1 /* Cache and manage frames for GDB, the GNU debugger.
3 Copyright (C) 1986-1987, 1989, 1991, 1994-1996, 1998, 2000-2004,
4 2007-2012 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "inferior.h" /* for inferior_ptid */
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
48 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51 /* We keep a cache of stack frames, each of which is a "struct
52 frame_info". The innermost one gets allocated (in
53 wait_for_inferior) each time the inferior stops; current_frame
54 points to it. Additional frames get allocated (in get_prev_frame)
55 as needed, and are chained through the next and prev fields. Any
56 time that the frame cache becomes invalid (most notably when we
57 execute something, but also if we change how we interpret the
58 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
59 which reads new symbols)), we should call reinit_frame_cache. */
63 /* Level of this frame. The inner-most (youngest) frame is at level
64 0. As you move towards the outer-most (oldest) frame, the level
65 increases. This is a cached value. It could just as easily be
66 computed by counting back from the selected frame to the inner
68 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
69 reserved to indicate a bogus frame - one that has been created
70 just to keep GDB happy (GDB always needs a frame). For the
71 moment leave this as speculation. */
74 /* The frame's program space. */
75 struct program_space *pspace;
77 /* The frame's address space. */
78 struct address_space *aspace;
80 /* The frame's low-level unwinder and corresponding cache. The
81 low-level unwinder is responsible for unwinding register values
82 for the previous frame. The low-level unwind methods are
83 selected based on the presence, or otherwise, of register unwind
84 information such as CFI. */
86 const struct frame_unwind *unwind;
88 /* Cached copy of the previous frame's architecture. */
95 /* Cached copy of the previous frame's resume address. */
101 /* Cached copy of the previous frame's function address. */
108 /* This frame's ID. */
112 struct frame_id value;
115 /* The frame's high-level base methods, and corresponding cache.
116 The high level base methods are selected based on the frame's
118 const struct frame_base *base;
121 /* Pointers to the next (down, inner, younger) and previous (up,
122 outer, older) frame_info's in the frame cache. */
123 struct frame_info *next; /* down, inner, younger */
125 struct frame_info *prev; /* up, outer, older */
127 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
128 could. Only valid when PREV_P is set. */
129 enum unwind_stop_reason stop_reason;
132 /* A frame stash used to speed up frame lookups. */
134 /* We currently only stash one frame at a time, as this seems to be
135 sufficient for now. */
136 static struct frame_info *frame_stash = NULL;
138 /* Add the following FRAME to the frame stash. */
141 frame_stash_add (struct frame_info *frame)
146 /* Search the frame stash for an entry with the given frame ID.
147 If found, return that frame. Otherwise return NULL. */
149 static struct frame_info *
150 frame_stash_find (struct frame_id id)
152 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
158 /* Invalidate the frame stash by removing all entries in it. */
161 frame_stash_invalidate (void)
166 /* Flag to control debugging. */
168 unsigned int frame_debug;
170 show_frame_debug (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
173 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
176 /* Flag to indicate whether backtraces should stop at main et.al. */
178 static int backtrace_past_main;
180 show_backtrace_past_main (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
183 fprintf_filtered (file,
184 _("Whether backtraces should "
185 "continue past \"main\" is %s.\n"),
189 static int backtrace_past_entry;
191 show_backtrace_past_entry (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
194 fprintf_filtered (file, _("Whether backtraces should continue past the "
195 "entry point of a program is %s.\n"),
199 static int backtrace_limit = INT_MAX;
201 show_backtrace_limit (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
204 fprintf_filtered (file,
205 _("An upper bound on the number "
206 "of backtrace levels is %s.\n"),
212 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
215 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 fprintf_unfiltered (file, "!%s", name);
221 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 fprintf_unfiltered (file, "{");
224 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
225 fprintf_unfiltered (file, ",");
226 fprint_field (file, "code", id.code_addr_p, id.code_addr);
227 fprintf_unfiltered (file, ",");
228 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
231 fprintf_unfiltered (file, "}");
235 fprint_frame_type (struct ui_file *file, enum frame_type type)
240 fprintf_unfiltered (file, "NORMAL_FRAME");
243 fprintf_unfiltered (file, "DUMMY_FRAME");
246 fprintf_unfiltered (file, "INLINE_FRAME");
249 fprintf_unfiltered (file, "SENTINEL_FRAME");
252 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
255 fprintf_unfiltered (file, "ARCH_FRAME");
258 fprintf_unfiltered (file, "<unknown type>");
264 fprint_frame (struct ui_file *file, struct frame_info *fi)
268 fprintf_unfiltered (file, "<NULL frame>");
271 fprintf_unfiltered (file, "{");
272 fprintf_unfiltered (file, "level=%d", fi->level);
273 fprintf_unfiltered (file, ",");
274 fprintf_unfiltered (file, "type=");
275 if (fi->unwind != NULL)
276 fprint_frame_type (file, fi->unwind->type);
278 fprintf_unfiltered (file, "<unknown>");
279 fprintf_unfiltered (file, ",");
280 fprintf_unfiltered (file, "unwind=");
281 if (fi->unwind != NULL)
282 gdb_print_host_address (fi->unwind, file);
284 fprintf_unfiltered (file, "<unknown>");
285 fprintf_unfiltered (file, ",");
286 fprintf_unfiltered (file, "pc=");
287 if (fi->next != NULL && fi->next->prev_pc.p)
288 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 fprintf_unfiltered (file, "<unknown>");
291 fprintf_unfiltered (file, ",");
292 fprintf_unfiltered (file, "id=");
294 fprint_frame_id (file, fi->this_id.value);
296 fprintf_unfiltered (file, "<unknown>");
297 fprintf_unfiltered (file, ",");
298 fprintf_unfiltered (file, "func=");
299 if (fi->next != NULL && fi->next->prev_func.p)
300 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 fprintf_unfiltered (file, "<unknown>");
303 fprintf_unfiltered (file, "}");
306 /* Given FRAME, return the enclosing normal frame for inlined
307 function frames. Otherwise return the original frame. */
309 static struct frame_info *
310 skip_inlined_frames (struct frame_info *frame)
312 while (get_frame_type (frame) == INLINE_FRAME)
313 frame = get_prev_frame (frame);
318 /* Return a frame uniq ID that can be used to, later, re-find the
322 get_frame_id (struct frame_info *fi)
325 return null_frame_id;
330 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 /* Find the unwinder. */
333 if (fi->unwind == NULL)
334 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
335 /* Find THIS frame's ID. */
336 /* Default to outermost if no ID is found. */
337 fi->this_id.value = outer_frame_id;
338 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
339 gdb_assert (frame_id_p (fi->this_id.value));
343 fprintf_unfiltered (gdb_stdlog, "-> ");
344 fprint_frame_id (gdb_stdlog, fi->this_id.value);
345 fprintf_unfiltered (gdb_stdlog, " }\n");
349 frame_stash_add (fi);
351 return fi->this_id.value;
355 get_stack_frame_id (struct frame_info *next_frame)
357 return get_frame_id (skip_inlined_frames (next_frame));
361 frame_unwind_caller_id (struct frame_info *next_frame)
363 struct frame_info *this_frame;
365 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
366 the frame chain, leading to this function unintentionally
367 returning a null_frame_id (e.g., when a caller requests the frame
368 ID of "main()"s caller. */
370 next_frame = skip_inlined_frames (next_frame);
371 this_frame = get_prev_frame_1 (next_frame);
373 return get_frame_id (skip_inlined_frames (this_frame));
375 return null_frame_id;
378 const struct frame_id null_frame_id; /* All zeros. */
379 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
382 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
383 CORE_ADDR special_addr)
385 struct frame_id id = null_frame_id;
387 id.stack_addr = stack_addr;
389 id.code_addr = code_addr;
391 id.special_addr = special_addr;
392 id.special_addr_p = 1;
397 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 struct frame_id id = null_frame_id;
401 id.stack_addr = stack_addr;
403 id.code_addr = code_addr;
409 frame_id_build_wild (CORE_ADDR stack_addr)
411 struct frame_id id = null_frame_id;
413 id.stack_addr = stack_addr;
419 frame_id_p (struct frame_id l)
423 /* The frame is valid iff it has a valid stack address. */
425 /* outer_frame_id is also valid. */
426 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
430 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
431 fprint_frame_id (gdb_stdlog, l);
432 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
438 frame_id_inlined_p (struct frame_id l)
443 return (l.inline_depth != 0);
447 frame_id_eq (struct frame_id l, struct frame_id r)
451 if (!l.stack_addr_p && l.special_addr_p
452 && !r.stack_addr_p && r.special_addr_p)
453 /* The outermost frame marker is equal to itself. This is the
454 dodgy thing about outer_frame_id, since between execution steps
455 we might step into another function - from which we can't
456 unwind either. More thought required to get rid of
459 else if (!l.stack_addr_p || !r.stack_addr_p)
460 /* Like a NaN, if either ID is invalid, the result is false.
461 Note that a frame ID is invalid iff it is the null frame ID. */
463 else if (l.stack_addr != r.stack_addr)
464 /* If .stack addresses are different, the frames are different. */
466 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
467 /* An invalid code addr is a wild card. If .code addresses are
468 different, the frames are different. */
470 else if (l.special_addr_p && r.special_addr_p
471 && l.special_addr != r.special_addr)
472 /* An invalid special addr is a wild card (or unused). Otherwise
473 if special addresses are different, the frames are different. */
475 else if (l.inline_depth != r.inline_depth)
476 /* If inline depths are different, the frames must be different. */
479 /* Frames are equal. */
484 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
485 fprint_frame_id (gdb_stdlog, l);
486 fprintf_unfiltered (gdb_stdlog, ",r=");
487 fprint_frame_id (gdb_stdlog, r);
488 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
493 /* Safety net to check whether frame ID L should be inner to
494 frame ID R, according to their stack addresses.
496 This method cannot be used to compare arbitrary frames, as the
497 ranges of valid stack addresses may be discontiguous (e.g. due
500 However, it can be used as safety net to discover invalid frame
501 IDs in certain circumstances. Assuming that NEXT is the immediate
502 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504 * The stack address of NEXT must be inner-than-or-equal to the stack
507 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
510 * If NEXT and THIS have different stack addresses, no other frame
511 in the frame chain may have a stack address in between.
513 Therefore, if frame_id_inner (TEST, THIS) holds, but
514 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
515 to a valid frame in the frame chain.
517 The sanity checks above cannot be performed when a SIGTRAMP frame
518 is involved, because signal handlers might be executed on a different
519 stack than the stack used by the routine that caused the signal
520 to be raised. This can happen for instance when a thread exceeds
521 its maximum stack size. In this case, certain compilers implement
522 a stack overflow strategy that cause the handler to be run on a
526 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
530 if (!l.stack_addr_p || !r.stack_addr_p)
531 /* Like NaN, any operation involving an invalid ID always fails. */
533 else if (l.inline_depth > r.inline_depth
534 && l.stack_addr == r.stack_addr
535 && l.code_addr_p == r.code_addr_p
536 && l.special_addr_p == r.special_addr_p
537 && l.special_addr == r.special_addr)
539 /* Same function, different inlined functions. */
540 struct block *lb, *rb;
542 gdb_assert (l.code_addr_p && r.code_addr_p);
544 lb = block_for_pc (l.code_addr);
545 rb = block_for_pc (r.code_addr);
547 if (lb == NULL || rb == NULL)
548 /* Something's gone wrong. */
551 /* This will return true if LB and RB are the same block, or
552 if the block with the smaller depth lexically encloses the
553 block with the greater depth. */
554 inner = contained_in (lb, rb);
557 /* Only return non-zero when strictly inner than. Note that, per
558 comment in "frame.h", there is some fuzz here. Frameless
559 functions are not strictly inner than (same .stack but
560 different .code and/or .special address). */
561 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
564 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
565 fprint_frame_id (gdb_stdlog, l);
566 fprintf_unfiltered (gdb_stdlog, ",r=");
567 fprint_frame_id (gdb_stdlog, r);
568 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
574 frame_find_by_id (struct frame_id id)
576 struct frame_info *frame, *prev_frame;
578 /* ZERO denotes the null frame, let the caller decide what to do
579 about it. Should it instead return get_current_frame()? */
580 if (!frame_id_p (id))
583 /* Try using the frame stash first. Finding it there removes the need
584 to perform the search by looping over all frames, which can be very
585 CPU-intensive if the number of frames is very high (the loop is O(n)
586 and get_prev_frame performs a series of checks that are relatively
587 expensive). This optimization is particularly useful when this function
588 is called from another function (such as value_fetch_lazy, case
589 VALUE_LVAL (val) == lval_register) which already loops over all frames,
590 making the overall behavior O(n^2). */
591 frame = frame_stash_find (id);
595 for (frame = get_current_frame (); ; frame = prev_frame)
597 struct frame_id this = get_frame_id (frame);
599 if (frame_id_eq (id, this))
600 /* An exact match. */
603 prev_frame = get_prev_frame (frame);
607 /* As a safety net to avoid unnecessary backtracing while trying
608 to find an invalid ID, we check for a common situation where
609 we can detect from comparing stack addresses that no other
610 frame in the current frame chain can have this ID. See the
611 comment at frame_id_inner for details. */
612 if (get_frame_type (frame) == NORMAL_FRAME
613 && !frame_id_inner (get_frame_arch (frame), id, this)
614 && frame_id_inner (get_frame_arch (prev_frame), id,
615 get_frame_id (prev_frame)))
622 frame_unwind_pc_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
624 if (!this_frame->prev_pc.p)
626 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
628 volatile struct gdb_exception ex;
629 struct gdbarch *prev_gdbarch;
632 /* The right way. The `pure' way. The one true way. This
633 method depends solely on the register-unwind code to
634 determine the value of registers in THIS frame, and hence
635 the value of this frame's PC (resume address). A typical
636 implementation is no more than:
638 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
639 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
641 Note: this method is very heavily dependent on a correct
642 register-unwind implementation, it pays to fix that
643 method first; this method is frame type agnostic, since
644 it only deals with register values, it works with any
645 frame. This is all in stark contrast to the old
646 FRAME_SAVED_PC which would try to directly handle all the
647 different ways that a PC could be unwound. */
648 prev_gdbarch = frame_unwind_arch (this_frame);
650 TRY_CATCH (ex, RETURN_MASK_ERROR)
652 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
654 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
656 this_frame->prev_pc.p = -1;
659 fprintf_unfiltered (gdb_stdlog,
660 "{ frame_unwind_pc (this_frame=%d)"
661 " -> <unavailable> }\n",
664 else if (ex.reason < 0)
666 throw_exception (ex);
670 this_frame->prev_pc.value = pc;
671 this_frame->prev_pc.p = 1;
673 fprintf_unfiltered (gdb_stdlog,
674 "{ frame_unwind_pc (this_frame=%d) "
677 hex_string (this_frame->prev_pc.value));
681 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
683 if (this_frame->prev_pc.p < 0)
690 *pc = this_frame->prev_pc.value;
696 frame_unwind_pc (struct frame_info *this_frame)
700 if (!frame_unwind_pc_if_available (this_frame, &pc))
701 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
707 frame_unwind_caller_pc (struct frame_info *this_frame)
709 return frame_unwind_pc (skip_inlined_frames (this_frame));
713 frame_unwind_caller_pc_if_available (struct frame_info *this_frame,
716 return frame_unwind_pc_if_available (skip_inlined_frames (this_frame), pc);
720 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
722 struct frame_info *next_frame = this_frame->next;
724 if (!next_frame->prev_func.p)
726 CORE_ADDR addr_in_block;
728 /* Make certain that this, and not the adjacent, function is
730 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
732 next_frame->prev_func.p = -1;
734 fprintf_unfiltered (gdb_stdlog,
735 "{ get_frame_func (this_frame=%d)"
736 " -> unavailable }\n",
741 next_frame->prev_func.p = 1;
742 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
744 fprintf_unfiltered (gdb_stdlog,
745 "{ get_frame_func (this_frame=%d) -> %s }\n",
747 hex_string (next_frame->prev_func.addr));
751 if (next_frame->prev_func.p < 0)
758 *pc = next_frame->prev_func.addr;
764 get_frame_func (struct frame_info *this_frame)
768 if (!get_frame_func_if_available (this_frame, &pc))
769 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
774 static enum register_status
775 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
777 if (!frame_register_read (src, regnum, buf))
778 return REG_UNAVAILABLE;
784 frame_save_as_regcache (struct frame_info *this_frame)
786 struct address_space *aspace = get_frame_address_space (this_frame);
787 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
789 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
791 regcache_save (regcache, do_frame_register_read, this_frame);
792 discard_cleanups (cleanups);
797 frame_pop (struct frame_info *this_frame)
799 struct frame_info *prev_frame;
800 struct regcache *scratch;
801 struct cleanup *cleanups;
803 if (get_frame_type (this_frame) == DUMMY_FRAME)
805 /* Popping a dummy frame involves restoring more than just registers.
806 dummy_frame_pop does all the work. */
807 dummy_frame_pop (get_frame_id (this_frame));
811 /* Ensure that we have a frame to pop to. */
812 prev_frame = get_prev_frame_1 (this_frame);
815 error (_("Cannot pop the initial frame."));
817 /* Make a copy of all the register values unwound from this frame.
818 Save them in a scratch buffer so that there isn't a race between
819 trying to extract the old values from the current regcache while
820 at the same time writing new values into that same cache. */
821 scratch = frame_save_as_regcache (prev_frame);
822 cleanups = make_cleanup_regcache_xfree (scratch);
824 /* FIXME: cagney/2003-03-16: It should be possible to tell the
825 target's register cache that it is about to be hit with a burst
826 register transfer and that the sequence of register writes should
827 be batched. The pair target_prepare_to_store() and
828 target_store_registers() kind of suggest this functionality.
829 Unfortunately, they don't implement it. Their lack of a formal
830 definition can lead to targets writing back bogus values
831 (arguably a bug in the target code mind). */
832 /* Now copy those saved registers into the current regcache.
833 Here, regcache_cpy() calls regcache_restore(). */
834 regcache_cpy (get_current_regcache (), scratch);
835 do_cleanups (cleanups);
837 /* We've made right mess of GDB's local state, just discard
839 reinit_frame_cache ();
843 frame_register_unwind (struct frame_info *frame, int regnum,
844 int *optimizedp, int *unavailablep,
845 enum lval_type *lvalp, CORE_ADDR *addrp,
846 int *realnump, gdb_byte *bufferp)
850 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
851 that the value proper does not need to be fetched. */
852 gdb_assert (optimizedp != NULL);
853 gdb_assert (lvalp != NULL);
854 gdb_assert (addrp != NULL);
855 gdb_assert (realnump != NULL);
856 /* gdb_assert (bufferp != NULL); */
858 value = frame_unwind_register_value (frame, regnum);
860 gdb_assert (value != NULL);
862 *optimizedp = value_optimized_out (value);
863 *unavailablep = !value_entirely_available (value);
864 *lvalp = VALUE_LVAL (value);
865 *addrp = value_address (value);
866 *realnump = VALUE_REGNUM (value);
870 if (!*optimizedp && !*unavailablep)
871 memcpy (bufferp, value_contents_all (value),
872 TYPE_LENGTH (value_type (value)));
874 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
877 /* Dispose of the new value. This prevents watchpoints from
878 trying to watch the saved frame pointer. */
879 release_value (value);
884 frame_register (struct frame_info *frame, int regnum,
885 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
886 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
888 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
889 that the value proper does not need to be fetched. */
890 gdb_assert (optimizedp != NULL);
891 gdb_assert (lvalp != NULL);
892 gdb_assert (addrp != NULL);
893 gdb_assert (realnump != NULL);
894 /* gdb_assert (bufferp != NULL); */
896 /* Obtain the register value by unwinding the register from the next
897 (more inner frame). */
898 gdb_assert (frame != NULL && frame->next != NULL);
899 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
900 lvalp, addrp, realnump, bufferp);
904 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
912 frame_register_unwind (frame, regnum, &optimized, &unavailable,
913 &lval, &addr, &realnum, buf);
916 error (_("Register %d was optimized out"), regnum);
918 throw_error (NOT_AVAILABLE_ERROR,
919 _("Register %d is not available"), regnum);
923 get_frame_register (struct frame_info *frame,
924 int regnum, gdb_byte *buf)
926 frame_unwind_register (frame->next, regnum, buf);
930 frame_unwind_register_value (struct frame_info *frame, int regnum)
932 struct gdbarch *gdbarch;
935 gdb_assert (frame != NULL);
936 gdbarch = frame_unwind_arch (frame);
940 fprintf_unfiltered (gdb_stdlog,
941 "{ frame_unwind_register_value "
942 "(frame=%d,regnum=%d(%s),...) ",
943 frame->level, regnum,
944 user_reg_map_regnum_to_name (gdbarch, regnum));
947 /* Find the unwinder. */
948 if (frame->unwind == NULL)
949 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
951 /* Ask this frame to unwind its register. */
952 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
956 fprintf_unfiltered (gdb_stdlog, "->");
957 if (value_optimized_out (value))
958 fprintf_unfiltered (gdb_stdlog, " optimized out");
961 if (VALUE_LVAL (value) == lval_register)
962 fprintf_unfiltered (gdb_stdlog, " register=%d",
963 VALUE_REGNUM (value));
964 else if (VALUE_LVAL (value) == lval_memory)
965 fprintf_unfiltered (gdb_stdlog, " address=%s",
967 value_address (value)));
969 fprintf_unfiltered (gdb_stdlog, " computed");
971 if (value_lazy (value))
972 fprintf_unfiltered (gdb_stdlog, " lazy");
976 const gdb_byte *buf = value_contents (value);
978 fprintf_unfiltered (gdb_stdlog, " bytes=");
979 fprintf_unfiltered (gdb_stdlog, "[");
980 for (i = 0; i < register_size (gdbarch, regnum); i++)
981 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
982 fprintf_unfiltered (gdb_stdlog, "]");
986 fprintf_unfiltered (gdb_stdlog, " }\n");
993 get_frame_register_value (struct frame_info *frame, int regnum)
995 return frame_unwind_register_value (frame->next, regnum);
999 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1001 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1003 int size = register_size (gdbarch, regnum);
1004 gdb_byte buf[MAX_REGISTER_SIZE];
1006 frame_unwind_register (frame, regnum, buf);
1007 return extract_signed_integer (buf, size, byte_order);
1011 get_frame_register_signed (struct frame_info *frame, int regnum)
1013 return frame_unwind_register_signed (frame->next, regnum);
1017 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1019 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1020 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1021 int size = register_size (gdbarch, regnum);
1022 gdb_byte buf[MAX_REGISTER_SIZE];
1024 frame_unwind_register (frame, regnum, buf);
1025 return extract_unsigned_integer (buf, size, byte_order);
1029 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1031 return frame_unwind_register_unsigned (frame->next, regnum);
1035 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1038 struct value *regval = get_frame_register_value (frame, regnum);
1040 if (!value_optimized_out (regval)
1041 && value_entirely_available (regval))
1043 struct gdbarch *gdbarch = get_frame_arch (frame);
1044 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1045 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1047 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1055 put_frame_register (struct frame_info *frame, int regnum,
1056 const gdb_byte *buf)
1058 struct gdbarch *gdbarch = get_frame_arch (frame);
1062 enum lval_type lval;
1065 frame_register (frame, regnum, &optim, &unavail,
1066 &lval, &addr, &realnum, NULL);
1068 error (_("Attempt to assign to a value that was optimized out."));
1073 /* FIXME: write_memory doesn't yet take constant buffers.
1075 gdb_byte tmp[MAX_REGISTER_SIZE];
1077 memcpy (tmp, buf, register_size (gdbarch, regnum));
1078 write_memory (addr, tmp, register_size (gdbarch, regnum));
1082 regcache_cooked_write (get_current_regcache (), realnum, buf);
1085 error (_("Attempt to assign to an unmodifiable value."));
1089 /* frame_register_read ()
1091 Find and return the value of REGNUM for the specified stack frame.
1092 The number of bytes copied is REGISTER_SIZE (REGNUM).
1094 Returns 0 if the register value could not be found. */
1097 frame_register_read (struct frame_info *frame, int regnum,
1102 enum lval_type lval;
1106 frame_register (frame, regnum, &optimized, &unavailable,
1107 &lval, &addr, &realnum, myaddr);
1109 return !optimized && !unavailable;
1113 get_frame_register_bytes (struct frame_info *frame, int regnum,
1114 CORE_ADDR offset, int len, gdb_byte *myaddr,
1115 int *optimizedp, int *unavailablep)
1117 struct gdbarch *gdbarch = get_frame_arch (frame);
1122 /* Skip registers wholly inside of OFFSET. */
1123 while (offset >= register_size (gdbarch, regnum))
1125 offset -= register_size (gdbarch, regnum);
1129 /* Ensure that we will not read beyond the end of the register file.
1130 This can only ever happen if the debug information is bad. */
1132 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1133 for (i = regnum; i < numregs; i++)
1135 int thissize = register_size (gdbarch, i);
1138 break; /* This register is not available on this architecture. */
1139 maxsize += thissize;
1142 error (_("Bad debug information detected: "
1143 "Attempt to read %d bytes from registers."), len);
1145 /* Copy the data. */
1148 int curr_len = register_size (gdbarch, regnum) - offset;
1153 if (curr_len == register_size (gdbarch, regnum))
1155 enum lval_type lval;
1159 frame_register (frame, regnum, optimizedp, unavailablep,
1160 &lval, &addr, &realnum, myaddr);
1161 if (*optimizedp || *unavailablep)
1166 gdb_byte buf[MAX_REGISTER_SIZE];
1167 enum lval_type lval;
1171 frame_register (frame, regnum, optimizedp, unavailablep,
1172 &lval, &addr, &realnum, buf);
1173 if (*optimizedp || *unavailablep)
1175 memcpy (myaddr, buf + offset, curr_len);
1190 put_frame_register_bytes (struct frame_info *frame, int regnum,
1191 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1193 struct gdbarch *gdbarch = get_frame_arch (frame);
1195 /* Skip registers wholly inside of OFFSET. */
1196 while (offset >= register_size (gdbarch, regnum))
1198 offset -= register_size (gdbarch, regnum);
1202 /* Copy the data. */
1205 int curr_len = register_size (gdbarch, regnum) - offset;
1210 if (curr_len == register_size (gdbarch, regnum))
1212 put_frame_register (frame, regnum, myaddr);
1216 gdb_byte buf[MAX_REGISTER_SIZE];
1218 frame_register_read (frame, regnum, buf);
1219 memcpy (buf + offset, myaddr, curr_len);
1220 put_frame_register (frame, regnum, buf);
1230 /* Create a sentinel frame. */
1232 static struct frame_info *
1233 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1235 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1238 frame->pspace = pspace;
1239 frame->aspace = get_regcache_aspace (regcache);
1240 /* Explicitly initialize the sentinel frame's cache. Provide it
1241 with the underlying regcache. In the future additional
1242 information, such as the frame's thread will be added. */
1243 frame->prologue_cache = sentinel_frame_cache (regcache);
1244 /* For the moment there is only one sentinel frame implementation. */
1245 frame->unwind = &sentinel_frame_unwind;
1246 /* Link this frame back to itself. The frame is self referential
1247 (the unwound PC is the same as the pc), so make it so. */
1248 frame->next = frame;
1249 /* Make the sentinel frame's ID valid, but invalid. That way all
1250 comparisons with it should fail. */
1251 frame->this_id.p = 1;
1252 frame->this_id.value = null_frame_id;
1255 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1256 fprint_frame (gdb_stdlog, frame);
1257 fprintf_unfiltered (gdb_stdlog, " }\n");
1262 /* Info about the innermost stack frame (contents of FP register). */
1264 static struct frame_info *current_frame;
1266 /* Cache for frame addresses already read by gdb. Valid only while
1267 inferior is stopped. Control variables for the frame cache should
1268 be local to this module. */
1270 static struct obstack frame_cache_obstack;
1273 frame_obstack_zalloc (unsigned long size)
1275 void *data = obstack_alloc (&frame_cache_obstack, size);
1277 memset (data, 0, size);
1281 /* Return the innermost (currently executing) stack frame. This is
1282 split into two functions. The function unwind_to_current_frame()
1283 is wrapped in catch exceptions so that, even when the unwind of the
1284 sentinel frame fails, the function still returns a stack frame. */
1287 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1289 struct frame_info *frame = get_prev_frame (args);
1291 /* A sentinel frame can fail to unwind, e.g., because its PC value
1292 lands in somewhere like start. */
1295 current_frame = frame;
1300 get_current_frame (void)
1302 /* First check, and report, the lack of registers. Having GDB
1303 report "No stack!" or "No memory" when the target doesn't even
1304 have registers is very confusing. Besides, "printcmd.exp"
1305 explicitly checks that ``print $pc'' with no registers prints "No
1307 if (!target_has_registers)
1308 error (_("No registers."));
1309 if (!target_has_stack)
1310 error (_("No stack."));
1311 if (!target_has_memory)
1312 error (_("No memory."));
1313 /* Traceframes are effectively a substitute for the live inferior. */
1314 if (get_traceframe_number () < 0)
1316 if (ptid_equal (inferior_ptid, null_ptid))
1317 error (_("No selected thread."));
1318 if (is_exited (inferior_ptid))
1319 error (_("Invalid selected thread."));
1320 if (is_executing (inferior_ptid))
1321 error (_("Target is executing."));
1324 if (current_frame == NULL)
1326 struct frame_info *sentinel_frame =
1327 create_sentinel_frame (current_program_space, get_current_regcache ());
1328 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1329 sentinel_frame, RETURN_MASK_ERROR) != 0)
1331 /* Oops! Fake a current frame? Is this useful? It has a PC
1332 of zero, for instance. */
1333 current_frame = sentinel_frame;
1336 return current_frame;
1339 /* The "selected" stack frame is used by default for local and arg
1340 access. May be zero, for no selected frame. */
1342 static struct frame_info *selected_frame;
1345 has_stack_frames (void)
1347 if (!target_has_registers || !target_has_stack || !target_has_memory)
1350 /* Traceframes are effectively a substitute for the live inferior. */
1351 if (get_traceframe_number () < 0)
1353 /* No current inferior, no frame. */
1354 if (ptid_equal (inferior_ptid, null_ptid))
1357 /* Don't try to read from a dead thread. */
1358 if (is_exited (inferior_ptid))
1361 /* ... or from a spinning thread. */
1362 if (is_executing (inferior_ptid))
1369 /* Return the selected frame. Always non-NULL (unless there isn't an
1370 inferior sufficient for creating a frame) in which case an error is
1374 get_selected_frame (const char *message)
1376 if (selected_frame == NULL)
1378 if (message != NULL && !has_stack_frames ())
1379 error (("%s"), message);
1380 /* Hey! Don't trust this. It should really be re-finding the
1381 last selected frame of the currently selected thread. This,
1382 though, is better than nothing. */
1383 select_frame (get_current_frame ());
1385 /* There is always a frame. */
1386 gdb_assert (selected_frame != NULL);
1387 return selected_frame;
1390 /* If there is a selected frame, return it. Otherwise, return NULL. */
1393 get_selected_frame_if_set (void)
1395 return selected_frame;
1398 /* This is a variant of get_selected_frame() which can be called when
1399 the inferior does not have a frame; in that case it will return
1400 NULL instead of calling error(). */
1403 deprecated_safe_get_selected_frame (void)
1405 if (!has_stack_frames ())
1407 return get_selected_frame (NULL);
1410 /* Select frame FI (or NULL - to invalidate the current frame). */
1413 select_frame (struct frame_info *fi)
1415 selected_frame = fi;
1416 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1417 frame is being invalidated. */
1418 if (deprecated_selected_frame_level_changed_hook)
1419 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1421 /* FIXME: kseitz/2002-08-28: It would be nice to call
1422 selected_frame_level_changed_event() right here, but due to limitations
1423 in the current interfaces, we would end up flooding UIs with events
1424 because select_frame() is used extensively internally.
1426 Once we have frame-parameterized frame (and frame-related) commands,
1427 the event notification can be moved here, since this function will only
1428 be called when the user's selected frame is being changed. */
1430 /* Ensure that symbols for this frame are read in. Also, determine the
1431 source language of this frame, and switch to it if desired. */
1436 /* We retrieve the frame's symtab by using the frame PC.
1437 However we cannot use the frame PC as-is, because it usually
1438 points to the instruction following the "call", which is
1439 sometimes the first instruction of another function. So we
1440 rely on get_frame_address_in_block() which provides us with a
1441 PC which is guaranteed to be inside the frame's code
1443 if (get_frame_address_in_block_if_available (fi, &pc))
1445 struct symtab *s = find_pc_symtab (pc);
1448 && s->language != current_language->la_language
1449 && s->language != language_unknown
1450 && language_mode == language_mode_auto)
1451 set_language (s->language);
1456 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1457 Always returns a non-NULL value. */
1460 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1462 struct frame_info *fi;
1466 fprintf_unfiltered (gdb_stdlog,
1467 "{ create_new_frame (addr=%s, pc=%s) ",
1468 hex_string (addr), hex_string (pc));
1471 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1473 fi->next = create_sentinel_frame (current_program_space,
1474 get_current_regcache ());
1476 /* Set/update this frame's cached PC value, found in the next frame.
1477 Do this before looking for this frame's unwinder. A sniffer is
1478 very likely to read this, and the corresponding unwinder is
1479 entitled to rely that the PC doesn't magically change. */
1480 fi->next->prev_pc.value = pc;
1481 fi->next->prev_pc.p = 1;
1483 /* We currently assume that frame chain's can't cross spaces. */
1484 fi->pspace = fi->next->pspace;
1485 fi->aspace = fi->next->aspace;
1487 /* Select/initialize both the unwind function and the frame's type
1489 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1492 fi->this_id.value = frame_id_build (addr, pc);
1496 fprintf_unfiltered (gdb_stdlog, "-> ");
1497 fprint_frame (gdb_stdlog, fi);
1498 fprintf_unfiltered (gdb_stdlog, " }\n");
1504 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1505 innermost frame). Be careful to not fall off the bottom of the
1506 frame chain and onto the sentinel frame. */
1509 get_next_frame (struct frame_info *this_frame)
1511 if (this_frame->level > 0)
1512 return this_frame->next;
1517 /* Observer for the target_changed event. */
1520 frame_observer_target_changed (struct target_ops *target)
1522 reinit_frame_cache ();
1525 /* Flush the entire frame cache. */
1528 reinit_frame_cache (void)
1530 struct frame_info *fi;
1532 /* Tear down all frame caches. */
1533 for (fi = current_frame; fi != NULL; fi = fi->prev)
1535 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1536 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1537 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1538 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1541 /* Since we can't really be sure what the first object allocated was. */
1542 obstack_free (&frame_cache_obstack, 0);
1543 obstack_init (&frame_cache_obstack);
1545 if (current_frame != NULL)
1546 annotate_frames_invalid ();
1548 current_frame = NULL; /* Invalidate cache */
1549 select_frame (NULL);
1550 frame_stash_invalidate ();
1552 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1555 /* Find where a register is saved (in memory or another register).
1556 The result of frame_register_unwind is just where it is saved
1557 relative to this particular frame. */
1560 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1561 int *optimizedp, enum lval_type *lvalp,
1562 CORE_ADDR *addrp, int *realnump)
1564 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1566 while (this_frame != NULL)
1570 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1571 lvalp, addrp, realnump, NULL);
1576 if (*lvalp != lval_register)
1580 this_frame = get_next_frame (this_frame);
1584 /* Return a "struct frame_info" corresponding to the frame that called
1585 THIS_FRAME. Returns NULL if there is no such frame.
1587 Unlike get_prev_frame, this function always tries to unwind the
1590 static struct frame_info *
1591 get_prev_frame_1 (struct frame_info *this_frame)
1593 struct frame_id this_id;
1594 struct gdbarch *gdbarch;
1596 gdb_assert (this_frame != NULL);
1597 gdbarch = get_frame_arch (this_frame);
1601 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1602 if (this_frame != NULL)
1603 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1605 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1606 fprintf_unfiltered (gdb_stdlog, ") ");
1609 /* Only try to do the unwind once. */
1610 if (this_frame->prev_p)
1614 fprintf_unfiltered (gdb_stdlog, "-> ");
1615 fprint_frame (gdb_stdlog, this_frame->prev);
1616 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1618 return this_frame->prev;
1621 /* If the frame unwinder hasn't been selected yet, we must do so
1622 before setting prev_p; otherwise the check for misbehaved
1623 sniffers will think that this frame's sniffer tried to unwind
1624 further (see frame_cleanup_after_sniffer). */
1625 if (this_frame->unwind == NULL)
1626 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1628 this_frame->prev_p = 1;
1629 this_frame->stop_reason = UNWIND_NO_REASON;
1631 /* If we are unwinding from an inline frame, all of the below tests
1632 were already performed when we unwound from the next non-inline
1633 frame. We must skip them, since we can not get THIS_FRAME's ID
1634 until we have unwound all the way down to the previous non-inline
1636 if (get_frame_type (this_frame) == INLINE_FRAME)
1637 return get_prev_frame_raw (this_frame);
1639 /* Check that this frame is unwindable. If it isn't, don't try to
1640 unwind to the prev frame. */
1641 this_frame->stop_reason
1642 = this_frame->unwind->stop_reason (this_frame,
1643 &this_frame->prologue_cache);
1645 if (this_frame->stop_reason != UNWIND_NO_REASON)
1648 /* Check that this frame's ID was valid. If it wasn't, don't try to
1649 unwind to the prev frame. Be careful to not apply this test to
1650 the sentinel frame. */
1651 this_id = get_frame_id (this_frame);
1652 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1656 fprintf_unfiltered (gdb_stdlog, "-> ");
1657 fprint_frame (gdb_stdlog, NULL);
1658 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1660 this_frame->stop_reason = UNWIND_NULL_ID;
1664 /* Check that this frame's ID isn't inner to (younger, below, next)
1665 the next frame. This happens when a frame unwind goes backwards.
1666 This check is valid only if this frame and the next frame are NORMAL.
1667 See the comment at frame_id_inner for details. */
1668 if (get_frame_type (this_frame) == NORMAL_FRAME
1669 && this_frame->next->unwind->type == NORMAL_FRAME
1670 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1671 get_frame_id (this_frame->next)))
1673 CORE_ADDR this_pc_in_block;
1674 struct minimal_symbol *morestack_msym;
1675 const char *morestack_name = NULL;
1677 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1678 this_pc_in_block = get_frame_address_in_block (this_frame);
1679 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1681 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1682 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1686 fprintf_unfiltered (gdb_stdlog, "-> ");
1687 fprint_frame (gdb_stdlog, NULL);
1688 fprintf_unfiltered (gdb_stdlog,
1689 " // this frame ID is inner }\n");
1691 this_frame->stop_reason = UNWIND_INNER_ID;
1696 /* Check that this and the next frame are not identical. If they
1697 are, there is most likely a stack cycle. As with the inner-than
1698 test above, avoid comparing the inner-most and sentinel frames. */
1699 if (this_frame->level > 0
1700 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1704 fprintf_unfiltered (gdb_stdlog, "-> ");
1705 fprint_frame (gdb_stdlog, NULL);
1706 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1708 this_frame->stop_reason = UNWIND_SAME_ID;
1712 /* Check that this and the next frame do not unwind the PC register
1713 to the same memory location. If they do, then even though they
1714 have different frame IDs, the new frame will be bogus; two
1715 functions can't share a register save slot for the PC. This can
1716 happen when the prologue analyzer finds a stack adjustment, but
1719 This check does assume that the "PC register" is roughly a
1720 traditional PC, even if the gdbarch_unwind_pc method adjusts
1721 it (we do not rely on the value, only on the unwound PC being
1722 dependent on this value). A potential improvement would be
1723 to have the frame prev_pc method and the gdbarch unwind_pc
1724 method set the same lval and location information as
1725 frame_register_unwind. */
1726 if (this_frame->level > 0
1727 && gdbarch_pc_regnum (gdbarch) >= 0
1728 && get_frame_type (this_frame) == NORMAL_FRAME
1729 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1730 || get_frame_type (this_frame->next) == INLINE_FRAME))
1732 int optimized, realnum, nrealnum;
1733 enum lval_type lval, nlval;
1734 CORE_ADDR addr, naddr;
1736 frame_register_unwind_location (this_frame,
1737 gdbarch_pc_regnum (gdbarch),
1738 &optimized, &lval, &addr, &realnum);
1739 frame_register_unwind_location (get_next_frame (this_frame),
1740 gdbarch_pc_regnum (gdbarch),
1741 &optimized, &nlval, &naddr, &nrealnum);
1743 if ((lval == lval_memory && lval == nlval && addr == naddr)
1744 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1748 fprintf_unfiltered (gdb_stdlog, "-> ");
1749 fprint_frame (gdb_stdlog, NULL);
1750 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1753 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1754 this_frame->prev = NULL;
1759 return get_prev_frame_raw (this_frame);
1762 /* Construct a new "struct frame_info" and link it previous to
1765 static struct frame_info *
1766 get_prev_frame_raw (struct frame_info *this_frame)
1768 struct frame_info *prev_frame;
1770 /* Allocate the new frame but do not wire it in to the frame chain.
1771 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1772 frame->next to pull some fancy tricks (of course such code is, by
1773 definition, recursive). Try to prevent it.
1775 There is no reason to worry about memory leaks, should the
1776 remainder of the function fail. The allocated memory will be
1777 quickly reclaimed when the frame cache is flushed, and the `we've
1778 been here before' check above will stop repeated memory
1779 allocation calls. */
1780 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1781 prev_frame->level = this_frame->level + 1;
1783 /* For now, assume we don't have frame chains crossing address
1785 prev_frame->pspace = this_frame->pspace;
1786 prev_frame->aspace = this_frame->aspace;
1788 /* Don't yet compute ->unwind (and hence ->type). It is computed
1789 on-demand in get_frame_type, frame_register_unwind, and
1792 /* Don't yet compute the frame's ID. It is computed on-demand by
1795 /* The unwound frame ID is validate at the start of this function,
1796 as part of the logic to decide if that frame should be further
1797 unwound, and not here while the prev frame is being created.
1798 Doing this makes it possible for the user to examine a frame that
1799 has an invalid frame ID.
1801 Some very old VAX code noted: [...] For the sake of argument,
1802 suppose that the stack is somewhat trashed (which is one reason
1803 that "info frame" exists). So, return 0 (indicating we don't
1804 know the address of the arglist) if we don't know what frame this
1808 this_frame->prev = prev_frame;
1809 prev_frame->next = this_frame;
1813 fprintf_unfiltered (gdb_stdlog, "-> ");
1814 fprint_frame (gdb_stdlog, prev_frame);
1815 fprintf_unfiltered (gdb_stdlog, " }\n");
1821 /* Debug routine to print a NULL frame being returned. */
1824 frame_debug_got_null_frame (struct frame_info *this_frame,
1829 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1830 if (this_frame != NULL)
1831 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1833 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1834 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1838 /* Is this (non-sentinel) frame in the "main"() function? */
1841 inside_main_func (struct frame_info *this_frame)
1843 struct minimal_symbol *msymbol;
1846 if (symfile_objfile == 0)
1848 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1849 if (msymbol == NULL)
1851 /* Make certain that the code, and not descriptor, address is
1853 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1854 SYMBOL_VALUE_ADDRESS (msymbol),
1856 return maddr == get_frame_func (this_frame);
1859 /* Test whether THIS_FRAME is inside the process entry point function. */
1862 inside_entry_func (struct frame_info *this_frame)
1864 CORE_ADDR entry_point;
1866 if (!entry_point_address_query (&entry_point))
1869 return get_frame_func (this_frame) == entry_point;
1872 /* Return a structure containing various interesting information about
1873 the frame that called THIS_FRAME. Returns NULL if there is entier
1874 no such frame or the frame fails any of a set of target-independent
1875 condition that should terminate the frame chain (e.g., as unwinding
1878 This function should not contain target-dependent tests, such as
1879 checking whether the program-counter is zero. */
1882 get_prev_frame (struct frame_info *this_frame)
1887 /* There is always a frame. If this assertion fails, suspect that
1888 something should be calling get_selected_frame() or
1889 get_current_frame(). */
1890 gdb_assert (this_frame != NULL);
1891 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
1893 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1894 sense to stop unwinding at a dummy frame. One place where a dummy
1895 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1896 pcsqh register (space register for the instruction at the head of the
1897 instruction queue) cannot be written directly; the only way to set it
1898 is to branch to code that is in the target space. In order to implement
1899 frame dummies on HPUX, the called function is made to jump back to where
1900 the inferior was when the user function was called. If gdb was inside
1901 the main function when we created the dummy frame, the dummy frame will
1902 point inside the main function. */
1903 if (this_frame->level >= 0
1904 && get_frame_type (this_frame) == NORMAL_FRAME
1905 && !backtrace_past_main
1907 && inside_main_func (this_frame))
1908 /* Don't unwind past main(). Note, this is done _before_ the
1909 frame has been marked as previously unwound. That way if the
1910 user later decides to enable unwinds past main(), that will
1911 automatically happen. */
1913 frame_debug_got_null_frame (this_frame, "inside main func");
1917 /* If the user's backtrace limit has been exceeded, stop. We must
1918 add two to the current level; one of those accounts for backtrace_limit
1919 being 1-based and the level being 0-based, and the other accounts for
1920 the level of the new frame instead of the level of the current
1922 if (this_frame->level + 2 > backtrace_limit)
1924 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1928 /* If we're already inside the entry function for the main objfile,
1929 then it isn't valid. Don't apply this test to a dummy frame -
1930 dummy frame PCs typically land in the entry func. Don't apply
1931 this test to the sentinel frame. Sentinel frames should always
1932 be allowed to unwind. */
1933 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1934 wasn't checking for "main" in the minimal symbols. With that
1935 fixed asm-source tests now stop in "main" instead of halting the
1936 backtrace in weird and wonderful ways somewhere inside the entry
1937 file. Suspect that tests for inside the entry file/func were
1938 added to work around that (now fixed) case. */
1939 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1940 suggested having the inside_entry_func test use the
1941 inside_main_func() msymbol trick (along with entry_point_address()
1942 I guess) to determine the address range of the start function.
1943 That should provide a far better stopper than the current
1945 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1946 applied tail-call optimizations to main so that a function called
1947 from main returns directly to the caller of main. Since we don't
1948 stop at main, we should at least stop at the entry point of the
1950 if (this_frame->level >= 0
1951 && get_frame_type (this_frame) == NORMAL_FRAME
1952 && !backtrace_past_entry
1954 && inside_entry_func (this_frame))
1956 frame_debug_got_null_frame (this_frame, "inside entry func");
1960 /* Assume that the only way to get a zero PC is through something
1961 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1962 will never unwind a zero PC. */
1963 if (this_frame->level > 0
1964 && (get_frame_type (this_frame) == NORMAL_FRAME
1965 || get_frame_type (this_frame) == INLINE_FRAME)
1966 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1967 && frame_pc_p && frame_pc == 0)
1969 frame_debug_got_null_frame (this_frame, "zero PC");
1973 return get_prev_frame_1 (this_frame);
1977 get_frame_pc (struct frame_info *frame)
1979 gdb_assert (frame->next != NULL);
1980 return frame_unwind_pc (frame->next);
1984 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
1986 volatile struct gdb_exception ex;
1988 gdb_assert (frame->next != NULL);
1990 TRY_CATCH (ex, RETURN_MASK_ERROR)
1992 *pc = frame_unwind_pc (frame->next);
1996 if (ex.error == NOT_AVAILABLE_ERROR)
1999 throw_exception (ex);
2005 /* Return an address that falls within THIS_FRAME's code block. */
2008 get_frame_address_in_block (struct frame_info *this_frame)
2010 /* A draft address. */
2011 CORE_ADDR pc = get_frame_pc (this_frame);
2013 struct frame_info *next_frame = this_frame->next;
2015 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2016 Normally the resume address is inside the body of the function
2017 associated with THIS_FRAME, but there is a special case: when
2018 calling a function which the compiler knows will never return
2019 (for instance abort), the call may be the very last instruction
2020 in the calling function. The resume address will point after the
2021 call and may be at the beginning of a different function
2024 If THIS_FRAME is a signal frame or dummy frame, then we should
2025 not adjust the unwound PC. For a dummy frame, GDB pushed the
2026 resume address manually onto the stack. For a signal frame, the
2027 OS may have pushed the resume address manually and invoked the
2028 handler (e.g. GNU/Linux), or invoked the trampoline which called
2029 the signal handler - but in either case the signal handler is
2030 expected to return to the trampoline. So in both of these
2031 cases we know that the resume address is executable and
2032 related. So we only need to adjust the PC if THIS_FRAME
2033 is a normal function.
2035 If the program has been interrupted while THIS_FRAME is current,
2036 then clearly the resume address is inside the associated
2037 function. There are three kinds of interruption: debugger stop
2038 (next frame will be SENTINEL_FRAME), operating system
2039 signal or exception (next frame will be SIGTRAMP_FRAME),
2040 or debugger-induced function call (next frame will be
2041 DUMMY_FRAME). So we only need to adjust the PC if
2042 NEXT_FRAME is a normal function.
2044 We check the type of NEXT_FRAME first, since it is already
2045 known; frame type is determined by the unwinder, and since
2046 we have THIS_FRAME we've already selected an unwinder for
2049 If the next frame is inlined, we need to keep going until we find
2050 the real function - for instance, if a signal handler is invoked
2051 while in an inlined function, then the code address of the
2052 "calling" normal function should not be adjusted either. */
2054 while (get_frame_type (next_frame) == INLINE_FRAME)
2055 next_frame = next_frame->next;
2057 if ((get_frame_type (next_frame) == NORMAL_FRAME
2058 || get_frame_type (next_frame) == TAILCALL_FRAME)
2059 && (get_frame_type (this_frame) == NORMAL_FRAME
2060 || get_frame_type (this_frame) == TAILCALL_FRAME
2061 || get_frame_type (this_frame) == INLINE_FRAME))
2068 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2071 volatile struct gdb_exception ex;
2073 TRY_CATCH (ex, RETURN_MASK_ERROR)
2075 *pc = get_frame_address_in_block (this_frame);
2077 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2079 else if (ex.reason < 0)
2080 throw_exception (ex);
2086 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2088 struct frame_info *next_frame;
2092 /* If the next frame represents an inlined function call, this frame's
2093 sal is the "call site" of that inlined function, which can not
2094 be inferred from get_frame_pc. */
2095 next_frame = get_next_frame (frame);
2096 if (frame_inlined_callees (frame) > 0)
2101 sym = get_frame_function (next_frame);
2103 sym = inline_skipped_symbol (inferior_ptid);
2105 /* If frame is inline, it certainly has symbols. */
2108 if (SYMBOL_LINE (sym) != 0)
2110 sal->symtab = SYMBOL_SYMTAB (sym);
2111 sal->line = SYMBOL_LINE (sym);
2114 /* If the symbol does not have a location, we don't know where
2115 the call site is. Do not pretend to. This is jarring, but
2116 we can't do much better. */
2117 sal->pc = get_frame_pc (frame);
2119 sal->pspace = get_frame_program_space (frame);
2124 /* If FRAME is not the innermost frame, that normally means that
2125 FRAME->pc points at the return instruction (which is *after* the
2126 call instruction), and we want to get the line containing the
2127 call (because the call is where the user thinks the program is).
2128 However, if the next frame is either a SIGTRAMP_FRAME or a
2129 DUMMY_FRAME, then the next frame will contain a saved interrupt
2130 PC and such a PC indicates the current (rather than next)
2131 instruction/line, consequently, for such cases, want to get the
2132 line containing fi->pc. */
2133 if (!get_frame_pc_if_available (frame, &pc))
2139 notcurrent = (pc != get_frame_address_in_block (frame));
2140 (*sal) = find_pc_line (pc, notcurrent);
2143 /* Per "frame.h", return the ``address'' of the frame. Code should
2144 really be using get_frame_id(). */
2146 get_frame_base (struct frame_info *fi)
2148 return get_frame_id (fi).stack_addr;
2151 /* High-level offsets into the frame. Used by the debug info. */
2154 get_frame_base_address (struct frame_info *fi)
2156 if (get_frame_type (fi) != NORMAL_FRAME)
2158 if (fi->base == NULL)
2159 fi->base = frame_base_find_by_frame (fi);
2160 /* Sneaky: If the low-level unwind and high-level base code share a
2161 common unwinder, let them share the prologue cache. */
2162 if (fi->base->unwind == fi->unwind)
2163 return fi->base->this_base (fi, &fi->prologue_cache);
2164 return fi->base->this_base (fi, &fi->base_cache);
2168 get_frame_locals_address (struct frame_info *fi)
2170 if (get_frame_type (fi) != NORMAL_FRAME)
2172 /* If there isn't a frame address method, find it. */
2173 if (fi->base == NULL)
2174 fi->base = frame_base_find_by_frame (fi);
2175 /* Sneaky: If the low-level unwind and high-level base code share a
2176 common unwinder, let them share the prologue cache. */
2177 if (fi->base->unwind == fi->unwind)
2178 return fi->base->this_locals (fi, &fi->prologue_cache);
2179 return fi->base->this_locals (fi, &fi->base_cache);
2183 get_frame_args_address (struct frame_info *fi)
2185 if (get_frame_type (fi) != NORMAL_FRAME)
2187 /* If there isn't a frame address method, find it. */
2188 if (fi->base == NULL)
2189 fi->base = frame_base_find_by_frame (fi);
2190 /* Sneaky: If the low-level unwind and high-level base code share a
2191 common unwinder, let them share the prologue cache. */
2192 if (fi->base->unwind == fi->unwind)
2193 return fi->base->this_args (fi, &fi->prologue_cache);
2194 return fi->base->this_args (fi, &fi->base_cache);
2197 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2201 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2203 if (fi->unwind == NULL)
2204 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2205 return fi->unwind == unwinder;
2208 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2209 or -1 for a NULL frame. */
2212 frame_relative_level (struct frame_info *fi)
2221 get_frame_type (struct frame_info *frame)
2223 if (frame->unwind == NULL)
2224 /* Initialize the frame's unwinder because that's what
2225 provides the frame's type. */
2226 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2227 return frame->unwind->type;
2230 struct program_space *
2231 get_frame_program_space (struct frame_info *frame)
2233 return frame->pspace;
2236 struct program_space *
2237 frame_unwind_program_space (struct frame_info *this_frame)
2239 gdb_assert (this_frame);
2241 /* This is really a placeholder to keep the API consistent --- we
2242 assume for now that we don't have frame chains crossing
2244 return this_frame->pspace;
2247 struct address_space *
2248 get_frame_address_space (struct frame_info *frame)
2250 return frame->aspace;
2253 /* Memory access methods. */
2256 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2257 gdb_byte *buf, int len)
2259 read_memory (addr, buf, len);
2263 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2266 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2269 return read_memory_integer (addr, len, byte_order);
2273 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2276 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2277 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2279 return read_memory_unsigned_integer (addr, len, byte_order);
2283 safe_frame_unwind_memory (struct frame_info *this_frame,
2284 CORE_ADDR addr, gdb_byte *buf, int len)
2286 /* NOTE: target_read_memory returns zero on success! */
2287 return !target_read_memory (addr, buf, len);
2290 /* Architecture methods. */
2293 get_frame_arch (struct frame_info *this_frame)
2295 return frame_unwind_arch (this_frame->next);
2299 frame_unwind_arch (struct frame_info *next_frame)
2301 if (!next_frame->prev_arch.p)
2303 struct gdbarch *arch;
2305 if (next_frame->unwind == NULL)
2306 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2308 if (next_frame->unwind->prev_arch != NULL)
2309 arch = next_frame->unwind->prev_arch (next_frame,
2310 &next_frame->prologue_cache);
2312 arch = get_frame_arch (next_frame);
2314 next_frame->prev_arch.arch = arch;
2315 next_frame->prev_arch.p = 1;
2317 fprintf_unfiltered (gdb_stdlog,
2318 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2320 gdbarch_bfd_arch_info (arch)->printable_name);
2323 return next_frame->prev_arch.arch;
2327 frame_unwind_caller_arch (struct frame_info *next_frame)
2329 return frame_unwind_arch (skip_inlined_frames (next_frame));
2332 /* Stack pointer methods. */
2335 get_frame_sp (struct frame_info *this_frame)
2337 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2339 /* Normality - an architecture that provides a way of obtaining any
2340 frame inner-most address. */
2341 if (gdbarch_unwind_sp_p (gdbarch))
2342 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2343 operate on THIS_FRAME now. */
2344 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2345 /* Now things are really are grim. Hope that the value returned by
2346 the gdbarch_sp_regnum register is meaningful. */
2347 if (gdbarch_sp_regnum (gdbarch) >= 0)
2348 return get_frame_register_unsigned (this_frame,
2349 gdbarch_sp_regnum (gdbarch));
2350 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2353 /* Return the reason why we can't unwind past FRAME. */
2355 enum unwind_stop_reason
2356 get_frame_unwind_stop_reason (struct frame_info *frame)
2358 /* If we haven't tried to unwind past this point yet, then assume
2359 that unwinding would succeed. */
2360 if (frame->prev_p == 0)
2361 return UNWIND_NO_REASON;
2363 /* Otherwise, we set a reason when we succeeded (or failed) to
2365 return frame->stop_reason;
2368 /* Return a string explaining REASON. */
2371 frame_stop_reason_string (enum unwind_stop_reason reason)
2375 #define SET(name, description) \
2376 case name: return _(description);
2377 #include "unwind_stop_reasons.def"
2381 internal_error (__FILE__, __LINE__,
2382 "Invalid frame stop reason");
2386 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2390 frame_cleanup_after_sniffer (void *arg)
2392 struct frame_info *frame = arg;
2394 /* The sniffer should not allocate a prologue cache if it did not
2395 match this frame. */
2396 gdb_assert (frame->prologue_cache == NULL);
2398 /* No sniffer should extend the frame chain; sniff based on what is
2400 gdb_assert (!frame->prev_p);
2402 /* The sniffer should not check the frame's ID; that's circular. */
2403 gdb_assert (!frame->this_id.p);
2405 /* Clear cached fields dependent on the unwinder.
2407 The previous PC is independent of the unwinder, but the previous
2408 function is not (see get_frame_address_in_block). */
2409 frame->prev_func.p = 0;
2410 frame->prev_func.addr = 0;
2412 /* Discard the unwinder last, so that we can easily find it if an assertion
2413 in this function triggers. */
2414 frame->unwind = NULL;
2417 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2418 Return a cleanup which should be called if unwinding fails, and
2419 discarded if it succeeds. */
2422 frame_prepare_for_sniffer (struct frame_info *frame,
2423 const struct frame_unwind *unwind)
2425 gdb_assert (frame->unwind == NULL);
2426 frame->unwind = unwind;
2427 return make_cleanup (frame_cleanup_after_sniffer, frame);
2430 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2432 static struct cmd_list_element *set_backtrace_cmdlist;
2433 static struct cmd_list_element *show_backtrace_cmdlist;
2436 set_backtrace_cmd (char *args, int from_tty)
2438 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2442 show_backtrace_cmd (char *args, int from_tty)
2444 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2448 _initialize_frame (void)
2450 obstack_init (&frame_cache_obstack);
2452 observer_attach_target_changed (frame_observer_target_changed);
2454 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2455 Set backtrace specific variables.\n\
2456 Configure backtrace variables such as the backtrace limit"),
2457 &set_backtrace_cmdlist, "set backtrace ",
2458 0/*allow-unknown*/, &setlist);
2459 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2460 Show backtrace specific variables\n\
2461 Show backtrace variables such as the backtrace limit"),
2462 &show_backtrace_cmdlist, "show backtrace ",
2463 0/*allow-unknown*/, &showlist);
2465 add_setshow_boolean_cmd ("past-main", class_obscure,
2466 &backtrace_past_main, _("\
2467 Set whether backtraces should continue past \"main\"."), _("\
2468 Show whether backtraces should continue past \"main\"."), _("\
2469 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2470 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2471 of the stack trace."),
2473 show_backtrace_past_main,
2474 &set_backtrace_cmdlist,
2475 &show_backtrace_cmdlist);
2477 add_setshow_boolean_cmd ("past-entry", class_obscure,
2478 &backtrace_past_entry, _("\
2479 Set whether backtraces should continue past the entry point of a program."),
2481 Show whether backtraces should continue past the entry point of a program."),
2483 Normally there are no callers beyond the entry point of a program, so GDB\n\
2484 will terminate the backtrace there. Set this variable if you need to see\n\
2485 the rest of the stack trace."),
2487 show_backtrace_past_entry,
2488 &set_backtrace_cmdlist,
2489 &show_backtrace_cmdlist);
2491 add_setshow_integer_cmd ("limit", class_obscure,
2492 &backtrace_limit, _("\
2493 Set an upper bound on the number of backtrace levels."), _("\
2494 Show the upper bound on the number of backtrace levels."), _("\
2495 No more than the specified number of frames can be displayed or examined.\n\
2496 Zero is unlimited."),
2498 show_backtrace_limit,
2499 &set_backtrace_cmdlist,
2500 &show_backtrace_cmdlist);
2502 /* Debug this files internals. */
2503 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2504 Set frame debugging."), _("\
2505 Show frame debugging."), _("\
2506 When non-zero, frame specific internal debugging is enabled."),
2509 &setdebuglist, &showdebuglist);