1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
47 #include "elf/dwarf.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
52 #include "complaints.h"
55 #include "gdb_string.h"
57 /* Some macros to provide DIE info for complaints. */
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
62 /* Complaints that can be issued during DWARF debug info reading. */
64 struct complaint no_bfd_get_N =
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
69 struct complaint malformed_die =
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
74 struct complaint bad_die_ref =
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
79 struct complaint unknown_attribute_form =
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
84 struct complaint unknown_attribute_length =
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
89 struct complaint unexpected_fund_type =
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
94 struct complaint unknown_type_modifier =
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
99 struct complaint volatile_ignored =
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
104 struct complaint const_ignored =
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
109 struct complaint botched_modified_type =
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
114 struct complaint op_deref2 =
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
119 struct complaint op_deref4 =
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
124 struct complaint basereg_not_handled =
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
129 struct complaint dup_user_type_allocation =
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
134 struct complaint dup_user_type_definition =
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
139 struct complaint missing_tag =
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
144 struct complaint bad_array_element_type =
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
149 struct complaint subscript_data_items =
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
154 struct complaint unhandled_array_subscript_format =
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
159 struct complaint unknown_array_subscript_format =
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
164 struct complaint not_row_major =
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
169 struct complaint missing_at_name =
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
177 #define GCC_PRODUCER "GNU C "
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
185 #define LCC_PRODUCER "NCR C/C++"
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
197 /* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
204 #define GET_UNSIGNED 0 /* No sign extension required */
205 #define GET_SIGNED 1 /* Sign extension required */
207 /* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
211 #define SIZEOF_DIE_LENGTH 4
212 #define SIZEOF_DIE_TAG 2
213 #define SIZEOF_ATTRIBUTE 2
214 #define SIZEOF_FORMAT_SPECIFIER 1
215 #define SIZEOF_FMT_FT 2
216 #define SIZEOF_LINETBL_LENGTH 4
217 #define SIZEOF_LINETBL_LINENO 4
218 #define SIZEOF_LINETBL_STMT 2
219 #define SIZEOF_LINETBL_DELTA 4
220 #define SIZEOF_LOC_ATOM_CODE 1
222 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
224 /* Macros that return the sizes of various types of data in the target
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
234 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
244 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
246 /* External variables referenced. */
248 extern int info_verbose; /* From main.c; nonzero => verbose */
249 extern char *warning_pre_print; /* From utils.c */
251 /* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
282 char *die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
290 unsigned short at_fund_type;
291 BLOCK *at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK *at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK *at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK *at_element_list;
300 unsigned long at_stmt_list;
302 CORE_ADDR at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK *at_discr_value;
307 BLOCK *at_string_length;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
319 /* Kludge to identify register variables */
323 /* Kludge to identify optimized out variables */
325 unsigned int optimized_out;
327 /* Kludge to identify basereg references.
328 Nonzero if we have an offset relative to a basereg. */
332 /* Kludge to identify which base register is it relative to. */
334 unsigned int basereg;
337 static int diecount; /* Approximate count of dies for compilation unit */
338 static struct dieinfo *curdie; /* For warnings and such */
340 static char *dbbase; /* Base pointer to dwarf info */
341 static int dbsize; /* Size of dwarf info in bytes */
342 static int dbroff; /* Relative offset from start of .debug section */
343 static char *lnbase; /* Base pointer to line section */
345 /* This value is added to each symbol value. FIXME: Generalize to
346 the section_offsets structure used by dbxread (once this is done,
347 pass the appropriate section number to end_symtab). */
348 static CORE_ADDR baseaddr; /* Add to each symbol value */
350 /* The section offsets used in the current psymtab or symtab. FIXME,
351 only used to pass one value (baseaddr) at the moment. */
352 static struct section_offsets *base_section_offsets;
354 /* We put a pointer to this structure in the read_symtab_private field
359 /* Always the absolute file offset to the start of the ".debug"
360 section for the file containing the DIE's being accessed. */
362 /* Relative offset from the start of the ".debug" section to the
363 first DIE to be accessed. When building the partial symbol
364 table, this value will be zero since we are accessing the
365 entire ".debug" section. When expanding a partial symbol
366 table entry, this value will be the offset to the first
367 DIE for the compilation unit containing the symbol that
368 triggers the expansion. */
370 /* The size of the chunk of DIE's being examined, in bytes. */
372 /* The absolute file offset to the line table fragment. Ignored
373 when building partial symbol tables, but used when expanding
374 them, and contains the absolute file offset to the fragment
375 of the ".line" section containing the line numbers for the
376 current compilation unit. */
380 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
381 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
382 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
383 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
385 /* The generic symbol table building routines have separate lists for
386 file scope symbols and all all other scopes (local scopes). So
387 we need to select the right one to pass to add_symbol_to_list().
388 We do it by keeping a pointer to the correct list in list_in_scope.
390 FIXME: The original dwarf code just treated the file scope as the first
391 local scope, and all other local scopes as nested local scopes, and worked
392 fine. Check to see if we really need to distinguish these in buildsym.c */
394 struct pending **list_in_scope = &file_symbols;
396 /* DIES which have user defined types or modified user defined types refer to
397 other DIES for the type information. Thus we need to associate the offset
398 of a DIE for a user defined type with a pointer to the type information.
400 Originally this was done using a simple but expensive algorithm, with an
401 array of unsorted structures, each containing an offset/type-pointer pair.
402 This array was scanned linearly each time a lookup was done. The result
403 was that gdb was spending over half it's startup time munging through this
404 array of pointers looking for a structure that had the right offset member.
406 The second attempt used the same array of structures, but the array was
407 sorted using qsort each time a new offset/type was recorded, and a binary
408 search was used to find the type pointer for a given DIE offset. This was
409 even slower, due to the overhead of sorting the array each time a new
410 offset/type pair was entered.
412 The third attempt uses a fixed size array of type pointers, indexed by a
413 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
414 we can divide any DIE offset by 4 to obtain a unique index into this fixed
415 size array. Since each element is a 4 byte pointer, it takes exactly as
416 much memory to hold this array as to hold the DWARF info for a given
417 compilation unit. But it gets freed as soon as we are done with it.
418 This has worked well in practice, as a reasonable tradeoff between memory
419 consumption and speed, without having to resort to much more complicated
422 static struct type **utypes; /* Pointer to array of user type pointers */
423 static int numutypes; /* Max number of user type pointers */
425 /* Maintain an array of referenced fundamental types for the current
426 compilation unit being read. For DWARF version 1, we have to construct
427 the fundamental types on the fly, since no information about the
428 fundamental types is supplied. Each such fundamental type is created by
429 calling a language dependent routine to create the type, and then a
430 pointer to that type is then placed in the array at the index specified
431 by it's FT_<TYPENAME> value. The array has a fixed size set by the
432 FT_NUM_MEMBERS compile time constant, which is the number of predefined
433 fundamental types gdb knows how to construct. */
435 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
437 /* Record the language for the compilation unit which is currently being
438 processed. We know it once we have seen the TAG_compile_unit DIE,
439 and we need it while processing the DIE's for that compilation unit.
440 It is eventually saved in the symtab structure, but we don't finalize
441 the symtab struct until we have processed all the DIE's for the
442 compilation unit. We also need to get and save a pointer to the
443 language struct for this language, so we can call the language
444 dependent routines for doing things such as creating fundamental
447 static enum language cu_language;
448 static const struct language_defn *cu_language_defn;
450 /* Forward declarations of static functions so we don't have to worry
451 about ordering within this file. */
454 free_utypes PARAMS ((PTR));
457 attribute_size PARAMS ((unsigned int));
460 target_to_host PARAMS ((char *, int, int, struct objfile *));
463 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
466 handle_producer PARAMS ((char *));
469 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
472 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
475 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
479 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
482 scan_compilation_units PARAMS ((char *, char *, file_ptr,
483 file_ptr, struct objfile *));
486 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
489 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
492 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
495 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
498 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
501 read_ofile_symtab PARAMS ((struct partial_symtab *));
504 process_dies PARAMS ((char *, char *, struct objfile *));
507 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
511 decode_array_element_type PARAMS ((char *));
514 decode_subscript_data_item PARAMS ((char *, char *));
517 dwarf_read_array_type PARAMS ((struct dieinfo *));
520 read_tag_pointer_type PARAMS ((struct dieinfo * dip));
523 read_tag_string_type PARAMS ((struct dieinfo * dip));
526 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
529 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
532 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
535 enum_type PARAMS ((struct dieinfo *, struct objfile *));
538 decode_line_numbers PARAMS ((char *));
541 decode_die_type PARAMS ((struct dieinfo *));
544 decode_mod_fund_type PARAMS ((char *));
547 decode_mod_u_d_type PARAMS ((char *));
550 decode_modified_type PARAMS ((char *, unsigned int, int));
553 decode_fund_type PARAMS ((unsigned int));
556 create_name PARAMS ((char *, struct obstack *));
559 lookup_utype PARAMS ((DIE_REF));
562 alloc_utype PARAMS ((DIE_REF, struct type *));
564 static struct symbol *
565 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
568 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
572 locval PARAMS ((struct dieinfo *));
575 set_cu_language PARAMS ((struct dieinfo *));
578 dwarf_fundamental_type PARAMS ((struct objfile *, int));
585 dwarf_fundamental_type -- lookup or create a fundamental type
590 dwarf_fundamental_type (struct objfile *objfile, int typeid)
594 DWARF version 1 doesn't supply any fundamental type information,
595 so gdb has to construct such types. It has a fixed number of
596 fundamental types that it knows how to construct, which is the
597 union of all types that it knows how to construct for all languages
598 that it knows about. These are enumerated in gdbtypes.h.
600 As an example, assume we find a DIE that references a DWARF
601 fundamental type of FT_integer. We first look in the ftypes
602 array to see if we already have such a type, indexed by the
603 gdb internal value of FT_INTEGER. If so, we simply return a
604 pointer to that type. If not, then we ask an appropriate
605 language dependent routine to create a type FT_INTEGER, using
606 defaults reasonable for the current target machine, and install
607 that type in ftypes for future reference.
611 Pointer to a fundamental type.
616 dwarf_fundamental_type (objfile, typeid)
617 struct objfile *objfile;
620 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
622 error ("internal error - invalid fundamental type id %d", typeid);
625 /* Look for this particular type in the fundamental type vector. If one is
626 not found, create and install one appropriate for the current language
627 and the current target machine. */
629 if (ftypes[typeid] == NULL)
631 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
634 return (ftypes[typeid]);
641 set_cu_language -- set local copy of language for compilation unit
646 set_cu_language (struct dieinfo *dip)
650 Decode the language attribute for a compilation unit DIE and
651 remember what the language was. We use this at various times
652 when processing DIE's for a given compilation unit.
661 set_cu_language (dip)
664 switch (dip->at_language)
668 cu_language = language_c;
670 case LANG_C_PLUS_PLUS:
671 cu_language = language_cplus;
674 cu_language = language_chill;
677 cu_language = language_m2;
681 cu_language = language_fortran;
687 /* We don't know anything special about these yet. */
688 cu_language = language_unknown;
691 /* If no at_language, try to deduce one from the filename */
692 cu_language = deduce_language_from_filename (dip->at_name);
695 cu_language_defn = language_def (cu_language);
702 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
706 void dwarf_build_psymtabs (struct objfile *objfile,
707 int mainline, file_ptr dbfoff, unsigned int dbfsize,
708 file_ptr lnoffset, unsigned int lnsize)
712 This function is called upon to build partial symtabs from files
713 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
715 It is passed a bfd* containing the DIES
716 and line number information, the corresponding filename for that
717 file, a base address for relocating the symbols, a flag indicating
718 whether or not this debugging information is from a "main symbol
719 table" rather than a shared library or dynamically linked file,
720 and file offset/size pairs for the DIE information and line number
730 dwarf_build_psymtabs (objfile, mainline, dbfoff, dbfsize,
732 struct objfile *objfile;
735 unsigned int dbfsize;
739 bfd *abfd = objfile->obfd;
740 struct cleanup *back_to;
742 current_objfile = objfile;
744 dbbase = xmalloc (dbsize);
746 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
747 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
750 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
752 back_to = make_cleanup (free, dbbase);
754 /* If we are reinitializing, or if we have never loaded syms yet, init.
755 Since we have no idea how many DIES we are looking at, we just guess
756 some arbitrary value. */
758 if (mainline || objfile->global_psymbols.size == 0 ||
759 objfile->static_psymbols.size == 0)
761 init_psymbol_list (objfile, 1024);
764 /* Save the relocation factor where everybody can see it. */
766 base_section_offsets = objfile->section_offsets;
767 baseaddr = ANOFFSET (objfile->section_offsets, 0);
769 /* Follow the compilation unit sibling chain, building a partial symbol
770 table entry for each one. Save enough information about each compilation
771 unit to locate the full DWARF information later. */
773 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
775 do_cleanups (back_to);
776 current_objfile = NULL;
783 read_lexical_block_scope -- process all dies in a lexical block
787 static void read_lexical_block_scope (struct dieinfo *dip,
788 char *thisdie, char *enddie)
792 Process all the DIES contained within a lexical block scope.
793 Start a new scope, process the dies, and then close the scope.
798 read_lexical_block_scope (dip, thisdie, enddie, objfile)
802 struct objfile *objfile;
804 register struct context_stack *new;
806 push_context (0, dip->at_low_pc);
807 process_dies (thisdie + dip->die_length, enddie, objfile);
808 new = pop_context ();
809 if (local_symbols != NULL)
811 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
812 dip->at_high_pc, objfile);
814 local_symbols = new->locals;
821 lookup_utype -- look up a user defined type from die reference
825 static type *lookup_utype (DIE_REF die_ref)
829 Given a DIE reference, lookup the user defined type associated with
830 that DIE, if it has been registered already. If not registered, then
831 return NULL. Alloc_utype() can be called to register an empty
832 type for this reference, which will be filled in later when the
833 actual referenced DIE is processed.
837 lookup_utype (die_ref)
840 struct type *type = NULL;
843 utypeidx = (die_ref - dbroff) / 4;
844 if ((utypeidx < 0) || (utypeidx >= numutypes))
846 complain (&bad_die_ref, DIE_ID, DIE_NAME);
850 type = *(utypes + utypeidx);
860 alloc_utype -- add a user defined type for die reference
864 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
868 Given a die reference DIE_REF, and a possible pointer to a user
869 defined type UTYPEP, register that this reference has a user
870 defined type and either use the specified type in UTYPEP or
871 make a new empty type that will be filled in later.
873 We should only be called after calling lookup_utype() to verify that
874 there is not currently a type registered for DIE_REF.
878 alloc_utype (die_ref, utypep)
885 utypeidx = (die_ref - dbroff) / 4;
886 typep = utypes + utypeidx;
887 if ((utypeidx < 0) || (utypeidx >= numutypes))
889 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
890 complain (&bad_die_ref, DIE_ID, DIE_NAME);
892 else if (*typep != NULL)
895 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
901 utypep = alloc_type (current_objfile);
912 free_utypes -- free the utypes array and reset pointer & count
916 static void free_utypes (PTR dummy)
920 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
921 and set numutypes back to zero. This ensures that the utypes does not get
922 referenced after being freed.
939 decode_die_type -- return a type for a specified die
943 static struct type *decode_die_type (struct dieinfo *dip)
947 Given a pointer to a die information structure DIP, decode the
948 type of the die and return a pointer to the decoded type. All
949 dies without specific types default to type int.
953 decode_die_type (dip)
956 struct type *type = NULL;
958 if (dip->at_fund_type != 0)
960 type = decode_fund_type (dip->at_fund_type);
962 else if (dip->at_mod_fund_type != NULL)
964 type = decode_mod_fund_type (dip->at_mod_fund_type);
966 else if (dip->at_user_def_type)
968 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
970 type = alloc_utype (dip->at_user_def_type, NULL);
973 else if (dip->at_mod_u_d_type)
975 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
979 type = dwarf_fundamental_type (current_objfile, FT_VOID);
988 struct_type -- compute and return the type for a struct or union
992 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
993 char *enddie, struct objfile *objfile)
997 Given pointer to a die information structure for a die which
998 defines a union or structure (and MUST define one or the other),
999 and pointers to the raw die data that define the range of dies which
1000 define the members, compute and return the user defined type for the
1004 static struct type *
1005 struct_type (dip, thisdie, enddie, objfile)
1006 struct dieinfo *dip;
1009 struct objfile *objfile;
1014 struct nextfield *next;
1017 struct nextfield *list = NULL;
1018 struct nextfield *new;
1025 if ((type = lookup_utype (dip->die_ref)) == NULL)
1027 /* No forward references created an empty type, so install one now */
1028 type = alloc_utype (dip->die_ref, NULL);
1030 INIT_CPLUS_SPECIFIC (type);
1031 switch (dip->die_tag)
1033 case TAG_class_type:
1034 TYPE_CODE (type) = TYPE_CODE_CLASS;
1036 case TAG_structure_type:
1037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1039 case TAG_union_type:
1040 TYPE_CODE (type) = TYPE_CODE_UNION;
1043 /* Should never happen */
1044 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1045 complain (&missing_tag, DIE_ID, DIE_NAME);
1048 /* Some compilers try to be helpful by inventing "fake" names for
1049 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1050 Thanks, but no thanks... */
1051 if (dip->at_name != NULL
1052 && *dip->at_name != '~'
1053 && *dip->at_name != '.')
1055 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1056 "", "", dip->at_name);
1058 /* Use whatever size is known. Zero is a valid size. We might however
1059 wish to check has_at_byte_size to make sure that some byte size was
1060 given explicitly, but DWARF doesn't specify that explicit sizes of
1061 zero have to present, so complaining about missing sizes should
1062 probably not be the default. */
1063 TYPE_LENGTH (type) = dip->at_byte_size;
1064 thisdie += dip->die_length;
1065 while (thisdie < enddie)
1067 basicdieinfo (&mbr, thisdie, objfile);
1068 completedieinfo (&mbr, objfile);
1069 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1073 else if (mbr.at_sibling != 0)
1075 nextdie = dbbase + mbr.at_sibling - dbroff;
1079 nextdie = thisdie + mbr.die_length;
1081 switch (mbr.die_tag)
1084 /* Get space to record the next field's data. */
1085 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1088 /* Save the data. */
1090 obsavestring (mbr.at_name, strlen (mbr.at_name),
1091 &objfile->type_obstack);
1092 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1093 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1094 /* Handle bit fields. */
1095 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1096 if (BITS_BIG_ENDIAN)
1098 /* For big endian bits, the at_bit_offset gives the
1099 additional bit offset from the MSB of the containing
1100 anonymous object to the MSB of the field. We don't
1101 have to do anything special since we don't need to
1102 know the size of the anonymous object. */
1103 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1107 /* For little endian bits, we need to have a non-zero
1108 at_bit_size, so that we know we are in fact dealing
1109 with a bitfield. Compute the bit offset to the MSB
1110 of the anonymous object, subtract off the number of
1111 bits from the MSB of the field to the MSB of the
1112 object, and then subtract off the number of bits of
1113 the field itself. The result is the bit offset of
1114 the LSB of the field. */
1115 if (mbr.at_bit_size > 0)
1117 if (mbr.has_at_byte_size)
1119 /* The size of the anonymous object containing
1120 the bit field is explicit, so use the
1121 indicated size (in bytes). */
1122 anonymous_size = mbr.at_byte_size;
1126 /* The size of the anonymous object containing
1127 the bit field matches the size of an object
1128 of the bit field's type. DWARF allows
1129 at_byte_size to be left out in such cases, as
1130 a debug information size optimization. */
1131 anonymous_size = TYPE_LENGTH (list->field.type);
1133 FIELD_BITPOS (list->field) +=
1134 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1140 process_dies (thisdie, nextdie, objfile);
1145 /* Now create the vector of fields, and record how big it is. We may
1146 not even have any fields, if this DIE was generated due to a reference
1147 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1148 set, which clues gdb in to the fact that it needs to search elsewhere
1149 for the full structure definition. */
1152 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1156 TYPE_NFIELDS (type) = nfields;
1157 TYPE_FIELDS (type) = (struct field *)
1158 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1159 /* Copy the saved-up fields into the field vector. */
1160 for (n = nfields; list; list = list->next)
1162 TYPE_FIELD (type, --n) = list->field;
1172 read_structure_scope -- process all dies within struct or union
1176 static void read_structure_scope (struct dieinfo *dip,
1177 char *thisdie, char *enddie, struct objfile *objfile)
1181 Called when we find the DIE that starts a structure or union
1182 scope (definition) to process all dies that define the members
1183 of the structure or union. DIP is a pointer to the die info
1184 struct for the DIE that names the structure or union.
1188 Note that we need to call struct_type regardless of whether or not
1189 the DIE has an at_name attribute, since it might be an anonymous
1190 structure or union. This gets the type entered into our set of
1193 However, if the structure is incomplete (an opaque struct/union)
1194 then suppress creating a symbol table entry for it since gdb only
1195 wants to find the one with the complete definition. Note that if
1196 it is complete, we just call new_symbol, which does it's own
1197 checking about whether the struct/union is anonymous or not (and
1198 suppresses creating a symbol table entry itself).
1203 read_structure_scope (dip, thisdie, enddie, objfile)
1204 struct dieinfo *dip;
1207 struct objfile *objfile;
1212 type = struct_type (dip, thisdie, enddie, objfile);
1213 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1215 sym = new_symbol (dip, objfile);
1218 SYMBOL_TYPE (sym) = type;
1219 if (cu_language == language_cplus)
1221 synthesize_typedef (dip, objfile, type);
1231 decode_array_element_type -- decode type of the array elements
1235 static struct type *decode_array_element_type (char *scan, char *end)
1239 As the last step in decoding the array subscript information for an
1240 array DIE, we need to decode the type of the array elements. We are
1241 passed a pointer to this last part of the subscript information and
1242 must return the appropriate type. If the type attribute is not
1243 recognized, just warn about the problem and return type int.
1246 static struct type *
1247 decode_array_element_type (scan)
1252 unsigned short attribute;
1253 unsigned short fundtype;
1256 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1258 scan += SIZEOF_ATTRIBUTE;
1259 if ((nbytes = attribute_size (attribute)) == -1)
1261 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1262 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1269 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1271 typep = decode_fund_type (fundtype);
1273 case AT_mod_fund_type:
1274 typep = decode_mod_fund_type (scan);
1276 case AT_user_def_type:
1277 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1279 if ((typep = lookup_utype (die_ref)) == NULL)
1281 typep = alloc_utype (die_ref, NULL);
1284 case AT_mod_u_d_type:
1285 typep = decode_mod_u_d_type (scan);
1288 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1289 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1300 decode_subscript_data_item -- decode array subscript item
1304 static struct type *
1305 decode_subscript_data_item (char *scan, char *end)
1309 The array subscripts and the data type of the elements of an
1310 array are described by a list of data items, stored as a block
1311 of contiguous bytes. There is a data item describing each array
1312 dimension, and a final data item describing the element type.
1313 The data items are ordered the same as their appearance in the
1314 source (I.E. leftmost dimension first, next to leftmost second,
1317 The data items describing each array dimension consist of four
1318 parts: (1) a format specifier, (2) type type of the subscript
1319 index, (3) a description of the low bound of the array dimension,
1320 and (4) a description of the high bound of the array dimension.
1322 The last data item is the description of the type of each of
1325 We are passed a pointer to the start of the block of bytes
1326 containing the remaining data items, and a pointer to the first
1327 byte past the data. This function recursively decodes the
1328 remaining data items and returns a type.
1330 If we somehow fail to decode some data, we complain about it
1331 and return a type "array of int".
1334 FIXME: This code only implements the forms currently used
1335 by the AT&T and GNU C compilers.
1337 The end pointer is supplied for error checking, maybe we should
1341 static struct type *
1342 decode_subscript_data_item (scan, end)
1346 struct type *typep = NULL; /* Array type we are building */
1347 struct type *nexttype; /* Type of each element (may be array) */
1348 struct type *indextype; /* Type of this index */
1349 struct type *rangetype;
1350 unsigned int format;
1351 unsigned short fundtype;
1352 unsigned long lowbound;
1353 unsigned long highbound;
1356 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1358 scan += SIZEOF_FORMAT_SPECIFIER;
1362 typep = decode_array_element_type (scan);
1365 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1367 indextype = decode_fund_type (fundtype);
1368 scan += SIZEOF_FMT_FT;
1369 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1370 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1372 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1374 nexttype = decode_subscript_data_item (scan, end);
1375 if (nexttype == NULL)
1377 /* Munged subscript data or other problem, fake it. */
1378 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1379 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1381 rangetype = create_range_type ((struct type *) NULL, indextype,
1382 lowbound, highbound);
1383 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1392 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1393 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1394 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1395 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1398 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1399 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1400 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1401 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1411 dwarf_read_array_type -- read TAG_array_type DIE
1415 static void dwarf_read_array_type (struct dieinfo *dip)
1419 Extract all information from a TAG_array_type DIE and add to
1420 the user defined type vector.
1424 dwarf_read_array_type (dip)
1425 struct dieinfo *dip;
1431 unsigned short blocksz;
1434 if (dip->at_ordering != ORD_row_major)
1436 /* FIXME: Can gdb even handle column major arrays? */
1437 complain (¬_row_major, DIE_ID, DIE_NAME);
1439 if ((sub = dip->at_subscr_data) != NULL)
1441 nbytes = attribute_size (AT_subscr_data);
1442 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1443 subend = sub + nbytes + blocksz;
1445 type = decode_subscript_data_item (sub, subend);
1446 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1448 /* Install user defined type that has not been referenced yet. */
1449 alloc_utype (dip->die_ref, type);
1451 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1453 /* Ick! A forward ref has already generated a blank type in our
1454 slot, and this type probably already has things pointing to it
1455 (which is what caused it to be created in the first place).
1456 If it's just a place holder we can plop our fully defined type
1457 on top of it. We can't recover the space allocated for our
1458 new type since it might be on an obstack, but we could reuse
1459 it if we kept a list of them, but it might not be worth it
1465 /* Double ick! Not only is a type already in our slot, but
1466 someone has decorated it. Complain and leave it alone. */
1467 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1476 read_tag_pointer_type -- read TAG_pointer_type DIE
1480 static void read_tag_pointer_type (struct dieinfo *dip)
1484 Extract all information from a TAG_pointer_type DIE and add to
1485 the user defined type vector.
1489 read_tag_pointer_type (dip)
1490 struct dieinfo *dip;
1495 type = decode_die_type (dip);
1496 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1498 utype = lookup_pointer_type (type);
1499 alloc_utype (dip->die_ref, utype);
1503 TYPE_TARGET_TYPE (utype) = type;
1504 TYPE_POINTER_TYPE (type) = utype;
1506 /* We assume the machine has only one representation for pointers! */
1507 /* FIXME: Possably a poor assumption */
1508 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1509 TYPE_CODE (utype) = TYPE_CODE_PTR;
1517 read_tag_string_type -- read TAG_string_type DIE
1521 static void read_tag_string_type (struct dieinfo *dip)
1525 Extract all information from a TAG_string_type DIE and add to
1526 the user defined type vector. It isn't really a user defined
1527 type, but it behaves like one, with other DIE's using an
1528 AT_user_def_type attribute to reference it.
1532 read_tag_string_type (dip)
1533 struct dieinfo *dip;
1536 struct type *indextype;
1537 struct type *rangetype;
1538 unsigned long lowbound = 0;
1539 unsigned long highbound;
1541 if (dip->has_at_byte_size)
1543 /* A fixed bounds string */
1544 highbound = dip->at_byte_size - 1;
1548 /* A varying length string. Stub for now. (FIXME) */
1551 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1552 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1555 utype = lookup_utype (dip->die_ref);
1558 /* No type defined, go ahead and create a blank one to use. */
1559 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1563 /* Already a type in our slot due to a forward reference. Make sure it
1564 is a blank one. If not, complain and leave it alone. */
1565 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1567 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1572 /* Create the string type using the blank type we either found or created. */
1573 utype = create_string_type (utype, rangetype);
1580 read_subroutine_type -- process TAG_subroutine_type dies
1584 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1589 Handle DIES due to C code like:
1592 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1598 The parameter DIES are currently ignored. See if gdb has a way to
1599 include this info in it's type system, and decode them if so. Is
1600 this what the type structure's "arg_types" field is for? (FIXME)
1604 read_subroutine_type (dip, thisdie, enddie)
1605 struct dieinfo *dip;
1609 struct type *type; /* Type that this function returns */
1610 struct type *ftype; /* Function that returns above type */
1612 /* Decode the type that this subroutine returns */
1614 type = decode_die_type (dip);
1616 /* Check to see if we already have a partially constructed user
1617 defined type for this DIE, from a forward reference. */
1619 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1621 /* This is the first reference to one of these types. Make
1622 a new one and place it in the user defined types. */
1623 ftype = lookup_function_type (type);
1624 alloc_utype (dip->die_ref, ftype);
1626 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1628 /* We have an existing partially constructed type, so bash it
1629 into the correct type. */
1630 TYPE_TARGET_TYPE (ftype) = type;
1631 TYPE_LENGTH (ftype) = 1;
1632 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1636 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1644 read_enumeration -- process dies which define an enumeration
1648 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1649 char *enddie, struct objfile *objfile)
1653 Given a pointer to a die which begins an enumeration, process all
1654 the dies that define the members of the enumeration.
1658 Note that we need to call enum_type regardless of whether or not we
1659 have a symbol, since we might have an enum without a tag name (thus
1660 no symbol for the tagname).
1664 read_enumeration (dip, thisdie, enddie, objfile)
1665 struct dieinfo *dip;
1668 struct objfile *objfile;
1673 type = enum_type (dip, objfile);
1674 sym = new_symbol (dip, objfile);
1677 SYMBOL_TYPE (sym) = type;
1678 if (cu_language == language_cplus)
1680 synthesize_typedef (dip, objfile, type);
1689 enum_type -- decode and return a type for an enumeration
1693 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1697 Given a pointer to a die information structure for the die which
1698 starts an enumeration, process all the dies that define the members
1699 of the enumeration and return a type pointer for the enumeration.
1701 At the same time, for each member of the enumeration, create a
1702 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1703 and give it the type of the enumeration itself.
1707 Note that the DWARF specification explicitly mandates that enum
1708 constants occur in reverse order from the source program order,
1709 for "consistency" and because this ordering is easier for many
1710 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1711 Entries). Because gdb wants to see the enum members in program
1712 source order, we have to ensure that the order gets reversed while
1713 we are processing them.
1716 static struct type *
1717 enum_type (dip, objfile)
1718 struct dieinfo *dip;
1719 struct objfile *objfile;
1724 struct nextfield *next;
1727 struct nextfield *list = NULL;
1728 struct nextfield *new;
1733 unsigned short blocksz;
1736 int unsigned_enum = 1;
1738 if ((type = lookup_utype (dip->die_ref)) == NULL)
1740 /* No forward references created an empty type, so install one now */
1741 type = alloc_utype (dip->die_ref, NULL);
1743 TYPE_CODE (type) = TYPE_CODE_ENUM;
1744 /* Some compilers try to be helpful by inventing "fake" names for
1745 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1746 Thanks, but no thanks... */
1747 if (dip->at_name != NULL
1748 && *dip->at_name != '~'
1749 && *dip->at_name != '.')
1751 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1752 "", "", dip->at_name);
1754 if (dip->at_byte_size != 0)
1756 TYPE_LENGTH (type) = dip->at_byte_size;
1758 if ((scan = dip->at_element_list) != NULL)
1760 if (dip->short_element_list)
1762 nbytes = attribute_size (AT_short_element_list);
1766 nbytes = attribute_size (AT_element_list);
1768 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1769 listend = scan + nbytes + blocksz;
1771 while (scan < listend)
1773 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1776 FIELD_TYPE (list->field) = NULL;
1777 FIELD_BITSIZE (list->field) = 0;
1778 FIELD_BITPOS (list->field) =
1779 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1781 scan += TARGET_FT_LONG_SIZE (objfile);
1782 list->field.name = obsavestring (scan, strlen (scan),
1783 &objfile->type_obstack);
1784 scan += strlen (scan) + 1;
1786 /* Handcraft a new symbol for this enum member. */
1787 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1788 sizeof (struct symbol));
1789 memset (sym, 0, sizeof (struct symbol));
1790 SYMBOL_NAME (sym) = create_name (list->field.name,
1791 &objfile->symbol_obstack);
1792 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1793 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1794 SYMBOL_CLASS (sym) = LOC_CONST;
1795 SYMBOL_TYPE (sym) = type;
1796 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1797 if (SYMBOL_VALUE (sym) < 0)
1799 add_symbol_to_list (sym, list_in_scope);
1801 /* Now create the vector of fields, and record how big it is. This is
1802 where we reverse the order, by pulling the members off the list in
1803 reverse order from how they were inserted. If we have no fields
1804 (this is apparently possible in C++) then skip building a field
1809 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1810 TYPE_NFIELDS (type) = nfields;
1811 TYPE_FIELDS (type) = (struct field *)
1812 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1813 /* Copy the saved-up fields into the field vector. */
1814 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1816 TYPE_FIELD (type, n++) = list->field;
1827 read_func_scope -- process all dies within a function scope
1831 Process all dies within a given function scope. We are passed
1832 a die information structure pointer DIP for the die which
1833 starts the function scope, and pointers into the raw die data
1834 that define the dies within the function scope.
1836 For now, we ignore lexical block scopes within the function.
1837 The problem is that AT&T cc does not define a DWARF lexical
1838 block scope for the function itself, while gcc defines a
1839 lexical block scope for the function. We need to think about
1840 how to handle this difference, or if it is even a problem.
1845 read_func_scope (dip, thisdie, enddie, objfile)
1846 struct dieinfo *dip;
1849 struct objfile *objfile;
1851 register struct context_stack *new;
1853 /* AT_name is absent if the function is described with an
1854 AT_abstract_origin tag.
1855 Ignore the function description for now to avoid GDB core dumps.
1856 FIXME: Add code to handle AT_abstract_origin tags properly. */
1857 if (dip->at_name == NULL)
1859 complain (&missing_at_name, DIE_ID);
1863 if (objfile->ei.entry_point >= dip->at_low_pc &&
1864 objfile->ei.entry_point < dip->at_high_pc)
1866 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1867 objfile->ei.entry_func_highpc = dip->at_high_pc;
1869 new = push_context (0, dip->at_low_pc);
1870 new->name = new_symbol (dip, objfile);
1871 list_in_scope = &local_symbols;
1872 process_dies (thisdie + dip->die_length, enddie, objfile);
1873 new = pop_context ();
1874 /* Make a block for the local symbols within. */
1875 finish_block (new->name, &local_symbols, new->old_blocks,
1876 new->start_addr, dip->at_high_pc, objfile);
1877 list_in_scope = &file_symbols;
1885 handle_producer -- process the AT_producer attribute
1889 Perform any operations that depend on finding a particular
1890 AT_producer attribute.
1895 handle_producer (producer)
1899 /* If this compilation unit was compiled with g++ or gcc, then set the
1900 processing_gcc_compilation flag. */
1902 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1904 char version = producer[strlen (GCC_PRODUCER)];
1905 processing_gcc_compilation = (version == '2' ? 2 : 1);
1909 processing_gcc_compilation =
1910 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1911 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1914 /* Select a demangling style if we can identify the producer and if
1915 the current style is auto. We leave the current style alone if it
1916 is not auto. We also leave the demangling style alone if we find a
1917 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1919 if (AUTO_DEMANGLING)
1921 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1923 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1925 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1927 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1937 read_file_scope -- process all dies within a file scope
1941 Process all dies within a given file scope. We are passed a
1942 pointer to the die information structure for the die which
1943 starts the file scope, and pointers into the raw die data which
1944 mark the range of dies within the file scope.
1946 When the partial symbol table is built, the file offset for the line
1947 number table for each compilation unit is saved in the partial symbol
1948 table entry for that compilation unit. As the symbols for each
1949 compilation unit are read, the line number table is read into memory
1950 and the variable lnbase is set to point to it. Thus all we have to
1951 do is use lnbase to access the line number table for the current
1956 read_file_scope (dip, thisdie, enddie, objfile)
1957 struct dieinfo *dip;
1960 struct objfile *objfile;
1962 struct cleanup *back_to;
1963 struct symtab *symtab;
1965 if (objfile->ei.entry_point >= dip->at_low_pc &&
1966 objfile->ei.entry_point < dip->at_high_pc)
1968 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1969 objfile->ei.entry_file_highpc = dip->at_high_pc;
1971 set_cu_language (dip);
1972 if (dip->at_producer != NULL)
1974 handle_producer (dip->at_producer);
1976 numutypes = (enddie - thisdie) / 4;
1977 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1978 back_to = make_cleanup (free_utypes, NULL);
1979 memset (utypes, 0, numutypes * sizeof (struct type *));
1980 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1981 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1982 record_debugformat ("DWARF 1");
1983 decode_line_numbers (lnbase);
1984 process_dies (thisdie + dip->die_length, enddie, objfile);
1986 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1989 symtab->language = cu_language;
1991 do_cleanups (back_to);
1998 process_dies -- process a range of DWARF Information Entries
2002 static void process_dies (char *thisdie, char *enddie,
2003 struct objfile *objfile)
2007 Process all DIE's in a specified range. May be (and almost
2008 certainly will be) called recursively.
2012 process_dies (thisdie, enddie, objfile)
2015 struct objfile *objfile;
2020 while (thisdie < enddie)
2022 basicdieinfo (&di, thisdie, objfile);
2023 if (di.die_length < SIZEOF_DIE_LENGTH)
2027 else if (di.die_tag == TAG_padding)
2029 nextdie = thisdie + di.die_length;
2033 completedieinfo (&di, objfile);
2034 if (di.at_sibling != 0)
2036 nextdie = dbbase + di.at_sibling - dbroff;
2040 nextdie = thisdie + di.die_length;
2042 #ifdef SMASH_TEXT_ADDRESS
2043 /* I think that these are always text, not data, addresses. */
2044 SMASH_TEXT_ADDRESS (di.at_low_pc);
2045 SMASH_TEXT_ADDRESS (di.at_high_pc);
2049 case TAG_compile_unit:
2050 /* Skip Tag_compile_unit if we are already inside a compilation
2051 unit, we are unable to handle nested compilation units
2052 properly (FIXME). */
2053 if (current_subfile == NULL)
2054 read_file_scope (&di, thisdie, nextdie, objfile);
2056 nextdie = thisdie + di.die_length;
2058 case TAG_global_subroutine:
2059 case TAG_subroutine:
2060 if (di.has_at_low_pc)
2062 read_func_scope (&di, thisdie, nextdie, objfile);
2065 case TAG_lexical_block:
2066 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2068 case TAG_class_type:
2069 case TAG_structure_type:
2070 case TAG_union_type:
2071 read_structure_scope (&di, thisdie, nextdie, objfile);
2073 case TAG_enumeration_type:
2074 read_enumeration (&di, thisdie, nextdie, objfile);
2076 case TAG_subroutine_type:
2077 read_subroutine_type (&di, thisdie, nextdie);
2079 case TAG_array_type:
2080 dwarf_read_array_type (&di);
2082 case TAG_pointer_type:
2083 read_tag_pointer_type (&di);
2085 case TAG_string_type:
2086 read_tag_string_type (&di);
2089 new_symbol (&di, objfile);
2101 decode_line_numbers -- decode a line number table fragment
2105 static void decode_line_numbers (char *tblscan, char *tblend,
2106 long length, long base, long line, long pc)
2110 Translate the DWARF line number information to gdb form.
2112 The ".line" section contains one or more line number tables, one for
2113 each ".line" section from the objects that were linked.
2115 The AT_stmt_list attribute for each TAG_source_file entry in the
2116 ".debug" section contains the offset into the ".line" section for the
2117 start of the table for that file.
2119 The table itself has the following structure:
2121 <table length><base address><source statement entry>
2122 4 bytes 4 bytes 10 bytes
2124 The table length is the total size of the table, including the 4 bytes
2125 for the length information.
2127 The base address is the address of the first instruction generated
2128 for the source file.
2130 Each source statement entry has the following structure:
2132 <line number><statement position><address delta>
2133 4 bytes 2 bytes 4 bytes
2135 The line number is relative to the start of the file, starting with
2138 The statement position either -1 (0xFFFF) or the number of characters
2139 from the beginning of the line to the beginning of the statement.
2141 The address delta is the difference between the base address and
2142 the address of the first instruction for the statement.
2144 Note that we must copy the bytes from the packed table to our local
2145 variables before attempting to use them, to avoid alignment problems
2146 on some machines, particularly RISC processors.
2150 Does gdb expect the line numbers to be sorted? They are now by
2151 chance/luck, but are not required to be. (FIXME)
2153 The line with number 0 is unused, gdb apparently can discover the
2154 span of the last line some other way. How? (FIXME)
2158 decode_line_numbers (linetable)
2163 unsigned long length;
2168 if (linetable != NULL)
2170 tblscan = tblend = linetable;
2171 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2173 tblscan += SIZEOF_LINETBL_LENGTH;
2175 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2176 GET_UNSIGNED, current_objfile);
2177 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2179 while (tblscan < tblend)
2181 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2183 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2184 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2186 tblscan += SIZEOF_LINETBL_DELTA;
2190 record_line (current_subfile, line, pc);
2200 locval -- compute the value of a location attribute
2204 static int locval (struct dieinfo *dip)
2208 Given pointer to a string of bytes that define a location, compute
2209 the location and return the value.
2210 A location description containing no atoms indicates that the
2211 object is optimized out. The optimized_out flag is set for those,
2212 the return value is meaningless.
2214 When computing values involving the current value of the frame pointer,
2215 the value zero is used, which results in a value relative to the frame
2216 pointer, rather than the absolute value. This is what GDB wants
2219 When the result is a register number, the isreg flag is set, otherwise
2220 it is cleared. This is a kludge until we figure out a better
2221 way to handle the problem. Gdb's design does not mesh well with the
2222 DWARF notion of a location computing interpreter, which is a shame
2223 because the flexibility goes unused.
2227 Note that stack[0] is unused except as a default error return.
2228 Note that stack overflow is not yet handled.
2233 struct dieinfo *dip;
2235 unsigned short nbytes;
2236 unsigned short locsize;
2237 auto long stack[64];
2244 loc = dip->at_location;
2245 nbytes = attribute_size (AT_location);
2246 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2248 end = loc + locsize;
2253 dip->optimized_out = 1;
2254 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2257 dip->optimized_out = 0;
2258 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2260 loc += SIZEOF_LOC_ATOM_CODE;
2261 switch (loc_atom_code)
2268 /* push register (number) */
2270 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2273 loc += loc_value_size;
2277 /* push value of register (number) */
2278 /* Actually, we compute the value as if register has 0, so the
2279 value ends up being the offset from that register. */
2281 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2283 loc += loc_value_size;
2284 stack[++stacki] = 0;
2287 /* push address (relocated address) */
2288 stack[++stacki] = target_to_host (loc, loc_value_size,
2289 GET_UNSIGNED, current_objfile);
2290 loc += loc_value_size;
2293 /* push constant (number) FIXME: signed or unsigned! */
2294 stack[++stacki] = target_to_host (loc, loc_value_size,
2295 GET_SIGNED, current_objfile);
2296 loc += loc_value_size;
2299 /* pop, deref and push 2 bytes (as a long) */
2300 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2302 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2303 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2305 case OP_ADD: /* pop top 2 items, add, push result */
2306 stack[stacki - 1] += stack[stacki];
2311 return (stack[stacki]);
2318 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2322 static void read_ofile_symtab (struct partial_symtab *pst)
2326 When expanding a partial symbol table entry to a full symbol table
2327 entry, this is the function that gets called to read in the symbols
2328 for the compilation unit. A pointer to the newly constructed symtab,
2329 which is now the new first one on the objfile's symtab list, is
2330 stashed in the partial symbol table entry.
2334 read_ofile_symtab (pst)
2335 struct partial_symtab *pst;
2337 struct cleanup *back_to;
2338 unsigned long lnsize;
2341 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2343 abfd = pst->objfile->obfd;
2344 current_objfile = pst->objfile;
2346 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2347 unit, seek to the location in the file, and read in all the DIE's. */
2350 dbsize = DBLENGTH (pst);
2351 dbbase = xmalloc (dbsize);
2352 dbroff = DBROFF (pst);
2353 foffset = DBFOFF (pst) + dbroff;
2354 base_section_offsets = pst->section_offsets;
2355 baseaddr = ANOFFSET (pst->section_offsets, 0);
2356 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2357 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2360 error ("can't read DWARF data");
2362 back_to = make_cleanup (free, dbbase);
2364 /* If there is a line number table associated with this compilation unit
2365 then read the size of this fragment in bytes, from the fragment itself.
2366 Allocate a buffer for the fragment and read it in for future
2372 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2373 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2374 sizeof (lnsizedata)))
2376 error ("can't read DWARF line number table size");
2378 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2379 GET_UNSIGNED, pst->objfile);
2380 lnbase = xmalloc (lnsize);
2381 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2382 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2385 error ("can't read DWARF line numbers");
2387 make_cleanup (free, lnbase);
2390 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2391 do_cleanups (back_to);
2392 current_objfile = NULL;
2393 pst->symtab = pst->objfile->symtabs;
2400 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2404 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2408 Called once for each partial symbol table entry that needs to be
2409 expanded into a full symbol table entry.
2414 psymtab_to_symtab_1 (pst)
2415 struct partial_symtab *pst;
2418 struct cleanup *old_chain;
2424 warning ("psymtab for %s already read in. Shouldn't happen.",
2429 /* Read in all partial symtabs on which this one is dependent */
2430 for (i = 0; i < pst->number_of_dependencies; i++)
2432 if (!pst->dependencies[i]->readin)
2434 /* Inform about additional files that need to be read in. */
2437 fputs_filtered (" ", gdb_stdout);
2439 fputs_filtered ("and ", gdb_stdout);
2441 printf_filtered ("%s...",
2442 pst->dependencies[i]->filename);
2444 gdb_flush (gdb_stdout); /* Flush output */
2446 psymtab_to_symtab_1 (pst->dependencies[i]);
2449 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2452 old_chain = make_cleanup (really_free_pendings, 0);
2453 read_ofile_symtab (pst);
2456 printf_filtered ("%d DIE's, sorting...", diecount);
2458 gdb_flush (gdb_stdout);
2460 sort_symtab_syms (pst->symtab);
2461 do_cleanups (old_chain);
2472 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2476 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2480 This is the DWARF support entry point for building a full symbol
2481 table entry from a partial symbol table entry. We are passed a
2482 pointer to the partial symbol table entry that needs to be expanded.
2487 dwarf_psymtab_to_symtab (pst)
2488 struct partial_symtab *pst;
2495 warning ("psymtab for %s already read in. Shouldn't happen.",
2500 if (DBLENGTH (pst) || pst->number_of_dependencies)
2502 /* Print the message now, before starting serious work, to avoid
2503 disconcerting pauses. */
2506 printf_filtered ("Reading in symbols for %s...",
2508 gdb_flush (gdb_stdout);
2511 psymtab_to_symtab_1 (pst);
2513 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2514 we need to do an equivalent or is this something peculiar to
2516 Match with global symbols. This only needs to be done once,
2517 after all of the symtabs and dependencies have been read in.
2519 scan_file_globals (pst->objfile);
2522 /* Finish up the verbose info message. */
2525 printf_filtered ("done.\n");
2526 gdb_flush (gdb_stdout);
2537 add_enum_psymbol -- add enumeration members to partial symbol table
2541 Given pointer to a DIE that is known to be for an enumeration,
2542 extract the symbolic names of the enumeration members and add
2543 partial symbols for them.
2547 add_enum_psymbol (dip, objfile)
2548 struct dieinfo *dip;
2549 struct objfile *objfile;
2553 unsigned short blocksz;
2556 if ((scan = dip->at_element_list) != NULL)
2558 if (dip->short_element_list)
2560 nbytes = attribute_size (AT_short_element_list);
2564 nbytes = attribute_size (AT_element_list);
2566 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2568 listend = scan + blocksz;
2569 while (scan < listend)
2571 scan += TARGET_FT_LONG_SIZE (objfile);
2572 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2573 &objfile->static_psymbols, 0, 0, cu_language,
2575 scan += strlen (scan) + 1;
2584 add_partial_symbol -- add symbol to partial symbol table
2588 Given a DIE, if it is one of the types that we want to
2589 add to a partial symbol table, finish filling in the die info
2590 and then add a partial symbol table entry for it.
2594 The caller must ensure that the DIE has a valid name attribute.
2598 add_partial_symbol (dip, objfile)
2599 struct dieinfo *dip;
2600 struct objfile *objfile;
2602 switch (dip->die_tag)
2604 case TAG_global_subroutine:
2605 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2606 VAR_NAMESPACE, LOC_BLOCK,
2607 &objfile->global_psymbols,
2608 0, dip->at_low_pc, cu_language, objfile);
2610 case TAG_global_variable:
2611 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2612 VAR_NAMESPACE, LOC_STATIC,
2613 &objfile->global_psymbols,
2614 0, 0, cu_language, objfile);
2616 case TAG_subroutine:
2617 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2618 VAR_NAMESPACE, LOC_BLOCK,
2619 &objfile->static_psymbols,
2620 0, dip->at_low_pc, cu_language, objfile);
2622 case TAG_local_variable:
2623 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2624 VAR_NAMESPACE, LOC_STATIC,
2625 &objfile->static_psymbols,
2626 0, 0, cu_language, objfile);
2629 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2630 VAR_NAMESPACE, LOC_TYPEDEF,
2631 &objfile->static_psymbols,
2632 0, 0, cu_language, objfile);
2634 case TAG_class_type:
2635 case TAG_structure_type:
2636 case TAG_union_type:
2637 case TAG_enumeration_type:
2638 /* Do not add opaque aggregate definitions to the psymtab. */
2639 if (!dip->has_at_byte_size)
2641 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2642 STRUCT_NAMESPACE, LOC_TYPEDEF,
2643 &objfile->static_psymbols,
2644 0, 0, cu_language, objfile);
2645 if (cu_language == language_cplus)
2647 /* For C++, these implicitly act as typedefs as well. */
2648 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2649 VAR_NAMESPACE, LOC_TYPEDEF,
2650 &objfile->static_psymbols,
2651 0, 0, cu_language, objfile);
2661 scan_partial_symbols -- scan DIE's within a single compilation unit
2665 Process the DIE's within a single compilation unit, looking for
2666 interesting DIE's that contribute to the partial symbol table entry
2667 for this compilation unit.
2671 There are some DIE's that may appear both at file scope and within
2672 the scope of a function. We are only interested in the ones at file
2673 scope, and the only way to tell them apart is to keep track of the
2674 scope. For example, consider the test case:
2679 for which the relevant DWARF segment has the structure:
2682 0x23 global subrtn sibling 0x9b
2684 fund_type FT_integer
2689 0x23 local var sibling 0x97
2691 fund_type FT_integer
2692 location OP_BASEREG 0xe
2699 0x1d local var sibling 0xb8
2701 fund_type FT_integer
2702 location OP_ADDR 0x800025dc
2707 We want to include the symbol 'i' in the partial symbol table, but
2708 not the symbol 'j'. In essence, we want to skip all the dies within
2709 the scope of a TAG_global_subroutine DIE.
2711 Don't attempt to add anonymous structures or unions since they have
2712 no name. Anonymous enumerations however are processed, because we
2713 want to extract their member names (the check for a tag name is
2716 Also, for variables and subroutines, check that this is the place
2717 where the actual definition occurs, rather than just a reference
2725 scan_partial_symbols (thisdie, enddie, objfile)
2728 struct objfile *objfile;
2734 while (thisdie < enddie)
2736 basicdieinfo (&di, thisdie, objfile);
2737 if (di.die_length < SIZEOF_DIE_LENGTH)
2743 nextdie = thisdie + di.die_length;
2744 /* To avoid getting complete die information for every die, we
2745 only do it (below) for the cases we are interested in. */
2748 case TAG_global_subroutine:
2749 case TAG_subroutine:
2750 completedieinfo (&di, objfile);
2751 if (di.at_name && (di.has_at_low_pc || di.at_location))
2753 add_partial_symbol (&di, objfile);
2754 /* If there is a sibling attribute, adjust the nextdie
2755 pointer to skip the entire scope of the subroutine.
2756 Apply some sanity checking to make sure we don't
2757 overrun or underrun the range of remaining DIE's */
2758 if (di.at_sibling != 0)
2760 temp = dbbase + di.at_sibling - dbroff;
2761 if ((temp < thisdie) || (temp >= enddie))
2763 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2773 case TAG_global_variable:
2774 case TAG_local_variable:
2775 completedieinfo (&di, objfile);
2776 if (di.at_name && (di.has_at_low_pc || di.at_location))
2778 add_partial_symbol (&di, objfile);
2782 case TAG_class_type:
2783 case TAG_structure_type:
2784 case TAG_union_type:
2785 completedieinfo (&di, objfile);
2788 add_partial_symbol (&di, objfile);
2791 case TAG_enumeration_type:
2792 completedieinfo (&di, objfile);
2795 add_partial_symbol (&di, objfile);
2797 add_enum_psymbol (&di, objfile);
2809 scan_compilation_units -- build a psymtab entry for each compilation
2813 This is the top level dwarf parsing routine for building partial
2816 It scans from the beginning of the DWARF table looking for the first
2817 TAG_compile_unit DIE, and then follows the sibling chain to locate
2818 each additional TAG_compile_unit DIE.
2820 For each TAG_compile_unit DIE it creates a partial symtab structure,
2821 calls a subordinate routine to collect all the compilation unit's
2822 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2823 new partial symtab structure into the partial symbol table. It also
2824 records the appropriate information in the partial symbol table entry
2825 to allow the chunk of DIE's and line number table for this compilation
2826 unit to be located and re-read later, to generate a complete symbol
2827 table entry for the compilation unit.
2829 Thus it effectively partitions up a chunk of DIE's for multiple
2830 compilation units into smaller DIE chunks and line number tables,
2831 and associates them with a partial symbol table entry.
2835 If any compilation unit has no line number table associated with
2836 it for some reason (a missing at_stmt_list attribute, rather than
2837 just one with a value of zero, which is valid) then we ensure that
2838 the recorded file offset is zero so that the routine which later
2839 reads line number table fragments knows that there is no fragment
2849 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2854 struct objfile *objfile;
2858 struct partial_symtab *pst;
2861 file_ptr curlnoffset;
2863 while (thisdie < enddie)
2865 basicdieinfo (&di, thisdie, objfile);
2866 if (di.die_length < SIZEOF_DIE_LENGTH)
2870 else if (di.die_tag != TAG_compile_unit)
2872 nextdie = thisdie + di.die_length;
2876 completedieinfo (&di, objfile);
2877 set_cu_language (&di);
2878 if (di.at_sibling != 0)
2880 nextdie = dbbase + di.at_sibling - dbroff;
2884 nextdie = thisdie + di.die_length;
2886 curoff = thisdie - dbbase;
2887 culength = nextdie - thisdie;
2888 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2890 /* First allocate a new partial symbol table structure */
2892 pst = start_psymtab_common (objfile, base_section_offsets,
2893 di.at_name, di.at_low_pc,
2894 objfile->global_psymbols.next,
2895 objfile->static_psymbols.next);
2897 pst->texthigh = di.at_high_pc;
2898 pst->read_symtab_private = (char *)
2899 obstack_alloc (&objfile->psymbol_obstack,
2900 sizeof (struct dwfinfo));
2901 DBFOFF (pst) = dbfoff;
2902 DBROFF (pst) = curoff;
2903 DBLENGTH (pst) = culength;
2904 LNFOFF (pst) = curlnoffset;
2905 pst->read_symtab = dwarf_psymtab_to_symtab;
2907 /* Now look for partial symbols */
2909 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2911 pst->n_global_syms = objfile->global_psymbols.next -
2912 (objfile->global_psymbols.list + pst->globals_offset);
2913 pst->n_static_syms = objfile->static_psymbols.next -
2914 (objfile->static_psymbols.list + pst->statics_offset);
2915 sort_pst_symbols (pst);
2916 /* If there is already a psymtab or symtab for a file of this name,
2917 remove it. (If there is a symtab, more drastic things also
2918 happen.) This happens in VxWorks. */
2919 free_named_symtabs (pst->filename);
2929 new_symbol -- make a symbol table entry for a new symbol
2933 static struct symbol *new_symbol (struct dieinfo *dip,
2934 struct objfile *objfile)
2938 Given a pointer to a DWARF information entry, figure out if we need
2939 to make a symbol table entry for it, and if so, create a new entry
2940 and return a pointer to it.
2943 static struct symbol *
2944 new_symbol (dip, objfile)
2945 struct dieinfo *dip;
2946 struct objfile *objfile;
2948 struct symbol *sym = NULL;
2950 if (dip->at_name != NULL)
2952 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2953 sizeof (struct symbol));
2954 OBJSTAT (objfile, n_syms++);
2955 memset (sym, 0, sizeof (struct symbol));
2956 SYMBOL_NAME (sym) = create_name (dip->at_name,
2957 &objfile->symbol_obstack);
2958 /* default assumptions */
2959 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2960 SYMBOL_CLASS (sym) = LOC_STATIC;
2961 SYMBOL_TYPE (sym) = decode_die_type (dip);
2963 /* If this symbol is from a C++ compilation, then attempt to cache the
2964 demangled form for future reference. This is a typical time versus
2965 space tradeoff, that was decided in favor of time because it sped up
2966 C++ symbol lookups by a factor of about 20. */
2968 SYMBOL_LANGUAGE (sym) = cu_language;
2969 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2970 switch (dip->die_tag)
2973 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2974 SYMBOL_CLASS (sym) = LOC_LABEL;
2976 case TAG_global_subroutine:
2977 case TAG_subroutine:
2978 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2979 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2980 if (dip->at_prototyped)
2981 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2982 SYMBOL_CLASS (sym) = LOC_BLOCK;
2983 if (dip->die_tag == TAG_global_subroutine)
2985 add_symbol_to_list (sym, &global_symbols);
2989 add_symbol_to_list (sym, list_in_scope);
2992 case TAG_global_variable:
2993 if (dip->at_location != NULL)
2995 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2996 add_symbol_to_list (sym, &global_symbols);
2997 SYMBOL_CLASS (sym) = LOC_STATIC;
2998 SYMBOL_VALUE (sym) += baseaddr;
3001 case TAG_local_variable:
3002 if (dip->at_location != NULL)
3004 int loc = locval (dip);
3005 if (dip->optimized_out)
3007 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3009 else if (dip->isreg)
3011 SYMBOL_CLASS (sym) = LOC_REGISTER;
3013 else if (dip->offreg)
3015 SYMBOL_CLASS (sym) = LOC_BASEREG;
3016 SYMBOL_BASEREG (sym) = dip->basereg;
3020 SYMBOL_CLASS (sym) = LOC_STATIC;
3021 SYMBOL_VALUE (sym) += baseaddr;
3023 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3025 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3026 which may store to a bigger location than SYMBOL_VALUE. */
3027 SYMBOL_VALUE_ADDRESS (sym) = loc;
3031 SYMBOL_VALUE (sym) = loc;
3033 add_symbol_to_list (sym, list_in_scope);
3036 case TAG_formal_parameter:
3037 if (dip->at_location != NULL)
3039 SYMBOL_VALUE (sym) = locval (dip);
3041 add_symbol_to_list (sym, list_in_scope);
3044 SYMBOL_CLASS (sym) = LOC_REGPARM;
3046 else if (dip->offreg)
3048 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3049 SYMBOL_BASEREG (sym) = dip->basereg;
3053 SYMBOL_CLASS (sym) = LOC_ARG;
3056 case TAG_unspecified_parameters:
3057 /* From varargs functions; gdb doesn't seem to have any interest in
3058 this information, so just ignore it for now. (FIXME?) */
3060 case TAG_class_type:
3061 case TAG_structure_type:
3062 case TAG_union_type:
3063 case TAG_enumeration_type:
3064 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3065 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3066 add_symbol_to_list (sym, list_in_scope);
3069 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3070 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3071 add_symbol_to_list (sym, list_in_scope);
3074 /* Not a tag we recognize. Hopefully we aren't processing trash
3075 data, but since we must specifically ignore things we don't
3076 recognize, there is nothing else we should do at this point. */
3087 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3091 static void synthesize_typedef (struct dieinfo *dip,
3092 struct objfile *objfile,
3097 Given a pointer to a DWARF information entry, synthesize a typedef
3098 for the name in the DIE, using the specified type.
3100 This is used for C++ class, structs, unions, and enumerations to
3101 set up the tag name as a type.
3106 synthesize_typedef (dip, objfile, type)
3107 struct dieinfo *dip;
3108 struct objfile *objfile;
3111 struct symbol *sym = NULL;
3113 if (dip->at_name != NULL)
3115 sym = (struct symbol *)
3116 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3117 OBJSTAT (objfile, n_syms++);
3118 memset (sym, 0, sizeof (struct symbol));
3119 SYMBOL_NAME (sym) = create_name (dip->at_name,
3120 &objfile->symbol_obstack);
3121 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3122 SYMBOL_TYPE (sym) = type;
3123 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3124 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3125 add_symbol_to_list (sym, list_in_scope);
3133 decode_mod_fund_type -- decode a modified fundamental type
3137 static struct type *decode_mod_fund_type (char *typedata)
3141 Decode a block of data containing a modified fundamental
3142 type specification. TYPEDATA is a pointer to the block,
3143 which starts with a length containing the size of the rest
3144 of the block. At the end of the block is a fundmental type
3145 code value that gives the fundamental type. Everything
3146 in between are type modifiers.
3148 We simply compute the number of modifiers and call the general
3149 function decode_modified_type to do the actual work.
3152 static struct type *
3153 decode_mod_fund_type (typedata)
3156 struct type *typep = NULL;
3157 unsigned short modcount;
3160 /* Get the total size of the block, exclusive of the size itself */
3162 nbytes = attribute_size (AT_mod_fund_type);
3163 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3166 /* Deduct the size of the fundamental type bytes at the end of the block. */
3168 modcount -= attribute_size (AT_fund_type);
3170 /* Now do the actual decoding */
3172 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3180 decode_mod_u_d_type -- decode a modified user defined type
3184 static struct type *decode_mod_u_d_type (char *typedata)
3188 Decode a block of data containing a modified user defined
3189 type specification. TYPEDATA is a pointer to the block,
3190 which consists of a two byte length, containing the size
3191 of the rest of the block. At the end of the block is a
3192 four byte value that gives a reference to a user defined type.
3193 Everything in between are type modifiers.
3195 We simply compute the number of modifiers and call the general
3196 function decode_modified_type to do the actual work.
3199 static struct type *
3200 decode_mod_u_d_type (typedata)
3203 struct type *typep = NULL;
3204 unsigned short modcount;
3207 /* Get the total size of the block, exclusive of the size itself */
3209 nbytes = attribute_size (AT_mod_u_d_type);
3210 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3213 /* Deduct the size of the reference type bytes at the end of the block. */
3215 modcount -= attribute_size (AT_user_def_type);
3217 /* Now do the actual decoding */
3219 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3227 decode_modified_type -- decode modified user or fundamental type
3231 static struct type *decode_modified_type (char *modifiers,
3232 unsigned short modcount, int mtype)
3236 Decode a modified type, either a modified fundamental type or
3237 a modified user defined type. MODIFIERS is a pointer to the
3238 block of bytes that define MODCOUNT modifiers. Immediately
3239 following the last modifier is a short containing the fundamental
3240 type or a long containing the reference to the user defined
3241 type. Which one is determined by MTYPE, which is either
3242 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3243 type we are generating.
3245 We call ourself recursively to generate each modified type,`
3246 until MODCOUNT reaches zero, at which point we have consumed
3247 all the modifiers and generate either the fundamental type or
3248 user defined type. When the recursion unwinds, each modifier
3249 is applied in turn to generate the full modified type.
3253 If we find a modifier that we don't recognize, and it is not one
3254 of those reserved for application specific use, then we issue a
3255 warning and simply ignore the modifier.
3259 We currently ignore MOD_const and MOD_volatile. (FIXME)
3263 static struct type *
3264 decode_modified_type (modifiers, modcount, mtype)
3266 unsigned int modcount;
3269 struct type *typep = NULL;
3270 unsigned short fundtype;
3279 case AT_mod_fund_type:
3280 nbytes = attribute_size (AT_fund_type);
3281 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3283 typep = decode_fund_type (fundtype);
3285 case AT_mod_u_d_type:
3286 nbytes = attribute_size (AT_user_def_type);
3287 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3289 if ((typep = lookup_utype (die_ref)) == NULL)
3291 typep = alloc_utype (die_ref, NULL);
3295 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3296 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3302 modifier = *modifiers++;
3303 typep = decode_modified_type (modifiers, --modcount, mtype);
3306 case MOD_pointer_to:
3307 typep = lookup_pointer_type (typep);
3309 case MOD_reference_to:
3310 typep = lookup_reference_type (typep);
3313 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3316 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3319 if (!(MOD_lo_user <= (unsigned char) modifier
3320 && (unsigned char) modifier <= MOD_hi_user))
3322 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3334 decode_fund_type -- translate basic DWARF type to gdb base type
3338 Given an integer that is one of the fundamental DWARF types,
3339 translate it to one of the basic internal gdb types and return
3340 a pointer to the appropriate gdb type (a "struct type *").
3344 For robustness, if we are asked to translate a fundamental
3345 type that we are unprepared to deal with, we return int so
3346 callers can always depend upon a valid type being returned,
3347 and so gdb may at least do something reasonable by default.
3348 If the type is not in the range of those types defined as
3349 application specific types, we also issue a warning.
3352 static struct type *
3353 decode_fund_type (fundtype)
3354 unsigned int fundtype;
3356 struct type *typep = NULL;
3362 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3365 case FT_boolean: /* Was FT_set in AT&T version */
3366 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3369 case FT_pointer: /* (void *) */
3370 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3371 typep = lookup_pointer_type (typep);
3375 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3378 case FT_signed_char:
3379 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3382 case FT_unsigned_char:
3383 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3387 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3390 case FT_signed_short:
3391 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3394 case FT_unsigned_short:
3395 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3399 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3402 case FT_signed_integer:
3403 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3406 case FT_unsigned_integer:
3407 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3411 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3414 case FT_signed_long:
3415 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3418 case FT_unsigned_long:
3419 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3423 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3426 case FT_signed_long_long:
3427 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3430 case FT_unsigned_long_long:
3431 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3435 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3438 case FT_dbl_prec_float:
3439 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3442 case FT_ext_prec_float:
3443 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3447 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3450 case FT_dbl_prec_complex:
3451 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3454 case FT_ext_prec_complex:
3455 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3462 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3463 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3465 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3476 create_name -- allocate a fresh copy of a string on an obstack
3480 Given a pointer to a string and a pointer to an obstack, allocates
3481 a fresh copy of the string on the specified obstack.
3486 create_name (name, obstackp)
3488 struct obstack *obstackp;
3493 length = strlen (name) + 1;
3494 newname = (char *) obstack_alloc (obstackp, length);
3495 strcpy (newname, name);
3503 basicdieinfo -- extract the minimal die info from raw die data
3507 void basicdieinfo (char *diep, struct dieinfo *dip,
3508 struct objfile *objfile)
3512 Given a pointer to raw DIE data, and a pointer to an instance of a
3513 die info structure, this function extracts the basic information
3514 from the DIE data required to continue processing this DIE, along
3515 with some bookkeeping information about the DIE.
3517 The information we absolutely must have includes the DIE tag,
3518 and the DIE length. If we need the sibling reference, then we
3519 will have to call completedieinfo() to process all the remaining
3522 Note that since there is no guarantee that the data is properly
3523 aligned in memory for the type of access required (indirection
3524 through anything other than a char pointer), and there is no
3525 guarantee that it is in the same byte order as the gdb host,
3526 we call a function which deals with both alignment and byte
3527 swapping issues. Possibly inefficient, but quite portable.
3529 We also take care of some other basic things at this point, such
3530 as ensuring that the instance of the die info structure starts
3531 out completely zero'd and that curdie is initialized for use
3532 in error reporting if we have a problem with the current die.
3536 All DIE's must have at least a valid length, thus the minimum
3537 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3538 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3539 are forced to be TAG_padding DIES.
3541 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3542 that if a padding DIE is used for alignment and the amount needed is
3543 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3544 enough to align to the next alignment boundry.
3546 We do some basic sanity checking here, such as verifying that the
3547 length of the die would not cause it to overrun the recorded end of
3548 the buffer holding the DIE info. If we find a DIE that is either
3549 too small or too large, we force it's length to zero which should
3550 cause the caller to take appropriate action.
3554 basicdieinfo (dip, diep, objfile)
3555 struct dieinfo *dip;
3557 struct objfile *objfile;
3560 memset (dip, 0, sizeof (struct dieinfo));
3562 dip->die_ref = dbroff + (diep - dbbase);
3563 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3565 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3566 ((diep + dip->die_length) > (dbbase + dbsize)))
3568 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3569 dip->die_length = 0;
3571 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3573 dip->die_tag = TAG_padding;
3577 diep += SIZEOF_DIE_LENGTH;
3578 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3587 completedieinfo -- finish reading the information for a given DIE
3591 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3595 Given a pointer to an already partially initialized die info structure,
3596 scan the raw DIE data and finish filling in the die info structure
3597 from the various attributes found.
3599 Note that since there is no guarantee that the data is properly
3600 aligned in memory for the type of access required (indirection
3601 through anything other than a char pointer), and there is no
3602 guarantee that it is in the same byte order as the gdb host,
3603 we call a function which deals with both alignment and byte
3604 swapping issues. Possibly inefficient, but quite portable.
3608 Each time we are called, we increment the diecount variable, which
3609 keeps an approximate count of the number of dies processed for
3610 each compilation unit. This information is presented to the user
3611 if the info_verbose flag is set.
3616 completedieinfo (dip, objfile)
3617 struct dieinfo *dip;
3618 struct objfile *objfile;
3620 char *diep; /* Current pointer into raw DIE data */
3621 char *end; /* Terminate DIE scan here */
3622 unsigned short attr; /* Current attribute being scanned */
3623 unsigned short form; /* Form of the attribute */
3624 int nbytes; /* Size of next field to read */
3628 end = diep + dip->die_length;
3629 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3632 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3633 diep += SIZEOF_ATTRIBUTE;
3634 if ((nbytes = attribute_size (attr)) == -1)
3636 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3643 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3661 dip->has_at_stmt_list = 1;
3664 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3666 dip->at_low_pc += baseaddr;
3667 dip->has_at_low_pc = 1;
3670 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3672 dip->at_high_pc += baseaddr;
3675 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3678 case AT_user_def_type:
3679 dip->at_user_def_type = target_to_host (diep, nbytes,
3680 GET_UNSIGNED, objfile);
3683 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3685 dip->has_at_byte_size = 1;
3688 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3692 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3696 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3700 dip->at_location = diep;
3702 case AT_mod_fund_type:
3703 dip->at_mod_fund_type = diep;
3705 case AT_subscr_data:
3706 dip->at_subscr_data = diep;
3708 case AT_mod_u_d_type:
3709 dip->at_mod_u_d_type = diep;
3711 case AT_element_list:
3712 dip->at_element_list = diep;
3713 dip->short_element_list = 0;
3715 case AT_short_element_list:
3716 dip->at_element_list = diep;
3717 dip->short_element_list = 1;
3719 case AT_discr_value:
3720 dip->at_discr_value = diep;
3722 case AT_string_length:
3723 dip->at_string_length = diep;
3726 dip->at_name = diep;
3729 /* For now, ignore any "hostname:" portion, since gdb doesn't
3730 know how to deal with it. (FIXME). */
3731 dip->at_comp_dir = strrchr (diep, ':');
3732 if (dip->at_comp_dir != NULL)
3738 dip->at_comp_dir = diep;
3742 dip->at_producer = diep;
3744 case AT_start_scope:
3745 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3748 case AT_stride_size:
3749 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3753 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3757 dip->at_prototyped = diep;
3760 /* Found an attribute that we are unprepared to handle. However
3761 it is specifically one of the design goals of DWARF that
3762 consumers should ignore unknown attributes. As long as the
3763 form is one that we recognize (so we know how to skip it),
3764 we can just ignore the unknown attribute. */
3767 form = FORM_FROM_ATTR (attr);
3781 diep += TARGET_FT_POINTER_SIZE (objfile);
3784 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3787 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3790 diep += strlen (diep) + 1;
3793 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3804 target_to_host -- swap in target data to host
3808 target_to_host (char *from, int nbytes, int signextend,
3809 struct objfile *objfile)
3813 Given pointer to data in target format in FROM, a byte count for
3814 the size of the data in NBYTES, a flag indicating whether or not
3815 the data is signed in SIGNEXTEND, and a pointer to the current
3816 objfile in OBJFILE, convert the data to host format and return
3817 the converted value.
3821 FIXME: If we read data that is known to be signed, and expect to
3822 use it as signed data, then we need to explicitly sign extend the
3823 result until the bfd library is able to do this for us.
3825 FIXME: Would a 32 bit target ever need an 8 byte result?
3830 target_to_host (from, nbytes, signextend, objfile)
3833 int signextend; /* FIXME: Unused */
3834 struct objfile *objfile;
3841 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3844 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3847 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3850 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3853 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3864 attribute_size -- compute size of data for a DWARF attribute
3868 static int attribute_size (unsigned int attr)
3872 Given a DWARF attribute in ATTR, compute the size of the first
3873 piece of data associated with this attribute and return that
3876 Returns -1 for unrecognized attributes.
3881 attribute_size (attr)
3884 int nbytes; /* Size of next data for this attribute */
3885 unsigned short form; /* Form of the attribute */
3887 form = FORM_FROM_ATTR (attr);
3890 case FORM_STRING: /* A variable length field is next */
3893 case FORM_DATA2: /* Next 2 byte field is the data itself */
3894 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3897 case FORM_DATA4: /* Next 4 byte field is the data itself */
3898 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3899 case FORM_REF: /* Next 4 byte field is a DIE offset */
3902 case FORM_DATA8: /* Next 8 byte field is the data itself */
3905 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3906 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3909 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);