1 /* Cache and manage frames for GDB, the GNU debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "inferior.h" /* for inferior_ptid */
26 #include "gdb_assert.h"
28 #include "user-regs.h"
29 #include "gdb_obstack.h"
30 #include "dummy-frame.h"
31 #include "sentinel-frame.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
41 #include "exceptions.h"
42 #include "gdbthread.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
53 /* Status of some values cached in the frame_info object. */
55 enum cached_copy_status
57 /* Value is unknown. */
60 /* We have a value. */
63 /* Value was not saved. */
66 /* Value is unavailable. */
70 /* We keep a cache of stack frames, each of which is a "struct
71 frame_info". The innermost one gets allocated (in
72 wait_for_inferior) each time the inferior stops; current_frame
73 points to it. Additional frames get allocated (in get_prev_frame)
74 as needed, and are chained through the next and prev fields. Any
75 time that the frame cache becomes invalid (most notably when we
76 execute something, but also if we change how we interpret the
77 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
78 which reads new symbols)), we should call reinit_frame_cache. */
82 /* Level of this frame. The inner-most (youngest) frame is at level
83 0. As you move towards the outer-most (oldest) frame, the level
84 increases. This is a cached value. It could just as easily be
85 computed by counting back from the selected frame to the inner
87 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
88 reserved to indicate a bogus frame - one that has been created
89 just to keep GDB happy (GDB always needs a frame). For the
90 moment leave this as speculation. */
93 /* The frame's program space. */
94 struct program_space *pspace;
96 /* The frame's address space. */
97 struct address_space *aspace;
99 /* The frame's low-level unwinder and corresponding cache. The
100 low-level unwinder is responsible for unwinding register values
101 for the previous frame. The low-level unwind methods are
102 selected based on the presence, or otherwise, of register unwind
103 information such as CFI. */
104 void *prologue_cache;
105 const struct frame_unwind *unwind;
107 /* Cached copy of the previous frame's architecture. */
111 struct gdbarch *arch;
114 /* Cached copy of the previous frame's resume address. */
116 enum cached_copy_status status;
120 /* Cached copy of the previous frame's function address. */
127 /* This frame's ID. */
131 struct frame_id value;
134 /* The frame's high-level base methods, and corresponding cache.
135 The high level base methods are selected based on the frame's
137 const struct frame_base *base;
140 /* Pointers to the next (down, inner, younger) and previous (up,
141 outer, older) frame_info's in the frame cache. */
142 struct frame_info *next; /* down, inner, younger */
144 struct frame_info *prev; /* up, outer, older */
146 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
147 could. Only valid when PREV_P is set. */
148 enum unwind_stop_reason stop_reason;
151 /* A frame stash used to speed up frame lookups. Create a hash table
152 to stash frames previously accessed from the frame cache for
153 quicker subsequent retrieval. The hash table is emptied whenever
154 the frame cache is invalidated. */
156 static htab_t frame_stash;
158 /* Internal function to calculate a hash from the frame_id addresses,
159 using as many valid addresses as possible. Frames below level 0
160 are not stored in the hash table. */
163 frame_addr_hash (const void *ap)
165 const struct frame_info *frame = ap;
166 const struct frame_id f_id = frame->this_id.value;
169 gdb_assert (f_id.stack_status != FID_STACK_INVALID
171 || f_id.special_addr_p);
173 if (f_id.stack_status == FID_STACK_VALID)
174 hash = iterative_hash (&f_id.stack_addr,
175 sizeof (f_id.stack_addr), hash);
176 if (f_id.code_addr_p)
177 hash = iterative_hash (&f_id.code_addr,
178 sizeof (f_id.code_addr), hash);
179 if (f_id.special_addr_p)
180 hash = iterative_hash (&f_id.special_addr,
181 sizeof (f_id.special_addr), hash);
186 /* Internal equality function for the hash table. This function
187 defers equality operations to frame_id_eq. */
190 frame_addr_hash_eq (const void *a, const void *b)
192 const struct frame_info *f_entry = a;
193 const struct frame_info *f_element = b;
195 return frame_id_eq (f_entry->this_id.value,
196 f_element->this_id.value);
199 /* Internal function to create the frame_stash hash table. 100 seems
200 to be a good compromise to start the hash table at. */
203 frame_stash_create (void)
205 frame_stash = htab_create (100,
211 /* Internal function to add a frame to the frame_stash hash table.
212 Returns false if a frame with the same ID was already stashed, true
216 frame_stash_add (struct frame_info *frame)
218 struct frame_info **slot;
220 /* Do not try to stash the sentinel frame. */
221 gdb_assert (frame->level >= 0);
223 slot = (struct frame_info **) htab_find_slot (frame_stash,
227 /* If we already have a frame in the stack with the same id, we
228 either have a stack cycle (corrupted stack?), or some bug
229 elsewhere in GDB. In any case, ignore the duplicate and return
230 an indication to the caller. */
238 /* Internal function to search the frame stash for an entry with the
239 given frame ID. If found, return that frame. Otherwise return
242 static struct frame_info *
243 frame_stash_find (struct frame_id id)
245 struct frame_info dummy;
246 struct frame_info *frame;
248 dummy.this_id.value = id;
249 frame = htab_find (frame_stash, &dummy);
253 /* Internal function to invalidate the frame stash by removing all
254 entries in it. This only occurs when the frame cache is
258 frame_stash_invalidate (void)
260 htab_empty (frame_stash);
263 /* Flag to control debugging. */
265 unsigned int frame_debug;
267 show_frame_debug (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
270 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
273 /* Flag to indicate whether backtraces should stop at main et.al. */
275 static int backtrace_past_main;
277 show_backtrace_past_main (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
280 fprintf_filtered (file,
281 _("Whether backtraces should "
282 "continue past \"main\" is %s.\n"),
286 static int backtrace_past_entry;
288 show_backtrace_past_entry (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
291 fprintf_filtered (file, _("Whether backtraces should continue past the "
292 "entry point of a program is %s.\n"),
296 static unsigned int backtrace_limit = UINT_MAX;
298 show_backtrace_limit (struct ui_file *file, int from_tty,
299 struct cmd_list_element *c, const char *value)
301 fprintf_filtered (file,
302 _("An upper bound on the number "
303 "of backtrace levels is %s.\n"),
309 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
312 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
314 fprintf_unfiltered (file, "!%s", name);
318 fprint_frame_id (struct ui_file *file, struct frame_id id)
320 fprintf_unfiltered (file, "{");
322 if (id.stack_status == FID_STACK_INVALID)
323 fprintf_unfiltered (file, "!stack");
324 else if (id.stack_status == FID_STACK_UNAVAILABLE)
325 fprintf_unfiltered (file, "stack=<unavailable>");
327 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
328 fprintf_unfiltered (file, ",");
330 fprint_field (file, "code", id.code_addr_p, id.code_addr);
331 fprintf_unfiltered (file, ",");
333 fprint_field (file, "special", id.special_addr_p, id.special_addr);
335 if (id.artificial_depth)
336 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
338 fprintf_unfiltered (file, "}");
342 fprint_frame_type (struct ui_file *file, enum frame_type type)
347 fprintf_unfiltered (file, "NORMAL_FRAME");
350 fprintf_unfiltered (file, "DUMMY_FRAME");
353 fprintf_unfiltered (file, "INLINE_FRAME");
356 fprintf_unfiltered (file, "TAILCALL_FRAME");
359 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
362 fprintf_unfiltered (file, "ARCH_FRAME");
365 fprintf_unfiltered (file, "SENTINEL_FRAME");
368 fprintf_unfiltered (file, "<unknown type>");
374 fprint_frame (struct ui_file *file, struct frame_info *fi)
378 fprintf_unfiltered (file, "<NULL frame>");
381 fprintf_unfiltered (file, "{");
382 fprintf_unfiltered (file, "level=%d", fi->level);
383 fprintf_unfiltered (file, ",");
384 fprintf_unfiltered (file, "type=");
385 if (fi->unwind != NULL)
386 fprint_frame_type (file, fi->unwind->type);
388 fprintf_unfiltered (file, "<unknown>");
389 fprintf_unfiltered (file, ",");
390 fprintf_unfiltered (file, "unwind=");
391 if (fi->unwind != NULL)
392 gdb_print_host_address (fi->unwind, file);
394 fprintf_unfiltered (file, "<unknown>");
395 fprintf_unfiltered (file, ",");
396 fprintf_unfiltered (file, "pc=");
397 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
398 fprintf_unfiltered (file, "<unknown>");
399 else if (fi->next->prev_pc.status == CC_VALUE)
400 fprintf_unfiltered (file, "%s",
401 hex_string (fi->next->prev_pc.value));
402 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
403 val_print_not_saved (file);
404 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
405 val_print_unavailable (file);
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "id=");
409 fprint_frame_id (file, fi->this_id.value);
411 fprintf_unfiltered (file, "<unknown>");
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "func=");
414 if (fi->next != NULL && fi->next->prev_func.p)
415 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
417 fprintf_unfiltered (file, "<unknown>");
418 fprintf_unfiltered (file, "}");
421 /* Given FRAME, return the enclosing frame as found in real frames read-in from
422 inferior memory. Skip any previous frames which were made up by GDB.
423 Return the original frame if no immediate previous frames exist. */
425 static struct frame_info *
426 skip_artificial_frames (struct frame_info *frame)
428 while (get_frame_type (frame) == INLINE_FRAME
429 || get_frame_type (frame) == TAILCALL_FRAME)
430 frame = get_prev_frame (frame);
435 /* Compute the frame's uniq ID that can be used to, later, re-find the
439 compute_frame_id (struct frame_info *fi)
441 gdb_assert (!fi->this_id.p);
444 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
446 /* Find the unwinder. */
447 if (fi->unwind == NULL)
448 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
449 /* Find THIS frame's ID. */
450 /* Default to outermost if no ID is found. */
451 fi->this_id.value = outer_frame_id;
452 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
453 gdb_assert (frame_id_p (fi->this_id.value));
457 fprintf_unfiltered (gdb_stdlog, "-> ");
458 fprint_frame_id (gdb_stdlog, fi->this_id.value);
459 fprintf_unfiltered (gdb_stdlog, " }\n");
463 /* Return a frame uniq ID that can be used to, later, re-find the
467 get_frame_id (struct frame_info *fi)
470 return null_frame_id;
472 gdb_assert (fi->this_id.p);
473 return fi->this_id.value;
477 get_stack_frame_id (struct frame_info *next_frame)
479 return get_frame_id (skip_artificial_frames (next_frame));
483 frame_unwind_caller_id (struct frame_info *next_frame)
485 struct frame_info *this_frame;
487 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
488 the frame chain, leading to this function unintentionally
489 returning a null_frame_id (e.g., when a caller requests the frame
490 ID of "main()"s caller. */
492 next_frame = skip_artificial_frames (next_frame);
493 this_frame = get_prev_frame_1 (next_frame);
495 return get_frame_id (skip_artificial_frames (this_frame));
497 return null_frame_id;
500 const struct frame_id null_frame_id; /* All zeros. */
501 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
504 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
505 CORE_ADDR special_addr)
507 struct frame_id id = null_frame_id;
509 id.stack_addr = stack_addr;
510 id.stack_status = FID_STACK_VALID;
511 id.code_addr = code_addr;
513 id.special_addr = special_addr;
514 id.special_addr_p = 1;
521 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
523 struct frame_id id = null_frame_id;
525 id.stack_status = FID_STACK_UNAVAILABLE;
526 id.code_addr = code_addr;
532 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
534 struct frame_id id = null_frame_id;
536 id.stack_addr = stack_addr;
537 id.stack_status = FID_STACK_VALID;
538 id.code_addr = code_addr;
544 frame_id_build_wild (CORE_ADDR stack_addr)
546 struct frame_id id = null_frame_id;
548 id.stack_addr = stack_addr;
549 id.stack_status = FID_STACK_VALID;
554 frame_id_p (struct frame_id l)
558 /* The frame is valid iff it has a valid stack address. */
559 p = l.stack_status != FID_STACK_INVALID;
560 /* outer_frame_id is also valid. */
561 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
573 frame_id_artificial_p (struct frame_id l)
578 return (l.artificial_depth != 0);
582 frame_id_eq (struct frame_id l, struct frame_id r)
586 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
587 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
588 /* The outermost frame marker is equal to itself. This is the
589 dodgy thing about outer_frame_id, since between execution steps
590 we might step into another function - from which we can't
591 unwind either. More thought required to get rid of
594 else if (l.stack_status == FID_STACK_INVALID
595 || l.stack_status == FID_STACK_INVALID)
596 /* Like a NaN, if either ID is invalid, the result is false.
597 Note that a frame ID is invalid iff it is the null frame ID. */
599 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
600 /* If .stack addresses are different, the frames are different. */
602 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
603 /* An invalid code addr is a wild card. If .code addresses are
604 different, the frames are different. */
606 else if (l.special_addr_p && r.special_addr_p
607 && l.special_addr != r.special_addr)
608 /* An invalid special addr is a wild card (or unused). Otherwise
609 if special addresses are different, the frames are different. */
611 else if (l.artificial_depth != r.artificial_depth)
612 /* If artifical depths are different, the frames must be different. */
615 /* Frames are equal. */
620 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
621 fprint_frame_id (gdb_stdlog, l);
622 fprintf_unfiltered (gdb_stdlog, ",r=");
623 fprint_frame_id (gdb_stdlog, r);
624 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
629 /* Safety net to check whether frame ID L should be inner to
630 frame ID R, according to their stack addresses.
632 This method cannot be used to compare arbitrary frames, as the
633 ranges of valid stack addresses may be discontiguous (e.g. due
636 However, it can be used as safety net to discover invalid frame
637 IDs in certain circumstances. Assuming that NEXT is the immediate
638 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
640 * The stack address of NEXT must be inner-than-or-equal to the stack
643 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
646 * If NEXT and THIS have different stack addresses, no other frame
647 in the frame chain may have a stack address in between.
649 Therefore, if frame_id_inner (TEST, THIS) holds, but
650 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
651 to a valid frame in the frame chain.
653 The sanity checks above cannot be performed when a SIGTRAMP frame
654 is involved, because signal handlers might be executed on a different
655 stack than the stack used by the routine that caused the signal
656 to be raised. This can happen for instance when a thread exceeds
657 its maximum stack size. In this case, certain compilers implement
658 a stack overflow strategy that cause the handler to be run on a
662 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
666 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
667 /* Like NaN, any operation involving an invalid ID always fails.
668 Likewise if either ID has an unavailable stack address. */
670 else if (l.artificial_depth > r.artificial_depth
671 && l.stack_addr == r.stack_addr
672 && l.code_addr_p == r.code_addr_p
673 && l.special_addr_p == r.special_addr_p
674 && l.special_addr == r.special_addr)
676 /* Same function, different inlined functions. */
677 struct block *lb, *rb;
679 gdb_assert (l.code_addr_p && r.code_addr_p);
681 lb = block_for_pc (l.code_addr);
682 rb = block_for_pc (r.code_addr);
684 if (lb == NULL || rb == NULL)
685 /* Something's gone wrong. */
688 /* This will return true if LB and RB are the same block, or
689 if the block with the smaller depth lexically encloses the
690 block with the greater depth. */
691 inner = contained_in (lb, rb);
694 /* Only return non-zero when strictly inner than. Note that, per
695 comment in "frame.h", there is some fuzz here. Frameless
696 functions are not strictly inner than (same .stack but
697 different .code and/or .special address). */
698 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
701 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
702 fprint_frame_id (gdb_stdlog, l);
703 fprintf_unfiltered (gdb_stdlog, ",r=");
704 fprint_frame_id (gdb_stdlog, r);
705 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
711 frame_find_by_id (struct frame_id id)
713 struct frame_info *frame, *prev_frame;
715 /* ZERO denotes the null frame, let the caller decide what to do
716 about it. Should it instead return get_current_frame()? */
717 if (!frame_id_p (id))
720 /* Try using the frame stash first. Finding it there removes the need
721 to perform the search by looping over all frames, which can be very
722 CPU-intensive if the number of frames is very high (the loop is O(n)
723 and get_prev_frame performs a series of checks that are relatively
724 expensive). This optimization is particularly useful when this function
725 is called from another function (such as value_fetch_lazy, case
726 VALUE_LVAL (val) == lval_register) which already loops over all frames,
727 making the overall behavior O(n^2). */
728 frame = frame_stash_find (id);
732 for (frame = get_current_frame (); ; frame = prev_frame)
734 struct frame_id this = get_frame_id (frame);
736 if (frame_id_eq (id, this))
737 /* An exact match. */
740 prev_frame = get_prev_frame (frame);
744 /* As a safety net to avoid unnecessary backtracing while trying
745 to find an invalid ID, we check for a common situation where
746 we can detect from comparing stack addresses that no other
747 frame in the current frame chain can have this ID. See the
748 comment at frame_id_inner for details. */
749 if (get_frame_type (frame) == NORMAL_FRAME
750 && !frame_id_inner (get_frame_arch (frame), id, this)
751 && frame_id_inner (get_frame_arch (prev_frame), id,
752 get_frame_id (prev_frame)))
759 frame_unwind_pc (struct frame_info *this_frame)
761 if (this_frame->prev_pc.status == CC_UNKNOWN)
763 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
765 volatile struct gdb_exception ex;
766 struct gdbarch *prev_gdbarch;
769 /* The right way. The `pure' way. The one true way. This
770 method depends solely on the register-unwind code to
771 determine the value of registers in THIS frame, and hence
772 the value of this frame's PC (resume address). A typical
773 implementation is no more than:
775 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
776 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
778 Note: this method is very heavily dependent on a correct
779 register-unwind implementation, it pays to fix that
780 method first; this method is frame type agnostic, since
781 it only deals with register values, it works with any
782 frame. This is all in stark contrast to the old
783 FRAME_SAVED_PC which would try to directly handle all the
784 different ways that a PC could be unwound. */
785 prev_gdbarch = frame_unwind_arch (this_frame);
787 TRY_CATCH (ex, RETURN_MASK_ERROR)
789 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
793 if (ex.error == NOT_AVAILABLE_ERROR)
795 this_frame->prev_pc.status = CC_UNAVAILABLE;
798 fprintf_unfiltered (gdb_stdlog,
799 "{ frame_unwind_pc (this_frame=%d)"
800 " -> <unavailable> }\n",
803 else if (ex.error == OPTIMIZED_OUT_ERROR)
805 this_frame->prev_pc.status = CC_NOT_SAVED;
808 fprintf_unfiltered (gdb_stdlog,
809 "{ frame_unwind_pc (this_frame=%d)"
810 " -> <not saved> }\n",
814 throw_exception (ex);
818 this_frame->prev_pc.value = pc;
819 this_frame->prev_pc.status = CC_VALUE;
821 fprintf_unfiltered (gdb_stdlog,
822 "{ frame_unwind_pc (this_frame=%d) "
825 hex_string (this_frame->prev_pc.value));
829 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
832 if (this_frame->prev_pc.status == CC_VALUE)
833 return this_frame->prev_pc.value;
834 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
835 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
836 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
837 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
839 internal_error (__FILE__, __LINE__,
840 "unexpected prev_pc status: %d",
841 (int) this_frame->prev_pc.status);
845 frame_unwind_caller_pc (struct frame_info *this_frame)
847 return frame_unwind_pc (skip_artificial_frames (this_frame));
851 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
853 struct frame_info *next_frame = this_frame->next;
855 if (!next_frame->prev_func.p)
857 CORE_ADDR addr_in_block;
859 /* Make certain that this, and not the adjacent, function is
861 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
863 next_frame->prev_func.p = -1;
865 fprintf_unfiltered (gdb_stdlog,
866 "{ get_frame_func (this_frame=%d)"
867 " -> unavailable }\n",
872 next_frame->prev_func.p = 1;
873 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
875 fprintf_unfiltered (gdb_stdlog,
876 "{ get_frame_func (this_frame=%d) -> %s }\n",
878 hex_string (next_frame->prev_func.addr));
882 if (next_frame->prev_func.p < 0)
889 *pc = next_frame->prev_func.addr;
895 get_frame_func (struct frame_info *this_frame)
899 if (!get_frame_func_if_available (this_frame, &pc))
900 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
905 static enum register_status
906 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
908 if (!deprecated_frame_register_read (src, regnum, buf))
909 return REG_UNAVAILABLE;
915 frame_save_as_regcache (struct frame_info *this_frame)
917 struct address_space *aspace = get_frame_address_space (this_frame);
918 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
920 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
922 regcache_save (regcache, do_frame_register_read, this_frame);
923 discard_cleanups (cleanups);
928 frame_pop (struct frame_info *this_frame)
930 struct frame_info *prev_frame;
931 struct regcache *scratch;
932 struct cleanup *cleanups;
934 if (get_frame_type (this_frame) == DUMMY_FRAME)
936 /* Popping a dummy frame involves restoring more than just registers.
937 dummy_frame_pop does all the work. */
938 dummy_frame_pop (get_frame_id (this_frame));
942 /* Ensure that we have a frame to pop to. */
943 prev_frame = get_prev_frame_1 (this_frame);
946 error (_("Cannot pop the initial frame."));
948 /* Ignore TAILCALL_FRAME type frames, they were executed already before
949 entering THISFRAME. */
950 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
951 prev_frame = get_prev_frame (prev_frame);
953 /* Make a copy of all the register values unwound from this frame.
954 Save them in a scratch buffer so that there isn't a race between
955 trying to extract the old values from the current regcache while
956 at the same time writing new values into that same cache. */
957 scratch = frame_save_as_regcache (prev_frame);
958 cleanups = make_cleanup_regcache_xfree (scratch);
960 /* FIXME: cagney/2003-03-16: It should be possible to tell the
961 target's register cache that it is about to be hit with a burst
962 register transfer and that the sequence of register writes should
963 be batched. The pair target_prepare_to_store() and
964 target_store_registers() kind of suggest this functionality.
965 Unfortunately, they don't implement it. Their lack of a formal
966 definition can lead to targets writing back bogus values
967 (arguably a bug in the target code mind). */
968 /* Now copy those saved registers into the current regcache.
969 Here, regcache_cpy() calls regcache_restore(). */
970 regcache_cpy (get_current_regcache (), scratch);
971 do_cleanups (cleanups);
973 /* We've made right mess of GDB's local state, just discard
975 reinit_frame_cache ();
979 frame_register_unwind (struct frame_info *frame, int regnum,
980 int *optimizedp, int *unavailablep,
981 enum lval_type *lvalp, CORE_ADDR *addrp,
982 int *realnump, gdb_byte *bufferp)
986 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
987 that the value proper does not need to be fetched. */
988 gdb_assert (optimizedp != NULL);
989 gdb_assert (lvalp != NULL);
990 gdb_assert (addrp != NULL);
991 gdb_assert (realnump != NULL);
992 /* gdb_assert (bufferp != NULL); */
994 value = frame_unwind_register_value (frame, regnum);
996 gdb_assert (value != NULL);
998 *optimizedp = value_optimized_out (value);
999 *unavailablep = !value_entirely_available (value);
1000 *lvalp = VALUE_LVAL (value);
1001 *addrp = value_address (value);
1002 *realnump = VALUE_REGNUM (value);
1006 if (!*optimizedp && !*unavailablep)
1007 memcpy (bufferp, value_contents_all (value),
1008 TYPE_LENGTH (value_type (value)));
1010 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1013 /* Dispose of the new value. This prevents watchpoints from
1014 trying to watch the saved frame pointer. */
1015 release_value (value);
1020 frame_register (struct frame_info *frame, int regnum,
1021 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1022 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1024 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1025 that the value proper does not need to be fetched. */
1026 gdb_assert (optimizedp != NULL);
1027 gdb_assert (lvalp != NULL);
1028 gdb_assert (addrp != NULL);
1029 gdb_assert (realnump != NULL);
1030 /* gdb_assert (bufferp != NULL); */
1032 /* Obtain the register value by unwinding the register from the next
1033 (more inner frame). */
1034 gdb_assert (frame != NULL && frame->next != NULL);
1035 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1036 lvalp, addrp, realnump, bufferp);
1040 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1046 enum lval_type lval;
1048 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1049 &lval, &addr, &realnum, buf);
1052 throw_error (OPTIMIZED_OUT_ERROR,
1053 _("Register %d was not saved"), regnum);
1055 throw_error (NOT_AVAILABLE_ERROR,
1056 _("Register %d is not available"), regnum);
1060 get_frame_register (struct frame_info *frame,
1061 int regnum, gdb_byte *buf)
1063 frame_unwind_register (frame->next, regnum, buf);
1067 frame_unwind_register_value (struct frame_info *frame, int regnum)
1069 struct gdbarch *gdbarch;
1070 struct value *value;
1072 gdb_assert (frame != NULL);
1073 gdbarch = frame_unwind_arch (frame);
1077 fprintf_unfiltered (gdb_stdlog,
1078 "{ frame_unwind_register_value "
1079 "(frame=%d,regnum=%d(%s),...) ",
1080 frame->level, regnum,
1081 user_reg_map_regnum_to_name (gdbarch, regnum));
1084 /* Find the unwinder. */
1085 if (frame->unwind == NULL)
1086 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1088 /* Ask this frame to unwind its register. */
1089 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1093 fprintf_unfiltered (gdb_stdlog, "->");
1094 if (value_optimized_out (value))
1096 fprintf_unfiltered (gdb_stdlog, " ");
1097 val_print_optimized_out (value, gdb_stdlog);
1101 if (VALUE_LVAL (value) == lval_register)
1102 fprintf_unfiltered (gdb_stdlog, " register=%d",
1103 VALUE_REGNUM (value));
1104 else if (VALUE_LVAL (value) == lval_memory)
1105 fprintf_unfiltered (gdb_stdlog, " address=%s",
1107 value_address (value)));
1109 fprintf_unfiltered (gdb_stdlog, " computed");
1111 if (value_lazy (value))
1112 fprintf_unfiltered (gdb_stdlog, " lazy");
1116 const gdb_byte *buf = value_contents (value);
1118 fprintf_unfiltered (gdb_stdlog, " bytes=");
1119 fprintf_unfiltered (gdb_stdlog, "[");
1120 for (i = 0; i < register_size (gdbarch, regnum); i++)
1121 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1122 fprintf_unfiltered (gdb_stdlog, "]");
1126 fprintf_unfiltered (gdb_stdlog, " }\n");
1133 get_frame_register_value (struct frame_info *frame, int regnum)
1135 return frame_unwind_register_value (frame->next, regnum);
1139 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1141 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143 int size = register_size (gdbarch, regnum);
1144 gdb_byte buf[MAX_REGISTER_SIZE];
1146 frame_unwind_register (frame, regnum, buf);
1147 return extract_signed_integer (buf, size, byte_order);
1151 get_frame_register_signed (struct frame_info *frame, int regnum)
1153 return frame_unwind_register_signed (frame->next, regnum);
1157 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1159 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1160 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1161 int size = register_size (gdbarch, regnum);
1162 gdb_byte buf[MAX_REGISTER_SIZE];
1164 frame_unwind_register (frame, regnum, buf);
1165 return extract_unsigned_integer (buf, size, byte_order);
1169 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1171 return frame_unwind_register_unsigned (frame->next, regnum);
1175 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1178 struct value *regval = get_frame_register_value (frame, regnum);
1180 if (!value_optimized_out (regval)
1181 && value_entirely_available (regval))
1183 struct gdbarch *gdbarch = get_frame_arch (frame);
1184 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1185 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1187 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1195 put_frame_register (struct frame_info *frame, int regnum,
1196 const gdb_byte *buf)
1198 struct gdbarch *gdbarch = get_frame_arch (frame);
1202 enum lval_type lval;
1205 frame_register (frame, regnum, &optim, &unavail,
1206 &lval, &addr, &realnum, NULL);
1208 error (_("Attempt to assign to a register that was not saved."));
1213 write_memory (addr, buf, register_size (gdbarch, regnum));
1217 regcache_cooked_write (get_current_regcache (), realnum, buf);
1220 error (_("Attempt to assign to an unmodifiable value."));
1224 /* This function is deprecated. Use get_frame_register_value instead,
1225 which provides more accurate information.
1227 Find and return the value of REGNUM for the specified stack frame.
1228 The number of bytes copied is REGISTER_SIZE (REGNUM).
1230 Returns 0 if the register value could not be found. */
1233 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1238 enum lval_type lval;
1242 frame_register (frame, regnum, &optimized, &unavailable,
1243 &lval, &addr, &realnum, myaddr);
1245 return !optimized && !unavailable;
1249 get_frame_register_bytes (struct frame_info *frame, int regnum,
1250 CORE_ADDR offset, int len, gdb_byte *myaddr,
1251 int *optimizedp, int *unavailablep)
1253 struct gdbarch *gdbarch = get_frame_arch (frame);
1258 /* Skip registers wholly inside of OFFSET. */
1259 while (offset >= register_size (gdbarch, regnum))
1261 offset -= register_size (gdbarch, regnum);
1265 /* Ensure that we will not read beyond the end of the register file.
1266 This can only ever happen if the debug information is bad. */
1268 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1269 for (i = regnum; i < numregs; i++)
1271 int thissize = register_size (gdbarch, i);
1274 break; /* This register is not available on this architecture. */
1275 maxsize += thissize;
1278 error (_("Bad debug information detected: "
1279 "Attempt to read %d bytes from registers."), len);
1281 /* Copy the data. */
1284 int curr_len = register_size (gdbarch, regnum) - offset;
1289 if (curr_len == register_size (gdbarch, regnum))
1291 enum lval_type lval;
1295 frame_register (frame, regnum, optimizedp, unavailablep,
1296 &lval, &addr, &realnum, myaddr);
1297 if (*optimizedp || *unavailablep)
1302 gdb_byte buf[MAX_REGISTER_SIZE];
1303 enum lval_type lval;
1307 frame_register (frame, regnum, optimizedp, unavailablep,
1308 &lval, &addr, &realnum, buf);
1309 if (*optimizedp || *unavailablep)
1311 memcpy (myaddr, buf + offset, curr_len);
1326 put_frame_register_bytes (struct frame_info *frame, int regnum,
1327 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1329 struct gdbarch *gdbarch = get_frame_arch (frame);
1331 /* Skip registers wholly inside of OFFSET. */
1332 while (offset >= register_size (gdbarch, regnum))
1334 offset -= register_size (gdbarch, regnum);
1338 /* Copy the data. */
1341 int curr_len = register_size (gdbarch, regnum) - offset;
1346 if (curr_len == register_size (gdbarch, regnum))
1348 put_frame_register (frame, regnum, myaddr);
1352 gdb_byte buf[MAX_REGISTER_SIZE];
1354 deprecated_frame_register_read (frame, regnum, buf);
1355 memcpy (buf + offset, myaddr, curr_len);
1356 put_frame_register (frame, regnum, buf);
1366 /* Create a sentinel frame. */
1368 static struct frame_info *
1369 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1371 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1374 frame->pspace = pspace;
1375 frame->aspace = get_regcache_aspace (regcache);
1376 /* Explicitly initialize the sentinel frame's cache. Provide it
1377 with the underlying regcache. In the future additional
1378 information, such as the frame's thread will be added. */
1379 frame->prologue_cache = sentinel_frame_cache (regcache);
1380 /* For the moment there is only one sentinel frame implementation. */
1381 frame->unwind = &sentinel_frame_unwind;
1382 /* Link this frame back to itself. The frame is self referential
1383 (the unwound PC is the same as the pc), so make it so. */
1384 frame->next = frame;
1385 /* Make the sentinel frame's ID valid, but invalid. That way all
1386 comparisons with it should fail. */
1387 frame->this_id.p = 1;
1388 frame->this_id.value = null_frame_id;
1391 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1392 fprint_frame (gdb_stdlog, frame);
1393 fprintf_unfiltered (gdb_stdlog, " }\n");
1398 /* Info about the innermost stack frame (contents of FP register). */
1400 static struct frame_info *current_frame;
1402 /* Cache for frame addresses already read by gdb. Valid only while
1403 inferior is stopped. Control variables for the frame cache should
1404 be local to this module. */
1406 static struct obstack frame_cache_obstack;
1409 frame_obstack_zalloc (unsigned long size)
1411 void *data = obstack_alloc (&frame_cache_obstack, size);
1413 memset (data, 0, size);
1417 /* Return the innermost (currently executing) stack frame. This is
1418 split into two functions. The function unwind_to_current_frame()
1419 is wrapped in catch exceptions so that, even when the unwind of the
1420 sentinel frame fails, the function still returns a stack frame. */
1423 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1425 struct frame_info *frame = get_prev_frame (args);
1427 /* A sentinel frame can fail to unwind, e.g., because its PC value
1428 lands in somewhere like start. */
1431 current_frame = frame;
1436 get_current_frame (void)
1438 /* First check, and report, the lack of registers. Having GDB
1439 report "No stack!" or "No memory" when the target doesn't even
1440 have registers is very confusing. Besides, "printcmd.exp"
1441 explicitly checks that ``print $pc'' with no registers prints "No
1443 if (!target_has_registers)
1444 error (_("No registers."));
1445 if (!target_has_stack)
1446 error (_("No stack."));
1447 if (!target_has_memory)
1448 error (_("No memory."));
1449 /* Traceframes are effectively a substitute for the live inferior. */
1450 if (get_traceframe_number () < 0)
1452 if (ptid_equal (inferior_ptid, null_ptid))
1453 error (_("No selected thread."));
1454 if (is_exited (inferior_ptid))
1455 error (_("Invalid selected thread."));
1456 if (is_executing (inferior_ptid))
1457 error (_("Target is executing."));
1460 if (current_frame == NULL)
1462 struct frame_info *sentinel_frame =
1463 create_sentinel_frame (current_program_space, get_current_regcache ());
1464 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1465 sentinel_frame, RETURN_MASK_ERROR) != 0)
1467 /* Oops! Fake a current frame? Is this useful? It has a PC
1468 of zero, for instance. */
1469 current_frame = sentinel_frame;
1472 return current_frame;
1475 /* The "selected" stack frame is used by default for local and arg
1476 access. May be zero, for no selected frame. */
1478 static struct frame_info *selected_frame;
1481 has_stack_frames (void)
1483 if (!target_has_registers || !target_has_stack || !target_has_memory)
1486 /* Traceframes are effectively a substitute for the live inferior. */
1487 if (get_traceframe_number () < 0)
1489 /* No current inferior, no frame. */
1490 if (ptid_equal (inferior_ptid, null_ptid))
1493 /* Don't try to read from a dead thread. */
1494 if (is_exited (inferior_ptid))
1497 /* ... or from a spinning thread. */
1498 if (is_executing (inferior_ptid))
1505 /* Return the selected frame. Always non-NULL (unless there isn't an
1506 inferior sufficient for creating a frame) in which case an error is
1510 get_selected_frame (const char *message)
1512 if (selected_frame == NULL)
1514 if (message != NULL && !has_stack_frames ())
1515 error (("%s"), message);
1516 /* Hey! Don't trust this. It should really be re-finding the
1517 last selected frame of the currently selected thread. This,
1518 though, is better than nothing. */
1519 select_frame (get_current_frame ());
1521 /* There is always a frame. */
1522 gdb_assert (selected_frame != NULL);
1523 return selected_frame;
1526 /* If there is a selected frame, return it. Otherwise, return NULL. */
1529 get_selected_frame_if_set (void)
1531 return selected_frame;
1534 /* This is a variant of get_selected_frame() which can be called when
1535 the inferior does not have a frame; in that case it will return
1536 NULL instead of calling error(). */
1539 deprecated_safe_get_selected_frame (void)
1541 if (!has_stack_frames ())
1543 return get_selected_frame (NULL);
1546 /* Select frame FI (or NULL - to invalidate the current frame). */
1549 select_frame (struct frame_info *fi)
1551 selected_frame = fi;
1552 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1553 frame is being invalidated. */
1554 if (deprecated_selected_frame_level_changed_hook)
1555 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1557 /* FIXME: kseitz/2002-08-28: It would be nice to call
1558 selected_frame_level_changed_event() right here, but due to limitations
1559 in the current interfaces, we would end up flooding UIs with events
1560 because select_frame() is used extensively internally.
1562 Once we have frame-parameterized frame (and frame-related) commands,
1563 the event notification can be moved here, since this function will only
1564 be called when the user's selected frame is being changed. */
1566 /* Ensure that symbols for this frame are read in. Also, determine the
1567 source language of this frame, and switch to it if desired. */
1572 /* We retrieve the frame's symtab by using the frame PC.
1573 However we cannot use the frame PC as-is, because it usually
1574 points to the instruction following the "call", which is
1575 sometimes the first instruction of another function. So we
1576 rely on get_frame_address_in_block() which provides us with a
1577 PC which is guaranteed to be inside the frame's code
1579 if (get_frame_address_in_block_if_available (fi, &pc))
1581 struct symtab *s = find_pc_symtab (pc);
1584 && s->language != current_language->la_language
1585 && s->language != language_unknown
1586 && language_mode == language_mode_auto)
1587 set_language (s->language);
1592 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1593 Always returns a non-NULL value. */
1596 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1598 struct frame_info *fi;
1602 fprintf_unfiltered (gdb_stdlog,
1603 "{ create_new_frame (addr=%s, pc=%s) ",
1604 hex_string (addr), hex_string (pc));
1607 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1609 fi->next = create_sentinel_frame (current_program_space,
1610 get_current_regcache ());
1612 /* Set/update this frame's cached PC value, found in the next frame.
1613 Do this before looking for this frame's unwinder. A sniffer is
1614 very likely to read this, and the corresponding unwinder is
1615 entitled to rely that the PC doesn't magically change. */
1616 fi->next->prev_pc.value = pc;
1617 fi->next->prev_pc.status = CC_VALUE;
1619 /* We currently assume that frame chain's can't cross spaces. */
1620 fi->pspace = fi->next->pspace;
1621 fi->aspace = fi->next->aspace;
1623 /* Select/initialize both the unwind function and the frame's type
1625 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1628 fi->this_id.value = frame_id_build (addr, pc);
1632 fprintf_unfiltered (gdb_stdlog, "-> ");
1633 fprint_frame (gdb_stdlog, fi);
1634 fprintf_unfiltered (gdb_stdlog, " }\n");
1640 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1641 innermost frame). Be careful to not fall off the bottom of the
1642 frame chain and onto the sentinel frame. */
1645 get_next_frame (struct frame_info *this_frame)
1647 if (this_frame->level > 0)
1648 return this_frame->next;
1653 /* Observer for the target_changed event. */
1656 frame_observer_target_changed (struct target_ops *target)
1658 reinit_frame_cache ();
1661 /* Flush the entire frame cache. */
1664 reinit_frame_cache (void)
1666 struct frame_info *fi;
1668 /* Tear down all frame caches. */
1669 for (fi = current_frame; fi != NULL; fi = fi->prev)
1671 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1672 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1673 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1674 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1677 /* Since we can't really be sure what the first object allocated was. */
1678 obstack_free (&frame_cache_obstack, 0);
1679 obstack_init (&frame_cache_obstack);
1681 if (current_frame != NULL)
1682 annotate_frames_invalid ();
1684 current_frame = NULL; /* Invalidate cache */
1685 select_frame (NULL);
1686 frame_stash_invalidate ();
1688 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1691 /* Find where a register is saved (in memory or another register).
1692 The result of frame_register_unwind is just where it is saved
1693 relative to this particular frame. */
1696 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1697 int *optimizedp, enum lval_type *lvalp,
1698 CORE_ADDR *addrp, int *realnump)
1700 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1702 while (this_frame != NULL)
1706 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1707 lvalp, addrp, realnump, NULL);
1712 if (*lvalp != lval_register)
1716 this_frame = get_next_frame (this_frame);
1720 /* Get the previous raw frame, and check that it is not identical to
1721 same other frame frame already in the chain. If it is, there is
1722 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1723 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1724 validity tests, that compare THIS_FRAME and the next frame, we do
1725 this right after creating the previous frame, to avoid ever ending
1726 up with two frames with the same id in the frame chain. */
1728 static struct frame_info *
1729 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1731 struct frame_info *prev_frame;
1733 prev_frame = get_prev_frame_raw (this_frame);
1734 if (prev_frame == NULL)
1737 compute_frame_id (prev_frame);
1738 if (frame_stash_add (prev_frame))
1741 /* Another frame with the same id was already in the stash. We just
1742 detected a cycle. */
1745 fprintf_unfiltered (gdb_stdlog, "-> ");
1746 fprint_frame (gdb_stdlog, NULL);
1747 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1749 this_frame->stop_reason = UNWIND_SAME_ID;
1751 prev_frame->next = NULL;
1752 this_frame->prev = NULL;
1756 /* Return a "struct frame_info" corresponding to the frame that called
1757 THIS_FRAME. Returns NULL if there is no such frame.
1759 Unlike get_prev_frame, this function always tries to unwind the
1762 static struct frame_info *
1763 get_prev_frame_1 (struct frame_info *this_frame)
1765 struct gdbarch *gdbarch;
1767 gdb_assert (this_frame != NULL);
1768 gdbarch = get_frame_arch (this_frame);
1772 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1773 if (this_frame != NULL)
1774 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1776 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1777 fprintf_unfiltered (gdb_stdlog, ") ");
1780 /* Only try to do the unwind once. */
1781 if (this_frame->prev_p)
1785 fprintf_unfiltered (gdb_stdlog, "-> ");
1786 fprint_frame (gdb_stdlog, this_frame->prev);
1787 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1789 return this_frame->prev;
1792 /* If the frame unwinder hasn't been selected yet, we must do so
1793 before setting prev_p; otherwise the check for misbehaved
1794 sniffers will think that this frame's sniffer tried to unwind
1795 further (see frame_cleanup_after_sniffer). */
1796 if (this_frame->unwind == NULL)
1797 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1799 this_frame->prev_p = 1;
1800 this_frame->stop_reason = UNWIND_NO_REASON;
1802 /* If we are unwinding from an inline frame, all of the below tests
1803 were already performed when we unwound from the next non-inline
1804 frame. We must skip them, since we can not get THIS_FRAME's ID
1805 until we have unwound all the way down to the previous non-inline
1807 if (get_frame_type (this_frame) == INLINE_FRAME)
1808 return get_prev_frame_if_no_cycle (this_frame);
1810 /* Check that this frame is unwindable. If it isn't, don't try to
1811 unwind to the prev frame. */
1812 this_frame->stop_reason
1813 = this_frame->unwind->stop_reason (this_frame,
1814 &this_frame->prologue_cache);
1816 if (this_frame->stop_reason != UNWIND_NO_REASON)
1820 enum unwind_stop_reason reason = this_frame->stop_reason;
1822 fprintf_unfiltered (gdb_stdlog, "-> ");
1823 fprint_frame (gdb_stdlog, NULL);
1824 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1825 frame_stop_reason_symbol_string (reason));
1830 /* Check that this frame's ID isn't inner to (younger, below, next)
1831 the next frame. This happens when a frame unwind goes backwards.
1832 This check is valid only if this frame and the next frame are NORMAL.
1833 See the comment at frame_id_inner for details. */
1834 if (get_frame_type (this_frame) == NORMAL_FRAME
1835 && this_frame->next->unwind->type == NORMAL_FRAME
1836 && frame_id_inner (get_frame_arch (this_frame->next),
1837 get_frame_id (this_frame),
1838 get_frame_id (this_frame->next)))
1840 CORE_ADDR this_pc_in_block;
1841 struct minimal_symbol *morestack_msym;
1842 const char *morestack_name = NULL;
1844 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1845 this_pc_in_block = get_frame_address_in_block (this_frame);
1846 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1848 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1849 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1853 fprintf_unfiltered (gdb_stdlog, "-> ");
1854 fprint_frame (gdb_stdlog, NULL);
1855 fprintf_unfiltered (gdb_stdlog,
1856 " // this frame ID is inner }\n");
1858 this_frame->stop_reason = UNWIND_INNER_ID;
1863 /* Check that this and the next frame do not unwind the PC register
1864 to the same memory location. If they do, then even though they
1865 have different frame IDs, the new frame will be bogus; two
1866 functions can't share a register save slot for the PC. This can
1867 happen when the prologue analyzer finds a stack adjustment, but
1870 This check does assume that the "PC register" is roughly a
1871 traditional PC, even if the gdbarch_unwind_pc method adjusts
1872 it (we do not rely on the value, only on the unwound PC being
1873 dependent on this value). A potential improvement would be
1874 to have the frame prev_pc method and the gdbarch unwind_pc
1875 method set the same lval and location information as
1876 frame_register_unwind. */
1877 if (this_frame->level > 0
1878 && gdbarch_pc_regnum (gdbarch) >= 0
1879 && get_frame_type (this_frame) == NORMAL_FRAME
1880 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1881 || get_frame_type (this_frame->next) == INLINE_FRAME))
1883 int optimized, realnum, nrealnum;
1884 enum lval_type lval, nlval;
1885 CORE_ADDR addr, naddr;
1887 frame_register_unwind_location (this_frame,
1888 gdbarch_pc_regnum (gdbarch),
1889 &optimized, &lval, &addr, &realnum);
1890 frame_register_unwind_location (get_next_frame (this_frame),
1891 gdbarch_pc_regnum (gdbarch),
1892 &optimized, &nlval, &naddr, &nrealnum);
1894 if ((lval == lval_memory && lval == nlval && addr == naddr)
1895 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1899 fprintf_unfiltered (gdb_stdlog, "-> ");
1900 fprint_frame (gdb_stdlog, NULL);
1901 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1904 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1905 this_frame->prev = NULL;
1910 return get_prev_frame_if_no_cycle (this_frame);
1913 /* Construct a new "struct frame_info" and link it previous to
1916 static struct frame_info *
1917 get_prev_frame_raw (struct frame_info *this_frame)
1919 struct frame_info *prev_frame;
1921 /* Allocate the new frame but do not wire it in to the frame chain.
1922 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1923 frame->next to pull some fancy tricks (of course such code is, by
1924 definition, recursive). Try to prevent it.
1926 There is no reason to worry about memory leaks, should the
1927 remainder of the function fail. The allocated memory will be
1928 quickly reclaimed when the frame cache is flushed, and the `we've
1929 been here before' check above will stop repeated memory
1930 allocation calls. */
1931 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1932 prev_frame->level = this_frame->level + 1;
1934 /* For now, assume we don't have frame chains crossing address
1936 prev_frame->pspace = this_frame->pspace;
1937 prev_frame->aspace = this_frame->aspace;
1939 /* Don't yet compute ->unwind (and hence ->type). It is computed
1940 on-demand in get_frame_type, frame_register_unwind, and
1943 /* Don't yet compute the frame's ID. It is computed on-demand by
1946 /* The unwound frame ID is validate at the start of this function,
1947 as part of the logic to decide if that frame should be further
1948 unwound, and not here while the prev frame is being created.
1949 Doing this makes it possible for the user to examine a frame that
1950 has an invalid frame ID.
1952 Some very old VAX code noted: [...] For the sake of argument,
1953 suppose that the stack is somewhat trashed (which is one reason
1954 that "info frame" exists). So, return 0 (indicating we don't
1955 know the address of the arglist) if we don't know what frame this
1959 this_frame->prev = prev_frame;
1960 prev_frame->next = this_frame;
1964 fprintf_unfiltered (gdb_stdlog, "-> ");
1965 fprint_frame (gdb_stdlog, prev_frame);
1966 fprintf_unfiltered (gdb_stdlog, " }\n");
1972 /* Debug routine to print a NULL frame being returned. */
1975 frame_debug_got_null_frame (struct frame_info *this_frame,
1980 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1981 if (this_frame != NULL)
1982 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1984 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1985 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1989 /* Is this (non-sentinel) frame in the "main"() function? */
1992 inside_main_func (struct frame_info *this_frame)
1994 struct minimal_symbol *msymbol;
1997 if (symfile_objfile == 0)
1999 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2000 if (msymbol == NULL)
2002 /* Make certain that the code, and not descriptor, address is
2004 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2005 SYMBOL_VALUE_ADDRESS (msymbol),
2007 return maddr == get_frame_func (this_frame);
2010 /* Test whether THIS_FRAME is inside the process entry point function. */
2013 inside_entry_func (struct frame_info *this_frame)
2015 CORE_ADDR entry_point;
2017 if (!entry_point_address_query (&entry_point))
2020 return get_frame_func (this_frame) == entry_point;
2023 /* Return a structure containing various interesting information about
2024 the frame that called THIS_FRAME. Returns NULL if there is entier
2025 no such frame or the frame fails any of a set of target-independent
2026 condition that should terminate the frame chain (e.g., as unwinding
2029 This function should not contain target-dependent tests, such as
2030 checking whether the program-counter is zero. */
2033 get_prev_frame (struct frame_info *this_frame)
2038 /* There is always a frame. If this assertion fails, suspect that
2039 something should be calling get_selected_frame() or
2040 get_current_frame(). */
2041 gdb_assert (this_frame != NULL);
2042 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2044 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2045 sense to stop unwinding at a dummy frame. One place where a dummy
2046 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2047 pcsqh register (space register for the instruction at the head of the
2048 instruction queue) cannot be written directly; the only way to set it
2049 is to branch to code that is in the target space. In order to implement
2050 frame dummies on HPUX, the called function is made to jump back to where
2051 the inferior was when the user function was called. If gdb was inside
2052 the main function when we created the dummy frame, the dummy frame will
2053 point inside the main function. */
2054 if (this_frame->level >= 0
2055 && get_frame_type (this_frame) == NORMAL_FRAME
2056 && !backtrace_past_main
2058 && inside_main_func (this_frame))
2059 /* Don't unwind past main(). Note, this is done _before_ the
2060 frame has been marked as previously unwound. That way if the
2061 user later decides to enable unwinds past main(), that will
2062 automatically happen. */
2064 frame_debug_got_null_frame (this_frame, "inside main func");
2068 /* If the user's backtrace limit has been exceeded, stop. We must
2069 add two to the current level; one of those accounts for backtrace_limit
2070 being 1-based and the level being 0-based, and the other accounts for
2071 the level of the new frame instead of the level of the current
2073 if (this_frame->level + 2 > backtrace_limit)
2075 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2079 /* If we're already inside the entry function for the main objfile,
2080 then it isn't valid. Don't apply this test to a dummy frame -
2081 dummy frame PCs typically land in the entry func. Don't apply
2082 this test to the sentinel frame. Sentinel frames should always
2083 be allowed to unwind. */
2084 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2085 wasn't checking for "main" in the minimal symbols. With that
2086 fixed asm-source tests now stop in "main" instead of halting the
2087 backtrace in weird and wonderful ways somewhere inside the entry
2088 file. Suspect that tests for inside the entry file/func were
2089 added to work around that (now fixed) case. */
2090 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2091 suggested having the inside_entry_func test use the
2092 inside_main_func() msymbol trick (along with entry_point_address()
2093 I guess) to determine the address range of the start function.
2094 That should provide a far better stopper than the current
2096 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2097 applied tail-call optimizations to main so that a function called
2098 from main returns directly to the caller of main. Since we don't
2099 stop at main, we should at least stop at the entry point of the
2101 if (this_frame->level >= 0
2102 && get_frame_type (this_frame) == NORMAL_FRAME
2103 && !backtrace_past_entry
2105 && inside_entry_func (this_frame))
2107 frame_debug_got_null_frame (this_frame, "inside entry func");
2111 /* Assume that the only way to get a zero PC is through something
2112 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2113 will never unwind a zero PC. */
2114 if (this_frame->level > 0
2115 && (get_frame_type (this_frame) == NORMAL_FRAME
2116 || get_frame_type (this_frame) == INLINE_FRAME)
2117 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2118 && frame_pc_p && frame_pc == 0)
2120 frame_debug_got_null_frame (this_frame, "zero PC");
2124 return get_prev_frame_1 (this_frame);
2128 get_frame_pc (struct frame_info *frame)
2130 gdb_assert (frame->next != NULL);
2131 return frame_unwind_pc (frame->next);
2135 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2137 volatile struct gdb_exception ex;
2139 gdb_assert (frame->next != NULL);
2141 TRY_CATCH (ex, RETURN_MASK_ERROR)
2143 *pc = frame_unwind_pc (frame->next);
2147 if (ex.error == NOT_AVAILABLE_ERROR)
2150 throw_exception (ex);
2156 /* Return an address that falls within THIS_FRAME's code block. */
2159 get_frame_address_in_block (struct frame_info *this_frame)
2161 /* A draft address. */
2162 CORE_ADDR pc = get_frame_pc (this_frame);
2164 struct frame_info *next_frame = this_frame->next;
2166 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2167 Normally the resume address is inside the body of the function
2168 associated with THIS_FRAME, but there is a special case: when
2169 calling a function which the compiler knows will never return
2170 (for instance abort), the call may be the very last instruction
2171 in the calling function. The resume address will point after the
2172 call and may be at the beginning of a different function
2175 If THIS_FRAME is a signal frame or dummy frame, then we should
2176 not adjust the unwound PC. For a dummy frame, GDB pushed the
2177 resume address manually onto the stack. For a signal frame, the
2178 OS may have pushed the resume address manually and invoked the
2179 handler (e.g. GNU/Linux), or invoked the trampoline which called
2180 the signal handler - but in either case the signal handler is
2181 expected to return to the trampoline. So in both of these
2182 cases we know that the resume address is executable and
2183 related. So we only need to adjust the PC if THIS_FRAME
2184 is a normal function.
2186 If the program has been interrupted while THIS_FRAME is current,
2187 then clearly the resume address is inside the associated
2188 function. There are three kinds of interruption: debugger stop
2189 (next frame will be SENTINEL_FRAME), operating system
2190 signal or exception (next frame will be SIGTRAMP_FRAME),
2191 or debugger-induced function call (next frame will be
2192 DUMMY_FRAME). So we only need to adjust the PC if
2193 NEXT_FRAME is a normal function.
2195 We check the type of NEXT_FRAME first, since it is already
2196 known; frame type is determined by the unwinder, and since
2197 we have THIS_FRAME we've already selected an unwinder for
2200 If the next frame is inlined, we need to keep going until we find
2201 the real function - for instance, if a signal handler is invoked
2202 while in an inlined function, then the code address of the
2203 "calling" normal function should not be adjusted either. */
2205 while (get_frame_type (next_frame) == INLINE_FRAME)
2206 next_frame = next_frame->next;
2208 if ((get_frame_type (next_frame) == NORMAL_FRAME
2209 || get_frame_type (next_frame) == TAILCALL_FRAME)
2210 && (get_frame_type (this_frame) == NORMAL_FRAME
2211 || get_frame_type (this_frame) == TAILCALL_FRAME
2212 || get_frame_type (this_frame) == INLINE_FRAME))
2219 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2222 volatile struct gdb_exception ex;
2224 TRY_CATCH (ex, RETURN_MASK_ERROR)
2226 *pc = get_frame_address_in_block (this_frame);
2228 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2230 else if (ex.reason < 0)
2231 throw_exception (ex);
2237 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2239 struct frame_info *next_frame;
2243 /* If the next frame represents an inlined function call, this frame's
2244 sal is the "call site" of that inlined function, which can not
2245 be inferred from get_frame_pc. */
2246 next_frame = get_next_frame (frame);
2247 if (frame_inlined_callees (frame) > 0)
2252 sym = get_frame_function (next_frame);
2254 sym = inline_skipped_symbol (inferior_ptid);
2256 /* If frame is inline, it certainly has symbols. */
2259 if (SYMBOL_LINE (sym) != 0)
2261 sal->symtab = SYMBOL_SYMTAB (sym);
2262 sal->line = SYMBOL_LINE (sym);
2265 /* If the symbol does not have a location, we don't know where
2266 the call site is. Do not pretend to. This is jarring, but
2267 we can't do much better. */
2268 sal->pc = get_frame_pc (frame);
2270 sal->pspace = get_frame_program_space (frame);
2275 /* If FRAME is not the innermost frame, that normally means that
2276 FRAME->pc points at the return instruction (which is *after* the
2277 call instruction), and we want to get the line containing the
2278 call (because the call is where the user thinks the program is).
2279 However, if the next frame is either a SIGTRAMP_FRAME or a
2280 DUMMY_FRAME, then the next frame will contain a saved interrupt
2281 PC and such a PC indicates the current (rather than next)
2282 instruction/line, consequently, for such cases, want to get the
2283 line containing fi->pc. */
2284 if (!get_frame_pc_if_available (frame, &pc))
2290 notcurrent = (pc != get_frame_address_in_block (frame));
2291 (*sal) = find_pc_line (pc, notcurrent);
2294 /* Per "frame.h", return the ``address'' of the frame. Code should
2295 really be using get_frame_id(). */
2297 get_frame_base (struct frame_info *fi)
2299 return get_frame_id (fi).stack_addr;
2302 /* High-level offsets into the frame. Used by the debug info. */
2305 get_frame_base_address (struct frame_info *fi)
2307 if (get_frame_type (fi) != NORMAL_FRAME)
2309 if (fi->base == NULL)
2310 fi->base = frame_base_find_by_frame (fi);
2311 /* Sneaky: If the low-level unwind and high-level base code share a
2312 common unwinder, let them share the prologue cache. */
2313 if (fi->base->unwind == fi->unwind)
2314 return fi->base->this_base (fi, &fi->prologue_cache);
2315 return fi->base->this_base (fi, &fi->base_cache);
2319 get_frame_locals_address (struct frame_info *fi)
2321 if (get_frame_type (fi) != NORMAL_FRAME)
2323 /* If there isn't a frame address method, find it. */
2324 if (fi->base == NULL)
2325 fi->base = frame_base_find_by_frame (fi);
2326 /* Sneaky: If the low-level unwind and high-level base code share a
2327 common unwinder, let them share the prologue cache. */
2328 if (fi->base->unwind == fi->unwind)
2329 return fi->base->this_locals (fi, &fi->prologue_cache);
2330 return fi->base->this_locals (fi, &fi->base_cache);
2334 get_frame_args_address (struct frame_info *fi)
2336 if (get_frame_type (fi) != NORMAL_FRAME)
2338 /* If there isn't a frame address method, find it. */
2339 if (fi->base == NULL)
2340 fi->base = frame_base_find_by_frame (fi);
2341 /* Sneaky: If the low-level unwind and high-level base code share a
2342 common unwinder, let them share the prologue cache. */
2343 if (fi->base->unwind == fi->unwind)
2344 return fi->base->this_args (fi, &fi->prologue_cache);
2345 return fi->base->this_args (fi, &fi->base_cache);
2348 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2352 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2354 if (fi->unwind == NULL)
2355 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2356 return fi->unwind == unwinder;
2359 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2360 or -1 for a NULL frame. */
2363 frame_relative_level (struct frame_info *fi)
2372 get_frame_type (struct frame_info *frame)
2374 if (frame->unwind == NULL)
2375 /* Initialize the frame's unwinder because that's what
2376 provides the frame's type. */
2377 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2378 return frame->unwind->type;
2381 struct program_space *
2382 get_frame_program_space (struct frame_info *frame)
2384 return frame->pspace;
2387 struct program_space *
2388 frame_unwind_program_space (struct frame_info *this_frame)
2390 gdb_assert (this_frame);
2392 /* This is really a placeholder to keep the API consistent --- we
2393 assume for now that we don't have frame chains crossing
2395 return this_frame->pspace;
2398 struct address_space *
2399 get_frame_address_space (struct frame_info *frame)
2401 return frame->aspace;
2404 /* Memory access methods. */
2407 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2408 gdb_byte *buf, int len)
2410 read_memory (addr, buf, len);
2414 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2417 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2418 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2420 return read_memory_integer (addr, len, byte_order);
2424 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2427 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2428 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2430 return read_memory_unsigned_integer (addr, len, byte_order);
2434 safe_frame_unwind_memory (struct frame_info *this_frame,
2435 CORE_ADDR addr, gdb_byte *buf, int len)
2437 /* NOTE: target_read_memory returns zero on success! */
2438 return !target_read_memory (addr, buf, len);
2441 /* Architecture methods. */
2444 get_frame_arch (struct frame_info *this_frame)
2446 return frame_unwind_arch (this_frame->next);
2450 frame_unwind_arch (struct frame_info *next_frame)
2452 if (!next_frame->prev_arch.p)
2454 struct gdbarch *arch;
2456 if (next_frame->unwind == NULL)
2457 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2459 if (next_frame->unwind->prev_arch != NULL)
2460 arch = next_frame->unwind->prev_arch (next_frame,
2461 &next_frame->prologue_cache);
2463 arch = get_frame_arch (next_frame);
2465 next_frame->prev_arch.arch = arch;
2466 next_frame->prev_arch.p = 1;
2468 fprintf_unfiltered (gdb_stdlog,
2469 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2471 gdbarch_bfd_arch_info (arch)->printable_name);
2474 return next_frame->prev_arch.arch;
2478 frame_unwind_caller_arch (struct frame_info *next_frame)
2480 return frame_unwind_arch (skip_artificial_frames (next_frame));
2483 /* Stack pointer methods. */
2486 get_frame_sp (struct frame_info *this_frame)
2488 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2490 /* Normality - an architecture that provides a way of obtaining any
2491 frame inner-most address. */
2492 if (gdbarch_unwind_sp_p (gdbarch))
2493 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2494 operate on THIS_FRAME now. */
2495 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2496 /* Now things are really are grim. Hope that the value returned by
2497 the gdbarch_sp_regnum register is meaningful. */
2498 if (gdbarch_sp_regnum (gdbarch) >= 0)
2499 return get_frame_register_unsigned (this_frame,
2500 gdbarch_sp_regnum (gdbarch));
2501 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2504 /* Return the reason why we can't unwind past FRAME. */
2506 enum unwind_stop_reason
2507 get_frame_unwind_stop_reason (struct frame_info *frame)
2509 /* If we haven't tried to unwind past this point yet, then assume
2510 that unwinding would succeed. */
2511 if (frame->prev_p == 0)
2512 return UNWIND_NO_REASON;
2514 /* Otherwise, we set a reason when we succeeded (or failed) to
2516 return frame->stop_reason;
2519 /* Return a string explaining REASON. */
2522 frame_stop_reason_string (enum unwind_stop_reason reason)
2526 #define SET(name, description) \
2527 case name: return _(description);
2528 #include "unwind_stop_reasons.def"
2532 internal_error (__FILE__, __LINE__,
2533 "Invalid frame stop reason");
2537 /* Return the enum symbol name of REASON as a string, to use in debug
2541 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2545 #define SET(name, description) \
2546 case name: return #name;
2547 #include "unwind_stop_reasons.def"
2551 internal_error (__FILE__, __LINE__,
2552 "Invalid frame stop reason");
2556 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2560 frame_cleanup_after_sniffer (void *arg)
2562 struct frame_info *frame = arg;
2564 /* The sniffer should not allocate a prologue cache if it did not
2565 match this frame. */
2566 gdb_assert (frame->prologue_cache == NULL);
2568 /* No sniffer should extend the frame chain; sniff based on what is
2570 gdb_assert (!frame->prev_p);
2572 /* The sniffer should not check the frame's ID; that's circular. */
2573 gdb_assert (!frame->this_id.p);
2575 /* Clear cached fields dependent on the unwinder.
2577 The previous PC is independent of the unwinder, but the previous
2578 function is not (see get_frame_address_in_block). */
2579 frame->prev_func.p = 0;
2580 frame->prev_func.addr = 0;
2582 /* Discard the unwinder last, so that we can easily find it if an assertion
2583 in this function triggers. */
2584 frame->unwind = NULL;
2587 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2588 Return a cleanup which should be called if unwinding fails, and
2589 discarded if it succeeds. */
2592 frame_prepare_for_sniffer (struct frame_info *frame,
2593 const struct frame_unwind *unwind)
2595 gdb_assert (frame->unwind == NULL);
2596 frame->unwind = unwind;
2597 return make_cleanup (frame_cleanup_after_sniffer, frame);
2600 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2602 static struct cmd_list_element *set_backtrace_cmdlist;
2603 static struct cmd_list_element *show_backtrace_cmdlist;
2606 set_backtrace_cmd (char *args, int from_tty)
2608 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2612 show_backtrace_cmd (char *args, int from_tty)
2614 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2618 _initialize_frame (void)
2620 obstack_init (&frame_cache_obstack);
2622 frame_stash_create ();
2624 observer_attach_target_changed (frame_observer_target_changed);
2626 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2627 Set backtrace specific variables.\n\
2628 Configure backtrace variables such as the backtrace limit"),
2629 &set_backtrace_cmdlist, "set backtrace ",
2630 0/*allow-unknown*/, &setlist);
2631 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2632 Show backtrace specific variables\n\
2633 Show backtrace variables such as the backtrace limit"),
2634 &show_backtrace_cmdlist, "show backtrace ",
2635 0/*allow-unknown*/, &showlist);
2637 add_setshow_boolean_cmd ("past-main", class_obscure,
2638 &backtrace_past_main, _("\
2639 Set whether backtraces should continue past \"main\"."), _("\
2640 Show whether backtraces should continue past \"main\"."), _("\
2641 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2642 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2643 of the stack trace."),
2645 show_backtrace_past_main,
2646 &set_backtrace_cmdlist,
2647 &show_backtrace_cmdlist);
2649 add_setshow_boolean_cmd ("past-entry", class_obscure,
2650 &backtrace_past_entry, _("\
2651 Set whether backtraces should continue past the entry point of a program."),
2653 Show whether backtraces should continue past the entry point of a program."),
2655 Normally there are no callers beyond the entry point of a program, so GDB\n\
2656 will terminate the backtrace there. Set this variable if you need to see\n\
2657 the rest of the stack trace."),
2659 show_backtrace_past_entry,
2660 &set_backtrace_cmdlist,
2661 &show_backtrace_cmdlist);
2663 add_setshow_uinteger_cmd ("limit", class_obscure,
2664 &backtrace_limit, _("\
2665 Set an upper bound on the number of backtrace levels."), _("\
2666 Show the upper bound on the number of backtrace levels."), _("\
2667 No more than the specified number of frames can be displayed or examined.\n\
2668 Literal \"unlimited\" or zero means no limit."),
2670 show_backtrace_limit,
2671 &set_backtrace_cmdlist,
2672 &show_backtrace_cmdlist);
2674 /* Debug this files internals. */
2675 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2676 Set frame debugging."), _("\
2677 Show frame debugging."), _("\
2678 When non-zero, frame specific internal debugging is enabled."),
2681 &setdebuglist, &showdebuglist);