1 /* Read ELF (Executable and Linking Format) object files for GDB.
3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 Written by Fred Fish at Cygnus Support.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "gdb_string.h"
28 #include "elf/common.h"
29 #include "elf/internal.h"
35 #include "stabsread.h"
36 #include "gdb-stabs.h"
37 #include "complaints.h"
40 #include "filenames.h"
44 #include "gdbthread.h"
47 extern void _initialize_elfread (void);
49 /* Forward declarations. */
50 static const struct sym_fns elf_sym_fns_gdb_index;
51 static const struct sym_fns elf_sym_fns_lazy_psyms;
53 /* The struct elfinfo is available only during ELF symbol table and
54 psymtab reading. It is destroyed at the completion of psymtab-reading.
55 It's local to elf_symfile_read. */
59 asection *stabsect; /* Section pointer for .stab section */
60 asection *stabindexsect; /* Section pointer for .stab.index section */
61 asection *mdebugsect; /* Section pointer for .mdebug section */
64 static void free_elfinfo (void *);
66 /* Minimal symbols located at the GOT entries for .plt - that is the real
67 pointer where the given entry will jump to. It gets updated by the real
68 function address during lazy ld.so resolving in the inferior. These
69 minimal symbols are indexed for <tab>-completion. */
71 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
73 /* Locate the segments in ABFD. */
75 static struct symfile_segment_data *
76 elf_symfile_segments (bfd *abfd)
78 Elf_Internal_Phdr *phdrs, **segments;
80 int num_phdrs, num_segments, num_sections, i;
82 struct symfile_segment_data *data;
84 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
88 phdrs = alloca (phdrs_size);
89 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
95 for (i = 0; i < num_phdrs; i++)
96 if (phdrs[i].p_type == PT_LOAD)
97 segments[num_segments++] = &phdrs[i];
99 if (num_segments == 0)
102 data = XZALLOC (struct symfile_segment_data);
103 data->num_segments = num_segments;
104 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
105 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
107 for (i = 0; i < num_segments; i++)
109 data->segment_bases[i] = segments[i]->p_vaddr;
110 data->segment_sizes[i] = segments[i]->p_memsz;
113 num_sections = bfd_count_sections (abfd);
114 data->segment_info = XCALLOC (num_sections, int);
116 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
124 vma = bfd_get_section_vma (abfd, sect);
126 for (j = 0; j < num_segments; j++)
127 if (segments[j]->p_memsz > 0
128 && vma >= segments[j]->p_vaddr
129 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
131 data->segment_info[i] = j + 1;
135 /* We should have found a segment for every non-empty section.
136 If we haven't, we will not relocate this section by any
137 offsets we apply to the segments. As an exception, do not
138 warn about SHT_NOBITS sections; in normal ELF execution
139 environments, SHT_NOBITS means zero-initialized and belongs
140 in a segment, but in no-OS environments some tools (e.g. ARM
141 RealView) use SHT_NOBITS for uninitialized data. Since it is
142 uninitialized, it doesn't need a program header. Such
143 binaries are not relocatable. */
144 if (bfd_get_section_size (sect) > 0 && j == num_segments
145 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
146 warning (_("Loadable segment \"%s\" outside of ELF segments"),
147 bfd_section_name (abfd, sect));
153 /* We are called once per section from elf_symfile_read. We
154 need to examine each section we are passed, check to see
155 if it is something we are interested in processing, and
156 if so, stash away some access information for the section.
158 For now we recognize the dwarf debug information sections and
159 line number sections from matching their section names. The
160 ELF definition is no real help here since it has no direct
161 knowledge of DWARF (by design, so any debugging format can be
164 We also recognize the ".stab" sections used by the Sun compilers
165 released with Solaris 2.
167 FIXME: The section names should not be hardwired strings (what
168 should they be? I don't think most object file formats have enough
169 section flags to specify what kind of debug section it is.
173 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
177 ei = (struct elfinfo *) eip;
178 if (strcmp (sectp->name, ".stab") == 0)
180 ei->stabsect = sectp;
182 else if (strcmp (sectp->name, ".stab.index") == 0)
184 ei->stabindexsect = sectp;
186 else if (strcmp (sectp->name, ".mdebug") == 0)
188 ei->mdebugsect = sectp;
192 static struct minimal_symbol *
193 record_minimal_symbol (const char *name, int name_len, int copy_name,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_smash_text_address (gdbarch, address);
204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205 ms_type, bfd_section->index,
206 bfd_section, objfile);
213 elf_symtab_read -- read the symbol table of an ELF file
217 void elf_symtab_read (struct objfile *objfile, int type,
218 long number_of_symbols, asymbol **symbol_table)
222 Given an objfile, a symbol table, and a flag indicating whether the
223 symbol table contains regular, dynamic, or synthetic symbols, add all
224 the global function and data symbols to the minimal symbol table.
226 In stabs-in-ELF, as implemented by Sun, there are some local symbols
227 defined in the ELF symbol table, which can be used to locate
228 the beginnings of sections from each ".o" file that was linked to
229 form the executable objfile. We gather any such info and record it
230 in data structures hung off the objfile's private data.
236 #define ST_SYNTHETIC 2
239 elf_symtab_read (struct objfile *objfile, int type,
240 long number_of_symbols, asymbol **symbol_table,
243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
248 enum minimal_symbol_type ms_type;
249 /* If sectinfo is nonNULL, it contains section info that should end up
250 filed in the objfile. */
251 struct stab_section_info *sectinfo = NULL;
252 /* If filesym is nonzero, it points to a file symbol, but we haven't
253 seen any section info for it yet. */
254 asymbol *filesym = 0;
255 /* Name of filesym. This is either a constant string or is saved on
256 the objfile's obstack. */
257 char *filesymname = "";
258 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
259 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
261 for (i = 0; i < number_of_symbols; i++)
263 sym = symbol_table[i];
264 if (sym->name == NULL || *sym->name == '\0')
266 /* Skip names that don't exist (shouldn't happen), or names
267 that are null strings (may happen). */
271 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
272 symbols which do not correspond to objects in the symbol table,
273 but have some other target-specific meaning. */
274 if (bfd_is_target_special_symbol (objfile->obfd, sym))
276 if (gdbarch_record_special_symbol_p (gdbarch))
277 gdbarch_record_special_symbol (gdbarch, objfile, sym);
281 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
282 if (type == ST_DYNAMIC
283 && sym->section == &bfd_und_section
284 && (sym->flags & BSF_FUNCTION))
286 struct minimal_symbol *msym;
287 bfd *abfd = objfile->obfd;
290 /* Symbol is a reference to a function defined in
292 If its value is non zero then it is usually the address
293 of the corresponding entry in the procedure linkage table,
294 plus the desired section offset.
295 If its value is zero then the dynamic linker has to resolve
296 the symbol. We are unable to find any meaningful address
297 for this symbol in the executable file, so we skip it. */
298 symaddr = sym->value;
302 /* sym->section is the undefined section. However, we want to
303 record the section where the PLT stub resides with the
304 minimal symbol. Search the section table for the one that
305 covers the stub's address. */
306 for (sect = abfd->sections; sect != NULL; sect = sect->next)
308 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
311 if (symaddr >= bfd_get_section_vma (abfd, sect)
312 && symaddr < bfd_get_section_vma (abfd, sect)
313 + bfd_get_section_size (sect))
319 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
321 msym = record_minimal_symbol
322 (sym->name, strlen (sym->name), copy_names,
323 symaddr, mst_solib_trampoline, sect, objfile);
325 msym->filename = filesymname;
329 /* If it is a nonstripped executable, do not enter dynamic
330 symbols, as the dynamic symbol table is usually a subset
331 of the main symbol table. */
332 if (type == ST_DYNAMIC && !stripped)
334 if (sym->flags & BSF_FILE)
336 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
337 Chain any old one onto the objfile; remember new sym. */
338 if (sectinfo != NULL)
340 sectinfo->next = dbx->stab_section_info;
341 dbx->stab_section_info = sectinfo;
346 obsavestring ((char *) filesym->name, strlen (filesym->name),
347 &objfile->objfile_obstack);
349 else if (sym->flags & BSF_SECTION_SYM)
351 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
353 struct minimal_symbol *msym;
355 /* Select global/local/weak symbols. Note that bfd puts abs
356 symbols in their own section, so all symbols we are
357 interested in will have a section. */
358 /* Bfd symbols are section relative. */
359 symaddr = sym->value + sym->section->vma;
360 /* Relocate all non-absolute and non-TLS symbols by the
362 if (sym->section != &bfd_abs_section
363 && !(sym->section->flags & SEC_THREAD_LOCAL))
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
369 no way of figuring this out for absolute symbols. */
370 if (sym->section == &bfd_abs_section)
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
374 with special section indices for dynamic symbols.
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
379 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
389 case SHN_MIPS_ACOMMON:
396 /* If it is an Irix dynamic symbol, skip section name
397 symbols, relocate all others by section offset. */
398 if (ms_type != mst_abs)
400 if (sym->name[0] == '.')
405 else if (sym->section->flags & SEC_CODE)
407 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
409 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
410 ms_type = mst_text_gnu_ifunc;
414 /* The BSF_SYNTHETIC check is there to omit ppc64 function
415 descriptors mistaken for static functions starting with 'L'.
417 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
418 && (sym->flags & BSF_SYNTHETIC) == 0)
419 || ((sym->flags & BSF_LOCAL)
420 && sym->name[0] == '$'
421 && sym->name[1] == 'L'))
422 /* Looks like a compiler-generated label. Skip
423 it. The assembler should be skipping these (to
424 keep executables small), but apparently with
425 gcc on the (deleted) delta m88k SVR4, it loses.
426 So to have us check too should be harmless (but
427 I encourage people to fix this in the assembler
428 instead of adding checks here). */
432 ms_type = mst_file_text;
435 else if (sym->section->flags & SEC_ALLOC)
437 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
439 if (sym->section->flags & SEC_LOAD)
448 else if (sym->flags & BSF_LOCAL)
450 /* Named Local variable in a Data section.
451 Check its name for stabs-in-elf. */
452 int special_local_sect;
454 if (strcmp ("Bbss.bss", sym->name) == 0)
455 special_local_sect = SECT_OFF_BSS (objfile);
456 else if (strcmp ("Ddata.data", sym->name) == 0)
457 special_local_sect = SECT_OFF_DATA (objfile);
458 else if (strcmp ("Drodata.rodata", sym->name) == 0)
459 special_local_sect = SECT_OFF_RODATA (objfile);
461 special_local_sect = -1;
462 if (special_local_sect >= 0)
464 /* Found a special local symbol. Allocate a
465 sectinfo, if needed, and fill it in. */
466 if (sectinfo == NULL)
471 max_index = SECT_OFF_BSS (objfile);
472 if (objfile->sect_index_data > max_index)
473 max_index = objfile->sect_index_data;
474 if (objfile->sect_index_rodata > max_index)
475 max_index = objfile->sect_index_rodata;
477 /* max_index is the largest index we'll
478 use into this array, so we must
479 allocate max_index+1 elements for it.
480 However, 'struct stab_section_info'
481 already includes one element, so we
482 need to allocate max_index aadditional
484 size = (sizeof (struct stab_section_info)
485 + (sizeof (CORE_ADDR) * max_index));
486 sectinfo = (struct stab_section_info *)
488 memset (sectinfo, 0, size);
489 sectinfo->num_sections = max_index;
492 complaint (&symfile_complaints,
493 _("elf/stab section information %s "
494 "without a preceding file symbol"),
500 (char *) filesym->name;
503 if (sectinfo->sections[special_local_sect] != 0)
504 complaint (&symfile_complaints,
505 _("duplicated elf/stab section "
506 "information for %s"),
508 /* BFD symbols are section relative. */
509 symaddr = sym->value + sym->section->vma;
510 /* Relocate non-absolute symbols by the
512 if (sym->section != &bfd_abs_section)
514 sectinfo->sections[special_local_sect] = symaddr;
515 /* The special local symbols don't go in the
516 minimal symbol table, so ignore this one. */
519 /* Not a special stabs-in-elf symbol, do regular
520 symbol processing. */
521 if (sym->section->flags & SEC_LOAD)
523 ms_type = mst_file_data;
527 ms_type = mst_file_bss;
532 ms_type = mst_unknown;
537 /* FIXME: Solaris2 shared libraries include lots of
538 odd "absolute" and "undefined" symbols, that play
539 hob with actions like finding what function the PC
540 is in. Ignore them if they aren't text, data, or bss. */
541 /* ms_type = mst_unknown; */
542 continue; /* Skip this symbol. */
544 msym = record_minimal_symbol
545 (sym->name, strlen (sym->name), copy_names, symaddr,
546 ms_type, sym->section, objfile);
550 /* Pass symbol size field in via BFD. FIXME!!! */
551 elf_symbol_type *elf_sym;
553 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
554 ELF-private part. However, in some cases (e.g. synthetic
555 'dot' symbols on ppc64) the udata.p entry is set to point back
556 to the original ELF symbol it was derived from. Get the size
558 if (type != ST_SYNTHETIC)
559 elf_sym = (elf_symbol_type *) sym;
561 elf_sym = (elf_symbol_type *) sym->udata.p;
564 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
566 msym->filename = filesymname;
567 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
570 /* For @plt symbols, also record a trampoline to the
571 destination symbol. The @plt symbol will be used in
572 disassembly, and the trampoline will be used when we are
573 trying to find the target. */
574 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
576 int len = strlen (sym->name);
578 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
580 struct minimal_symbol *mtramp;
582 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
584 mst_solib_trampoline,
585 sym->section, objfile);
588 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
589 mtramp->filename = filesymname;
590 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
598 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
599 for later look ups of which function to call when user requests
600 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
601 library defining `function' we cannot yet know while reading OBJFILE which
602 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
603 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
606 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
608 bfd *obfd = objfile->obfd;
609 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
610 asection *plt, *relplt, *got_plt;
613 bfd_size_type reloc_count, reloc;
614 char *string_buffer = NULL;
615 size_t string_buffer_size = 0;
616 struct cleanup *back_to;
617 struct gdbarch *gdbarch = objfile->gdbarch;
618 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
619 size_t ptr_size = TYPE_LENGTH (ptr_type);
621 if (objfile->separate_debug_objfile_backlink)
624 plt = bfd_get_section_by_name (obfd, ".plt");
627 plt_elf_idx = elf_section_data (plt)->this_idx;
629 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
633 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
634 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
635 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
636 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
637 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
642 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
645 back_to = make_cleanup (free_current_contents, &string_buffer);
647 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
648 for (reloc = 0; reloc < reloc_count; reloc++)
650 const char *name, *name_got_plt;
651 struct minimal_symbol *msym;
653 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
656 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
657 name_len = strlen (name);
658 address = relplt->relocation[reloc].address;
660 /* Does the pointer reside in the .got.plt section? */
661 if (!(bfd_get_section_vma (obfd, got_plt) <= address
662 && address < bfd_get_section_vma (obfd, got_plt)
663 + bfd_get_section_size (got_plt)))
666 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
667 OBJFILE the symbol is undefined and the objfile having NAME defined
668 may not yet have been loaded. */
670 if (string_buffer_size < name_len + got_suffix_len)
672 string_buffer_size = 2 * (name_len + got_suffix_len);
673 string_buffer = xrealloc (string_buffer, string_buffer_size);
675 memcpy (string_buffer, name, name_len);
676 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
679 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
680 1, address, mst_slot_got_plt, got_plt,
683 MSYMBOL_SIZE (msym) = ptr_size;
686 do_cleanups (back_to);
689 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
691 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
693 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
695 struct elf_gnu_ifunc_cache
697 /* This is always a function entry address, not a function descriptor. */
703 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
706 elf_gnu_ifunc_cache_hash (const void *a_voidp)
708 const struct elf_gnu_ifunc_cache *a = a_voidp;
710 return htab_hash_string (a->name);
713 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
716 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
718 const struct elf_gnu_ifunc_cache *a = a_voidp;
719 const struct elf_gnu_ifunc_cache *b = b_voidp;
721 return strcmp (a->name, b->name) == 0;
724 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
725 function entry address ADDR. Return 1 if NAME and ADDR are considered as
726 valid and therefore they were successfully recorded, return 0 otherwise.
728 Function does not expect a duplicate entry. Use
729 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
733 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
735 struct minimal_symbol *msym;
737 struct objfile *objfile;
739 struct elf_gnu_ifunc_cache entry_local, *entry_p;
742 msym = lookup_minimal_symbol_by_pc (addr);
745 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
747 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
748 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
749 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
751 /* If .plt jumps back to .plt the symbol is still deferred for later
752 resolution and it has no use for GDB. Besides ".text" this symbol can
753 reside also in ".opd" for ppc64 function descriptor. */
754 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
757 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
760 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
761 elf_gnu_ifunc_cache_eq,
762 NULL, &objfile->objfile_obstack,
763 hashtab_obstack_allocate,
764 dummy_obstack_deallocate);
765 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
768 entry_local.addr = addr;
769 obstack_grow (&objfile->objfile_obstack, &entry_local,
770 offsetof (struct elf_gnu_ifunc_cache, name));
771 obstack_grow_str0 (&objfile->objfile_obstack, name);
772 entry_p = obstack_finish (&objfile->objfile_obstack);
774 slot = htab_find_slot (htab, entry_p, INSERT);
777 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
778 struct gdbarch *gdbarch = objfile->gdbarch;
780 if (entry_found_p->addr != addr)
782 /* This case indicates buggy inferior program, the resolved address
783 should never change. */
785 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
786 "function_address from %s to %s"),
787 name, paddress (gdbarch, entry_found_p->addr),
788 paddress (gdbarch, addr));
791 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
798 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
799 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
800 is not NULL) and the function returns 1. It returns 0 otherwise.
802 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
806 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
808 struct objfile *objfile;
810 ALL_PSPACE_OBJFILES (current_program_space, objfile)
813 struct elf_gnu_ifunc_cache *entry_p;
816 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
820 entry_p = alloca (sizeof (*entry_p) + strlen (name));
821 strcpy (entry_p->name, name);
823 slot = htab_find_slot (htab, entry_p, NO_INSERT);
827 gdb_assert (entry_p != NULL);
830 *addr_p = entry_p->addr;
837 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
838 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
839 is not NULL) and the function returns 1. It returns 0 otherwise.
841 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
842 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
843 prevent cache entries duplicates. */
846 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
849 struct objfile *objfile;
850 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
852 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
853 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
855 ALL_PSPACE_OBJFILES (current_program_space, objfile)
857 bfd *obfd = objfile->obfd;
858 struct gdbarch *gdbarch = objfile->gdbarch;
859 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
860 size_t ptr_size = TYPE_LENGTH (ptr_type);
861 CORE_ADDR pointer_address, addr;
863 gdb_byte *buf = alloca (ptr_size);
864 struct minimal_symbol *msym;
866 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
869 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
871 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
873 plt = bfd_get_section_by_name (obfd, ".plt");
877 if (MSYMBOL_SIZE (msym) != ptr_size)
879 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
881 addr = extract_typed_address (buf, ptr_type);
882 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
887 if (elf_gnu_ifunc_record_cache (name, addr))
894 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
895 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
896 is not NULL) and the function returns 1. It returns 0 otherwise.
898 Both the elf_objfile_gnu_ifunc_cache_data hash table and
899 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
902 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
904 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
907 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
913 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
914 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
915 is the entry point of the resolved STT_GNU_IFUNC target function to call.
919 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
922 CORE_ADDR start_at_pc, address;
923 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
924 struct value *function, *address_val;
926 /* Try first any non-intrusive methods without an inferior call. */
928 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
929 && start_at_pc == pc)
931 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
937 function = allocate_value (func_func_type);
938 set_value_address (function, pc);
940 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
941 function entry address. ADDRESS may be a function descriptor. */
943 address_val = call_function_by_hand (function, 0, NULL);
944 address = value_as_address (address_val);
945 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
949 elf_gnu_ifunc_record_cache (name_at_pc, address);
954 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
957 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
959 struct breakpoint *b_return;
960 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
961 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
962 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
963 int thread_id = pid_to_thread_id (inferior_ptid);
965 gdb_assert (b->type == bp_gnu_ifunc_resolver);
967 for (b_return = b->related_breakpoint; b_return != b;
968 b_return = b_return->related_breakpoint)
970 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
971 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
972 gdb_assert (frame_id_p (b_return->frame_id));
974 if (b_return->thread == thread_id
975 && b_return->loc->requested_address == prev_pc
976 && frame_id_eq (b_return->frame_id, prev_frame_id))
982 struct symtab_and_line sal;
984 /* No need to call find_pc_line for symbols resolving as this is only
985 a helper breakpointer never shown to the user. */
988 sal.pspace = current_inferior ()->pspace;
990 sal.section = find_pc_overlay (sal.pc);
992 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
994 bp_gnu_ifunc_resolver_return);
996 /* Add new b_return to the ring list b->related_breakpoint. */
997 gdb_assert (b_return->related_breakpoint == b_return);
998 b_return->related_breakpoint = b->related_breakpoint;
999 b->related_breakpoint = b_return;
1003 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1006 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1008 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1009 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1010 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1011 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1012 struct value *value;
1013 CORE_ADDR resolved_address, resolved_pc;
1014 struct symtab_and_line sal;
1015 struct symtabs_and_lines sals, sals_end;
1017 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1019 value = allocate_value (value_type);
1020 gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1021 value_contents_raw (value), NULL);
1022 resolved_address = value_as_address (value);
1023 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1027 while (b->related_breakpoint != b)
1029 struct breakpoint *b_next = b->related_breakpoint;
1033 case bp_gnu_ifunc_resolver:
1035 case bp_gnu_ifunc_resolver_return:
1036 delete_breakpoint (b);
1039 internal_error (__FILE__, __LINE__,
1040 _("handle_inferior_event: Invalid "
1041 "gnu-indirect-function breakpoint type %d"),
1046 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1048 gdb_assert (current_program_space == b->pspace);
1049 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1051 sal = find_pc_line (resolved_pc, 0);
1056 b->type = bp_breakpoint;
1057 update_breakpoint_locations (b, sals, sals_end);
1066 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1068 static struct build_id *
1069 build_id_bfd_get (bfd *abfd)
1071 struct build_id *retval;
1073 if (!bfd_check_format (abfd, bfd_object)
1074 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1075 || elf_tdata (abfd)->build_id == NULL)
1078 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1079 retval->size = elf_tdata (abfd)->build_id_size;
1080 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1085 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1088 build_id_verify (const char *filename, struct build_id *check)
1091 struct build_id *found = NULL;
1094 /* We expect to be silent on the non-existing files. */
1095 abfd = bfd_open_maybe_remote (filename);
1099 found = build_id_bfd_get (abfd);
1102 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1103 else if (found->size != check->size
1104 || memcmp (found->data, check->data, found->size) != 0)
1105 warning (_("File \"%s\" has a different build-id, file skipped"),
1110 gdb_bfd_close_or_warn (abfd);
1118 build_id_to_debug_filename (struct build_id *build_id)
1120 char *link, *debugdir, *retval = NULL;
1122 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1123 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1124 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1126 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1127 cause "/.build-id/..." lookups. */
1129 debugdir = debug_file_directory;
1132 char *s, *debugdir_end;
1133 gdb_byte *data = build_id->data;
1134 size_t size = build_id->size;
1136 while (*debugdir == DIRNAME_SEPARATOR)
1139 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1140 if (debugdir_end == NULL)
1141 debugdir_end = &debugdir[strlen (debugdir)];
1143 memcpy (link, debugdir, debugdir_end - debugdir);
1144 s = &link[debugdir_end - debugdir];
1145 s += sprintf (s, "/.build-id/");
1149 s += sprintf (s, "%02x", (unsigned) *data++);
1154 s += sprintf (s, "%02x", (unsigned) *data++);
1155 strcpy (s, ".debug");
1157 /* lrealpath() is expensive even for the usually non-existent files. */
1158 if (access (link, F_OK) == 0)
1159 retval = lrealpath (link);
1161 if (retval != NULL && !build_id_verify (retval, build_id))
1170 debugdir = debugdir_end;
1172 while (*debugdir != 0);
1178 find_separate_debug_file_by_buildid (struct objfile *objfile)
1180 struct build_id *build_id;
1182 build_id = build_id_bfd_get (objfile->obfd);
1183 if (build_id != NULL)
1185 char *build_id_name;
1187 build_id_name = build_id_to_debug_filename (build_id);
1189 /* Prevent looping on a stripped .debug file. */
1190 if (build_id_name != NULL
1191 && filename_cmp (build_id_name, objfile->name) == 0)
1193 warning (_("\"%s\": separate debug info file has no debug info"),
1195 xfree (build_id_name);
1197 else if (build_id_name != NULL)
1198 return build_id_name;
1203 /* Scan and build partial symbols for a symbol file.
1204 We have been initialized by a call to elf_symfile_init, which
1205 currently does nothing.
1207 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1208 in each section. We simplify it down to a single offset for all
1211 This function only does the minimum work necessary for letting the
1212 user "name" things symbolically; it does not read the entire symtab.
1213 Instead, it reads the external and static symbols and puts them in partial
1214 symbol tables. When more extensive information is requested of a
1215 file, the corresponding partial symbol table is mutated into a full
1216 fledged symbol table by going back and reading the symbols
1219 We look for sections with specific names, to tell us what debug
1220 format to look for: FIXME!!!
1222 elfstab_build_psymtabs() handles STABS symbols;
1223 mdebug_build_psymtabs() handles ECOFF debugging information.
1225 Note that ELF files have a "minimal" symbol table, which looks a lot
1226 like a COFF symbol table, but has only the minimal information necessary
1227 for linking. We process this also, and use the information to
1228 build gdb's minimal symbol table. This gives us some minimal debugging
1229 capability even for files compiled without -g. */
1232 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1234 bfd *synth_abfd, *abfd = objfile->obfd;
1236 struct cleanup *back_to;
1237 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1238 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1241 init_minimal_symbol_collection ();
1242 back_to = make_cleanup_discard_minimal_symbols ();
1244 memset ((char *) &ei, 0, sizeof (ei));
1246 /* Allocate struct to keep track of the symfile. */
1247 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
1248 xmalloc (sizeof (struct dbx_symfile_info));
1249 memset ((char *) objfile->deprecated_sym_stab_info,
1250 0, sizeof (struct dbx_symfile_info));
1251 make_cleanup (free_elfinfo, (void *) objfile);
1253 /* Process the normal ELF symbol table first. This may write some
1254 chain of info into the dbx_symfile_info in
1255 objfile->deprecated_sym_stab_info, which can later be used by
1256 elfstab_offset_sections. */
1258 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1259 if (storage_needed < 0)
1260 error (_("Can't read symbols from %s: %s"),
1261 bfd_get_filename (objfile->obfd),
1262 bfd_errmsg (bfd_get_error ()));
1264 if (storage_needed > 0)
1266 symbol_table = (asymbol **) xmalloc (storage_needed);
1267 make_cleanup (xfree, symbol_table);
1268 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1271 error (_("Can't read symbols from %s: %s"),
1272 bfd_get_filename (objfile->obfd),
1273 bfd_errmsg (bfd_get_error ()));
1275 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1278 /* Add the dynamic symbols. */
1280 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1282 if (storage_needed > 0)
1284 /* Memory gets permanently referenced from ABFD after
1285 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1286 It happens only in the case when elf_slurp_reloc_table sees
1287 asection->relocation NULL. Determining which section is asection is
1288 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1289 implementation detail, though. */
1291 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1292 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1295 if (dynsymcount < 0)
1296 error (_("Can't read symbols from %s: %s"),
1297 bfd_get_filename (objfile->obfd),
1298 bfd_errmsg (bfd_get_error ()));
1300 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1302 elf_rel_plt_read (objfile, dyn_symbol_table);
1305 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1306 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1308 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1309 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1310 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1311 read the code address from .opd while it reads the .symtab section from
1312 a separate debug info file as the .opd section is SHT_NOBITS there.
1314 With SYNTH_ABFD the .opd section will be read from the original
1315 backlinked binary where it is valid. */
1317 if (objfile->separate_debug_objfile_backlink)
1318 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1322 /* Add synthetic symbols - for instance, names for any PLT entries. */
1324 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1325 dynsymcount, dyn_symbol_table,
1329 asymbol **synth_symbol_table;
1332 make_cleanup (xfree, synthsyms);
1333 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1334 for (i = 0; i < synthcount; i++)
1335 synth_symbol_table[i] = synthsyms + i;
1336 make_cleanup (xfree, synth_symbol_table);
1337 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1338 synth_symbol_table, 1);
1341 /* Install any minimal symbols that have been collected as the current
1342 minimal symbols for this objfile. The debug readers below this point
1343 should not generate new minimal symbols; if they do it's their
1344 responsibility to install them. "mdebug" appears to be the only one
1345 which will do this. */
1347 install_minimal_symbols (objfile);
1348 do_cleanups (back_to);
1350 /* Now process debugging information, which is contained in
1351 special ELF sections. */
1353 /* We first have to find them... */
1354 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1356 /* ELF debugging information is inserted into the psymtab in the
1357 order of least informative first - most informative last. Since
1358 the psymtab table is searched `most recent insertion first' this
1359 increases the probability that more detailed debug information
1360 for a section is found.
1362 For instance, an object file might contain both .mdebug (XCOFF)
1363 and .debug_info (DWARF2) sections then .mdebug is inserted first
1364 (searched last) and DWARF2 is inserted last (searched first). If
1365 we don't do this then the XCOFF info is found first - for code in
1366 an included file XCOFF info is useless. */
1370 const struct ecoff_debug_swap *swap;
1372 /* .mdebug section, presumably holding ECOFF debugging
1374 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1376 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1382 /* Stab sections have an associated string table that looks like
1383 a separate section. */
1384 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1386 /* FIXME should probably warn about a stab section without a stabstr. */
1388 elfstab_build_psymtabs (objfile,
1391 bfd_section_size (abfd, str_sect));
1394 if (dwarf2_has_info (objfile))
1396 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1397 information present in OBJFILE. If there is such debug info present
1398 never use .gdb_index. */
1400 if (!objfile_has_partial_symbols (objfile)
1401 && dwarf2_initialize_objfile (objfile))
1402 objfile->sf = &elf_sym_fns_gdb_index;
1405 /* It is ok to do this even if the stabs reader made some
1406 partial symbols, because OBJF_PSYMTABS_READ has not been
1407 set, and so our lazy reader function will still be called
1409 objfile->sf = &elf_sym_fns_lazy_psyms;
1412 /* If the file has its own symbol tables it has no separate debug
1413 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1414 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1415 `.note.gnu.build-id'. */
1416 else if (!objfile_has_partial_symbols (objfile))
1420 debugfile = find_separate_debug_file_by_buildid (objfile);
1422 if (debugfile == NULL)
1423 debugfile = find_separate_debug_file_by_debuglink (objfile);
1427 bfd *abfd = symfile_bfd_open (debugfile);
1429 symbol_file_add_separate (abfd, symfile_flags, objfile);
1435 /* Callback to lazily read psymtabs. */
1438 read_psyms (struct objfile *objfile)
1440 if (dwarf2_has_info (objfile))
1441 dwarf2_build_psymtabs (objfile);
1444 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1445 the chain of stab_section_info's, that might be dangling from
1449 free_elfinfo (void *objp)
1451 struct objfile *objfile = (struct objfile *) objp;
1452 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
1453 struct stab_section_info *ssi, *nssi;
1455 ssi = dbxinfo->stab_section_info;
1463 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1467 /* Initialize anything that needs initializing when a completely new symbol
1468 file is specified (not just adding some symbols from another file, e.g. a
1471 We reinitialize buildsym, since we may be reading stabs from an ELF
1475 elf_new_init (struct objfile *ignore)
1477 stabsread_new_init ();
1478 buildsym_new_init ();
1481 /* Perform any local cleanups required when we are done with a particular
1482 objfile. I.E, we are in the process of discarding all symbol information
1483 for an objfile, freeing up all memory held for it, and unlinking the
1484 objfile struct from the global list of known objfiles. */
1487 elf_symfile_finish (struct objfile *objfile)
1489 if (objfile->deprecated_sym_stab_info != NULL)
1491 xfree (objfile->deprecated_sym_stab_info);
1494 dwarf2_free_objfile (objfile);
1497 /* ELF specific initialization routine for reading symbols.
1499 It is passed a pointer to a struct sym_fns which contains, among other
1500 things, the BFD for the file whose symbols are being read, and a slot for
1501 a pointer to "private data" which we can fill with goodies.
1503 For now at least, we have nothing in particular to do, so this function is
1507 elf_symfile_init (struct objfile *objfile)
1509 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1510 find this causes a significant slowdown in gdb then we could
1511 set it in the debug symbol readers only when necessary. */
1512 objfile->flags |= OBJF_REORDERED;
1515 /* When handling an ELF file that contains Sun STABS debug info,
1516 some of the debug info is relative to the particular chunk of the
1517 section that was generated in its individual .o file. E.g.
1518 offsets to static variables are relative to the start of the data
1519 segment *for that module before linking*. This information is
1520 painfully squirreled away in the ELF symbol table as local symbols
1521 with wierd names. Go get 'em when needed. */
1524 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1526 const char *filename = pst->filename;
1527 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
1528 struct stab_section_info *maybe = dbx->stab_section_info;
1529 struct stab_section_info *questionable = 0;
1532 /* The ELF symbol info doesn't include path names, so strip the path
1533 (if any) from the psymtab filename. */
1534 filename = lbasename (filename);
1536 /* FIXME: This linear search could speed up significantly
1537 if it was chained in the right order to match how we search it,
1538 and if we unchained when we found a match. */
1539 for (; maybe; maybe = maybe->next)
1541 if (filename[0] == maybe->filename[0]
1542 && filename_cmp (filename, maybe->filename) == 0)
1544 /* We found a match. But there might be several source files
1545 (from different directories) with the same name. */
1546 if (0 == maybe->found)
1548 questionable = maybe; /* Might use it later. */
1552 if (maybe == 0 && questionable != 0)
1554 complaint (&symfile_complaints,
1555 _("elf/stab section information questionable for %s"),
1557 maybe = questionable;
1562 /* Found it! Allocate a new psymtab struct, and fill it in. */
1564 pst->section_offsets = (struct section_offsets *)
1565 obstack_alloc (&objfile->objfile_obstack,
1566 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1567 for (i = 0; i < maybe->num_sections; i++)
1568 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1572 /* We were unable to find any offsets for this file. Complain. */
1573 if (dbx->stab_section_info) /* If there *is* any info, */
1574 complaint (&symfile_complaints,
1575 _("elf/stab section information missing for %s"), filename);
1578 /* Register that we are able to handle ELF object file formats. */
1580 static const struct sym_fns elf_sym_fns =
1582 bfd_target_elf_flavour,
1583 elf_new_init, /* init anything gbl to entire symtab */
1584 elf_symfile_init, /* read initial info, setup for sym_read() */
1585 elf_symfile_read, /* read a symbol file into symtab */
1586 NULL, /* sym_read_psymbols */
1587 elf_symfile_finish, /* finished with file, cleanup */
1588 default_symfile_offsets, /* Translate ext. to int. relocation */
1589 elf_symfile_segments, /* Get segment information from a file. */
1591 default_symfile_relocate, /* Relocate a debug section. */
1595 /* The same as elf_sym_fns, but not registered and lazily reads
1598 static const struct sym_fns elf_sym_fns_lazy_psyms =
1600 bfd_target_elf_flavour,
1601 elf_new_init, /* init anything gbl to entire symtab */
1602 elf_symfile_init, /* read initial info, setup for sym_read() */
1603 elf_symfile_read, /* read a symbol file into symtab */
1604 read_psyms, /* sym_read_psymbols */
1605 elf_symfile_finish, /* finished with file, cleanup */
1606 default_symfile_offsets, /* Translate ext. to int. relocation */
1607 elf_symfile_segments, /* Get segment information from a file. */
1609 default_symfile_relocate, /* Relocate a debug section. */
1613 /* The same as elf_sym_fns, but not registered and uses the
1614 DWARF-specific GNU index rather than psymtab. */
1615 static const struct sym_fns elf_sym_fns_gdb_index =
1617 bfd_target_elf_flavour,
1618 elf_new_init, /* init anything gbl to entire symab */
1619 elf_symfile_init, /* read initial info, setup for sym_red() */
1620 elf_symfile_read, /* read a symbol file into symtab */
1621 NULL, /* sym_read_psymbols */
1622 elf_symfile_finish, /* finished with file, cleanup */
1623 default_symfile_offsets, /* Translate ext. to int. relocatin */
1624 elf_symfile_segments, /* Get segment information from a file. */
1626 default_symfile_relocate, /* Relocate a debug section. */
1627 &dwarf2_gdb_index_functions
1630 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1632 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1634 elf_gnu_ifunc_resolve_addr,
1635 elf_gnu_ifunc_resolve_name,
1636 elf_gnu_ifunc_resolver_stop,
1637 elf_gnu_ifunc_resolver_return_stop
1641 _initialize_elfread (void)
1643 add_symtab_fns (&elf_sym_fns);
1645 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1646 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;