1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
47 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
57 #include "typeprint.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "filestuff.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
83 #include <sys/types.h>
85 #include <unordered_set>
86 #include <unordered_map>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
111 static const struct objfile_data *dwarf2_objfile_data_key;
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
133 struct name_component
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
140 /* The symbol's index in the symbol and constant pool tables of a
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
148 struct mapped_index_base
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
166 /* Return whether the name at IDX in the symbol table should be
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
173 /* Build the symbol name component sorted vector, if we haven't
175 void build_name_components ();
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184 /* Prevent deleting/destroying via a base class pointer. */
186 ~mapped_index_base() = default;
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
196 const offset_type name;
197 const offset_type vec;
200 /* Index data format version. */
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
212 bool symbol_name_slot_invalid (offset_type idx) const override
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
218 /* Convenience method to get at the name of the symbol at IDX in the
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
253 /* Attribute name DW_IDX_*. */
256 /* Attribute form DW_FORM_*. */
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
262 std::vector<attr> attr_vec;
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
267 const char *namei_to_name (uint32_t namei) const;
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
275 size_t symbol_name_count () const override
276 { return this->name_count; }
279 /* See dwarf2read.h. */
282 get_dwarf2_per_objfile (struct objfile *objfile)
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
298 /* Default names of the debugging sections. */
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
326 /* List of DWO/DWP sections. */
328 static const struct dwop_section_names
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
359 /* local data types */
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
377 enum dwarf_unit_type unit_type;
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
399 /* The type to which the method is attached, i.e., its parent class. */
402 /* The index of the method in the type's function fieldlists. */
405 /* The index of the method in the fieldlist. */
408 /* The name of the DIE. */
411 /* The DIE associated with this method. */
412 struct die_info *die;
415 /* Internal state when decoding a particular compilation unit. */
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
429 /* Non-zero if base_address has been set. */
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
436 const char *producer = nullptr;
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
466 /* How many compilation units ago was this CU last referenced? */
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
506 struct dwo_unit *dwo_unit = nullptr;
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
555 unsigned int processing_has_namespace_info : 1;
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
563 struct stmt_list_hash
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
575 struct type_unit_group
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
602 /* The symbol tables for this TU (obtained from the files listed in
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
613 /* These sections are what may appear in a (real or virtual) DWO file. */
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
630 /* CUs/TUs in DWP/DWO files. */
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
657 enum dwp_v2_section_ids
662 /* Data for one DWO file.
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
704 /* These sections are what may appear in a DWP file. */
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
734 struct virtual_v1_dwo_sections
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
752 struct virtual_v2_dwo_sections
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
778 /* Contents of DWP hash tables. */
780 struct dwp_hash_table
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
789 const gdb_byte *indices;
793 /* This is indexed by column number and gives the id of the section
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
809 /* Data for one DWP file. */
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
815 dbfd (std::move (abfd))
819 /* Name of the file. */
822 /* File format version. */
826 gdb_bfd_ref_ptr dbfd;
828 /* Section info for this file. */
829 struct dwp_sections sections {};
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
847 /* This represents a '.dwz' file. */
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
866 gdb_bfd_ref_ptr dwz_bfd;
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
874 struct die_reader_specs
876 /* The bfd of die_section. */
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
912 enum class dir_index : unsigned int {};
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
919 file_entry () = default;
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
925 mod_time (mod_time_),
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
937 /* The directory index (1-based). */
938 dir_index d_index {};
940 unsigned int mod_time {};
942 unsigned int length {};
944 /* True if referenced by the Line Number Program. */
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
969 const char *include_dir_at (dir_index index) const
971 /* Convert directory index number (1-based) to vector index
973 size_t vec_index = to_underlying (index) - 1;
975 if (vec_index >= include_dirs.size ())
977 return include_dirs[vec_index];
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
982 file_entry *file_name_at (file_name_index index)
984 /* Convert file name index number (1-based) to vector index
986 size_t vec_index = to_underlying (index) - 1;
988 if (vec_index >= file_names.size ())
990 return &file_names[vec_index];
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
996 if (index >= file_names.size ())
998 return &file_names[index];
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1035 typedef std::unique_ptr<line_header> line_header_up;
1038 file_entry::include_dir (const line_header *lh) const
1040 return lh->include_dir_at (d_index);
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1056 void fixup (struct dwarf2_cu *cu);
1058 /* Read a minimal amount of information into the minimal die
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1083 /* Flag set if the SCOPE field of this structure has been
1085 unsigned int scope_set : 1;
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 has_specification = 0;
1168 main_subprogram = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1179 /* This data structure holds the information of an abbrev. */
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1202 /* Top level data structure to contain an abbreviation table. */
1206 explicit abbrev_table (sect_offset off)
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1216 /* Allocate space for a struct abbrev_info object in
1218 struct abbrev_info *alloc_abbrev ();
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1242 struct abbrev_info **m_abbrevs;
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1247 /* Attributes have a name and a value. */
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1261 struct dwarf_block *blk;
1270 /* This data structure holds a complete die structure. */
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1287 unsigned int abbrev;
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1306 /* Get at parts of an attribute structure. */
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1316 /* Blocks are a bunch of untyped bytes. */
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1337 static int bits_per_byte = 8;
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1343 struct variant_field
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1358 int accessibility = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1380 /* Number of fields (including baseclasses). */
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1395 /* Nested types defined by this class and the number of elements in this
1397 std::vector<struct decl_field> nested_types_list;
1400 /* One item on the queue of compilation units to read in full symbols
1402 struct dwarf2_queue_item
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1427 /* local function prototypes */
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1573 static void dwarf2_start_subfile (const char *, const char *);
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1595 static int need_gnat_info (struct dwarf2_cu *);
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1655 struct partial_symtab *);
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1676 struct dwarf2_cu *);
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1686 static struct using_direct **using_directives (enum language);
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1739 static const char *dwarf_tag_name (unsigned int);
1741 static const char *dwarf_attr_name (unsigned int);
1743 static const char *dwarf_form_name (unsigned int);
1745 static const char *dwarf_bool_name (unsigned int);
1747 static const char *dwarf_type_encoding_name (unsigned int);
1749 static struct die_info *sibling_die (struct die_info *);
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1753 static void dump_die_for_error (struct die_info *);
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1788 static void read_signatured_type (struct signatured_type *);
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1794 /* memory allocation interface */
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1802 static int attr_form_is_block (const struct attribute *);
1804 static int attr_form_is_section_offset (const struct attribute *);
1806 static int attr_form_is_constant (const struct attribute *);
1808 static int attr_form_is_ref (const struct attribute *);
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1816 struct dwarf2_cu *cu,
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1823 static hashval_t partial_die_hash (const void *item);
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1858 static void dwarf2_mark (struct dwarf2_cu *);
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1877 class dwarf2_queue_guard
1880 dwarf2_queue_guard () = default;
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1886 struct dwarf2_queue_item *item, *last;
1888 item = dwarf2_queue;
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1912 struct file_and_directory
1914 /* The filename. This is never NULL. */
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1973 static void free_dwo_file (struct dwo_file *);
1975 /* A unique_ptr helper to free a dwo_file. */
1977 struct dwo_file_deleter
1979 void operator() (struct dwo_file *df) const
1985 /* A unique pointer to a dwo_file. */
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1991 static void check_producer (struct dwarf2_cu *cu);
1993 static void free_line_header_voidp (void *arg);
1995 /* Various complaints about symbol reading that don't abort the process. */
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2004 dwarf2_debug_line_missing_file_complaint (void)
2006 complaint (_(".debug_line section has line data without a file"));
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2017 dwarf2_complex_location_expr_complaint (void)
2019 complaint (_("location expression too complex"));
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2033 complaint (_("debug info runs off end of %s section"
2035 get_section_name (section),
2036 get_section_file_name (section));
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2054 /* Hash function for line_header_hash. */
2057 line_header_hash (const struct line_header *ofs)
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2065 line_header_hash_voidp (const void *item)
2067 const struct line_header *ofs = (const struct line_header *) item;
2069 return line_header_hash (ofs);
2072 /* Equality function for line_header_hash. */
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2090 attr_value_as_address (struct attribute *attr)
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2111 addr = DW_ADDR (attr);
2116 /* See declaration. */
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2123 names = &dwarf2_elf_names;
2125 bfd *obfd = objfile->obfd;
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2150 VEC_free (dwarf2_section_info_def, types);
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2155 /* Everything else should be on the objfile obstack. */
2158 /* See declaration. */
2161 dwarf2_per_objfile::free_cached_comp_units ()
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2170 *last_chain = next_cu;
2175 /* A helper class that calls free_cached_comp_units on
2178 class free_cached_comp_units
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2187 ~free_cached_comp_units ()
2189 m_per_objfile->free_cached_comp_units ();
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2196 dwarf2_per_objfile *m_per_objfile;
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2208 if (objfile->flags & OBJF_READNEVER)
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2214 if (dwarf2_per_objfile == NULL)
2216 /* Initialize per-objfile state. */
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2228 /* Return the containing section of virtual section SECTION. */
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2237 /* Return the bfd owner of SECTION. */
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2242 if (section->is_virtual)
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2247 return section->s.section->owner;
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2256 if (section->is_virtual)
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2261 return section->s.section;
2264 /* Return the name of SECTION. */
2267 get_section_name (const struct dwarf2_section_info *section)
2269 asection *sectp = get_section_bfd_section (section);
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2275 /* Return the name of the file SECTION is in. */
2278 get_section_file_name (const struct dwarf2_section_info *section)
2280 bfd *abfd = get_section_bfd_owner (section);
2282 return bfd_get_filename (abfd);
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2289 get_section_id (const struct dwarf2_section_info *section)
2291 asection *sectp = get_section_bfd_section (section);
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2302 get_section_flags (const struct dwarf2_section_info *section)
2304 asection *sectp = get_section_bfd_section (section);
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2326 /* See declaration. */
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2337 else if (section_is_p (sectp->name, &names.info))
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2342 else if (section_is_p (sectp->name, &names.abbrev))
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2347 else if (section_is_p (sectp->name, &names.line))
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2352 else if (section_is_p (sectp->name, &names.loc))
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2357 else if (section_is_p (sectp->name, &names.loclists))
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2362 else if (section_is_p (sectp->name, &names.macinfo))
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2367 else if (section_is_p (sectp->name, &names.macro))
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2372 else if (section_is_p (sectp->name, &names.str))
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2377 else if (section_is_p (sectp->name, &names.line_str))
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2382 else if (section_is_p (sectp->name, &names.addr))
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2387 else if (section_is_p (sectp->name, &names.frame))
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2397 else if (section_is_p (sectp->name, &names.ranges))
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2402 else if (section_is_p (sectp->name, &names.rnglists))
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2407 else if (section_is_p (sectp->name, &names.types))
2409 struct dwarf2_section_info type_section;
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2423 else if (section_is_p (sectp->name, &names.debug_names))
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2439 /* A helper function that decides whether a section is empty,
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2450 /* See dwarf2read.h. */
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2457 gdb_byte *buf, *retbuf;
2461 info->buffer = NULL;
2464 if (dwarf2_section_empty_p (info))
2467 sectp = get_section_bfd_section (info);
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 info->buffer = retbuf;
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2540 dwarf2_read_section (objfile, info);
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2558 /* We may see an objfile without any DWARF, in which case we just
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2576 gdb_assert_not_reached ("unexpected section");
2579 dwarf2_read_section (objfile, info);
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2586 /* A helper function to find the sections for a .dwz file. */
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2653 if (bfd_get_error () == bfd_error_no_error)
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2661 buildid_len = (size_t) buildid_len_arg;
2663 filename = data.get ();
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2703 /* DWARF quick_symbols_functions support. */
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2718 /* The file names from the line table, after being run through
2720 const char **file_names;
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2750 /* Utility hash function for a stmt_list_hash. */
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2763 /* Utility equality function for a stmt_list_hash. */
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2775 return lhs->line_sect_off == rhs->line_sect_off;
2778 /* Hash function for a quick_file_names. */
2781 hash_file_name_entry (const void *e)
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2786 return hash_stmt_list_entry (&file_data->hash);
2789 /* Equality function for a quick_file_names. */
2792 eq_file_name_entry (const void *a, const void *b)
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2800 /* Delete function for a quick_file_names. */
2803 delete_file_name_entry (void *e)
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2808 for (i = 0; i < file_data->num_file_names; ++i)
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2819 /* Create a quick_file_names hash table. */
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2847 /* Read in the symbols for PER_CU. */
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2884 process_queue (dwarf2_per_objfile);
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2909 return per_cu->v.quick->compunit_symtab;
2912 /* See declaration. */
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2917 if (index >= this->all_comp_units.size ())
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2924 return this->all_comp_units[index];
2927 /* See declaration. */
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2934 return this->all_comp_units[index];
2937 /* See declaration. */
2940 dwarf2_per_objfile::get_tu (int index)
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2944 return this->all_type_units[index];
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2955 sect_offset sect_off, ULONGEST length)
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2971 /* A helper for create_cus_from_index that handles a given list of
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2980 for (offset_type i = 0; i < n_elements; i += 2)
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3011 if (dwz_elements == 0)
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3019 /* Create the signatured type hash table from the index. */
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3035 for (offset_type i = 0; i < elements; i += 3)
3037 struct signatured_type *sig_type;
3040 cu_offset type_offset_in_tu;
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3072 /* Create the signatured type hash table from .debug_names. */
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3093 struct signatured_type *sig_type;
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3100 map.dwarf5_byte_order));
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3105 section->buffer + to_underlying (sect_off),
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3142 auto_obstack temp_obstack;
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3218 dwarf2_read_section (objfile, section);
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3222 const gdb_byte *addr = section->buffer;
3224 while (addr < section->buffer + section->size)
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3312 if (addr + 2 * address_size > entry_end)
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3330 /* Symbol was eliminated due to a COMDAT group. */
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3365 if (strchr (name, '(') != NULL)
3367 without_params = cp_remove_params (name);
3369 if (without_params != NULL)
3370 name = without_params.get ();
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3415 Returns 1 if all went well, 0 otherwise. */
3418 read_index_from_section (struct objfile *objfile,
3419 const char *filename,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3433 if (dwarf2_section_empty_p (section))
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3441 dwarf2_read_section (objfile, section);
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3457 warning_printed = 1;
3461 /* Index version 4 uses a different hash function than index version
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3479 warning_printed = 1;
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3496 map->version = version;
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3535 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3554 /* If there is a .dwz file, read it so we can get its CU list as
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3563 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3568 &dwz_types_elements_ignore))
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3579 if (types_list_elements)
3581 struct dwarf2_section_info *section;
3583 /* We can only handle a single .debug_types when we have an
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3605 /* die_reader_func for dw2_get_file_names. */
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3623 struct quick_file_names *qfn;
3625 gdb_assert (! this_cu->is_debug_types);
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3631 this_cu->v.quick->no_file_data = 1;
3639 sect_offset line_offset {};
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3644 struct quick_file_names find_entry;
3646 line_offset = (sect_offset) DW_UNSND (attr);
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3660 lh = dwarf_decode_line_header (line_offset, cu);
3664 lh_cu->v.quick->no_file_data = 1;
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3676 qfn->num_file_names = lh->file_names.size ();
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3683 lh_cu->v.quick->file_names = qfn;
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3705 if (this_cu->v.quick->no_file_data)
3707 return this_cu->v.quick->file_names;
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3724 return qfn->real_names[index];
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3738 return compunit_primary_filetab (cust);
3741 /* Traversal function for dw2_forget_cached_source_info. */
3744 dw2_free_cached_file_names (void **slot, void *info)
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3748 if (file_data->real_names)
3752 for (i = 0; i < file_data->num_file_names; ++i)
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3787 /* This may expand more than one symtab, and we want to iterate over
3789 dw2_instantiate_symtab (per_cu, false);
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3795 /* Implementation of the map_symtabs_matching_filename method. */
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3824 if (compare_filenames_for_search (this_name, name))
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3847 if (real_path != NULL)
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3868 struct dw2_symtab_iterator
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3877 /* The kind of symbol we're looking for. */
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3882 /* The next element in VEC to look at. */
3884 /* The number of elements in VEC, or zero if there is no match. */
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3910 iter->global_seen = 0;
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3924 /* Return the next matching CU or NULL if there are no more. */
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3931 for ( ; iter->next < iter->length; ++iter->next)
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3953 complaint (_(".gdb_index entry has bad CU index"
3955 objfile_name (dwarf2_per_objfile->objfile));
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3965 /* Check static vs global. */
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3975 iter->global_seen = 1;
3978 /* Only check the symbol's kind if it has one. */
3981 switch (iter->domain)
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4047 /* Keep looking through other CUs. */
4054 dw2_print_stats (struct objfile *objfile)
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4062 for (int i = 0; i < total; ++i)
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4066 if (!per_cu->v.quick->compunit_symtab)
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4079 dw2_dump (struct objfile *objfile)
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4101 /* There's nothing to relocate here. */
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4131 for (int i = 0; i < total_units; ++i)
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4168 const char *this_fullname = file_data->file_names[j];
4170 if (filename_cmp (this_fullname, fullname) == 0)
4172 dw2_instantiate_symtab (per_cu, false);
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4193 /* Symbol name matcher for .gdb_index names.
4195 Symbol names in .gdb_index have a few particularities:
4197 - There's no indication of which is the language of each symbol.
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4217 class gdb_index_symbol_name_matcher
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4231 /* A vector holding all the different symbol name matchers, for all
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4247 matchers.push_back (default_symbol_name_matcher);
4249 for (int i = 0; i < nr_languages; i++)
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4286 make_sort_after_prefix_name (const char *search_name)
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4307 Some examples of this operation:
4309 SEARCH_NAME => "+1" RESULT
4313 "\xff" "a" "\xff" => "\xff" "b"
4318 Then, with these symbols for example:
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4330 funcÿ (Latin1 'ÿ' [0xff])
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4339 ÿÿ (Latin1 'ÿ' [0xff])
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4353 /* See declaration. */
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4389 /* Find the lower bound. */
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4398 /* Find the upper bound. */
4401 if (lookup_name_without_params.completion_mode ())
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4407 function << lower bound
4409 other_function << upper bound
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4414 std::string after = make_sort_after_prefix_name (cplus);
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4424 return {lower, upper};
4427 /* See declaration. */
4430 mapped_index_base::build_name_components ()
4432 if (!this->name_components.empty ())
4435 this->name_components_casing = case_sensitivity;
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4449 if (this->symbol_name_slot_invalid (idx))
4452 const char *name = this->symbol_name_at (idx);
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4464 previous_len = current_len;
4466 this->name_components.push_back ({previous_len, idx});
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4479 return name_cmp (left_name, right_name) < 0;
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4507 /* Build the symbol name component sorted vector, if we haven't
4509 index.build_name_components ();
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4526 for (; bounds.first != bounds.second; ++bounds.first)
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4534 matches.push_back (bounds.first->idx);
4537 std::sort (matches.begin (), matches.end ());
4539 /* Finally call the callback, once per match. */
4541 for (offset_type idx : matches)
4545 match_callback (idx);
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4575 return m_symbol_table.size ();
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4581 return m_symbol_table[idx];
4585 gdb::array_view<const char *> m_symbol_table;
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4592 string_or_null (const char *str)
4594 return str != NULL ? str : "<null>";
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4613 bool matched = true;
4615 auto mismatch = [&] (const char *expected_str,
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4621 (match_type == symbol_name_match_type::FULL
4623 name, string_or_null (expected_str), string_or_null (got));
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4632 [&] (offset_type idx)
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4650 /* The symbols added to the mock mapped_index for testing (in
4652 static const char *test_symbols[] = {
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4727 test_mapped_index_find_name_component_bounds ()
4729 mock_mapped_index mock_index (test_symbols);
4731 mock_index.build_name_components ();
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4736 static const char *expected_syms[] = {
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4748 static const char *expected_syms1[] = {
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4755 static const char *expected_syms2[] = {
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4766 test_dw2_expand_symtabs_matching_symbol ()
4768 mock_mapped_index mock_index (test_symbols);
4770 /* We let all tests run until the end even if some fails, for debug
4772 bool any_mismatch = false;
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4794 /* Should be able to match all existing symbols with
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4829 /* Check that completion mode works at each prefix of the expected
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4836 for (size_t i = 1; i < len; i++)
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4853 /* Same, with a "complicated" symbol. */
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4859 for (size_t i = 1; i < len; i++)
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4927 /* Test lookup names that don't match anything. */
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4939 static const char *syms[] = {
4943 "A :: B :: C ( int )",
4948 for (const char *s : syms)
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4963 SELF_CHECK (!any_mismatch);
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4978 #endif /* GDB_SELF_TEST */
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4996 dw2_instantiate_symtab (per_cu, false);
4998 if (expansion_notify != NULL
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5039 /* Work around gold/15646. */
5042 if (!is_static && global_seen)
5048 /* Only check the symbol's kind if it has one. */
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5074 complaint (_(".gdb_index entry has bad CU index"
5076 objfile_name (dwarf2_per_objfile->objfile));
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5095 if (file_matcher == NULL)
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5105 NULL, xcalloc, xfree));
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5114 per_cu->v.quick->mark = 0;
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5128 per_cu->v.quick->mark = 1;
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5134 const char *this_real_name;
5136 if (file_matcher (file_data->file_names[j], false))
5138 per_cu->v.quick->mark = 1;
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5152 per_cu->v.quick->mark = 1;
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5187 kind, [&] (offset_type idx)
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5207 if (cust->includes == NULL)
5210 for (i = 0; cust->includes[i]; ++i)
5212 struct compunit_symtab *s = cust->includes[i];
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5226 struct obj_section *section,
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5232 if (!objfile->psymtabs_addrmap)
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 gdb_assert (result != NULL);
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5259 if (!dwarf2_per_objfile->filenames_cache)
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5273 if (per_cu->v.quick->compunit_symtab)
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5279 *slot = per_cu->v.quick->file_names;
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 /* Already visited. */
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5320 dw2_has_symbols (struct objfile *objfile)
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5342 dw2_map_symbol_filenames
5345 /* DWARF-5 debug_names reader. */
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5354 Returns true if all went well, false otherwise. */
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5362 if (dwarf2_section_empty_p (section))
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5370 dwarf2_read_section (objfile, section);
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374 const gdb_byte *addr = section->buffer;
5376 bfd *const abfd = get_section_bfd_owner (section);
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5406 uint16_t padding = read_2_bytes (abfd, addr);
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5420 /* local_type_unit_count - The number of TUs in the local TU
5422 map.tu_count = read_4_bytes (abfd, addr);
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 if (foreign_tu_count != 0)
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5437 /* bucket_count - The number of hash buckets in the hash lookup
5439 map.bucket_count = read_4_bytes (abfd, addr);
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5482 const gdb_byte *abbrev_table_start = addr;
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5511 if (attr.form == DW_FORM_implicit_const)
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5517 if (attr.dw_idx == 0 && attr.form == 0)
5519 indexval.attr_vec.push_back (std::move (attr));
5522 if (addr != abbrev_table_start + abbrev_table_size)
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5529 map.entry_pool = addr;
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info §ion,
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5553 map.dwarf5_byte_order));
5556 sect_off_next = (sect_offset) section.size;
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 sect_off_prev = sect_off_next;
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5584 if (dwz_map.cu_count == 0)
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5612 /* If there is a .dwz file, read it so we can get its CU list as
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629 if (map->tu_count != 0)
5631 /* We can only handle a single .debug_types when we have an
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5657 class dw2_debug_names_iterator
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5675 m_addr (find_vec_in_debug_names (map, namei))
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5704 const gdb_byte *m_addr;
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5727 int (*cmp) (const char *, const char *);
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5736 if (strchr (name, '(') != NULL)
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5741 if (without_params != NULL)
5743 name = without_params.get();
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5759 if (namei >= map.name_count)
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5777 if (full_hash == namei_full_hash)
5779 const char *const namei_string = map.namei_to_name (namei);
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5791 if (cmp (namei_string, name) == 0)
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5802 if (namei >= map.name_count)
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5811 if (namei >= map.name_count)
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5827 /* See dw2_debug_names_iterator. */
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5852 pulongest (abbrev), objfile_name (objfile));
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5867 case DW_FORM_flag_present:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5880 switch (attr.dw_idx)
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5886 complaint (_(".debug_names entry has bad CU index %s"
5889 objfile_name (dwarf2_per_objfile->objfile));
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5898 complaint (_(".debug_names entry has bad TU index %s"
5901 objfile_name (dwarf2_per_objfile->objfile));
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5909 have_is_static = true;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5915 have_is_static = true;
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5925 /* Check static vs global. */
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5938 switch (indexval.dwarf_tag)
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5951 switch (indexval.dwarf_tag)
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5961 switch (indexval.dwarf_tag)
5964 case DW_TAG_variable:
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5981 case DW_TAG_variable:
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5990 case DW_TAG_subprogram:
5997 switch (indexval.dwarf_tag)
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6024 /* index is NULL if OBJF_READNOW. */
6027 const auto &map = *mapp;
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6056 /* Keep looking through other CUs. */
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6067 dw2_debug_names_dump (struct objfile *objfile)
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6125 kind, [&] (offset_type namei)
6127 /* The name was matched, now expand corresponding CUs that were
6129 dw2_debug_names_iterator iter (map, kind, namei);
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6146 dw2_debug_names_dump,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6155 dw2_map_symbol_filenames
6158 /* See symfile.h. */
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6170 if ((objfile->flags & OBJF_READNOW))
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6191 *index_kind = dw_index_kind::GDB_INDEX;
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6201 if (dwarf2_read_index (dwarf2_per_objfile))
6203 *index_kind = dw_index_kind::GDB_INDEX;
6212 /* Build a partial symbol table. */
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6233 CATCH (except, RETURN_MASK_ERROR)
6235 exception_print (gdb_stderr, except);
6240 /* Return the total length of the CU described by HEADER. */
6243 get_cu_length (const struct comp_unit_head *header)
6245 return header->initial_length_size + header->length;
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6256 return sect_off >= bottom && sect_off < top;
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6268 struct attribute *attr;
6271 cu->base_address = 0;
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6276 cu->base_address = attr_value_as_address (attr);
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6284 cu->base_address = attr_value_as_address (attr);
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6312 if (cu_header->version < 5)
6313 switch (section_kind)
6315 case rcuh_kind::COMPILE:
6316 cu_header->unit_type = DW_UT_compile;
6318 case rcuh_kind::TYPE:
6319 cu_header->unit_type = DW_UT_type;
6322 internal_error (__FILE__, __LINE__,
6323 _("read_comp_unit_head: invalid section_kind"));
6327 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6328 (read_1_byte (abfd, info_ptr));
6330 switch (cu_header->unit_type)
6333 if (section_kind != rcuh_kind::COMPILE)
6334 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6335 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6339 section_kind = rcuh_kind::TYPE;
6342 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6343 "(is %d, should be %d or %d) [in module %s]"),
6344 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6347 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6350 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6353 info_ptr += bytes_read;
6354 if (cu_header->version < 5)
6356 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6359 signed_addr = bfd_get_sign_extend_vma (abfd);
6360 if (signed_addr < 0)
6361 internal_error (__FILE__, __LINE__,
6362 _("read_comp_unit_head: dwarf from non elf file"));
6363 cu_header->signed_addr_p = signed_addr;
6365 if (section_kind == rcuh_kind::TYPE)
6367 LONGEST type_offset;
6369 cu_header->signature = read_8_bytes (abfd, info_ptr);
6372 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6373 info_ptr += bytes_read;
6374 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6375 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6376 error (_("Dwarf Error: Too big type_offset in compilation unit "
6377 "header (is %s) [in module %s]"), plongest (type_offset),
6384 /* Helper function that returns the proper abbrev section for
6387 static struct dwarf2_section_info *
6388 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6390 struct dwarf2_section_info *abbrev;
6391 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6393 if (this_cu->is_dwz)
6394 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6396 abbrev = &dwarf2_per_objfile->abbrev;
6401 /* Subroutine of read_and_check_comp_unit_head and
6402 read_and_check_type_unit_head to simplify them.
6403 Perform various error checking on the header. */
6406 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6407 struct comp_unit_head *header,
6408 struct dwarf2_section_info *section,
6409 struct dwarf2_section_info *abbrev_section)
6411 const char *filename = get_section_file_name (section);
6413 if (header->version < 2 || header->version > 5)
6414 error (_("Dwarf Error: wrong version in compilation unit header "
6415 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6418 if (to_underlying (header->abbrev_sect_off)
6419 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6420 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6421 "(offset %s + 6) [in module %s]"),
6422 sect_offset_str (header->abbrev_sect_off),
6423 sect_offset_str (header->sect_off),
6426 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6427 avoid potential 32-bit overflow. */
6428 if (((ULONGEST) header->sect_off + get_cu_length (header))
6430 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6431 "(offset %s + 0) [in module %s]"),
6432 header->length, sect_offset_str (header->sect_off),
6436 /* Read in a CU/TU header and perform some basic error checking.
6437 The contents of the header are stored in HEADER.
6438 The result is a pointer to the start of the first DIE. */
6440 static const gdb_byte *
6441 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6442 struct comp_unit_head *header,
6443 struct dwarf2_section_info *section,
6444 struct dwarf2_section_info *abbrev_section,
6445 const gdb_byte *info_ptr,
6446 rcuh_kind section_kind)
6448 const gdb_byte *beg_of_comp_unit = info_ptr;
6450 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6452 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6454 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6456 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6462 /* Fetch the abbreviation table offset from a comp or type unit header. */
6465 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6466 struct dwarf2_section_info *section,
6467 sect_offset sect_off)
6469 bfd *abfd = get_section_bfd_owner (section);
6470 const gdb_byte *info_ptr;
6471 unsigned int initial_length_size, offset_size;
6474 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6475 info_ptr = section->buffer + to_underlying (sect_off);
6476 read_initial_length (abfd, info_ptr, &initial_length_size);
6477 offset_size = initial_length_size == 4 ? 4 : 8;
6478 info_ptr += initial_length_size;
6480 version = read_2_bytes (abfd, info_ptr);
6484 /* Skip unit type and address size. */
6488 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6491 /* Allocate a new partial symtab for file named NAME and mark this new
6492 partial symtab as being an include of PST. */
6495 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6496 struct objfile *objfile)
6498 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6500 if (!IS_ABSOLUTE_PATH (subpst->filename))
6502 /* It shares objfile->objfile_obstack. */
6503 subpst->dirname = pst->dirname;
6506 subpst->textlow = 0;
6507 subpst->texthigh = 0;
6509 subpst->dependencies
6510 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6511 subpst->dependencies[0] = pst;
6512 subpst->number_of_dependencies = 1;
6514 subpst->globals_offset = 0;
6515 subpst->n_global_syms = 0;
6516 subpst->statics_offset = 0;
6517 subpst->n_static_syms = 0;
6518 subpst->compunit_symtab = NULL;
6519 subpst->read_symtab = pst->read_symtab;
6522 /* No private part is necessary for include psymtabs. This property
6523 can be used to differentiate between such include psymtabs and
6524 the regular ones. */
6525 subpst->read_symtab_private = NULL;
6528 /* Read the Line Number Program data and extract the list of files
6529 included by the source file represented by PST. Build an include
6530 partial symtab for each of these included files. */
6533 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6534 struct die_info *die,
6535 struct partial_symtab *pst)
6538 struct attribute *attr;
6540 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6542 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6544 return; /* No linetable, so no includes. */
6546 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6547 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6551 hash_signatured_type (const void *item)
6553 const struct signatured_type *sig_type
6554 = (const struct signatured_type *) item;
6556 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6557 return sig_type->signature;
6561 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6563 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6564 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6566 return lhs->signature == rhs->signature;
6569 /* Allocate a hash table for signatured types. */
6572 allocate_signatured_type_table (struct objfile *objfile)
6574 return htab_create_alloc_ex (41,
6575 hash_signatured_type,
6578 &objfile->objfile_obstack,
6579 hashtab_obstack_allocate,
6580 dummy_obstack_deallocate);
6583 /* A helper function to add a signatured type CU to a table. */
6586 add_signatured_type_cu_to_table (void **slot, void *datum)
6588 struct signatured_type *sigt = (struct signatured_type *) *slot;
6589 std::vector<signatured_type *> *all_type_units
6590 = (std::vector<signatured_type *> *) datum;
6592 all_type_units->push_back (sigt);
6597 /* A helper for create_debug_types_hash_table. Read types from SECTION
6598 and fill them into TYPES_HTAB. It will process only type units,
6599 therefore DW_UT_type. */
6602 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6603 struct dwo_file *dwo_file,
6604 dwarf2_section_info *section, htab_t &types_htab,
6605 rcuh_kind section_kind)
6607 struct objfile *objfile = dwarf2_per_objfile->objfile;
6608 struct dwarf2_section_info *abbrev_section;
6610 const gdb_byte *info_ptr, *end_ptr;
6612 abbrev_section = (dwo_file != NULL
6613 ? &dwo_file->sections.abbrev
6614 : &dwarf2_per_objfile->abbrev);
6616 if (dwarf_read_debug)
6617 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6618 get_section_name (section),
6619 get_section_file_name (abbrev_section));
6621 dwarf2_read_section (objfile, section);
6622 info_ptr = section->buffer;
6624 if (info_ptr == NULL)
6627 /* We can't set abfd until now because the section may be empty or
6628 not present, in which case the bfd is unknown. */
6629 abfd = get_section_bfd_owner (section);
6631 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6632 because we don't need to read any dies: the signature is in the
6635 end_ptr = info_ptr + section->size;
6636 while (info_ptr < end_ptr)
6638 struct signatured_type *sig_type;
6639 struct dwo_unit *dwo_tu;
6641 const gdb_byte *ptr = info_ptr;
6642 struct comp_unit_head header;
6643 unsigned int length;
6645 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6647 /* Initialize it due to a false compiler warning. */
6648 header.signature = -1;
6649 header.type_cu_offset_in_tu = (cu_offset) -1;
6651 /* We need to read the type's signature in order to build the hash
6652 table, but we don't need anything else just yet. */
6654 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6655 abbrev_section, ptr, section_kind);
6657 length = get_cu_length (&header);
6659 /* Skip dummy type units. */
6660 if (ptr >= info_ptr + length
6661 || peek_abbrev_code (abfd, ptr) == 0
6662 || header.unit_type != DW_UT_type)
6668 if (types_htab == NULL)
6671 types_htab = allocate_dwo_unit_table (objfile);
6673 types_htab = allocate_signatured_type_table (objfile);
6679 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6681 dwo_tu->dwo_file = dwo_file;
6682 dwo_tu->signature = header.signature;
6683 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6684 dwo_tu->section = section;
6685 dwo_tu->sect_off = sect_off;
6686 dwo_tu->length = length;
6690 /* N.B.: type_offset is not usable if this type uses a DWO file.
6691 The real type_offset is in the DWO file. */
6693 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6694 struct signatured_type);
6695 sig_type->signature = header.signature;
6696 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6697 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6698 sig_type->per_cu.is_debug_types = 1;
6699 sig_type->per_cu.section = section;
6700 sig_type->per_cu.sect_off = sect_off;
6701 sig_type->per_cu.length = length;
6704 slot = htab_find_slot (types_htab,
6705 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6707 gdb_assert (slot != NULL);
6710 sect_offset dup_sect_off;
6714 const struct dwo_unit *dup_tu
6715 = (const struct dwo_unit *) *slot;
6717 dup_sect_off = dup_tu->sect_off;
6721 const struct signatured_type *dup_tu
6722 = (const struct signatured_type *) *slot;
6724 dup_sect_off = dup_tu->per_cu.sect_off;
6727 complaint (_("debug type entry at offset %s is duplicate to"
6728 " the entry at offset %s, signature %s"),
6729 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6730 hex_string (header.signature));
6732 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6734 if (dwarf_read_debug > 1)
6735 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6736 sect_offset_str (sect_off),
6737 hex_string (header.signature));
6743 /* Create the hash table of all entries in the .debug_types
6744 (or .debug_types.dwo) section(s).
6745 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6746 otherwise it is NULL.
6748 The result is a pointer to the hash table or NULL if there are no types.
6750 Note: This function processes DWO files only, not DWP files. */
6753 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6754 struct dwo_file *dwo_file,
6755 VEC (dwarf2_section_info_def) *types,
6759 struct dwarf2_section_info *section;
6761 if (VEC_empty (dwarf2_section_info_def, types))
6765 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6767 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6768 types_htab, rcuh_kind::TYPE);
6771 /* Create the hash table of all entries in the .debug_types section,
6772 and initialize all_type_units.
6773 The result is zero if there is an error (e.g. missing .debug_types section),
6774 otherwise non-zero. */
6777 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6779 htab_t types_htab = NULL;
6781 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6782 &dwarf2_per_objfile->info, types_htab,
6783 rcuh_kind::COMPILE);
6784 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6785 dwarf2_per_objfile->types, types_htab);
6786 if (types_htab == NULL)
6788 dwarf2_per_objfile->signatured_types = NULL;
6792 dwarf2_per_objfile->signatured_types = types_htab;
6794 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6795 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6797 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6798 &dwarf2_per_objfile->all_type_units);
6803 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6804 If SLOT is non-NULL, it is the entry to use in the hash table.
6805 Otherwise we find one. */
6807 static struct signatured_type *
6808 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6811 struct objfile *objfile = dwarf2_per_objfile->objfile;
6813 if (dwarf2_per_objfile->all_type_units.size ()
6814 == dwarf2_per_objfile->all_type_units.capacity ())
6815 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6817 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6818 struct signatured_type);
6820 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6821 sig_type->signature = sig;
6822 sig_type->per_cu.is_debug_types = 1;
6823 if (dwarf2_per_objfile->using_index)
6825 sig_type->per_cu.v.quick =
6826 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6827 struct dwarf2_per_cu_quick_data);
6832 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6835 gdb_assert (*slot == NULL);
6837 /* The rest of sig_type must be filled in by the caller. */
6841 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6842 Fill in SIG_ENTRY with DWO_ENTRY. */
6845 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6846 struct signatured_type *sig_entry,
6847 struct dwo_unit *dwo_entry)
6849 /* Make sure we're not clobbering something we don't expect to. */
6850 gdb_assert (! sig_entry->per_cu.queued);
6851 gdb_assert (sig_entry->per_cu.cu == NULL);
6852 if (dwarf2_per_objfile->using_index)
6854 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6855 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6858 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6859 gdb_assert (sig_entry->signature == dwo_entry->signature);
6860 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6861 gdb_assert (sig_entry->type_unit_group == NULL);
6862 gdb_assert (sig_entry->dwo_unit == NULL);
6864 sig_entry->per_cu.section = dwo_entry->section;
6865 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6866 sig_entry->per_cu.length = dwo_entry->length;
6867 sig_entry->per_cu.reading_dwo_directly = 1;
6868 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6869 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6870 sig_entry->dwo_unit = dwo_entry;
6873 /* Subroutine of lookup_signatured_type.
6874 If we haven't read the TU yet, create the signatured_type data structure
6875 for a TU to be read in directly from a DWO file, bypassing the stub.
6876 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6877 using .gdb_index, then when reading a CU we want to stay in the DWO file
6878 containing that CU. Otherwise we could end up reading several other DWO
6879 files (due to comdat folding) to process the transitive closure of all the
6880 mentioned TUs, and that can be slow. The current DWO file will have every
6881 type signature that it needs.
6882 We only do this for .gdb_index because in the psymtab case we already have
6883 to read all the DWOs to build the type unit groups. */
6885 static struct signatured_type *
6886 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6888 struct dwarf2_per_objfile *dwarf2_per_objfile
6889 = cu->per_cu->dwarf2_per_objfile;
6890 struct objfile *objfile = dwarf2_per_objfile->objfile;
6891 struct dwo_file *dwo_file;
6892 struct dwo_unit find_dwo_entry, *dwo_entry;
6893 struct signatured_type find_sig_entry, *sig_entry;
6896 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6898 /* If TU skeletons have been removed then we may not have read in any
6900 if (dwarf2_per_objfile->signatured_types == NULL)
6902 dwarf2_per_objfile->signatured_types
6903 = allocate_signatured_type_table (objfile);
6906 /* We only ever need to read in one copy of a signatured type.
6907 Use the global signatured_types array to do our own comdat-folding
6908 of types. If this is the first time we're reading this TU, and
6909 the TU has an entry in .gdb_index, replace the recorded data from
6910 .gdb_index with this TU. */
6912 find_sig_entry.signature = sig;
6913 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6914 &find_sig_entry, INSERT);
6915 sig_entry = (struct signatured_type *) *slot;
6917 /* We can get here with the TU already read, *or* in the process of being
6918 read. Don't reassign the global entry to point to this DWO if that's
6919 the case. Also note that if the TU is already being read, it may not
6920 have come from a DWO, the program may be a mix of Fission-compiled
6921 code and non-Fission-compiled code. */
6923 /* Have we already tried to read this TU?
6924 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6925 needn't exist in the global table yet). */
6926 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6929 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6930 dwo_unit of the TU itself. */
6931 dwo_file = cu->dwo_unit->dwo_file;
6933 /* Ok, this is the first time we're reading this TU. */
6934 if (dwo_file->tus == NULL)
6936 find_dwo_entry.signature = sig;
6937 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6938 if (dwo_entry == NULL)
6941 /* If the global table doesn't have an entry for this TU, add one. */
6942 if (sig_entry == NULL)
6943 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6945 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6946 sig_entry->per_cu.tu_read = 1;
6950 /* Subroutine of lookup_signatured_type.
6951 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6952 then try the DWP file. If the TU stub (skeleton) has been removed then
6953 it won't be in .gdb_index. */
6955 static struct signatured_type *
6956 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6958 struct dwarf2_per_objfile *dwarf2_per_objfile
6959 = cu->per_cu->dwarf2_per_objfile;
6960 struct objfile *objfile = dwarf2_per_objfile->objfile;
6961 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6962 struct dwo_unit *dwo_entry;
6963 struct signatured_type find_sig_entry, *sig_entry;
6966 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6967 gdb_assert (dwp_file != NULL);
6969 /* If TU skeletons have been removed then we may not have read in any
6971 if (dwarf2_per_objfile->signatured_types == NULL)
6973 dwarf2_per_objfile->signatured_types
6974 = allocate_signatured_type_table (objfile);
6977 find_sig_entry.signature = sig;
6978 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6979 &find_sig_entry, INSERT);
6980 sig_entry = (struct signatured_type *) *slot;
6982 /* Have we already tried to read this TU?
6983 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6984 needn't exist in the global table yet). */
6985 if (sig_entry != NULL)
6988 if (dwp_file->tus == NULL)
6990 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6991 sig, 1 /* is_debug_types */);
6992 if (dwo_entry == NULL)
6995 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6996 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7001 /* Lookup a signature based type for DW_FORM_ref_sig8.
7002 Returns NULL if signature SIG is not present in the table.
7003 It is up to the caller to complain about this. */
7005 static struct signatured_type *
7006 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7008 struct dwarf2_per_objfile *dwarf2_per_objfile
7009 = cu->per_cu->dwarf2_per_objfile;
7012 && dwarf2_per_objfile->using_index)
7014 /* We're in a DWO/DWP file, and we're using .gdb_index.
7015 These cases require special processing. */
7016 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7017 return lookup_dwo_signatured_type (cu, sig);
7019 return lookup_dwp_signatured_type (cu, sig);
7023 struct signatured_type find_entry, *entry;
7025 if (dwarf2_per_objfile->signatured_types == NULL)
7027 find_entry.signature = sig;
7028 entry = ((struct signatured_type *)
7029 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7034 /* Low level DIE reading support. */
7036 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7039 init_cu_die_reader (struct die_reader_specs *reader,
7040 struct dwarf2_cu *cu,
7041 struct dwarf2_section_info *section,
7042 struct dwo_file *dwo_file,
7043 struct abbrev_table *abbrev_table)
7045 gdb_assert (section->readin && section->buffer != NULL);
7046 reader->abfd = get_section_bfd_owner (section);
7048 reader->dwo_file = dwo_file;
7049 reader->die_section = section;
7050 reader->buffer = section->buffer;
7051 reader->buffer_end = section->buffer + section->size;
7052 reader->comp_dir = NULL;
7053 reader->abbrev_table = abbrev_table;
7056 /* Subroutine of init_cutu_and_read_dies to simplify it.
7057 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7058 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7061 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7062 from it to the DIE in the DWO. If NULL we are skipping the stub.
7063 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7064 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7065 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7066 STUB_COMP_DIR may be non-NULL.
7067 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7068 are filled in with the info of the DIE from the DWO file.
7069 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7070 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7071 kept around for at least as long as *RESULT_READER.
7073 The result is non-zero if a valid (non-dummy) DIE was found. */
7076 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7077 struct dwo_unit *dwo_unit,
7078 struct die_info *stub_comp_unit_die,
7079 const char *stub_comp_dir,
7080 struct die_reader_specs *result_reader,
7081 const gdb_byte **result_info_ptr,
7082 struct die_info **result_comp_unit_die,
7083 int *result_has_children,
7084 abbrev_table_up *result_dwo_abbrev_table)
7086 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7087 struct objfile *objfile = dwarf2_per_objfile->objfile;
7088 struct dwarf2_cu *cu = this_cu->cu;
7090 const gdb_byte *begin_info_ptr, *info_ptr;
7091 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7092 int i,num_extra_attrs;
7093 struct dwarf2_section_info *dwo_abbrev_section;
7094 struct attribute *attr;
7095 struct die_info *comp_unit_die;
7097 /* At most one of these may be provided. */
7098 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7100 /* These attributes aren't processed until later:
7101 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7102 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7103 referenced later. However, these attributes are found in the stub
7104 which we won't have later. In order to not impose this complication
7105 on the rest of the code, we read them here and copy them to the
7114 if (stub_comp_unit_die != NULL)
7116 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7118 if (! this_cu->is_debug_types)
7119 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7120 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7121 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7122 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7123 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7125 /* There should be a DW_AT_addr_base attribute here (if needed).
7126 We need the value before we can process DW_FORM_GNU_addr_index. */
7128 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7130 cu->addr_base = DW_UNSND (attr);
7132 /* There should be a DW_AT_ranges_base attribute here (if needed).
7133 We need the value before we can process DW_AT_ranges. */
7134 cu->ranges_base = 0;
7135 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7137 cu->ranges_base = DW_UNSND (attr);
7139 else if (stub_comp_dir != NULL)
7141 /* Reconstruct the comp_dir attribute to simplify the code below. */
7142 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7143 comp_dir->name = DW_AT_comp_dir;
7144 comp_dir->form = DW_FORM_string;
7145 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7146 DW_STRING (comp_dir) = stub_comp_dir;
7149 /* Set up for reading the DWO CU/TU. */
7150 cu->dwo_unit = dwo_unit;
7151 dwarf2_section_info *section = dwo_unit->section;
7152 dwarf2_read_section (objfile, section);
7153 abfd = get_section_bfd_owner (section);
7154 begin_info_ptr = info_ptr = (section->buffer
7155 + to_underlying (dwo_unit->sect_off));
7156 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7158 if (this_cu->is_debug_types)
7160 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7162 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7163 &cu->header, section,
7165 info_ptr, rcuh_kind::TYPE);
7166 /* This is not an assert because it can be caused by bad debug info. */
7167 if (sig_type->signature != cu->header.signature)
7169 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7170 " TU at offset %s [in module %s]"),
7171 hex_string (sig_type->signature),
7172 hex_string (cu->header.signature),
7173 sect_offset_str (dwo_unit->sect_off),
7174 bfd_get_filename (abfd));
7176 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7177 /* For DWOs coming from DWP files, we don't know the CU length
7178 nor the type's offset in the TU until now. */
7179 dwo_unit->length = get_cu_length (&cu->header);
7180 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7182 /* Establish the type offset that can be used to lookup the type.
7183 For DWO files, we don't know it until now. */
7184 sig_type->type_offset_in_section
7185 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7189 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7190 &cu->header, section,
7192 info_ptr, rcuh_kind::COMPILE);
7193 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7194 /* For DWOs coming from DWP files, we don't know the CU length
7196 dwo_unit->length = get_cu_length (&cu->header);
7199 *result_dwo_abbrev_table
7200 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7201 cu->header.abbrev_sect_off);
7202 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7203 result_dwo_abbrev_table->get ());
7205 /* Read in the die, but leave space to copy over the attributes
7206 from the stub. This has the benefit of simplifying the rest of
7207 the code - all the work to maintain the illusion of a single
7208 DW_TAG_{compile,type}_unit DIE is done here. */
7209 num_extra_attrs = ((stmt_list != NULL)
7213 + (comp_dir != NULL));
7214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7215 result_has_children, num_extra_attrs);
7217 /* Copy over the attributes from the stub to the DIE we just read in. */
7218 comp_unit_die = *result_comp_unit_die;
7219 i = comp_unit_die->num_attrs;
7220 if (stmt_list != NULL)
7221 comp_unit_die->attrs[i++] = *stmt_list;
7223 comp_unit_die->attrs[i++] = *low_pc;
7224 if (high_pc != NULL)
7225 comp_unit_die->attrs[i++] = *high_pc;
7227 comp_unit_die->attrs[i++] = *ranges;
7228 if (comp_dir != NULL)
7229 comp_unit_die->attrs[i++] = *comp_dir;
7230 comp_unit_die->num_attrs += num_extra_attrs;
7232 if (dwarf_die_debug)
7234 fprintf_unfiltered (gdb_stdlog,
7235 "Read die from %s@0x%x of %s:\n",
7236 get_section_name (section),
7237 (unsigned) (begin_info_ptr - section->buffer),
7238 bfd_get_filename (abfd));
7239 dump_die (comp_unit_die, dwarf_die_debug);
7242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7243 TUs by skipping the stub and going directly to the entry in the DWO file.
7244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7245 to get it via circuitous means. Blech. */
7246 if (comp_dir != NULL)
7247 result_reader->comp_dir = DW_STRING (comp_dir);
7249 /* Skip dummy compilation units. */
7250 if (info_ptr >= begin_info_ptr + dwo_unit->length
7251 || peek_abbrev_code (abfd, info_ptr) == 0)
7254 *result_info_ptr = info_ptr;
7258 /* Subroutine of init_cutu_and_read_dies to simplify it.
7259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7260 Returns NULL if the specified DWO unit cannot be found. */
7262 static struct dwo_unit *
7263 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7264 struct die_info *comp_unit_die)
7266 struct dwarf2_cu *cu = this_cu->cu;
7268 struct dwo_unit *dwo_unit;
7269 const char *comp_dir, *dwo_name;
7271 gdb_assert (cu != NULL);
7273 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7274 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7275 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7277 if (this_cu->is_debug_types)
7279 struct signatured_type *sig_type;
7281 /* Since this_cu is the first member of struct signatured_type,
7282 we can go from a pointer to one to a pointer to the other. */
7283 sig_type = (struct signatured_type *) this_cu;
7284 signature = sig_type->signature;
7285 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7289 struct attribute *attr;
7291 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7293 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7295 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7296 signature = DW_UNSND (attr);
7297 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7304 /* Subroutine of init_cutu_and_read_dies to simplify it.
7305 See it for a description of the parameters.
7306 Read a TU directly from a DWO file, bypassing the stub. */
7309 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7310 int use_existing_cu, int keep,
7311 die_reader_func_ftype *die_reader_func,
7314 std::unique_ptr<dwarf2_cu> new_cu;
7315 struct signatured_type *sig_type;
7316 struct die_reader_specs reader;
7317 const gdb_byte *info_ptr;
7318 struct die_info *comp_unit_die;
7320 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7322 /* Verify we can do the following downcast, and that we have the
7324 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7325 sig_type = (struct signatured_type *) this_cu;
7326 gdb_assert (sig_type->dwo_unit != NULL);
7328 if (use_existing_cu && this_cu->cu != NULL)
7330 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7331 /* There's no need to do the rereading_dwo_cu handling that
7332 init_cutu_and_read_dies does since we don't read the stub. */
7336 /* If !use_existing_cu, this_cu->cu must be NULL. */
7337 gdb_assert (this_cu->cu == NULL);
7338 new_cu.reset (new dwarf2_cu (this_cu));
7341 /* A future optimization, if needed, would be to use an existing
7342 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7343 could share abbrev tables. */
7345 /* The abbreviation table used by READER, this must live at least as long as
7347 abbrev_table_up dwo_abbrev_table;
7349 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7350 NULL /* stub_comp_unit_die */,
7351 sig_type->dwo_unit->dwo_file->comp_dir,
7353 &comp_unit_die, &has_children,
7354 &dwo_abbrev_table) == 0)
7360 /* All the "real" work is done here. */
7361 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7363 /* This duplicates the code in init_cutu_and_read_dies,
7364 but the alternative is making the latter more complex.
7365 This function is only for the special case of using DWO files directly:
7366 no point in overly complicating the general case just to handle this. */
7367 if (new_cu != NULL && keep)
7369 /* Link this CU into read_in_chain. */
7370 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7371 dwarf2_per_objfile->read_in_chain = this_cu;
7372 /* The chain owns it now. */
7377 /* Initialize a CU (or TU) and read its DIEs.
7378 If the CU defers to a DWO file, read the DWO file as well.
7380 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7381 Otherwise the table specified in the comp unit header is read in and used.
7382 This is an optimization for when we already have the abbrev table.
7384 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7385 Otherwise, a new CU is allocated with xmalloc.
7387 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7388 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7390 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7391 linker) then DIE_READER_FUNC will not get called. */
7394 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7395 struct abbrev_table *abbrev_table,
7396 int use_existing_cu, int keep,
7398 die_reader_func_ftype *die_reader_func,
7401 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7402 struct objfile *objfile = dwarf2_per_objfile->objfile;
7403 struct dwarf2_section_info *section = this_cu->section;
7404 bfd *abfd = get_section_bfd_owner (section);
7405 struct dwarf2_cu *cu;
7406 const gdb_byte *begin_info_ptr, *info_ptr;
7407 struct die_reader_specs reader;
7408 struct die_info *comp_unit_die;
7410 struct attribute *attr;
7411 struct signatured_type *sig_type = NULL;
7412 struct dwarf2_section_info *abbrev_section;
7413 /* Non-zero if CU currently points to a DWO file and we need to
7414 reread it. When this happens we need to reread the skeleton die
7415 before we can reread the DWO file (this only applies to CUs, not TUs). */
7416 int rereading_dwo_cu = 0;
7418 if (dwarf_die_debug)
7419 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7420 this_cu->is_debug_types ? "type" : "comp",
7421 sect_offset_str (this_cu->sect_off));
7423 if (use_existing_cu)
7426 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7427 file (instead of going through the stub), short-circuit all of this. */
7428 if (this_cu->reading_dwo_directly)
7430 /* Narrow down the scope of possibilities to have to understand. */
7431 gdb_assert (this_cu->is_debug_types);
7432 gdb_assert (abbrev_table == NULL);
7433 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7434 die_reader_func, data);
7438 /* This is cheap if the section is already read in. */
7439 dwarf2_read_section (objfile, section);
7441 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7443 abbrev_section = get_abbrev_section_for_cu (this_cu);
7445 std::unique_ptr<dwarf2_cu> new_cu;
7446 if (use_existing_cu && this_cu->cu != NULL)
7449 /* If this CU is from a DWO file we need to start over, we need to
7450 refetch the attributes from the skeleton CU.
7451 This could be optimized by retrieving those attributes from when we
7452 were here the first time: the previous comp_unit_die was stored in
7453 comp_unit_obstack. But there's no data yet that we need this
7455 if (cu->dwo_unit != NULL)
7456 rereading_dwo_cu = 1;
7460 /* If !use_existing_cu, this_cu->cu must be NULL. */
7461 gdb_assert (this_cu->cu == NULL);
7462 new_cu.reset (new dwarf2_cu (this_cu));
7466 /* Get the header. */
7467 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7469 /* We already have the header, there's no need to read it in again. */
7470 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7474 if (this_cu->is_debug_types)
7476 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7477 &cu->header, section,
7478 abbrev_section, info_ptr,
7481 /* Since per_cu is the first member of struct signatured_type,
7482 we can go from a pointer to one to a pointer to the other. */
7483 sig_type = (struct signatured_type *) this_cu;
7484 gdb_assert (sig_type->signature == cu->header.signature);
7485 gdb_assert (sig_type->type_offset_in_tu
7486 == cu->header.type_cu_offset_in_tu);
7487 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7489 /* LENGTH has not been set yet for type units if we're
7490 using .gdb_index. */
7491 this_cu->length = get_cu_length (&cu->header);
7493 /* Establish the type offset that can be used to lookup the type. */
7494 sig_type->type_offset_in_section =
7495 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7497 this_cu->dwarf_version = cu->header.version;
7501 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7502 &cu->header, section,
7505 rcuh_kind::COMPILE);
7507 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7508 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7509 this_cu->dwarf_version = cu->header.version;
7513 /* Skip dummy compilation units. */
7514 if (info_ptr >= begin_info_ptr + this_cu->length
7515 || peek_abbrev_code (abfd, info_ptr) == 0)
7518 /* If we don't have them yet, read the abbrevs for this compilation unit.
7519 And if we need to read them now, make sure they're freed when we're
7520 done (own the table through ABBREV_TABLE_HOLDER). */
7521 abbrev_table_up abbrev_table_holder;
7522 if (abbrev_table != NULL)
7523 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7527 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7528 cu->header.abbrev_sect_off);
7529 abbrev_table = abbrev_table_holder.get ();
7532 /* Read the top level CU/TU die. */
7533 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7534 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7536 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7539 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7540 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7541 table from the DWO file and pass the ownership over to us. It will be
7542 referenced from READER, so we must make sure to free it after we're done
7545 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7546 DWO CU, that this test will fail (the attribute will not be present). */
7547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7548 abbrev_table_up dwo_abbrev_table;
7551 struct dwo_unit *dwo_unit;
7552 struct die_info *dwo_comp_unit_die;
7556 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7557 " has children (offset %s) [in module %s]"),
7558 sect_offset_str (this_cu->sect_off),
7559 bfd_get_filename (abfd));
7561 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7562 if (dwo_unit != NULL)
7564 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7565 comp_unit_die, NULL,
7567 &dwo_comp_unit_die, &has_children,
7568 &dwo_abbrev_table) == 0)
7573 comp_unit_die = dwo_comp_unit_die;
7577 /* Yikes, we couldn't find the rest of the DIE, we only have
7578 the stub. A complaint has already been logged. There's
7579 not much more we can do except pass on the stub DIE to
7580 die_reader_func. We don't want to throw an error on bad
7585 /* All of the above is setup for this call. Yikes. */
7586 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7588 /* Done, clean up. */
7589 if (new_cu != NULL && keep)
7591 /* Link this CU into read_in_chain. */
7592 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7593 dwarf2_per_objfile->read_in_chain = this_cu;
7594 /* The chain owns it now. */
7599 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7600 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7601 to have already done the lookup to find the DWO file).
7603 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7604 THIS_CU->is_debug_types, but nothing else.
7606 We fill in THIS_CU->length.
7608 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7609 linker) then DIE_READER_FUNC will not get called.
7611 THIS_CU->cu is always freed when done.
7612 This is done in order to not leave THIS_CU->cu in a state where we have
7613 to care whether it refers to the "main" CU or the DWO CU. */
7616 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7617 struct dwo_file *dwo_file,
7618 die_reader_func_ftype *die_reader_func,
7621 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7622 struct objfile *objfile = dwarf2_per_objfile->objfile;
7623 struct dwarf2_section_info *section = this_cu->section;
7624 bfd *abfd = get_section_bfd_owner (section);
7625 struct dwarf2_section_info *abbrev_section;
7626 const gdb_byte *begin_info_ptr, *info_ptr;
7627 struct die_reader_specs reader;
7628 struct die_info *comp_unit_die;
7631 if (dwarf_die_debug)
7632 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7633 this_cu->is_debug_types ? "type" : "comp",
7634 sect_offset_str (this_cu->sect_off));
7636 gdb_assert (this_cu->cu == NULL);
7638 abbrev_section = (dwo_file != NULL
7639 ? &dwo_file->sections.abbrev
7640 : get_abbrev_section_for_cu (this_cu));
7642 /* This is cheap if the section is already read in. */
7643 dwarf2_read_section (objfile, section);
7645 struct dwarf2_cu cu (this_cu);
7647 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7648 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7649 &cu.header, section,
7650 abbrev_section, info_ptr,
7651 (this_cu->is_debug_types
7653 : rcuh_kind::COMPILE));
7655 this_cu->length = get_cu_length (&cu.header);
7657 /* Skip dummy compilation units. */
7658 if (info_ptr >= begin_info_ptr + this_cu->length
7659 || peek_abbrev_code (abfd, info_ptr) == 0)
7662 abbrev_table_up abbrev_table
7663 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7664 cu.header.abbrev_sect_off);
7666 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7667 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7669 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7672 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7673 does not lookup the specified DWO file.
7674 This cannot be used to read DWO files.
7676 THIS_CU->cu is always freed when done.
7677 This is done in order to not leave THIS_CU->cu in a state where we have
7678 to care whether it refers to the "main" CU or the DWO CU.
7679 We can revisit this if the data shows there's a performance issue. */
7682 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7683 die_reader_func_ftype *die_reader_func,
7686 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7689 /* Type Unit Groups.
7691 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7692 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7693 so that all types coming from the same compilation (.o file) are grouped
7694 together. A future step could be to put the types in the same symtab as
7695 the CU the types ultimately came from. */
7698 hash_type_unit_group (const void *item)
7700 const struct type_unit_group *tu_group
7701 = (const struct type_unit_group *) item;
7703 return hash_stmt_list_entry (&tu_group->hash);
7707 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7709 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7710 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7712 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7715 /* Allocate a hash table for type unit groups. */
7718 allocate_type_unit_groups_table (struct objfile *objfile)
7720 return htab_create_alloc_ex (3,
7721 hash_type_unit_group,
7724 &objfile->objfile_obstack,
7725 hashtab_obstack_allocate,
7726 dummy_obstack_deallocate);
7729 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7730 partial symtabs. We combine several TUs per psymtab to not let the size
7731 of any one psymtab grow too big. */
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7733 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7735 /* Helper routine for get_type_unit_group.
7736 Create the type_unit_group object used to hold one or more TUs. */
7738 static struct type_unit_group *
7739 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7741 struct dwarf2_per_objfile *dwarf2_per_objfile
7742 = cu->per_cu->dwarf2_per_objfile;
7743 struct objfile *objfile = dwarf2_per_objfile->objfile;
7744 struct dwarf2_per_cu_data *per_cu;
7745 struct type_unit_group *tu_group;
7747 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7748 struct type_unit_group);
7749 per_cu = &tu_group->per_cu;
7750 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7752 if (dwarf2_per_objfile->using_index)
7754 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7755 struct dwarf2_per_cu_quick_data);
7759 unsigned int line_offset = to_underlying (line_offset_struct);
7760 struct partial_symtab *pst;
7763 /* Give the symtab a useful name for debug purposes. */
7764 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7765 name = xstrprintf ("<type_units_%d>",
7766 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7768 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7770 pst = create_partial_symtab (per_cu, name);
7776 tu_group->hash.dwo_unit = cu->dwo_unit;
7777 tu_group->hash.line_sect_off = line_offset_struct;
7782 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7783 STMT_LIST is a DW_AT_stmt_list attribute. */
7785 static struct type_unit_group *
7786 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7788 struct dwarf2_per_objfile *dwarf2_per_objfile
7789 = cu->per_cu->dwarf2_per_objfile;
7790 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7791 struct type_unit_group *tu_group;
7793 unsigned int line_offset;
7794 struct type_unit_group type_unit_group_for_lookup;
7796 if (dwarf2_per_objfile->type_unit_groups == NULL)
7798 dwarf2_per_objfile->type_unit_groups =
7799 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7802 /* Do we need to create a new group, or can we use an existing one? */
7806 line_offset = DW_UNSND (stmt_list);
7807 ++tu_stats->nr_symtab_sharers;
7811 /* Ugh, no stmt_list. Rare, but we have to handle it.
7812 We can do various things here like create one group per TU or
7813 spread them over multiple groups to split up the expansion work.
7814 To avoid worst case scenarios (too many groups or too large groups)
7815 we, umm, group them in bunches. */
7816 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7817 | (tu_stats->nr_stmt_less_type_units
7818 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7819 ++tu_stats->nr_stmt_less_type_units;
7822 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7823 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7824 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7825 &type_unit_group_for_lookup, INSERT);
7828 tu_group = (struct type_unit_group *) *slot;
7829 gdb_assert (tu_group != NULL);
7833 sect_offset line_offset_struct = (sect_offset) line_offset;
7834 tu_group = create_type_unit_group (cu, line_offset_struct);
7836 ++tu_stats->nr_symtabs;
7842 /* Partial symbol tables. */
7844 /* Create a psymtab named NAME and assign it to PER_CU.
7846 The caller must fill in the following details:
7847 dirname, textlow, texthigh. */
7849 static struct partial_symtab *
7850 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7852 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7853 struct partial_symtab *pst;
7855 pst = start_psymtab_common (objfile, name, 0,
7856 objfile->global_psymbols,
7857 objfile->static_psymbols);
7859 pst->psymtabs_addrmap_supported = 1;
7861 /* This is the glue that links PST into GDB's symbol API. */
7862 pst->read_symtab_private = per_cu;
7863 pst->read_symtab = dwarf2_read_symtab;
7864 per_cu->v.psymtab = pst;
7869 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7872 struct process_psymtab_comp_unit_data
7874 /* True if we are reading a DW_TAG_partial_unit. */
7876 int want_partial_unit;
7878 /* The "pretend" language that is used if the CU doesn't declare a
7881 enum language pretend_language;
7884 /* die_reader_func for process_psymtab_comp_unit. */
7887 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7888 const gdb_byte *info_ptr,
7889 struct die_info *comp_unit_die,
7893 struct dwarf2_cu *cu = reader->cu;
7894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7895 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7896 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7898 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7899 struct partial_symtab *pst;
7900 enum pc_bounds_kind cu_bounds_kind;
7901 const char *filename;
7902 struct process_psymtab_comp_unit_data *info
7903 = (struct process_psymtab_comp_unit_data *) data;
7905 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7908 gdb_assert (! per_cu->is_debug_types);
7910 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7912 cu->list_in_scope = &file_symbols;
7914 /* Allocate a new partial symbol table structure. */
7915 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7916 if (filename == NULL)
7919 pst = create_partial_symtab (per_cu, filename);
7921 /* This must be done before calling dwarf2_build_include_psymtabs. */
7922 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7926 dwarf2_find_base_address (comp_unit_die, cu);
7928 /* Possibly set the default values of LOWPC and HIGHPC from
7930 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7931 &best_highpc, cu, pst);
7932 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7933 /* Store the contiguous range if it is not empty; it can be empty for
7934 CUs with no code. */
7935 addrmap_set_empty (objfile->psymtabs_addrmap,
7936 gdbarch_adjust_dwarf2_addr (gdbarch,
7937 best_lowpc + baseaddr),
7938 gdbarch_adjust_dwarf2_addr (gdbarch,
7939 best_highpc + baseaddr) - 1,
7942 /* Check if comp unit has_children.
7943 If so, read the rest of the partial symbols from this comp unit.
7944 If not, there's no more debug_info for this comp unit. */
7947 struct partial_die_info *first_die;
7948 CORE_ADDR lowpc, highpc;
7950 lowpc = ((CORE_ADDR) -1);
7951 highpc = ((CORE_ADDR) 0);
7953 first_die = load_partial_dies (reader, info_ptr, 1);
7955 scan_partial_symbols (first_die, &lowpc, &highpc,
7956 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7958 /* If we didn't find a lowpc, set it to highpc to avoid
7959 complaints from `maint check'. */
7960 if (lowpc == ((CORE_ADDR) -1))
7963 /* If the compilation unit didn't have an explicit address range,
7964 then use the information extracted from its child dies. */
7965 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7968 best_highpc = highpc;
7971 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7972 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7974 end_psymtab_common (objfile, pst);
7976 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7979 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7980 struct dwarf2_per_cu_data *iter;
7982 /* Fill in 'dependencies' here; we fill in 'users' in a
7984 pst->number_of_dependencies = len;
7986 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7988 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7991 pst->dependencies[i] = iter->v.psymtab;
7993 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7996 /* Get the list of files included in the current compilation unit,
7997 and build a psymtab for each of them. */
7998 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8000 if (dwarf_read_debug)
8002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8004 fprintf_unfiltered (gdb_stdlog,
8005 "Psymtab for %s unit @%s: %s - %s"
8006 ", %d global, %d static syms\n",
8007 per_cu->is_debug_types ? "type" : "comp",
8008 sect_offset_str (per_cu->sect_off),
8009 paddress (gdbarch, pst->textlow),
8010 paddress (gdbarch, pst->texthigh),
8011 pst->n_global_syms, pst->n_static_syms);
8015 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8016 Process compilation unit THIS_CU for a psymtab. */
8019 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8020 int want_partial_unit,
8021 enum language pretend_language)
8023 /* If this compilation unit was already read in, free the
8024 cached copy in order to read it in again. This is
8025 necessary because we skipped some symbols when we first
8026 read in the compilation unit (see load_partial_dies).
8027 This problem could be avoided, but the benefit is unclear. */
8028 if (this_cu->cu != NULL)
8029 free_one_cached_comp_unit (this_cu);
8031 if (this_cu->is_debug_types)
8032 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8033 build_type_psymtabs_reader, NULL);
8036 process_psymtab_comp_unit_data info;
8037 info.want_partial_unit = want_partial_unit;
8038 info.pretend_language = pretend_language;
8039 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8040 process_psymtab_comp_unit_reader, &info);
8043 /* Age out any secondary CUs. */
8044 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8047 /* Reader function for build_type_psymtabs. */
8050 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8051 const gdb_byte *info_ptr,
8052 struct die_info *type_unit_die,
8056 struct dwarf2_per_objfile *dwarf2_per_objfile
8057 = reader->cu->per_cu->dwarf2_per_objfile;
8058 struct objfile *objfile = dwarf2_per_objfile->objfile;
8059 struct dwarf2_cu *cu = reader->cu;
8060 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8061 struct signatured_type *sig_type;
8062 struct type_unit_group *tu_group;
8063 struct attribute *attr;
8064 struct partial_die_info *first_die;
8065 CORE_ADDR lowpc, highpc;
8066 struct partial_symtab *pst;
8068 gdb_assert (data == NULL);
8069 gdb_assert (per_cu->is_debug_types);
8070 sig_type = (struct signatured_type *) per_cu;
8075 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8076 tu_group = get_type_unit_group (cu, attr);
8078 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8080 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8081 cu->list_in_scope = &file_symbols;
8082 pst = create_partial_symtab (per_cu, "");
8085 first_die = load_partial_dies (reader, info_ptr, 1);
8087 lowpc = (CORE_ADDR) -1;
8088 highpc = (CORE_ADDR) 0;
8089 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8091 end_psymtab_common (objfile, pst);
8094 /* Struct used to sort TUs by their abbreviation table offset. */
8096 struct tu_abbrev_offset
8098 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8099 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8102 signatured_type *sig_type;
8103 sect_offset abbrev_offset;
8106 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8109 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8110 const struct tu_abbrev_offset &b)
8112 return a.abbrev_offset < b.abbrev_offset;
8115 /* Efficiently read all the type units.
8116 This does the bulk of the work for build_type_psymtabs.
8118 The efficiency is because we sort TUs by the abbrev table they use and
8119 only read each abbrev table once. In one program there are 200K TUs
8120 sharing 8K abbrev tables.
8122 The main purpose of this function is to support building the
8123 dwarf2_per_objfile->type_unit_groups table.
8124 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8125 can collapse the search space by grouping them by stmt_list.
8126 The savings can be significant, in the same program from above the 200K TUs
8127 share 8K stmt_list tables.
8129 FUNC is expected to call get_type_unit_group, which will create the
8130 struct type_unit_group if necessary and add it to
8131 dwarf2_per_objfile->type_unit_groups. */
8134 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8136 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8137 abbrev_table_up abbrev_table;
8138 sect_offset abbrev_offset;
8140 /* It's up to the caller to not call us multiple times. */
8141 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8143 if (dwarf2_per_objfile->all_type_units.empty ())
8146 /* TUs typically share abbrev tables, and there can be way more TUs than
8147 abbrev tables. Sort by abbrev table to reduce the number of times we
8148 read each abbrev table in.
8149 Alternatives are to punt or to maintain a cache of abbrev tables.
8150 This is simpler and efficient enough for now.
8152 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8153 symtab to use). Typically TUs with the same abbrev offset have the same
8154 stmt_list value too so in practice this should work well.
8156 The basic algorithm here is:
8158 sort TUs by abbrev table
8159 for each TU with same abbrev table:
8160 read abbrev table if first user
8161 read TU top level DIE
8162 [IWBN if DWO skeletons had DW_AT_stmt_list]
8165 if (dwarf_read_debug)
8166 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8168 /* Sort in a separate table to maintain the order of all_type_units
8169 for .gdb_index: TU indices directly index all_type_units. */
8170 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8171 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8173 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8174 sorted_by_abbrev.emplace_back
8175 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8176 sig_type->per_cu.section,
8177 sig_type->per_cu.sect_off));
8179 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8180 sort_tu_by_abbrev_offset);
8182 abbrev_offset = (sect_offset) ~(unsigned) 0;
8184 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8186 /* Switch to the next abbrev table if necessary. */
8187 if (abbrev_table == NULL
8188 || tu.abbrev_offset != abbrev_offset)
8190 abbrev_offset = tu.abbrev_offset;
8192 abbrev_table_read_table (dwarf2_per_objfile,
8193 &dwarf2_per_objfile->abbrev,
8195 ++tu_stats->nr_uniq_abbrev_tables;
8198 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8199 0, 0, false, build_type_psymtabs_reader, NULL);
8203 /* Print collected type unit statistics. */
8206 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8208 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8210 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8211 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8212 dwarf2_per_objfile->all_type_units.size ());
8213 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8214 tu_stats->nr_uniq_abbrev_tables);
8215 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8216 tu_stats->nr_symtabs);
8217 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8218 tu_stats->nr_symtab_sharers);
8219 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8220 tu_stats->nr_stmt_less_type_units);
8221 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8222 tu_stats->nr_all_type_units_reallocs);
8225 /* Traversal function for build_type_psymtabs. */
8228 build_type_psymtab_dependencies (void **slot, void *info)
8230 struct dwarf2_per_objfile *dwarf2_per_objfile
8231 = (struct dwarf2_per_objfile *) info;
8232 struct objfile *objfile = dwarf2_per_objfile->objfile;
8233 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8234 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8235 struct partial_symtab *pst = per_cu->v.psymtab;
8236 int len = VEC_length (sig_type_ptr, tu_group->tus);
8237 struct signatured_type *iter;
8240 gdb_assert (len > 0);
8241 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8243 pst->number_of_dependencies = len;
8245 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8247 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8250 gdb_assert (iter->per_cu.is_debug_types);
8251 pst->dependencies[i] = iter->per_cu.v.psymtab;
8252 iter->type_unit_group = tu_group;
8255 VEC_free (sig_type_ptr, tu_group->tus);
8260 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8261 Build partial symbol tables for the .debug_types comp-units. */
8264 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8266 if (! create_all_type_units (dwarf2_per_objfile))
8269 build_type_psymtabs_1 (dwarf2_per_objfile);
8272 /* Traversal function for process_skeletonless_type_unit.
8273 Read a TU in a DWO file and build partial symbols for it. */
8276 process_skeletonless_type_unit (void **slot, void *info)
8278 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8279 struct dwarf2_per_objfile *dwarf2_per_objfile
8280 = (struct dwarf2_per_objfile *) info;
8281 struct signatured_type find_entry, *entry;
8283 /* If this TU doesn't exist in the global table, add it and read it in. */
8285 if (dwarf2_per_objfile->signatured_types == NULL)
8287 dwarf2_per_objfile->signatured_types
8288 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8291 find_entry.signature = dwo_unit->signature;
8292 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8294 /* If we've already seen this type there's nothing to do. What's happening
8295 is we're doing our own version of comdat-folding here. */
8299 /* This does the job that create_all_type_units would have done for
8301 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8302 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8305 /* This does the job that build_type_psymtabs_1 would have done. */
8306 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8307 build_type_psymtabs_reader, NULL);
8312 /* Traversal function for process_skeletonless_type_units. */
8315 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8317 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8319 if (dwo_file->tus != NULL)
8321 htab_traverse_noresize (dwo_file->tus,
8322 process_skeletonless_type_unit, info);
8328 /* Scan all TUs of DWO files, verifying we've processed them.
8329 This is needed in case a TU was emitted without its skeleton.
8330 Note: This can't be done until we know what all the DWO files are. */
8333 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8335 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8336 if (get_dwp_file (dwarf2_per_objfile) == NULL
8337 && dwarf2_per_objfile->dwo_files != NULL)
8339 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8340 process_dwo_file_for_skeletonless_type_units,
8341 dwarf2_per_objfile);
8345 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8348 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8350 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8352 struct partial_symtab *pst = per_cu->v.psymtab;
8357 for (int j = 0; j < pst->number_of_dependencies; ++j)
8359 /* Set the 'user' field only if it is not already set. */
8360 if (pst->dependencies[j]->user == NULL)
8361 pst->dependencies[j]->user = pst;
8366 /* Build the partial symbol table by doing a quick pass through the
8367 .debug_info and .debug_abbrev sections. */
8370 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8372 struct objfile *objfile = dwarf2_per_objfile->objfile;
8374 if (dwarf_read_debug)
8376 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8377 objfile_name (objfile));
8380 dwarf2_per_objfile->reading_partial_symbols = 1;
8382 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8384 /* Any cached compilation units will be linked by the per-objfile
8385 read_in_chain. Make sure to free them when we're done. */
8386 free_cached_comp_units freer (dwarf2_per_objfile);
8388 build_type_psymtabs (dwarf2_per_objfile);
8390 create_all_comp_units (dwarf2_per_objfile);
8392 /* Create a temporary address map on a temporary obstack. We later
8393 copy this to the final obstack. */
8394 auto_obstack temp_obstack;
8396 scoped_restore save_psymtabs_addrmap
8397 = make_scoped_restore (&objfile->psymtabs_addrmap,
8398 addrmap_create_mutable (&temp_obstack));
8400 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8401 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8403 /* This has to wait until we read the CUs, we need the list of DWOs. */
8404 process_skeletonless_type_units (dwarf2_per_objfile);
8406 /* Now that all TUs have been processed we can fill in the dependencies. */
8407 if (dwarf2_per_objfile->type_unit_groups != NULL)
8409 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8410 build_type_psymtab_dependencies, dwarf2_per_objfile);
8413 if (dwarf_read_debug)
8414 print_tu_stats (dwarf2_per_objfile);
8416 set_partial_user (dwarf2_per_objfile);
8418 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8419 &objfile->objfile_obstack);
8420 /* At this point we want to keep the address map. */
8421 save_psymtabs_addrmap.release ();
8423 if (dwarf_read_debug)
8424 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8425 objfile_name (objfile));
8428 /* die_reader_func for load_partial_comp_unit. */
8431 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8432 const gdb_byte *info_ptr,
8433 struct die_info *comp_unit_die,
8437 struct dwarf2_cu *cu = reader->cu;
8439 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8441 /* Check if comp unit has_children.
8442 If so, read the rest of the partial symbols from this comp unit.
8443 If not, there's no more debug_info for this comp unit. */
8445 load_partial_dies (reader, info_ptr, 0);
8448 /* Load the partial DIEs for a secondary CU into memory.
8449 This is also used when rereading a primary CU with load_all_dies. */
8452 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8454 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8455 load_partial_comp_unit_reader, NULL);
8459 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8460 struct dwarf2_section_info *section,
8461 struct dwarf2_section_info *abbrev_section,
8462 unsigned int is_dwz)
8464 const gdb_byte *info_ptr;
8465 struct objfile *objfile = dwarf2_per_objfile->objfile;
8467 if (dwarf_read_debug)
8468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8469 get_section_name (section),
8470 get_section_file_name (section));
8472 dwarf2_read_section (objfile, section);
8474 info_ptr = section->buffer;
8476 while (info_ptr < section->buffer + section->size)
8478 struct dwarf2_per_cu_data *this_cu;
8480 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8482 comp_unit_head cu_header;
8483 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8484 abbrev_section, info_ptr,
8485 rcuh_kind::COMPILE);
8487 /* Save the compilation unit for later lookup. */
8488 if (cu_header.unit_type != DW_UT_type)
8490 this_cu = XOBNEW (&objfile->objfile_obstack,
8491 struct dwarf2_per_cu_data);
8492 memset (this_cu, 0, sizeof (*this_cu));
8496 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8497 struct signatured_type);
8498 memset (sig_type, 0, sizeof (*sig_type));
8499 sig_type->signature = cu_header.signature;
8500 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8501 this_cu = &sig_type->per_cu;
8503 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8504 this_cu->sect_off = sect_off;
8505 this_cu->length = cu_header.length + cu_header.initial_length_size;
8506 this_cu->is_dwz = is_dwz;
8507 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8508 this_cu->section = section;
8510 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8512 info_ptr = info_ptr + this_cu->length;
8516 /* Create a list of all compilation units in OBJFILE.
8517 This is only done for -readnow and building partial symtabs. */
8520 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8522 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8523 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8524 &dwarf2_per_objfile->abbrev, 0);
8526 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8528 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8532 /* Process all loaded DIEs for compilation unit CU, starting at
8533 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8534 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8535 DW_AT_ranges). See the comments of add_partial_subprogram on how
8536 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8539 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8540 CORE_ADDR *highpc, int set_addrmap,
8541 struct dwarf2_cu *cu)
8543 struct partial_die_info *pdi;
8545 /* Now, march along the PDI's, descending into ones which have
8546 interesting children but skipping the children of the other ones,
8547 until we reach the end of the compilation unit. */
8555 /* Anonymous namespaces or modules have no name but have interesting
8556 children, so we need to look at them. Ditto for anonymous
8559 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8560 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8561 || pdi->tag == DW_TAG_imported_unit
8562 || pdi->tag == DW_TAG_inlined_subroutine)
8566 case DW_TAG_subprogram:
8567 case DW_TAG_inlined_subroutine:
8568 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8570 case DW_TAG_constant:
8571 case DW_TAG_variable:
8572 case DW_TAG_typedef:
8573 case DW_TAG_union_type:
8574 if (!pdi->is_declaration)
8576 add_partial_symbol (pdi, cu);
8579 case DW_TAG_class_type:
8580 case DW_TAG_interface_type:
8581 case DW_TAG_structure_type:
8582 if (!pdi->is_declaration)
8584 add_partial_symbol (pdi, cu);
8586 if ((cu->language == language_rust
8587 || cu->language == language_cplus) && pdi->has_children)
8588 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8591 case DW_TAG_enumeration_type:
8592 if (!pdi->is_declaration)
8593 add_partial_enumeration (pdi, cu);
8595 case DW_TAG_base_type:
8596 case DW_TAG_subrange_type:
8597 /* File scope base type definitions are added to the partial
8599 add_partial_symbol (pdi, cu);
8601 case DW_TAG_namespace:
8602 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8605 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8607 case DW_TAG_imported_unit:
8609 struct dwarf2_per_cu_data *per_cu;
8611 /* For now we don't handle imported units in type units. */
8612 if (cu->per_cu->is_debug_types)
8614 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8615 " supported in type units [in module %s]"),
8616 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8619 per_cu = dwarf2_find_containing_comp_unit
8620 (pdi->d.sect_off, pdi->is_dwz,
8621 cu->per_cu->dwarf2_per_objfile);
8623 /* Go read the partial unit, if needed. */
8624 if (per_cu->v.psymtab == NULL)
8625 process_psymtab_comp_unit (per_cu, 1, cu->language);
8627 VEC_safe_push (dwarf2_per_cu_ptr,
8628 cu->per_cu->imported_symtabs, per_cu);
8631 case DW_TAG_imported_declaration:
8632 add_partial_symbol (pdi, cu);
8639 /* If the die has a sibling, skip to the sibling. */
8641 pdi = pdi->die_sibling;
8645 /* Functions used to compute the fully scoped name of a partial DIE.
8647 Normally, this is simple. For C++, the parent DIE's fully scoped
8648 name is concatenated with "::" and the partial DIE's name.
8649 Enumerators are an exception; they use the scope of their parent
8650 enumeration type, i.e. the name of the enumeration type is not
8651 prepended to the enumerator.
8653 There are two complexities. One is DW_AT_specification; in this
8654 case "parent" means the parent of the target of the specification,
8655 instead of the direct parent of the DIE. The other is compilers
8656 which do not emit DW_TAG_namespace; in this case we try to guess
8657 the fully qualified name of structure types from their members'
8658 linkage names. This must be done using the DIE's children rather
8659 than the children of any DW_AT_specification target. We only need
8660 to do this for structures at the top level, i.e. if the target of
8661 any DW_AT_specification (if any; otherwise the DIE itself) does not
8664 /* Compute the scope prefix associated with PDI's parent, in
8665 compilation unit CU. The result will be allocated on CU's
8666 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8667 field. NULL is returned if no prefix is necessary. */
8669 partial_die_parent_scope (struct partial_die_info *pdi,
8670 struct dwarf2_cu *cu)
8672 const char *grandparent_scope;
8673 struct partial_die_info *parent, *real_pdi;
8675 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8676 then this means the parent of the specification DIE. */
8679 while (real_pdi->has_specification)
8680 real_pdi = find_partial_die (real_pdi->spec_offset,
8681 real_pdi->spec_is_dwz, cu);
8683 parent = real_pdi->die_parent;
8687 if (parent->scope_set)
8688 return parent->scope;
8692 grandparent_scope = partial_die_parent_scope (parent, cu);
8694 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8695 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8696 Work around this problem here. */
8697 if (cu->language == language_cplus
8698 && parent->tag == DW_TAG_namespace
8699 && strcmp (parent->name, "::") == 0
8700 && grandparent_scope == NULL)
8702 parent->scope = NULL;
8703 parent->scope_set = 1;
8707 if (pdi->tag == DW_TAG_enumerator)
8708 /* Enumerators should not get the name of the enumeration as a prefix. */
8709 parent->scope = grandparent_scope;
8710 else if (parent->tag == DW_TAG_namespace
8711 || parent->tag == DW_TAG_module
8712 || parent->tag == DW_TAG_structure_type
8713 || parent->tag == DW_TAG_class_type
8714 || parent->tag == DW_TAG_interface_type
8715 || parent->tag == DW_TAG_union_type
8716 || parent->tag == DW_TAG_enumeration_type)
8718 if (grandparent_scope == NULL)
8719 parent->scope = parent->name;
8721 parent->scope = typename_concat (&cu->comp_unit_obstack,
8723 parent->name, 0, cu);
8727 /* FIXME drow/2004-04-01: What should we be doing with
8728 function-local names? For partial symbols, we should probably be
8730 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8731 parent->tag, sect_offset_str (pdi->sect_off));
8732 parent->scope = grandparent_scope;
8735 parent->scope_set = 1;
8736 return parent->scope;
8739 /* Return the fully scoped name associated with PDI, from compilation unit
8740 CU. The result will be allocated with malloc. */
8743 partial_die_full_name (struct partial_die_info *pdi,
8744 struct dwarf2_cu *cu)
8746 const char *parent_scope;
8748 /* If this is a template instantiation, we can not work out the
8749 template arguments from partial DIEs. So, unfortunately, we have
8750 to go through the full DIEs. At least any work we do building
8751 types here will be reused if full symbols are loaded later. */
8752 if (pdi->has_template_arguments)
8756 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8758 struct die_info *die;
8759 struct attribute attr;
8760 struct dwarf2_cu *ref_cu = cu;
8762 /* DW_FORM_ref_addr is using section offset. */
8763 attr.name = (enum dwarf_attribute) 0;
8764 attr.form = DW_FORM_ref_addr;
8765 attr.u.unsnd = to_underlying (pdi->sect_off);
8766 die = follow_die_ref (NULL, &attr, &ref_cu);
8768 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8772 parent_scope = partial_die_parent_scope (pdi, cu);
8773 if (parent_scope == NULL)
8776 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8780 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8782 struct dwarf2_per_objfile *dwarf2_per_objfile
8783 = cu->per_cu->dwarf2_per_objfile;
8784 struct objfile *objfile = dwarf2_per_objfile->objfile;
8785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8787 const char *actual_name = NULL;
8789 char *built_actual_name;
8791 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8793 built_actual_name = partial_die_full_name (pdi, cu);
8794 if (built_actual_name != NULL)
8795 actual_name = built_actual_name;
8797 if (actual_name == NULL)
8798 actual_name = pdi->name;
8802 case DW_TAG_inlined_subroutine:
8803 case DW_TAG_subprogram:
8804 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8805 if (pdi->is_external || cu->language == language_ada)
8807 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8808 of the global scope. But in Ada, we want to be able to access
8809 nested procedures globally. So all Ada subprograms are stored
8810 in the global scope. */
8811 add_psymbol_to_list (actual_name, strlen (actual_name),
8812 built_actual_name != NULL,
8813 VAR_DOMAIN, LOC_BLOCK,
8814 &objfile->global_psymbols,
8815 addr, cu->language, objfile);
8819 add_psymbol_to_list (actual_name, strlen (actual_name),
8820 built_actual_name != NULL,
8821 VAR_DOMAIN, LOC_BLOCK,
8822 &objfile->static_psymbols,
8823 addr, cu->language, objfile);
8826 if (pdi->main_subprogram && actual_name != NULL)
8827 set_objfile_main_name (objfile, actual_name, cu->language);
8829 case DW_TAG_constant:
8831 std::vector<partial_symbol *> *list;
8833 if (pdi->is_external)
8834 list = &objfile->global_psymbols;
8836 list = &objfile->static_psymbols;
8837 add_psymbol_to_list (actual_name, strlen (actual_name),
8838 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8839 list, 0, cu->language, objfile);
8842 case DW_TAG_variable:
8844 addr = decode_locdesc (pdi->d.locdesc, cu);
8848 && !dwarf2_per_objfile->has_section_at_zero)
8850 /* A global or static variable may also have been stripped
8851 out by the linker if unused, in which case its address
8852 will be nullified; do not add such variables into partial
8853 symbol table then. */
8855 else if (pdi->is_external)
8858 Don't enter into the minimal symbol tables as there is
8859 a minimal symbol table entry from the ELF symbols already.
8860 Enter into partial symbol table if it has a location
8861 descriptor or a type.
8862 If the location descriptor is missing, new_symbol will create
8863 a LOC_UNRESOLVED symbol, the address of the variable will then
8864 be determined from the minimal symbol table whenever the variable
8866 The address for the partial symbol table entry is not
8867 used by GDB, but it comes in handy for debugging partial symbol
8870 if (pdi->d.locdesc || pdi->has_type)
8871 add_psymbol_to_list (actual_name, strlen (actual_name),
8872 built_actual_name != NULL,
8873 VAR_DOMAIN, LOC_STATIC,
8874 &objfile->global_psymbols,
8876 cu->language, objfile);
8880 int has_loc = pdi->d.locdesc != NULL;
8882 /* Static Variable. Skip symbols whose value we cannot know (those
8883 without location descriptors or constant values). */
8884 if (!has_loc && !pdi->has_const_value)
8886 xfree (built_actual_name);
8890 add_psymbol_to_list (actual_name, strlen (actual_name),
8891 built_actual_name != NULL,
8892 VAR_DOMAIN, LOC_STATIC,
8893 &objfile->static_psymbols,
8894 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8895 cu->language, objfile);
8898 case DW_TAG_typedef:
8899 case DW_TAG_base_type:
8900 case DW_TAG_subrange_type:
8901 add_psymbol_to_list (actual_name, strlen (actual_name),
8902 built_actual_name != NULL,
8903 VAR_DOMAIN, LOC_TYPEDEF,
8904 &objfile->static_psymbols,
8905 0, cu->language, objfile);
8907 case DW_TAG_imported_declaration:
8908 case DW_TAG_namespace:
8909 add_psymbol_to_list (actual_name, strlen (actual_name),
8910 built_actual_name != NULL,
8911 VAR_DOMAIN, LOC_TYPEDEF,
8912 &objfile->global_psymbols,
8913 0, cu->language, objfile);
8916 add_psymbol_to_list (actual_name, strlen (actual_name),
8917 built_actual_name != NULL,
8918 MODULE_DOMAIN, LOC_TYPEDEF,
8919 &objfile->global_psymbols,
8920 0, cu->language, objfile);
8922 case DW_TAG_class_type:
8923 case DW_TAG_interface_type:
8924 case DW_TAG_structure_type:
8925 case DW_TAG_union_type:
8926 case DW_TAG_enumeration_type:
8927 /* Skip external references. The DWARF standard says in the section
8928 about "Structure, Union, and Class Type Entries": "An incomplete
8929 structure, union or class type is represented by a structure,
8930 union or class entry that does not have a byte size attribute
8931 and that has a DW_AT_declaration attribute." */
8932 if (!pdi->has_byte_size && pdi->is_declaration)
8934 xfree (built_actual_name);
8938 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8939 static vs. global. */
8940 add_psymbol_to_list (actual_name, strlen (actual_name),
8941 built_actual_name != NULL,
8942 STRUCT_DOMAIN, LOC_TYPEDEF,
8943 cu->language == language_cplus
8944 ? &objfile->global_psymbols
8945 : &objfile->static_psymbols,
8946 0, cu->language, objfile);
8949 case DW_TAG_enumerator:
8950 add_psymbol_to_list (actual_name, strlen (actual_name),
8951 built_actual_name != NULL,
8952 VAR_DOMAIN, LOC_CONST,
8953 cu->language == language_cplus
8954 ? &objfile->global_psymbols
8955 : &objfile->static_psymbols,
8956 0, cu->language, objfile);
8962 xfree (built_actual_name);
8965 /* Read a partial die corresponding to a namespace; also, add a symbol
8966 corresponding to that namespace to the symbol table. NAMESPACE is
8967 the name of the enclosing namespace. */
8970 add_partial_namespace (struct partial_die_info *pdi,
8971 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8972 int set_addrmap, struct dwarf2_cu *cu)
8974 /* Add a symbol for the namespace. */
8976 add_partial_symbol (pdi, cu);
8978 /* Now scan partial symbols in that namespace. */
8980 if (pdi->has_children)
8981 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8984 /* Read a partial die corresponding to a Fortran module. */
8987 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8988 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8990 /* Add a symbol for the namespace. */
8992 add_partial_symbol (pdi, cu);
8994 /* Now scan partial symbols in that module. */
8996 if (pdi->has_children)
8997 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9000 /* Read a partial die corresponding to a subprogram or an inlined
9001 subprogram and create a partial symbol for that subprogram.
9002 When the CU language allows it, this routine also defines a partial
9003 symbol for each nested subprogram that this subprogram contains.
9004 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9005 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9007 PDI may also be a lexical block, in which case we simply search
9008 recursively for subprograms defined inside that lexical block.
9009 Again, this is only performed when the CU language allows this
9010 type of definitions. */
9013 add_partial_subprogram (struct partial_die_info *pdi,
9014 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9015 int set_addrmap, struct dwarf2_cu *cu)
9017 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9019 if (pdi->has_pc_info)
9021 if (pdi->lowpc < *lowpc)
9022 *lowpc = pdi->lowpc;
9023 if (pdi->highpc > *highpc)
9024 *highpc = pdi->highpc;
9027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9028 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9033 baseaddr = ANOFFSET (objfile->section_offsets,
9034 SECT_OFF_TEXT (objfile));
9035 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9036 pdi->lowpc + baseaddr);
9037 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9038 pdi->highpc + baseaddr);
9039 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9040 cu->per_cu->v.psymtab);
9044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9046 if (!pdi->is_declaration)
9047 /* Ignore subprogram DIEs that do not have a name, they are
9048 illegal. Do not emit a complaint at this point, we will
9049 do so when we convert this psymtab into a symtab. */
9051 add_partial_symbol (pdi, cu);
9055 if (! pdi->has_children)
9058 if (cu->language == language_ada)
9060 pdi = pdi->die_child;
9064 if (pdi->tag == DW_TAG_subprogram
9065 || pdi->tag == DW_TAG_inlined_subroutine
9066 || pdi->tag == DW_TAG_lexical_block)
9067 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9068 pdi = pdi->die_sibling;
9073 /* Read a partial die corresponding to an enumeration type. */
9076 add_partial_enumeration (struct partial_die_info *enum_pdi,
9077 struct dwarf2_cu *cu)
9079 struct partial_die_info *pdi;
9081 if (enum_pdi->name != NULL)
9082 add_partial_symbol (enum_pdi, cu);
9084 pdi = enum_pdi->die_child;
9087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9088 complaint (_("malformed enumerator DIE ignored"));
9090 add_partial_symbol (pdi, cu);
9091 pdi = pdi->die_sibling;
9095 /* Return the initial uleb128 in the die at INFO_PTR. */
9098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9100 unsigned int bytes_read;
9102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9106 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9108 Return the corresponding abbrev, or NULL if the number is zero (indicating
9109 an empty DIE). In either case *BYTES_READ will be set to the length of
9110 the initial number. */
9112 static struct abbrev_info *
9113 peek_die_abbrev (const die_reader_specs &reader,
9114 const gdb_byte *info_ptr, unsigned int *bytes_read)
9116 dwarf2_cu *cu = reader.cu;
9117 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9118 unsigned int abbrev_number
9119 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9121 if (abbrev_number == 0)
9124 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9127 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9128 " at offset %s [in module %s]"),
9129 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9130 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9136 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9137 Returns a pointer to the end of a series of DIEs, terminated by an empty
9138 DIE. Any children of the skipped DIEs will also be skipped. */
9140 static const gdb_byte *
9141 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9145 unsigned int bytes_read;
9146 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9149 return info_ptr + bytes_read;
9151 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9155 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9156 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9157 abbrev corresponding to that skipped uleb128 should be passed in
9158 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9161 static const gdb_byte *
9162 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9163 struct abbrev_info *abbrev)
9165 unsigned int bytes_read;
9166 struct attribute attr;
9167 bfd *abfd = reader->abfd;
9168 struct dwarf2_cu *cu = reader->cu;
9169 const gdb_byte *buffer = reader->buffer;
9170 const gdb_byte *buffer_end = reader->buffer_end;
9171 unsigned int form, i;
9173 for (i = 0; i < abbrev->num_attrs; i++)
9175 /* The only abbrev we care about is DW_AT_sibling. */
9176 if (abbrev->attrs[i].name == DW_AT_sibling)
9178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9179 if (attr.form == DW_FORM_ref_addr)
9180 complaint (_("ignoring absolute DW_AT_sibling"));
9183 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9184 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9186 if (sibling_ptr < info_ptr)
9187 complaint (_("DW_AT_sibling points backwards"));
9188 else if (sibling_ptr > reader->buffer_end)
9189 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9195 /* If it isn't DW_AT_sibling, skip this attribute. */
9196 form = abbrev->attrs[i].form;
9200 case DW_FORM_ref_addr:
9201 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9202 and later it is offset sized. */
9203 if (cu->header.version == 2)
9204 info_ptr += cu->header.addr_size;
9206 info_ptr += cu->header.offset_size;
9208 case DW_FORM_GNU_ref_alt:
9209 info_ptr += cu->header.offset_size;
9212 info_ptr += cu->header.addr_size;
9219 case DW_FORM_flag_present:
9220 case DW_FORM_implicit_const:
9232 case DW_FORM_ref_sig8:
9235 case DW_FORM_data16:
9238 case DW_FORM_string:
9239 read_direct_string (abfd, info_ptr, &bytes_read);
9240 info_ptr += bytes_read;
9242 case DW_FORM_sec_offset:
9244 case DW_FORM_GNU_strp_alt:
9245 info_ptr += cu->header.offset_size;
9247 case DW_FORM_exprloc:
9249 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9250 info_ptr += bytes_read;
9252 case DW_FORM_block1:
9253 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9255 case DW_FORM_block2:
9256 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9258 case DW_FORM_block4:
9259 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9263 case DW_FORM_ref_udata:
9264 case DW_FORM_GNU_addr_index:
9265 case DW_FORM_GNU_str_index:
9266 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9268 case DW_FORM_indirect:
9269 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9270 info_ptr += bytes_read;
9271 /* We need to continue parsing from here, so just go back to
9273 goto skip_attribute;
9276 error (_("Dwarf Error: Cannot handle %s "
9277 "in DWARF reader [in module %s]"),
9278 dwarf_form_name (form),
9279 bfd_get_filename (abfd));
9283 if (abbrev->has_children)
9284 return skip_children (reader, info_ptr);
9289 /* Locate ORIG_PDI's sibling.
9290 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9292 static const gdb_byte *
9293 locate_pdi_sibling (const struct die_reader_specs *reader,
9294 struct partial_die_info *orig_pdi,
9295 const gdb_byte *info_ptr)
9297 /* Do we know the sibling already? */
9299 if (orig_pdi->sibling)
9300 return orig_pdi->sibling;
9302 /* Are there any children to deal with? */
9304 if (!orig_pdi->has_children)
9307 /* Skip the children the long way. */
9309 return skip_children (reader, info_ptr);
9312 /* Expand this partial symbol table into a full symbol table. SELF is
9316 dwarf2_read_symtab (struct partial_symtab *self,
9317 struct objfile *objfile)
9319 struct dwarf2_per_objfile *dwarf2_per_objfile
9320 = get_dwarf2_per_objfile (objfile);
9324 warning (_("bug: psymtab for %s is already read in."),
9331 printf_filtered (_("Reading in symbols for %s..."),
9333 gdb_flush (gdb_stdout);
9336 /* If this psymtab is constructed from a debug-only objfile, the
9337 has_section_at_zero flag will not necessarily be correct. We
9338 can get the correct value for this flag by looking at the data
9339 associated with the (presumably stripped) associated objfile. */
9340 if (objfile->separate_debug_objfile_backlink)
9342 struct dwarf2_per_objfile *dpo_backlink
9343 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9345 dwarf2_per_objfile->has_section_at_zero
9346 = dpo_backlink->has_section_at_zero;
9349 dwarf2_per_objfile->reading_partial_symbols = 0;
9351 psymtab_to_symtab_1 (self);
9353 /* Finish up the debug error message. */
9355 printf_filtered (_("done.\n"));
9358 process_cu_includes (dwarf2_per_objfile);
9361 /* Reading in full CUs. */
9363 /* Add PER_CU to the queue. */
9366 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9367 enum language pretend_language)
9369 struct dwarf2_queue_item *item;
9372 item = XNEW (struct dwarf2_queue_item);
9373 item->per_cu = per_cu;
9374 item->pretend_language = pretend_language;
9377 if (dwarf2_queue == NULL)
9378 dwarf2_queue = item;
9380 dwarf2_queue_tail->next = item;
9382 dwarf2_queue_tail = item;
9385 /* If PER_CU is not yet queued, add it to the queue.
9386 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9388 The result is non-zero if PER_CU was queued, otherwise the result is zero
9389 meaning either PER_CU is already queued or it is already loaded.
9391 N.B. There is an invariant here that if a CU is queued then it is loaded.
9392 The caller is required to load PER_CU if we return non-zero. */
9395 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9396 struct dwarf2_per_cu_data *per_cu,
9397 enum language pretend_language)
9399 /* We may arrive here during partial symbol reading, if we need full
9400 DIEs to process an unusual case (e.g. template arguments). Do
9401 not queue PER_CU, just tell our caller to load its DIEs. */
9402 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9404 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9409 /* Mark the dependence relation so that we don't flush PER_CU
9411 if (dependent_cu != NULL)
9412 dwarf2_add_dependence (dependent_cu, per_cu);
9414 /* If it's already on the queue, we have nothing to do. */
9418 /* If the compilation unit is already loaded, just mark it as
9420 if (per_cu->cu != NULL)
9422 per_cu->cu->last_used = 0;
9426 /* Add it to the queue. */
9427 queue_comp_unit (per_cu, pretend_language);
9432 /* Process the queue. */
9435 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9437 struct dwarf2_queue_item *item, *next_item;
9439 if (dwarf_read_debug)
9441 fprintf_unfiltered (gdb_stdlog,
9442 "Expanding one or more symtabs of objfile %s ...\n",
9443 objfile_name (dwarf2_per_objfile->objfile));
9446 /* The queue starts out with one item, but following a DIE reference
9447 may load a new CU, adding it to the end of the queue. */
9448 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9450 if ((dwarf2_per_objfile->using_index
9451 ? !item->per_cu->v.quick->compunit_symtab
9452 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9453 /* Skip dummy CUs. */
9454 && item->per_cu->cu != NULL)
9456 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9457 unsigned int debug_print_threshold;
9460 if (per_cu->is_debug_types)
9462 struct signatured_type *sig_type =
9463 (struct signatured_type *) per_cu;
9465 sprintf (buf, "TU %s at offset %s",
9466 hex_string (sig_type->signature),
9467 sect_offset_str (per_cu->sect_off));
9468 /* There can be 100s of TUs.
9469 Only print them in verbose mode. */
9470 debug_print_threshold = 2;
9474 sprintf (buf, "CU at offset %s",
9475 sect_offset_str (per_cu->sect_off));
9476 debug_print_threshold = 1;
9479 if (dwarf_read_debug >= debug_print_threshold)
9480 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9482 if (per_cu->is_debug_types)
9483 process_full_type_unit (per_cu, item->pretend_language);
9485 process_full_comp_unit (per_cu, item->pretend_language);
9487 if (dwarf_read_debug >= debug_print_threshold)
9488 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9491 item->per_cu->queued = 0;
9492 next_item = item->next;
9496 dwarf2_queue_tail = NULL;
9498 if (dwarf_read_debug)
9500 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9501 objfile_name (dwarf2_per_objfile->objfile));
9505 /* Read in full symbols for PST, and anything it depends on. */
9508 psymtab_to_symtab_1 (struct partial_symtab *pst)
9510 struct dwarf2_per_cu_data *per_cu;
9516 for (i = 0; i < pst->number_of_dependencies; i++)
9517 if (!pst->dependencies[i]->readin
9518 && pst->dependencies[i]->user == NULL)
9520 /* Inform about additional files that need to be read in. */
9523 /* FIXME: i18n: Need to make this a single string. */
9524 fputs_filtered (" ", gdb_stdout);
9526 fputs_filtered ("and ", gdb_stdout);
9528 printf_filtered ("%s...", pst->dependencies[i]->filename);
9529 wrap_here (""); /* Flush output. */
9530 gdb_flush (gdb_stdout);
9532 psymtab_to_symtab_1 (pst->dependencies[i]);
9535 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9539 /* It's an include file, no symbols to read for it.
9540 Everything is in the parent symtab. */
9545 dw2_do_instantiate_symtab (per_cu, false);
9548 /* Trivial hash function for die_info: the hash value of a DIE
9549 is its offset in .debug_info for this objfile. */
9552 die_hash (const void *item)
9554 const struct die_info *die = (const struct die_info *) item;
9556 return to_underlying (die->sect_off);
9559 /* Trivial comparison function for die_info structures: two DIEs
9560 are equal if they have the same offset. */
9563 die_eq (const void *item_lhs, const void *item_rhs)
9565 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9566 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9568 return die_lhs->sect_off == die_rhs->sect_off;
9571 /* die_reader_func for load_full_comp_unit.
9572 This is identical to read_signatured_type_reader,
9573 but is kept separate for now. */
9576 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9577 const gdb_byte *info_ptr,
9578 struct die_info *comp_unit_die,
9582 struct dwarf2_cu *cu = reader->cu;
9583 enum language *language_ptr = (enum language *) data;
9585 gdb_assert (cu->die_hash == NULL);
9587 htab_create_alloc_ex (cu->header.length / 12,
9591 &cu->comp_unit_obstack,
9592 hashtab_obstack_allocate,
9593 dummy_obstack_deallocate);
9596 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9597 &info_ptr, comp_unit_die);
9598 cu->dies = comp_unit_die;
9599 /* comp_unit_die is not stored in die_hash, no need. */
9601 /* We try not to read any attributes in this function, because not
9602 all CUs needed for references have been loaded yet, and symbol
9603 table processing isn't initialized. But we have to set the CU language,
9604 or we won't be able to build types correctly.
9605 Similarly, if we do not read the producer, we can not apply
9606 producer-specific interpretation. */
9607 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9610 /* Load the DIEs associated with PER_CU into memory. */
9613 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9615 enum language pretend_language)
9617 gdb_assert (! this_cu->is_debug_types);
9619 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9620 load_full_comp_unit_reader, &pretend_language);
9623 /* Add a DIE to the delayed physname list. */
9626 add_to_method_list (struct type *type, int fnfield_index, int index,
9627 const char *name, struct die_info *die,
9628 struct dwarf2_cu *cu)
9630 struct delayed_method_info mi;
9632 mi.fnfield_index = fnfield_index;
9636 cu->method_list.push_back (mi);
9639 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9640 "const" / "volatile". If so, decrements LEN by the length of the
9641 modifier and return true. Otherwise return false. */
9645 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9647 size_t mod_len = sizeof (mod) - 1;
9648 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9656 /* Compute the physnames of any methods on the CU's method list.
9658 The computation of method physnames is delayed in order to avoid the
9659 (bad) condition that one of the method's formal parameters is of an as yet
9663 compute_delayed_physnames (struct dwarf2_cu *cu)
9665 /* Only C++ delays computing physnames. */
9666 if (cu->method_list.empty ())
9668 gdb_assert (cu->language == language_cplus);
9670 for (const delayed_method_info &mi : cu->method_list)
9672 const char *physname;
9673 struct fn_fieldlist *fn_flp
9674 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9675 physname = dwarf2_physname (mi.name, mi.die, cu);
9676 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9677 = physname ? physname : "";
9679 /* Since there's no tag to indicate whether a method is a
9680 const/volatile overload, extract that information out of the
9682 if (physname != NULL)
9684 size_t len = strlen (physname);
9688 if (physname[len] == ')') /* shortcut */
9690 else if (check_modifier (physname, len, " const"))
9691 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9692 else if (check_modifier (physname, len, " volatile"))
9693 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9700 /* The list is no longer needed. */
9701 cu->method_list.clear ();
9704 /* Go objects should be embedded in a DW_TAG_module DIE,
9705 and it's not clear if/how imported objects will appear.
9706 To keep Go support simple until that's worked out,
9707 go back through what we've read and create something usable.
9708 We could do this while processing each DIE, and feels kinda cleaner,
9709 but that way is more invasive.
9710 This is to, for example, allow the user to type "p var" or "b main"
9711 without having to specify the package name, and allow lookups
9712 of module.object to work in contexts that use the expression
9716 fixup_go_packaging (struct dwarf2_cu *cu)
9718 char *package_name = NULL;
9719 struct pending *list;
9722 for (list = global_symbols; list != NULL; list = list->next)
9724 for (i = 0; i < list->nsyms; ++i)
9726 struct symbol *sym = list->symbol[i];
9728 if (SYMBOL_LANGUAGE (sym) == language_go
9729 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9731 char *this_package_name = go_symbol_package_name (sym);
9733 if (this_package_name == NULL)
9735 if (package_name == NULL)
9736 package_name = this_package_name;
9739 struct objfile *objfile
9740 = cu->per_cu->dwarf2_per_objfile->objfile;
9741 if (strcmp (package_name, this_package_name) != 0)
9742 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9743 (symbol_symtab (sym) != NULL
9744 ? symtab_to_filename_for_display
9745 (symbol_symtab (sym))
9746 : objfile_name (objfile)),
9747 this_package_name, package_name);
9748 xfree (this_package_name);
9754 if (package_name != NULL)
9756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9757 const char *saved_package_name
9758 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9760 strlen (package_name));
9761 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9762 saved_package_name);
9765 sym = allocate_symbol (objfile);
9766 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9767 SYMBOL_SET_NAMES (sym, saved_package_name,
9768 strlen (saved_package_name), 0, objfile);
9769 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9770 e.g., "main" finds the "main" module and not C's main(). */
9771 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9772 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9773 SYMBOL_TYPE (sym) = type;
9775 add_symbol_to_list (sym, &global_symbols);
9777 xfree (package_name);
9781 /* Allocate a fully-qualified name consisting of the two parts on the
9785 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9787 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9790 /* A helper that allocates a struct discriminant_info to attach to a
9793 static struct discriminant_info *
9794 alloc_discriminant_info (struct type *type, int discriminant_index,
9797 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9798 gdb_assert (discriminant_index == -1
9799 || (discriminant_index >= 0
9800 && discriminant_index < TYPE_NFIELDS (type)));
9801 gdb_assert (default_index == -1
9802 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9804 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9806 struct discriminant_info *disc
9807 = ((struct discriminant_info *)
9809 offsetof (struct discriminant_info, discriminants)
9810 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9811 disc->default_index = default_index;
9812 disc->discriminant_index = discriminant_index;
9814 struct dynamic_prop prop;
9815 prop.kind = PROP_UNDEFINED;
9816 prop.data.baton = disc;
9818 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9823 /* Some versions of rustc emitted enums in an unusual way.
9825 Ordinary enums were emitted as unions. The first element of each
9826 structure in the union was named "RUST$ENUM$DISR". This element
9827 held the discriminant.
9829 These versions of Rust also implemented the "non-zero"
9830 optimization. When the enum had two values, and one is empty and
9831 the other holds a pointer that cannot be zero, the pointer is used
9832 as the discriminant, with a zero value meaning the empty variant.
9833 Here, the union's first member is of the form
9834 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9835 where the fieldnos are the indices of the fields that should be
9836 traversed in order to find the field (which may be several fields deep)
9837 and the variantname is the name of the variant of the case when the
9840 This function recognizes whether TYPE is of one of these forms,
9841 and, if so, smashes it to be a variant type. */
9844 quirk_rust_enum (struct type *type, struct objfile *objfile)
9846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9848 /* We don't need to deal with empty enums. */
9849 if (TYPE_NFIELDS (type) == 0)
9852 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9853 if (TYPE_NFIELDS (type) == 1
9854 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9856 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9858 /* Decode the field name to find the offset of the
9860 ULONGEST bit_offset = 0;
9861 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9862 while (name[0] >= '0' && name[0] <= '9')
9865 unsigned long index = strtoul (name, &tail, 10);
9868 || index >= TYPE_NFIELDS (field_type)
9869 || (TYPE_FIELD_LOC_KIND (field_type, index)
9870 != FIELD_LOC_KIND_BITPOS))
9872 complaint (_("Could not parse Rust enum encoding string \"%s\""
9874 TYPE_FIELD_NAME (type, 0),
9875 objfile_name (objfile));
9880 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9881 field_type = TYPE_FIELD_TYPE (field_type, index);
9884 /* Make a union to hold the variants. */
9885 struct type *union_type = alloc_type (objfile);
9886 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9887 TYPE_NFIELDS (union_type) = 3;
9888 TYPE_FIELDS (union_type)
9889 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9890 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9891 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9893 /* Put the discriminant must at index 0. */
9894 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9895 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9896 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9897 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9899 /* The order of fields doesn't really matter, so put the real
9900 field at index 1 and the data-less field at index 2. */
9901 struct discriminant_info *disc
9902 = alloc_discriminant_info (union_type, 0, 1);
9903 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9904 TYPE_FIELD_NAME (union_type, 1)
9905 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9906 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9907 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9908 TYPE_FIELD_NAME (union_type, 1));
9910 const char *dataless_name
9911 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9913 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9915 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9916 /* NAME points into the original discriminant name, which
9917 already has the correct lifetime. */
9918 TYPE_FIELD_NAME (union_type, 2) = name;
9919 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9920 disc->discriminants[2] = 0;
9922 /* Smash this type to be a structure type. We have to do this
9923 because the type has already been recorded. */
9924 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9925 TYPE_NFIELDS (type) = 1;
9927 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9929 /* Install the variant part. */
9930 TYPE_FIELD_TYPE (type, 0) = union_type;
9931 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9932 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9934 else if (TYPE_NFIELDS (type) == 1)
9936 /* We assume that a union with a single field is a univariant
9938 /* Smash this type to be a structure type. We have to do this
9939 because the type has already been recorded. */
9940 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9942 /* Make a union to hold the variants. */
9943 struct type *union_type = alloc_type (objfile);
9944 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9945 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9946 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9947 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9948 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9950 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9951 const char *variant_name
9952 = rust_last_path_segment (TYPE_NAME (field_type));
9953 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9954 TYPE_NAME (field_type)
9955 = rust_fully_qualify (&objfile->objfile_obstack,
9956 TYPE_NAME (type), variant_name);
9958 /* Install the union in the outer struct type. */
9959 TYPE_NFIELDS (type) = 1;
9961 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9962 TYPE_FIELD_TYPE (type, 0) = union_type;
9963 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9964 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9966 alloc_discriminant_info (union_type, -1, 0);
9970 struct type *disr_type = nullptr;
9971 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9973 disr_type = TYPE_FIELD_TYPE (type, i);
9975 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9977 /* All fields of a true enum will be structs. */
9980 else if (TYPE_NFIELDS (disr_type) == 0)
9982 /* Could be data-less variant, so keep going. */
9983 disr_type = nullptr;
9985 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9986 "RUST$ENUM$DISR") != 0)
9988 /* Not a Rust enum. */
9998 /* If we got here without a discriminant, then it's probably
10000 if (disr_type == nullptr)
10003 /* Smash this type to be a structure type. We have to do this
10004 because the type has already been recorded. */
10005 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10007 /* Make a union to hold the variants. */
10008 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10009 struct type *union_type = alloc_type (objfile);
10010 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10011 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10012 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10013 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10014 TYPE_FIELDS (union_type)
10015 = (struct field *) TYPE_ZALLOC (union_type,
10016 (TYPE_NFIELDS (union_type)
10017 * sizeof (struct field)));
10019 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10020 TYPE_NFIELDS (type) * sizeof (struct field));
10022 /* Install the discriminant at index 0 in the union. */
10023 TYPE_FIELD (union_type, 0) = *disr_field;
10024 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10025 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10027 /* Install the union in the outer struct type. */
10028 TYPE_FIELD_TYPE (type, 0) = union_type;
10029 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10030 TYPE_NFIELDS (type) = 1;
10032 /* Set the size and offset of the union type. */
10033 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10035 /* We need a way to find the correct discriminant given a
10036 variant name. For convenience we build a map here. */
10037 struct type *enum_type = FIELD_TYPE (*disr_field);
10038 std::unordered_map<std::string, ULONGEST> discriminant_map;
10039 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10041 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10044 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10045 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10049 int n_fields = TYPE_NFIELDS (union_type);
10050 struct discriminant_info *disc
10051 = alloc_discriminant_info (union_type, 0, -1);
10052 /* Skip the discriminant here. */
10053 for (int i = 1; i < n_fields; ++i)
10055 /* Find the final word in the name of this variant's type.
10056 That name can be used to look up the correct
10058 const char *variant_name
10059 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10062 auto iter = discriminant_map.find (variant_name);
10063 if (iter != discriminant_map.end ())
10064 disc->discriminants[i] = iter->second;
10066 /* Remove the discriminant field, if it exists. */
10067 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10068 if (TYPE_NFIELDS (sub_type) > 0)
10070 --TYPE_NFIELDS (sub_type);
10071 ++TYPE_FIELDS (sub_type);
10073 TYPE_FIELD_NAME (union_type, i) = variant_name;
10074 TYPE_NAME (sub_type)
10075 = rust_fully_qualify (&objfile->objfile_obstack,
10076 TYPE_NAME (type), variant_name);
10081 /* Rewrite some Rust unions to be structures with variants parts. */
10084 rust_union_quirks (struct dwarf2_cu *cu)
10086 gdb_assert (cu->language == language_rust);
10087 for (type *type_ : cu->rust_unions)
10088 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10089 /* We don't need this any more. */
10090 cu->rust_unions.clear ();
10093 /* Return the symtab for PER_CU. This works properly regardless of
10094 whether we're using the index or psymtabs. */
10096 static struct compunit_symtab *
10097 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10099 return (per_cu->dwarf2_per_objfile->using_index
10100 ? per_cu->v.quick->compunit_symtab
10101 : per_cu->v.psymtab->compunit_symtab);
10104 /* A helper function for computing the list of all symbol tables
10105 included by PER_CU. */
10108 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10109 htab_t all_children, htab_t all_type_symtabs,
10110 struct dwarf2_per_cu_data *per_cu,
10111 struct compunit_symtab *immediate_parent)
10115 struct compunit_symtab *cust;
10116 struct dwarf2_per_cu_data *iter;
10118 slot = htab_find_slot (all_children, per_cu, INSERT);
10121 /* This inclusion and its children have been processed. */
10126 /* Only add a CU if it has a symbol table. */
10127 cust = get_compunit_symtab (per_cu);
10130 /* If this is a type unit only add its symbol table if we haven't
10131 seen it yet (type unit per_cu's can share symtabs). */
10132 if (per_cu->is_debug_types)
10134 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10138 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10139 if (cust->user == NULL)
10140 cust->user = immediate_parent;
10145 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10146 if (cust->user == NULL)
10147 cust->user = immediate_parent;
10152 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10155 recursively_compute_inclusions (result, all_children,
10156 all_type_symtabs, iter, cust);
10160 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10164 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10166 gdb_assert (! per_cu->is_debug_types);
10168 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10171 struct dwarf2_per_cu_data *per_cu_iter;
10172 struct compunit_symtab *compunit_symtab_iter;
10173 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10174 htab_t all_children, all_type_symtabs;
10175 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10177 /* If we don't have a symtab, we can just skip this case. */
10181 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10182 NULL, xcalloc, xfree);
10183 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10184 NULL, xcalloc, xfree);
10187 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10191 recursively_compute_inclusions (&result_symtabs, all_children,
10192 all_type_symtabs, per_cu_iter,
10196 /* Now we have a transitive closure of all the included symtabs. */
10197 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10199 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10200 struct compunit_symtab *, len + 1);
10202 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10203 compunit_symtab_iter);
10205 cust->includes[ix] = compunit_symtab_iter;
10206 cust->includes[len] = NULL;
10208 VEC_free (compunit_symtab_ptr, result_symtabs);
10209 htab_delete (all_children);
10210 htab_delete (all_type_symtabs);
10214 /* Compute the 'includes' field for the symtabs of all the CUs we just
10218 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10221 struct dwarf2_per_cu_data *iter;
10224 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10228 if (! iter->is_debug_types)
10229 compute_compunit_symtab_includes (iter);
10232 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10235 /* Generate full symbol information for PER_CU, whose DIEs have
10236 already been loaded into memory. */
10239 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10240 enum language pretend_language)
10242 struct dwarf2_cu *cu = per_cu->cu;
10243 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10244 struct objfile *objfile = dwarf2_per_objfile->objfile;
10245 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10246 CORE_ADDR lowpc, highpc;
10247 struct compunit_symtab *cust;
10248 CORE_ADDR baseaddr;
10249 struct block *static_block;
10252 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10255 scoped_free_pendings free_pending;
10257 /* Clear the list here in case something was left over. */
10258 cu->method_list.clear ();
10260 cu->list_in_scope = &file_symbols;
10262 cu->language = pretend_language;
10263 cu->language_defn = language_def (cu->language);
10265 /* Do line number decoding in read_file_scope () */
10266 process_die (cu->dies, cu);
10268 /* For now fudge the Go package. */
10269 if (cu->language == language_go)
10270 fixup_go_packaging (cu);
10272 /* Now that we have processed all the DIEs in the CU, all the types
10273 should be complete, and it should now be safe to compute all of the
10275 compute_delayed_physnames (cu);
10277 if (cu->language == language_rust)
10278 rust_union_quirks (cu);
10280 /* Some compilers don't define a DW_AT_high_pc attribute for the
10281 compilation unit. If the DW_AT_high_pc is missing, synthesize
10282 it, by scanning the DIE's below the compilation unit. */
10283 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10285 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10286 static_block = end_symtab_get_static_block (addr, 0, 1);
10288 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10289 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10290 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10291 addrmap to help ensure it has an accurate map of pc values belonging to
10293 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10295 cust = end_symtab_from_static_block (static_block,
10296 SECT_OFF_TEXT (objfile), 0);
10300 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10302 /* Set symtab language to language from DW_AT_language. If the
10303 compilation is from a C file generated by language preprocessors, do
10304 not set the language if it was already deduced by start_subfile. */
10305 if (!(cu->language == language_c
10306 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10307 COMPUNIT_FILETABS (cust)->language = cu->language;
10309 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10310 produce DW_AT_location with location lists but it can be possibly
10311 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10312 there were bugs in prologue debug info, fixed later in GCC-4.5
10313 by "unwind info for epilogues" patch (which is not directly related).
10315 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10316 needed, it would be wrong due to missing DW_AT_producer there.
10318 Still one can confuse GDB by using non-standard GCC compilation
10319 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10321 if (cu->has_loclist && gcc_4_minor >= 5)
10322 cust->locations_valid = 1;
10324 if (gcc_4_minor >= 5)
10325 cust->epilogue_unwind_valid = 1;
10327 cust->call_site_htab = cu->call_site_htab;
10330 if (dwarf2_per_objfile->using_index)
10331 per_cu->v.quick->compunit_symtab = cust;
10334 struct partial_symtab *pst = per_cu->v.psymtab;
10335 pst->compunit_symtab = cust;
10339 /* Push it for inclusion processing later. */
10340 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10343 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10344 already been loaded into memory. */
10347 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10348 enum language pretend_language)
10350 struct dwarf2_cu *cu = per_cu->cu;
10351 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10352 struct objfile *objfile = dwarf2_per_objfile->objfile;
10353 struct compunit_symtab *cust;
10354 struct signatured_type *sig_type;
10356 gdb_assert (per_cu->is_debug_types);
10357 sig_type = (struct signatured_type *) per_cu;
10360 scoped_free_pendings free_pending;
10362 /* Clear the list here in case something was left over. */
10363 cu->method_list.clear ();
10365 cu->list_in_scope = &file_symbols;
10367 cu->language = pretend_language;
10368 cu->language_defn = language_def (cu->language);
10370 /* The symbol tables are set up in read_type_unit_scope. */
10371 process_die (cu->dies, cu);
10373 /* For now fudge the Go package. */
10374 if (cu->language == language_go)
10375 fixup_go_packaging (cu);
10377 /* Now that we have processed all the DIEs in the CU, all the types
10378 should be complete, and it should now be safe to compute all of the
10380 compute_delayed_physnames (cu);
10382 if (cu->language == language_rust)
10383 rust_union_quirks (cu);
10385 /* TUs share symbol tables.
10386 If this is the first TU to use this symtab, complete the construction
10387 of it with end_expandable_symtab. Otherwise, complete the addition of
10388 this TU's symbols to the existing symtab. */
10389 if (sig_type->type_unit_group->compunit_symtab == NULL)
10391 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10392 sig_type->type_unit_group->compunit_symtab = cust;
10396 /* Set symtab language to language from DW_AT_language. If the
10397 compilation is from a C file generated by language preprocessors,
10398 do not set the language if it was already deduced by
10400 if (!(cu->language == language_c
10401 && COMPUNIT_FILETABS (cust)->language != language_c))
10402 COMPUNIT_FILETABS (cust)->language = cu->language;
10407 augment_type_symtab ();
10408 cust = sig_type->type_unit_group->compunit_symtab;
10411 if (dwarf2_per_objfile->using_index)
10412 per_cu->v.quick->compunit_symtab = cust;
10415 struct partial_symtab *pst = per_cu->v.psymtab;
10416 pst->compunit_symtab = cust;
10421 /* Process an imported unit DIE. */
10424 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10426 struct attribute *attr;
10428 /* For now we don't handle imported units in type units. */
10429 if (cu->per_cu->is_debug_types)
10431 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10432 " supported in type units [in module %s]"),
10433 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10436 attr = dwarf2_attr (die, DW_AT_import, cu);
10439 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10440 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10441 dwarf2_per_cu_data *per_cu
10442 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10443 cu->per_cu->dwarf2_per_objfile);
10445 /* If necessary, add it to the queue and load its DIEs. */
10446 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10447 load_full_comp_unit (per_cu, false, cu->language);
10449 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10454 /* RAII object that represents a process_die scope: i.e.,
10455 starts/finishes processing a DIE. */
10456 class process_die_scope
10459 process_die_scope (die_info *die, dwarf2_cu *cu)
10460 : m_die (die), m_cu (cu)
10462 /* We should only be processing DIEs not already in process. */
10463 gdb_assert (!m_die->in_process);
10464 m_die->in_process = true;
10467 ~process_die_scope ()
10469 m_die->in_process = false;
10471 /* If we're done processing the DIE for the CU that owns the line
10472 header, we don't need the line header anymore. */
10473 if (m_cu->line_header_die_owner == m_die)
10475 delete m_cu->line_header;
10476 m_cu->line_header = NULL;
10477 m_cu->line_header_die_owner = NULL;
10486 /* Process a die and its children. */
10489 process_die (struct die_info *die, struct dwarf2_cu *cu)
10491 process_die_scope scope (die, cu);
10495 case DW_TAG_padding:
10497 case DW_TAG_compile_unit:
10498 case DW_TAG_partial_unit:
10499 read_file_scope (die, cu);
10501 case DW_TAG_type_unit:
10502 read_type_unit_scope (die, cu);
10504 case DW_TAG_subprogram:
10505 case DW_TAG_inlined_subroutine:
10506 read_func_scope (die, cu);
10508 case DW_TAG_lexical_block:
10509 case DW_TAG_try_block:
10510 case DW_TAG_catch_block:
10511 read_lexical_block_scope (die, cu);
10513 case DW_TAG_call_site:
10514 case DW_TAG_GNU_call_site:
10515 read_call_site_scope (die, cu);
10517 case DW_TAG_class_type:
10518 case DW_TAG_interface_type:
10519 case DW_TAG_structure_type:
10520 case DW_TAG_union_type:
10521 process_structure_scope (die, cu);
10523 case DW_TAG_enumeration_type:
10524 process_enumeration_scope (die, cu);
10527 /* These dies have a type, but processing them does not create
10528 a symbol or recurse to process the children. Therefore we can
10529 read them on-demand through read_type_die. */
10530 case DW_TAG_subroutine_type:
10531 case DW_TAG_set_type:
10532 case DW_TAG_array_type:
10533 case DW_TAG_pointer_type:
10534 case DW_TAG_ptr_to_member_type:
10535 case DW_TAG_reference_type:
10536 case DW_TAG_rvalue_reference_type:
10537 case DW_TAG_string_type:
10540 case DW_TAG_base_type:
10541 case DW_TAG_subrange_type:
10542 case DW_TAG_typedef:
10543 /* Add a typedef symbol for the type definition, if it has a
10545 new_symbol (die, read_type_die (die, cu), cu);
10547 case DW_TAG_common_block:
10548 read_common_block (die, cu);
10550 case DW_TAG_common_inclusion:
10552 case DW_TAG_namespace:
10553 cu->processing_has_namespace_info = 1;
10554 read_namespace (die, cu);
10556 case DW_TAG_module:
10557 cu->processing_has_namespace_info = 1;
10558 read_module (die, cu);
10560 case DW_TAG_imported_declaration:
10561 cu->processing_has_namespace_info = 1;
10562 if (read_namespace_alias (die, cu))
10564 /* The declaration is not a global namespace alias. */
10565 /* Fall through. */
10566 case DW_TAG_imported_module:
10567 cu->processing_has_namespace_info = 1;
10568 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10569 || cu->language != language_fortran))
10570 complaint (_("Tag '%s' has unexpected children"),
10571 dwarf_tag_name (die->tag));
10572 read_import_statement (die, cu);
10575 case DW_TAG_imported_unit:
10576 process_imported_unit_die (die, cu);
10579 case DW_TAG_variable:
10580 read_variable (die, cu);
10584 new_symbol (die, NULL, cu);
10589 /* DWARF name computation. */
10591 /* A helper function for dwarf2_compute_name which determines whether DIE
10592 needs to have the name of the scope prepended to the name listed in the
10596 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10598 struct attribute *attr;
10602 case DW_TAG_namespace:
10603 case DW_TAG_typedef:
10604 case DW_TAG_class_type:
10605 case DW_TAG_interface_type:
10606 case DW_TAG_structure_type:
10607 case DW_TAG_union_type:
10608 case DW_TAG_enumeration_type:
10609 case DW_TAG_enumerator:
10610 case DW_TAG_subprogram:
10611 case DW_TAG_inlined_subroutine:
10612 case DW_TAG_member:
10613 case DW_TAG_imported_declaration:
10616 case DW_TAG_variable:
10617 case DW_TAG_constant:
10618 /* We only need to prefix "globally" visible variables. These include
10619 any variable marked with DW_AT_external or any variable that
10620 lives in a namespace. [Variables in anonymous namespaces
10621 require prefixing, but they are not DW_AT_external.] */
10623 if (dwarf2_attr (die, DW_AT_specification, cu))
10625 struct dwarf2_cu *spec_cu = cu;
10627 return die_needs_namespace (die_specification (die, &spec_cu),
10631 attr = dwarf2_attr (die, DW_AT_external, cu);
10632 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10633 && die->parent->tag != DW_TAG_module)
10635 /* A variable in a lexical block of some kind does not need a
10636 namespace, even though in C++ such variables may be external
10637 and have a mangled name. */
10638 if (die->parent->tag == DW_TAG_lexical_block
10639 || die->parent->tag == DW_TAG_try_block
10640 || die->parent->tag == DW_TAG_catch_block
10641 || die->parent->tag == DW_TAG_subprogram)
10650 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10651 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10652 defined for the given DIE. */
10654 static struct attribute *
10655 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10657 struct attribute *attr;
10659 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10661 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10666 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10667 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10668 defined for the given DIE. */
10670 static const char *
10671 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10673 const char *linkage_name;
10675 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10676 if (linkage_name == NULL)
10677 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10679 return linkage_name;
10682 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10683 compute the physname for the object, which include a method's:
10684 - formal parameters (C++),
10685 - receiver type (Go),
10687 The term "physname" is a bit confusing.
10688 For C++, for example, it is the demangled name.
10689 For Go, for example, it's the mangled name.
10691 For Ada, return the DIE's linkage name rather than the fully qualified
10692 name. PHYSNAME is ignored..
10694 The result is allocated on the objfile_obstack and canonicalized. */
10696 static const char *
10697 dwarf2_compute_name (const char *name,
10698 struct die_info *die, struct dwarf2_cu *cu,
10701 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10704 name = dwarf2_name (die, cu);
10706 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10707 but otherwise compute it by typename_concat inside GDB.
10708 FIXME: Actually this is not really true, or at least not always true.
10709 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10710 Fortran names because there is no mangling standard. So new_symbol
10711 will set the demangled name to the result of dwarf2_full_name, and it is
10712 the demangled name that GDB uses if it exists. */
10713 if (cu->language == language_ada
10714 || (cu->language == language_fortran && physname))
10716 /* For Ada unit, we prefer the linkage name over the name, as
10717 the former contains the exported name, which the user expects
10718 to be able to reference. Ideally, we want the user to be able
10719 to reference this entity using either natural or linkage name,
10720 but we haven't started looking at this enhancement yet. */
10721 const char *linkage_name = dw2_linkage_name (die, cu);
10723 if (linkage_name != NULL)
10724 return linkage_name;
10727 /* These are the only languages we know how to qualify names in. */
10729 && (cu->language == language_cplus
10730 || cu->language == language_fortran || cu->language == language_d
10731 || cu->language == language_rust))
10733 if (die_needs_namespace (die, cu))
10735 const char *prefix;
10736 const char *canonical_name = NULL;
10740 prefix = determine_prefix (die, cu);
10741 if (*prefix != '\0')
10743 char *prefixed_name = typename_concat (NULL, prefix, name,
10746 buf.puts (prefixed_name);
10747 xfree (prefixed_name);
10752 /* Template parameters may be specified in the DIE's DW_AT_name, or
10753 as children with DW_TAG_template_type_param or
10754 DW_TAG_value_type_param. If the latter, add them to the name
10755 here. If the name already has template parameters, then
10756 skip this step; some versions of GCC emit both, and
10757 it is more efficient to use the pre-computed name.
10759 Something to keep in mind about this process: it is very
10760 unlikely, or in some cases downright impossible, to produce
10761 something that will match the mangled name of a function.
10762 If the definition of the function has the same debug info,
10763 we should be able to match up with it anyway. But fallbacks
10764 using the minimal symbol, for instance to find a method
10765 implemented in a stripped copy of libstdc++, will not work.
10766 If we do not have debug info for the definition, we will have to
10767 match them up some other way.
10769 When we do name matching there is a related problem with function
10770 templates; two instantiated function templates are allowed to
10771 differ only by their return types, which we do not add here. */
10773 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10775 struct attribute *attr;
10776 struct die_info *child;
10779 die->building_fullname = 1;
10781 for (child = die->child; child != NULL; child = child->sibling)
10785 const gdb_byte *bytes;
10786 struct dwarf2_locexpr_baton *baton;
10789 if (child->tag != DW_TAG_template_type_param
10790 && child->tag != DW_TAG_template_value_param)
10801 attr = dwarf2_attr (child, DW_AT_type, cu);
10804 complaint (_("template parameter missing DW_AT_type"));
10805 buf.puts ("UNKNOWN_TYPE");
10808 type = die_type (child, cu);
10810 if (child->tag == DW_TAG_template_type_param)
10812 c_print_type (type, "", &buf, -1, 0, cu->language,
10813 &type_print_raw_options);
10817 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10820 complaint (_("template parameter missing "
10821 "DW_AT_const_value"));
10822 buf.puts ("UNKNOWN_VALUE");
10826 dwarf2_const_value_attr (attr, type, name,
10827 &cu->comp_unit_obstack, cu,
10828 &value, &bytes, &baton);
10830 if (TYPE_NOSIGN (type))
10831 /* GDB prints characters as NUMBER 'CHAR'. If that's
10832 changed, this can use value_print instead. */
10833 c_printchar (value, type, &buf);
10836 struct value_print_options opts;
10839 v = dwarf2_evaluate_loc_desc (type, NULL,
10843 else if (bytes != NULL)
10845 v = allocate_value (type);
10846 memcpy (value_contents_writeable (v), bytes,
10847 TYPE_LENGTH (type));
10850 v = value_from_longest (type, value);
10852 /* Specify decimal so that we do not depend on
10854 get_formatted_print_options (&opts, 'd');
10856 value_print (v, &buf, &opts);
10861 die->building_fullname = 0;
10865 /* Close the argument list, with a space if necessary
10866 (nested templates). */
10867 if (!buf.empty () && buf.string ().back () == '>')
10874 /* For C++ methods, append formal parameter type
10875 information, if PHYSNAME. */
10877 if (physname && die->tag == DW_TAG_subprogram
10878 && cu->language == language_cplus)
10880 struct type *type = read_type_die (die, cu);
10882 c_type_print_args (type, &buf, 1, cu->language,
10883 &type_print_raw_options);
10885 if (cu->language == language_cplus)
10887 /* Assume that an artificial first parameter is
10888 "this", but do not crash if it is not. RealView
10889 marks unnamed (and thus unused) parameters as
10890 artificial; there is no way to differentiate
10892 if (TYPE_NFIELDS (type) > 0
10893 && TYPE_FIELD_ARTIFICIAL (type, 0)
10894 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10895 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10897 buf.puts (" const");
10901 const std::string &intermediate_name = buf.string ();
10903 if (cu->language == language_cplus)
10905 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10906 &objfile->per_bfd->storage_obstack);
10908 /* If we only computed INTERMEDIATE_NAME, or if
10909 INTERMEDIATE_NAME is already canonical, then we need to
10910 copy it to the appropriate obstack. */
10911 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10912 name = ((const char *)
10913 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10914 intermediate_name.c_str (),
10915 intermediate_name.length ()));
10917 name = canonical_name;
10924 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10925 If scope qualifiers are appropriate they will be added. The result
10926 will be allocated on the storage_obstack, or NULL if the DIE does
10927 not have a name. NAME may either be from a previous call to
10928 dwarf2_name or NULL.
10930 The output string will be canonicalized (if C++). */
10932 static const char *
10933 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10935 return dwarf2_compute_name (name, die, cu, 0);
10938 /* Construct a physname for the given DIE in CU. NAME may either be
10939 from a previous call to dwarf2_name or NULL. The result will be
10940 allocated on the objfile_objstack or NULL if the DIE does not have a
10943 The output string will be canonicalized (if C++). */
10945 static const char *
10946 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10948 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10949 const char *retval, *mangled = NULL, *canon = NULL;
10952 /* In this case dwarf2_compute_name is just a shortcut not building anything
10954 if (!die_needs_namespace (die, cu))
10955 return dwarf2_compute_name (name, die, cu, 1);
10957 mangled = dw2_linkage_name (die, cu);
10959 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10960 See https://github.com/rust-lang/rust/issues/32925. */
10961 if (cu->language == language_rust && mangled != NULL
10962 && strchr (mangled, '{') != NULL)
10965 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10967 gdb::unique_xmalloc_ptr<char> demangled;
10968 if (mangled != NULL)
10971 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10973 /* Do nothing (do not demangle the symbol name). */
10975 else if (cu->language == language_go)
10977 /* This is a lie, but we already lie to the caller new_symbol.
10978 new_symbol assumes we return the mangled name.
10979 This just undoes that lie until things are cleaned up. */
10983 /* Use DMGL_RET_DROP for C++ template functions to suppress
10984 their return type. It is easier for GDB users to search
10985 for such functions as `name(params)' than `long name(params)'.
10986 In such case the minimal symbol names do not match the full
10987 symbol names but for template functions there is never a need
10988 to look up their definition from their declaration so
10989 the only disadvantage remains the minimal symbol variant
10990 `long name(params)' does not have the proper inferior type. */
10991 demangled.reset (gdb_demangle (mangled,
10992 (DMGL_PARAMS | DMGL_ANSI
10993 | DMGL_RET_DROP)));
10996 canon = demangled.get ();
11004 if (canon == NULL || check_physname)
11006 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11008 if (canon != NULL && strcmp (physname, canon) != 0)
11010 /* It may not mean a bug in GDB. The compiler could also
11011 compute DW_AT_linkage_name incorrectly. But in such case
11012 GDB would need to be bug-to-bug compatible. */
11014 complaint (_("Computed physname <%s> does not match demangled <%s> "
11015 "(from linkage <%s>) - DIE at %s [in module %s]"),
11016 physname, canon, mangled, sect_offset_str (die->sect_off),
11017 objfile_name (objfile));
11019 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11020 is available here - over computed PHYSNAME. It is safer
11021 against both buggy GDB and buggy compilers. */
11035 retval = ((const char *)
11036 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11037 retval, strlen (retval)));
11042 /* Inspect DIE in CU for a namespace alias. If one exists, record
11043 a new symbol for it.
11045 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11048 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11050 struct attribute *attr;
11052 /* If the die does not have a name, this is not a namespace
11054 attr = dwarf2_attr (die, DW_AT_name, cu);
11058 struct die_info *d = die;
11059 struct dwarf2_cu *imported_cu = cu;
11061 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11062 keep inspecting DIEs until we hit the underlying import. */
11063 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11064 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11066 attr = dwarf2_attr (d, DW_AT_import, cu);
11070 d = follow_die_ref (d, attr, &imported_cu);
11071 if (d->tag != DW_TAG_imported_declaration)
11075 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11077 complaint (_("DIE at %s has too many recursively imported "
11078 "declarations"), sect_offset_str (d->sect_off));
11085 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11087 type = get_die_type_at_offset (sect_off, cu->per_cu);
11088 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11090 /* This declaration is a global namespace alias. Add
11091 a symbol for it whose type is the aliased namespace. */
11092 new_symbol (die, type, cu);
11101 /* Return the using directives repository (global or local?) to use in the
11102 current context for LANGUAGE.
11104 For Ada, imported declarations can materialize renamings, which *may* be
11105 global. However it is impossible (for now?) in DWARF to distinguish
11106 "external" imported declarations and "static" ones. As all imported
11107 declarations seem to be static in all other languages, make them all CU-wide
11108 global only in Ada. */
11110 static struct using_direct **
11111 using_directives (enum language language)
11113 if (language == language_ada && context_stack_depth == 0)
11114 return &global_using_directives;
11116 return &local_using_directives;
11119 /* Read the import statement specified by the given die and record it. */
11122 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11124 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11125 struct attribute *import_attr;
11126 struct die_info *imported_die, *child_die;
11127 struct dwarf2_cu *imported_cu;
11128 const char *imported_name;
11129 const char *imported_name_prefix;
11130 const char *canonical_name;
11131 const char *import_alias;
11132 const char *imported_declaration = NULL;
11133 const char *import_prefix;
11134 std::vector<const char *> excludes;
11136 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11137 if (import_attr == NULL)
11139 complaint (_("Tag '%s' has no DW_AT_import"),
11140 dwarf_tag_name (die->tag));
11145 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11146 imported_name = dwarf2_name (imported_die, imported_cu);
11147 if (imported_name == NULL)
11149 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11151 The import in the following code:
11165 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11166 <52> DW_AT_decl_file : 1
11167 <53> DW_AT_decl_line : 6
11168 <54> DW_AT_import : <0x75>
11169 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11170 <59> DW_AT_name : B
11171 <5b> DW_AT_decl_file : 1
11172 <5c> DW_AT_decl_line : 2
11173 <5d> DW_AT_type : <0x6e>
11175 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11176 <76> DW_AT_byte_size : 4
11177 <77> DW_AT_encoding : 5 (signed)
11179 imports the wrong die ( 0x75 instead of 0x58 ).
11180 This case will be ignored until the gcc bug is fixed. */
11184 /* Figure out the local name after import. */
11185 import_alias = dwarf2_name (die, cu);
11187 /* Figure out where the statement is being imported to. */
11188 import_prefix = determine_prefix (die, cu);
11190 /* Figure out what the scope of the imported die is and prepend it
11191 to the name of the imported die. */
11192 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11194 if (imported_die->tag != DW_TAG_namespace
11195 && imported_die->tag != DW_TAG_module)
11197 imported_declaration = imported_name;
11198 canonical_name = imported_name_prefix;
11200 else if (strlen (imported_name_prefix) > 0)
11201 canonical_name = obconcat (&objfile->objfile_obstack,
11202 imported_name_prefix,
11203 (cu->language == language_d ? "." : "::"),
11204 imported_name, (char *) NULL);
11206 canonical_name = imported_name;
11208 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11209 for (child_die = die->child; child_die && child_die->tag;
11210 child_die = sibling_die (child_die))
11212 /* DWARF-4: A Fortran use statement with a “rename list” may be
11213 represented by an imported module entry with an import attribute
11214 referring to the module and owned entries corresponding to those
11215 entities that are renamed as part of being imported. */
11217 if (child_die->tag != DW_TAG_imported_declaration)
11219 complaint (_("child DW_TAG_imported_declaration expected "
11220 "- DIE at %s [in module %s]"),
11221 sect_offset_str (child_die->sect_off),
11222 objfile_name (objfile));
11226 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11227 if (import_attr == NULL)
11229 complaint (_("Tag '%s' has no DW_AT_import"),
11230 dwarf_tag_name (child_die->tag));
11235 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11237 imported_name = dwarf2_name (imported_die, imported_cu);
11238 if (imported_name == NULL)
11240 complaint (_("child DW_TAG_imported_declaration has unknown "
11241 "imported name - DIE at %s [in module %s]"),
11242 sect_offset_str (child_die->sect_off),
11243 objfile_name (objfile));
11247 excludes.push_back (imported_name);
11249 process_die (child_die, cu);
11252 add_using_directive (using_directives (cu->language),
11256 imported_declaration,
11259 &objfile->objfile_obstack);
11262 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11263 types, but gives them a size of zero. Starting with version 14,
11264 ICC is compatible with GCC. */
11267 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11269 if (!cu->checked_producer)
11270 check_producer (cu);
11272 return cu->producer_is_icc_lt_14;
11275 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11276 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11277 this, it was first present in GCC release 4.3.0. */
11280 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11282 if (!cu->checked_producer)
11283 check_producer (cu);
11285 return cu->producer_is_gcc_lt_4_3;
11288 static file_and_directory
11289 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11291 file_and_directory res;
11293 /* Find the filename. Do not use dwarf2_name here, since the filename
11294 is not a source language identifier. */
11295 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11296 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11298 if (res.comp_dir == NULL
11299 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11300 && IS_ABSOLUTE_PATH (res.name))
11302 res.comp_dir_storage = ldirname (res.name);
11303 if (!res.comp_dir_storage.empty ())
11304 res.comp_dir = res.comp_dir_storage.c_str ();
11306 if (res.comp_dir != NULL)
11308 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11309 directory, get rid of it. */
11310 const char *cp = strchr (res.comp_dir, ':');
11312 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11313 res.comp_dir = cp + 1;
11316 if (res.name == NULL)
11317 res.name = "<unknown>";
11322 /* Handle DW_AT_stmt_list for a compilation unit.
11323 DIE is the DW_TAG_compile_unit die for CU.
11324 COMP_DIR is the compilation directory. LOWPC is passed to
11325 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11328 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11329 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11331 struct dwarf2_per_objfile *dwarf2_per_objfile
11332 = cu->per_cu->dwarf2_per_objfile;
11333 struct objfile *objfile = dwarf2_per_objfile->objfile;
11334 struct attribute *attr;
11335 struct line_header line_header_local;
11336 hashval_t line_header_local_hash;
11338 int decode_mapping;
11340 gdb_assert (! cu->per_cu->is_debug_types);
11342 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11346 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11348 /* The line header hash table is only created if needed (it exists to
11349 prevent redundant reading of the line table for partial_units).
11350 If we're given a partial_unit, we'll need it. If we're given a
11351 compile_unit, then use the line header hash table if it's already
11352 created, but don't create one just yet. */
11354 if (dwarf2_per_objfile->line_header_hash == NULL
11355 && die->tag == DW_TAG_partial_unit)
11357 dwarf2_per_objfile->line_header_hash
11358 = htab_create_alloc_ex (127, line_header_hash_voidp,
11359 line_header_eq_voidp,
11360 free_line_header_voidp,
11361 &objfile->objfile_obstack,
11362 hashtab_obstack_allocate,
11363 dummy_obstack_deallocate);
11366 line_header_local.sect_off = line_offset;
11367 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11368 line_header_local_hash = line_header_hash (&line_header_local);
11369 if (dwarf2_per_objfile->line_header_hash != NULL)
11371 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11372 &line_header_local,
11373 line_header_local_hash, NO_INSERT);
11375 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11376 is not present in *SLOT (since if there is something in *SLOT then
11377 it will be for a partial_unit). */
11378 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11380 gdb_assert (*slot != NULL);
11381 cu->line_header = (struct line_header *) *slot;
11386 /* dwarf_decode_line_header does not yet provide sufficient information.
11387 We always have to call also dwarf_decode_lines for it. */
11388 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11392 cu->line_header = lh.release ();
11393 cu->line_header_die_owner = die;
11395 if (dwarf2_per_objfile->line_header_hash == NULL)
11399 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11400 &line_header_local,
11401 line_header_local_hash, INSERT);
11402 gdb_assert (slot != NULL);
11404 if (slot != NULL && *slot == NULL)
11406 /* This newly decoded line number information unit will be owned
11407 by line_header_hash hash table. */
11408 *slot = cu->line_header;
11409 cu->line_header_die_owner = NULL;
11413 /* We cannot free any current entry in (*slot) as that struct line_header
11414 may be already used by multiple CUs. Create only temporary decoded
11415 line_header for this CU - it may happen at most once for each line
11416 number information unit. And if we're not using line_header_hash
11417 then this is what we want as well. */
11418 gdb_assert (die->tag != DW_TAG_partial_unit);
11420 decode_mapping = (die->tag != DW_TAG_partial_unit);
11421 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11426 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11429 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11431 struct dwarf2_per_objfile *dwarf2_per_objfile
11432 = cu->per_cu->dwarf2_per_objfile;
11433 struct objfile *objfile = dwarf2_per_objfile->objfile;
11434 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11435 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11436 CORE_ADDR highpc = ((CORE_ADDR) 0);
11437 struct attribute *attr;
11438 struct die_info *child_die;
11439 CORE_ADDR baseaddr;
11441 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11443 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11445 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11446 from finish_block. */
11447 if (lowpc == ((CORE_ADDR) -1))
11449 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11451 file_and_directory fnd = find_file_and_directory (die, cu);
11453 prepare_one_comp_unit (cu, die, cu->language);
11455 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11456 standardised yet. As a workaround for the language detection we fall
11457 back to the DW_AT_producer string. */
11458 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11459 cu->language = language_opencl;
11461 /* Similar hack for Go. */
11462 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11463 set_cu_language (DW_LANG_Go, cu);
11465 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11467 /* Decode line number information if present. We do this before
11468 processing child DIEs, so that the line header table is available
11469 for DW_AT_decl_file. */
11470 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11472 /* Process all dies in compilation unit. */
11473 if (die->child != NULL)
11475 child_die = die->child;
11476 while (child_die && child_die->tag)
11478 process_die (child_die, cu);
11479 child_die = sibling_die (child_die);
11483 /* Decode macro information, if present. Dwarf 2 macro information
11484 refers to information in the line number info statement program
11485 header, so we can only read it if we've read the header
11487 attr = dwarf2_attr (die, DW_AT_macros, cu);
11489 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11490 if (attr && cu->line_header)
11492 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11493 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11495 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11499 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11500 if (attr && cu->line_header)
11502 unsigned int macro_offset = DW_UNSND (attr);
11504 dwarf_decode_macros (cu, macro_offset, 0);
11509 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11510 Create the set of symtabs used by this TU, or if this TU is sharing
11511 symtabs with another TU and the symtabs have already been created
11512 then restore those symtabs in the line header.
11513 We don't need the pc/line-number mapping for type units. */
11516 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11518 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11519 struct type_unit_group *tu_group;
11521 struct attribute *attr;
11523 struct signatured_type *sig_type;
11525 gdb_assert (per_cu->is_debug_types);
11526 sig_type = (struct signatured_type *) per_cu;
11528 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11530 /* If we're using .gdb_index (includes -readnow) then
11531 per_cu->type_unit_group may not have been set up yet. */
11532 if (sig_type->type_unit_group == NULL)
11533 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11534 tu_group = sig_type->type_unit_group;
11536 /* If we've already processed this stmt_list there's no real need to
11537 do it again, we could fake it and just recreate the part we need
11538 (file name,index -> symtab mapping). If data shows this optimization
11539 is useful we can do it then. */
11540 first_time = tu_group->compunit_symtab == NULL;
11542 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11547 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11548 lh = dwarf_decode_line_header (line_offset, cu);
11553 dwarf2_start_symtab (cu, "", NULL, 0);
11556 gdb_assert (tu_group->symtabs == NULL);
11557 restart_symtab (tu_group->compunit_symtab, "", 0);
11562 cu->line_header = lh.release ();
11563 cu->line_header_die_owner = die;
11567 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11569 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11570 still initializing it, and our caller (a few levels up)
11571 process_full_type_unit still needs to know if this is the first
11574 tu_group->num_symtabs = cu->line_header->file_names.size ();
11575 tu_group->symtabs = XNEWVEC (struct symtab *,
11576 cu->line_header->file_names.size ());
11578 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11580 file_entry &fe = cu->line_header->file_names[i];
11582 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11584 if (current_subfile->symtab == NULL)
11586 /* NOTE: start_subfile will recognize when it's been
11587 passed a file it has already seen. So we can't
11588 assume there's a simple mapping from
11589 cu->line_header->file_names to subfiles, plus
11590 cu->line_header->file_names may contain dups. */
11591 current_subfile->symtab
11592 = allocate_symtab (cust, current_subfile->name);
11595 fe.symtab = current_subfile->symtab;
11596 tu_group->symtabs[i] = fe.symtab;
11601 restart_symtab (tu_group->compunit_symtab, "", 0);
11603 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11605 file_entry &fe = cu->line_header->file_names[i];
11607 fe.symtab = tu_group->symtabs[i];
11611 /* The main symtab is allocated last. Type units don't have DW_AT_name
11612 so they don't have a "real" (so to speak) symtab anyway.
11613 There is later code that will assign the main symtab to all symbols
11614 that don't have one. We need to handle the case of a symbol with a
11615 missing symtab (DW_AT_decl_file) anyway. */
11618 /* Process DW_TAG_type_unit.
11619 For TUs we want to skip the first top level sibling if it's not the
11620 actual type being defined by this TU. In this case the first top
11621 level sibling is there to provide context only. */
11624 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11626 struct die_info *child_die;
11628 prepare_one_comp_unit (cu, die, language_minimal);
11630 /* Initialize (or reinitialize) the machinery for building symtabs.
11631 We do this before processing child DIEs, so that the line header table
11632 is available for DW_AT_decl_file. */
11633 setup_type_unit_groups (die, cu);
11635 if (die->child != NULL)
11637 child_die = die->child;
11638 while (child_die && child_die->tag)
11640 process_die (child_die, cu);
11641 child_die = sibling_die (child_die);
11648 http://gcc.gnu.org/wiki/DebugFission
11649 http://gcc.gnu.org/wiki/DebugFissionDWP
11651 To simplify handling of both DWO files ("object" files with the DWARF info)
11652 and DWP files (a file with the DWOs packaged up into one file), we treat
11653 DWP files as having a collection of virtual DWO files. */
11656 hash_dwo_file (const void *item)
11658 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11661 hash = htab_hash_string (dwo_file->dwo_name);
11662 if (dwo_file->comp_dir != NULL)
11663 hash += htab_hash_string (dwo_file->comp_dir);
11668 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11670 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11671 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11673 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11675 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11676 return lhs->comp_dir == rhs->comp_dir;
11677 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11680 /* Allocate a hash table for DWO files. */
11683 allocate_dwo_file_hash_table (struct objfile *objfile)
11685 return htab_create_alloc_ex (41,
11689 &objfile->objfile_obstack,
11690 hashtab_obstack_allocate,
11691 dummy_obstack_deallocate);
11694 /* Lookup DWO file DWO_NAME. */
11697 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11698 const char *dwo_name,
11699 const char *comp_dir)
11701 struct dwo_file find_entry;
11704 if (dwarf2_per_objfile->dwo_files == NULL)
11705 dwarf2_per_objfile->dwo_files
11706 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11708 memset (&find_entry, 0, sizeof (find_entry));
11709 find_entry.dwo_name = dwo_name;
11710 find_entry.comp_dir = comp_dir;
11711 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11717 hash_dwo_unit (const void *item)
11719 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11721 /* This drops the top 32 bits of the id, but is ok for a hash. */
11722 return dwo_unit->signature;
11726 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11728 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11729 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11731 /* The signature is assumed to be unique within the DWO file.
11732 So while object file CU dwo_id's always have the value zero,
11733 that's OK, assuming each object file DWO file has only one CU,
11734 and that's the rule for now. */
11735 return lhs->signature == rhs->signature;
11738 /* Allocate a hash table for DWO CUs,TUs.
11739 There is one of these tables for each of CUs,TUs for each DWO file. */
11742 allocate_dwo_unit_table (struct objfile *objfile)
11744 /* Start out with a pretty small number.
11745 Generally DWO files contain only one CU and maybe some TUs. */
11746 return htab_create_alloc_ex (3,
11750 &objfile->objfile_obstack,
11751 hashtab_obstack_allocate,
11752 dummy_obstack_deallocate);
11755 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11757 struct create_dwo_cu_data
11759 struct dwo_file *dwo_file;
11760 struct dwo_unit dwo_unit;
11763 /* die_reader_func for create_dwo_cu. */
11766 create_dwo_cu_reader (const struct die_reader_specs *reader,
11767 const gdb_byte *info_ptr,
11768 struct die_info *comp_unit_die,
11772 struct dwarf2_cu *cu = reader->cu;
11773 sect_offset sect_off = cu->per_cu->sect_off;
11774 struct dwarf2_section_info *section = cu->per_cu->section;
11775 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11776 struct dwo_file *dwo_file = data->dwo_file;
11777 struct dwo_unit *dwo_unit = &data->dwo_unit;
11778 struct attribute *attr;
11780 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11783 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11784 " its dwo_id [in module %s]"),
11785 sect_offset_str (sect_off), dwo_file->dwo_name);
11789 dwo_unit->dwo_file = dwo_file;
11790 dwo_unit->signature = DW_UNSND (attr);
11791 dwo_unit->section = section;
11792 dwo_unit->sect_off = sect_off;
11793 dwo_unit->length = cu->per_cu->length;
11795 if (dwarf_read_debug)
11796 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11797 sect_offset_str (sect_off),
11798 hex_string (dwo_unit->signature));
11801 /* Create the dwo_units for the CUs in a DWO_FILE.
11802 Note: This function processes DWO files only, not DWP files. */
11805 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11806 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11809 struct objfile *objfile = dwarf2_per_objfile->objfile;
11810 const gdb_byte *info_ptr, *end_ptr;
11812 dwarf2_read_section (objfile, §ion);
11813 info_ptr = section.buffer;
11815 if (info_ptr == NULL)
11818 if (dwarf_read_debug)
11820 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11821 get_section_name (§ion),
11822 get_section_file_name (§ion));
11825 end_ptr = info_ptr + section.size;
11826 while (info_ptr < end_ptr)
11828 struct dwarf2_per_cu_data per_cu;
11829 struct create_dwo_cu_data create_dwo_cu_data;
11830 struct dwo_unit *dwo_unit;
11832 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11834 memset (&create_dwo_cu_data.dwo_unit, 0,
11835 sizeof (create_dwo_cu_data.dwo_unit));
11836 memset (&per_cu, 0, sizeof (per_cu));
11837 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11838 per_cu.is_debug_types = 0;
11839 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11840 per_cu.section = §ion;
11841 create_dwo_cu_data.dwo_file = &dwo_file;
11843 init_cutu_and_read_dies_no_follow (
11844 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11845 info_ptr += per_cu.length;
11847 // If the unit could not be parsed, skip it.
11848 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11851 if (cus_htab == NULL)
11852 cus_htab = allocate_dwo_unit_table (objfile);
11854 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11855 *dwo_unit = create_dwo_cu_data.dwo_unit;
11856 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11857 gdb_assert (slot != NULL);
11860 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11861 sect_offset dup_sect_off = dup_cu->sect_off;
11863 complaint (_("debug cu entry at offset %s is duplicate to"
11864 " the entry at offset %s, signature %s"),
11865 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11866 hex_string (dwo_unit->signature));
11868 *slot = (void *)dwo_unit;
11872 /* DWP file .debug_{cu,tu}_index section format:
11873 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11877 Both index sections have the same format, and serve to map a 64-bit
11878 signature to a set of section numbers. Each section begins with a header,
11879 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11880 indexes, and a pool of 32-bit section numbers. The index sections will be
11881 aligned at 8-byte boundaries in the file.
11883 The index section header consists of:
11885 V, 32 bit version number
11887 N, 32 bit number of compilation units or type units in the index
11888 M, 32 bit number of slots in the hash table
11890 Numbers are recorded using the byte order of the application binary.
11892 The hash table begins at offset 16 in the section, and consists of an array
11893 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11894 order of the application binary). Unused slots in the hash table are 0.
11895 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11897 The parallel table begins immediately after the hash table
11898 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11899 array of 32-bit indexes (using the byte order of the application binary),
11900 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11901 table contains a 32-bit index into the pool of section numbers. For unused
11902 hash table slots, the corresponding entry in the parallel table will be 0.
11904 The pool of section numbers begins immediately following the hash table
11905 (at offset 16 + 12 * M from the beginning of the section). The pool of
11906 section numbers consists of an array of 32-bit words (using the byte order
11907 of the application binary). Each item in the array is indexed starting
11908 from 0. The hash table entry provides the index of the first section
11909 number in the set. Additional section numbers in the set follow, and the
11910 set is terminated by a 0 entry (section number 0 is not used in ELF).
11912 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11913 section must be the first entry in the set, and the .debug_abbrev.dwo must
11914 be the second entry. Other members of the set may follow in any order.
11920 DWP Version 2 combines all the .debug_info, etc. sections into one,
11921 and the entries in the index tables are now offsets into these sections.
11922 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11925 Index Section Contents:
11927 Hash Table of Signatures dwp_hash_table.hash_table
11928 Parallel Table of Indices dwp_hash_table.unit_table
11929 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11930 Table of Section Sizes dwp_hash_table.v2.sizes
11932 The index section header consists of:
11934 V, 32 bit version number
11935 L, 32 bit number of columns in the table of section offsets
11936 N, 32 bit number of compilation units or type units in the index
11937 M, 32 bit number of slots in the hash table
11939 Numbers are recorded using the byte order of the application binary.
11941 The hash table has the same format as version 1.
11942 The parallel table of indices has the same format as version 1,
11943 except that the entries are origin-1 indices into the table of sections
11944 offsets and the table of section sizes.
11946 The table of offsets begins immediately following the parallel table
11947 (at offset 16 + 12 * M from the beginning of the section). The table is
11948 a two-dimensional array of 32-bit words (using the byte order of the
11949 application binary), with L columns and N+1 rows, in row-major order.
11950 Each row in the array is indexed starting from 0. The first row provides
11951 a key to the remaining rows: each column in this row provides an identifier
11952 for a debug section, and the offsets in the same column of subsequent rows
11953 refer to that section. The section identifiers are:
11955 DW_SECT_INFO 1 .debug_info.dwo
11956 DW_SECT_TYPES 2 .debug_types.dwo
11957 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11958 DW_SECT_LINE 4 .debug_line.dwo
11959 DW_SECT_LOC 5 .debug_loc.dwo
11960 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11961 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11962 DW_SECT_MACRO 8 .debug_macro.dwo
11964 The offsets provided by the CU and TU index sections are the base offsets
11965 for the contributions made by each CU or TU to the corresponding section
11966 in the package file. Each CU and TU header contains an abbrev_offset
11967 field, used to find the abbreviations table for that CU or TU within the
11968 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11969 be interpreted as relative to the base offset given in the index section.
11970 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11971 should be interpreted as relative to the base offset for .debug_line.dwo,
11972 and offsets into other debug sections obtained from DWARF attributes should
11973 also be interpreted as relative to the corresponding base offset.
11975 The table of sizes begins immediately following the table of offsets.
11976 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11977 with L columns and N rows, in row-major order. Each row in the array is
11978 indexed starting from 1 (row 0 is shared by the two tables).
11982 Hash table lookup is handled the same in version 1 and 2:
11984 We assume that N and M will not exceed 2^32 - 1.
11985 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11987 Given a 64-bit compilation unit signature or a type signature S, an entry
11988 in the hash table is located as follows:
11990 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11991 the low-order k bits all set to 1.
11993 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11995 3) If the hash table entry at index H matches the signature, use that
11996 entry. If the hash table entry at index H is unused (all zeroes),
11997 terminate the search: the signature is not present in the table.
11999 4) Let H = (H + H') modulo M. Repeat at Step 3.
12001 Because M > N and H' and M are relatively prime, the search is guaranteed
12002 to stop at an unused slot or find the match. */
12004 /* Create a hash table to map DWO IDs to their CU/TU entry in
12005 .debug_{info,types}.dwo in DWP_FILE.
12006 Returns NULL if there isn't one.
12007 Note: This function processes DWP files only, not DWO files. */
12009 static struct dwp_hash_table *
12010 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12011 struct dwp_file *dwp_file, int is_debug_types)
12013 struct objfile *objfile = dwarf2_per_objfile->objfile;
12014 bfd *dbfd = dwp_file->dbfd.get ();
12015 const gdb_byte *index_ptr, *index_end;
12016 struct dwarf2_section_info *index;
12017 uint32_t version, nr_columns, nr_units, nr_slots;
12018 struct dwp_hash_table *htab;
12020 if (is_debug_types)
12021 index = &dwp_file->sections.tu_index;
12023 index = &dwp_file->sections.cu_index;
12025 if (dwarf2_section_empty_p (index))
12027 dwarf2_read_section (objfile, index);
12029 index_ptr = index->buffer;
12030 index_end = index_ptr + index->size;
12032 version = read_4_bytes (dbfd, index_ptr);
12035 nr_columns = read_4_bytes (dbfd, index_ptr);
12039 nr_units = read_4_bytes (dbfd, index_ptr);
12041 nr_slots = read_4_bytes (dbfd, index_ptr);
12044 if (version != 1 && version != 2)
12046 error (_("Dwarf Error: unsupported DWP file version (%s)"
12047 " [in module %s]"),
12048 pulongest (version), dwp_file->name);
12050 if (nr_slots != (nr_slots & -nr_slots))
12052 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12053 " is not power of 2 [in module %s]"),
12054 pulongest (nr_slots), dwp_file->name);
12057 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12058 htab->version = version;
12059 htab->nr_columns = nr_columns;
12060 htab->nr_units = nr_units;
12061 htab->nr_slots = nr_slots;
12062 htab->hash_table = index_ptr;
12063 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12065 /* Exit early if the table is empty. */
12066 if (nr_slots == 0 || nr_units == 0
12067 || (version == 2 && nr_columns == 0))
12069 /* All must be zero. */
12070 if (nr_slots != 0 || nr_units != 0
12071 || (version == 2 && nr_columns != 0))
12073 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12074 " all zero [in modules %s]"),
12082 htab->section_pool.v1.indices =
12083 htab->unit_table + sizeof (uint32_t) * nr_slots;
12084 /* It's harder to decide whether the section is too small in v1.
12085 V1 is deprecated anyway so we punt. */
12089 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12090 int *ids = htab->section_pool.v2.section_ids;
12091 /* Reverse map for error checking. */
12092 int ids_seen[DW_SECT_MAX + 1];
12095 if (nr_columns < 2)
12097 error (_("Dwarf Error: bad DWP hash table, too few columns"
12098 " in section table [in module %s]"),
12101 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12103 error (_("Dwarf Error: bad DWP hash table, too many columns"
12104 " in section table [in module %s]"),
12107 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12108 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12109 for (i = 0; i < nr_columns; ++i)
12111 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12113 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12115 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12116 " in section table [in module %s]"),
12117 id, dwp_file->name);
12119 if (ids_seen[id] != -1)
12121 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12122 " id %d in section table [in module %s]"),
12123 id, dwp_file->name);
12128 /* Must have exactly one info or types section. */
12129 if (((ids_seen[DW_SECT_INFO] != -1)
12130 + (ids_seen[DW_SECT_TYPES] != -1))
12133 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12134 " DWO info/types section [in module %s]"),
12137 /* Must have an abbrev section. */
12138 if (ids_seen[DW_SECT_ABBREV] == -1)
12140 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12141 " section [in module %s]"),
12144 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12145 htab->section_pool.v2.sizes =
12146 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12147 * nr_units * nr_columns);
12148 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12149 * nr_units * nr_columns))
12152 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12153 " [in module %s]"),
12161 /* Update SECTIONS with the data from SECTP.
12163 This function is like the other "locate" section routines that are
12164 passed to bfd_map_over_sections, but in this context the sections to
12165 read comes from the DWP V1 hash table, not the full ELF section table.
12167 The result is non-zero for success, or zero if an error was found. */
12170 locate_v1_virtual_dwo_sections (asection *sectp,
12171 struct virtual_v1_dwo_sections *sections)
12173 const struct dwop_section_names *names = &dwop_section_names;
12175 if (section_is_p (sectp->name, &names->abbrev_dwo))
12177 /* There can be only one. */
12178 if (sections->abbrev.s.section != NULL)
12180 sections->abbrev.s.section = sectp;
12181 sections->abbrev.size = bfd_get_section_size (sectp);
12183 else if (section_is_p (sectp->name, &names->info_dwo)
12184 || section_is_p (sectp->name, &names->types_dwo))
12186 /* There can be only one. */
12187 if (sections->info_or_types.s.section != NULL)
12189 sections->info_or_types.s.section = sectp;
12190 sections->info_or_types.size = bfd_get_section_size (sectp);
12192 else if (section_is_p (sectp->name, &names->line_dwo))
12194 /* There can be only one. */
12195 if (sections->line.s.section != NULL)
12197 sections->line.s.section = sectp;
12198 sections->line.size = bfd_get_section_size (sectp);
12200 else if (section_is_p (sectp->name, &names->loc_dwo))
12202 /* There can be only one. */
12203 if (sections->loc.s.section != NULL)
12205 sections->loc.s.section = sectp;
12206 sections->loc.size = bfd_get_section_size (sectp);
12208 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12210 /* There can be only one. */
12211 if (sections->macinfo.s.section != NULL)
12213 sections->macinfo.s.section = sectp;
12214 sections->macinfo.size = bfd_get_section_size (sectp);
12216 else if (section_is_p (sectp->name, &names->macro_dwo))
12218 /* There can be only one. */
12219 if (sections->macro.s.section != NULL)
12221 sections->macro.s.section = sectp;
12222 sections->macro.size = bfd_get_section_size (sectp);
12224 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12226 /* There can be only one. */
12227 if (sections->str_offsets.s.section != NULL)
12229 sections->str_offsets.s.section = sectp;
12230 sections->str_offsets.size = bfd_get_section_size (sectp);
12234 /* No other kind of section is valid. */
12241 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12242 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12243 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12244 This is for DWP version 1 files. */
12246 static struct dwo_unit *
12247 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12248 struct dwp_file *dwp_file,
12249 uint32_t unit_index,
12250 const char *comp_dir,
12251 ULONGEST signature, int is_debug_types)
12253 struct objfile *objfile = dwarf2_per_objfile->objfile;
12254 const struct dwp_hash_table *dwp_htab =
12255 is_debug_types ? dwp_file->tus : dwp_file->cus;
12256 bfd *dbfd = dwp_file->dbfd.get ();
12257 const char *kind = is_debug_types ? "TU" : "CU";
12258 struct dwo_file *dwo_file;
12259 struct dwo_unit *dwo_unit;
12260 struct virtual_v1_dwo_sections sections;
12261 void **dwo_file_slot;
12264 gdb_assert (dwp_file->version == 1);
12266 if (dwarf_read_debug)
12268 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12270 pulongest (unit_index), hex_string (signature),
12274 /* Fetch the sections of this DWO unit.
12275 Put a limit on the number of sections we look for so that bad data
12276 doesn't cause us to loop forever. */
12278 #define MAX_NR_V1_DWO_SECTIONS \
12279 (1 /* .debug_info or .debug_types */ \
12280 + 1 /* .debug_abbrev */ \
12281 + 1 /* .debug_line */ \
12282 + 1 /* .debug_loc */ \
12283 + 1 /* .debug_str_offsets */ \
12284 + 1 /* .debug_macro or .debug_macinfo */ \
12285 + 1 /* trailing zero */)
12287 memset (§ions, 0, sizeof (sections));
12289 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12292 uint32_t section_nr =
12293 read_4_bytes (dbfd,
12294 dwp_htab->section_pool.v1.indices
12295 + (unit_index + i) * sizeof (uint32_t));
12297 if (section_nr == 0)
12299 if (section_nr >= dwp_file->num_sections)
12301 error (_("Dwarf Error: bad DWP hash table, section number too large"
12302 " [in module %s]"),
12306 sectp = dwp_file->elf_sections[section_nr];
12307 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12309 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12310 " [in module %s]"),
12316 || dwarf2_section_empty_p (§ions.info_or_types)
12317 || dwarf2_section_empty_p (§ions.abbrev))
12319 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12320 " [in module %s]"),
12323 if (i == MAX_NR_V1_DWO_SECTIONS)
12325 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12326 " [in module %s]"),
12330 /* It's easier for the rest of the code if we fake a struct dwo_file and
12331 have dwo_unit "live" in that. At least for now.
12333 The DWP file can be made up of a random collection of CUs and TUs.
12334 However, for each CU + set of TUs that came from the same original DWO
12335 file, we can combine them back into a virtual DWO file to save space
12336 (fewer struct dwo_file objects to allocate). Remember that for really
12337 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12339 std::string virtual_dwo_name =
12340 string_printf ("virtual-dwo/%d-%d-%d-%d",
12341 get_section_id (§ions.abbrev),
12342 get_section_id (§ions.line),
12343 get_section_id (§ions.loc),
12344 get_section_id (§ions.str_offsets));
12345 /* Can we use an existing virtual DWO file? */
12346 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12347 virtual_dwo_name.c_str (),
12349 /* Create one if necessary. */
12350 if (*dwo_file_slot == NULL)
12352 if (dwarf_read_debug)
12354 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12355 virtual_dwo_name.c_str ());
12357 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12359 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12360 virtual_dwo_name.c_str (),
12361 virtual_dwo_name.size ());
12362 dwo_file->comp_dir = comp_dir;
12363 dwo_file->sections.abbrev = sections.abbrev;
12364 dwo_file->sections.line = sections.line;
12365 dwo_file->sections.loc = sections.loc;
12366 dwo_file->sections.macinfo = sections.macinfo;
12367 dwo_file->sections.macro = sections.macro;
12368 dwo_file->sections.str_offsets = sections.str_offsets;
12369 /* The "str" section is global to the entire DWP file. */
12370 dwo_file->sections.str = dwp_file->sections.str;
12371 /* The info or types section is assigned below to dwo_unit,
12372 there's no need to record it in dwo_file.
12373 Also, we can't simply record type sections in dwo_file because
12374 we record a pointer into the vector in dwo_unit. As we collect more
12375 types we'll grow the vector and eventually have to reallocate space
12376 for it, invalidating all copies of pointers into the previous
12378 *dwo_file_slot = dwo_file;
12382 if (dwarf_read_debug)
12384 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12385 virtual_dwo_name.c_str ());
12387 dwo_file = (struct dwo_file *) *dwo_file_slot;
12390 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12391 dwo_unit->dwo_file = dwo_file;
12392 dwo_unit->signature = signature;
12393 dwo_unit->section =
12394 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12395 *dwo_unit->section = sections.info_or_types;
12396 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12401 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12402 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12403 piece within that section used by a TU/CU, return a virtual section
12404 of just that piece. */
12406 static struct dwarf2_section_info
12407 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12408 struct dwarf2_section_info *section,
12409 bfd_size_type offset, bfd_size_type size)
12411 struct dwarf2_section_info result;
12414 gdb_assert (section != NULL);
12415 gdb_assert (!section->is_virtual);
12417 memset (&result, 0, sizeof (result));
12418 result.s.containing_section = section;
12419 result.is_virtual = 1;
12424 sectp = get_section_bfd_section (section);
12426 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12427 bounds of the real section. This is a pretty-rare event, so just
12428 flag an error (easier) instead of a warning and trying to cope. */
12430 || offset + size > bfd_get_section_size (sectp))
12432 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12433 " in section %s [in module %s]"),
12434 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12435 objfile_name (dwarf2_per_objfile->objfile));
12438 result.virtual_offset = offset;
12439 result.size = size;
12443 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12444 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12445 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12446 This is for DWP version 2 files. */
12448 static struct dwo_unit *
12449 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12450 struct dwp_file *dwp_file,
12451 uint32_t unit_index,
12452 const char *comp_dir,
12453 ULONGEST signature, int is_debug_types)
12455 struct objfile *objfile = dwarf2_per_objfile->objfile;
12456 const struct dwp_hash_table *dwp_htab =
12457 is_debug_types ? dwp_file->tus : dwp_file->cus;
12458 bfd *dbfd = dwp_file->dbfd.get ();
12459 const char *kind = is_debug_types ? "TU" : "CU";
12460 struct dwo_file *dwo_file;
12461 struct dwo_unit *dwo_unit;
12462 struct virtual_v2_dwo_sections sections;
12463 void **dwo_file_slot;
12466 gdb_assert (dwp_file->version == 2);
12468 if (dwarf_read_debug)
12470 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12472 pulongest (unit_index), hex_string (signature),
12476 /* Fetch the section offsets of this DWO unit. */
12478 memset (§ions, 0, sizeof (sections));
12480 for (i = 0; i < dwp_htab->nr_columns; ++i)
12482 uint32_t offset = read_4_bytes (dbfd,
12483 dwp_htab->section_pool.v2.offsets
12484 + (((unit_index - 1) * dwp_htab->nr_columns
12486 * sizeof (uint32_t)));
12487 uint32_t size = read_4_bytes (dbfd,
12488 dwp_htab->section_pool.v2.sizes
12489 + (((unit_index - 1) * dwp_htab->nr_columns
12491 * sizeof (uint32_t)));
12493 switch (dwp_htab->section_pool.v2.section_ids[i])
12496 case DW_SECT_TYPES:
12497 sections.info_or_types_offset = offset;
12498 sections.info_or_types_size = size;
12500 case DW_SECT_ABBREV:
12501 sections.abbrev_offset = offset;
12502 sections.abbrev_size = size;
12505 sections.line_offset = offset;
12506 sections.line_size = size;
12509 sections.loc_offset = offset;
12510 sections.loc_size = size;
12512 case DW_SECT_STR_OFFSETS:
12513 sections.str_offsets_offset = offset;
12514 sections.str_offsets_size = size;
12516 case DW_SECT_MACINFO:
12517 sections.macinfo_offset = offset;
12518 sections.macinfo_size = size;
12520 case DW_SECT_MACRO:
12521 sections.macro_offset = offset;
12522 sections.macro_size = size;
12527 /* It's easier for the rest of the code if we fake a struct dwo_file and
12528 have dwo_unit "live" in that. At least for now.
12530 The DWP file can be made up of a random collection of CUs and TUs.
12531 However, for each CU + set of TUs that came from the same original DWO
12532 file, we can combine them back into a virtual DWO file to save space
12533 (fewer struct dwo_file objects to allocate). Remember that for really
12534 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12536 std::string virtual_dwo_name =
12537 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12538 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12539 (long) (sections.line_size ? sections.line_offset : 0),
12540 (long) (sections.loc_size ? sections.loc_offset : 0),
12541 (long) (sections.str_offsets_size
12542 ? sections.str_offsets_offset : 0));
12543 /* Can we use an existing virtual DWO file? */
12544 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12545 virtual_dwo_name.c_str (),
12547 /* Create one if necessary. */
12548 if (*dwo_file_slot == NULL)
12550 if (dwarf_read_debug)
12552 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12553 virtual_dwo_name.c_str ());
12555 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12557 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12558 virtual_dwo_name.c_str (),
12559 virtual_dwo_name.size ());
12560 dwo_file->comp_dir = comp_dir;
12561 dwo_file->sections.abbrev =
12562 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12563 sections.abbrev_offset, sections.abbrev_size);
12564 dwo_file->sections.line =
12565 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12566 sections.line_offset, sections.line_size);
12567 dwo_file->sections.loc =
12568 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12569 sections.loc_offset, sections.loc_size);
12570 dwo_file->sections.macinfo =
12571 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12572 sections.macinfo_offset, sections.macinfo_size);
12573 dwo_file->sections.macro =
12574 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12575 sections.macro_offset, sections.macro_size);
12576 dwo_file->sections.str_offsets =
12577 create_dwp_v2_section (dwarf2_per_objfile,
12578 &dwp_file->sections.str_offsets,
12579 sections.str_offsets_offset,
12580 sections.str_offsets_size);
12581 /* The "str" section is global to the entire DWP file. */
12582 dwo_file->sections.str = dwp_file->sections.str;
12583 /* The info or types section is assigned below to dwo_unit,
12584 there's no need to record it in dwo_file.
12585 Also, we can't simply record type sections in dwo_file because
12586 we record a pointer into the vector in dwo_unit. As we collect more
12587 types we'll grow the vector and eventually have to reallocate space
12588 for it, invalidating all copies of pointers into the previous
12590 *dwo_file_slot = dwo_file;
12594 if (dwarf_read_debug)
12596 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12597 virtual_dwo_name.c_str ());
12599 dwo_file = (struct dwo_file *) *dwo_file_slot;
12602 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12603 dwo_unit->dwo_file = dwo_file;
12604 dwo_unit->signature = signature;
12605 dwo_unit->section =
12606 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12607 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12609 ? &dwp_file->sections.types
12610 : &dwp_file->sections.info,
12611 sections.info_or_types_offset,
12612 sections.info_or_types_size);
12613 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12618 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12619 Returns NULL if the signature isn't found. */
12621 static struct dwo_unit *
12622 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12623 struct dwp_file *dwp_file, const char *comp_dir,
12624 ULONGEST signature, int is_debug_types)
12626 const struct dwp_hash_table *dwp_htab =
12627 is_debug_types ? dwp_file->tus : dwp_file->cus;
12628 bfd *dbfd = dwp_file->dbfd.get ();
12629 uint32_t mask = dwp_htab->nr_slots - 1;
12630 uint32_t hash = signature & mask;
12631 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12634 struct dwo_unit find_dwo_cu;
12636 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12637 find_dwo_cu.signature = signature;
12638 slot = htab_find_slot (is_debug_types
12639 ? dwp_file->loaded_tus
12640 : dwp_file->loaded_cus,
12641 &find_dwo_cu, INSERT);
12644 return (struct dwo_unit *) *slot;
12646 /* Use a for loop so that we don't loop forever on bad debug info. */
12647 for (i = 0; i < dwp_htab->nr_slots; ++i)
12649 ULONGEST signature_in_table;
12651 signature_in_table =
12652 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12653 if (signature_in_table == signature)
12655 uint32_t unit_index =
12656 read_4_bytes (dbfd,
12657 dwp_htab->unit_table + hash * sizeof (uint32_t));
12659 if (dwp_file->version == 1)
12661 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12662 dwp_file, unit_index,
12663 comp_dir, signature,
12668 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12669 dwp_file, unit_index,
12670 comp_dir, signature,
12673 return (struct dwo_unit *) *slot;
12675 if (signature_in_table == 0)
12677 hash = (hash + hash2) & mask;
12680 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12681 " [in module %s]"),
12685 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12686 Open the file specified by FILE_NAME and hand it off to BFD for
12687 preliminary analysis. Return a newly initialized bfd *, which
12688 includes a canonicalized copy of FILE_NAME.
12689 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12690 SEARCH_CWD is true if the current directory is to be searched.
12691 It will be searched before debug-file-directory.
12692 If successful, the file is added to the bfd include table of the
12693 objfile's bfd (see gdb_bfd_record_inclusion).
12694 If unable to find/open the file, return NULL.
12695 NOTE: This function is derived from symfile_bfd_open. */
12697 static gdb_bfd_ref_ptr
12698 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12699 const char *file_name, int is_dwp, int search_cwd)
12702 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12703 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12704 to debug_file_directory. */
12705 const char *search_path;
12706 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12708 gdb::unique_xmalloc_ptr<char> search_path_holder;
12711 if (*debug_file_directory != '\0')
12713 search_path_holder.reset (concat (".", dirname_separator_string,
12714 debug_file_directory,
12716 search_path = search_path_holder.get ();
12722 search_path = debug_file_directory;
12724 openp_flags flags = OPF_RETURN_REALPATH;
12726 flags |= OPF_SEARCH_IN_PATH;
12728 gdb::unique_xmalloc_ptr<char> absolute_name;
12729 desc = openp (search_path, flags, file_name,
12730 O_RDONLY | O_BINARY, &absolute_name);
12734 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12736 if (sym_bfd == NULL)
12738 bfd_set_cacheable (sym_bfd.get (), 1);
12740 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12743 /* Success. Record the bfd as having been included by the objfile's bfd.
12744 This is important because things like demangled_names_hash lives in the
12745 objfile's per_bfd space and may have references to things like symbol
12746 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12747 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12752 /* Try to open DWO file FILE_NAME.
12753 COMP_DIR is the DW_AT_comp_dir attribute.
12754 The result is the bfd handle of the file.
12755 If there is a problem finding or opening the file, return NULL.
12756 Upon success, the canonicalized path of the file is stored in the bfd,
12757 same as symfile_bfd_open. */
12759 static gdb_bfd_ref_ptr
12760 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12761 const char *file_name, const char *comp_dir)
12763 if (IS_ABSOLUTE_PATH (file_name))
12764 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12765 0 /*is_dwp*/, 0 /*search_cwd*/);
12767 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12769 if (comp_dir != NULL)
12771 char *path_to_try = concat (comp_dir, SLASH_STRING,
12772 file_name, (char *) NULL);
12774 /* NOTE: If comp_dir is a relative path, this will also try the
12775 search path, which seems useful. */
12776 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12779 1 /*search_cwd*/));
12780 xfree (path_to_try);
12785 /* That didn't work, try debug-file-directory, which, despite its name,
12786 is a list of paths. */
12788 if (*debug_file_directory == '\0')
12791 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12792 0 /*is_dwp*/, 1 /*search_cwd*/);
12795 /* This function is mapped across the sections and remembers the offset and
12796 size of each of the DWO debugging sections we are interested in. */
12799 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12801 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12802 const struct dwop_section_names *names = &dwop_section_names;
12804 if (section_is_p (sectp->name, &names->abbrev_dwo))
12806 dwo_sections->abbrev.s.section = sectp;
12807 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12809 else if (section_is_p (sectp->name, &names->info_dwo))
12811 dwo_sections->info.s.section = sectp;
12812 dwo_sections->info.size = bfd_get_section_size (sectp);
12814 else if (section_is_p (sectp->name, &names->line_dwo))
12816 dwo_sections->line.s.section = sectp;
12817 dwo_sections->line.size = bfd_get_section_size (sectp);
12819 else if (section_is_p (sectp->name, &names->loc_dwo))
12821 dwo_sections->loc.s.section = sectp;
12822 dwo_sections->loc.size = bfd_get_section_size (sectp);
12824 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12826 dwo_sections->macinfo.s.section = sectp;
12827 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12829 else if (section_is_p (sectp->name, &names->macro_dwo))
12831 dwo_sections->macro.s.section = sectp;
12832 dwo_sections->macro.size = bfd_get_section_size (sectp);
12834 else if (section_is_p (sectp->name, &names->str_dwo))
12836 dwo_sections->str.s.section = sectp;
12837 dwo_sections->str.size = bfd_get_section_size (sectp);
12839 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12841 dwo_sections->str_offsets.s.section = sectp;
12842 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12844 else if (section_is_p (sectp->name, &names->types_dwo))
12846 struct dwarf2_section_info type_section;
12848 memset (&type_section, 0, sizeof (type_section));
12849 type_section.s.section = sectp;
12850 type_section.size = bfd_get_section_size (sectp);
12851 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12856 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12857 by PER_CU. This is for the non-DWP case.
12858 The result is NULL if DWO_NAME can't be found. */
12860 static struct dwo_file *
12861 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12862 const char *dwo_name, const char *comp_dir)
12864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12865 struct objfile *objfile = dwarf2_per_objfile->objfile;
12867 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12870 if (dwarf_read_debug)
12871 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12875 /* We use a unique pointer here, despite the obstack allocation,
12876 because a dwo_file needs some cleanup if it is abandoned. */
12877 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12879 dwo_file->dwo_name = dwo_name;
12880 dwo_file->comp_dir = comp_dir;
12881 dwo_file->dbfd = dbfd.release ();
12883 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12884 &dwo_file->sections);
12886 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12889 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12890 dwo_file->sections.types, dwo_file->tus);
12892 if (dwarf_read_debug)
12893 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12895 return dwo_file.release ();
12898 /* This function is mapped across the sections and remembers the offset and
12899 size of each of the DWP debugging sections common to version 1 and 2 that
12900 we are interested in. */
12903 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12904 void *dwp_file_ptr)
12906 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12907 const struct dwop_section_names *names = &dwop_section_names;
12908 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12910 /* Record the ELF section number for later lookup: this is what the
12911 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12912 gdb_assert (elf_section_nr < dwp_file->num_sections);
12913 dwp_file->elf_sections[elf_section_nr] = sectp;
12915 /* Look for specific sections that we need. */
12916 if (section_is_p (sectp->name, &names->str_dwo))
12918 dwp_file->sections.str.s.section = sectp;
12919 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12921 else if (section_is_p (sectp->name, &names->cu_index))
12923 dwp_file->sections.cu_index.s.section = sectp;
12924 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12926 else if (section_is_p (sectp->name, &names->tu_index))
12928 dwp_file->sections.tu_index.s.section = sectp;
12929 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12933 /* This function is mapped across the sections and remembers the offset and
12934 size of each of the DWP version 2 debugging sections that we are interested
12935 in. This is split into a separate function because we don't know if we
12936 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12939 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12941 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12942 const struct dwop_section_names *names = &dwop_section_names;
12943 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12945 /* Record the ELF section number for later lookup: this is what the
12946 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12947 gdb_assert (elf_section_nr < dwp_file->num_sections);
12948 dwp_file->elf_sections[elf_section_nr] = sectp;
12950 /* Look for specific sections that we need. */
12951 if (section_is_p (sectp->name, &names->abbrev_dwo))
12953 dwp_file->sections.abbrev.s.section = sectp;
12954 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12956 else if (section_is_p (sectp->name, &names->info_dwo))
12958 dwp_file->sections.info.s.section = sectp;
12959 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12961 else if (section_is_p (sectp->name, &names->line_dwo))
12963 dwp_file->sections.line.s.section = sectp;
12964 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12966 else if (section_is_p (sectp->name, &names->loc_dwo))
12968 dwp_file->sections.loc.s.section = sectp;
12969 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12971 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12973 dwp_file->sections.macinfo.s.section = sectp;
12974 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12976 else if (section_is_p (sectp->name, &names->macro_dwo))
12978 dwp_file->sections.macro.s.section = sectp;
12979 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12981 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12983 dwp_file->sections.str_offsets.s.section = sectp;
12984 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12986 else if (section_is_p (sectp->name, &names->types_dwo))
12988 dwp_file->sections.types.s.section = sectp;
12989 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12993 /* Hash function for dwp_file loaded CUs/TUs. */
12996 hash_dwp_loaded_cutus (const void *item)
12998 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13000 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13001 return dwo_unit->signature;
13004 /* Equality function for dwp_file loaded CUs/TUs. */
13007 eq_dwp_loaded_cutus (const void *a, const void *b)
13009 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13010 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13012 return dua->signature == dub->signature;
13015 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13018 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13020 return htab_create_alloc_ex (3,
13021 hash_dwp_loaded_cutus,
13022 eq_dwp_loaded_cutus,
13024 &objfile->objfile_obstack,
13025 hashtab_obstack_allocate,
13026 dummy_obstack_deallocate);
13029 /* Try to open DWP file FILE_NAME.
13030 The result is the bfd handle of the file.
13031 If there is a problem finding or opening the file, return NULL.
13032 Upon success, the canonicalized path of the file is stored in the bfd,
13033 same as symfile_bfd_open. */
13035 static gdb_bfd_ref_ptr
13036 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13037 const char *file_name)
13039 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13041 1 /*search_cwd*/));
13045 /* Work around upstream bug 15652.
13046 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13047 [Whether that's a "bug" is debatable, but it is getting in our way.]
13048 We have no real idea where the dwp file is, because gdb's realpath-ing
13049 of the executable's path may have discarded the needed info.
13050 [IWBN if the dwp file name was recorded in the executable, akin to
13051 .gnu_debuglink, but that doesn't exist yet.]
13052 Strip the directory from FILE_NAME and search again. */
13053 if (*debug_file_directory != '\0')
13055 /* Don't implicitly search the current directory here.
13056 If the user wants to search "." to handle this case,
13057 it must be added to debug-file-directory. */
13058 return try_open_dwop_file (dwarf2_per_objfile,
13059 lbasename (file_name), 1 /*is_dwp*/,
13066 /* Initialize the use of the DWP file for the current objfile.
13067 By convention the name of the DWP file is ${objfile}.dwp.
13068 The result is NULL if it can't be found. */
13070 static std::unique_ptr<struct dwp_file>
13071 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13073 struct objfile *objfile = dwarf2_per_objfile->objfile;
13075 /* Try to find first .dwp for the binary file before any symbolic links
13078 /* If the objfile is a debug file, find the name of the real binary
13079 file and get the name of dwp file from there. */
13080 std::string dwp_name;
13081 if (objfile->separate_debug_objfile_backlink != NULL)
13083 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13084 const char *backlink_basename = lbasename (backlink->original_name);
13086 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13089 dwp_name = objfile->original_name;
13091 dwp_name += ".dwp";
13093 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13095 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13097 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13098 dwp_name = objfile_name (objfile);
13099 dwp_name += ".dwp";
13100 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13105 if (dwarf_read_debug)
13106 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13107 return std::unique_ptr<dwp_file> ();
13110 const char *name = bfd_get_filename (dbfd.get ());
13111 std::unique_ptr<struct dwp_file> dwp_file
13112 (new struct dwp_file (name, std::move (dbfd)));
13114 /* +1: section 0 is unused */
13115 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13116 dwp_file->elf_sections =
13117 OBSTACK_CALLOC (&objfile->objfile_obstack,
13118 dwp_file->num_sections, asection *);
13120 bfd_map_over_sections (dwp_file->dbfd.get (),
13121 dwarf2_locate_common_dwp_sections,
13124 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13127 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13130 /* The DWP file version is stored in the hash table. Oh well. */
13131 if (dwp_file->cus && dwp_file->tus
13132 && dwp_file->cus->version != dwp_file->tus->version)
13134 /* Technically speaking, we should try to limp along, but this is
13135 pretty bizarre. We use pulongest here because that's the established
13136 portability solution (e.g, we cannot use %u for uint32_t). */
13137 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13138 " TU version %s [in DWP file %s]"),
13139 pulongest (dwp_file->cus->version),
13140 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13144 dwp_file->version = dwp_file->cus->version;
13145 else if (dwp_file->tus)
13146 dwp_file->version = dwp_file->tus->version;
13148 dwp_file->version = 2;
13150 if (dwp_file->version == 2)
13151 bfd_map_over_sections (dwp_file->dbfd.get (),
13152 dwarf2_locate_v2_dwp_sections,
13155 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13156 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13158 if (dwarf_read_debug)
13160 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13161 fprintf_unfiltered (gdb_stdlog,
13162 " %s CUs, %s TUs\n",
13163 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13164 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13170 /* Wrapper around open_and_init_dwp_file, only open it once. */
13172 static struct dwp_file *
13173 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13175 if (! dwarf2_per_objfile->dwp_checked)
13177 dwarf2_per_objfile->dwp_file
13178 = open_and_init_dwp_file (dwarf2_per_objfile);
13179 dwarf2_per_objfile->dwp_checked = 1;
13181 return dwarf2_per_objfile->dwp_file.get ();
13184 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13185 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13186 or in the DWP file for the objfile, referenced by THIS_UNIT.
13187 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13188 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13190 This is called, for example, when wanting to read a variable with a
13191 complex location. Therefore we don't want to do file i/o for every call.
13192 Therefore we don't want to look for a DWO file on every call.
13193 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13194 then we check if we've already seen DWO_NAME, and only THEN do we check
13197 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13198 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13200 static struct dwo_unit *
13201 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13202 const char *dwo_name, const char *comp_dir,
13203 ULONGEST signature, int is_debug_types)
13205 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13206 struct objfile *objfile = dwarf2_per_objfile->objfile;
13207 const char *kind = is_debug_types ? "TU" : "CU";
13208 void **dwo_file_slot;
13209 struct dwo_file *dwo_file;
13210 struct dwp_file *dwp_file;
13212 /* First see if there's a DWP file.
13213 If we have a DWP file but didn't find the DWO inside it, don't
13214 look for the original DWO file. It makes gdb behave differently
13215 depending on whether one is debugging in the build tree. */
13217 dwp_file = get_dwp_file (dwarf2_per_objfile);
13218 if (dwp_file != NULL)
13220 const struct dwp_hash_table *dwp_htab =
13221 is_debug_types ? dwp_file->tus : dwp_file->cus;
13223 if (dwp_htab != NULL)
13225 struct dwo_unit *dwo_cutu =
13226 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13227 signature, is_debug_types);
13229 if (dwo_cutu != NULL)
13231 if (dwarf_read_debug)
13233 fprintf_unfiltered (gdb_stdlog,
13234 "Virtual DWO %s %s found: @%s\n",
13235 kind, hex_string (signature),
13236 host_address_to_string (dwo_cutu));
13244 /* No DWP file, look for the DWO file. */
13246 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13247 dwo_name, comp_dir);
13248 if (*dwo_file_slot == NULL)
13250 /* Read in the file and build a table of the CUs/TUs it contains. */
13251 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13253 /* NOTE: This will be NULL if unable to open the file. */
13254 dwo_file = (struct dwo_file *) *dwo_file_slot;
13256 if (dwo_file != NULL)
13258 struct dwo_unit *dwo_cutu = NULL;
13260 if (is_debug_types && dwo_file->tus)
13262 struct dwo_unit find_dwo_cutu;
13264 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13265 find_dwo_cutu.signature = signature;
13267 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13269 else if (!is_debug_types && dwo_file->cus)
13271 struct dwo_unit find_dwo_cutu;
13273 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13274 find_dwo_cutu.signature = signature;
13275 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13279 if (dwo_cutu != NULL)
13281 if (dwarf_read_debug)
13283 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13284 kind, dwo_name, hex_string (signature),
13285 host_address_to_string (dwo_cutu));
13292 /* We didn't find it. This could mean a dwo_id mismatch, or
13293 someone deleted the DWO/DWP file, or the search path isn't set up
13294 correctly to find the file. */
13296 if (dwarf_read_debug)
13298 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13299 kind, dwo_name, hex_string (signature));
13302 /* This is a warning and not a complaint because it can be caused by
13303 pilot error (e.g., user accidentally deleting the DWO). */
13305 /* Print the name of the DWP file if we looked there, helps the user
13306 better diagnose the problem. */
13307 std::string dwp_text;
13309 if (dwp_file != NULL)
13310 dwp_text = string_printf (" [in DWP file %s]",
13311 lbasename (dwp_file->name));
13313 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13314 " [in module %s]"),
13315 kind, dwo_name, hex_string (signature),
13317 this_unit->is_debug_types ? "TU" : "CU",
13318 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13323 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13324 See lookup_dwo_cutu_unit for details. */
13326 static struct dwo_unit *
13327 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13328 const char *dwo_name, const char *comp_dir,
13329 ULONGEST signature)
13331 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13334 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13335 See lookup_dwo_cutu_unit for details. */
13337 static struct dwo_unit *
13338 lookup_dwo_type_unit (struct signatured_type *this_tu,
13339 const char *dwo_name, const char *comp_dir)
13341 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13344 /* Traversal function for queue_and_load_all_dwo_tus. */
13347 queue_and_load_dwo_tu (void **slot, void *info)
13349 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13350 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13351 ULONGEST signature = dwo_unit->signature;
13352 struct signatured_type *sig_type =
13353 lookup_dwo_signatured_type (per_cu->cu, signature);
13355 if (sig_type != NULL)
13357 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13359 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13360 a real dependency of PER_CU on SIG_TYPE. That is detected later
13361 while processing PER_CU. */
13362 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13363 load_full_type_unit (sig_cu);
13364 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13370 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13371 The DWO may have the only definition of the type, though it may not be
13372 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13373 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13376 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13378 struct dwo_unit *dwo_unit;
13379 struct dwo_file *dwo_file;
13381 gdb_assert (!per_cu->is_debug_types);
13382 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13383 gdb_assert (per_cu->cu != NULL);
13385 dwo_unit = per_cu->cu->dwo_unit;
13386 gdb_assert (dwo_unit != NULL);
13388 dwo_file = dwo_unit->dwo_file;
13389 if (dwo_file->tus != NULL)
13390 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13393 /* Free all resources associated with DWO_FILE.
13394 Close the DWO file and munmap the sections. */
13397 free_dwo_file (struct dwo_file *dwo_file)
13399 /* Note: dbfd is NULL for virtual DWO files. */
13400 gdb_bfd_unref (dwo_file->dbfd);
13402 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13405 /* Traversal function for free_dwo_files. */
13408 free_dwo_file_from_slot (void **slot, void *info)
13410 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13412 free_dwo_file (dwo_file);
13417 /* Free all resources associated with DWO_FILES. */
13420 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13422 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13425 /* Read in various DIEs. */
13427 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13428 Inherit only the children of the DW_AT_abstract_origin DIE not being
13429 already referenced by DW_AT_abstract_origin from the children of the
13433 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13435 struct die_info *child_die;
13436 sect_offset *offsetp;
13437 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13438 struct die_info *origin_die;
13439 /* Iterator of the ORIGIN_DIE children. */
13440 struct die_info *origin_child_die;
13441 struct attribute *attr;
13442 struct dwarf2_cu *origin_cu;
13443 struct pending **origin_previous_list_in_scope;
13445 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13449 /* Note that following die references may follow to a die in a
13453 origin_die = follow_die_ref (die, attr, &origin_cu);
13455 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13457 origin_previous_list_in_scope = origin_cu->list_in_scope;
13458 origin_cu->list_in_scope = cu->list_in_scope;
13460 if (die->tag != origin_die->tag
13461 && !(die->tag == DW_TAG_inlined_subroutine
13462 && origin_die->tag == DW_TAG_subprogram))
13463 complaint (_("DIE %s and its abstract origin %s have different tags"),
13464 sect_offset_str (die->sect_off),
13465 sect_offset_str (origin_die->sect_off));
13467 std::vector<sect_offset> offsets;
13469 for (child_die = die->child;
13470 child_die && child_die->tag;
13471 child_die = sibling_die (child_die))
13473 struct die_info *child_origin_die;
13474 struct dwarf2_cu *child_origin_cu;
13476 /* We are trying to process concrete instance entries:
13477 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13478 it's not relevant to our analysis here. i.e. detecting DIEs that are
13479 present in the abstract instance but not referenced in the concrete
13481 if (child_die->tag == DW_TAG_call_site
13482 || child_die->tag == DW_TAG_GNU_call_site)
13485 /* For each CHILD_DIE, find the corresponding child of
13486 ORIGIN_DIE. If there is more than one layer of
13487 DW_AT_abstract_origin, follow them all; there shouldn't be,
13488 but GCC versions at least through 4.4 generate this (GCC PR
13490 child_origin_die = child_die;
13491 child_origin_cu = cu;
13494 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13498 child_origin_die = follow_die_ref (child_origin_die, attr,
13502 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13503 counterpart may exist. */
13504 if (child_origin_die != child_die)
13506 if (child_die->tag != child_origin_die->tag
13507 && !(child_die->tag == DW_TAG_inlined_subroutine
13508 && child_origin_die->tag == DW_TAG_subprogram))
13509 complaint (_("Child DIE %s and its abstract origin %s have "
13511 sect_offset_str (child_die->sect_off),
13512 sect_offset_str (child_origin_die->sect_off));
13513 if (child_origin_die->parent != origin_die)
13514 complaint (_("Child DIE %s and its abstract origin %s have "
13515 "different parents"),
13516 sect_offset_str (child_die->sect_off),
13517 sect_offset_str (child_origin_die->sect_off));
13519 offsets.push_back (child_origin_die->sect_off);
13522 std::sort (offsets.begin (), offsets.end ());
13523 sect_offset *offsets_end = offsets.data () + offsets.size ();
13524 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13525 if (offsetp[-1] == *offsetp)
13526 complaint (_("Multiple children of DIE %s refer "
13527 "to DIE %s as their abstract origin"),
13528 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13530 offsetp = offsets.data ();
13531 origin_child_die = origin_die->child;
13532 while (origin_child_die && origin_child_die->tag)
13534 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13535 while (offsetp < offsets_end
13536 && *offsetp < origin_child_die->sect_off)
13538 if (offsetp >= offsets_end
13539 || *offsetp > origin_child_die->sect_off)
13541 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13542 Check whether we're already processing ORIGIN_CHILD_DIE.
13543 This can happen with mutually referenced abstract_origins.
13545 if (!origin_child_die->in_process)
13546 process_die (origin_child_die, origin_cu);
13548 origin_child_die = sibling_die (origin_child_die);
13550 origin_cu->list_in_scope = origin_previous_list_in_scope;
13554 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13556 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13557 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13558 struct context_stack *newobj;
13561 struct die_info *child_die;
13562 struct attribute *attr, *call_line, *call_file;
13564 CORE_ADDR baseaddr;
13565 struct block *block;
13566 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13567 std::vector<struct symbol *> template_args;
13568 struct template_symbol *templ_func = NULL;
13572 /* If we do not have call site information, we can't show the
13573 caller of this inlined function. That's too confusing, so
13574 only use the scope for local variables. */
13575 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13576 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13577 if (call_line == NULL || call_file == NULL)
13579 read_lexical_block_scope (die, cu);
13584 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13586 name = dwarf2_name (die, cu);
13588 /* Ignore functions with missing or empty names. These are actually
13589 illegal according to the DWARF standard. */
13592 complaint (_("missing name for subprogram DIE at %s"),
13593 sect_offset_str (die->sect_off));
13597 /* Ignore functions with missing or invalid low and high pc attributes. */
13598 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13599 <= PC_BOUNDS_INVALID)
13601 attr = dwarf2_attr (die, DW_AT_external, cu);
13602 if (!attr || !DW_UNSND (attr))
13603 complaint (_("cannot get low and high bounds "
13604 "for subprogram DIE at %s"),
13605 sect_offset_str (die->sect_off));
13609 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13610 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13612 /* If we have any template arguments, then we must allocate a
13613 different sort of symbol. */
13614 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13616 if (child_die->tag == DW_TAG_template_type_param
13617 || child_die->tag == DW_TAG_template_value_param)
13619 templ_func = allocate_template_symbol (objfile);
13620 templ_func->subclass = SYMBOL_TEMPLATE;
13625 newobj = push_context (0, lowpc);
13626 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13627 (struct symbol *) templ_func);
13629 /* If there is a location expression for DW_AT_frame_base, record
13631 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13633 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13635 /* If there is a location for the static link, record it. */
13636 newobj->static_link = NULL;
13637 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13640 newobj->static_link
13641 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13642 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13645 cu->list_in_scope = &local_symbols;
13647 if (die->child != NULL)
13649 child_die = die->child;
13650 while (child_die && child_die->tag)
13652 if (child_die->tag == DW_TAG_template_type_param
13653 || child_die->tag == DW_TAG_template_value_param)
13655 struct symbol *arg = new_symbol (child_die, NULL, cu);
13658 template_args.push_back (arg);
13661 process_die (child_die, cu);
13662 child_die = sibling_die (child_die);
13666 inherit_abstract_dies (die, cu);
13668 /* If we have a DW_AT_specification, we might need to import using
13669 directives from the context of the specification DIE. See the
13670 comment in determine_prefix. */
13671 if (cu->language == language_cplus
13672 && dwarf2_attr (die, DW_AT_specification, cu))
13674 struct dwarf2_cu *spec_cu = cu;
13675 struct die_info *spec_die = die_specification (die, &spec_cu);
13679 child_die = spec_die->child;
13680 while (child_die && child_die->tag)
13682 if (child_die->tag == DW_TAG_imported_module)
13683 process_die (child_die, spec_cu);
13684 child_die = sibling_die (child_die);
13687 /* In some cases, GCC generates specification DIEs that
13688 themselves contain DW_AT_specification attributes. */
13689 spec_die = die_specification (spec_die, &spec_cu);
13693 newobj = pop_context ();
13694 /* Make a block for the local symbols within. */
13695 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13696 newobj->static_link, lowpc, highpc);
13698 /* For C++, set the block's scope. */
13699 if ((cu->language == language_cplus
13700 || cu->language == language_fortran
13701 || cu->language == language_d
13702 || cu->language == language_rust)
13703 && cu->processing_has_namespace_info)
13704 block_set_scope (block, determine_prefix (die, cu),
13705 &objfile->objfile_obstack);
13707 /* If we have address ranges, record them. */
13708 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13710 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13712 /* Attach template arguments to function. */
13713 if (!template_args.empty ())
13715 gdb_assert (templ_func != NULL);
13717 templ_func->n_template_arguments = template_args.size ();
13718 templ_func->template_arguments
13719 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13720 templ_func->n_template_arguments);
13721 memcpy (templ_func->template_arguments,
13722 template_args.data (),
13723 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13726 /* In C++, we can have functions nested inside functions (e.g., when
13727 a function declares a class that has methods). This means that
13728 when we finish processing a function scope, we may need to go
13729 back to building a containing block's symbol lists. */
13730 local_symbols = newobj->locals;
13731 local_using_directives = newobj->local_using_directives;
13733 /* If we've finished processing a top-level function, subsequent
13734 symbols go in the file symbol list. */
13735 if (outermost_context_p ())
13736 cu->list_in_scope = &file_symbols;
13739 /* Process all the DIES contained within a lexical block scope. Start
13740 a new scope, process the dies, and then close the scope. */
13743 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13745 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13746 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13747 struct context_stack *newobj;
13748 CORE_ADDR lowpc, highpc;
13749 struct die_info *child_die;
13750 CORE_ADDR baseaddr;
13752 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13754 /* Ignore blocks with missing or invalid low and high pc attributes. */
13755 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13756 as multiple lexical blocks? Handling children in a sane way would
13757 be nasty. Might be easier to properly extend generic blocks to
13758 describe ranges. */
13759 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13761 case PC_BOUNDS_NOT_PRESENT:
13762 /* DW_TAG_lexical_block has no attributes, process its children as if
13763 there was no wrapping by that DW_TAG_lexical_block.
13764 GCC does no longer produces such DWARF since GCC r224161. */
13765 for (child_die = die->child;
13766 child_die != NULL && child_die->tag;
13767 child_die = sibling_die (child_die))
13768 process_die (child_die, cu);
13770 case PC_BOUNDS_INVALID:
13773 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13774 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13776 push_context (0, lowpc);
13777 if (die->child != NULL)
13779 child_die = die->child;
13780 while (child_die && child_die->tag)
13782 process_die (child_die, cu);
13783 child_die = sibling_die (child_die);
13786 inherit_abstract_dies (die, cu);
13787 newobj = pop_context ();
13789 if (local_symbols != NULL || local_using_directives != NULL)
13791 struct block *block
13792 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13793 newobj->start_addr, highpc);
13795 /* Note that recording ranges after traversing children, as we
13796 do here, means that recording a parent's ranges entails
13797 walking across all its children's ranges as they appear in
13798 the address map, which is quadratic behavior.
13800 It would be nicer to record the parent's ranges before
13801 traversing its children, simply overriding whatever you find
13802 there. But since we don't even decide whether to create a
13803 block until after we've traversed its children, that's hard
13805 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13807 local_symbols = newobj->locals;
13808 local_using_directives = newobj->local_using_directives;
13811 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13814 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13816 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13817 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13818 CORE_ADDR pc, baseaddr;
13819 struct attribute *attr;
13820 struct call_site *call_site, call_site_local;
13823 struct die_info *child_die;
13825 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13827 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13830 /* This was a pre-DWARF-5 GNU extension alias
13831 for DW_AT_call_return_pc. */
13832 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13836 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13837 "DIE %s [in module %s]"),
13838 sect_offset_str (die->sect_off), objfile_name (objfile));
13841 pc = attr_value_as_address (attr) + baseaddr;
13842 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13844 if (cu->call_site_htab == NULL)
13845 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13846 NULL, &objfile->objfile_obstack,
13847 hashtab_obstack_allocate, NULL);
13848 call_site_local.pc = pc;
13849 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13852 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13853 "DIE %s [in module %s]"),
13854 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13855 objfile_name (objfile));
13859 /* Count parameters at the caller. */
13862 for (child_die = die->child; child_die && child_die->tag;
13863 child_die = sibling_die (child_die))
13865 if (child_die->tag != DW_TAG_call_site_parameter
13866 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13868 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13869 "DW_TAG_call_site child DIE %s [in module %s]"),
13870 child_die->tag, sect_offset_str (child_die->sect_off),
13871 objfile_name (objfile));
13879 = ((struct call_site *)
13880 obstack_alloc (&objfile->objfile_obstack,
13881 sizeof (*call_site)
13882 + (sizeof (*call_site->parameter) * (nparams - 1))));
13884 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13885 call_site->pc = pc;
13887 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13888 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13890 struct die_info *func_die;
13892 /* Skip also over DW_TAG_inlined_subroutine. */
13893 for (func_die = die->parent;
13894 func_die && func_die->tag != DW_TAG_subprogram
13895 && func_die->tag != DW_TAG_subroutine_type;
13896 func_die = func_die->parent);
13898 /* DW_AT_call_all_calls is a superset
13899 of DW_AT_call_all_tail_calls. */
13901 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13902 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13903 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13904 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13906 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13907 not complete. But keep CALL_SITE for look ups via call_site_htab,
13908 both the initial caller containing the real return address PC and
13909 the final callee containing the current PC of a chain of tail
13910 calls do not need to have the tail call list complete. But any
13911 function candidate for a virtual tail call frame searched via
13912 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13913 determined unambiguously. */
13917 struct type *func_type = NULL;
13920 func_type = get_die_type (func_die, cu);
13921 if (func_type != NULL)
13923 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13925 /* Enlist this call site to the function. */
13926 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13927 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13930 complaint (_("Cannot find function owning DW_TAG_call_site "
13931 "DIE %s [in module %s]"),
13932 sect_offset_str (die->sect_off), objfile_name (objfile));
13936 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13938 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13940 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13943 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13944 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13946 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13947 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13948 /* Keep NULL DWARF_BLOCK. */;
13949 else if (attr_form_is_block (attr))
13951 struct dwarf2_locexpr_baton *dlbaton;
13953 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13954 dlbaton->data = DW_BLOCK (attr)->data;
13955 dlbaton->size = DW_BLOCK (attr)->size;
13956 dlbaton->per_cu = cu->per_cu;
13958 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13960 else if (attr_form_is_ref (attr))
13962 struct dwarf2_cu *target_cu = cu;
13963 struct die_info *target_die;
13965 target_die = follow_die_ref (die, attr, &target_cu);
13966 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13967 if (die_is_declaration (target_die, target_cu))
13969 const char *target_physname;
13971 /* Prefer the mangled name; otherwise compute the demangled one. */
13972 target_physname = dw2_linkage_name (target_die, target_cu);
13973 if (target_physname == NULL)
13974 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13975 if (target_physname == NULL)
13976 complaint (_("DW_AT_call_target target DIE has invalid "
13977 "physname, for referencing DIE %s [in module %s]"),
13978 sect_offset_str (die->sect_off), objfile_name (objfile));
13980 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13986 /* DW_AT_entry_pc should be preferred. */
13987 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13988 <= PC_BOUNDS_INVALID)
13989 complaint (_("DW_AT_call_target target DIE has invalid "
13990 "low pc, for referencing DIE %s [in module %s]"),
13991 sect_offset_str (die->sect_off), objfile_name (objfile));
13994 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13995 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14000 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14001 "block nor reference, for DIE %s [in module %s]"),
14002 sect_offset_str (die->sect_off), objfile_name (objfile));
14004 call_site->per_cu = cu->per_cu;
14006 for (child_die = die->child;
14007 child_die && child_die->tag;
14008 child_die = sibling_die (child_die))
14010 struct call_site_parameter *parameter;
14011 struct attribute *loc, *origin;
14013 if (child_die->tag != DW_TAG_call_site_parameter
14014 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14016 /* Already printed the complaint above. */
14020 gdb_assert (call_site->parameter_count < nparams);
14021 parameter = &call_site->parameter[call_site->parameter_count];
14023 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14024 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14025 register is contained in DW_AT_call_value. */
14027 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14028 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14029 if (origin == NULL)
14031 /* This was a pre-DWARF-5 GNU extension alias
14032 for DW_AT_call_parameter. */
14033 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14035 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14037 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14039 sect_offset sect_off
14040 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14041 if (!offset_in_cu_p (&cu->header, sect_off))
14043 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14044 binding can be done only inside one CU. Such referenced DIE
14045 therefore cannot be even moved to DW_TAG_partial_unit. */
14046 complaint (_("DW_AT_call_parameter offset is not in CU for "
14047 "DW_TAG_call_site child DIE %s [in module %s]"),
14048 sect_offset_str (child_die->sect_off),
14049 objfile_name (objfile));
14052 parameter->u.param_cu_off
14053 = (cu_offset) (sect_off - cu->header.sect_off);
14055 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14057 complaint (_("No DW_FORM_block* DW_AT_location for "
14058 "DW_TAG_call_site child DIE %s [in module %s]"),
14059 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14064 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14065 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14066 if (parameter->u.dwarf_reg != -1)
14067 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14068 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14069 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14070 ¶meter->u.fb_offset))
14071 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14074 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14075 "for DW_FORM_block* DW_AT_location is supported for "
14076 "DW_TAG_call_site child DIE %s "
14078 sect_offset_str (child_die->sect_off),
14079 objfile_name (objfile));
14084 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14086 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14087 if (!attr_form_is_block (attr))
14089 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14090 "DW_TAG_call_site child DIE %s [in module %s]"),
14091 sect_offset_str (child_die->sect_off),
14092 objfile_name (objfile));
14095 parameter->value = DW_BLOCK (attr)->data;
14096 parameter->value_size = DW_BLOCK (attr)->size;
14098 /* Parameters are not pre-cleared by memset above. */
14099 parameter->data_value = NULL;
14100 parameter->data_value_size = 0;
14101 call_site->parameter_count++;
14103 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14105 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14108 if (!attr_form_is_block (attr))
14109 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14110 "DW_TAG_call_site child DIE %s [in module %s]"),
14111 sect_offset_str (child_die->sect_off),
14112 objfile_name (objfile));
14115 parameter->data_value = DW_BLOCK (attr)->data;
14116 parameter->data_value_size = DW_BLOCK (attr)->size;
14122 /* Helper function for read_variable. If DIE represents a virtual
14123 table, then return the type of the concrete object that is
14124 associated with the virtual table. Otherwise, return NULL. */
14126 static struct type *
14127 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14129 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14133 /* Find the type DIE. */
14134 struct die_info *type_die = NULL;
14135 struct dwarf2_cu *type_cu = cu;
14137 if (attr_form_is_ref (attr))
14138 type_die = follow_die_ref (die, attr, &type_cu);
14139 if (type_die == NULL)
14142 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14144 return die_containing_type (type_die, type_cu);
14147 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14150 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14152 struct rust_vtable_symbol *storage = NULL;
14154 if (cu->language == language_rust)
14156 struct type *containing_type = rust_containing_type (die, cu);
14158 if (containing_type != NULL)
14160 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14162 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14163 struct rust_vtable_symbol);
14164 initialize_objfile_symbol (storage);
14165 storage->concrete_type = containing_type;
14166 storage->subclass = SYMBOL_RUST_VTABLE;
14170 new_symbol (die, NULL, cu, storage);
14173 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14174 reading .debug_rnglists.
14175 Callback's type should be:
14176 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14177 Return true if the attributes are present and valid, otherwise,
14180 template <typename Callback>
14182 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14183 Callback &&callback)
14185 struct dwarf2_per_objfile *dwarf2_per_objfile
14186 = cu->per_cu->dwarf2_per_objfile;
14187 struct objfile *objfile = dwarf2_per_objfile->objfile;
14188 bfd *obfd = objfile->obfd;
14189 /* Base address selection entry. */
14192 const gdb_byte *buffer;
14193 CORE_ADDR baseaddr;
14194 bool overflow = false;
14196 found_base = cu->base_known;
14197 base = cu->base_address;
14199 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14200 if (offset >= dwarf2_per_objfile->rnglists.size)
14202 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14206 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14208 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14212 /* Initialize it due to a false compiler warning. */
14213 CORE_ADDR range_beginning = 0, range_end = 0;
14214 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14215 + dwarf2_per_objfile->rnglists.size);
14216 unsigned int bytes_read;
14218 if (buffer == buf_end)
14223 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14226 case DW_RLE_end_of_list:
14228 case DW_RLE_base_address:
14229 if (buffer + cu->header.addr_size > buf_end)
14234 base = read_address (obfd, buffer, cu, &bytes_read);
14236 buffer += bytes_read;
14238 case DW_RLE_start_length:
14239 if (buffer + cu->header.addr_size > buf_end)
14244 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14245 buffer += bytes_read;
14246 range_end = (range_beginning
14247 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14248 buffer += bytes_read;
14249 if (buffer > buf_end)
14255 case DW_RLE_offset_pair:
14256 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14257 buffer += bytes_read;
14258 if (buffer > buf_end)
14263 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14264 buffer += bytes_read;
14265 if (buffer > buf_end)
14271 case DW_RLE_start_end:
14272 if (buffer + 2 * cu->header.addr_size > buf_end)
14277 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14278 buffer += bytes_read;
14279 range_end = read_address (obfd, buffer, cu, &bytes_read);
14280 buffer += bytes_read;
14283 complaint (_("Invalid .debug_rnglists data (no base address)"));
14286 if (rlet == DW_RLE_end_of_list || overflow)
14288 if (rlet == DW_RLE_base_address)
14293 /* We have no valid base address for the ranges
14295 complaint (_("Invalid .debug_rnglists data (no base address)"));
14299 if (range_beginning > range_end)
14301 /* Inverted range entries are invalid. */
14302 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14306 /* Empty range entries have no effect. */
14307 if (range_beginning == range_end)
14310 range_beginning += base;
14313 /* A not-uncommon case of bad debug info.
14314 Don't pollute the addrmap with bad data. */
14315 if (range_beginning + baseaddr == 0
14316 && !dwarf2_per_objfile->has_section_at_zero)
14318 complaint (_(".debug_rnglists entry has start address of zero"
14319 " [in module %s]"), objfile_name (objfile));
14323 callback (range_beginning, range_end);
14328 complaint (_("Offset %d is not terminated "
14329 "for DW_AT_ranges attribute"),
14337 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14338 Callback's type should be:
14339 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14340 Return 1 if the attributes are present and valid, otherwise, return 0. */
14342 template <typename Callback>
14344 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14345 Callback &&callback)
14347 struct dwarf2_per_objfile *dwarf2_per_objfile
14348 = cu->per_cu->dwarf2_per_objfile;
14349 struct objfile *objfile = dwarf2_per_objfile->objfile;
14350 struct comp_unit_head *cu_header = &cu->header;
14351 bfd *obfd = objfile->obfd;
14352 unsigned int addr_size = cu_header->addr_size;
14353 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14354 /* Base address selection entry. */
14357 unsigned int dummy;
14358 const gdb_byte *buffer;
14359 CORE_ADDR baseaddr;
14361 if (cu_header->version >= 5)
14362 return dwarf2_rnglists_process (offset, cu, callback);
14364 found_base = cu->base_known;
14365 base = cu->base_address;
14367 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14368 if (offset >= dwarf2_per_objfile->ranges.size)
14370 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14374 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14376 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14380 CORE_ADDR range_beginning, range_end;
14382 range_beginning = read_address (obfd, buffer, cu, &dummy);
14383 buffer += addr_size;
14384 range_end = read_address (obfd, buffer, cu, &dummy);
14385 buffer += addr_size;
14386 offset += 2 * addr_size;
14388 /* An end of list marker is a pair of zero addresses. */
14389 if (range_beginning == 0 && range_end == 0)
14390 /* Found the end of list entry. */
14393 /* Each base address selection entry is a pair of 2 values.
14394 The first is the largest possible address, the second is
14395 the base address. Check for a base address here. */
14396 if ((range_beginning & mask) == mask)
14398 /* If we found the largest possible address, then we already
14399 have the base address in range_end. */
14407 /* We have no valid base address for the ranges
14409 complaint (_("Invalid .debug_ranges data (no base address)"));
14413 if (range_beginning > range_end)
14415 /* Inverted range entries are invalid. */
14416 complaint (_("Invalid .debug_ranges data (inverted range)"));
14420 /* Empty range entries have no effect. */
14421 if (range_beginning == range_end)
14424 range_beginning += base;
14427 /* A not-uncommon case of bad debug info.
14428 Don't pollute the addrmap with bad data. */
14429 if (range_beginning + baseaddr == 0
14430 && !dwarf2_per_objfile->has_section_at_zero)
14432 complaint (_(".debug_ranges entry has start address of zero"
14433 " [in module %s]"), objfile_name (objfile));
14437 callback (range_beginning, range_end);
14443 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14444 Return 1 if the attributes are present and valid, otherwise, return 0.
14445 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14448 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14449 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14450 struct partial_symtab *ranges_pst)
14452 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14453 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14454 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14455 SECT_OFF_TEXT (objfile));
14458 CORE_ADDR high = 0;
14461 retval = dwarf2_ranges_process (offset, cu,
14462 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14464 if (ranges_pst != NULL)
14469 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14470 range_beginning + baseaddr);
14471 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14472 range_end + baseaddr);
14473 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14477 /* FIXME: This is recording everything as a low-high
14478 segment of consecutive addresses. We should have a
14479 data structure for discontiguous block ranges
14483 low = range_beginning;
14489 if (range_beginning < low)
14490 low = range_beginning;
14491 if (range_end > high)
14499 /* If the first entry is an end-of-list marker, the range
14500 describes an empty scope, i.e. no instructions. */
14506 *high_return = high;
14510 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14511 definition for the return value. *LOWPC and *HIGHPC are set iff
14512 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14514 static enum pc_bounds_kind
14515 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14516 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14517 struct partial_symtab *pst)
14519 struct dwarf2_per_objfile *dwarf2_per_objfile
14520 = cu->per_cu->dwarf2_per_objfile;
14521 struct attribute *attr;
14522 struct attribute *attr_high;
14524 CORE_ADDR high = 0;
14525 enum pc_bounds_kind ret;
14527 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14530 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14533 low = attr_value_as_address (attr);
14534 high = attr_value_as_address (attr_high);
14535 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14539 /* Found high w/o low attribute. */
14540 return PC_BOUNDS_INVALID;
14542 /* Found consecutive range of addresses. */
14543 ret = PC_BOUNDS_HIGH_LOW;
14547 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14550 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14551 We take advantage of the fact that DW_AT_ranges does not appear
14552 in DW_TAG_compile_unit of DWO files. */
14553 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14554 unsigned int ranges_offset = (DW_UNSND (attr)
14555 + (need_ranges_base
14559 /* Value of the DW_AT_ranges attribute is the offset in the
14560 .debug_ranges section. */
14561 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14562 return PC_BOUNDS_INVALID;
14563 /* Found discontinuous range of addresses. */
14564 ret = PC_BOUNDS_RANGES;
14567 return PC_BOUNDS_NOT_PRESENT;
14570 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14572 return PC_BOUNDS_INVALID;
14574 /* When using the GNU linker, .gnu.linkonce. sections are used to
14575 eliminate duplicate copies of functions and vtables and such.
14576 The linker will arbitrarily choose one and discard the others.
14577 The AT_*_pc values for such functions refer to local labels in
14578 these sections. If the section from that file was discarded, the
14579 labels are not in the output, so the relocs get a value of 0.
14580 If this is a discarded function, mark the pc bounds as invalid,
14581 so that GDB will ignore it. */
14582 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14583 return PC_BOUNDS_INVALID;
14591 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14592 its low and high PC addresses. Do nothing if these addresses could not
14593 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14594 and HIGHPC to the high address if greater than HIGHPC. */
14597 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14598 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14599 struct dwarf2_cu *cu)
14601 CORE_ADDR low, high;
14602 struct die_info *child = die->child;
14604 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14606 *lowpc = std::min (*lowpc, low);
14607 *highpc = std::max (*highpc, high);
14610 /* If the language does not allow nested subprograms (either inside
14611 subprograms or lexical blocks), we're done. */
14612 if (cu->language != language_ada)
14615 /* Check all the children of the given DIE. If it contains nested
14616 subprograms, then check their pc bounds. Likewise, we need to
14617 check lexical blocks as well, as they may also contain subprogram
14619 while (child && child->tag)
14621 if (child->tag == DW_TAG_subprogram
14622 || child->tag == DW_TAG_lexical_block)
14623 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14624 child = sibling_die (child);
14628 /* Get the low and high pc's represented by the scope DIE, and store
14629 them in *LOWPC and *HIGHPC. If the correct values can't be
14630 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14633 get_scope_pc_bounds (struct die_info *die,
14634 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14635 struct dwarf2_cu *cu)
14637 CORE_ADDR best_low = (CORE_ADDR) -1;
14638 CORE_ADDR best_high = (CORE_ADDR) 0;
14639 CORE_ADDR current_low, current_high;
14641 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14642 >= PC_BOUNDS_RANGES)
14644 best_low = current_low;
14645 best_high = current_high;
14649 struct die_info *child = die->child;
14651 while (child && child->tag)
14653 switch (child->tag) {
14654 case DW_TAG_subprogram:
14655 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14657 case DW_TAG_namespace:
14658 case DW_TAG_module:
14659 /* FIXME: carlton/2004-01-16: Should we do this for
14660 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14661 that current GCC's always emit the DIEs corresponding
14662 to definitions of methods of classes as children of a
14663 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14664 the DIEs giving the declarations, which could be
14665 anywhere). But I don't see any reason why the
14666 standards says that they have to be there. */
14667 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14669 if (current_low != ((CORE_ADDR) -1))
14671 best_low = std::min (best_low, current_low);
14672 best_high = std::max (best_high, current_high);
14680 child = sibling_die (child);
14685 *highpc = best_high;
14688 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14692 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14693 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14695 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14696 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14697 struct attribute *attr;
14698 struct attribute *attr_high;
14700 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14703 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14706 CORE_ADDR low = attr_value_as_address (attr);
14707 CORE_ADDR high = attr_value_as_address (attr_high);
14709 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14712 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14713 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14714 record_block_range (block, low, high - 1);
14718 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14721 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14722 We take advantage of the fact that DW_AT_ranges does not appear
14723 in DW_TAG_compile_unit of DWO files. */
14724 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14726 /* The value of the DW_AT_ranges attribute is the offset of the
14727 address range list in the .debug_ranges section. */
14728 unsigned long offset = (DW_UNSND (attr)
14729 + (need_ranges_base ? cu->ranges_base : 0));
14731 dwarf2_ranges_process (offset, cu,
14732 [&] (CORE_ADDR start, CORE_ADDR end)
14736 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14737 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14738 record_block_range (block, start, end - 1);
14743 /* Check whether the producer field indicates either of GCC < 4.6, or the
14744 Intel C/C++ compiler, and cache the result in CU. */
14747 check_producer (struct dwarf2_cu *cu)
14751 if (cu->producer == NULL)
14753 /* For unknown compilers expect their behavior is DWARF version
14756 GCC started to support .debug_types sections by -gdwarf-4 since
14757 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14758 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14759 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14760 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14762 else if (producer_is_gcc (cu->producer, &major, &minor))
14764 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14765 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14767 else if (producer_is_icc (cu->producer, &major, &minor))
14768 cu->producer_is_icc_lt_14 = major < 14;
14771 /* For other non-GCC compilers, expect their behavior is DWARF version
14775 cu->checked_producer = 1;
14778 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14779 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14780 during 4.6.0 experimental. */
14783 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14785 if (!cu->checked_producer)
14786 check_producer (cu);
14788 return cu->producer_is_gxx_lt_4_6;
14791 /* Return the default accessibility type if it is not overriden by
14792 DW_AT_accessibility. */
14794 static enum dwarf_access_attribute
14795 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14797 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14799 /* The default DWARF 2 accessibility for members is public, the default
14800 accessibility for inheritance is private. */
14802 if (die->tag != DW_TAG_inheritance)
14803 return DW_ACCESS_public;
14805 return DW_ACCESS_private;
14809 /* DWARF 3+ defines the default accessibility a different way. The same
14810 rules apply now for DW_TAG_inheritance as for the members and it only
14811 depends on the container kind. */
14813 if (die->parent->tag == DW_TAG_class_type)
14814 return DW_ACCESS_private;
14816 return DW_ACCESS_public;
14820 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14821 offset. If the attribute was not found return 0, otherwise return
14822 1. If it was found but could not properly be handled, set *OFFSET
14826 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14829 struct attribute *attr;
14831 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14836 /* Note that we do not check for a section offset first here.
14837 This is because DW_AT_data_member_location is new in DWARF 4,
14838 so if we see it, we can assume that a constant form is really
14839 a constant and not a section offset. */
14840 if (attr_form_is_constant (attr))
14841 *offset = dwarf2_get_attr_constant_value (attr, 0);
14842 else if (attr_form_is_section_offset (attr))
14843 dwarf2_complex_location_expr_complaint ();
14844 else if (attr_form_is_block (attr))
14845 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14847 dwarf2_complex_location_expr_complaint ();
14855 /* Add an aggregate field to the field list. */
14858 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14859 struct dwarf2_cu *cu)
14861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14863 struct nextfield *new_field;
14864 struct attribute *attr;
14866 const char *fieldname = "";
14868 if (die->tag == DW_TAG_inheritance)
14870 fip->baseclasses.emplace_back ();
14871 new_field = &fip->baseclasses.back ();
14875 fip->fields.emplace_back ();
14876 new_field = &fip->fields.back ();
14881 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14883 new_field->accessibility = DW_UNSND (attr);
14885 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14886 if (new_field->accessibility != DW_ACCESS_public)
14887 fip->non_public_fields = 1;
14889 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14891 new_field->virtuality = DW_UNSND (attr);
14893 new_field->virtuality = DW_VIRTUALITY_none;
14895 fp = &new_field->field;
14897 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14901 /* Data member other than a C++ static data member. */
14903 /* Get type of field. */
14904 fp->type = die_type (die, cu);
14906 SET_FIELD_BITPOS (*fp, 0);
14908 /* Get bit size of field (zero if none). */
14909 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14912 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14916 FIELD_BITSIZE (*fp) = 0;
14919 /* Get bit offset of field. */
14920 if (handle_data_member_location (die, cu, &offset))
14921 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14922 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14925 if (gdbarch_bits_big_endian (gdbarch))
14927 /* For big endian bits, the DW_AT_bit_offset gives the
14928 additional bit offset from the MSB of the containing
14929 anonymous object to the MSB of the field. We don't
14930 have to do anything special since we don't need to
14931 know the size of the anonymous object. */
14932 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14936 /* For little endian bits, compute the bit offset to the
14937 MSB of the anonymous object, subtract off the number of
14938 bits from the MSB of the field to the MSB of the
14939 object, and then subtract off the number of bits of
14940 the field itself. The result is the bit offset of
14941 the LSB of the field. */
14942 int anonymous_size;
14943 int bit_offset = DW_UNSND (attr);
14945 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14948 /* The size of the anonymous object containing
14949 the bit field is explicit, so use the
14950 indicated size (in bytes). */
14951 anonymous_size = DW_UNSND (attr);
14955 /* The size of the anonymous object containing
14956 the bit field must be inferred from the type
14957 attribute of the data member containing the
14959 anonymous_size = TYPE_LENGTH (fp->type);
14961 SET_FIELD_BITPOS (*fp,
14962 (FIELD_BITPOS (*fp)
14963 + anonymous_size * bits_per_byte
14964 - bit_offset - FIELD_BITSIZE (*fp)));
14967 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14969 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14970 + dwarf2_get_attr_constant_value (attr, 0)));
14972 /* Get name of field. */
14973 fieldname = dwarf2_name (die, cu);
14974 if (fieldname == NULL)
14977 /* The name is already allocated along with this objfile, so we don't
14978 need to duplicate it for the type. */
14979 fp->name = fieldname;
14981 /* Change accessibility for artificial fields (e.g. virtual table
14982 pointer or virtual base class pointer) to private. */
14983 if (dwarf2_attr (die, DW_AT_artificial, cu))
14985 FIELD_ARTIFICIAL (*fp) = 1;
14986 new_field->accessibility = DW_ACCESS_private;
14987 fip->non_public_fields = 1;
14990 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14992 /* C++ static member. */
14994 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14995 is a declaration, but all versions of G++ as of this writing
14996 (so through at least 3.2.1) incorrectly generate
14997 DW_TAG_variable tags. */
14999 const char *physname;
15001 /* Get name of field. */
15002 fieldname = dwarf2_name (die, cu);
15003 if (fieldname == NULL)
15006 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15008 /* Only create a symbol if this is an external value.
15009 new_symbol checks this and puts the value in the global symbol
15010 table, which we want. If it is not external, new_symbol
15011 will try to put the value in cu->list_in_scope which is wrong. */
15012 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15014 /* A static const member, not much different than an enum as far as
15015 we're concerned, except that we can support more types. */
15016 new_symbol (die, NULL, cu);
15019 /* Get physical name. */
15020 physname = dwarf2_physname (fieldname, die, cu);
15022 /* The name is already allocated along with this objfile, so we don't
15023 need to duplicate it for the type. */
15024 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15025 FIELD_TYPE (*fp) = die_type (die, cu);
15026 FIELD_NAME (*fp) = fieldname;
15028 else if (die->tag == DW_TAG_inheritance)
15032 /* C++ base class field. */
15033 if (handle_data_member_location (die, cu, &offset))
15034 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15035 FIELD_BITSIZE (*fp) = 0;
15036 FIELD_TYPE (*fp) = die_type (die, cu);
15037 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15039 else if (die->tag == DW_TAG_variant_part)
15041 /* process_structure_scope will treat this DIE as a union. */
15042 process_structure_scope (die, cu);
15044 /* The variant part is relative to the start of the enclosing
15046 SET_FIELD_BITPOS (*fp, 0);
15047 fp->type = get_die_type (die, cu);
15048 fp->artificial = 1;
15049 fp->name = "<<variant>>";
15052 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15055 /* Can the type given by DIE define another type? */
15058 type_can_define_types (const struct die_info *die)
15062 case DW_TAG_typedef:
15063 case DW_TAG_class_type:
15064 case DW_TAG_structure_type:
15065 case DW_TAG_union_type:
15066 case DW_TAG_enumeration_type:
15074 /* Add a type definition defined in the scope of the FIP's class. */
15077 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15078 struct dwarf2_cu *cu)
15080 struct decl_field fp;
15081 memset (&fp, 0, sizeof (fp));
15083 gdb_assert (type_can_define_types (die));
15085 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15086 fp.name = dwarf2_name (die, cu);
15087 fp.type = read_type_die (die, cu);
15089 /* Save accessibility. */
15090 enum dwarf_access_attribute accessibility;
15091 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15093 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15095 accessibility = dwarf2_default_access_attribute (die, cu);
15096 switch (accessibility)
15098 case DW_ACCESS_public:
15099 /* The assumed value if neither private nor protected. */
15101 case DW_ACCESS_private:
15104 case DW_ACCESS_protected:
15105 fp.is_protected = 1;
15108 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15111 if (die->tag == DW_TAG_typedef)
15112 fip->typedef_field_list.push_back (fp);
15114 fip->nested_types_list.push_back (fp);
15117 /* Create the vector of fields, and attach it to the type. */
15120 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15121 struct dwarf2_cu *cu)
15123 int nfields = fip->nfields;
15125 /* Record the field count, allocate space for the array of fields,
15126 and create blank accessibility bitfields if necessary. */
15127 TYPE_NFIELDS (type) = nfields;
15128 TYPE_FIELDS (type) = (struct field *)
15129 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15131 if (fip->non_public_fields && cu->language != language_ada)
15133 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15135 TYPE_FIELD_PRIVATE_BITS (type) =
15136 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15137 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15139 TYPE_FIELD_PROTECTED_BITS (type) =
15140 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15141 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15143 TYPE_FIELD_IGNORE_BITS (type) =
15144 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15145 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15148 /* If the type has baseclasses, allocate and clear a bit vector for
15149 TYPE_FIELD_VIRTUAL_BITS. */
15150 if (!fip->baseclasses.empty () && cu->language != language_ada)
15152 int num_bytes = B_BYTES (fip->baseclasses.size ());
15153 unsigned char *pointer;
15155 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15156 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15157 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15158 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15159 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15162 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15164 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15166 for (int index = 0; index < nfields; ++index)
15168 struct nextfield &field = fip->fields[index];
15170 if (field.variant.is_discriminant)
15171 di->discriminant_index = index;
15172 else if (field.variant.default_branch)
15173 di->default_index = index;
15175 di->discriminants[index] = field.variant.discriminant_value;
15179 /* Copy the saved-up fields into the field vector. */
15180 for (int i = 0; i < nfields; ++i)
15182 struct nextfield &field
15183 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15184 : fip->fields[i - fip->baseclasses.size ()]);
15186 TYPE_FIELD (type, i) = field.field;
15187 switch (field.accessibility)
15189 case DW_ACCESS_private:
15190 if (cu->language != language_ada)
15191 SET_TYPE_FIELD_PRIVATE (type, i);
15194 case DW_ACCESS_protected:
15195 if (cu->language != language_ada)
15196 SET_TYPE_FIELD_PROTECTED (type, i);
15199 case DW_ACCESS_public:
15203 /* Unknown accessibility. Complain and treat it as public. */
15205 complaint (_("unsupported accessibility %d"),
15206 field.accessibility);
15210 if (i < fip->baseclasses.size ())
15212 switch (field.virtuality)
15214 case DW_VIRTUALITY_virtual:
15215 case DW_VIRTUALITY_pure_virtual:
15216 if (cu->language == language_ada)
15217 error (_("unexpected virtuality in component of Ada type"));
15218 SET_TYPE_FIELD_VIRTUAL (type, i);
15225 /* Return true if this member function is a constructor, false
15229 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15231 const char *fieldname;
15232 const char *type_name;
15235 if (die->parent == NULL)
15238 if (die->parent->tag != DW_TAG_structure_type
15239 && die->parent->tag != DW_TAG_union_type
15240 && die->parent->tag != DW_TAG_class_type)
15243 fieldname = dwarf2_name (die, cu);
15244 type_name = dwarf2_name (die->parent, cu);
15245 if (fieldname == NULL || type_name == NULL)
15248 len = strlen (fieldname);
15249 return (strncmp (fieldname, type_name, len) == 0
15250 && (type_name[len] == '\0' || type_name[len] == '<'));
15253 /* Add a member function to the proper fieldlist. */
15256 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15257 struct type *type, struct dwarf2_cu *cu)
15259 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15260 struct attribute *attr;
15262 struct fnfieldlist *flp = nullptr;
15263 struct fn_field *fnp;
15264 const char *fieldname;
15265 struct type *this_type;
15266 enum dwarf_access_attribute accessibility;
15268 if (cu->language == language_ada)
15269 error (_("unexpected member function in Ada type"));
15271 /* Get name of member function. */
15272 fieldname = dwarf2_name (die, cu);
15273 if (fieldname == NULL)
15276 /* Look up member function name in fieldlist. */
15277 for (i = 0; i < fip->fnfieldlists.size (); i++)
15279 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15281 flp = &fip->fnfieldlists[i];
15286 /* Create a new fnfieldlist if necessary. */
15287 if (flp == nullptr)
15289 fip->fnfieldlists.emplace_back ();
15290 flp = &fip->fnfieldlists.back ();
15291 flp->name = fieldname;
15292 i = fip->fnfieldlists.size () - 1;
15295 /* Create a new member function field and add it to the vector of
15297 flp->fnfields.emplace_back ();
15298 fnp = &flp->fnfields.back ();
15300 /* Delay processing of the physname until later. */
15301 if (cu->language == language_cplus)
15302 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15306 const char *physname = dwarf2_physname (fieldname, die, cu);
15307 fnp->physname = physname ? physname : "";
15310 fnp->type = alloc_type (objfile);
15311 this_type = read_type_die (die, cu);
15312 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15314 int nparams = TYPE_NFIELDS (this_type);
15316 /* TYPE is the domain of this method, and THIS_TYPE is the type
15317 of the method itself (TYPE_CODE_METHOD). */
15318 smash_to_method_type (fnp->type, type,
15319 TYPE_TARGET_TYPE (this_type),
15320 TYPE_FIELDS (this_type),
15321 TYPE_NFIELDS (this_type),
15322 TYPE_VARARGS (this_type));
15324 /* Handle static member functions.
15325 Dwarf2 has no clean way to discern C++ static and non-static
15326 member functions. G++ helps GDB by marking the first
15327 parameter for non-static member functions (which is the this
15328 pointer) as artificial. We obtain this information from
15329 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15330 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15331 fnp->voffset = VOFFSET_STATIC;
15334 complaint (_("member function type missing for '%s'"),
15335 dwarf2_full_name (fieldname, die, cu));
15337 /* Get fcontext from DW_AT_containing_type if present. */
15338 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15339 fnp->fcontext = die_containing_type (die, cu);
15341 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15342 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15344 /* Get accessibility. */
15345 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15347 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15349 accessibility = dwarf2_default_access_attribute (die, cu);
15350 switch (accessibility)
15352 case DW_ACCESS_private:
15353 fnp->is_private = 1;
15355 case DW_ACCESS_protected:
15356 fnp->is_protected = 1;
15360 /* Check for artificial methods. */
15361 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15362 if (attr && DW_UNSND (attr) != 0)
15363 fnp->is_artificial = 1;
15365 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15367 /* Get index in virtual function table if it is a virtual member
15368 function. For older versions of GCC, this is an offset in the
15369 appropriate virtual table, as specified by DW_AT_containing_type.
15370 For everyone else, it is an expression to be evaluated relative
15371 to the object address. */
15373 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15376 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15378 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15380 /* Old-style GCC. */
15381 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15383 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15384 || (DW_BLOCK (attr)->size > 1
15385 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15386 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15388 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15389 if ((fnp->voffset % cu->header.addr_size) != 0)
15390 dwarf2_complex_location_expr_complaint ();
15392 fnp->voffset /= cu->header.addr_size;
15396 dwarf2_complex_location_expr_complaint ();
15398 if (!fnp->fcontext)
15400 /* If there is no `this' field and no DW_AT_containing_type,
15401 we cannot actually find a base class context for the
15403 if (TYPE_NFIELDS (this_type) == 0
15404 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15406 complaint (_("cannot determine context for virtual member "
15407 "function \"%s\" (offset %s)"),
15408 fieldname, sect_offset_str (die->sect_off));
15413 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15417 else if (attr_form_is_section_offset (attr))
15419 dwarf2_complex_location_expr_complaint ();
15423 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15429 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15430 if (attr && DW_UNSND (attr))
15432 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15433 complaint (_("Member function \"%s\" (offset %s) is virtual "
15434 "but the vtable offset is not specified"),
15435 fieldname, sect_offset_str (die->sect_off));
15436 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15437 TYPE_CPLUS_DYNAMIC (type) = 1;
15442 /* Create the vector of member function fields, and attach it to the type. */
15445 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15446 struct dwarf2_cu *cu)
15448 if (cu->language == language_ada)
15449 error (_("unexpected member functions in Ada type"));
15451 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15452 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15454 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15456 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15458 struct fnfieldlist &nf = fip->fnfieldlists[i];
15459 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15461 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15462 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15463 fn_flp->fn_fields = (struct fn_field *)
15464 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15466 for (int k = 0; k < nf.fnfields.size (); ++k)
15467 fn_flp->fn_fields[k] = nf.fnfields[k];
15470 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15473 /* Returns non-zero if NAME is the name of a vtable member in CU's
15474 language, zero otherwise. */
15476 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15478 static const char vptr[] = "_vptr";
15480 /* Look for the C++ form of the vtable. */
15481 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15487 /* GCC outputs unnamed structures that are really pointers to member
15488 functions, with the ABI-specified layout. If TYPE describes
15489 such a structure, smash it into a member function type.
15491 GCC shouldn't do this; it should just output pointer to member DIEs.
15492 This is GCC PR debug/28767. */
15495 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15497 struct type *pfn_type, *self_type, *new_type;
15499 /* Check for a structure with no name and two children. */
15500 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15503 /* Check for __pfn and __delta members. */
15504 if (TYPE_FIELD_NAME (type, 0) == NULL
15505 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15506 || TYPE_FIELD_NAME (type, 1) == NULL
15507 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15510 /* Find the type of the method. */
15511 pfn_type = TYPE_FIELD_TYPE (type, 0);
15512 if (pfn_type == NULL
15513 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15514 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15517 /* Look for the "this" argument. */
15518 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15519 if (TYPE_NFIELDS (pfn_type) == 0
15520 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15521 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15524 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15525 new_type = alloc_type (objfile);
15526 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15527 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15528 TYPE_VARARGS (pfn_type));
15529 smash_to_methodptr_type (type, new_type);
15532 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15533 appropriate error checking and issuing complaints if there is a
15537 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15539 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15541 if (attr == nullptr)
15544 if (!attr_form_is_constant (attr))
15546 complaint (_("DW_AT_alignment must have constant form"
15547 " - DIE at %s [in module %s]"),
15548 sect_offset_str (die->sect_off),
15549 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15554 if (attr->form == DW_FORM_sdata)
15556 LONGEST val = DW_SND (attr);
15559 complaint (_("DW_AT_alignment value must not be negative"
15560 " - DIE at %s [in module %s]"),
15561 sect_offset_str (die->sect_off),
15562 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15568 align = DW_UNSND (attr);
15572 complaint (_("DW_AT_alignment value must not be zero"
15573 " - DIE at %s [in module %s]"),
15574 sect_offset_str (die->sect_off),
15575 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15578 if ((align & (align - 1)) != 0)
15580 complaint (_("DW_AT_alignment value must be a power of 2"
15581 " - DIE at %s [in module %s]"),
15582 sect_offset_str (die->sect_off),
15583 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15590 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15591 the alignment for TYPE. */
15594 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15597 if (!set_type_align (type, get_alignment (cu, die)))
15598 complaint (_("DW_AT_alignment value too large"
15599 " - DIE at %s [in module %s]"),
15600 sect_offset_str (die->sect_off),
15601 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15604 /* Called when we find the DIE that starts a structure or union scope
15605 (definition) to create a type for the structure or union. Fill in
15606 the type's name and general properties; the members will not be
15607 processed until process_structure_scope. A symbol table entry for
15608 the type will also not be done until process_structure_scope (assuming
15609 the type has a name).
15611 NOTE: we need to call these functions regardless of whether or not the
15612 DIE has a DW_AT_name attribute, since it might be an anonymous
15613 structure or union. This gets the type entered into our set of
15614 user defined types. */
15616 static struct type *
15617 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15619 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15621 struct attribute *attr;
15624 /* If the definition of this type lives in .debug_types, read that type.
15625 Don't follow DW_AT_specification though, that will take us back up
15626 the chain and we want to go down. */
15627 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15630 type = get_DW_AT_signature_type (die, attr, cu);
15632 /* The type's CU may not be the same as CU.
15633 Ensure TYPE is recorded with CU in die_type_hash. */
15634 return set_die_type (die, type, cu);
15637 type = alloc_type (objfile);
15638 INIT_CPLUS_SPECIFIC (type);
15640 name = dwarf2_name (die, cu);
15643 if (cu->language == language_cplus
15644 || cu->language == language_d
15645 || cu->language == language_rust)
15647 const char *full_name = dwarf2_full_name (name, die, cu);
15649 /* dwarf2_full_name might have already finished building the DIE's
15650 type. If so, there is no need to continue. */
15651 if (get_die_type (die, cu) != NULL)
15652 return get_die_type (die, cu);
15654 TYPE_NAME (type) = full_name;
15658 /* The name is already allocated along with this objfile, so
15659 we don't need to duplicate it for the type. */
15660 TYPE_NAME (type) = name;
15664 if (die->tag == DW_TAG_structure_type)
15666 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15668 else if (die->tag == DW_TAG_union_type)
15670 TYPE_CODE (type) = TYPE_CODE_UNION;
15672 else if (die->tag == DW_TAG_variant_part)
15674 TYPE_CODE (type) = TYPE_CODE_UNION;
15675 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15679 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15682 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15683 TYPE_DECLARED_CLASS (type) = 1;
15685 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15688 if (attr_form_is_constant (attr))
15689 TYPE_LENGTH (type) = DW_UNSND (attr);
15692 /* For the moment, dynamic type sizes are not supported
15693 by GDB's struct type. The actual size is determined
15694 on-demand when resolving the type of a given object,
15695 so set the type's length to zero for now. Otherwise,
15696 we record an expression as the length, and that expression
15697 could lead to a very large value, which could eventually
15698 lead to us trying to allocate that much memory when creating
15699 a value of that type. */
15700 TYPE_LENGTH (type) = 0;
15705 TYPE_LENGTH (type) = 0;
15708 maybe_set_alignment (cu, die, type);
15710 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15712 /* ICC<14 does not output the required DW_AT_declaration on
15713 incomplete types, but gives them a size of zero. */
15714 TYPE_STUB (type) = 1;
15717 TYPE_STUB_SUPPORTED (type) = 1;
15719 if (die_is_declaration (die, cu))
15720 TYPE_STUB (type) = 1;
15721 else if (attr == NULL && die->child == NULL
15722 && producer_is_realview (cu->producer))
15723 /* RealView does not output the required DW_AT_declaration
15724 on incomplete types. */
15725 TYPE_STUB (type) = 1;
15727 /* We need to add the type field to the die immediately so we don't
15728 infinitely recurse when dealing with pointers to the structure
15729 type within the structure itself. */
15730 set_die_type (die, type, cu);
15732 /* set_die_type should be already done. */
15733 set_descriptive_type (type, die, cu);
15738 /* A helper for process_structure_scope that handles a single member
15742 handle_struct_member_die (struct die_info *child_die, struct type *type,
15743 struct field_info *fi,
15744 std::vector<struct symbol *> *template_args,
15745 struct dwarf2_cu *cu)
15747 if (child_die->tag == DW_TAG_member
15748 || child_die->tag == DW_TAG_variable
15749 || child_die->tag == DW_TAG_variant_part)
15751 /* NOTE: carlton/2002-11-05: A C++ static data member
15752 should be a DW_TAG_member that is a declaration, but
15753 all versions of G++ as of this writing (so through at
15754 least 3.2.1) incorrectly generate DW_TAG_variable
15755 tags for them instead. */
15756 dwarf2_add_field (fi, child_die, cu);
15758 else if (child_die->tag == DW_TAG_subprogram)
15760 /* Rust doesn't have member functions in the C++ sense.
15761 However, it does emit ordinary functions as children
15762 of a struct DIE. */
15763 if (cu->language == language_rust)
15764 read_func_scope (child_die, cu);
15767 /* C++ member function. */
15768 dwarf2_add_member_fn (fi, child_die, type, cu);
15771 else if (child_die->tag == DW_TAG_inheritance)
15773 /* C++ base class field. */
15774 dwarf2_add_field (fi, child_die, cu);
15776 else if (type_can_define_types (child_die))
15777 dwarf2_add_type_defn (fi, child_die, cu);
15778 else if (child_die->tag == DW_TAG_template_type_param
15779 || child_die->tag == DW_TAG_template_value_param)
15781 struct symbol *arg = new_symbol (child_die, NULL, cu);
15784 template_args->push_back (arg);
15786 else if (child_die->tag == DW_TAG_variant)
15788 /* In a variant we want to get the discriminant and also add a
15789 field for our sole member child. */
15790 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15792 for (struct die_info *variant_child = child_die->child;
15793 variant_child != NULL;
15794 variant_child = sibling_die (variant_child))
15796 if (variant_child->tag == DW_TAG_member)
15798 handle_struct_member_die (variant_child, type, fi,
15799 template_args, cu);
15800 /* Only handle the one. */
15805 /* We don't handle this but we might as well report it if we see
15807 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15808 complaint (_("DW_AT_discr_list is not supported yet"
15809 " - DIE at %s [in module %s]"),
15810 sect_offset_str (child_die->sect_off),
15811 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15813 /* The first field was just added, so we can stash the
15814 discriminant there. */
15815 gdb_assert (!fi->fields.empty ());
15817 fi->fields.back ().variant.default_branch = true;
15819 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15823 /* Finish creating a structure or union type, including filling in
15824 its members and creating a symbol for it. */
15827 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15829 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15830 struct die_info *child_die;
15833 type = get_die_type (die, cu);
15835 type = read_structure_type (die, cu);
15837 /* When reading a DW_TAG_variant_part, we need to notice when we
15838 read the discriminant member, so we can record it later in the
15839 discriminant_info. */
15840 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15841 sect_offset discr_offset;
15843 if (is_variant_part)
15845 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15848 /* Maybe it's a univariant form, an extension we support.
15849 In this case arrange not to check the offset. */
15850 is_variant_part = false;
15852 else if (attr_form_is_ref (discr))
15854 struct dwarf2_cu *target_cu = cu;
15855 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15857 discr_offset = target_die->sect_off;
15861 complaint (_("DW_AT_discr does not have DIE reference form"
15862 " - DIE at %s [in module %s]"),
15863 sect_offset_str (die->sect_off),
15864 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15865 is_variant_part = false;
15869 if (die->child != NULL && ! die_is_declaration (die, cu))
15871 struct field_info fi;
15872 std::vector<struct symbol *> template_args;
15874 child_die = die->child;
15876 while (child_die && child_die->tag)
15878 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15880 if (is_variant_part && discr_offset == child_die->sect_off)
15881 fi.fields.back ().variant.is_discriminant = true;
15883 child_die = sibling_die (child_die);
15886 /* Attach template arguments to type. */
15887 if (!template_args.empty ())
15889 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15890 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15891 TYPE_TEMPLATE_ARGUMENTS (type)
15892 = XOBNEWVEC (&objfile->objfile_obstack,
15894 TYPE_N_TEMPLATE_ARGUMENTS (type));
15895 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15896 template_args.data (),
15897 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15898 * sizeof (struct symbol *)));
15901 /* Attach fields and member functions to the type. */
15903 dwarf2_attach_fields_to_type (&fi, type, cu);
15904 if (!fi.fnfieldlists.empty ())
15906 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15908 /* Get the type which refers to the base class (possibly this
15909 class itself) which contains the vtable pointer for the current
15910 class from the DW_AT_containing_type attribute. This use of
15911 DW_AT_containing_type is a GNU extension. */
15913 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15915 struct type *t = die_containing_type (die, cu);
15917 set_type_vptr_basetype (type, t);
15922 /* Our own class provides vtbl ptr. */
15923 for (i = TYPE_NFIELDS (t) - 1;
15924 i >= TYPE_N_BASECLASSES (t);
15927 const char *fieldname = TYPE_FIELD_NAME (t, i);
15929 if (is_vtable_name (fieldname, cu))
15931 set_type_vptr_fieldno (type, i);
15936 /* Complain if virtual function table field not found. */
15937 if (i < TYPE_N_BASECLASSES (t))
15938 complaint (_("virtual function table pointer "
15939 "not found when defining class '%s'"),
15940 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15944 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15947 else if (cu->producer
15948 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15950 /* The IBM XLC compiler does not provide direct indication
15951 of the containing type, but the vtable pointer is
15952 always named __vfp. */
15956 for (i = TYPE_NFIELDS (type) - 1;
15957 i >= TYPE_N_BASECLASSES (type);
15960 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15962 set_type_vptr_fieldno (type, i);
15963 set_type_vptr_basetype (type, type);
15970 /* Copy fi.typedef_field_list linked list elements content into the
15971 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15972 if (!fi.typedef_field_list.empty ())
15974 int count = fi.typedef_field_list.size ();
15976 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15977 TYPE_TYPEDEF_FIELD_ARRAY (type)
15978 = ((struct decl_field *)
15980 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15981 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15983 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15984 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15987 /* Copy fi.nested_types_list linked list elements content into the
15988 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15989 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15991 int count = fi.nested_types_list.size ();
15993 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15994 TYPE_NESTED_TYPES_ARRAY (type)
15995 = ((struct decl_field *)
15996 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15997 TYPE_NESTED_TYPES_COUNT (type) = count;
15999 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16000 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16004 quirk_gcc_member_function_pointer (type, objfile);
16005 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16006 cu->rust_unions.push_back (type);
16008 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16009 snapshots) has been known to create a die giving a declaration
16010 for a class that has, as a child, a die giving a definition for a
16011 nested class. So we have to process our children even if the
16012 current die is a declaration. Normally, of course, a declaration
16013 won't have any children at all. */
16015 child_die = die->child;
16017 while (child_die != NULL && child_die->tag)
16019 if (child_die->tag == DW_TAG_member
16020 || child_die->tag == DW_TAG_variable
16021 || child_die->tag == DW_TAG_inheritance
16022 || child_die->tag == DW_TAG_template_value_param
16023 || child_die->tag == DW_TAG_template_type_param)
16028 process_die (child_die, cu);
16030 child_die = sibling_die (child_die);
16033 /* Do not consider external references. According to the DWARF standard,
16034 these DIEs are identified by the fact that they have no byte_size
16035 attribute, and a declaration attribute. */
16036 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16037 || !die_is_declaration (die, cu))
16038 new_symbol (die, type, cu);
16041 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16042 update TYPE using some information only available in DIE's children. */
16045 update_enumeration_type_from_children (struct die_info *die,
16047 struct dwarf2_cu *cu)
16049 struct die_info *child_die;
16050 int unsigned_enum = 1;
16054 auto_obstack obstack;
16056 for (child_die = die->child;
16057 child_die != NULL && child_die->tag;
16058 child_die = sibling_die (child_die))
16060 struct attribute *attr;
16062 const gdb_byte *bytes;
16063 struct dwarf2_locexpr_baton *baton;
16066 if (child_die->tag != DW_TAG_enumerator)
16069 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16073 name = dwarf2_name (child_die, cu);
16075 name = "<anonymous enumerator>";
16077 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16078 &value, &bytes, &baton);
16084 else if ((mask & value) != 0)
16089 /* If we already know that the enum type is neither unsigned, nor
16090 a flag type, no need to look at the rest of the enumerates. */
16091 if (!unsigned_enum && !flag_enum)
16096 TYPE_UNSIGNED (type) = 1;
16098 TYPE_FLAG_ENUM (type) = 1;
16101 /* Given a DW_AT_enumeration_type die, set its type. We do not
16102 complete the type's fields yet, or create any symbols. */
16104 static struct type *
16105 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16107 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16109 struct attribute *attr;
16112 /* If the definition of this type lives in .debug_types, read that type.
16113 Don't follow DW_AT_specification though, that will take us back up
16114 the chain and we want to go down. */
16115 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16118 type = get_DW_AT_signature_type (die, attr, cu);
16120 /* The type's CU may not be the same as CU.
16121 Ensure TYPE is recorded with CU in die_type_hash. */
16122 return set_die_type (die, type, cu);
16125 type = alloc_type (objfile);
16127 TYPE_CODE (type) = TYPE_CODE_ENUM;
16128 name = dwarf2_full_name (NULL, die, cu);
16130 TYPE_NAME (type) = name;
16132 attr = dwarf2_attr (die, DW_AT_type, cu);
16135 struct type *underlying_type = die_type (die, cu);
16137 TYPE_TARGET_TYPE (type) = underlying_type;
16140 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16143 TYPE_LENGTH (type) = DW_UNSND (attr);
16147 TYPE_LENGTH (type) = 0;
16150 maybe_set_alignment (cu, die, type);
16152 /* The enumeration DIE can be incomplete. In Ada, any type can be
16153 declared as private in the package spec, and then defined only
16154 inside the package body. Such types are known as Taft Amendment
16155 Types. When another package uses such a type, an incomplete DIE
16156 may be generated by the compiler. */
16157 if (die_is_declaration (die, cu))
16158 TYPE_STUB (type) = 1;
16160 /* Finish the creation of this type by using the enum's children.
16161 We must call this even when the underlying type has been provided
16162 so that we can determine if we're looking at a "flag" enum. */
16163 update_enumeration_type_from_children (die, type, cu);
16165 /* If this type has an underlying type that is not a stub, then we
16166 may use its attributes. We always use the "unsigned" attribute
16167 in this situation, because ordinarily we guess whether the type
16168 is unsigned -- but the guess can be wrong and the underlying type
16169 can tell us the reality. However, we defer to a local size
16170 attribute if one exists, because this lets the compiler override
16171 the underlying type if needed. */
16172 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16174 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16175 if (TYPE_LENGTH (type) == 0)
16176 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16177 if (TYPE_RAW_ALIGN (type) == 0
16178 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16179 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16182 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16184 return set_die_type (die, type, cu);
16187 /* Given a pointer to a die which begins an enumeration, process all
16188 the dies that define the members of the enumeration, and create the
16189 symbol for the enumeration type.
16191 NOTE: We reverse the order of the element list. */
16194 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16196 struct type *this_type;
16198 this_type = get_die_type (die, cu);
16199 if (this_type == NULL)
16200 this_type = read_enumeration_type (die, cu);
16202 if (die->child != NULL)
16204 struct die_info *child_die;
16205 struct symbol *sym;
16206 struct field *fields = NULL;
16207 int num_fields = 0;
16210 child_die = die->child;
16211 while (child_die && child_die->tag)
16213 if (child_die->tag != DW_TAG_enumerator)
16215 process_die (child_die, cu);
16219 name = dwarf2_name (child_die, cu);
16222 sym = new_symbol (child_die, this_type, cu);
16224 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16226 fields = (struct field *)
16228 (num_fields + DW_FIELD_ALLOC_CHUNK)
16229 * sizeof (struct field));
16232 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16233 FIELD_TYPE (fields[num_fields]) = NULL;
16234 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16235 FIELD_BITSIZE (fields[num_fields]) = 0;
16241 child_die = sibling_die (child_die);
16246 TYPE_NFIELDS (this_type) = num_fields;
16247 TYPE_FIELDS (this_type) = (struct field *)
16248 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16249 memcpy (TYPE_FIELDS (this_type), fields,
16250 sizeof (struct field) * num_fields);
16255 /* If we are reading an enum from a .debug_types unit, and the enum
16256 is a declaration, and the enum is not the signatured type in the
16257 unit, then we do not want to add a symbol for it. Adding a
16258 symbol would in some cases obscure the true definition of the
16259 enum, giving users an incomplete type when the definition is
16260 actually available. Note that we do not want to do this for all
16261 enums which are just declarations, because C++0x allows forward
16262 enum declarations. */
16263 if (cu->per_cu->is_debug_types
16264 && die_is_declaration (die, cu))
16266 struct signatured_type *sig_type;
16268 sig_type = (struct signatured_type *) cu->per_cu;
16269 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16270 if (sig_type->type_offset_in_section != die->sect_off)
16274 new_symbol (die, this_type, cu);
16277 /* Extract all information from a DW_TAG_array_type DIE and put it in
16278 the DIE's type field. For now, this only handles one dimensional
16281 static struct type *
16282 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16284 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16285 struct die_info *child_die;
16287 struct type *element_type, *range_type, *index_type;
16288 struct attribute *attr;
16290 struct dynamic_prop *byte_stride_prop = NULL;
16291 unsigned int bit_stride = 0;
16293 element_type = die_type (die, cu);
16295 /* The die_type call above may have already set the type for this DIE. */
16296 type = get_die_type (die, cu);
16300 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16306 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16307 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16310 complaint (_("unable to read array DW_AT_byte_stride "
16311 " - DIE at %s [in module %s]"),
16312 sect_offset_str (die->sect_off),
16313 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16314 /* Ignore this attribute. We will likely not be able to print
16315 arrays of this type correctly, but there is little we can do
16316 to help if we cannot read the attribute's value. */
16317 byte_stride_prop = NULL;
16321 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16323 bit_stride = DW_UNSND (attr);
16325 /* Irix 6.2 native cc creates array types without children for
16326 arrays with unspecified length. */
16327 if (die->child == NULL)
16329 index_type = objfile_type (objfile)->builtin_int;
16330 range_type = create_static_range_type (NULL, index_type, 0, -1);
16331 type = create_array_type_with_stride (NULL, element_type, range_type,
16332 byte_stride_prop, bit_stride);
16333 return set_die_type (die, type, cu);
16336 std::vector<struct type *> range_types;
16337 child_die = die->child;
16338 while (child_die && child_die->tag)
16340 if (child_die->tag == DW_TAG_subrange_type)
16342 struct type *child_type = read_type_die (child_die, cu);
16344 if (child_type != NULL)
16346 /* The range type was succesfully read. Save it for the
16347 array type creation. */
16348 range_types.push_back (child_type);
16351 child_die = sibling_die (child_die);
16354 /* Dwarf2 dimensions are output from left to right, create the
16355 necessary array types in backwards order. */
16357 type = element_type;
16359 if (read_array_order (die, cu) == DW_ORD_col_major)
16363 while (i < range_types.size ())
16364 type = create_array_type_with_stride (NULL, type, range_types[i++],
16365 byte_stride_prop, bit_stride);
16369 size_t ndim = range_types.size ();
16371 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16372 byte_stride_prop, bit_stride);
16375 /* Understand Dwarf2 support for vector types (like they occur on
16376 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16377 array type. This is not part of the Dwarf2/3 standard yet, but a
16378 custom vendor extension. The main difference between a regular
16379 array and the vector variant is that vectors are passed by value
16381 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16383 make_vector_type (type);
16385 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16386 implementation may choose to implement triple vectors using this
16388 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16391 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16392 TYPE_LENGTH (type) = DW_UNSND (attr);
16394 complaint (_("DW_AT_byte_size for array type smaller "
16395 "than the total size of elements"));
16398 name = dwarf2_name (die, cu);
16400 TYPE_NAME (type) = name;
16402 maybe_set_alignment (cu, die, type);
16404 /* Install the type in the die. */
16405 set_die_type (die, type, cu);
16407 /* set_die_type should be already done. */
16408 set_descriptive_type (type, die, cu);
16413 static enum dwarf_array_dim_ordering
16414 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16416 struct attribute *attr;
16418 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16421 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16423 /* GNU F77 is a special case, as at 08/2004 array type info is the
16424 opposite order to the dwarf2 specification, but data is still
16425 laid out as per normal fortran.
16427 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16428 version checking. */
16430 if (cu->language == language_fortran
16431 && cu->producer && strstr (cu->producer, "GNU F77"))
16433 return DW_ORD_row_major;
16436 switch (cu->language_defn->la_array_ordering)
16438 case array_column_major:
16439 return DW_ORD_col_major;
16440 case array_row_major:
16442 return DW_ORD_row_major;
16446 /* Extract all information from a DW_TAG_set_type DIE and put it in
16447 the DIE's type field. */
16449 static struct type *
16450 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16452 struct type *domain_type, *set_type;
16453 struct attribute *attr;
16455 domain_type = die_type (die, cu);
16457 /* The die_type call above may have already set the type for this DIE. */
16458 set_type = get_die_type (die, cu);
16462 set_type = create_set_type (NULL, domain_type);
16464 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16466 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16468 maybe_set_alignment (cu, die, set_type);
16470 return set_die_type (die, set_type, cu);
16473 /* A helper for read_common_block that creates a locexpr baton.
16474 SYM is the symbol which we are marking as computed.
16475 COMMON_DIE is the DIE for the common block.
16476 COMMON_LOC is the location expression attribute for the common
16478 MEMBER_LOC is the location expression attribute for the particular
16479 member of the common block that we are processing.
16480 CU is the CU from which the above come. */
16483 mark_common_block_symbol_computed (struct symbol *sym,
16484 struct die_info *common_die,
16485 struct attribute *common_loc,
16486 struct attribute *member_loc,
16487 struct dwarf2_cu *cu)
16489 struct dwarf2_per_objfile *dwarf2_per_objfile
16490 = cu->per_cu->dwarf2_per_objfile;
16491 struct objfile *objfile = dwarf2_per_objfile->objfile;
16492 struct dwarf2_locexpr_baton *baton;
16494 unsigned int cu_off;
16495 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16496 LONGEST offset = 0;
16498 gdb_assert (common_loc && member_loc);
16499 gdb_assert (attr_form_is_block (common_loc));
16500 gdb_assert (attr_form_is_block (member_loc)
16501 || attr_form_is_constant (member_loc));
16503 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16504 baton->per_cu = cu->per_cu;
16505 gdb_assert (baton->per_cu);
16507 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16509 if (attr_form_is_constant (member_loc))
16511 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16512 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16515 baton->size += DW_BLOCK (member_loc)->size;
16517 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16520 *ptr++ = DW_OP_call4;
16521 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16522 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16525 if (attr_form_is_constant (member_loc))
16527 *ptr++ = DW_OP_addr;
16528 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16529 ptr += cu->header.addr_size;
16533 /* We have to copy the data here, because DW_OP_call4 will only
16534 use a DW_AT_location attribute. */
16535 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16536 ptr += DW_BLOCK (member_loc)->size;
16539 *ptr++ = DW_OP_plus;
16540 gdb_assert (ptr - baton->data == baton->size);
16542 SYMBOL_LOCATION_BATON (sym) = baton;
16543 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16546 /* Create appropriate locally-scoped variables for all the
16547 DW_TAG_common_block entries. Also create a struct common_block
16548 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16549 is used to sepate the common blocks name namespace from regular
16553 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16555 struct attribute *attr;
16557 attr = dwarf2_attr (die, DW_AT_location, cu);
16560 /* Support the .debug_loc offsets. */
16561 if (attr_form_is_block (attr))
16565 else if (attr_form_is_section_offset (attr))
16567 dwarf2_complex_location_expr_complaint ();
16572 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16573 "common block member");
16578 if (die->child != NULL)
16580 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16581 struct die_info *child_die;
16582 size_t n_entries = 0, size;
16583 struct common_block *common_block;
16584 struct symbol *sym;
16586 for (child_die = die->child;
16587 child_die && child_die->tag;
16588 child_die = sibling_die (child_die))
16591 size = (sizeof (struct common_block)
16592 + (n_entries - 1) * sizeof (struct symbol *));
16594 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16596 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16597 common_block->n_entries = 0;
16599 for (child_die = die->child;
16600 child_die && child_die->tag;
16601 child_die = sibling_die (child_die))
16603 /* Create the symbol in the DW_TAG_common_block block in the current
16605 sym = new_symbol (child_die, NULL, cu);
16608 struct attribute *member_loc;
16610 common_block->contents[common_block->n_entries++] = sym;
16612 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16616 /* GDB has handled this for a long time, but it is
16617 not specified by DWARF. It seems to have been
16618 emitted by gfortran at least as recently as:
16619 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16620 complaint (_("Variable in common block has "
16621 "DW_AT_data_member_location "
16622 "- DIE at %s [in module %s]"),
16623 sect_offset_str (child_die->sect_off),
16624 objfile_name (objfile));
16626 if (attr_form_is_section_offset (member_loc))
16627 dwarf2_complex_location_expr_complaint ();
16628 else if (attr_form_is_constant (member_loc)
16629 || attr_form_is_block (member_loc))
16632 mark_common_block_symbol_computed (sym, die, attr,
16636 dwarf2_complex_location_expr_complaint ();
16641 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16642 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16646 /* Create a type for a C++ namespace. */
16648 static struct type *
16649 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16651 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16652 const char *previous_prefix, *name;
16656 /* For extensions, reuse the type of the original namespace. */
16657 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16659 struct die_info *ext_die;
16660 struct dwarf2_cu *ext_cu = cu;
16662 ext_die = dwarf2_extension (die, &ext_cu);
16663 type = read_type_die (ext_die, ext_cu);
16665 /* EXT_CU may not be the same as CU.
16666 Ensure TYPE is recorded with CU in die_type_hash. */
16667 return set_die_type (die, type, cu);
16670 name = namespace_name (die, &is_anonymous, cu);
16672 /* Now build the name of the current namespace. */
16674 previous_prefix = determine_prefix (die, cu);
16675 if (previous_prefix[0] != '\0')
16676 name = typename_concat (&objfile->objfile_obstack,
16677 previous_prefix, name, 0, cu);
16679 /* Create the type. */
16680 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16682 return set_die_type (die, type, cu);
16685 /* Read a namespace scope. */
16688 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16690 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16693 /* Add a symbol associated to this if we haven't seen the namespace
16694 before. Also, add a using directive if it's an anonymous
16697 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16701 type = read_type_die (die, cu);
16702 new_symbol (die, type, cu);
16704 namespace_name (die, &is_anonymous, cu);
16707 const char *previous_prefix = determine_prefix (die, cu);
16709 std::vector<const char *> excludes;
16710 add_using_directive (using_directives (cu->language),
16711 previous_prefix, TYPE_NAME (type), NULL,
16712 NULL, excludes, 0, &objfile->objfile_obstack);
16716 if (die->child != NULL)
16718 struct die_info *child_die = die->child;
16720 while (child_die && child_die->tag)
16722 process_die (child_die, cu);
16723 child_die = sibling_die (child_die);
16728 /* Read a Fortran module as type. This DIE can be only a declaration used for
16729 imported module. Still we need that type as local Fortran "use ... only"
16730 declaration imports depend on the created type in determine_prefix. */
16732 static struct type *
16733 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16735 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16736 const char *module_name;
16739 module_name = dwarf2_name (die, cu);
16741 complaint (_("DW_TAG_module has no name, offset %s"),
16742 sect_offset_str (die->sect_off));
16743 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16745 return set_die_type (die, type, cu);
16748 /* Read a Fortran module. */
16751 read_module (struct die_info *die, struct dwarf2_cu *cu)
16753 struct die_info *child_die = die->child;
16756 type = read_type_die (die, cu);
16757 new_symbol (die, type, cu);
16759 while (child_die && child_die->tag)
16761 process_die (child_die, cu);
16762 child_die = sibling_die (child_die);
16766 /* Return the name of the namespace represented by DIE. Set
16767 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16770 static const char *
16771 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16773 struct die_info *current_die;
16774 const char *name = NULL;
16776 /* Loop through the extensions until we find a name. */
16778 for (current_die = die;
16779 current_die != NULL;
16780 current_die = dwarf2_extension (die, &cu))
16782 /* We don't use dwarf2_name here so that we can detect the absence
16783 of a name -> anonymous namespace. */
16784 name = dwarf2_string_attr (die, DW_AT_name, cu);
16790 /* Is it an anonymous namespace? */
16792 *is_anonymous = (name == NULL);
16794 name = CP_ANONYMOUS_NAMESPACE_STR;
16799 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16800 the user defined type vector. */
16802 static struct type *
16803 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16805 struct gdbarch *gdbarch
16806 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16807 struct comp_unit_head *cu_header = &cu->header;
16809 struct attribute *attr_byte_size;
16810 struct attribute *attr_address_class;
16811 int byte_size, addr_class;
16812 struct type *target_type;
16814 target_type = die_type (die, cu);
16816 /* The die_type call above may have already set the type for this DIE. */
16817 type = get_die_type (die, cu);
16821 type = lookup_pointer_type (target_type);
16823 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16824 if (attr_byte_size)
16825 byte_size = DW_UNSND (attr_byte_size);
16827 byte_size = cu_header->addr_size;
16829 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16830 if (attr_address_class)
16831 addr_class = DW_UNSND (attr_address_class);
16833 addr_class = DW_ADDR_none;
16835 ULONGEST alignment = get_alignment (cu, die);
16837 /* If the pointer size, alignment, or address class is different
16838 than the default, create a type variant marked as such and set
16839 the length accordingly. */
16840 if (TYPE_LENGTH (type) != byte_size
16841 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16842 && alignment != TYPE_RAW_ALIGN (type))
16843 || addr_class != DW_ADDR_none)
16845 if (gdbarch_address_class_type_flags_p (gdbarch))
16849 type_flags = gdbarch_address_class_type_flags
16850 (gdbarch, byte_size, addr_class);
16851 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16853 type = make_type_with_address_space (type, type_flags);
16855 else if (TYPE_LENGTH (type) != byte_size)
16857 complaint (_("invalid pointer size %d"), byte_size);
16859 else if (TYPE_RAW_ALIGN (type) != alignment)
16861 complaint (_("Invalid DW_AT_alignment"
16862 " - DIE at %s [in module %s]"),
16863 sect_offset_str (die->sect_off),
16864 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16868 /* Should we also complain about unhandled address classes? */
16872 TYPE_LENGTH (type) = byte_size;
16873 set_type_align (type, alignment);
16874 return set_die_type (die, type, cu);
16877 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16878 the user defined type vector. */
16880 static struct type *
16881 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16884 struct type *to_type;
16885 struct type *domain;
16887 to_type = die_type (die, cu);
16888 domain = die_containing_type (die, cu);
16890 /* The calls above may have already set the type for this DIE. */
16891 type = get_die_type (die, cu);
16895 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16896 type = lookup_methodptr_type (to_type);
16897 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16899 struct type *new_type
16900 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16902 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16903 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16904 TYPE_VARARGS (to_type));
16905 type = lookup_methodptr_type (new_type);
16908 type = lookup_memberptr_type (to_type, domain);
16910 return set_die_type (die, type, cu);
16913 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16914 the user defined type vector. */
16916 static struct type *
16917 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16918 enum type_code refcode)
16920 struct comp_unit_head *cu_header = &cu->header;
16921 struct type *type, *target_type;
16922 struct attribute *attr;
16924 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16926 target_type = die_type (die, cu);
16928 /* The die_type call above may have already set the type for this DIE. */
16929 type = get_die_type (die, cu);
16933 type = lookup_reference_type (target_type, refcode);
16934 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16937 TYPE_LENGTH (type) = DW_UNSND (attr);
16941 TYPE_LENGTH (type) = cu_header->addr_size;
16943 maybe_set_alignment (cu, die, type);
16944 return set_die_type (die, type, cu);
16947 /* Add the given cv-qualifiers to the element type of the array. GCC
16948 outputs DWARF type qualifiers that apply to an array, not the
16949 element type. But GDB relies on the array element type to carry
16950 the cv-qualifiers. This mimics section 6.7.3 of the C99
16953 static struct type *
16954 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16955 struct type *base_type, int cnst, int voltl)
16957 struct type *el_type, *inner_array;
16959 base_type = copy_type (base_type);
16960 inner_array = base_type;
16962 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16964 TYPE_TARGET_TYPE (inner_array) =
16965 copy_type (TYPE_TARGET_TYPE (inner_array));
16966 inner_array = TYPE_TARGET_TYPE (inner_array);
16969 el_type = TYPE_TARGET_TYPE (inner_array);
16970 cnst |= TYPE_CONST (el_type);
16971 voltl |= TYPE_VOLATILE (el_type);
16972 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16974 return set_die_type (die, base_type, cu);
16977 static struct type *
16978 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16980 struct type *base_type, *cv_type;
16982 base_type = die_type (die, cu);
16984 /* The die_type call above may have already set the type for this DIE. */
16985 cv_type = get_die_type (die, cu);
16989 /* In case the const qualifier is applied to an array type, the element type
16990 is so qualified, not the array type (section 6.7.3 of C99). */
16991 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16992 return add_array_cv_type (die, cu, base_type, 1, 0);
16994 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16995 return set_die_type (die, cv_type, cu);
16998 static struct type *
16999 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17001 struct type *base_type, *cv_type;
17003 base_type = die_type (die, cu);
17005 /* The die_type call above may have already set the type for this DIE. */
17006 cv_type = get_die_type (die, cu);
17010 /* In case the volatile qualifier is applied to an array type, the
17011 element type is so qualified, not the array type (section 6.7.3
17013 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17014 return add_array_cv_type (die, cu, base_type, 0, 1);
17016 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17017 return set_die_type (die, cv_type, cu);
17020 /* Handle DW_TAG_restrict_type. */
17022 static struct type *
17023 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17025 struct type *base_type, *cv_type;
17027 base_type = die_type (die, cu);
17029 /* The die_type call above may have already set the type for this DIE. */
17030 cv_type = get_die_type (die, cu);
17034 cv_type = make_restrict_type (base_type);
17035 return set_die_type (die, cv_type, cu);
17038 /* Handle DW_TAG_atomic_type. */
17040 static struct type *
17041 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17043 struct type *base_type, *cv_type;
17045 base_type = die_type (die, cu);
17047 /* The die_type call above may have already set the type for this DIE. */
17048 cv_type = get_die_type (die, cu);
17052 cv_type = make_atomic_type (base_type);
17053 return set_die_type (die, cv_type, cu);
17056 /* Extract all information from a DW_TAG_string_type DIE and add to
17057 the user defined type vector. It isn't really a user defined type,
17058 but it behaves like one, with other DIE's using an AT_user_def_type
17059 attribute to reference it. */
17061 static struct type *
17062 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17064 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17066 struct type *type, *range_type, *index_type, *char_type;
17067 struct attribute *attr;
17068 unsigned int length;
17070 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17073 length = DW_UNSND (attr);
17077 /* Check for the DW_AT_byte_size attribute. */
17078 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17081 length = DW_UNSND (attr);
17089 index_type = objfile_type (objfile)->builtin_int;
17090 range_type = create_static_range_type (NULL, index_type, 1, length);
17091 char_type = language_string_char_type (cu->language_defn, gdbarch);
17092 type = create_string_type (NULL, char_type, range_type);
17094 return set_die_type (die, type, cu);
17097 /* Assuming that DIE corresponds to a function, returns nonzero
17098 if the function is prototyped. */
17101 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17103 struct attribute *attr;
17105 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17106 if (attr && (DW_UNSND (attr) != 0))
17109 /* The DWARF standard implies that the DW_AT_prototyped attribute
17110 is only meaninful for C, but the concept also extends to other
17111 languages that allow unprototyped functions (Eg: Objective C).
17112 For all other languages, assume that functions are always
17114 if (cu->language != language_c
17115 && cu->language != language_objc
17116 && cu->language != language_opencl)
17119 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17120 prototyped and unprototyped functions; default to prototyped,
17121 since that is more common in modern code (and RealView warns
17122 about unprototyped functions). */
17123 if (producer_is_realview (cu->producer))
17129 /* Handle DIES due to C code like:
17133 int (*funcp)(int a, long l);
17137 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17139 static struct type *
17140 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17142 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17143 struct type *type; /* Type that this function returns. */
17144 struct type *ftype; /* Function that returns above type. */
17145 struct attribute *attr;
17147 type = die_type (die, cu);
17149 /* The die_type call above may have already set the type for this DIE. */
17150 ftype = get_die_type (die, cu);
17154 ftype = lookup_function_type (type);
17156 if (prototyped_function_p (die, cu))
17157 TYPE_PROTOTYPED (ftype) = 1;
17159 /* Store the calling convention in the type if it's available in
17160 the subroutine die. Otherwise set the calling convention to
17161 the default value DW_CC_normal. */
17162 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17164 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17165 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17166 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17168 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17170 /* Record whether the function returns normally to its caller or not
17171 if the DWARF producer set that information. */
17172 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17173 if (attr && (DW_UNSND (attr) != 0))
17174 TYPE_NO_RETURN (ftype) = 1;
17176 /* We need to add the subroutine type to the die immediately so
17177 we don't infinitely recurse when dealing with parameters
17178 declared as the same subroutine type. */
17179 set_die_type (die, ftype, cu);
17181 if (die->child != NULL)
17183 struct type *void_type = objfile_type (objfile)->builtin_void;
17184 struct die_info *child_die;
17185 int nparams, iparams;
17187 /* Count the number of parameters.
17188 FIXME: GDB currently ignores vararg functions, but knows about
17189 vararg member functions. */
17191 child_die = die->child;
17192 while (child_die && child_die->tag)
17194 if (child_die->tag == DW_TAG_formal_parameter)
17196 else if (child_die->tag == DW_TAG_unspecified_parameters)
17197 TYPE_VARARGS (ftype) = 1;
17198 child_die = sibling_die (child_die);
17201 /* Allocate storage for parameters and fill them in. */
17202 TYPE_NFIELDS (ftype) = nparams;
17203 TYPE_FIELDS (ftype) = (struct field *)
17204 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17206 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17207 even if we error out during the parameters reading below. */
17208 for (iparams = 0; iparams < nparams; iparams++)
17209 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17212 child_die = die->child;
17213 while (child_die && child_die->tag)
17215 if (child_die->tag == DW_TAG_formal_parameter)
17217 struct type *arg_type;
17219 /* DWARF version 2 has no clean way to discern C++
17220 static and non-static member functions. G++ helps
17221 GDB by marking the first parameter for non-static
17222 member functions (which is the this pointer) as
17223 artificial. We pass this information to
17224 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17226 DWARF version 3 added DW_AT_object_pointer, which GCC
17227 4.5 does not yet generate. */
17228 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17230 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17232 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17233 arg_type = die_type (child_die, cu);
17235 /* RealView does not mark THIS as const, which the testsuite
17236 expects. GCC marks THIS as const in method definitions,
17237 but not in the class specifications (GCC PR 43053). */
17238 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17239 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17242 struct dwarf2_cu *arg_cu = cu;
17243 const char *name = dwarf2_name (child_die, cu);
17245 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17248 /* If the compiler emits this, use it. */
17249 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17252 else if (name && strcmp (name, "this") == 0)
17253 /* Function definitions will have the argument names. */
17255 else if (name == NULL && iparams == 0)
17256 /* Declarations may not have the names, so like
17257 elsewhere in GDB, assume an artificial first
17258 argument is "this". */
17262 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17266 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17269 child_die = sibling_die (child_die);
17276 static struct type *
17277 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17279 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17280 const char *name = NULL;
17281 struct type *this_type, *target_type;
17283 name = dwarf2_full_name (NULL, die, cu);
17284 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17285 TYPE_TARGET_STUB (this_type) = 1;
17286 set_die_type (die, this_type, cu);
17287 target_type = die_type (die, cu);
17288 if (target_type != this_type)
17289 TYPE_TARGET_TYPE (this_type) = target_type;
17292 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17293 spec and cause infinite loops in GDB. */
17294 complaint (_("Self-referential DW_TAG_typedef "
17295 "- DIE at %s [in module %s]"),
17296 sect_offset_str (die->sect_off), objfile_name (objfile));
17297 TYPE_TARGET_TYPE (this_type) = NULL;
17302 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17303 (which may be different from NAME) to the architecture back-end to allow
17304 it to guess the correct format if necessary. */
17306 static struct type *
17307 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17308 const char *name_hint)
17310 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17311 const struct floatformat **format;
17314 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17316 type = init_float_type (objfile, bits, name, format);
17318 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17323 /* Find a representation of a given base type and install
17324 it in the TYPE field of the die. */
17326 static struct type *
17327 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17329 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17331 struct attribute *attr;
17332 int encoding = 0, bits = 0;
17335 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17338 encoding = DW_UNSND (attr);
17340 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17343 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17345 name = dwarf2_name (die, cu);
17348 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17353 case DW_ATE_address:
17354 /* Turn DW_ATE_address into a void * pointer. */
17355 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17356 type = init_pointer_type (objfile, bits, name, type);
17358 case DW_ATE_boolean:
17359 type = init_boolean_type (objfile, bits, 1, name);
17361 case DW_ATE_complex_float:
17362 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17363 type = init_complex_type (objfile, name, type);
17365 case DW_ATE_decimal_float:
17366 type = init_decfloat_type (objfile, bits, name);
17369 type = dwarf2_init_float_type (objfile, bits, name, name);
17371 case DW_ATE_signed:
17372 type = init_integer_type (objfile, bits, 0, name);
17374 case DW_ATE_unsigned:
17375 if (cu->language == language_fortran
17377 && startswith (name, "character("))
17378 type = init_character_type (objfile, bits, 1, name);
17380 type = init_integer_type (objfile, bits, 1, name);
17382 case DW_ATE_signed_char:
17383 if (cu->language == language_ada || cu->language == language_m2
17384 || cu->language == language_pascal
17385 || cu->language == language_fortran)
17386 type = init_character_type (objfile, bits, 0, name);
17388 type = init_integer_type (objfile, bits, 0, name);
17390 case DW_ATE_unsigned_char:
17391 if (cu->language == language_ada || cu->language == language_m2
17392 || cu->language == language_pascal
17393 || cu->language == language_fortran
17394 || cu->language == language_rust)
17395 type = init_character_type (objfile, bits, 1, name);
17397 type = init_integer_type (objfile, bits, 1, name);
17401 gdbarch *arch = get_objfile_arch (objfile);
17404 type = builtin_type (arch)->builtin_char16;
17405 else if (bits == 32)
17406 type = builtin_type (arch)->builtin_char32;
17409 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17411 type = init_integer_type (objfile, bits, 1, name);
17413 return set_die_type (die, type, cu);
17418 complaint (_("unsupported DW_AT_encoding: '%s'"),
17419 dwarf_type_encoding_name (encoding));
17420 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17424 if (name && strcmp (name, "char") == 0)
17425 TYPE_NOSIGN (type) = 1;
17427 maybe_set_alignment (cu, die, type);
17429 return set_die_type (die, type, cu);
17432 /* Parse dwarf attribute if it's a block, reference or constant and put the
17433 resulting value of the attribute into struct bound_prop.
17434 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17437 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17438 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17440 struct dwarf2_property_baton *baton;
17441 struct obstack *obstack
17442 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17444 if (attr == NULL || prop == NULL)
17447 if (attr_form_is_block (attr))
17449 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17450 baton->referenced_type = NULL;
17451 baton->locexpr.per_cu = cu->per_cu;
17452 baton->locexpr.size = DW_BLOCK (attr)->size;
17453 baton->locexpr.data = DW_BLOCK (attr)->data;
17454 prop->data.baton = baton;
17455 prop->kind = PROP_LOCEXPR;
17456 gdb_assert (prop->data.baton != NULL);
17458 else if (attr_form_is_ref (attr))
17460 struct dwarf2_cu *target_cu = cu;
17461 struct die_info *target_die;
17462 struct attribute *target_attr;
17464 target_die = follow_die_ref (die, attr, &target_cu);
17465 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17466 if (target_attr == NULL)
17467 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17469 if (target_attr == NULL)
17472 switch (target_attr->name)
17474 case DW_AT_location:
17475 if (attr_form_is_section_offset (target_attr))
17477 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17478 baton->referenced_type = die_type (target_die, target_cu);
17479 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17480 prop->data.baton = baton;
17481 prop->kind = PROP_LOCLIST;
17482 gdb_assert (prop->data.baton != NULL);
17484 else if (attr_form_is_block (target_attr))
17486 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17487 baton->referenced_type = die_type (target_die, target_cu);
17488 baton->locexpr.per_cu = cu->per_cu;
17489 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17490 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17491 prop->data.baton = baton;
17492 prop->kind = PROP_LOCEXPR;
17493 gdb_assert (prop->data.baton != NULL);
17497 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17498 "dynamic property");
17502 case DW_AT_data_member_location:
17506 if (!handle_data_member_location (target_die, target_cu,
17510 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17511 baton->referenced_type = read_type_die (target_die->parent,
17513 baton->offset_info.offset = offset;
17514 baton->offset_info.type = die_type (target_die, target_cu);
17515 prop->data.baton = baton;
17516 prop->kind = PROP_ADDR_OFFSET;
17521 else if (attr_form_is_constant (attr))
17523 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17524 prop->kind = PROP_CONST;
17528 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17529 dwarf2_name (die, cu));
17536 /* Read the given DW_AT_subrange DIE. */
17538 static struct type *
17539 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17541 struct type *base_type, *orig_base_type;
17542 struct type *range_type;
17543 struct attribute *attr;
17544 struct dynamic_prop low, high;
17545 int low_default_is_valid;
17546 int high_bound_is_count = 0;
17548 LONGEST negative_mask;
17550 orig_base_type = die_type (die, cu);
17551 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17552 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17553 creating the range type, but we use the result of check_typedef
17554 when examining properties of the type. */
17555 base_type = check_typedef (orig_base_type);
17557 /* The die_type call above may have already set the type for this DIE. */
17558 range_type = get_die_type (die, cu);
17562 low.kind = PROP_CONST;
17563 high.kind = PROP_CONST;
17564 high.data.const_val = 0;
17566 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17567 omitting DW_AT_lower_bound. */
17568 switch (cu->language)
17571 case language_cplus:
17572 low.data.const_val = 0;
17573 low_default_is_valid = 1;
17575 case language_fortran:
17576 low.data.const_val = 1;
17577 low_default_is_valid = 1;
17580 case language_objc:
17581 case language_rust:
17582 low.data.const_val = 0;
17583 low_default_is_valid = (cu->header.version >= 4);
17587 case language_pascal:
17588 low.data.const_val = 1;
17589 low_default_is_valid = (cu->header.version >= 4);
17592 low.data.const_val = 0;
17593 low_default_is_valid = 0;
17597 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17599 attr_to_dynamic_prop (attr, die, cu, &low);
17600 else if (!low_default_is_valid)
17601 complaint (_("Missing DW_AT_lower_bound "
17602 "- DIE at %s [in module %s]"),
17603 sect_offset_str (die->sect_off),
17604 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17606 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17607 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17609 attr = dwarf2_attr (die, DW_AT_count, cu);
17610 if (attr_to_dynamic_prop (attr, die, cu, &high))
17612 /* If bounds are constant do the final calculation here. */
17613 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17614 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17616 high_bound_is_count = 1;
17620 /* Dwarf-2 specifications explicitly allows to create subrange types
17621 without specifying a base type.
17622 In that case, the base type must be set to the type of
17623 the lower bound, upper bound or count, in that order, if any of these
17624 three attributes references an object that has a type.
17625 If no base type is found, the Dwarf-2 specifications say that
17626 a signed integer type of size equal to the size of an address should
17628 For the following C code: `extern char gdb_int [];'
17629 GCC produces an empty range DIE.
17630 FIXME: muller/2010-05-28: Possible references to object for low bound,
17631 high bound or count are not yet handled by this code. */
17632 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17634 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17635 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17636 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17637 struct type *int_type = objfile_type (objfile)->builtin_int;
17639 /* Test "int", "long int", and "long long int" objfile types,
17640 and select the first one having a size above or equal to the
17641 architecture address size. */
17642 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17643 base_type = int_type;
17646 int_type = objfile_type (objfile)->builtin_long;
17647 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17648 base_type = int_type;
17651 int_type = objfile_type (objfile)->builtin_long_long;
17652 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17653 base_type = int_type;
17658 /* Normally, the DWARF producers are expected to use a signed
17659 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17660 But this is unfortunately not always the case, as witnessed
17661 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17662 is used instead. To work around that ambiguity, we treat
17663 the bounds as signed, and thus sign-extend their values, when
17664 the base type is signed. */
17666 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17667 if (low.kind == PROP_CONST
17668 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17669 low.data.const_val |= negative_mask;
17670 if (high.kind == PROP_CONST
17671 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17672 high.data.const_val |= negative_mask;
17674 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17676 if (high_bound_is_count)
17677 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17679 /* Ada expects an empty array on no boundary attributes. */
17680 if (attr == NULL && cu->language != language_ada)
17681 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17683 name = dwarf2_name (die, cu);
17685 TYPE_NAME (range_type) = name;
17687 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17689 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17691 maybe_set_alignment (cu, die, range_type);
17693 set_die_type (die, range_type, cu);
17695 /* set_die_type should be already done. */
17696 set_descriptive_type (range_type, die, cu);
17701 static struct type *
17702 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17706 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17708 TYPE_NAME (type) = dwarf2_name (die, cu);
17710 /* In Ada, an unspecified type is typically used when the description
17711 of the type is defered to a different unit. When encountering
17712 such a type, we treat it as a stub, and try to resolve it later on,
17714 if (cu->language == language_ada)
17715 TYPE_STUB (type) = 1;
17717 return set_die_type (die, type, cu);
17720 /* Read a single die and all its descendents. Set the die's sibling
17721 field to NULL; set other fields in the die correctly, and set all
17722 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17723 location of the info_ptr after reading all of those dies. PARENT
17724 is the parent of the die in question. */
17726 static struct die_info *
17727 read_die_and_children (const struct die_reader_specs *reader,
17728 const gdb_byte *info_ptr,
17729 const gdb_byte **new_info_ptr,
17730 struct die_info *parent)
17732 struct die_info *die;
17733 const gdb_byte *cur_ptr;
17736 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17739 *new_info_ptr = cur_ptr;
17742 store_in_ref_table (die, reader->cu);
17745 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17749 *new_info_ptr = cur_ptr;
17752 die->sibling = NULL;
17753 die->parent = parent;
17757 /* Read a die, all of its descendents, and all of its siblings; set
17758 all of the fields of all of the dies correctly. Arguments are as
17759 in read_die_and_children. */
17761 static struct die_info *
17762 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17763 const gdb_byte *info_ptr,
17764 const gdb_byte **new_info_ptr,
17765 struct die_info *parent)
17767 struct die_info *first_die, *last_sibling;
17768 const gdb_byte *cur_ptr;
17770 cur_ptr = info_ptr;
17771 first_die = last_sibling = NULL;
17775 struct die_info *die
17776 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17780 *new_info_ptr = cur_ptr;
17787 last_sibling->sibling = die;
17789 last_sibling = die;
17793 /* Read a die, all of its descendents, and all of its siblings; set
17794 all of the fields of all of the dies correctly. Arguments are as
17795 in read_die_and_children.
17796 This the main entry point for reading a DIE and all its children. */
17798 static struct die_info *
17799 read_die_and_siblings (const struct die_reader_specs *reader,
17800 const gdb_byte *info_ptr,
17801 const gdb_byte **new_info_ptr,
17802 struct die_info *parent)
17804 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17805 new_info_ptr, parent);
17807 if (dwarf_die_debug)
17809 fprintf_unfiltered (gdb_stdlog,
17810 "Read die from %s@0x%x of %s:\n",
17811 get_section_name (reader->die_section),
17812 (unsigned) (info_ptr - reader->die_section->buffer),
17813 bfd_get_filename (reader->abfd));
17814 dump_die (die, dwarf_die_debug);
17820 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17822 The caller is responsible for filling in the extra attributes
17823 and updating (*DIEP)->num_attrs.
17824 Set DIEP to point to a newly allocated die with its information,
17825 except for its child, sibling, and parent fields.
17826 Set HAS_CHILDREN to tell whether the die has children or not. */
17828 static const gdb_byte *
17829 read_full_die_1 (const struct die_reader_specs *reader,
17830 struct die_info **diep, const gdb_byte *info_ptr,
17831 int *has_children, int num_extra_attrs)
17833 unsigned int abbrev_number, bytes_read, i;
17834 struct abbrev_info *abbrev;
17835 struct die_info *die;
17836 struct dwarf2_cu *cu = reader->cu;
17837 bfd *abfd = reader->abfd;
17839 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17840 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17841 info_ptr += bytes_read;
17842 if (!abbrev_number)
17849 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17851 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17853 bfd_get_filename (abfd));
17855 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17856 die->sect_off = sect_off;
17857 die->tag = abbrev->tag;
17858 die->abbrev = abbrev_number;
17860 /* Make the result usable.
17861 The caller needs to update num_attrs after adding the extra
17863 die->num_attrs = abbrev->num_attrs;
17865 for (i = 0; i < abbrev->num_attrs; ++i)
17866 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17870 *has_children = abbrev->has_children;
17874 /* Read a die and all its attributes.
17875 Set DIEP to point to a newly allocated die with its information,
17876 except for its child, sibling, and parent fields.
17877 Set HAS_CHILDREN to tell whether the die has children or not. */
17879 static const gdb_byte *
17880 read_full_die (const struct die_reader_specs *reader,
17881 struct die_info **diep, const gdb_byte *info_ptr,
17884 const gdb_byte *result;
17886 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17888 if (dwarf_die_debug)
17890 fprintf_unfiltered (gdb_stdlog,
17891 "Read die from %s@0x%x of %s:\n",
17892 get_section_name (reader->die_section),
17893 (unsigned) (info_ptr - reader->die_section->buffer),
17894 bfd_get_filename (reader->abfd));
17895 dump_die (*diep, dwarf_die_debug);
17901 /* Abbreviation tables.
17903 In DWARF version 2, the description of the debugging information is
17904 stored in a separate .debug_abbrev section. Before we read any
17905 dies from a section we read in all abbreviations and install them
17906 in a hash table. */
17908 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17910 struct abbrev_info *
17911 abbrev_table::alloc_abbrev ()
17913 struct abbrev_info *abbrev;
17915 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17916 memset (abbrev, 0, sizeof (struct abbrev_info));
17921 /* Add an abbreviation to the table. */
17924 abbrev_table::add_abbrev (unsigned int abbrev_number,
17925 struct abbrev_info *abbrev)
17927 unsigned int hash_number;
17929 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17930 abbrev->next = m_abbrevs[hash_number];
17931 m_abbrevs[hash_number] = abbrev;
17934 /* Look up an abbrev in the table.
17935 Returns NULL if the abbrev is not found. */
17937 struct abbrev_info *
17938 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17940 unsigned int hash_number;
17941 struct abbrev_info *abbrev;
17943 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17944 abbrev = m_abbrevs[hash_number];
17948 if (abbrev->number == abbrev_number)
17950 abbrev = abbrev->next;
17955 /* Read in an abbrev table. */
17957 static abbrev_table_up
17958 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17959 struct dwarf2_section_info *section,
17960 sect_offset sect_off)
17962 struct objfile *objfile = dwarf2_per_objfile->objfile;
17963 bfd *abfd = get_section_bfd_owner (section);
17964 const gdb_byte *abbrev_ptr;
17965 struct abbrev_info *cur_abbrev;
17966 unsigned int abbrev_number, bytes_read, abbrev_name;
17967 unsigned int abbrev_form;
17968 struct attr_abbrev *cur_attrs;
17969 unsigned int allocated_attrs;
17971 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17973 dwarf2_read_section (objfile, section);
17974 abbrev_ptr = section->buffer + to_underlying (sect_off);
17975 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17976 abbrev_ptr += bytes_read;
17978 allocated_attrs = ATTR_ALLOC_CHUNK;
17979 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17981 /* Loop until we reach an abbrev number of 0. */
17982 while (abbrev_number)
17984 cur_abbrev = abbrev_table->alloc_abbrev ();
17986 /* read in abbrev header */
17987 cur_abbrev->number = abbrev_number;
17989 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17990 abbrev_ptr += bytes_read;
17991 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17994 /* now read in declarations */
17997 LONGEST implicit_const;
17999 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18000 abbrev_ptr += bytes_read;
18001 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18002 abbrev_ptr += bytes_read;
18003 if (abbrev_form == DW_FORM_implicit_const)
18005 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18007 abbrev_ptr += bytes_read;
18011 /* Initialize it due to a false compiler warning. */
18012 implicit_const = -1;
18015 if (abbrev_name == 0)
18018 if (cur_abbrev->num_attrs == allocated_attrs)
18020 allocated_attrs += ATTR_ALLOC_CHUNK;
18022 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18025 cur_attrs[cur_abbrev->num_attrs].name
18026 = (enum dwarf_attribute) abbrev_name;
18027 cur_attrs[cur_abbrev->num_attrs].form
18028 = (enum dwarf_form) abbrev_form;
18029 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18030 ++cur_abbrev->num_attrs;
18033 cur_abbrev->attrs =
18034 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18035 cur_abbrev->num_attrs);
18036 memcpy (cur_abbrev->attrs, cur_attrs,
18037 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18039 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18041 /* Get next abbreviation.
18042 Under Irix6 the abbreviations for a compilation unit are not
18043 always properly terminated with an abbrev number of 0.
18044 Exit loop if we encounter an abbreviation which we have
18045 already read (which means we are about to read the abbreviations
18046 for the next compile unit) or if the end of the abbreviation
18047 table is reached. */
18048 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18050 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18051 abbrev_ptr += bytes_read;
18052 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18057 return abbrev_table;
18060 /* Returns nonzero if TAG represents a type that we might generate a partial
18064 is_type_tag_for_partial (int tag)
18069 /* Some types that would be reasonable to generate partial symbols for,
18070 that we don't at present. */
18071 case DW_TAG_array_type:
18072 case DW_TAG_file_type:
18073 case DW_TAG_ptr_to_member_type:
18074 case DW_TAG_set_type:
18075 case DW_TAG_string_type:
18076 case DW_TAG_subroutine_type:
18078 case DW_TAG_base_type:
18079 case DW_TAG_class_type:
18080 case DW_TAG_interface_type:
18081 case DW_TAG_enumeration_type:
18082 case DW_TAG_structure_type:
18083 case DW_TAG_subrange_type:
18084 case DW_TAG_typedef:
18085 case DW_TAG_union_type:
18092 /* Load all DIEs that are interesting for partial symbols into memory. */
18094 static struct partial_die_info *
18095 load_partial_dies (const struct die_reader_specs *reader,
18096 const gdb_byte *info_ptr, int building_psymtab)
18098 struct dwarf2_cu *cu = reader->cu;
18099 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18100 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18101 unsigned int bytes_read;
18102 unsigned int load_all = 0;
18103 int nesting_level = 1;
18108 gdb_assert (cu->per_cu != NULL);
18109 if (cu->per_cu->load_all_dies)
18113 = htab_create_alloc_ex (cu->header.length / 12,
18117 &cu->comp_unit_obstack,
18118 hashtab_obstack_allocate,
18119 dummy_obstack_deallocate);
18123 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18125 /* A NULL abbrev means the end of a series of children. */
18126 if (abbrev == NULL)
18128 if (--nesting_level == 0)
18131 info_ptr += bytes_read;
18132 last_die = parent_die;
18133 parent_die = parent_die->die_parent;
18137 /* Check for template arguments. We never save these; if
18138 they're seen, we just mark the parent, and go on our way. */
18139 if (parent_die != NULL
18140 && cu->language == language_cplus
18141 && (abbrev->tag == DW_TAG_template_type_param
18142 || abbrev->tag == DW_TAG_template_value_param))
18144 parent_die->has_template_arguments = 1;
18148 /* We don't need a partial DIE for the template argument. */
18149 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18154 /* We only recurse into c++ subprograms looking for template arguments.
18155 Skip their other children. */
18157 && cu->language == language_cplus
18158 && parent_die != NULL
18159 && parent_die->tag == DW_TAG_subprogram)
18161 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18165 /* Check whether this DIE is interesting enough to save. Normally
18166 we would not be interested in members here, but there may be
18167 later variables referencing them via DW_AT_specification (for
18168 static members). */
18170 && !is_type_tag_for_partial (abbrev->tag)
18171 && abbrev->tag != DW_TAG_constant
18172 && abbrev->tag != DW_TAG_enumerator
18173 && abbrev->tag != DW_TAG_subprogram
18174 && abbrev->tag != DW_TAG_inlined_subroutine
18175 && abbrev->tag != DW_TAG_lexical_block
18176 && abbrev->tag != DW_TAG_variable
18177 && abbrev->tag != DW_TAG_namespace
18178 && abbrev->tag != DW_TAG_module
18179 && abbrev->tag != DW_TAG_member
18180 && abbrev->tag != DW_TAG_imported_unit
18181 && abbrev->tag != DW_TAG_imported_declaration)
18183 /* Otherwise we skip to the next sibling, if any. */
18184 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18188 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18191 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18193 /* This two-pass algorithm for processing partial symbols has a
18194 high cost in cache pressure. Thus, handle some simple cases
18195 here which cover the majority of C partial symbols. DIEs
18196 which neither have specification tags in them, nor could have
18197 specification tags elsewhere pointing at them, can simply be
18198 processed and discarded.
18200 This segment is also optional; scan_partial_symbols and
18201 add_partial_symbol will handle these DIEs if we chain
18202 them in normally. When compilers which do not emit large
18203 quantities of duplicate debug information are more common,
18204 this code can probably be removed. */
18206 /* Any complete simple types at the top level (pretty much all
18207 of them, for a language without namespaces), can be processed
18209 if (parent_die == NULL
18210 && pdi.has_specification == 0
18211 && pdi.is_declaration == 0
18212 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18213 || pdi.tag == DW_TAG_base_type
18214 || pdi.tag == DW_TAG_subrange_type))
18216 if (building_psymtab && pdi.name != NULL)
18217 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18218 VAR_DOMAIN, LOC_TYPEDEF,
18219 &objfile->static_psymbols,
18220 0, cu->language, objfile);
18221 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18225 /* The exception for DW_TAG_typedef with has_children above is
18226 a workaround of GCC PR debug/47510. In the case of this complaint
18227 type_name_no_tag_or_error will error on such types later.
18229 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18230 it could not find the child DIEs referenced later, this is checked
18231 above. In correct DWARF DW_TAG_typedef should have no children. */
18233 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18234 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18235 "- DIE at %s [in module %s]"),
18236 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18238 /* If we're at the second level, and we're an enumerator, and
18239 our parent has no specification (meaning possibly lives in a
18240 namespace elsewhere), then we can add the partial symbol now
18241 instead of queueing it. */
18242 if (pdi.tag == DW_TAG_enumerator
18243 && parent_die != NULL
18244 && parent_die->die_parent == NULL
18245 && parent_die->tag == DW_TAG_enumeration_type
18246 && parent_die->has_specification == 0)
18248 if (pdi.name == NULL)
18249 complaint (_("malformed enumerator DIE ignored"));
18250 else if (building_psymtab)
18251 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18252 VAR_DOMAIN, LOC_CONST,
18253 cu->language == language_cplus
18254 ? &objfile->global_psymbols
18255 : &objfile->static_psymbols,
18256 0, cu->language, objfile);
18258 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18262 struct partial_die_info *part_die
18263 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18265 /* We'll save this DIE so link it in. */
18266 part_die->die_parent = parent_die;
18267 part_die->die_sibling = NULL;
18268 part_die->die_child = NULL;
18270 if (last_die && last_die == parent_die)
18271 last_die->die_child = part_die;
18273 last_die->die_sibling = part_die;
18275 last_die = part_die;
18277 if (first_die == NULL)
18278 first_die = part_die;
18280 /* Maybe add the DIE to the hash table. Not all DIEs that we
18281 find interesting need to be in the hash table, because we
18282 also have the parent/sibling/child chains; only those that we
18283 might refer to by offset later during partial symbol reading.
18285 For now this means things that might have be the target of a
18286 DW_AT_specification, DW_AT_abstract_origin, or
18287 DW_AT_extension. DW_AT_extension will refer only to
18288 namespaces; DW_AT_abstract_origin refers to functions (and
18289 many things under the function DIE, but we do not recurse
18290 into function DIEs during partial symbol reading) and
18291 possibly variables as well; DW_AT_specification refers to
18292 declarations. Declarations ought to have the DW_AT_declaration
18293 flag. It happens that GCC forgets to put it in sometimes, but
18294 only for functions, not for types.
18296 Adding more things than necessary to the hash table is harmless
18297 except for the performance cost. Adding too few will result in
18298 wasted time in find_partial_die, when we reread the compilation
18299 unit with load_all_dies set. */
18302 || abbrev->tag == DW_TAG_constant
18303 || abbrev->tag == DW_TAG_subprogram
18304 || abbrev->tag == DW_TAG_variable
18305 || abbrev->tag == DW_TAG_namespace
18306 || part_die->is_declaration)
18310 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18311 to_underlying (part_die->sect_off),
18316 /* For some DIEs we want to follow their children (if any). For C
18317 we have no reason to follow the children of structures; for other
18318 languages we have to, so that we can get at method physnames
18319 to infer fully qualified class names, for DW_AT_specification,
18320 and for C++ template arguments. For C++, we also look one level
18321 inside functions to find template arguments (if the name of the
18322 function does not already contain the template arguments).
18324 For Ada, we need to scan the children of subprograms and lexical
18325 blocks as well because Ada allows the definition of nested
18326 entities that could be interesting for the debugger, such as
18327 nested subprograms for instance. */
18328 if (last_die->has_children
18330 || last_die->tag == DW_TAG_namespace
18331 || last_die->tag == DW_TAG_module
18332 || last_die->tag == DW_TAG_enumeration_type
18333 || (cu->language == language_cplus
18334 && last_die->tag == DW_TAG_subprogram
18335 && (last_die->name == NULL
18336 || strchr (last_die->name, '<') == NULL))
18337 || (cu->language != language_c
18338 && (last_die->tag == DW_TAG_class_type
18339 || last_die->tag == DW_TAG_interface_type
18340 || last_die->tag == DW_TAG_structure_type
18341 || last_die->tag == DW_TAG_union_type))
18342 || (cu->language == language_ada
18343 && (last_die->tag == DW_TAG_subprogram
18344 || last_die->tag == DW_TAG_lexical_block))))
18347 parent_die = last_die;
18351 /* Otherwise we skip to the next sibling, if any. */
18352 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18354 /* Back to the top, do it again. */
18358 partial_die_info::partial_die_info (sect_offset sect_off_,
18359 struct abbrev_info *abbrev)
18360 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18364 /* Read a minimal amount of information into the minimal die structure.
18365 INFO_PTR should point just after the initial uleb128 of a DIE. */
18368 partial_die_info::read (const struct die_reader_specs *reader,
18369 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18371 struct dwarf2_cu *cu = reader->cu;
18372 struct dwarf2_per_objfile *dwarf2_per_objfile
18373 = cu->per_cu->dwarf2_per_objfile;
18375 int has_low_pc_attr = 0;
18376 int has_high_pc_attr = 0;
18377 int high_pc_relative = 0;
18379 for (i = 0; i < abbrev.num_attrs; ++i)
18381 struct attribute attr;
18383 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18385 /* Store the data if it is of an attribute we want to keep in a
18386 partial symbol table. */
18392 case DW_TAG_compile_unit:
18393 case DW_TAG_partial_unit:
18394 case DW_TAG_type_unit:
18395 /* Compilation units have a DW_AT_name that is a filename, not
18396 a source language identifier. */
18397 case DW_TAG_enumeration_type:
18398 case DW_TAG_enumerator:
18399 /* These tags always have simple identifiers already; no need
18400 to canonicalize them. */
18401 name = DW_STRING (&attr);
18405 struct objfile *objfile = dwarf2_per_objfile->objfile;
18408 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18409 &objfile->per_bfd->storage_obstack);
18414 case DW_AT_linkage_name:
18415 case DW_AT_MIPS_linkage_name:
18416 /* Note that both forms of linkage name might appear. We
18417 assume they will be the same, and we only store the last
18419 if (cu->language == language_ada)
18420 name = DW_STRING (&attr);
18421 linkage_name = DW_STRING (&attr);
18424 has_low_pc_attr = 1;
18425 lowpc = attr_value_as_address (&attr);
18427 case DW_AT_high_pc:
18428 has_high_pc_attr = 1;
18429 highpc = attr_value_as_address (&attr);
18430 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18431 high_pc_relative = 1;
18433 case DW_AT_location:
18434 /* Support the .debug_loc offsets. */
18435 if (attr_form_is_block (&attr))
18437 d.locdesc = DW_BLOCK (&attr);
18439 else if (attr_form_is_section_offset (&attr))
18441 dwarf2_complex_location_expr_complaint ();
18445 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18446 "partial symbol information");
18449 case DW_AT_external:
18450 is_external = DW_UNSND (&attr);
18452 case DW_AT_declaration:
18453 is_declaration = DW_UNSND (&attr);
18458 case DW_AT_abstract_origin:
18459 case DW_AT_specification:
18460 case DW_AT_extension:
18461 has_specification = 1;
18462 spec_offset = dwarf2_get_ref_die_offset (&attr);
18463 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18464 || cu->per_cu->is_dwz);
18466 case DW_AT_sibling:
18467 /* Ignore absolute siblings, they might point outside of
18468 the current compile unit. */
18469 if (attr.form == DW_FORM_ref_addr)
18470 complaint (_("ignoring absolute DW_AT_sibling"));
18473 const gdb_byte *buffer = reader->buffer;
18474 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18475 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18477 if (sibling_ptr < info_ptr)
18478 complaint (_("DW_AT_sibling points backwards"));
18479 else if (sibling_ptr > reader->buffer_end)
18480 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18482 sibling = sibling_ptr;
18485 case DW_AT_byte_size:
18488 case DW_AT_const_value:
18489 has_const_value = 1;
18491 case DW_AT_calling_convention:
18492 /* DWARF doesn't provide a way to identify a program's source-level
18493 entry point. DW_AT_calling_convention attributes are only meant
18494 to describe functions' calling conventions.
18496 However, because it's a necessary piece of information in
18497 Fortran, and before DWARF 4 DW_CC_program was the only
18498 piece of debugging information whose definition refers to
18499 a 'main program' at all, several compilers marked Fortran
18500 main programs with DW_CC_program --- even when those
18501 functions use the standard calling conventions.
18503 Although DWARF now specifies a way to provide this
18504 information, we support this practice for backward
18506 if (DW_UNSND (&attr) == DW_CC_program
18507 && cu->language == language_fortran)
18508 main_subprogram = 1;
18511 if (DW_UNSND (&attr) == DW_INL_inlined
18512 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18513 may_be_inlined = 1;
18517 if (tag == DW_TAG_imported_unit)
18519 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18520 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18521 || cu->per_cu->is_dwz);
18525 case DW_AT_main_subprogram:
18526 main_subprogram = DW_UNSND (&attr);
18534 if (high_pc_relative)
18537 if (has_low_pc_attr && has_high_pc_attr)
18539 /* When using the GNU linker, .gnu.linkonce. sections are used to
18540 eliminate duplicate copies of functions and vtables and such.
18541 The linker will arbitrarily choose one and discard the others.
18542 The AT_*_pc values for such functions refer to local labels in
18543 these sections. If the section from that file was discarded, the
18544 labels are not in the output, so the relocs get a value of 0.
18545 If this is a discarded function, mark the pc bounds as invalid,
18546 so that GDB will ignore it. */
18547 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18549 struct objfile *objfile = dwarf2_per_objfile->objfile;
18550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18552 complaint (_("DW_AT_low_pc %s is zero "
18553 "for DIE at %s [in module %s]"),
18554 paddress (gdbarch, lowpc),
18555 sect_offset_str (sect_off),
18556 objfile_name (objfile));
18558 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18559 else if (lowpc >= highpc)
18561 struct objfile *objfile = dwarf2_per_objfile->objfile;
18562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18564 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18565 "for DIE at %s [in module %s]"),
18566 paddress (gdbarch, lowpc),
18567 paddress (gdbarch, highpc),
18568 sect_offset_str (sect_off),
18569 objfile_name (objfile));
18578 /* Find a cached partial DIE at OFFSET in CU. */
18580 struct partial_die_info *
18581 dwarf2_cu::find_partial_die (sect_offset sect_off)
18583 struct partial_die_info *lookup_die = NULL;
18584 struct partial_die_info part_die (sect_off);
18586 lookup_die = ((struct partial_die_info *)
18587 htab_find_with_hash (partial_dies, &part_die,
18588 to_underlying (sect_off)));
18593 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18594 except in the case of .debug_types DIEs which do not reference
18595 outside their CU (they do however referencing other types via
18596 DW_FORM_ref_sig8). */
18598 static struct partial_die_info *
18599 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18601 struct dwarf2_per_objfile *dwarf2_per_objfile
18602 = cu->per_cu->dwarf2_per_objfile;
18603 struct objfile *objfile = dwarf2_per_objfile->objfile;
18604 struct dwarf2_per_cu_data *per_cu = NULL;
18605 struct partial_die_info *pd = NULL;
18607 if (offset_in_dwz == cu->per_cu->is_dwz
18608 && offset_in_cu_p (&cu->header, sect_off))
18610 pd = cu->find_partial_die (sect_off);
18613 /* We missed recording what we needed.
18614 Load all dies and try again. */
18615 per_cu = cu->per_cu;
18619 /* TUs don't reference other CUs/TUs (except via type signatures). */
18620 if (cu->per_cu->is_debug_types)
18622 error (_("Dwarf Error: Type Unit at offset %s contains"
18623 " external reference to offset %s [in module %s].\n"),
18624 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18625 bfd_get_filename (objfile->obfd));
18627 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18628 dwarf2_per_objfile);
18630 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18631 load_partial_comp_unit (per_cu);
18633 per_cu->cu->last_used = 0;
18634 pd = per_cu->cu->find_partial_die (sect_off);
18637 /* If we didn't find it, and not all dies have been loaded,
18638 load them all and try again. */
18640 if (pd == NULL && per_cu->load_all_dies == 0)
18642 per_cu->load_all_dies = 1;
18644 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18645 THIS_CU->cu may already be in use. So we can't just free it and
18646 replace its DIEs with the ones we read in. Instead, we leave those
18647 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18648 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18650 load_partial_comp_unit (per_cu);
18652 pd = per_cu->cu->find_partial_die (sect_off);
18656 internal_error (__FILE__, __LINE__,
18657 _("could not find partial DIE %s "
18658 "in cache [from module %s]\n"),
18659 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18663 /* See if we can figure out if the class lives in a namespace. We do
18664 this by looking for a member function; its demangled name will
18665 contain namespace info, if there is any. */
18668 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18669 struct dwarf2_cu *cu)
18671 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18672 what template types look like, because the demangler
18673 frequently doesn't give the same name as the debug info. We
18674 could fix this by only using the demangled name to get the
18675 prefix (but see comment in read_structure_type). */
18677 struct partial_die_info *real_pdi;
18678 struct partial_die_info *child_pdi;
18680 /* If this DIE (this DIE's specification, if any) has a parent, then
18681 we should not do this. We'll prepend the parent's fully qualified
18682 name when we create the partial symbol. */
18684 real_pdi = struct_pdi;
18685 while (real_pdi->has_specification)
18686 real_pdi = find_partial_die (real_pdi->spec_offset,
18687 real_pdi->spec_is_dwz, cu);
18689 if (real_pdi->die_parent != NULL)
18692 for (child_pdi = struct_pdi->die_child;
18694 child_pdi = child_pdi->die_sibling)
18696 if (child_pdi->tag == DW_TAG_subprogram
18697 && child_pdi->linkage_name != NULL)
18699 char *actual_class_name
18700 = language_class_name_from_physname (cu->language_defn,
18701 child_pdi->linkage_name);
18702 if (actual_class_name != NULL)
18704 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18707 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18709 strlen (actual_class_name)));
18710 xfree (actual_class_name);
18718 partial_die_info::fixup (struct dwarf2_cu *cu)
18720 /* Once we've fixed up a die, there's no point in doing so again.
18721 This also avoids a memory leak if we were to call
18722 guess_partial_die_structure_name multiple times. */
18726 /* If we found a reference attribute and the DIE has no name, try
18727 to find a name in the referred to DIE. */
18729 if (name == NULL && has_specification)
18731 struct partial_die_info *spec_die;
18733 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18735 spec_die->fixup (cu);
18737 if (spec_die->name)
18739 name = spec_die->name;
18741 /* Copy DW_AT_external attribute if it is set. */
18742 if (spec_die->is_external)
18743 is_external = spec_die->is_external;
18747 /* Set default names for some unnamed DIEs. */
18749 if (name == NULL && tag == DW_TAG_namespace)
18750 name = CP_ANONYMOUS_NAMESPACE_STR;
18752 /* If there is no parent die to provide a namespace, and there are
18753 children, see if we can determine the namespace from their linkage
18755 if (cu->language == language_cplus
18756 && !VEC_empty (dwarf2_section_info_def,
18757 cu->per_cu->dwarf2_per_objfile->types)
18758 && die_parent == NULL
18760 && (tag == DW_TAG_class_type
18761 || tag == DW_TAG_structure_type
18762 || tag == DW_TAG_union_type))
18763 guess_partial_die_structure_name (this, cu);
18765 /* GCC might emit a nameless struct or union that has a linkage
18766 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18768 && (tag == DW_TAG_class_type
18769 || tag == DW_TAG_interface_type
18770 || tag == DW_TAG_structure_type
18771 || tag == DW_TAG_union_type)
18772 && linkage_name != NULL)
18776 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18781 /* Strip any leading namespaces/classes, keep only the base name.
18782 DW_AT_name for named DIEs does not contain the prefixes. */
18783 base = strrchr (demangled, ':');
18784 if (base && base > demangled && base[-1] == ':')
18789 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18792 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18793 base, strlen (base)));
18801 /* Read an attribute value described by an attribute form. */
18803 static const gdb_byte *
18804 read_attribute_value (const struct die_reader_specs *reader,
18805 struct attribute *attr, unsigned form,
18806 LONGEST implicit_const, const gdb_byte *info_ptr)
18808 struct dwarf2_cu *cu = reader->cu;
18809 struct dwarf2_per_objfile *dwarf2_per_objfile
18810 = cu->per_cu->dwarf2_per_objfile;
18811 struct objfile *objfile = dwarf2_per_objfile->objfile;
18812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18813 bfd *abfd = reader->abfd;
18814 struct comp_unit_head *cu_header = &cu->header;
18815 unsigned int bytes_read;
18816 struct dwarf_block *blk;
18818 attr->form = (enum dwarf_form) form;
18821 case DW_FORM_ref_addr:
18822 if (cu->header.version == 2)
18823 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18825 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18826 &cu->header, &bytes_read);
18827 info_ptr += bytes_read;
18829 case DW_FORM_GNU_ref_alt:
18830 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18831 info_ptr += bytes_read;
18834 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18835 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18836 info_ptr += bytes_read;
18838 case DW_FORM_block2:
18839 blk = dwarf_alloc_block (cu);
18840 blk->size = read_2_bytes (abfd, info_ptr);
18842 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18843 info_ptr += blk->size;
18844 DW_BLOCK (attr) = blk;
18846 case DW_FORM_block4:
18847 blk = dwarf_alloc_block (cu);
18848 blk->size = read_4_bytes (abfd, info_ptr);
18850 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18851 info_ptr += blk->size;
18852 DW_BLOCK (attr) = blk;
18854 case DW_FORM_data2:
18855 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18858 case DW_FORM_data4:
18859 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18862 case DW_FORM_data8:
18863 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18866 case DW_FORM_data16:
18867 blk = dwarf_alloc_block (cu);
18869 blk->data = read_n_bytes (abfd, info_ptr, 16);
18871 DW_BLOCK (attr) = blk;
18873 case DW_FORM_sec_offset:
18874 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18875 info_ptr += bytes_read;
18877 case DW_FORM_string:
18878 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18879 DW_STRING_IS_CANONICAL (attr) = 0;
18880 info_ptr += bytes_read;
18883 if (!cu->per_cu->is_dwz)
18885 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18886 abfd, info_ptr, cu_header,
18888 DW_STRING_IS_CANONICAL (attr) = 0;
18889 info_ptr += bytes_read;
18893 case DW_FORM_line_strp:
18894 if (!cu->per_cu->is_dwz)
18896 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18898 cu_header, &bytes_read);
18899 DW_STRING_IS_CANONICAL (attr) = 0;
18900 info_ptr += bytes_read;
18904 case DW_FORM_GNU_strp_alt:
18906 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18907 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18910 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18912 DW_STRING_IS_CANONICAL (attr) = 0;
18913 info_ptr += bytes_read;
18916 case DW_FORM_exprloc:
18917 case DW_FORM_block:
18918 blk = dwarf_alloc_block (cu);
18919 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18920 info_ptr += bytes_read;
18921 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18922 info_ptr += blk->size;
18923 DW_BLOCK (attr) = blk;
18925 case DW_FORM_block1:
18926 blk = dwarf_alloc_block (cu);
18927 blk->size = read_1_byte (abfd, info_ptr);
18929 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18930 info_ptr += blk->size;
18931 DW_BLOCK (attr) = blk;
18933 case DW_FORM_data1:
18934 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18938 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18941 case DW_FORM_flag_present:
18942 DW_UNSND (attr) = 1;
18944 case DW_FORM_sdata:
18945 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18946 info_ptr += bytes_read;
18948 case DW_FORM_udata:
18949 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18950 info_ptr += bytes_read;
18953 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18954 + read_1_byte (abfd, info_ptr));
18958 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18959 + read_2_bytes (abfd, info_ptr));
18963 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18964 + read_4_bytes (abfd, info_ptr));
18968 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18969 + read_8_bytes (abfd, info_ptr));
18972 case DW_FORM_ref_sig8:
18973 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18976 case DW_FORM_ref_udata:
18977 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18978 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18979 info_ptr += bytes_read;
18981 case DW_FORM_indirect:
18982 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18983 info_ptr += bytes_read;
18984 if (form == DW_FORM_implicit_const)
18986 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18987 info_ptr += bytes_read;
18989 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18992 case DW_FORM_implicit_const:
18993 DW_SND (attr) = implicit_const;
18995 case DW_FORM_GNU_addr_index:
18996 if (reader->dwo_file == NULL)
18998 /* For now flag a hard error.
18999 Later we can turn this into a complaint. */
19000 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19001 dwarf_form_name (form),
19002 bfd_get_filename (abfd));
19004 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19005 info_ptr += bytes_read;
19007 case DW_FORM_GNU_str_index:
19008 if (reader->dwo_file == NULL)
19010 /* For now flag a hard error.
19011 Later we can turn this into a complaint if warranted. */
19012 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19013 dwarf_form_name (form),
19014 bfd_get_filename (abfd));
19017 ULONGEST str_index =
19018 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19020 DW_STRING (attr) = read_str_index (reader, str_index);
19021 DW_STRING_IS_CANONICAL (attr) = 0;
19022 info_ptr += bytes_read;
19026 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19027 dwarf_form_name (form),
19028 bfd_get_filename (abfd));
19032 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19033 attr->form = DW_FORM_GNU_ref_alt;
19035 /* We have seen instances where the compiler tried to emit a byte
19036 size attribute of -1 which ended up being encoded as an unsigned
19037 0xffffffff. Although 0xffffffff is technically a valid size value,
19038 an object of this size seems pretty unlikely so we can relatively
19039 safely treat these cases as if the size attribute was invalid and
19040 treat them as zero by default. */
19041 if (attr->name == DW_AT_byte_size
19042 && form == DW_FORM_data4
19043 && DW_UNSND (attr) >= 0xffffffff)
19046 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19047 hex_string (DW_UNSND (attr)));
19048 DW_UNSND (attr) = 0;
19054 /* Read an attribute described by an abbreviated attribute. */
19056 static const gdb_byte *
19057 read_attribute (const struct die_reader_specs *reader,
19058 struct attribute *attr, struct attr_abbrev *abbrev,
19059 const gdb_byte *info_ptr)
19061 attr->name = abbrev->name;
19062 return read_attribute_value (reader, attr, abbrev->form,
19063 abbrev->implicit_const, info_ptr);
19066 /* Read dwarf information from a buffer. */
19068 static unsigned int
19069 read_1_byte (bfd *abfd, const gdb_byte *buf)
19071 return bfd_get_8 (abfd, buf);
19075 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19077 return bfd_get_signed_8 (abfd, buf);
19080 static unsigned int
19081 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19083 return bfd_get_16 (abfd, buf);
19087 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19089 return bfd_get_signed_16 (abfd, buf);
19092 static unsigned int
19093 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19095 return bfd_get_32 (abfd, buf);
19099 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19101 return bfd_get_signed_32 (abfd, buf);
19105 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19107 return bfd_get_64 (abfd, buf);
19111 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19112 unsigned int *bytes_read)
19114 struct comp_unit_head *cu_header = &cu->header;
19115 CORE_ADDR retval = 0;
19117 if (cu_header->signed_addr_p)
19119 switch (cu_header->addr_size)
19122 retval = bfd_get_signed_16 (abfd, buf);
19125 retval = bfd_get_signed_32 (abfd, buf);
19128 retval = bfd_get_signed_64 (abfd, buf);
19131 internal_error (__FILE__, __LINE__,
19132 _("read_address: bad switch, signed [in module %s]"),
19133 bfd_get_filename (abfd));
19138 switch (cu_header->addr_size)
19141 retval = bfd_get_16 (abfd, buf);
19144 retval = bfd_get_32 (abfd, buf);
19147 retval = bfd_get_64 (abfd, buf);
19150 internal_error (__FILE__, __LINE__,
19151 _("read_address: bad switch, "
19152 "unsigned [in module %s]"),
19153 bfd_get_filename (abfd));
19157 *bytes_read = cu_header->addr_size;
19161 /* Read the initial length from a section. The (draft) DWARF 3
19162 specification allows the initial length to take up either 4 bytes
19163 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19164 bytes describe the length and all offsets will be 8 bytes in length
19167 An older, non-standard 64-bit format is also handled by this
19168 function. The older format in question stores the initial length
19169 as an 8-byte quantity without an escape value. Lengths greater
19170 than 2^32 aren't very common which means that the initial 4 bytes
19171 is almost always zero. Since a length value of zero doesn't make
19172 sense for the 32-bit format, this initial zero can be considered to
19173 be an escape value which indicates the presence of the older 64-bit
19174 format. As written, the code can't detect (old format) lengths
19175 greater than 4GB. If it becomes necessary to handle lengths
19176 somewhat larger than 4GB, we could allow other small values (such
19177 as the non-sensical values of 1, 2, and 3) to also be used as
19178 escape values indicating the presence of the old format.
19180 The value returned via bytes_read should be used to increment the
19181 relevant pointer after calling read_initial_length().
19183 [ Note: read_initial_length() and read_offset() are based on the
19184 document entitled "DWARF Debugging Information Format", revision
19185 3, draft 8, dated November 19, 2001. This document was obtained
19188 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19190 This document is only a draft and is subject to change. (So beware.)
19192 Details regarding the older, non-standard 64-bit format were
19193 determined empirically by examining 64-bit ELF files produced by
19194 the SGI toolchain on an IRIX 6.5 machine.
19196 - Kevin, July 16, 2002
19200 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19202 LONGEST length = bfd_get_32 (abfd, buf);
19204 if (length == 0xffffffff)
19206 length = bfd_get_64 (abfd, buf + 4);
19209 else if (length == 0)
19211 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19212 length = bfd_get_64 (abfd, buf);
19223 /* Cover function for read_initial_length.
19224 Returns the length of the object at BUF, and stores the size of the
19225 initial length in *BYTES_READ and stores the size that offsets will be in
19227 If the initial length size is not equivalent to that specified in
19228 CU_HEADER then issue a complaint.
19229 This is useful when reading non-comp-unit headers. */
19232 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19233 const struct comp_unit_head *cu_header,
19234 unsigned int *bytes_read,
19235 unsigned int *offset_size)
19237 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19239 gdb_assert (cu_header->initial_length_size == 4
19240 || cu_header->initial_length_size == 8
19241 || cu_header->initial_length_size == 12);
19243 if (cu_header->initial_length_size != *bytes_read)
19244 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19246 *offset_size = (*bytes_read == 4) ? 4 : 8;
19250 /* Read an offset from the data stream. The size of the offset is
19251 given by cu_header->offset_size. */
19254 read_offset (bfd *abfd, const gdb_byte *buf,
19255 const struct comp_unit_head *cu_header,
19256 unsigned int *bytes_read)
19258 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19260 *bytes_read = cu_header->offset_size;
19264 /* Read an offset from the data stream. */
19267 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19269 LONGEST retval = 0;
19271 switch (offset_size)
19274 retval = bfd_get_32 (abfd, buf);
19277 retval = bfd_get_64 (abfd, buf);
19280 internal_error (__FILE__, __LINE__,
19281 _("read_offset_1: bad switch [in module %s]"),
19282 bfd_get_filename (abfd));
19288 static const gdb_byte *
19289 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19291 /* If the size of a host char is 8 bits, we can return a pointer
19292 to the buffer, otherwise we have to copy the data to a buffer
19293 allocated on the temporary obstack. */
19294 gdb_assert (HOST_CHAR_BIT == 8);
19298 static const char *
19299 read_direct_string (bfd *abfd, const gdb_byte *buf,
19300 unsigned int *bytes_read_ptr)
19302 /* If the size of a host char is 8 bits, we can return a pointer
19303 to the string, otherwise we have to copy the string to a buffer
19304 allocated on the temporary obstack. */
19305 gdb_assert (HOST_CHAR_BIT == 8);
19308 *bytes_read_ptr = 1;
19311 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19312 return (const char *) buf;
19315 /* Return pointer to string at section SECT offset STR_OFFSET with error
19316 reporting strings FORM_NAME and SECT_NAME. */
19318 static const char *
19319 read_indirect_string_at_offset_from (struct objfile *objfile,
19320 bfd *abfd, LONGEST str_offset,
19321 struct dwarf2_section_info *sect,
19322 const char *form_name,
19323 const char *sect_name)
19325 dwarf2_read_section (objfile, sect);
19326 if (sect->buffer == NULL)
19327 error (_("%s used without %s section [in module %s]"),
19328 form_name, sect_name, bfd_get_filename (abfd));
19329 if (str_offset >= sect->size)
19330 error (_("%s pointing outside of %s section [in module %s]"),
19331 form_name, sect_name, bfd_get_filename (abfd));
19332 gdb_assert (HOST_CHAR_BIT == 8);
19333 if (sect->buffer[str_offset] == '\0')
19335 return (const char *) (sect->buffer + str_offset);
19338 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19340 static const char *
19341 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19342 bfd *abfd, LONGEST str_offset)
19344 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19346 &dwarf2_per_objfile->str,
19347 "DW_FORM_strp", ".debug_str");
19350 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19352 static const char *
19353 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19354 bfd *abfd, LONGEST str_offset)
19356 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19358 &dwarf2_per_objfile->line_str,
19359 "DW_FORM_line_strp",
19360 ".debug_line_str");
19363 /* Read a string at offset STR_OFFSET in the .debug_str section from
19364 the .dwz file DWZ. Throw an error if the offset is too large. If
19365 the string consists of a single NUL byte, return NULL; otherwise
19366 return a pointer to the string. */
19368 static const char *
19369 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19370 LONGEST str_offset)
19372 dwarf2_read_section (objfile, &dwz->str);
19374 if (dwz->str.buffer == NULL)
19375 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19376 "section [in module %s]"),
19377 bfd_get_filename (dwz->dwz_bfd));
19378 if (str_offset >= dwz->str.size)
19379 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19380 ".debug_str section [in module %s]"),
19381 bfd_get_filename (dwz->dwz_bfd));
19382 gdb_assert (HOST_CHAR_BIT == 8);
19383 if (dwz->str.buffer[str_offset] == '\0')
19385 return (const char *) (dwz->str.buffer + str_offset);
19388 /* Return pointer to string at .debug_str offset as read from BUF.
19389 BUF is assumed to be in a compilation unit described by CU_HEADER.
19390 Return *BYTES_READ_PTR count of bytes read from BUF. */
19392 static const char *
19393 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19394 const gdb_byte *buf,
19395 const struct comp_unit_head *cu_header,
19396 unsigned int *bytes_read_ptr)
19398 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19400 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19403 /* Return pointer to string at .debug_line_str offset as read from BUF.
19404 BUF is assumed to be in a compilation unit described by CU_HEADER.
19405 Return *BYTES_READ_PTR count of bytes read from BUF. */
19407 static const char *
19408 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19409 bfd *abfd, const gdb_byte *buf,
19410 const struct comp_unit_head *cu_header,
19411 unsigned int *bytes_read_ptr)
19413 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19415 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19420 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19421 unsigned int *bytes_read_ptr)
19424 unsigned int num_read;
19426 unsigned char byte;
19433 byte = bfd_get_8 (abfd, buf);
19436 result |= ((ULONGEST) (byte & 127) << shift);
19437 if ((byte & 128) == 0)
19443 *bytes_read_ptr = num_read;
19448 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19449 unsigned int *bytes_read_ptr)
19452 int shift, num_read;
19453 unsigned char byte;
19460 byte = bfd_get_8 (abfd, buf);
19463 result |= ((LONGEST) (byte & 127) << shift);
19465 if ((byte & 128) == 0)
19470 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19471 result |= -(((LONGEST) 1) << shift);
19472 *bytes_read_ptr = num_read;
19476 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19477 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19478 ADDR_SIZE is the size of addresses from the CU header. */
19481 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19482 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19484 struct objfile *objfile = dwarf2_per_objfile->objfile;
19485 bfd *abfd = objfile->obfd;
19486 const gdb_byte *info_ptr;
19488 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19489 if (dwarf2_per_objfile->addr.buffer == NULL)
19490 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19491 objfile_name (objfile));
19492 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19493 error (_("DW_FORM_addr_index pointing outside of "
19494 ".debug_addr section [in module %s]"),
19495 objfile_name (objfile));
19496 info_ptr = (dwarf2_per_objfile->addr.buffer
19497 + addr_base + addr_index * addr_size);
19498 if (addr_size == 4)
19499 return bfd_get_32 (abfd, info_ptr);
19501 return bfd_get_64 (abfd, info_ptr);
19504 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19507 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19509 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19510 cu->addr_base, cu->header.addr_size);
19513 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19516 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19517 unsigned int *bytes_read)
19519 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19520 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19522 return read_addr_index (cu, addr_index);
19525 /* Data structure to pass results from dwarf2_read_addr_index_reader
19526 back to dwarf2_read_addr_index. */
19528 struct dwarf2_read_addr_index_data
19530 ULONGEST addr_base;
19534 /* die_reader_func for dwarf2_read_addr_index. */
19537 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19538 const gdb_byte *info_ptr,
19539 struct die_info *comp_unit_die,
19543 struct dwarf2_cu *cu = reader->cu;
19544 struct dwarf2_read_addr_index_data *aidata =
19545 (struct dwarf2_read_addr_index_data *) data;
19547 aidata->addr_base = cu->addr_base;
19548 aidata->addr_size = cu->header.addr_size;
19551 /* Given an index in .debug_addr, fetch the value.
19552 NOTE: This can be called during dwarf expression evaluation,
19553 long after the debug information has been read, and thus per_cu->cu
19554 may no longer exist. */
19557 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19558 unsigned int addr_index)
19560 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19561 struct dwarf2_cu *cu = per_cu->cu;
19562 ULONGEST addr_base;
19565 /* We need addr_base and addr_size.
19566 If we don't have PER_CU->cu, we have to get it.
19567 Nasty, but the alternative is storing the needed info in PER_CU,
19568 which at this point doesn't seem justified: it's not clear how frequently
19569 it would get used and it would increase the size of every PER_CU.
19570 Entry points like dwarf2_per_cu_addr_size do a similar thing
19571 so we're not in uncharted territory here.
19572 Alas we need to be a bit more complicated as addr_base is contained
19575 We don't need to read the entire CU(/TU).
19576 We just need the header and top level die.
19578 IWBN to use the aging mechanism to let us lazily later discard the CU.
19579 For now we skip this optimization. */
19583 addr_base = cu->addr_base;
19584 addr_size = cu->header.addr_size;
19588 struct dwarf2_read_addr_index_data aidata;
19590 /* Note: We can't use init_cutu_and_read_dies_simple here,
19591 we need addr_base. */
19592 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19593 dwarf2_read_addr_index_reader, &aidata);
19594 addr_base = aidata.addr_base;
19595 addr_size = aidata.addr_size;
19598 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19602 /* Given a DW_FORM_GNU_str_index, fetch the string.
19603 This is only used by the Fission support. */
19605 static const char *
19606 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19608 struct dwarf2_cu *cu = reader->cu;
19609 struct dwarf2_per_objfile *dwarf2_per_objfile
19610 = cu->per_cu->dwarf2_per_objfile;
19611 struct objfile *objfile = dwarf2_per_objfile->objfile;
19612 const char *objf_name = objfile_name (objfile);
19613 bfd *abfd = objfile->obfd;
19614 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19615 struct dwarf2_section_info *str_offsets_section =
19616 &reader->dwo_file->sections.str_offsets;
19617 const gdb_byte *info_ptr;
19618 ULONGEST str_offset;
19619 static const char form_name[] = "DW_FORM_GNU_str_index";
19621 dwarf2_read_section (objfile, str_section);
19622 dwarf2_read_section (objfile, str_offsets_section);
19623 if (str_section->buffer == NULL)
19624 error (_("%s used without .debug_str.dwo section"
19625 " in CU at offset %s [in module %s]"),
19626 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19627 if (str_offsets_section->buffer == NULL)
19628 error (_("%s used without .debug_str_offsets.dwo section"
19629 " in CU at offset %s [in module %s]"),
19630 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19631 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19632 error (_("%s pointing outside of .debug_str_offsets.dwo"
19633 " section in CU at offset %s [in module %s]"),
19634 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19635 info_ptr = (str_offsets_section->buffer
19636 + str_index * cu->header.offset_size);
19637 if (cu->header.offset_size == 4)
19638 str_offset = bfd_get_32 (abfd, info_ptr);
19640 str_offset = bfd_get_64 (abfd, info_ptr);
19641 if (str_offset >= str_section->size)
19642 error (_("Offset from %s pointing outside of"
19643 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19644 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19645 return (const char *) (str_section->buffer + str_offset);
19648 /* Return the length of an LEB128 number in BUF. */
19651 leb128_size (const gdb_byte *buf)
19653 const gdb_byte *begin = buf;
19659 if ((byte & 128) == 0)
19660 return buf - begin;
19665 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19674 cu->language = language_c;
19677 case DW_LANG_C_plus_plus:
19678 case DW_LANG_C_plus_plus_11:
19679 case DW_LANG_C_plus_plus_14:
19680 cu->language = language_cplus;
19683 cu->language = language_d;
19685 case DW_LANG_Fortran77:
19686 case DW_LANG_Fortran90:
19687 case DW_LANG_Fortran95:
19688 case DW_LANG_Fortran03:
19689 case DW_LANG_Fortran08:
19690 cu->language = language_fortran;
19693 cu->language = language_go;
19695 case DW_LANG_Mips_Assembler:
19696 cu->language = language_asm;
19698 case DW_LANG_Ada83:
19699 case DW_LANG_Ada95:
19700 cu->language = language_ada;
19702 case DW_LANG_Modula2:
19703 cu->language = language_m2;
19705 case DW_LANG_Pascal83:
19706 cu->language = language_pascal;
19709 cu->language = language_objc;
19712 case DW_LANG_Rust_old:
19713 cu->language = language_rust;
19715 case DW_LANG_Cobol74:
19716 case DW_LANG_Cobol85:
19718 cu->language = language_minimal;
19721 cu->language_defn = language_def (cu->language);
19724 /* Return the named attribute or NULL if not there. */
19726 static struct attribute *
19727 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19732 struct attribute *spec = NULL;
19734 for (i = 0; i < die->num_attrs; ++i)
19736 if (die->attrs[i].name == name)
19737 return &die->attrs[i];
19738 if (die->attrs[i].name == DW_AT_specification
19739 || die->attrs[i].name == DW_AT_abstract_origin)
19740 spec = &die->attrs[i];
19746 die = follow_die_ref (die, spec, &cu);
19752 /* Return the named attribute or NULL if not there,
19753 but do not follow DW_AT_specification, etc.
19754 This is for use in contexts where we're reading .debug_types dies.
19755 Following DW_AT_specification, DW_AT_abstract_origin will take us
19756 back up the chain, and we want to go down. */
19758 static struct attribute *
19759 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19763 for (i = 0; i < die->num_attrs; ++i)
19764 if (die->attrs[i].name == name)
19765 return &die->attrs[i];
19770 /* Return the string associated with a string-typed attribute, or NULL if it
19771 is either not found or is of an incorrect type. */
19773 static const char *
19774 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19776 struct attribute *attr;
19777 const char *str = NULL;
19779 attr = dwarf2_attr (die, name, cu);
19783 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19784 || attr->form == DW_FORM_string
19785 || attr->form == DW_FORM_GNU_str_index
19786 || attr->form == DW_FORM_GNU_strp_alt)
19787 str = DW_STRING (attr);
19789 complaint (_("string type expected for attribute %s for "
19790 "DIE at %s in module %s"),
19791 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19792 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19798 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19799 and holds a non-zero value. This function should only be used for
19800 DW_FORM_flag or DW_FORM_flag_present attributes. */
19803 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19805 struct attribute *attr = dwarf2_attr (die, name, cu);
19807 return (attr && DW_UNSND (attr));
19811 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19813 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19814 which value is non-zero. However, we have to be careful with
19815 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19816 (via dwarf2_flag_true_p) follows this attribute. So we may
19817 end up accidently finding a declaration attribute that belongs
19818 to a different DIE referenced by the specification attribute,
19819 even though the given DIE does not have a declaration attribute. */
19820 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19821 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19824 /* Return the die giving the specification for DIE, if there is
19825 one. *SPEC_CU is the CU containing DIE on input, and the CU
19826 containing the return value on output. If there is no
19827 specification, but there is an abstract origin, that is
19830 static struct die_info *
19831 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19833 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19836 if (spec_attr == NULL)
19837 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19839 if (spec_attr == NULL)
19842 return follow_die_ref (die, spec_attr, spec_cu);
19845 /* Stub for free_line_header to match void * callback types. */
19848 free_line_header_voidp (void *arg)
19850 struct line_header *lh = (struct line_header *) arg;
19856 line_header::add_include_dir (const char *include_dir)
19858 if (dwarf_line_debug >= 2)
19859 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19860 include_dirs.size () + 1, include_dir);
19862 include_dirs.push_back (include_dir);
19866 line_header::add_file_name (const char *name,
19868 unsigned int mod_time,
19869 unsigned int length)
19871 if (dwarf_line_debug >= 2)
19872 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19873 (unsigned) file_names.size () + 1, name);
19875 file_names.emplace_back (name, d_index, mod_time, length);
19878 /* A convenience function to find the proper .debug_line section for a CU. */
19880 static struct dwarf2_section_info *
19881 get_debug_line_section (struct dwarf2_cu *cu)
19883 struct dwarf2_section_info *section;
19884 struct dwarf2_per_objfile *dwarf2_per_objfile
19885 = cu->per_cu->dwarf2_per_objfile;
19887 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19889 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19890 section = &cu->dwo_unit->dwo_file->sections.line;
19891 else if (cu->per_cu->is_dwz)
19893 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19895 section = &dwz->line;
19898 section = &dwarf2_per_objfile->line;
19903 /* Read directory or file name entry format, starting with byte of
19904 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19905 entries count and the entries themselves in the described entry
19909 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19910 bfd *abfd, const gdb_byte **bufp,
19911 struct line_header *lh,
19912 const struct comp_unit_head *cu_header,
19913 void (*callback) (struct line_header *lh,
19916 unsigned int mod_time,
19917 unsigned int length))
19919 gdb_byte format_count, formati;
19920 ULONGEST data_count, datai;
19921 const gdb_byte *buf = *bufp;
19922 const gdb_byte *format_header_data;
19923 unsigned int bytes_read;
19925 format_count = read_1_byte (abfd, buf);
19927 format_header_data = buf;
19928 for (formati = 0; formati < format_count; formati++)
19930 read_unsigned_leb128 (abfd, buf, &bytes_read);
19932 read_unsigned_leb128 (abfd, buf, &bytes_read);
19936 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19938 for (datai = 0; datai < data_count; datai++)
19940 const gdb_byte *format = format_header_data;
19941 struct file_entry fe;
19943 for (formati = 0; formati < format_count; formati++)
19945 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19946 format += bytes_read;
19948 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19949 format += bytes_read;
19951 gdb::optional<const char *> string;
19952 gdb::optional<unsigned int> uint;
19956 case DW_FORM_string:
19957 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19961 case DW_FORM_line_strp:
19962 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19969 case DW_FORM_data1:
19970 uint.emplace (read_1_byte (abfd, buf));
19974 case DW_FORM_data2:
19975 uint.emplace (read_2_bytes (abfd, buf));
19979 case DW_FORM_data4:
19980 uint.emplace (read_4_bytes (abfd, buf));
19984 case DW_FORM_data8:
19985 uint.emplace (read_8_bytes (abfd, buf));
19989 case DW_FORM_udata:
19990 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19994 case DW_FORM_block:
19995 /* It is valid only for DW_LNCT_timestamp which is ignored by
20000 switch (content_type)
20003 if (string.has_value ())
20006 case DW_LNCT_directory_index:
20007 if (uint.has_value ())
20008 fe.d_index = (dir_index) *uint;
20010 case DW_LNCT_timestamp:
20011 if (uint.has_value ())
20012 fe.mod_time = *uint;
20015 if (uint.has_value ())
20021 complaint (_("Unknown format content type %s"),
20022 pulongest (content_type));
20026 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20032 /* Read the statement program header starting at OFFSET in
20033 .debug_line, or .debug_line.dwo. Return a pointer
20034 to a struct line_header, allocated using xmalloc.
20035 Returns NULL if there is a problem reading the header, e.g., if it
20036 has a version we don't understand.
20038 NOTE: the strings in the include directory and file name tables of
20039 the returned object point into the dwarf line section buffer,
20040 and must not be freed. */
20042 static line_header_up
20043 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20045 const gdb_byte *line_ptr;
20046 unsigned int bytes_read, offset_size;
20048 const char *cur_dir, *cur_file;
20049 struct dwarf2_section_info *section;
20051 struct dwarf2_per_objfile *dwarf2_per_objfile
20052 = cu->per_cu->dwarf2_per_objfile;
20054 section = get_debug_line_section (cu);
20055 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20056 if (section->buffer == NULL)
20058 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20059 complaint (_("missing .debug_line.dwo section"));
20061 complaint (_("missing .debug_line section"));
20065 /* We can't do this until we know the section is non-empty.
20066 Only then do we know we have such a section. */
20067 abfd = get_section_bfd_owner (section);
20069 /* Make sure that at least there's room for the total_length field.
20070 That could be 12 bytes long, but we're just going to fudge that. */
20071 if (to_underlying (sect_off) + 4 >= section->size)
20073 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20077 line_header_up lh (new line_header ());
20079 lh->sect_off = sect_off;
20080 lh->offset_in_dwz = cu->per_cu->is_dwz;
20082 line_ptr = section->buffer + to_underlying (sect_off);
20084 /* Read in the header. */
20086 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20087 &bytes_read, &offset_size);
20088 line_ptr += bytes_read;
20089 if (line_ptr + lh->total_length > (section->buffer + section->size))
20091 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20094 lh->statement_program_end = line_ptr + lh->total_length;
20095 lh->version = read_2_bytes (abfd, line_ptr);
20097 if (lh->version > 5)
20099 /* This is a version we don't understand. The format could have
20100 changed in ways we don't handle properly so just punt. */
20101 complaint (_("unsupported version in .debug_line section"));
20104 if (lh->version >= 5)
20106 gdb_byte segment_selector_size;
20108 /* Skip address size. */
20109 read_1_byte (abfd, line_ptr);
20112 segment_selector_size = read_1_byte (abfd, line_ptr);
20114 if (segment_selector_size != 0)
20116 complaint (_("unsupported segment selector size %u "
20117 "in .debug_line section"),
20118 segment_selector_size);
20122 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20123 line_ptr += offset_size;
20124 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20126 if (lh->version >= 4)
20128 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20132 lh->maximum_ops_per_instruction = 1;
20134 if (lh->maximum_ops_per_instruction == 0)
20136 lh->maximum_ops_per_instruction = 1;
20137 complaint (_("invalid maximum_ops_per_instruction "
20138 "in `.debug_line' section"));
20141 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20143 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20145 lh->line_range = read_1_byte (abfd, line_ptr);
20147 lh->opcode_base = read_1_byte (abfd, line_ptr);
20149 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20151 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20152 for (i = 1; i < lh->opcode_base; ++i)
20154 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20158 if (lh->version >= 5)
20160 /* Read directory table. */
20161 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20163 [] (struct line_header *lh, const char *name,
20164 dir_index d_index, unsigned int mod_time,
20165 unsigned int length)
20167 lh->add_include_dir (name);
20170 /* Read file name table. */
20171 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20173 [] (struct line_header *lh, const char *name,
20174 dir_index d_index, unsigned int mod_time,
20175 unsigned int length)
20177 lh->add_file_name (name, d_index, mod_time, length);
20182 /* Read directory table. */
20183 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20185 line_ptr += bytes_read;
20186 lh->add_include_dir (cur_dir);
20188 line_ptr += bytes_read;
20190 /* Read file name table. */
20191 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20193 unsigned int mod_time, length;
20196 line_ptr += bytes_read;
20197 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20198 line_ptr += bytes_read;
20199 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20200 line_ptr += bytes_read;
20201 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20202 line_ptr += bytes_read;
20204 lh->add_file_name (cur_file, d_index, mod_time, length);
20206 line_ptr += bytes_read;
20208 lh->statement_program_start = line_ptr;
20210 if (line_ptr > (section->buffer + section->size))
20211 complaint (_("line number info header doesn't "
20212 "fit in `.debug_line' section"));
20217 /* Subroutine of dwarf_decode_lines to simplify it.
20218 Return the file name of the psymtab for included file FILE_INDEX
20219 in line header LH of PST.
20220 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20221 If space for the result is malloc'd, *NAME_HOLDER will be set.
20222 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20224 static const char *
20225 psymtab_include_file_name (const struct line_header *lh, int file_index,
20226 const struct partial_symtab *pst,
20227 const char *comp_dir,
20228 gdb::unique_xmalloc_ptr<char> *name_holder)
20230 const file_entry &fe = lh->file_names[file_index];
20231 const char *include_name = fe.name;
20232 const char *include_name_to_compare = include_name;
20233 const char *pst_filename;
20236 const char *dir_name = fe.include_dir (lh);
20238 gdb::unique_xmalloc_ptr<char> hold_compare;
20239 if (!IS_ABSOLUTE_PATH (include_name)
20240 && (dir_name != NULL || comp_dir != NULL))
20242 /* Avoid creating a duplicate psymtab for PST.
20243 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20244 Before we do the comparison, however, we need to account
20245 for DIR_NAME and COMP_DIR.
20246 First prepend dir_name (if non-NULL). If we still don't
20247 have an absolute path prepend comp_dir (if non-NULL).
20248 However, the directory we record in the include-file's
20249 psymtab does not contain COMP_DIR (to match the
20250 corresponding symtab(s)).
20255 bash$ gcc -g ./hello.c
20256 include_name = "hello.c"
20258 DW_AT_comp_dir = comp_dir = "/tmp"
20259 DW_AT_name = "./hello.c"
20263 if (dir_name != NULL)
20265 name_holder->reset (concat (dir_name, SLASH_STRING,
20266 include_name, (char *) NULL));
20267 include_name = name_holder->get ();
20268 include_name_to_compare = include_name;
20270 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20272 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20273 include_name, (char *) NULL));
20274 include_name_to_compare = hold_compare.get ();
20278 pst_filename = pst->filename;
20279 gdb::unique_xmalloc_ptr<char> copied_name;
20280 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20282 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20283 pst_filename, (char *) NULL));
20284 pst_filename = copied_name.get ();
20287 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20291 return include_name;
20294 /* State machine to track the state of the line number program. */
20296 class lnp_state_machine
20299 /* Initialize a machine state for the start of a line number
20301 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20303 file_entry *current_file ()
20305 /* lh->file_names is 0-based, but the file name numbers in the
20306 statement program are 1-based. */
20307 return m_line_header->file_name_at (m_file);
20310 /* Record the line in the state machine. END_SEQUENCE is true if
20311 we're processing the end of a sequence. */
20312 void record_line (bool end_sequence);
20314 /* Check address and if invalid nop-out the rest of the lines in this
20316 void check_line_address (struct dwarf2_cu *cu,
20317 const gdb_byte *line_ptr,
20318 CORE_ADDR lowpc, CORE_ADDR address);
20320 void handle_set_discriminator (unsigned int discriminator)
20322 m_discriminator = discriminator;
20323 m_line_has_non_zero_discriminator |= discriminator != 0;
20326 /* Handle DW_LNE_set_address. */
20327 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20330 address += baseaddr;
20331 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20334 /* Handle DW_LNS_advance_pc. */
20335 void handle_advance_pc (CORE_ADDR adjust);
20337 /* Handle a special opcode. */
20338 void handle_special_opcode (unsigned char op_code);
20340 /* Handle DW_LNS_advance_line. */
20341 void handle_advance_line (int line_delta)
20343 advance_line (line_delta);
20346 /* Handle DW_LNS_set_file. */
20347 void handle_set_file (file_name_index file);
20349 /* Handle DW_LNS_negate_stmt. */
20350 void handle_negate_stmt ()
20352 m_is_stmt = !m_is_stmt;
20355 /* Handle DW_LNS_const_add_pc. */
20356 void handle_const_add_pc ();
20358 /* Handle DW_LNS_fixed_advance_pc. */
20359 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20361 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20365 /* Handle DW_LNS_copy. */
20366 void handle_copy ()
20368 record_line (false);
20369 m_discriminator = 0;
20372 /* Handle DW_LNE_end_sequence. */
20373 void handle_end_sequence ()
20375 m_record_line_callback = ::record_line;
20379 /* Advance the line by LINE_DELTA. */
20380 void advance_line (int line_delta)
20382 m_line += line_delta;
20384 if (line_delta != 0)
20385 m_line_has_non_zero_discriminator = m_discriminator != 0;
20388 gdbarch *m_gdbarch;
20390 /* True if we're recording lines.
20391 Otherwise we're building partial symtabs and are just interested in
20392 finding include files mentioned by the line number program. */
20393 bool m_record_lines_p;
20395 /* The line number header. */
20396 line_header *m_line_header;
20398 /* These are part of the standard DWARF line number state machine,
20399 and initialized according to the DWARF spec. */
20401 unsigned char m_op_index = 0;
20402 /* The line table index (1-based) of the current file. */
20403 file_name_index m_file = (file_name_index) 1;
20404 unsigned int m_line = 1;
20406 /* These are initialized in the constructor. */
20408 CORE_ADDR m_address;
20410 unsigned int m_discriminator;
20412 /* Additional bits of state we need to track. */
20414 /* The last file that we called dwarf2_start_subfile for.
20415 This is only used for TLLs. */
20416 unsigned int m_last_file = 0;
20417 /* The last file a line number was recorded for. */
20418 struct subfile *m_last_subfile = NULL;
20420 /* The function to call to record a line. */
20421 record_line_ftype *m_record_line_callback = NULL;
20423 /* The last line number that was recorded, used to coalesce
20424 consecutive entries for the same line. This can happen, for
20425 example, when discriminators are present. PR 17276. */
20426 unsigned int m_last_line = 0;
20427 bool m_line_has_non_zero_discriminator = false;
20431 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20433 CORE_ADDR addr_adj = (((m_op_index + adjust)
20434 / m_line_header->maximum_ops_per_instruction)
20435 * m_line_header->minimum_instruction_length);
20436 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20437 m_op_index = ((m_op_index + adjust)
20438 % m_line_header->maximum_ops_per_instruction);
20442 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20444 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20445 CORE_ADDR addr_adj = (((m_op_index
20446 + (adj_opcode / m_line_header->line_range))
20447 / m_line_header->maximum_ops_per_instruction)
20448 * m_line_header->minimum_instruction_length);
20449 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20450 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20451 % m_line_header->maximum_ops_per_instruction);
20453 int line_delta = (m_line_header->line_base
20454 + (adj_opcode % m_line_header->line_range));
20455 advance_line (line_delta);
20456 record_line (false);
20457 m_discriminator = 0;
20461 lnp_state_machine::handle_set_file (file_name_index file)
20465 const file_entry *fe = current_file ();
20467 dwarf2_debug_line_missing_file_complaint ();
20468 else if (m_record_lines_p)
20470 const char *dir = fe->include_dir (m_line_header);
20472 m_last_subfile = current_subfile;
20473 m_line_has_non_zero_discriminator = m_discriminator != 0;
20474 dwarf2_start_subfile (fe->name, dir);
20479 lnp_state_machine::handle_const_add_pc ()
20482 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20485 = (((m_op_index + adjust)
20486 / m_line_header->maximum_ops_per_instruction)
20487 * m_line_header->minimum_instruction_length);
20489 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20490 m_op_index = ((m_op_index + adjust)
20491 % m_line_header->maximum_ops_per_instruction);
20494 /* Ignore this record_line request. */
20497 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20502 /* Return non-zero if we should add LINE to the line number table.
20503 LINE is the line to add, LAST_LINE is the last line that was added,
20504 LAST_SUBFILE is the subfile for LAST_LINE.
20505 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20506 had a non-zero discriminator.
20508 We have to be careful in the presence of discriminators.
20509 E.g., for this line:
20511 for (i = 0; i < 100000; i++);
20513 clang can emit four line number entries for that one line,
20514 each with a different discriminator.
20515 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20517 However, we want gdb to coalesce all four entries into one.
20518 Otherwise the user could stepi into the middle of the line and
20519 gdb would get confused about whether the pc really was in the
20520 middle of the line.
20522 Things are further complicated by the fact that two consecutive
20523 line number entries for the same line is a heuristic used by gcc
20524 to denote the end of the prologue. So we can't just discard duplicate
20525 entries, we have to be selective about it. The heuristic we use is
20526 that we only collapse consecutive entries for the same line if at least
20527 one of those entries has a non-zero discriminator. PR 17276.
20529 Note: Addresses in the line number state machine can never go backwards
20530 within one sequence, thus this coalescing is ok. */
20533 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20534 int line_has_non_zero_discriminator,
20535 struct subfile *last_subfile)
20537 if (current_subfile != last_subfile)
20539 if (line != last_line)
20541 /* Same line for the same file that we've seen already.
20542 As a last check, for pr 17276, only record the line if the line
20543 has never had a non-zero discriminator. */
20544 if (!line_has_non_zero_discriminator)
20549 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20550 in the line table of subfile SUBFILE. */
20553 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20554 unsigned int line, CORE_ADDR address,
20555 record_line_ftype p_record_line)
20557 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20559 if (dwarf_line_debug)
20561 fprintf_unfiltered (gdb_stdlog,
20562 "Recording line %u, file %s, address %s\n",
20563 line, lbasename (subfile->name),
20564 paddress (gdbarch, address));
20567 (*p_record_line) (subfile, line, addr);
20570 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20571 Mark the end of a set of line number records.
20572 The arguments are the same as for dwarf_record_line_1.
20573 If SUBFILE is NULL the request is ignored. */
20576 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20577 CORE_ADDR address, record_line_ftype p_record_line)
20579 if (subfile == NULL)
20582 if (dwarf_line_debug)
20584 fprintf_unfiltered (gdb_stdlog,
20585 "Finishing current line, file %s, address %s\n",
20586 lbasename (subfile->name),
20587 paddress (gdbarch, address));
20590 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20594 lnp_state_machine::record_line (bool end_sequence)
20596 if (dwarf_line_debug)
20598 fprintf_unfiltered (gdb_stdlog,
20599 "Processing actual line %u: file %u,"
20600 " address %s, is_stmt %u, discrim %u\n",
20601 m_line, to_underlying (m_file),
20602 paddress (m_gdbarch, m_address),
20603 m_is_stmt, m_discriminator);
20606 file_entry *fe = current_file ();
20609 dwarf2_debug_line_missing_file_complaint ();
20610 /* For now we ignore lines not starting on an instruction boundary.
20611 But not when processing end_sequence for compatibility with the
20612 previous version of the code. */
20613 else if (m_op_index == 0 || end_sequence)
20615 fe->included_p = 1;
20616 if (m_record_lines_p && m_is_stmt)
20618 if (m_last_subfile != current_subfile || end_sequence)
20620 dwarf_finish_line (m_gdbarch, m_last_subfile,
20621 m_address, m_record_line_callback);
20626 if (dwarf_record_line_p (m_line, m_last_line,
20627 m_line_has_non_zero_discriminator,
20630 dwarf_record_line_1 (m_gdbarch, current_subfile,
20632 m_record_line_callback);
20634 m_last_subfile = current_subfile;
20635 m_last_line = m_line;
20641 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20642 bool record_lines_p)
20645 m_record_lines_p = record_lines_p;
20646 m_line_header = lh;
20648 m_record_line_callback = ::record_line;
20650 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20651 was a line entry for it so that the backend has a chance to adjust it
20652 and also record it in case it needs it. This is currently used by MIPS
20653 code, cf. `mips_adjust_dwarf2_line'. */
20654 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20655 m_is_stmt = lh->default_is_stmt;
20656 m_discriminator = 0;
20660 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20661 const gdb_byte *line_ptr,
20662 CORE_ADDR lowpc, CORE_ADDR address)
20664 /* If address < lowpc then it's not a usable value, it's outside the
20665 pc range of the CU. However, we restrict the test to only address
20666 values of zero to preserve GDB's previous behaviour which is to
20667 handle the specific case of a function being GC'd by the linker. */
20669 if (address == 0 && address < lowpc)
20671 /* This line table is for a function which has been
20672 GCd by the linker. Ignore it. PR gdb/12528 */
20674 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20675 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20677 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20678 line_offset, objfile_name (objfile));
20679 m_record_line_callback = noop_record_line;
20680 /* Note: record_line_callback is left as noop_record_line until
20681 we see DW_LNE_end_sequence. */
20685 /* Subroutine of dwarf_decode_lines to simplify it.
20686 Process the line number information in LH.
20687 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20688 program in order to set included_p for every referenced header. */
20691 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20692 const int decode_for_pst_p, CORE_ADDR lowpc)
20694 const gdb_byte *line_ptr, *extended_end;
20695 const gdb_byte *line_end;
20696 unsigned int bytes_read, extended_len;
20697 unsigned char op_code, extended_op;
20698 CORE_ADDR baseaddr;
20699 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20700 bfd *abfd = objfile->obfd;
20701 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20702 /* True if we're recording line info (as opposed to building partial
20703 symtabs and just interested in finding include files mentioned by
20704 the line number program). */
20705 bool record_lines_p = !decode_for_pst_p;
20707 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20709 line_ptr = lh->statement_program_start;
20710 line_end = lh->statement_program_end;
20712 /* Read the statement sequences until there's nothing left. */
20713 while (line_ptr < line_end)
20715 /* The DWARF line number program state machine. Reset the state
20716 machine at the start of each sequence. */
20717 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20718 bool end_sequence = false;
20720 if (record_lines_p)
20722 /* Start a subfile for the current file of the state
20724 const file_entry *fe = state_machine.current_file ();
20727 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20730 /* Decode the table. */
20731 while (line_ptr < line_end && !end_sequence)
20733 op_code = read_1_byte (abfd, line_ptr);
20736 if (op_code >= lh->opcode_base)
20738 /* Special opcode. */
20739 state_machine.handle_special_opcode (op_code);
20741 else switch (op_code)
20743 case DW_LNS_extended_op:
20744 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20746 line_ptr += bytes_read;
20747 extended_end = line_ptr + extended_len;
20748 extended_op = read_1_byte (abfd, line_ptr);
20750 switch (extended_op)
20752 case DW_LNE_end_sequence:
20753 state_machine.handle_end_sequence ();
20754 end_sequence = true;
20756 case DW_LNE_set_address:
20759 = read_address (abfd, line_ptr, cu, &bytes_read);
20760 line_ptr += bytes_read;
20762 state_machine.check_line_address (cu, line_ptr,
20764 state_machine.handle_set_address (baseaddr, address);
20767 case DW_LNE_define_file:
20769 const char *cur_file;
20770 unsigned int mod_time, length;
20773 cur_file = read_direct_string (abfd, line_ptr,
20775 line_ptr += bytes_read;
20776 dindex = (dir_index)
20777 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20778 line_ptr += bytes_read;
20780 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20781 line_ptr += bytes_read;
20783 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20784 line_ptr += bytes_read;
20785 lh->add_file_name (cur_file, dindex, mod_time, length);
20788 case DW_LNE_set_discriminator:
20790 /* The discriminator is not interesting to the
20791 debugger; just ignore it. We still need to
20792 check its value though:
20793 if there are consecutive entries for the same
20794 (non-prologue) line we want to coalesce them.
20797 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20798 line_ptr += bytes_read;
20800 state_machine.handle_set_discriminator (discr);
20804 complaint (_("mangled .debug_line section"));
20807 /* Make sure that we parsed the extended op correctly. If e.g.
20808 we expected a different address size than the producer used,
20809 we may have read the wrong number of bytes. */
20810 if (line_ptr != extended_end)
20812 complaint (_("mangled .debug_line section"));
20817 state_machine.handle_copy ();
20819 case DW_LNS_advance_pc:
20822 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20823 line_ptr += bytes_read;
20825 state_machine.handle_advance_pc (adjust);
20828 case DW_LNS_advance_line:
20831 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20832 line_ptr += bytes_read;
20834 state_machine.handle_advance_line (line_delta);
20837 case DW_LNS_set_file:
20839 file_name_index file
20840 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20842 line_ptr += bytes_read;
20844 state_machine.handle_set_file (file);
20847 case DW_LNS_set_column:
20848 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20849 line_ptr += bytes_read;
20851 case DW_LNS_negate_stmt:
20852 state_machine.handle_negate_stmt ();
20854 case DW_LNS_set_basic_block:
20856 /* Add to the address register of the state machine the
20857 address increment value corresponding to special opcode
20858 255. I.e., this value is scaled by the minimum
20859 instruction length since special opcode 255 would have
20860 scaled the increment. */
20861 case DW_LNS_const_add_pc:
20862 state_machine.handle_const_add_pc ();
20864 case DW_LNS_fixed_advance_pc:
20866 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20869 state_machine.handle_fixed_advance_pc (addr_adj);
20874 /* Unknown standard opcode, ignore it. */
20877 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20879 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20880 line_ptr += bytes_read;
20887 dwarf2_debug_line_missing_end_sequence_complaint ();
20889 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20890 in which case we still finish recording the last line). */
20891 state_machine.record_line (true);
20895 /* Decode the Line Number Program (LNP) for the given line_header
20896 structure and CU. The actual information extracted and the type
20897 of structures created from the LNP depends on the value of PST.
20899 1. If PST is NULL, then this procedure uses the data from the program
20900 to create all necessary symbol tables, and their linetables.
20902 2. If PST is not NULL, this procedure reads the program to determine
20903 the list of files included by the unit represented by PST, and
20904 builds all the associated partial symbol tables.
20906 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20907 It is used for relative paths in the line table.
20908 NOTE: When processing partial symtabs (pst != NULL),
20909 comp_dir == pst->dirname.
20911 NOTE: It is important that psymtabs have the same file name (via strcmp)
20912 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20913 symtab we don't use it in the name of the psymtabs we create.
20914 E.g. expand_line_sal requires this when finding psymtabs to expand.
20915 A good testcase for this is mb-inline.exp.
20917 LOWPC is the lowest address in CU (or 0 if not known).
20919 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20920 for its PC<->lines mapping information. Otherwise only the filename
20921 table is read in. */
20924 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20925 struct dwarf2_cu *cu, struct partial_symtab *pst,
20926 CORE_ADDR lowpc, int decode_mapping)
20928 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20929 const int decode_for_pst_p = (pst != NULL);
20931 if (decode_mapping)
20932 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20934 if (decode_for_pst_p)
20938 /* Now that we're done scanning the Line Header Program, we can
20939 create the psymtab of each included file. */
20940 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20941 if (lh->file_names[file_index].included_p == 1)
20943 gdb::unique_xmalloc_ptr<char> name_holder;
20944 const char *include_name =
20945 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20947 if (include_name != NULL)
20948 dwarf2_create_include_psymtab (include_name, pst, objfile);
20953 /* Make sure a symtab is created for every file, even files
20954 which contain only variables (i.e. no code with associated
20956 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20959 for (i = 0; i < lh->file_names.size (); i++)
20961 file_entry &fe = lh->file_names[i];
20963 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20965 if (current_subfile->symtab == NULL)
20967 current_subfile->symtab
20968 = allocate_symtab (cust, current_subfile->name);
20970 fe.symtab = current_subfile->symtab;
20975 /* Start a subfile for DWARF. FILENAME is the name of the file and
20976 DIRNAME the name of the source directory which contains FILENAME
20977 or NULL if not known.
20978 This routine tries to keep line numbers from identical absolute and
20979 relative file names in a common subfile.
20981 Using the `list' example from the GDB testsuite, which resides in
20982 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20983 of /srcdir/list0.c yields the following debugging information for list0.c:
20985 DW_AT_name: /srcdir/list0.c
20986 DW_AT_comp_dir: /compdir
20987 files.files[0].name: list0.h
20988 files.files[0].dir: /srcdir
20989 files.files[1].name: list0.c
20990 files.files[1].dir: /srcdir
20992 The line number information for list0.c has to end up in a single
20993 subfile, so that `break /srcdir/list0.c:1' works as expected.
20994 start_subfile will ensure that this happens provided that we pass the
20995 concatenation of files.files[1].dir and files.files[1].name as the
20999 dwarf2_start_subfile (const char *filename, const char *dirname)
21003 /* In order not to lose the line information directory,
21004 we concatenate it to the filename when it makes sense.
21005 Note that the Dwarf3 standard says (speaking of filenames in line
21006 information): ``The directory index is ignored for file names
21007 that represent full path names''. Thus ignoring dirname in the
21008 `else' branch below isn't an issue. */
21010 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21012 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21016 start_subfile (filename);
21022 /* Start a symtab for DWARF.
21023 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21025 static struct compunit_symtab *
21026 dwarf2_start_symtab (struct dwarf2_cu *cu,
21027 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21029 struct compunit_symtab *cust
21030 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21031 low_pc, cu->language);
21033 record_debugformat ("DWARF 2");
21034 record_producer (cu->producer);
21036 /* We assume that we're processing GCC output. */
21037 processing_gcc_compilation = 2;
21039 cu->processing_has_namespace_info = 0;
21045 var_decode_location (struct attribute *attr, struct symbol *sym,
21046 struct dwarf2_cu *cu)
21048 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21049 struct comp_unit_head *cu_header = &cu->header;
21051 /* NOTE drow/2003-01-30: There used to be a comment and some special
21052 code here to turn a symbol with DW_AT_external and a
21053 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21054 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21055 with some versions of binutils) where shared libraries could have
21056 relocations against symbols in their debug information - the
21057 minimal symbol would have the right address, but the debug info
21058 would not. It's no longer necessary, because we will explicitly
21059 apply relocations when we read in the debug information now. */
21061 /* A DW_AT_location attribute with no contents indicates that a
21062 variable has been optimized away. */
21063 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21065 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21069 /* Handle one degenerate form of location expression specially, to
21070 preserve GDB's previous behavior when section offsets are
21071 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21072 then mark this symbol as LOC_STATIC. */
21074 if (attr_form_is_block (attr)
21075 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21076 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21077 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21078 && (DW_BLOCK (attr)->size
21079 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21081 unsigned int dummy;
21083 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21084 SYMBOL_VALUE_ADDRESS (sym) =
21085 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21087 SYMBOL_VALUE_ADDRESS (sym) =
21088 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21089 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21090 fixup_symbol_section (sym, objfile);
21091 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21092 SYMBOL_SECTION (sym));
21096 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21097 expression evaluator, and use LOC_COMPUTED only when necessary
21098 (i.e. when the value of a register or memory location is
21099 referenced, or a thread-local block, etc.). Then again, it might
21100 not be worthwhile. I'm assuming that it isn't unless performance
21101 or memory numbers show me otherwise. */
21103 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21105 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21106 cu->has_loclist = 1;
21109 /* Given a pointer to a DWARF information entry, figure out if we need
21110 to make a symbol table entry for it, and if so, create a new entry
21111 and return a pointer to it.
21112 If TYPE is NULL, determine symbol type from the die, otherwise
21113 used the passed type.
21114 If SPACE is not NULL, use it to hold the new symbol. If it is
21115 NULL, allocate a new symbol on the objfile's obstack. */
21117 static struct symbol *
21118 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21119 struct symbol *space)
21121 struct dwarf2_per_objfile *dwarf2_per_objfile
21122 = cu->per_cu->dwarf2_per_objfile;
21123 struct objfile *objfile = dwarf2_per_objfile->objfile;
21124 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21125 struct symbol *sym = NULL;
21127 struct attribute *attr = NULL;
21128 struct attribute *attr2 = NULL;
21129 CORE_ADDR baseaddr;
21130 struct pending **list_to_add = NULL;
21132 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21134 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21136 name = dwarf2_name (die, cu);
21139 const char *linkagename;
21140 int suppress_add = 0;
21145 sym = allocate_symbol (objfile);
21146 OBJSTAT (objfile, n_syms++);
21148 /* Cache this symbol's name and the name's demangled form (if any). */
21149 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21150 linkagename = dwarf2_physname (name, die, cu);
21151 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21153 /* Fortran does not have mangling standard and the mangling does differ
21154 between gfortran, iFort etc. */
21155 if (cu->language == language_fortran
21156 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21157 symbol_set_demangled_name (&(sym->ginfo),
21158 dwarf2_full_name (name, die, cu),
21161 /* Default assumptions.
21162 Use the passed type or decode it from the die. */
21163 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21164 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21166 SYMBOL_TYPE (sym) = type;
21168 SYMBOL_TYPE (sym) = die_type (die, cu);
21169 attr = dwarf2_attr (die,
21170 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21174 SYMBOL_LINE (sym) = DW_UNSND (attr);
21177 attr = dwarf2_attr (die,
21178 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21182 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21183 struct file_entry *fe;
21185 if (cu->line_header != NULL)
21186 fe = cu->line_header->file_name_at (file_index);
21191 complaint (_("file index out of range"));
21193 symbol_set_symtab (sym, fe->symtab);
21199 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21204 addr = attr_value_as_address (attr);
21205 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21206 SYMBOL_VALUE_ADDRESS (sym) = addr;
21208 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21209 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21210 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21211 add_symbol_to_list (sym, cu->list_in_scope);
21213 case DW_TAG_subprogram:
21214 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21216 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21217 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21218 if ((attr2 && (DW_UNSND (attr2) != 0))
21219 || cu->language == language_ada)
21221 /* Subprograms marked external are stored as a global symbol.
21222 Ada subprograms, whether marked external or not, are always
21223 stored as a global symbol, because we want to be able to
21224 access them globally. For instance, we want to be able
21225 to break on a nested subprogram without having to
21226 specify the context. */
21227 list_to_add = &global_symbols;
21231 list_to_add = cu->list_in_scope;
21234 case DW_TAG_inlined_subroutine:
21235 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21237 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21238 SYMBOL_INLINED (sym) = 1;
21239 list_to_add = cu->list_in_scope;
21241 case DW_TAG_template_value_param:
21243 /* Fall through. */
21244 case DW_TAG_constant:
21245 case DW_TAG_variable:
21246 case DW_TAG_member:
21247 /* Compilation with minimal debug info may result in
21248 variables with missing type entries. Change the
21249 misleading `void' type to something sensible. */
21250 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21251 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21253 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21254 /* In the case of DW_TAG_member, we should only be called for
21255 static const members. */
21256 if (die->tag == DW_TAG_member)
21258 /* dwarf2_add_field uses die_is_declaration,
21259 so we do the same. */
21260 gdb_assert (die_is_declaration (die, cu));
21265 dwarf2_const_value (attr, sym, cu);
21266 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21269 if (attr2 && (DW_UNSND (attr2) != 0))
21270 list_to_add = &global_symbols;
21272 list_to_add = cu->list_in_scope;
21276 attr = dwarf2_attr (die, DW_AT_location, cu);
21279 var_decode_location (attr, sym, cu);
21280 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21282 /* Fortran explicitly imports any global symbols to the local
21283 scope by DW_TAG_common_block. */
21284 if (cu->language == language_fortran && die->parent
21285 && die->parent->tag == DW_TAG_common_block)
21288 if (SYMBOL_CLASS (sym) == LOC_STATIC
21289 && SYMBOL_VALUE_ADDRESS (sym) == 0
21290 && !dwarf2_per_objfile->has_section_at_zero)
21292 /* When a static variable is eliminated by the linker,
21293 the corresponding debug information is not stripped
21294 out, but the variable address is set to null;
21295 do not add such variables into symbol table. */
21297 else if (attr2 && (DW_UNSND (attr2) != 0))
21299 /* Workaround gfortran PR debug/40040 - it uses
21300 DW_AT_location for variables in -fPIC libraries which may
21301 get overriden by other libraries/executable and get
21302 a different address. Resolve it by the minimal symbol
21303 which may come from inferior's executable using copy
21304 relocation. Make this workaround only for gfortran as for
21305 other compilers GDB cannot guess the minimal symbol
21306 Fortran mangling kind. */
21307 if (cu->language == language_fortran && die->parent
21308 && die->parent->tag == DW_TAG_module
21310 && startswith (cu->producer, "GNU Fortran"))
21311 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21313 /* A variable with DW_AT_external is never static,
21314 but it may be block-scoped. */
21315 list_to_add = (cu->list_in_scope == &file_symbols
21316 ? &global_symbols : cu->list_in_scope);
21319 list_to_add = cu->list_in_scope;
21323 /* We do not know the address of this symbol.
21324 If it is an external symbol and we have type information
21325 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21326 The address of the variable will then be determined from
21327 the minimal symbol table whenever the variable is
21329 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21331 /* Fortran explicitly imports any global symbols to the local
21332 scope by DW_TAG_common_block. */
21333 if (cu->language == language_fortran && die->parent
21334 && die->parent->tag == DW_TAG_common_block)
21336 /* SYMBOL_CLASS doesn't matter here because
21337 read_common_block is going to reset it. */
21339 list_to_add = cu->list_in_scope;
21341 else if (attr2 && (DW_UNSND (attr2) != 0)
21342 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21344 /* A variable with DW_AT_external is never static, but it
21345 may be block-scoped. */
21346 list_to_add = (cu->list_in_scope == &file_symbols
21347 ? &global_symbols : cu->list_in_scope);
21349 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21351 else if (!die_is_declaration (die, cu))
21353 /* Use the default LOC_OPTIMIZED_OUT class. */
21354 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21356 list_to_add = cu->list_in_scope;
21360 case DW_TAG_formal_parameter:
21361 /* If we are inside a function, mark this as an argument. If
21362 not, we might be looking at an argument to an inlined function
21363 when we do not have enough information to show inlined frames;
21364 pretend it's a local variable in that case so that the user can
21366 if (context_stack_depth > 0
21367 && context_stack[context_stack_depth - 1].name != NULL)
21368 SYMBOL_IS_ARGUMENT (sym) = 1;
21369 attr = dwarf2_attr (die, DW_AT_location, cu);
21372 var_decode_location (attr, sym, cu);
21374 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21377 dwarf2_const_value (attr, sym, cu);
21380 list_to_add = cu->list_in_scope;
21382 case DW_TAG_unspecified_parameters:
21383 /* From varargs functions; gdb doesn't seem to have any
21384 interest in this information, so just ignore it for now.
21387 case DW_TAG_template_type_param:
21389 /* Fall through. */
21390 case DW_TAG_class_type:
21391 case DW_TAG_interface_type:
21392 case DW_TAG_structure_type:
21393 case DW_TAG_union_type:
21394 case DW_TAG_set_type:
21395 case DW_TAG_enumeration_type:
21396 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21397 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21400 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21401 really ever be static objects: otherwise, if you try
21402 to, say, break of a class's method and you're in a file
21403 which doesn't mention that class, it won't work unless
21404 the check for all static symbols in lookup_symbol_aux
21405 saves you. See the OtherFileClass tests in
21406 gdb.c++/namespace.exp. */
21410 list_to_add = (cu->list_in_scope == &file_symbols
21411 && cu->language == language_cplus
21412 ? &global_symbols : cu->list_in_scope);
21414 /* The semantics of C++ state that "struct foo {
21415 ... }" also defines a typedef for "foo". */
21416 if (cu->language == language_cplus
21417 || cu->language == language_ada
21418 || cu->language == language_d
21419 || cu->language == language_rust)
21421 /* The symbol's name is already allocated along
21422 with this objfile, so we don't need to
21423 duplicate it for the type. */
21424 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21425 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21430 case DW_TAG_typedef:
21431 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21432 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21433 list_to_add = cu->list_in_scope;
21435 case DW_TAG_base_type:
21436 case DW_TAG_subrange_type:
21437 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21438 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21439 list_to_add = cu->list_in_scope;
21441 case DW_TAG_enumerator:
21442 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21445 dwarf2_const_value (attr, sym, cu);
21448 /* NOTE: carlton/2003-11-10: See comment above in the
21449 DW_TAG_class_type, etc. block. */
21451 list_to_add = (cu->list_in_scope == &file_symbols
21452 && cu->language == language_cplus
21453 ? &global_symbols : cu->list_in_scope);
21456 case DW_TAG_imported_declaration:
21457 case DW_TAG_namespace:
21458 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21459 list_to_add = &global_symbols;
21461 case DW_TAG_module:
21462 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21463 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21464 list_to_add = &global_symbols;
21466 case DW_TAG_common_block:
21467 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21468 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21469 add_symbol_to_list (sym, cu->list_in_scope);
21472 /* Not a tag we recognize. Hopefully we aren't processing
21473 trash data, but since we must specifically ignore things
21474 we don't recognize, there is nothing else we should do at
21476 complaint (_("unsupported tag: '%s'"),
21477 dwarf_tag_name (die->tag));
21483 sym->hash_next = objfile->template_symbols;
21484 objfile->template_symbols = sym;
21485 list_to_add = NULL;
21488 if (list_to_add != NULL)
21489 add_symbol_to_list (sym, list_to_add);
21491 /* For the benefit of old versions of GCC, check for anonymous
21492 namespaces based on the demangled name. */
21493 if (!cu->processing_has_namespace_info
21494 && cu->language == language_cplus)
21495 cp_scan_for_anonymous_namespaces (sym, objfile);
21500 /* Given an attr with a DW_FORM_dataN value in host byte order,
21501 zero-extend it as appropriate for the symbol's type. The DWARF
21502 standard (v4) is not entirely clear about the meaning of using
21503 DW_FORM_dataN for a constant with a signed type, where the type is
21504 wider than the data. The conclusion of a discussion on the DWARF
21505 list was that this is unspecified. We choose to always zero-extend
21506 because that is the interpretation long in use by GCC. */
21509 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21510 struct dwarf2_cu *cu, LONGEST *value, int bits)
21512 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21513 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21514 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21515 LONGEST l = DW_UNSND (attr);
21517 if (bits < sizeof (*value) * 8)
21519 l &= ((LONGEST) 1 << bits) - 1;
21522 else if (bits == sizeof (*value) * 8)
21526 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21527 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21534 /* Read a constant value from an attribute. Either set *VALUE, or if
21535 the value does not fit in *VALUE, set *BYTES - either already
21536 allocated on the objfile obstack, or newly allocated on OBSTACK,
21537 or, set *BATON, if we translated the constant to a location
21541 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21542 const char *name, struct obstack *obstack,
21543 struct dwarf2_cu *cu,
21544 LONGEST *value, const gdb_byte **bytes,
21545 struct dwarf2_locexpr_baton **baton)
21547 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21548 struct comp_unit_head *cu_header = &cu->header;
21549 struct dwarf_block *blk;
21550 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21551 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21557 switch (attr->form)
21560 case DW_FORM_GNU_addr_index:
21564 if (TYPE_LENGTH (type) != cu_header->addr_size)
21565 dwarf2_const_value_length_mismatch_complaint (name,
21566 cu_header->addr_size,
21567 TYPE_LENGTH (type));
21568 /* Symbols of this form are reasonably rare, so we just
21569 piggyback on the existing location code rather than writing
21570 a new implementation of symbol_computed_ops. */
21571 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21572 (*baton)->per_cu = cu->per_cu;
21573 gdb_assert ((*baton)->per_cu);
21575 (*baton)->size = 2 + cu_header->addr_size;
21576 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21577 (*baton)->data = data;
21579 data[0] = DW_OP_addr;
21580 store_unsigned_integer (&data[1], cu_header->addr_size,
21581 byte_order, DW_ADDR (attr));
21582 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21585 case DW_FORM_string:
21587 case DW_FORM_GNU_str_index:
21588 case DW_FORM_GNU_strp_alt:
21589 /* DW_STRING is already allocated on the objfile obstack, point
21591 *bytes = (const gdb_byte *) DW_STRING (attr);
21593 case DW_FORM_block1:
21594 case DW_FORM_block2:
21595 case DW_FORM_block4:
21596 case DW_FORM_block:
21597 case DW_FORM_exprloc:
21598 case DW_FORM_data16:
21599 blk = DW_BLOCK (attr);
21600 if (TYPE_LENGTH (type) != blk->size)
21601 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21602 TYPE_LENGTH (type));
21603 *bytes = blk->data;
21606 /* The DW_AT_const_value attributes are supposed to carry the
21607 symbol's value "represented as it would be on the target
21608 architecture." By the time we get here, it's already been
21609 converted to host endianness, so we just need to sign- or
21610 zero-extend it as appropriate. */
21611 case DW_FORM_data1:
21612 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21614 case DW_FORM_data2:
21615 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21617 case DW_FORM_data4:
21618 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21620 case DW_FORM_data8:
21621 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21624 case DW_FORM_sdata:
21625 case DW_FORM_implicit_const:
21626 *value = DW_SND (attr);
21629 case DW_FORM_udata:
21630 *value = DW_UNSND (attr);
21634 complaint (_("unsupported const value attribute form: '%s'"),
21635 dwarf_form_name (attr->form));
21642 /* Copy constant value from an attribute to a symbol. */
21645 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21646 struct dwarf2_cu *cu)
21648 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21650 const gdb_byte *bytes;
21651 struct dwarf2_locexpr_baton *baton;
21653 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21654 SYMBOL_PRINT_NAME (sym),
21655 &objfile->objfile_obstack, cu,
21656 &value, &bytes, &baton);
21660 SYMBOL_LOCATION_BATON (sym) = baton;
21661 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21663 else if (bytes != NULL)
21665 SYMBOL_VALUE_BYTES (sym) = bytes;
21666 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21670 SYMBOL_VALUE (sym) = value;
21671 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21675 /* Return the type of the die in question using its DW_AT_type attribute. */
21677 static struct type *
21678 die_type (struct die_info *die, struct dwarf2_cu *cu)
21680 struct attribute *type_attr;
21682 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21685 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21686 /* A missing DW_AT_type represents a void type. */
21687 return objfile_type (objfile)->builtin_void;
21690 return lookup_die_type (die, type_attr, cu);
21693 /* True iff CU's producer generates GNAT Ada auxiliary information
21694 that allows to find parallel types through that information instead
21695 of having to do expensive parallel lookups by type name. */
21698 need_gnat_info (struct dwarf2_cu *cu)
21700 /* Assume that the Ada compiler was GNAT, which always produces
21701 the auxiliary information. */
21702 return (cu->language == language_ada);
21705 /* Return the auxiliary type of the die in question using its
21706 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21707 attribute is not present. */
21709 static struct type *
21710 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21712 struct attribute *type_attr;
21714 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21718 return lookup_die_type (die, type_attr, cu);
21721 /* If DIE has a descriptive_type attribute, then set the TYPE's
21722 descriptive type accordingly. */
21725 set_descriptive_type (struct type *type, struct die_info *die,
21726 struct dwarf2_cu *cu)
21728 struct type *descriptive_type = die_descriptive_type (die, cu);
21730 if (descriptive_type)
21732 ALLOCATE_GNAT_AUX_TYPE (type);
21733 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21737 /* Return the containing type of the die in question using its
21738 DW_AT_containing_type attribute. */
21740 static struct type *
21741 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21743 struct attribute *type_attr;
21744 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21746 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21748 error (_("Dwarf Error: Problem turning containing type into gdb type "
21749 "[in module %s]"), objfile_name (objfile));
21751 return lookup_die_type (die, type_attr, cu);
21754 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21756 static struct type *
21757 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21759 struct dwarf2_per_objfile *dwarf2_per_objfile
21760 = cu->per_cu->dwarf2_per_objfile;
21761 struct objfile *objfile = dwarf2_per_objfile->objfile;
21762 char *message, *saved;
21764 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21765 objfile_name (objfile),
21766 sect_offset_str (cu->header.sect_off),
21767 sect_offset_str (die->sect_off));
21768 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21769 message, strlen (message));
21772 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21775 /* Look up the type of DIE in CU using its type attribute ATTR.
21776 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21777 DW_AT_containing_type.
21778 If there is no type substitute an error marker. */
21780 static struct type *
21781 lookup_die_type (struct die_info *die, const struct attribute *attr,
21782 struct dwarf2_cu *cu)
21784 struct dwarf2_per_objfile *dwarf2_per_objfile
21785 = cu->per_cu->dwarf2_per_objfile;
21786 struct objfile *objfile = dwarf2_per_objfile->objfile;
21787 struct type *this_type;
21789 gdb_assert (attr->name == DW_AT_type
21790 || attr->name == DW_AT_GNAT_descriptive_type
21791 || attr->name == DW_AT_containing_type);
21793 /* First see if we have it cached. */
21795 if (attr->form == DW_FORM_GNU_ref_alt)
21797 struct dwarf2_per_cu_data *per_cu;
21798 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21800 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21801 dwarf2_per_objfile);
21802 this_type = get_die_type_at_offset (sect_off, per_cu);
21804 else if (attr_form_is_ref (attr))
21806 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21808 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21810 else if (attr->form == DW_FORM_ref_sig8)
21812 ULONGEST signature = DW_SIGNATURE (attr);
21814 return get_signatured_type (die, signature, cu);
21818 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21819 " at %s [in module %s]"),
21820 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21821 objfile_name (objfile));
21822 return build_error_marker_type (cu, die);
21825 /* If not cached we need to read it in. */
21827 if (this_type == NULL)
21829 struct die_info *type_die = NULL;
21830 struct dwarf2_cu *type_cu = cu;
21832 if (attr_form_is_ref (attr))
21833 type_die = follow_die_ref (die, attr, &type_cu);
21834 if (type_die == NULL)
21835 return build_error_marker_type (cu, die);
21836 /* If we find the type now, it's probably because the type came
21837 from an inter-CU reference and the type's CU got expanded before
21839 this_type = read_type_die (type_die, type_cu);
21842 /* If we still don't have a type use an error marker. */
21844 if (this_type == NULL)
21845 return build_error_marker_type (cu, die);
21850 /* Return the type in DIE, CU.
21851 Returns NULL for invalid types.
21853 This first does a lookup in die_type_hash,
21854 and only reads the die in if necessary.
21856 NOTE: This can be called when reading in partial or full symbols. */
21858 static struct type *
21859 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21861 struct type *this_type;
21863 this_type = get_die_type (die, cu);
21867 return read_type_die_1 (die, cu);
21870 /* Read the type in DIE, CU.
21871 Returns NULL for invalid types. */
21873 static struct type *
21874 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21876 struct type *this_type = NULL;
21880 case DW_TAG_class_type:
21881 case DW_TAG_interface_type:
21882 case DW_TAG_structure_type:
21883 case DW_TAG_union_type:
21884 this_type = read_structure_type (die, cu);
21886 case DW_TAG_enumeration_type:
21887 this_type = read_enumeration_type (die, cu);
21889 case DW_TAG_subprogram:
21890 case DW_TAG_subroutine_type:
21891 case DW_TAG_inlined_subroutine:
21892 this_type = read_subroutine_type (die, cu);
21894 case DW_TAG_array_type:
21895 this_type = read_array_type (die, cu);
21897 case DW_TAG_set_type:
21898 this_type = read_set_type (die, cu);
21900 case DW_TAG_pointer_type:
21901 this_type = read_tag_pointer_type (die, cu);
21903 case DW_TAG_ptr_to_member_type:
21904 this_type = read_tag_ptr_to_member_type (die, cu);
21906 case DW_TAG_reference_type:
21907 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21909 case DW_TAG_rvalue_reference_type:
21910 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21912 case DW_TAG_const_type:
21913 this_type = read_tag_const_type (die, cu);
21915 case DW_TAG_volatile_type:
21916 this_type = read_tag_volatile_type (die, cu);
21918 case DW_TAG_restrict_type:
21919 this_type = read_tag_restrict_type (die, cu);
21921 case DW_TAG_string_type:
21922 this_type = read_tag_string_type (die, cu);
21924 case DW_TAG_typedef:
21925 this_type = read_typedef (die, cu);
21927 case DW_TAG_subrange_type:
21928 this_type = read_subrange_type (die, cu);
21930 case DW_TAG_base_type:
21931 this_type = read_base_type (die, cu);
21933 case DW_TAG_unspecified_type:
21934 this_type = read_unspecified_type (die, cu);
21936 case DW_TAG_namespace:
21937 this_type = read_namespace_type (die, cu);
21939 case DW_TAG_module:
21940 this_type = read_module_type (die, cu);
21942 case DW_TAG_atomic_type:
21943 this_type = read_tag_atomic_type (die, cu);
21946 complaint (_("unexpected tag in read_type_die: '%s'"),
21947 dwarf_tag_name (die->tag));
21954 /* See if we can figure out if the class lives in a namespace. We do
21955 this by looking for a member function; its demangled name will
21956 contain namespace info, if there is any.
21957 Return the computed name or NULL.
21958 Space for the result is allocated on the objfile's obstack.
21959 This is the full-die version of guess_partial_die_structure_name.
21960 In this case we know DIE has no useful parent. */
21963 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21965 struct die_info *spec_die;
21966 struct dwarf2_cu *spec_cu;
21967 struct die_info *child;
21968 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21971 spec_die = die_specification (die, &spec_cu);
21972 if (spec_die != NULL)
21978 for (child = die->child;
21980 child = child->sibling)
21982 if (child->tag == DW_TAG_subprogram)
21984 const char *linkage_name = dw2_linkage_name (child, cu);
21986 if (linkage_name != NULL)
21989 = language_class_name_from_physname (cu->language_defn,
21993 if (actual_name != NULL)
21995 const char *die_name = dwarf2_name (die, cu);
21997 if (die_name != NULL
21998 && strcmp (die_name, actual_name) != 0)
22000 /* Strip off the class name from the full name.
22001 We want the prefix. */
22002 int die_name_len = strlen (die_name);
22003 int actual_name_len = strlen (actual_name);
22005 /* Test for '::' as a sanity check. */
22006 if (actual_name_len > die_name_len + 2
22007 && actual_name[actual_name_len
22008 - die_name_len - 1] == ':')
22009 name = (char *) obstack_copy0 (
22010 &objfile->per_bfd->storage_obstack,
22011 actual_name, actual_name_len - die_name_len - 2);
22014 xfree (actual_name);
22023 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22024 prefix part in such case. See
22025 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22027 static const char *
22028 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22030 struct attribute *attr;
22033 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22034 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22037 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22040 attr = dw2_linkage_name_attr (die, cu);
22041 if (attr == NULL || DW_STRING (attr) == NULL)
22044 /* dwarf2_name had to be already called. */
22045 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22047 /* Strip the base name, keep any leading namespaces/classes. */
22048 base = strrchr (DW_STRING (attr), ':');
22049 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22052 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22053 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22055 &base[-1] - DW_STRING (attr));
22058 /* Return the name of the namespace/class that DIE is defined within,
22059 or "" if we can't tell. The caller should not xfree the result.
22061 For example, if we're within the method foo() in the following
22071 then determine_prefix on foo's die will return "N::C". */
22073 static const char *
22074 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22076 struct dwarf2_per_objfile *dwarf2_per_objfile
22077 = cu->per_cu->dwarf2_per_objfile;
22078 struct die_info *parent, *spec_die;
22079 struct dwarf2_cu *spec_cu;
22080 struct type *parent_type;
22081 const char *retval;
22083 if (cu->language != language_cplus
22084 && cu->language != language_fortran && cu->language != language_d
22085 && cu->language != language_rust)
22088 retval = anonymous_struct_prefix (die, cu);
22092 /* We have to be careful in the presence of DW_AT_specification.
22093 For example, with GCC 3.4, given the code
22097 // Definition of N::foo.
22101 then we'll have a tree of DIEs like this:
22103 1: DW_TAG_compile_unit
22104 2: DW_TAG_namespace // N
22105 3: DW_TAG_subprogram // declaration of N::foo
22106 4: DW_TAG_subprogram // definition of N::foo
22107 DW_AT_specification // refers to die #3
22109 Thus, when processing die #4, we have to pretend that we're in
22110 the context of its DW_AT_specification, namely the contex of die
22113 spec_die = die_specification (die, &spec_cu);
22114 if (spec_die == NULL)
22115 parent = die->parent;
22118 parent = spec_die->parent;
22122 if (parent == NULL)
22124 else if (parent->building_fullname)
22127 const char *parent_name;
22129 /* It has been seen on RealView 2.2 built binaries,
22130 DW_TAG_template_type_param types actually _defined_ as
22131 children of the parent class:
22134 template class <class Enum> Class{};
22135 Class<enum E> class_e;
22137 1: DW_TAG_class_type (Class)
22138 2: DW_TAG_enumeration_type (E)
22139 3: DW_TAG_enumerator (enum1:0)
22140 3: DW_TAG_enumerator (enum2:1)
22142 2: DW_TAG_template_type_param
22143 DW_AT_type DW_FORM_ref_udata (E)
22145 Besides being broken debug info, it can put GDB into an
22146 infinite loop. Consider:
22148 When we're building the full name for Class<E>, we'll start
22149 at Class, and go look over its template type parameters,
22150 finding E. We'll then try to build the full name of E, and
22151 reach here. We're now trying to build the full name of E,
22152 and look over the parent DIE for containing scope. In the
22153 broken case, if we followed the parent DIE of E, we'd again
22154 find Class, and once again go look at its template type
22155 arguments, etc., etc. Simply don't consider such parent die
22156 as source-level parent of this die (it can't be, the language
22157 doesn't allow it), and break the loop here. */
22158 name = dwarf2_name (die, cu);
22159 parent_name = dwarf2_name (parent, cu);
22160 complaint (_("template param type '%s' defined within parent '%s'"),
22161 name ? name : "<unknown>",
22162 parent_name ? parent_name : "<unknown>");
22166 switch (parent->tag)
22168 case DW_TAG_namespace:
22169 parent_type = read_type_die (parent, cu);
22170 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22171 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22172 Work around this problem here. */
22173 if (cu->language == language_cplus
22174 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22176 /* We give a name to even anonymous namespaces. */
22177 return TYPE_NAME (parent_type);
22178 case DW_TAG_class_type:
22179 case DW_TAG_interface_type:
22180 case DW_TAG_structure_type:
22181 case DW_TAG_union_type:
22182 case DW_TAG_module:
22183 parent_type = read_type_die (parent, cu);
22184 if (TYPE_NAME (parent_type) != NULL)
22185 return TYPE_NAME (parent_type);
22187 /* An anonymous structure is only allowed non-static data
22188 members; no typedefs, no member functions, et cetera.
22189 So it does not need a prefix. */
22191 case DW_TAG_compile_unit:
22192 case DW_TAG_partial_unit:
22193 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22194 if (cu->language == language_cplus
22195 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22196 && die->child != NULL
22197 && (die->tag == DW_TAG_class_type
22198 || die->tag == DW_TAG_structure_type
22199 || die->tag == DW_TAG_union_type))
22201 char *name = guess_full_die_structure_name (die, cu);
22206 case DW_TAG_enumeration_type:
22207 parent_type = read_type_die (parent, cu);
22208 if (TYPE_DECLARED_CLASS (parent_type))
22210 if (TYPE_NAME (parent_type) != NULL)
22211 return TYPE_NAME (parent_type);
22214 /* Fall through. */
22216 return determine_prefix (parent, cu);
22220 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22221 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22222 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22223 an obconcat, otherwise allocate storage for the result. The CU argument is
22224 used to determine the language and hence, the appropriate separator. */
22226 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22229 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22230 int physname, struct dwarf2_cu *cu)
22232 const char *lead = "";
22235 if (suffix == NULL || suffix[0] == '\0'
22236 || prefix == NULL || prefix[0] == '\0')
22238 else if (cu->language == language_d)
22240 /* For D, the 'main' function could be defined in any module, but it
22241 should never be prefixed. */
22242 if (strcmp (suffix, "D main") == 0)
22250 else if (cu->language == language_fortran && physname)
22252 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22253 DW_AT_MIPS_linkage_name is preferred and used instead. */
22261 if (prefix == NULL)
22263 if (suffix == NULL)
22270 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22272 strcpy (retval, lead);
22273 strcat (retval, prefix);
22274 strcat (retval, sep);
22275 strcat (retval, suffix);
22280 /* We have an obstack. */
22281 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22285 /* Return sibling of die, NULL if no sibling. */
22287 static struct die_info *
22288 sibling_die (struct die_info *die)
22290 return die->sibling;
22293 /* Get name of a die, return NULL if not found. */
22295 static const char *
22296 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22297 struct obstack *obstack)
22299 if (name && cu->language == language_cplus)
22301 std::string canon_name = cp_canonicalize_string (name);
22303 if (!canon_name.empty ())
22305 if (canon_name != name)
22306 name = (const char *) obstack_copy0 (obstack,
22307 canon_name.c_str (),
22308 canon_name.length ());
22315 /* Get name of a die, return NULL if not found.
22316 Anonymous namespaces are converted to their magic string. */
22318 static const char *
22319 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22321 struct attribute *attr;
22322 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22324 attr = dwarf2_attr (die, DW_AT_name, cu);
22325 if ((!attr || !DW_STRING (attr))
22326 && die->tag != DW_TAG_namespace
22327 && die->tag != DW_TAG_class_type
22328 && die->tag != DW_TAG_interface_type
22329 && die->tag != DW_TAG_structure_type
22330 && die->tag != DW_TAG_union_type)
22335 case DW_TAG_compile_unit:
22336 case DW_TAG_partial_unit:
22337 /* Compilation units have a DW_AT_name that is a filename, not
22338 a source language identifier. */
22339 case DW_TAG_enumeration_type:
22340 case DW_TAG_enumerator:
22341 /* These tags always have simple identifiers already; no need
22342 to canonicalize them. */
22343 return DW_STRING (attr);
22345 case DW_TAG_namespace:
22346 if (attr != NULL && DW_STRING (attr) != NULL)
22347 return DW_STRING (attr);
22348 return CP_ANONYMOUS_NAMESPACE_STR;
22350 case DW_TAG_class_type:
22351 case DW_TAG_interface_type:
22352 case DW_TAG_structure_type:
22353 case DW_TAG_union_type:
22354 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22355 structures or unions. These were of the form "._%d" in GCC 4.1,
22356 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22357 and GCC 4.4. We work around this problem by ignoring these. */
22358 if (attr && DW_STRING (attr)
22359 && (startswith (DW_STRING (attr), "._")
22360 || startswith (DW_STRING (attr), "<anonymous")))
22363 /* GCC might emit a nameless typedef that has a linkage name. See
22364 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22365 if (!attr || DW_STRING (attr) == NULL)
22367 char *demangled = NULL;
22369 attr = dw2_linkage_name_attr (die, cu);
22370 if (attr == NULL || DW_STRING (attr) == NULL)
22373 /* Avoid demangling DW_STRING (attr) the second time on a second
22374 call for the same DIE. */
22375 if (!DW_STRING_IS_CANONICAL (attr))
22376 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22382 /* FIXME: we already did this for the partial symbol... */
22385 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22386 demangled, strlen (demangled)));
22387 DW_STRING_IS_CANONICAL (attr) = 1;
22390 /* Strip any leading namespaces/classes, keep only the base name.
22391 DW_AT_name for named DIEs does not contain the prefixes. */
22392 base = strrchr (DW_STRING (attr), ':');
22393 if (base && base > DW_STRING (attr) && base[-1] == ':')
22396 return DW_STRING (attr);
22405 if (!DW_STRING_IS_CANONICAL (attr))
22408 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22409 &objfile->per_bfd->storage_obstack);
22410 DW_STRING_IS_CANONICAL (attr) = 1;
22412 return DW_STRING (attr);
22415 /* Return the die that this die in an extension of, or NULL if there
22416 is none. *EXT_CU is the CU containing DIE on input, and the CU
22417 containing the return value on output. */
22419 static struct die_info *
22420 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22422 struct attribute *attr;
22424 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22428 return follow_die_ref (die, attr, ext_cu);
22431 /* Convert a DIE tag into its string name. */
22433 static const char *
22434 dwarf_tag_name (unsigned tag)
22436 const char *name = get_DW_TAG_name (tag);
22439 return "DW_TAG_<unknown>";
22444 /* Convert a DWARF attribute code into its string name. */
22446 static const char *
22447 dwarf_attr_name (unsigned attr)
22451 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22452 if (attr == DW_AT_MIPS_fde)
22453 return "DW_AT_MIPS_fde";
22455 if (attr == DW_AT_HP_block_index)
22456 return "DW_AT_HP_block_index";
22459 name = get_DW_AT_name (attr);
22462 return "DW_AT_<unknown>";
22467 /* Convert a DWARF value form code into its string name. */
22469 static const char *
22470 dwarf_form_name (unsigned form)
22472 const char *name = get_DW_FORM_name (form);
22475 return "DW_FORM_<unknown>";
22480 static const char *
22481 dwarf_bool_name (unsigned mybool)
22489 /* Convert a DWARF type code into its string name. */
22491 static const char *
22492 dwarf_type_encoding_name (unsigned enc)
22494 const char *name = get_DW_ATE_name (enc);
22497 return "DW_ATE_<unknown>";
22503 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22507 print_spaces (indent, f);
22508 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22509 dwarf_tag_name (die->tag), die->abbrev,
22510 sect_offset_str (die->sect_off));
22512 if (die->parent != NULL)
22514 print_spaces (indent, f);
22515 fprintf_unfiltered (f, " parent at offset: %s\n",
22516 sect_offset_str (die->parent->sect_off));
22519 print_spaces (indent, f);
22520 fprintf_unfiltered (f, " has children: %s\n",
22521 dwarf_bool_name (die->child != NULL));
22523 print_spaces (indent, f);
22524 fprintf_unfiltered (f, " attributes:\n");
22526 for (i = 0; i < die->num_attrs; ++i)
22528 print_spaces (indent, f);
22529 fprintf_unfiltered (f, " %s (%s) ",
22530 dwarf_attr_name (die->attrs[i].name),
22531 dwarf_form_name (die->attrs[i].form));
22533 switch (die->attrs[i].form)
22536 case DW_FORM_GNU_addr_index:
22537 fprintf_unfiltered (f, "address: ");
22538 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22540 case DW_FORM_block2:
22541 case DW_FORM_block4:
22542 case DW_FORM_block:
22543 case DW_FORM_block1:
22544 fprintf_unfiltered (f, "block: size %s",
22545 pulongest (DW_BLOCK (&die->attrs[i])->size));
22547 case DW_FORM_exprloc:
22548 fprintf_unfiltered (f, "expression: size %s",
22549 pulongest (DW_BLOCK (&die->attrs[i])->size));
22551 case DW_FORM_data16:
22552 fprintf_unfiltered (f, "constant of 16 bytes");
22554 case DW_FORM_ref_addr:
22555 fprintf_unfiltered (f, "ref address: ");
22556 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22558 case DW_FORM_GNU_ref_alt:
22559 fprintf_unfiltered (f, "alt ref address: ");
22560 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22566 case DW_FORM_ref_udata:
22567 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22568 (long) (DW_UNSND (&die->attrs[i])));
22570 case DW_FORM_data1:
22571 case DW_FORM_data2:
22572 case DW_FORM_data4:
22573 case DW_FORM_data8:
22574 case DW_FORM_udata:
22575 case DW_FORM_sdata:
22576 fprintf_unfiltered (f, "constant: %s",
22577 pulongest (DW_UNSND (&die->attrs[i])));
22579 case DW_FORM_sec_offset:
22580 fprintf_unfiltered (f, "section offset: %s",
22581 pulongest (DW_UNSND (&die->attrs[i])));
22583 case DW_FORM_ref_sig8:
22584 fprintf_unfiltered (f, "signature: %s",
22585 hex_string (DW_SIGNATURE (&die->attrs[i])));
22587 case DW_FORM_string:
22589 case DW_FORM_line_strp:
22590 case DW_FORM_GNU_str_index:
22591 case DW_FORM_GNU_strp_alt:
22592 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22593 DW_STRING (&die->attrs[i])
22594 ? DW_STRING (&die->attrs[i]) : "",
22595 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22598 if (DW_UNSND (&die->attrs[i]))
22599 fprintf_unfiltered (f, "flag: TRUE");
22601 fprintf_unfiltered (f, "flag: FALSE");
22603 case DW_FORM_flag_present:
22604 fprintf_unfiltered (f, "flag: TRUE");
22606 case DW_FORM_indirect:
22607 /* The reader will have reduced the indirect form to
22608 the "base form" so this form should not occur. */
22609 fprintf_unfiltered (f,
22610 "unexpected attribute form: DW_FORM_indirect");
22612 case DW_FORM_implicit_const:
22613 fprintf_unfiltered (f, "constant: %s",
22614 plongest (DW_SND (&die->attrs[i])));
22617 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22618 die->attrs[i].form);
22621 fprintf_unfiltered (f, "\n");
22626 dump_die_for_error (struct die_info *die)
22628 dump_die_shallow (gdb_stderr, 0, die);
22632 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22634 int indent = level * 4;
22636 gdb_assert (die != NULL);
22638 if (level >= max_level)
22641 dump_die_shallow (f, indent, die);
22643 if (die->child != NULL)
22645 print_spaces (indent, f);
22646 fprintf_unfiltered (f, " Children:");
22647 if (level + 1 < max_level)
22649 fprintf_unfiltered (f, "\n");
22650 dump_die_1 (f, level + 1, max_level, die->child);
22654 fprintf_unfiltered (f,
22655 " [not printed, max nesting level reached]\n");
22659 if (die->sibling != NULL && level > 0)
22661 dump_die_1 (f, level, max_level, die->sibling);
22665 /* This is called from the pdie macro in gdbinit.in.
22666 It's not static so gcc will keep a copy callable from gdb. */
22669 dump_die (struct die_info *die, int max_level)
22671 dump_die_1 (gdb_stdlog, 0, max_level, die);
22675 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22679 slot = htab_find_slot_with_hash (cu->die_hash, die,
22680 to_underlying (die->sect_off),
22686 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22690 dwarf2_get_ref_die_offset (const struct attribute *attr)
22692 if (attr_form_is_ref (attr))
22693 return (sect_offset) DW_UNSND (attr);
22695 complaint (_("unsupported die ref attribute form: '%s'"),
22696 dwarf_form_name (attr->form));
22700 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22701 * the value held by the attribute is not constant. */
22704 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22706 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22707 return DW_SND (attr);
22708 else if (attr->form == DW_FORM_udata
22709 || attr->form == DW_FORM_data1
22710 || attr->form == DW_FORM_data2
22711 || attr->form == DW_FORM_data4
22712 || attr->form == DW_FORM_data8)
22713 return DW_UNSND (attr);
22716 /* For DW_FORM_data16 see attr_form_is_constant. */
22717 complaint (_("Attribute value is not a constant (%s)"),
22718 dwarf_form_name (attr->form));
22719 return default_value;
22723 /* Follow reference or signature attribute ATTR of SRC_DIE.
22724 On entry *REF_CU is the CU of SRC_DIE.
22725 On exit *REF_CU is the CU of the result. */
22727 static struct die_info *
22728 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22729 struct dwarf2_cu **ref_cu)
22731 struct die_info *die;
22733 if (attr_form_is_ref (attr))
22734 die = follow_die_ref (src_die, attr, ref_cu);
22735 else if (attr->form == DW_FORM_ref_sig8)
22736 die = follow_die_sig (src_die, attr, ref_cu);
22739 dump_die_for_error (src_die);
22740 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22741 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22747 /* Follow reference OFFSET.
22748 On entry *REF_CU is the CU of the source die referencing OFFSET.
22749 On exit *REF_CU is the CU of the result.
22750 Returns NULL if OFFSET is invalid. */
22752 static struct die_info *
22753 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22754 struct dwarf2_cu **ref_cu)
22756 struct die_info temp_die;
22757 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22758 struct dwarf2_per_objfile *dwarf2_per_objfile
22759 = cu->per_cu->dwarf2_per_objfile;
22761 gdb_assert (cu->per_cu != NULL);
22765 if (cu->per_cu->is_debug_types)
22767 /* .debug_types CUs cannot reference anything outside their CU.
22768 If they need to, they have to reference a signatured type via
22769 DW_FORM_ref_sig8. */
22770 if (!offset_in_cu_p (&cu->header, sect_off))
22773 else if (offset_in_dwz != cu->per_cu->is_dwz
22774 || !offset_in_cu_p (&cu->header, sect_off))
22776 struct dwarf2_per_cu_data *per_cu;
22778 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22779 dwarf2_per_objfile);
22781 /* If necessary, add it to the queue and load its DIEs. */
22782 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22783 load_full_comp_unit (per_cu, false, cu->language);
22785 target_cu = per_cu->cu;
22787 else if (cu->dies == NULL)
22789 /* We're loading full DIEs during partial symbol reading. */
22790 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22791 load_full_comp_unit (cu->per_cu, false, language_minimal);
22794 *ref_cu = target_cu;
22795 temp_die.sect_off = sect_off;
22796 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22798 to_underlying (sect_off));
22801 /* Follow reference attribute ATTR of SRC_DIE.
22802 On entry *REF_CU is the CU of SRC_DIE.
22803 On exit *REF_CU is the CU of the result. */
22805 static struct die_info *
22806 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22807 struct dwarf2_cu **ref_cu)
22809 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22810 struct dwarf2_cu *cu = *ref_cu;
22811 struct die_info *die;
22813 die = follow_die_offset (sect_off,
22814 (attr->form == DW_FORM_GNU_ref_alt
22815 || cu->per_cu->is_dwz),
22818 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22819 "at %s [in module %s]"),
22820 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22821 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22826 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22827 Returned value is intended for DW_OP_call*. Returned
22828 dwarf2_locexpr_baton->data has lifetime of
22829 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22831 struct dwarf2_locexpr_baton
22832 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22833 struct dwarf2_per_cu_data *per_cu,
22834 CORE_ADDR (*get_frame_pc) (void *baton),
22837 struct dwarf2_cu *cu;
22838 struct die_info *die;
22839 struct attribute *attr;
22840 struct dwarf2_locexpr_baton retval;
22841 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22842 struct objfile *objfile = dwarf2_per_objfile->objfile;
22844 if (per_cu->cu == NULL)
22845 load_cu (per_cu, false);
22849 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22850 Instead just throw an error, not much else we can do. */
22851 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22852 sect_offset_str (sect_off), objfile_name (objfile));
22855 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22857 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22858 sect_offset_str (sect_off), objfile_name (objfile));
22860 attr = dwarf2_attr (die, DW_AT_location, cu);
22863 /* DWARF: "If there is no such attribute, then there is no effect.".
22864 DATA is ignored if SIZE is 0. */
22866 retval.data = NULL;
22869 else if (attr_form_is_section_offset (attr))
22871 struct dwarf2_loclist_baton loclist_baton;
22872 CORE_ADDR pc = (*get_frame_pc) (baton);
22875 fill_in_loclist_baton (cu, &loclist_baton, attr);
22877 retval.data = dwarf2_find_location_expression (&loclist_baton,
22879 retval.size = size;
22883 if (!attr_form_is_block (attr))
22884 error (_("Dwarf Error: DIE at %s referenced in module %s "
22885 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22886 sect_offset_str (sect_off), objfile_name (objfile));
22888 retval.data = DW_BLOCK (attr)->data;
22889 retval.size = DW_BLOCK (attr)->size;
22891 retval.per_cu = cu->per_cu;
22893 age_cached_comp_units (dwarf2_per_objfile);
22898 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22901 struct dwarf2_locexpr_baton
22902 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22903 struct dwarf2_per_cu_data *per_cu,
22904 CORE_ADDR (*get_frame_pc) (void *baton),
22907 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22909 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22912 /* Write a constant of a given type as target-ordered bytes into
22915 static const gdb_byte *
22916 write_constant_as_bytes (struct obstack *obstack,
22917 enum bfd_endian byte_order,
22924 *len = TYPE_LENGTH (type);
22925 result = (gdb_byte *) obstack_alloc (obstack, *len);
22926 store_unsigned_integer (result, *len, byte_order, value);
22931 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22932 pointer to the constant bytes and set LEN to the length of the
22933 data. If memory is needed, allocate it on OBSTACK. If the DIE
22934 does not have a DW_AT_const_value, return NULL. */
22937 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22938 struct dwarf2_per_cu_data *per_cu,
22939 struct obstack *obstack,
22942 struct dwarf2_cu *cu;
22943 struct die_info *die;
22944 struct attribute *attr;
22945 const gdb_byte *result = NULL;
22948 enum bfd_endian byte_order;
22949 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22951 if (per_cu->cu == NULL)
22952 load_cu (per_cu, false);
22956 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22957 Instead just throw an error, not much else we can do. */
22958 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22959 sect_offset_str (sect_off), objfile_name (objfile));
22962 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22964 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22965 sect_offset_str (sect_off), objfile_name (objfile));
22967 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22971 byte_order = (bfd_big_endian (objfile->obfd)
22972 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22974 switch (attr->form)
22977 case DW_FORM_GNU_addr_index:
22981 *len = cu->header.addr_size;
22982 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22983 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22987 case DW_FORM_string:
22989 case DW_FORM_GNU_str_index:
22990 case DW_FORM_GNU_strp_alt:
22991 /* DW_STRING is already allocated on the objfile obstack, point
22993 result = (const gdb_byte *) DW_STRING (attr);
22994 *len = strlen (DW_STRING (attr));
22996 case DW_FORM_block1:
22997 case DW_FORM_block2:
22998 case DW_FORM_block4:
22999 case DW_FORM_block:
23000 case DW_FORM_exprloc:
23001 case DW_FORM_data16:
23002 result = DW_BLOCK (attr)->data;
23003 *len = DW_BLOCK (attr)->size;
23006 /* The DW_AT_const_value attributes are supposed to carry the
23007 symbol's value "represented as it would be on the target
23008 architecture." By the time we get here, it's already been
23009 converted to host endianness, so we just need to sign- or
23010 zero-extend it as appropriate. */
23011 case DW_FORM_data1:
23012 type = die_type (die, cu);
23013 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23014 if (result == NULL)
23015 result = write_constant_as_bytes (obstack, byte_order,
23018 case DW_FORM_data2:
23019 type = die_type (die, cu);
23020 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23021 if (result == NULL)
23022 result = write_constant_as_bytes (obstack, byte_order,
23025 case DW_FORM_data4:
23026 type = die_type (die, cu);
23027 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23028 if (result == NULL)
23029 result = write_constant_as_bytes (obstack, byte_order,
23032 case DW_FORM_data8:
23033 type = die_type (die, cu);
23034 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23035 if (result == NULL)
23036 result = write_constant_as_bytes (obstack, byte_order,
23040 case DW_FORM_sdata:
23041 case DW_FORM_implicit_const:
23042 type = die_type (die, cu);
23043 result = write_constant_as_bytes (obstack, byte_order,
23044 type, DW_SND (attr), len);
23047 case DW_FORM_udata:
23048 type = die_type (die, cu);
23049 result = write_constant_as_bytes (obstack, byte_order,
23050 type, DW_UNSND (attr), len);
23054 complaint (_("unsupported const value attribute form: '%s'"),
23055 dwarf_form_name (attr->form));
23062 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23063 valid type for this die is found. */
23066 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23067 struct dwarf2_per_cu_data *per_cu)
23069 struct dwarf2_cu *cu;
23070 struct die_info *die;
23072 if (per_cu->cu == NULL)
23073 load_cu (per_cu, false);
23078 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23082 return die_type (die, cu);
23085 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23089 dwarf2_get_die_type (cu_offset die_offset,
23090 struct dwarf2_per_cu_data *per_cu)
23092 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23093 return get_die_type_at_offset (die_offset_sect, per_cu);
23096 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23097 On entry *REF_CU is the CU of SRC_DIE.
23098 On exit *REF_CU is the CU of the result.
23099 Returns NULL if the referenced DIE isn't found. */
23101 static struct die_info *
23102 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23103 struct dwarf2_cu **ref_cu)
23105 struct die_info temp_die;
23106 struct dwarf2_cu *sig_cu;
23107 struct die_info *die;
23109 /* While it might be nice to assert sig_type->type == NULL here,
23110 we can get here for DW_AT_imported_declaration where we need
23111 the DIE not the type. */
23113 /* If necessary, add it to the queue and load its DIEs. */
23115 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23116 read_signatured_type (sig_type);
23118 sig_cu = sig_type->per_cu.cu;
23119 gdb_assert (sig_cu != NULL);
23120 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23121 temp_die.sect_off = sig_type->type_offset_in_section;
23122 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23123 to_underlying (temp_die.sect_off));
23126 struct dwarf2_per_objfile *dwarf2_per_objfile
23127 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23129 /* For .gdb_index version 7 keep track of included TUs.
23130 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23131 if (dwarf2_per_objfile->index_table != NULL
23132 && dwarf2_per_objfile->index_table->version <= 7)
23134 VEC_safe_push (dwarf2_per_cu_ptr,
23135 (*ref_cu)->per_cu->imported_symtabs,
23146 /* Follow signatured type referenced by ATTR in SRC_DIE.
23147 On entry *REF_CU is the CU of SRC_DIE.
23148 On exit *REF_CU is the CU of the result.
23149 The result is the DIE of the type.
23150 If the referenced type cannot be found an error is thrown. */
23152 static struct die_info *
23153 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23154 struct dwarf2_cu **ref_cu)
23156 ULONGEST signature = DW_SIGNATURE (attr);
23157 struct signatured_type *sig_type;
23158 struct die_info *die;
23160 gdb_assert (attr->form == DW_FORM_ref_sig8);
23162 sig_type = lookup_signatured_type (*ref_cu, signature);
23163 /* sig_type will be NULL if the signatured type is missing from
23165 if (sig_type == NULL)
23167 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23168 " from DIE at %s [in module %s]"),
23169 hex_string (signature), sect_offset_str (src_die->sect_off),
23170 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23173 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23176 dump_die_for_error (src_die);
23177 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23178 " from DIE at %s [in module %s]"),
23179 hex_string (signature), sect_offset_str (src_die->sect_off),
23180 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23186 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23187 reading in and processing the type unit if necessary. */
23189 static struct type *
23190 get_signatured_type (struct die_info *die, ULONGEST signature,
23191 struct dwarf2_cu *cu)
23193 struct dwarf2_per_objfile *dwarf2_per_objfile
23194 = cu->per_cu->dwarf2_per_objfile;
23195 struct signatured_type *sig_type;
23196 struct dwarf2_cu *type_cu;
23197 struct die_info *type_die;
23200 sig_type = lookup_signatured_type (cu, signature);
23201 /* sig_type will be NULL if the signatured type is missing from
23203 if (sig_type == NULL)
23205 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23206 " from DIE at %s [in module %s]"),
23207 hex_string (signature), sect_offset_str (die->sect_off),
23208 objfile_name (dwarf2_per_objfile->objfile));
23209 return build_error_marker_type (cu, die);
23212 /* If we already know the type we're done. */
23213 if (sig_type->type != NULL)
23214 return sig_type->type;
23217 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23218 if (type_die != NULL)
23220 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23221 is created. This is important, for example, because for c++ classes
23222 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23223 type = read_type_die (type_die, type_cu);
23226 complaint (_("Dwarf Error: Cannot build signatured type %s"
23227 " referenced from DIE at %s [in module %s]"),
23228 hex_string (signature), sect_offset_str (die->sect_off),
23229 objfile_name (dwarf2_per_objfile->objfile));
23230 type = build_error_marker_type (cu, die);
23235 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23236 " from DIE at %s [in module %s]"),
23237 hex_string (signature), sect_offset_str (die->sect_off),
23238 objfile_name (dwarf2_per_objfile->objfile));
23239 type = build_error_marker_type (cu, die);
23241 sig_type->type = type;
23246 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23247 reading in and processing the type unit if necessary. */
23249 static struct type *
23250 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23251 struct dwarf2_cu *cu) /* ARI: editCase function */
23253 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23254 if (attr_form_is_ref (attr))
23256 struct dwarf2_cu *type_cu = cu;
23257 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23259 return read_type_die (type_die, type_cu);
23261 else if (attr->form == DW_FORM_ref_sig8)
23263 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23267 struct dwarf2_per_objfile *dwarf2_per_objfile
23268 = cu->per_cu->dwarf2_per_objfile;
23270 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23271 " at %s [in module %s]"),
23272 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23273 objfile_name (dwarf2_per_objfile->objfile));
23274 return build_error_marker_type (cu, die);
23278 /* Load the DIEs associated with type unit PER_CU into memory. */
23281 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23283 struct signatured_type *sig_type;
23285 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23286 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23288 /* We have the per_cu, but we need the signatured_type.
23289 Fortunately this is an easy translation. */
23290 gdb_assert (per_cu->is_debug_types);
23291 sig_type = (struct signatured_type *) per_cu;
23293 gdb_assert (per_cu->cu == NULL);
23295 read_signatured_type (sig_type);
23297 gdb_assert (per_cu->cu != NULL);
23300 /* die_reader_func for read_signatured_type.
23301 This is identical to load_full_comp_unit_reader,
23302 but is kept separate for now. */
23305 read_signatured_type_reader (const struct die_reader_specs *reader,
23306 const gdb_byte *info_ptr,
23307 struct die_info *comp_unit_die,
23311 struct dwarf2_cu *cu = reader->cu;
23313 gdb_assert (cu->die_hash == NULL);
23315 htab_create_alloc_ex (cu->header.length / 12,
23319 &cu->comp_unit_obstack,
23320 hashtab_obstack_allocate,
23321 dummy_obstack_deallocate);
23324 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23325 &info_ptr, comp_unit_die);
23326 cu->dies = comp_unit_die;
23327 /* comp_unit_die is not stored in die_hash, no need. */
23329 /* We try not to read any attributes in this function, because not
23330 all CUs needed for references have been loaded yet, and symbol
23331 table processing isn't initialized. But we have to set the CU language,
23332 or we won't be able to build types correctly.
23333 Similarly, if we do not read the producer, we can not apply
23334 producer-specific interpretation. */
23335 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23338 /* Read in a signatured type and build its CU and DIEs.
23339 If the type is a stub for the real type in a DWO file,
23340 read in the real type from the DWO file as well. */
23343 read_signatured_type (struct signatured_type *sig_type)
23345 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23347 gdb_assert (per_cu->is_debug_types);
23348 gdb_assert (per_cu->cu == NULL);
23350 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23351 read_signatured_type_reader, NULL);
23352 sig_type->per_cu.tu_read = 1;
23355 /* Decode simple location descriptions.
23356 Given a pointer to a dwarf block that defines a location, compute
23357 the location and return the value.
23359 NOTE drow/2003-11-18: This function is called in two situations
23360 now: for the address of static or global variables (partial symbols
23361 only) and for offsets into structures which are expected to be
23362 (more or less) constant. The partial symbol case should go away,
23363 and only the constant case should remain. That will let this
23364 function complain more accurately. A few special modes are allowed
23365 without complaint for global variables (for instance, global
23366 register values and thread-local values).
23368 A location description containing no operations indicates that the
23369 object is optimized out. The return value is 0 for that case.
23370 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23371 callers will only want a very basic result and this can become a
23374 Note that stack[0] is unused except as a default error return. */
23377 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23379 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23381 size_t size = blk->size;
23382 const gdb_byte *data = blk->data;
23383 CORE_ADDR stack[64];
23385 unsigned int bytes_read, unsnd;
23391 stack[++stacki] = 0;
23430 stack[++stacki] = op - DW_OP_lit0;
23465 stack[++stacki] = op - DW_OP_reg0;
23467 dwarf2_complex_location_expr_complaint ();
23471 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23473 stack[++stacki] = unsnd;
23475 dwarf2_complex_location_expr_complaint ();
23479 stack[++stacki] = read_address (objfile->obfd, &data[i],
23484 case DW_OP_const1u:
23485 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23489 case DW_OP_const1s:
23490 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23494 case DW_OP_const2u:
23495 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23499 case DW_OP_const2s:
23500 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23504 case DW_OP_const4u:
23505 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23509 case DW_OP_const4s:
23510 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23514 case DW_OP_const8u:
23515 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23520 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23526 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23531 stack[stacki + 1] = stack[stacki];
23536 stack[stacki - 1] += stack[stacki];
23540 case DW_OP_plus_uconst:
23541 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23547 stack[stacki - 1] -= stack[stacki];
23552 /* If we're not the last op, then we definitely can't encode
23553 this using GDB's address_class enum. This is valid for partial
23554 global symbols, although the variable's address will be bogus
23557 dwarf2_complex_location_expr_complaint ();
23560 case DW_OP_GNU_push_tls_address:
23561 case DW_OP_form_tls_address:
23562 /* The top of the stack has the offset from the beginning
23563 of the thread control block at which the variable is located. */
23564 /* Nothing should follow this operator, so the top of stack would
23566 /* This is valid for partial global symbols, but the variable's
23567 address will be bogus in the psymtab. Make it always at least
23568 non-zero to not look as a variable garbage collected by linker
23569 which have DW_OP_addr 0. */
23571 dwarf2_complex_location_expr_complaint ();
23575 case DW_OP_GNU_uninit:
23578 case DW_OP_GNU_addr_index:
23579 case DW_OP_GNU_const_index:
23580 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23587 const char *name = get_DW_OP_name (op);
23590 complaint (_("unsupported stack op: '%s'"),
23593 complaint (_("unsupported stack op: '%02x'"),
23597 return (stack[stacki]);
23600 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23601 outside of the allocated space. Also enforce minimum>0. */
23602 if (stacki >= ARRAY_SIZE (stack) - 1)
23604 complaint (_("location description stack overflow"));
23610 complaint (_("location description stack underflow"));
23614 return (stack[stacki]);
23617 /* memory allocation interface */
23619 static struct dwarf_block *
23620 dwarf_alloc_block (struct dwarf2_cu *cu)
23622 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23625 static struct die_info *
23626 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23628 struct die_info *die;
23629 size_t size = sizeof (struct die_info);
23632 size += (num_attrs - 1) * sizeof (struct attribute);
23634 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23635 memset (die, 0, sizeof (struct die_info));
23640 /* Macro support. */
23642 /* Return file name relative to the compilation directory of file number I in
23643 *LH's file name table. The result is allocated using xmalloc; the caller is
23644 responsible for freeing it. */
23647 file_file_name (int file, struct line_header *lh)
23649 /* Is the file number a valid index into the line header's file name
23650 table? Remember that file numbers start with one, not zero. */
23651 if (1 <= file && file <= lh->file_names.size ())
23653 const file_entry &fe = lh->file_names[file - 1];
23655 if (!IS_ABSOLUTE_PATH (fe.name))
23657 const char *dir = fe.include_dir (lh);
23659 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23661 return xstrdup (fe.name);
23665 /* The compiler produced a bogus file number. We can at least
23666 record the macro definitions made in the file, even if we
23667 won't be able to find the file by name. */
23668 char fake_name[80];
23670 xsnprintf (fake_name, sizeof (fake_name),
23671 "<bad macro file number %d>", file);
23673 complaint (_("bad file number in macro information (%d)"),
23676 return xstrdup (fake_name);
23680 /* Return the full name of file number I in *LH's file name table.
23681 Use COMP_DIR as the name of the current directory of the
23682 compilation. The result is allocated using xmalloc; the caller is
23683 responsible for freeing it. */
23685 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23687 /* Is the file number a valid index into the line header's file name
23688 table? Remember that file numbers start with one, not zero. */
23689 if (1 <= file && file <= lh->file_names.size ())
23691 char *relative = file_file_name (file, lh);
23693 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23695 return reconcat (relative, comp_dir, SLASH_STRING,
23696 relative, (char *) NULL);
23699 return file_file_name (file, lh);
23703 static struct macro_source_file *
23704 macro_start_file (int file, int line,
23705 struct macro_source_file *current_file,
23706 struct line_header *lh)
23708 /* File name relative to the compilation directory of this source file. */
23709 char *file_name = file_file_name (file, lh);
23711 if (! current_file)
23713 /* Note: We don't create a macro table for this compilation unit
23714 at all until we actually get a filename. */
23715 struct macro_table *macro_table = get_macro_table ();
23717 /* If we have no current file, then this must be the start_file
23718 directive for the compilation unit's main source file. */
23719 current_file = macro_set_main (macro_table, file_name);
23720 macro_define_special (macro_table);
23723 current_file = macro_include (current_file, line, file_name);
23727 return current_file;
23730 static const char *
23731 consume_improper_spaces (const char *p, const char *body)
23735 complaint (_("macro definition contains spaces "
23736 "in formal argument list:\n`%s'"),
23748 parse_macro_definition (struct macro_source_file *file, int line,
23753 /* The body string takes one of two forms. For object-like macro
23754 definitions, it should be:
23756 <macro name> " " <definition>
23758 For function-like macro definitions, it should be:
23760 <macro name> "() " <definition>
23762 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23764 Spaces may appear only where explicitly indicated, and in the
23767 The Dwarf 2 spec says that an object-like macro's name is always
23768 followed by a space, but versions of GCC around March 2002 omit
23769 the space when the macro's definition is the empty string.
23771 The Dwarf 2 spec says that there should be no spaces between the
23772 formal arguments in a function-like macro's formal argument list,
23773 but versions of GCC around March 2002 include spaces after the
23777 /* Find the extent of the macro name. The macro name is terminated
23778 by either a space or null character (for an object-like macro) or
23779 an opening paren (for a function-like macro). */
23780 for (p = body; *p; p++)
23781 if (*p == ' ' || *p == '(')
23784 if (*p == ' ' || *p == '\0')
23786 /* It's an object-like macro. */
23787 int name_len = p - body;
23788 char *name = savestring (body, name_len);
23789 const char *replacement;
23792 replacement = body + name_len + 1;
23795 dwarf2_macro_malformed_definition_complaint (body);
23796 replacement = body + name_len;
23799 macro_define_object (file, line, name, replacement);
23803 else if (*p == '(')
23805 /* It's a function-like macro. */
23806 char *name = savestring (body, p - body);
23809 char **argv = XNEWVEC (char *, argv_size);
23813 p = consume_improper_spaces (p, body);
23815 /* Parse the formal argument list. */
23816 while (*p && *p != ')')
23818 /* Find the extent of the current argument name. */
23819 const char *arg_start = p;
23821 while (*p && *p != ',' && *p != ')' && *p != ' ')
23824 if (! *p || p == arg_start)
23825 dwarf2_macro_malformed_definition_complaint (body);
23828 /* Make sure argv has room for the new argument. */
23829 if (argc >= argv_size)
23832 argv = XRESIZEVEC (char *, argv, argv_size);
23835 argv[argc++] = savestring (arg_start, p - arg_start);
23838 p = consume_improper_spaces (p, body);
23840 /* Consume the comma, if present. */
23845 p = consume_improper_spaces (p, body);
23854 /* Perfectly formed definition, no complaints. */
23855 macro_define_function (file, line, name,
23856 argc, (const char **) argv,
23858 else if (*p == '\0')
23860 /* Complain, but do define it. */
23861 dwarf2_macro_malformed_definition_complaint (body);
23862 macro_define_function (file, line, name,
23863 argc, (const char **) argv,
23867 /* Just complain. */
23868 dwarf2_macro_malformed_definition_complaint (body);
23871 /* Just complain. */
23872 dwarf2_macro_malformed_definition_complaint (body);
23878 for (i = 0; i < argc; i++)
23884 dwarf2_macro_malformed_definition_complaint (body);
23887 /* Skip some bytes from BYTES according to the form given in FORM.
23888 Returns the new pointer. */
23890 static const gdb_byte *
23891 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23892 enum dwarf_form form,
23893 unsigned int offset_size,
23894 struct dwarf2_section_info *section)
23896 unsigned int bytes_read;
23900 case DW_FORM_data1:
23905 case DW_FORM_data2:
23909 case DW_FORM_data4:
23913 case DW_FORM_data8:
23917 case DW_FORM_data16:
23921 case DW_FORM_string:
23922 read_direct_string (abfd, bytes, &bytes_read);
23923 bytes += bytes_read;
23926 case DW_FORM_sec_offset:
23928 case DW_FORM_GNU_strp_alt:
23929 bytes += offset_size;
23932 case DW_FORM_block:
23933 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23934 bytes += bytes_read;
23937 case DW_FORM_block1:
23938 bytes += 1 + read_1_byte (abfd, bytes);
23940 case DW_FORM_block2:
23941 bytes += 2 + read_2_bytes (abfd, bytes);
23943 case DW_FORM_block4:
23944 bytes += 4 + read_4_bytes (abfd, bytes);
23947 case DW_FORM_sdata:
23948 case DW_FORM_udata:
23949 case DW_FORM_GNU_addr_index:
23950 case DW_FORM_GNU_str_index:
23951 bytes = gdb_skip_leb128 (bytes, buffer_end);
23954 dwarf2_section_buffer_overflow_complaint (section);
23959 case DW_FORM_implicit_const:
23964 complaint (_("invalid form 0x%x in `%s'"),
23965 form, get_section_name (section));
23973 /* A helper for dwarf_decode_macros that handles skipping an unknown
23974 opcode. Returns an updated pointer to the macro data buffer; or,
23975 on error, issues a complaint and returns NULL. */
23977 static const gdb_byte *
23978 skip_unknown_opcode (unsigned int opcode,
23979 const gdb_byte **opcode_definitions,
23980 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23982 unsigned int offset_size,
23983 struct dwarf2_section_info *section)
23985 unsigned int bytes_read, i;
23987 const gdb_byte *defn;
23989 if (opcode_definitions[opcode] == NULL)
23991 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23996 defn = opcode_definitions[opcode];
23997 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23998 defn += bytes_read;
24000 for (i = 0; i < arg; ++i)
24002 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24003 (enum dwarf_form) defn[i], offset_size,
24005 if (mac_ptr == NULL)
24007 /* skip_form_bytes already issued the complaint. */
24015 /* A helper function which parses the header of a macro section.
24016 If the macro section is the extended (for now called "GNU") type,
24017 then this updates *OFFSET_SIZE. Returns a pointer to just after
24018 the header, or issues a complaint and returns NULL on error. */
24020 static const gdb_byte *
24021 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24023 const gdb_byte *mac_ptr,
24024 unsigned int *offset_size,
24025 int section_is_gnu)
24027 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24029 if (section_is_gnu)
24031 unsigned int version, flags;
24033 version = read_2_bytes (abfd, mac_ptr);
24034 if (version != 4 && version != 5)
24036 complaint (_("unrecognized version `%d' in .debug_macro section"),
24042 flags = read_1_byte (abfd, mac_ptr);
24044 *offset_size = (flags & 1) ? 8 : 4;
24046 if ((flags & 2) != 0)
24047 /* We don't need the line table offset. */
24048 mac_ptr += *offset_size;
24050 /* Vendor opcode descriptions. */
24051 if ((flags & 4) != 0)
24053 unsigned int i, count;
24055 count = read_1_byte (abfd, mac_ptr);
24057 for (i = 0; i < count; ++i)
24059 unsigned int opcode, bytes_read;
24062 opcode = read_1_byte (abfd, mac_ptr);
24064 opcode_definitions[opcode] = mac_ptr;
24065 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24066 mac_ptr += bytes_read;
24075 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24076 including DW_MACRO_import. */
24079 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24081 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24082 struct macro_source_file *current_file,
24083 struct line_header *lh,
24084 struct dwarf2_section_info *section,
24085 int section_is_gnu, int section_is_dwz,
24086 unsigned int offset_size,
24087 htab_t include_hash)
24089 struct objfile *objfile = dwarf2_per_objfile->objfile;
24090 enum dwarf_macro_record_type macinfo_type;
24091 int at_commandline;
24092 const gdb_byte *opcode_definitions[256];
24094 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24095 &offset_size, section_is_gnu);
24096 if (mac_ptr == NULL)
24098 /* We already issued a complaint. */
24102 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24103 GDB is still reading the definitions from command line. First
24104 DW_MACINFO_start_file will need to be ignored as it was already executed
24105 to create CURRENT_FILE for the main source holding also the command line
24106 definitions. On first met DW_MACINFO_start_file this flag is reset to
24107 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24109 at_commandline = 1;
24113 /* Do we at least have room for a macinfo type byte? */
24114 if (mac_ptr >= mac_end)
24116 dwarf2_section_buffer_overflow_complaint (section);
24120 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24123 /* Note that we rely on the fact that the corresponding GNU and
24124 DWARF constants are the same. */
24126 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24127 switch (macinfo_type)
24129 /* A zero macinfo type indicates the end of the macro
24134 case DW_MACRO_define:
24135 case DW_MACRO_undef:
24136 case DW_MACRO_define_strp:
24137 case DW_MACRO_undef_strp:
24138 case DW_MACRO_define_sup:
24139 case DW_MACRO_undef_sup:
24141 unsigned int bytes_read;
24146 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24147 mac_ptr += bytes_read;
24149 if (macinfo_type == DW_MACRO_define
24150 || macinfo_type == DW_MACRO_undef)
24152 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24153 mac_ptr += bytes_read;
24157 LONGEST str_offset;
24159 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24160 mac_ptr += offset_size;
24162 if (macinfo_type == DW_MACRO_define_sup
24163 || macinfo_type == DW_MACRO_undef_sup
24166 struct dwz_file *dwz
24167 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24169 body = read_indirect_string_from_dwz (objfile,
24173 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24177 is_define = (macinfo_type == DW_MACRO_define
24178 || macinfo_type == DW_MACRO_define_strp
24179 || macinfo_type == DW_MACRO_define_sup);
24180 if (! current_file)
24182 /* DWARF violation as no main source is present. */
24183 complaint (_("debug info with no main source gives macro %s "
24185 is_define ? _("definition") : _("undefinition"),
24189 if ((line == 0 && !at_commandline)
24190 || (line != 0 && at_commandline))
24191 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24192 at_commandline ? _("command-line") : _("in-file"),
24193 is_define ? _("definition") : _("undefinition"),
24194 line == 0 ? _("zero") : _("non-zero"), line, body);
24197 parse_macro_definition (current_file, line, body);
24200 gdb_assert (macinfo_type == DW_MACRO_undef
24201 || macinfo_type == DW_MACRO_undef_strp
24202 || macinfo_type == DW_MACRO_undef_sup);
24203 macro_undef (current_file, line, body);
24208 case DW_MACRO_start_file:
24210 unsigned int bytes_read;
24213 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24214 mac_ptr += bytes_read;
24215 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24216 mac_ptr += bytes_read;
24218 if ((line == 0 && !at_commandline)
24219 || (line != 0 && at_commandline))
24220 complaint (_("debug info gives source %d included "
24221 "from %s at %s line %d"),
24222 file, at_commandline ? _("command-line") : _("file"),
24223 line == 0 ? _("zero") : _("non-zero"), line);
24225 if (at_commandline)
24227 /* This DW_MACRO_start_file was executed in the
24229 at_commandline = 0;
24232 current_file = macro_start_file (file, line, current_file, lh);
24236 case DW_MACRO_end_file:
24237 if (! current_file)
24238 complaint (_("macro debug info has an unmatched "
24239 "`close_file' directive"));
24242 current_file = current_file->included_by;
24243 if (! current_file)
24245 enum dwarf_macro_record_type next_type;
24247 /* GCC circa March 2002 doesn't produce the zero
24248 type byte marking the end of the compilation
24249 unit. Complain if it's not there, but exit no
24252 /* Do we at least have room for a macinfo type byte? */
24253 if (mac_ptr >= mac_end)
24255 dwarf2_section_buffer_overflow_complaint (section);
24259 /* We don't increment mac_ptr here, so this is just
24262 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24264 if (next_type != 0)
24265 complaint (_("no terminating 0-type entry for "
24266 "macros in `.debug_macinfo' section"));
24273 case DW_MACRO_import:
24274 case DW_MACRO_import_sup:
24278 bfd *include_bfd = abfd;
24279 struct dwarf2_section_info *include_section = section;
24280 const gdb_byte *include_mac_end = mac_end;
24281 int is_dwz = section_is_dwz;
24282 const gdb_byte *new_mac_ptr;
24284 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24285 mac_ptr += offset_size;
24287 if (macinfo_type == DW_MACRO_import_sup)
24289 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24291 dwarf2_read_section (objfile, &dwz->macro);
24293 include_section = &dwz->macro;
24294 include_bfd = get_section_bfd_owner (include_section);
24295 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24299 new_mac_ptr = include_section->buffer + offset;
24300 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24304 /* This has actually happened; see
24305 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24306 complaint (_("recursive DW_MACRO_import in "
24307 ".debug_macro section"));
24311 *slot = (void *) new_mac_ptr;
24313 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24314 include_bfd, new_mac_ptr,
24315 include_mac_end, current_file, lh,
24316 section, section_is_gnu, is_dwz,
24317 offset_size, include_hash);
24319 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24324 case DW_MACINFO_vendor_ext:
24325 if (!section_is_gnu)
24327 unsigned int bytes_read;
24329 /* This reads the constant, but since we don't recognize
24330 any vendor extensions, we ignore it. */
24331 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24332 mac_ptr += bytes_read;
24333 read_direct_string (abfd, mac_ptr, &bytes_read);
24334 mac_ptr += bytes_read;
24336 /* We don't recognize any vendor extensions. */
24342 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24343 mac_ptr, mac_end, abfd, offset_size,
24345 if (mac_ptr == NULL)
24350 } while (macinfo_type != 0);
24354 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24355 int section_is_gnu)
24357 struct dwarf2_per_objfile *dwarf2_per_objfile
24358 = cu->per_cu->dwarf2_per_objfile;
24359 struct objfile *objfile = dwarf2_per_objfile->objfile;
24360 struct line_header *lh = cu->line_header;
24362 const gdb_byte *mac_ptr, *mac_end;
24363 struct macro_source_file *current_file = 0;
24364 enum dwarf_macro_record_type macinfo_type;
24365 unsigned int offset_size = cu->header.offset_size;
24366 const gdb_byte *opcode_definitions[256];
24368 struct dwarf2_section_info *section;
24369 const char *section_name;
24371 if (cu->dwo_unit != NULL)
24373 if (section_is_gnu)
24375 section = &cu->dwo_unit->dwo_file->sections.macro;
24376 section_name = ".debug_macro.dwo";
24380 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24381 section_name = ".debug_macinfo.dwo";
24386 if (section_is_gnu)
24388 section = &dwarf2_per_objfile->macro;
24389 section_name = ".debug_macro";
24393 section = &dwarf2_per_objfile->macinfo;
24394 section_name = ".debug_macinfo";
24398 dwarf2_read_section (objfile, section);
24399 if (section->buffer == NULL)
24401 complaint (_("missing %s section"), section_name);
24404 abfd = get_section_bfd_owner (section);
24406 /* First pass: Find the name of the base filename.
24407 This filename is needed in order to process all macros whose definition
24408 (or undefinition) comes from the command line. These macros are defined
24409 before the first DW_MACINFO_start_file entry, and yet still need to be
24410 associated to the base file.
24412 To determine the base file name, we scan the macro definitions until we
24413 reach the first DW_MACINFO_start_file entry. We then initialize
24414 CURRENT_FILE accordingly so that any macro definition found before the
24415 first DW_MACINFO_start_file can still be associated to the base file. */
24417 mac_ptr = section->buffer + offset;
24418 mac_end = section->buffer + section->size;
24420 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24421 &offset_size, section_is_gnu);
24422 if (mac_ptr == NULL)
24424 /* We already issued a complaint. */
24430 /* Do we at least have room for a macinfo type byte? */
24431 if (mac_ptr >= mac_end)
24433 /* Complaint is printed during the second pass as GDB will probably
24434 stop the first pass earlier upon finding
24435 DW_MACINFO_start_file. */
24439 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24442 /* Note that we rely on the fact that the corresponding GNU and
24443 DWARF constants are the same. */
24445 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24446 switch (macinfo_type)
24448 /* A zero macinfo type indicates the end of the macro
24453 case DW_MACRO_define:
24454 case DW_MACRO_undef:
24455 /* Only skip the data by MAC_PTR. */
24457 unsigned int bytes_read;
24459 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24460 mac_ptr += bytes_read;
24461 read_direct_string (abfd, mac_ptr, &bytes_read);
24462 mac_ptr += bytes_read;
24466 case DW_MACRO_start_file:
24468 unsigned int bytes_read;
24471 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24472 mac_ptr += bytes_read;
24473 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24474 mac_ptr += bytes_read;
24476 current_file = macro_start_file (file, line, current_file, lh);
24480 case DW_MACRO_end_file:
24481 /* No data to skip by MAC_PTR. */
24484 case DW_MACRO_define_strp:
24485 case DW_MACRO_undef_strp:
24486 case DW_MACRO_define_sup:
24487 case DW_MACRO_undef_sup:
24489 unsigned int bytes_read;
24491 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24492 mac_ptr += bytes_read;
24493 mac_ptr += offset_size;
24497 case DW_MACRO_import:
24498 case DW_MACRO_import_sup:
24499 /* Note that, according to the spec, a transparent include
24500 chain cannot call DW_MACRO_start_file. So, we can just
24501 skip this opcode. */
24502 mac_ptr += offset_size;
24505 case DW_MACINFO_vendor_ext:
24506 /* Only skip the data by MAC_PTR. */
24507 if (!section_is_gnu)
24509 unsigned int bytes_read;
24511 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24512 mac_ptr += bytes_read;
24513 read_direct_string (abfd, mac_ptr, &bytes_read);
24514 mac_ptr += bytes_read;
24519 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24520 mac_ptr, mac_end, abfd, offset_size,
24522 if (mac_ptr == NULL)
24527 } while (macinfo_type != 0 && current_file == NULL);
24529 /* Second pass: Process all entries.
24531 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24532 command-line macro definitions/undefinitions. This flag is unset when we
24533 reach the first DW_MACINFO_start_file entry. */
24535 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24537 NULL, xcalloc, xfree));
24538 mac_ptr = section->buffer + offset;
24539 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24540 *slot = (void *) mac_ptr;
24541 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24542 abfd, mac_ptr, mac_end,
24543 current_file, lh, section,
24544 section_is_gnu, 0, offset_size,
24545 include_hash.get ());
24548 /* Check if the attribute's form is a DW_FORM_block*
24549 if so return true else false. */
24552 attr_form_is_block (const struct attribute *attr)
24554 return (attr == NULL ? 0 :
24555 attr->form == DW_FORM_block1
24556 || attr->form == DW_FORM_block2
24557 || attr->form == DW_FORM_block4
24558 || attr->form == DW_FORM_block
24559 || attr->form == DW_FORM_exprloc);
24562 /* Return non-zero if ATTR's value is a section offset --- classes
24563 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24564 You may use DW_UNSND (attr) to retrieve such offsets.
24566 Section 7.5.4, "Attribute Encodings", explains that no attribute
24567 may have a value that belongs to more than one of these classes; it
24568 would be ambiguous if we did, because we use the same forms for all
24572 attr_form_is_section_offset (const struct attribute *attr)
24574 return (attr->form == DW_FORM_data4
24575 || attr->form == DW_FORM_data8
24576 || attr->form == DW_FORM_sec_offset);
24579 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24580 zero otherwise. When this function returns true, you can apply
24581 dwarf2_get_attr_constant_value to it.
24583 However, note that for some attributes you must check
24584 attr_form_is_section_offset before using this test. DW_FORM_data4
24585 and DW_FORM_data8 are members of both the constant class, and of
24586 the classes that contain offsets into other debug sections
24587 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24588 that, if an attribute's can be either a constant or one of the
24589 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24590 taken as section offsets, not constants.
24592 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24593 cannot handle that. */
24596 attr_form_is_constant (const struct attribute *attr)
24598 switch (attr->form)
24600 case DW_FORM_sdata:
24601 case DW_FORM_udata:
24602 case DW_FORM_data1:
24603 case DW_FORM_data2:
24604 case DW_FORM_data4:
24605 case DW_FORM_data8:
24606 case DW_FORM_implicit_const:
24614 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24615 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24618 attr_form_is_ref (const struct attribute *attr)
24620 switch (attr->form)
24622 case DW_FORM_ref_addr:
24627 case DW_FORM_ref_udata:
24628 case DW_FORM_GNU_ref_alt:
24635 /* Return the .debug_loc section to use for CU.
24636 For DWO files use .debug_loc.dwo. */
24638 static struct dwarf2_section_info *
24639 cu_debug_loc_section (struct dwarf2_cu *cu)
24641 struct dwarf2_per_objfile *dwarf2_per_objfile
24642 = cu->per_cu->dwarf2_per_objfile;
24646 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24648 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
24650 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24651 : &dwarf2_per_objfile->loc);
24654 /* A helper function that fills in a dwarf2_loclist_baton. */
24657 fill_in_loclist_baton (struct dwarf2_cu *cu,
24658 struct dwarf2_loclist_baton *baton,
24659 const struct attribute *attr)
24661 struct dwarf2_per_objfile *dwarf2_per_objfile
24662 = cu->per_cu->dwarf2_per_objfile;
24663 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24665 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24667 baton->per_cu = cu->per_cu;
24668 gdb_assert (baton->per_cu);
24669 /* We don't know how long the location list is, but make sure we
24670 don't run off the edge of the section. */
24671 baton->size = section->size - DW_UNSND (attr);
24672 baton->data = section->buffer + DW_UNSND (attr);
24673 baton->base_address = cu->base_address;
24674 baton->from_dwo = cu->dwo_unit != NULL;
24678 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24679 struct dwarf2_cu *cu, int is_block)
24681 struct dwarf2_per_objfile *dwarf2_per_objfile
24682 = cu->per_cu->dwarf2_per_objfile;
24683 struct objfile *objfile = dwarf2_per_objfile->objfile;
24684 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24686 if (attr_form_is_section_offset (attr)
24687 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24688 the section. If so, fall through to the complaint in the
24690 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24692 struct dwarf2_loclist_baton *baton;
24694 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24696 fill_in_loclist_baton (cu, baton, attr);
24698 if (cu->base_known == 0)
24699 complaint (_("Location list used without "
24700 "specifying the CU base address."));
24702 SYMBOL_ACLASS_INDEX (sym) = (is_block
24703 ? dwarf2_loclist_block_index
24704 : dwarf2_loclist_index);
24705 SYMBOL_LOCATION_BATON (sym) = baton;
24709 struct dwarf2_locexpr_baton *baton;
24711 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24712 baton->per_cu = cu->per_cu;
24713 gdb_assert (baton->per_cu);
24715 if (attr_form_is_block (attr))
24717 /* Note that we're just copying the block's data pointer
24718 here, not the actual data. We're still pointing into the
24719 info_buffer for SYM's objfile; right now we never release
24720 that buffer, but when we do clean up properly this may
24722 baton->size = DW_BLOCK (attr)->size;
24723 baton->data = DW_BLOCK (attr)->data;
24727 dwarf2_invalid_attrib_class_complaint ("location description",
24728 SYMBOL_NATURAL_NAME (sym));
24732 SYMBOL_ACLASS_INDEX (sym) = (is_block
24733 ? dwarf2_locexpr_block_index
24734 : dwarf2_locexpr_index);
24735 SYMBOL_LOCATION_BATON (sym) = baton;
24739 /* Return the OBJFILE associated with the compilation unit CU. If CU
24740 came from a separate debuginfo file, then the master objfile is
24744 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24746 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24748 /* Return the master objfile, so that we can report and look up the
24749 correct file containing this variable. */
24750 if (objfile->separate_debug_objfile_backlink)
24751 objfile = objfile->separate_debug_objfile_backlink;
24756 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24757 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24758 CU_HEADERP first. */
24760 static const struct comp_unit_head *
24761 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24762 struct dwarf2_per_cu_data *per_cu)
24764 const gdb_byte *info_ptr;
24767 return &per_cu->cu->header;
24769 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24771 memset (cu_headerp, 0, sizeof (*cu_headerp));
24772 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24773 rcuh_kind::COMPILE);
24778 /* Return the address size given in the compilation unit header for CU. */
24781 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24783 struct comp_unit_head cu_header_local;
24784 const struct comp_unit_head *cu_headerp;
24786 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24788 return cu_headerp->addr_size;
24791 /* Return the offset size given in the compilation unit header for CU. */
24794 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24796 struct comp_unit_head cu_header_local;
24797 const struct comp_unit_head *cu_headerp;
24799 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24801 return cu_headerp->offset_size;
24804 /* See its dwarf2loc.h declaration. */
24807 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24809 struct comp_unit_head cu_header_local;
24810 const struct comp_unit_head *cu_headerp;
24812 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24814 if (cu_headerp->version == 2)
24815 return cu_headerp->addr_size;
24817 return cu_headerp->offset_size;
24820 /* Return the text offset of the CU. The returned offset comes from
24821 this CU's objfile. If this objfile came from a separate debuginfo
24822 file, then the offset may be different from the corresponding
24823 offset in the parent objfile. */
24826 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24828 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24830 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24833 /* Return DWARF version number of PER_CU. */
24836 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24838 return per_cu->dwarf_version;
24841 /* Locate the .debug_info compilation unit from CU's objfile which contains
24842 the DIE at OFFSET. Raises an error on failure. */
24844 static struct dwarf2_per_cu_data *
24845 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24846 unsigned int offset_in_dwz,
24847 struct dwarf2_per_objfile *dwarf2_per_objfile)
24849 struct dwarf2_per_cu_data *this_cu;
24851 const sect_offset *cu_off;
24854 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24857 struct dwarf2_per_cu_data *mid_cu;
24858 int mid = low + (high - low) / 2;
24860 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24861 cu_off = &mid_cu->sect_off;
24862 if (mid_cu->is_dwz > offset_in_dwz
24863 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24868 gdb_assert (low == high);
24869 this_cu = dwarf2_per_objfile->all_comp_units[low];
24870 cu_off = &this_cu->sect_off;
24871 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24873 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24874 error (_("Dwarf Error: could not find partial DIE containing "
24875 "offset %s [in module %s]"),
24876 sect_offset_str (sect_off),
24877 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24879 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24881 return dwarf2_per_objfile->all_comp_units[low-1];
24885 this_cu = dwarf2_per_objfile->all_comp_units[low];
24886 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24887 && sect_off >= this_cu->sect_off + this_cu->length)
24888 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24889 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24894 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24896 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24897 : per_cu (per_cu_),
24900 checked_producer (0),
24901 producer_is_gxx_lt_4_6 (0),
24902 producer_is_gcc_lt_4_3 (0),
24903 producer_is_icc_lt_14 (0),
24904 processing_has_namespace_info (0)
24909 /* Destroy a dwarf2_cu. */
24911 dwarf2_cu::~dwarf2_cu ()
24916 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24919 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24920 enum language pretend_language)
24922 struct attribute *attr;
24924 /* Set the language we're debugging. */
24925 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24927 set_cu_language (DW_UNSND (attr), cu);
24930 cu->language = pretend_language;
24931 cu->language_defn = language_def (cu->language);
24934 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24937 /* Increase the age counter on each cached compilation unit, and free
24938 any that are too old. */
24941 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24943 struct dwarf2_per_cu_data *per_cu, **last_chain;
24945 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24946 per_cu = dwarf2_per_objfile->read_in_chain;
24947 while (per_cu != NULL)
24949 per_cu->cu->last_used ++;
24950 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24951 dwarf2_mark (per_cu->cu);
24952 per_cu = per_cu->cu->read_in_chain;
24955 per_cu = dwarf2_per_objfile->read_in_chain;
24956 last_chain = &dwarf2_per_objfile->read_in_chain;
24957 while (per_cu != NULL)
24959 struct dwarf2_per_cu_data *next_cu;
24961 next_cu = per_cu->cu->read_in_chain;
24963 if (!per_cu->cu->mark)
24966 *last_chain = next_cu;
24969 last_chain = &per_cu->cu->read_in_chain;
24975 /* Remove a single compilation unit from the cache. */
24978 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24980 struct dwarf2_per_cu_data *per_cu, **last_chain;
24981 struct dwarf2_per_objfile *dwarf2_per_objfile
24982 = target_per_cu->dwarf2_per_objfile;
24984 per_cu = dwarf2_per_objfile->read_in_chain;
24985 last_chain = &dwarf2_per_objfile->read_in_chain;
24986 while (per_cu != NULL)
24988 struct dwarf2_per_cu_data *next_cu;
24990 next_cu = per_cu->cu->read_in_chain;
24992 if (per_cu == target_per_cu)
24996 *last_chain = next_cu;
25000 last_chain = &per_cu->cu->read_in_chain;
25006 /* Release all extra memory associated with OBJFILE. */
25009 dwarf2_free_objfile (struct objfile *objfile)
25011 struct dwarf2_per_objfile *dwarf2_per_objfile
25012 = get_dwarf2_per_objfile (objfile);
25014 delete dwarf2_per_objfile;
25017 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25018 We store these in a hash table separate from the DIEs, and preserve them
25019 when the DIEs are flushed out of cache.
25021 The CU "per_cu" pointer is needed because offset alone is not enough to
25022 uniquely identify the type. A file may have multiple .debug_types sections,
25023 or the type may come from a DWO file. Furthermore, while it's more logical
25024 to use per_cu->section+offset, with Fission the section with the data is in
25025 the DWO file but we don't know that section at the point we need it.
25026 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25027 because we can enter the lookup routine, get_die_type_at_offset, from
25028 outside this file, and thus won't necessarily have PER_CU->cu.
25029 Fortunately, PER_CU is stable for the life of the objfile. */
25031 struct dwarf2_per_cu_offset_and_type
25033 const struct dwarf2_per_cu_data *per_cu;
25034 sect_offset sect_off;
25038 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25041 per_cu_offset_and_type_hash (const void *item)
25043 const struct dwarf2_per_cu_offset_and_type *ofs
25044 = (const struct dwarf2_per_cu_offset_and_type *) item;
25046 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25049 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25052 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25054 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25055 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25056 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25057 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25059 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25060 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25063 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25064 table if necessary. For convenience, return TYPE.
25066 The DIEs reading must have careful ordering to:
25067 * Not cause infite loops trying to read in DIEs as a prerequisite for
25068 reading current DIE.
25069 * Not trying to dereference contents of still incompletely read in types
25070 while reading in other DIEs.
25071 * Enable referencing still incompletely read in types just by a pointer to
25072 the type without accessing its fields.
25074 Therefore caller should follow these rules:
25075 * Try to fetch any prerequisite types we may need to build this DIE type
25076 before building the type and calling set_die_type.
25077 * After building type call set_die_type for current DIE as soon as
25078 possible before fetching more types to complete the current type.
25079 * Make the type as complete as possible before fetching more types. */
25081 static struct type *
25082 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25084 struct dwarf2_per_objfile *dwarf2_per_objfile
25085 = cu->per_cu->dwarf2_per_objfile;
25086 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25087 struct objfile *objfile = dwarf2_per_objfile->objfile;
25088 struct attribute *attr;
25089 struct dynamic_prop prop;
25091 /* For Ada types, make sure that the gnat-specific data is always
25092 initialized (if not already set). There are a few types where
25093 we should not be doing so, because the type-specific area is
25094 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25095 where the type-specific area is used to store the floatformat).
25096 But this is not a problem, because the gnat-specific information
25097 is actually not needed for these types. */
25098 if (need_gnat_info (cu)
25099 && TYPE_CODE (type) != TYPE_CODE_FUNC
25100 && TYPE_CODE (type) != TYPE_CODE_FLT
25101 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25102 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25103 && TYPE_CODE (type) != TYPE_CODE_METHOD
25104 && !HAVE_GNAT_AUX_INFO (type))
25105 INIT_GNAT_SPECIFIC (type);
25107 /* Read DW_AT_allocated and set in type. */
25108 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25109 if (attr_form_is_block (attr))
25111 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25112 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25114 else if (attr != NULL)
25116 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25117 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25118 sect_offset_str (die->sect_off));
25121 /* Read DW_AT_associated and set in type. */
25122 attr = dwarf2_attr (die, DW_AT_associated, cu);
25123 if (attr_form_is_block (attr))
25125 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25126 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25128 else if (attr != NULL)
25130 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25131 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25132 sect_offset_str (die->sect_off));
25135 /* Read DW_AT_data_location and set in type. */
25136 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25137 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25138 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25140 if (dwarf2_per_objfile->die_type_hash == NULL)
25142 dwarf2_per_objfile->die_type_hash =
25143 htab_create_alloc_ex (127,
25144 per_cu_offset_and_type_hash,
25145 per_cu_offset_and_type_eq,
25147 &objfile->objfile_obstack,
25148 hashtab_obstack_allocate,
25149 dummy_obstack_deallocate);
25152 ofs.per_cu = cu->per_cu;
25153 ofs.sect_off = die->sect_off;
25155 slot = (struct dwarf2_per_cu_offset_and_type **)
25156 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25158 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25159 sect_offset_str (die->sect_off));
25160 *slot = XOBNEW (&objfile->objfile_obstack,
25161 struct dwarf2_per_cu_offset_and_type);
25166 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25167 or return NULL if the die does not have a saved type. */
25169 static struct type *
25170 get_die_type_at_offset (sect_offset sect_off,
25171 struct dwarf2_per_cu_data *per_cu)
25173 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25174 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25176 if (dwarf2_per_objfile->die_type_hash == NULL)
25179 ofs.per_cu = per_cu;
25180 ofs.sect_off = sect_off;
25181 slot = ((struct dwarf2_per_cu_offset_and_type *)
25182 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25189 /* Look up the type for DIE in CU in die_type_hash,
25190 or return NULL if DIE does not have a saved type. */
25192 static struct type *
25193 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25195 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25198 /* Add a dependence relationship from CU to REF_PER_CU. */
25201 dwarf2_add_dependence (struct dwarf2_cu *cu,
25202 struct dwarf2_per_cu_data *ref_per_cu)
25206 if (cu->dependencies == NULL)
25208 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25209 NULL, &cu->comp_unit_obstack,
25210 hashtab_obstack_allocate,
25211 dummy_obstack_deallocate);
25213 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25215 *slot = ref_per_cu;
25218 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25219 Set the mark field in every compilation unit in the
25220 cache that we must keep because we are keeping CU. */
25223 dwarf2_mark_helper (void **slot, void *data)
25225 struct dwarf2_per_cu_data *per_cu;
25227 per_cu = (struct dwarf2_per_cu_data *) *slot;
25229 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25230 reading of the chain. As such dependencies remain valid it is not much
25231 useful to track and undo them during QUIT cleanups. */
25232 if (per_cu->cu == NULL)
25235 if (per_cu->cu->mark)
25237 per_cu->cu->mark = 1;
25239 if (per_cu->cu->dependencies != NULL)
25240 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25245 /* Set the mark field in CU and in every other compilation unit in the
25246 cache that we must keep because we are keeping CU. */
25249 dwarf2_mark (struct dwarf2_cu *cu)
25254 if (cu->dependencies != NULL)
25255 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25259 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25263 per_cu->cu->mark = 0;
25264 per_cu = per_cu->cu->read_in_chain;
25268 /* Trivial hash function for partial_die_info: the hash value of a DIE
25269 is its offset in .debug_info for this objfile. */
25272 partial_die_hash (const void *item)
25274 const struct partial_die_info *part_die
25275 = (const struct partial_die_info *) item;
25277 return to_underlying (part_die->sect_off);
25280 /* Trivial comparison function for partial_die_info structures: two DIEs
25281 are equal if they have the same offset. */
25284 partial_die_eq (const void *item_lhs, const void *item_rhs)
25286 const struct partial_die_info *part_die_lhs
25287 = (const struct partial_die_info *) item_lhs;
25288 const struct partial_die_info *part_die_rhs
25289 = (const struct partial_die_info *) item_rhs;
25291 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25294 static struct cmd_list_element *set_dwarf_cmdlist;
25295 static struct cmd_list_element *show_dwarf_cmdlist;
25298 set_dwarf_cmd (const char *args, int from_tty)
25300 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25305 show_dwarf_cmd (const char *args, int from_tty)
25307 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25310 int dwarf_always_disassemble;
25313 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25314 struct cmd_list_element *c, const char *value)
25316 fprintf_filtered (file,
25317 _("Whether to always disassemble "
25318 "DWARF expressions is %s.\n"),
25323 show_check_physname (struct ui_file *file, int from_tty,
25324 struct cmd_list_element *c, const char *value)
25326 fprintf_filtered (file,
25327 _("Whether to check \"physname\" is %s.\n"),
25332 _initialize_dwarf2_read (void)
25335 dwarf2_objfile_data_key = register_objfile_data ();
25337 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25338 Set DWARF specific variables.\n\
25339 Configure DWARF variables such as the cache size"),
25340 &set_dwarf_cmdlist, "maintenance set dwarf ",
25341 0/*allow-unknown*/, &maintenance_set_cmdlist);
25343 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25344 Show DWARF specific variables\n\
25345 Show DWARF variables such as the cache size"),
25346 &show_dwarf_cmdlist, "maintenance show dwarf ",
25347 0/*allow-unknown*/, &maintenance_show_cmdlist);
25349 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25350 &dwarf_max_cache_age, _("\
25351 Set the upper bound on the age of cached DWARF compilation units."), _("\
25352 Show the upper bound on the age of cached DWARF compilation units."), _("\
25353 A higher limit means that cached compilation units will be stored\n\
25354 in memory longer, and more total memory will be used. Zero disables\n\
25355 caching, which can slow down startup."),
25357 show_dwarf_max_cache_age,
25358 &set_dwarf_cmdlist,
25359 &show_dwarf_cmdlist);
25361 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25362 &dwarf_always_disassemble, _("\
25363 Set whether `info address' always disassembles DWARF expressions."), _("\
25364 Show whether `info address' always disassembles DWARF expressions."), _("\
25365 When enabled, DWARF expressions are always printed in an assembly-like\n\
25366 syntax. When disabled, expressions will be printed in a more\n\
25367 conversational style, when possible."),
25369 show_dwarf_always_disassemble,
25370 &set_dwarf_cmdlist,
25371 &show_dwarf_cmdlist);
25373 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25374 Set debugging of the DWARF reader."), _("\
25375 Show debugging of the DWARF reader."), _("\
25376 When enabled (non-zero), debugging messages are printed during DWARF\n\
25377 reading and symtab expansion. A value of 1 (one) provides basic\n\
25378 information. A value greater than 1 provides more verbose information."),
25381 &setdebuglist, &showdebuglist);
25383 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25384 Set debugging of the DWARF DIE reader."), _("\
25385 Show debugging of the DWARF DIE reader."), _("\
25386 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25387 The value is the maximum depth to print."),
25390 &setdebuglist, &showdebuglist);
25392 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25393 Set debugging of the dwarf line reader."), _("\
25394 Show debugging of the dwarf line reader."), _("\
25395 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25396 A value of 1 (one) provides basic information.\n\
25397 A value greater than 1 provides more verbose information."),
25400 &setdebuglist, &showdebuglist);
25402 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25403 Set cross-checking of \"physname\" code against demangler."), _("\
25404 Show cross-checking of \"physname\" code against demangler."), _("\
25405 When enabled, GDB's internal \"physname\" code is checked against\n\
25407 NULL, show_check_physname,
25408 &setdebuglist, &showdebuglist);
25410 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25411 no_class, &use_deprecated_index_sections, _("\
25412 Set whether to use deprecated gdb_index sections."), _("\
25413 Show whether to use deprecated gdb_index sections."), _("\
25414 When enabled, deprecated .gdb_index sections are used anyway.\n\
25415 Normally they are ignored either because of a missing feature or\n\
25416 performance issue.\n\
25417 Warning: This option must be enabled before gdb reads the file."),
25420 &setlist, &showlist);
25422 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25423 &dwarf2_locexpr_funcs);
25424 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25425 &dwarf2_loclist_funcs);
25427 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25428 &dwarf2_block_frame_base_locexpr_funcs);
25429 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25430 &dwarf2_block_frame_base_loclist_funcs);
25433 selftests::register_test ("dw2_expand_symtabs_matching",
25434 selftests::dw2_expand_symtabs_matching::run_test);