1 /* DWARF debugging format support for GDB.
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF,
28 also known as DWARF-1.
30 DWARF-1 is slowly headed for obsoletion.
32 In gcc 3.4.0, support for dwarf-1 has been removed.
34 In gcc 3.3.2, these targets prefer dwarf-1:
36 i[34567]86-sequent-ptx4*
37 i[34567]86-sequent-sysv4*
41 In gcc 3.2.2, these targets prefer dwarf-1:
44 i[34567]86-sequent-ptx4*
45 i[34567]86-sequent-sysv4*
50 In gcc 2.95.3, these targets prefer dwarf-1:
54 i[34567]86-sequent-ptx4*
55 i[34567]86-sequent-sysv4*
57 i[34567]86-*-sco3.2v5*
73 Some non-gcc compilers produce dwarf-1:
75 PR gdb/1179 was from a user with Diab C++ 4.3.
76 On 2003-07-25 the gdb list received a report from a user
77 with Diab Compiler 4.4b.
78 Other users have also reported using Diab compilers with dwarf-1.
80 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++.
81 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00,
82 Wind River Systems, 2002-07-31).
84 On 2003-06-09 the gdb list received a report from a user
85 with Absoft ProFortran f77 which is dwarf-1.
87 Absoft ProFortran Linux[sic] Fortran User Guide (no version,
88 but copyright dates are 1991-2001) says that Absoft ProFortran
89 supports -gdwarf1 and -gdwarf2.
91 -- chastain 2004-04-24
96 FIXME: Do we need to generate dependencies in partial symtabs?
97 (Perhaps we don't need to).
99 FIXME: Resolve minor differences between what information we put in the
100 partial symbol table and what dbxread puts in. For example, we don't yet
101 put enum constants there. And dbxread seems to invent a lot of typedefs
102 we never see. Use the new printpsym command to see the partial symbol table
105 FIXME: Figure out a better way to tell gdb about the name of the function
106 contain the user's entry point (I.E. main())
108 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
109 other things to work on, if you get bored. :-)
115 #include "gdbtypes.h"
116 #include "objfiles.h"
117 #include "elf/dwarf.h"
118 #include "buildsym.h"
119 #include "demangle.h"
120 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
121 #include "language.h"
122 #include "complaints.h"
125 #include "gdb_string.h"
127 /* Some macros to provide DIE info for complaints. */
129 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
130 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
132 /* Complaints that can be issued during DWARF debug info reading. */
135 bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
137 complaint (&symfile_complaints,
138 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
143 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
145 complaint (&symfile_complaints,
146 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
151 dup_user_type_definition_complaint (int arg1, const char *arg2)
153 complaint (&symfile_complaints,
154 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
159 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
161 complaint (&symfile_complaints,
162 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
166 typedef unsigned int DIE_REF; /* Reference to a DIE */
169 #define GCC_PRODUCER "GNU C "
172 #ifndef GPLUS_PRODUCER
173 #define GPLUS_PRODUCER "GNU C++ "
177 #define LCC_PRODUCER "NCR C/C++"
180 /* Flags to target_to_host() that tell whether or not the data object is
181 expected to be signed. Used, for example, when fetching a signed
182 integer in the target environment which is used as a signed integer
183 in the host environment, and the two environments have different sized
184 ints. In this case, *somebody* has to sign extend the smaller sized
187 #define GET_UNSIGNED 0 /* No sign extension required */
188 #define GET_SIGNED 1 /* Sign extension required */
190 /* Defines for things which are specified in the document "DWARF Debugging
191 Information Format" published by UNIX International, Programming Languages
192 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
194 #define SIZEOF_DIE_LENGTH 4
195 #define SIZEOF_DIE_TAG 2
196 #define SIZEOF_ATTRIBUTE 2
197 #define SIZEOF_FORMAT_SPECIFIER 1
198 #define SIZEOF_FMT_FT 2
199 #define SIZEOF_LINETBL_LENGTH 4
200 #define SIZEOF_LINETBL_LINENO 4
201 #define SIZEOF_LINETBL_STMT 2
202 #define SIZEOF_LINETBL_DELTA 4
203 #define SIZEOF_LOC_ATOM_CODE 1
205 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
207 /* Macros that return the sizes of various types of data in the target
210 FIXME: Currently these are just compile time constants (as they are in
211 other parts of gdb as well). They need to be able to get the right size
212 either from the bfd or possibly from the DWARF info. It would be nice if
213 the DWARF producer inserted DIES that describe the fundamental types in
214 the target environment into the DWARF info, similar to the way dbx stabs
215 producers produce information about their fundamental types. */
217 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
218 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
220 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
221 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
222 However, the Issue 2 DWARF specification from AT&T defines it as
223 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
224 For backwards compatibility with the AT&T compiler produced executables
225 we define AT_short_element_list for this variant. */
227 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
229 /* The DWARF debugging information consists of two major pieces,
230 one is a block of DWARF Information Entries (DIE's) and the other
231 is a line number table. The "struct dieinfo" structure contains
232 the information for a single DIE, the one currently being processed.
234 In order to make it easier to randomly access the attribute fields
235 of the current DIE, which are specifically unordered within the DIE,
236 each DIE is scanned and an instance of the "struct dieinfo"
237 structure is initialized.
239 Initialization is done in two levels. The first, done by basicdieinfo(),
240 just initializes those fields that are vital to deciding whether or not
241 to use this DIE, how to skip past it, etc. The second, done by the
242 function completedieinfo(), fills in the rest of the information.
244 Attributes which have block forms are not interpreted at the time
245 the DIE is scanned, instead we just save pointers to the start
246 of their value fields.
248 Some fields have a flag <name>_p that is set when the value of the
249 field is valid (I.E. we found a matching attribute in the DIE). Since
250 we may want to test for the presence of some attributes in the DIE,
251 such as AT_low_pc, without restricting the values of the field,
252 we need someway to note that we found such an attribute.
260 char *die; /* Pointer to the raw DIE data */
261 unsigned long die_length; /* Length of the raw DIE data */
262 DIE_REF die_ref; /* Offset of this DIE */
263 unsigned short die_tag; /* Tag for this DIE */
264 unsigned long at_padding;
265 unsigned long at_sibling;
268 unsigned short at_fund_type;
269 BLOCK *at_mod_fund_type;
270 unsigned long at_user_def_type;
271 BLOCK *at_mod_u_d_type;
272 unsigned short at_ordering;
273 BLOCK *at_subscr_data;
274 unsigned long at_byte_size;
275 unsigned short at_bit_offset;
276 unsigned long at_bit_size;
277 BLOCK *at_element_list;
278 unsigned long at_stmt_list;
280 CORE_ADDR at_high_pc;
281 unsigned long at_language;
282 unsigned long at_member;
283 unsigned long at_discr;
284 BLOCK *at_discr_value;
285 BLOCK *at_string_length;
288 unsigned long at_start_scope;
289 unsigned long at_stride_size;
290 unsigned long at_src_info;
292 unsigned int has_at_low_pc:1;
293 unsigned int has_at_stmt_list:1;
294 unsigned int has_at_byte_size:1;
295 unsigned int short_element_list:1;
297 /* Kludge to identify register variables */
301 /* Kludge to identify optimized out variables */
303 unsigned int optimized_out;
305 /* Kludge to identify basereg references.
306 Nonzero if we have an offset relative to a basereg. */
310 /* Kludge to identify which base register is it relative to. */
312 unsigned int basereg;
315 static int diecount; /* Approximate count of dies for compilation unit */
316 static struct dieinfo *curdie; /* For warnings and such */
318 static char *dbbase; /* Base pointer to dwarf info */
319 static int dbsize; /* Size of dwarf info in bytes */
320 static int dbroff; /* Relative offset from start of .debug section */
321 static char *lnbase; /* Base pointer to line section */
323 /* This value is added to each symbol value. FIXME: Generalize to
324 the section_offsets structure used by dbxread (once this is done,
325 pass the appropriate section number to end_symtab). */
326 static CORE_ADDR baseaddr; /* Add to each symbol value */
328 /* The section offsets used in the current psymtab or symtab. FIXME,
329 only used to pass one value (baseaddr) at the moment. */
330 static struct section_offsets *base_section_offsets;
332 /* We put a pointer to this structure in the read_symtab_private field
337 /* Always the absolute file offset to the start of the ".debug"
338 section for the file containing the DIE's being accessed. */
340 /* Relative offset from the start of the ".debug" section to the
341 first DIE to be accessed. When building the partial symbol
342 table, this value will be zero since we are accessing the
343 entire ".debug" section. When expanding a partial symbol
344 table entry, this value will be the offset to the first
345 DIE for the compilation unit containing the symbol that
346 triggers the expansion. */
348 /* The size of the chunk of DIE's being examined, in bytes. */
350 /* The absolute file offset to the line table fragment. Ignored
351 when building partial symbol tables, but used when expanding
352 them, and contains the absolute file offset to the fragment
353 of the ".line" section containing the line numbers for the
354 current compilation unit. */
358 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
359 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
360 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
361 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
363 /* The generic symbol table building routines have separate lists for
364 file scope symbols and all all other scopes (local scopes). So
365 we need to select the right one to pass to add_symbol_to_list().
366 We do it by keeping a pointer to the correct list in list_in_scope.
368 FIXME: The original dwarf code just treated the file scope as the first
369 local scope, and all other local scopes as nested local scopes, and worked
370 fine. Check to see if we really need to distinguish these in buildsym.c */
372 struct pending **list_in_scope = &file_symbols;
374 /* DIES which have user defined types or modified user defined types refer to
375 other DIES for the type information. Thus we need to associate the offset
376 of a DIE for a user defined type with a pointer to the type information.
378 Originally this was done using a simple but expensive algorithm, with an
379 array of unsorted structures, each containing an offset/type-pointer pair.
380 This array was scanned linearly each time a lookup was done. The result
381 was that gdb was spending over half it's startup time munging through this
382 array of pointers looking for a structure that had the right offset member.
384 The second attempt used the same array of structures, but the array was
385 sorted using qsort each time a new offset/type was recorded, and a binary
386 search was used to find the type pointer for a given DIE offset. This was
387 even slower, due to the overhead of sorting the array each time a new
388 offset/type pair was entered.
390 The third attempt uses a fixed size array of type pointers, indexed by a
391 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
392 we can divide any DIE offset by 4 to obtain a unique index into this fixed
393 size array. Since each element is a 4 byte pointer, it takes exactly as
394 much memory to hold this array as to hold the DWARF info for a given
395 compilation unit. But it gets freed as soon as we are done with it.
396 This has worked well in practice, as a reasonable tradeoff between memory
397 consumption and speed, without having to resort to much more complicated
400 static struct type **utypes; /* Pointer to array of user type pointers */
401 static int numutypes; /* Max number of user type pointers */
403 /* Maintain an array of referenced fundamental types for the current
404 compilation unit being read. For DWARF version 1, we have to construct
405 the fundamental types on the fly, since no information about the
406 fundamental types is supplied. Each such fundamental type is created by
407 calling a language dependent routine to create the type, and then a
408 pointer to that type is then placed in the array at the index specified
409 by it's FT_<TYPENAME> value. The array has a fixed size set by the
410 FT_NUM_MEMBERS compile time constant, which is the number of predefined
411 fundamental types gdb knows how to construct. */
413 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
415 /* Record the language for the compilation unit which is currently being
416 processed. We know it once we have seen the TAG_compile_unit DIE,
417 and we need it while processing the DIE's for that compilation unit.
418 It is eventually saved in the symtab structure, but we don't finalize
419 the symtab struct until we have processed all the DIE's for the
420 compilation unit. We also need to get and save a pointer to the
421 language struct for this language, so we can call the language
422 dependent routines for doing things such as creating fundamental
425 static enum language cu_language;
426 static const struct language_defn *cu_language_defn;
428 /* Forward declarations of static functions so we don't have to worry
429 about ordering within this file. */
431 static void free_utypes (void *);
433 static int attribute_size (unsigned int);
435 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
437 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
439 static void handle_producer (char *);
441 static void read_file_scope (struct dieinfo *, char *, char *,
444 static void read_func_scope (struct dieinfo *, char *, char *,
447 static void read_lexical_block_scope (struct dieinfo *, char *, char *,
450 static void scan_partial_symbols (char *, char *, struct objfile *);
452 static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
455 static void add_partial_symbol (struct dieinfo *, struct objfile *);
457 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
459 static void completedieinfo (struct dieinfo *, struct objfile *);
461 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
463 static void psymtab_to_symtab_1 (struct partial_symtab *);
465 static void read_ofile_symtab (struct partial_symtab *);
467 static void process_dies (char *, char *, struct objfile *);
469 static void read_structure_scope (struct dieinfo *, char *, char *,
472 static struct type *decode_array_element_type (char *);
474 static struct type *decode_subscript_data_item (char *, char *);
476 static void dwarf_read_array_type (struct dieinfo *);
478 static void read_tag_pointer_type (struct dieinfo *dip);
480 static void read_tag_string_type (struct dieinfo *dip);
482 static void read_subroutine_type (struct dieinfo *, char *, char *);
484 static void read_enumeration (struct dieinfo *, char *, char *,
487 static struct type *struct_type (struct dieinfo *, char *, char *,
490 static struct type *enum_type (struct dieinfo *, struct objfile *);
492 static void decode_line_numbers (char *);
494 static struct type *decode_die_type (struct dieinfo *);
496 static struct type *decode_mod_fund_type (char *);
498 static struct type *decode_mod_u_d_type (char *);
500 static struct type *decode_modified_type (char *, unsigned int, int);
502 static struct type *decode_fund_type (unsigned int);
504 static char *create_name (char *, struct obstack *);
506 static struct type *lookup_utype (DIE_REF);
508 static struct type *alloc_utype (DIE_REF, struct type *);
510 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
512 static void synthesize_typedef (struct dieinfo *, struct objfile *,
515 static int locval (struct dieinfo *);
517 static void set_cu_language (struct dieinfo *);
519 static struct type *dwarf_fundamental_type (struct objfile *, int);
526 dwarf_fundamental_type -- lookup or create a fundamental type
531 dwarf_fundamental_type (struct objfile *objfile, int typeid)
535 DWARF version 1 doesn't supply any fundamental type information,
536 so gdb has to construct such types. It has a fixed number of
537 fundamental types that it knows how to construct, which is the
538 union of all types that it knows how to construct for all languages
539 that it knows about. These are enumerated in gdbtypes.h.
541 As an example, assume we find a DIE that references a DWARF
542 fundamental type of FT_integer. We first look in the ftypes
543 array to see if we already have such a type, indexed by the
544 gdb internal value of FT_INTEGER. If so, we simply return a
545 pointer to that type. If not, then we ask an appropriate
546 language dependent routine to create a type FT_INTEGER, using
547 defaults reasonable for the current target machine, and install
548 that type in ftypes for future reference.
552 Pointer to a fundamental type.
557 dwarf_fundamental_type (struct objfile *objfile, int typeid)
559 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
561 error ("internal error - invalid fundamental type id %d", typeid);
564 /* Look for this particular type in the fundamental type vector. If one is
565 not found, create and install one appropriate for the current language
566 and the current target machine. */
568 if (ftypes[typeid] == NULL)
570 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
573 return (ftypes[typeid]);
580 set_cu_language -- set local copy of language for compilation unit
585 set_cu_language (struct dieinfo *dip)
589 Decode the language attribute for a compilation unit DIE and
590 remember what the language was. We use this at various times
591 when processing DIE's for a given compilation unit.
600 set_cu_language (struct dieinfo *dip)
602 switch (dip->at_language)
606 cu_language = language_c;
608 case LANG_C_PLUS_PLUS:
609 cu_language = language_cplus;
612 cu_language = language_m2;
616 cu_language = language_fortran;
622 /* We don't know anything special about these yet. */
623 cu_language = language_unknown;
626 /* If no at_language, try to deduce one from the filename */
627 cu_language = deduce_language_from_filename (dip->at_name);
630 cu_language_defn = language_def (cu_language);
637 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
641 void dwarf_build_psymtabs (struct objfile *objfile,
642 int mainline, file_ptr dbfoff, unsigned int dbfsize,
643 file_ptr lnoffset, unsigned int lnsize)
647 This function is called upon to build partial symtabs from files
648 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
650 It is passed a bfd* containing the DIES
651 and line number information, the corresponding filename for that
652 file, a base address for relocating the symbols, a flag indicating
653 whether or not this debugging information is from a "main symbol
654 table" rather than a shared library or dynamically linked file,
655 and file offset/size pairs for the DIE information and line number
665 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
666 unsigned int dbfsize, file_ptr lnoffset,
669 bfd *abfd = objfile->obfd;
670 struct cleanup *back_to;
672 current_objfile = objfile;
674 dbbase = xmalloc (dbsize);
676 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
677 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
680 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
682 back_to = make_cleanup (xfree, dbbase);
684 /* If we are reinitializing, or if we have never loaded syms yet, init.
685 Since we have no idea how many DIES we are looking at, we just guess
686 some arbitrary value. */
689 || (objfile->global_psymbols.size == 0
690 && objfile->static_psymbols.size == 0))
692 init_psymbol_list (objfile, 1024);
695 /* Save the relocation factor where everybody can see it. */
697 base_section_offsets = objfile->section_offsets;
698 baseaddr = ANOFFSET (objfile->section_offsets, 0);
700 /* Follow the compilation unit sibling chain, building a partial symbol
701 table entry for each one. Save enough information about each compilation
702 unit to locate the full DWARF information later. */
704 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
706 do_cleanups (back_to);
707 current_objfile = NULL;
714 read_lexical_block_scope -- process all dies in a lexical block
718 static void read_lexical_block_scope (struct dieinfo *dip,
719 char *thisdie, char *enddie)
723 Process all the DIES contained within a lexical block scope.
724 Start a new scope, process the dies, and then close the scope.
729 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
730 struct objfile *objfile)
732 struct context_stack *new;
734 push_context (0, dip->at_low_pc);
735 process_dies (thisdie + dip->die_length, enddie, objfile);
736 new = pop_context ();
737 if (local_symbols != NULL)
739 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
740 dip->at_high_pc, objfile);
742 local_symbols = new->locals;
749 lookup_utype -- look up a user defined type from die reference
753 static type *lookup_utype (DIE_REF die_ref)
757 Given a DIE reference, lookup the user defined type associated with
758 that DIE, if it has been registered already. If not registered, then
759 return NULL. Alloc_utype() can be called to register an empty
760 type for this reference, which will be filled in later when the
761 actual referenced DIE is processed.
765 lookup_utype (DIE_REF die_ref)
767 struct type *type = NULL;
770 utypeidx = (die_ref - dbroff) / 4;
771 if ((utypeidx < 0) || (utypeidx >= numutypes))
773 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
777 type = *(utypes + utypeidx);
787 alloc_utype -- add a user defined type for die reference
791 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
795 Given a die reference DIE_REF, and a possible pointer to a user
796 defined type UTYPEP, register that this reference has a user
797 defined type and either use the specified type in UTYPEP or
798 make a new empty type that will be filled in later.
800 We should only be called after calling lookup_utype() to verify that
801 there is not currently a type registered for DIE_REF.
805 alloc_utype (DIE_REF die_ref, struct type *utypep)
810 utypeidx = (die_ref - dbroff) / 4;
811 typep = utypes + utypeidx;
812 if ((utypeidx < 0) || (utypeidx >= numutypes))
814 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
815 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
817 else if (*typep != NULL)
820 complaint (&symfile_complaints,
821 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
828 utypep = alloc_type (current_objfile);
839 free_utypes -- free the utypes array and reset pointer & count
843 static void free_utypes (void *dummy)
847 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
848 and set numutypes back to zero. This ensures that the utypes does not get
849 referenced after being freed.
853 free_utypes (void *dummy)
865 decode_die_type -- return a type for a specified die
869 static struct type *decode_die_type (struct dieinfo *dip)
873 Given a pointer to a die information structure DIP, decode the
874 type of the die and return a pointer to the decoded type. All
875 dies without specific types default to type int.
879 decode_die_type (struct dieinfo *dip)
881 struct type *type = NULL;
883 if (dip->at_fund_type != 0)
885 type = decode_fund_type (dip->at_fund_type);
887 else if (dip->at_mod_fund_type != NULL)
889 type = decode_mod_fund_type (dip->at_mod_fund_type);
891 else if (dip->at_user_def_type)
893 type = lookup_utype (dip->at_user_def_type);
896 type = alloc_utype (dip->at_user_def_type, NULL);
899 else if (dip->at_mod_u_d_type)
901 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
905 type = dwarf_fundamental_type (current_objfile, FT_VOID);
914 struct_type -- compute and return the type for a struct or union
918 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
919 char *enddie, struct objfile *objfile)
923 Given pointer to a die information structure for a die which
924 defines a union or structure (and MUST define one or the other),
925 and pointers to the raw die data that define the range of dies which
926 define the members, compute and return the user defined type for the
931 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
932 struct objfile *objfile)
937 struct nextfield *next;
940 struct nextfield *list = NULL;
941 struct nextfield *new;
948 type = lookup_utype (dip->die_ref);
951 /* No forward references created an empty type, so install one now */
952 type = alloc_utype (dip->die_ref, NULL);
954 INIT_CPLUS_SPECIFIC (type);
955 switch (dip->die_tag)
958 TYPE_CODE (type) = TYPE_CODE_CLASS;
960 case TAG_structure_type:
961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
964 TYPE_CODE (type) = TYPE_CODE_UNION;
967 /* Should never happen */
968 TYPE_CODE (type) = TYPE_CODE_UNDEF;
969 complaint (&symfile_complaints,
970 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
974 /* Some compilers try to be helpful by inventing "fake" names for
975 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
976 Thanks, but no thanks... */
977 if (dip->at_name != NULL
978 && *dip->at_name != '~'
979 && *dip->at_name != '.')
981 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
982 "", "", dip->at_name);
984 /* Use whatever size is known. Zero is a valid size. We might however
985 wish to check has_at_byte_size to make sure that some byte size was
986 given explicitly, but DWARF doesn't specify that explicit sizes of
987 zero have to present, so complaining about missing sizes should
988 probably not be the default. */
989 TYPE_LENGTH (type) = dip->at_byte_size;
990 thisdie += dip->die_length;
991 while (thisdie < enddie)
993 basicdieinfo (&mbr, thisdie, objfile);
994 completedieinfo (&mbr, objfile);
995 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
999 else if (mbr.at_sibling != 0)
1001 nextdie = dbbase + mbr.at_sibling - dbroff;
1005 nextdie = thisdie + mbr.die_length;
1007 switch (mbr.die_tag)
1010 /* Static fields can be either TAG_global_variable (GCC) or else
1011 TAG_member with no location (Diab). We could treat the latter like
1012 the former... but since we don't support the former, just avoid
1013 crashing on the latter for now. */
1014 if (mbr.at_location == NULL)
1017 /* Get space to record the next field's data. */
1018 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1021 /* Save the data. */
1023 obsavestring (mbr.at_name, strlen (mbr.at_name),
1024 &objfile->objfile_obstack);
1025 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1026 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1027 FIELD_STATIC_KIND (list->field) = 0;
1028 /* Handle bit fields. */
1029 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1030 if (BITS_BIG_ENDIAN)
1032 /* For big endian bits, the at_bit_offset gives the
1033 additional bit offset from the MSB of the containing
1034 anonymous object to the MSB of the field. We don't
1035 have to do anything special since we don't need to
1036 know the size of the anonymous object. */
1037 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1041 /* For little endian bits, we need to have a non-zero
1042 at_bit_size, so that we know we are in fact dealing
1043 with a bitfield. Compute the bit offset to the MSB
1044 of the anonymous object, subtract off the number of
1045 bits from the MSB of the field to the MSB of the
1046 object, and then subtract off the number of bits of
1047 the field itself. The result is the bit offset of
1048 the LSB of the field. */
1049 if (mbr.at_bit_size > 0)
1051 if (mbr.has_at_byte_size)
1053 /* The size of the anonymous object containing
1054 the bit field is explicit, so use the
1055 indicated size (in bytes). */
1056 anonymous_size = mbr.at_byte_size;
1060 /* The size of the anonymous object containing
1061 the bit field matches the size of an object
1062 of the bit field's type. DWARF allows
1063 at_byte_size to be left out in such cases, as
1064 a debug information size optimization. */
1065 anonymous_size = TYPE_LENGTH (list->field.type);
1067 FIELD_BITPOS (list->field) +=
1068 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1074 process_dies (thisdie, nextdie, objfile);
1079 /* Now create the vector of fields, and record how big it is. We may
1080 not even have any fields, if this DIE was generated due to a reference
1081 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1082 set, which clues gdb in to the fact that it needs to search elsewhere
1083 for the full structure definition. */
1086 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1090 TYPE_NFIELDS (type) = nfields;
1091 TYPE_FIELDS (type) = (struct field *)
1092 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1093 /* Copy the saved-up fields into the field vector. */
1094 for (n = nfields; list; list = list->next)
1096 TYPE_FIELD (type, --n) = list->field;
1106 read_structure_scope -- process all dies within struct or union
1110 static void read_structure_scope (struct dieinfo *dip,
1111 char *thisdie, char *enddie, struct objfile *objfile)
1115 Called when we find the DIE that starts a structure or union
1116 scope (definition) to process all dies that define the members
1117 of the structure or union. DIP is a pointer to the die info
1118 struct for the DIE that names the structure or union.
1122 Note that we need to call struct_type regardless of whether or not
1123 the DIE has an at_name attribute, since it might be an anonymous
1124 structure or union. This gets the type entered into our set of
1127 However, if the structure is incomplete (an opaque struct/union)
1128 then suppress creating a symbol table entry for it since gdb only
1129 wants to find the one with the complete definition. Note that if
1130 it is complete, we just call new_symbol, which does it's own
1131 checking about whether the struct/union is anonymous or not (and
1132 suppresses creating a symbol table entry itself).
1137 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1138 struct objfile *objfile)
1143 type = struct_type (dip, thisdie, enddie, objfile);
1144 if (!TYPE_STUB (type))
1146 sym = new_symbol (dip, objfile);
1149 SYMBOL_TYPE (sym) = type;
1150 if (cu_language == language_cplus)
1152 synthesize_typedef (dip, objfile, type);
1162 decode_array_element_type -- decode type of the array elements
1166 static struct type *decode_array_element_type (char *scan, char *end)
1170 As the last step in decoding the array subscript information for an
1171 array DIE, we need to decode the type of the array elements. We are
1172 passed a pointer to this last part of the subscript information and
1173 must return the appropriate type. If the type attribute is not
1174 recognized, just warn about the problem and return type int.
1177 static struct type *
1178 decode_array_element_type (char *scan)
1182 unsigned short attribute;
1183 unsigned short fundtype;
1186 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1188 scan += SIZEOF_ATTRIBUTE;
1189 nbytes = attribute_size (attribute);
1192 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1200 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1202 typep = decode_fund_type (fundtype);
1204 case AT_mod_fund_type:
1205 typep = decode_mod_fund_type (scan);
1207 case AT_user_def_type:
1208 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1210 typep = lookup_utype (die_ref);
1213 typep = alloc_utype (die_ref, NULL);
1216 case AT_mod_u_d_type:
1217 typep = decode_mod_u_d_type (scan);
1220 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1232 decode_subscript_data_item -- decode array subscript item
1236 static struct type *
1237 decode_subscript_data_item (char *scan, char *end)
1241 The array subscripts and the data type of the elements of an
1242 array are described by a list of data items, stored as a block
1243 of contiguous bytes. There is a data item describing each array
1244 dimension, and a final data item describing the element type.
1245 The data items are ordered the same as their appearance in the
1246 source (I.E. leftmost dimension first, next to leftmost second,
1249 The data items describing each array dimension consist of four
1250 parts: (1) a format specifier, (2) type type of the subscript
1251 index, (3) a description of the low bound of the array dimension,
1252 and (4) a description of the high bound of the array dimension.
1254 The last data item is the description of the type of each of
1257 We are passed a pointer to the start of the block of bytes
1258 containing the remaining data items, and a pointer to the first
1259 byte past the data. This function recursively decodes the
1260 remaining data items and returns a type.
1262 If we somehow fail to decode some data, we complain about it
1263 and return a type "array of int".
1266 FIXME: This code only implements the forms currently used
1267 by the AT&T and GNU C compilers.
1269 The end pointer is supplied for error checking, maybe we should
1273 static struct type *
1274 decode_subscript_data_item (char *scan, char *end)
1276 struct type *typep = NULL; /* Array type we are building */
1277 struct type *nexttype; /* Type of each element (may be array) */
1278 struct type *indextype; /* Type of this index */
1279 struct type *rangetype;
1280 unsigned int format;
1281 unsigned short fundtype;
1282 unsigned long lowbound;
1283 unsigned long highbound;
1286 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1288 scan += SIZEOF_FORMAT_SPECIFIER;
1292 typep = decode_array_element_type (scan);
1295 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1297 indextype = decode_fund_type (fundtype);
1298 scan += SIZEOF_FMT_FT;
1299 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1300 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1302 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1304 nexttype = decode_subscript_data_item (scan, end);
1305 if (nexttype == NULL)
1307 /* Munged subscript data or other problem, fake it. */
1308 complaint (&symfile_complaints,
1309 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1311 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1313 rangetype = create_range_type ((struct type *) NULL, indextype,
1314 lowbound, highbound);
1315 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1324 complaint (&symfile_complaints,
1325 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1326 DIE_ID, DIE_NAME, format);
1327 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1328 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1329 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1332 complaint (&symfile_complaints,
1333 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1335 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1336 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1337 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1347 dwarf_read_array_type -- read TAG_array_type DIE
1351 static void dwarf_read_array_type (struct dieinfo *dip)
1355 Extract all information from a TAG_array_type DIE and add to
1356 the user defined type vector.
1360 dwarf_read_array_type (struct dieinfo *dip)
1366 unsigned short blocksz;
1369 if (dip->at_ordering != ORD_row_major)
1371 /* FIXME: Can gdb even handle column major arrays? */
1372 complaint (&symfile_complaints,
1373 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1376 sub = dip->at_subscr_data;
1379 nbytes = attribute_size (AT_subscr_data);
1380 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1381 subend = sub + nbytes + blocksz;
1383 type = decode_subscript_data_item (sub, subend);
1384 utype = lookup_utype (dip->die_ref);
1387 /* Install user defined type that has not been referenced yet. */
1388 alloc_utype (dip->die_ref, type);
1390 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1392 /* Ick! A forward ref has already generated a blank type in our
1393 slot, and this type probably already has things pointing to it
1394 (which is what caused it to be created in the first place).
1395 If it's just a place holder we can plop our fully defined type
1396 on top of it. We can't recover the space allocated for our
1397 new type since it might be on an obstack, but we could reuse
1398 it if we kept a list of them, but it might not be worth it
1404 /* Double ick! Not only is a type already in our slot, but
1405 someone has decorated it. Complain and leave it alone. */
1406 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1415 read_tag_pointer_type -- read TAG_pointer_type DIE
1419 static void read_tag_pointer_type (struct dieinfo *dip)
1423 Extract all information from a TAG_pointer_type DIE and add to
1424 the user defined type vector.
1428 read_tag_pointer_type (struct dieinfo *dip)
1433 type = decode_die_type (dip);
1434 utype = lookup_utype (dip->die_ref);
1437 utype = lookup_pointer_type (type);
1438 alloc_utype (dip->die_ref, utype);
1442 TYPE_TARGET_TYPE (utype) = type;
1443 TYPE_POINTER_TYPE (type) = utype;
1445 /* We assume the machine has only one representation for pointers! */
1446 /* FIXME: Possably a poor assumption */
1447 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1448 TYPE_CODE (utype) = TYPE_CODE_PTR;
1456 read_tag_string_type -- read TAG_string_type DIE
1460 static void read_tag_string_type (struct dieinfo *dip)
1464 Extract all information from a TAG_string_type DIE and add to
1465 the user defined type vector. It isn't really a user defined
1466 type, but it behaves like one, with other DIE's using an
1467 AT_user_def_type attribute to reference it.
1471 read_tag_string_type (struct dieinfo *dip)
1474 struct type *indextype;
1475 struct type *rangetype;
1476 unsigned long lowbound = 0;
1477 unsigned long highbound;
1479 if (dip->has_at_byte_size)
1481 /* A fixed bounds string */
1482 highbound = dip->at_byte_size - 1;
1486 /* A varying length string. Stub for now. (FIXME) */
1489 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1490 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1493 utype = lookup_utype (dip->die_ref);
1496 /* No type defined, go ahead and create a blank one to use. */
1497 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1501 /* Already a type in our slot due to a forward reference. Make sure it
1502 is a blank one. If not, complain and leave it alone. */
1503 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1505 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1510 /* Create the string type using the blank type we either found or created. */
1511 utype = create_string_type (utype, rangetype);
1518 read_subroutine_type -- process TAG_subroutine_type dies
1522 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1527 Handle DIES due to C code like:
1530 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1536 The parameter DIES are currently ignored. See if gdb has a way to
1537 include this info in it's type system, and decode them if so. Is
1538 this what the type structure's "arg_types" field is for? (FIXME)
1542 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1544 struct type *type; /* Type that this function returns */
1545 struct type *ftype; /* Function that returns above type */
1547 /* Decode the type that this subroutine returns */
1549 type = decode_die_type (dip);
1551 /* Check to see if we already have a partially constructed user
1552 defined type for this DIE, from a forward reference. */
1554 ftype = lookup_utype (dip->die_ref);
1557 /* This is the first reference to one of these types. Make
1558 a new one and place it in the user defined types. */
1559 ftype = lookup_function_type (type);
1560 alloc_utype (dip->die_ref, ftype);
1562 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1564 /* We have an existing partially constructed type, so bash it
1565 into the correct type. */
1566 TYPE_TARGET_TYPE (ftype) = type;
1567 TYPE_LENGTH (ftype) = 1;
1568 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1572 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1580 read_enumeration -- process dies which define an enumeration
1584 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1585 char *enddie, struct objfile *objfile)
1589 Given a pointer to a die which begins an enumeration, process all
1590 the dies that define the members of the enumeration.
1594 Note that we need to call enum_type regardless of whether or not we
1595 have a symbol, since we might have an enum without a tag name (thus
1596 no symbol for the tagname).
1600 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1601 struct objfile *objfile)
1606 type = enum_type (dip, objfile);
1607 sym = new_symbol (dip, objfile);
1610 SYMBOL_TYPE (sym) = type;
1611 if (cu_language == language_cplus)
1613 synthesize_typedef (dip, objfile, type);
1622 enum_type -- decode and return a type for an enumeration
1626 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1630 Given a pointer to a die information structure for the die which
1631 starts an enumeration, process all the dies that define the members
1632 of the enumeration and return a type pointer for the enumeration.
1634 At the same time, for each member of the enumeration, create a
1635 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1636 and give it the type of the enumeration itself.
1640 Note that the DWARF specification explicitly mandates that enum
1641 constants occur in reverse order from the source program order,
1642 for "consistency" and because this ordering is easier for many
1643 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1644 Entries). Because gdb wants to see the enum members in program
1645 source order, we have to ensure that the order gets reversed while
1646 we are processing them.
1649 static struct type *
1650 enum_type (struct dieinfo *dip, struct objfile *objfile)
1655 struct nextfield *next;
1658 struct nextfield *list = NULL;
1659 struct nextfield *new;
1664 unsigned short blocksz;
1667 int unsigned_enum = 1;
1669 type = lookup_utype (dip->die_ref);
1672 /* No forward references created an empty type, so install one now */
1673 type = alloc_utype (dip->die_ref, NULL);
1675 TYPE_CODE (type) = TYPE_CODE_ENUM;
1676 /* Some compilers try to be helpful by inventing "fake" names for
1677 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1678 Thanks, but no thanks... */
1679 if (dip->at_name != NULL
1680 && *dip->at_name != '~'
1681 && *dip->at_name != '.')
1683 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
1684 "", "", dip->at_name);
1686 if (dip->at_byte_size != 0)
1688 TYPE_LENGTH (type) = dip->at_byte_size;
1690 scan = dip->at_element_list;
1693 if (dip->short_element_list)
1695 nbytes = attribute_size (AT_short_element_list);
1699 nbytes = attribute_size (AT_element_list);
1701 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1702 listend = scan + nbytes + blocksz;
1704 while (scan < listend)
1706 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1709 FIELD_TYPE (list->field) = NULL;
1710 FIELD_BITSIZE (list->field) = 0;
1711 FIELD_STATIC_KIND (list->field) = 0;
1712 FIELD_BITPOS (list->field) =
1713 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1715 scan += TARGET_FT_LONG_SIZE (objfile);
1716 list->field.name = obsavestring (scan, strlen (scan),
1717 &objfile->objfile_obstack);
1718 scan += strlen (scan) + 1;
1720 /* Handcraft a new symbol for this enum member. */
1721 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
1722 sizeof (struct symbol));
1723 memset (sym, 0, sizeof (struct symbol));
1724 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1725 &objfile->objfile_obstack);
1726 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1727 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1728 SYMBOL_CLASS (sym) = LOC_CONST;
1729 SYMBOL_TYPE (sym) = type;
1730 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1731 if (SYMBOL_VALUE (sym) < 0)
1733 add_symbol_to_list (sym, list_in_scope);
1735 /* Now create the vector of fields, and record how big it is. This is
1736 where we reverse the order, by pulling the members off the list in
1737 reverse order from how they were inserted. If we have no fields
1738 (this is apparently possible in C++) then skip building a field
1743 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1744 TYPE_NFIELDS (type) = nfields;
1745 TYPE_FIELDS (type) = (struct field *)
1746 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
1747 /* Copy the saved-up fields into the field vector. */
1748 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1750 TYPE_FIELD (type, n++) = list->field;
1761 read_func_scope -- process all dies within a function scope
1765 Process all dies within a given function scope. We are passed
1766 a die information structure pointer DIP for the die which
1767 starts the function scope, and pointers into the raw die data
1768 that define the dies within the function scope.
1770 For now, we ignore lexical block scopes within the function.
1771 The problem is that AT&T cc does not define a DWARF lexical
1772 block scope for the function itself, while gcc defines a
1773 lexical block scope for the function. We need to think about
1774 how to handle this difference, or if it is even a problem.
1779 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1780 struct objfile *objfile)
1782 struct context_stack *new;
1784 /* AT_name is absent if the function is described with an
1785 AT_abstract_origin tag.
1786 Ignore the function description for now to avoid GDB core dumps.
1787 FIXME: Add code to handle AT_abstract_origin tags properly. */
1788 if (dip->at_name == NULL)
1790 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1795 new = push_context (0, dip->at_low_pc);
1796 new->name = new_symbol (dip, objfile);
1797 list_in_scope = &local_symbols;
1798 process_dies (thisdie + dip->die_length, enddie, objfile);
1799 new = pop_context ();
1800 /* Make a block for the local symbols within. */
1801 finish_block (new->name, &local_symbols, new->old_blocks,
1802 new->start_addr, dip->at_high_pc, objfile);
1803 list_in_scope = &file_symbols;
1811 handle_producer -- process the AT_producer attribute
1815 Perform any operations that depend on finding a particular
1816 AT_producer attribute.
1821 handle_producer (char *producer)
1824 /* If this compilation unit was compiled with g++ or gcc, then set the
1825 processing_gcc_compilation flag. */
1827 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1829 char version = producer[strlen (GCC_PRODUCER)];
1830 processing_gcc_compilation = (version == '2' ? 2 : 1);
1834 processing_gcc_compilation =
1835 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
1838 /* Select a demangling style if we can identify the producer and if
1839 the current style is auto. We leave the current style alone if it
1840 is not auto. We also leave the demangling style alone if we find a
1841 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1843 if (AUTO_DEMANGLING)
1845 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1848 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1849 know whether it will use the old style or v3 mangling. */
1850 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1853 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1855 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1865 read_file_scope -- process all dies within a file scope
1869 Process all dies within a given file scope. We are passed a
1870 pointer to the die information structure for the die which
1871 starts the file scope, and pointers into the raw die data which
1872 mark the range of dies within the file scope.
1874 When the partial symbol table is built, the file offset for the line
1875 number table for each compilation unit is saved in the partial symbol
1876 table entry for that compilation unit. As the symbols for each
1877 compilation unit are read, the line number table is read into memory
1878 and the variable lnbase is set to point to it. Thus all we have to
1879 do is use lnbase to access the line number table for the current
1884 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1885 struct objfile *objfile)
1887 struct cleanup *back_to;
1888 struct symtab *symtab;
1890 set_cu_language (dip);
1891 if (dip->at_producer != NULL)
1893 handle_producer (dip->at_producer);
1895 numutypes = (enddie - thisdie) / 4;
1896 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1897 back_to = make_cleanup (free_utypes, NULL);
1898 memset (utypes, 0, numutypes * sizeof (struct type *));
1899 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1900 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1901 record_debugformat ("DWARF 1");
1902 decode_line_numbers (lnbase);
1903 process_dies (thisdie + dip->die_length, enddie, objfile);
1905 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1908 symtab->language = cu_language;
1910 do_cleanups (back_to);
1917 process_dies -- process a range of DWARF Information Entries
1921 static void process_dies (char *thisdie, char *enddie,
1922 struct objfile *objfile)
1926 Process all DIE's in a specified range. May be (and almost
1927 certainly will be) called recursively.
1931 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1936 while (thisdie < enddie)
1938 basicdieinfo (&di, thisdie, objfile);
1939 if (di.die_length < SIZEOF_DIE_LENGTH)
1943 else if (di.die_tag == TAG_padding)
1945 nextdie = thisdie + di.die_length;
1949 completedieinfo (&di, objfile);
1950 if (di.at_sibling != 0)
1952 nextdie = dbbase + di.at_sibling - dbroff;
1956 nextdie = thisdie + di.die_length;
1958 /* I think that these are always text, not data, addresses. */
1959 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1960 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1963 case TAG_compile_unit:
1964 /* Skip Tag_compile_unit if we are already inside a compilation
1965 unit, we are unable to handle nested compilation units
1966 properly (FIXME). */
1967 if (current_subfile == NULL)
1968 read_file_scope (&di, thisdie, nextdie, objfile);
1970 nextdie = thisdie + di.die_length;
1972 case TAG_global_subroutine:
1973 case TAG_subroutine:
1974 if (di.has_at_low_pc)
1976 read_func_scope (&di, thisdie, nextdie, objfile);
1979 case TAG_lexical_block:
1980 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1982 case TAG_class_type:
1983 case TAG_structure_type:
1984 case TAG_union_type:
1985 read_structure_scope (&di, thisdie, nextdie, objfile);
1987 case TAG_enumeration_type:
1988 read_enumeration (&di, thisdie, nextdie, objfile);
1990 case TAG_subroutine_type:
1991 read_subroutine_type (&di, thisdie, nextdie);
1993 case TAG_array_type:
1994 dwarf_read_array_type (&di);
1996 case TAG_pointer_type:
1997 read_tag_pointer_type (&di);
1999 case TAG_string_type:
2000 read_tag_string_type (&di);
2003 new_symbol (&di, objfile);
2015 decode_line_numbers -- decode a line number table fragment
2019 static void decode_line_numbers (char *tblscan, char *tblend,
2020 long length, long base, long line, long pc)
2024 Translate the DWARF line number information to gdb form.
2026 The ".line" section contains one or more line number tables, one for
2027 each ".line" section from the objects that were linked.
2029 The AT_stmt_list attribute for each TAG_source_file entry in the
2030 ".debug" section contains the offset into the ".line" section for the
2031 start of the table for that file.
2033 The table itself has the following structure:
2035 <table length><base address><source statement entry>
2036 4 bytes 4 bytes 10 bytes
2038 The table length is the total size of the table, including the 4 bytes
2039 for the length information.
2041 The base address is the address of the first instruction generated
2042 for the source file.
2044 Each source statement entry has the following structure:
2046 <line number><statement position><address delta>
2047 4 bytes 2 bytes 4 bytes
2049 The line number is relative to the start of the file, starting with
2052 The statement position either -1 (0xFFFF) or the number of characters
2053 from the beginning of the line to the beginning of the statement.
2055 The address delta is the difference between the base address and
2056 the address of the first instruction for the statement.
2058 Note that we must copy the bytes from the packed table to our local
2059 variables before attempting to use them, to avoid alignment problems
2060 on some machines, particularly RISC processors.
2064 Does gdb expect the line numbers to be sorted? They are now by
2065 chance/luck, but are not required to be. (FIXME)
2067 The line with number 0 is unused, gdb apparently can discover the
2068 span of the last line some other way. How? (FIXME)
2072 decode_line_numbers (char *linetable)
2076 unsigned long length;
2081 if (linetable != NULL)
2083 tblscan = tblend = linetable;
2084 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2086 tblscan += SIZEOF_LINETBL_LENGTH;
2088 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2089 GET_UNSIGNED, current_objfile);
2090 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2092 while (tblscan < tblend)
2094 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2096 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2097 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2099 tblscan += SIZEOF_LINETBL_DELTA;
2103 record_line (current_subfile, line, pc);
2113 locval -- compute the value of a location attribute
2117 static int locval (struct dieinfo *dip)
2121 Given pointer to a string of bytes that define a location, compute
2122 the location and return the value.
2123 A location description containing no atoms indicates that the
2124 object is optimized out. The optimized_out flag is set for those,
2125 the return value is meaningless.
2127 When computing values involving the current value of the frame pointer,
2128 the value zero is used, which results in a value relative to the frame
2129 pointer, rather than the absolute value. This is what GDB wants
2132 When the result is a register number, the isreg flag is set, otherwise
2133 it is cleared. This is a kludge until we figure out a better
2134 way to handle the problem. Gdb's design does not mesh well with the
2135 DWARF notion of a location computing interpreter, which is a shame
2136 because the flexibility goes unused.
2140 Note that stack[0] is unused except as a default error return.
2141 Note that stack overflow is not yet handled.
2145 locval (struct dieinfo *dip)
2147 unsigned short nbytes;
2148 unsigned short locsize;
2149 auto long stack[64];
2156 loc = dip->at_location;
2157 nbytes = attribute_size (AT_location);
2158 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2160 end = loc + locsize;
2165 dip->optimized_out = 1;
2166 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2169 dip->optimized_out = 0;
2170 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2172 loc += SIZEOF_LOC_ATOM_CODE;
2173 switch (loc_atom_code)
2180 /* push register (number) */
2182 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2185 loc += loc_value_size;
2189 /* push value of register (number) */
2190 /* Actually, we compute the value as if register has 0, so the
2191 value ends up being the offset from that register. */
2193 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2195 loc += loc_value_size;
2196 stack[++stacki] = 0;
2199 /* push address (relocated address) */
2200 stack[++stacki] = target_to_host (loc, loc_value_size,
2201 GET_UNSIGNED, current_objfile);
2202 loc += loc_value_size;
2205 /* push constant (number) FIXME: signed or unsigned! */
2206 stack[++stacki] = target_to_host (loc, loc_value_size,
2207 GET_SIGNED, current_objfile);
2208 loc += loc_value_size;
2211 /* pop, deref and push 2 bytes (as a long) */
2212 complaint (&symfile_complaints,
2213 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2214 DIE_ID, DIE_NAME, stack[stacki]);
2216 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2217 complaint (&symfile_complaints,
2218 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2219 DIE_ID, DIE_NAME, stack[stacki]);
2221 case OP_ADD: /* pop top 2 items, add, push result */
2222 stack[stacki - 1] += stack[stacki];
2227 return (stack[stacki]);
2234 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2238 static void read_ofile_symtab (struct partial_symtab *pst)
2242 When expanding a partial symbol table entry to a full symbol table
2243 entry, this is the function that gets called to read in the symbols
2244 for the compilation unit. A pointer to the newly constructed symtab,
2245 which is now the new first one on the objfile's symtab list, is
2246 stashed in the partial symbol table entry.
2250 read_ofile_symtab (struct partial_symtab *pst)
2252 struct cleanup *back_to;
2253 unsigned long lnsize;
2256 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2258 abfd = pst->objfile->obfd;
2259 current_objfile = pst->objfile;
2261 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2262 unit, seek to the location in the file, and read in all the DIE's. */
2265 dbsize = DBLENGTH (pst);
2266 dbbase = xmalloc (dbsize);
2267 dbroff = DBROFF (pst);
2268 foffset = DBFOFF (pst) + dbroff;
2269 base_section_offsets = pst->section_offsets;
2270 baseaddr = ANOFFSET (pst->section_offsets, 0);
2271 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2272 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2275 error ("can't read DWARF data");
2277 back_to = make_cleanup (xfree, dbbase);
2279 /* If there is a line number table associated with this compilation unit
2280 then read the size of this fragment in bytes, from the fragment itself.
2281 Allocate a buffer for the fragment and read it in for future
2287 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2288 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2289 != sizeof (lnsizedata)))
2291 error ("can't read DWARF line number table size");
2293 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2294 GET_UNSIGNED, pst->objfile);
2295 lnbase = xmalloc (lnsize);
2296 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2297 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2300 error ("can't read DWARF line numbers");
2302 make_cleanup (xfree, lnbase);
2305 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2306 do_cleanups (back_to);
2307 current_objfile = NULL;
2308 pst->symtab = pst->objfile->symtabs;
2315 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2319 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2323 Called once for each partial symbol table entry that needs to be
2324 expanded into a full symbol table entry.
2329 psymtab_to_symtab_1 (struct partial_symtab *pst)
2332 struct cleanup *old_chain;
2338 warning ("psymtab for %s already read in. Shouldn't happen.",
2343 /* Read in all partial symtabs on which this one is dependent */
2344 for (i = 0; i < pst->number_of_dependencies; i++)
2346 if (!pst->dependencies[i]->readin)
2348 /* Inform about additional files that need to be read in. */
2351 fputs_filtered (" ", gdb_stdout);
2353 fputs_filtered ("and ", gdb_stdout);
2355 printf_filtered ("%s...",
2356 pst->dependencies[i]->filename);
2358 gdb_flush (gdb_stdout); /* Flush output */
2360 psymtab_to_symtab_1 (pst->dependencies[i]);
2363 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2366 old_chain = make_cleanup (really_free_pendings, 0);
2367 read_ofile_symtab (pst);
2370 printf_filtered ("%d DIE's, sorting...", diecount);
2372 gdb_flush (gdb_stdout);
2374 do_cleanups (old_chain);
2385 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2389 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2393 This is the DWARF support entry point for building a full symbol
2394 table entry from a partial symbol table entry. We are passed a
2395 pointer to the partial symbol table entry that needs to be expanded.
2400 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2407 warning ("psymtab for %s already read in. Shouldn't happen.",
2412 if (DBLENGTH (pst) || pst->number_of_dependencies)
2414 /* Print the message now, before starting serious work, to avoid
2415 disconcerting pauses. */
2418 printf_filtered ("Reading in symbols for %s...",
2420 gdb_flush (gdb_stdout);
2423 psymtab_to_symtab_1 (pst);
2425 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2426 we need to do an equivalent or is this something peculiar to
2428 Match with global symbols. This only needs to be done once,
2429 after all of the symtabs and dependencies have been read in.
2431 scan_file_globals (pst->objfile);
2434 /* Finish up the verbose info message. */
2437 printf_filtered ("done.\n");
2438 gdb_flush (gdb_stdout);
2449 add_enum_psymbol -- add enumeration members to partial symbol table
2453 Given pointer to a DIE that is known to be for an enumeration,
2454 extract the symbolic names of the enumeration members and add
2455 partial symbols for them.
2459 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2463 unsigned short blocksz;
2466 scan = dip->at_element_list;
2469 if (dip->short_element_list)
2471 nbytes = attribute_size (AT_short_element_list);
2475 nbytes = attribute_size (AT_element_list);
2477 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2479 listend = scan + blocksz;
2480 while (scan < listend)
2482 scan += TARGET_FT_LONG_SIZE (objfile);
2483 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
2484 &objfile->static_psymbols, 0, 0, cu_language,
2486 scan += strlen (scan) + 1;
2495 add_partial_symbol -- add symbol to partial symbol table
2499 Given a DIE, if it is one of the types that we want to
2500 add to a partial symbol table, finish filling in the die info
2501 and then add a partial symbol table entry for it.
2505 The caller must ensure that the DIE has a valid name attribute.
2509 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2511 switch (dip->die_tag)
2513 case TAG_global_subroutine:
2514 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2515 VAR_DOMAIN, LOC_BLOCK,
2516 &objfile->global_psymbols,
2517 0, dip->at_low_pc, cu_language, objfile);
2519 case TAG_global_variable:
2520 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2521 VAR_DOMAIN, LOC_STATIC,
2522 &objfile->global_psymbols,
2523 0, 0, cu_language, objfile);
2525 case TAG_subroutine:
2526 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2527 VAR_DOMAIN, LOC_BLOCK,
2528 &objfile->static_psymbols,
2529 0, dip->at_low_pc, cu_language, objfile);
2531 case TAG_local_variable:
2532 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2533 VAR_DOMAIN, LOC_STATIC,
2534 &objfile->static_psymbols,
2535 0, 0, cu_language, objfile);
2538 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2539 VAR_DOMAIN, LOC_TYPEDEF,
2540 &objfile->static_psymbols,
2541 0, 0, cu_language, objfile);
2543 case TAG_class_type:
2544 case TAG_structure_type:
2545 case TAG_union_type:
2546 case TAG_enumeration_type:
2547 /* Do not add opaque aggregate definitions to the psymtab. */
2548 if (!dip->has_at_byte_size)
2550 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2551 STRUCT_DOMAIN, LOC_TYPEDEF,
2552 &objfile->static_psymbols,
2553 0, 0, cu_language, objfile);
2554 if (cu_language == language_cplus)
2556 /* For C++, these implicitly act as typedefs as well. */
2557 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2558 VAR_DOMAIN, LOC_TYPEDEF,
2559 &objfile->static_psymbols,
2560 0, 0, cu_language, objfile);
2570 scan_partial_symbols -- scan DIE's within a single compilation unit
2574 Process the DIE's within a single compilation unit, looking for
2575 interesting DIE's that contribute to the partial symbol table entry
2576 for this compilation unit.
2580 There are some DIE's that may appear both at file scope and within
2581 the scope of a function. We are only interested in the ones at file
2582 scope, and the only way to tell them apart is to keep track of the
2583 scope. For example, consider the test case:
2588 for which the relevant DWARF segment has the structure:
2591 0x23 global subrtn sibling 0x9b
2593 fund_type FT_integer
2598 0x23 local var sibling 0x97
2600 fund_type FT_integer
2601 location OP_BASEREG 0xe
2608 0x1d local var sibling 0xb8
2610 fund_type FT_integer
2611 location OP_ADDR 0x800025dc
2616 We want to include the symbol 'i' in the partial symbol table, but
2617 not the symbol 'j'. In essence, we want to skip all the dies within
2618 the scope of a TAG_global_subroutine DIE.
2620 Don't attempt to add anonymous structures or unions since they have
2621 no name. Anonymous enumerations however are processed, because we
2622 want to extract their member names (the check for a tag name is
2625 Also, for variables and subroutines, check that this is the place
2626 where the actual definition occurs, rather than just a reference
2634 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2640 while (thisdie < enddie)
2642 basicdieinfo (&di, thisdie, objfile);
2643 if (di.die_length < SIZEOF_DIE_LENGTH)
2649 nextdie = thisdie + di.die_length;
2650 /* To avoid getting complete die information for every die, we
2651 only do it (below) for the cases we are interested in. */
2654 case TAG_global_subroutine:
2655 case TAG_subroutine:
2656 completedieinfo (&di, objfile);
2657 if (di.at_name && (di.has_at_low_pc || di.at_location))
2659 add_partial_symbol (&di, objfile);
2660 /* If there is a sibling attribute, adjust the nextdie
2661 pointer to skip the entire scope of the subroutine.
2662 Apply some sanity checking to make sure we don't
2663 overrun or underrun the range of remaining DIE's */
2664 if (di.at_sibling != 0)
2666 temp = dbbase + di.at_sibling - dbroff;
2667 if ((temp < thisdie) || (temp >= enddie))
2669 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2679 case TAG_global_variable:
2680 case TAG_local_variable:
2681 completedieinfo (&di, objfile);
2682 if (di.at_name && (di.has_at_low_pc || di.at_location))
2684 add_partial_symbol (&di, objfile);
2688 case TAG_class_type:
2689 case TAG_structure_type:
2690 case TAG_union_type:
2691 completedieinfo (&di, objfile);
2694 add_partial_symbol (&di, objfile);
2697 case TAG_enumeration_type:
2698 completedieinfo (&di, objfile);
2701 add_partial_symbol (&di, objfile);
2703 add_enum_psymbol (&di, objfile);
2715 scan_compilation_units -- build a psymtab entry for each compilation
2719 This is the top level dwarf parsing routine for building partial
2722 It scans from the beginning of the DWARF table looking for the first
2723 TAG_compile_unit DIE, and then follows the sibling chain to locate
2724 each additional TAG_compile_unit DIE.
2726 For each TAG_compile_unit DIE it creates a partial symtab structure,
2727 calls a subordinate routine to collect all the compilation unit's
2728 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2729 new partial symtab structure into the partial symbol table. It also
2730 records the appropriate information in the partial symbol table entry
2731 to allow the chunk of DIE's and line number table for this compilation
2732 unit to be located and re-read later, to generate a complete symbol
2733 table entry for the compilation unit.
2735 Thus it effectively partitions up a chunk of DIE's for multiple
2736 compilation units into smaller DIE chunks and line number tables,
2737 and associates them with a partial symbol table entry.
2741 If any compilation unit has no line number table associated with
2742 it for some reason (a missing at_stmt_list attribute, rather than
2743 just one with a value of zero, which is valid) then we ensure that
2744 the recorded file offset is zero so that the routine which later
2745 reads line number table fragments knows that there is no fragment
2755 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2756 file_ptr lnoffset, struct objfile *objfile)
2760 struct partial_symtab *pst;
2763 file_ptr curlnoffset;
2765 while (thisdie < enddie)
2767 basicdieinfo (&di, thisdie, objfile);
2768 if (di.die_length < SIZEOF_DIE_LENGTH)
2772 else if (di.die_tag != TAG_compile_unit)
2774 nextdie = thisdie + di.die_length;
2778 completedieinfo (&di, objfile);
2779 set_cu_language (&di);
2780 if (di.at_sibling != 0)
2782 nextdie = dbbase + di.at_sibling - dbroff;
2786 nextdie = thisdie + di.die_length;
2788 curoff = thisdie - dbbase;
2789 culength = nextdie - thisdie;
2790 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2792 /* First allocate a new partial symbol table structure */
2794 pst = start_psymtab_common (objfile, base_section_offsets,
2795 di.at_name, di.at_low_pc,
2796 objfile->global_psymbols.next,
2797 objfile->static_psymbols.next);
2799 pst->texthigh = di.at_high_pc;
2800 pst->read_symtab_private = (char *)
2801 obstack_alloc (&objfile->objfile_obstack,
2802 sizeof (struct dwfinfo));
2803 DBFOFF (pst) = dbfoff;
2804 DBROFF (pst) = curoff;
2805 DBLENGTH (pst) = culength;
2806 LNFOFF (pst) = curlnoffset;
2807 pst->read_symtab = dwarf_psymtab_to_symtab;
2809 /* Now look for partial symbols */
2811 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2813 pst->n_global_syms = objfile->global_psymbols.next -
2814 (objfile->global_psymbols.list + pst->globals_offset);
2815 pst->n_static_syms = objfile->static_psymbols.next -
2816 (objfile->static_psymbols.list + pst->statics_offset);
2817 sort_pst_symbols (pst);
2818 /* If there is already a psymtab or symtab for a file of this name,
2819 remove it. (If there is a symtab, more drastic things also
2820 happen.) This happens in VxWorks. */
2821 free_named_symtabs (pst->filename);
2831 new_symbol -- make a symbol table entry for a new symbol
2835 static struct symbol *new_symbol (struct dieinfo *dip,
2836 struct objfile *objfile)
2840 Given a pointer to a DWARF information entry, figure out if we need
2841 to make a symbol table entry for it, and if so, create a new entry
2842 and return a pointer to it.
2845 static struct symbol *
2846 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2848 struct symbol *sym = NULL;
2850 if (dip->at_name != NULL)
2852 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
2853 sizeof (struct symbol));
2854 OBJSTAT (objfile, n_syms++);
2855 memset (sym, 0, sizeof (struct symbol));
2856 /* default assumptions */
2857 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2858 SYMBOL_CLASS (sym) = LOC_STATIC;
2859 SYMBOL_TYPE (sym) = decode_die_type (dip);
2861 /* If this symbol is from a C++ compilation, then attempt to cache the
2862 demangled form for future reference. This is a typical time versus
2863 space tradeoff, that was decided in favor of time because it sped up
2864 C++ symbol lookups by a factor of about 20. */
2866 SYMBOL_LANGUAGE (sym) = cu_language;
2867 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2868 switch (dip->die_tag)
2871 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2872 SYMBOL_CLASS (sym) = LOC_LABEL;
2874 case TAG_global_subroutine:
2875 case TAG_subroutine:
2876 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2877 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2878 if (dip->at_prototyped)
2879 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2880 SYMBOL_CLASS (sym) = LOC_BLOCK;
2881 if (dip->die_tag == TAG_global_subroutine)
2883 add_symbol_to_list (sym, &global_symbols);
2887 add_symbol_to_list (sym, list_in_scope);
2890 case TAG_global_variable:
2891 if (dip->at_location != NULL)
2893 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2894 add_symbol_to_list (sym, &global_symbols);
2895 SYMBOL_CLASS (sym) = LOC_STATIC;
2896 SYMBOL_VALUE (sym) += baseaddr;
2899 case TAG_local_variable:
2900 if (dip->at_location != NULL)
2902 int loc = locval (dip);
2903 if (dip->optimized_out)
2905 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2907 else if (dip->isreg)
2909 SYMBOL_CLASS (sym) = LOC_REGISTER;
2911 else if (dip->offreg)
2913 SYMBOL_CLASS (sym) = LOC_BASEREG;
2914 SYMBOL_BASEREG (sym) = dip->basereg;
2918 SYMBOL_CLASS (sym) = LOC_STATIC;
2919 SYMBOL_VALUE (sym) += baseaddr;
2921 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2923 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2924 which may store to a bigger location than SYMBOL_VALUE. */
2925 SYMBOL_VALUE_ADDRESS (sym) = loc;
2929 SYMBOL_VALUE (sym) = loc;
2931 add_symbol_to_list (sym, list_in_scope);
2934 case TAG_formal_parameter:
2935 if (dip->at_location != NULL)
2937 SYMBOL_VALUE (sym) = locval (dip);
2939 add_symbol_to_list (sym, list_in_scope);
2942 SYMBOL_CLASS (sym) = LOC_REGPARM;
2944 else if (dip->offreg)
2946 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2947 SYMBOL_BASEREG (sym) = dip->basereg;
2951 SYMBOL_CLASS (sym) = LOC_ARG;
2954 case TAG_unspecified_parameters:
2955 /* From varargs functions; gdb doesn't seem to have any interest in
2956 this information, so just ignore it for now. (FIXME?) */
2958 case TAG_class_type:
2959 case TAG_structure_type:
2960 case TAG_union_type:
2961 case TAG_enumeration_type:
2962 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2963 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
2964 add_symbol_to_list (sym, list_in_scope);
2967 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2968 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2969 add_symbol_to_list (sym, list_in_scope);
2972 /* Not a tag we recognize. Hopefully we aren't processing trash
2973 data, but since we must specifically ignore things we don't
2974 recognize, there is nothing else we should do at this point. */
2985 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2989 static void synthesize_typedef (struct dieinfo *dip,
2990 struct objfile *objfile,
2995 Given a pointer to a DWARF information entry, synthesize a typedef
2996 for the name in the DIE, using the specified type.
2998 This is used for C++ class, structs, unions, and enumerations to
2999 set up the tag name as a type.
3004 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3007 struct symbol *sym = NULL;
3009 if (dip->at_name != NULL)
3011 sym = (struct symbol *)
3012 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3013 OBJSTAT (objfile, n_syms++);
3014 memset (sym, 0, sizeof (struct symbol));
3015 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
3016 &objfile->objfile_obstack);
3017 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3018 SYMBOL_TYPE (sym) = type;
3019 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3020 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3021 add_symbol_to_list (sym, list_in_scope);
3029 decode_mod_fund_type -- decode a modified fundamental type
3033 static struct type *decode_mod_fund_type (char *typedata)
3037 Decode a block of data containing a modified fundamental
3038 type specification. TYPEDATA is a pointer to the block,
3039 which starts with a length containing the size of the rest
3040 of the block. At the end of the block is a fundmental type
3041 code value that gives the fundamental type. Everything
3042 in between are type modifiers.
3044 We simply compute the number of modifiers and call the general
3045 function decode_modified_type to do the actual work.
3048 static struct type *
3049 decode_mod_fund_type (char *typedata)
3051 struct type *typep = NULL;
3052 unsigned short modcount;
3055 /* Get the total size of the block, exclusive of the size itself */
3057 nbytes = attribute_size (AT_mod_fund_type);
3058 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3061 /* Deduct the size of the fundamental type bytes at the end of the block. */
3063 modcount -= attribute_size (AT_fund_type);
3065 /* Now do the actual decoding */
3067 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3075 decode_mod_u_d_type -- decode a modified user defined type
3079 static struct type *decode_mod_u_d_type (char *typedata)
3083 Decode a block of data containing a modified user defined
3084 type specification. TYPEDATA is a pointer to the block,
3085 which consists of a two byte length, containing the size
3086 of the rest of the block. At the end of the block is a
3087 four byte value that gives a reference to a user defined type.
3088 Everything in between are type modifiers.
3090 We simply compute the number of modifiers and call the general
3091 function decode_modified_type to do the actual work.
3094 static struct type *
3095 decode_mod_u_d_type (char *typedata)
3097 struct type *typep = NULL;
3098 unsigned short modcount;
3101 /* Get the total size of the block, exclusive of the size itself */
3103 nbytes = attribute_size (AT_mod_u_d_type);
3104 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3107 /* Deduct the size of the reference type bytes at the end of the block. */
3109 modcount -= attribute_size (AT_user_def_type);
3111 /* Now do the actual decoding */
3113 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3121 decode_modified_type -- decode modified user or fundamental type
3125 static struct type *decode_modified_type (char *modifiers,
3126 unsigned short modcount, int mtype)
3130 Decode a modified type, either a modified fundamental type or
3131 a modified user defined type. MODIFIERS is a pointer to the
3132 block of bytes that define MODCOUNT modifiers. Immediately
3133 following the last modifier is a short containing the fundamental
3134 type or a long containing the reference to the user defined
3135 type. Which one is determined by MTYPE, which is either
3136 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3137 type we are generating.
3139 We call ourself recursively to generate each modified type,`
3140 until MODCOUNT reaches zero, at which point we have consumed
3141 all the modifiers and generate either the fundamental type or
3142 user defined type. When the recursion unwinds, each modifier
3143 is applied in turn to generate the full modified type.
3147 If we find a modifier that we don't recognize, and it is not one
3148 of those reserved for application specific use, then we issue a
3149 warning and simply ignore the modifier.
3153 We currently ignore MOD_const and MOD_volatile. (FIXME)
3157 static struct type *
3158 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3160 struct type *typep = NULL;
3161 unsigned short fundtype;
3170 case AT_mod_fund_type:
3171 nbytes = attribute_size (AT_fund_type);
3172 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3174 typep = decode_fund_type (fundtype);
3176 case AT_mod_u_d_type:
3177 nbytes = attribute_size (AT_user_def_type);
3178 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3180 typep = lookup_utype (die_ref);
3183 typep = alloc_utype (die_ref, NULL);
3187 complaint (&symfile_complaints,
3188 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3189 DIE_ID, DIE_NAME, mtype);
3190 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3196 modifier = *modifiers++;
3197 typep = decode_modified_type (modifiers, --modcount, mtype);
3200 case MOD_pointer_to:
3201 typep = lookup_pointer_type (typep);
3203 case MOD_reference_to:
3204 typep = lookup_reference_type (typep);
3207 complaint (&symfile_complaints,
3208 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3209 DIE_NAME); /* FIXME */
3212 complaint (&symfile_complaints,
3213 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3214 DIE_ID, DIE_NAME); /* FIXME */
3217 if (!(MOD_lo_user <= (unsigned char) modifier))
3219 /* This part of the test would always be true, and it triggers a compiler
3221 && (unsigned char) modifier <= MOD_hi_user))
3224 complaint (&symfile_complaints,
3225 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3226 DIE_NAME, modifier);
3238 decode_fund_type -- translate basic DWARF type to gdb base type
3242 Given an integer that is one of the fundamental DWARF types,
3243 translate it to one of the basic internal gdb types and return
3244 a pointer to the appropriate gdb type (a "struct type *").
3248 For robustness, if we are asked to translate a fundamental
3249 type that we are unprepared to deal with, we return int so
3250 callers can always depend upon a valid type being returned,
3251 and so gdb may at least do something reasonable by default.
3252 If the type is not in the range of those types defined as
3253 application specific types, we also issue a warning.
3256 static struct type *
3257 decode_fund_type (unsigned int fundtype)
3259 struct type *typep = NULL;
3265 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3268 case FT_boolean: /* Was FT_set in AT&T version */
3269 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3272 case FT_pointer: /* (void *) */
3273 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3274 typep = lookup_pointer_type (typep);
3278 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3281 case FT_signed_char:
3282 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3285 case FT_unsigned_char:
3286 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3290 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3293 case FT_signed_short:
3294 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3297 case FT_unsigned_short:
3298 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3302 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3305 case FT_signed_integer:
3306 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3309 case FT_unsigned_integer:
3310 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3314 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3317 case FT_signed_long:
3318 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3321 case FT_unsigned_long:
3322 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3326 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3329 case FT_signed_long_long:
3330 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3333 case FT_unsigned_long_long:
3334 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3338 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3341 case FT_dbl_prec_float:
3342 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3345 case FT_ext_prec_float:
3346 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3350 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3353 case FT_dbl_prec_complex:
3354 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3357 case FT_ext_prec_complex:
3358 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3365 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3366 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3368 complaint (&symfile_complaints,
3369 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3370 DIE_ID, DIE_NAME, fundtype);
3381 create_name -- allocate a fresh copy of a string on an obstack
3385 Given a pointer to a string and a pointer to an obstack, allocates
3386 a fresh copy of the string on the specified obstack.
3391 create_name (char *name, struct obstack *obstackp)
3396 length = strlen (name) + 1;
3397 newname = (char *) obstack_alloc (obstackp, length);
3398 strcpy (newname, name);
3406 basicdieinfo -- extract the minimal die info from raw die data
3410 void basicdieinfo (char *diep, struct dieinfo *dip,
3411 struct objfile *objfile)
3415 Given a pointer to raw DIE data, and a pointer to an instance of a
3416 die info structure, this function extracts the basic information
3417 from the DIE data required to continue processing this DIE, along
3418 with some bookkeeping information about the DIE.
3420 The information we absolutely must have includes the DIE tag,
3421 and the DIE length. If we need the sibling reference, then we
3422 will have to call completedieinfo() to process all the remaining
3425 Note that since there is no guarantee that the data is properly
3426 aligned in memory for the type of access required (indirection
3427 through anything other than a char pointer), and there is no
3428 guarantee that it is in the same byte order as the gdb host,
3429 we call a function which deals with both alignment and byte
3430 swapping issues. Possibly inefficient, but quite portable.
3432 We also take care of some other basic things at this point, such
3433 as ensuring that the instance of the die info structure starts
3434 out completely zero'd and that curdie is initialized for use
3435 in error reporting if we have a problem with the current die.
3439 All DIE's must have at least a valid length, thus the minimum
3440 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3441 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3442 are forced to be TAG_padding DIES.
3444 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3445 that if a padding DIE is used for alignment and the amount needed is
3446 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3447 enough to align to the next alignment boundry.
3449 We do some basic sanity checking here, such as verifying that the
3450 length of the die would not cause it to overrun the recorded end of
3451 the buffer holding the DIE info. If we find a DIE that is either
3452 too small or too large, we force it's length to zero which should
3453 cause the caller to take appropriate action.
3457 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3460 memset (dip, 0, sizeof (struct dieinfo));
3462 dip->die_ref = dbroff + (diep - dbbase);
3463 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3465 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3466 ((diep + dip->die_length) > (dbbase + dbsize)))
3468 complaint (&symfile_complaints,
3469 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3470 DIE_ID, DIE_NAME, dip->die_length);
3471 dip->die_length = 0;
3473 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3475 dip->die_tag = TAG_padding;
3479 diep += SIZEOF_DIE_LENGTH;
3480 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3489 completedieinfo -- finish reading the information for a given DIE
3493 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3497 Given a pointer to an already partially initialized die info structure,
3498 scan the raw DIE data and finish filling in the die info structure
3499 from the various attributes found.
3501 Note that since there is no guarantee that the data is properly
3502 aligned in memory for the type of access required (indirection
3503 through anything other than a char pointer), and there is no
3504 guarantee that it is in the same byte order as the gdb host,
3505 we call a function which deals with both alignment and byte
3506 swapping issues. Possibly inefficient, but quite portable.
3510 Each time we are called, we increment the diecount variable, which
3511 keeps an approximate count of the number of dies processed for
3512 each compilation unit. This information is presented to the user
3513 if the info_verbose flag is set.
3518 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3520 char *diep; /* Current pointer into raw DIE data */
3521 char *end; /* Terminate DIE scan here */
3522 unsigned short attr; /* Current attribute being scanned */
3523 unsigned short form; /* Form of the attribute */
3524 int nbytes; /* Size of next field to read */
3528 end = diep + dip->die_length;
3529 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3532 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3533 diep += SIZEOF_ATTRIBUTE;
3534 nbytes = attribute_size (attr);
3537 complaint (&symfile_complaints,
3538 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3546 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3550 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3554 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3558 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3562 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3564 dip->has_at_stmt_list = 1;
3567 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3569 dip->at_low_pc += baseaddr;
3570 dip->has_at_low_pc = 1;
3573 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3575 dip->at_high_pc += baseaddr;
3578 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3581 case AT_user_def_type:
3582 dip->at_user_def_type = target_to_host (diep, nbytes,
3583 GET_UNSIGNED, objfile);
3586 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3588 dip->has_at_byte_size = 1;
3591 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3595 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3599 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3603 dip->at_location = diep;
3605 case AT_mod_fund_type:
3606 dip->at_mod_fund_type = diep;
3608 case AT_subscr_data:
3609 dip->at_subscr_data = diep;
3611 case AT_mod_u_d_type:
3612 dip->at_mod_u_d_type = diep;
3614 case AT_element_list:
3615 dip->at_element_list = diep;
3616 dip->short_element_list = 0;
3618 case AT_short_element_list:
3619 dip->at_element_list = diep;
3620 dip->short_element_list = 1;
3622 case AT_discr_value:
3623 dip->at_discr_value = diep;
3625 case AT_string_length:
3626 dip->at_string_length = diep;
3629 dip->at_name = diep;
3632 /* For now, ignore any "hostname:" portion, since gdb doesn't
3633 know how to deal with it. (FIXME). */
3634 dip->at_comp_dir = strrchr (diep, ':');
3635 if (dip->at_comp_dir != NULL)
3641 dip->at_comp_dir = diep;
3645 dip->at_producer = diep;
3647 case AT_start_scope:
3648 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 case AT_stride_size:
3652 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 dip->at_prototyped = diep;
3663 /* Found an attribute that we are unprepared to handle. However
3664 it is specifically one of the design goals of DWARF that
3665 consumers should ignore unknown attributes. As long as the
3666 form is one that we recognize (so we know how to skip it),
3667 we can just ignore the unknown attribute. */
3670 form = FORM_FROM_ATTR (attr);
3684 diep += TARGET_FT_POINTER_SIZE (objfile);
3687 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3690 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3693 diep += strlen (diep) + 1;
3696 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3707 target_to_host -- swap in target data to host
3711 target_to_host (char *from, int nbytes, int signextend,
3712 struct objfile *objfile)
3716 Given pointer to data in target format in FROM, a byte count for
3717 the size of the data in NBYTES, a flag indicating whether or not
3718 the data is signed in SIGNEXTEND, and a pointer to the current
3719 objfile in OBJFILE, convert the data to host format and return
3720 the converted value.
3724 FIXME: If we read data that is known to be signed, and expect to
3725 use it as signed data, then we need to explicitly sign extend the
3726 result until the bfd library is able to do this for us.
3728 FIXME: Would a 32 bit target ever need an 8 byte result?
3733 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3734 struct objfile *objfile)
3741 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3744 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3747 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3750 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3753 complaint (&symfile_complaints,
3754 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3755 DIE_ID, DIE_NAME, nbytes);
3766 attribute_size -- compute size of data for a DWARF attribute
3770 static int attribute_size (unsigned int attr)
3774 Given a DWARF attribute in ATTR, compute the size of the first
3775 piece of data associated with this attribute and return that
3778 Returns -1 for unrecognized attributes.
3783 attribute_size (unsigned int attr)
3785 int nbytes; /* Size of next data for this attribute */
3786 unsigned short form; /* Form of the attribute */
3788 form = FORM_FROM_ATTR (attr);
3791 case FORM_STRING: /* A variable length field is next */
3794 case FORM_DATA2: /* Next 2 byte field is the data itself */
3795 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3798 case FORM_DATA4: /* Next 4 byte field is the data itself */
3799 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3800 case FORM_REF: /* Next 4 byte field is a DIE offset */
3803 case FORM_DATA8: /* Next 8 byte field is the data itself */
3806 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3807 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3810 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);