1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 Contributed by Motorola. Adapted from the C parser by Farooq Butt
7 (fmbutt@engage.sps.mot.com).
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 /* This was blantantly ripped off the C expression parser, please
25 be aware of that as you look at its basic structure -FMB */
27 /* Parse a F77 expression from text in a string,
28 and return the result as a struct expression pointer.
29 That structure contains arithmetic operations in reverse polish,
30 with constants represented by operations that are followed by special data.
31 See expression.h for the details of the format.
32 What is important here is that it can be built up sequentially
33 during the process of parsing; the lower levels of the tree always
34 come first in the result.
36 Note that malloc's and realloc's in this file are transformed to
37 xmalloc and xrealloc respectively by the same sed command in the
38 makefile that remaps any other malloc/realloc inserted by the parser
39 generator. Doing this with #defines and trying to control the interaction
40 with include files (<malloc.h> and <stdlib.h> for example) just became
41 too messy, particularly when such includes can be inserted at random
42 times by the parser generator. */
47 #include "gdb_string.h"
48 #include "expression.h"
50 #include "parser-defs.h"
53 #include "bfd.h" /* Required by objfiles.h. */
54 #include "symfile.h" /* Required by objfiles.h. */
55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
59 #define parse_type builtin_type (parse_gdbarch)
60 #define parse_f_type builtin_f_type (parse_gdbarch)
62 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
63 as well as gratuitiously global symbol names, so we can have multiple
64 yacc generated parsers in gdb. Note that these are only the variables
65 produced by yacc. If other parser generators (bison, byacc, etc) produce
66 additional global names that conflict at link time, then those parser
67 generators need to be fixed instead of adding those names to this list. */
69 #define yymaxdepth f_maxdepth
70 #define yyparse f_parse
72 #define yyerror f_error
75 #define yydebug f_debug
84 #define yyerrflag f_errflag
85 #define yynerrs f_nerrs
90 #define yystate f_state
96 #define yyreds f_reds /* With YYDEBUG defined */
97 #define yytoks f_toks /* With YYDEBUG defined */
98 #define yyname f_name /* With YYDEBUG defined */
99 #define yyrule f_rule /* With YYDEBUG defined */
100 #define yylhs f_yylhs
101 #define yylen f_yylen
102 #define yydefred f_yydefred
103 #define yydgoto f_yydgoto
104 #define yysindex f_yysindex
105 #define yyrindex f_yyrindex
106 #define yygindex f_yygindex
107 #define yytable f_yytable
108 #define yycheck f_yycheck
111 #define YYDEBUG 1 /* Default to yydebug support */
114 #define YYFPRINTF parser_fprintf
118 static int yylex (void);
120 void yyerror (char *);
122 static void growbuf_by_size (int);
124 static int match_string_literal (void);
128 /* Although the yacc "value" of an expression is not used,
129 since the result is stored in the structure being created,
130 other node types do have values. */
144 struct symtoken ssym;
147 enum exp_opcode opcode;
148 struct internalvar *ivar;
155 /* YYSTYPE gets defined by %union */
156 static int parse_number (char *, int, int, YYSTYPE *);
159 %type <voidval> exp type_exp start variable
160 %type <tval> type typebase
161 %type <tvec> nonempty_typelist
162 /* %type <bval> block */
164 /* Fancy type parsing. */
165 %type <voidval> func_mod direct_abs_decl abs_decl
168 %token <typed_val> INT
171 /* Both NAME and TYPENAME tokens represent symbols in the input,
172 and both convey their data as strings.
173 But a TYPENAME is a string that happens to be defined as a typedef
174 or builtin type name (such as int or char)
175 and a NAME is any other symbol.
176 Contexts where this distinction is not important can use the
177 nonterminal "name", which matches either NAME or TYPENAME. */
179 %token <sval> STRING_LITERAL
180 %token <lval> BOOLEAN_LITERAL
182 %token <tsym> TYPENAME
184 %type <ssym> name_not_typename
186 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
187 but which would parse as a valid number in the current input radix.
188 E.g. "c" when input_radix==16. Depending on the parse, it will be
189 turned into a name or into a number. */
191 %token <ssym> NAME_OR_INT
196 /* Special type cases, put in to allow the parser to distinguish different
198 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
199 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
200 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
201 %token BOOL_AND BOOL_OR BOOL_NOT
202 %token <lval> CHARACTER
204 %token <voidval> VARIABLE
206 %token <opcode> ASSIGN_MODIFY
210 %right '=' ASSIGN_MODIFY
219 %left LESSTHAN GREATERTHAN LEQ GEQ
237 { write_exp_elt_opcode(OP_TYPE);
238 write_exp_elt_type($1);
239 write_exp_elt_opcode(OP_TYPE); }
246 /* Expressions, not including the comma operator. */
247 exp : '*' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_IND); }
251 exp : '&' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_ADDR); }
255 exp : '-' exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_NEG); }
259 exp : BOOL_NOT exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
263 exp : '~' exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
267 exp : SIZEOF exp %prec UNARY
268 { write_exp_elt_opcode (UNOP_SIZEOF); }
271 /* No more explicit array operators, we treat everything in F77 as
272 a function call. The disambiguation as to whether we are
273 doing a subscript operation or a function call is done
277 { start_arglist (); }
279 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
280 write_exp_elt_longcst ((LONGEST) end_arglist ());
281 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
295 arglist : arglist ',' exp %prec ABOVE_COMMA
299 /* There are four sorts of subrange types in F90. */
301 subrange: exp ':' exp %prec ABOVE_COMMA
302 { write_exp_elt_opcode (OP_F90_RANGE);
303 write_exp_elt_longcst (NONE_BOUND_DEFAULT);
304 write_exp_elt_opcode (OP_F90_RANGE); }
307 subrange: exp ':' %prec ABOVE_COMMA
308 { write_exp_elt_opcode (OP_F90_RANGE);
309 write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
310 write_exp_elt_opcode (OP_F90_RANGE); }
313 subrange: ':' exp %prec ABOVE_COMMA
314 { write_exp_elt_opcode (OP_F90_RANGE);
315 write_exp_elt_longcst (LOW_BOUND_DEFAULT);
316 write_exp_elt_opcode (OP_F90_RANGE); }
319 subrange: ':' %prec ABOVE_COMMA
320 { write_exp_elt_opcode (OP_F90_RANGE);
321 write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
322 write_exp_elt_opcode (OP_F90_RANGE); }
325 complexnum: exp ',' exp
329 exp : '(' complexnum ')'
330 { write_exp_elt_opcode(OP_COMPLEX);
331 write_exp_elt_type (parse_f_type->builtin_complex_s16);
332 write_exp_elt_opcode(OP_COMPLEX); }
335 exp : '(' type ')' exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_CAST);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_CAST); }
342 { write_exp_elt_opcode (STRUCTOP_STRUCT);
343 write_exp_string ($3);
344 write_exp_elt_opcode (STRUCTOP_STRUCT); }
347 /* Binary operators in order of decreasing precedence. */
350 { write_exp_elt_opcode (BINOP_REPEAT); }
353 exp : exp STARSTAR exp
354 { write_exp_elt_opcode (BINOP_EXP); }
358 { write_exp_elt_opcode (BINOP_MUL); }
362 { write_exp_elt_opcode (BINOP_DIV); }
366 { write_exp_elt_opcode (BINOP_ADD); }
370 { write_exp_elt_opcode (BINOP_SUB); }
374 { write_exp_elt_opcode (BINOP_LSH); }
378 { write_exp_elt_opcode (BINOP_RSH); }
382 { write_exp_elt_opcode (BINOP_EQUAL); }
385 exp : exp NOTEQUAL exp
386 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
390 { write_exp_elt_opcode (BINOP_LEQ); }
394 { write_exp_elt_opcode (BINOP_GEQ); }
397 exp : exp LESSTHAN exp
398 { write_exp_elt_opcode (BINOP_LESS); }
401 exp : exp GREATERTHAN exp
402 { write_exp_elt_opcode (BINOP_GTR); }
406 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
410 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
414 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
417 exp : exp BOOL_AND exp
418 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
422 exp : exp BOOL_OR exp
423 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
427 { write_exp_elt_opcode (BINOP_ASSIGN); }
430 exp : exp ASSIGN_MODIFY exp
431 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
432 write_exp_elt_opcode ($2);
433 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
437 { write_exp_elt_opcode (OP_LONG);
438 write_exp_elt_type ($1.type);
439 write_exp_elt_longcst ((LONGEST)($1.val));
440 write_exp_elt_opcode (OP_LONG); }
445 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
446 write_exp_elt_opcode (OP_LONG);
447 write_exp_elt_type (val.typed_val.type);
448 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
449 write_exp_elt_opcode (OP_LONG); }
453 { write_exp_elt_opcode (OP_DOUBLE);
454 write_exp_elt_type (parse_f_type->builtin_real_s8);
455 write_exp_elt_dblcst ($1);
456 write_exp_elt_opcode (OP_DOUBLE); }
465 exp : SIZEOF '(' type ')' %prec UNARY
466 { write_exp_elt_opcode (OP_LONG);
467 write_exp_elt_type (parse_f_type->builtin_integer);
469 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
470 write_exp_elt_opcode (OP_LONG); }
473 exp : BOOLEAN_LITERAL
474 { write_exp_elt_opcode (OP_BOOL);
475 write_exp_elt_longcst ((LONGEST) $1);
476 write_exp_elt_opcode (OP_BOOL);
482 write_exp_elt_opcode (OP_STRING);
483 write_exp_string ($1);
484 write_exp_elt_opcode (OP_STRING);
488 variable: name_not_typename
489 { struct symbol *sym = $1.sym;
493 if (symbol_read_needs_frame (sym))
495 if (innermost_block == 0 ||
496 contained_in (block_found,
498 innermost_block = block_found;
500 write_exp_elt_opcode (OP_VAR_VALUE);
501 /* We want to use the selected frame, not
502 another more inner frame which happens to
503 be in the same block. */
504 write_exp_elt_block (NULL);
505 write_exp_elt_sym (sym);
506 write_exp_elt_opcode (OP_VAR_VALUE);
511 struct minimal_symbol *msymbol;
512 char *arg = copy_name ($1.stoken);
515 lookup_minimal_symbol (arg, NULL, NULL);
517 write_exp_msymbol (msymbol);
518 else if (!have_full_symbols () && !have_partial_symbols ())
519 error ("No symbol table is loaded. Use the \"file\" command.");
521 error ("No symbol \"%s\" in current context.",
522 copy_name ($1.stoken));
534 /* This is where the interesting stuff happens. */
537 struct type *follow_type = $1;
538 struct type *range_type;
547 follow_type = lookup_pointer_type (follow_type);
550 follow_type = lookup_reference_type (follow_type);
553 array_size = pop_type_int ();
554 if (array_size != -1)
557 create_range_type ((struct type *) NULL,
558 parse_f_type->builtin_integer,
561 create_array_type ((struct type *) NULL,
562 follow_type, range_type);
565 follow_type = lookup_pointer_type (follow_type);
568 follow_type = lookup_function_type (follow_type);
576 { push_type (tp_pointer); $$ = 0; }
578 { push_type (tp_pointer); $$ = $2; }
580 { push_type (tp_reference); $$ = 0; }
582 { push_type (tp_reference); $$ = $2; }
586 direct_abs_decl: '(' abs_decl ')'
588 | direct_abs_decl func_mod
589 { push_type (tp_function); }
591 { push_type (tp_function); }
596 | '(' nonempty_typelist ')'
597 { free ($2); $$ = 0; }
600 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
604 { $$ = parse_f_type->builtin_integer; }
606 { $$ = parse_f_type->builtin_integer_s2; }
608 { $$ = parse_f_type->builtin_character; }
610 { $$ = parse_f_type->builtin_logical; }
612 { $$ = parse_f_type->builtin_logical_s2; }
614 { $$ = parse_f_type->builtin_logical_s1; }
616 { $$ = parse_f_type->builtin_real; }
618 { $$ = parse_f_type->builtin_real_s8; }
620 { $$ = parse_f_type->builtin_real_s16; }
622 { $$ = parse_f_type->builtin_complex_s8; }
623 | COMPLEX_S16_KEYWORD
624 { $$ = parse_f_type->builtin_complex_s16; }
625 | COMPLEX_S32_KEYWORD
626 { $$ = parse_f_type->builtin_complex_s32; }
631 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
632 $<ivec>$[0] = 1; /* Number of types in vector */
635 | nonempty_typelist ',' type
636 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
637 $$ = (struct type **) realloc ((char *) $1, len);
638 $$[$<ivec>$[0]] = $3;
646 name_not_typename : NAME
647 /* These would be useful if name_not_typename was useful, but it is just
648 a fake for "variable", so these cause reduce/reduce conflicts because
649 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
650 =exp) or just an exp. If name_not_typename was ever used in an lvalue
651 context where only a name could occur, this might be useful.
658 /* Take care of parsing a number (anything that starts with a digit).
659 Set yylval and return the token type; update lexptr.
660 LEN is the number of characters in it. */
662 /*** Needs some error checking for the float case ***/
665 parse_number (p, len, parsed_float, putithere)
674 int base = input_radix;
678 struct type *signed_type;
679 struct type *unsigned_type;
683 /* It's a float since it contains a point or an exponent. */
684 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
688 for (tmp2 = tmp; *tmp2; ++tmp2)
689 if (*tmp2 == 'd' || *tmp2 == 'D')
691 putithere->dval = atof (tmp);
696 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
732 if (len == 0 && c == 'l')
734 else if (len == 0 && c == 'u')
739 if (c >= '0' && c <= '9')
741 else if (c >= 'a' && c <= 'f')
744 return ERROR; /* Char not a digit */
746 return ERROR; /* Invalid digit in this base */
750 /* Portably test for overflow (only works for nonzero values, so make
751 a second check for zero). */
752 if ((prevn >= n) && n != 0)
753 unsigned_p=1; /* Try something unsigned */
754 /* If range checking enabled, portably test for unsigned overflow. */
755 if (RANGE_CHECK && n != 0)
757 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
758 range_error("Overflow on numeric constant.");
763 /* If the number is too big to be an int, or it's got an l suffix
764 then it's a long. Work out if this has to be a long by
765 shifting right and and seeing if anything remains, and the
766 target int size is different to the target long size.
768 In the expression below, we could have tested
769 (n >> gdbarch_int_bit (parse_gdbarch))
770 to see if it was zero,
771 but too many compilers warn about that, when ints and longs
772 are the same size. So we shift it twice, with fewer bits
773 each time, for the same result. */
775 if ((gdbarch_int_bit (parse_gdbarch) != gdbarch_long_bit (parse_gdbarch)
777 >> (gdbarch_int_bit (parse_gdbarch)-2))) /* Avoid shift warning */
780 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch)-1);
781 unsigned_type = parse_type->builtin_unsigned_long;
782 signed_type = parse_type->builtin_long;
786 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch)-1);
787 unsigned_type = parse_type->builtin_unsigned_int;
788 signed_type = parse_type->builtin_int;
791 putithere->typed_val.val = n;
793 /* If the high bit of the worked out type is set then this number
794 has to be unsigned. */
796 if (unsigned_p || (n & high_bit))
797 putithere->typed_val.type = unsigned_type;
799 putithere->typed_val.type = signed_type;
808 enum exp_opcode opcode;
811 static const struct token dot_ops[] =
813 { ".and.", BOOL_AND, BINOP_END },
814 { ".AND.", BOOL_AND, BINOP_END },
815 { ".or.", BOOL_OR, BINOP_END },
816 { ".OR.", BOOL_OR, BINOP_END },
817 { ".not.", BOOL_NOT, BINOP_END },
818 { ".NOT.", BOOL_NOT, BINOP_END },
819 { ".eq.", EQUAL, BINOP_END },
820 { ".EQ.", EQUAL, BINOP_END },
821 { ".eqv.", EQUAL, BINOP_END },
822 { ".NEQV.", NOTEQUAL, BINOP_END },
823 { ".neqv.", NOTEQUAL, BINOP_END },
824 { ".EQV.", EQUAL, BINOP_END },
825 { ".ne.", NOTEQUAL, BINOP_END },
826 { ".NE.", NOTEQUAL, BINOP_END },
827 { ".le.", LEQ, BINOP_END },
828 { ".LE.", LEQ, BINOP_END },
829 { ".ge.", GEQ, BINOP_END },
830 { ".GE.", GEQ, BINOP_END },
831 { ".gt.", GREATERTHAN, BINOP_END },
832 { ".GT.", GREATERTHAN, BINOP_END },
833 { ".lt.", LESSTHAN, BINOP_END },
834 { ".LT.", LESSTHAN, BINOP_END },
838 struct f77_boolean_val
844 static const struct f77_boolean_val boolean_values[] =
853 static const struct token f77_keywords[] =
855 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
856 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
857 { "character", CHARACTER, BINOP_END },
858 { "integer_2", INT_S2_KEYWORD, BINOP_END },
859 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
860 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
861 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
862 { "integer", INT_KEYWORD, BINOP_END },
863 { "logical", LOGICAL_KEYWORD, BINOP_END },
864 { "real_16", REAL_S16_KEYWORD, BINOP_END },
865 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
866 { "sizeof", SIZEOF, BINOP_END },
867 { "real_8", REAL_S8_KEYWORD, BINOP_END },
868 { "real", REAL_KEYWORD, BINOP_END },
872 /* Implementation of a dynamically expandable buffer for processing input
873 characters acquired through lexptr and building a value to return in
874 yylval. Ripped off from ch-exp.y */
876 static char *tempbuf; /* Current buffer contents */
877 static int tempbufsize; /* Size of allocated buffer */
878 static int tempbufindex; /* Current index into buffer */
880 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
882 #define CHECKBUF(size) \
884 if (tempbufindex + (size) >= tempbufsize) \
886 growbuf_by_size (size); \
891 /* Grow the static temp buffer if necessary, including allocating the first one
895 growbuf_by_size (count)
900 growby = max (count, GROWBY_MIN_SIZE);
901 tempbufsize += growby;
903 tempbuf = (char *) malloc (tempbufsize);
905 tempbuf = (char *) realloc (tempbuf, tempbufsize);
908 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
911 Recognize a string literal. A string literal is a nonzero sequence
912 of characters enclosed in matching single quotes, except that
913 a single character inside single quotes is a character literal, which
914 we reject as a string literal. To embed the terminator character inside
915 a string, it is simply doubled (I.E. 'this''is''one''string') */
918 match_string_literal ()
920 char *tokptr = lexptr;
922 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
925 if (*tokptr == *lexptr)
927 if (*(tokptr + 1) == *lexptr)
932 tempbuf[tempbufindex++] = *tokptr;
934 if (*tokptr == '\0' /* no terminator */
935 || tempbufindex == 0) /* no string */
939 tempbuf[tempbufindex] = '\0';
940 yylval.sval.ptr = tempbuf;
941 yylval.sval.length = tempbufindex;
943 return STRING_LITERAL;
947 /* Read one token, getting characters through lexptr. */
954 unsigned int i,token;
959 prev_lexptr = lexptr;
963 /* First of all, let us make sure we are not dealing with the
964 special tokens .true. and .false. which evaluate to 1 and 0. */
968 for (i = 0; boolean_values[i].name != NULL; i++)
970 if (strncmp (tokstart, boolean_values[i].name,
971 strlen (boolean_values[i].name)) == 0)
973 lexptr += strlen (boolean_values[i].name);
974 yylval.lval = boolean_values[i].value;
975 return BOOLEAN_LITERAL;
980 /* See if it is a special .foo. operator. */
982 for (i = 0; dot_ops[i].operator != NULL; i++)
983 if (strncmp (tokstart, dot_ops[i].operator, strlen (dot_ops[i].operator)) == 0)
985 lexptr += strlen (dot_ops[i].operator);
986 yylval.opcode = dot_ops[i].opcode;
987 return dot_ops[i].token;
990 /* See if it is an exponentiation operator. */
992 if (strncmp (tokstart, "**", 2) == 0)
995 yylval.opcode = BINOP_EXP;
999 switch (c = *tokstart)
1011 token = match_string_literal ();
1022 if (paren_depth == 0)
1029 if (comma_terminates && paren_depth == 0)
1035 /* Might be a floating point number. */
1036 if (lexptr[1] < '0' || lexptr[1] > '9')
1037 goto symbol; /* Nope, must be a symbol. */
1038 /* FALL THRU into number case. */
1051 /* It's a number. */
1052 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1054 int hex = input_radix > 10;
1056 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1061 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1069 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1070 got_dot = got_e = 1;
1071 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1072 got_dot = got_d = 1;
1073 else if (!hex && !got_dot && *p == '.')
1075 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1076 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1077 && (*p == '-' || *p == '+'))
1078 /* This is the sign of the exponent, not the end of the
1081 /* We will take any letters or digits. parse_number will
1082 complain if past the radix, or if L or U are not final. */
1083 else if ((*p < '0' || *p > '9')
1084 && ((*p < 'a' || *p > 'z')
1085 && (*p < 'A' || *p > 'Z')))
1088 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1090 if (toktype == ERROR)
1092 char *err_copy = (char *) alloca (p - tokstart + 1);
1094 memcpy (err_copy, tokstart, p - tokstart);
1095 err_copy[p - tokstart] = 0;
1096 error ("Invalid number \"%s\".", err_copy);
1127 if (!(c == '_' || c == '$'
1128 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1129 /* We must have come across a bad character (e.g. ';'). */
1130 error ("Invalid character '%c' in expression.", c);
1133 for (c = tokstart[namelen];
1134 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1135 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1136 c = tokstart[++namelen]);
1138 /* The token "if" terminates the expression and is NOT
1139 removed from the input stream. */
1141 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1146 /* Catch specific keywords. */
1148 for (i = 0; f77_keywords[i].operator != NULL; i++)
1149 if (strncmp (tokstart, f77_keywords[i].operator,
1150 strlen(f77_keywords[i].operator)) == 0)
1152 /* lexptr += strlen(f77_keywords[i].operator); */
1153 yylval.opcode = f77_keywords[i].opcode;
1154 return f77_keywords[i].token;
1157 yylval.sval.ptr = tokstart;
1158 yylval.sval.length = namelen;
1160 if (*tokstart == '$')
1162 write_dollar_variable (yylval.sval);
1166 /* Use token-type TYPENAME for symbols that happen to be defined
1167 currently as names of types; NAME for other symbols.
1168 The caller is not constrained to care about the distinction. */
1170 char *tmp = copy_name (yylval.sval);
1172 int is_a_field_of_this = 0;
1175 sym = lookup_symbol (tmp, expression_context_block,
1177 parse_language->la_language == language_cplus
1178 ? &is_a_field_of_this : NULL);
1179 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1181 yylval.tsym.type = SYMBOL_TYPE (sym);
1185 = language_lookup_primitive_type_by_name (parse_language,
1186 parse_gdbarch, tmp);
1187 if (yylval.tsym.type != NULL)
1190 /* Input names that aren't symbols but ARE valid hex numbers,
1191 when the input radix permits them, can be names or numbers
1192 depending on the parse. Note we support radixes > 16 here. */
1194 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1195 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1197 YYSTYPE newlval; /* Its value is ignored. */
1198 hextype = parse_number (tokstart, namelen, 0, &newlval);
1201 yylval.ssym.sym = sym;
1202 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1207 /* Any other kind of symbol */
1208 yylval.ssym.sym = sym;
1209 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1219 lexptr = prev_lexptr;
1221 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);