1 /* DWARF debugging format support for GDB.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 Free Software Foundation, Inc.
5 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
6 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 FIXME: Do we need to generate dependencies in partial symtabs?
27 (Perhaps we don't need to).
29 FIXME: Resolve minor differences between what information we put in the
30 partial symbol table and what dbxread puts in. For example, we don't yet
31 put enum constants there. And dbxread seems to invent a lot of typedefs
32 we never see. Use the new printpsym command to see the partial symbol table
35 FIXME: Figure out a better way to tell gdb about the name of the function
36 contain the user's entry point (I.E. main())
38 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
39 other things to work on, if you get bored. :-)
48 #include "elf/dwarf.h"
51 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
53 #include "complaints.h"
56 #include "gdb_string.h"
58 /* Some macros to provide DIE info for complaints. */
60 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
61 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
63 /* Complaints that can be issued during DWARF debug info reading. */
65 struct complaint no_bfd_get_N =
67 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
70 struct complaint malformed_die =
72 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
75 struct complaint bad_die_ref =
77 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
80 struct complaint unknown_attribute_form =
82 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
85 struct complaint unknown_attribute_length =
87 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
90 struct complaint unexpected_fund_type =
92 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
95 struct complaint unknown_type_modifier =
97 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
100 struct complaint volatile_ignored =
102 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
105 struct complaint const_ignored =
107 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
110 struct complaint botched_modified_type =
112 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
115 struct complaint op_deref2 =
117 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
120 struct complaint op_deref4 =
122 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
125 struct complaint basereg_not_handled =
127 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
130 struct complaint dup_user_type_allocation =
132 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
135 struct complaint dup_user_type_definition =
137 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
140 struct complaint missing_tag =
142 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
145 struct complaint bad_array_element_type =
147 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
150 struct complaint subscript_data_items =
152 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
155 struct complaint unhandled_array_subscript_format =
157 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
160 struct complaint unknown_array_subscript_format =
162 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
165 struct complaint not_row_major =
167 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
170 struct complaint missing_at_name =
172 "DIE @ 0x%x, AT_name tag missing", 0, 0
175 typedef unsigned int DIE_REF; /* Reference to a DIE */
178 #define GCC_PRODUCER "GNU C "
181 #ifndef GPLUS_PRODUCER
182 #define GPLUS_PRODUCER "GNU C++ "
186 #define LCC_PRODUCER "NCR C/C++"
189 #ifndef CHILL_PRODUCER
190 #define CHILL_PRODUCER "GNU Chill "
193 /* Flags to target_to_host() that tell whether or not the data object is
194 expected to be signed. Used, for example, when fetching a signed
195 integer in the target environment which is used as a signed integer
196 in the host environment, and the two environments have different sized
197 ints. In this case, *somebody* has to sign extend the smaller sized
200 #define GET_UNSIGNED 0 /* No sign extension required */
201 #define GET_SIGNED 1 /* Sign extension required */
203 /* Defines for things which are specified in the document "DWARF Debugging
204 Information Format" published by UNIX International, Programming Languages
205 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
207 #define SIZEOF_DIE_LENGTH 4
208 #define SIZEOF_DIE_TAG 2
209 #define SIZEOF_ATTRIBUTE 2
210 #define SIZEOF_FORMAT_SPECIFIER 1
211 #define SIZEOF_FMT_FT 2
212 #define SIZEOF_LINETBL_LENGTH 4
213 #define SIZEOF_LINETBL_LINENO 4
214 #define SIZEOF_LINETBL_STMT 2
215 #define SIZEOF_LINETBL_DELTA 4
216 #define SIZEOF_LOC_ATOM_CODE 1
218 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
220 /* Macros that return the sizes of various types of data in the target
223 FIXME: Currently these are just compile time constants (as they are in
224 other parts of gdb as well). They need to be able to get the right size
225 either from the bfd or possibly from the DWARF info. It would be nice if
226 the DWARF producer inserted DIES that describe the fundamental types in
227 the target environment into the DWARF info, similar to the way dbx stabs
228 producers produce information about their fundamental types. */
230 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
231 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
233 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
234 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
235 However, the Issue 2 DWARF specification from AT&T defines it as
236 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
237 For backwards compatibility with the AT&T compiler produced executables
238 we define AT_short_element_list for this variant. */
240 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
242 /* External variables referenced. */
244 extern int info_verbose; /* From main.c; nonzero => verbose */
245 extern char *warning_pre_print; /* From utils.c */
247 /* The DWARF debugging information consists of two major pieces,
248 one is a block of DWARF Information Entries (DIE's) and the other
249 is a line number table. The "struct dieinfo" structure contains
250 the information for a single DIE, the one currently being processed.
252 In order to make it easier to randomly access the attribute fields
253 of the current DIE, which are specifically unordered within the DIE,
254 each DIE is scanned and an instance of the "struct dieinfo"
255 structure is initialized.
257 Initialization is done in two levels. The first, done by basicdieinfo(),
258 just initializes those fields that are vital to deciding whether or not
259 to use this DIE, how to skip past it, etc. The second, done by the
260 function completedieinfo(), fills in the rest of the information.
262 Attributes which have block forms are not interpreted at the time
263 the DIE is scanned, instead we just save pointers to the start
264 of their value fields.
266 Some fields have a flag <name>_p that is set when the value of the
267 field is valid (I.E. we found a matching attribute in the DIE). Since
268 we may want to test for the presence of some attributes in the DIE,
269 such as AT_low_pc, without restricting the values of the field,
270 we need someway to note that we found such an attribute.
278 char *die; /* Pointer to the raw DIE data */
279 unsigned long die_length; /* Length of the raw DIE data */
280 DIE_REF die_ref; /* Offset of this DIE */
281 unsigned short die_tag; /* Tag for this DIE */
282 unsigned long at_padding;
283 unsigned long at_sibling;
286 unsigned short at_fund_type;
287 BLOCK *at_mod_fund_type;
288 unsigned long at_user_def_type;
289 BLOCK *at_mod_u_d_type;
290 unsigned short at_ordering;
291 BLOCK *at_subscr_data;
292 unsigned long at_byte_size;
293 unsigned short at_bit_offset;
294 unsigned long at_bit_size;
295 BLOCK *at_element_list;
296 unsigned long at_stmt_list;
298 CORE_ADDR at_high_pc;
299 unsigned long at_language;
300 unsigned long at_member;
301 unsigned long at_discr;
302 BLOCK *at_discr_value;
303 BLOCK *at_string_length;
306 unsigned long at_start_scope;
307 unsigned long at_stride_size;
308 unsigned long at_src_info;
310 unsigned int has_at_low_pc:1;
311 unsigned int has_at_stmt_list:1;
312 unsigned int has_at_byte_size:1;
313 unsigned int short_element_list:1;
315 /* Kludge to identify register variables */
319 /* Kludge to identify optimized out variables */
321 unsigned int optimized_out;
323 /* Kludge to identify basereg references.
324 Nonzero if we have an offset relative to a basereg. */
328 /* Kludge to identify which base register is it relative to. */
330 unsigned int basereg;
333 static int diecount; /* Approximate count of dies for compilation unit */
334 static struct dieinfo *curdie; /* For warnings and such */
336 static char *dbbase; /* Base pointer to dwarf info */
337 static int dbsize; /* Size of dwarf info in bytes */
338 static int dbroff; /* Relative offset from start of .debug section */
339 static char *lnbase; /* Base pointer to line section */
341 /* This value is added to each symbol value. FIXME: Generalize to
342 the section_offsets structure used by dbxread (once this is done,
343 pass the appropriate section number to end_symtab). */
344 static CORE_ADDR baseaddr; /* Add to each symbol value */
346 /* The section offsets used in the current psymtab or symtab. FIXME,
347 only used to pass one value (baseaddr) at the moment. */
348 static struct section_offsets *base_section_offsets;
350 /* We put a pointer to this structure in the read_symtab_private field
355 /* Always the absolute file offset to the start of the ".debug"
356 section for the file containing the DIE's being accessed. */
358 /* Relative offset from the start of the ".debug" section to the
359 first DIE to be accessed. When building the partial symbol
360 table, this value will be zero since we are accessing the
361 entire ".debug" section. When expanding a partial symbol
362 table entry, this value will be the offset to the first
363 DIE for the compilation unit containing the symbol that
364 triggers the expansion. */
366 /* The size of the chunk of DIE's being examined, in bytes. */
368 /* The absolute file offset to the line table fragment. Ignored
369 when building partial symbol tables, but used when expanding
370 them, and contains the absolute file offset to the fragment
371 of the ".line" section containing the line numbers for the
372 current compilation unit. */
376 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
377 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
378 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
379 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
381 /* The generic symbol table building routines have separate lists for
382 file scope symbols and all all other scopes (local scopes). So
383 we need to select the right one to pass to add_symbol_to_list().
384 We do it by keeping a pointer to the correct list in list_in_scope.
386 FIXME: The original dwarf code just treated the file scope as the first
387 local scope, and all other local scopes as nested local scopes, and worked
388 fine. Check to see if we really need to distinguish these in buildsym.c */
390 struct pending **list_in_scope = &file_symbols;
392 /* DIES which have user defined types or modified user defined types refer to
393 other DIES for the type information. Thus we need to associate the offset
394 of a DIE for a user defined type with a pointer to the type information.
396 Originally this was done using a simple but expensive algorithm, with an
397 array of unsorted structures, each containing an offset/type-pointer pair.
398 This array was scanned linearly each time a lookup was done. The result
399 was that gdb was spending over half it's startup time munging through this
400 array of pointers looking for a structure that had the right offset member.
402 The second attempt used the same array of structures, but the array was
403 sorted using qsort each time a new offset/type was recorded, and a binary
404 search was used to find the type pointer for a given DIE offset. This was
405 even slower, due to the overhead of sorting the array each time a new
406 offset/type pair was entered.
408 The third attempt uses a fixed size array of type pointers, indexed by a
409 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
410 we can divide any DIE offset by 4 to obtain a unique index into this fixed
411 size array. Since each element is a 4 byte pointer, it takes exactly as
412 much memory to hold this array as to hold the DWARF info for a given
413 compilation unit. But it gets freed as soon as we are done with it.
414 This has worked well in practice, as a reasonable tradeoff between memory
415 consumption and speed, without having to resort to much more complicated
418 static struct type **utypes; /* Pointer to array of user type pointers */
419 static int numutypes; /* Max number of user type pointers */
421 /* Maintain an array of referenced fundamental types for the current
422 compilation unit being read. For DWARF version 1, we have to construct
423 the fundamental types on the fly, since no information about the
424 fundamental types is supplied. Each such fundamental type is created by
425 calling a language dependent routine to create the type, and then a
426 pointer to that type is then placed in the array at the index specified
427 by it's FT_<TYPENAME> value. The array has a fixed size set by the
428 FT_NUM_MEMBERS compile time constant, which is the number of predefined
429 fundamental types gdb knows how to construct. */
431 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
433 /* Record the language for the compilation unit which is currently being
434 processed. We know it once we have seen the TAG_compile_unit DIE,
435 and we need it while processing the DIE's for that compilation unit.
436 It is eventually saved in the symtab structure, but we don't finalize
437 the symtab struct until we have processed all the DIE's for the
438 compilation unit. We also need to get and save a pointer to the
439 language struct for this language, so we can call the language
440 dependent routines for doing things such as creating fundamental
443 static enum language cu_language;
444 static const struct language_defn *cu_language_defn;
446 /* Forward declarations of static functions so we don't have to worry
447 about ordering within this file. */
449 static void free_utypes (PTR);
451 static int attribute_size (unsigned int);
453 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
455 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
457 static void handle_producer (char *);
460 read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
463 read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
466 read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
468 static void scan_partial_symbols (char *, char *, struct objfile *);
471 scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
473 static void add_partial_symbol (struct dieinfo *, struct objfile *);
475 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
477 static void completedieinfo (struct dieinfo *, struct objfile *);
479 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
481 static void psymtab_to_symtab_1 (struct partial_symtab *);
483 static void read_ofile_symtab (struct partial_symtab *);
485 static void process_dies (char *, char *, struct objfile *);
488 read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
490 static struct type *decode_array_element_type (char *);
492 static struct type *decode_subscript_data_item (char *, char *);
494 static void dwarf_read_array_type (struct dieinfo *);
496 static void read_tag_pointer_type (struct dieinfo *dip);
498 static void read_tag_string_type (struct dieinfo *dip);
500 static void read_subroutine_type (struct dieinfo *, char *, char *);
503 read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
505 static struct type *struct_type (struct dieinfo *, char *, char *,
508 static struct type *enum_type (struct dieinfo *, struct objfile *);
510 static void decode_line_numbers (char *);
512 static struct type *decode_die_type (struct dieinfo *);
514 static struct type *decode_mod_fund_type (char *);
516 static struct type *decode_mod_u_d_type (char *);
518 static struct type *decode_modified_type (char *, unsigned int, int);
520 static struct type *decode_fund_type (unsigned int);
522 static char *create_name (char *, struct obstack *);
524 static struct type *lookup_utype (DIE_REF);
526 static struct type *alloc_utype (DIE_REF, struct type *);
528 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
531 synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
533 static int locval (struct dieinfo *);
535 static void set_cu_language (struct dieinfo *);
537 static struct type *dwarf_fundamental_type (struct objfile *, int);
544 dwarf_fundamental_type -- lookup or create a fundamental type
549 dwarf_fundamental_type (struct objfile *objfile, int typeid)
553 DWARF version 1 doesn't supply any fundamental type information,
554 so gdb has to construct such types. It has a fixed number of
555 fundamental types that it knows how to construct, which is the
556 union of all types that it knows how to construct for all languages
557 that it knows about. These are enumerated in gdbtypes.h.
559 As an example, assume we find a DIE that references a DWARF
560 fundamental type of FT_integer. We first look in the ftypes
561 array to see if we already have such a type, indexed by the
562 gdb internal value of FT_INTEGER. If so, we simply return a
563 pointer to that type. If not, then we ask an appropriate
564 language dependent routine to create a type FT_INTEGER, using
565 defaults reasonable for the current target machine, and install
566 that type in ftypes for future reference.
570 Pointer to a fundamental type.
575 dwarf_fundamental_type (struct objfile *objfile, int typeid)
577 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
579 error ("internal error - invalid fundamental type id %d", typeid);
582 /* Look for this particular type in the fundamental type vector. If one is
583 not found, create and install one appropriate for the current language
584 and the current target machine. */
586 if (ftypes[typeid] == NULL)
588 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
591 return (ftypes[typeid]);
598 set_cu_language -- set local copy of language for compilation unit
603 set_cu_language (struct dieinfo *dip)
607 Decode the language attribute for a compilation unit DIE and
608 remember what the language was. We use this at various times
609 when processing DIE's for a given compilation unit.
618 set_cu_language (struct dieinfo *dip)
620 switch (dip->at_language)
624 cu_language = language_c;
626 case LANG_C_PLUS_PLUS:
627 cu_language = language_cplus;
630 cu_language = language_chill;
633 cu_language = language_m2;
637 cu_language = language_fortran;
643 /* We don't know anything special about these yet. */
644 cu_language = language_unknown;
647 /* If no at_language, try to deduce one from the filename */
648 cu_language = deduce_language_from_filename (dip->at_name);
651 cu_language_defn = language_def (cu_language);
658 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
662 void dwarf_build_psymtabs (struct objfile *objfile,
663 int mainline, file_ptr dbfoff, unsigned int dbfsize,
664 file_ptr lnoffset, unsigned int lnsize)
668 This function is called upon to build partial symtabs from files
669 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
671 It is passed a bfd* containing the DIES
672 and line number information, the corresponding filename for that
673 file, a base address for relocating the symbols, a flag indicating
674 whether or not this debugging information is from a "main symbol
675 table" rather than a shared library or dynamically linked file,
676 and file offset/size pairs for the DIE information and line number
686 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
687 unsigned int dbfsize, file_ptr lnoffset,
690 bfd *abfd = objfile->obfd;
691 struct cleanup *back_to;
693 current_objfile = objfile;
695 dbbase = xmalloc (dbsize);
697 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
698 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
701 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
703 back_to = make_cleanup (xfree, dbbase);
705 /* If we are reinitializing, or if we have never loaded syms yet, init.
706 Since we have no idea how many DIES we are looking at, we just guess
707 some arbitrary value. */
709 if (mainline || objfile->global_psymbols.size == 0 ||
710 objfile->static_psymbols.size == 0)
712 init_psymbol_list (objfile, 1024);
715 /* Save the relocation factor where everybody can see it. */
717 base_section_offsets = objfile->section_offsets;
718 baseaddr = ANOFFSET (objfile->section_offsets, 0);
720 /* Follow the compilation unit sibling chain, building a partial symbol
721 table entry for each one. Save enough information about each compilation
722 unit to locate the full DWARF information later. */
724 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
726 do_cleanups (back_to);
727 current_objfile = NULL;
734 read_lexical_block_scope -- process all dies in a lexical block
738 static void read_lexical_block_scope (struct dieinfo *dip,
739 char *thisdie, char *enddie)
743 Process all the DIES contained within a lexical block scope.
744 Start a new scope, process the dies, and then close the scope.
749 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
750 struct objfile *objfile)
752 register struct context_stack *new;
754 push_context (0, dip->at_low_pc);
755 process_dies (thisdie + dip->die_length, enddie, objfile);
756 new = pop_context ();
757 if (local_symbols != NULL)
759 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
760 dip->at_high_pc, objfile);
762 local_symbols = new->locals;
769 lookup_utype -- look up a user defined type from die reference
773 static type *lookup_utype (DIE_REF die_ref)
777 Given a DIE reference, lookup the user defined type associated with
778 that DIE, if it has been registered already. If not registered, then
779 return NULL. Alloc_utype() can be called to register an empty
780 type for this reference, which will be filled in later when the
781 actual referenced DIE is processed.
785 lookup_utype (DIE_REF die_ref)
787 struct type *type = NULL;
790 utypeidx = (die_ref - dbroff) / 4;
791 if ((utypeidx < 0) || (utypeidx >= numutypes))
793 complain (&bad_die_ref, DIE_ID, DIE_NAME);
797 type = *(utypes + utypeidx);
807 alloc_utype -- add a user defined type for die reference
811 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
815 Given a die reference DIE_REF, and a possible pointer to a user
816 defined type UTYPEP, register that this reference has a user
817 defined type and either use the specified type in UTYPEP or
818 make a new empty type that will be filled in later.
820 We should only be called after calling lookup_utype() to verify that
821 there is not currently a type registered for DIE_REF.
825 alloc_utype (DIE_REF die_ref, struct type *utypep)
830 utypeidx = (die_ref - dbroff) / 4;
831 typep = utypes + utypeidx;
832 if ((utypeidx < 0) || (utypeidx >= numutypes))
834 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
835 complain (&bad_die_ref, DIE_ID, DIE_NAME);
837 else if (*typep != NULL)
840 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
846 utypep = alloc_type (current_objfile);
857 free_utypes -- free the utypes array and reset pointer & count
861 static void free_utypes (PTR dummy)
865 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
866 and set numutypes back to zero. This ensures that the utypes does not get
867 referenced after being freed.
871 free_utypes (PTR dummy)
883 decode_die_type -- return a type for a specified die
887 static struct type *decode_die_type (struct dieinfo *dip)
891 Given a pointer to a die information structure DIP, decode the
892 type of the die and return a pointer to the decoded type. All
893 dies without specific types default to type int.
897 decode_die_type (struct dieinfo *dip)
899 struct type *type = NULL;
901 if (dip->at_fund_type != 0)
903 type = decode_fund_type (dip->at_fund_type);
905 else if (dip->at_mod_fund_type != NULL)
907 type = decode_mod_fund_type (dip->at_mod_fund_type);
909 else if (dip->at_user_def_type)
911 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
913 type = alloc_utype (dip->at_user_def_type, NULL);
916 else if (dip->at_mod_u_d_type)
918 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
922 type = dwarf_fundamental_type (current_objfile, FT_VOID);
931 struct_type -- compute and return the type for a struct or union
935 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
936 char *enddie, struct objfile *objfile)
940 Given pointer to a die information structure for a die which
941 defines a union or structure (and MUST define one or the other),
942 and pointers to the raw die data that define the range of dies which
943 define the members, compute and return the user defined type for the
948 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
949 struct objfile *objfile)
954 struct nextfield *next;
957 struct nextfield *list = NULL;
958 struct nextfield *new;
965 if ((type = lookup_utype (dip->die_ref)) == NULL)
967 /* No forward references created an empty type, so install one now */
968 type = alloc_utype (dip->die_ref, NULL);
970 INIT_CPLUS_SPECIFIC (type);
971 switch (dip->die_tag)
974 TYPE_CODE (type) = TYPE_CODE_CLASS;
976 case TAG_structure_type:
977 TYPE_CODE (type) = TYPE_CODE_STRUCT;
980 TYPE_CODE (type) = TYPE_CODE_UNION;
983 /* Should never happen */
984 TYPE_CODE (type) = TYPE_CODE_UNDEF;
985 complain (&missing_tag, DIE_ID, DIE_NAME);
988 /* Some compilers try to be helpful by inventing "fake" names for
989 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
990 Thanks, but no thanks... */
991 if (dip->at_name != NULL
992 && *dip->at_name != '~'
993 && *dip->at_name != '.')
995 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
996 "", "", dip->at_name);
998 /* Use whatever size is known. Zero is a valid size. We might however
999 wish to check has_at_byte_size to make sure that some byte size was
1000 given explicitly, but DWARF doesn't specify that explicit sizes of
1001 zero have to present, so complaining about missing sizes should
1002 probably not be the default. */
1003 TYPE_LENGTH (type) = dip->at_byte_size;
1004 thisdie += dip->die_length;
1005 while (thisdie < enddie)
1007 basicdieinfo (&mbr, thisdie, objfile);
1008 completedieinfo (&mbr, objfile);
1009 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1013 else if (mbr.at_sibling != 0)
1015 nextdie = dbbase + mbr.at_sibling - dbroff;
1019 nextdie = thisdie + mbr.die_length;
1021 switch (mbr.die_tag)
1024 /* Get space to record the next field's data. */
1025 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1028 /* Save the data. */
1030 obsavestring (mbr.at_name, strlen (mbr.at_name),
1031 &objfile->type_obstack);
1032 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1033 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1034 /* Handle bit fields. */
1035 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1036 if (BITS_BIG_ENDIAN)
1038 /* For big endian bits, the at_bit_offset gives the
1039 additional bit offset from the MSB of the containing
1040 anonymous object to the MSB of the field. We don't
1041 have to do anything special since we don't need to
1042 know the size of the anonymous object. */
1043 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1047 /* For little endian bits, we need to have a non-zero
1048 at_bit_size, so that we know we are in fact dealing
1049 with a bitfield. Compute the bit offset to the MSB
1050 of the anonymous object, subtract off the number of
1051 bits from the MSB of the field to the MSB of the
1052 object, and then subtract off the number of bits of
1053 the field itself. The result is the bit offset of
1054 the LSB of the field. */
1055 if (mbr.at_bit_size > 0)
1057 if (mbr.has_at_byte_size)
1059 /* The size of the anonymous object containing
1060 the bit field is explicit, so use the
1061 indicated size (in bytes). */
1062 anonymous_size = mbr.at_byte_size;
1066 /* The size of the anonymous object containing
1067 the bit field matches the size of an object
1068 of the bit field's type. DWARF allows
1069 at_byte_size to be left out in such cases, as
1070 a debug information size optimization. */
1071 anonymous_size = TYPE_LENGTH (list->field.type);
1073 FIELD_BITPOS (list->field) +=
1074 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1080 process_dies (thisdie, nextdie, objfile);
1085 /* Now create the vector of fields, and record how big it is. We may
1086 not even have any fields, if this DIE was generated due to a reference
1087 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1088 set, which clues gdb in to the fact that it needs to search elsewhere
1089 for the full structure definition. */
1092 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1096 TYPE_NFIELDS (type) = nfields;
1097 TYPE_FIELDS (type) = (struct field *)
1098 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1099 /* Copy the saved-up fields into the field vector. */
1100 for (n = nfields; list; list = list->next)
1102 TYPE_FIELD (type, --n) = list->field;
1112 read_structure_scope -- process all dies within struct or union
1116 static void read_structure_scope (struct dieinfo *dip,
1117 char *thisdie, char *enddie, struct objfile *objfile)
1121 Called when we find the DIE that starts a structure or union
1122 scope (definition) to process all dies that define the members
1123 of the structure or union. DIP is a pointer to the die info
1124 struct for the DIE that names the structure or union.
1128 Note that we need to call struct_type regardless of whether or not
1129 the DIE has an at_name attribute, since it might be an anonymous
1130 structure or union. This gets the type entered into our set of
1133 However, if the structure is incomplete (an opaque struct/union)
1134 then suppress creating a symbol table entry for it since gdb only
1135 wants to find the one with the complete definition. Note that if
1136 it is complete, we just call new_symbol, which does it's own
1137 checking about whether the struct/union is anonymous or not (and
1138 suppresses creating a symbol table entry itself).
1143 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1144 struct objfile *objfile)
1149 type = struct_type (dip, thisdie, enddie, objfile);
1150 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1152 sym = new_symbol (dip, objfile);
1155 SYMBOL_TYPE (sym) = type;
1156 if (cu_language == language_cplus)
1158 synthesize_typedef (dip, objfile, type);
1168 decode_array_element_type -- decode type of the array elements
1172 static struct type *decode_array_element_type (char *scan, char *end)
1176 As the last step in decoding the array subscript information for an
1177 array DIE, we need to decode the type of the array elements. We are
1178 passed a pointer to this last part of the subscript information and
1179 must return the appropriate type. If the type attribute is not
1180 recognized, just warn about the problem and return type int.
1183 static struct type *
1184 decode_array_element_type (char *scan)
1188 unsigned short attribute;
1189 unsigned short fundtype;
1192 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1194 scan += SIZEOF_ATTRIBUTE;
1195 if ((nbytes = attribute_size (attribute)) == -1)
1197 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1198 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1205 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1207 typep = decode_fund_type (fundtype);
1209 case AT_mod_fund_type:
1210 typep = decode_mod_fund_type (scan);
1212 case AT_user_def_type:
1213 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1215 if ((typep = lookup_utype (die_ref)) == NULL)
1217 typep = alloc_utype (die_ref, NULL);
1220 case AT_mod_u_d_type:
1221 typep = decode_mod_u_d_type (scan);
1224 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1225 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1236 decode_subscript_data_item -- decode array subscript item
1240 static struct type *
1241 decode_subscript_data_item (char *scan, char *end)
1245 The array subscripts and the data type of the elements of an
1246 array are described by a list of data items, stored as a block
1247 of contiguous bytes. There is a data item describing each array
1248 dimension, and a final data item describing the element type.
1249 The data items are ordered the same as their appearance in the
1250 source (I.E. leftmost dimension first, next to leftmost second,
1253 The data items describing each array dimension consist of four
1254 parts: (1) a format specifier, (2) type type of the subscript
1255 index, (3) a description of the low bound of the array dimension,
1256 and (4) a description of the high bound of the array dimension.
1258 The last data item is the description of the type of each of
1261 We are passed a pointer to the start of the block of bytes
1262 containing the remaining data items, and a pointer to the first
1263 byte past the data. This function recursively decodes the
1264 remaining data items and returns a type.
1266 If we somehow fail to decode some data, we complain about it
1267 and return a type "array of int".
1270 FIXME: This code only implements the forms currently used
1271 by the AT&T and GNU C compilers.
1273 The end pointer is supplied for error checking, maybe we should
1277 static struct type *
1278 decode_subscript_data_item (char *scan, char *end)
1280 struct type *typep = NULL; /* Array type we are building */
1281 struct type *nexttype; /* Type of each element (may be array) */
1282 struct type *indextype; /* Type of this index */
1283 struct type *rangetype;
1284 unsigned int format;
1285 unsigned short fundtype;
1286 unsigned long lowbound;
1287 unsigned long highbound;
1290 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1292 scan += SIZEOF_FORMAT_SPECIFIER;
1296 typep = decode_array_element_type (scan);
1299 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1301 indextype = decode_fund_type (fundtype);
1302 scan += SIZEOF_FMT_FT;
1303 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1304 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1306 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1308 nexttype = decode_subscript_data_item (scan, end);
1309 if (nexttype == NULL)
1311 /* Munged subscript data or other problem, fake it. */
1312 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1313 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1315 rangetype = create_range_type ((struct type *) NULL, indextype,
1316 lowbound, highbound);
1317 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1326 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1327 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1328 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1329 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1332 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1333 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1334 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1335 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1345 dwarf_read_array_type -- read TAG_array_type DIE
1349 static void dwarf_read_array_type (struct dieinfo *dip)
1353 Extract all information from a TAG_array_type DIE and add to
1354 the user defined type vector.
1358 dwarf_read_array_type (struct dieinfo *dip)
1364 unsigned short blocksz;
1367 if (dip->at_ordering != ORD_row_major)
1369 /* FIXME: Can gdb even handle column major arrays? */
1370 complain (¬_row_major, DIE_ID, DIE_NAME);
1372 if ((sub = dip->at_subscr_data) != NULL)
1374 nbytes = attribute_size (AT_subscr_data);
1375 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1376 subend = sub + nbytes + blocksz;
1378 type = decode_subscript_data_item (sub, subend);
1379 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1381 /* Install user defined type that has not been referenced yet. */
1382 alloc_utype (dip->die_ref, type);
1384 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1386 /* Ick! A forward ref has already generated a blank type in our
1387 slot, and this type probably already has things pointing to it
1388 (which is what caused it to be created in the first place).
1389 If it's just a place holder we can plop our fully defined type
1390 on top of it. We can't recover the space allocated for our
1391 new type since it might be on an obstack, but we could reuse
1392 it if we kept a list of them, but it might not be worth it
1398 /* Double ick! Not only is a type already in our slot, but
1399 someone has decorated it. Complain and leave it alone. */
1400 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1409 read_tag_pointer_type -- read TAG_pointer_type DIE
1413 static void read_tag_pointer_type (struct dieinfo *dip)
1417 Extract all information from a TAG_pointer_type DIE and add to
1418 the user defined type vector.
1422 read_tag_pointer_type (struct dieinfo *dip)
1427 type = decode_die_type (dip);
1428 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1430 utype = lookup_pointer_type (type);
1431 alloc_utype (dip->die_ref, utype);
1435 TYPE_TARGET_TYPE (utype) = type;
1436 TYPE_POINTER_TYPE (type) = utype;
1438 /* We assume the machine has only one representation for pointers! */
1439 /* FIXME: Possably a poor assumption */
1440 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1441 TYPE_CODE (utype) = TYPE_CODE_PTR;
1449 read_tag_string_type -- read TAG_string_type DIE
1453 static void read_tag_string_type (struct dieinfo *dip)
1457 Extract all information from a TAG_string_type DIE and add to
1458 the user defined type vector. It isn't really a user defined
1459 type, but it behaves like one, with other DIE's using an
1460 AT_user_def_type attribute to reference it.
1464 read_tag_string_type (struct dieinfo *dip)
1467 struct type *indextype;
1468 struct type *rangetype;
1469 unsigned long lowbound = 0;
1470 unsigned long highbound;
1472 if (dip->has_at_byte_size)
1474 /* A fixed bounds string */
1475 highbound = dip->at_byte_size - 1;
1479 /* A varying length string. Stub for now. (FIXME) */
1482 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1483 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1486 utype = lookup_utype (dip->die_ref);
1489 /* No type defined, go ahead and create a blank one to use. */
1490 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1494 /* Already a type in our slot due to a forward reference. Make sure it
1495 is a blank one. If not, complain and leave it alone. */
1496 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1498 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1503 /* Create the string type using the blank type we either found or created. */
1504 utype = create_string_type (utype, rangetype);
1511 read_subroutine_type -- process TAG_subroutine_type dies
1515 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1520 Handle DIES due to C code like:
1523 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1529 The parameter DIES are currently ignored. See if gdb has a way to
1530 include this info in it's type system, and decode them if so. Is
1531 this what the type structure's "arg_types" field is for? (FIXME)
1535 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1537 struct type *type; /* Type that this function returns */
1538 struct type *ftype; /* Function that returns above type */
1540 /* Decode the type that this subroutine returns */
1542 type = decode_die_type (dip);
1544 /* Check to see if we already have a partially constructed user
1545 defined type for this DIE, from a forward reference. */
1547 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1549 /* This is the first reference to one of these types. Make
1550 a new one and place it in the user defined types. */
1551 ftype = lookup_function_type (type);
1552 alloc_utype (dip->die_ref, ftype);
1554 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1556 /* We have an existing partially constructed type, so bash it
1557 into the correct type. */
1558 TYPE_TARGET_TYPE (ftype) = type;
1559 TYPE_LENGTH (ftype) = 1;
1560 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1564 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1572 read_enumeration -- process dies which define an enumeration
1576 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1577 char *enddie, struct objfile *objfile)
1581 Given a pointer to a die which begins an enumeration, process all
1582 the dies that define the members of the enumeration.
1586 Note that we need to call enum_type regardless of whether or not we
1587 have a symbol, since we might have an enum without a tag name (thus
1588 no symbol for the tagname).
1592 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1593 struct objfile *objfile)
1598 type = enum_type (dip, objfile);
1599 sym = new_symbol (dip, objfile);
1602 SYMBOL_TYPE (sym) = type;
1603 if (cu_language == language_cplus)
1605 synthesize_typedef (dip, objfile, type);
1614 enum_type -- decode and return a type for an enumeration
1618 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1622 Given a pointer to a die information structure for the die which
1623 starts an enumeration, process all the dies that define the members
1624 of the enumeration and return a type pointer for the enumeration.
1626 At the same time, for each member of the enumeration, create a
1627 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1628 and give it the type of the enumeration itself.
1632 Note that the DWARF specification explicitly mandates that enum
1633 constants occur in reverse order from the source program order,
1634 for "consistency" and because this ordering is easier for many
1635 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1636 Entries). Because gdb wants to see the enum members in program
1637 source order, we have to ensure that the order gets reversed while
1638 we are processing them.
1641 static struct type *
1642 enum_type (struct dieinfo *dip, struct objfile *objfile)
1647 struct nextfield *next;
1650 struct nextfield *list = NULL;
1651 struct nextfield *new;
1656 unsigned short blocksz;
1659 int unsigned_enum = 1;
1661 if ((type = lookup_utype (dip->die_ref)) == NULL)
1663 /* No forward references created an empty type, so install one now */
1664 type = alloc_utype (dip->die_ref, NULL);
1666 TYPE_CODE (type) = TYPE_CODE_ENUM;
1667 /* Some compilers try to be helpful by inventing "fake" names for
1668 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1669 Thanks, but no thanks... */
1670 if (dip->at_name != NULL
1671 && *dip->at_name != '~'
1672 && *dip->at_name != '.')
1674 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1675 "", "", dip->at_name);
1677 if (dip->at_byte_size != 0)
1679 TYPE_LENGTH (type) = dip->at_byte_size;
1681 if ((scan = dip->at_element_list) != NULL)
1683 if (dip->short_element_list)
1685 nbytes = attribute_size (AT_short_element_list);
1689 nbytes = attribute_size (AT_element_list);
1691 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1692 listend = scan + nbytes + blocksz;
1694 while (scan < listend)
1696 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1699 FIELD_TYPE (list->field) = NULL;
1700 FIELD_BITSIZE (list->field) = 0;
1701 FIELD_BITPOS (list->field) =
1702 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1704 scan += TARGET_FT_LONG_SIZE (objfile);
1705 list->field.name = obsavestring (scan, strlen (scan),
1706 &objfile->type_obstack);
1707 scan += strlen (scan) + 1;
1709 /* Handcraft a new symbol for this enum member. */
1710 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1711 sizeof (struct symbol));
1712 memset (sym, 0, sizeof (struct symbol));
1713 SYMBOL_NAME (sym) = create_name (list->field.name,
1714 &objfile->symbol_obstack);
1715 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1716 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1717 SYMBOL_CLASS (sym) = LOC_CONST;
1718 SYMBOL_TYPE (sym) = type;
1719 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1720 if (SYMBOL_VALUE (sym) < 0)
1722 add_symbol_to_list (sym, list_in_scope);
1724 /* Now create the vector of fields, and record how big it is. This is
1725 where we reverse the order, by pulling the members off the list in
1726 reverse order from how they were inserted. If we have no fields
1727 (this is apparently possible in C++) then skip building a field
1732 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1733 TYPE_NFIELDS (type) = nfields;
1734 TYPE_FIELDS (type) = (struct field *)
1735 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1736 /* Copy the saved-up fields into the field vector. */
1737 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1739 TYPE_FIELD (type, n++) = list->field;
1750 read_func_scope -- process all dies within a function scope
1754 Process all dies within a given function scope. We are passed
1755 a die information structure pointer DIP for the die which
1756 starts the function scope, and pointers into the raw die data
1757 that define the dies within the function scope.
1759 For now, we ignore lexical block scopes within the function.
1760 The problem is that AT&T cc does not define a DWARF lexical
1761 block scope for the function itself, while gcc defines a
1762 lexical block scope for the function. We need to think about
1763 how to handle this difference, or if it is even a problem.
1768 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1769 struct objfile *objfile)
1771 register struct context_stack *new;
1773 /* AT_name is absent if the function is described with an
1774 AT_abstract_origin tag.
1775 Ignore the function description for now to avoid GDB core dumps.
1776 FIXME: Add code to handle AT_abstract_origin tags properly. */
1777 if (dip->at_name == NULL)
1779 complain (&missing_at_name, DIE_ID);
1783 if (objfile->ei.entry_point >= dip->at_low_pc &&
1784 objfile->ei.entry_point < dip->at_high_pc)
1786 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1787 objfile->ei.entry_func_highpc = dip->at_high_pc;
1789 new = push_context (0, dip->at_low_pc);
1790 new->name = new_symbol (dip, objfile);
1791 list_in_scope = &local_symbols;
1792 process_dies (thisdie + dip->die_length, enddie, objfile);
1793 new = pop_context ();
1794 /* Make a block for the local symbols within. */
1795 finish_block (new->name, &local_symbols, new->old_blocks,
1796 new->start_addr, dip->at_high_pc, objfile);
1797 list_in_scope = &file_symbols;
1805 handle_producer -- process the AT_producer attribute
1809 Perform any operations that depend on finding a particular
1810 AT_producer attribute.
1815 handle_producer (char *producer)
1818 /* If this compilation unit was compiled with g++ or gcc, then set the
1819 processing_gcc_compilation flag. */
1821 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1823 char version = producer[strlen (GCC_PRODUCER)];
1824 processing_gcc_compilation = (version == '2' ? 2 : 1);
1828 processing_gcc_compilation =
1829 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1830 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1833 /* Select a demangling style if we can identify the producer and if
1834 the current style is auto. We leave the current style alone if it
1835 is not auto. We also leave the demangling style alone if we find a
1836 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1838 if (AUTO_DEMANGLING)
1840 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1843 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1844 know whether it will use the old style or v3 mangling. */
1845 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1848 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1850 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1860 read_file_scope -- process all dies within a file scope
1864 Process all dies within a given file scope. We are passed a
1865 pointer to the die information structure for the die which
1866 starts the file scope, and pointers into the raw die data which
1867 mark the range of dies within the file scope.
1869 When the partial symbol table is built, the file offset for the line
1870 number table for each compilation unit is saved in the partial symbol
1871 table entry for that compilation unit. As the symbols for each
1872 compilation unit are read, the line number table is read into memory
1873 and the variable lnbase is set to point to it. Thus all we have to
1874 do is use lnbase to access the line number table for the current
1879 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1880 struct objfile *objfile)
1882 struct cleanup *back_to;
1883 struct symtab *symtab;
1885 if (objfile->ei.entry_point >= dip->at_low_pc &&
1886 objfile->ei.entry_point < dip->at_high_pc)
1888 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1889 objfile->ei.entry_file_highpc = dip->at_high_pc;
1891 set_cu_language (dip);
1892 if (dip->at_producer != NULL)
1894 handle_producer (dip->at_producer);
1896 numutypes = (enddie - thisdie) / 4;
1897 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1898 back_to = make_cleanup (free_utypes, NULL);
1899 memset (utypes, 0, numutypes * sizeof (struct type *));
1900 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1901 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1902 record_debugformat ("DWARF 1");
1903 decode_line_numbers (lnbase);
1904 process_dies (thisdie + dip->die_length, enddie, objfile);
1906 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1909 symtab->language = cu_language;
1911 do_cleanups (back_to);
1918 process_dies -- process a range of DWARF Information Entries
1922 static void process_dies (char *thisdie, char *enddie,
1923 struct objfile *objfile)
1927 Process all DIE's in a specified range. May be (and almost
1928 certainly will be) called recursively.
1932 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1937 while (thisdie < enddie)
1939 basicdieinfo (&di, thisdie, objfile);
1940 if (di.die_length < SIZEOF_DIE_LENGTH)
1944 else if (di.die_tag == TAG_padding)
1946 nextdie = thisdie + di.die_length;
1950 completedieinfo (&di, objfile);
1951 if (di.at_sibling != 0)
1953 nextdie = dbbase + di.at_sibling - dbroff;
1957 nextdie = thisdie + di.die_length;
1959 #ifdef SMASH_TEXT_ADDRESS
1960 /* I think that these are always text, not data, addresses. */
1961 SMASH_TEXT_ADDRESS (di.at_low_pc);
1962 SMASH_TEXT_ADDRESS (di.at_high_pc);
1966 case TAG_compile_unit:
1967 /* Skip Tag_compile_unit if we are already inside a compilation
1968 unit, we are unable to handle nested compilation units
1969 properly (FIXME). */
1970 if (current_subfile == NULL)
1971 read_file_scope (&di, thisdie, nextdie, objfile);
1973 nextdie = thisdie + di.die_length;
1975 case TAG_global_subroutine:
1976 case TAG_subroutine:
1977 if (di.has_at_low_pc)
1979 read_func_scope (&di, thisdie, nextdie, objfile);
1982 case TAG_lexical_block:
1983 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1985 case TAG_class_type:
1986 case TAG_structure_type:
1987 case TAG_union_type:
1988 read_structure_scope (&di, thisdie, nextdie, objfile);
1990 case TAG_enumeration_type:
1991 read_enumeration (&di, thisdie, nextdie, objfile);
1993 case TAG_subroutine_type:
1994 read_subroutine_type (&di, thisdie, nextdie);
1996 case TAG_array_type:
1997 dwarf_read_array_type (&di);
1999 case TAG_pointer_type:
2000 read_tag_pointer_type (&di);
2002 case TAG_string_type:
2003 read_tag_string_type (&di);
2006 new_symbol (&di, objfile);
2018 decode_line_numbers -- decode a line number table fragment
2022 static void decode_line_numbers (char *tblscan, char *tblend,
2023 long length, long base, long line, long pc)
2027 Translate the DWARF line number information to gdb form.
2029 The ".line" section contains one or more line number tables, one for
2030 each ".line" section from the objects that were linked.
2032 The AT_stmt_list attribute for each TAG_source_file entry in the
2033 ".debug" section contains the offset into the ".line" section for the
2034 start of the table for that file.
2036 The table itself has the following structure:
2038 <table length><base address><source statement entry>
2039 4 bytes 4 bytes 10 bytes
2041 The table length is the total size of the table, including the 4 bytes
2042 for the length information.
2044 The base address is the address of the first instruction generated
2045 for the source file.
2047 Each source statement entry has the following structure:
2049 <line number><statement position><address delta>
2050 4 bytes 2 bytes 4 bytes
2052 The line number is relative to the start of the file, starting with
2055 The statement position either -1 (0xFFFF) or the number of characters
2056 from the beginning of the line to the beginning of the statement.
2058 The address delta is the difference between the base address and
2059 the address of the first instruction for the statement.
2061 Note that we must copy the bytes from the packed table to our local
2062 variables before attempting to use them, to avoid alignment problems
2063 on some machines, particularly RISC processors.
2067 Does gdb expect the line numbers to be sorted? They are now by
2068 chance/luck, but are not required to be. (FIXME)
2070 The line with number 0 is unused, gdb apparently can discover the
2071 span of the last line some other way. How? (FIXME)
2075 decode_line_numbers (char *linetable)
2079 unsigned long length;
2084 if (linetable != NULL)
2086 tblscan = tblend = linetable;
2087 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2089 tblscan += SIZEOF_LINETBL_LENGTH;
2091 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2092 GET_UNSIGNED, current_objfile);
2093 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2095 while (tblscan < tblend)
2097 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2099 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2100 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2102 tblscan += SIZEOF_LINETBL_DELTA;
2106 record_line (current_subfile, line, pc);
2116 locval -- compute the value of a location attribute
2120 static int locval (struct dieinfo *dip)
2124 Given pointer to a string of bytes that define a location, compute
2125 the location and return the value.
2126 A location description containing no atoms indicates that the
2127 object is optimized out. The optimized_out flag is set for those,
2128 the return value is meaningless.
2130 When computing values involving the current value of the frame pointer,
2131 the value zero is used, which results in a value relative to the frame
2132 pointer, rather than the absolute value. This is what GDB wants
2135 When the result is a register number, the isreg flag is set, otherwise
2136 it is cleared. This is a kludge until we figure out a better
2137 way to handle the problem. Gdb's design does not mesh well with the
2138 DWARF notion of a location computing interpreter, which is a shame
2139 because the flexibility goes unused.
2143 Note that stack[0] is unused except as a default error return.
2144 Note that stack overflow is not yet handled.
2148 locval (struct dieinfo *dip)
2150 unsigned short nbytes;
2151 unsigned short locsize;
2152 auto long stack[64];
2159 loc = dip->at_location;
2160 nbytes = attribute_size (AT_location);
2161 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2163 end = loc + locsize;
2168 dip->optimized_out = 1;
2169 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2172 dip->optimized_out = 0;
2173 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2175 loc += SIZEOF_LOC_ATOM_CODE;
2176 switch (loc_atom_code)
2183 /* push register (number) */
2185 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2188 loc += loc_value_size;
2192 /* push value of register (number) */
2193 /* Actually, we compute the value as if register has 0, so the
2194 value ends up being the offset from that register. */
2196 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2198 loc += loc_value_size;
2199 stack[++stacki] = 0;
2202 /* push address (relocated address) */
2203 stack[++stacki] = target_to_host (loc, loc_value_size,
2204 GET_UNSIGNED, current_objfile);
2205 loc += loc_value_size;
2208 /* push constant (number) FIXME: signed or unsigned! */
2209 stack[++stacki] = target_to_host (loc, loc_value_size,
2210 GET_SIGNED, current_objfile);
2211 loc += loc_value_size;
2214 /* pop, deref and push 2 bytes (as a long) */
2215 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2217 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2218 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2220 case OP_ADD: /* pop top 2 items, add, push result */
2221 stack[stacki - 1] += stack[stacki];
2226 return (stack[stacki]);
2233 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2237 static void read_ofile_symtab (struct partial_symtab *pst)
2241 When expanding a partial symbol table entry to a full symbol table
2242 entry, this is the function that gets called to read in the symbols
2243 for the compilation unit. A pointer to the newly constructed symtab,
2244 which is now the new first one on the objfile's symtab list, is
2245 stashed in the partial symbol table entry.
2249 read_ofile_symtab (struct partial_symtab *pst)
2251 struct cleanup *back_to;
2252 unsigned long lnsize;
2255 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2257 abfd = pst->objfile->obfd;
2258 current_objfile = pst->objfile;
2260 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2261 unit, seek to the location in the file, and read in all the DIE's. */
2264 dbsize = DBLENGTH (pst);
2265 dbbase = xmalloc (dbsize);
2266 dbroff = DBROFF (pst);
2267 foffset = DBFOFF (pst) + dbroff;
2268 base_section_offsets = pst->section_offsets;
2269 baseaddr = ANOFFSET (pst->section_offsets, 0);
2270 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2271 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2274 error ("can't read DWARF data");
2276 back_to = make_cleanup (xfree, dbbase);
2278 /* If there is a line number table associated with this compilation unit
2279 then read the size of this fragment in bytes, from the fragment itself.
2280 Allocate a buffer for the fragment and read it in for future
2286 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2287 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2288 sizeof (lnsizedata)))
2290 error ("can't read DWARF line number table size");
2292 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2293 GET_UNSIGNED, pst->objfile);
2294 lnbase = xmalloc (lnsize);
2295 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2296 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2299 error ("can't read DWARF line numbers");
2301 make_cleanup (xfree, lnbase);
2304 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2305 do_cleanups (back_to);
2306 current_objfile = NULL;
2307 pst->symtab = pst->objfile->symtabs;
2314 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2318 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2322 Called once for each partial symbol table entry that needs to be
2323 expanded into a full symbol table entry.
2328 psymtab_to_symtab_1 (struct partial_symtab *pst)
2331 struct cleanup *old_chain;
2337 warning ("psymtab for %s already read in. Shouldn't happen.",
2342 /* Read in all partial symtabs on which this one is dependent */
2343 for (i = 0; i < pst->number_of_dependencies; i++)
2345 if (!pst->dependencies[i]->readin)
2347 /* Inform about additional files that need to be read in. */
2350 fputs_filtered (" ", gdb_stdout);
2352 fputs_filtered ("and ", gdb_stdout);
2354 printf_filtered ("%s...",
2355 pst->dependencies[i]->filename);
2357 gdb_flush (gdb_stdout); /* Flush output */
2359 psymtab_to_symtab_1 (pst->dependencies[i]);
2362 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2365 old_chain = make_cleanup (really_free_pendings, 0);
2366 read_ofile_symtab (pst);
2369 printf_filtered ("%d DIE's, sorting...", diecount);
2371 gdb_flush (gdb_stdout);
2373 sort_symtab_syms (pst->symtab);
2374 do_cleanups (old_chain);
2385 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2389 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2393 This is the DWARF support entry point for building a full symbol
2394 table entry from a partial symbol table entry. We are passed a
2395 pointer to the partial symbol table entry that needs to be expanded.
2400 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2407 warning ("psymtab for %s already read in. Shouldn't happen.",
2412 if (DBLENGTH (pst) || pst->number_of_dependencies)
2414 /* Print the message now, before starting serious work, to avoid
2415 disconcerting pauses. */
2418 printf_filtered ("Reading in symbols for %s...",
2420 gdb_flush (gdb_stdout);
2423 psymtab_to_symtab_1 (pst);
2425 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2426 we need to do an equivalent or is this something peculiar to
2428 Match with global symbols. This only needs to be done once,
2429 after all of the symtabs and dependencies have been read in.
2431 scan_file_globals (pst->objfile);
2434 /* Finish up the verbose info message. */
2437 printf_filtered ("done.\n");
2438 gdb_flush (gdb_stdout);
2449 add_enum_psymbol -- add enumeration members to partial symbol table
2453 Given pointer to a DIE that is known to be for an enumeration,
2454 extract the symbolic names of the enumeration members and add
2455 partial symbols for them.
2459 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2463 unsigned short blocksz;
2466 if ((scan = dip->at_element_list) != NULL)
2468 if (dip->short_element_list)
2470 nbytes = attribute_size (AT_short_element_list);
2474 nbytes = attribute_size (AT_element_list);
2476 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2478 listend = scan + blocksz;
2479 while (scan < listend)
2481 scan += TARGET_FT_LONG_SIZE (objfile);
2482 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2483 &objfile->static_psymbols, 0, 0, cu_language,
2485 scan += strlen (scan) + 1;
2494 add_partial_symbol -- add symbol to partial symbol table
2498 Given a DIE, if it is one of the types that we want to
2499 add to a partial symbol table, finish filling in the die info
2500 and then add a partial symbol table entry for it.
2504 The caller must ensure that the DIE has a valid name attribute.
2508 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2510 switch (dip->die_tag)
2512 case TAG_global_subroutine:
2513 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2514 VAR_NAMESPACE, LOC_BLOCK,
2515 &objfile->global_psymbols,
2516 0, dip->at_low_pc, cu_language, objfile);
2518 case TAG_global_variable:
2519 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2520 VAR_NAMESPACE, LOC_STATIC,
2521 &objfile->global_psymbols,
2522 0, 0, cu_language, objfile);
2524 case TAG_subroutine:
2525 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2526 VAR_NAMESPACE, LOC_BLOCK,
2527 &objfile->static_psymbols,
2528 0, dip->at_low_pc, cu_language, objfile);
2530 case TAG_local_variable:
2531 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2532 VAR_NAMESPACE, LOC_STATIC,
2533 &objfile->static_psymbols,
2534 0, 0, cu_language, objfile);
2537 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2538 VAR_NAMESPACE, LOC_TYPEDEF,
2539 &objfile->static_psymbols,
2540 0, 0, cu_language, objfile);
2542 case TAG_class_type:
2543 case TAG_structure_type:
2544 case TAG_union_type:
2545 case TAG_enumeration_type:
2546 /* Do not add opaque aggregate definitions to the psymtab. */
2547 if (!dip->has_at_byte_size)
2549 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2550 STRUCT_NAMESPACE, LOC_TYPEDEF,
2551 &objfile->static_psymbols,
2552 0, 0, cu_language, objfile);
2553 if (cu_language == language_cplus)
2555 /* For C++, these implicitly act as typedefs as well. */
2556 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2557 VAR_NAMESPACE, LOC_TYPEDEF,
2558 &objfile->static_psymbols,
2559 0, 0, cu_language, objfile);
2569 scan_partial_symbols -- scan DIE's within a single compilation unit
2573 Process the DIE's within a single compilation unit, looking for
2574 interesting DIE's that contribute to the partial symbol table entry
2575 for this compilation unit.
2579 There are some DIE's that may appear both at file scope and within
2580 the scope of a function. We are only interested in the ones at file
2581 scope, and the only way to tell them apart is to keep track of the
2582 scope. For example, consider the test case:
2587 for which the relevant DWARF segment has the structure:
2590 0x23 global subrtn sibling 0x9b
2592 fund_type FT_integer
2597 0x23 local var sibling 0x97
2599 fund_type FT_integer
2600 location OP_BASEREG 0xe
2607 0x1d local var sibling 0xb8
2609 fund_type FT_integer
2610 location OP_ADDR 0x800025dc
2615 We want to include the symbol 'i' in the partial symbol table, but
2616 not the symbol 'j'. In essence, we want to skip all the dies within
2617 the scope of a TAG_global_subroutine DIE.
2619 Don't attempt to add anonymous structures or unions since they have
2620 no name. Anonymous enumerations however are processed, because we
2621 want to extract their member names (the check for a tag name is
2624 Also, for variables and subroutines, check that this is the place
2625 where the actual definition occurs, rather than just a reference
2633 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2639 while (thisdie < enddie)
2641 basicdieinfo (&di, thisdie, objfile);
2642 if (di.die_length < SIZEOF_DIE_LENGTH)
2648 nextdie = thisdie + di.die_length;
2649 /* To avoid getting complete die information for every die, we
2650 only do it (below) for the cases we are interested in. */
2653 case TAG_global_subroutine:
2654 case TAG_subroutine:
2655 completedieinfo (&di, objfile);
2656 if (di.at_name && (di.has_at_low_pc || di.at_location))
2658 add_partial_symbol (&di, objfile);
2659 /* If there is a sibling attribute, adjust the nextdie
2660 pointer to skip the entire scope of the subroutine.
2661 Apply some sanity checking to make sure we don't
2662 overrun or underrun the range of remaining DIE's */
2663 if (di.at_sibling != 0)
2665 temp = dbbase + di.at_sibling - dbroff;
2666 if ((temp < thisdie) || (temp >= enddie))
2668 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2678 case TAG_global_variable:
2679 case TAG_local_variable:
2680 completedieinfo (&di, objfile);
2681 if (di.at_name && (di.has_at_low_pc || di.at_location))
2683 add_partial_symbol (&di, objfile);
2687 case TAG_class_type:
2688 case TAG_structure_type:
2689 case TAG_union_type:
2690 completedieinfo (&di, objfile);
2693 add_partial_symbol (&di, objfile);
2696 case TAG_enumeration_type:
2697 completedieinfo (&di, objfile);
2700 add_partial_symbol (&di, objfile);
2702 add_enum_psymbol (&di, objfile);
2714 scan_compilation_units -- build a psymtab entry for each compilation
2718 This is the top level dwarf parsing routine for building partial
2721 It scans from the beginning of the DWARF table looking for the first
2722 TAG_compile_unit DIE, and then follows the sibling chain to locate
2723 each additional TAG_compile_unit DIE.
2725 For each TAG_compile_unit DIE it creates a partial symtab structure,
2726 calls a subordinate routine to collect all the compilation unit's
2727 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2728 new partial symtab structure into the partial symbol table. It also
2729 records the appropriate information in the partial symbol table entry
2730 to allow the chunk of DIE's and line number table for this compilation
2731 unit to be located and re-read later, to generate a complete symbol
2732 table entry for the compilation unit.
2734 Thus it effectively partitions up a chunk of DIE's for multiple
2735 compilation units into smaller DIE chunks and line number tables,
2736 and associates them with a partial symbol table entry.
2740 If any compilation unit has no line number table associated with
2741 it for some reason (a missing at_stmt_list attribute, rather than
2742 just one with a value of zero, which is valid) then we ensure that
2743 the recorded file offset is zero so that the routine which later
2744 reads line number table fragments knows that there is no fragment
2754 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2755 file_ptr lnoffset, struct objfile *objfile)
2759 struct partial_symtab *pst;
2762 file_ptr curlnoffset;
2764 while (thisdie < enddie)
2766 basicdieinfo (&di, thisdie, objfile);
2767 if (di.die_length < SIZEOF_DIE_LENGTH)
2771 else if (di.die_tag != TAG_compile_unit)
2773 nextdie = thisdie + di.die_length;
2777 completedieinfo (&di, objfile);
2778 set_cu_language (&di);
2779 if (di.at_sibling != 0)
2781 nextdie = dbbase + di.at_sibling - dbroff;
2785 nextdie = thisdie + di.die_length;
2787 curoff = thisdie - dbbase;
2788 culength = nextdie - thisdie;
2789 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2791 /* First allocate a new partial symbol table structure */
2793 pst = start_psymtab_common (objfile, base_section_offsets,
2794 di.at_name, di.at_low_pc,
2795 objfile->global_psymbols.next,
2796 objfile->static_psymbols.next);
2798 pst->texthigh = di.at_high_pc;
2799 pst->read_symtab_private = (char *)
2800 obstack_alloc (&objfile->psymbol_obstack,
2801 sizeof (struct dwfinfo));
2802 DBFOFF (pst) = dbfoff;
2803 DBROFF (pst) = curoff;
2804 DBLENGTH (pst) = culength;
2805 LNFOFF (pst) = curlnoffset;
2806 pst->read_symtab = dwarf_psymtab_to_symtab;
2808 /* Now look for partial symbols */
2810 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2812 pst->n_global_syms = objfile->global_psymbols.next -
2813 (objfile->global_psymbols.list + pst->globals_offset);
2814 pst->n_static_syms = objfile->static_psymbols.next -
2815 (objfile->static_psymbols.list + pst->statics_offset);
2816 sort_pst_symbols (pst);
2817 /* If there is already a psymtab or symtab for a file of this name,
2818 remove it. (If there is a symtab, more drastic things also
2819 happen.) This happens in VxWorks. */
2820 free_named_symtabs (pst->filename);
2830 new_symbol -- make a symbol table entry for a new symbol
2834 static struct symbol *new_symbol (struct dieinfo *dip,
2835 struct objfile *objfile)
2839 Given a pointer to a DWARF information entry, figure out if we need
2840 to make a symbol table entry for it, and if so, create a new entry
2841 and return a pointer to it.
2844 static struct symbol *
2845 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2847 struct symbol *sym = NULL;
2849 if (dip->at_name != NULL)
2851 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2852 sizeof (struct symbol));
2853 OBJSTAT (objfile, n_syms++);
2854 memset (sym, 0, sizeof (struct symbol));
2855 SYMBOL_NAME (sym) = create_name (dip->at_name,
2856 &objfile->symbol_obstack);
2857 /* default assumptions */
2858 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2859 SYMBOL_CLASS (sym) = LOC_STATIC;
2860 SYMBOL_TYPE (sym) = decode_die_type (dip);
2862 /* If this symbol is from a C++ compilation, then attempt to cache the
2863 demangled form for future reference. This is a typical time versus
2864 space tradeoff, that was decided in favor of time because it sped up
2865 C++ symbol lookups by a factor of about 20. */
2867 SYMBOL_LANGUAGE (sym) = cu_language;
2868 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2869 switch (dip->die_tag)
2872 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2873 SYMBOL_CLASS (sym) = LOC_LABEL;
2875 case TAG_global_subroutine:
2876 case TAG_subroutine:
2877 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2878 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2879 if (dip->at_prototyped)
2880 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2881 SYMBOL_CLASS (sym) = LOC_BLOCK;
2882 if (dip->die_tag == TAG_global_subroutine)
2884 add_symbol_to_list (sym, &global_symbols);
2888 add_symbol_to_list (sym, list_in_scope);
2891 case TAG_global_variable:
2892 if (dip->at_location != NULL)
2894 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2895 add_symbol_to_list (sym, &global_symbols);
2896 SYMBOL_CLASS (sym) = LOC_STATIC;
2897 SYMBOL_VALUE (sym) += baseaddr;
2900 case TAG_local_variable:
2901 if (dip->at_location != NULL)
2903 int loc = locval (dip);
2904 if (dip->optimized_out)
2906 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2908 else if (dip->isreg)
2910 SYMBOL_CLASS (sym) = LOC_REGISTER;
2912 else if (dip->offreg)
2914 SYMBOL_CLASS (sym) = LOC_BASEREG;
2915 SYMBOL_BASEREG (sym) = dip->basereg;
2919 SYMBOL_CLASS (sym) = LOC_STATIC;
2920 SYMBOL_VALUE (sym) += baseaddr;
2922 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2924 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2925 which may store to a bigger location than SYMBOL_VALUE. */
2926 SYMBOL_VALUE_ADDRESS (sym) = loc;
2930 SYMBOL_VALUE (sym) = loc;
2932 add_symbol_to_list (sym, list_in_scope);
2935 case TAG_formal_parameter:
2936 if (dip->at_location != NULL)
2938 SYMBOL_VALUE (sym) = locval (dip);
2940 add_symbol_to_list (sym, list_in_scope);
2943 SYMBOL_CLASS (sym) = LOC_REGPARM;
2945 else if (dip->offreg)
2947 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2948 SYMBOL_BASEREG (sym) = dip->basereg;
2952 SYMBOL_CLASS (sym) = LOC_ARG;
2955 case TAG_unspecified_parameters:
2956 /* From varargs functions; gdb doesn't seem to have any interest in
2957 this information, so just ignore it for now. (FIXME?) */
2959 case TAG_class_type:
2960 case TAG_structure_type:
2961 case TAG_union_type:
2962 case TAG_enumeration_type:
2963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2964 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2965 add_symbol_to_list (sym, list_in_scope);
2968 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2969 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2970 add_symbol_to_list (sym, list_in_scope);
2973 /* Not a tag we recognize. Hopefully we aren't processing trash
2974 data, but since we must specifically ignore things we don't
2975 recognize, there is nothing else we should do at this point. */
2986 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2990 static void synthesize_typedef (struct dieinfo *dip,
2991 struct objfile *objfile,
2996 Given a pointer to a DWARF information entry, synthesize a typedef
2997 for the name in the DIE, using the specified type.
2999 This is used for C++ class, structs, unions, and enumerations to
3000 set up the tag name as a type.
3005 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3008 struct symbol *sym = NULL;
3010 if (dip->at_name != NULL)
3012 sym = (struct symbol *)
3013 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3014 OBJSTAT (objfile, n_syms++);
3015 memset (sym, 0, sizeof (struct symbol));
3016 SYMBOL_NAME (sym) = create_name (dip->at_name,
3017 &objfile->symbol_obstack);
3018 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3019 SYMBOL_TYPE (sym) = type;
3020 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3021 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3022 add_symbol_to_list (sym, list_in_scope);
3030 decode_mod_fund_type -- decode a modified fundamental type
3034 static struct type *decode_mod_fund_type (char *typedata)
3038 Decode a block of data containing a modified fundamental
3039 type specification. TYPEDATA is a pointer to the block,
3040 which starts with a length containing the size of the rest
3041 of the block. At the end of the block is a fundmental type
3042 code value that gives the fundamental type. Everything
3043 in between are type modifiers.
3045 We simply compute the number of modifiers and call the general
3046 function decode_modified_type to do the actual work.
3049 static struct type *
3050 decode_mod_fund_type (char *typedata)
3052 struct type *typep = NULL;
3053 unsigned short modcount;
3056 /* Get the total size of the block, exclusive of the size itself */
3058 nbytes = attribute_size (AT_mod_fund_type);
3059 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3062 /* Deduct the size of the fundamental type bytes at the end of the block. */
3064 modcount -= attribute_size (AT_fund_type);
3066 /* Now do the actual decoding */
3068 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3076 decode_mod_u_d_type -- decode a modified user defined type
3080 static struct type *decode_mod_u_d_type (char *typedata)
3084 Decode a block of data containing a modified user defined
3085 type specification. TYPEDATA is a pointer to the block,
3086 which consists of a two byte length, containing the size
3087 of the rest of the block. At the end of the block is a
3088 four byte value that gives a reference to a user defined type.
3089 Everything in between are type modifiers.
3091 We simply compute the number of modifiers and call the general
3092 function decode_modified_type to do the actual work.
3095 static struct type *
3096 decode_mod_u_d_type (char *typedata)
3098 struct type *typep = NULL;
3099 unsigned short modcount;
3102 /* Get the total size of the block, exclusive of the size itself */
3104 nbytes = attribute_size (AT_mod_u_d_type);
3105 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3108 /* Deduct the size of the reference type bytes at the end of the block. */
3110 modcount -= attribute_size (AT_user_def_type);
3112 /* Now do the actual decoding */
3114 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3122 decode_modified_type -- decode modified user or fundamental type
3126 static struct type *decode_modified_type (char *modifiers,
3127 unsigned short modcount, int mtype)
3131 Decode a modified type, either a modified fundamental type or
3132 a modified user defined type. MODIFIERS is a pointer to the
3133 block of bytes that define MODCOUNT modifiers. Immediately
3134 following the last modifier is a short containing the fundamental
3135 type or a long containing the reference to the user defined
3136 type. Which one is determined by MTYPE, which is either
3137 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3138 type we are generating.
3140 We call ourself recursively to generate each modified type,`
3141 until MODCOUNT reaches zero, at which point we have consumed
3142 all the modifiers and generate either the fundamental type or
3143 user defined type. When the recursion unwinds, each modifier
3144 is applied in turn to generate the full modified type.
3148 If we find a modifier that we don't recognize, and it is not one
3149 of those reserved for application specific use, then we issue a
3150 warning and simply ignore the modifier.
3154 We currently ignore MOD_const and MOD_volatile. (FIXME)
3158 static struct type *
3159 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3161 struct type *typep = NULL;
3162 unsigned short fundtype;
3171 case AT_mod_fund_type:
3172 nbytes = attribute_size (AT_fund_type);
3173 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3175 typep = decode_fund_type (fundtype);
3177 case AT_mod_u_d_type:
3178 nbytes = attribute_size (AT_user_def_type);
3179 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3181 if ((typep = lookup_utype (die_ref)) == NULL)
3183 typep = alloc_utype (die_ref, NULL);
3187 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3188 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3194 modifier = *modifiers++;
3195 typep = decode_modified_type (modifiers, --modcount, mtype);
3198 case MOD_pointer_to:
3199 typep = lookup_pointer_type (typep);
3201 case MOD_reference_to:
3202 typep = lookup_reference_type (typep);
3205 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3208 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3211 if (!(MOD_lo_user <= (unsigned char) modifier
3212 && (unsigned char) modifier <= MOD_hi_user))
3214 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3226 decode_fund_type -- translate basic DWARF type to gdb base type
3230 Given an integer that is one of the fundamental DWARF types,
3231 translate it to one of the basic internal gdb types and return
3232 a pointer to the appropriate gdb type (a "struct type *").
3236 For robustness, if we are asked to translate a fundamental
3237 type that we are unprepared to deal with, we return int so
3238 callers can always depend upon a valid type being returned,
3239 and so gdb may at least do something reasonable by default.
3240 If the type is not in the range of those types defined as
3241 application specific types, we also issue a warning.
3244 static struct type *
3245 decode_fund_type (unsigned int fundtype)
3247 struct type *typep = NULL;
3253 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3256 case FT_boolean: /* Was FT_set in AT&T version */
3257 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3260 case FT_pointer: /* (void *) */
3261 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3262 typep = lookup_pointer_type (typep);
3266 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3269 case FT_signed_char:
3270 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3273 case FT_unsigned_char:
3274 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3278 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3281 case FT_signed_short:
3282 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3285 case FT_unsigned_short:
3286 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3290 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3293 case FT_signed_integer:
3294 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3297 case FT_unsigned_integer:
3298 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3302 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3305 case FT_signed_long:
3306 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3309 case FT_unsigned_long:
3310 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3314 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3317 case FT_signed_long_long:
3318 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3321 case FT_unsigned_long_long:
3322 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3326 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3329 case FT_dbl_prec_float:
3330 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3333 case FT_ext_prec_float:
3334 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3338 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3341 case FT_dbl_prec_complex:
3342 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3345 case FT_ext_prec_complex:
3346 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3353 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3354 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3356 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3367 create_name -- allocate a fresh copy of a string on an obstack
3371 Given a pointer to a string and a pointer to an obstack, allocates
3372 a fresh copy of the string on the specified obstack.
3377 create_name (char *name, struct obstack *obstackp)
3382 length = strlen (name) + 1;
3383 newname = (char *) obstack_alloc (obstackp, length);
3384 strcpy (newname, name);
3392 basicdieinfo -- extract the minimal die info from raw die data
3396 void basicdieinfo (char *diep, struct dieinfo *dip,
3397 struct objfile *objfile)
3401 Given a pointer to raw DIE data, and a pointer to an instance of a
3402 die info structure, this function extracts the basic information
3403 from the DIE data required to continue processing this DIE, along
3404 with some bookkeeping information about the DIE.
3406 The information we absolutely must have includes the DIE tag,
3407 and the DIE length. If we need the sibling reference, then we
3408 will have to call completedieinfo() to process all the remaining
3411 Note that since there is no guarantee that the data is properly
3412 aligned in memory for the type of access required (indirection
3413 through anything other than a char pointer), and there is no
3414 guarantee that it is in the same byte order as the gdb host,
3415 we call a function which deals with both alignment and byte
3416 swapping issues. Possibly inefficient, but quite portable.
3418 We also take care of some other basic things at this point, such
3419 as ensuring that the instance of the die info structure starts
3420 out completely zero'd and that curdie is initialized for use
3421 in error reporting if we have a problem with the current die.
3425 All DIE's must have at least a valid length, thus the minimum
3426 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3427 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3428 are forced to be TAG_padding DIES.
3430 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3431 that if a padding DIE is used for alignment and the amount needed is
3432 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3433 enough to align to the next alignment boundry.
3435 We do some basic sanity checking here, such as verifying that the
3436 length of the die would not cause it to overrun the recorded end of
3437 the buffer holding the DIE info. If we find a DIE that is either
3438 too small or too large, we force it's length to zero which should
3439 cause the caller to take appropriate action.
3443 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3446 memset (dip, 0, sizeof (struct dieinfo));
3448 dip->die_ref = dbroff + (diep - dbbase);
3449 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3451 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3452 ((diep + dip->die_length) > (dbbase + dbsize)))
3454 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3455 dip->die_length = 0;
3457 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3459 dip->die_tag = TAG_padding;
3463 diep += SIZEOF_DIE_LENGTH;
3464 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3473 completedieinfo -- finish reading the information for a given DIE
3477 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3481 Given a pointer to an already partially initialized die info structure,
3482 scan the raw DIE data and finish filling in the die info structure
3483 from the various attributes found.
3485 Note that since there is no guarantee that the data is properly
3486 aligned in memory for the type of access required (indirection
3487 through anything other than a char pointer), and there is no
3488 guarantee that it is in the same byte order as the gdb host,
3489 we call a function which deals with both alignment and byte
3490 swapping issues. Possibly inefficient, but quite portable.
3494 Each time we are called, we increment the diecount variable, which
3495 keeps an approximate count of the number of dies processed for
3496 each compilation unit. This information is presented to the user
3497 if the info_verbose flag is set.
3502 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3504 char *diep; /* Current pointer into raw DIE data */
3505 char *end; /* Terminate DIE scan here */
3506 unsigned short attr; /* Current attribute being scanned */
3507 unsigned short form; /* Form of the attribute */
3508 int nbytes; /* Size of next field to read */
3512 end = diep + dip->die_length;
3513 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3516 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3517 diep += SIZEOF_ATTRIBUTE;
3518 if ((nbytes = attribute_size (attr)) == -1)
3520 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3527 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3531 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3535 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3539 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3543 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3545 dip->has_at_stmt_list = 1;
3548 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3550 dip->at_low_pc += baseaddr;
3551 dip->has_at_low_pc = 1;
3554 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3556 dip->at_high_pc += baseaddr;
3559 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3562 case AT_user_def_type:
3563 dip->at_user_def_type = target_to_host (diep, nbytes,
3564 GET_UNSIGNED, objfile);
3567 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3569 dip->has_at_byte_size = 1;
3572 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3584 dip->at_location = diep;
3586 case AT_mod_fund_type:
3587 dip->at_mod_fund_type = diep;
3589 case AT_subscr_data:
3590 dip->at_subscr_data = diep;
3592 case AT_mod_u_d_type:
3593 dip->at_mod_u_d_type = diep;
3595 case AT_element_list:
3596 dip->at_element_list = diep;
3597 dip->short_element_list = 0;
3599 case AT_short_element_list:
3600 dip->at_element_list = diep;
3601 dip->short_element_list = 1;
3603 case AT_discr_value:
3604 dip->at_discr_value = diep;
3606 case AT_string_length:
3607 dip->at_string_length = diep;
3610 dip->at_name = diep;
3613 /* For now, ignore any "hostname:" portion, since gdb doesn't
3614 know how to deal with it. (FIXME). */
3615 dip->at_comp_dir = strrchr (diep, ':');
3616 if (dip->at_comp_dir != NULL)
3622 dip->at_comp_dir = diep;
3626 dip->at_producer = diep;
3628 case AT_start_scope:
3629 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3632 case AT_stride_size:
3633 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 dip->at_prototyped = diep;
3644 /* Found an attribute that we are unprepared to handle. However
3645 it is specifically one of the design goals of DWARF that
3646 consumers should ignore unknown attributes. As long as the
3647 form is one that we recognize (so we know how to skip it),
3648 we can just ignore the unknown attribute. */
3651 form = FORM_FROM_ATTR (attr);
3665 diep += TARGET_FT_POINTER_SIZE (objfile);
3668 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3671 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3674 diep += strlen (diep) + 1;
3677 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3688 target_to_host -- swap in target data to host
3692 target_to_host (char *from, int nbytes, int signextend,
3693 struct objfile *objfile)
3697 Given pointer to data in target format in FROM, a byte count for
3698 the size of the data in NBYTES, a flag indicating whether or not
3699 the data is signed in SIGNEXTEND, and a pointer to the current
3700 objfile in OBJFILE, convert the data to host format and return
3701 the converted value.
3705 FIXME: If we read data that is known to be signed, and expect to
3706 use it as signed data, then we need to explicitly sign extend the
3707 result until the bfd library is able to do this for us.
3709 FIXME: Would a 32 bit target ever need an 8 byte result?
3714 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3715 struct objfile *objfile)
3722 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3725 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3728 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3731 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3734 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3745 attribute_size -- compute size of data for a DWARF attribute
3749 static int attribute_size (unsigned int attr)
3753 Given a DWARF attribute in ATTR, compute the size of the first
3754 piece of data associated with this attribute and return that
3757 Returns -1 for unrecognized attributes.
3762 attribute_size (unsigned int attr)
3764 int nbytes; /* Size of next data for this attribute */
3765 unsigned short form; /* Form of the attribute */
3767 form = FORM_FROM_ATTR (attr);
3770 case FORM_STRING: /* A variable length field is next */
3773 case FORM_DATA2: /* Next 2 byte field is the data itself */
3774 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3777 case FORM_DATA4: /* Next 4 byte field is the data itself */
3778 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3779 case FORM_REF: /* Next 4 byte field is a DIE offset */
3782 case FORM_DATA8: /* Next 8 byte field is the data itself */
3785 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3786 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3789 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);