb_assert (fi->prev_p);
2826   gdb_assert (fi->prev == NULL);
2827
2828   /* Return the specific string if we have one.  */
2829   if (fi->stop_string != NULL)
2830     return fi->stop_string;
2831
2832   /* Return the generic string if we have nothing better.  */
2833   return unwind_stop_reason_to_string (fi->stop_reason);
2834 }
2835
2836 /* Return the enum symbol name of REASON as a string, to use in debug
2837    output.  */
2838
2839 static const char *
2840 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2841 {
2842   switch (reason)
2843     {
2844 #define SET(name, description) \
2845     case name: return #name;
2846 #include "unwind_stop_reasons.def"
2847 #undef SET
2848
2849     default:
2850       internal_error (__FILE__, __LINE__,
2851                       "Invalid frame stop reason");
2852     }
2853 }
2854
2855 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2856    FRAME.  */
2857
2858 static void
2859 frame_cleanup_after_sniffer (void *arg)
2860 {
2861   struct frame_info *frame = (struct frame_info *) arg;
2862
2863   /* The sniffer should not allocate a prologue cache if it did not
2864      match this frame.  */
2865   gdb_assert (frame->prologue_cache == NULL);
2866
2867   /* No sniffer should extend the frame chain; sniff based on what is
2868      already certain.  */
2869   gdb_assert (!frame->prev_p);
2870
2871   /* The sniffer should not check the frame's ID; that's circular.  */
2872   gdb_assert (!frame->this_id.p);
2873
2874   /* Clear cached fields dependent on the unwinder.
2875
2876      The previous PC is independent of the unwinder, but the previous
2877      function is not (see get_frame_address_in_block).  */
2878   frame->prev_func.p = 0;
2879   frame->prev_func.addr = 0;
2880
2881   /* Discard the unwinder last, so that we can easily find it if an assertion
2882      in this function triggers.  */
2883   frame->unwind = NULL;
2884 }
2885
2886 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2887    Return a cleanup which should be called if unwinding fails, and
2888    discarded if it succeeds.  */
2889
2890 struct cleanup *
2891 frame_prepare_for_sniffer (struct frame_info *frame,
2892                            const struct frame_unwind *unwind)
2893 {
2894   gdb_assert (frame->unwind == NULL);
2895   frame->unwind = unwind;
2896   return make_cleanup (frame_cleanup_after_sniffer, frame);
2897 }
2898
2899 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2900
2901 static struct cmd_list_element *set_backtrace_cmdlist;
2902 static struct cmd_list_element *show_backtrace_cmdlist;
2903
2904 static void
2905 set_backtrace_cmd (char *args, int from_tty)
2906 {
2907   help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2908              gdb_stdout);
2909 }
2910
2911 static void
2912 show_backtrace_cmd (char *args, int from_tty)
2913 {
2914   cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2915 }
2916
2917 void
2918 _initialize_frame (void)
2919 {
2920   obstack_init (&frame_cache_obstack);
2921
2922   frame_stash_create ();
2923
2924   observer_attach_target_changed (frame_observer_target_changed);
2925
2926   add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2927 Set backtrace specific variables.\n\
2928 Configure backtrace variables such as the backtrace limit"),
2929                   &set_backtrace_cmdlist, "set backtrace ",
2930                   0/*allow-unknown*/, &setlist);
2931   add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2932 Show backtrace specific variables\n\
2933 Show backtrace variables such as the backtrace limit"),
2934                   &show_backtrace_cmdlist, "show backtrace ",
2935                   0/*allow-unknown*/, &showlist);
2936
2937   add_setshow_boolean_cmd ("past-main", class_obscure,
2938                            &backtrace_past_main, _("\
2939 Set whether backtraces should continue past \"main\"."), _("\
2940 Show whether backtraces should continue past \"main\"."), _("\
2941 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2942 the backtrace at \"main\".  Set this variable if you need to see the rest\n\
2943 of the stack trace."),
2944                            NULL,
2945                            show_backtrace_past_main,
2946                            &set_backtrace_cmdlist,
2947                            &show_backtrace_cmdlist);
2948
2949   add_setshow_boolean_cmd ("past-entry", class_obscure,
2950                            &backtrace_past_entry, _("\
2951 Set whether backtraces should continue past the entry point of a program."),
2952                            _("\
2953 Show whether backtraces should continue past the entry point of a program."),
2954                            _("\
2955 Normally there are no callers beyond the entry point of a program, so GDB\n\
2956 will terminate the backtrace there.  Set this variable if you need to see\n\
2957 the rest of the stack trace."),
2958                            NULL,
2959                            show_backtrace_past_entry,
2960                            &set_backtrace_cmdlist,
2961                            &show_backtrace_cmdlist);
2962
2963   add_setshow_uinteger_cmd ("limit", class_obscure,
2964                             &backtrace_limit, _("\
2965 Set an upper bound on the number of backtrace levels."), _("\
2966 Show the upper bound on the number of backtrace levels."), _("\
2967 No more than the specified number of frames can be displayed or examined.\n\
2968 Literal \"unlimited\" or zero means no limit."),
2969                             NULL,
2970                             show_backtrace_limit,
2971                             &set_backtrace_cmdlist,
2972                             &show_backtrace_cmdlist);
2973
2974   /* Debug this files internals.  */
2975   add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug,  _("\
2976 Set frame debugging."), _("\
2977 Show frame debugging."), _("\
2978 When non-zero, frame specific internal debugging is enabled."),
2979                              NULL,
2980                              show_frame_debug,
2981                              &setdebuglist, &showdebuglist);
2982 }