1 /* Read ELF (Executable and Linking Format) object files for GDB.
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "elf/common.h"
26 #include "elf/internal.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
37 #include "filenames.h"
39 #include "arch-utils.h"
43 #include "gdbthread.h"
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_debug_names;
55 extern const struct sym_fns elf_sym_fns_lazy_psyms;
57 /* The struct elfinfo is available only during ELF symbol table and
58 psymtab reading. It is destroyed at the completion of psymtab-reading.
59 It's local to elf_symfile_read. */
63 asection *stabsect; /* Section pointer for .stab section */
64 asection *mdebugsect; /* Section pointer for .mdebug section */
67 /* Per-BFD data for probe info. */
69 static const struct bfd_data *probe_key = NULL;
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78 /* Locate the segments in ABFD. */
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
83 Elf_Internal_Phdr *phdrs, **segments;
85 int num_phdrs, num_segments, num_sections, i;
87 struct symfile_segment_data *data;
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
93 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
99 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
104 if (num_segments == 0)
107 data = XCNEW (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
112 for (i = 0; i < num_segments; i++)
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCNEWVEC (int, num_sections);
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
130 for (j = 0; j < num_segments; j++)
131 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
133 data->segment_info[i] = j + 1;
137 /* We should have found a segment for every non-empty section.
138 If we haven't, we will not relocate this section by any
139 offsets we apply to the segments. As an exception, do not
140 warn about SHT_NOBITS sections; in normal ELF execution
141 environments, SHT_NOBITS means zero-initialized and belongs
142 in a segment, but in no-OS environments some tools (e.g. ARM
143 RealView) use SHT_NOBITS for uninitialized data. Since it is
144 uninitialized, it doesn't need a program header. Such
145 binaries are not relocatable. */
146 if (bfd_get_section_size (sect) > 0 && j == num_segments
147 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
148 warning (_("Loadable section \"%s\" outside of ELF segments"),
149 bfd_section_name (abfd, sect));
155 /* We are called once per section from elf_symfile_read. We
156 need to examine each section we are passed, check to see
157 if it is something we are interested in processing, and
158 if so, stash away some access information for the section.
160 For now we recognize the dwarf debug information sections and
161 line number sections from matching their section names. The
162 ELF definition is no real help here since it has no direct
163 knowledge of DWARF (by design, so any debugging format can be
166 We also recognize the ".stab" sections used by the Sun compilers
167 released with Solaris 2.
169 FIXME: The section names should not be hardwired strings (what
170 should they be? I don't think most object file formats have enough
171 section flags to specify what kind of debug section it is.
175 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 ei = (struct elfinfo *) eip;
180 if (strcmp (sectp->name, ".stab") == 0)
182 ei->stabsect = sectp;
184 else if (strcmp (sectp->name, ".mdebug") == 0)
186 ei->mdebugsect = sectp;
190 static struct minimal_symbol *
191 record_minimal_symbol (minimal_symbol_reader &reader,
192 const char *name, int name_len, bool copy_name,
194 enum minimal_symbol_type ms_type,
195 asection *bfd_section, struct objfile *objfile)
197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199 if (ms_type == mst_text || ms_type == mst_file_text
200 || ms_type == mst_text_gnu_ifunc)
201 address = gdbarch_addr_bits_remove (gdbarch, address);
203 return reader.record_full (name, name_len, copy_name, address,
205 gdb_bfd_section_index (objfile->obfd,
209 /* Read the symbol table of an ELF file.
211 Given an objfile, a symbol table, and a flag indicating whether the
212 symbol table contains regular, dynamic, or synthetic symbols, add all
213 the global function and data symbols to the minimal symbol table.
215 In stabs-in-ELF, as implemented by Sun, there are some local symbols
216 defined in the ELF symbol table, which can be used to locate
217 the beginnings of sections from each ".o" file that was linked to
218 form the executable objfile. We gather any such info and record it
219 in data structures hung off the objfile's private data. */
223 #define ST_SYNTHETIC 2
226 elf_symtab_read (minimal_symbol_reader &reader,
227 struct objfile *objfile, int type,
228 long number_of_symbols, asymbol **symbol_table,
231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
235 enum minimal_symbol_type ms_type;
236 /* Name of the last file symbol. This is either a constant string or is
237 saved on the objfile's filename cache. */
238 const char *filesymname = "";
239 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
240 int elf_make_msymbol_special_p
241 = gdbarch_elf_make_msymbol_special_p (gdbarch);
243 for (i = 0; i < number_of_symbols; i++)
245 sym = symbol_table[i];
246 if (sym->name == NULL || *sym->name == '\0')
248 /* Skip names that don't exist (shouldn't happen), or names
249 that are null strings (may happen). */
253 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
254 symbols which do not correspond to objects in the symbol table,
255 but have some other target-specific meaning. */
256 if (bfd_is_target_special_symbol (objfile->obfd, sym))
258 if (gdbarch_record_special_symbol_p (gdbarch))
259 gdbarch_record_special_symbol (gdbarch, objfile, sym);
263 if (type == ST_DYNAMIC
264 && sym->section == bfd_und_section_ptr
265 && (sym->flags & BSF_FUNCTION))
267 struct minimal_symbol *msym;
268 bfd *abfd = objfile->obfd;
271 /* Symbol is a reference to a function defined in
273 If its value is non zero then it is usually the address
274 of the corresponding entry in the procedure linkage table,
275 plus the desired section offset.
276 If its value is zero then the dynamic linker has to resolve
277 the symbol. We are unable to find any meaningful address
278 for this symbol in the executable file, so we skip it. */
279 symaddr = sym->value;
283 /* sym->section is the undefined section. However, we want to
284 record the section where the PLT stub resides with the
285 minimal symbol. Search the section table for the one that
286 covers the stub's address. */
287 for (sect = abfd->sections; sect != NULL; sect = sect->next)
289 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 if (symaddr >= bfd_get_section_vma (abfd, sect)
293 && symaddr < bfd_get_section_vma (abfd, sect)
294 + bfd_get_section_size (sect))
300 /* On ia64-hpux, we have discovered that the system linker
301 adds undefined symbols with nonzero addresses that cannot
302 be right (their address points inside the code of another
303 function in the .text section). This creates problems
304 when trying to determine which symbol corresponds to
307 We try to detect those buggy symbols by checking which
308 section we think they correspond to. Normally, PLT symbols
309 are stored inside their own section, and the typical name
310 for that section is ".plt". So, if there is a ".plt"
311 section, and yet the section name of our symbol does not
312 start with ".plt", we ignore that symbol. */
313 if (!startswith (sect->name, ".plt")
314 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 msym = record_minimal_symbol
318 (reader, sym->name, strlen (sym->name), copy_names,
319 symaddr, mst_solib_trampoline, sect, objfile);
322 msym->filename = filesymname;
323 if (elf_make_msymbol_special_p)
324 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
329 /* If it is a nonstripped executable, do not enter dynamic
330 symbols, as the dynamic symbol table is usually a subset
331 of the main symbol table. */
332 if (type == ST_DYNAMIC && !stripped)
334 if (sym->flags & BSF_FILE)
337 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
338 objfile->per_bfd->filename_cache);
340 else if (sym->flags & BSF_SECTION_SYM)
342 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 struct minimal_symbol *msym;
347 /* Select global/local/weak symbols. Note that bfd puts abs
348 symbols in their own section, so all symbols we are
349 interested in will have a section. */
350 /* Bfd symbols are section relative. */
351 symaddr = sym->value + sym->section->vma;
352 /* For non-absolute symbols, use the type of the section
353 they are relative to, to intuit text/data. Bfd provides
354 no way of figuring this out for absolute symbols. */
355 if (sym->section == bfd_abs_section_ptr)
357 /* This is a hack to get the minimal symbol type
358 right for Irix 5, which has absolute addresses
359 with special section indices for dynamic symbols.
361 NOTE: uweigand-20071112: Synthetic symbols do not
362 have an ELF-private part, so do not touch those. */
363 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
364 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
374 case SHN_MIPS_ACOMMON:
381 /* If it is an Irix dynamic symbol, skip section name
382 symbols, relocate all others by section offset. */
383 if (ms_type != mst_abs)
385 if (sym->name[0] == '.')
389 else if (sym->section->flags & SEC_CODE)
391 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
393 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
394 ms_type = mst_text_gnu_ifunc;
398 /* The BSF_SYNTHETIC check is there to omit ppc64 function
399 descriptors mistaken for static functions starting with 'L'.
401 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
402 && (sym->flags & BSF_SYNTHETIC) == 0)
403 || ((sym->flags & BSF_LOCAL)
404 && sym->name[0] == '$'
405 && sym->name[1] == 'L'))
406 /* Looks like a compiler-generated label. Skip
407 it. The assembler should be skipping these (to
408 keep executables small), but apparently with
409 gcc on the (deleted) delta m88k SVR4, it loses.
410 So to have us check too should be harmless (but
411 I encourage people to fix this in the assembler
412 instead of adding checks here). */
416 ms_type = mst_file_text;
419 else if (sym->section->flags & SEC_ALLOC)
421 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
423 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
425 ms_type = mst_data_gnu_ifunc;
427 else if (sym->section->flags & SEC_LOAD)
436 else if (sym->flags & BSF_LOCAL)
438 if (sym->section->flags & SEC_LOAD)
440 ms_type = mst_file_data;
444 ms_type = mst_file_bss;
449 ms_type = mst_unknown;
454 /* FIXME: Solaris2 shared libraries include lots of
455 odd "absolute" and "undefined" symbols, that play
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
459 continue; /* Skip this symbol. */
461 msym = record_minimal_symbol
462 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
463 ms_type, sym->section, objfile);
467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
469 if (type != ST_SYNTHETIC)
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
476 msym->filename = filesymname;
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
485 const char *atsign = strchr (sym->name, '@');
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
489 int len = atsign - sym->name;
491 record_minimal_symbol (reader, sym->name, len, true, symaddr,
492 ms_type, sym->section, objfile);
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
502 int len = strlen (sym->name);
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
506 struct minimal_symbol *mtramp;
508 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
510 mst_solib_trampoline,
511 sym->section, objfile);
514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
515 mtramp->created_by_gdb = 1;
516 mtramp->filename = filesymname;
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
527 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
535 elf_rel_plt_read (minimal_symbol_reader &reader,
536 struct objfile *objfile, asymbol **dyn_symbol_table)
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
540 asection *relplt, *got_plt;
541 bfd_size_type reloc_count, reloc;
542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
543 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
544 size_t ptr_size = TYPE_LENGTH (ptr_type);
546 if (objfile->separate_debug_objfile_backlink)
549 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
552 /* For platforms where there is no separate .got.plt. */
553 got_plt = bfd_get_section_by_name (obfd, ".got");
558 /* Depending on system, we may find jump slots in a relocation
559 section for either .got.plt or .plt. */
560 asection *plt = bfd_get_section_by_name (obfd, ".plt");
561 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
563 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
565 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
566 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
568 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
570 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
572 if (this_hdr.sh_info == plt_elf_idx
573 || this_hdr.sh_info == got_plt_elf_idx)
580 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
583 std::string string_buffer;
585 /* Does ADDRESS reside in SECTION of OBFD? */
586 auto within_section = [obfd] (asection *section, CORE_ADDR address)
591 return (bfd_get_section_vma (obfd, section) <= address
592 && (address < bfd_get_section_vma (obfd, section)
593 + bfd_get_section_size (section)));
596 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
597 for (reloc = 0; reloc < reloc_count; reloc++)
600 struct minimal_symbol *msym;
602 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
603 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
605 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
606 address = relplt->relocation[reloc].address;
608 asection *msym_section;
610 /* Does the pointer reside in either the .got.plt or .plt
612 if (within_section (got_plt, address))
613 msym_section = got_plt;
614 else if (within_section (plt, address))
619 /* We cannot check if NAME is a reference to
620 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
621 symbol is undefined and the objfile having NAME defined may
622 not yet have been loaded. */
624 string_buffer.assign (name);
625 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
627 msym = record_minimal_symbol (reader, string_buffer.c_str (),
628 string_buffer.size (),
629 true, address, mst_slot_got_plt,
630 msym_section, objfile);
632 SET_MSYMBOL_SIZE (msym, ptr_size);
636 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
638 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
640 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
642 struct elf_gnu_ifunc_cache
644 /* This is always a function entry address, not a function descriptor. */
650 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
653 elf_gnu_ifunc_cache_hash (const void *a_voidp)
655 const struct elf_gnu_ifunc_cache *a
656 = (const struct elf_gnu_ifunc_cache *) a_voidp;
658 return htab_hash_string (a->name);
661 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
664 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
666 const struct elf_gnu_ifunc_cache *a
667 = (const struct elf_gnu_ifunc_cache *) a_voidp;
668 const struct elf_gnu_ifunc_cache *b
669 = (const struct elf_gnu_ifunc_cache *) b_voidp;
671 return strcmp (a->name, b->name) == 0;
674 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
675 function entry address ADDR. Return 1 if NAME and ADDR are considered as
676 valid and therefore they were successfully recorded, return 0 otherwise.
678 Function does not expect a duplicate entry. Use
679 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
683 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
685 struct bound_minimal_symbol msym;
686 struct objfile *objfile;
688 struct elf_gnu_ifunc_cache entry_local, *entry_p;
691 msym = lookup_minimal_symbol_by_pc (addr);
692 if (msym.minsym == NULL)
694 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
696 objfile = msym.objfile;
698 /* If .plt jumps back to .plt the symbol is still deferred for later
699 resolution and it has no use for GDB. */
700 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
701 size_t len = strlen (target_name);
703 /* Note we check the symbol's name instead of checking whether the
704 symbol is in the .plt section because some systems have @plt
705 symbols in the .text section. */
706 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
709 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
712 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
713 elf_gnu_ifunc_cache_eq,
714 NULL, &objfile->objfile_obstack,
715 hashtab_obstack_allocate,
716 dummy_obstack_deallocate);
717 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
720 entry_local.addr = addr;
721 obstack_grow (&objfile->objfile_obstack, &entry_local,
722 offsetof (struct elf_gnu_ifunc_cache, name));
723 obstack_grow_str0 (&objfile->objfile_obstack, name);
725 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
727 slot = htab_find_slot (htab, entry_p, INSERT);
730 struct elf_gnu_ifunc_cache *entry_found_p
731 = (struct elf_gnu_ifunc_cache *) *slot;
732 struct gdbarch *gdbarch = get_objfile_arch (objfile);
734 if (entry_found_p->addr != addr)
736 /* This case indicates buggy inferior program, the resolved address
737 should never change. */
739 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
740 "function_address from %s to %s"),
741 name, paddress (gdbarch, entry_found_p->addr),
742 paddress (gdbarch, addr));
745 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
752 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
753 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
754 is not NULL) and the function returns 1. It returns 0 otherwise.
756 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
760 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
762 struct objfile *objfile;
764 ALL_PSPACE_OBJFILES (current_program_space, objfile)
767 struct elf_gnu_ifunc_cache *entry_p;
770 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
774 entry_p = ((struct elf_gnu_ifunc_cache *)
775 alloca (sizeof (*entry_p) + strlen (name)));
776 strcpy (entry_p->name, name);
778 slot = htab_find_slot (htab, entry_p, NO_INSERT);
781 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
782 gdb_assert (entry_p != NULL);
785 *addr_p = entry_p->addr;
792 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
793 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
794 is not NULL) and the function returns 1. It returns 0 otherwise.
796 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
797 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
798 prevent cache entries duplicates. */
801 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
804 struct objfile *objfile;
805 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
807 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
808 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
810 ALL_PSPACE_OBJFILES (current_program_space, objfile)
812 bfd *obfd = objfile->obfd;
813 struct gdbarch *gdbarch = get_objfile_arch (objfile);
814 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
815 size_t ptr_size = TYPE_LENGTH (ptr_type);
816 CORE_ADDR pointer_address, addr;
818 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
819 struct bound_minimal_symbol msym;
821 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
822 if (msym.minsym == NULL)
824 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
826 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
828 plt = bfd_get_section_by_name (obfd, ".plt");
832 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
834 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
836 addr = extract_typed_address (buf, ptr_type);
837 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
838 current_top_target ());
839 addr = gdbarch_addr_bits_remove (gdbarch, addr);
841 if (elf_gnu_ifunc_record_cache (name, addr))
852 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
853 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
854 is not NULL) and the function returns 1. It returns 0 otherwise.
856 Both the elf_objfile_gnu_ifunc_cache_data hash table and
857 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
860 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
862 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
865 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
871 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
872 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
873 is the entry point of the resolved STT_GNU_IFUNC target function to call.
877 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
879 const char *name_at_pc;
880 CORE_ADDR start_at_pc, address;
881 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
882 struct value *function, *address_val;
884 struct value *hwcap_val;
886 /* Try first any non-intrusive methods without an inferior call. */
888 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
889 && start_at_pc == pc)
891 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
897 function = allocate_value (func_func_type);
898 VALUE_LVAL (function) = lval_memory;
899 set_value_address (function, pc);
901 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
902 parameter. FUNCTION is the function entry address. ADDRESS may be a
903 function descriptor. */
905 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
906 hwcap_val = value_from_longest (builtin_type (gdbarch)
907 ->builtin_unsigned_long, hwcap);
908 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
909 address = value_as_address (address_val);
910 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
911 address = gdbarch_addr_bits_remove (gdbarch, address);
914 elf_gnu_ifunc_record_cache (name_at_pc, address);
919 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
922 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
924 struct breakpoint *b_return;
925 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
926 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
927 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
928 int thread_id = inferior_thread ()->global_num;
930 gdb_assert (b->type == bp_gnu_ifunc_resolver);
932 for (b_return = b->related_breakpoint; b_return != b;
933 b_return = b_return->related_breakpoint)
935 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
936 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
937 gdb_assert (frame_id_p (b_return->frame_id));
939 if (b_return->thread == thread_id
940 && b_return->loc->requested_address == prev_pc
941 && frame_id_eq (b_return->frame_id, prev_frame_id))
947 /* No need to call find_pc_line for symbols resolving as this is only
948 a helper breakpointer never shown to the user. */
951 sal.pspace = current_inferior ()->pspace;
953 sal.section = find_pc_overlay (sal.pc);
956 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
958 bp_gnu_ifunc_resolver_return).release ();
960 /* set_momentary_breakpoint invalidates PREV_FRAME. */
963 /* Add new b_return to the ring list b->related_breakpoint. */
964 gdb_assert (b_return->related_breakpoint == b_return);
965 b_return->related_breakpoint = b->related_breakpoint;
966 b->related_breakpoint = b_return;
970 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
973 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
975 thread_info *thread = inferior_thread ();
976 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
977 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
978 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
979 struct regcache *regcache = get_thread_regcache (thread);
980 struct value *func_func;
982 CORE_ADDR resolved_address, resolved_pc;
984 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
986 while (b->related_breakpoint != b)
988 struct breakpoint *b_next = b->related_breakpoint;
992 case bp_gnu_ifunc_resolver:
994 case bp_gnu_ifunc_resolver_return:
995 delete_breakpoint (b);
998 internal_error (__FILE__, __LINE__,
999 _("handle_inferior_event: Invalid "
1000 "gnu-indirect-function breakpoint type %d"),
1005 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1006 gdb_assert (b->loc->next == NULL);
1008 func_func = allocate_value (func_func_type);
1009 VALUE_LVAL (func_func) = lval_memory;
1010 set_value_address (func_func, b->loc->related_address);
1012 value = allocate_value (value_type);
1013 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1014 value_contents_raw (value), NULL);
1015 resolved_address = value_as_address (value);
1016 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1018 current_top_target ());
1019 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1021 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1022 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1025 b->type = bp_breakpoint;
1026 update_breakpoint_locations (b, current_program_space,
1027 find_function_start_sal (resolved_pc, NULL, true),
1031 /* A helper function for elf_symfile_read that reads the minimal
1035 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1036 const struct elfinfo *ei)
1038 bfd *synth_abfd, *abfd = objfile->obfd;
1039 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1040 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1042 struct dbx_symfile_info *dbx;
1044 if (symtab_create_debug)
1046 fprintf_unfiltered (gdb_stdlog,
1047 "Reading minimal symbols of objfile %s ...\n",
1048 objfile_name (objfile));
1051 /* If we already have minsyms, then we can skip some work here.
1052 However, if there were stabs or mdebug sections, we go ahead and
1053 redo all the work anyway, because the psym readers for those
1054 kinds of debuginfo need extra information found here. This can
1055 go away once all types of symbols are in the per-BFD object. */
1056 if (objfile->per_bfd->minsyms_read
1057 && ei->stabsect == NULL
1058 && ei->mdebugsect == NULL)
1060 if (symtab_create_debug)
1061 fprintf_unfiltered (gdb_stdlog,
1062 "... minimal symbols previously read\n");
1066 minimal_symbol_reader reader (objfile);
1068 /* Allocate struct to keep track of the symfile. */
1069 dbx = XCNEW (struct dbx_symfile_info);
1070 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1072 /* Process the normal ELF symbol table first. */
1074 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1075 if (storage_needed < 0)
1076 error (_("Can't read symbols from %s: %s"),
1077 bfd_get_filename (objfile->obfd),
1078 bfd_errmsg (bfd_get_error ()));
1080 if (storage_needed > 0)
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1085 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1086 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1089 error (_("Can't read symbols from %s: %s"),
1090 bfd_get_filename (objfile->obfd),
1091 bfd_errmsg (bfd_get_error ()));
1093 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1097 /* Add the dynamic symbols. */
1099 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1101 if (storage_needed > 0)
1103 /* Memory gets permanently referenced from ABFD after
1104 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1105 It happens only in the case when elf_slurp_reloc_table sees
1106 asection->relocation NULL. Determining which section is asection is
1107 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1108 implementation detail, though. */
1110 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1111 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1114 if (dynsymcount < 0)
1115 error (_("Can't read symbols from %s: %s"),
1116 bfd_get_filename (objfile->obfd),
1117 bfd_errmsg (bfd_get_error ()));
1119 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1120 dyn_symbol_table, false);
1122 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1125 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1126 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1128 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1129 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1130 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1131 read the code address from .opd while it reads the .symtab section from
1132 a separate debug info file as the .opd section is SHT_NOBITS there.
1134 With SYNTH_ABFD the .opd section will be read from the original
1135 backlinked binary where it is valid. */
1137 if (objfile->separate_debug_objfile_backlink)
1138 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1142 /* Add synthetic symbols - for instance, names for any PLT entries. */
1144 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1145 dynsymcount, dyn_symbol_table,
1151 std::unique_ptr<asymbol *[]>
1152 synth_symbol_table (new asymbol *[synthcount]);
1153 for (i = 0; i < synthcount; i++)
1154 synth_symbol_table[i] = synthsyms + i;
1155 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1156 synth_symbol_table.get (), true);
1162 /* Install any minimal symbols that have been collected as the current
1163 minimal symbols for this objfile. The debug readers below this point
1164 should not generate new minimal symbols; if they do it's their
1165 responsibility to install them. "mdebug" appears to be the only one
1166 which will do this. */
1170 if (symtab_create_debug)
1171 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1174 /* Scan and build partial symbols for a symbol file.
1175 We have been initialized by a call to elf_symfile_init, which
1176 currently does nothing.
1178 This function only does the minimum work necessary for letting the
1179 user "name" things symbolically; it does not read the entire symtab.
1180 Instead, it reads the external and static symbols and puts them in partial
1181 symbol tables. When more extensive information is requested of a
1182 file, the corresponding partial symbol table is mutated into a full
1183 fledged symbol table by going back and reading the symbols
1186 We look for sections with specific names, to tell us what debug
1187 format to look for: FIXME!!!
1189 elfstab_build_psymtabs() handles STABS symbols;
1190 mdebug_build_psymtabs() handles ECOFF debugging information.
1192 Note that ELF files have a "minimal" symbol table, which looks a lot
1193 like a COFF symbol table, but has only the minimal information necessary
1194 for linking. We process this also, and use the information to
1195 build gdb's minimal symbol table. This gives us some minimal debugging
1196 capability even for files compiled without -g. */
1199 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1201 bfd *abfd = objfile->obfd;
1204 memset ((char *) &ei, 0, sizeof (ei));
1205 if (!(objfile->flags & OBJF_READNEVER))
1206 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1208 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1210 /* ELF debugging information is inserted into the psymtab in the
1211 order of least informative first - most informative last. Since
1212 the psymtab table is searched `most recent insertion first' this
1213 increases the probability that more detailed debug information
1214 for a section is found.
1216 For instance, an object file might contain both .mdebug (XCOFF)
1217 and .debug_info (DWARF2) sections then .mdebug is inserted first
1218 (searched last) and DWARF2 is inserted last (searched first). If
1219 we don't do this then the XCOFF info is found first - for code in
1220 an included file XCOFF info is useless. */
1224 const struct ecoff_debug_swap *swap;
1226 /* .mdebug section, presumably holding ECOFF debugging
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1230 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1236 /* Stab sections have an associated string table that looks like
1237 a separate section. */
1238 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1240 /* FIXME should probably warn about a stab section without a stabstr. */
1242 elfstab_build_psymtabs (objfile,
1245 bfd_section_size (abfd, str_sect));
1248 if (dwarf2_has_info (objfile, NULL))
1250 dw_index_kind index_kind;
1252 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1253 debug information present in OBJFILE. If there is such debug
1254 info present never use an index. */
1255 if (!objfile_has_partial_symbols (objfile)
1256 && dwarf2_initialize_objfile (objfile, &index_kind))
1260 case dw_index_kind::GDB_INDEX:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1263 case dw_index_kind::DEBUG_NAMES:
1264 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1270 /* It is ok to do this even if the stabs reader made some
1271 partial symbols, because OBJF_PSYMTABS_READ has not been
1272 set, and so our lazy reader function will still be called
1274 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1277 /* If the file has its own symbol tables it has no separate debug
1278 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1279 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1280 `.note.gnu.build-id'.
1282 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1283 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1284 an objfile via find_separate_debug_file_in_section there was no separate
1285 debug info available. Therefore do not attempt to search for another one,
1286 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1287 be NULL and we would possibly violate it. */
1289 else if (!objfile_has_partial_symbols (objfile)
1290 && objfile->separate_debug_objfile == NULL
1291 && objfile->separate_debug_objfile_backlink == NULL)
1293 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1295 if (debugfile.empty ())
1296 debugfile = find_separate_debug_file_by_debuglink (objfile);
1298 if (!debugfile.empty ())
1300 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1302 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1303 symfile_flags, objfile);
1308 /* Callback to lazily read psymtabs. */
1311 read_psyms (struct objfile *objfile)
1313 if (dwarf2_has_info (objfile, NULL))
1314 dwarf2_build_psymtabs (objfile);
1317 /* Initialize anything that needs initializing when a completely new symbol
1318 file is specified (not just adding some symbols from another file, e.g. a
1321 We reinitialize buildsym, since we may be reading stabs from an ELF
1325 elf_new_init (struct objfile *ignore)
1327 stabsread_new_init ();
1331 /* Perform any local cleanups required when we are done with a particular
1332 objfile. I.E, we are in the process of discarding all symbol information
1333 for an objfile, freeing up all memory held for it, and unlinking the
1334 objfile struct from the global list of known objfiles. */
1337 elf_symfile_finish (struct objfile *objfile)
1341 /* ELF specific initialization routine for reading symbols. */
1344 elf_symfile_init (struct objfile *objfile)
1346 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1347 find this causes a significant slowdown in gdb then we could
1348 set it in the debug symbol readers only when necessary. */
1349 objfile->flags |= OBJF_REORDERED;
1352 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1354 static const std::vector<probe *> &
1355 elf_get_probes (struct objfile *objfile)
1357 std::vector<probe *> *probes_per_bfd;
1359 /* Have we parsed this objfile's probes already? */
1360 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1362 if (probes_per_bfd == NULL)
1364 probes_per_bfd = new std::vector<probe *>;
1366 /* Here we try to gather information about all types of probes from the
1368 for (const static_probe_ops *ops : all_static_probe_ops)
1369 ops->get_probes (probes_per_bfd, objfile);
1371 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1374 return *probes_per_bfd;
1377 /* Helper function used to free the space allocated for storing SystemTap
1378 probe information. */
1381 probe_key_free (bfd *abfd, void *d)
1383 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1385 for (probe *p : *probes)
1393 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1395 static const struct sym_probe_fns elf_probe_fns =
1397 elf_get_probes, /* sym_get_probes */
1400 /* Register that we are able to handle ELF object file formats. */
1402 static const struct sym_fns elf_sym_fns =
1404 elf_new_init, /* init anything gbl to entire symtab */
1405 elf_symfile_init, /* read initial info, setup for sym_read() */
1406 elf_symfile_read, /* read a symbol file into symtab */
1407 NULL, /* sym_read_psymbols */
1408 elf_symfile_finish, /* finished with file, cleanup */
1409 default_symfile_offsets, /* Translate ext. to int. relocation */
1410 elf_symfile_segments, /* Get segment information from a file. */
1412 default_symfile_relocate, /* Relocate a debug section. */
1413 &elf_probe_fns, /* sym_probe_fns */
1417 /* The same as elf_sym_fns, but not registered and lazily reads
1420 const struct sym_fns elf_sym_fns_lazy_psyms =
1422 elf_new_init, /* init anything gbl to entire symtab */
1423 elf_symfile_init, /* read initial info, setup for sym_read() */
1424 elf_symfile_read, /* read a symbol file into symtab */
1425 read_psyms, /* sym_read_psymbols */
1426 elf_symfile_finish, /* finished with file, cleanup */
1427 default_symfile_offsets, /* Translate ext. to int. relocation */
1428 elf_symfile_segments, /* Get segment information from a file. */
1430 default_symfile_relocate, /* Relocate a debug section. */
1431 &elf_probe_fns, /* sym_probe_fns */
1435 /* The same as elf_sym_fns, but not registered and uses the
1436 DWARF-specific GNU index rather than psymtab. */
1437 const struct sym_fns elf_sym_fns_gdb_index =
1439 elf_new_init, /* init anything gbl to entire symab */
1440 elf_symfile_init, /* read initial info, setup for sym_red() */
1441 elf_symfile_read, /* read a symbol file into symtab */
1442 NULL, /* sym_read_psymbols */
1443 elf_symfile_finish, /* finished with file, cleanup */
1444 default_symfile_offsets, /* Translate ext. to int. relocatin */
1445 elf_symfile_segments, /* Get segment information from a file. */
1447 default_symfile_relocate, /* Relocate a debug section. */
1448 &elf_probe_fns, /* sym_probe_fns */
1449 &dwarf2_gdb_index_functions
1452 /* The same as elf_sym_fns, but not registered and uses the
1453 DWARF-specific .debug_names index rather than psymtab. */
1454 const struct sym_fns elf_sym_fns_debug_names =
1456 elf_new_init, /* init anything gbl to entire symab */
1457 elf_symfile_init, /* read initial info, setup for sym_red() */
1458 elf_symfile_read, /* read a symbol file into symtab */
1459 NULL, /* sym_read_psymbols */
1460 elf_symfile_finish, /* finished with file, cleanup */
1461 default_symfile_offsets, /* Translate ext. to int. relocatin */
1462 elf_symfile_segments, /* Get segment information from a file. */
1464 default_symfile_relocate, /* Relocate a debug section. */
1465 &elf_probe_fns, /* sym_probe_fns */
1466 &dwarf2_debug_names_functions
1469 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1471 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1473 elf_gnu_ifunc_resolve_addr,
1474 elf_gnu_ifunc_resolve_name,
1475 elf_gnu_ifunc_resolver_stop,
1476 elf_gnu_ifunc_resolver_return_stop
1480 _initialize_elfread (void)
1482 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1483 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1485 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1486 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;