1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 Contributed by Motorola. Adapted from the C parser by Farooq Butt
7 (fmbutt@engage.sps.mot.com).
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 /* This was blantantly ripped off the C expression parser, please
25 be aware of that as you look at its basic structure -FMB */
27 /* Parse a F77 expression from text in a string,
28 and return the result as a struct expression pointer.
29 That structure contains arithmetic operations in reverse polish,
30 with constants represented by operations that are followed by special data.
31 See expression.h for the details of the format.
32 What is important here is that it can be built up sequentially
33 during the process of parsing; the lower levels of the tree always
34 come first in the result.
36 Note that malloc's and realloc's in this file are transformed to
37 xmalloc and xrealloc respectively by the same sed command in the
38 makefile that remaps any other malloc/realloc inserted by the parser
39 generator. Doing this with #defines and trying to control the interaction
40 with include files (<malloc.h> and <stdlib.h> for example) just became
41 too messy, particularly when such includes can be inserted at random
42 times by the parser generator. */
47 #include "gdb_string.h"
48 #include "expression.h"
50 #include "parser-defs.h"
53 #include "bfd.h" /* Required by objfiles.h. */
54 #include "symfile.h" /* Required by objfiles.h. */
55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
59 #define parse_type builtin_type (parse_gdbarch)
60 #define parse_f_type builtin_f_type (parse_gdbarch)
62 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
63 as well as gratuitiously global symbol names, so we can have multiple
64 yacc generated parsers in gdb. Note that these are only the variables
65 produced by yacc. If other parser generators (bison, byacc, etc) produce
66 additional global names that conflict at link time, then those parser
67 generators need to be fixed instead of adding those names to this list. */
69 #define yymaxdepth f_maxdepth
70 #define yyparse f_parse
72 #define yyerror f_error
75 #define yydebug f_debug
84 #define yyerrflag f_errflag
85 #define yynerrs f_nerrs
90 #define yystate f_state
96 #define yyreds f_reds /* With YYDEBUG defined */
97 #define yytoks f_toks /* With YYDEBUG defined */
98 #define yyname f_name /* With YYDEBUG defined */
99 #define yyrule f_rule /* With YYDEBUG defined */
100 #define yylhs f_yylhs
101 #define yylen f_yylen
102 #define yydefred f_yydefred
103 #define yydgoto f_yydgoto
104 #define yysindex f_yysindex
105 #define yyrindex f_yyrindex
106 #define yygindex f_yygindex
107 #define yytable f_yytable
108 #define yycheck f_yycheck
111 #define YYDEBUG 1 /* Default to yydebug support */
114 #define YYFPRINTF parser_fprintf
118 static int yylex (void);
120 void yyerror (char *);
122 static void growbuf_by_size (int);
124 static int match_string_literal (void);
128 /* Although the yacc "value" of an expression is not used,
129 since the result is stored in the structure being created,
130 other node types do have values. */
144 struct symtoken ssym;
147 enum exp_opcode opcode;
148 struct internalvar *ivar;
155 /* YYSTYPE gets defined by %union */
156 static int parse_number (char *, int, int, YYSTYPE *);
159 %type <voidval> exp type_exp start variable
160 %type <tval> type typebase
161 %type <tvec> nonempty_typelist
162 /* %type <bval> block */
164 /* Fancy type parsing. */
165 %type <voidval> func_mod direct_abs_decl abs_decl
168 %token <typed_val> INT
171 /* Both NAME and TYPENAME tokens represent symbols in the input,
172 and both convey their data as strings.
173 But a TYPENAME is a string that happens to be defined as a typedef
174 or builtin type name (such as int or char)
175 and a NAME is any other symbol.
176 Contexts where this distinction is not important can use the
177 nonterminal "name", which matches either NAME or TYPENAME. */
179 %token <sval> STRING_LITERAL
180 %token <lval> BOOLEAN_LITERAL
182 %token <tsym> TYPENAME
184 %type <ssym> name_not_typename
186 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
187 but which would parse as a valid number in the current input radix.
188 E.g. "c" when input_radix==16. Depending on the parse, it will be
189 turned into a name or into a number. */
191 %token <ssym> NAME_OR_INT
196 /* Special type cases, put in to allow the parser to distinguish different
198 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
199 %token LOGICAL_S8_KEYWORD
200 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
201 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
202 %token BOOL_AND BOOL_OR BOOL_NOT
203 %token <lval> CHARACTER
205 %token <voidval> VARIABLE
207 %token <opcode> ASSIGN_MODIFY
211 %right '=' ASSIGN_MODIFY
220 %left LESSTHAN GREATERTHAN LEQ GEQ
238 { write_exp_elt_opcode(OP_TYPE);
239 write_exp_elt_type($1);
240 write_exp_elt_opcode(OP_TYPE); }
247 /* Expressions, not including the comma operator. */
248 exp : '*' exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_IND); }
252 exp : '&' exp %prec UNARY
253 { write_exp_elt_opcode (UNOP_ADDR); }
256 exp : '-' exp %prec UNARY
257 { write_exp_elt_opcode (UNOP_NEG); }
260 exp : BOOL_NOT exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
264 exp : '~' exp %prec UNARY
265 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
268 exp : SIZEOF exp %prec UNARY
269 { write_exp_elt_opcode (UNOP_SIZEOF); }
272 /* No more explicit array operators, we treat everything in F77 as
273 a function call. The disambiguation as to whether we are
274 doing a subscript operation or a function call is done
278 { start_arglist (); }
280 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
281 write_exp_elt_longcst ((LONGEST) end_arglist ());
282 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
296 arglist : arglist ',' exp %prec ABOVE_COMMA
300 /* There are four sorts of subrange types in F90. */
302 subrange: exp ':' exp %prec ABOVE_COMMA
303 { write_exp_elt_opcode (OP_F90_RANGE);
304 write_exp_elt_longcst (NONE_BOUND_DEFAULT);
305 write_exp_elt_opcode (OP_F90_RANGE); }
308 subrange: exp ':' %prec ABOVE_COMMA
309 { write_exp_elt_opcode (OP_F90_RANGE);
310 write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
311 write_exp_elt_opcode (OP_F90_RANGE); }
314 subrange: ':' exp %prec ABOVE_COMMA
315 { write_exp_elt_opcode (OP_F90_RANGE);
316 write_exp_elt_longcst (LOW_BOUND_DEFAULT);
317 write_exp_elt_opcode (OP_F90_RANGE); }
320 subrange: ':' %prec ABOVE_COMMA
321 { write_exp_elt_opcode (OP_F90_RANGE);
322 write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
323 write_exp_elt_opcode (OP_F90_RANGE); }
326 complexnum: exp ',' exp
330 exp : '(' complexnum ')'
331 { write_exp_elt_opcode(OP_COMPLEX);
332 write_exp_elt_type (parse_f_type->builtin_complex_s16);
333 write_exp_elt_opcode(OP_COMPLEX); }
336 exp : '(' type ')' exp %prec UNARY
337 { write_exp_elt_opcode (UNOP_CAST);
338 write_exp_elt_type ($2);
339 write_exp_elt_opcode (UNOP_CAST); }
343 { write_exp_elt_opcode (STRUCTOP_STRUCT);
344 write_exp_string ($3);
345 write_exp_elt_opcode (STRUCTOP_STRUCT); }
348 /* Binary operators in order of decreasing precedence. */
351 { write_exp_elt_opcode (BINOP_REPEAT); }
354 exp : exp STARSTAR exp
355 { write_exp_elt_opcode (BINOP_EXP); }
359 { write_exp_elt_opcode (BINOP_MUL); }
363 { write_exp_elt_opcode (BINOP_DIV); }
367 { write_exp_elt_opcode (BINOP_ADD); }
371 { write_exp_elt_opcode (BINOP_SUB); }
375 { write_exp_elt_opcode (BINOP_LSH); }
379 { write_exp_elt_opcode (BINOP_RSH); }
383 { write_exp_elt_opcode (BINOP_EQUAL); }
386 exp : exp NOTEQUAL exp
387 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
391 { write_exp_elt_opcode (BINOP_LEQ); }
395 { write_exp_elt_opcode (BINOP_GEQ); }
398 exp : exp LESSTHAN exp
399 { write_exp_elt_opcode (BINOP_LESS); }
402 exp : exp GREATERTHAN exp
403 { write_exp_elt_opcode (BINOP_GTR); }
407 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
411 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
415 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
418 exp : exp BOOL_AND exp
419 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
423 exp : exp BOOL_OR exp
424 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
428 { write_exp_elt_opcode (BINOP_ASSIGN); }
431 exp : exp ASSIGN_MODIFY exp
432 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
433 write_exp_elt_opcode ($2);
434 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
438 { write_exp_elt_opcode (OP_LONG);
439 write_exp_elt_type ($1.type);
440 write_exp_elt_longcst ((LONGEST)($1.val));
441 write_exp_elt_opcode (OP_LONG); }
446 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
447 write_exp_elt_opcode (OP_LONG);
448 write_exp_elt_type (val.typed_val.type);
449 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
450 write_exp_elt_opcode (OP_LONG); }
454 { write_exp_elt_opcode (OP_DOUBLE);
455 write_exp_elt_type (parse_f_type->builtin_real_s8);
456 write_exp_elt_dblcst ($1);
457 write_exp_elt_opcode (OP_DOUBLE); }
466 exp : SIZEOF '(' type ')' %prec UNARY
467 { write_exp_elt_opcode (OP_LONG);
468 write_exp_elt_type (parse_f_type->builtin_integer);
470 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
471 write_exp_elt_opcode (OP_LONG); }
474 exp : BOOLEAN_LITERAL
475 { write_exp_elt_opcode (OP_BOOL);
476 write_exp_elt_longcst ((LONGEST) $1);
477 write_exp_elt_opcode (OP_BOOL);
483 write_exp_elt_opcode (OP_STRING);
484 write_exp_string ($1);
485 write_exp_elt_opcode (OP_STRING);
489 variable: name_not_typename
490 { struct symbol *sym = $1.sym;
494 if (symbol_read_needs_frame (sym))
496 if (innermost_block == 0
497 || contained_in (block_found,
499 innermost_block = block_found;
501 write_exp_elt_opcode (OP_VAR_VALUE);
502 /* We want to use the selected frame, not
503 another more inner frame which happens to
504 be in the same block. */
505 write_exp_elt_block (NULL);
506 write_exp_elt_sym (sym);
507 write_exp_elt_opcode (OP_VAR_VALUE);
512 struct minimal_symbol *msymbol;
513 char *arg = copy_name ($1.stoken);
516 lookup_minimal_symbol (arg, NULL, NULL);
518 write_exp_msymbol (msymbol);
519 else if (!have_full_symbols () && !have_partial_symbols ())
520 error (_("No symbol table is loaded. Use the \"file\" command."));
522 error (_("No symbol \"%s\" in current context."),
523 copy_name ($1.stoken));
535 /* This is where the interesting stuff happens. */
538 struct type *follow_type = $1;
539 struct type *range_type;
548 follow_type = lookup_pointer_type (follow_type);
551 follow_type = lookup_reference_type (follow_type);
554 array_size = pop_type_int ();
555 if (array_size != -1)
558 create_range_type ((struct type *) NULL,
559 parse_f_type->builtin_integer,
562 create_array_type ((struct type *) NULL,
563 follow_type, range_type);
566 follow_type = lookup_pointer_type (follow_type);
569 follow_type = lookup_function_type (follow_type);
577 { push_type (tp_pointer); $$ = 0; }
579 { push_type (tp_pointer); $$ = $2; }
581 { push_type (tp_reference); $$ = 0; }
583 { push_type (tp_reference); $$ = $2; }
587 direct_abs_decl: '(' abs_decl ')'
589 | direct_abs_decl func_mod
590 { push_type (tp_function); }
592 { push_type (tp_function); }
597 | '(' nonempty_typelist ')'
598 { free ($2); $$ = 0; }
601 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
605 { $$ = parse_f_type->builtin_integer; }
607 { $$ = parse_f_type->builtin_integer_s2; }
609 { $$ = parse_f_type->builtin_character; }
611 { $$ = parse_f_type->builtin_logical_s8; }
613 { $$ = parse_f_type->builtin_logical; }
615 { $$ = parse_f_type->builtin_logical_s2; }
617 { $$ = parse_f_type->builtin_logical_s1; }
619 { $$ = parse_f_type->builtin_real; }
621 { $$ = parse_f_type->builtin_real_s8; }
623 { $$ = parse_f_type->builtin_real_s16; }
625 { $$ = parse_f_type->builtin_complex_s8; }
626 | COMPLEX_S16_KEYWORD
627 { $$ = parse_f_type->builtin_complex_s16; }
628 | COMPLEX_S32_KEYWORD
629 { $$ = parse_f_type->builtin_complex_s32; }
634 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
635 $<ivec>$[0] = 1; /* Number of types in vector */
638 | nonempty_typelist ',' type
639 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
640 $$ = (struct type **) realloc ((char *) $1, len);
641 $$[$<ivec>$[0]] = $3;
649 name_not_typename : NAME
650 /* These would be useful if name_not_typename was useful, but it is just
651 a fake for "variable", so these cause reduce/reduce conflicts because
652 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
653 =exp) or just an exp. If name_not_typename was ever used in an lvalue
654 context where only a name could occur, this might be useful.
661 /* Take care of parsing a number (anything that starts with a digit).
662 Set yylval and return the token type; update lexptr.
663 LEN is the number of characters in it. */
665 /*** Needs some error checking for the float case ***/
668 parse_number (p, len, parsed_float, putithere)
677 int base = input_radix;
681 struct type *signed_type;
682 struct type *unsigned_type;
686 /* It's a float since it contains a point or an exponent. */
687 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
691 for (tmp2 = tmp; *tmp2; ++tmp2)
692 if (*tmp2 == 'd' || *tmp2 == 'D')
694 putithere->dval = atof (tmp);
699 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
735 if (len == 0 && c == 'l')
737 else if (len == 0 && c == 'u')
742 if (c >= '0' && c <= '9')
744 else if (c >= 'a' && c <= 'f')
747 return ERROR; /* Char not a digit */
749 return ERROR; /* Invalid digit in this base */
753 /* Portably test for overflow (only works for nonzero values, so make
754 a second check for zero). */
755 if ((prevn >= n) && n != 0)
756 unsigned_p=1; /* Try something unsigned */
757 /* If range checking enabled, portably test for unsigned overflow. */
758 if (RANGE_CHECK && n != 0)
760 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
761 range_error (_("Overflow on numeric constant."));
766 /* If the number is too big to be an int, or it's got an l suffix
767 then it's a long. Work out if this has to be a long by
768 shifting right and seeing if anything remains, and the
769 target int size is different to the target long size.
771 In the expression below, we could have tested
772 (n >> gdbarch_int_bit (parse_gdbarch))
773 to see if it was zero,
774 but too many compilers warn about that, when ints and longs
775 are the same size. So we shift it twice, with fewer bits
776 each time, for the same result. */
778 if ((gdbarch_int_bit (parse_gdbarch) != gdbarch_long_bit (parse_gdbarch)
780 >> (gdbarch_int_bit (parse_gdbarch)-2))) /* Avoid shift warning */
783 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch)-1);
784 unsigned_type = parse_type->builtin_unsigned_long;
785 signed_type = parse_type->builtin_long;
789 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch)-1);
790 unsigned_type = parse_type->builtin_unsigned_int;
791 signed_type = parse_type->builtin_int;
794 putithere->typed_val.val = n;
796 /* If the high bit of the worked out type is set then this number
797 has to be unsigned. */
799 if (unsigned_p || (n & high_bit))
800 putithere->typed_val.type = unsigned_type;
802 putithere->typed_val.type = signed_type;
811 enum exp_opcode opcode;
814 static const struct token dot_ops[] =
816 { ".and.", BOOL_AND, BINOP_END },
817 { ".AND.", BOOL_AND, BINOP_END },
818 { ".or.", BOOL_OR, BINOP_END },
819 { ".OR.", BOOL_OR, BINOP_END },
820 { ".not.", BOOL_NOT, BINOP_END },
821 { ".NOT.", BOOL_NOT, BINOP_END },
822 { ".eq.", EQUAL, BINOP_END },
823 { ".EQ.", EQUAL, BINOP_END },
824 { ".eqv.", EQUAL, BINOP_END },
825 { ".NEQV.", NOTEQUAL, BINOP_END },
826 { ".neqv.", NOTEQUAL, BINOP_END },
827 { ".EQV.", EQUAL, BINOP_END },
828 { ".ne.", NOTEQUAL, BINOP_END },
829 { ".NE.", NOTEQUAL, BINOP_END },
830 { ".le.", LEQ, BINOP_END },
831 { ".LE.", LEQ, BINOP_END },
832 { ".ge.", GEQ, BINOP_END },
833 { ".GE.", GEQ, BINOP_END },
834 { ".gt.", GREATERTHAN, BINOP_END },
835 { ".GT.", GREATERTHAN, BINOP_END },
836 { ".lt.", LESSTHAN, BINOP_END },
837 { ".LT.", LESSTHAN, BINOP_END },
841 struct f77_boolean_val
847 static const struct f77_boolean_val boolean_values[] =
856 static const struct token f77_keywords[] =
858 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
859 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
860 { "character", CHARACTER, BINOP_END },
861 { "integer_2", INT_S2_KEYWORD, BINOP_END },
862 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
863 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
864 { "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
865 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
866 { "integer", INT_KEYWORD, BINOP_END },
867 { "logical", LOGICAL_KEYWORD, BINOP_END },
868 { "real_16", REAL_S16_KEYWORD, BINOP_END },
869 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
870 { "sizeof", SIZEOF, BINOP_END },
871 { "real_8", REAL_S8_KEYWORD, BINOP_END },
872 { "real", REAL_KEYWORD, BINOP_END },
876 /* Implementation of a dynamically expandable buffer for processing input
877 characters acquired through lexptr and building a value to return in
878 yylval. Ripped off from ch-exp.y */
880 static char *tempbuf; /* Current buffer contents */
881 static int tempbufsize; /* Size of allocated buffer */
882 static int tempbufindex; /* Current index into buffer */
884 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
886 #define CHECKBUF(size) \
888 if (tempbufindex + (size) >= tempbufsize) \
890 growbuf_by_size (size); \
895 /* Grow the static temp buffer if necessary, including allocating the
896 first one on demand. */
899 growbuf_by_size (count)
904 growby = max (count, GROWBY_MIN_SIZE);
905 tempbufsize += growby;
907 tempbuf = (char *) malloc (tempbufsize);
909 tempbuf = (char *) realloc (tempbuf, tempbufsize);
912 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
915 Recognize a string literal. A string literal is a nonzero sequence
916 of characters enclosed in matching single quotes, except that
917 a single character inside single quotes is a character literal, which
918 we reject as a string literal. To embed the terminator character inside
919 a string, it is simply doubled (I.E. 'this''is''one''string') */
922 match_string_literal (void)
924 char *tokptr = lexptr;
926 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
929 if (*tokptr == *lexptr)
931 if (*(tokptr + 1) == *lexptr)
936 tempbuf[tempbufindex++] = *tokptr;
938 if (*tokptr == '\0' /* no terminator */
939 || tempbufindex == 0) /* no string */
943 tempbuf[tempbufindex] = '\0';
944 yylval.sval.ptr = tempbuf;
945 yylval.sval.length = tempbufindex;
947 return STRING_LITERAL;
951 /* Read one token, getting characters through lexptr. */
958 unsigned int i,token;
963 prev_lexptr = lexptr;
967 /* First of all, let us make sure we are not dealing with the
968 special tokens .true. and .false. which evaluate to 1 and 0. */
972 for (i = 0; boolean_values[i].name != NULL; i++)
974 if (strncmp (tokstart, boolean_values[i].name,
975 strlen (boolean_values[i].name)) == 0)
977 lexptr += strlen (boolean_values[i].name);
978 yylval.lval = boolean_values[i].value;
979 return BOOLEAN_LITERAL;
984 /* See if it is a special .foo. operator. */
986 for (i = 0; dot_ops[i].operator != NULL; i++)
987 if (strncmp (tokstart, dot_ops[i].operator,
988 strlen (dot_ops[i].operator)) == 0)
990 lexptr += strlen (dot_ops[i].operator);
991 yylval.opcode = dot_ops[i].opcode;
992 return dot_ops[i].token;
995 /* See if it is an exponentiation operator. */
997 if (strncmp (tokstart, "**", 2) == 0)
1000 yylval.opcode = BINOP_EXP;
1004 switch (c = *tokstart)
1016 token = match_string_literal ();
1027 if (paren_depth == 0)
1034 if (comma_terminates && paren_depth == 0)
1040 /* Might be a floating point number. */
1041 if (lexptr[1] < '0' || lexptr[1] > '9')
1042 goto symbol; /* Nope, must be a symbol. */
1043 /* FALL THRU into number case. */
1056 /* It's a number. */
1057 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1059 int hex = input_radix > 10;
1061 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1066 else if (c == '0' && (p[1]=='t' || p[1]=='T'
1067 || p[1]=='d' || p[1]=='D'))
1075 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1076 got_dot = got_e = 1;
1077 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1078 got_dot = got_d = 1;
1079 else if (!hex && !got_dot && *p == '.')
1081 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1082 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1083 && (*p == '-' || *p == '+'))
1084 /* This is the sign of the exponent, not the end of the
1087 /* We will take any letters or digits. parse_number will
1088 complain if past the radix, or if L or U are not final. */
1089 else if ((*p < '0' || *p > '9')
1090 && ((*p < 'a' || *p > 'z')
1091 && (*p < 'A' || *p > 'Z')))
1094 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1096 if (toktype == ERROR)
1098 char *err_copy = (char *) alloca (p - tokstart + 1);
1100 memcpy (err_copy, tokstart, p - tokstart);
1101 err_copy[p - tokstart] = 0;
1102 error (_("Invalid number \"%s\"."), err_copy);
1133 if (!(c == '_' || c == '$' || c ==':'
1134 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1135 /* We must have come across a bad character (e.g. ';'). */
1136 error (_("Invalid character '%c' in expression."), c);
1139 for (c = tokstart[namelen];
1140 (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
1141 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1142 c = tokstart[++namelen]);
1144 /* The token "if" terminates the expression and is NOT
1145 removed from the input stream. */
1147 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1152 /* Catch specific keywords. */
1154 for (i = 0; f77_keywords[i].operator != NULL; i++)
1155 if (strlen (f77_keywords[i].operator) == namelen
1156 && strncmp (tokstart, f77_keywords[i].operator, namelen) == 0)
1158 /* lexptr += strlen(f77_keywords[i].operator); */
1159 yylval.opcode = f77_keywords[i].opcode;
1160 return f77_keywords[i].token;
1163 yylval.sval.ptr = tokstart;
1164 yylval.sval.length = namelen;
1166 if (*tokstart == '$')
1168 write_dollar_variable (yylval.sval);
1172 /* Use token-type TYPENAME for symbols that happen to be defined
1173 currently as names of types; NAME for other symbols.
1174 The caller is not constrained to care about the distinction. */
1176 char *tmp = copy_name (yylval.sval);
1178 int is_a_field_of_this = 0;
1181 sym = lookup_symbol (tmp, expression_context_block,
1183 parse_language->la_language == language_cplus
1184 ? &is_a_field_of_this : NULL);
1185 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1187 yylval.tsym.type = SYMBOL_TYPE (sym);
1191 = language_lookup_primitive_type_by_name (parse_language,
1192 parse_gdbarch, tmp);
1193 if (yylval.tsym.type != NULL)
1196 /* Input names that aren't symbols but ARE valid hex numbers,
1197 when the input radix permits them, can be names or numbers
1198 depending on the parse. Note we support radixes > 16 here. */
1200 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1201 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1203 YYSTYPE newlval; /* Its value is ignored. */
1204 hextype = parse_number (tokstart, namelen, 0, &newlval);
1207 yylval.ssym.sym = sym;
1208 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1213 /* Any other kind of symbol */
1214 yylval.ssym.sym = sym;
1215 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1225 lexptr = prev_lexptr;
1227 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);