1 /* Read ELF (Executable and Linking Format) object files for GDB.
3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
7 Written by Fred Fish at Cygnus Support.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "gdb_string.h"
28 #include "elf/common.h"
29 #include "elf/internal.h"
35 #include "stabsread.h"
36 #include "gdb-stabs.h"
37 #include "complaints.h"
40 extern void _initialize_elfread (void);
42 /* The struct elfinfo is available only during ELF symbol table and
43 psymtab reading. It is destroyed at the completion of psymtab-reading.
44 It's local to elf_symfile_read. */
48 asection *stabsect; /* Section pointer for .stab section */
49 asection *stabindexsect; /* Section pointer for .stab.index section */
50 asection *mdebugsect; /* Section pointer for .mdebug section */
53 static void free_elfinfo (void *);
55 /* Locate the segments in ABFD. */
57 static struct symfile_segment_data *
58 elf_symfile_segments (bfd *abfd)
60 Elf_Internal_Phdr *phdrs, **segments;
62 int num_phdrs, num_segments, num_sections, i;
64 struct symfile_segment_data *data;
66 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
70 phdrs = alloca (phdrs_size);
71 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
76 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
77 for (i = 0; i < num_phdrs; i++)
78 if (phdrs[i].p_type == PT_LOAD)
79 segments[num_segments++] = &phdrs[i];
81 if (num_segments == 0)
84 data = XZALLOC (struct symfile_segment_data);
85 data->num_segments = num_segments;
86 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
87 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
89 for (i = 0; i < num_segments; i++)
91 data->segment_bases[i] = segments[i]->p_vaddr;
92 data->segment_sizes[i] = segments[i]->p_memsz;
95 num_sections = bfd_count_sections (abfd);
96 data->segment_info = XCALLOC (num_sections, int);
98 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
103 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
106 vma = bfd_get_section_vma (abfd, sect);
108 for (j = 0; j < num_segments; j++)
109 if (segments[j]->p_memsz > 0
110 && vma >= segments[j]->p_vaddr
111 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
113 data->segment_info[i] = j + 1;
117 if (bfd_get_section_size (sect) > 0 && j == num_segments)
118 warning (_("Loadable segment \"%s\" outside of ELF segments"),
119 bfd_section_name (abfd, sect));
125 /* We are called once per section from elf_symfile_read. We
126 need to examine each section we are passed, check to see
127 if it is something we are interested in processing, and
128 if so, stash away some access information for the section.
130 For now we recognize the dwarf debug information sections and
131 line number sections from matching their section names. The
132 ELF definition is no real help here since it has no direct
133 knowledge of DWARF (by design, so any debugging format can be
136 We also recognize the ".stab" sections used by the Sun compilers
137 released with Solaris 2.
139 FIXME: The section names should not be hardwired strings (what
140 should they be? I don't think most object file formats have enough
141 section flags to specify what kind of debug section it is
145 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
149 ei = (struct elfinfo *) eip;
150 if (strcmp (sectp->name, ".stab") == 0)
152 ei->stabsect = sectp;
154 else if (strcmp (sectp->name, ".stab.index") == 0)
156 ei->stabindexsect = sectp;
158 else if (strcmp (sectp->name, ".mdebug") == 0)
160 ei->mdebugsect = sectp;
164 static struct minimal_symbol *
165 record_minimal_symbol (char *name, CORE_ADDR address,
166 enum minimal_symbol_type ms_type,
167 asection *bfd_section, struct objfile *objfile)
169 struct gdbarch *gdbarch = get_objfile_arch (objfile);
171 if (ms_type == mst_text || ms_type == mst_file_text)
172 address = gdbarch_smash_text_address (gdbarch, address);
174 return prim_record_minimal_symbol_and_info
175 (name, address, ms_type, NULL, bfd_section->index, bfd_section, objfile);
182 elf_symtab_read -- read the symbol table of an ELF file
186 void elf_symtab_read (struct objfile *objfile, int type,
187 long number_of_symbols, asymbol **symbol_table)
191 Given an objfile, a symbol table, and a flag indicating whether the
192 symbol table contains regular, dynamic, or synthetic symbols, add all
193 the global function and data symbols to the minimal symbol table.
195 In stabs-in-ELF, as implemented by Sun, there are some local symbols
196 defined in the ELF symbol table, which can be used to locate
197 the beginnings of sections from each ".o" file that was linked to
198 form the executable objfile. We gather any such info and record it
199 in data structures hung off the objfile's private data.
205 #define ST_SYNTHETIC 2
208 elf_symtab_read (struct objfile *objfile, int type,
209 long number_of_symbols, asymbol **symbol_table)
211 struct gdbarch *gdbarch = get_objfile_arch (objfile);
217 enum minimal_symbol_type ms_type;
218 /* If sectinfo is nonNULL, it contains section info that should end up
219 filed in the objfile. */
220 struct stab_section_info *sectinfo = NULL;
221 /* If filesym is nonzero, it points to a file symbol, but we haven't
222 seen any section info for it yet. */
223 asymbol *filesym = 0;
224 /* Name of filesym, as saved on the objfile_obstack. */
225 char *filesymname = obsavestring ("", 0, &objfile->objfile_obstack);
226 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
227 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
229 for (i = 0; i < number_of_symbols; i++)
231 sym = symbol_table[i];
232 if (sym->name == NULL || *sym->name == '\0')
234 /* Skip names that don't exist (shouldn't happen), or names
235 that are null strings (may happen). */
239 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
240 symbols which do not correspond to objects in the symbol table,
241 but have some other target-specific meaning. */
242 if (bfd_is_target_special_symbol (objfile->obfd, sym))
244 if (gdbarch_record_special_symbol_p (gdbarch))
245 gdbarch_record_special_symbol (gdbarch, objfile, sym);
249 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
250 if (type == ST_DYNAMIC
251 && sym->section == &bfd_und_section
252 && (sym->flags & BSF_FUNCTION))
254 struct minimal_symbol *msym;
255 bfd *abfd = objfile->obfd;
258 /* Symbol is a reference to a function defined in
260 If its value is non zero then it is usually the address
261 of the corresponding entry in the procedure linkage table,
262 plus the desired section offset.
263 If its value is zero then the dynamic linker has to resolve
264 the symbol. We are unable to find any meaningful address
265 for this symbol in the executable file, so we skip it. */
266 symaddr = sym->value;
270 /* sym->section is the undefined section. However, we want to
271 record the section where the PLT stub resides with the
272 minimal symbol. Search the section table for the one that
273 covers the stub's address. */
274 for (sect = abfd->sections; sect != NULL; sect = sect->next)
276 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
279 if (symaddr >= bfd_get_section_vma (abfd, sect)
280 && symaddr < bfd_get_section_vma (abfd, sect)
281 + bfd_get_section_size (sect))
287 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
289 msym = record_minimal_symbol
290 ((char *) sym->name, symaddr, mst_solib_trampoline, sect, objfile);
292 msym->filename = filesymname;
296 /* If it is a nonstripped executable, do not enter dynamic
297 symbols, as the dynamic symbol table is usually a subset
298 of the main symbol table. */
299 if (type == ST_DYNAMIC && !stripped)
301 if (sym->flags & BSF_FILE)
303 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
304 Chain any old one onto the objfile; remember new sym. */
305 if (sectinfo != NULL)
307 sectinfo->next = dbx->stab_section_info;
308 dbx->stab_section_info = sectinfo;
313 obsavestring ((char *) filesym->name, strlen (filesym->name),
314 &objfile->objfile_obstack);
316 else if (sym->flags & BSF_SECTION_SYM)
318 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
320 struct minimal_symbol *msym;
322 /* Select global/local/weak symbols. Note that bfd puts abs
323 symbols in their own section, so all symbols we are
324 interested in will have a section. */
325 /* Bfd symbols are section relative. */
326 symaddr = sym->value + sym->section->vma;
327 /* Relocate all non-absolute symbols by the section offset. */
328 if (sym->section != &bfd_abs_section)
332 /* For non-absolute symbols, use the type of the section
333 they are relative to, to intuit text/data. Bfd provides
334 no way of figuring this out for absolute symbols. */
335 if (sym->section == &bfd_abs_section)
337 /* This is a hack to get the minimal symbol type
338 right for Irix 5, which has absolute addresses
339 with special section indices for dynamic symbols.
341 NOTE: uweigand-20071112: Synthetic symbols do not
342 have an ELF-private part, so do not touch those. */
343 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
344 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
354 case SHN_MIPS_ACOMMON:
361 /* If it is an Irix dynamic symbol, skip section name
362 symbols, relocate all others by section offset. */
363 if (ms_type != mst_abs)
365 if (sym->name[0] == '.')
370 else if (sym->section->flags & SEC_CODE)
372 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
376 else if ((sym->name[0] == '.' && sym->name[1] == 'L')
377 || ((sym->flags & BSF_LOCAL)
378 && sym->name[0] == '$'
379 && sym->name[1] == 'L'))
380 /* Looks like a compiler-generated label. Skip
381 it. The assembler should be skipping these (to
382 keep executables small), but apparently with
383 gcc on the (deleted) delta m88k SVR4, it loses.
384 So to have us check too should be harmless (but
385 I encourage people to fix this in the assembler
386 instead of adding checks here). */
390 ms_type = mst_file_text;
393 else if (sym->section->flags & SEC_ALLOC)
395 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
397 if (sym->section->flags & SEC_LOAD)
406 else if (sym->flags & BSF_LOCAL)
408 /* Named Local variable in a Data section.
409 Check its name for stabs-in-elf. */
410 int special_local_sect;
411 if (strcmp ("Bbss.bss", sym->name) == 0)
412 special_local_sect = SECT_OFF_BSS (objfile);
413 else if (strcmp ("Ddata.data", sym->name) == 0)
414 special_local_sect = SECT_OFF_DATA (objfile);
415 else if (strcmp ("Drodata.rodata", sym->name) == 0)
416 special_local_sect = SECT_OFF_RODATA (objfile);
418 special_local_sect = -1;
419 if (special_local_sect >= 0)
421 /* Found a special local symbol. Allocate a
422 sectinfo, if needed, and fill it in. */
423 if (sectinfo == NULL)
429 = max (SECT_OFF_BSS (objfile),
430 max (SECT_OFF_DATA (objfile),
431 SECT_OFF_RODATA (objfile)));
433 /* max_index is the largest index we'll
434 use into this array, so we must
435 allocate max_index+1 elements for it.
436 However, 'struct stab_section_info'
437 already includes one element, so we
438 need to allocate max_index aadditional
440 size = (sizeof (struct stab_section_info)
441 + (sizeof (CORE_ADDR)
443 sectinfo = (struct stab_section_info *)
445 memset (sectinfo, 0, size);
446 sectinfo->num_sections = max_index;
449 complaint (&symfile_complaints,
450 _("elf/stab section information %s without a preceding file symbol"),
456 (char *) filesym->name;
459 if (sectinfo->sections[special_local_sect] != 0)
460 complaint (&symfile_complaints,
461 _("duplicated elf/stab section information for %s"),
463 /* BFD symbols are section relative. */
464 symaddr = sym->value + sym->section->vma;
465 /* Relocate non-absolute symbols by the
467 if (sym->section != &bfd_abs_section)
469 sectinfo->sections[special_local_sect] = symaddr;
470 /* The special local symbols don't go in the
471 minimal symbol table, so ignore this one. */
474 /* Not a special stabs-in-elf symbol, do regular
475 symbol processing. */
476 if (sym->section->flags & SEC_LOAD)
478 ms_type = mst_file_data;
482 ms_type = mst_file_bss;
487 ms_type = mst_unknown;
492 /* FIXME: Solaris2 shared libraries include lots of
493 odd "absolute" and "undefined" symbols, that play
494 hob with actions like finding what function the PC
495 is in. Ignore them if they aren't text, data, or bss. */
496 /* ms_type = mst_unknown; */
497 continue; /* Skip this symbol. */
499 msym = record_minimal_symbol
500 ((char *) sym->name, symaddr,
501 ms_type, sym->section, objfile);
505 /* Pass symbol size field in via BFD. FIXME!!! */
506 elf_symbol_type *elf_sym;
508 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
509 ELF-private part. However, in some cases (e.g. synthetic
510 'dot' symbols on ppc64) the udata.p entry is set to point back
511 to the original ELF symbol it was derived from. Get the size
513 if (type != ST_SYNTHETIC)
514 elf_sym = (elf_symbol_type *) sym;
516 elf_sym = (elf_symbol_type *) sym->udata.p;
519 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
522 msym->filename = filesymname;
523 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
525 /* For @plt symbols, also record a trampoline to the
526 destination symbol. The @plt symbol will be used in
527 disassembly, and the trampoline will be used when we are
528 trying to find the target. */
529 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
531 int len = strlen (sym->name);
533 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
535 char *base_name = alloca (len - 4 + 1);
536 struct minimal_symbol *mtramp;
538 memcpy (base_name, sym->name, len - 4);
539 base_name[len - 4] = '\0';
540 mtramp = record_minimal_symbol (base_name, symaddr,
541 mst_solib_trampoline,
542 sym->section, objfile);
545 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
546 mtramp->filename = filesymname;
547 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
555 /* Scan and build partial symbols for a symbol file.
556 We have been initialized by a call to elf_symfile_init, which
557 currently does nothing.
559 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
560 in each section. We simplify it down to a single offset for all
563 MAINLINE is true if we are reading the main symbol
564 table (as opposed to a shared lib or dynamically loaded file).
566 This function only does the minimum work necessary for letting the
567 user "name" things symbolically; it does not read the entire symtab.
568 Instead, it reads the external and static symbols and puts them in partial
569 symbol tables. When more extensive information is requested of a
570 file, the corresponding partial symbol table is mutated into a full
571 fledged symbol table by going back and reading the symbols
574 We look for sections with specific names, to tell us what debug
575 format to look for: FIXME!!!
577 elfstab_build_psymtabs() handles STABS symbols;
578 mdebug_build_psymtabs() handles ECOFF debugging information.
580 Note that ELF files have a "minimal" symbol table, which looks a lot
581 like a COFF symbol table, but has only the minimal information necessary
582 for linking. We process this also, and use the information to
583 build gdb's minimal symbol table. This gives us some minimal debugging
584 capability even for files compiled without -g. */
587 elf_symfile_read (struct objfile *objfile, int mainline)
589 bfd *abfd = objfile->obfd;
591 struct cleanup *back_to;
593 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
594 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
597 init_minimal_symbol_collection ();
598 back_to = make_cleanup_discard_minimal_symbols ();
600 memset ((char *) &ei, 0, sizeof (ei));
602 /* Allocate struct to keep track of the symfile */
603 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
604 xmalloc (sizeof (struct dbx_symfile_info));
605 memset ((char *) objfile->deprecated_sym_stab_info, 0, sizeof (struct dbx_symfile_info));
606 make_cleanup (free_elfinfo, (void *) objfile);
608 /* Process the normal ELF symbol table first. This may write some
609 chain of info into the dbx_symfile_info in objfile->deprecated_sym_stab_info,
610 which can later be used by elfstab_offset_sections. */
612 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
613 if (storage_needed < 0)
614 error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile->obfd),
615 bfd_errmsg (bfd_get_error ()));
617 if (storage_needed > 0)
619 symbol_table = (asymbol **) xmalloc (storage_needed);
620 make_cleanup (xfree, symbol_table);
621 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
624 error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile->obfd),
625 bfd_errmsg (bfd_get_error ()));
627 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table);
630 /* Add the dynamic symbols. */
632 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
634 if (storage_needed > 0)
636 dyn_symbol_table = (asymbol **) xmalloc (storage_needed);
637 make_cleanup (xfree, dyn_symbol_table);
638 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
642 error (_("Can't read symbols from %s: %s"), bfd_get_filename (objfile->obfd),
643 bfd_errmsg (bfd_get_error ()));
645 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table);
648 /* Add synthetic symbols - for instance, names for any PLT entries. */
650 synthcount = bfd_get_synthetic_symtab (abfd, symcount, symbol_table,
651 dynsymcount, dyn_symbol_table,
655 asymbol **synth_symbol_table;
658 make_cleanup (xfree, synthsyms);
659 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
660 for (i = 0; i < synthcount; i++)
661 synth_symbol_table[i] = synthsyms + i;
662 make_cleanup (xfree, synth_symbol_table);
663 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount, synth_symbol_table);
666 /* Install any minimal symbols that have been collected as the current
667 minimal symbols for this objfile. The debug readers below this point
668 should not generate new minimal symbols; if they do it's their
669 responsibility to install them. "mdebug" appears to be the only one
670 which will do this. */
672 install_minimal_symbols (objfile);
673 do_cleanups (back_to);
675 /* Now process debugging information, which is contained in
676 special ELF sections. */
678 /* If we are reinitializing, or if we have never loaded syms yet,
679 set table to empty. MAINLINE is cleared so that *_read_psymtab
680 functions do not all also re-initialize the psymbol table. */
683 init_psymbol_list (objfile, 0);
687 /* We first have to find them... */
688 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
690 /* ELF debugging information is inserted into the psymtab in the
691 order of least informative first - most informative last. Since
692 the psymtab table is searched `most recent insertion first' this
693 increases the probability that more detailed debug information
694 for a section is found.
696 For instance, an object file might contain both .mdebug (XCOFF)
697 and .debug_info (DWARF2) sections then .mdebug is inserted first
698 (searched last) and DWARF2 is inserted last (searched first). If
699 we don't do this then the XCOFF info is found first - for code in
700 an included file XCOFF info is useless. */
704 const struct ecoff_debug_swap *swap;
706 /* .mdebug section, presumably holding ECOFF debugging
708 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
710 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
716 /* Stab sections have an associated string table that looks like
717 a separate section. */
718 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
720 /* FIXME should probably warn about a stab section without a stabstr. */
722 elfstab_build_psymtabs (objfile,
726 bfd_section_size (abfd, str_sect));
728 if (dwarf2_has_info (objfile))
730 /* DWARF 2 sections */
731 dwarf2_build_psymtabs (objfile, mainline);
734 /* FIXME: kettenis/20030504: This still needs to be integrated with
735 dwarf2read.c in a better way. */
736 dwarf2_build_frame_info (objfile);
739 /* This cleans up the objfile's deprecated_sym_stab_info pointer, and
740 the chain of stab_section_info's, that might be dangling from
744 free_elfinfo (void *objp)
746 struct objfile *objfile = (struct objfile *) objp;
747 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
748 struct stab_section_info *ssi, *nssi;
750 ssi = dbxinfo->stab_section_info;
758 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
762 /* Initialize anything that needs initializing when a completely new symbol
763 file is specified (not just adding some symbols from another file, e.g. a
766 We reinitialize buildsym, since we may be reading stabs from an ELF file. */
769 elf_new_init (struct objfile *ignore)
771 stabsread_new_init ();
772 buildsym_new_init ();
775 /* Perform any local cleanups required when we are done with a particular
776 objfile. I.E, we are in the process of discarding all symbol information
777 for an objfile, freeing up all memory held for it, and unlinking the
778 objfile struct from the global list of known objfiles. */
781 elf_symfile_finish (struct objfile *objfile)
783 if (objfile->deprecated_sym_stab_info != NULL)
785 xfree (objfile->deprecated_sym_stab_info);
788 dwarf2_free_objfile (objfile);
791 /* ELF specific initialization routine for reading symbols.
793 It is passed a pointer to a struct sym_fns which contains, among other
794 things, the BFD for the file whose symbols are being read, and a slot for
795 a pointer to "private data" which we can fill with goodies.
797 For now at least, we have nothing in particular to do, so this function is
801 elf_symfile_init (struct objfile *objfile)
803 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
804 find this causes a significant slowdown in gdb then we could
805 set it in the debug symbol readers only when necessary. */
806 objfile->flags |= OBJF_REORDERED;
809 /* When handling an ELF file that contains Sun STABS debug info,
810 some of the debug info is relative to the particular chunk of the
811 section that was generated in its individual .o file. E.g.
812 offsets to static variables are relative to the start of the data
813 segment *for that module before linking*. This information is
814 painfully squirreled away in the ELF symbol table as local symbols
815 with wierd names. Go get 'em when needed. */
818 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
820 char *filename = pst->filename;
821 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
822 struct stab_section_info *maybe = dbx->stab_section_info;
823 struct stab_section_info *questionable = 0;
827 /* The ELF symbol info doesn't include path names, so strip the path
828 (if any) from the psymtab filename. */
829 while (0 != (p = strchr (filename, '/')))
832 /* FIXME: This linear search could speed up significantly
833 if it was chained in the right order to match how we search it,
834 and if we unchained when we found a match. */
835 for (; maybe; maybe = maybe->next)
837 if (filename[0] == maybe->filename[0]
838 && strcmp (filename, maybe->filename) == 0)
840 /* We found a match. But there might be several source files
841 (from different directories) with the same name. */
842 if (0 == maybe->found)
844 questionable = maybe; /* Might use it later. */
848 if (maybe == 0 && questionable != 0)
850 complaint (&symfile_complaints,
851 _("elf/stab section information questionable for %s"), filename);
852 maybe = questionable;
857 /* Found it! Allocate a new psymtab struct, and fill it in. */
859 pst->section_offsets = (struct section_offsets *)
860 obstack_alloc (&objfile->objfile_obstack,
861 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
862 for (i = 0; i < maybe->num_sections; i++)
863 (pst->section_offsets)->offsets[i] = maybe->sections[i];
867 /* We were unable to find any offsets for this file. Complain. */
868 if (dbx->stab_section_info) /* If there *is* any info, */
869 complaint (&symfile_complaints,
870 _("elf/stab section information missing for %s"), filename);
873 /* Register that we are able to handle ELF object file formats. */
875 static struct sym_fns elf_sym_fns =
877 bfd_target_elf_flavour,
878 elf_new_init, /* sym_new_init: init anything gbl to entire symtab */
879 elf_symfile_init, /* sym_init: read initial info, setup for sym_read() */
880 elf_symfile_read, /* sym_read: read a symbol file into symtab */
881 elf_symfile_finish, /* sym_finish: finished with file, cleanup */
882 default_symfile_offsets, /* sym_offsets: Translate ext. to int. relocation */
883 elf_symfile_segments, /* sym_segments: Get segment information from
885 NULL, /* sym_read_linetable */
886 NULL /* next: pointer to next struct sym_fns */
890 _initialize_elfread (void)
892 add_symtab_fns (&elf_sym_fns);