d003c446084a9be5cdd114f55c5adea33a7e731a
[external/binutils.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3    Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4    2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6    This file is part of GDB.
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h"   /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46 #include  "tracepoint.h"
47
48 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50
51 /* We keep a cache of stack frames, each of which is a "struct
52    frame_info".  The innermost one gets allocated (in
53    wait_for_inferior) each time the inferior stops; current_frame
54    points to it.  Additional frames get allocated (in get_prev_frame)
55    as needed, and are chained through the next and prev fields.  Any
56    time that the frame cache becomes invalid (most notably when we
57    execute something, but also if we change how we interpret the
58    frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
59    which reads new symbols)), we should call reinit_frame_cache.  */
60
61 struct frame_info
62 {
63   /* Level of this frame.  The inner-most (youngest) frame is at level
64      0.  As you move towards the outer-most (oldest) frame, the level
65      increases.  This is a cached value.  It could just as easily be
66      computed by counting back from the selected frame to the inner
67      most frame.  */
68   /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
69      reserved to indicate a bogus frame - one that has been created
70      just to keep GDB happy (GDB always needs a frame).  For the
71      moment leave this as speculation.  */
72   int level;
73
74   /* The frame's program space.  */
75   struct program_space *pspace;
76
77   /* The frame's address space.  */
78   struct address_space *aspace;
79
80   /* The frame's low-level unwinder and corresponding cache.  The
81      low-level unwinder is responsible for unwinding register values
82      for the previous frame.  The low-level unwind methods are
83      selected based on the presence, or otherwise, of register unwind
84      information such as CFI.  */
85   void *prologue_cache;
86   const struct frame_unwind *unwind;
87
88   /* Cached copy of the previous frame's architecture.  */
89   struct
90   {
91     int p;
92     struct gdbarch *arch;
93   } prev_arch;
94
95   /* Cached copy of the previous frame's resume address.  */
96   struct {
97     int p;
98     CORE_ADDR value;
99   } prev_pc;
100   
101   /* Cached copy of the previous frame's function address.  */
102   struct
103   {
104     CORE_ADDR addr;
105     int p;
106   } prev_func;
107   
108   /* This frame's ID.  */
109   struct
110   {
111     int p;
112     struct frame_id value;
113   } this_id;
114   
115   /* The frame's high-level base methods, and corresponding cache.
116      The high level base methods are selected based on the frame's
117      debug info.  */
118   const struct frame_base *base;
119   void *base_cache;
120
121   /* Pointers to the next (down, inner, younger) and previous (up,
122      outer, older) frame_info's in the frame cache.  */
123   struct frame_info *next; /* down, inner, younger */
124   int prev_p;
125   struct frame_info *prev; /* up, outer, older */
126
127   /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
128      could.  Only valid when PREV_P is set.  */
129   enum unwind_stop_reason stop_reason;
130 };
131
132 /* A frame stash used to speed up frame lookups.  */
133
134 /* We currently only stash one frame at a time, as this seems to be
135    sufficient for now.  */
136 static struct frame_info *frame_stash = NULL;
137
138 /* Add the following FRAME to the frame stash.  */
139
140 static void
141 frame_stash_add (struct frame_info *frame)
142 {
143   frame_stash = frame;
144 }
145
146 /* Search the frame stash for an entry with the given frame ID.
147    If found, return that frame.  Otherwise return NULL.  */
148
149 static struct frame_info *
150 frame_stash_find (struct frame_id id)
151 {
152   if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
153     return frame_stash;
154
155   return NULL;
156 }
157
158 /* Invalidate the frame stash by removing all entries in it.  */
159
160 static void
161 frame_stash_invalidate (void)
162 {
163   frame_stash = NULL;
164 }
165
166 /* Flag to control debugging.  */
167
168 int frame_debug;
169 static void
170 show_frame_debug (struct ui_file *file, int from_tty,
171                   struct cmd_list_element *c, const char *value)
172 {
173   fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
174 }
175
176 /* Flag to indicate whether backtraces should stop at main et.al.  */
177
178 static int backtrace_past_main;
179 static void
180 show_backtrace_past_main (struct ui_file *file, int from_tty,
181                           struct cmd_list_element *c, const char *value)
182 {
183   fprintf_filtered (file, _("\
184 Whether backtraces should continue past \"main\" is %s.\n"),
185                     value);
186 }
187
188 static int backtrace_past_entry;
189 static void
190 show_backtrace_past_entry (struct ui_file *file, int from_tty,
191                            struct cmd_list_element *c, const char *value)
192 {
193   fprintf_filtered (file, _("\
194 Whether backtraces should continue past the entry point of a program is %s.\n"),
195                     value);
196 }
197
198 static int backtrace_limit = INT_MAX;
199 static void
200 show_backtrace_limit (struct ui_file *file, int from_tty,
201                       struct cmd_list_element *c, const char *value)
202 {
203   fprintf_filtered (file, _("\
204 An upper bound on the number of backtrace levels is %s.\n"),
205                     value);
206 }
207
208
209 static void
210 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
211 {
212   if (p)
213     fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
214   else
215     fprintf_unfiltered (file, "!%s", name);
216 }
217
218 void
219 fprint_frame_id (struct ui_file *file, struct frame_id id)
220 {
221   fprintf_unfiltered (file, "{");
222   fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
223   fprintf_unfiltered (file, ",");
224   fprint_field (file, "code", id.code_addr_p, id.code_addr);
225   fprintf_unfiltered (file, ",");
226   fprint_field (file, "special", id.special_addr_p, id.special_addr);
227   if (id.inline_depth)
228     fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
229   fprintf_unfiltered (file, "}");
230 }
231
232 static void
233 fprint_frame_type (struct ui_file *file, enum frame_type type)
234 {
235   switch (type)
236     {
237     case NORMAL_FRAME:
238       fprintf_unfiltered (file, "NORMAL_FRAME");
239       return;
240     case DUMMY_FRAME:
241       fprintf_unfiltered (file, "DUMMY_FRAME");
242       return;
243     case INLINE_FRAME:
244       fprintf_unfiltered (file, "INLINE_FRAME");
245       return;
246     case SENTINEL_FRAME:
247       fprintf_unfiltered (file, "SENTINEL_FRAME");
248       return;
249     case SIGTRAMP_FRAME:
250       fprintf_unfiltered (file, "SIGTRAMP_FRAME");
251       return;
252     case ARCH_FRAME:
253       fprintf_unfiltered (file, "ARCH_FRAME");
254       return;
255     default:
256       fprintf_unfiltered (file, "<unknown type>");
257       return;
258     };
259 }
260
261 static void
262 fprint_frame (struct ui_file *file, struct frame_info *fi)
263 {
264   if (fi == NULL)
265     {
266       fprintf_unfiltered (file, "<NULL frame>");
267       return;
268     }
269   fprintf_unfiltered (file, "{");
270   fprintf_unfiltered (file, "level=%d", fi->level);
271   fprintf_unfiltered (file, ",");
272   fprintf_unfiltered (file, "type=");
273   if (fi->unwind != NULL)
274     fprint_frame_type (file, fi->unwind->type);
275   else
276     fprintf_unfiltered (file, "<unknown>");
277   fprintf_unfiltered (file, ",");
278   fprintf_unfiltered (file, "unwind=");
279   if (fi->unwind != NULL)
280     gdb_print_host_address (fi->unwind, file);
281   else
282     fprintf_unfiltered (file, "<unknown>");
283   fprintf_unfiltered (file, ",");
284   fprintf_unfiltered (file, "pc=");
285   if (fi->next != NULL && fi->next->prev_pc.p)
286     fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
287   else
288     fprintf_unfiltered (file, "<unknown>");
289   fprintf_unfiltered (file, ",");
290   fprintf_unfiltered (file, "id=");
291   if (fi->this_id.p)
292     fprint_frame_id (file, fi->this_id.value);
293   else
294     fprintf_unfiltered (file, "<unknown>");
295   fprintf_unfiltered (file, ",");
296   fprintf_unfiltered (file, "func=");
297   if (fi->next != NULL && fi->next->prev_func.p)
298     fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
299   else
300     fprintf_unfiltered (file, "<unknown>");
301   fprintf_unfiltered (file, "}");
302 }
303
304 /* Given FRAME, return the enclosing normal frame for inlined
305    function frames.  Otherwise return the original frame.  */
306
307 static struct frame_info *
308 skip_inlined_frames (struct frame_info *frame)
309 {
310   while (get_frame_type (frame) == INLINE_FRAME)
311     frame = get_prev_frame (frame);
312
313   return frame;
314 }
315
316 /* Return a frame uniq ID that can be used to, later, re-find the
317    frame.  */
318
319 struct frame_id
320 get_frame_id (struct frame_info *fi)
321 {
322   if (fi == NULL)
323     return null_frame_id;
324
325   if (!fi->this_id.p)
326     {
327       if (frame_debug)
328         fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
329                             fi->level);
330       /* Find the unwinder.  */
331       if (fi->unwind == NULL)
332         fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
333       /* Find THIS frame's ID.  */
334       /* Default to outermost if no ID is found.  */
335       fi->this_id.value = outer_frame_id;
336       fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
337       gdb_assert (frame_id_p (fi->this_id.value));
338       fi->this_id.p = 1;
339       if (frame_debug)
340         {
341           fprintf_unfiltered (gdb_stdlog, "-> ");
342           fprint_frame_id (gdb_stdlog, fi->this_id.value);
343           fprintf_unfiltered (gdb_stdlog, " }\n");
344         }
345     }
346
347   frame_stash_add (fi);
348
349   return fi->this_id.value;
350 }
351
352 struct frame_id
353 get_stack_frame_id (struct frame_info *next_frame)
354 {
355   return get_frame_id (skip_inlined_frames (next_frame));
356 }
357
358 struct frame_id
359 frame_unwind_caller_id (struct frame_info *next_frame)
360 {
361   struct frame_info *this_frame;
362
363   /* Use get_prev_frame_1, and not get_prev_frame.  The latter will truncate
364      the frame chain, leading to this function unintentionally
365      returning a null_frame_id (e.g., when a caller requests the frame
366      ID of "main()"s caller.  */
367
368   next_frame = skip_inlined_frames (next_frame);
369   this_frame = get_prev_frame_1 (next_frame);
370   if (this_frame)
371     return get_frame_id (skip_inlined_frames (this_frame));
372   else
373     return null_frame_id;
374 }
375
376 const struct frame_id null_frame_id; /* All zeros.  */
377 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
378
379 struct frame_id
380 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
381                         CORE_ADDR special_addr)
382 {
383   struct frame_id id = null_frame_id;
384
385   id.stack_addr = stack_addr;
386   id.stack_addr_p = 1;
387   id.code_addr = code_addr;
388   id.code_addr_p = 1;
389   id.special_addr = special_addr;
390   id.special_addr_p = 1;
391   return id;
392 }
393
394 struct frame_id
395 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
396 {
397   struct frame_id id = null_frame_id;
398
399   id.stack_addr = stack_addr;
400   id.stack_addr_p = 1;
401   id.code_addr = code_addr;
402   id.code_addr_p = 1;
403   return id;
404 }
405
406 struct frame_id
407 frame_id_build_wild (CORE_ADDR stack_addr)
408 {
409   struct frame_id id = null_frame_id;
410
411   id.stack_addr = stack_addr;
412   id.stack_addr_p = 1;
413   return id;
414 }
415
416 int
417 frame_id_p (struct frame_id l)
418 {
419   int p;
420
421   /* The frame is valid iff it has a valid stack address.  */
422   p = l.stack_addr_p;
423   /* outer_frame_id is also valid.  */
424   if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
425     p = 1;
426   if (frame_debug)
427     {
428       fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
429       fprint_frame_id (gdb_stdlog, l);
430       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
431     }
432   return p;
433 }
434
435 int
436 frame_id_inlined_p (struct frame_id l)
437 {
438   if (!frame_id_p (l))
439     return 0;
440
441   return (l.inline_depth != 0);
442 }
443
444 int
445 frame_id_eq (struct frame_id l, struct frame_id r)
446 {
447   int eq;
448
449   if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
450     /* The outermost frame marker is equal to itself.  This is the
451        dodgy thing about outer_frame_id, since between execution steps
452        we might step into another function - from which we can't
453        unwind either.  More thought required to get rid of
454        outer_frame_id.  */
455     eq = 1;
456   else if (!l.stack_addr_p || !r.stack_addr_p)
457     /* Like a NaN, if either ID is invalid, the result is false.
458        Note that a frame ID is invalid iff it is the null frame ID.  */
459     eq = 0;
460   else if (l.stack_addr != r.stack_addr)
461     /* If .stack addresses are different, the frames are different.  */
462     eq = 0;
463   else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
464     /* An invalid code addr is a wild card.  If .code addresses are
465        different, the frames are different.  */
466     eq = 0;
467   else if (l.special_addr_p && r.special_addr_p
468            && l.special_addr != r.special_addr)
469     /* An invalid special addr is a wild card (or unused).  Otherwise
470        if special addresses are different, the frames are different.  */
471     eq = 0;
472   else if (l.inline_depth != r.inline_depth)
473     /* If inline depths are different, the frames must be different.  */
474     eq = 0;
475   else
476     /* Frames are equal.  */
477     eq = 1;
478
479   if (frame_debug)
480     {
481       fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
482       fprint_frame_id (gdb_stdlog, l);
483       fprintf_unfiltered (gdb_stdlog, ",r=");
484       fprint_frame_id (gdb_stdlog, r);
485       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
486     }
487   return eq;
488 }
489
490 /* Safety net to check whether frame ID L should be inner to
491    frame ID R, according to their stack addresses.
492
493    This method cannot be used to compare arbitrary frames, as the
494    ranges of valid stack addresses may be discontiguous (e.g. due
495    to sigaltstack).
496
497    However, it can be used as safety net to discover invalid frame
498    IDs in certain circumstances. Assuming that NEXT is the immediate
499    inner frame to THIS and that NEXT and THIS are both NORMAL frames:
500
501    * The stack address of NEXT must be inner-than-or-equal to the stack
502      address of THIS.
503
504      Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
505      error has occurred.
506
507    * If NEXT and THIS have different stack addresses, no other frame
508      in the frame chain may have a stack address in between.
509
510      Therefore, if frame_id_inner (TEST, THIS) holds, but
511      frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
512      to a valid frame in the frame chain.
513
514    The sanity checks above cannot be performed when a SIGTRAMP frame
515    is involved, because signal handlers might be executed on a different
516    stack than the stack used by the routine that caused the signal
517    to be raised.  This can happen for instance when a thread exceeds
518    its maximum stack size. In this case, certain compilers implement
519    a stack overflow strategy that cause the handler to be run on a
520    different stack.  */
521
522 static int
523 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
524 {
525   int inner;
526
527   if (!l.stack_addr_p || !r.stack_addr_p)
528     /* Like NaN, any operation involving an invalid ID always fails.  */
529     inner = 0;
530   else if (l.inline_depth > r.inline_depth
531            && l.stack_addr == r.stack_addr
532            && l.code_addr_p == r.code_addr_p
533            && l.special_addr_p == r.special_addr_p
534            && l.special_addr == r.special_addr)
535     {
536       /* Same function, different inlined functions.  */
537       struct block *lb, *rb;
538
539       gdb_assert (l.code_addr_p && r.code_addr_p);
540
541       lb = block_for_pc (l.code_addr);
542       rb = block_for_pc (r.code_addr);
543
544       if (lb == NULL || rb == NULL)
545         /* Something's gone wrong.  */
546         inner = 0;
547       else
548         /* This will return true if LB and RB are the same block, or
549            if the block with the smaller depth lexically encloses the
550            block with the greater depth.  */
551         inner = contained_in (lb, rb);
552     }
553   else
554     /* Only return non-zero when strictly inner than.  Note that, per
555        comment in "frame.h", there is some fuzz here.  Frameless
556        functions are not strictly inner than (same .stack but
557        different .code and/or .special address).  */
558     inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
559   if (frame_debug)
560     {
561       fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
562       fprint_frame_id (gdb_stdlog, l);
563       fprintf_unfiltered (gdb_stdlog, ",r=");
564       fprint_frame_id (gdb_stdlog, r);
565       fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
566     }
567   return inner;
568 }
569
570 struct frame_info *
571 frame_find_by_id (struct frame_id id)
572 {
573   struct frame_info *frame, *prev_frame;
574
575   /* ZERO denotes the null frame, let the caller decide what to do
576      about it.  Should it instead return get_current_frame()?  */
577   if (!frame_id_p (id))
578     return NULL;
579
580   /* Try using the frame stash first.  Finding it there removes the need
581      to perform the search by looping over all frames, which can be very
582      CPU-intensive if the number of frames is very high (the loop is O(n)
583      and get_prev_frame performs a series of checks that are relatively
584      expensive).  This optimization is particularly useful when this function
585      is called from another function (such as value_fetch_lazy, case
586      VALUE_LVAL (val) == lval_register) which already loops over all frames,
587      making the overall behavior O(n^2).  */
588   frame = frame_stash_find (id);
589   if (frame)
590     return frame;
591
592   for (frame = get_current_frame (); ; frame = prev_frame)
593     {
594       struct frame_id this = get_frame_id (frame);
595
596       if (frame_id_eq (id, this))
597         /* An exact match.  */
598         return frame;
599
600       prev_frame = get_prev_frame (frame);
601       if (!prev_frame)
602         return NULL;
603
604       /* As a safety net to avoid unnecessary backtracing while trying
605          to find an invalid ID, we check for a common situation where
606          we can detect from comparing stack addresses that no other
607          frame in the current frame chain can have this ID.  See the
608          comment at frame_id_inner for details.   */
609       if (get_frame_type (frame) == NORMAL_FRAME
610           && !frame_id_inner (get_frame_arch (frame), id, this)
611           && frame_id_inner (get_frame_arch (prev_frame), id,
612                              get_frame_id (prev_frame)))
613         return NULL;
614     }
615   return NULL;
616 }
617
618 static CORE_ADDR
619 frame_unwind_pc (struct frame_info *this_frame)
620 {
621   if (!this_frame->prev_pc.p)
622     {
623       CORE_ADDR pc;
624
625       if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
626         {
627           /* The right way.  The `pure' way.  The one true way.  This
628              method depends solely on the register-unwind code to
629              determine the value of registers in THIS frame, and hence
630              the value of this frame's PC (resume address).  A typical
631              implementation is no more than:
632            
633              frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
634              return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
635
636              Note: this method is very heavily dependent on a correct
637              register-unwind implementation, it pays to fix that
638              method first; this method is frame type agnostic, since
639              it only deals with register values, it works with any
640              frame.  This is all in stark contrast to the old
641              FRAME_SAVED_PC which would try to directly handle all the
642              different ways that a PC could be unwound.  */
643           pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
644         }
645       else
646         internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
647       this_frame->prev_pc.value = pc;
648       this_frame->prev_pc.p = 1;
649       if (frame_debug)
650         fprintf_unfiltered (gdb_stdlog,
651                             "{ frame_unwind_caller_pc (this_frame=%d) -> %s }\n",
652                             this_frame->level,
653                             hex_string (this_frame->prev_pc.value));
654     }
655   return this_frame->prev_pc.value;
656 }
657
658 CORE_ADDR
659 frame_unwind_caller_pc (struct frame_info *this_frame)
660 {
661   return frame_unwind_pc (skip_inlined_frames (this_frame));
662 }
663
664 CORE_ADDR
665 get_frame_func (struct frame_info *this_frame)
666 {
667   struct frame_info *next_frame = this_frame->next;
668
669   if (!next_frame->prev_func.p)
670     {
671       /* Make certain that this, and not the adjacent, function is
672          found.  */
673       CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
674       next_frame->prev_func.p = 1;
675       next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
676       if (frame_debug)
677         fprintf_unfiltered (gdb_stdlog,
678                             "{ get_frame_func (this_frame=%d) -> %s }\n",
679                             this_frame->level,
680                             hex_string (next_frame->prev_func.addr));
681     }
682   return next_frame->prev_func.addr;
683 }
684
685 static int
686 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
687 {
688   return frame_register_read (src, regnum, buf);
689 }
690
691 struct regcache *
692 frame_save_as_regcache (struct frame_info *this_frame)
693 {
694   struct address_space *aspace = get_frame_address_space (this_frame);
695   struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
696                                                 aspace);
697   struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
698
699   regcache_save (regcache, do_frame_register_read, this_frame);
700   discard_cleanups (cleanups);
701   return regcache;
702 }
703
704 void
705 frame_pop (struct frame_info *this_frame)
706 {
707   struct frame_info *prev_frame;
708   struct regcache *scratch;
709   struct cleanup *cleanups;
710
711   if (get_frame_type (this_frame) == DUMMY_FRAME)
712     {
713       /* Popping a dummy frame involves restoring more than just registers.
714          dummy_frame_pop does all the work.  */
715       dummy_frame_pop (get_frame_id (this_frame));
716       return;
717     }
718
719   /* Ensure that we have a frame to pop to.  */
720   prev_frame = get_prev_frame_1 (this_frame);
721
722   if (!prev_frame)
723     error (_("Cannot pop the initial frame."));
724
725   /* Make a copy of all the register values unwound from this frame.
726      Save them in a scratch buffer so that there isn't a race between
727      trying to extract the old values from the current regcache while
728      at the same time writing new values into that same cache.  */
729   scratch = frame_save_as_regcache (prev_frame);
730   cleanups = make_cleanup_regcache_xfree (scratch);
731
732   /* FIXME: cagney/2003-03-16: It should be possible to tell the
733      target's register cache that it is about to be hit with a burst
734      register transfer and that the sequence of register writes should
735      be batched.  The pair target_prepare_to_store() and
736      target_store_registers() kind of suggest this functionality.
737      Unfortunately, they don't implement it.  Their lack of a formal
738      definition can lead to targets writing back bogus values
739      (arguably a bug in the target code mind).  */
740   /* Now copy those saved registers into the current regcache.
741      Here, regcache_cpy() calls regcache_restore().  */
742   regcache_cpy (get_current_regcache (), scratch);
743   do_cleanups (cleanups);
744
745   /* We've made right mess of GDB's local state, just discard
746      everything.  */
747   reinit_frame_cache ();
748 }
749
750 void
751 frame_register_unwind (struct frame_info *frame, int regnum,
752                        int *optimizedp, enum lval_type *lvalp,
753                        CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
754 {
755   struct value *value;
756
757   /* Require all but BUFFERP to be valid.  A NULL BUFFERP indicates
758      that the value proper does not need to be fetched.  */
759   gdb_assert (optimizedp != NULL);
760   gdb_assert (lvalp != NULL);
761   gdb_assert (addrp != NULL);
762   gdb_assert (realnump != NULL);
763   /* gdb_assert (bufferp != NULL); */
764
765   value = frame_unwind_register_value (frame, regnum);
766
767   gdb_assert (value != NULL);
768
769   *optimizedp = value_optimized_out (value);
770   *lvalp = VALUE_LVAL (value);
771   *addrp = value_address (value);
772   *realnump = VALUE_REGNUM (value);
773
774   if (bufferp && !*optimizedp)
775     memcpy (bufferp, value_contents_all (value),
776             TYPE_LENGTH (value_type (value)));
777
778   /* Dispose of the new value.  This prevents watchpoints from
779      trying to watch the saved frame pointer.  */
780   release_value (value);
781   value_free (value);
782 }
783
784 void
785 frame_register (struct frame_info *frame, int regnum,
786                 int *optimizedp, enum lval_type *lvalp,
787                 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
788 {
789   /* Require all but BUFFERP to be valid.  A NULL BUFFERP indicates
790      that the value proper does not need to be fetched.  */
791   gdb_assert (optimizedp != NULL);
792   gdb_assert (lvalp != NULL);
793   gdb_assert (addrp != NULL);
794   gdb_assert (realnump != NULL);
795   /* gdb_assert (bufferp != NULL); */
796
797   /* Obtain the register value by unwinding the register from the next
798      (more inner frame).  */
799   gdb_assert (frame != NULL && frame->next != NULL);
800   frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
801                          realnump, bufferp);
802 }
803
804 void
805 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
806 {
807   int optimized;
808   CORE_ADDR addr;
809   int realnum;
810   enum lval_type lval;
811
812   frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
813                          &realnum, buf);
814 }
815
816 void
817 get_frame_register (struct frame_info *frame,
818                     int regnum, gdb_byte *buf)
819 {
820   frame_unwind_register (frame->next, regnum, buf);
821 }
822
823 struct value *
824 frame_unwind_register_value (struct frame_info *frame, int regnum)
825 {
826   struct gdbarch *gdbarch;
827   struct value *value;
828
829   gdb_assert (frame != NULL);
830   gdbarch = frame_unwind_arch (frame);
831
832   if (frame_debug)
833     {
834       fprintf_unfiltered (gdb_stdlog, "\
835 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
836                           frame->level, regnum,
837                           user_reg_map_regnum_to_name (gdbarch, regnum));
838     }
839
840   /* Find the unwinder.  */
841   if (frame->unwind == NULL)
842     frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
843
844   /* Ask this frame to unwind its register.  */
845   value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
846
847   if (frame_debug)
848     {
849       fprintf_unfiltered (gdb_stdlog, "->");
850       if (value_optimized_out (value))
851         fprintf_unfiltered (gdb_stdlog, " optimized out");
852       else
853         {
854           if (VALUE_LVAL (value) == lval_register)
855             fprintf_unfiltered (gdb_stdlog, " register=%d",
856                                 VALUE_REGNUM (value));
857           else if (VALUE_LVAL (value) == lval_memory)
858             fprintf_unfiltered (gdb_stdlog, " address=%s",
859                                 paddress (gdbarch,
860                                           value_address (value)));
861           else
862             fprintf_unfiltered (gdb_stdlog, " computed");
863
864           if (value_lazy (value))
865             fprintf_unfiltered (gdb_stdlog, " lazy");
866           else
867             {
868               int i;
869               const gdb_byte *buf = value_contents (value);
870
871               fprintf_unfiltered (gdb_stdlog, " bytes=");
872               fprintf_unfiltered (gdb_stdlog, "[");
873               for (i = 0; i < register_size (gdbarch, regnum); i++)
874                 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
875               fprintf_unfiltered (gdb_stdlog, "]");
876             }
877         }
878
879       fprintf_unfiltered (gdb_stdlog, " }\n");
880     }
881
882   return value;
883 }
884
885 struct value *
886 get_frame_register_value (struct frame_info *frame, int regnum)
887 {
888   return frame_unwind_register_value (frame->next, regnum);
889 }
890
891 LONGEST
892 frame_unwind_register_signed (struct frame_info *frame, int regnum)
893 {
894   struct gdbarch *gdbarch = frame_unwind_arch (frame);
895   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896   int size = register_size (gdbarch, regnum);
897   gdb_byte buf[MAX_REGISTER_SIZE];
898
899   frame_unwind_register (frame, regnum, buf);
900   return extract_signed_integer (buf, size, byte_order);
901 }
902
903 LONGEST
904 get_frame_register_signed (struct frame_info *frame, int regnum)
905 {
906   return frame_unwind_register_signed (frame->next, regnum);
907 }
908
909 ULONGEST
910 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
911 {
912   struct gdbarch *gdbarch = frame_unwind_arch (frame);
913   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
914   int size = register_size (gdbarch, regnum);
915   gdb_byte buf[MAX_REGISTER_SIZE];
916
917   frame_unwind_register (frame, regnum, buf);
918   return extract_unsigned_integer (buf, size, byte_order);
919 }
920
921 ULONGEST
922 get_frame_register_unsigned (struct frame_info *frame, int regnum)
923 {
924   return frame_unwind_register_unsigned (frame->next, regnum);
925 }
926
927 void
928 put_frame_register (struct frame_info *frame, int regnum,
929                     const gdb_byte *buf)
930 {
931   struct gdbarch *gdbarch = get_frame_arch (frame);
932   int realnum;
933   int optim;
934   enum lval_type lval;
935   CORE_ADDR addr;
936
937   frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
938   if (optim)
939     error (_("Attempt to assign to a value that was optimized out."));
940   switch (lval)
941     {
942     case lval_memory:
943       {
944         /* FIXME: write_memory doesn't yet take constant buffers.
945            Arrrg!  */
946         gdb_byte tmp[MAX_REGISTER_SIZE];
947
948         memcpy (tmp, buf, register_size (gdbarch, regnum));
949         write_memory (addr, tmp, register_size (gdbarch, regnum));
950         break;
951       }
952     case lval_register:
953       regcache_cooked_write (get_current_regcache (), realnum, buf);
954       break;
955     default:
956       error (_("Attempt to assign to an unmodifiable value."));
957     }
958 }
959
960 /* frame_register_read ()
961
962    Find and return the value of REGNUM for the specified stack frame.
963    The number of bytes copied is REGISTER_SIZE (REGNUM).
964
965    Returns 0 if the register value could not be found.  */
966
967 int
968 frame_register_read (struct frame_info *frame, int regnum,
969                      gdb_byte *myaddr)
970 {
971   int optimized;
972   enum lval_type lval;
973   CORE_ADDR addr;
974   int realnum;
975
976   frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
977
978   return !optimized;
979 }
980
981 int
982 get_frame_register_bytes (struct frame_info *frame, int regnum,
983                           CORE_ADDR offset, int len, gdb_byte *myaddr)
984 {
985   struct gdbarch *gdbarch = get_frame_arch (frame);
986   int i;
987   int maxsize;
988   int numregs;
989
990   /* Skip registers wholly inside of OFFSET.  */
991   while (offset >= register_size (gdbarch, regnum))
992     {
993       offset -= register_size (gdbarch, regnum);
994       regnum++;
995     }
996
997   /* Ensure that we will not read beyond the end of the register file.
998      This can only ever happen if the debug information is bad.  */
999   maxsize = -offset;
1000   numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1001   for (i = regnum; i < numregs; i++)
1002     {
1003       int thissize = register_size (gdbarch, i);
1004
1005       if (thissize == 0)
1006         break;  /* This register is not available on this architecture.  */
1007       maxsize += thissize;
1008     }
1009   if (len > maxsize)
1010     {
1011       warning (_("Bad debug information detected: "
1012                  "Attempt to read %d bytes from registers."), len);
1013       return 0;
1014     }
1015
1016   /* Copy the data.  */
1017   while (len > 0)
1018     {
1019       int curr_len = register_size (gdbarch, regnum) - offset;
1020
1021       if (curr_len > len)
1022         curr_len = len;
1023
1024       if (curr_len == register_size (gdbarch, regnum))
1025         {
1026           if (!frame_register_read (frame, regnum, myaddr))
1027             return 0;
1028         }
1029       else
1030         {
1031           gdb_byte buf[MAX_REGISTER_SIZE];
1032
1033           if (!frame_register_read (frame, regnum, buf))
1034             return 0;
1035           memcpy (myaddr, buf + offset, curr_len);
1036         }
1037
1038       myaddr += curr_len;
1039       len -= curr_len;
1040       offset = 0;
1041       regnum++;
1042     }
1043
1044   return 1;
1045 }
1046
1047 void
1048 put_frame_register_bytes (struct frame_info *frame, int regnum,
1049                           CORE_ADDR offset, int len, const gdb_byte *myaddr)
1050 {
1051   struct gdbarch *gdbarch = get_frame_arch (frame);
1052
1053   /* Skip registers wholly inside of OFFSET.  */
1054   while (offset >= register_size (gdbarch, regnum))
1055     {
1056       offset -= register_size (gdbarch, regnum);
1057       regnum++;
1058     }
1059
1060   /* Copy the data.  */
1061   while (len > 0)
1062     {
1063       int curr_len = register_size (gdbarch, regnum) - offset;
1064
1065       if (curr_len > len)
1066         curr_len = len;
1067
1068       if (curr_len == register_size (gdbarch, regnum))
1069         {
1070           put_frame_register (frame, regnum, myaddr);
1071         }
1072       else
1073         {
1074           gdb_byte buf[MAX_REGISTER_SIZE];
1075
1076           frame_register_read (frame, regnum, buf);
1077           memcpy (buf + offset, myaddr, curr_len);
1078           put_frame_register (frame, regnum, buf);
1079         }
1080
1081       myaddr += curr_len;
1082       len -= curr_len;
1083       offset = 0;
1084       regnum++;
1085     }
1086 }
1087
1088 /* Create a sentinel frame.  */
1089
1090 static struct frame_info *
1091 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1092 {
1093   struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1094
1095   frame->level = -1;
1096   frame->pspace = pspace;
1097   frame->aspace = get_regcache_aspace (regcache);
1098   /* Explicitly initialize the sentinel frame's cache.  Provide it
1099      with the underlying regcache.  In the future additional
1100      information, such as the frame's thread will be added.  */
1101   frame->prologue_cache = sentinel_frame_cache (regcache);
1102   /* For the moment there is only one sentinel frame implementation.  */
1103   frame->unwind = sentinel_frame_unwind;
1104   /* Link this frame back to itself.  The frame is self referential
1105      (the unwound PC is the same as the pc), so make it so.  */
1106   frame->next = frame;
1107   /* Make the sentinel frame's ID valid, but invalid.  That way all
1108      comparisons with it should fail.  */
1109   frame->this_id.p = 1;
1110   frame->this_id.value = null_frame_id;
1111   if (frame_debug)
1112     {
1113       fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1114       fprint_frame (gdb_stdlog, frame);
1115       fprintf_unfiltered (gdb_stdlog, " }\n");
1116     }
1117   return frame;
1118 }
1119
1120 /* Info about the innermost stack frame (contents of FP register) */
1121
1122 static struct frame_info *current_frame;
1123
1124 /* Cache for frame addresses already read by gdb.  Valid only while
1125    inferior is stopped.  Control variables for the frame cache should
1126    be local to this module.  */
1127
1128 static struct obstack frame_cache_obstack;
1129
1130 void *
1131 frame_obstack_zalloc (unsigned long size)
1132 {
1133   void *data = obstack_alloc (&frame_cache_obstack, size);
1134
1135   memset (data, 0, size);
1136   return data;
1137 }
1138
1139 /* Return the innermost (currently executing) stack frame.  This is
1140    split into two functions.  The function unwind_to_current_frame()
1141    is wrapped in catch exceptions so that, even when the unwind of the
1142    sentinel frame fails, the function still returns a stack frame.  */
1143
1144 static int
1145 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1146 {
1147   struct frame_info *frame = get_prev_frame (args);
1148
1149   /* A sentinel frame can fail to unwind, e.g., because its PC value
1150      lands in somewhere like start.  */
1151   if (frame == NULL)
1152     return 1;
1153   current_frame = frame;
1154   return 0;
1155 }
1156
1157 struct frame_info *
1158 get_current_frame (void)
1159 {
1160   /* First check, and report, the lack of registers.  Having GDB
1161      report "No stack!" or "No memory" when the target doesn't even
1162      have registers is very confusing.  Besides, "printcmd.exp"
1163      explicitly checks that ``print $pc'' with no registers prints "No
1164      registers".  */
1165   if (!target_has_registers)
1166     error (_("No registers."));
1167   if (!target_has_stack)
1168     error (_("No stack."));
1169   if (!target_has_memory)
1170     error (_("No memory."));
1171   /* Traceframes are effectively a substitute for the live inferior.  */
1172   if (get_traceframe_number () < 0)
1173     {
1174       if (ptid_equal (inferior_ptid, null_ptid))
1175         error (_("No selected thread."));
1176       if (is_exited (inferior_ptid))
1177         error (_("Invalid selected thread."));
1178       if (is_executing (inferior_ptid))
1179         error (_("Target is executing."));
1180     }
1181
1182   if (current_frame == NULL)
1183     {
1184       struct frame_info *sentinel_frame =
1185         create_sentinel_frame (current_program_space, get_current_regcache ());
1186       if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1187                             RETURN_MASK_ERROR) != 0)
1188         {
1189           /* Oops! Fake a current frame?  Is this useful?  It has a PC
1190              of zero, for instance.  */
1191           current_frame = sentinel_frame;
1192         }
1193     }
1194   return current_frame;
1195 }
1196
1197 /* The "selected" stack frame is used by default for local and arg
1198    access.  May be zero, for no selected frame.  */
1199
1200 static struct frame_info *selected_frame;
1201
1202 int
1203 has_stack_frames (void)
1204 {
1205   if (!target_has_registers || !target_has_stack || !target_has_memory)
1206     return 0;
1207
1208   /* No current inferior, no frame.  */
1209   if (ptid_equal (inferior_ptid, null_ptid))
1210     return 0;
1211
1212   /* Don't try to read from a dead thread.  */
1213   if (is_exited (inferior_ptid))
1214     return 0;
1215
1216   /* ... or from a spinning thread.  */
1217   if (is_executing (inferior_ptid))
1218     return 0;
1219
1220   return 1;
1221 }
1222
1223 /* Return the selected frame.  Always non-NULL (unless there isn't an
1224    inferior sufficient for creating a frame) in which case an error is
1225    thrown.  */
1226
1227 struct frame_info *
1228 get_selected_frame (const char *message)
1229 {
1230   if (selected_frame == NULL)
1231     {
1232       if (message != NULL && !has_stack_frames ())
1233         error (("%s"), message);
1234       /* Hey!  Don't trust this.  It should really be re-finding the
1235          last selected frame of the currently selected thread.  This,
1236          though, is better than nothing.  */
1237       select_frame (get_current_frame ());
1238     }
1239   /* There is always a frame.  */
1240   gdb_assert (selected_frame != NULL);
1241   return selected_frame;
1242 }
1243
1244 /* This is a variant of get_selected_frame() which can be called when
1245    the inferior does not have a frame; in that case it will return
1246    NULL instead of calling error().  */
1247
1248 struct frame_info *
1249 deprecated_safe_get_selected_frame (void)
1250 {
1251   if (!has_stack_frames ())
1252     return NULL;
1253   return get_selected_frame (NULL);
1254 }
1255
1256 /* Select frame FI (or NULL - to invalidate the current frame).  */
1257
1258 void
1259 select_frame (struct frame_info *fi)
1260 {
1261   struct symtab *s;
1262
1263   selected_frame = fi;
1264   /* NOTE: cagney/2002-05-04: FI can be NULL.  This occurs when the
1265      frame is being invalidated.  */
1266   if (deprecated_selected_frame_level_changed_hook)
1267     deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1268
1269   /* FIXME: kseitz/2002-08-28: It would be nice to call
1270      selected_frame_level_changed_event() right here, but due to limitations
1271      in the current interfaces, we would end up flooding UIs with events
1272      because select_frame() is used extensively internally.
1273
1274      Once we have frame-parameterized frame (and frame-related) commands,
1275      the event notification can be moved here, since this function will only
1276      be called when the user's selected frame is being changed. */
1277
1278   /* Ensure that symbols for this frame are read in.  Also, determine the
1279      source language of this frame, and switch to it if desired.  */
1280   if (fi)
1281     {
1282       /* We retrieve the frame's symtab by using the frame PC.  However
1283          we cannot use the frame PC as-is, because it usually points to
1284          the instruction following the "call", which is sometimes the
1285          first instruction of another function.  So we rely on
1286          get_frame_address_in_block() which provides us with a PC which
1287          is guaranteed to be inside the frame's code block.  */
1288       s = find_pc_symtab (get_frame_address_in_block (fi));
1289       if (s
1290           && s->language != current_language->la_language
1291           && s->language != language_unknown
1292           && language_mode == language_mode_auto)
1293         {
1294           set_language (s->language);
1295         }
1296     }
1297 }
1298         
1299 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1300    Always returns a non-NULL value.  */
1301
1302 struct frame_info *
1303 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1304 {
1305   struct frame_info *fi;
1306
1307   if (frame_debug)
1308     {
1309       fprintf_unfiltered (gdb_stdlog,
1310                           "{ create_new_frame (addr=%s, pc=%s) ",
1311                           hex_string (addr), hex_string (pc));
1312     }
1313
1314   fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1315
1316   fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1317
1318   /* Set/update this frame's cached PC value, found in the next frame.
1319      Do this before looking for this frame's unwinder.  A sniffer is
1320      very likely to read this, and the corresponding unwinder is
1321      entitled to rely that the PC doesn't magically change.  */
1322   fi->next->prev_pc.value = pc;
1323   fi->next->prev_pc.p = 1;
1324
1325   /* We currently assume that frame chain's can't cross spaces.  */
1326   fi->pspace = fi->next->pspace;
1327   fi->aspace = fi->next->aspace;
1328
1329   /* Select/initialize both the unwind function and the frame's type
1330      based on the PC.  */
1331   fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1332
1333   fi->this_id.p = 1;
1334   fi->this_id.value = frame_id_build (addr, pc);
1335
1336   if (frame_debug)
1337     {
1338       fprintf_unfiltered (gdb_stdlog, "-> ");
1339       fprint_frame (gdb_stdlog, fi);
1340       fprintf_unfiltered (gdb_stdlog, " }\n");
1341     }
1342
1343   return fi;
1344 }
1345
1346 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1347    innermost frame).  Be careful to not fall off the bottom of the
1348    frame chain and onto the sentinel frame.  */
1349
1350 struct frame_info *
1351 get_next_frame (struct frame_info *this_frame)
1352 {
1353   if (this_frame->level > 0)
1354     return this_frame->next;
1355   else
1356     return NULL;
1357 }
1358
1359 /* Observer for the target_changed event.  */
1360
1361 static void
1362 frame_observer_target_changed (struct target_ops *target)
1363 {
1364   reinit_frame_cache ();
1365 }
1366
1367 /* Flush the entire frame cache.  */
1368
1369 void
1370 reinit_frame_cache (void)
1371 {
1372   struct frame_info *fi;
1373
1374   /* Tear down all frame caches.  */
1375   for (fi = current_frame; fi != NULL; fi = fi->prev)
1376     {
1377       if (fi->prologue_cache && fi->unwind->dealloc_cache)
1378         fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1379       if (fi->base_cache && fi->base->unwind->dealloc_cache)
1380         fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1381     }
1382
1383   /* Since we can't really be sure what the first object allocated was */
1384   obstack_free (&frame_cache_obstack, 0);
1385   obstack_init (&frame_cache_obstack);
1386
1387   if (current_frame != NULL)
1388     annotate_frames_invalid ();
1389
1390   current_frame = NULL;         /* Invalidate cache */
1391   select_frame (NULL);
1392   frame_stash_invalidate ();
1393   if (frame_debug)
1394     fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1395 }
1396
1397 /* Find where a register is saved (in memory or another register).
1398    The result of frame_register_unwind is just where it is saved
1399    relative to this particular frame.  */
1400
1401 static void
1402 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1403                                 int *optimizedp, enum lval_type *lvalp,
1404                                 CORE_ADDR *addrp, int *realnump)
1405 {
1406   gdb_assert (this_frame == NULL || this_frame->level >= 0);
1407
1408   while (this_frame != NULL)
1409     {
1410       frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1411                              addrp, realnump, NULL);
1412
1413       if (*optimizedp)
1414         break;
1415
1416       if (*lvalp != lval_register)
1417         break;
1418
1419       regnum = *realnump;
1420       this_frame = get_next_frame (this_frame);
1421     }
1422 }
1423
1424 /* Return a "struct frame_info" corresponding to the frame that called
1425    THIS_FRAME.  Returns NULL if there is no such frame.
1426
1427    Unlike get_prev_frame, this function always tries to unwind the
1428    frame.  */
1429
1430 static struct frame_info *
1431 get_prev_frame_1 (struct frame_info *this_frame)
1432 {
1433   struct frame_id this_id;
1434   struct gdbarch *gdbarch;
1435
1436   gdb_assert (this_frame != NULL);
1437   gdbarch = get_frame_arch (this_frame);
1438
1439   if (frame_debug)
1440     {
1441       fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1442       if (this_frame != NULL)
1443         fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1444       else
1445         fprintf_unfiltered (gdb_stdlog, "<NULL>");
1446       fprintf_unfiltered (gdb_stdlog, ") ");
1447     }
1448
1449   /* Only try to do the unwind once.  */
1450   if (this_frame->prev_p)
1451     {
1452       if (frame_debug)
1453         {
1454           fprintf_unfiltered (gdb_stdlog, "-> ");
1455           fprint_frame (gdb_stdlog, this_frame->prev);
1456           fprintf_unfiltered (gdb_stdlog, " // cached \n");
1457         }
1458       return this_frame->prev;
1459     }
1460
1461   /* If the frame unwinder hasn't been selected yet, we must do so
1462      before setting prev_p; otherwise the check for misbehaved
1463      sniffers will think that this frame's sniffer tried to unwind
1464      further (see frame_cleanup_after_sniffer).  */
1465   if (this_frame->unwind == NULL)
1466     this_frame->unwind
1467       = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1468
1469   this_frame->prev_p = 1;
1470   this_frame->stop_reason = UNWIND_NO_REASON;
1471
1472   /* If we are unwinding from an inline frame, all of the below tests
1473      were already performed when we unwound from the next non-inline
1474      frame.  We must skip them, since we can not get THIS_FRAME's ID
1475      until we have unwound all the way down to the previous non-inline
1476      frame.  */
1477   if (get_frame_type (this_frame) == INLINE_FRAME)
1478     return get_prev_frame_raw (this_frame);
1479
1480   /* Check that this frame's ID was valid.  If it wasn't, don't try to
1481      unwind to the prev frame.  Be careful to not apply this test to
1482      the sentinel frame.  */
1483   this_id = get_frame_id (this_frame);
1484   if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1485     {
1486       if (frame_debug)
1487         {
1488           fprintf_unfiltered (gdb_stdlog, "-> ");
1489           fprint_frame (gdb_stdlog, NULL);
1490           fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1491         }
1492       this_frame->stop_reason = UNWIND_NULL_ID;
1493       return NULL;
1494     }
1495
1496   /* Check that this frame's ID isn't inner to (younger, below, next)
1497      the next frame.  This happens when a frame unwind goes backwards.
1498      This check is valid only if this frame and the next frame are NORMAL.
1499      See the comment at frame_id_inner for details.  */
1500   if (get_frame_type (this_frame) == NORMAL_FRAME
1501       && this_frame->next->unwind->type == NORMAL_FRAME
1502       && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1503                          get_frame_id (this_frame->next)))
1504     {
1505       if (frame_debug)
1506         {
1507           fprintf_unfiltered (gdb_stdlog, "-> ");
1508           fprint_frame (gdb_stdlog, NULL);
1509           fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1510         }
1511       this_frame->stop_reason = UNWIND_INNER_ID;
1512       return NULL;
1513     }
1514
1515   /* Check that this and the next frame are not identical.  If they
1516      are, there is most likely a stack cycle.  As with the inner-than
1517      test above, avoid comparing the inner-most and sentinel frames.  */
1518   if (this_frame->level > 0
1519       && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1520     {
1521       if (frame_debug)
1522         {
1523           fprintf_unfiltered (gdb_stdlog, "-> ");
1524           fprint_frame (gdb_stdlog, NULL);
1525           fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1526         }
1527       this_frame->stop_reason = UNWIND_SAME_ID;
1528       return NULL;
1529     }
1530
1531   /* Check that this and the next frame do not unwind the PC register
1532      to the same memory location.  If they do, then even though they
1533      have different frame IDs, the new frame will be bogus; two
1534      functions can't share a register save slot for the PC.  This can
1535      happen when the prologue analyzer finds a stack adjustment, but
1536      no PC save.
1537
1538      This check does assume that the "PC register" is roughly a
1539      traditional PC, even if the gdbarch_unwind_pc method adjusts
1540      it (we do not rely on the value, only on the unwound PC being
1541      dependent on this value).  A potential improvement would be
1542      to have the frame prev_pc method and the gdbarch unwind_pc
1543      method set the same lval and location information as
1544      frame_register_unwind.  */
1545   if (this_frame->level > 0
1546       && gdbarch_pc_regnum (gdbarch) >= 0
1547       && get_frame_type (this_frame) == NORMAL_FRAME
1548       && (get_frame_type (this_frame->next) == NORMAL_FRAME
1549           || get_frame_type (this_frame->next) == INLINE_FRAME))
1550     {
1551       int optimized, realnum, nrealnum;
1552       enum lval_type lval, nlval;
1553       CORE_ADDR addr, naddr;
1554
1555       frame_register_unwind_location (this_frame,
1556                                       gdbarch_pc_regnum (gdbarch),
1557                                       &optimized, &lval, &addr, &realnum);
1558       frame_register_unwind_location (get_next_frame (this_frame),
1559                                       gdbarch_pc_regnum (gdbarch),
1560                                       &optimized, &nlval, &naddr, &nrealnum);
1561
1562       if ((lval == lval_memory && lval == nlval && addr == naddr)
1563           || (lval == lval_register && lval == nlval && realnum == nrealnum))
1564         {
1565           if (frame_debug)
1566             {
1567               fprintf_unfiltered (gdb_stdlog, "-> ");
1568               fprint_frame (gdb_stdlog, NULL);
1569               fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1570             }
1571
1572           this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1573           this_frame->prev = NULL;
1574           return NULL;
1575         }
1576     }
1577
1578   return get_prev_frame_raw (this_frame);
1579 }
1580
1581 /* Construct a new "struct frame_info" and link it previous to
1582    this_frame.  */
1583
1584 static struct frame_info *
1585 get_prev_frame_raw (struct frame_info *this_frame)
1586 {
1587   struct frame_info *prev_frame;
1588
1589   /* Allocate the new frame but do not wire it in to the frame chain.
1590      Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1591      frame->next to pull some fancy tricks (of course such code is, by
1592      definition, recursive).  Try to prevent it.
1593
1594      There is no reason to worry about memory leaks, should the
1595      remainder of the function fail.  The allocated memory will be
1596      quickly reclaimed when the frame cache is flushed, and the `we've
1597      been here before' check above will stop repeated memory
1598      allocation calls.  */
1599   prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1600   prev_frame->level = this_frame->level + 1;
1601
1602   /* For now, assume we don't have frame chains crossing address
1603      spaces.  */
1604   prev_frame->pspace = this_frame->pspace;
1605   prev_frame->aspace = this_frame->aspace;
1606
1607   /* Don't yet compute ->unwind (and hence ->type).  It is computed
1608      on-demand in get_frame_type, frame_register_unwind, and
1609      get_frame_id.  */
1610
1611   /* Don't yet compute the frame's ID.  It is computed on-demand by
1612      get_frame_id().  */
1613
1614   /* The unwound frame ID is validate at the start of this function,
1615      as part of the logic to decide if that frame should be further
1616      unwound, and not here while the prev frame is being created.
1617      Doing this makes it possible for the user to examine a frame that
1618      has an invalid frame ID.
1619
1620      Some very old VAX code noted: [...]  For the sake of argument,
1621      suppose that the stack is somewhat trashed (which is one reason
1622      that "info frame" exists).  So, return 0 (indicating we don't
1623      know the address of the arglist) if we don't know what frame this
1624      frame calls.  */
1625
1626   /* Link it in.  */
1627   this_frame->prev = prev_frame;
1628   prev_frame->next = this_frame;
1629
1630   if (frame_debug)
1631     {
1632       fprintf_unfiltered (gdb_stdlog, "-> ");
1633       fprint_frame (gdb_stdlog, prev_frame);
1634       fprintf_unfiltered (gdb_stdlog, " }\n");
1635     }
1636
1637   return prev_frame;
1638 }
1639
1640 /* Debug routine to print a NULL frame being returned.  */
1641
1642 static void
1643 frame_debug_got_null_frame (struct frame_info *this_frame,
1644                             const char *reason)
1645 {
1646   if (frame_debug)
1647     {
1648       fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1649       if (this_frame != NULL)
1650         fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1651       else
1652         fprintf_unfiltered (gdb_stdlog, "<NULL>");
1653       fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1654     }
1655 }
1656
1657 /* Is this (non-sentinel) frame in the "main"() function?  */
1658
1659 static int
1660 inside_main_func (struct frame_info *this_frame)
1661 {
1662   struct minimal_symbol *msymbol;
1663   CORE_ADDR maddr;
1664
1665   if (symfile_objfile == 0)
1666     return 0;
1667   msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1668   if (msymbol == NULL)
1669     return 0;
1670   /* Make certain that the code, and not descriptor, address is
1671      returned.  */
1672   maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1673                                               SYMBOL_VALUE_ADDRESS (msymbol),
1674                                               &current_target);
1675   return maddr == get_frame_func (this_frame);
1676 }
1677
1678 /* Test whether THIS_FRAME is inside the process entry point function.  */
1679
1680 static int
1681 inside_entry_func (struct frame_info *this_frame)
1682 {
1683   CORE_ADDR entry_point;
1684
1685   if (!entry_point_address_query (&entry_point))
1686     return 0;
1687
1688   return get_frame_func (this_frame) == entry_point;
1689 }
1690
1691 /* Return a structure containing various interesting information about
1692    the frame that called THIS_FRAME.  Returns NULL if there is entier
1693    no such frame or the frame fails any of a set of target-independent
1694    condition that should terminate the frame chain (e.g., as unwinding
1695    past main()).
1696
1697    This function should not contain target-dependent tests, such as
1698    checking whether the program-counter is zero.  */
1699
1700 struct frame_info *
1701 get_prev_frame (struct frame_info *this_frame)
1702 {
1703   /* There is always a frame.  If this assertion fails, suspect that
1704      something should be calling get_selected_frame() or
1705      get_current_frame().  */
1706   gdb_assert (this_frame != NULL);
1707
1708   /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1709      sense to stop unwinding at a dummy frame.  One place where a dummy
1710      frame may have an address "inside_main_func" is on HPUX.  On HPUX, the
1711      pcsqh register (space register for the instruction at the head of the
1712      instruction queue) cannot be written directly; the only way to set it
1713      is to branch to code that is in the target space.  In order to implement
1714      frame dummies on HPUX, the called function is made to jump back to where 
1715      the inferior was when the user function was called.  If gdb was inside 
1716      the main function when we created the dummy frame, the dummy frame will 
1717      point inside the main function.  */
1718   if (this_frame->level >= 0
1719       && get_frame_type (this_frame) == NORMAL_FRAME
1720       && !backtrace_past_main
1721       && inside_main_func (this_frame))
1722     /* Don't unwind past main().  Note, this is done _before_ the
1723        frame has been marked as previously unwound.  That way if the
1724        user later decides to enable unwinds past main(), that will
1725        automatically happen.  */
1726     {
1727       frame_debug_got_null_frame (this_frame, "inside main func");
1728       return NULL;
1729     }
1730
1731   /* If the user's backtrace limit has been exceeded, stop.  We must
1732      add two to the current level; one of those accounts for backtrace_limit
1733      being 1-based and the level being 0-based, and the other accounts for
1734      the level of the new frame instead of the level of the current
1735      frame.  */
1736   if (this_frame->level + 2 > backtrace_limit)
1737     {
1738       frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1739       return NULL;
1740     }
1741
1742   /* If we're already inside the entry function for the main objfile,
1743      then it isn't valid.  Don't apply this test to a dummy frame -
1744      dummy frame PCs typically land in the entry func.  Don't apply
1745      this test to the sentinel frame.  Sentinel frames should always
1746      be allowed to unwind.  */
1747   /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1748      wasn't checking for "main" in the minimal symbols.  With that
1749      fixed asm-source tests now stop in "main" instead of halting the
1750      backtrace in weird and wonderful ways somewhere inside the entry
1751      file.  Suspect that tests for inside the entry file/func were
1752      added to work around that (now fixed) case.  */
1753   /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1754      suggested having the inside_entry_func test use the
1755      inside_main_func() msymbol trick (along with entry_point_address()
1756      I guess) to determine the address range of the start function.
1757      That should provide a far better stopper than the current
1758      heuristics.  */
1759   /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1760      applied tail-call optimizations to main so that a function called 
1761      from main returns directly to the caller of main.  Since we don't
1762      stop at main, we should at least stop at the entry point of the
1763      application.  */
1764   if (this_frame->level >= 0
1765       && get_frame_type (this_frame) == NORMAL_FRAME
1766       && !backtrace_past_entry
1767       && inside_entry_func (this_frame))
1768     {
1769       frame_debug_got_null_frame (this_frame, "inside entry func");
1770       return NULL;
1771     }
1772
1773   /* Assume that the only way to get a zero PC is through something
1774      like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1775      will never unwind a zero PC.  */
1776   if (this_frame->level > 0
1777       && (get_frame_type (this_frame) == NORMAL_FRAME
1778           || get_frame_type (this_frame) == INLINE_FRAME)
1779       && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1780       && get_frame_pc (this_frame) == 0)
1781     {
1782       frame_debug_got_null_frame (this_frame, "zero PC");
1783       return NULL;
1784     }
1785
1786   return get_prev_frame_1 (this_frame);
1787 }
1788
1789 CORE_ADDR
1790 get_frame_pc (struct frame_info *frame)
1791 {
1792   gdb_assert (frame->next != NULL);
1793   return frame_unwind_pc (frame->next);
1794 }
1795
1796 /* Return an address that falls within THIS_FRAME's code block.  */
1797
1798 CORE_ADDR
1799 get_frame_address_in_block (struct frame_info *this_frame)
1800 {
1801   /* A draft address.  */
1802   CORE_ADDR pc = get_frame_pc (this_frame);
1803
1804   struct frame_info *next_frame = this_frame->next;
1805
1806   /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1807      Normally the resume address is inside the body of the function
1808      associated with THIS_FRAME, but there is a special case: when
1809      calling a function which the compiler knows will never return
1810      (for instance abort), the call may be the very last instruction
1811      in the calling function.  The resume address will point after the
1812      call and may be at the beginning of a different function
1813      entirely.
1814
1815      If THIS_FRAME is a signal frame or dummy frame, then we should
1816      not adjust the unwound PC.  For a dummy frame, GDB pushed the
1817      resume address manually onto the stack.  For a signal frame, the
1818      OS may have pushed the resume address manually and invoked the
1819      handler (e.g. GNU/Linux), or invoked the trampoline which called
1820      the signal handler - but in either case the signal handler is
1821      expected to return to the trampoline.  So in both of these
1822      cases we know that the resume address is executable and
1823      related.  So we only need to adjust the PC if THIS_FRAME
1824      is a normal function.
1825
1826      If the program has been interrupted while THIS_FRAME is current,
1827      then clearly the resume address is inside the associated
1828      function.  There are three kinds of interruption: debugger stop
1829      (next frame will be SENTINEL_FRAME), operating system
1830      signal or exception (next frame will be SIGTRAMP_FRAME),
1831      or debugger-induced function call (next frame will be
1832      DUMMY_FRAME).  So we only need to adjust the PC if
1833      NEXT_FRAME is a normal function.
1834
1835      We check the type of NEXT_FRAME first, since it is already
1836      known; frame type is determined by the unwinder, and since
1837      we have THIS_FRAME we've already selected an unwinder for
1838      NEXT_FRAME.
1839
1840      If the next frame is inlined, we need to keep going until we find
1841      the real function - for instance, if a signal handler is invoked
1842      while in an inlined function, then the code address of the
1843      "calling" normal function should not be adjusted either.  */
1844
1845   while (get_frame_type (next_frame) == INLINE_FRAME)
1846     next_frame = next_frame->next;
1847
1848   if (get_frame_type (next_frame) == NORMAL_FRAME
1849       && (get_frame_type (this_frame) == NORMAL_FRAME
1850           || get_frame_type (this_frame) == INLINE_FRAME))
1851     return pc - 1;
1852
1853   return pc;
1854 }
1855
1856 void
1857 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1858 {
1859   struct frame_info *next_frame;
1860   int notcurrent;
1861
1862   /* If the next frame represents an inlined function call, this frame's
1863      sal is the "call site" of that inlined function, which can not
1864      be inferred from get_frame_pc.  */
1865   next_frame = get_next_frame (frame);
1866   if (frame_inlined_callees (frame) > 0)
1867     {
1868       struct symbol *sym;
1869
1870       if (next_frame)
1871         sym = get_frame_function (next_frame);
1872       else
1873         sym = inline_skipped_symbol (inferior_ptid);
1874
1875       init_sal (sal);
1876       if (SYMBOL_LINE (sym) != 0)
1877         {
1878           sal->symtab = SYMBOL_SYMTAB (sym);
1879           sal->line = SYMBOL_LINE (sym);
1880         }
1881       else
1882         /* If the symbol does not have a location, we don't know where
1883            the call site is.  Do not pretend to.  This is jarring, but
1884            we can't do much better.  */
1885         sal->pc = get_frame_pc (frame);
1886
1887       return;
1888     }
1889
1890   /* If FRAME is not the innermost frame, that normally means that
1891      FRAME->pc points at the return instruction (which is *after* the
1892      call instruction), and we want to get the line containing the
1893      call (because the call is where the user thinks the program is).
1894      However, if the next frame is either a SIGTRAMP_FRAME or a
1895      DUMMY_FRAME, then the next frame will contain a saved interrupt
1896      PC and such a PC indicates the current (rather than next)
1897      instruction/line, consequently, for such cases, want to get the
1898      line containing fi->pc.  */
1899   notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1900   (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1901 }
1902
1903 /* Per "frame.h", return the ``address'' of the frame.  Code should
1904    really be using get_frame_id().  */
1905 CORE_ADDR
1906 get_frame_base (struct frame_info *fi)
1907 {
1908   return get_frame_id (fi).stack_addr;
1909 }
1910
1911 /* High-level offsets into the frame.  Used by the debug info.  */
1912
1913 CORE_ADDR
1914 get_frame_base_address (struct frame_info *fi)
1915 {
1916   if (get_frame_type (fi) != NORMAL_FRAME)
1917     return 0;
1918   if (fi->base == NULL)
1919     fi->base = frame_base_find_by_frame (fi);
1920   /* Sneaky: If the low-level unwind and high-level base code share a
1921      common unwinder, let them share the prologue cache.  */
1922   if (fi->base->unwind == fi->unwind)
1923     return fi->base->this_base (fi, &fi->prologue_cache);
1924   return fi->base->this_base (fi, &fi->base_cache);
1925 }
1926
1927 CORE_ADDR
1928 get_frame_locals_address (struct frame_info *fi)
1929 {
1930   if (get_frame_type (fi) != NORMAL_FRAME)
1931     return 0;
1932   /* If there isn't a frame address method, find it.  */
1933   if (fi->base == NULL)
1934     fi->base = frame_base_find_by_frame (fi);
1935   /* Sneaky: If the low-level unwind and high-level base code share a
1936      common unwinder, let them share the prologue cache.  */
1937   if (fi->base->unwind == fi->unwind)
1938     return fi->base->this_locals (fi, &fi->prologue_cache);
1939   return fi->base->this_locals (fi, &fi->base_cache);
1940 }
1941
1942 CORE_ADDR
1943 get_frame_args_address (struct frame_info *fi)
1944 {
1945   if (get_frame_type (fi) != NORMAL_FRAME)
1946     return 0;
1947   /* If there isn't a frame address method, find it.  */
1948   if (fi->base == NULL)
1949     fi->base = frame_base_find_by_frame (fi);
1950   /* Sneaky: If the low-level unwind and high-level base code share a
1951      common unwinder, let them share the prologue cache.  */
1952   if (fi->base->unwind == fi->unwind)
1953     return fi->base->this_args (fi, &fi->prologue_cache);
1954   return fi->base->this_args (fi, &fi->base_cache);
1955 }
1956
1957 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1958    otherwise.  */
1959
1960 int
1961 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1962 {
1963   if (fi->unwind == NULL)
1964     fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1965   return fi->unwind == unwinder;
1966 }
1967
1968 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1969    or -1 for a NULL frame.  */
1970
1971 int
1972 frame_relative_level (struct frame_info *fi)
1973 {
1974   if (fi == NULL)
1975     return -1;
1976   else
1977     return fi->level;
1978 }
1979
1980 enum frame_type
1981 get_frame_type (struct frame_info *frame)
1982 {
1983   if (frame->unwind == NULL)
1984     /* Initialize the frame's unwinder because that's what
1985        provides the frame's type.  */
1986     frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1987   return frame->unwind->type;
1988 }
1989
1990 struct program_space *
1991 get_frame_program_space (struct frame_info *frame)
1992 {
1993   return frame->pspace;
1994 }
1995
1996 struct program_space *
1997 frame_unwind_program_space (struct frame_info *this_frame)
1998 {
1999   gdb_assert (this_frame);
2000
2001   /* This is really a placeholder to keep the API consistent --- we
2002      assume for now that we don't have frame chains crossing
2003      spaces.  */
2004   return this_frame->pspace;
2005 }
2006
2007 struct address_space *
2008 get_frame_address_space (struct frame_info *frame)
2009 {
2010   return frame->aspace;
2011 }
2012
2013 /* Memory access methods.  */
2014
2015 void
2016 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2017                   gdb_byte *buf, int len)
2018 {
2019   read_memory (addr, buf, len);
2020 }
2021
2022 LONGEST
2023 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2024                          int len)
2025 {
2026   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2027   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2028
2029   return read_memory_integer (addr, len, byte_order);
2030 }
2031
2032 ULONGEST
2033 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2034                            int len)
2035 {
2036   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2037   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2038
2039   return read_memory_unsigned_integer (addr, len, byte_order);
2040 }
2041
2042 int
2043 safe_frame_unwind_memory (struct frame_info *this_frame,
2044                           CORE_ADDR addr, gdb_byte *buf, int len)
2045 {
2046   /* NOTE: target_read_memory returns zero on success!  */
2047   return !target_read_memory (addr, buf, len);
2048 }
2049
2050 /* Architecture methods.  */
2051
2052 struct gdbarch *
2053 get_frame_arch (struct frame_info *this_frame)
2054 {
2055   return frame_unwind_arch (this_frame->next);
2056 }
2057
2058 struct gdbarch *
2059 frame_unwind_arch (struct frame_info *next_frame)
2060 {
2061   if (!next_frame->prev_arch.p)
2062     {
2063       struct gdbarch *arch;
2064
2065       if (next_frame->unwind == NULL)
2066         next_frame->unwind
2067           = frame_unwind_find_by_frame (next_frame,
2068                                         &next_frame->prologue_cache);
2069
2070       if (next_frame->unwind->prev_arch != NULL)
2071         arch = next_frame->unwind->prev_arch (next_frame,
2072                                               &next_frame->prologue_cache);
2073       else
2074         arch = get_frame_arch (next_frame);
2075
2076       next_frame->prev_arch.arch = arch;
2077       next_frame->prev_arch.p = 1;
2078       if (frame_debug)
2079         fprintf_unfiltered (gdb_stdlog,
2080                             "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2081                             next_frame->level,
2082                             gdbarch_bfd_arch_info (arch)->printable_name);
2083     }
2084
2085   return next_frame->prev_arch.arch;
2086 }
2087
2088 struct gdbarch *
2089 frame_unwind_caller_arch (struct frame_info *next_frame)
2090 {
2091   return frame_unwind_arch (skip_inlined_frames (next_frame));
2092 }
2093
2094 /* Stack pointer methods.  */
2095
2096 CORE_ADDR
2097 get_frame_sp (struct frame_info *this_frame)
2098 {
2099   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2100
2101   /* Normality - an architecture that provides a way of obtaining any
2102      frame inner-most address.  */
2103   if (gdbarch_unwind_sp_p (gdbarch))
2104     /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2105        operate on THIS_FRAME now.  */
2106     return gdbarch_unwind_sp (gdbarch, this_frame->next);
2107   /* Now things are really are grim.  Hope that the value returned by
2108      the gdbarch_sp_regnum register is meaningful.  */
2109   if (gdbarch_sp_regnum (gdbarch) >= 0)
2110     return get_frame_register_unsigned (this_frame,
2111                                         gdbarch_sp_regnum (gdbarch));
2112   internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2113 }
2114
2115 /* Return the reason why we can't unwind past FRAME.  */
2116
2117 enum unwind_stop_reason
2118 get_frame_unwind_stop_reason (struct frame_info *frame)
2119 {
2120   /* If we haven't tried to unwind past this point yet, then assume
2121      that unwinding would succeed.  */
2122   if (frame->prev_p == 0)
2123     return UNWIND_NO_REASON;
2124
2125   /* Otherwise, we set a reason when we succeeded (or failed) to
2126      unwind.  */
2127   return frame->stop_reason;
2128 }
2129
2130 /* Return a string explaining REASON.  */
2131
2132 const char *
2133 frame_stop_reason_string (enum unwind_stop_reason reason)
2134 {
2135   switch (reason)
2136     {
2137     case UNWIND_NULL_ID:
2138       return _("unwinder did not report frame ID");
2139
2140     case UNWIND_INNER_ID:
2141       return _("previous frame inner to this frame (corrupt stack?)");
2142
2143     case UNWIND_SAME_ID:
2144       return _("previous frame identical to this frame (corrupt stack?)");
2145
2146     case UNWIND_NO_SAVED_PC:
2147       return _("frame did not save the PC");
2148
2149     case UNWIND_NO_REASON:
2150     case UNWIND_FIRST_ERROR:
2151     default:
2152       internal_error (__FILE__, __LINE__,
2153                       "Invalid frame stop reason");
2154     }
2155 }
2156
2157 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2158    FRAME.  */
2159
2160 static void
2161 frame_cleanup_after_sniffer (void *arg)
2162 {
2163   struct frame_info *frame = arg;
2164
2165   /* The sniffer should not allocate a prologue cache if it did not
2166      match this frame.  */
2167   gdb_assert (frame->prologue_cache == NULL);
2168
2169   /* No sniffer should extend the frame chain; sniff based on what is
2170      already certain.  */
2171   gdb_assert (!frame->prev_p);
2172
2173   /* The sniffer should not check the frame's ID; that's circular.  */
2174   gdb_assert (!frame->this_id.p);
2175
2176   /* Clear cached fields dependent on the unwinder.
2177
2178      The previous PC is independent of the unwinder, but the previous
2179      function is not (see get_frame_address_in_block).  */
2180   frame->prev_func.p = 0;
2181   frame->prev_func.addr = 0;
2182
2183   /* Discard the unwinder last, so that we can easily find it if an assertion
2184      in this function triggers.  */
2185   frame->unwind = NULL;
2186 }
2187
2188 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2189    Return a cleanup which should be called if unwinding fails, and
2190    discarded if it succeeds.  */
2191
2192 struct cleanup *
2193 frame_prepare_for_sniffer (struct frame_info *frame,
2194                            const struct frame_unwind *unwind)
2195 {
2196   gdb_assert (frame->unwind == NULL);
2197   frame->unwind = unwind;
2198   return make_cleanup (frame_cleanup_after_sniffer, frame);
2199 }
2200
2201 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2202
2203 static struct cmd_list_element *set_backtrace_cmdlist;
2204 static struct cmd_list_element *show_backtrace_cmdlist;
2205
2206 static void
2207 set_backtrace_cmd (char *args, int from_tty)
2208 {
2209   help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2210 }
2211
2212 static void
2213 show_backtrace_cmd (char *args, int from_tty)
2214 {
2215   cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2216 }
2217
2218 void
2219 _initialize_frame (void)
2220 {
2221   obstack_init (&frame_cache_obstack);
2222
2223   observer_attach_target_changed (frame_observer_target_changed);
2224
2225   add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2226 Set backtrace specific variables.\n\
2227 Configure backtrace variables such as the backtrace limit"),
2228                   &set_backtrace_cmdlist, "set backtrace ",
2229                   0/*allow-unknown*/, &setlist);
2230   add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2231 Show backtrace specific variables\n\
2232 Show backtrace variables such as the backtrace limit"),
2233                   &show_backtrace_cmdlist, "show backtrace ",
2234                   0/*allow-unknown*/, &showlist);
2235
2236   add_setshow_boolean_cmd ("past-main", class_obscure,
2237                            &backtrace_past_main, _("\
2238 Set whether backtraces should continue past \"main\"."), _("\
2239 Show whether backtraces should continue past \"main\"."), _("\
2240 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2241 the backtrace at \"main\".  Set this variable if you need to see the rest\n\
2242 of the stack trace."),
2243                            NULL,
2244                            show_backtrace_past_main,
2245                            &set_backtrace_cmdlist,
2246                            &show_backtrace_cmdlist);
2247
2248   add_setshow_boolean_cmd ("past-entry", class_obscure,
2249                            &backtrace_past_entry, _("\
2250 Set whether backtraces should continue past the entry point of a program."),
2251                            _("\
2252 Show whether backtraces should continue past the entry point of a program."),
2253                            _("\
2254 Normally there are no callers beyond the entry point of a program, so GDB\n\
2255 will terminate the backtrace there.  Set this variable if you need to see \n\
2256 the rest of the stack trace."),
2257                            NULL,
2258                            show_backtrace_past_entry,
2259                            &set_backtrace_cmdlist,
2260                            &show_backtrace_cmdlist);
2261
2262   add_setshow_integer_cmd ("limit", class_obscure,
2263                            &backtrace_limit, _("\
2264 Set an upper bound on the number of backtrace levels."), _("\
2265 Show the upper bound on the number of backtrace levels."), _("\
2266 No more than the specified number of frames can be displayed or examined.\n\
2267 Zero is unlimited."),
2268                            NULL,
2269                            show_backtrace_limit,
2270                            &set_backtrace_cmdlist,
2271                            &show_backtrace_cmdlist);
2272
2273   /* Debug this files internals. */
2274   add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug,  _("\
2275 Set frame debugging."), _("\
2276 Show frame debugging."), _("\
2277 When non-zero, frame specific internal debugging is enabled."),
2278                             NULL,
2279                             show_frame_debug,
2280                             &setdebuglist, &showdebuglist);
2281 }