1 /* Top level stuff for GDB, the GNU debugger.
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
32 #include "exceptions.h"
33 #include "cli/cli-script.h" /* for reset_command_nest_depth */
35 #include "gdbthread.h"
37 #include "continuations.h"
38 #include "gdbcmd.h" /* for dont_repeat() */
42 /* readline include files. */
43 #include "readline/readline.h"
44 #include "readline/history.h"
46 /* readline defines this. */
49 static void rl_callback_read_char_wrapper (gdb_client_data client_data);
50 static void command_line_handler (char *rl);
51 static void change_line_handler (void);
52 static void command_handler (char *command);
53 static char *top_level_prompt (void);
55 /* Signal handlers. */
57 static void handle_sigquit (int sig);
60 static void handle_sighup (int sig);
62 static void handle_sigfpe (int sig);
64 /* Functions to be invoked by the event loop in response to
66 #if defined (SIGQUIT) || defined (SIGHUP)
67 static void async_do_nothing (gdb_client_data);
70 static void async_disconnect (gdb_client_data);
72 static void async_float_handler (gdb_client_data);
74 static void async_stop_sig (gdb_client_data);
76 static void async_sigterm_handler (gdb_client_data arg);
78 /* Readline offers an alternate interface, via callback
79 functions. These are all included in the file callback.c in the
80 readline distribution. This file provides (mainly) a function, which
81 the event loop uses as callback (i.e. event handler) whenever an event
82 is detected on the standard input file descriptor.
83 readline_callback_read_char is called (by the GDB event loop) whenever
84 there is a new character ready on the input stream. This function
85 incrementally builds a buffer internal to readline where it
86 accumulates the line read up to the point of invocation. In the
87 special case in which the character read is newline, the function
88 invokes a GDB supplied callback routine, which does the processing of
89 a full command line. This latter routine is the asynchronous analog
90 of the old command_line_input in gdb. Instead of invoking (and waiting
91 for) readline to read the command line and pass it back to
92 command_loop for processing, the new command_line_handler function has
93 the command line already available as its parameter. INPUT_HANDLER is
94 to be set to the function that readline will invoke when a complete
95 line of input is ready. CALL_READLINE is to be set to the function
96 that readline offers as callback to the event_loop. */
98 void (*input_handler) (char *);
99 void (*call_readline) (gdb_client_data);
101 /* Important variables for the event loop. */
103 /* This is used to determine if GDB is using the readline library or
104 its own simplified form of readline. It is used by the asynchronous
105 form of the set editing command.
106 ezannoni: as of 1999-04-29 I expect that this
107 variable will not be used after gdb is changed to use the event
108 loop as default engine, and event-top.c is merged into top.c. */
109 int async_command_editing_p;
111 /* This is the annotation suffix that will be used when the
112 annotation_level is 2. */
113 char *async_annotation_suffix;
115 /* This is used to display the notification of the completion of an
116 asynchronous execution command. */
117 int exec_done_display_p = 0;
119 /* This is the file descriptor for the input stream that GDB uses to
120 read commands from. */
123 /* Signal handling variables. */
124 /* Each of these is a pointer to a function that the event loop will
125 invoke if the corresponding signal has received. The real signal
126 handlers mark these functions as ready to be executed and the event
127 loop, in a later iteration, calls them. See the function
128 invoke_async_signal_handler. */
129 static struct async_signal_handler *sigint_token;
131 static struct async_signal_handler *sighup_token;
134 static struct async_signal_handler *sigquit_token;
136 static struct async_signal_handler *sigfpe_token;
138 static struct async_signal_handler *sigtstp_token;
140 static struct async_signal_handler *async_sigterm_token;
142 /* Structure to save a partially entered command. This is used when
143 the user types '\' at the end of a command line. This is necessary
144 because each line of input is handled by a different call to
145 command_line_handler, and normally there is no state retained
146 between different calls. */
147 static int more_to_come = 0;
149 struct readline_input_state
152 char *linebuffer_ptr;
154 readline_input_state;
156 /* This hook is called by rl_callback_read_char_wrapper after each
157 character is processed. */
158 void (*after_char_processing_hook) (void);
161 /* Wrapper function for calling into the readline library. The event
162 loop expects the callback function to have a paramter, while
163 readline expects none. */
165 rl_callback_read_char_wrapper (gdb_client_data client_data)
167 rl_callback_read_char ();
168 if (after_char_processing_hook)
169 (*after_char_processing_hook) ();
172 /* Initialize all the necessary variables, start the event loop,
173 register readline, and stdin, start the loop. The DATA is the
174 interpreter data cookie, ignored for now. */
177 cli_command_loop (void *data)
179 display_gdb_prompt (0);
181 /* Now it's time to start the event loop. */
185 /* Change the function to be invoked every time there is a character
186 ready on stdin. This is used when the user sets the editing off,
187 therefore bypassing readline, and letting gdb handle the input
188 itself, via gdb_readline2. Also it is used in the opposite case in
189 which the user sets editing on again, by restoring readline
190 handling of the input. */
192 change_line_handler (void)
194 /* NOTE: this operates on input_fd, not instream. If we are reading
195 commands from a file, instream will point to the file. However in
196 async mode, we always read commands from a file with editing
197 off. This means that the 'set editing on/off' will have effect
198 only on the interactive session. */
200 if (async_command_editing_p)
202 /* Turn on editing by using readline. */
203 call_readline = rl_callback_read_char_wrapper;
204 input_handler = command_line_handler;
208 /* Turn off editing by using gdb_readline2. */
209 rl_callback_handler_remove ();
210 call_readline = gdb_readline2;
212 /* Set up the command handler as well, in case we are called as
213 first thing from .gdbinit. */
214 input_handler = command_line_handler;
218 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
219 prompt that is displayed is the current top level prompt.
220 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
223 This is used after each gdb command has completed, and in the
226 1. When the user enters a command line which is ended by '\'
227 indicating that the command will continue on the next line. In
228 that case the prompt that is displayed is the empty string.
230 2. When the user is entering 'commands' for a breakpoint, or
231 actions for a tracepoint. In this case the prompt will be '>'
233 3. On prompting for pagination. */
236 display_gdb_prompt (char *new_prompt)
238 char *actual_gdb_prompt = NULL;
239 struct cleanup *old_chain;
241 annotate_display_prompt ();
243 /* Reset the nesting depth used when trace-commands is set. */
244 reset_command_nest_depth ();
246 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
248 /* Do not call the python hook on an explicit prompt change as
249 passed to this function, as this forms a secondary/local prompt,
250 IE, displayed but not set. */
255 /* This is to trick readline into not trying to display the
256 prompt. Even though we display the prompt using this
257 function, readline still tries to do its own display if
258 we don't call rl_callback_handler_install and
259 rl_callback_handler_remove (which readline detects
260 because a global variable is not set). If readline did
261 that, it could mess up gdb signal handlers for SIGINT.
262 Readline assumes that between calls to rl_set_signals and
263 rl_clear_signals gdb doesn't do anything with the signal
264 handlers. Well, that's not the case, because when the
265 target executes we change the SIGINT signal handler. If
266 we allowed readline to display the prompt, the signal
267 handler change would happen exactly between the calls to
268 the above two functions. Calling
269 rl_callback_handler_remove(), does the job. */
271 rl_callback_handler_remove ();
272 do_cleanups (old_chain);
277 /* Display the top level prompt. */
278 actual_gdb_prompt = top_level_prompt ();
282 actual_gdb_prompt = xstrdup (new_prompt);
284 if (async_command_editing_p)
286 rl_callback_handler_remove ();
287 rl_callback_handler_install (actual_gdb_prompt, input_handler);
289 /* new_prompt at this point can be the top of the stack or the one
290 passed in. It can't be NULL. */
293 /* Don't use a _filtered function here. It causes the assumed
294 character position to be off, since the newline we read from
295 the user is not accounted for. */
296 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
297 gdb_flush (gdb_stdout);
300 do_cleanups (old_chain);
303 /* Return the top level prompt, as specified by "set prompt", possibly
304 overriden by the python gdb.prompt_hook hook, and then composed
305 with the prompt prefix and suffix (annotations). The caller is
306 responsible for freeing the returned string. */
309 top_level_prompt (void)
314 char *composed_prompt;
315 size_t prompt_length;
317 /* Give observers a chance of changing the prompt. E.g., the python
318 `gdb.prompt_hook' is installed as an observer. */
319 observer_notify_before_prompt (get_prompt ());
321 prompt = xstrdup (get_prompt ());
323 if (annotation_level >= 2)
325 /* Prefix needs to have new line at end. */
326 prefix = (char *) alloca (strlen (async_annotation_suffix) + 10);
327 strcpy (prefix, "\n\032\032pre-");
328 strcat (prefix, async_annotation_suffix);
329 strcat (prefix, "\n");
331 /* Suffix needs to have a new line at end and \032 \032 at
333 suffix = (char *) alloca (strlen (async_annotation_suffix) + 6);
334 strcpy (suffix, "\n\032\032");
335 strcat (suffix, async_annotation_suffix);
336 strcat (suffix, "\n");
344 prompt_length = strlen (prefix) + strlen (prompt) + strlen (suffix);
345 composed_prompt = xmalloc (prompt_length + 1);
347 strcpy (composed_prompt, prefix);
348 strcat (composed_prompt, prompt);
349 strcat (composed_prompt, suffix);
353 return composed_prompt;
356 /* When there is an event ready on the stdin file desriptor, instead
357 of calling readline directly throught the callback function, or
358 instead of calling gdb_readline2, give gdb a chance to detect
359 errors and do something. */
361 stdin_event_handler (int error, gdb_client_data client_data)
365 printf_unfiltered (_("error detected on stdin\n"));
366 delete_file_handler (input_fd);
367 discard_all_continuations ();
368 discard_all_intermediate_continuations ();
369 /* If stdin died, we may as well kill gdb. */
370 quit_command ((char *) 0, stdin == instream);
373 (*call_readline) (client_data);
376 /* Re-enable stdin after the end of an execution command in
377 synchronous mode, or after an error from the target, and we aborted
378 the exec operation. */
381 async_enable_stdin (void)
385 /* See NOTE in async_disable_stdin(). */
386 /* FIXME: cagney/1999-09-27: Call this before clearing
387 sync_execution. Current target_terminal_ours() implementations
388 check for sync_execution before switching the terminal. */
389 target_terminal_ours ();
394 /* Disable reads from stdin (the console) marking the command as
398 async_disable_stdin (void)
404 /* Handles a gdb command. This function is called by
405 command_line_handler, which has processed one or more input lines
407 /* NOTE: 1999-04-30 This is the asynchronous version of the command_loop
408 function. The command_loop function will be obsolete when we
409 switch to use the event loop at every execution of gdb. */
411 command_handler (char *command)
413 int stdin_is_tty = ISATTY (stdin);
414 struct cleanup *stat_chain;
417 if (instream == stdin && stdin_is_tty)
418 reinitialize_more_filter ();
420 /* If readline returned a NULL command, it means that the connection
421 with the terminal is gone. This happens at the end of a
422 testsuite run, after Expect has hung up but GDB is still alive.
423 In such a case, we just quit gdb killing the inferior program
427 printf_unfiltered ("quit\n");
428 execute_command ("quit", stdin == instream);
431 stat_chain = make_command_stats_cleanup (1);
433 execute_command (command, instream == stdin);
435 /* Do any commands attached to breakpoint we stopped at. */
436 bpstat_do_actions ();
438 do_cleanups (stat_chain);
441 /* Handle a complete line of input. This is called by the callback
442 mechanism within the readline library. Deal with incomplete
443 commands as well, by saving the partial input in a global
446 /* NOTE: 1999-04-30 This is the asynchronous version of the
447 command_line_input function; command_line_input will become
448 obsolete once we use the event loop as the default mechanism in
451 command_line_handler (char *rl)
453 static char *linebuffer = 0;
454 static unsigned linelength = 0;
458 int repeat = (instream == stdin);
460 if (annotation_level > 1 && instream == stdin)
462 printf_unfiltered (("\n\032\032post-"));
463 puts_unfiltered (async_annotation_suffix);
464 printf_unfiltered (("\n"));
470 linebuffer = (char *) xmalloc (linelength);
477 strcpy (linebuffer, readline_input_state.linebuffer);
478 p = readline_input_state.linebuffer_ptr;
479 xfree (readline_input_state.linebuffer);
485 signal (STOP_SIGNAL, handle_stop_sig);
488 /* Make sure that all output has been output. Some machines may let
489 you get away with leaving out some of the gdb_flush, but not
492 gdb_flush (gdb_stdout);
493 gdb_flush (gdb_stderr);
495 if (source_file_name != NULL)
496 ++source_line_number;
498 /* If we are in this case, then command_handler will call quit
499 and exit from gdb. */
500 if (!rl || rl == (char *) EOF)
505 if (strlen (rl) + 1 + (p - linebuffer) > linelength)
507 linelength = strlen (rl) + 1 + (p - linebuffer);
508 nline = (char *) xrealloc (linebuffer, linelength);
509 p += nline - linebuffer;
513 /* Copy line. Don't copy null at end. (Leaves line alone
514 if this was just a newline). */
518 xfree (rl); /* Allocated in readline. */
520 if (p > linebuffer && *(p - 1) == '\\')
523 p--; /* Put on top of '\'. */
525 readline_input_state.linebuffer = xstrdup (linebuffer);
526 readline_input_state.linebuffer_ptr = p;
528 /* We will not invoke a execute_command if there is more
529 input expected to complete the command. So, we need to
530 print an empty prompt here. */
532 display_gdb_prompt ("");
538 signal (STOP_SIGNAL, SIG_DFL);
541 #define SERVER_COMMAND_LENGTH 7
543 (p - linebuffer > SERVER_COMMAND_LENGTH)
544 && strncmp (linebuffer, "server ", SERVER_COMMAND_LENGTH) == 0;
547 /* Note that we don't set `line'. Between this and the check in
548 dont_repeat, this insures that repeating will still do the
551 command_handler (linebuffer + SERVER_COMMAND_LENGTH);
552 display_gdb_prompt (0);
556 /* Do history expansion if that is wished. */
557 if (history_expansion_p && instream == stdin
558 && ISATTY (instream))
563 *p = '\0'; /* Insert null now. */
564 expanded = history_expand (linebuffer, &history_value);
567 /* Print the changes. */
568 printf_unfiltered ("%s\n", history_value);
570 /* If there was an error, call this function again. */
573 xfree (history_value);
576 if (strlen (history_value) > linelength)
578 linelength = strlen (history_value) + 1;
579 linebuffer = (char *) xrealloc (linebuffer, linelength);
581 strcpy (linebuffer, history_value);
582 p = linebuffer + strlen (linebuffer);
584 xfree (history_value);
587 /* If we just got an empty line, and that is supposed to repeat the
588 previous command, return the value in the global buffer. */
589 if (repeat && p == linebuffer && *p != '\\')
591 command_handler (saved_command_line);
592 display_gdb_prompt (0);
596 for (p1 = linebuffer; *p1 == ' ' || *p1 == '\t'; p1++);
599 command_handler (saved_command_line);
600 display_gdb_prompt (0);
606 /* Add line to history if appropriate. */
607 if (*linebuffer && input_from_terminal_p ())
608 add_history (linebuffer);
610 /* Note: lines consisting solely of comments are added to the command
611 history. This is useful when you type a command, and then
612 realize you don't want to execute it quite yet. You can comment
613 out the command and then later fetch it from the value history
614 and remove the '#'. The kill ring is probably better, but some
615 people are in the habit of commenting things out. */
617 *p1 = '\0'; /* Found a comment. */
619 /* Save into global buffer if appropriate. */
622 if (linelength > saved_command_line_size)
624 saved_command_line = xrealloc (saved_command_line, linelength);
625 saved_command_line_size = linelength;
627 strcpy (saved_command_line, linebuffer);
630 command_handler (saved_command_line);
631 display_gdb_prompt (0);
636 command_handler (linebuffer);
637 display_gdb_prompt (0);
641 /* Does reading of input from terminal w/o the editing features
642 provided by the readline library. */
644 /* NOTE: 1999-04-30 Asynchronous version of gdb_readline; gdb_readline
645 will become obsolete when the event loop is made the default
646 execution for gdb. */
648 gdb_readline2 (gdb_client_data client_data)
653 int result_size = 80;
654 static int done_once = 0;
656 /* Unbuffer the input stream, so that, later on, the calls to fgetc
657 fetch only one char at the time from the stream. The fgetc's will
658 get up to the first newline, but there may be more chars in the
659 stream after '\n'. If we buffer the input and fgetc drains the
660 stream, getting stuff beyond the newline as well, a select, done
661 afterwards will not trigger. */
662 if (!done_once && !ISATTY (instream))
664 setbuf (instream, NULL);
668 result = (char *) xmalloc (result_size);
670 /* We still need the while loop here, even though it would seem
671 obvious to invoke gdb_readline2 at every character entered. If
672 not using the readline library, the terminal is in cooked mode,
673 which sends the characters all at once. Poll will notice that the
674 input fd has changed state only after enter is pressed. At this
675 point we still need to fetch all the chars entered. */
679 /* Read from stdin if we are executing a user defined command.
680 This is the right thing for prompt_for_continue, at least. */
681 c = fgetc (instream ? instream : stdin);
686 /* The last line does not end with a newline. Return it,
687 and if we are called again fgetc will still return EOF
688 and we'll return NULL then. */
691 (*input_handler) (0);
697 if (input_index > 0 && result[input_index - 1] == '\r')
702 result[input_index++] = c;
703 while (input_index >= result_size)
706 result = (char *) xrealloc (result, result_size);
710 result[input_index++] = '\0';
711 (*input_handler) (result);
715 /* Initialization of signal handlers and tokens. There is a function
716 handle_sig* for each of the signals GDB cares about. Specifically:
717 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
718 functions are the actual signal handlers associated to the signals
719 via calls to signal(). The only job for these functions is to
720 enqueue the appropriate event/procedure with the event loop. Such
721 procedures are the old signal handlers. The event loop will take
722 care of invoking the queued procedures to perform the usual tasks
723 associated with the reception of the signal. */
724 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
725 init_signals will become obsolete as we move to have to event loop
726 as the default for gdb. */
728 async_init_signals (void)
730 signal (SIGINT, handle_sigint);
732 create_async_signal_handler (async_request_quit, NULL);
733 signal (SIGTERM, handle_sigterm);
735 = create_async_signal_handler (async_sigterm_handler, NULL);
737 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
738 to the inferior and breakpoints will be ignored. */
740 signal (SIGTRAP, SIG_DFL);
744 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
745 passed to the inferior, which we don't want. It would be
746 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
747 on BSD4.3 systems using vfork, that can affect the
748 GDB process as well as the inferior (the signal handling tables
749 might be in memory, shared between the two). Since we establish
750 a handler for SIGQUIT, when we call exec it will set the signal
751 to SIG_DFL for us. */
752 signal (SIGQUIT, handle_sigquit);
754 create_async_signal_handler (async_do_nothing, NULL);
757 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
759 create_async_signal_handler (async_disconnect, NULL);
762 create_async_signal_handler (async_do_nothing, NULL);
764 signal (SIGFPE, handle_sigfpe);
766 create_async_signal_handler (async_float_handler, NULL);
770 create_async_signal_handler (async_stop_sig, NULL);
774 /* Tell the event loop what to do if SIGINT is received.
775 See event-signal.c. */
777 handle_sigint (int sig)
779 signal (sig, handle_sigint);
781 /* We could be running in a loop reading in symfiles or something so
782 it may be quite a while before we get back to the event loop. So
783 set quit_flag to 1 here. Then if QUIT is called before we get to
784 the event loop, we will unwind as expected. */
788 /* If immediate_quit is set, we go ahead and process the SIGINT right
789 away, even if we usually would defer this to the event loop. The
790 assumption here is that it is safe to process ^C immediately if
791 immediate_quit is set. If we didn't, SIGINT would be really
792 processed only the next time through the event loop. To get to
793 that point, though, the command that we want to interrupt needs to
794 finish first, which is unacceptable. If immediate quit is not set,
795 we process SIGINT the next time through the loop, which is fine. */
796 gdb_call_async_signal_handler (sigint_token, immediate_quit);
799 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
802 async_sigterm_handler (gdb_client_data arg)
804 quit_force (NULL, stdin == instream);
808 volatile int sync_quit_force_run;
810 /* Quit GDB if SIGTERM is received.
811 GDB would quit anyway, but this way it will clean up properly. */
813 handle_sigterm (int sig)
815 signal (sig, handle_sigterm);
817 /* Call quit_force in a signal safe way.
818 quit_force itself is not signal safe. */
819 if (target_can_async_p ())
820 mark_async_signal_handler (async_sigterm_token);
823 sync_quit_force_run = 1;
828 /* Do the quit. All the checks have been done by the caller. */
830 async_request_quit (gdb_client_data arg)
832 /* If the quit_flag has gotten reset back to 0 by the time we get
833 back here, that means that an exception was thrown to unwind the
834 current command before we got back to the event loop. So there
835 is no reason to call quit again here. */
837 if (check_quit_flag ())
842 /* Tell the event loop what to do if SIGQUIT is received.
843 See event-signal.c. */
845 handle_sigquit (int sig)
847 mark_async_signal_handler (sigquit_token);
848 signal (sig, handle_sigquit);
852 #if defined (SIGQUIT) || defined (SIGHUP)
853 /* Called by the event loop in response to a SIGQUIT or an
856 async_do_nothing (gdb_client_data arg)
858 /* Empty function body. */
863 /* Tell the event loop what to do if SIGHUP is received.
864 See event-signal.c. */
866 handle_sighup (int sig)
868 mark_async_signal_handler (sighup_token);
869 signal (sig, handle_sighup);
872 /* Called by the event loop to process a SIGHUP. */
874 async_disconnect (gdb_client_data arg)
876 volatile struct gdb_exception exception;
878 TRY_CATCH (exception, RETURN_MASK_ALL)
883 if (exception.reason < 0)
885 fputs_filtered ("Could not kill the program being debugged",
887 exception_print (gdb_stderr, exception);
890 TRY_CATCH (exception, RETURN_MASK_ALL)
895 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
902 handle_stop_sig (int sig)
904 mark_async_signal_handler (sigtstp_token);
905 signal (sig, handle_stop_sig);
909 async_stop_sig (gdb_client_data arg)
911 char *prompt = get_prompt ();
913 #if STOP_SIGNAL == SIGTSTP
914 signal (SIGTSTP, SIG_DFL);
920 sigprocmask (SIG_SETMASK, &zero, 0);
922 #elif HAVE_SIGSETMASK
926 signal (SIGTSTP, handle_stop_sig);
928 signal (STOP_SIGNAL, handle_stop_sig);
930 printf_unfiltered ("%s", prompt);
931 gdb_flush (gdb_stdout);
933 /* Forget about any previous command -- null line now will do
937 #endif /* STOP_SIGNAL */
939 /* Tell the event loop what to do if SIGFPE is received.
940 See event-signal.c. */
942 handle_sigfpe (int sig)
944 mark_async_signal_handler (sigfpe_token);
945 signal (sig, handle_sigfpe);
948 /* Event loop will call this functin to process a SIGFPE. */
950 async_float_handler (gdb_client_data arg)
952 /* This message is based on ANSI C, section 4.7. Note that integer
953 divide by zero causes this, so "float" is a misnomer. */
954 error (_("Erroneous arithmetic operation."));
958 /* Called by do_setshow_command. */
960 set_async_editing_command (char *args, int from_tty,
961 struct cmd_list_element *c)
963 change_line_handler ();
966 /* Set things up for readline to be invoked via the alternate
967 interface, i.e. via a callback function (rl_callback_read_char),
968 and hook up instream to the event loop. */
970 gdb_setup_readline (void)
972 /* This function is a noop for the sync case. The assumption is
973 that the sync setup is ALL done in gdb_init, and we would only
974 mess it up here. The sync stuff should really go away over
977 gdb_stdout = stdio_fileopen (stdout);
978 gdb_stderr = stderr_fileopen ();
979 gdb_stdlog = gdb_stderr; /* for moment */
980 gdb_stdtarg = gdb_stderr; /* for moment */
981 gdb_stdtargerr = gdb_stderr; /* for moment */
983 /* If the input stream is connected to a terminal, turn on
985 if (ISATTY (instream))
987 /* Tell gdb that we will be using the readline library. This
988 could be overwritten by a command in .gdbinit like 'set
989 editing on' or 'off'. */
990 async_command_editing_p = 1;
992 /* When a character is detected on instream by select or poll,
993 readline will be invoked via this callback function. */
994 call_readline = rl_callback_read_char_wrapper;
998 async_command_editing_p = 0;
999 call_readline = gdb_readline2;
1002 /* When readline has read an end-of-line character, it passes the
1003 complete line to gdb for processing; command_line_handler is the
1004 function that does this. */
1005 input_handler = command_line_handler;
1007 /* Tell readline to use the same input stream that gdb uses. */
1008 rl_instream = instream;
1010 /* Get a file descriptor for the input stream, so that we can
1011 register it with the event loop. */
1012 input_fd = fileno (instream);
1014 /* Now we need to create the event sources for the input file
1016 /* At this point in time, this is the only event source that we
1017 register with the even loop. Another source is going to be the
1018 target program (inferior), but that must be registered only when
1019 it actually exists (I.e. after we say 'run' or after we connect
1020 to a remote target. */
1021 add_file_handler (input_fd, stdin_event_handler, 0);
1024 /* Disable command input through the standard CLI channels. Used in
1025 the suspend proc for interpreters that use the standard gdb readline
1026 interface, like the cli & the mi. */
1028 gdb_disable_readline (void)
1030 /* FIXME - It is too heavyweight to delete and remake these every
1031 time you run an interpreter that needs readline. It is probably
1032 better to have the interpreters cache these, which in turn means
1033 that this needs to be moved into interpreter specific code. */
1036 ui_file_delete (gdb_stdout);
1037 ui_file_delete (gdb_stderr);
1040 gdb_stdtargerr = NULL;
1043 rl_callback_handler_remove ();
1044 delete_file_handler (input_fd);