1 /* Read ELF (Executable and Linking Format) object files for GDB.
3 Copyright (C) 1991-2016 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
25 #include "elf/common.h"
26 #include "elf/internal.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
37 #include "filenames.h"
39 #include "arch-utils.h"
43 #include "gdbthread.h"
50 extern void _initialize_elfread (void);
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
66 /* Per-BFD data for probe info. */
68 static const struct bfd_data *probe_key = NULL;
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77 /* Locate the segments in ABFD. */
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
82 Elf_Internal_Phdr *phdrs, **segments;
84 int num_phdrs, num_segments, num_sections, i;
86 struct symfile_segment_data *data;
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
103 if (num_segments == 0)
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
111 for (i = 0; i < num_segments; i++)
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 vma = bfd_get_section_vma (abfd, sect);
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
135 data->segment_info[i] = j + 1;
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
184 ei->stabsect = sectp;
186 else if (strcmp (sectp->name, ".mdebug") == 0)
188 ei->mdebugsect = sectp;
192 static struct minimal_symbol *
193 record_minimal_symbol (const char *name, int name_len, int copy_name,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_addr_bits_remove (gdbarch, address);
204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
206 gdb_bfd_section_index (objfile->obfd,
211 /* Read the symbol table of an ELF file.
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
225 #define ST_SYNTHETIC 2
228 elf_symtab_read (struct objfile *objfile, int type,
229 long number_of_symbols, asymbol **symbol_table,
232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
242 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
243 int elf_make_msymbol_special_p
244 = gdbarch_elf_make_msymbol_special_p (gdbarch);
246 for (i = 0; i < number_of_symbols; i++)
248 sym = symbol_table[i];
249 if (sym->name == NULL || *sym->name == '\0')
251 /* Skip names that don't exist (shouldn't happen), or names
252 that are null strings (may happen). */
256 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
257 symbols which do not correspond to objects in the symbol table,
258 but have some other target-specific meaning. */
259 if (bfd_is_target_special_symbol (objfile->obfd, sym))
261 if (gdbarch_record_special_symbol_p (gdbarch))
262 gdbarch_record_special_symbol (gdbarch, objfile, sym);
266 offset = ANOFFSET (objfile->section_offsets,
267 gdb_bfd_section_index (objfile->obfd, sym->section));
268 if (type == ST_DYNAMIC
269 && sym->section == bfd_und_section_ptr
270 && (sym->flags & BSF_FUNCTION))
272 struct minimal_symbol *msym;
273 bfd *abfd = objfile->obfd;
276 /* Symbol is a reference to a function defined in
278 If its value is non zero then it is usually the address
279 of the corresponding entry in the procedure linkage table,
280 plus the desired section offset.
281 If its value is zero then the dynamic linker has to resolve
282 the symbol. We are unable to find any meaningful address
283 for this symbol in the executable file, so we skip it. */
284 symaddr = sym->value;
288 /* sym->section is the undefined section. However, we want to
289 record the section where the PLT stub resides with the
290 minimal symbol. Search the section table for the one that
291 covers the stub's address. */
292 for (sect = abfd->sections; sect != NULL; sect = sect->next)
294 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
297 if (symaddr >= bfd_get_section_vma (abfd, sect)
298 && symaddr < bfd_get_section_vma (abfd, sect)
299 + bfd_get_section_size (sect))
305 /* On ia64-hpux, we have discovered that the system linker
306 adds undefined symbols with nonzero addresses that cannot
307 be right (their address points inside the code of another
308 function in the .text section). This creates problems
309 when trying to determine which symbol corresponds to
312 We try to detect those buggy symbols by checking which
313 section we think they correspond to. Normally, PLT symbols
314 are stored inside their own section, and the typical name
315 for that section is ".plt". So, if there is a ".plt"
316 section, and yet the section name of our symbol does not
317 start with ".plt", we ignore that symbol. */
318 if (!startswith (sect->name, ".plt")
319 && bfd_get_section_by_name (abfd, ".plt") != NULL)
322 msym = record_minimal_symbol
323 (sym->name, strlen (sym->name), copy_names,
324 symaddr, mst_solib_trampoline, sect, objfile);
327 msym->filename = filesymname;
328 if (elf_make_msymbol_special_p)
329 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
334 /* If it is a nonstripped executable, do not enter dynamic
335 symbols, as the dynamic symbol table is usually a subset
336 of the main symbol table. */
337 if (type == ST_DYNAMIC && !stripped)
339 if (sym->flags & BSF_FILE)
342 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
343 objfile->per_bfd->filename_cache);
345 else if (sym->flags & BSF_SECTION_SYM)
347 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
350 struct minimal_symbol *msym;
352 /* Select global/local/weak symbols. Note that bfd puts abs
353 symbols in their own section, so all symbols we are
354 interested in will have a section. */
355 /* Bfd symbols are section relative. */
356 symaddr = sym->value + sym->section->vma;
357 /* For non-absolute symbols, use the type of the section
358 they are relative to, to intuit text/data. Bfd provides
359 no way of figuring this out for absolute symbols. */
360 if (sym->section == bfd_abs_section_ptr)
362 /* This is a hack to get the minimal symbol type
363 right for Irix 5, which has absolute addresses
364 with special section indices for dynamic symbols.
366 NOTE: uweigand-20071112: Synthetic symbols do not
367 have an ELF-private part, so do not touch those. */
368 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
369 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
379 case SHN_MIPS_ACOMMON:
386 /* If it is an Irix dynamic symbol, skip section name
387 symbols, relocate all others by section offset. */
388 if (ms_type != mst_abs)
390 if (sym->name[0] == '.')
394 else if (sym->section->flags & SEC_CODE)
396 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
398 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
399 ms_type = mst_text_gnu_ifunc;
403 /* The BSF_SYNTHETIC check is there to omit ppc64 function
404 descriptors mistaken for static functions starting with 'L'.
406 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
407 && (sym->flags & BSF_SYNTHETIC) == 0)
408 || ((sym->flags & BSF_LOCAL)
409 && sym->name[0] == '$'
410 && sym->name[1] == 'L'))
411 /* Looks like a compiler-generated label. Skip
412 it. The assembler should be skipping these (to
413 keep executables small), but apparently with
414 gcc on the (deleted) delta m88k SVR4, it loses.
415 So to have us check too should be harmless (but
416 I encourage people to fix this in the assembler
417 instead of adding checks here). */
421 ms_type = mst_file_text;
424 else if (sym->section->flags & SEC_ALLOC)
426 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
428 if (sym->section->flags & SEC_LOAD)
437 else if (sym->flags & BSF_LOCAL)
439 if (sym->section->flags & SEC_LOAD)
441 ms_type = mst_file_data;
445 ms_type = mst_file_bss;
450 ms_type = mst_unknown;
455 /* FIXME: Solaris2 shared libraries include lots of
456 odd "absolute" and "undefined" symbols, that play
457 hob with actions like finding what function the PC
458 is in. Ignore them if they aren't text, data, or bss. */
459 /* ms_type = mst_unknown; */
460 continue; /* Skip this symbol. */
462 msym = record_minimal_symbol
463 (sym->name, strlen (sym->name), copy_names, symaddr,
464 ms_type, sym->section, objfile);
468 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
470 if (type != ST_SYNTHETIC)
472 /* Pass symbol size field in via BFD. FIXME!!! */
473 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
474 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
477 msym->filename = filesymname;
478 if (elf_make_msymbol_special_p)
479 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
482 /* If we see a default versioned symbol, install it under
483 its version-less name. */
486 const char *atsign = strchr (sym->name, '@');
488 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
490 int len = atsign - sym->name;
492 record_minimal_symbol (sym->name, len, 1, symaddr,
493 ms_type, sym->section, objfile);
497 /* For @plt symbols, also record a trampoline to the
498 destination symbol. The @plt symbol will be used in
499 disassembly, and the trampoline will be used when we are
500 trying to find the target. */
501 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
503 int len = strlen (sym->name);
505 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
507 struct minimal_symbol *mtramp;
509 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
511 mst_solib_trampoline,
512 sym->section, objfile);
515 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
516 mtramp->created_by_gdb = 1;
517 mtramp->filename = filesymname;
518 if (elf_make_msymbol_special_p)
519 gdbarch_elf_make_msymbol_special (gdbarch,
528 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
529 for later look ups of which function to call when user requests
530 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
531 library defining `function' we cannot yet know while reading OBJFILE which
532 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
533 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
536 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
540 asection *plt, *relplt, *got_plt;
542 bfd_size_type reloc_count, reloc;
543 char *string_buffer = NULL;
544 size_t string_buffer_size = 0;
545 struct cleanup *back_to;
546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548 size_t ptr_size = TYPE_LENGTH (ptr_type);
550 if (objfile->separate_debug_objfile_backlink)
553 plt = bfd_get_section_by_name (obfd, ".plt");
556 plt_elf_idx = elf_section_data (plt)->this_idx;
558 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
561 /* For platforms where there is no separate .got.plt. */
562 got_plt = bfd_get_section_by_name (obfd, ".got");
567 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
568 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
569 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
570 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
571 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
576 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
579 back_to = make_cleanup (free_current_contents, &string_buffer);
581 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
582 for (reloc = 0; reloc < reloc_count; reloc++)
585 struct minimal_symbol *msym;
587 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
590 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
591 name_len = strlen (name);
592 address = relplt->relocation[reloc].address;
594 /* Does the pointer reside in the .got.plt section? */
595 if (!(bfd_get_section_vma (obfd, got_plt) <= address
596 && address < bfd_get_section_vma (obfd, got_plt)
597 + bfd_get_section_size (got_plt)))
600 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
601 OBJFILE the symbol is undefined and the objfile having NAME defined
602 may not yet have been loaded. */
604 if (string_buffer_size < name_len + got_suffix_len + 1)
606 string_buffer_size = 2 * (name_len + got_suffix_len);
607 string_buffer = (char *) xrealloc (string_buffer, string_buffer_size);
609 memcpy (string_buffer, name, name_len);
610 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
613 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
614 1, address, mst_slot_got_plt, got_plt,
617 SET_MSYMBOL_SIZE (msym, ptr_size);
620 do_cleanups (back_to);
623 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
625 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
627 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
629 struct elf_gnu_ifunc_cache
631 /* This is always a function entry address, not a function descriptor. */
637 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
640 elf_gnu_ifunc_cache_hash (const void *a_voidp)
642 const struct elf_gnu_ifunc_cache *a
643 = (const struct elf_gnu_ifunc_cache *) a_voidp;
645 return htab_hash_string (a->name);
648 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
651 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
653 const struct elf_gnu_ifunc_cache *a
654 = (const struct elf_gnu_ifunc_cache *) a_voidp;
655 const struct elf_gnu_ifunc_cache *b
656 = (const struct elf_gnu_ifunc_cache *) b_voidp;
658 return strcmp (a->name, b->name) == 0;
661 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
662 function entry address ADDR. Return 1 if NAME and ADDR are considered as
663 valid and therefore they were successfully recorded, return 0 otherwise.
665 Function does not expect a duplicate entry. Use
666 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
670 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
672 struct bound_minimal_symbol msym;
674 struct objfile *objfile;
676 struct elf_gnu_ifunc_cache entry_local, *entry_p;
679 msym = lookup_minimal_symbol_by_pc (addr);
680 if (msym.minsym == NULL)
682 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
684 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
685 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
686 objfile = msym.objfile;
688 /* If .plt jumps back to .plt the symbol is still deferred for later
689 resolution and it has no use for GDB. Besides ".text" this symbol can
690 reside also in ".opd" for ppc64 function descriptor. */
691 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
694 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
697 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
698 elf_gnu_ifunc_cache_eq,
699 NULL, &objfile->objfile_obstack,
700 hashtab_obstack_allocate,
701 dummy_obstack_deallocate);
702 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
705 entry_local.addr = addr;
706 obstack_grow (&objfile->objfile_obstack, &entry_local,
707 offsetof (struct elf_gnu_ifunc_cache, name));
708 obstack_grow_str0 (&objfile->objfile_obstack, name);
710 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
712 slot = htab_find_slot (htab, entry_p, INSERT);
715 struct elf_gnu_ifunc_cache *entry_found_p
716 = (struct elf_gnu_ifunc_cache *) *slot;
717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
719 if (entry_found_p->addr != addr)
721 /* This case indicates buggy inferior program, the resolved address
722 should never change. */
724 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
725 "function_address from %s to %s"),
726 name, paddress (gdbarch, entry_found_p->addr),
727 paddress (gdbarch, addr));
730 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
737 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
738 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
739 is not NULL) and the function returns 1. It returns 0 otherwise.
741 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
745 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
747 struct objfile *objfile;
749 ALL_PSPACE_OBJFILES (current_program_space, objfile)
752 struct elf_gnu_ifunc_cache *entry_p;
755 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
759 entry_p = ((struct elf_gnu_ifunc_cache *)
760 alloca (sizeof (*entry_p) + strlen (name)));
761 strcpy (entry_p->name, name);
763 slot = htab_find_slot (htab, entry_p, NO_INSERT);
766 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
767 gdb_assert (entry_p != NULL);
770 *addr_p = entry_p->addr;
777 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
778 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
779 is not NULL) and the function returns 1. It returns 0 otherwise.
781 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
782 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
783 prevent cache entries duplicates. */
786 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
789 struct objfile *objfile;
790 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
792 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
793 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
795 ALL_PSPACE_OBJFILES (current_program_space, objfile)
797 bfd *obfd = objfile->obfd;
798 struct gdbarch *gdbarch = get_objfile_arch (objfile);
799 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
800 size_t ptr_size = TYPE_LENGTH (ptr_type);
801 CORE_ADDR pointer_address, addr;
803 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
804 struct bound_minimal_symbol msym;
806 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
807 if (msym.minsym == NULL)
809 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
811 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
813 plt = bfd_get_section_by_name (obfd, ".plt");
817 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
819 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
821 addr = extract_typed_address (buf, ptr_type);
822 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
824 addr = gdbarch_addr_bits_remove (gdbarch, addr);
828 if (elf_gnu_ifunc_record_cache (name, addr))
835 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
836 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
837 is not NULL) and the function returns 1. It returns 0 otherwise.
839 Both the elf_objfile_gnu_ifunc_cache_data hash table and
840 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
843 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
845 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
848 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
854 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
855 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
856 is the entry point of the resolved STT_GNU_IFUNC target function to call.
860 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
862 const char *name_at_pc;
863 CORE_ADDR start_at_pc, address;
864 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
865 struct value *function, *address_val;
867 /* Try first any non-intrusive methods without an inferior call. */
869 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
870 && start_at_pc == pc)
872 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
878 function = allocate_value (func_func_type);
879 set_value_address (function, pc);
881 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
882 function entry address. ADDRESS may be a function descriptor. */
884 address_val = call_function_by_hand (function, 0, NULL);
885 address = value_as_address (address_val);
886 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
888 address = gdbarch_addr_bits_remove (gdbarch, address);
891 elf_gnu_ifunc_record_cache (name_at_pc, address);
896 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
899 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
901 struct breakpoint *b_return;
902 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
903 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
904 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
905 int thread_id = ptid_to_global_thread_id (inferior_ptid);
907 gdb_assert (b->type == bp_gnu_ifunc_resolver);
909 for (b_return = b->related_breakpoint; b_return != b;
910 b_return = b_return->related_breakpoint)
912 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
913 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
914 gdb_assert (frame_id_p (b_return->frame_id));
916 if (b_return->thread == thread_id
917 && b_return->loc->requested_address == prev_pc
918 && frame_id_eq (b_return->frame_id, prev_frame_id))
924 struct symtab_and_line sal;
926 /* No need to call find_pc_line for symbols resolving as this is only
927 a helper breakpointer never shown to the user. */
930 sal.pspace = current_inferior ()->pspace;
932 sal.section = find_pc_overlay (sal.pc);
934 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
936 bp_gnu_ifunc_resolver_return);
938 /* set_momentary_breakpoint invalidates PREV_FRAME. */
941 /* Add new b_return to the ring list b->related_breakpoint. */
942 gdb_assert (b_return->related_breakpoint == b_return);
943 b_return->related_breakpoint = b->related_breakpoint;
944 b->related_breakpoint = b_return;
948 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
951 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
953 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
954 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
955 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
956 struct regcache *regcache = get_thread_regcache (inferior_ptid);
957 struct value *func_func;
959 CORE_ADDR resolved_address, resolved_pc;
960 struct symtab_and_line sal;
961 struct symtabs_and_lines sals, sals_end;
963 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
965 while (b->related_breakpoint != b)
967 struct breakpoint *b_next = b->related_breakpoint;
971 case bp_gnu_ifunc_resolver:
973 case bp_gnu_ifunc_resolver_return:
974 delete_breakpoint (b);
977 internal_error (__FILE__, __LINE__,
978 _("handle_inferior_event: Invalid "
979 "gnu-indirect-function breakpoint type %d"),
984 gdb_assert (b->type == bp_gnu_ifunc_resolver);
985 gdb_assert (b->loc->next == NULL);
987 func_func = allocate_value (func_func_type);
988 set_value_address (func_func, b->loc->related_address);
990 value = allocate_value (value_type);
991 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
992 value_contents_raw (value), NULL);
993 resolved_address = value_as_address (value);
994 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
997 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
999 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1000 elf_gnu_ifunc_record_cache (event_location_to_string (b->location),
1003 sal = find_pc_line (resolved_pc, 0);
1008 b->type = bp_breakpoint;
1009 update_breakpoint_locations (b, current_program_space, sals, sals_end);
1012 /* A helper function for elf_symfile_read that reads the minimal
1016 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1017 const struct elfinfo *ei)
1019 bfd *synth_abfd, *abfd = objfile->obfd;
1020 struct cleanup *back_to;
1021 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1022 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1024 struct dbx_symfile_info *dbx;
1026 if (symtab_create_debug)
1028 fprintf_unfiltered (gdb_stdlog,
1029 "Reading minimal symbols of objfile %s ...\n",
1030 objfile_name (objfile));
1033 /* If we already have minsyms, then we can skip some work here.
1034 However, if there were stabs or mdebug sections, we go ahead and
1035 redo all the work anyway, because the psym readers for those
1036 kinds of debuginfo need extra information found here. This can
1037 go away once all types of symbols are in the per-BFD object. */
1038 if (objfile->per_bfd->minsyms_read
1039 && ei->stabsect == NULL
1040 && ei->mdebugsect == NULL)
1042 if (symtab_create_debug)
1043 fprintf_unfiltered (gdb_stdlog,
1044 "... minimal symbols previously read\n");
1048 init_minimal_symbol_collection ();
1049 back_to = make_cleanup_discard_minimal_symbols ();
1051 /* Allocate struct to keep track of the symfile. */
1052 dbx = XCNEW (struct dbx_symfile_info);
1053 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1055 /* Process the normal ELF symbol table first. */
1057 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1058 if (storage_needed < 0)
1059 error (_("Can't read symbols from %s: %s"),
1060 bfd_get_filename (objfile->obfd),
1061 bfd_errmsg (bfd_get_error ()));
1063 if (storage_needed > 0)
1065 /* Memory gets permanently referenced from ABFD after
1066 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1068 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1069 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1072 error (_("Can't read symbols from %s: %s"),
1073 bfd_get_filename (objfile->obfd),
1074 bfd_errmsg (bfd_get_error ()));
1076 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1079 /* Add the dynamic symbols. */
1081 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1083 if (storage_needed > 0)
1085 /* Memory gets permanently referenced from ABFD after
1086 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1087 It happens only in the case when elf_slurp_reloc_table sees
1088 asection->relocation NULL. Determining which section is asection is
1089 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1090 implementation detail, though. */
1092 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1093 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1096 if (dynsymcount < 0)
1097 error (_("Can't read symbols from %s: %s"),
1098 bfd_get_filename (objfile->obfd),
1099 bfd_errmsg (bfd_get_error ()));
1101 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1103 elf_rel_plt_read (objfile, dyn_symbol_table);
1106 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1107 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1109 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1110 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1111 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1112 read the code address from .opd while it reads the .symtab section from
1113 a separate debug info file as the .opd section is SHT_NOBITS there.
1115 With SYNTH_ABFD the .opd section will be read from the original
1116 backlinked binary where it is valid. */
1118 if (objfile->separate_debug_objfile_backlink)
1119 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1123 /* Add synthetic symbols - for instance, names for any PLT entries. */
1125 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1126 dynsymcount, dyn_symbol_table,
1130 asymbol **synth_symbol_table;
1133 make_cleanup (xfree, synthsyms);
1134 synth_symbol_table = XNEWVEC (asymbol *, synthcount);
1135 for (i = 0; i < synthcount; i++)
1136 synth_symbol_table[i] = synthsyms + i;
1137 make_cleanup (xfree, synth_symbol_table);
1138 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1139 synth_symbol_table, 1);
1142 /* Install any minimal symbols that have been collected as the current
1143 minimal symbols for this objfile. The debug readers below this point
1144 should not generate new minimal symbols; if they do it's their
1145 responsibility to install them. "mdebug" appears to be the only one
1146 which will do this. */
1148 install_minimal_symbols (objfile);
1149 do_cleanups (back_to);
1151 if (symtab_create_debug)
1152 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1155 /* Scan and build partial symbols for a symbol file.
1156 We have been initialized by a call to elf_symfile_init, which
1157 currently does nothing.
1159 This function only does the minimum work necessary for letting the
1160 user "name" things symbolically; it does not read the entire symtab.
1161 Instead, it reads the external and static symbols and puts them in partial
1162 symbol tables. When more extensive information is requested of a
1163 file, the corresponding partial symbol table is mutated into a full
1164 fledged symbol table by going back and reading the symbols
1167 We look for sections with specific names, to tell us what debug
1168 format to look for: FIXME!!!
1170 elfstab_build_psymtabs() handles STABS symbols;
1171 mdebug_build_psymtabs() handles ECOFF debugging information.
1173 Note that ELF files have a "minimal" symbol table, which looks a lot
1174 like a COFF symbol table, but has only the minimal information necessary
1175 for linking. We process this also, and use the information to
1176 build gdb's minimal symbol table. This gives us some minimal debugging
1177 capability even for files compiled without -g. */
1180 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1182 bfd *abfd = objfile->obfd;
1185 memset ((char *) &ei, 0, sizeof (ei));
1186 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1188 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1190 /* ELF debugging information is inserted into the psymtab in the
1191 order of least informative first - most informative last. Since
1192 the psymtab table is searched `most recent insertion first' this
1193 increases the probability that more detailed debug information
1194 for a section is found.
1196 For instance, an object file might contain both .mdebug (XCOFF)
1197 and .debug_info (DWARF2) sections then .mdebug is inserted first
1198 (searched last) and DWARF2 is inserted last (searched first). If
1199 we don't do this then the XCOFF info is found first - for code in
1200 an included file XCOFF info is useless. */
1204 const struct ecoff_debug_swap *swap;
1206 /* .mdebug section, presumably holding ECOFF debugging
1208 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1210 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1216 /* Stab sections have an associated string table that looks like
1217 a separate section. */
1218 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1220 /* FIXME should probably warn about a stab section without a stabstr. */
1222 elfstab_build_psymtabs (objfile,
1225 bfd_section_size (abfd, str_sect));
1228 if (dwarf2_has_info (objfile, NULL))
1230 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1231 information present in OBJFILE. If there is such debug info present
1232 never use .gdb_index. */
1234 if (!objfile_has_partial_symbols (objfile)
1235 && dwarf2_initialize_objfile (objfile))
1236 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1239 /* It is ok to do this even if the stabs reader made some
1240 partial symbols, because OBJF_PSYMTABS_READ has not been
1241 set, and so our lazy reader function will still be called
1243 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1246 /* If the file has its own symbol tables it has no separate debug
1247 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1248 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1249 `.note.gnu.build-id'.
1251 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1252 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1253 an objfile via find_separate_debug_file_in_section there was no separate
1254 debug info available. Therefore do not attempt to search for another one,
1255 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1256 be NULL and we would possibly violate it. */
1258 else if (!objfile_has_partial_symbols (objfile)
1259 && objfile->separate_debug_objfile == NULL
1260 && objfile->separate_debug_objfile_backlink == NULL)
1264 debugfile = find_separate_debug_file_by_buildid (objfile);
1266 if (debugfile == NULL)
1267 debugfile = find_separate_debug_file_by_debuglink (objfile);
1271 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1272 bfd *abfd = symfile_bfd_open (debugfile);
1274 make_cleanup_bfd_unref (abfd);
1275 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1276 do_cleanups (cleanup);
1281 /* Callback to lazily read psymtabs. */
1284 read_psyms (struct objfile *objfile)
1286 if (dwarf2_has_info (objfile, NULL))
1287 dwarf2_build_psymtabs (objfile);
1290 /* Initialize anything that needs initializing when a completely new symbol
1291 file is specified (not just adding some symbols from another file, e.g. a
1294 We reinitialize buildsym, since we may be reading stabs from an ELF
1298 elf_new_init (struct objfile *ignore)
1300 stabsread_new_init ();
1301 buildsym_new_init ();
1304 /* Perform any local cleanups required when we are done with a particular
1305 objfile. I.E, we are in the process of discarding all symbol information
1306 for an objfile, freeing up all memory held for it, and unlinking the
1307 objfile struct from the global list of known objfiles. */
1310 elf_symfile_finish (struct objfile *objfile)
1312 dwarf2_free_objfile (objfile);
1315 /* ELF specific initialization routine for reading symbols. */
1318 elf_symfile_init (struct objfile *objfile)
1320 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1321 find this causes a significant slowdown in gdb then we could
1322 set it in the debug symbol readers only when necessary. */
1323 objfile->flags |= OBJF_REORDERED;
1326 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1328 static VEC (probe_p) *
1329 elf_get_probes (struct objfile *objfile)
1331 VEC (probe_p) *probes_per_bfd;
1333 /* Have we parsed this objfile's probes already? */
1334 probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key);
1336 if (!probes_per_bfd)
1339 const struct probe_ops *probe_ops;
1341 /* Here we try to gather information about all types of probes from the
1343 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1345 probe_ops->get_probes (&probes_per_bfd, objfile);
1347 if (probes_per_bfd == NULL)
1349 VEC_reserve (probe_p, probes_per_bfd, 1);
1350 gdb_assert (probes_per_bfd != NULL);
1353 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1356 return probes_per_bfd;
1359 /* Helper function used to free the space allocated for storing SystemTap
1360 probe information. */
1363 probe_key_free (bfd *abfd, void *d)
1366 VEC (probe_p) *probes = (VEC (probe_p) *) d;
1367 struct probe *probe;
1369 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1370 probe->pops->destroy (probe);
1372 VEC_free (probe_p, probes);
1377 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1379 static const struct sym_probe_fns elf_probe_fns =
1381 elf_get_probes, /* sym_get_probes */
1384 /* Register that we are able to handle ELF object file formats. */
1386 static const struct sym_fns elf_sym_fns =
1388 elf_new_init, /* init anything gbl to entire symtab */
1389 elf_symfile_init, /* read initial info, setup for sym_read() */
1390 elf_symfile_read, /* read a symbol file into symtab */
1391 NULL, /* sym_read_psymbols */
1392 elf_symfile_finish, /* finished with file, cleanup */
1393 default_symfile_offsets, /* Translate ext. to int. relocation */
1394 elf_symfile_segments, /* Get segment information from a file. */
1396 default_symfile_relocate, /* Relocate a debug section. */
1397 &elf_probe_fns, /* sym_probe_fns */
1401 /* The same as elf_sym_fns, but not registered and lazily reads
1404 const struct sym_fns elf_sym_fns_lazy_psyms =
1406 elf_new_init, /* init anything gbl to entire symtab */
1407 elf_symfile_init, /* read initial info, setup for sym_read() */
1408 elf_symfile_read, /* read a symbol file into symtab */
1409 read_psyms, /* sym_read_psymbols */
1410 elf_symfile_finish, /* finished with file, cleanup */
1411 default_symfile_offsets, /* Translate ext. to int. relocation */
1412 elf_symfile_segments, /* Get segment information from a file. */
1414 default_symfile_relocate, /* Relocate a debug section. */
1415 &elf_probe_fns, /* sym_probe_fns */
1419 /* The same as elf_sym_fns, but not registered and uses the
1420 DWARF-specific GNU index rather than psymtab. */
1421 const struct sym_fns elf_sym_fns_gdb_index =
1423 elf_new_init, /* init anything gbl to entire symab */
1424 elf_symfile_init, /* read initial info, setup for sym_red() */
1425 elf_symfile_read, /* read a symbol file into symtab */
1426 NULL, /* sym_read_psymbols */
1427 elf_symfile_finish, /* finished with file, cleanup */
1428 default_symfile_offsets, /* Translate ext. to int. relocatin */
1429 elf_symfile_segments, /* Get segment information from a file. */
1431 default_symfile_relocate, /* Relocate a debug section. */
1432 &elf_probe_fns, /* sym_probe_fns */
1433 &dwarf2_gdb_index_functions
1436 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1438 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1440 elf_gnu_ifunc_resolve_addr,
1441 elf_gnu_ifunc_resolve_name,
1442 elf_gnu_ifunc_resolver_stop,
1443 elf_gnu_ifunc_resolver_return_stop
1447 _initialize_elfread (void)
1449 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1450 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1452 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1453 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;