1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
47 #include "elf/dwarf.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
52 #include "complaints.h"
55 #include "gdb_string.h"
57 /* Some macros to provide DIE info for complaints. */
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
62 /* Complaints that can be issued during DWARF debug info reading. */
64 struct complaint no_bfd_get_N =
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
69 struct complaint malformed_die =
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
74 struct complaint bad_die_ref =
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
79 struct complaint unknown_attribute_form =
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
84 struct complaint unknown_attribute_length =
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
89 struct complaint unexpected_fund_type =
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
94 struct complaint unknown_type_modifier =
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
99 struct complaint volatile_ignored =
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
104 struct complaint const_ignored =
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
109 struct complaint botched_modified_type =
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
114 struct complaint op_deref2 =
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
119 struct complaint op_deref4 =
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
124 struct complaint basereg_not_handled =
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
129 struct complaint dup_user_type_allocation =
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
134 struct complaint dup_user_type_definition =
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
139 struct complaint missing_tag =
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
144 struct complaint bad_array_element_type =
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
149 struct complaint subscript_data_items =
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
154 struct complaint unhandled_array_subscript_format =
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
159 struct complaint unknown_array_subscript_format =
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
164 struct complaint not_row_major =
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
169 struct complaint missing_at_name =
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
177 #define GCC_PRODUCER "GNU C "
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
185 #define LCC_PRODUCER "NCR C/C++"
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
192 /* Flags to target_to_host() that tell whether or not the data object is
193 expected to be signed. Used, for example, when fetching a signed
194 integer in the target environment which is used as a signed integer
195 in the host environment, and the two environments have different sized
196 ints. In this case, *somebody* has to sign extend the smaller sized
199 #define GET_UNSIGNED 0 /* No sign extension required */
200 #define GET_SIGNED 1 /* Sign extension required */
202 /* Defines for things which are specified in the document "DWARF Debugging
203 Information Format" published by UNIX International, Programming Languages
204 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
206 #define SIZEOF_DIE_LENGTH 4
207 #define SIZEOF_DIE_TAG 2
208 #define SIZEOF_ATTRIBUTE 2
209 #define SIZEOF_FORMAT_SPECIFIER 1
210 #define SIZEOF_FMT_FT 2
211 #define SIZEOF_LINETBL_LENGTH 4
212 #define SIZEOF_LINETBL_LINENO 4
213 #define SIZEOF_LINETBL_STMT 2
214 #define SIZEOF_LINETBL_DELTA 4
215 #define SIZEOF_LOC_ATOM_CODE 1
217 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
219 /* Macros that return the sizes of various types of data in the target
222 FIXME: Currently these are just compile time constants (as they are in
223 other parts of gdb as well). They need to be able to get the right size
224 either from the bfd or possibly from the DWARF info. It would be nice if
225 the DWARF producer inserted DIES that describe the fundamental types in
226 the target environment into the DWARF info, similar to the way dbx stabs
227 producers produce information about their fundamental types. */
229 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
230 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
232 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
233 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
234 However, the Issue 2 DWARF specification from AT&T defines it as
235 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
236 For backwards compatibility with the AT&T compiler produced executables
237 we define AT_short_element_list for this variant. */
239 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
241 /* External variables referenced. */
243 extern int info_verbose; /* From main.c; nonzero => verbose */
244 extern char *warning_pre_print; /* From utils.c */
246 /* The DWARF debugging information consists of two major pieces,
247 one is a block of DWARF Information Entries (DIE's) and the other
248 is a line number table. The "struct dieinfo" structure contains
249 the information for a single DIE, the one currently being processed.
251 In order to make it easier to randomly access the attribute fields
252 of the current DIE, which are specifically unordered within the DIE,
253 each DIE is scanned and an instance of the "struct dieinfo"
254 structure is initialized.
256 Initialization is done in two levels. The first, done by basicdieinfo(),
257 just initializes those fields that are vital to deciding whether or not
258 to use this DIE, how to skip past it, etc. The second, done by the
259 function completedieinfo(), fills in the rest of the information.
261 Attributes which have block forms are not interpreted at the time
262 the DIE is scanned, instead we just save pointers to the start
263 of their value fields.
265 Some fields have a flag <name>_p that is set when the value of the
266 field is valid (I.E. we found a matching attribute in the DIE). Since
267 we may want to test for the presence of some attributes in the DIE,
268 such as AT_low_pc, without restricting the values of the field,
269 we need someway to note that we found such an attribute.
277 char *die; /* Pointer to the raw DIE data */
278 unsigned long die_length; /* Length of the raw DIE data */
279 DIE_REF die_ref; /* Offset of this DIE */
280 unsigned short die_tag; /* Tag for this DIE */
281 unsigned long at_padding;
282 unsigned long at_sibling;
285 unsigned short at_fund_type;
286 BLOCK *at_mod_fund_type;
287 unsigned long at_user_def_type;
288 BLOCK *at_mod_u_d_type;
289 unsigned short at_ordering;
290 BLOCK *at_subscr_data;
291 unsigned long at_byte_size;
292 unsigned short at_bit_offset;
293 unsigned long at_bit_size;
294 BLOCK *at_element_list;
295 unsigned long at_stmt_list;
297 CORE_ADDR at_high_pc;
298 unsigned long at_language;
299 unsigned long at_member;
300 unsigned long at_discr;
301 BLOCK *at_discr_value;
302 BLOCK *at_string_length;
305 unsigned long at_start_scope;
306 unsigned long at_stride_size;
307 unsigned long at_src_info;
309 unsigned int has_at_low_pc:1;
310 unsigned int has_at_stmt_list:1;
311 unsigned int has_at_byte_size:1;
312 unsigned int short_element_list:1;
314 /* Kludge to identify register variables */
318 /* Kludge to identify optimized out variables */
320 unsigned int optimized_out;
322 /* Kludge to identify basereg references.
323 Nonzero if we have an offset relative to a basereg. */
327 /* Kludge to identify which base register is it relative to. */
329 unsigned int basereg;
332 static int diecount; /* Approximate count of dies for compilation unit */
333 static struct dieinfo *curdie; /* For warnings and such */
335 static char *dbbase; /* Base pointer to dwarf info */
336 static int dbsize; /* Size of dwarf info in bytes */
337 static int dbroff; /* Relative offset from start of .debug section */
338 static char *lnbase; /* Base pointer to line section */
340 /* This value is added to each symbol value. FIXME: Generalize to
341 the section_offsets structure used by dbxread (once this is done,
342 pass the appropriate section number to end_symtab). */
343 static CORE_ADDR baseaddr; /* Add to each symbol value */
345 /* The section offsets used in the current psymtab or symtab. FIXME,
346 only used to pass one value (baseaddr) at the moment. */
347 static struct section_offsets *base_section_offsets;
349 /* We put a pointer to this structure in the read_symtab_private field
354 /* Always the absolute file offset to the start of the ".debug"
355 section for the file containing the DIE's being accessed. */
357 /* Relative offset from the start of the ".debug" section to the
358 first DIE to be accessed. When building the partial symbol
359 table, this value will be zero since we are accessing the
360 entire ".debug" section. When expanding a partial symbol
361 table entry, this value will be the offset to the first
362 DIE for the compilation unit containing the symbol that
363 triggers the expansion. */
365 /* The size of the chunk of DIE's being examined, in bytes. */
367 /* The absolute file offset to the line table fragment. Ignored
368 when building partial symbol tables, but used when expanding
369 them, and contains the absolute file offset to the fragment
370 of the ".line" section containing the line numbers for the
371 current compilation unit. */
375 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
376 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
377 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
378 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
380 /* The generic symbol table building routines have separate lists for
381 file scope symbols and all all other scopes (local scopes). So
382 we need to select the right one to pass to add_symbol_to_list().
383 We do it by keeping a pointer to the correct list in list_in_scope.
385 FIXME: The original dwarf code just treated the file scope as the first
386 local scope, and all other local scopes as nested local scopes, and worked
387 fine. Check to see if we really need to distinguish these in buildsym.c */
389 struct pending **list_in_scope = &file_symbols;
391 /* DIES which have user defined types or modified user defined types refer to
392 other DIES for the type information. Thus we need to associate the offset
393 of a DIE for a user defined type with a pointer to the type information.
395 Originally this was done using a simple but expensive algorithm, with an
396 array of unsorted structures, each containing an offset/type-pointer pair.
397 This array was scanned linearly each time a lookup was done. The result
398 was that gdb was spending over half it's startup time munging through this
399 array of pointers looking for a structure that had the right offset member.
401 The second attempt used the same array of structures, but the array was
402 sorted using qsort each time a new offset/type was recorded, and a binary
403 search was used to find the type pointer for a given DIE offset. This was
404 even slower, due to the overhead of sorting the array each time a new
405 offset/type pair was entered.
407 The third attempt uses a fixed size array of type pointers, indexed by a
408 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
409 we can divide any DIE offset by 4 to obtain a unique index into this fixed
410 size array. Since each element is a 4 byte pointer, it takes exactly as
411 much memory to hold this array as to hold the DWARF info for a given
412 compilation unit. But it gets freed as soon as we are done with it.
413 This has worked well in practice, as a reasonable tradeoff between memory
414 consumption and speed, without having to resort to much more complicated
417 static struct type **utypes; /* Pointer to array of user type pointers */
418 static int numutypes; /* Max number of user type pointers */
420 /* Maintain an array of referenced fundamental types for the current
421 compilation unit being read. For DWARF version 1, we have to construct
422 the fundamental types on the fly, since no information about the
423 fundamental types is supplied. Each such fundamental type is created by
424 calling a language dependent routine to create the type, and then a
425 pointer to that type is then placed in the array at the index specified
426 by it's FT_<TYPENAME> value. The array has a fixed size set by the
427 FT_NUM_MEMBERS compile time constant, which is the number of predefined
428 fundamental types gdb knows how to construct. */
430 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
432 /* Record the language for the compilation unit which is currently being
433 processed. We know it once we have seen the TAG_compile_unit DIE,
434 and we need it while processing the DIE's for that compilation unit.
435 It is eventually saved in the symtab structure, but we don't finalize
436 the symtab struct until we have processed all the DIE's for the
437 compilation unit. We also need to get and save a pointer to the
438 language struct for this language, so we can call the language
439 dependent routines for doing things such as creating fundamental
442 static enum language cu_language;
443 static const struct language_defn *cu_language_defn;
445 /* Forward declarations of static functions so we don't have to worry
446 about ordering within this file. */
448 static void free_utypes (PTR);
450 static int attribute_size (unsigned int);
452 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
454 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
456 static void handle_producer (char *);
459 read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
462 read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
465 read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
467 static void scan_partial_symbols (char *, char *, struct objfile *);
470 scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
472 static void add_partial_symbol (struct dieinfo *, struct objfile *);
474 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
476 static void completedieinfo (struct dieinfo *, struct objfile *);
478 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
480 static void psymtab_to_symtab_1 (struct partial_symtab *);
482 static void read_ofile_symtab (struct partial_symtab *);
484 static void process_dies (char *, char *, struct objfile *);
487 read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
489 static struct type *decode_array_element_type (char *);
491 static struct type *decode_subscript_data_item (char *, char *);
493 static void dwarf_read_array_type (struct dieinfo *);
495 static void read_tag_pointer_type (struct dieinfo *dip);
497 static void read_tag_string_type (struct dieinfo *dip);
499 static void read_subroutine_type (struct dieinfo *, char *, char *);
502 read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
504 static struct type *struct_type (struct dieinfo *, char *, char *,
507 static struct type *enum_type (struct dieinfo *, struct objfile *);
509 static void decode_line_numbers (char *);
511 static struct type *decode_die_type (struct dieinfo *);
513 static struct type *decode_mod_fund_type (char *);
515 static struct type *decode_mod_u_d_type (char *);
517 static struct type *decode_modified_type (char *, unsigned int, int);
519 static struct type *decode_fund_type (unsigned int);
521 static char *create_name (char *, struct obstack *);
523 static struct type *lookup_utype (DIE_REF);
525 static struct type *alloc_utype (DIE_REF, struct type *);
527 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
530 synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
532 static int locval (struct dieinfo *);
534 static void set_cu_language (struct dieinfo *);
536 static struct type *dwarf_fundamental_type (struct objfile *, int);
543 dwarf_fundamental_type -- lookup or create a fundamental type
548 dwarf_fundamental_type (struct objfile *objfile, int typeid)
552 DWARF version 1 doesn't supply any fundamental type information,
553 so gdb has to construct such types. It has a fixed number of
554 fundamental types that it knows how to construct, which is the
555 union of all types that it knows how to construct for all languages
556 that it knows about. These are enumerated in gdbtypes.h.
558 As an example, assume we find a DIE that references a DWARF
559 fundamental type of FT_integer. We first look in the ftypes
560 array to see if we already have such a type, indexed by the
561 gdb internal value of FT_INTEGER. If so, we simply return a
562 pointer to that type. If not, then we ask an appropriate
563 language dependent routine to create a type FT_INTEGER, using
564 defaults reasonable for the current target machine, and install
565 that type in ftypes for future reference.
569 Pointer to a fundamental type.
574 dwarf_fundamental_type (struct objfile *objfile, int typeid)
576 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
578 error ("internal error - invalid fundamental type id %d", typeid);
581 /* Look for this particular type in the fundamental type vector. If one is
582 not found, create and install one appropriate for the current language
583 and the current target machine. */
585 if (ftypes[typeid] == NULL)
587 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
590 return (ftypes[typeid]);
597 set_cu_language -- set local copy of language for compilation unit
602 set_cu_language (struct dieinfo *dip)
606 Decode the language attribute for a compilation unit DIE and
607 remember what the language was. We use this at various times
608 when processing DIE's for a given compilation unit.
617 set_cu_language (struct dieinfo *dip)
619 switch (dip->at_language)
623 cu_language = language_c;
625 case LANG_C_PLUS_PLUS:
626 cu_language = language_cplus;
629 cu_language = language_chill;
632 cu_language = language_m2;
636 cu_language = language_fortran;
642 /* We don't know anything special about these yet. */
643 cu_language = language_unknown;
646 /* If no at_language, try to deduce one from the filename */
647 cu_language = deduce_language_from_filename (dip->at_name);
650 cu_language_defn = language_def (cu_language);
657 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
661 void dwarf_build_psymtabs (struct objfile *objfile,
662 int mainline, file_ptr dbfoff, unsigned int dbfsize,
663 file_ptr lnoffset, unsigned int lnsize)
667 This function is called upon to build partial symtabs from files
668 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
670 It is passed a bfd* containing the DIES
671 and line number information, the corresponding filename for that
672 file, a base address for relocating the symbols, a flag indicating
673 whether or not this debugging information is from a "main symbol
674 table" rather than a shared library or dynamically linked file,
675 and file offset/size pairs for the DIE information and line number
685 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
686 unsigned int dbfsize, file_ptr lnoffset,
689 bfd *abfd = objfile->obfd;
690 struct cleanup *back_to;
692 current_objfile = objfile;
694 dbbase = xmalloc (dbsize);
696 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
697 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
700 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
702 back_to = make_cleanup (xfree, dbbase);
704 /* If we are reinitializing, or if we have never loaded syms yet, init.
705 Since we have no idea how many DIES we are looking at, we just guess
706 some arbitrary value. */
708 if (mainline || objfile->global_psymbols.size == 0 ||
709 objfile->static_psymbols.size == 0)
711 init_psymbol_list (objfile, 1024);
714 /* Save the relocation factor where everybody can see it. */
716 base_section_offsets = objfile->section_offsets;
717 baseaddr = ANOFFSET (objfile->section_offsets, 0);
719 /* Follow the compilation unit sibling chain, building a partial symbol
720 table entry for each one. Save enough information about each compilation
721 unit to locate the full DWARF information later. */
723 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
725 do_cleanups (back_to);
726 current_objfile = NULL;
733 read_lexical_block_scope -- process all dies in a lexical block
737 static void read_lexical_block_scope (struct dieinfo *dip,
738 char *thisdie, char *enddie)
742 Process all the DIES contained within a lexical block scope.
743 Start a new scope, process the dies, and then close the scope.
748 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
749 struct objfile *objfile)
751 register struct context_stack *new;
753 push_context (0, dip->at_low_pc);
754 process_dies (thisdie + dip->die_length, enddie, objfile);
755 new = pop_context ();
756 if (local_symbols != NULL)
758 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
759 dip->at_high_pc, objfile);
761 local_symbols = new->locals;
768 lookup_utype -- look up a user defined type from die reference
772 static type *lookup_utype (DIE_REF die_ref)
776 Given a DIE reference, lookup the user defined type associated with
777 that DIE, if it has been registered already. If not registered, then
778 return NULL. Alloc_utype() can be called to register an empty
779 type for this reference, which will be filled in later when the
780 actual referenced DIE is processed.
784 lookup_utype (DIE_REF die_ref)
786 struct type *type = NULL;
789 utypeidx = (die_ref - dbroff) / 4;
790 if ((utypeidx < 0) || (utypeidx >= numutypes))
792 complain (&bad_die_ref, DIE_ID, DIE_NAME);
796 type = *(utypes + utypeidx);
806 alloc_utype -- add a user defined type for die reference
810 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
814 Given a die reference DIE_REF, and a possible pointer to a user
815 defined type UTYPEP, register that this reference has a user
816 defined type and either use the specified type in UTYPEP or
817 make a new empty type that will be filled in later.
819 We should only be called after calling lookup_utype() to verify that
820 there is not currently a type registered for DIE_REF.
824 alloc_utype (DIE_REF die_ref, struct type *utypep)
829 utypeidx = (die_ref - dbroff) / 4;
830 typep = utypes + utypeidx;
831 if ((utypeidx < 0) || (utypeidx >= numutypes))
833 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
834 complain (&bad_die_ref, DIE_ID, DIE_NAME);
836 else if (*typep != NULL)
839 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
845 utypep = alloc_type (current_objfile);
856 free_utypes -- free the utypes array and reset pointer & count
860 static void free_utypes (PTR dummy)
864 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
865 and set numutypes back to zero. This ensures that the utypes does not get
866 referenced after being freed.
870 free_utypes (PTR dummy)
882 decode_die_type -- return a type for a specified die
886 static struct type *decode_die_type (struct dieinfo *dip)
890 Given a pointer to a die information structure DIP, decode the
891 type of the die and return a pointer to the decoded type. All
892 dies without specific types default to type int.
896 decode_die_type (struct dieinfo *dip)
898 struct type *type = NULL;
900 if (dip->at_fund_type != 0)
902 type = decode_fund_type (dip->at_fund_type);
904 else if (dip->at_mod_fund_type != NULL)
906 type = decode_mod_fund_type (dip->at_mod_fund_type);
908 else if (dip->at_user_def_type)
910 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
912 type = alloc_utype (dip->at_user_def_type, NULL);
915 else if (dip->at_mod_u_d_type)
917 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
921 type = dwarf_fundamental_type (current_objfile, FT_VOID);
930 struct_type -- compute and return the type for a struct or union
934 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
935 char *enddie, struct objfile *objfile)
939 Given pointer to a die information structure for a die which
940 defines a union or structure (and MUST define one or the other),
941 and pointers to the raw die data that define the range of dies which
942 define the members, compute and return the user defined type for the
947 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
948 struct objfile *objfile)
953 struct nextfield *next;
956 struct nextfield *list = NULL;
957 struct nextfield *new;
964 if ((type = lookup_utype (dip->die_ref)) == NULL)
966 /* No forward references created an empty type, so install one now */
967 type = alloc_utype (dip->die_ref, NULL);
969 INIT_CPLUS_SPECIFIC (type);
970 switch (dip->die_tag)
973 TYPE_CODE (type) = TYPE_CODE_CLASS;
975 case TAG_structure_type:
976 TYPE_CODE (type) = TYPE_CODE_STRUCT;
979 TYPE_CODE (type) = TYPE_CODE_UNION;
982 /* Should never happen */
983 TYPE_CODE (type) = TYPE_CODE_UNDEF;
984 complain (&missing_tag, DIE_ID, DIE_NAME);
987 /* Some compilers try to be helpful by inventing "fake" names for
988 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
989 Thanks, but no thanks... */
990 if (dip->at_name != NULL
991 && *dip->at_name != '~'
992 && *dip->at_name != '.')
994 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
995 "", "", dip->at_name);
997 /* Use whatever size is known. Zero is a valid size. We might however
998 wish to check has_at_byte_size to make sure that some byte size was
999 given explicitly, but DWARF doesn't specify that explicit sizes of
1000 zero have to present, so complaining about missing sizes should
1001 probably not be the default. */
1002 TYPE_LENGTH (type) = dip->at_byte_size;
1003 thisdie += dip->die_length;
1004 while (thisdie < enddie)
1006 basicdieinfo (&mbr, thisdie, objfile);
1007 completedieinfo (&mbr, objfile);
1008 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1012 else if (mbr.at_sibling != 0)
1014 nextdie = dbbase + mbr.at_sibling - dbroff;
1018 nextdie = thisdie + mbr.die_length;
1020 switch (mbr.die_tag)
1023 /* Get space to record the next field's data. */
1024 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1027 /* Save the data. */
1029 obsavestring (mbr.at_name, strlen (mbr.at_name),
1030 &objfile->type_obstack);
1031 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1032 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1033 /* Handle bit fields. */
1034 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1035 if (BITS_BIG_ENDIAN)
1037 /* For big endian bits, the at_bit_offset gives the
1038 additional bit offset from the MSB of the containing
1039 anonymous object to the MSB of the field. We don't
1040 have to do anything special since we don't need to
1041 know the size of the anonymous object. */
1042 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1046 /* For little endian bits, we need to have a non-zero
1047 at_bit_size, so that we know we are in fact dealing
1048 with a bitfield. Compute the bit offset to the MSB
1049 of the anonymous object, subtract off the number of
1050 bits from the MSB of the field to the MSB of the
1051 object, and then subtract off the number of bits of
1052 the field itself. The result is the bit offset of
1053 the LSB of the field. */
1054 if (mbr.at_bit_size > 0)
1056 if (mbr.has_at_byte_size)
1058 /* The size of the anonymous object containing
1059 the bit field is explicit, so use the
1060 indicated size (in bytes). */
1061 anonymous_size = mbr.at_byte_size;
1065 /* The size of the anonymous object containing
1066 the bit field matches the size of an object
1067 of the bit field's type. DWARF allows
1068 at_byte_size to be left out in such cases, as
1069 a debug information size optimization. */
1070 anonymous_size = TYPE_LENGTH (list->field.type);
1072 FIELD_BITPOS (list->field) +=
1073 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1079 process_dies (thisdie, nextdie, objfile);
1084 /* Now create the vector of fields, and record how big it is. We may
1085 not even have any fields, if this DIE was generated due to a reference
1086 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1087 set, which clues gdb in to the fact that it needs to search elsewhere
1088 for the full structure definition. */
1091 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1095 TYPE_NFIELDS (type) = nfields;
1096 TYPE_FIELDS (type) = (struct field *)
1097 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1098 /* Copy the saved-up fields into the field vector. */
1099 for (n = nfields; list; list = list->next)
1101 TYPE_FIELD (type, --n) = list->field;
1111 read_structure_scope -- process all dies within struct or union
1115 static void read_structure_scope (struct dieinfo *dip,
1116 char *thisdie, char *enddie, struct objfile *objfile)
1120 Called when we find the DIE that starts a structure or union
1121 scope (definition) to process all dies that define the members
1122 of the structure or union. DIP is a pointer to the die info
1123 struct for the DIE that names the structure or union.
1127 Note that we need to call struct_type regardless of whether or not
1128 the DIE has an at_name attribute, since it might be an anonymous
1129 structure or union. This gets the type entered into our set of
1132 However, if the structure is incomplete (an opaque struct/union)
1133 then suppress creating a symbol table entry for it since gdb only
1134 wants to find the one with the complete definition. Note that if
1135 it is complete, we just call new_symbol, which does it's own
1136 checking about whether the struct/union is anonymous or not (and
1137 suppresses creating a symbol table entry itself).
1142 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1143 struct objfile *objfile)
1148 type = struct_type (dip, thisdie, enddie, objfile);
1149 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1151 sym = new_symbol (dip, objfile);
1154 SYMBOL_TYPE (sym) = type;
1155 if (cu_language == language_cplus)
1157 synthesize_typedef (dip, objfile, type);
1167 decode_array_element_type -- decode type of the array elements
1171 static struct type *decode_array_element_type (char *scan, char *end)
1175 As the last step in decoding the array subscript information for an
1176 array DIE, we need to decode the type of the array elements. We are
1177 passed a pointer to this last part of the subscript information and
1178 must return the appropriate type. If the type attribute is not
1179 recognized, just warn about the problem and return type int.
1182 static struct type *
1183 decode_array_element_type (char *scan)
1187 unsigned short attribute;
1188 unsigned short fundtype;
1191 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1193 scan += SIZEOF_ATTRIBUTE;
1194 if ((nbytes = attribute_size (attribute)) == -1)
1196 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1197 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1204 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1206 typep = decode_fund_type (fundtype);
1208 case AT_mod_fund_type:
1209 typep = decode_mod_fund_type (scan);
1211 case AT_user_def_type:
1212 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1214 if ((typep = lookup_utype (die_ref)) == NULL)
1216 typep = alloc_utype (die_ref, NULL);
1219 case AT_mod_u_d_type:
1220 typep = decode_mod_u_d_type (scan);
1223 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1224 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1235 decode_subscript_data_item -- decode array subscript item
1239 static struct type *
1240 decode_subscript_data_item (char *scan, char *end)
1244 The array subscripts and the data type of the elements of an
1245 array are described by a list of data items, stored as a block
1246 of contiguous bytes. There is a data item describing each array
1247 dimension, and a final data item describing the element type.
1248 The data items are ordered the same as their appearance in the
1249 source (I.E. leftmost dimension first, next to leftmost second,
1252 The data items describing each array dimension consist of four
1253 parts: (1) a format specifier, (2) type type of the subscript
1254 index, (3) a description of the low bound of the array dimension,
1255 and (4) a description of the high bound of the array dimension.
1257 The last data item is the description of the type of each of
1260 We are passed a pointer to the start of the block of bytes
1261 containing the remaining data items, and a pointer to the first
1262 byte past the data. This function recursively decodes the
1263 remaining data items and returns a type.
1265 If we somehow fail to decode some data, we complain about it
1266 and return a type "array of int".
1269 FIXME: This code only implements the forms currently used
1270 by the AT&T and GNU C compilers.
1272 The end pointer is supplied for error checking, maybe we should
1276 static struct type *
1277 decode_subscript_data_item (char *scan, char *end)
1279 struct type *typep = NULL; /* Array type we are building */
1280 struct type *nexttype; /* Type of each element (may be array) */
1281 struct type *indextype; /* Type of this index */
1282 struct type *rangetype;
1283 unsigned int format;
1284 unsigned short fundtype;
1285 unsigned long lowbound;
1286 unsigned long highbound;
1289 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1291 scan += SIZEOF_FORMAT_SPECIFIER;
1295 typep = decode_array_element_type (scan);
1298 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1300 indextype = decode_fund_type (fundtype);
1301 scan += SIZEOF_FMT_FT;
1302 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1303 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1305 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1307 nexttype = decode_subscript_data_item (scan, end);
1308 if (nexttype == NULL)
1310 /* Munged subscript data or other problem, fake it. */
1311 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1312 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1314 rangetype = create_range_type ((struct type *) NULL, indextype,
1315 lowbound, highbound);
1316 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1325 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1326 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1327 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1328 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1331 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1332 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1333 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1334 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1344 dwarf_read_array_type -- read TAG_array_type DIE
1348 static void dwarf_read_array_type (struct dieinfo *dip)
1352 Extract all information from a TAG_array_type DIE and add to
1353 the user defined type vector.
1357 dwarf_read_array_type (struct dieinfo *dip)
1363 unsigned short blocksz;
1366 if (dip->at_ordering != ORD_row_major)
1368 /* FIXME: Can gdb even handle column major arrays? */
1369 complain (¬_row_major, DIE_ID, DIE_NAME);
1371 if ((sub = dip->at_subscr_data) != NULL)
1373 nbytes = attribute_size (AT_subscr_data);
1374 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1375 subend = sub + nbytes + blocksz;
1377 type = decode_subscript_data_item (sub, subend);
1378 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1380 /* Install user defined type that has not been referenced yet. */
1381 alloc_utype (dip->die_ref, type);
1383 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1385 /* Ick! A forward ref has already generated a blank type in our
1386 slot, and this type probably already has things pointing to it
1387 (which is what caused it to be created in the first place).
1388 If it's just a place holder we can plop our fully defined type
1389 on top of it. We can't recover the space allocated for our
1390 new type since it might be on an obstack, but we could reuse
1391 it if we kept a list of them, but it might not be worth it
1397 /* Double ick! Not only is a type already in our slot, but
1398 someone has decorated it. Complain and leave it alone. */
1399 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1408 read_tag_pointer_type -- read TAG_pointer_type DIE
1412 static void read_tag_pointer_type (struct dieinfo *dip)
1416 Extract all information from a TAG_pointer_type DIE and add to
1417 the user defined type vector.
1421 read_tag_pointer_type (struct dieinfo *dip)
1426 type = decode_die_type (dip);
1427 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1429 utype = lookup_pointer_type (type);
1430 alloc_utype (dip->die_ref, utype);
1434 TYPE_TARGET_TYPE (utype) = type;
1435 TYPE_POINTER_TYPE (type) = utype;
1437 /* We assume the machine has only one representation for pointers! */
1438 /* FIXME: Possably a poor assumption */
1439 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1440 TYPE_CODE (utype) = TYPE_CODE_PTR;
1448 read_tag_string_type -- read TAG_string_type DIE
1452 static void read_tag_string_type (struct dieinfo *dip)
1456 Extract all information from a TAG_string_type DIE and add to
1457 the user defined type vector. It isn't really a user defined
1458 type, but it behaves like one, with other DIE's using an
1459 AT_user_def_type attribute to reference it.
1463 read_tag_string_type (struct dieinfo *dip)
1466 struct type *indextype;
1467 struct type *rangetype;
1468 unsigned long lowbound = 0;
1469 unsigned long highbound;
1471 if (dip->has_at_byte_size)
1473 /* A fixed bounds string */
1474 highbound = dip->at_byte_size - 1;
1478 /* A varying length string. Stub for now. (FIXME) */
1481 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1482 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1485 utype = lookup_utype (dip->die_ref);
1488 /* No type defined, go ahead and create a blank one to use. */
1489 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1493 /* Already a type in our slot due to a forward reference. Make sure it
1494 is a blank one. If not, complain and leave it alone. */
1495 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1497 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1502 /* Create the string type using the blank type we either found or created. */
1503 utype = create_string_type (utype, rangetype);
1510 read_subroutine_type -- process TAG_subroutine_type dies
1514 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1519 Handle DIES due to C code like:
1522 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1528 The parameter DIES are currently ignored. See if gdb has a way to
1529 include this info in it's type system, and decode them if so. Is
1530 this what the type structure's "arg_types" field is for? (FIXME)
1534 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1536 struct type *type; /* Type that this function returns */
1537 struct type *ftype; /* Function that returns above type */
1539 /* Decode the type that this subroutine returns */
1541 type = decode_die_type (dip);
1543 /* Check to see if we already have a partially constructed user
1544 defined type for this DIE, from a forward reference. */
1546 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1548 /* This is the first reference to one of these types. Make
1549 a new one and place it in the user defined types. */
1550 ftype = lookup_function_type (type);
1551 alloc_utype (dip->die_ref, ftype);
1553 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1555 /* We have an existing partially constructed type, so bash it
1556 into the correct type. */
1557 TYPE_TARGET_TYPE (ftype) = type;
1558 TYPE_LENGTH (ftype) = 1;
1559 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1563 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1571 read_enumeration -- process dies which define an enumeration
1575 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1576 char *enddie, struct objfile *objfile)
1580 Given a pointer to a die which begins an enumeration, process all
1581 the dies that define the members of the enumeration.
1585 Note that we need to call enum_type regardless of whether or not we
1586 have a symbol, since we might have an enum without a tag name (thus
1587 no symbol for the tagname).
1591 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1592 struct objfile *objfile)
1597 type = enum_type (dip, objfile);
1598 sym = new_symbol (dip, objfile);
1601 SYMBOL_TYPE (sym) = type;
1602 if (cu_language == language_cplus)
1604 synthesize_typedef (dip, objfile, type);
1613 enum_type -- decode and return a type for an enumeration
1617 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1621 Given a pointer to a die information structure for the die which
1622 starts an enumeration, process all the dies that define the members
1623 of the enumeration and return a type pointer for the enumeration.
1625 At the same time, for each member of the enumeration, create a
1626 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1627 and give it the type of the enumeration itself.
1631 Note that the DWARF specification explicitly mandates that enum
1632 constants occur in reverse order from the source program order,
1633 for "consistency" and because this ordering is easier for many
1634 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1635 Entries). Because gdb wants to see the enum members in program
1636 source order, we have to ensure that the order gets reversed while
1637 we are processing them.
1640 static struct type *
1641 enum_type (struct dieinfo *dip, struct objfile *objfile)
1646 struct nextfield *next;
1649 struct nextfield *list = NULL;
1650 struct nextfield *new;
1655 unsigned short blocksz;
1658 int unsigned_enum = 1;
1660 if ((type = lookup_utype (dip->die_ref)) == NULL)
1662 /* No forward references created an empty type, so install one now */
1663 type = alloc_utype (dip->die_ref, NULL);
1665 TYPE_CODE (type) = TYPE_CODE_ENUM;
1666 /* Some compilers try to be helpful by inventing "fake" names for
1667 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1668 Thanks, but no thanks... */
1669 if (dip->at_name != NULL
1670 && *dip->at_name != '~'
1671 && *dip->at_name != '.')
1673 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1674 "", "", dip->at_name);
1676 if (dip->at_byte_size != 0)
1678 TYPE_LENGTH (type) = dip->at_byte_size;
1680 if ((scan = dip->at_element_list) != NULL)
1682 if (dip->short_element_list)
1684 nbytes = attribute_size (AT_short_element_list);
1688 nbytes = attribute_size (AT_element_list);
1690 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1691 listend = scan + nbytes + blocksz;
1693 while (scan < listend)
1695 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1698 FIELD_TYPE (list->field) = NULL;
1699 FIELD_BITSIZE (list->field) = 0;
1700 FIELD_BITPOS (list->field) =
1701 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1703 scan += TARGET_FT_LONG_SIZE (objfile);
1704 list->field.name = obsavestring (scan, strlen (scan),
1705 &objfile->type_obstack);
1706 scan += strlen (scan) + 1;
1708 /* Handcraft a new symbol for this enum member. */
1709 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1710 sizeof (struct symbol));
1711 memset (sym, 0, sizeof (struct symbol));
1712 SYMBOL_NAME (sym) = create_name (list->field.name,
1713 &objfile->symbol_obstack);
1714 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1715 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1716 SYMBOL_CLASS (sym) = LOC_CONST;
1717 SYMBOL_TYPE (sym) = type;
1718 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1719 if (SYMBOL_VALUE (sym) < 0)
1721 add_symbol_to_list (sym, list_in_scope);
1723 /* Now create the vector of fields, and record how big it is. This is
1724 where we reverse the order, by pulling the members off the list in
1725 reverse order from how they were inserted. If we have no fields
1726 (this is apparently possible in C++) then skip building a field
1731 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1732 TYPE_NFIELDS (type) = nfields;
1733 TYPE_FIELDS (type) = (struct field *)
1734 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1735 /* Copy the saved-up fields into the field vector. */
1736 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1738 TYPE_FIELD (type, n++) = list->field;
1749 read_func_scope -- process all dies within a function scope
1753 Process all dies within a given function scope. We are passed
1754 a die information structure pointer DIP for the die which
1755 starts the function scope, and pointers into the raw die data
1756 that define the dies within the function scope.
1758 For now, we ignore lexical block scopes within the function.
1759 The problem is that AT&T cc does not define a DWARF lexical
1760 block scope for the function itself, while gcc defines a
1761 lexical block scope for the function. We need to think about
1762 how to handle this difference, or if it is even a problem.
1767 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1768 struct objfile *objfile)
1770 register struct context_stack *new;
1772 /* AT_name is absent if the function is described with an
1773 AT_abstract_origin tag.
1774 Ignore the function description for now to avoid GDB core dumps.
1775 FIXME: Add code to handle AT_abstract_origin tags properly. */
1776 if (dip->at_name == NULL)
1778 complain (&missing_at_name, DIE_ID);
1782 if (objfile->ei.entry_point >= dip->at_low_pc &&
1783 objfile->ei.entry_point < dip->at_high_pc)
1785 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1786 objfile->ei.entry_func_highpc = dip->at_high_pc;
1788 new = push_context (0, dip->at_low_pc);
1789 new->name = new_symbol (dip, objfile);
1790 list_in_scope = &local_symbols;
1791 process_dies (thisdie + dip->die_length, enddie, objfile);
1792 new = pop_context ();
1793 /* Make a block for the local symbols within. */
1794 finish_block (new->name, &local_symbols, new->old_blocks,
1795 new->start_addr, dip->at_high_pc, objfile);
1796 list_in_scope = &file_symbols;
1804 handle_producer -- process the AT_producer attribute
1808 Perform any operations that depend on finding a particular
1809 AT_producer attribute.
1814 handle_producer (char *producer)
1817 /* If this compilation unit was compiled with g++ or gcc, then set the
1818 processing_gcc_compilation flag. */
1820 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1822 char version = producer[strlen (GCC_PRODUCER)];
1823 processing_gcc_compilation = (version == '2' ? 2 : 1);
1827 processing_gcc_compilation =
1828 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1829 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1832 /* Select a demangling style if we can identify the producer and if
1833 the current style is auto. We leave the current style alone if it
1834 is not auto. We also leave the demangling style alone if we find a
1835 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1837 if (AUTO_DEMANGLING)
1839 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1841 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1843 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1845 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1855 read_file_scope -- process all dies within a file scope
1859 Process all dies within a given file scope. We are passed a
1860 pointer to the die information structure for the die which
1861 starts the file scope, and pointers into the raw die data which
1862 mark the range of dies within the file scope.
1864 When the partial symbol table is built, the file offset for the line
1865 number table for each compilation unit is saved in the partial symbol
1866 table entry for that compilation unit. As the symbols for each
1867 compilation unit are read, the line number table is read into memory
1868 and the variable lnbase is set to point to it. Thus all we have to
1869 do is use lnbase to access the line number table for the current
1874 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1875 struct objfile *objfile)
1877 struct cleanup *back_to;
1878 struct symtab *symtab;
1880 if (objfile->ei.entry_point >= dip->at_low_pc &&
1881 objfile->ei.entry_point < dip->at_high_pc)
1883 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1884 objfile->ei.entry_file_highpc = dip->at_high_pc;
1886 set_cu_language (dip);
1887 if (dip->at_producer != NULL)
1889 handle_producer (dip->at_producer);
1891 numutypes = (enddie - thisdie) / 4;
1892 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1893 back_to = make_cleanup (free_utypes, NULL);
1894 memset (utypes, 0, numutypes * sizeof (struct type *));
1895 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1896 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1897 record_debugformat ("DWARF 1");
1898 decode_line_numbers (lnbase);
1899 process_dies (thisdie + dip->die_length, enddie, objfile);
1901 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1904 symtab->language = cu_language;
1906 do_cleanups (back_to);
1913 process_dies -- process a range of DWARF Information Entries
1917 static void process_dies (char *thisdie, char *enddie,
1918 struct objfile *objfile)
1922 Process all DIE's in a specified range. May be (and almost
1923 certainly will be) called recursively.
1927 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1932 while (thisdie < enddie)
1934 basicdieinfo (&di, thisdie, objfile);
1935 if (di.die_length < SIZEOF_DIE_LENGTH)
1939 else if (di.die_tag == TAG_padding)
1941 nextdie = thisdie + di.die_length;
1945 completedieinfo (&di, objfile);
1946 if (di.at_sibling != 0)
1948 nextdie = dbbase + di.at_sibling - dbroff;
1952 nextdie = thisdie + di.die_length;
1954 #ifdef SMASH_TEXT_ADDRESS
1955 /* I think that these are always text, not data, addresses. */
1956 SMASH_TEXT_ADDRESS (di.at_low_pc);
1957 SMASH_TEXT_ADDRESS (di.at_high_pc);
1961 case TAG_compile_unit:
1962 /* Skip Tag_compile_unit if we are already inside a compilation
1963 unit, we are unable to handle nested compilation units
1964 properly (FIXME). */
1965 if (current_subfile == NULL)
1966 read_file_scope (&di, thisdie, nextdie, objfile);
1968 nextdie = thisdie + di.die_length;
1970 case TAG_global_subroutine:
1971 case TAG_subroutine:
1972 if (di.has_at_low_pc)
1974 read_func_scope (&di, thisdie, nextdie, objfile);
1977 case TAG_lexical_block:
1978 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1980 case TAG_class_type:
1981 case TAG_structure_type:
1982 case TAG_union_type:
1983 read_structure_scope (&di, thisdie, nextdie, objfile);
1985 case TAG_enumeration_type:
1986 read_enumeration (&di, thisdie, nextdie, objfile);
1988 case TAG_subroutine_type:
1989 read_subroutine_type (&di, thisdie, nextdie);
1991 case TAG_array_type:
1992 dwarf_read_array_type (&di);
1994 case TAG_pointer_type:
1995 read_tag_pointer_type (&di);
1997 case TAG_string_type:
1998 read_tag_string_type (&di);
2001 new_symbol (&di, objfile);
2013 decode_line_numbers -- decode a line number table fragment
2017 static void decode_line_numbers (char *tblscan, char *tblend,
2018 long length, long base, long line, long pc)
2022 Translate the DWARF line number information to gdb form.
2024 The ".line" section contains one or more line number tables, one for
2025 each ".line" section from the objects that were linked.
2027 The AT_stmt_list attribute for each TAG_source_file entry in the
2028 ".debug" section contains the offset into the ".line" section for the
2029 start of the table for that file.
2031 The table itself has the following structure:
2033 <table length><base address><source statement entry>
2034 4 bytes 4 bytes 10 bytes
2036 The table length is the total size of the table, including the 4 bytes
2037 for the length information.
2039 The base address is the address of the first instruction generated
2040 for the source file.
2042 Each source statement entry has the following structure:
2044 <line number><statement position><address delta>
2045 4 bytes 2 bytes 4 bytes
2047 The line number is relative to the start of the file, starting with
2050 The statement position either -1 (0xFFFF) or the number of characters
2051 from the beginning of the line to the beginning of the statement.
2053 The address delta is the difference between the base address and
2054 the address of the first instruction for the statement.
2056 Note that we must copy the bytes from the packed table to our local
2057 variables before attempting to use them, to avoid alignment problems
2058 on some machines, particularly RISC processors.
2062 Does gdb expect the line numbers to be sorted? They are now by
2063 chance/luck, but are not required to be. (FIXME)
2065 The line with number 0 is unused, gdb apparently can discover the
2066 span of the last line some other way. How? (FIXME)
2070 decode_line_numbers (char *linetable)
2074 unsigned long length;
2079 if (linetable != NULL)
2081 tblscan = tblend = linetable;
2082 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2084 tblscan += SIZEOF_LINETBL_LENGTH;
2086 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2087 GET_UNSIGNED, current_objfile);
2088 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2090 while (tblscan < tblend)
2092 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2094 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2095 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2097 tblscan += SIZEOF_LINETBL_DELTA;
2101 record_line (current_subfile, line, pc);
2111 locval -- compute the value of a location attribute
2115 static int locval (struct dieinfo *dip)
2119 Given pointer to a string of bytes that define a location, compute
2120 the location and return the value.
2121 A location description containing no atoms indicates that the
2122 object is optimized out. The optimized_out flag is set for those,
2123 the return value is meaningless.
2125 When computing values involving the current value of the frame pointer,
2126 the value zero is used, which results in a value relative to the frame
2127 pointer, rather than the absolute value. This is what GDB wants
2130 When the result is a register number, the isreg flag is set, otherwise
2131 it is cleared. This is a kludge until we figure out a better
2132 way to handle the problem. Gdb's design does not mesh well with the
2133 DWARF notion of a location computing interpreter, which is a shame
2134 because the flexibility goes unused.
2138 Note that stack[0] is unused except as a default error return.
2139 Note that stack overflow is not yet handled.
2143 locval (struct dieinfo *dip)
2145 unsigned short nbytes;
2146 unsigned short locsize;
2147 auto long stack[64];
2154 loc = dip->at_location;
2155 nbytes = attribute_size (AT_location);
2156 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2158 end = loc + locsize;
2163 dip->optimized_out = 1;
2164 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2167 dip->optimized_out = 0;
2168 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2170 loc += SIZEOF_LOC_ATOM_CODE;
2171 switch (loc_atom_code)
2178 /* push register (number) */
2180 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2183 loc += loc_value_size;
2187 /* push value of register (number) */
2188 /* Actually, we compute the value as if register has 0, so the
2189 value ends up being the offset from that register. */
2191 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2193 loc += loc_value_size;
2194 stack[++stacki] = 0;
2197 /* push address (relocated address) */
2198 stack[++stacki] = target_to_host (loc, loc_value_size,
2199 GET_UNSIGNED, current_objfile);
2200 loc += loc_value_size;
2203 /* push constant (number) FIXME: signed or unsigned! */
2204 stack[++stacki] = target_to_host (loc, loc_value_size,
2205 GET_SIGNED, current_objfile);
2206 loc += loc_value_size;
2209 /* pop, deref and push 2 bytes (as a long) */
2210 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2212 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2213 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2215 case OP_ADD: /* pop top 2 items, add, push result */
2216 stack[stacki - 1] += stack[stacki];
2221 return (stack[stacki]);
2228 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2232 static void read_ofile_symtab (struct partial_symtab *pst)
2236 When expanding a partial symbol table entry to a full symbol table
2237 entry, this is the function that gets called to read in the symbols
2238 for the compilation unit. A pointer to the newly constructed symtab,
2239 which is now the new first one on the objfile's symtab list, is
2240 stashed in the partial symbol table entry.
2244 read_ofile_symtab (struct partial_symtab *pst)
2246 struct cleanup *back_to;
2247 unsigned long lnsize;
2250 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2252 abfd = pst->objfile->obfd;
2253 current_objfile = pst->objfile;
2255 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2256 unit, seek to the location in the file, and read in all the DIE's. */
2259 dbsize = DBLENGTH (pst);
2260 dbbase = xmalloc (dbsize);
2261 dbroff = DBROFF (pst);
2262 foffset = DBFOFF (pst) + dbroff;
2263 base_section_offsets = pst->section_offsets;
2264 baseaddr = ANOFFSET (pst->section_offsets, 0);
2265 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2266 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2269 error ("can't read DWARF data");
2271 back_to = make_cleanup (xfree, dbbase);
2273 /* If there is a line number table associated with this compilation unit
2274 then read the size of this fragment in bytes, from the fragment itself.
2275 Allocate a buffer for the fragment and read it in for future
2281 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2282 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2283 sizeof (lnsizedata)))
2285 error ("can't read DWARF line number table size");
2287 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2288 GET_UNSIGNED, pst->objfile);
2289 lnbase = xmalloc (lnsize);
2290 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2291 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2294 error ("can't read DWARF line numbers");
2296 make_cleanup (xfree, lnbase);
2299 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2300 do_cleanups (back_to);
2301 current_objfile = NULL;
2302 pst->symtab = pst->objfile->symtabs;
2309 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2313 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2317 Called once for each partial symbol table entry that needs to be
2318 expanded into a full symbol table entry.
2323 psymtab_to_symtab_1 (struct partial_symtab *pst)
2326 struct cleanup *old_chain;
2332 warning ("psymtab for %s already read in. Shouldn't happen.",
2337 /* Read in all partial symtabs on which this one is dependent */
2338 for (i = 0; i < pst->number_of_dependencies; i++)
2340 if (!pst->dependencies[i]->readin)
2342 /* Inform about additional files that need to be read in. */
2345 fputs_filtered (" ", gdb_stdout);
2347 fputs_filtered ("and ", gdb_stdout);
2349 printf_filtered ("%s...",
2350 pst->dependencies[i]->filename);
2352 gdb_flush (gdb_stdout); /* Flush output */
2354 psymtab_to_symtab_1 (pst->dependencies[i]);
2357 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2360 old_chain = make_cleanup (really_free_pendings, 0);
2361 read_ofile_symtab (pst);
2364 printf_filtered ("%d DIE's, sorting...", diecount);
2366 gdb_flush (gdb_stdout);
2368 sort_symtab_syms (pst->symtab);
2369 do_cleanups (old_chain);
2380 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2384 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2388 This is the DWARF support entry point for building a full symbol
2389 table entry from a partial symbol table entry. We are passed a
2390 pointer to the partial symbol table entry that needs to be expanded.
2395 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2402 warning ("psymtab for %s already read in. Shouldn't happen.",
2407 if (DBLENGTH (pst) || pst->number_of_dependencies)
2409 /* Print the message now, before starting serious work, to avoid
2410 disconcerting pauses. */
2413 printf_filtered ("Reading in symbols for %s...",
2415 gdb_flush (gdb_stdout);
2418 psymtab_to_symtab_1 (pst);
2420 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2421 we need to do an equivalent or is this something peculiar to
2423 Match with global symbols. This only needs to be done once,
2424 after all of the symtabs and dependencies have been read in.
2426 scan_file_globals (pst->objfile);
2429 /* Finish up the verbose info message. */
2432 printf_filtered ("done.\n");
2433 gdb_flush (gdb_stdout);
2444 add_enum_psymbol -- add enumeration members to partial symbol table
2448 Given pointer to a DIE that is known to be for an enumeration,
2449 extract the symbolic names of the enumeration members and add
2450 partial symbols for them.
2454 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2458 unsigned short blocksz;
2461 if ((scan = dip->at_element_list) != NULL)
2463 if (dip->short_element_list)
2465 nbytes = attribute_size (AT_short_element_list);
2469 nbytes = attribute_size (AT_element_list);
2471 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2473 listend = scan + blocksz;
2474 while (scan < listend)
2476 scan += TARGET_FT_LONG_SIZE (objfile);
2477 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2478 &objfile->static_psymbols, 0, 0, cu_language,
2480 scan += strlen (scan) + 1;
2489 add_partial_symbol -- add symbol to partial symbol table
2493 Given a DIE, if it is one of the types that we want to
2494 add to a partial symbol table, finish filling in the die info
2495 and then add a partial symbol table entry for it.
2499 The caller must ensure that the DIE has a valid name attribute.
2503 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2505 switch (dip->die_tag)
2507 case TAG_global_subroutine:
2508 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2509 VAR_NAMESPACE, LOC_BLOCK,
2510 &objfile->global_psymbols,
2511 0, dip->at_low_pc, cu_language, objfile);
2513 case TAG_global_variable:
2514 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2515 VAR_NAMESPACE, LOC_STATIC,
2516 &objfile->global_psymbols,
2517 0, 0, cu_language, objfile);
2519 case TAG_subroutine:
2520 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2521 VAR_NAMESPACE, LOC_BLOCK,
2522 &objfile->static_psymbols,
2523 0, dip->at_low_pc, cu_language, objfile);
2525 case TAG_local_variable:
2526 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2527 VAR_NAMESPACE, LOC_STATIC,
2528 &objfile->static_psymbols,
2529 0, 0, cu_language, objfile);
2532 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2533 VAR_NAMESPACE, LOC_TYPEDEF,
2534 &objfile->static_psymbols,
2535 0, 0, cu_language, objfile);
2537 case TAG_class_type:
2538 case TAG_structure_type:
2539 case TAG_union_type:
2540 case TAG_enumeration_type:
2541 /* Do not add opaque aggregate definitions to the psymtab. */
2542 if (!dip->has_at_byte_size)
2544 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2545 STRUCT_NAMESPACE, LOC_TYPEDEF,
2546 &objfile->static_psymbols,
2547 0, 0, cu_language, objfile);
2548 if (cu_language == language_cplus)
2550 /* For C++, these implicitly act as typedefs as well. */
2551 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2552 VAR_NAMESPACE, LOC_TYPEDEF,
2553 &objfile->static_psymbols,
2554 0, 0, cu_language, objfile);
2564 scan_partial_symbols -- scan DIE's within a single compilation unit
2568 Process the DIE's within a single compilation unit, looking for
2569 interesting DIE's that contribute to the partial symbol table entry
2570 for this compilation unit.
2574 There are some DIE's that may appear both at file scope and within
2575 the scope of a function. We are only interested in the ones at file
2576 scope, and the only way to tell them apart is to keep track of the
2577 scope. For example, consider the test case:
2582 for which the relevant DWARF segment has the structure:
2585 0x23 global subrtn sibling 0x9b
2587 fund_type FT_integer
2592 0x23 local var sibling 0x97
2594 fund_type FT_integer
2595 location OP_BASEREG 0xe
2602 0x1d local var sibling 0xb8
2604 fund_type FT_integer
2605 location OP_ADDR 0x800025dc
2610 We want to include the symbol 'i' in the partial symbol table, but
2611 not the symbol 'j'. In essence, we want to skip all the dies within
2612 the scope of a TAG_global_subroutine DIE.
2614 Don't attempt to add anonymous structures or unions since they have
2615 no name. Anonymous enumerations however are processed, because we
2616 want to extract their member names (the check for a tag name is
2619 Also, for variables and subroutines, check that this is the place
2620 where the actual definition occurs, rather than just a reference
2628 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2634 while (thisdie < enddie)
2636 basicdieinfo (&di, thisdie, objfile);
2637 if (di.die_length < SIZEOF_DIE_LENGTH)
2643 nextdie = thisdie + di.die_length;
2644 /* To avoid getting complete die information for every die, we
2645 only do it (below) for the cases we are interested in. */
2648 case TAG_global_subroutine:
2649 case TAG_subroutine:
2650 completedieinfo (&di, objfile);
2651 if (di.at_name && (di.has_at_low_pc || di.at_location))
2653 add_partial_symbol (&di, objfile);
2654 /* If there is a sibling attribute, adjust the nextdie
2655 pointer to skip the entire scope of the subroutine.
2656 Apply some sanity checking to make sure we don't
2657 overrun or underrun the range of remaining DIE's */
2658 if (di.at_sibling != 0)
2660 temp = dbbase + di.at_sibling - dbroff;
2661 if ((temp < thisdie) || (temp >= enddie))
2663 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2673 case TAG_global_variable:
2674 case TAG_local_variable:
2675 completedieinfo (&di, objfile);
2676 if (di.at_name && (di.has_at_low_pc || di.at_location))
2678 add_partial_symbol (&di, objfile);
2682 case TAG_class_type:
2683 case TAG_structure_type:
2684 case TAG_union_type:
2685 completedieinfo (&di, objfile);
2688 add_partial_symbol (&di, objfile);
2691 case TAG_enumeration_type:
2692 completedieinfo (&di, objfile);
2695 add_partial_symbol (&di, objfile);
2697 add_enum_psymbol (&di, objfile);
2709 scan_compilation_units -- build a psymtab entry for each compilation
2713 This is the top level dwarf parsing routine for building partial
2716 It scans from the beginning of the DWARF table looking for the first
2717 TAG_compile_unit DIE, and then follows the sibling chain to locate
2718 each additional TAG_compile_unit DIE.
2720 For each TAG_compile_unit DIE it creates a partial symtab structure,
2721 calls a subordinate routine to collect all the compilation unit's
2722 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2723 new partial symtab structure into the partial symbol table. It also
2724 records the appropriate information in the partial symbol table entry
2725 to allow the chunk of DIE's and line number table for this compilation
2726 unit to be located and re-read later, to generate a complete symbol
2727 table entry for the compilation unit.
2729 Thus it effectively partitions up a chunk of DIE's for multiple
2730 compilation units into smaller DIE chunks and line number tables,
2731 and associates them with a partial symbol table entry.
2735 If any compilation unit has no line number table associated with
2736 it for some reason (a missing at_stmt_list attribute, rather than
2737 just one with a value of zero, which is valid) then we ensure that
2738 the recorded file offset is zero so that the routine which later
2739 reads line number table fragments knows that there is no fragment
2749 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2750 file_ptr lnoffset, struct objfile *objfile)
2754 struct partial_symtab *pst;
2757 file_ptr curlnoffset;
2759 while (thisdie < enddie)
2761 basicdieinfo (&di, thisdie, objfile);
2762 if (di.die_length < SIZEOF_DIE_LENGTH)
2766 else if (di.die_tag != TAG_compile_unit)
2768 nextdie = thisdie + di.die_length;
2772 completedieinfo (&di, objfile);
2773 set_cu_language (&di);
2774 if (di.at_sibling != 0)
2776 nextdie = dbbase + di.at_sibling - dbroff;
2780 nextdie = thisdie + di.die_length;
2782 curoff = thisdie - dbbase;
2783 culength = nextdie - thisdie;
2784 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2786 /* First allocate a new partial symbol table structure */
2788 pst = start_psymtab_common (objfile, base_section_offsets,
2789 di.at_name, di.at_low_pc,
2790 objfile->global_psymbols.next,
2791 objfile->static_psymbols.next);
2793 pst->texthigh = di.at_high_pc;
2794 pst->read_symtab_private = (char *)
2795 obstack_alloc (&objfile->psymbol_obstack,
2796 sizeof (struct dwfinfo));
2797 DBFOFF (pst) = dbfoff;
2798 DBROFF (pst) = curoff;
2799 DBLENGTH (pst) = culength;
2800 LNFOFF (pst) = curlnoffset;
2801 pst->read_symtab = dwarf_psymtab_to_symtab;
2803 /* Now look for partial symbols */
2805 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2807 pst->n_global_syms = objfile->global_psymbols.next -
2808 (objfile->global_psymbols.list + pst->globals_offset);
2809 pst->n_static_syms = objfile->static_psymbols.next -
2810 (objfile->static_psymbols.list + pst->statics_offset);
2811 sort_pst_symbols (pst);
2812 /* If there is already a psymtab or symtab for a file of this name,
2813 remove it. (If there is a symtab, more drastic things also
2814 happen.) This happens in VxWorks. */
2815 free_named_symtabs (pst->filename);
2825 new_symbol -- make a symbol table entry for a new symbol
2829 static struct symbol *new_symbol (struct dieinfo *dip,
2830 struct objfile *objfile)
2834 Given a pointer to a DWARF information entry, figure out if we need
2835 to make a symbol table entry for it, and if so, create a new entry
2836 and return a pointer to it.
2839 static struct symbol *
2840 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2842 struct symbol *sym = NULL;
2844 if (dip->at_name != NULL)
2846 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2847 sizeof (struct symbol));
2848 OBJSTAT (objfile, n_syms++);
2849 memset (sym, 0, sizeof (struct symbol));
2850 SYMBOL_NAME (sym) = create_name (dip->at_name,
2851 &objfile->symbol_obstack);
2852 /* default assumptions */
2853 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2854 SYMBOL_CLASS (sym) = LOC_STATIC;
2855 SYMBOL_TYPE (sym) = decode_die_type (dip);
2857 /* If this symbol is from a C++ compilation, then attempt to cache the
2858 demangled form for future reference. This is a typical time versus
2859 space tradeoff, that was decided in favor of time because it sped up
2860 C++ symbol lookups by a factor of about 20. */
2862 SYMBOL_LANGUAGE (sym) = cu_language;
2863 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2864 switch (dip->die_tag)
2867 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2868 SYMBOL_CLASS (sym) = LOC_LABEL;
2870 case TAG_global_subroutine:
2871 case TAG_subroutine:
2872 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2873 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2874 if (dip->at_prototyped)
2875 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2876 SYMBOL_CLASS (sym) = LOC_BLOCK;
2877 if (dip->die_tag == TAG_global_subroutine)
2879 add_symbol_to_list (sym, &global_symbols);
2883 add_symbol_to_list (sym, list_in_scope);
2886 case TAG_global_variable:
2887 if (dip->at_location != NULL)
2889 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2890 add_symbol_to_list (sym, &global_symbols);
2891 SYMBOL_CLASS (sym) = LOC_STATIC;
2892 SYMBOL_VALUE (sym) += baseaddr;
2895 case TAG_local_variable:
2896 if (dip->at_location != NULL)
2898 int loc = locval (dip);
2899 if (dip->optimized_out)
2901 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2903 else if (dip->isreg)
2905 SYMBOL_CLASS (sym) = LOC_REGISTER;
2907 else if (dip->offreg)
2909 SYMBOL_CLASS (sym) = LOC_BASEREG;
2910 SYMBOL_BASEREG (sym) = dip->basereg;
2914 SYMBOL_CLASS (sym) = LOC_STATIC;
2915 SYMBOL_VALUE (sym) += baseaddr;
2917 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2919 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2920 which may store to a bigger location than SYMBOL_VALUE. */
2921 SYMBOL_VALUE_ADDRESS (sym) = loc;
2925 SYMBOL_VALUE (sym) = loc;
2927 add_symbol_to_list (sym, list_in_scope);
2930 case TAG_formal_parameter:
2931 if (dip->at_location != NULL)
2933 SYMBOL_VALUE (sym) = locval (dip);
2935 add_symbol_to_list (sym, list_in_scope);
2938 SYMBOL_CLASS (sym) = LOC_REGPARM;
2940 else if (dip->offreg)
2942 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2943 SYMBOL_BASEREG (sym) = dip->basereg;
2947 SYMBOL_CLASS (sym) = LOC_ARG;
2950 case TAG_unspecified_parameters:
2951 /* From varargs functions; gdb doesn't seem to have any interest in
2952 this information, so just ignore it for now. (FIXME?) */
2954 case TAG_class_type:
2955 case TAG_structure_type:
2956 case TAG_union_type:
2957 case TAG_enumeration_type:
2958 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2959 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2960 add_symbol_to_list (sym, list_in_scope);
2963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2964 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2965 add_symbol_to_list (sym, list_in_scope);
2968 /* Not a tag we recognize. Hopefully we aren't processing trash
2969 data, but since we must specifically ignore things we don't
2970 recognize, there is nothing else we should do at this point. */
2981 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2985 static void synthesize_typedef (struct dieinfo *dip,
2986 struct objfile *objfile,
2991 Given a pointer to a DWARF information entry, synthesize a typedef
2992 for the name in the DIE, using the specified type.
2994 This is used for C++ class, structs, unions, and enumerations to
2995 set up the tag name as a type.
3000 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3003 struct symbol *sym = NULL;
3005 if (dip->at_name != NULL)
3007 sym = (struct symbol *)
3008 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3009 OBJSTAT (objfile, n_syms++);
3010 memset (sym, 0, sizeof (struct symbol));
3011 SYMBOL_NAME (sym) = create_name (dip->at_name,
3012 &objfile->symbol_obstack);
3013 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3014 SYMBOL_TYPE (sym) = type;
3015 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3016 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3017 add_symbol_to_list (sym, list_in_scope);
3025 decode_mod_fund_type -- decode a modified fundamental type
3029 static struct type *decode_mod_fund_type (char *typedata)
3033 Decode a block of data containing a modified fundamental
3034 type specification. TYPEDATA is a pointer to the block,
3035 which starts with a length containing the size of the rest
3036 of the block. At the end of the block is a fundmental type
3037 code value that gives the fundamental type. Everything
3038 in between are type modifiers.
3040 We simply compute the number of modifiers and call the general
3041 function decode_modified_type to do the actual work.
3044 static struct type *
3045 decode_mod_fund_type (char *typedata)
3047 struct type *typep = NULL;
3048 unsigned short modcount;
3051 /* Get the total size of the block, exclusive of the size itself */
3053 nbytes = attribute_size (AT_mod_fund_type);
3054 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3057 /* Deduct the size of the fundamental type bytes at the end of the block. */
3059 modcount -= attribute_size (AT_fund_type);
3061 /* Now do the actual decoding */
3063 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3071 decode_mod_u_d_type -- decode a modified user defined type
3075 static struct type *decode_mod_u_d_type (char *typedata)
3079 Decode a block of data containing a modified user defined
3080 type specification. TYPEDATA is a pointer to the block,
3081 which consists of a two byte length, containing the size
3082 of the rest of the block. At the end of the block is a
3083 four byte value that gives a reference to a user defined type.
3084 Everything in between are type modifiers.
3086 We simply compute the number of modifiers and call the general
3087 function decode_modified_type to do the actual work.
3090 static struct type *
3091 decode_mod_u_d_type (char *typedata)
3093 struct type *typep = NULL;
3094 unsigned short modcount;
3097 /* Get the total size of the block, exclusive of the size itself */
3099 nbytes = attribute_size (AT_mod_u_d_type);
3100 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3103 /* Deduct the size of the reference type bytes at the end of the block. */
3105 modcount -= attribute_size (AT_user_def_type);
3107 /* Now do the actual decoding */
3109 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3117 decode_modified_type -- decode modified user or fundamental type
3121 static struct type *decode_modified_type (char *modifiers,
3122 unsigned short modcount, int mtype)
3126 Decode a modified type, either a modified fundamental type or
3127 a modified user defined type. MODIFIERS is a pointer to the
3128 block of bytes that define MODCOUNT modifiers. Immediately
3129 following the last modifier is a short containing the fundamental
3130 type or a long containing the reference to the user defined
3131 type. Which one is determined by MTYPE, which is either
3132 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3133 type we are generating.
3135 We call ourself recursively to generate each modified type,`
3136 until MODCOUNT reaches zero, at which point we have consumed
3137 all the modifiers and generate either the fundamental type or
3138 user defined type. When the recursion unwinds, each modifier
3139 is applied in turn to generate the full modified type.
3143 If we find a modifier that we don't recognize, and it is not one
3144 of those reserved for application specific use, then we issue a
3145 warning and simply ignore the modifier.
3149 We currently ignore MOD_const and MOD_volatile. (FIXME)
3153 static struct type *
3154 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3156 struct type *typep = NULL;
3157 unsigned short fundtype;
3166 case AT_mod_fund_type:
3167 nbytes = attribute_size (AT_fund_type);
3168 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3170 typep = decode_fund_type (fundtype);
3172 case AT_mod_u_d_type:
3173 nbytes = attribute_size (AT_user_def_type);
3174 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3176 if ((typep = lookup_utype (die_ref)) == NULL)
3178 typep = alloc_utype (die_ref, NULL);
3182 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3183 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3189 modifier = *modifiers++;
3190 typep = decode_modified_type (modifiers, --modcount, mtype);
3193 case MOD_pointer_to:
3194 typep = lookup_pointer_type (typep);
3196 case MOD_reference_to:
3197 typep = lookup_reference_type (typep);
3200 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3203 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3206 if (!(MOD_lo_user <= (unsigned char) modifier
3207 && (unsigned char) modifier <= MOD_hi_user))
3209 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3221 decode_fund_type -- translate basic DWARF type to gdb base type
3225 Given an integer that is one of the fundamental DWARF types,
3226 translate it to one of the basic internal gdb types and return
3227 a pointer to the appropriate gdb type (a "struct type *").
3231 For robustness, if we are asked to translate a fundamental
3232 type that we are unprepared to deal with, we return int so
3233 callers can always depend upon a valid type being returned,
3234 and so gdb may at least do something reasonable by default.
3235 If the type is not in the range of those types defined as
3236 application specific types, we also issue a warning.
3239 static struct type *
3240 decode_fund_type (unsigned int fundtype)
3242 struct type *typep = NULL;
3248 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3251 case FT_boolean: /* Was FT_set in AT&T version */
3252 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3255 case FT_pointer: /* (void *) */
3256 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3257 typep = lookup_pointer_type (typep);
3261 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3264 case FT_signed_char:
3265 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3268 case FT_unsigned_char:
3269 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3273 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3276 case FT_signed_short:
3277 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3280 case FT_unsigned_short:
3281 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3285 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3288 case FT_signed_integer:
3289 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3292 case FT_unsigned_integer:
3293 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3297 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3300 case FT_signed_long:
3301 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3304 case FT_unsigned_long:
3305 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3309 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3312 case FT_signed_long_long:
3313 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3316 case FT_unsigned_long_long:
3317 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3321 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3324 case FT_dbl_prec_float:
3325 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3328 case FT_ext_prec_float:
3329 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3333 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3336 case FT_dbl_prec_complex:
3337 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3340 case FT_ext_prec_complex:
3341 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3348 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3349 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3351 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3362 create_name -- allocate a fresh copy of a string on an obstack
3366 Given a pointer to a string and a pointer to an obstack, allocates
3367 a fresh copy of the string on the specified obstack.
3372 create_name (char *name, struct obstack *obstackp)
3377 length = strlen (name) + 1;
3378 newname = (char *) obstack_alloc (obstackp, length);
3379 strcpy (newname, name);
3387 basicdieinfo -- extract the minimal die info from raw die data
3391 void basicdieinfo (char *diep, struct dieinfo *dip,
3392 struct objfile *objfile)
3396 Given a pointer to raw DIE data, and a pointer to an instance of a
3397 die info structure, this function extracts the basic information
3398 from the DIE data required to continue processing this DIE, along
3399 with some bookkeeping information about the DIE.
3401 The information we absolutely must have includes the DIE tag,
3402 and the DIE length. If we need the sibling reference, then we
3403 will have to call completedieinfo() to process all the remaining
3406 Note that since there is no guarantee that the data is properly
3407 aligned in memory for the type of access required (indirection
3408 through anything other than a char pointer), and there is no
3409 guarantee that it is in the same byte order as the gdb host,
3410 we call a function which deals with both alignment and byte
3411 swapping issues. Possibly inefficient, but quite portable.
3413 We also take care of some other basic things at this point, such
3414 as ensuring that the instance of the die info structure starts
3415 out completely zero'd and that curdie is initialized for use
3416 in error reporting if we have a problem with the current die.
3420 All DIE's must have at least a valid length, thus the minimum
3421 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3422 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3423 are forced to be TAG_padding DIES.
3425 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3426 that if a padding DIE is used for alignment and the amount needed is
3427 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3428 enough to align to the next alignment boundry.
3430 We do some basic sanity checking here, such as verifying that the
3431 length of the die would not cause it to overrun the recorded end of
3432 the buffer holding the DIE info. If we find a DIE that is either
3433 too small or too large, we force it's length to zero which should
3434 cause the caller to take appropriate action.
3438 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3441 memset (dip, 0, sizeof (struct dieinfo));
3443 dip->die_ref = dbroff + (diep - dbbase);
3444 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3446 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3447 ((diep + dip->die_length) > (dbbase + dbsize)))
3449 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3450 dip->die_length = 0;
3452 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3454 dip->die_tag = TAG_padding;
3458 diep += SIZEOF_DIE_LENGTH;
3459 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3468 completedieinfo -- finish reading the information for a given DIE
3472 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3476 Given a pointer to an already partially initialized die info structure,
3477 scan the raw DIE data and finish filling in the die info structure
3478 from the various attributes found.
3480 Note that since there is no guarantee that the data is properly
3481 aligned in memory for the type of access required (indirection
3482 through anything other than a char pointer), and there is no
3483 guarantee that it is in the same byte order as the gdb host,
3484 we call a function which deals with both alignment and byte
3485 swapping issues. Possibly inefficient, but quite portable.
3489 Each time we are called, we increment the diecount variable, which
3490 keeps an approximate count of the number of dies processed for
3491 each compilation unit. This information is presented to the user
3492 if the info_verbose flag is set.
3497 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3499 char *diep; /* Current pointer into raw DIE data */
3500 char *end; /* Terminate DIE scan here */
3501 unsigned short attr; /* Current attribute being scanned */
3502 unsigned short form; /* Form of the attribute */
3503 int nbytes; /* Size of next field to read */
3507 end = diep + dip->die_length;
3508 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3511 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3512 diep += SIZEOF_ATTRIBUTE;
3513 if ((nbytes = attribute_size (attr)) == -1)
3515 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3522 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3526 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3530 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3534 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3538 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3540 dip->has_at_stmt_list = 1;
3543 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3545 dip->at_low_pc += baseaddr;
3546 dip->has_at_low_pc = 1;
3549 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3551 dip->at_high_pc += baseaddr;
3554 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3557 case AT_user_def_type:
3558 dip->at_user_def_type = target_to_host (diep, nbytes,
3559 GET_UNSIGNED, objfile);
3562 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3564 dip->has_at_byte_size = 1;
3567 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3571 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3575 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3579 dip->at_location = diep;
3581 case AT_mod_fund_type:
3582 dip->at_mod_fund_type = diep;
3584 case AT_subscr_data:
3585 dip->at_subscr_data = diep;
3587 case AT_mod_u_d_type:
3588 dip->at_mod_u_d_type = diep;
3590 case AT_element_list:
3591 dip->at_element_list = diep;
3592 dip->short_element_list = 0;
3594 case AT_short_element_list:
3595 dip->at_element_list = diep;
3596 dip->short_element_list = 1;
3598 case AT_discr_value:
3599 dip->at_discr_value = diep;
3601 case AT_string_length:
3602 dip->at_string_length = diep;
3605 dip->at_name = diep;
3608 /* For now, ignore any "hostname:" portion, since gdb doesn't
3609 know how to deal with it. (FIXME). */
3610 dip->at_comp_dir = strrchr (diep, ':');
3611 if (dip->at_comp_dir != NULL)
3617 dip->at_comp_dir = diep;
3621 dip->at_producer = diep;
3623 case AT_start_scope:
3624 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3627 case AT_stride_size:
3628 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3632 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3636 dip->at_prototyped = diep;
3639 /* Found an attribute that we are unprepared to handle. However
3640 it is specifically one of the design goals of DWARF that
3641 consumers should ignore unknown attributes. As long as the
3642 form is one that we recognize (so we know how to skip it),
3643 we can just ignore the unknown attribute. */
3646 form = FORM_FROM_ATTR (attr);
3660 diep += TARGET_FT_POINTER_SIZE (objfile);
3663 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3666 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3669 diep += strlen (diep) + 1;
3672 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3683 target_to_host -- swap in target data to host
3687 target_to_host (char *from, int nbytes, int signextend,
3688 struct objfile *objfile)
3692 Given pointer to data in target format in FROM, a byte count for
3693 the size of the data in NBYTES, a flag indicating whether or not
3694 the data is signed in SIGNEXTEND, and a pointer to the current
3695 objfile in OBJFILE, convert the data to host format and return
3696 the converted value.
3700 FIXME: If we read data that is known to be signed, and expect to
3701 use it as signed data, then we need to explicitly sign extend the
3702 result until the bfd library is able to do this for us.
3704 FIXME: Would a 32 bit target ever need an 8 byte result?
3709 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3710 struct objfile *objfile)
3717 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3720 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3723 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3726 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3729 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3740 attribute_size -- compute size of data for a DWARF attribute
3744 static int attribute_size (unsigned int attr)
3748 Given a DWARF attribute in ATTR, compute the size of the first
3749 piece of data associated with this attribute and return that
3752 Returns -1 for unrecognized attributes.
3757 attribute_size (unsigned int attr)
3759 int nbytes; /* Size of next data for this attribute */
3760 unsigned short form; /* Form of the attribute */
3762 form = FORM_FROM_ATTR (attr);
3765 case FORM_STRING: /* A variable length field is next */
3768 case FORM_DATA2: /* Next 2 byte field is the data itself */
3769 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3772 case FORM_DATA4: /* Next 4 byte field is the data itself */
3773 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3774 case FORM_REF: /* Next 4 byte field is a DIE offset */
3777 case FORM_DATA8: /* Next 8 byte field is the data itself */
3780 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3781 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3784 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);