1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
57 #include "typeprint.h"
60 #include "completer.h"
61 #include "common/vec.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "common/filestuff.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
83 #include <sys/types.h>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
133 struct name_component
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
140 /* The symbol's index in the symbol and constant pool tables of a
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
148 struct mapped_index_base
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
166 /* Return whether the name at IDX in the symbol table should be
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
173 /* Build the symbol name component sorted vector, if we haven't
175 void build_name_components ();
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184 /* Prevent deleting/destroying via a base class pointer. */
186 ~mapped_index_base() = default;
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
196 const offset_type name;
197 const offset_type vec;
200 /* Index data format version. */
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
212 bool symbol_name_slot_invalid (offset_type idx) const override
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
218 /* Convenience method to get at the name of the symbol at IDX in the
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
253 /* Attribute name DW_IDX_*. */
256 /* Attribute form DW_FORM_*. */
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
262 std::vector<attr> attr_vec;
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
267 const char *namei_to_name (uint32_t namei) const;
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
275 size_t symbol_name_count () const override
276 { return this->name_count; }
279 /* See dwarf2read.h. */
282 get_dwarf2_per_objfile (struct objfile *objfile)
284 return dwarf2_objfile_data_key.get (objfile);
287 /* Default names of the debugging sections. */
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
315 /* List of DWO/DWP sections. */
317 static const struct dwop_section_names
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
348 /* local data types */
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
366 enum dwarf_unit_type unit_type;
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
388 /* The type to which the method is attached, i.e., its parent class. */
391 /* The index of the method in the type's function fieldlists. */
394 /* The index of the method in the fieldlist. */
397 /* The name of the DIE. */
400 /* The DIE associated with this method. */
401 struct die_info *die;
404 /* Internal state when decoding a particular compilation unit. */
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
434 /* Non-zero if base_address has been set. */
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
441 const char *producer = nullptr;
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
477 /* How many compilation units ago was this CU last referenced? */
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
517 struct dwo_unit *dwo_unit = nullptr;
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
544 /* Mark used when releasing cached dies. */
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
568 bool processing_has_namespace_info : 1;
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
594 struct stmt_list_hash
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
606 struct type_unit_group
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
633 /* The symbol tables for this TU (obtained from the files listed in
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
644 /* These sections are what may appear in a (real or virtual) DWO file. */
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 VEC (dwarf2_section_info_def) *types;
661 /* CUs/TUs in DWP/DWO files. */
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
688 enum dwp_v2_section_ids
693 /* Data for one DWO file.
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
706 /* The DW_AT_GNU_dwo_name attribute.
707 For virtual DWO files the name is constructed from the section offsets
708 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
709 from related CU+TUs. */
710 const char *dwo_name;
712 /* The DW_AT_comp_dir attribute. */
713 const char *comp_dir;
715 /* The bfd, when the file is open. Otherwise this is NULL.
716 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
719 /* The sections that make up this DWO file.
720 Remember that for virtual DWO files in DWP V2, these are virtual
721 sections (for lack of a better name). */
722 struct dwo_sections sections;
724 /* The CUs in the file.
725 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
726 an extension to handle LLVM's Link Time Optimization output (where
727 multiple source files may be compiled into a single object/dwo pair). */
730 /* Table of TUs in the file.
731 Each element is a struct dwo_unit. */
735 /* These sections are what may appear in a DWP file. */
739 /* These are used by both DWP version 1 and 2. */
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
744 /* These are only used by DWP version 2 files.
745 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
746 sections are referenced by section number, and are not recorded here.
747 In DWP version 2 there is at most one copy of all these sections, each
748 section being (effectively) comprised of the concatenation of all of the
749 individual sections that exist in the version 1 format.
750 To keep the code simple we treat each of these concatenated pieces as a
751 section itself (a virtual section?). */
752 struct dwarf2_section_info abbrev;
753 struct dwarf2_section_info info;
754 struct dwarf2_section_info line;
755 struct dwarf2_section_info loc;
756 struct dwarf2_section_info macinfo;
757 struct dwarf2_section_info macro;
758 struct dwarf2_section_info str_offsets;
759 struct dwarf2_section_info types;
762 /* These sections are what may appear in a virtual DWO file in DWP version 1.
763 A virtual DWO file is a DWO file as it appears in a DWP file. */
765 struct virtual_v1_dwo_sections
767 struct dwarf2_section_info abbrev;
768 struct dwarf2_section_info line;
769 struct dwarf2_section_info loc;
770 struct dwarf2_section_info macinfo;
771 struct dwarf2_section_info macro;
772 struct dwarf2_section_info str_offsets;
773 /* Each DWP hash table entry records one CU or one TU.
774 That is recorded here, and copied to dwo_unit.section. */
775 struct dwarf2_section_info info_or_types;
778 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
779 In version 2, the sections of the DWO files are concatenated together
780 and stored in one section of that name. Thus each ELF section contains
781 several "virtual" sections. */
783 struct virtual_v2_dwo_sections
785 bfd_size_type abbrev_offset;
786 bfd_size_type abbrev_size;
788 bfd_size_type line_offset;
789 bfd_size_type line_size;
791 bfd_size_type loc_offset;
792 bfd_size_type loc_size;
794 bfd_size_type macinfo_offset;
795 bfd_size_type macinfo_size;
797 bfd_size_type macro_offset;
798 bfd_size_type macro_size;
800 bfd_size_type str_offsets_offset;
801 bfd_size_type str_offsets_size;
803 /* Each DWP hash table entry records one CU or one TU.
804 That is recorded here, and copied to dwo_unit.section. */
805 bfd_size_type info_or_types_offset;
806 bfd_size_type info_or_types_size;
809 /* Contents of DWP hash tables. */
811 struct dwp_hash_table
813 uint32_t version, nr_columns;
814 uint32_t nr_units, nr_slots;
815 const gdb_byte *hash_table, *unit_table;
820 const gdb_byte *indices;
824 /* This is indexed by column number and gives the id of the section
826 #define MAX_NR_V2_DWO_SECTIONS \
827 (1 /* .debug_info or .debug_types */ \
828 + 1 /* .debug_abbrev */ \
829 + 1 /* .debug_line */ \
830 + 1 /* .debug_loc */ \
831 + 1 /* .debug_str_offsets */ \
832 + 1 /* .debug_macro or .debug_macinfo */)
833 int section_ids[MAX_NR_V2_DWO_SECTIONS];
834 const gdb_byte *offsets;
835 const gdb_byte *sizes;
840 /* Data for one DWP file. */
844 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
846 dbfd (std::move (abfd))
850 /* Name of the file. */
853 /* File format version. */
857 gdb_bfd_ref_ptr dbfd;
859 /* Section info for this file. */
860 struct dwp_sections sections {};
862 /* Table of CUs in the file. */
863 const struct dwp_hash_table *cus = nullptr;
865 /* Table of TUs in the file. */
866 const struct dwp_hash_table *tus = nullptr;
868 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
869 htab_t loaded_cus {};
870 htab_t loaded_tus {};
872 /* Table to map ELF section numbers to their sections.
873 This is only needed for the DWP V1 file format. */
874 unsigned int num_sections = 0;
875 asection **elf_sections = nullptr;
878 /* This represents a '.dwz' file. */
882 dwz_file (gdb_bfd_ref_ptr &&bfd)
883 : dwz_bfd (std::move (bfd))
887 /* A dwz file can only contain a few sections. */
888 struct dwarf2_section_info abbrev {};
889 struct dwarf2_section_info info {};
890 struct dwarf2_section_info str {};
891 struct dwarf2_section_info line {};
892 struct dwarf2_section_info macro {};
893 struct dwarf2_section_info gdb_index {};
894 struct dwarf2_section_info debug_names {};
897 gdb_bfd_ref_ptr dwz_bfd;
899 /* If we loaded the index from an external file, this contains the
900 resources associated to the open file, memory mapping, etc. */
901 std::unique_ptr<index_cache_resource> index_cache_res;
904 /* Struct used to pass misc. parameters to read_die_and_children, et
905 al. which are used for both .debug_info and .debug_types dies.
906 All parameters here are unchanging for the life of the call. This
907 struct exists to abstract away the constant parameters of die reading. */
909 struct die_reader_specs
911 /* The bfd of die_section. */
914 /* The CU of the DIE we are parsing. */
915 struct dwarf2_cu *cu;
917 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
918 struct dwo_file *dwo_file;
920 /* The section the die comes from.
921 This is either .debug_info or .debug_types, or the .dwo variants. */
922 struct dwarf2_section_info *die_section;
924 /* die_section->buffer. */
925 const gdb_byte *buffer;
927 /* The end of the buffer. */
928 const gdb_byte *buffer_end;
930 /* The value of the DW_AT_comp_dir attribute. */
931 const char *comp_dir;
933 /* The abbreviation table to use when reading the DIEs. */
934 struct abbrev_table *abbrev_table;
937 /* Type of function passed to init_cutu_and_read_dies, et.al. */
938 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
939 const gdb_byte *info_ptr,
940 struct die_info *comp_unit_die,
944 /* A 1-based directory index. This is a strong typedef to prevent
945 accidentally using a directory index as a 0-based index into an
947 enum class dir_index : unsigned int {};
949 /* Likewise, a 1-based file name index. */
950 enum class file_name_index : unsigned int {};
954 file_entry () = default;
956 file_entry (const char *name_, dir_index d_index_,
957 unsigned int mod_time_, unsigned int length_)
960 mod_time (mod_time_),
964 /* Return the include directory at D_INDEX stored in LH. Returns
965 NULL if D_INDEX is out of bounds. */
966 const char *include_dir (const line_header *lh) const;
968 /* The file name. Note this is an observing pointer. The memory is
969 owned by debug_line_buffer. */
972 /* The directory index (1-based). */
973 dir_index d_index {};
975 unsigned int mod_time {};
977 unsigned int length {};
979 /* True if referenced by the Line Number Program. */
982 /* The associated symbol table, if any. */
983 struct symtab *symtab {};
986 /* The line number information for a compilation unit (found in the
987 .debug_line section) begins with a "statement program header",
988 which contains the following information. */
995 /* Add an entry to the include directory table. */
996 void add_include_dir (const char *include_dir);
998 /* Add an entry to the file name table. */
999 void add_file_name (const char *name, dir_index d_index,
1000 unsigned int mod_time, unsigned int length);
1002 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1003 is out of bounds. */
1004 const char *include_dir_at (dir_index index) const
1006 /* Convert directory index number (1-based) to vector index
1008 size_t vec_index = to_underlying (index) - 1;
1010 if (vec_index >= include_dirs.size ())
1012 return include_dirs[vec_index];
1015 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1016 is out of bounds. */
1017 file_entry *file_name_at (file_name_index index)
1019 /* Convert file name index number (1-based) to vector index
1021 size_t vec_index = to_underlying (index) - 1;
1023 if (vec_index >= file_names.size ())
1025 return &file_names[vec_index];
1028 /* Offset of line number information in .debug_line section. */
1029 sect_offset sect_off {};
1031 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1032 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1034 unsigned int total_length {};
1035 unsigned short version {};
1036 unsigned int header_length {};
1037 unsigned char minimum_instruction_length {};
1038 unsigned char maximum_ops_per_instruction {};
1039 unsigned char default_is_stmt {};
1041 unsigned char line_range {};
1042 unsigned char opcode_base {};
1044 /* standard_opcode_lengths[i] is the number of operands for the
1045 standard opcode whose value is i. This means that
1046 standard_opcode_lengths[0] is unused, and the last meaningful
1047 element is standard_opcode_lengths[opcode_base - 1]. */
1048 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1050 /* The include_directories table. Note these are observing
1051 pointers. The memory is owned by debug_line_buffer. */
1052 std::vector<const char *> include_dirs;
1054 /* The file_names table. */
1055 std::vector<file_entry> file_names;
1057 /* The start and end of the statement program following this
1058 header. These point into dwarf2_per_objfile->line_buffer. */
1059 const gdb_byte *statement_program_start {}, *statement_program_end {};
1062 typedef std::unique_ptr<line_header> line_header_up;
1065 file_entry::include_dir (const line_header *lh) const
1067 return lh->include_dir_at (d_index);
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info : public allocate_on_obstack
1074 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1076 /* Disable assign but still keep copy ctor, which is needed
1077 load_partial_dies. */
1078 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1080 /* Adjust the partial die before generating a symbol for it. This
1081 function may set the is_external flag or change the DIE's
1083 void fixup (struct dwarf2_cu *cu);
1085 /* Read a minimal amount of information into the minimal die
1087 const gdb_byte *read (const struct die_reader_specs *reader,
1088 const struct abbrev_info &abbrev,
1089 const gdb_byte *info_ptr);
1091 /* Offset of this DIE. */
1092 const sect_offset sect_off;
1094 /* DWARF-2 tag for this DIE. */
1095 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1097 /* Assorted flags describing the data found in this DIE. */
1098 const unsigned int has_children : 1;
1100 unsigned int is_external : 1;
1101 unsigned int is_declaration : 1;
1102 unsigned int has_type : 1;
1103 unsigned int has_specification : 1;
1104 unsigned int has_pc_info : 1;
1105 unsigned int may_be_inlined : 1;
1107 /* This DIE has been marked DW_AT_main_subprogram. */
1108 unsigned int main_subprogram : 1;
1110 /* Flag set if the SCOPE field of this structure has been
1112 unsigned int scope_set : 1;
1114 /* Flag set if the DIE has a byte_size attribute. */
1115 unsigned int has_byte_size : 1;
1117 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1118 unsigned int has_const_value : 1;
1120 /* Flag set if any of the DIE's children are template arguments. */
1121 unsigned int has_template_arguments : 1;
1123 /* Flag set if fixup has been called on this die. */
1124 unsigned int fixup_called : 1;
1126 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1127 unsigned int is_dwz : 1;
1129 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1130 unsigned int spec_is_dwz : 1;
1132 /* The name of this DIE. Normally the value of DW_AT_name, but
1133 sometimes a default name for unnamed DIEs. */
1134 const char *name = nullptr;
1136 /* The linkage name, if present. */
1137 const char *linkage_name = nullptr;
1139 /* The scope to prepend to our children. This is generally
1140 allocated on the comp_unit_obstack, so will disappear
1141 when this compilation unit leaves the cache. */
1142 const char *scope = nullptr;
1144 /* Some data associated with the partial DIE. The tag determines
1145 which field is live. */
1148 /* The location description associated with this DIE, if any. */
1149 struct dwarf_block *locdesc;
1150 /* The offset of an import, for DW_TAG_imported_unit. */
1151 sect_offset sect_off;
1154 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1155 CORE_ADDR lowpc = 0;
1156 CORE_ADDR highpc = 0;
1158 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1159 DW_AT_sibling, if any. */
1160 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1161 could return DW_AT_sibling values to its caller load_partial_dies. */
1162 const gdb_byte *sibling = nullptr;
1164 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1165 DW_AT_specification (or DW_AT_abstract_origin or
1166 DW_AT_extension). */
1167 sect_offset spec_offset {};
1169 /* Pointers to this DIE's parent, first child, and next sibling,
1171 struct partial_die_info *die_parent = nullptr;
1172 struct partial_die_info *die_child = nullptr;
1173 struct partial_die_info *die_sibling = nullptr;
1175 friend struct partial_die_info *
1176 dwarf2_cu::find_partial_die (sect_offset sect_off);
1179 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1180 partial_die_info (sect_offset sect_off)
1181 : partial_die_info (sect_off, DW_TAG_padding, 0)
1185 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1187 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1192 has_specification = 0;
1195 main_subprogram = 0;
1198 has_const_value = 0;
1199 has_template_arguments = 0;
1206 /* This data structure holds the information of an abbrev. */
1209 unsigned int number; /* number identifying abbrev */
1210 enum dwarf_tag tag; /* dwarf tag */
1211 unsigned short has_children; /* boolean */
1212 unsigned short num_attrs; /* number of attributes */
1213 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1214 struct abbrev_info *next; /* next in chain */
1219 ENUM_BITFIELD(dwarf_attribute) name : 16;
1220 ENUM_BITFIELD(dwarf_form) form : 16;
1222 /* It is valid only if FORM is DW_FORM_implicit_const. */
1223 LONGEST implicit_const;
1226 /* Size of abbrev_table.abbrev_hash_table. */
1227 #define ABBREV_HASH_SIZE 121
1229 /* Top level data structure to contain an abbreviation table. */
1233 explicit abbrev_table (sect_offset off)
1237 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1238 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1241 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1243 /* Allocate space for a struct abbrev_info object in
1245 struct abbrev_info *alloc_abbrev ();
1247 /* Add an abbreviation to the table. */
1248 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1250 /* Look up an abbrev in the table.
1251 Returns NULL if the abbrev is not found. */
1253 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1256 /* Where the abbrev table came from.
1257 This is used as a sanity check when the table is used. */
1258 const sect_offset sect_off;
1260 /* Storage for the abbrev table. */
1261 auto_obstack abbrev_obstack;
1265 /* Hash table of abbrevs.
1266 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1267 It could be statically allocated, but the previous code didn't so we
1269 struct abbrev_info **m_abbrevs;
1272 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1274 /* Attributes have a name and a value. */
1277 ENUM_BITFIELD(dwarf_attribute) name : 16;
1278 ENUM_BITFIELD(dwarf_form) form : 15;
1280 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1281 field should be in u.str (existing only for DW_STRING) but it is kept
1282 here for better struct attribute alignment. */
1283 unsigned int string_is_canonical : 1;
1288 struct dwarf_block *blk;
1297 /* This data structure holds a complete die structure. */
1300 /* DWARF-2 tag for this DIE. */
1301 ENUM_BITFIELD(dwarf_tag) tag : 16;
1303 /* Number of attributes */
1304 unsigned char num_attrs;
1306 /* True if we're presently building the full type name for the
1307 type derived from this DIE. */
1308 unsigned char building_fullname : 1;
1310 /* True if this die is in process. PR 16581. */
1311 unsigned char in_process : 1;
1314 unsigned int abbrev;
1316 /* Offset in .debug_info or .debug_types section. */
1317 sect_offset sect_off;
1319 /* The dies in a compilation unit form an n-ary tree. PARENT
1320 points to this die's parent; CHILD points to the first child of
1321 this node; and all the children of a given node are chained
1322 together via their SIBLING fields. */
1323 struct die_info *child; /* Its first child, if any. */
1324 struct die_info *sibling; /* Its next sibling, if any. */
1325 struct die_info *parent; /* Its parent, if any. */
1327 /* An array of attributes, with NUM_ATTRS elements. There may be
1328 zero, but it's not common and zero-sized arrays are not
1329 sufficiently portable C. */
1330 struct attribute attrs[1];
1333 /* Get at parts of an attribute structure. */
1335 #define DW_STRING(attr) ((attr)->u.str)
1336 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1337 #define DW_UNSND(attr) ((attr)->u.unsnd)
1338 #define DW_BLOCK(attr) ((attr)->u.blk)
1339 #define DW_SND(attr) ((attr)->u.snd)
1340 #define DW_ADDR(attr) ((attr)->u.addr)
1341 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1343 /* Blocks are a bunch of untyped bytes. */
1348 /* Valid only if SIZE is not zero. */
1349 const gdb_byte *data;
1352 #ifndef ATTR_ALLOC_CHUNK
1353 #define ATTR_ALLOC_CHUNK 4
1356 /* Allocate fields for structs, unions and enums in this size. */
1357 #ifndef DW_FIELD_ALLOC_CHUNK
1358 #define DW_FIELD_ALLOC_CHUNK 4
1361 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1362 but this would require a corresponding change in unpack_field_as_long
1364 static int bits_per_byte = 8;
1366 /* When reading a variant or variant part, we track a bit more
1367 information about the field, and store it in an object of this
1370 struct variant_field
1372 /* If we see a DW_TAG_variant, then this will be the discriminant
1374 ULONGEST discriminant_value;
1375 /* If we see a DW_TAG_variant, then this will be set if this is the
1377 bool default_branch;
1378 /* While reading a DW_TAG_variant_part, this will be set if this
1379 field is the discriminant. */
1380 bool is_discriminant;
1385 int accessibility = 0;
1387 /* Extra information to describe a variant or variant part. */
1388 struct variant_field variant {};
1389 struct field field {};
1394 const char *name = nullptr;
1395 std::vector<struct fn_field> fnfields;
1398 /* The routines that read and process dies for a C struct or C++ class
1399 pass lists of data member fields and lists of member function fields
1400 in an instance of a field_info structure, as defined below. */
1403 /* List of data member and baseclasses fields. */
1404 std::vector<struct nextfield> fields;
1405 std::vector<struct nextfield> baseclasses;
1407 /* Number of fields (including baseclasses). */
1410 /* Set if the accesibility of one of the fields is not public. */
1411 int non_public_fields = 0;
1413 /* Member function fieldlist array, contains name of possibly overloaded
1414 member function, number of overloaded member functions and a pointer
1415 to the head of the member function field chain. */
1416 std::vector<struct fnfieldlist> fnfieldlists;
1418 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1419 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1420 std::vector<struct decl_field> typedef_field_list;
1422 /* Nested types defined by this class and the number of elements in this
1424 std::vector<struct decl_field> nested_types_list;
1427 /* One item on the queue of compilation units to read in full symbols
1429 struct dwarf2_queue_item
1431 struct dwarf2_per_cu_data *per_cu;
1432 enum language pretend_language;
1433 struct dwarf2_queue_item *next;
1436 /* The current queue. */
1437 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1439 /* Loaded secondary compilation units are kept in memory until they
1440 have not been referenced for the processing of this many
1441 compilation units. Set this to zero to disable caching. Cache
1442 sizes of up to at least twenty will improve startup time for
1443 typical inter-CU-reference binaries, at an obvious memory cost. */
1444 static int dwarf_max_cache_age = 5;
1446 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c, const char *value)
1449 fprintf_filtered (file, _("The upper bound on the age of cached "
1450 "DWARF compilation units is %s.\n"),
1454 /* local function prototypes */
1456 static const char *get_section_name (const struct dwarf2_section_info *);
1458 static const char *get_section_file_name (const struct dwarf2_section_info *);
1460 static void dwarf2_find_base_address (struct die_info *die,
1461 struct dwarf2_cu *cu);
1463 static struct partial_symtab *create_partial_symtab
1464 (struct dwarf2_per_cu_data *per_cu, const char *name);
1466 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1467 const gdb_byte *info_ptr,
1468 struct die_info *type_unit_die,
1469 int has_children, void *data);
1471 static void dwarf2_build_psymtabs_hard
1472 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1474 static void scan_partial_symbols (struct partial_die_info *,
1475 CORE_ADDR *, CORE_ADDR *,
1476 int, struct dwarf2_cu *);
1478 static void add_partial_symbol (struct partial_die_info *,
1479 struct dwarf2_cu *);
1481 static void add_partial_namespace (struct partial_die_info *pdi,
1482 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1483 int set_addrmap, struct dwarf2_cu *cu);
1485 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1486 CORE_ADDR *highpc, int set_addrmap,
1487 struct dwarf2_cu *cu);
1489 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1490 struct dwarf2_cu *cu);
1492 static void add_partial_subprogram (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int need_pc, struct dwarf2_cu *cu);
1496 static void dwarf2_read_symtab (struct partial_symtab *,
1499 static void psymtab_to_symtab_1 (struct partial_symtab *);
1501 static abbrev_table_up abbrev_table_read_table
1502 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1505 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1507 static struct partial_die_info *load_partial_dies
1508 (const struct die_reader_specs *, const gdb_byte *, int);
1510 /* A pair of partial_die_info and compilation unit. */
1511 struct cu_partial_die_info
1513 /* The compilation unit of the partial_die_info. */
1514 struct dwarf2_cu *cu;
1515 /* A partial_die_info. */
1516 struct partial_die_info *pdi;
1518 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1524 cu_partial_die_info () = delete;
1527 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1528 struct dwarf2_cu *);
1530 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1531 struct attribute *, struct attr_abbrev *,
1534 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1536 static int read_1_signed_byte (bfd *, const gdb_byte *);
1538 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1540 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1541 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1639 static int need_gnat_info (struct dwarf2_cu *);
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1699 struct partial_symtab *);
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1720 struct dwarf2_cu *);
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1783 static const char *dwarf_tag_name (unsigned int);
1785 static const char *dwarf_attr_name (unsigned int);
1787 static const char *dwarf_form_name (unsigned int);
1789 static const char *dwarf_bool_name (unsigned int);
1791 static const char *dwarf_type_encoding_name (unsigned int);
1793 static struct die_info *sibling_die (struct die_info *);
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1797 static void dump_die_for_error (struct die_info *);
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1832 static void read_signatured_type (struct signatured_type *);
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1838 /* memory allocation interface */
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1846 static int attr_form_is_block (const struct attribute *);
1848 static int attr_form_is_section_offset (const struct attribute *);
1850 static int attr_form_is_constant (const struct attribute *);
1852 static int attr_form_is_ref (const struct attribute *);
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1860 struct dwarf2_cu *cu,
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1867 static hashval_t partial_die_hash (const void *item);
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1902 static void dwarf2_mark (struct dwarf2_cu *);
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1921 class dwarf2_queue_guard
1924 dwarf2_queue_guard () = default;
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1930 struct dwarf2_queue_item *item, *last;
1932 item = dwarf2_queue;
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1956 struct file_and_directory
1958 /* The filename. This is never NULL. */
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2017 static void free_dwo_file (struct dwo_file *);
2019 /* A unique_ptr helper to free a dwo_file. */
2021 struct dwo_file_deleter
2023 void operator() (struct dwo_file *df) const
2029 /* A unique pointer to a dwo_file. */
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2035 static void check_producer (struct dwarf2_cu *cu);
2037 static void free_line_header_voidp (void *arg);
2039 /* Various complaints about symbol reading that don't abort the process. */
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2048 dwarf2_debug_line_missing_file_complaint (void)
2050 complaint (_(".debug_line section has line data without a file"));
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2061 dwarf2_complex_location_expr_complaint (void)
2063 complaint (_("location expression too complex"));
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2077 complaint (_("debug info runs off end of %s section"
2079 get_section_name (section),
2080 get_section_file_name (section));
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2098 /* Hash function for line_header_hash. */
2101 line_header_hash (const struct line_header *ofs)
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2109 line_header_hash_voidp (const void *item)
2111 const struct line_header *ofs = (const struct line_header *) item;
2113 return line_header_hash (ofs);
2116 /* Equality function for line_header_hash. */
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2134 attr_value_as_address (struct attribute *attr)
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2139 && attr->form != DW_FORM_GNU_addr_index)
2141 /* Aside from a few clearly defined exceptions, attributes that
2142 contain an address must always be in DW_FORM_addr form.
2143 Unfortunately, some compilers happen to be violating this
2144 requirement by encoding addresses using other forms, such
2145 as DW_FORM_data4 for example. For those broken compilers,
2146 we try to do our best, without any guarantee of success,
2147 to interpret the address correctly. It would also be nice
2148 to generate a complaint, but that would require us to maintain
2149 a list of legitimate cases where a non-address form is allowed,
2150 as well as update callers to pass in at least the CU's DWARF
2151 version. This is more overhead than what we're willing to
2152 expand for a pretty rare case. */
2153 addr = DW_UNSND (attr);
2156 addr = DW_ADDR (attr);
2161 /* See declaration. */
2163 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2164 const dwarf2_debug_sections *names)
2165 : objfile (objfile_)
2168 names = &dwarf2_elf_names;
2170 bfd *obfd = objfile->obfd;
2172 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2173 locate_sections (obfd, sec, *names);
2176 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2178 dwarf2_per_objfile::~dwarf2_per_objfile ()
2180 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2181 free_cached_comp_units ();
2183 if (quick_file_names_table)
2184 htab_delete (quick_file_names_table);
2186 if (line_header_hash)
2187 htab_delete (line_header_hash);
2189 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2190 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2192 for (signatured_type *sig_type : all_type_units)
2193 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2195 VEC_free (dwarf2_section_info_def, types);
2197 if (dwo_files != NULL)
2198 free_dwo_files (dwo_files, objfile);
2200 /* Everything else should be on the objfile obstack. */
2203 /* See declaration. */
2206 dwarf2_per_objfile::free_cached_comp_units ()
2208 dwarf2_per_cu_data *per_cu = read_in_chain;
2209 dwarf2_per_cu_data **last_chain = &read_in_chain;
2210 while (per_cu != NULL)
2212 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2215 *last_chain = next_cu;
2220 /* A helper class that calls free_cached_comp_units on
2223 class free_cached_comp_units
2227 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2228 : m_per_objfile (per_objfile)
2232 ~free_cached_comp_units ()
2234 m_per_objfile->free_cached_comp_units ();
2237 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2241 dwarf2_per_objfile *m_per_objfile;
2244 /* Try to locate the sections we need for DWARF 2 debugging
2245 information and return true if we have enough to do something.
2246 NAMES points to the dwarf2 section names, or is NULL if the standard
2247 ELF names are used. */
2250 dwarf2_has_info (struct objfile *objfile,
2251 const struct dwarf2_debug_sections *names)
2253 if (objfile->flags & OBJF_READNEVER)
2256 struct dwarf2_per_objfile *dwarf2_per_objfile
2257 = get_dwarf2_per_objfile (objfile);
2259 if (dwarf2_per_objfile == NULL)
2260 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2263 return (!dwarf2_per_objfile->info.is_virtual
2264 && dwarf2_per_objfile->info.s.section != NULL
2265 && !dwarf2_per_objfile->abbrev.is_virtual
2266 && dwarf2_per_objfile->abbrev.s.section != NULL);
2269 /* Return the containing section of virtual section SECTION. */
2271 static struct dwarf2_section_info *
2272 get_containing_section (const struct dwarf2_section_info *section)
2274 gdb_assert (section->is_virtual);
2275 return section->s.containing_section;
2278 /* Return the bfd owner of SECTION. */
2281 get_section_bfd_owner (const struct dwarf2_section_info *section)
2283 if (section->is_virtual)
2285 section = get_containing_section (section);
2286 gdb_assert (!section->is_virtual);
2288 return section->s.section->owner;
2291 /* Return the bfd section of SECTION.
2292 Returns NULL if the section is not present. */
2295 get_section_bfd_section (const struct dwarf2_section_info *section)
2297 if (section->is_virtual)
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2302 return section->s.section;
2305 /* Return the name of SECTION. */
2308 get_section_name (const struct dwarf2_section_info *section)
2310 asection *sectp = get_section_bfd_section (section);
2312 gdb_assert (sectp != NULL);
2313 return bfd_section_name (get_section_bfd_owner (section), sectp);
2316 /* Return the name of the file SECTION is in. */
2319 get_section_file_name (const struct dwarf2_section_info *section)
2321 bfd *abfd = get_section_bfd_owner (section);
2323 return bfd_get_filename (abfd);
2326 /* Return the id of SECTION.
2327 Returns 0 if SECTION doesn't exist. */
2330 get_section_id (const struct dwarf2_section_info *section)
2332 asection *sectp = get_section_bfd_section (section);
2339 /* Return the flags of SECTION.
2340 SECTION (or containing section if this is a virtual section) must exist. */
2343 get_section_flags (const struct dwarf2_section_info *section)
2345 asection *sectp = get_section_bfd_section (section);
2347 gdb_assert (sectp != NULL);
2348 return bfd_get_section_flags (sectp->owner, sectp);
2351 /* When loading sections, we look either for uncompressed section or for
2352 compressed section names. */
2355 section_is_p (const char *section_name,
2356 const struct dwarf2_section_names *names)
2358 if (names->normal != NULL
2359 && strcmp (section_name, names->normal) == 0)
2361 if (names->compressed != NULL
2362 && strcmp (section_name, names->compressed) == 0)
2367 /* See declaration. */
2370 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2371 const dwarf2_debug_sections &names)
2373 flagword aflag = bfd_get_section_flags (abfd, sectp);
2375 if ((aflag & SEC_HAS_CONTENTS) == 0)
2378 else if (section_is_p (sectp->name, &names.info))
2380 this->info.s.section = sectp;
2381 this->info.size = bfd_get_section_size (sectp);
2383 else if (section_is_p (sectp->name, &names.abbrev))
2385 this->abbrev.s.section = sectp;
2386 this->abbrev.size = bfd_get_section_size (sectp);
2388 else if (section_is_p (sectp->name, &names.line))
2390 this->line.s.section = sectp;
2391 this->line.size = bfd_get_section_size (sectp);
2393 else if (section_is_p (sectp->name, &names.loc))
2395 this->loc.s.section = sectp;
2396 this->loc.size = bfd_get_section_size (sectp);
2398 else if (section_is_p (sectp->name, &names.loclists))
2400 this->loclists.s.section = sectp;
2401 this->loclists.size = bfd_get_section_size (sectp);
2403 else if (section_is_p (sectp->name, &names.macinfo))
2405 this->macinfo.s.section = sectp;
2406 this->macinfo.size = bfd_get_section_size (sectp);
2408 else if (section_is_p (sectp->name, &names.macro))
2410 this->macro.s.section = sectp;
2411 this->macro.size = bfd_get_section_size (sectp);
2413 else if (section_is_p (sectp->name, &names.str))
2415 this->str.s.section = sectp;
2416 this->str.size = bfd_get_section_size (sectp);
2418 else if (section_is_p (sectp->name, &names.line_str))
2420 this->line_str.s.section = sectp;
2421 this->line_str.size = bfd_get_section_size (sectp);
2423 else if (section_is_p (sectp->name, &names.addr))
2425 this->addr.s.section = sectp;
2426 this->addr.size = bfd_get_section_size (sectp);
2428 else if (section_is_p (sectp->name, &names.frame))
2430 this->frame.s.section = sectp;
2431 this->frame.size = bfd_get_section_size (sectp);
2433 else if (section_is_p (sectp->name, &names.eh_frame))
2435 this->eh_frame.s.section = sectp;
2436 this->eh_frame.size = bfd_get_section_size (sectp);
2438 else if (section_is_p (sectp->name, &names.ranges))
2440 this->ranges.s.section = sectp;
2441 this->ranges.size = bfd_get_section_size (sectp);
2443 else if (section_is_p (sectp->name, &names.rnglists))
2445 this->rnglists.s.section = sectp;
2446 this->rnglists.size = bfd_get_section_size (sectp);
2448 else if (section_is_p (sectp->name, &names.types))
2450 struct dwarf2_section_info type_section;
2452 memset (&type_section, 0, sizeof (type_section));
2453 type_section.s.section = sectp;
2454 type_section.size = bfd_get_section_size (sectp);
2456 VEC_safe_push (dwarf2_section_info_def, this->types,
2459 else if (section_is_p (sectp->name, &names.gdb_index))
2461 this->gdb_index.s.section = sectp;
2462 this->gdb_index.size = bfd_get_section_size (sectp);
2464 else if (section_is_p (sectp->name, &names.debug_names))
2466 this->debug_names.s.section = sectp;
2467 this->debug_names.size = bfd_get_section_size (sectp);
2469 else if (section_is_p (sectp->name, &names.debug_aranges))
2471 this->debug_aranges.s.section = sectp;
2472 this->debug_aranges.size = bfd_get_section_size (sectp);
2475 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2476 && bfd_section_vma (abfd, sectp) == 0)
2477 this->has_section_at_zero = true;
2480 /* A helper function that decides whether a section is empty,
2484 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2486 if (section->is_virtual)
2487 return section->size == 0;
2488 return section->s.section == NULL || section->size == 0;
2491 /* See dwarf2read.h. */
2494 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2498 gdb_byte *buf, *retbuf;
2502 info->buffer = NULL;
2505 if (dwarf2_section_empty_p (info))
2508 sectp = get_section_bfd_section (info);
2510 /* If this is a virtual section we need to read in the real one first. */
2511 if (info->is_virtual)
2513 struct dwarf2_section_info *containing_section =
2514 get_containing_section (info);
2516 gdb_assert (sectp != NULL);
2517 if ((sectp->flags & SEC_RELOC) != 0)
2519 error (_("Dwarf Error: DWP format V2 with relocations is not"
2520 " supported in section %s [in module %s]"),
2521 get_section_name (info), get_section_file_name (info));
2523 dwarf2_read_section (objfile, containing_section);
2524 /* Other code should have already caught virtual sections that don't
2526 gdb_assert (info->virtual_offset + info->size
2527 <= containing_section->size);
2528 /* If the real section is empty or there was a problem reading the
2529 section we shouldn't get here. */
2530 gdb_assert (containing_section->buffer != NULL);
2531 info->buffer = containing_section->buffer + info->virtual_offset;
2535 /* If the section has relocations, we must read it ourselves.
2536 Otherwise we attach it to the BFD. */
2537 if ((sectp->flags & SEC_RELOC) == 0)
2539 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2543 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2546 /* When debugging .o files, we may need to apply relocations; see
2547 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2548 We never compress sections in .o files, so we only need to
2549 try this when the section is not compressed. */
2550 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2553 info->buffer = retbuf;
2557 abfd = get_section_bfd_owner (info);
2558 gdb_assert (abfd != NULL);
2560 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2561 || bfd_bread (buf, info->size, abfd) != info->size)
2563 error (_("Dwarf Error: Can't read DWARF data"
2564 " in section %s [in module %s]"),
2565 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2569 /* A helper function that returns the size of a section in a safe way.
2570 If you are positive that the section has been read before using the
2571 size, then it is safe to refer to the dwarf2_section_info object's
2572 "size" field directly. In other cases, you must call this
2573 function, because for compressed sections the size field is not set
2574 correctly until the section has been read. */
2576 static bfd_size_type
2577 dwarf2_section_size (struct objfile *objfile,
2578 struct dwarf2_section_info *info)
2581 dwarf2_read_section (objfile, info);
2585 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2589 dwarf2_get_section_info (struct objfile *objfile,
2590 enum dwarf2_section_enum sect,
2591 asection **sectp, const gdb_byte **bufp,
2592 bfd_size_type *sizep)
2594 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2595 struct dwarf2_section_info *info;
2597 /* We may see an objfile without any DWARF, in which case we just
2608 case DWARF2_DEBUG_FRAME:
2609 info = &data->frame;
2611 case DWARF2_EH_FRAME:
2612 info = &data->eh_frame;
2615 gdb_assert_not_reached ("unexpected section");
2618 dwarf2_read_section (objfile, info);
2620 *sectp = get_section_bfd_section (info);
2621 *bufp = info->buffer;
2622 *sizep = info->size;
2625 /* A helper function to find the sections for a .dwz file. */
2628 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2630 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2632 /* Note that we only support the standard ELF names, because .dwz
2633 is ELF-only (at the time of writing). */
2634 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2636 dwz_file->abbrev.s.section = sectp;
2637 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2639 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2641 dwz_file->info.s.section = sectp;
2642 dwz_file->info.size = bfd_get_section_size (sectp);
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2646 dwz_file->str.s.section = sectp;
2647 dwz_file->str.size = bfd_get_section_size (sectp);
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2651 dwz_file->line.s.section = sectp;
2652 dwz_file->line.size = bfd_get_section_size (sectp);
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2656 dwz_file->macro.s.section = sectp;
2657 dwz_file->macro.size = bfd_get_section_size (sectp);
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2661 dwz_file->gdb_index.s.section = sectp;
2662 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2666 dwz_file->debug_names.s.section = sectp;
2667 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2671 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2672 there is no .gnu_debugaltlink section in the file. Error if there
2673 is such a section but the file cannot be found. */
2675 static struct dwz_file *
2676 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2678 const char *filename;
2679 bfd_size_type buildid_len_arg;
2683 if (dwarf2_per_objfile->dwz_file != NULL)
2684 return dwarf2_per_objfile->dwz_file.get ();
2686 bfd_set_error (bfd_error_no_error);
2687 gdb::unique_xmalloc_ptr<char> data
2688 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2689 &buildid_len_arg, &buildid));
2692 if (bfd_get_error () == bfd_error_no_error)
2694 error (_("could not read '.gnu_debugaltlink' section: %s"),
2695 bfd_errmsg (bfd_get_error ()));
2698 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2700 buildid_len = (size_t) buildid_len_arg;
2702 filename = data.get ();
2704 std::string abs_storage;
2705 if (!IS_ABSOLUTE_PATH (filename))
2707 gdb::unique_xmalloc_ptr<char> abs
2708 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2710 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2711 filename = abs_storage.c_str ();
2714 /* First try the file name given in the section. If that doesn't
2715 work, try to use the build-id instead. */
2716 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2717 if (dwz_bfd != NULL)
2719 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2720 dwz_bfd.reset (nullptr);
2723 if (dwz_bfd == NULL)
2724 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2726 if (dwz_bfd == NULL)
2727 error (_("could not find '.gnu_debugaltlink' file for %s"),
2728 objfile_name (dwarf2_per_objfile->objfile));
2730 std::unique_ptr<struct dwz_file> result
2731 (new struct dwz_file (std::move (dwz_bfd)));
2733 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2736 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2737 result->dwz_bfd.get ());
2738 dwarf2_per_objfile->dwz_file = std::move (result);
2739 return dwarf2_per_objfile->dwz_file.get ();
2742 /* DWARF quick_symbols_functions support. */
2744 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2745 unique line tables, so we maintain a separate table of all .debug_line
2746 derived entries to support the sharing.
2747 All the quick functions need is the list of file names. We discard the
2748 line_header when we're done and don't need to record it here. */
2749 struct quick_file_names
2751 /* The data used to construct the hash key. */
2752 struct stmt_list_hash hash;
2754 /* The number of entries in file_names, real_names. */
2755 unsigned int num_file_names;
2757 /* The file names from the line table, after being run through
2759 const char **file_names;
2761 /* The file names from the line table after being run through
2762 gdb_realpath. These are computed lazily. */
2763 const char **real_names;
2766 /* When using the index (and thus not using psymtabs), each CU has an
2767 object of this type. This is used to hold information needed by
2768 the various "quick" methods. */
2769 struct dwarf2_per_cu_quick_data
2771 /* The file table. This can be NULL if there was no file table
2772 or it's currently not read in.
2773 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2774 struct quick_file_names *file_names;
2776 /* The corresponding symbol table. This is NULL if symbols for this
2777 CU have not yet been read. */
2778 struct compunit_symtab *compunit_symtab;
2780 /* A temporary mark bit used when iterating over all CUs in
2781 expand_symtabs_matching. */
2782 unsigned int mark : 1;
2784 /* True if we've tried to read the file table and found there isn't one.
2785 There will be no point in trying to read it again next time. */
2786 unsigned int no_file_data : 1;
2789 /* Utility hash function for a stmt_list_hash. */
2792 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2796 if (stmt_list_hash->dwo_unit != NULL)
2797 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2798 v += to_underlying (stmt_list_hash->line_sect_off);
2802 /* Utility equality function for a stmt_list_hash. */
2805 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2806 const struct stmt_list_hash *rhs)
2808 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2810 if (lhs->dwo_unit != NULL
2811 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2814 return lhs->line_sect_off == rhs->line_sect_off;
2817 /* Hash function for a quick_file_names. */
2820 hash_file_name_entry (const void *e)
2822 const struct quick_file_names *file_data
2823 = (const struct quick_file_names *) e;
2825 return hash_stmt_list_entry (&file_data->hash);
2828 /* Equality function for a quick_file_names. */
2831 eq_file_name_entry (const void *a, const void *b)
2833 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2834 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2836 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2839 /* Delete function for a quick_file_names. */
2842 delete_file_name_entry (void *e)
2844 struct quick_file_names *file_data = (struct quick_file_names *) e;
2847 for (i = 0; i < file_data->num_file_names; ++i)
2849 xfree ((void*) file_data->file_names[i]);
2850 if (file_data->real_names)
2851 xfree ((void*) file_data->real_names[i]);
2854 /* The space for the struct itself lives on objfile_obstack,
2855 so we don't free it here. */
2858 /* Create a quick_file_names hash table. */
2861 create_quick_file_names_table (unsigned int nr_initial_entries)
2863 return htab_create_alloc (nr_initial_entries,
2864 hash_file_name_entry, eq_file_name_entry,
2865 delete_file_name_entry, xcalloc, xfree);
2868 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2869 have to be created afterwards. You should call age_cached_comp_units after
2870 processing PER_CU->CU. dw2_setup must have been already called. */
2873 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2875 if (per_cu->is_debug_types)
2876 load_full_type_unit (per_cu);
2878 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2880 if (per_cu->cu == NULL)
2881 return; /* Dummy CU. */
2883 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2886 /* Read in the symbols for PER_CU. */
2889 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2891 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2893 /* Skip type_unit_groups, reading the type units they contain
2894 is handled elsewhere. */
2895 if (IS_TYPE_UNIT_GROUP (per_cu))
2898 /* The destructor of dwarf2_queue_guard frees any entries left on
2899 the queue. After this point we're guaranteed to leave this function
2900 with the dwarf queue empty. */
2901 dwarf2_queue_guard q_guard;
2903 if (dwarf2_per_objfile->using_index
2904 ? per_cu->v.quick->compunit_symtab == NULL
2905 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2907 queue_comp_unit (per_cu, language_minimal);
2908 load_cu (per_cu, skip_partial);
2910 /* If we just loaded a CU from a DWO, and we're working with an index
2911 that may badly handle TUs, load all the TUs in that DWO as well.
2912 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2913 if (!per_cu->is_debug_types
2914 && per_cu->cu != NULL
2915 && per_cu->cu->dwo_unit != NULL
2916 && dwarf2_per_objfile->index_table != NULL
2917 && dwarf2_per_objfile->index_table->version <= 7
2918 /* DWP files aren't supported yet. */
2919 && get_dwp_file (dwarf2_per_objfile) == NULL)
2920 queue_and_load_all_dwo_tus (per_cu);
2923 process_queue (dwarf2_per_objfile);
2925 /* Age the cache, releasing compilation units that have not
2926 been used recently. */
2927 age_cached_comp_units (dwarf2_per_objfile);
2930 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2931 the objfile from which this CU came. Returns the resulting symbol
2934 static struct compunit_symtab *
2935 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2937 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2939 gdb_assert (dwarf2_per_objfile->using_index);
2940 if (!per_cu->v.quick->compunit_symtab)
2942 free_cached_comp_units freer (dwarf2_per_objfile);
2943 scoped_restore decrementer = increment_reading_symtab ();
2944 dw2_do_instantiate_symtab (per_cu, skip_partial);
2945 process_cu_includes (dwarf2_per_objfile);
2948 return per_cu->v.quick->compunit_symtab;
2951 /* See declaration. */
2953 dwarf2_per_cu_data *
2954 dwarf2_per_objfile::get_cutu (int index)
2956 if (index >= this->all_comp_units.size ())
2958 index -= this->all_comp_units.size ();
2959 gdb_assert (index < this->all_type_units.size ());
2960 return &this->all_type_units[index]->per_cu;
2963 return this->all_comp_units[index];
2966 /* See declaration. */
2968 dwarf2_per_cu_data *
2969 dwarf2_per_objfile::get_cu (int index)
2971 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2973 return this->all_comp_units[index];
2976 /* See declaration. */
2979 dwarf2_per_objfile::get_tu (int index)
2981 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2983 return this->all_type_units[index];
2986 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2987 objfile_obstack, and constructed with the specified field
2990 static dwarf2_per_cu_data *
2991 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2992 struct dwarf2_section_info *section,
2994 sect_offset sect_off, ULONGEST length)
2996 struct objfile *objfile = dwarf2_per_objfile->objfile;
2997 dwarf2_per_cu_data *the_cu
2998 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_data);
3000 the_cu->sect_off = sect_off;
3001 the_cu->length = length;
3002 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3003 the_cu->section = section;
3004 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3005 struct dwarf2_per_cu_quick_data);
3006 the_cu->is_dwz = is_dwz;
3010 /* A helper for create_cus_from_index that handles a given list of
3014 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3015 const gdb_byte *cu_list, offset_type n_elements,
3016 struct dwarf2_section_info *section,
3019 for (offset_type i = 0; i < n_elements; i += 2)
3021 gdb_static_assert (sizeof (ULONGEST) >= 8);
3023 sect_offset sect_off
3024 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3025 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3028 dwarf2_per_cu_data *per_cu
3029 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3035 /* Read the CU list from the mapped index, and use it to create all
3036 the CU objects for this objfile. */
3039 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3040 const gdb_byte *cu_list, offset_type cu_list_elements,
3041 const gdb_byte *dwz_list, offset_type dwz_elements)
3043 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3044 dwarf2_per_objfile->all_comp_units.reserve
3045 ((cu_list_elements + dwz_elements) / 2);
3047 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3048 &dwarf2_per_objfile->info, 0);
3050 if (dwz_elements == 0)
3053 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3058 /* Create the signatured type hash table from the index. */
3061 create_signatured_type_table_from_index
3062 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3067 struct objfile *objfile = dwarf2_per_objfile->objfile;
3069 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3070 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3072 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3074 for (offset_type i = 0; i < elements; i += 3)
3076 struct signatured_type *sig_type;
3079 cu_offset type_offset_in_tu;
3081 gdb_static_assert (sizeof (ULONGEST) >= 8);
3082 sect_offset sect_off
3083 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3085 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3087 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3090 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct signatured_type);
3092 sig_type->signature = signature;
3093 sig_type->type_offset_in_tu = type_offset_in_tu;
3094 sig_type->per_cu.is_debug_types = 1;
3095 sig_type->per_cu.section = section;
3096 sig_type->per_cu.sect_off = sect_off;
3097 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3098 sig_type->per_cu.v.quick
3099 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3100 struct dwarf2_per_cu_quick_data);
3102 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3105 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3108 dwarf2_per_objfile->signatured_types = sig_types_hash;
3111 /* Create the signatured type hash table from .debug_names. */
3114 create_signatured_type_table_from_debug_names
3115 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3116 const mapped_debug_names &map,
3117 struct dwarf2_section_info *section,
3118 struct dwarf2_section_info *abbrev_section)
3120 struct objfile *objfile = dwarf2_per_objfile->objfile;
3122 dwarf2_read_section (objfile, section);
3123 dwarf2_read_section (objfile, abbrev_section);
3125 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3126 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3128 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3130 for (uint32_t i = 0; i < map.tu_count; ++i)
3132 struct signatured_type *sig_type;
3135 sect_offset sect_off
3136 = (sect_offset) (extract_unsigned_integer
3137 (map.tu_table_reordered + i * map.offset_size,
3139 map.dwarf5_byte_order));
3141 comp_unit_head cu_header;
3142 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3144 section->buffer + to_underlying (sect_off),
3147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct signatured_type);
3149 sig_type->signature = cu_header.signature;
3150 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3151 sig_type->per_cu.is_debug_types = 1;
3152 sig_type->per_cu.section = section;
3153 sig_type->per_cu.sect_off = sect_off;
3154 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3155 sig_type->per_cu.v.quick
3156 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3157 struct dwarf2_per_cu_quick_data);
3159 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3162 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3165 dwarf2_per_objfile->signatured_types = sig_types_hash;
3168 /* Read the address map data from the mapped index, and use it to
3169 populate the objfile's psymtabs_addrmap. */
3172 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3173 struct mapped_index *index)
3175 struct objfile *objfile = dwarf2_per_objfile->objfile;
3176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3177 const gdb_byte *iter, *end;
3178 struct addrmap *mutable_map;
3181 auto_obstack temp_obstack;
3183 mutable_map = addrmap_create_mutable (&temp_obstack);
3185 iter = index->address_table.data ();
3186 end = iter + index->address_table.size ();
3188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3192 ULONGEST hi, lo, cu_index;
3193 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3195 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3197 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3202 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3203 hex_string (lo), hex_string (hi));
3207 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3209 complaint (_(".gdb_index address table has invalid CU number %u"),
3210 (unsigned) cu_index);
3214 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3215 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3216 addrmap_set_empty (mutable_map, lo, hi - 1,
3217 dwarf2_per_objfile->get_cu (cu_index));
3220 objfile->partial_symtabs->psymtabs_addrmap
3221 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3224 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3225 populate the objfile's psymtabs_addrmap. */
3228 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3229 struct dwarf2_section_info *section)
3231 struct objfile *objfile = dwarf2_per_objfile->objfile;
3232 bfd *abfd = objfile->obfd;
3233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3234 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3235 SECT_OFF_TEXT (objfile));
3237 auto_obstack temp_obstack;
3238 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3240 std::unordered_map<sect_offset,
3241 dwarf2_per_cu_data *,
3242 gdb::hash_enum<sect_offset>>
3243 debug_info_offset_to_per_cu;
3244 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3246 const auto insertpair
3247 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3248 if (!insertpair.second)
3250 warning (_("Section .debug_aranges in %s has duplicate "
3251 "debug_info_offset %s, ignoring .debug_aranges."),
3252 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3257 dwarf2_read_section (objfile, section);
3259 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3261 const gdb_byte *addr = section->buffer;
3263 while (addr < section->buffer + section->size)
3265 const gdb_byte *const entry_addr = addr;
3266 unsigned int bytes_read;
3268 const LONGEST entry_length = read_initial_length (abfd, addr,
3272 const gdb_byte *const entry_end = addr + entry_length;
3273 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3274 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3275 if (addr + entry_length > section->buffer + section->size)
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "length %s exceeds section length %s, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 plongest (bytes_read + entry_length),
3282 pulongest (section->size));
3286 /* The version number. */
3287 const uint16_t version = read_2_bytes (abfd, addr);
3291 warning (_("Section .debug_aranges in %s entry at offset %zu "
3292 "has unsupported version %d, ignoring .debug_aranges."),
3293 objfile_name (objfile), entry_addr - section->buffer,
3298 const uint64_t debug_info_offset
3299 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3300 addr += offset_size;
3301 const auto per_cu_it
3302 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3303 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3305 warning (_("Section .debug_aranges in %s entry at offset %zu "
3306 "debug_info_offset %s does not exists, "
3307 "ignoring .debug_aranges."),
3308 objfile_name (objfile), entry_addr - section->buffer,
3309 pulongest (debug_info_offset));
3312 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3314 const uint8_t address_size = *addr++;
3315 if (address_size < 1 || address_size > 8)
3317 warning (_("Section .debug_aranges in %s entry at offset %zu "
3318 "address_size %u is invalid, ignoring .debug_aranges."),
3319 objfile_name (objfile), entry_addr - section->buffer,
3324 const uint8_t segment_selector_size = *addr++;
3325 if (segment_selector_size != 0)
3327 warning (_("Section .debug_aranges in %s entry at offset %zu "
3328 "segment_selector_size %u is not supported, "
3329 "ignoring .debug_aranges."),
3330 objfile_name (objfile), entry_addr - section->buffer,
3331 segment_selector_size);
3335 /* Must pad to an alignment boundary that is twice the address
3336 size. It is undocumented by the DWARF standard but GCC does
3338 for (size_t padding = ((-(addr - section->buffer))
3339 & (2 * address_size - 1));
3340 padding > 0; padding--)
3343 warning (_("Section .debug_aranges in %s entry at offset %zu "
3344 "padding is not zero, ignoring .debug_aranges."),
3345 objfile_name (objfile), entry_addr - section->buffer);
3351 if (addr + 2 * address_size > entry_end)
3353 warning (_("Section .debug_aranges in %s entry at offset %zu "
3354 "address list is not properly terminated, "
3355 "ignoring .debug_aranges."),
3356 objfile_name (objfile), entry_addr - section->buffer);
3359 ULONGEST start = extract_unsigned_integer (addr, address_size,
3361 addr += address_size;
3362 ULONGEST length = extract_unsigned_integer (addr, address_size,
3364 addr += address_size;
3365 if (start == 0 && length == 0)
3367 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3369 /* Symbol was eliminated due to a COMDAT group. */
3372 ULONGEST end = start + length;
3373 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3375 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3377 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3381 objfile->partial_symtabs->psymtabs_addrmap
3382 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3385 /* Find a slot in the mapped index INDEX for the object named NAME.
3386 If NAME is found, set *VEC_OUT to point to the CU vector in the
3387 constant pool and return true. If NAME cannot be found, return
3391 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3392 offset_type **vec_out)
3395 offset_type slot, step;
3396 int (*cmp) (const char *, const char *);
3398 gdb::unique_xmalloc_ptr<char> without_params;
3399 if (current_language->la_language == language_cplus
3400 || current_language->la_language == language_fortran
3401 || current_language->la_language == language_d)
3403 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3406 if (strchr (name, '(') != NULL)
3408 without_params = cp_remove_params (name);
3410 if (without_params != NULL)
3411 name = without_params.get ();
3415 /* Index version 4 did not support case insensitive searches. But the
3416 indices for case insensitive languages are built in lowercase, therefore
3417 simulate our NAME being searched is also lowercased. */
3418 hash = mapped_index_string_hash ((index->version == 4
3419 && case_sensitivity == case_sensitive_off
3420 ? 5 : index->version),
3423 slot = hash & (index->symbol_table.size () - 1);
3424 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3425 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3431 const auto &bucket = index->symbol_table[slot];
3432 if (bucket.name == 0 && bucket.vec == 0)
3435 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3436 if (!cmp (name, str))
3438 *vec_out = (offset_type *) (index->constant_pool
3439 + MAYBE_SWAP (bucket.vec));
3443 slot = (slot + step) & (index->symbol_table.size () - 1);
3447 /* A helper function that reads the .gdb_index from BUFFER and fills
3448 in MAP. FILENAME is the name of the file containing the data;
3449 it is used for error reporting. DEPRECATED_OK is true if it is
3450 ok to use deprecated sections.
3452 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3453 out parameters that are filled in with information about the CU and
3454 TU lists in the section.
3456 Returns true if all went well, false otherwise. */
3459 read_gdb_index_from_buffer (struct objfile *objfile,
3460 const char *filename,
3462 gdb::array_view<const gdb_byte> buffer,
3463 struct mapped_index *map,
3464 const gdb_byte **cu_list,
3465 offset_type *cu_list_elements,
3466 const gdb_byte **types_list,
3467 offset_type *types_list_elements)
3469 const gdb_byte *addr = &buffer[0];
3471 /* Version check. */
3472 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3473 /* Versions earlier than 3 emitted every copy of a psymbol. This
3474 causes the index to behave very poorly for certain requests. Version 3
3475 contained incomplete addrmap. So, it seems better to just ignore such
3479 static int warning_printed = 0;
3480 if (!warning_printed)
3482 warning (_("Skipping obsolete .gdb_index section in %s."),
3484 warning_printed = 1;
3488 /* Index version 4 uses a different hash function than index version
3491 Versions earlier than 6 did not emit psymbols for inlined
3492 functions. Using these files will cause GDB not to be able to
3493 set breakpoints on inlined functions by name, so we ignore these
3494 indices unless the user has done
3495 "set use-deprecated-index-sections on". */
3496 if (version < 6 && !deprecated_ok)
3498 static int warning_printed = 0;
3499 if (!warning_printed)
3502 Skipping deprecated .gdb_index section in %s.\n\
3503 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3504 to use the section anyway."),
3506 warning_printed = 1;
3510 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3511 of the TU (for symbols coming from TUs),
3512 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3513 Plus gold-generated indices can have duplicate entries for global symbols,
3514 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3515 These are just performance bugs, and we can't distinguish gdb-generated
3516 indices from gold-generated ones, so issue no warning here. */
3518 /* Indexes with higher version than the one supported by GDB may be no
3519 longer backward compatible. */
3523 map->version = version;
3525 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3528 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3529 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3533 *types_list = addr + MAYBE_SWAP (metadata[i]);
3534 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3535 - MAYBE_SWAP (metadata[i]))
3539 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3540 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3542 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3545 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3546 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3548 = gdb::array_view<mapped_index::symbol_table_slot>
3549 ((mapped_index::symbol_table_slot *) symbol_table,
3550 (mapped_index::symbol_table_slot *) symbol_table_end);
3553 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3558 /* Callback types for dwarf2_read_gdb_index. */
3560 typedef gdb::function_view
3561 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3562 get_gdb_index_contents_ftype;
3563 typedef gdb::function_view
3564 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3565 get_gdb_index_contents_dwz_ftype;
3567 /* Read .gdb_index. If everything went ok, initialize the "quick"
3568 elements of all the CUs and return 1. Otherwise, return 0. */
3571 dwarf2_read_gdb_index
3572 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3573 get_gdb_index_contents_ftype get_gdb_index_contents,
3574 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3576 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3577 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3578 struct dwz_file *dwz;
3579 struct objfile *objfile = dwarf2_per_objfile->objfile;
3581 gdb::array_view<const gdb_byte> main_index_contents
3582 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3584 if (main_index_contents.empty ())
3587 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3588 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3589 use_deprecated_index_sections,
3590 main_index_contents, map.get (), &cu_list,
3591 &cu_list_elements, &types_list,
3592 &types_list_elements))
3595 /* Don't use the index if it's empty. */
3596 if (map->symbol_table.empty ())
3599 /* If there is a .dwz file, read it so we can get its CU list as
3601 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3604 struct mapped_index dwz_map;
3605 const gdb_byte *dwz_types_ignore;
3606 offset_type dwz_types_elements_ignore;
3608 gdb::array_view<const gdb_byte> dwz_index_content
3609 = get_gdb_index_contents_dwz (objfile, dwz);
3611 if (dwz_index_content.empty ())
3614 if (!read_gdb_index_from_buffer (objfile,
3615 bfd_get_filename (dwz->dwz_bfd), 1,
3616 dwz_index_content, &dwz_map,
3617 &dwz_list, &dwz_list_elements,
3619 &dwz_types_elements_ignore))
3621 warning (_("could not read '.gdb_index' section from %s; skipping"),
3622 bfd_get_filename (dwz->dwz_bfd));
3627 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3628 dwz_list, dwz_list_elements);
3630 if (types_list_elements)
3632 struct dwarf2_section_info *section;
3634 /* We can only handle a single .debug_types when we have an
3636 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3639 section = VEC_index (dwarf2_section_info_def,
3640 dwarf2_per_objfile->types, 0);
3642 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3643 types_list, types_list_elements);
3646 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3648 dwarf2_per_objfile->index_table = std::move (map);
3649 dwarf2_per_objfile->using_index = 1;
3650 dwarf2_per_objfile->quick_file_names_table =
3651 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3656 /* die_reader_func for dw2_get_file_names. */
3659 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3660 const gdb_byte *info_ptr,
3661 struct die_info *comp_unit_die,
3665 struct dwarf2_cu *cu = reader->cu;
3666 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3667 struct dwarf2_per_objfile *dwarf2_per_objfile
3668 = cu->per_cu->dwarf2_per_objfile;
3669 struct objfile *objfile = dwarf2_per_objfile->objfile;
3670 struct dwarf2_per_cu_data *lh_cu;
3671 struct attribute *attr;
3674 struct quick_file_names *qfn;
3676 gdb_assert (! this_cu->is_debug_types);
3678 /* Our callers never want to match partial units -- instead they
3679 will match the enclosing full CU. */
3680 if (comp_unit_die->tag == DW_TAG_partial_unit)
3682 this_cu->v.quick->no_file_data = 1;
3690 sect_offset line_offset {};
3692 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3695 struct quick_file_names find_entry;
3697 line_offset = (sect_offset) DW_UNSND (attr);
3699 /* We may have already read in this line header (TU line header sharing).
3700 If we have we're done. */
3701 find_entry.hash.dwo_unit = cu->dwo_unit;
3702 find_entry.hash.line_sect_off = line_offset;
3703 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3704 &find_entry, INSERT);
3707 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3711 lh = dwarf_decode_line_header (line_offset, cu);
3715 lh_cu->v.quick->no_file_data = 1;
3719 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3720 qfn->hash.dwo_unit = cu->dwo_unit;
3721 qfn->hash.line_sect_off = line_offset;
3722 gdb_assert (slot != NULL);
3725 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3727 qfn->num_file_names = lh->file_names.size ();
3729 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3730 for (i = 0; i < lh->file_names.size (); ++i)
3731 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3732 qfn->real_names = NULL;
3734 lh_cu->v.quick->file_names = qfn;
3737 /* A helper for the "quick" functions which attempts to read the line
3738 table for THIS_CU. */
3740 static struct quick_file_names *
3741 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3743 /* This should never be called for TUs. */
3744 gdb_assert (! this_cu->is_debug_types);
3745 /* Nor type unit groups. */
3746 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3748 if (this_cu->v.quick->file_names != NULL)
3749 return this_cu->v.quick->file_names;
3750 /* If we know there is no line data, no point in looking again. */
3751 if (this_cu->v.quick->no_file_data)
3754 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3756 if (this_cu->v.quick->no_file_data)
3758 return this_cu->v.quick->file_names;
3761 /* A helper for the "quick" functions which computes and caches the
3762 real path for a given file name from the line table. */
3765 dw2_get_real_path (struct objfile *objfile,
3766 struct quick_file_names *qfn, int index)
3768 if (qfn->real_names == NULL)
3769 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3770 qfn->num_file_names, const char *);
3772 if (qfn->real_names[index] == NULL)
3773 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3775 return qfn->real_names[index];
3778 static struct symtab *
3779 dw2_find_last_source_symtab (struct objfile *objfile)
3781 struct dwarf2_per_objfile *dwarf2_per_objfile
3782 = get_dwarf2_per_objfile (objfile);
3783 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3784 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3789 return compunit_primary_filetab (cust);
3792 /* Traversal function for dw2_forget_cached_source_info. */
3795 dw2_free_cached_file_names (void **slot, void *info)
3797 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3799 if (file_data->real_names)
3803 for (i = 0; i < file_data->num_file_names; ++i)
3805 xfree ((void*) file_data->real_names[i]);
3806 file_data->real_names[i] = NULL;
3814 dw2_forget_cached_source_info (struct objfile *objfile)
3816 struct dwarf2_per_objfile *dwarf2_per_objfile
3817 = get_dwarf2_per_objfile (objfile);
3819 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3820 dw2_free_cached_file_names, NULL);
3823 /* Helper function for dw2_map_symtabs_matching_filename that expands
3824 the symtabs and calls the iterator. */
3827 dw2_map_expand_apply (struct objfile *objfile,
3828 struct dwarf2_per_cu_data *per_cu,
3829 const char *name, const char *real_path,
3830 gdb::function_view<bool (symtab *)> callback)
3832 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3834 /* Don't visit already-expanded CUs. */
3835 if (per_cu->v.quick->compunit_symtab)
3838 /* This may expand more than one symtab, and we want to iterate over
3840 dw2_instantiate_symtab (per_cu, false);
3842 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3843 last_made, callback);
3846 /* Implementation of the map_symtabs_matching_filename method. */
3849 dw2_map_symtabs_matching_filename
3850 (struct objfile *objfile, const char *name, const char *real_path,
3851 gdb::function_view<bool (symtab *)> callback)
3853 const char *name_basename = lbasename (name);
3854 struct dwarf2_per_objfile *dwarf2_per_objfile
3855 = get_dwarf2_per_objfile (objfile);
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3860 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3862 /* We only need to look at symtabs not already expanded. */
3863 if (per_cu->v.quick->compunit_symtab)
3866 quick_file_names *file_data = dw2_get_file_names (per_cu);
3867 if (file_data == NULL)
3870 for (int j = 0; j < file_data->num_file_names; ++j)
3872 const char *this_name = file_data->file_names[j];
3873 const char *this_real_name;
3875 if (compare_filenames_for_search (this_name, name))
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3883 /* Before we invoke realpath, which can get expensive when many
3884 files are involved, do a quick comparison of the basenames. */
3885 if (! basenames_may_differ
3886 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3889 this_real_name = dw2_get_real_path (objfile, file_data, j);
3890 if (compare_filenames_for_search (this_real_name, name))
3892 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3898 if (real_path != NULL)
3900 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3901 gdb_assert (IS_ABSOLUTE_PATH (name));
3902 if (this_real_name != NULL
3903 && FILENAME_CMP (real_path, this_real_name) == 0)
3905 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3917 /* Struct used to manage iterating over all CUs looking for a symbol. */
3919 struct dw2_symtab_iterator
3921 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3922 struct dwarf2_per_objfile *dwarf2_per_objfile;
3923 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3924 int want_specific_block;
3925 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3926 Unused if !WANT_SPECIFIC_BLOCK. */
3928 /* The kind of symbol we're looking for. */
3930 /* The list of CUs from the index entry of the symbol,
3931 or NULL if not found. */
3933 /* The next element in VEC to look at. */
3935 /* The number of elements in VEC, or zero if there is no match. */
3937 /* Have we seen a global version of the symbol?
3938 If so we can ignore all further global instances.
3939 This is to work around gold/15646, inefficient gold-generated
3944 /* Initialize the index symtab iterator ITER.
3945 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3946 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3949 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3950 struct dwarf2_per_objfile *dwarf2_per_objfile,
3951 int want_specific_block,
3956 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3957 iter->want_specific_block = want_specific_block;
3958 iter->block_index = block_index;
3959 iter->domain = domain;
3961 iter->global_seen = 0;
3963 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3965 /* index is NULL if OBJF_READNOW. */
3966 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3967 iter->length = MAYBE_SWAP (*iter->vec);
3975 /* Return the next matching CU or NULL if there are no more. */
3977 static struct dwarf2_per_cu_data *
3978 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3980 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3982 for ( ; iter->next < iter->length; ++iter->next)
3984 offset_type cu_index_and_attrs =
3985 MAYBE_SWAP (iter->vec[iter->next + 1]);
3986 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 int want_static = iter->block_index != GLOBAL_BLOCK;
3988 /* This value is only valid for index versions >= 7. */
3989 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3990 gdb_index_symbol_kind symbol_kind =
3991 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3992 /* Only check the symbol attributes if they're present.
3993 Indices prior to version 7 don't record them,
3994 and indices >= 7 may elide them for certain symbols
3995 (gold does this). */
3997 (dwarf2_per_objfile->index_table->version >= 7
3998 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4000 /* Don't crash on bad data. */
4001 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4002 + dwarf2_per_objfile->all_type_units.size ()))
4004 complaint (_(".gdb_index entry has bad CU index"
4006 objfile_name (dwarf2_per_objfile->objfile));
4010 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4012 /* Skip if already read in. */
4013 if (per_cu->v.quick->compunit_symtab)
4016 /* Check static vs global. */
4019 if (iter->want_specific_block
4020 && want_static != is_static)
4022 /* Work around gold/15646. */
4023 if (!is_static && iter->global_seen)
4026 iter->global_seen = 1;
4029 /* Only check the symbol's kind if it has one. */
4032 switch (iter->domain)
4035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4036 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4037 /* Some types are also in VAR_DOMAIN. */
4038 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4061 static struct compunit_symtab *
4062 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4063 const char *name, domain_enum domain)
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4098 /* Keep looking through other CUs. */
4105 dw2_print_stats (struct objfile *objfile)
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4113 for (int i = 0; i < total; ++i)
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4117 if (!per_cu->v.quick->compunit_symtab)
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4124 /* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4130 dw2_dump (struct objfile *objfile)
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4148 dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4157 /* Note: It doesn't matter what we pass for block_index here. */
4158 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4161 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4162 dw2_instantiate_symtab (per_cu, false);
4167 dw2_expand_all_symtabs (struct objfile *objfile)
4169 struct dwarf2_per_objfile *dwarf2_per_objfile
4170 = get_dwarf2_per_objfile (objfile);
4171 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4172 + dwarf2_per_objfile->all_type_units.size ());
4174 for (int i = 0; i < total_units; ++i)
4176 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4178 /* We don't want to directly expand a partial CU, because if we
4179 read it with the wrong language, then assertion failures can
4180 be triggered later on. See PR symtab/23010. So, tell
4181 dw2_instantiate_symtab to skip partial CUs -- any important
4182 partial CU will be read via DW_TAG_imported_unit anyway. */
4183 dw2_instantiate_symtab (per_cu, true);
4188 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4189 const char *fullname)
4191 struct dwarf2_per_objfile *dwarf2_per_objfile
4192 = get_dwarf2_per_objfile (objfile);
4194 /* We don't need to consider type units here.
4195 This is only called for examining code, e.g. expand_line_sal.
4196 There can be an order of magnitude (or more) more type units
4197 than comp units, and we avoid them if we can. */
4199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4201 /* We only need to look at symtabs not already expanded. */
4202 if (per_cu->v.quick->compunit_symtab)
4205 quick_file_names *file_data = dw2_get_file_names (per_cu);
4206 if (file_data == NULL)
4209 for (int j = 0; j < file_data->num_file_names; ++j)
4211 const char *this_fullname = file_data->file_names[j];
4213 if (filename_cmp (this_fullname, fullname) == 0)
4215 dw2_instantiate_symtab (per_cu, false);
4223 dw2_map_matching_symbols (struct objfile *objfile,
4224 const char * name, domain_enum domain,
4226 int (*callback) (const struct block *,
4227 struct symbol *, void *),
4228 void *data, symbol_name_match_type match,
4229 symbol_compare_ftype *ordered_compare)
4231 /* Currently unimplemented; used for Ada. The function can be called if the
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
4236 /* Symbol name matcher for .gdb_index names.
4238 Symbol names in .gdb_index have a few particularities:
4240 - There's no indication of which is the language of each symbol.
4242 Since each language has its own symbol name matching algorithm,
4243 and we don't know which language is the right one, we must match
4244 each symbol against all languages. This would be a potential
4245 performance problem if it were not mitigated by the
4246 mapped_index::name_components lookup table, which significantly
4247 reduces the number of times we need to call into this matcher,
4248 making it a non-issue.
4250 - Symbol names in the index have no overload (parameter)
4251 information. I.e., in C++, "foo(int)" and "foo(long)" both
4252 appear as "foo" in the index, for example.
4254 This means that the lookup names passed to the symbol name
4255 matcher functions must have no parameter information either
4256 because (e.g.) symbol search name "foo" does not match
4257 lookup-name "foo(int)" [while swapping search name for lookup
4260 class gdb_index_symbol_name_matcher
4263 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4264 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4266 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4267 Returns true if any matcher matches. */
4268 bool matches (const char *symbol_name);
4271 /* A reference to the lookup name we're matching against. */
4272 const lookup_name_info &m_lookup_name;
4274 /* A vector holding all the different symbol name matchers, for all
4276 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4279 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4280 (const lookup_name_info &lookup_name)
4281 : m_lookup_name (lookup_name)
4283 /* Prepare the vector of comparison functions upfront, to avoid
4284 doing the same work for each symbol. Care is taken to avoid
4285 matching with the same matcher more than once if/when multiple
4286 languages use the same matcher function. */
4287 auto &matchers = m_symbol_name_matcher_funcs;
4288 matchers.reserve (nr_languages);
4290 matchers.push_back (default_symbol_name_matcher);
4292 for (int i = 0; i < nr_languages; i++)
4294 const language_defn *lang = language_def ((enum language) i);
4295 symbol_name_matcher_ftype *name_matcher
4296 = get_symbol_name_matcher (lang, m_lookup_name);
4298 /* Don't insert the same comparison routine more than once.
4299 Note that we do this linear walk instead of a seemingly
4300 cheaper sorted insert, or use a std::set or something like
4301 that, because relative order of function addresses is not
4302 stable. This is not a problem in practice because the number
4303 of supported languages is low, and the cost here is tiny
4304 compared to the number of searches we'll do afterwards using
4306 if (name_matcher != default_symbol_name_matcher
4307 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4308 == matchers.end ()))
4309 matchers.push_back (name_matcher);
4314 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4316 for (auto matches_name : m_symbol_name_matcher_funcs)
4317 if (matches_name (symbol_name, m_lookup_name, NULL))
4323 /* Starting from a search name, return the string that finds the upper
4324 bound of all strings that start with SEARCH_NAME in a sorted name
4325 list. Returns the empty string to indicate that the upper bound is
4326 the end of the list. */
4329 make_sort_after_prefix_name (const char *search_name)
4331 /* When looking to complete "func", we find the upper bound of all
4332 symbols that start with "func" by looking for where we'd insert
4333 the closest string that would follow "func" in lexicographical
4334 order. Usually, that's "func"-with-last-character-incremented,
4335 i.e. "fund". Mind non-ASCII characters, though. Usually those
4336 will be UTF-8 multi-byte sequences, but we can't be certain.
4337 Especially mind the 0xff character, which is a valid character in
4338 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4339 rule out compilers allowing it in identifiers. Note that
4340 conveniently, strcmp/strcasecmp are specified to compare
4341 characters interpreted as unsigned char. So what we do is treat
4342 the whole string as a base 256 number composed of a sequence of
4343 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4344 to 0, and carries 1 to the following more-significant position.
4345 If the very first character in SEARCH_NAME ends up incremented
4346 and carries/overflows, then the upper bound is the end of the
4347 list. The string after the empty string is also the empty
4350 Some examples of this operation:
4352 SEARCH_NAME => "+1" RESULT
4356 "\xff" "a" "\xff" => "\xff" "b"
4361 Then, with these symbols for example:
4367 completing "func" looks for symbols between "func" and
4368 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4369 which finds "func" and "func1", but not "fund".
4373 funcÿ (Latin1 'ÿ' [0xff])
4377 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4378 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4382 ÿÿ (Latin1 'ÿ' [0xff])
4385 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4386 the end of the list.
4388 std::string after = search_name;
4389 while (!after.empty () && (unsigned char) after.back () == 0xff)
4391 if (!after.empty ())
4392 after.back () = (unsigned char) after.back () + 1;
4396 /* See declaration. */
4398 std::pair<std::vector<name_component>::const_iterator,
4399 std::vector<name_component>::const_iterator>
4400 mapped_index_base::find_name_components_bounds
4401 (const lookup_name_info &lookup_name_without_params) const
4404 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4407 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4409 /* Comparison function object for lower_bound that matches against a
4410 given symbol name. */
4411 auto lookup_compare_lower = [&] (const name_component &elem,
4414 const char *elem_qualified = this->symbol_name_at (elem.idx);
4415 const char *elem_name = elem_qualified + elem.name_offset;
4416 return name_cmp (elem_name, name) < 0;
4419 /* Comparison function object for upper_bound that matches against a
4420 given symbol name. */
4421 auto lookup_compare_upper = [&] (const char *name,
4422 const name_component &elem)
4424 const char *elem_qualified = this->symbol_name_at (elem.idx);
4425 const char *elem_name = elem_qualified + elem.name_offset;
4426 return name_cmp (name, elem_name) < 0;
4429 auto begin = this->name_components.begin ();
4430 auto end = this->name_components.end ();
4432 /* Find the lower bound. */
4435 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4438 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4441 /* Find the upper bound. */
4444 if (lookup_name_without_params.completion_mode ())
4446 /* In completion mode, we want UPPER to point past all
4447 symbols names that have the same prefix. I.e., with
4448 these symbols, and completing "func":
4450 function << lower bound
4452 other_function << upper bound
4454 We find the upper bound by looking for the insertion
4455 point of "func"-with-last-character-incremented,
4457 std::string after = make_sort_after_prefix_name (cplus);
4460 return std::lower_bound (lower, end, after.c_str (),
4461 lookup_compare_lower);
4464 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4467 return {lower, upper};
4470 /* See declaration. */
4473 mapped_index_base::build_name_components ()
4475 if (!this->name_components.empty ())
4478 this->name_components_casing = case_sensitivity;
4480 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4482 /* The code below only knows how to break apart components of C++
4483 symbol names (and other languages that use '::' as
4484 namespace/module separator). If we add support for wild matching
4485 to some language that uses some other operator (E.g., Ada, Go and
4486 D use '.'), then we'll need to try splitting the symbol name
4487 according to that language too. Note that Ada does support wild
4488 matching, but doesn't currently support .gdb_index. */
4489 auto count = this->symbol_name_count ();
4490 for (offset_type idx = 0; idx < count; idx++)
4492 if (this->symbol_name_slot_invalid (idx))
4495 const char *name = this->symbol_name_at (idx);
4497 /* Add each name component to the name component table. */
4498 unsigned int previous_len = 0;
4499 for (unsigned int current_len = cp_find_first_component (name);
4500 name[current_len] != '\0';
4501 current_len += cp_find_first_component (name + current_len))
4503 gdb_assert (name[current_len] == ':');
4504 this->name_components.push_back ({previous_len, idx});
4505 /* Skip the '::'. */
4507 previous_len = current_len;
4509 this->name_components.push_back ({previous_len, idx});
4512 /* Sort name_components elements by name. */
4513 auto name_comp_compare = [&] (const name_component &left,
4514 const name_component &right)
4516 const char *left_qualified = this->symbol_name_at (left.idx);
4517 const char *right_qualified = this->symbol_name_at (right.idx);
4519 const char *left_name = left_qualified + left.name_offset;
4520 const char *right_name = right_qualified + right.name_offset;
4522 return name_cmp (left_name, right_name) < 0;
4525 std::sort (this->name_components.begin (),
4526 this->name_components.end (),
4530 /* Helper for dw2_expand_symtabs_matching that works with a
4531 mapped_index_base instead of the containing objfile. This is split
4532 to a separate function in order to be able to unit test the
4533 name_components matching using a mock mapped_index_base. For each
4534 symbol name that matches, calls MATCH_CALLBACK, passing it the
4535 symbol's index in the mapped_index_base symbol table. */
4538 dw2_expand_symtabs_matching_symbol
4539 (mapped_index_base &index,
4540 const lookup_name_info &lookup_name_in,
4541 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4542 enum search_domain kind,
4543 gdb::function_view<void (offset_type)> match_callback)
4545 lookup_name_info lookup_name_without_params
4546 = lookup_name_in.make_ignore_params ();
4547 gdb_index_symbol_name_matcher lookup_name_matcher
4548 (lookup_name_without_params);
4550 /* Build the symbol name component sorted vector, if we haven't
4552 index.build_name_components ();
4554 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4556 /* Now for each symbol name in range, check to see if we have a name
4557 match, and if so, call the MATCH_CALLBACK callback. */
4559 /* The same symbol may appear more than once in the range though.
4560 E.g., if we're looking for symbols that complete "w", and we have
4561 a symbol named "w1::w2", we'll find the two name components for
4562 that same symbol in the range. To be sure we only call the
4563 callback once per symbol, we first collect the symbol name
4564 indexes that matched in a temporary vector and ignore
4566 std::vector<offset_type> matches;
4567 matches.reserve (std::distance (bounds.first, bounds.second));
4569 for (; bounds.first != bounds.second; ++bounds.first)
4571 const char *qualified = index.symbol_name_at (bounds.first->idx);
4573 if (!lookup_name_matcher.matches (qualified)
4574 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4577 matches.push_back (bounds.first->idx);
4580 std::sort (matches.begin (), matches.end ());
4582 /* Finally call the callback, once per match. */
4584 for (offset_type idx : matches)
4588 match_callback (idx);
4593 /* Above we use a type wider than idx's for 'prev', since 0 and
4594 (offset_type)-1 are both possible values. */
4595 static_assert (sizeof (prev) > sizeof (offset_type), "");
4600 namespace selftests { namespace dw2_expand_symtabs_matching {
4602 /* A mock .gdb_index/.debug_names-like name index table, enough to
4603 exercise dw2_expand_symtabs_matching_symbol, which works with the
4604 mapped_index_base interface. Builds an index from the symbol list
4605 passed as parameter to the constructor. */
4606 class mock_mapped_index : public mapped_index_base
4609 mock_mapped_index (gdb::array_view<const char *> symbols)
4610 : m_symbol_table (symbols)
4613 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4615 /* Return the number of names in the symbol table. */
4616 size_t symbol_name_count () const override
4618 return m_symbol_table.size ();
4621 /* Get the name of the symbol at IDX in the symbol table. */
4622 const char *symbol_name_at (offset_type idx) const override
4624 return m_symbol_table[idx];
4628 gdb::array_view<const char *> m_symbol_table;
4631 /* Convenience function that converts a NULL pointer to a "<null>"
4632 string, to pass to print routines. */
4635 string_or_null (const char *str)
4637 return str != NULL ? str : "<null>";
4640 /* Check if a lookup_name_info built from
4641 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4642 index. EXPECTED_LIST is the list of expected matches, in expected
4643 matching order. If no match expected, then an empty list is
4644 specified. Returns true on success. On failure prints a warning
4645 indicating the file:line that failed, and returns false. */
4648 check_match (const char *file, int line,
4649 mock_mapped_index &mock_index,
4650 const char *name, symbol_name_match_type match_type,
4651 bool completion_mode,
4652 std::initializer_list<const char *> expected_list)
4654 lookup_name_info lookup_name (name, match_type, completion_mode);
4656 bool matched = true;
4658 auto mismatch = [&] (const char *expected_str,
4661 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4662 "expected=\"%s\", got=\"%s\"\n"),
4664 (match_type == symbol_name_match_type::FULL
4666 name, string_or_null (expected_str), string_or_null (got));
4670 auto expected_it = expected_list.begin ();
4671 auto expected_end = expected_list.end ();
4673 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4675 [&] (offset_type idx)
4677 const char *matched_name = mock_index.symbol_name_at (idx);
4678 const char *expected_str
4679 = expected_it == expected_end ? NULL : *expected_it++;
4681 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4682 mismatch (expected_str, matched_name);
4685 const char *expected_str
4686 = expected_it == expected_end ? NULL : *expected_it++;
4687 if (expected_str != NULL)
4688 mismatch (expected_str, NULL);
4693 /* The symbols added to the mock mapped_index for testing (in
4695 static const char *test_symbols[] = {
4704 "ns2::tmpl<int>::foo2",
4705 "(anonymous namespace)::A::B::C",
4707 /* These are used to check that the increment-last-char in the
4708 matching algorithm for completion doesn't match "t1_fund" when
4709 completing "t1_func". */
4715 /* A UTF-8 name with multi-byte sequences to make sure that
4716 cp-name-parser understands this as a single identifier ("função"
4717 is "function" in PT). */
4720 /* \377 (0xff) is Latin1 'ÿ'. */
4723 /* \377 (0xff) is Latin1 'ÿ'. */
4727 /* A name with all sorts of complications. Starts with "z" to make
4728 it easier for the completion tests below. */
4729 #define Z_SYM_NAME \
4730 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4731 "::tuple<(anonymous namespace)::ui*, " \
4732 "std::default_delete<(anonymous namespace)::ui>, void>"
4737 /* Returns true if the mapped_index_base::find_name_component_bounds
4738 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4739 in completion mode. */
4742 check_find_bounds_finds (mapped_index_base &index,
4743 const char *search_name,
4744 gdb::array_view<const char *> expected_syms)
4746 lookup_name_info lookup_name (search_name,
4747 symbol_name_match_type::FULL, true);
4749 auto bounds = index.find_name_components_bounds (lookup_name);
4751 size_t distance = std::distance (bounds.first, bounds.second);
4752 if (distance != expected_syms.size ())
4755 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4757 auto nc_elem = bounds.first + exp_elem;
4758 const char *qualified = index.symbol_name_at (nc_elem->idx);
4759 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4766 /* Test the lower-level mapped_index::find_name_component_bounds
4770 test_mapped_index_find_name_component_bounds ()
4772 mock_mapped_index mock_index (test_symbols);
4774 mock_index.build_name_components ();
4776 /* Test the lower-level mapped_index::find_name_component_bounds
4777 method in completion mode. */
4779 static const char *expected_syms[] = {
4784 SELF_CHECK (check_find_bounds_finds (mock_index,
4785 "t1_func", expected_syms));
4788 /* Check that the increment-last-char in the name matching algorithm
4789 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4791 static const char *expected_syms1[] = {
4795 SELF_CHECK (check_find_bounds_finds (mock_index,
4796 "\377", expected_syms1));
4798 static const char *expected_syms2[] = {
4801 SELF_CHECK (check_find_bounds_finds (mock_index,
4802 "\377\377", expected_syms2));
4806 /* Test dw2_expand_symtabs_matching_symbol. */
4809 test_dw2_expand_symtabs_matching_symbol ()
4811 mock_mapped_index mock_index (test_symbols);
4813 /* We let all tests run until the end even if some fails, for debug
4815 bool any_mismatch = false;
4817 /* Create the expected symbols list (an initializer_list). Needed
4818 because lists have commas, and we need to pass them to CHECK,
4819 which is a macro. */
4820 #define EXPECT(...) { __VA_ARGS__ }
4822 /* Wrapper for check_match that passes down the current
4823 __FILE__/__LINE__. */
4824 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4825 any_mismatch |= !check_match (__FILE__, __LINE__, \
4827 NAME, MATCH_TYPE, COMPLETION_MODE, \
4830 /* Identity checks. */
4831 for (const char *sym : test_symbols)
4833 /* Should be able to match all existing symbols. */
4834 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4837 /* Should be able to match all existing symbols with
4839 std::string with_params = std::string (sym) + "(int)";
4840 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4843 /* Should be able to match all existing symbols with
4844 parameters and qualifiers. */
4845 with_params = std::string (sym) + " ( int ) const";
4846 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4849 /* This should really find sym, but cp-name-parser.y doesn't
4850 know about lvalue/rvalue qualifiers yet. */
4851 with_params = std::string (sym) + " ( int ) &&";
4852 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4856 /* Check that the name matching algorithm for completion doesn't get
4857 confused with Latin1 'ÿ' / 0xff. */
4859 static const char str[] = "\377";
4860 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4861 EXPECT ("\377", "\377\377123"));
4864 /* Check that the increment-last-char in the matching algorithm for
4865 completion doesn't match "t1_fund" when completing "t1_func". */
4867 static const char str[] = "t1_func";
4868 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4869 EXPECT ("t1_func", "t1_func1"));
4872 /* Check that completion mode works at each prefix of the expected
4875 static const char str[] = "function(int)";
4876 size_t len = strlen (str);
4879 for (size_t i = 1; i < len; i++)
4881 lookup.assign (str, i);
4882 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4883 EXPECT ("function"));
4887 /* While "w" is a prefix of both components, the match function
4888 should still only be called once. */
4890 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4892 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4896 /* Same, with a "complicated" symbol. */
4898 static const char str[] = Z_SYM_NAME;
4899 size_t len = strlen (str);
4902 for (size_t i = 1; i < len; i++)
4904 lookup.assign (str, i);
4905 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4906 EXPECT (Z_SYM_NAME));
4910 /* In FULL mode, an incomplete symbol doesn't match. */
4912 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4916 /* A complete symbol with parameters matches any overload, since the
4917 index has no overload info. */
4919 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4920 EXPECT ("std::zfunction", "std::zfunction2"));
4921 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4922 EXPECT ("std::zfunction", "std::zfunction2"));
4923 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4927 /* Check that whitespace is ignored appropriately. A symbol with a
4928 template argument list. */
4930 static const char expected[] = "ns::foo<int>";
4931 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4933 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4937 /* Check that whitespace is ignored appropriately. A symbol with a
4938 template argument list that includes a pointer. */
4940 static const char expected[] = "ns::foo<char*>";
4941 /* Try both completion and non-completion modes. */
4942 static const bool completion_mode[2] = {false, true};
4943 for (size_t i = 0; i < 2; i++)
4945 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4946 completion_mode[i], EXPECT (expected));
4947 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4948 completion_mode[i], EXPECT (expected));
4950 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4958 /* Check method qualifiers are ignored. */
4959 static const char expected[] = "ns::foo<char*>";
4960 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4961 symbol_name_match_type::FULL, true, EXPECT (expected));
4962 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4963 symbol_name_match_type::FULL, true, EXPECT (expected));
4964 CHECK_MATCH ("foo < char * > ( int ) const",
4965 symbol_name_match_type::WILD, true, EXPECT (expected));
4966 CHECK_MATCH ("foo < char * > ( int ) &&",
4967 symbol_name_match_type::WILD, true, EXPECT (expected));
4970 /* Test lookup names that don't match anything. */
4972 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4975 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4979 /* Some wild matching tests, exercising "(anonymous namespace)",
4980 which should not be confused with a parameter list. */
4982 static const char *syms[] = {
4986 "A :: B :: C ( int )",
4991 for (const char *s : syms)
4993 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4994 EXPECT ("(anonymous namespace)::A::B::C"));
4999 static const char expected[] = "ns2::tmpl<int>::foo2";
5000 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5002 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5006 SELF_CHECK (!any_mismatch);
5015 test_mapped_index_find_name_component_bounds ();
5016 test_dw2_expand_symtabs_matching_symbol ();
5019 }} // namespace selftests::dw2_expand_symtabs_matching
5021 #endif /* GDB_SELF_TEST */
5023 /* If FILE_MATCHER is NULL or if PER_CU has
5024 dwarf2_per_cu_quick_data::MARK set (see
5025 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5026 EXPANSION_NOTIFY on it. */
5029 dw2_expand_symtabs_matching_one
5030 (struct dwarf2_per_cu_data *per_cu,
5031 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5032 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5034 if (file_matcher == NULL || per_cu->v.quick->mark)
5036 bool symtab_was_null
5037 = (per_cu->v.quick->compunit_symtab == NULL);
5039 dw2_instantiate_symtab (per_cu, false);
5041 if (expansion_notify != NULL
5043 && per_cu->v.quick->compunit_symtab != NULL)
5044 expansion_notify (per_cu->v.quick->compunit_symtab);
5048 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5049 matched, to expand corresponding CUs that were marked. IDX is the
5050 index of the symbol name that matched. */
5053 dw2_expand_marked_cus
5054 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5055 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5056 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5059 offset_type *vec, vec_len, vec_idx;
5060 bool global_seen = false;
5061 mapped_index &index = *dwarf2_per_objfile->index_table;
5063 vec = (offset_type *) (index.constant_pool
5064 + MAYBE_SWAP (index.symbol_table[idx].vec));
5065 vec_len = MAYBE_SWAP (vec[0]);
5066 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5068 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5069 /* This value is only valid for index versions >= 7. */
5070 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5071 gdb_index_symbol_kind symbol_kind =
5072 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5073 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5074 /* Only check the symbol attributes if they're present.
5075 Indices prior to version 7 don't record them,
5076 and indices >= 7 may elide them for certain symbols
5077 (gold does this). */
5080 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5082 /* Work around gold/15646. */
5085 if (!is_static && global_seen)
5091 /* Only check the symbol's kind if it has one. */
5096 case VARIABLES_DOMAIN:
5097 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5100 case FUNCTIONS_DOMAIN:
5101 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5105 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5113 /* Don't crash on bad data. */
5114 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5115 + dwarf2_per_objfile->all_type_units.size ()))
5117 complaint (_(".gdb_index entry has bad CU index"
5119 objfile_name (dwarf2_per_objfile->objfile));
5123 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5124 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5129 /* If FILE_MATCHER is non-NULL, set all the
5130 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5131 that match FILE_MATCHER. */
5134 dw_expand_symtabs_matching_file_matcher
5135 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5136 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5138 if (file_matcher == NULL)
5141 objfile *const objfile = dwarf2_per_objfile->objfile;
5143 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5145 NULL, xcalloc, xfree));
5146 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5148 NULL, xcalloc, xfree));
5150 /* The rule is CUs specify all the files, including those used by
5151 any TU, so there's no need to scan TUs here. */
5153 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5157 per_cu->v.quick->mark = 0;
5159 /* We only need to look at symtabs not already expanded. */
5160 if (per_cu->v.quick->compunit_symtab)
5163 quick_file_names *file_data = dw2_get_file_names (per_cu);
5164 if (file_data == NULL)
5167 if (htab_find (visited_not_found.get (), file_data) != NULL)
5169 else if (htab_find (visited_found.get (), file_data) != NULL)
5171 per_cu->v.quick->mark = 1;
5175 for (int j = 0; j < file_data->num_file_names; ++j)
5177 const char *this_real_name;
5179 if (file_matcher (file_data->file_names[j], false))
5181 per_cu->v.quick->mark = 1;
5185 /* Before we invoke realpath, which can get expensive when many
5186 files are involved, do a quick comparison of the basenames. */
5187 if (!basenames_may_differ
5188 && !file_matcher (lbasename (file_data->file_names[j]),
5192 this_real_name = dw2_get_real_path (objfile, file_data, j);
5193 if (file_matcher (this_real_name, false))
5195 per_cu->v.quick->mark = 1;
5200 void **slot = htab_find_slot (per_cu->v.quick->mark
5201 ? visited_found.get ()
5202 : visited_not_found.get (),
5209 dw2_expand_symtabs_matching
5210 (struct objfile *objfile,
5211 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5212 const lookup_name_info &lookup_name,
5213 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5215 enum search_domain kind)
5217 struct dwarf2_per_objfile *dwarf2_per_objfile
5218 = get_dwarf2_per_objfile (objfile);
5220 /* index_table is NULL if OBJF_READNOW. */
5221 if (!dwarf2_per_objfile->index_table)
5224 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5226 mapped_index &index = *dwarf2_per_objfile->index_table;
5228 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5230 kind, [&] (offset_type idx)
5232 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5233 expansion_notify, kind);
5237 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5240 static struct compunit_symtab *
5241 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5246 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5247 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5250 if (cust->includes == NULL)
5253 for (i = 0; cust->includes[i]; ++i)
5255 struct compunit_symtab *s = cust->includes[i];
5257 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5265 static struct compunit_symtab *
5266 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5267 struct bound_minimal_symbol msymbol,
5269 struct obj_section *section,
5272 struct dwarf2_per_cu_data *data;
5273 struct compunit_symtab *result;
5275 if (!objfile->partial_symtabs->psymtabs_addrmap)
5278 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5279 SECT_OFF_TEXT (objfile));
5280 data = (struct dwarf2_per_cu_data *) addrmap_find
5281 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5285 if (warn_if_readin && data->v.quick->compunit_symtab)
5286 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5287 paddress (get_objfile_arch (objfile), pc));
5290 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5293 gdb_assert (result != NULL);
5298 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5299 void *data, int need_fullname)
5301 struct dwarf2_per_objfile *dwarf2_per_objfile
5302 = get_dwarf2_per_objfile (objfile);
5304 if (!dwarf2_per_objfile->filenames_cache)
5306 dwarf2_per_objfile->filenames_cache.emplace ();
5308 htab_up visited (htab_create_alloc (10,
5309 htab_hash_pointer, htab_eq_pointer,
5310 NULL, xcalloc, xfree));
5312 /* The rule is CUs specify all the files, including those used
5313 by any TU, so there's no need to scan TUs here. We can
5314 ignore file names coming from already-expanded CUs. */
5316 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5318 if (per_cu->v.quick->compunit_symtab)
5320 void **slot = htab_find_slot (visited.get (),
5321 per_cu->v.quick->file_names,
5324 *slot = per_cu->v.quick->file_names;
5328 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5330 /* We only need to look at symtabs not already expanded. */
5331 if (per_cu->v.quick->compunit_symtab)
5334 quick_file_names *file_data = dw2_get_file_names (per_cu);
5335 if (file_data == NULL)
5338 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5341 /* Already visited. */
5346 for (int j = 0; j < file_data->num_file_names; ++j)
5348 const char *filename = file_data->file_names[j];
5349 dwarf2_per_objfile->filenames_cache->seen (filename);
5354 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5356 gdb::unique_xmalloc_ptr<char> this_real_name;
5359 this_real_name = gdb_realpath (filename);
5360 (*fun) (filename, this_real_name.get (), data);
5365 dw2_has_symbols (struct objfile *objfile)
5370 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5373 dw2_find_last_source_symtab,
5374 dw2_forget_cached_source_info,
5375 dw2_map_symtabs_matching_filename,
5379 dw2_expand_symtabs_for_function,
5380 dw2_expand_all_symtabs,
5381 dw2_expand_symtabs_with_fullname,
5382 dw2_map_matching_symbols,
5383 dw2_expand_symtabs_matching,
5384 dw2_find_pc_sect_compunit_symtab,
5386 dw2_map_symbol_filenames
5389 /* DWARF-5 debug_names reader. */
5391 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5392 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5394 /* A helper function that reads the .debug_names section in SECTION
5395 and fills in MAP. FILENAME is the name of the file containing the
5396 section; it is used for error reporting.
5398 Returns true if all went well, false otherwise. */
5401 read_debug_names_from_section (struct objfile *objfile,
5402 const char *filename,
5403 struct dwarf2_section_info *section,
5404 mapped_debug_names &map)
5406 if (dwarf2_section_empty_p (section))
5409 /* Older elfutils strip versions could keep the section in the main
5410 executable while splitting it for the separate debug info file. */
5411 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5414 dwarf2_read_section (objfile, section);
5416 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5418 const gdb_byte *addr = section->buffer;
5420 bfd *const abfd = get_section_bfd_owner (section);
5422 unsigned int bytes_read;
5423 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5426 map.dwarf5_is_dwarf64 = bytes_read != 4;
5427 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5428 if (bytes_read + length != section->size)
5430 /* There may be multiple per-CU indices. */
5431 warning (_("Section .debug_names in %s length %s does not match "
5432 "section length %s, ignoring .debug_names."),
5433 filename, plongest (bytes_read + length),
5434 pulongest (section->size));
5438 /* The version number. */
5439 uint16_t version = read_2_bytes (abfd, addr);
5443 warning (_("Section .debug_names in %s has unsupported version %d, "
5444 "ignoring .debug_names."),
5450 uint16_t padding = read_2_bytes (abfd, addr);
5454 warning (_("Section .debug_names in %s has unsupported padding %d, "
5455 "ignoring .debug_names."),
5460 /* comp_unit_count - The number of CUs in the CU list. */
5461 map.cu_count = read_4_bytes (abfd, addr);
5464 /* local_type_unit_count - The number of TUs in the local TU
5466 map.tu_count = read_4_bytes (abfd, addr);
5469 /* foreign_type_unit_count - The number of TUs in the foreign TU
5471 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5473 if (foreign_tu_count != 0)
5475 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5476 "ignoring .debug_names."),
5477 filename, static_cast<unsigned long> (foreign_tu_count));
5481 /* bucket_count - The number of hash buckets in the hash lookup
5483 map.bucket_count = read_4_bytes (abfd, addr);
5486 /* name_count - The number of unique names in the index. */
5487 map.name_count = read_4_bytes (abfd, addr);
5490 /* abbrev_table_size - The size in bytes of the abbreviations
5492 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5495 /* augmentation_string_size - The size in bytes of the augmentation
5496 string. This value is rounded up to a multiple of 4. */
5497 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5499 map.augmentation_is_gdb = ((augmentation_string_size
5500 == sizeof (dwarf5_augmentation))
5501 && memcmp (addr, dwarf5_augmentation,
5502 sizeof (dwarf5_augmentation)) == 0);
5503 augmentation_string_size += (-augmentation_string_size) & 3;
5504 addr += augmentation_string_size;
5507 map.cu_table_reordered = addr;
5508 addr += map.cu_count * map.offset_size;
5510 /* List of Local TUs */
5511 map.tu_table_reordered = addr;
5512 addr += map.tu_count * map.offset_size;
5514 /* Hash Lookup Table */
5515 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5516 addr += map.bucket_count * 4;
5517 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5518 addr += map.name_count * 4;
5521 map.name_table_string_offs_reordered = addr;
5522 addr += map.name_count * map.offset_size;
5523 map.name_table_entry_offs_reordered = addr;
5524 addr += map.name_count * map.offset_size;
5526 const gdb_byte *abbrev_table_start = addr;
5529 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5534 const auto insertpair
5535 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5536 if (!insertpair.second)
5538 warning (_("Section .debug_names in %s has duplicate index %s, "
5539 "ignoring .debug_names."),
5540 filename, pulongest (index_num));
5543 mapped_debug_names::index_val &indexval = insertpair.first->second;
5544 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5549 mapped_debug_names::index_val::attr attr;
5550 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5552 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5554 if (attr.form == DW_FORM_implicit_const)
5556 attr.implicit_const = read_signed_leb128 (abfd, addr,
5560 if (attr.dw_idx == 0 && attr.form == 0)
5562 indexval.attr_vec.push_back (std::move (attr));
5565 if (addr != abbrev_table_start + abbrev_table_size)
5567 warning (_("Section .debug_names in %s has abbreviation_table "
5568 "of size %zu vs. written as %u, ignoring .debug_names."),
5569 filename, addr - abbrev_table_start, abbrev_table_size);
5572 map.entry_pool = addr;
5577 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5581 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5582 const mapped_debug_names &map,
5583 dwarf2_section_info §ion,
5586 sect_offset sect_off_prev;
5587 for (uint32_t i = 0; i <= map.cu_count; ++i)
5589 sect_offset sect_off_next;
5590 if (i < map.cu_count)
5593 = (sect_offset) (extract_unsigned_integer
5594 (map.cu_table_reordered + i * map.offset_size,
5596 map.dwarf5_byte_order));
5599 sect_off_next = (sect_offset) section.size;
5602 const ULONGEST length = sect_off_next - sect_off_prev;
5603 dwarf2_per_cu_data *per_cu
5604 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5605 sect_off_prev, length);
5606 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5608 sect_off_prev = sect_off_next;
5612 /* Read the CU list from the mapped index, and use it to create all
5613 the CU objects for this dwarf2_per_objfile. */
5616 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5617 const mapped_debug_names &map,
5618 const mapped_debug_names &dwz_map)
5620 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5621 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5623 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5624 dwarf2_per_objfile->info,
5625 false /* is_dwz */);
5627 if (dwz_map.cu_count == 0)
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5635 /* Read .debug_names. If everything went ok, initialize the "quick"
5636 elements of all the CUs and return true. Otherwise, return false. */
5639 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5641 std::unique_ptr<mapped_debug_names> map
5642 (new mapped_debug_names (dwarf2_per_objfile));
5643 mapped_debug_names dwz_map (dwarf2_per_objfile);
5644 struct objfile *objfile = dwarf2_per_objfile->objfile;
5646 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5647 &dwarf2_per_objfile->debug_names,
5651 /* Don't use the index if it's empty. */
5652 if (map->name_count == 0)
5655 /* If there is a .dwz file, read it so we can get its CU list as
5657 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5660 if (!read_debug_names_from_section (objfile,
5661 bfd_get_filename (dwz->dwz_bfd),
5662 &dwz->debug_names, dwz_map))
5664 warning (_("could not read '.debug_names' section from %s; skipping"),
5665 bfd_get_filename (dwz->dwz_bfd));
5670 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5672 if (map->tu_count != 0)
5674 /* We can only handle a single .debug_types when we have an
5676 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5679 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5680 dwarf2_per_objfile->types, 0);
5682 create_signatured_type_table_from_debug_names
5683 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5686 create_addrmap_from_aranges (dwarf2_per_objfile,
5687 &dwarf2_per_objfile->debug_aranges);
5689 dwarf2_per_objfile->debug_names_table = std::move (map);
5690 dwarf2_per_objfile->using_index = 1;
5691 dwarf2_per_objfile->quick_file_names_table =
5692 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5697 /* Type used to manage iterating over all CUs looking for a symbol for
5700 class dw2_debug_names_iterator
5703 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5704 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5705 dw2_debug_names_iterator (const mapped_debug_names &map,
5706 bool want_specific_block,
5707 block_enum block_index, domain_enum domain,
5709 : m_map (map), m_want_specific_block (want_specific_block),
5710 m_block_index (block_index), m_domain (domain),
5711 m_addr (find_vec_in_debug_names (map, name))
5714 dw2_debug_names_iterator (const mapped_debug_names &map,
5715 search_domain search, uint32_t namei)
5718 m_addr (find_vec_in_debug_names (map, namei))
5721 /* Return the next matching CU or NULL if there are no more. */
5722 dwarf2_per_cu_data *next ();
5725 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5727 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5730 /* The internalized form of .debug_names. */
5731 const mapped_debug_names &m_map;
5733 /* If true, only look for symbols that match BLOCK_INDEX. */
5734 const bool m_want_specific_block = false;
5736 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5737 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5739 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5741 /* The kind of symbol we're looking for. */
5742 const domain_enum m_domain = UNDEF_DOMAIN;
5743 const search_domain m_search = ALL_DOMAIN;
5745 /* The list of CUs from the index entry of the symbol, or NULL if
5747 const gdb_byte *m_addr;
5751 mapped_debug_names::namei_to_name (uint32_t namei) const
5753 const ULONGEST namei_string_offs
5754 = extract_unsigned_integer ((name_table_string_offs_reordered
5755 + namei * offset_size),
5758 return read_indirect_string_at_offset
5759 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5762 /* Find a slot in .debug_names for the object named NAME. If NAME is
5763 found, return pointer to its pool data. If NAME cannot be found,
5767 dw2_debug_names_iterator::find_vec_in_debug_names
5768 (const mapped_debug_names &map, const char *name)
5770 int (*cmp) (const char *, const char *);
5772 if (current_language->la_language == language_cplus
5773 || current_language->la_language == language_fortran
5774 || current_language->la_language == language_d)
5776 /* NAME is already canonical. Drop any qualifiers as
5777 .debug_names does not contain any. */
5779 if (strchr (name, '(') != NULL)
5781 gdb::unique_xmalloc_ptr<char> without_params
5782 = cp_remove_params (name);
5784 if (without_params != NULL)
5786 name = without_params.get();
5791 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5793 const uint32_t full_hash = dwarf5_djb_hash (name);
5795 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5796 (map.bucket_table_reordered
5797 + (full_hash % map.bucket_count)), 4,
5798 map.dwarf5_byte_order);
5802 if (namei >= map.name_count)
5804 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5806 namei, map.name_count,
5807 objfile_name (map.dwarf2_per_objfile->objfile));
5813 const uint32_t namei_full_hash
5814 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5815 (map.hash_table_reordered + namei), 4,
5816 map.dwarf5_byte_order);
5817 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5820 if (full_hash == namei_full_hash)
5822 const char *const namei_string = map.namei_to_name (namei);
5824 #if 0 /* An expensive sanity check. */
5825 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5827 complaint (_("Wrong .debug_names hash for string at index %u "
5829 namei, objfile_name (dwarf2_per_objfile->objfile));
5834 if (cmp (namei_string, name) == 0)
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5845 if (namei >= map.name_count)
5851 dw2_debug_names_iterator::find_vec_in_debug_names
5852 (const mapped_debug_names &map, uint32_t namei)
5854 if (namei >= map.name_count)
5856 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5858 namei, map.name_count,
5859 objfile_name (map.dwarf2_per_objfile->objfile));
5863 const ULONGEST namei_entry_offs
5864 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5865 + namei * map.offset_size),
5866 map.offset_size, map.dwarf5_byte_order);
5867 return map.entry_pool + namei_entry_offs;
5870 /* See dw2_debug_names_iterator. */
5872 dwarf2_per_cu_data *
5873 dw2_debug_names_iterator::next ()
5878 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5879 struct objfile *objfile = dwarf2_per_objfile->objfile;
5880 bfd *const abfd = objfile->obfd;
5884 unsigned int bytes_read;
5885 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5890 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5891 if (indexval_it == m_map.abbrev_map.cend ())
5893 complaint (_("Wrong .debug_names undefined abbrev code %s "
5895 pulongest (abbrev), objfile_name (objfile));
5898 const mapped_debug_names::index_val &indexval = indexval_it->second;
5899 bool have_is_static = false;
5901 dwarf2_per_cu_data *per_cu = NULL;
5902 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5907 case DW_FORM_implicit_const:
5908 ull = attr.implicit_const;
5910 case DW_FORM_flag_present:
5914 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5915 m_addr += bytes_read;
5918 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5919 dwarf_form_name (attr.form),
5920 objfile_name (objfile));
5923 switch (attr.dw_idx)
5925 case DW_IDX_compile_unit:
5926 /* Don't crash on bad data. */
5927 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5929 complaint (_(".debug_names entry has bad CU index %s"
5932 objfile_name (dwarf2_per_objfile->objfile));
5935 per_cu = dwarf2_per_objfile->get_cutu (ull);
5937 case DW_IDX_type_unit:
5938 /* Don't crash on bad data. */
5939 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5941 complaint (_(".debug_names entry has bad TU index %s"
5944 objfile_name (dwarf2_per_objfile->objfile));
5947 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5949 case DW_IDX_GNU_internal:
5950 if (!m_map.augmentation_is_gdb)
5952 have_is_static = true;
5955 case DW_IDX_GNU_external:
5956 if (!m_map.augmentation_is_gdb)
5958 have_is_static = true;
5964 /* Skip if already read in. */
5965 if (per_cu->v.quick->compunit_symtab)
5968 /* Check static vs global. */
5971 const bool want_static = m_block_index != GLOBAL_BLOCK;
5972 if (m_want_specific_block && want_static != is_static)
5976 /* Match dw2_symtab_iter_next, symbol_kind
5977 and debug_names::psymbol_tag. */
5981 switch (indexval.dwarf_tag)
5983 case DW_TAG_variable:
5984 case DW_TAG_subprogram:
5985 /* Some types are also in VAR_DOMAIN. */
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5994 switch (indexval.dwarf_tag)
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
6004 switch (indexval.dwarf_tag)
6007 case DW_TAG_variable:
6017 /* Match dw2_expand_symtabs_matching, symbol_kind and
6018 debug_names::psymbol_tag. */
6021 case VARIABLES_DOMAIN:
6022 switch (indexval.dwarf_tag)
6024 case DW_TAG_variable:
6030 case FUNCTIONS_DOMAIN:
6031 switch (indexval.dwarf_tag)
6033 case DW_TAG_subprogram:
6040 switch (indexval.dwarf_tag)
6042 case DW_TAG_typedef:
6043 case DW_TAG_structure_type:
6056 static struct compunit_symtab *
6057 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6058 const char *name, domain_enum domain)
6060 const block_enum block_index = static_cast<block_enum> (block_index_int);
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6064 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6067 /* index is NULL if OBJF_READNOW. */
6070 const auto &map = *mapp;
6072 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6073 block_index, domain, name);
6075 struct compunit_symtab *stab_best = NULL;
6076 struct dwarf2_per_cu_data *per_cu;
6077 while ((per_cu = iter.next ()) != NULL)
6079 struct symbol *sym, *with_opaque = NULL;
6080 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6081 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6082 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6084 sym = block_find_symbol (block, name, domain,
6085 block_find_non_opaque_type_preferred,
6088 /* Some caution must be observed with overloaded functions and
6089 methods, since the index will not contain any overload
6090 information (but NAME might contain it). */
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6095 if (with_opaque != NULL
6096 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6099 /* Keep looking through other CUs. */
6105 /* This dumps minimal information about .debug_names. It is called
6106 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6107 uses this to verify that .debug_names has been loaded. */
6110 dw2_debug_names_dump (struct objfile *objfile)
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6115 gdb_assert (dwarf2_per_objfile->using_index);
6116 printf_filtered (".debug_names:");
6117 if (dwarf2_per_objfile->debug_names_table)
6118 printf_filtered (" exists\n");
6120 printf_filtered (" faked for \"readnow\"\n");
6121 printf_filtered ("\n");
6125 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6126 const char *func_name)
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6131 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6132 if (dwarf2_per_objfile->debug_names_table)
6134 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6136 /* Note: It doesn't matter what we pass for block_index here. */
6137 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6138 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6140 struct dwarf2_per_cu_data *per_cu;
6141 while ((per_cu = iter.next ()) != NULL)
6142 dw2_instantiate_symtab (per_cu, false);
6147 dw2_debug_names_expand_symtabs_matching
6148 (struct objfile *objfile,
6149 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6150 const lookup_name_info &lookup_name,
6151 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6152 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6153 enum search_domain kind)
6155 struct dwarf2_per_objfile *dwarf2_per_objfile
6156 = get_dwarf2_per_objfile (objfile);
6158 /* debug_names_table is NULL if OBJF_READNOW. */
6159 if (!dwarf2_per_objfile->debug_names_table)
6162 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6164 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6166 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6168 kind, [&] (offset_type namei)
6170 /* The name was matched, now expand corresponding CUs that were
6172 dw2_debug_names_iterator iter (map, kind, namei);
6174 struct dwarf2_per_cu_data *per_cu;
6175 while ((per_cu = iter.next ()) != NULL)
6176 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6181 const struct quick_symbol_functions dwarf2_debug_names_functions =
6184 dw2_find_last_source_symtab,
6185 dw2_forget_cached_source_info,
6186 dw2_map_symtabs_matching_filename,
6187 dw2_debug_names_lookup_symbol,
6189 dw2_debug_names_dump,
6190 dw2_debug_names_expand_symtabs_for_function,
6191 dw2_expand_all_symtabs,
6192 dw2_expand_symtabs_with_fullname,
6193 dw2_map_matching_symbols,
6194 dw2_debug_names_expand_symtabs_matching,
6195 dw2_find_pc_sect_compunit_symtab,
6197 dw2_map_symbol_filenames
6200 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6201 to either a dwarf2_per_objfile or dwz_file object. */
6203 template <typename T>
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6207 dwarf2_section_info *section = §ion_owner->gdb_index;
6209 if (dwarf2_section_empty_p (section))
6212 /* Older elfutils strip versions could keep the section in the main
6213 executable while splitting it for the separate debug info file. */
6214 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6217 dwarf2_read_section (obj, section);
6219 /* dwarf2_section_info::size is a bfd_size_type, while
6220 gdb::array_view works with size_t. On 32-bit hosts, with
6221 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6222 is 32-bit. So we need an explicit narrowing conversion here.
6223 This is fine, because it's impossible to allocate or mmap an
6224 array/buffer larger than what size_t can represent. */
6225 return gdb::make_array_view (section->buffer, section->size);
6228 /* Lookup the index cache for the contents of the index associated to
6231 static gdb::array_view<const gdb_byte>
6232 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6234 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6235 if (build_id == nullptr)
6238 return global_index_cache.lookup_gdb_index (build_id,
6239 &dwarf2_obj->index_cache_res);
6242 /* Same as the above, but for DWZ. */
6244 static gdb::array_view<const gdb_byte>
6245 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6247 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6248 if (build_id == nullptr)
6251 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6254 /* See symfile.h. */
6257 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6259 struct dwarf2_per_objfile *dwarf2_per_objfile
6260 = get_dwarf2_per_objfile (objfile);
6262 /* If we're about to read full symbols, don't bother with the
6263 indices. In this case we also don't care if some other debug
6264 format is making psymtabs, because they are all about to be
6266 if ((objfile->flags & OBJF_READNOW))
6268 dwarf2_per_objfile->using_index = 1;
6269 create_all_comp_units (dwarf2_per_objfile);
6270 create_all_type_units (dwarf2_per_objfile);
6271 dwarf2_per_objfile->quick_file_names_table
6272 = create_quick_file_names_table
6273 (dwarf2_per_objfile->all_comp_units.size ());
6275 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6276 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6278 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6280 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6281 struct dwarf2_per_cu_quick_data);
6284 /* Return 1 so that gdb sees the "quick" functions. However,
6285 these functions will be no-ops because we will have expanded
6287 *index_kind = dw_index_kind::GDB_INDEX;
6291 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6293 *index_kind = dw_index_kind::DEBUG_NAMES;
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6299 get_gdb_index_contents_from_section<dwz_file>))
6301 *index_kind = dw_index_kind::GDB_INDEX;
6305 /* ... otherwise, try to find the index in the index cache. */
6306 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6307 get_gdb_index_contents_from_cache,
6308 get_gdb_index_contents_from_cache_dwz))
6310 global_index_cache.hit ();
6311 *index_kind = dw_index_kind::GDB_INDEX;
6315 global_index_cache.miss ();
6321 /* Build a partial symbol table. */
6324 dwarf2_build_psymtabs (struct objfile *objfile)
6326 struct dwarf2_per_objfile *dwarf2_per_objfile
6327 = get_dwarf2_per_objfile (objfile);
6329 init_psymbol_list (objfile, 1024);
6333 /* This isn't really ideal: all the data we allocate on the
6334 objfile's obstack is still uselessly kept around. However,
6335 freeing it seems unsafe. */
6336 psymtab_discarder psymtabs (objfile);
6337 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6340 /* (maybe) store an index in the cache. */
6341 global_index_cache.store (dwarf2_per_objfile);
6343 catch (const gdb_exception_error &except)
6345 exception_print (gdb_stderr, except);
6349 /* Return the total length of the CU described by HEADER. */
6352 get_cu_length (const struct comp_unit_head *header)
6354 return header->initial_length_size + header->length;
6357 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6360 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6362 sect_offset bottom = cu_header->sect_off;
6363 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6365 return sect_off >= bottom && sect_off < top;
6368 /* Find the base address of the compilation unit for range lists and
6369 location lists. It will normally be specified by DW_AT_low_pc.
6370 In DWARF-3 draft 4, the base address could be overridden by
6371 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6372 compilation units with discontinuous ranges. */
6375 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6377 struct attribute *attr;
6380 cu->base_address = 0;
6382 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6385 cu->base_address = attr_value_as_address (attr);
6390 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6393 cu->base_address = attr_value_as_address (attr);
6399 /* Read in the comp unit header information from the debug_info at info_ptr.
6400 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6401 NOTE: This leaves members offset, first_die_offset to be filled in
6404 static const gdb_byte *
6405 read_comp_unit_head (struct comp_unit_head *cu_header,
6406 const gdb_byte *info_ptr,
6407 struct dwarf2_section_info *section,
6408 rcuh_kind section_kind)
6411 unsigned int bytes_read;
6412 const char *filename = get_section_file_name (section);
6413 bfd *abfd = get_section_bfd_owner (section);
6415 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6416 cu_header->initial_length_size = bytes_read;
6417 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6418 info_ptr += bytes_read;
6419 cu_header->version = read_2_bytes (abfd, info_ptr);
6420 if (cu_header->version < 2 || cu_header->version > 5)
6421 error (_("Dwarf Error: wrong version in compilation unit header "
6422 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6423 cu_header->version, filename);
6425 if (cu_header->version < 5)
6426 switch (section_kind)
6428 case rcuh_kind::COMPILE:
6429 cu_header->unit_type = DW_UT_compile;
6431 case rcuh_kind::TYPE:
6432 cu_header->unit_type = DW_UT_type;
6435 internal_error (__FILE__, __LINE__,
6436 _("read_comp_unit_head: invalid section_kind"));
6440 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6441 (read_1_byte (abfd, info_ptr));
6443 switch (cu_header->unit_type)
6446 if (section_kind != rcuh_kind::COMPILE)
6447 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6448 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6452 section_kind = rcuh_kind::TYPE;
6455 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6456 "(is %d, should be %d or %d) [in module %s]"),
6457 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6460 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6463 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6466 info_ptr += bytes_read;
6467 if (cu_header->version < 5)
6469 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6472 signed_addr = bfd_get_sign_extend_vma (abfd);
6473 if (signed_addr < 0)
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: dwarf from non elf file"));
6476 cu_header->signed_addr_p = signed_addr;
6478 if (section_kind == rcuh_kind::TYPE)
6480 LONGEST type_offset;
6482 cu_header->signature = read_8_bytes (abfd, info_ptr);
6485 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6486 info_ptr += bytes_read;
6487 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6488 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6489 error (_("Dwarf Error: Too big type_offset in compilation unit "
6490 "header (is %s) [in module %s]"), plongest (type_offset),
6497 /* Helper function that returns the proper abbrev section for
6500 static struct dwarf2_section_info *
6501 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6503 struct dwarf2_section_info *abbrev;
6504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6506 if (this_cu->is_dwz)
6507 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6509 abbrev = &dwarf2_per_objfile->abbrev;
6514 /* Subroutine of read_and_check_comp_unit_head and
6515 read_and_check_type_unit_head to simplify them.
6516 Perform various error checking on the header. */
6519 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct comp_unit_head *header,
6521 struct dwarf2_section_info *section,
6522 struct dwarf2_section_info *abbrev_section)
6524 const char *filename = get_section_file_name (section);
6526 if (to_underlying (header->abbrev_sect_off)
6527 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6528 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6529 "(offset %s + 6) [in module %s]"),
6530 sect_offset_str (header->abbrev_sect_off),
6531 sect_offset_str (header->sect_off),
6534 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6535 avoid potential 32-bit overflow. */
6536 if (((ULONGEST) header->sect_off + get_cu_length (header))
6538 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6539 "(offset %s + 0) [in module %s]"),
6540 header->length, sect_offset_str (header->sect_off),
6544 /* Read in a CU/TU header and perform some basic error checking.
6545 The contents of the header are stored in HEADER.
6546 The result is a pointer to the start of the first DIE. */
6548 static const gdb_byte *
6549 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct comp_unit_head *header,
6551 struct dwarf2_section_info *section,
6552 struct dwarf2_section_info *abbrev_section,
6553 const gdb_byte *info_ptr,
6554 rcuh_kind section_kind)
6556 const gdb_byte *beg_of_comp_unit = info_ptr;
6558 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6560 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6562 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6564 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6570 /* Fetch the abbreviation table offset from a comp or type unit header. */
6573 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6574 struct dwarf2_section_info *section,
6575 sect_offset sect_off)
6577 bfd *abfd = get_section_bfd_owner (section);
6578 const gdb_byte *info_ptr;
6579 unsigned int initial_length_size, offset_size;
6582 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6583 info_ptr = section->buffer + to_underlying (sect_off);
6584 read_initial_length (abfd, info_ptr, &initial_length_size);
6585 offset_size = initial_length_size == 4 ? 4 : 8;
6586 info_ptr += initial_length_size;
6588 version = read_2_bytes (abfd, info_ptr);
6592 /* Skip unit type and address size. */
6596 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6599 /* Allocate a new partial symtab for file named NAME and mark this new
6600 partial symtab as being an include of PST. */
6603 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6604 struct objfile *objfile)
6606 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6608 if (!IS_ABSOLUTE_PATH (subpst->filename))
6610 /* It shares objfile->objfile_obstack. */
6611 subpst->dirname = pst->dirname;
6614 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6615 subpst->dependencies[0] = pst;
6616 subpst->number_of_dependencies = 1;
6618 subpst->read_symtab = pst->read_symtab;
6620 /* No private part is necessary for include psymtabs. This property
6621 can be used to differentiate between such include psymtabs and
6622 the regular ones. */
6623 subpst->read_symtab_private = NULL;
6626 /* Read the Line Number Program data and extract the list of files
6627 included by the source file represented by PST. Build an include
6628 partial symtab for each of these included files. */
6631 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6632 struct die_info *die,
6633 struct partial_symtab *pst)
6636 struct attribute *attr;
6638 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6640 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6642 return; /* No linetable, so no includes. */
6644 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6645 that we pass in the raw text_low here; that is ok because we're
6646 only decoding the line table to make include partial symtabs, and
6647 so the addresses aren't really used. */
6648 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6649 pst->raw_text_low (), 1);
6653 hash_signatured_type (const void *item)
6655 const struct signatured_type *sig_type
6656 = (const struct signatured_type *) item;
6658 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6659 return sig_type->signature;
6663 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6665 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6666 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6668 return lhs->signature == rhs->signature;
6671 /* Allocate a hash table for signatured types. */
6674 allocate_signatured_type_table (struct objfile *objfile)
6676 return htab_create_alloc_ex (41,
6677 hash_signatured_type,
6680 &objfile->objfile_obstack,
6681 hashtab_obstack_allocate,
6682 dummy_obstack_deallocate);
6685 /* A helper function to add a signatured type CU to a table. */
6688 add_signatured_type_cu_to_table (void **slot, void *datum)
6690 struct signatured_type *sigt = (struct signatured_type *) *slot;
6691 std::vector<signatured_type *> *all_type_units
6692 = (std::vector<signatured_type *> *) datum;
6694 all_type_units->push_back (sigt);
6699 /* A helper for create_debug_types_hash_table. Read types from SECTION
6700 and fill them into TYPES_HTAB. It will process only type units,
6701 therefore DW_UT_type. */
6704 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6705 struct dwo_file *dwo_file,
6706 dwarf2_section_info *section, htab_t &types_htab,
6707 rcuh_kind section_kind)
6709 struct objfile *objfile = dwarf2_per_objfile->objfile;
6710 struct dwarf2_section_info *abbrev_section;
6712 const gdb_byte *info_ptr, *end_ptr;
6714 abbrev_section = (dwo_file != NULL
6715 ? &dwo_file->sections.abbrev
6716 : &dwarf2_per_objfile->abbrev);
6718 if (dwarf_read_debug)
6719 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6720 get_section_name (section),
6721 get_section_file_name (abbrev_section));
6723 dwarf2_read_section (objfile, section);
6724 info_ptr = section->buffer;
6726 if (info_ptr == NULL)
6729 /* We can't set abfd until now because the section may be empty or
6730 not present, in which case the bfd is unknown. */
6731 abfd = get_section_bfd_owner (section);
6733 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6734 because we don't need to read any dies: the signature is in the
6737 end_ptr = info_ptr + section->size;
6738 while (info_ptr < end_ptr)
6740 struct signatured_type *sig_type;
6741 struct dwo_unit *dwo_tu;
6743 const gdb_byte *ptr = info_ptr;
6744 struct comp_unit_head header;
6745 unsigned int length;
6747 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6749 /* Initialize it due to a false compiler warning. */
6750 header.signature = -1;
6751 header.type_cu_offset_in_tu = (cu_offset) -1;
6753 /* We need to read the type's signature in order to build the hash
6754 table, but we don't need anything else just yet. */
6756 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6757 abbrev_section, ptr, section_kind);
6759 length = get_cu_length (&header);
6761 /* Skip dummy type units. */
6762 if (ptr >= info_ptr + length
6763 || peek_abbrev_code (abfd, ptr) == 0
6764 || header.unit_type != DW_UT_type)
6770 if (types_htab == NULL)
6773 types_htab = allocate_dwo_unit_table (objfile);
6775 types_htab = allocate_signatured_type_table (objfile);
6781 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6783 dwo_tu->dwo_file = dwo_file;
6784 dwo_tu->signature = header.signature;
6785 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6786 dwo_tu->section = section;
6787 dwo_tu->sect_off = sect_off;
6788 dwo_tu->length = length;
6792 /* N.B.: type_offset is not usable if this type uses a DWO file.
6793 The real type_offset is in the DWO file. */
6795 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6796 struct signatured_type);
6797 sig_type->signature = header.signature;
6798 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6799 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6800 sig_type->per_cu.is_debug_types = 1;
6801 sig_type->per_cu.section = section;
6802 sig_type->per_cu.sect_off = sect_off;
6803 sig_type->per_cu.length = length;
6806 slot = htab_find_slot (types_htab,
6807 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6809 gdb_assert (slot != NULL);
6812 sect_offset dup_sect_off;
6816 const struct dwo_unit *dup_tu
6817 = (const struct dwo_unit *) *slot;
6819 dup_sect_off = dup_tu->sect_off;
6823 const struct signatured_type *dup_tu
6824 = (const struct signatured_type *) *slot;
6826 dup_sect_off = dup_tu->per_cu.sect_off;
6829 complaint (_("debug type entry at offset %s is duplicate to"
6830 " the entry at offset %s, signature %s"),
6831 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6832 hex_string (header.signature));
6834 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6836 if (dwarf_read_debug > 1)
6837 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6838 sect_offset_str (sect_off),
6839 hex_string (header.signature));
6845 /* Create the hash table of all entries in the .debug_types
6846 (or .debug_types.dwo) section(s).
6847 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6848 otherwise it is NULL.
6850 The result is a pointer to the hash table or NULL if there are no types.
6852 Note: This function processes DWO files only, not DWP files. */
6855 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6856 struct dwo_file *dwo_file,
6857 VEC (dwarf2_section_info_def) *types,
6861 struct dwarf2_section_info *section;
6863 if (VEC_empty (dwarf2_section_info_def, types))
6867 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6869 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6870 types_htab, rcuh_kind::TYPE);
6873 /* Create the hash table of all entries in the .debug_types section,
6874 and initialize all_type_units.
6875 The result is zero if there is an error (e.g. missing .debug_types section),
6876 otherwise non-zero. */
6879 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6881 htab_t types_htab = NULL;
6883 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6884 &dwarf2_per_objfile->info, types_htab,
6885 rcuh_kind::COMPILE);
6886 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6887 dwarf2_per_objfile->types, types_htab);
6888 if (types_htab == NULL)
6890 dwarf2_per_objfile->signatured_types = NULL;
6894 dwarf2_per_objfile->signatured_types = types_htab;
6896 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6897 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6899 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6900 &dwarf2_per_objfile->all_type_units);
6905 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6906 If SLOT is non-NULL, it is the entry to use in the hash table.
6907 Otherwise we find one. */
6909 static struct signatured_type *
6910 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6913 struct objfile *objfile = dwarf2_per_objfile->objfile;
6915 if (dwarf2_per_objfile->all_type_units.size ()
6916 == dwarf2_per_objfile->all_type_units.capacity ())
6917 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6919 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6920 struct signatured_type);
6922 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6923 sig_type->signature = sig;
6924 sig_type->per_cu.is_debug_types = 1;
6925 if (dwarf2_per_objfile->using_index)
6927 sig_type->per_cu.v.quick =
6928 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6929 struct dwarf2_per_cu_quick_data);
6934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6937 gdb_assert (*slot == NULL);
6939 /* The rest of sig_type must be filled in by the caller. */
6943 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6944 Fill in SIG_ENTRY with DWO_ENTRY. */
6947 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6948 struct signatured_type *sig_entry,
6949 struct dwo_unit *dwo_entry)
6951 /* Make sure we're not clobbering something we don't expect to. */
6952 gdb_assert (! sig_entry->per_cu.queued);
6953 gdb_assert (sig_entry->per_cu.cu == NULL);
6954 if (dwarf2_per_objfile->using_index)
6956 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6957 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6960 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6961 gdb_assert (sig_entry->signature == dwo_entry->signature);
6962 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6963 gdb_assert (sig_entry->type_unit_group == NULL);
6964 gdb_assert (sig_entry->dwo_unit == NULL);
6966 sig_entry->per_cu.section = dwo_entry->section;
6967 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6968 sig_entry->per_cu.length = dwo_entry->length;
6969 sig_entry->per_cu.reading_dwo_directly = 1;
6970 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6971 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6972 sig_entry->dwo_unit = dwo_entry;
6975 /* Subroutine of lookup_signatured_type.
6976 If we haven't read the TU yet, create the signatured_type data structure
6977 for a TU to be read in directly from a DWO file, bypassing the stub.
6978 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6979 using .gdb_index, then when reading a CU we want to stay in the DWO file
6980 containing that CU. Otherwise we could end up reading several other DWO
6981 files (due to comdat folding) to process the transitive closure of all the
6982 mentioned TUs, and that can be slow. The current DWO file will have every
6983 type signature that it needs.
6984 We only do this for .gdb_index because in the psymtab case we already have
6985 to read all the DWOs to build the type unit groups. */
6987 static struct signatured_type *
6988 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = cu->per_cu->dwarf2_per_objfile;
6992 struct objfile *objfile = dwarf2_per_objfile->objfile;
6993 struct dwo_file *dwo_file;
6994 struct dwo_unit find_dwo_entry, *dwo_entry;
6995 struct signatured_type find_sig_entry, *sig_entry;
6998 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7000 /* If TU skeletons have been removed then we may not have read in any
7002 if (dwarf2_per_objfile->signatured_types == NULL)
7004 dwarf2_per_objfile->signatured_types
7005 = allocate_signatured_type_table (objfile);
7008 /* We only ever need to read in one copy of a signatured type.
7009 Use the global signatured_types array to do our own comdat-folding
7010 of types. If this is the first time we're reading this TU, and
7011 the TU has an entry in .gdb_index, replace the recorded data from
7012 .gdb_index with this TU. */
7014 find_sig_entry.signature = sig;
7015 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7016 &find_sig_entry, INSERT);
7017 sig_entry = (struct signatured_type *) *slot;
7019 /* We can get here with the TU already read, *or* in the process of being
7020 read. Don't reassign the global entry to point to this DWO if that's
7021 the case. Also note that if the TU is already being read, it may not
7022 have come from a DWO, the program may be a mix of Fission-compiled
7023 code and non-Fission-compiled code. */
7025 /* Have we already tried to read this TU?
7026 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7027 needn't exist in the global table yet). */
7028 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7031 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7032 dwo_unit of the TU itself. */
7033 dwo_file = cu->dwo_unit->dwo_file;
7035 /* Ok, this is the first time we're reading this TU. */
7036 if (dwo_file->tus == NULL)
7038 find_dwo_entry.signature = sig;
7039 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7040 if (dwo_entry == NULL)
7043 /* If the global table doesn't have an entry for this TU, add one. */
7044 if (sig_entry == NULL)
7045 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7047 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7048 sig_entry->per_cu.tu_read = 1;
7052 /* Subroutine of lookup_signatured_type.
7053 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7054 then try the DWP file. If the TU stub (skeleton) has been removed then
7055 it won't be in .gdb_index. */
7057 static struct signatured_type *
7058 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7060 struct dwarf2_per_objfile *dwarf2_per_objfile
7061 = cu->per_cu->dwarf2_per_objfile;
7062 struct objfile *objfile = dwarf2_per_objfile->objfile;
7063 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7064 struct dwo_unit *dwo_entry;
7065 struct signatured_type find_sig_entry, *sig_entry;
7068 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7069 gdb_assert (dwp_file != NULL);
7071 /* If TU skeletons have been removed then we may not have read in any
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7075 dwarf2_per_objfile->signatured_types
7076 = allocate_signatured_type_table (objfile);
7079 find_sig_entry.signature = sig;
7080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7081 &find_sig_entry, INSERT);
7082 sig_entry = (struct signatured_type *) *slot;
7084 /* Have we already tried to read this TU?
7085 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7086 needn't exist in the global table yet). */
7087 if (sig_entry != NULL)
7090 if (dwp_file->tus == NULL)
7092 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7093 sig, 1 /* is_debug_types */);
7094 if (dwo_entry == NULL)
7097 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7098 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7103 /* Lookup a signature based type for DW_FORM_ref_sig8.
7104 Returns NULL if signature SIG is not present in the table.
7105 It is up to the caller to complain about this. */
7107 static struct signatured_type *
7108 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
7114 && dwarf2_per_objfile->using_index)
7116 /* We're in a DWO/DWP file, and we're using .gdb_index.
7117 These cases require special processing. */
7118 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7119 return lookup_dwo_signatured_type (cu, sig);
7121 return lookup_dwp_signatured_type (cu, sig);
7125 struct signatured_type find_entry, *entry;
7127 if (dwarf2_per_objfile->signatured_types == NULL)
7129 find_entry.signature = sig;
7130 entry = ((struct signatured_type *)
7131 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7136 /* Low level DIE reading support. */
7138 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7141 init_cu_die_reader (struct die_reader_specs *reader,
7142 struct dwarf2_cu *cu,
7143 struct dwarf2_section_info *section,
7144 struct dwo_file *dwo_file,
7145 struct abbrev_table *abbrev_table)
7147 gdb_assert (section->readin && section->buffer != NULL);
7148 reader->abfd = get_section_bfd_owner (section);
7150 reader->dwo_file = dwo_file;
7151 reader->die_section = section;
7152 reader->buffer = section->buffer;
7153 reader->buffer_end = section->buffer + section->size;
7154 reader->comp_dir = NULL;
7155 reader->abbrev_table = abbrev_table;
7158 /* Subroutine of init_cutu_and_read_dies to simplify it.
7159 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7160 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7163 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7164 from it to the DIE in the DWO. If NULL we are skipping the stub.
7165 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7166 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7167 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7168 STUB_COMP_DIR may be non-NULL.
7169 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7170 are filled in with the info of the DIE from the DWO file.
7171 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7172 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7173 kept around for at least as long as *RESULT_READER.
7175 The result is non-zero if a valid (non-dummy) DIE was found. */
7178 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7179 struct dwo_unit *dwo_unit,
7180 struct die_info *stub_comp_unit_die,
7181 const char *stub_comp_dir,
7182 struct die_reader_specs *result_reader,
7183 const gdb_byte **result_info_ptr,
7184 struct die_info **result_comp_unit_die,
7185 int *result_has_children,
7186 abbrev_table_up *result_dwo_abbrev_table)
7188 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7189 struct objfile *objfile = dwarf2_per_objfile->objfile;
7190 struct dwarf2_cu *cu = this_cu->cu;
7192 const gdb_byte *begin_info_ptr, *info_ptr;
7193 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7194 int i,num_extra_attrs;
7195 struct dwarf2_section_info *dwo_abbrev_section;
7196 struct attribute *attr;
7197 struct die_info *comp_unit_die;
7199 /* At most one of these may be provided. */
7200 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7202 /* These attributes aren't processed until later:
7203 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7204 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7205 referenced later. However, these attributes are found in the stub
7206 which we won't have later. In order to not impose this complication
7207 on the rest of the code, we read them here and copy them to the
7216 if (stub_comp_unit_die != NULL)
7218 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7220 if (! this_cu->is_debug_types)
7221 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7222 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7223 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7224 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7225 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7227 /* There should be a DW_AT_addr_base attribute here (if needed).
7228 We need the value before we can process DW_FORM_GNU_addr_index
7229 or DW_FORM_addrx. */
7231 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7233 cu->addr_base = DW_UNSND (attr);
7235 /* There should be a DW_AT_ranges_base attribute here (if needed).
7236 We need the value before we can process DW_AT_ranges. */
7237 cu->ranges_base = 0;
7238 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7240 cu->ranges_base = DW_UNSND (attr);
7242 else if (stub_comp_dir != NULL)
7244 /* Reconstruct the comp_dir attribute to simplify the code below. */
7245 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7246 comp_dir->name = DW_AT_comp_dir;
7247 comp_dir->form = DW_FORM_string;
7248 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7249 DW_STRING (comp_dir) = stub_comp_dir;
7252 /* Set up for reading the DWO CU/TU. */
7253 cu->dwo_unit = dwo_unit;
7254 dwarf2_section_info *section = dwo_unit->section;
7255 dwarf2_read_section (objfile, section);
7256 abfd = get_section_bfd_owner (section);
7257 begin_info_ptr = info_ptr = (section->buffer
7258 + to_underlying (dwo_unit->sect_off));
7259 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7261 if (this_cu->is_debug_types)
7263 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7265 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7266 &cu->header, section,
7268 info_ptr, rcuh_kind::TYPE);
7269 /* This is not an assert because it can be caused by bad debug info. */
7270 if (sig_type->signature != cu->header.signature)
7272 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7273 " TU at offset %s [in module %s]"),
7274 hex_string (sig_type->signature),
7275 hex_string (cu->header.signature),
7276 sect_offset_str (dwo_unit->sect_off),
7277 bfd_get_filename (abfd));
7279 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7280 /* For DWOs coming from DWP files, we don't know the CU length
7281 nor the type's offset in the TU until now. */
7282 dwo_unit->length = get_cu_length (&cu->header);
7283 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7285 /* Establish the type offset that can be used to lookup the type.
7286 For DWO files, we don't know it until now. */
7287 sig_type->type_offset_in_section
7288 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7292 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7293 &cu->header, section,
7295 info_ptr, rcuh_kind::COMPILE);
7296 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7297 /* For DWOs coming from DWP files, we don't know the CU length
7299 dwo_unit->length = get_cu_length (&cu->header);
7302 *result_dwo_abbrev_table
7303 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7304 cu->header.abbrev_sect_off);
7305 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7306 result_dwo_abbrev_table->get ());
7308 /* Read in the die, but leave space to copy over the attributes
7309 from the stub. This has the benefit of simplifying the rest of
7310 the code - all the work to maintain the illusion of a single
7311 DW_TAG_{compile,type}_unit DIE is done here. */
7312 num_extra_attrs = ((stmt_list != NULL)
7316 + (comp_dir != NULL));
7317 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7318 result_has_children, num_extra_attrs);
7320 /* Copy over the attributes from the stub to the DIE we just read in. */
7321 comp_unit_die = *result_comp_unit_die;
7322 i = comp_unit_die->num_attrs;
7323 if (stmt_list != NULL)
7324 comp_unit_die->attrs[i++] = *stmt_list;
7326 comp_unit_die->attrs[i++] = *low_pc;
7327 if (high_pc != NULL)
7328 comp_unit_die->attrs[i++] = *high_pc;
7330 comp_unit_die->attrs[i++] = *ranges;
7331 if (comp_dir != NULL)
7332 comp_unit_die->attrs[i++] = *comp_dir;
7333 comp_unit_die->num_attrs += num_extra_attrs;
7335 if (dwarf_die_debug)
7337 fprintf_unfiltered (gdb_stdlog,
7338 "Read die from %s@0x%x of %s:\n",
7339 get_section_name (section),
7340 (unsigned) (begin_info_ptr - section->buffer),
7341 bfd_get_filename (abfd));
7342 dump_die (comp_unit_die, dwarf_die_debug);
7345 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7346 TUs by skipping the stub and going directly to the entry in the DWO file.
7347 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7348 to get it via circuitous means. Blech. */
7349 if (comp_dir != NULL)
7350 result_reader->comp_dir = DW_STRING (comp_dir);
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + dwo_unit->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7357 *result_info_ptr = info_ptr;
7361 /* Subroutine of init_cutu_and_read_dies to simplify it.
7362 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7363 Returns NULL if the specified DWO unit cannot be found. */
7365 static struct dwo_unit *
7366 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7367 struct die_info *comp_unit_die)
7369 struct dwarf2_cu *cu = this_cu->cu;
7371 struct dwo_unit *dwo_unit;
7372 const char *comp_dir, *dwo_name;
7374 gdb_assert (cu != NULL);
7376 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7377 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7378 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7380 if (this_cu->is_debug_types)
7382 struct signatured_type *sig_type;
7384 /* Since this_cu is the first member of struct signatured_type,
7385 we can go from a pointer to one to a pointer to the other. */
7386 sig_type = (struct signatured_type *) this_cu;
7387 signature = sig_type->signature;
7388 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7392 struct attribute *attr;
7394 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7396 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7398 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7399 signature = DW_UNSND (attr);
7400 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7407 /* Subroutine of init_cutu_and_read_dies to simplify it.
7408 See it for a description of the parameters.
7409 Read a TU directly from a DWO file, bypassing the stub. */
7412 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7413 int use_existing_cu, int keep,
7414 die_reader_func_ftype *die_reader_func,
7417 std::unique_ptr<dwarf2_cu> new_cu;
7418 struct signatured_type *sig_type;
7419 struct die_reader_specs reader;
7420 const gdb_byte *info_ptr;
7421 struct die_info *comp_unit_die;
7423 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7425 /* Verify we can do the following downcast, and that we have the
7427 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7428 sig_type = (struct signatured_type *) this_cu;
7429 gdb_assert (sig_type->dwo_unit != NULL);
7431 if (use_existing_cu && this_cu->cu != NULL)
7433 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7434 /* There's no need to do the rereading_dwo_cu handling that
7435 init_cutu_and_read_dies does since we don't read the stub. */
7439 /* If !use_existing_cu, this_cu->cu must be NULL. */
7440 gdb_assert (this_cu->cu == NULL);
7441 new_cu.reset (new dwarf2_cu (this_cu));
7444 /* A future optimization, if needed, would be to use an existing
7445 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7446 could share abbrev tables. */
7448 /* The abbreviation table used by READER, this must live at least as long as
7450 abbrev_table_up dwo_abbrev_table;
7452 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7453 NULL /* stub_comp_unit_die */,
7454 sig_type->dwo_unit->dwo_file->comp_dir,
7456 &comp_unit_die, &has_children,
7457 &dwo_abbrev_table) == 0)
7463 /* All the "real" work is done here. */
7464 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7466 /* This duplicates the code in init_cutu_and_read_dies,
7467 but the alternative is making the latter more complex.
7468 This function is only for the special case of using DWO files directly:
7469 no point in overly complicating the general case just to handle this. */
7470 if (new_cu != NULL && keep)
7472 /* Link this CU into read_in_chain. */
7473 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7474 dwarf2_per_objfile->read_in_chain = this_cu;
7475 /* The chain owns it now. */
7480 /* Initialize a CU (or TU) and read its DIEs.
7481 If the CU defers to a DWO file, read the DWO file as well.
7483 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7484 Otherwise the table specified in the comp unit header is read in and used.
7485 This is an optimization for when we already have the abbrev table.
7487 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7488 Otherwise, a new CU is allocated with xmalloc.
7490 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7491 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7493 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7494 linker) then DIE_READER_FUNC will not get called. */
7497 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7498 struct abbrev_table *abbrev_table,
7499 int use_existing_cu, int keep,
7501 die_reader_func_ftype *die_reader_func,
7504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7505 struct objfile *objfile = dwarf2_per_objfile->objfile;
7506 struct dwarf2_section_info *section = this_cu->section;
7507 bfd *abfd = get_section_bfd_owner (section);
7508 struct dwarf2_cu *cu;
7509 const gdb_byte *begin_info_ptr, *info_ptr;
7510 struct die_reader_specs reader;
7511 struct die_info *comp_unit_die;
7513 struct attribute *attr;
7514 struct signatured_type *sig_type = NULL;
7515 struct dwarf2_section_info *abbrev_section;
7516 /* Non-zero if CU currently points to a DWO file and we need to
7517 reread it. When this happens we need to reread the skeleton die
7518 before we can reread the DWO file (this only applies to CUs, not TUs). */
7519 int rereading_dwo_cu = 0;
7521 if (dwarf_die_debug)
7522 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7523 this_cu->is_debug_types ? "type" : "comp",
7524 sect_offset_str (this_cu->sect_off));
7526 if (use_existing_cu)
7529 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7530 file (instead of going through the stub), short-circuit all of this. */
7531 if (this_cu->reading_dwo_directly)
7533 /* Narrow down the scope of possibilities to have to understand. */
7534 gdb_assert (this_cu->is_debug_types);
7535 gdb_assert (abbrev_table == NULL);
7536 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7537 die_reader_func, data);
7541 /* This is cheap if the section is already read in. */
7542 dwarf2_read_section (objfile, section);
7544 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7546 abbrev_section = get_abbrev_section_for_cu (this_cu);
7548 std::unique_ptr<dwarf2_cu> new_cu;
7549 if (use_existing_cu && this_cu->cu != NULL)
7552 /* If this CU is from a DWO file we need to start over, we need to
7553 refetch the attributes from the skeleton CU.
7554 This could be optimized by retrieving those attributes from when we
7555 were here the first time: the previous comp_unit_die was stored in
7556 comp_unit_obstack. But there's no data yet that we need this
7558 if (cu->dwo_unit != NULL)
7559 rereading_dwo_cu = 1;
7563 /* If !use_existing_cu, this_cu->cu must be NULL. */
7564 gdb_assert (this_cu->cu == NULL);
7565 new_cu.reset (new dwarf2_cu (this_cu));
7569 /* Get the header. */
7570 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7572 /* We already have the header, there's no need to read it in again. */
7573 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7577 if (this_cu->is_debug_types)
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section, info_ptr,
7584 /* Since per_cu is the first member of struct signatured_type,
7585 we can go from a pointer to one to a pointer to the other. */
7586 sig_type = (struct signatured_type *) this_cu;
7587 gdb_assert (sig_type->signature == cu->header.signature);
7588 gdb_assert (sig_type->type_offset_in_tu
7589 == cu->header.type_cu_offset_in_tu);
7590 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7592 /* LENGTH has not been set yet for type units if we're
7593 using .gdb_index. */
7594 this_cu->length = get_cu_length (&cu->header);
7596 /* Establish the type offset that can be used to lookup the type. */
7597 sig_type->type_offset_in_section =
7598 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7600 this_cu->dwarf_version = cu->header.version;
7604 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7605 &cu->header, section,
7608 rcuh_kind::COMPILE);
7610 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7611 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7612 this_cu->dwarf_version = cu->header.version;
7616 /* Skip dummy compilation units. */
7617 if (info_ptr >= begin_info_ptr + this_cu->length
7618 || peek_abbrev_code (abfd, info_ptr) == 0)
7621 /* If we don't have them yet, read the abbrevs for this compilation unit.
7622 And if we need to read them now, make sure they're freed when we're
7623 done (own the table through ABBREV_TABLE_HOLDER). */
7624 abbrev_table_up abbrev_table_holder;
7625 if (abbrev_table != NULL)
7626 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7630 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7631 cu->header.abbrev_sect_off);
7632 abbrev_table = abbrev_table_holder.get ();
7635 /* Read the top level CU/TU die. */
7636 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7637 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7639 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7642 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7643 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7644 table from the DWO file and pass the ownership over to us. It will be
7645 referenced from READER, so we must make sure to free it after we're done
7648 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7649 DWO CU, that this test will fail (the attribute will not be present). */
7650 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7651 abbrev_table_up dwo_abbrev_table;
7654 struct dwo_unit *dwo_unit;
7655 struct die_info *dwo_comp_unit_die;
7659 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7660 " has children (offset %s) [in module %s]"),
7661 sect_offset_str (this_cu->sect_off),
7662 bfd_get_filename (abfd));
7664 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7665 if (dwo_unit != NULL)
7667 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7668 comp_unit_die, NULL,
7670 &dwo_comp_unit_die, &has_children,
7671 &dwo_abbrev_table) == 0)
7676 comp_unit_die = dwo_comp_unit_die;
7680 /* Yikes, we couldn't find the rest of the DIE, we only have
7681 the stub. A complaint has already been logged. There's
7682 not much more we can do except pass on the stub DIE to
7683 die_reader_func. We don't want to throw an error on bad
7688 /* All of the above is setup for this call. Yikes. */
7689 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7691 /* Done, clean up. */
7692 if (new_cu != NULL && keep)
7694 /* Link this CU into read_in_chain. */
7695 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7696 dwarf2_per_objfile->read_in_chain = this_cu;
7697 /* The chain owns it now. */
7702 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7703 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7704 to have already done the lookup to find the DWO file).
7706 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7707 THIS_CU->is_debug_types, but nothing else.
7709 We fill in THIS_CU->length.
7711 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7712 linker) then DIE_READER_FUNC will not get called.
7714 THIS_CU->cu is always freed when done.
7715 This is done in order to not leave THIS_CU->cu in a state where we have
7716 to care whether it refers to the "main" CU or the DWO CU. */
7719 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7720 struct dwo_file *dwo_file,
7721 die_reader_func_ftype *die_reader_func,
7724 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7725 struct objfile *objfile = dwarf2_per_objfile->objfile;
7726 struct dwarf2_section_info *section = this_cu->section;
7727 bfd *abfd = get_section_bfd_owner (section);
7728 struct dwarf2_section_info *abbrev_section;
7729 const gdb_byte *begin_info_ptr, *info_ptr;
7730 struct die_reader_specs reader;
7731 struct die_info *comp_unit_die;
7734 if (dwarf_die_debug)
7735 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7736 this_cu->is_debug_types ? "type" : "comp",
7737 sect_offset_str (this_cu->sect_off));
7739 gdb_assert (this_cu->cu == NULL);
7741 abbrev_section = (dwo_file != NULL
7742 ? &dwo_file->sections.abbrev
7743 : get_abbrev_section_for_cu (this_cu));
7745 /* This is cheap if the section is already read in. */
7746 dwarf2_read_section (objfile, section);
7748 struct dwarf2_cu cu (this_cu);
7750 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7751 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7752 &cu.header, section,
7753 abbrev_section, info_ptr,
7754 (this_cu->is_debug_types
7756 : rcuh_kind::COMPILE));
7758 this_cu->length = get_cu_length (&cu.header);
7760 /* Skip dummy compilation units. */
7761 if (info_ptr >= begin_info_ptr + this_cu->length
7762 || peek_abbrev_code (abfd, info_ptr) == 0)
7765 abbrev_table_up abbrev_table
7766 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7767 cu.header.abbrev_sect_off);
7769 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7775 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7776 does not lookup the specified DWO file.
7777 This cannot be used to read DWO files.
7779 THIS_CU->cu is always freed when done.
7780 This is done in order to not leave THIS_CU->cu in a state where we have
7781 to care whether it refers to the "main" CU or the DWO CU.
7782 We can revisit this if the data shows there's a performance issue. */
7785 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7786 die_reader_func_ftype *die_reader_func,
7789 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7792 /* Type Unit Groups.
7794 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7795 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7796 so that all types coming from the same compilation (.o file) are grouped
7797 together. A future step could be to put the types in the same symtab as
7798 the CU the types ultimately came from. */
7801 hash_type_unit_group (const void *item)
7803 const struct type_unit_group *tu_group
7804 = (const struct type_unit_group *) item;
7806 return hash_stmt_list_entry (&tu_group->hash);
7810 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7812 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7813 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7815 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7818 /* Allocate a hash table for type unit groups. */
7821 allocate_type_unit_groups_table (struct objfile *objfile)
7823 return htab_create_alloc_ex (3,
7824 hash_type_unit_group,
7827 &objfile->objfile_obstack,
7828 hashtab_obstack_allocate,
7829 dummy_obstack_deallocate);
7832 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7833 partial symtabs. We combine several TUs per psymtab to not let the size
7834 of any one psymtab grow too big. */
7835 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7836 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7838 /* Helper routine for get_type_unit_group.
7839 Create the type_unit_group object used to hold one or more TUs. */
7841 static struct type_unit_group *
7842 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7844 struct dwarf2_per_objfile *dwarf2_per_objfile
7845 = cu->per_cu->dwarf2_per_objfile;
7846 struct objfile *objfile = dwarf2_per_objfile->objfile;
7847 struct dwarf2_per_cu_data *per_cu;
7848 struct type_unit_group *tu_group;
7850 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7851 struct type_unit_group);
7852 per_cu = &tu_group->per_cu;
7853 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7855 if (dwarf2_per_objfile->using_index)
7857 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7858 struct dwarf2_per_cu_quick_data);
7862 unsigned int line_offset = to_underlying (line_offset_struct);
7863 struct partial_symtab *pst;
7866 /* Give the symtab a useful name for debug purposes. */
7867 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7868 name = string_printf ("<type_units_%d>",
7869 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7871 name = string_printf ("<type_units_at_0x%x>", line_offset);
7873 pst = create_partial_symtab (per_cu, name.c_str ());
7877 tu_group->hash.dwo_unit = cu->dwo_unit;
7878 tu_group->hash.line_sect_off = line_offset_struct;
7883 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7884 STMT_LIST is a DW_AT_stmt_list attribute. */
7886 static struct type_unit_group *
7887 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7889 struct dwarf2_per_objfile *dwarf2_per_objfile
7890 = cu->per_cu->dwarf2_per_objfile;
7891 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7892 struct type_unit_group *tu_group;
7894 unsigned int line_offset;
7895 struct type_unit_group type_unit_group_for_lookup;
7897 if (dwarf2_per_objfile->type_unit_groups == NULL)
7899 dwarf2_per_objfile->type_unit_groups =
7900 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7903 /* Do we need to create a new group, or can we use an existing one? */
7907 line_offset = DW_UNSND (stmt_list);
7908 ++tu_stats->nr_symtab_sharers;
7912 /* Ugh, no stmt_list. Rare, but we have to handle it.
7913 We can do various things here like create one group per TU or
7914 spread them over multiple groups to split up the expansion work.
7915 To avoid worst case scenarios (too many groups or too large groups)
7916 we, umm, group them in bunches. */
7917 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7918 | (tu_stats->nr_stmt_less_type_units
7919 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7920 ++tu_stats->nr_stmt_less_type_units;
7923 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7924 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7925 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7926 &type_unit_group_for_lookup, INSERT);
7929 tu_group = (struct type_unit_group *) *slot;
7930 gdb_assert (tu_group != NULL);
7934 sect_offset line_offset_struct = (sect_offset) line_offset;
7935 tu_group = create_type_unit_group (cu, line_offset_struct);
7937 ++tu_stats->nr_symtabs;
7943 /* Partial symbol tables. */
7945 /* Create a psymtab named NAME and assign it to PER_CU.
7947 The caller must fill in the following details:
7948 dirname, textlow, texthigh. */
7950 static struct partial_symtab *
7951 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7953 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7954 struct partial_symtab *pst;
7956 pst = start_psymtab_common (objfile, name, 0);
7958 pst->psymtabs_addrmap_supported = 1;
7960 /* This is the glue that links PST into GDB's symbol API. */
7961 pst->read_symtab_private = per_cu;
7962 pst->read_symtab = dwarf2_read_symtab;
7963 per_cu->v.psymtab = pst;
7968 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7971 struct process_psymtab_comp_unit_data
7973 /* True if we are reading a DW_TAG_partial_unit. */
7975 int want_partial_unit;
7977 /* The "pretend" language that is used if the CU doesn't declare a
7980 enum language pretend_language;
7983 /* die_reader_func for process_psymtab_comp_unit. */
7986 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7987 const gdb_byte *info_ptr,
7988 struct die_info *comp_unit_die,
7992 struct dwarf2_cu *cu = reader->cu;
7993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7995 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7997 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7998 struct partial_symtab *pst;
7999 enum pc_bounds_kind cu_bounds_kind;
8000 const char *filename;
8001 struct process_psymtab_comp_unit_data *info
8002 = (struct process_psymtab_comp_unit_data *) data;
8004 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8007 gdb_assert (! per_cu->is_debug_types);
8009 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8011 /* Allocate a new partial symbol table structure. */
8012 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8013 if (filename == NULL)
8016 pst = create_partial_symtab (per_cu, filename);
8018 /* This must be done before calling dwarf2_build_include_psymtabs. */
8019 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8023 dwarf2_find_base_address (comp_unit_die, cu);
8025 /* Possibly set the default values of LOWPC and HIGHPC from
8027 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8028 &best_highpc, cu, pst);
8029 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8035 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8037 /* Store the contiguous range if it is not empty; it can be
8038 empty for CUs with no code. */
8039 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8043 /* Check if comp unit has_children.
8044 If so, read the rest of the partial symbols from this comp unit.
8045 If not, there's no more debug_info for this comp unit. */
8048 struct partial_die_info *first_die;
8049 CORE_ADDR lowpc, highpc;
8051 lowpc = ((CORE_ADDR) -1);
8052 highpc = ((CORE_ADDR) 0);
8054 first_die = load_partial_dies (reader, info_ptr, 1);
8056 scan_partial_symbols (first_die, &lowpc, &highpc,
8057 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8059 /* If we didn't find a lowpc, set it to highpc to avoid
8060 complaints from `maint check'. */
8061 if (lowpc == ((CORE_ADDR) -1))
8064 /* If the compilation unit didn't have an explicit address range,
8065 then use the information extracted from its child dies. */
8066 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8069 best_highpc = highpc;
8072 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8073 best_lowpc + baseaddr)
8075 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8076 best_highpc + baseaddr)
8079 end_psymtab_common (objfile, pst);
8081 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8084 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8085 struct dwarf2_per_cu_data *iter;
8087 /* Fill in 'dependencies' here; we fill in 'users' in a
8089 pst->number_of_dependencies = len;
8091 = objfile->partial_symtabs->allocate_dependencies (len);
8093 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8096 pst->dependencies[i] = iter->v.psymtab;
8098 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8101 /* Get the list of files included in the current compilation unit,
8102 and build a psymtab for each of them. */
8103 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8105 if (dwarf_read_debug)
8106 fprintf_unfiltered (gdb_stdlog,
8107 "Psymtab for %s unit @%s: %s - %s"
8108 ", %d global, %d static syms\n",
8109 per_cu->is_debug_types ? "type" : "comp",
8110 sect_offset_str (per_cu->sect_off),
8111 paddress (gdbarch, pst->text_low (objfile)),
8112 paddress (gdbarch, pst->text_high (objfile)),
8113 pst->n_global_syms, pst->n_static_syms);
8116 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8117 Process compilation unit THIS_CU for a psymtab. */
8120 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8121 int want_partial_unit,
8122 enum language pretend_language)
8124 /* If this compilation unit was already read in, free the
8125 cached copy in order to read it in again. This is
8126 necessary because we skipped some symbols when we first
8127 read in the compilation unit (see load_partial_dies).
8128 This problem could be avoided, but the benefit is unclear. */
8129 if (this_cu->cu != NULL)
8130 free_one_cached_comp_unit (this_cu);
8132 if (this_cu->is_debug_types)
8133 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8134 build_type_psymtabs_reader, NULL);
8137 process_psymtab_comp_unit_data info;
8138 info.want_partial_unit = want_partial_unit;
8139 info.pretend_language = pretend_language;
8140 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8141 process_psymtab_comp_unit_reader, &info);
8144 /* Age out any secondary CUs. */
8145 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8148 /* Reader function for build_type_psymtabs. */
8151 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8152 const gdb_byte *info_ptr,
8153 struct die_info *type_unit_die,
8157 struct dwarf2_per_objfile *dwarf2_per_objfile
8158 = reader->cu->per_cu->dwarf2_per_objfile;
8159 struct objfile *objfile = dwarf2_per_objfile->objfile;
8160 struct dwarf2_cu *cu = reader->cu;
8161 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8162 struct signatured_type *sig_type;
8163 struct type_unit_group *tu_group;
8164 struct attribute *attr;
8165 struct partial_die_info *first_die;
8166 CORE_ADDR lowpc, highpc;
8167 struct partial_symtab *pst;
8169 gdb_assert (data == NULL);
8170 gdb_assert (per_cu->is_debug_types);
8171 sig_type = (struct signatured_type *) per_cu;
8176 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8177 tu_group = get_type_unit_group (cu, attr);
8179 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8181 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8182 pst = create_partial_symtab (per_cu, "");
8185 first_die = load_partial_dies (reader, info_ptr, 1);
8187 lowpc = (CORE_ADDR) -1;
8188 highpc = (CORE_ADDR) 0;
8189 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8191 end_psymtab_common (objfile, pst);
8194 /* Struct used to sort TUs by their abbreviation table offset. */
8196 struct tu_abbrev_offset
8198 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8199 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8202 signatured_type *sig_type;
8203 sect_offset abbrev_offset;
8206 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8209 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8210 const struct tu_abbrev_offset &b)
8212 return a.abbrev_offset < b.abbrev_offset;
8215 /* Efficiently read all the type units.
8216 This does the bulk of the work for build_type_psymtabs.
8218 The efficiency is because we sort TUs by the abbrev table they use and
8219 only read each abbrev table once. In one program there are 200K TUs
8220 sharing 8K abbrev tables.
8222 The main purpose of this function is to support building the
8223 dwarf2_per_objfile->type_unit_groups table.
8224 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8225 can collapse the search space by grouping them by stmt_list.
8226 The savings can be significant, in the same program from above the 200K TUs
8227 share 8K stmt_list tables.
8229 FUNC is expected to call get_type_unit_group, which will create the
8230 struct type_unit_group if necessary and add it to
8231 dwarf2_per_objfile->type_unit_groups. */
8234 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8237 abbrev_table_up abbrev_table;
8238 sect_offset abbrev_offset;
8240 /* It's up to the caller to not call us multiple times. */
8241 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8243 if (dwarf2_per_objfile->all_type_units.empty ())
8246 /* TUs typically share abbrev tables, and there can be way more TUs than
8247 abbrev tables. Sort by abbrev table to reduce the number of times we
8248 read each abbrev table in.
8249 Alternatives are to punt or to maintain a cache of abbrev tables.
8250 This is simpler and efficient enough for now.
8252 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8253 symtab to use). Typically TUs with the same abbrev offset have the same
8254 stmt_list value too so in practice this should work well.
8256 The basic algorithm here is:
8258 sort TUs by abbrev table
8259 for each TU with same abbrev table:
8260 read abbrev table if first user
8261 read TU top level DIE
8262 [IWBN if DWO skeletons had DW_AT_stmt_list]
8265 if (dwarf_read_debug)
8266 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8268 /* Sort in a separate table to maintain the order of all_type_units
8269 for .gdb_index: TU indices directly index all_type_units. */
8270 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8271 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8273 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8274 sorted_by_abbrev.emplace_back
8275 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8276 sig_type->per_cu.section,
8277 sig_type->per_cu.sect_off));
8279 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8280 sort_tu_by_abbrev_offset);
8282 abbrev_offset = (sect_offset) ~(unsigned) 0;
8284 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8286 /* Switch to the next abbrev table if necessary. */
8287 if (abbrev_table == NULL
8288 || tu.abbrev_offset != abbrev_offset)
8290 abbrev_offset = tu.abbrev_offset;
8292 abbrev_table_read_table (dwarf2_per_objfile,
8293 &dwarf2_per_objfile->abbrev,
8295 ++tu_stats->nr_uniq_abbrev_tables;
8298 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8299 0, 0, false, build_type_psymtabs_reader, NULL);
8303 /* Print collected type unit statistics. */
8306 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8308 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8310 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8311 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8312 dwarf2_per_objfile->all_type_units.size ());
8313 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8314 tu_stats->nr_uniq_abbrev_tables);
8315 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8316 tu_stats->nr_symtabs);
8317 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8318 tu_stats->nr_symtab_sharers);
8319 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8320 tu_stats->nr_stmt_less_type_units);
8321 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8322 tu_stats->nr_all_type_units_reallocs);
8325 /* Traversal function for build_type_psymtabs. */
8328 build_type_psymtab_dependencies (void **slot, void *info)
8330 struct dwarf2_per_objfile *dwarf2_per_objfile
8331 = (struct dwarf2_per_objfile *) info;
8332 struct objfile *objfile = dwarf2_per_objfile->objfile;
8333 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8334 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8335 struct partial_symtab *pst = per_cu->v.psymtab;
8336 int len = VEC_length (sig_type_ptr, tu_group->tus);
8337 struct signatured_type *iter;
8340 gdb_assert (len > 0);
8341 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8343 pst->number_of_dependencies = len;
8344 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8346 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8349 gdb_assert (iter->per_cu.is_debug_types);
8350 pst->dependencies[i] = iter->per_cu.v.psymtab;
8351 iter->type_unit_group = tu_group;
8354 VEC_free (sig_type_ptr, tu_group->tus);
8359 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8360 Build partial symbol tables for the .debug_types comp-units. */
8363 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8365 if (! create_all_type_units (dwarf2_per_objfile))
8368 build_type_psymtabs_1 (dwarf2_per_objfile);
8371 /* Traversal function for process_skeletonless_type_unit.
8372 Read a TU in a DWO file and build partial symbols for it. */
8375 process_skeletonless_type_unit (void **slot, void *info)
8377 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8378 struct dwarf2_per_objfile *dwarf2_per_objfile
8379 = (struct dwarf2_per_objfile *) info;
8380 struct signatured_type find_entry, *entry;
8382 /* If this TU doesn't exist in the global table, add it and read it in. */
8384 if (dwarf2_per_objfile->signatured_types == NULL)
8386 dwarf2_per_objfile->signatured_types
8387 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8390 find_entry.signature = dwo_unit->signature;
8391 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8393 /* If we've already seen this type there's nothing to do. What's happening
8394 is we're doing our own version of comdat-folding here. */
8398 /* This does the job that create_all_type_units would have done for
8400 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8404 /* This does the job that build_type_psymtabs_1 would have done. */
8405 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8406 build_type_psymtabs_reader, NULL);
8411 /* Traversal function for process_skeletonless_type_units. */
8414 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8416 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8418 if (dwo_file->tus != NULL)
8420 htab_traverse_noresize (dwo_file->tus,
8421 process_skeletonless_type_unit, info);
8427 /* Scan all TUs of DWO files, verifying we've processed them.
8428 This is needed in case a TU was emitted without its skeleton.
8429 Note: This can't be done until we know what all the DWO files are. */
8432 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8434 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8435 if (get_dwp_file (dwarf2_per_objfile) == NULL
8436 && dwarf2_per_objfile->dwo_files != NULL)
8438 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8439 process_dwo_file_for_skeletonless_type_units,
8440 dwarf2_per_objfile);
8444 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8447 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8449 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8451 struct partial_symtab *pst = per_cu->v.psymtab;
8456 for (int j = 0; j < pst->number_of_dependencies; ++j)
8458 /* Set the 'user' field only if it is not already set. */
8459 if (pst->dependencies[j]->user == NULL)
8460 pst->dependencies[j]->user = pst;
8465 /* Build the partial symbol table by doing a quick pass through the
8466 .debug_info and .debug_abbrev sections. */
8469 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8471 struct objfile *objfile = dwarf2_per_objfile->objfile;
8473 if (dwarf_read_debug)
8475 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8476 objfile_name (objfile));
8479 dwarf2_per_objfile->reading_partial_symbols = 1;
8481 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8483 /* Any cached compilation units will be linked by the per-objfile
8484 read_in_chain. Make sure to free them when we're done. */
8485 free_cached_comp_units freer (dwarf2_per_objfile);
8487 build_type_psymtabs (dwarf2_per_objfile);
8489 create_all_comp_units (dwarf2_per_objfile);
8491 /* Create a temporary address map on a temporary obstack. We later
8492 copy this to the final obstack. */
8493 auto_obstack temp_obstack;
8495 scoped_restore save_psymtabs_addrmap
8496 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8497 addrmap_create_mutable (&temp_obstack));
8499 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8502 /* This has to wait until we read the CUs, we need the list of DWOs. */
8503 process_skeletonless_type_units (dwarf2_per_objfile);
8505 /* Now that all TUs have been processed we can fill in the dependencies. */
8506 if (dwarf2_per_objfile->type_unit_groups != NULL)
8508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8509 build_type_psymtab_dependencies, dwarf2_per_objfile);
8512 if (dwarf_read_debug)
8513 print_tu_stats (dwarf2_per_objfile);
8515 set_partial_user (dwarf2_per_objfile);
8517 objfile->partial_symtabs->psymtabs_addrmap
8518 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8519 objfile->partial_symtabs->obstack ());
8520 /* At this point we want to keep the address map. */
8521 save_psymtabs_addrmap.release ();
8523 if (dwarf_read_debug)
8524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8525 objfile_name (objfile));
8528 /* die_reader_func for load_partial_comp_unit. */
8531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8532 const gdb_byte *info_ptr,
8533 struct die_info *comp_unit_die,
8537 struct dwarf2_cu *cu = reader->cu;
8539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8541 /* Check if comp unit has_children.
8542 If so, read the rest of the partial symbols from this comp unit.
8543 If not, there's no more debug_info for this comp unit. */
8545 load_partial_dies (reader, info_ptr, 0);
8548 /* Load the partial DIEs for a secondary CU into memory.
8549 This is also used when rereading a primary CU with load_all_dies. */
8552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8554 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8555 load_partial_comp_unit_reader, NULL);
8559 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8560 struct dwarf2_section_info *section,
8561 struct dwarf2_section_info *abbrev_section,
8562 unsigned int is_dwz)
8564 const gdb_byte *info_ptr;
8565 struct objfile *objfile = dwarf2_per_objfile->objfile;
8567 if (dwarf_read_debug)
8568 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8569 get_section_name (section),
8570 get_section_file_name (section));
8572 dwarf2_read_section (objfile, section);
8574 info_ptr = section->buffer;
8576 while (info_ptr < section->buffer + section->size)
8578 struct dwarf2_per_cu_data *this_cu;
8580 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8582 comp_unit_head cu_header;
8583 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8584 abbrev_section, info_ptr,
8585 rcuh_kind::COMPILE);
8587 /* Save the compilation unit for later lookup. */
8588 if (cu_header.unit_type != DW_UT_type)
8590 this_cu = XOBNEW (&objfile->objfile_obstack,
8591 struct dwarf2_per_cu_data);
8592 memset (this_cu, 0, sizeof (*this_cu));
8596 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8597 struct signatured_type);
8598 memset (sig_type, 0, sizeof (*sig_type));
8599 sig_type->signature = cu_header.signature;
8600 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8601 this_cu = &sig_type->per_cu;
8603 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8604 this_cu->sect_off = sect_off;
8605 this_cu->length = cu_header.length + cu_header.initial_length_size;
8606 this_cu->is_dwz = is_dwz;
8607 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8608 this_cu->section = section;
8610 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8612 info_ptr = info_ptr + this_cu->length;
8616 /* Create a list of all compilation units in OBJFILE.
8617 This is only done for -readnow and building partial symtabs. */
8620 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8622 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8623 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8624 &dwarf2_per_objfile->abbrev, 0);
8626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8632 /* Process all loaded DIEs for compilation unit CU, starting at
8633 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8634 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8635 DW_AT_ranges). See the comments of add_partial_subprogram on how
8636 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8639 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8640 CORE_ADDR *highpc, int set_addrmap,
8641 struct dwarf2_cu *cu)
8643 struct partial_die_info *pdi;
8645 /* Now, march along the PDI's, descending into ones which have
8646 interesting children but skipping the children of the other ones,
8647 until we reach the end of the compilation unit. */
8655 /* Anonymous namespaces or modules have no name but have interesting
8656 children, so we need to look at them. Ditto for anonymous
8659 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8660 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8661 || pdi->tag == DW_TAG_imported_unit
8662 || pdi->tag == DW_TAG_inlined_subroutine)
8666 case DW_TAG_subprogram:
8667 case DW_TAG_inlined_subroutine:
8668 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8670 case DW_TAG_constant:
8671 case DW_TAG_variable:
8672 case DW_TAG_typedef:
8673 case DW_TAG_union_type:
8674 if (!pdi->is_declaration)
8676 add_partial_symbol (pdi, cu);
8679 case DW_TAG_class_type:
8680 case DW_TAG_interface_type:
8681 case DW_TAG_structure_type:
8682 if (!pdi->is_declaration)
8684 add_partial_symbol (pdi, cu);
8686 if ((cu->language == language_rust
8687 || cu->language == language_cplus) && pdi->has_children)
8688 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8691 case DW_TAG_enumeration_type:
8692 if (!pdi->is_declaration)
8693 add_partial_enumeration (pdi, cu);
8695 case DW_TAG_base_type:
8696 case DW_TAG_subrange_type:
8697 /* File scope base type definitions are added to the partial
8699 add_partial_symbol (pdi, cu);
8701 case DW_TAG_namespace:
8702 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8705 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8707 case DW_TAG_imported_unit:
8709 struct dwarf2_per_cu_data *per_cu;
8711 /* For now we don't handle imported units in type units. */
8712 if (cu->per_cu->is_debug_types)
8714 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8715 " supported in type units [in module %s]"),
8716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8719 per_cu = dwarf2_find_containing_comp_unit
8720 (pdi->d.sect_off, pdi->is_dwz,
8721 cu->per_cu->dwarf2_per_objfile);
8723 /* Go read the partial unit, if needed. */
8724 if (per_cu->v.psymtab == NULL)
8725 process_psymtab_comp_unit (per_cu, 1, cu->language);
8727 VEC_safe_push (dwarf2_per_cu_ptr,
8728 cu->per_cu->imported_symtabs, per_cu);
8731 case DW_TAG_imported_declaration:
8732 add_partial_symbol (pdi, cu);
8739 /* If the die has a sibling, skip to the sibling. */
8741 pdi = pdi->die_sibling;
8745 /* Functions used to compute the fully scoped name of a partial DIE.
8747 Normally, this is simple. For C++, the parent DIE's fully scoped
8748 name is concatenated with "::" and the partial DIE's name.
8749 Enumerators are an exception; they use the scope of their parent
8750 enumeration type, i.e. the name of the enumeration type is not
8751 prepended to the enumerator.
8753 There are two complexities. One is DW_AT_specification; in this
8754 case "parent" means the parent of the target of the specification,
8755 instead of the direct parent of the DIE. The other is compilers
8756 which do not emit DW_TAG_namespace; in this case we try to guess
8757 the fully qualified name of structure types from their members'
8758 linkage names. This must be done using the DIE's children rather
8759 than the children of any DW_AT_specification target. We only need
8760 to do this for structures at the top level, i.e. if the target of
8761 any DW_AT_specification (if any; otherwise the DIE itself) does not
8764 /* Compute the scope prefix associated with PDI's parent, in
8765 compilation unit CU. The result will be allocated on CU's
8766 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8767 field. NULL is returned if no prefix is necessary. */
8769 partial_die_parent_scope (struct partial_die_info *pdi,
8770 struct dwarf2_cu *cu)
8772 const char *grandparent_scope;
8773 struct partial_die_info *parent, *real_pdi;
8775 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8776 then this means the parent of the specification DIE. */
8779 while (real_pdi->has_specification)
8781 auto res = find_partial_die (real_pdi->spec_offset,
8782 real_pdi->spec_is_dwz, cu);
8787 parent = real_pdi->die_parent;
8791 if (parent->scope_set)
8792 return parent->scope;
8796 grandparent_scope = partial_die_parent_scope (parent, cu);
8798 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8799 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8800 Work around this problem here. */
8801 if (cu->language == language_cplus
8802 && parent->tag == DW_TAG_namespace
8803 && strcmp (parent->name, "::") == 0
8804 && grandparent_scope == NULL)
8806 parent->scope = NULL;
8807 parent->scope_set = 1;
8811 if (pdi->tag == DW_TAG_enumerator)
8812 /* Enumerators should not get the name of the enumeration as a prefix. */
8813 parent->scope = grandparent_scope;
8814 else if (parent->tag == DW_TAG_namespace
8815 || parent->tag == DW_TAG_module
8816 || parent->tag == DW_TAG_structure_type
8817 || parent->tag == DW_TAG_class_type
8818 || parent->tag == DW_TAG_interface_type
8819 || parent->tag == DW_TAG_union_type
8820 || parent->tag == DW_TAG_enumeration_type)
8822 if (grandparent_scope == NULL)
8823 parent->scope = parent->name;
8825 parent->scope = typename_concat (&cu->comp_unit_obstack,
8827 parent->name, 0, cu);
8831 /* FIXME drow/2004-04-01: What should we be doing with
8832 function-local names? For partial symbols, we should probably be
8834 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8835 dwarf_tag_name (parent->tag),
8836 sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8840 parent->scope_set = 1;
8841 return parent->scope;
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8851 const char *parent_scope;
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8892 const char *actual_name = NULL;
8894 char *built_actual_name;
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8911 if (pdi->is_external || cu->language == language_ada)
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8923 cu->language, objfile);
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8946 case DW_TAG_variable:
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8952 && !dwarf2_per_objfile->has_section_at_zero)
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8959 else if (pdi->is_external)
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8984 int has_loc = pdi->d.locdesc != NULL;
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8990 xfree (built_actual_name);
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
9000 cu->language, objfile);
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9021 /* With Fortran 77 there might be a "BLOCK DATA" module
9022 available without any name. If so, we skip the module as it
9023 doesn't bring any value. */
9024 if (actual_name != nullptr)
9025 add_psymbol_to_list (actual_name, strlen (actual_name),
9026 built_actual_name != NULL,
9027 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9028 psymbol_placement::GLOBAL,
9029 0, cu->language, objfile);
9031 case DW_TAG_class_type:
9032 case DW_TAG_interface_type:
9033 case DW_TAG_structure_type:
9034 case DW_TAG_union_type:
9035 case DW_TAG_enumeration_type:
9036 /* Skip external references. The DWARF standard says in the section
9037 about "Structure, Union, and Class Type Entries": "An incomplete
9038 structure, union or class type is represented by a structure,
9039 union or class entry that does not have a byte size attribute
9040 and that has a DW_AT_declaration attribute." */
9041 if (!pdi->has_byte_size && pdi->is_declaration)
9043 xfree (built_actual_name);
9047 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9048 static vs. global. */
9049 add_psymbol_to_list (actual_name, strlen (actual_name),
9050 built_actual_name != NULL,
9051 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9052 cu->language == language_cplus
9053 ? psymbol_placement::GLOBAL
9054 : psymbol_placement::STATIC,
9055 0, cu->language, objfile);
9058 case DW_TAG_enumerator:
9059 add_psymbol_to_list (actual_name, strlen (actual_name),
9060 built_actual_name != NULL,
9061 VAR_DOMAIN, LOC_CONST, -1,
9062 cu->language == language_cplus
9063 ? psymbol_placement::GLOBAL
9064 : psymbol_placement::STATIC,
9065 0, cu->language, objfile);
9071 xfree (built_actual_name);
9074 /* Read a partial die corresponding to a namespace; also, add a symbol
9075 corresponding to that namespace to the symbol table. NAMESPACE is
9076 the name of the enclosing namespace. */
9079 add_partial_namespace (struct partial_die_info *pdi,
9080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9081 int set_addrmap, struct dwarf2_cu *cu)
9083 /* Add a symbol for the namespace. */
9085 add_partial_symbol (pdi, cu);
9087 /* Now scan partial symbols in that namespace. */
9089 if (pdi->has_children)
9090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9093 /* Read a partial die corresponding to a Fortran module. */
9096 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9097 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9099 /* Add a symbol for the namespace. */
9101 add_partial_symbol (pdi, cu);
9103 /* Now scan partial symbols in that module. */
9105 if (pdi->has_children)
9106 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9109 /* Read a partial die corresponding to a subprogram or an inlined
9110 subprogram and create a partial symbol for that subprogram.
9111 When the CU language allows it, this routine also defines a partial
9112 symbol for each nested subprogram that this subprogram contains.
9113 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9114 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9116 PDI may also be a lexical block, in which case we simply search
9117 recursively for subprograms defined inside that lexical block.
9118 Again, this is only performed when the CU language allows this
9119 type of definitions. */
9122 add_partial_subprogram (struct partial_die_info *pdi,
9123 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9124 int set_addrmap, struct dwarf2_cu *cu)
9126 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9128 if (pdi->has_pc_info)
9130 if (pdi->lowpc < *lowpc)
9131 *lowpc = pdi->lowpc;
9132 if (pdi->highpc > *highpc)
9133 *highpc = pdi->highpc;
9136 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9139 CORE_ADDR this_highpc;
9140 CORE_ADDR this_lowpc;
9142 baseaddr = ANOFFSET (objfile->section_offsets,
9143 SECT_OFF_TEXT (objfile));
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->lowpc + baseaddr)
9149 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9150 pdi->highpc + baseaddr)
9152 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9153 this_lowpc, this_highpc - 1,
9154 cu->per_cu->v.psymtab);
9158 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9160 if (!pdi->is_declaration)
9161 /* Ignore subprogram DIEs that do not have a name, they are
9162 illegal. Do not emit a complaint at this point, we will
9163 do so when we convert this psymtab into a symtab. */
9165 add_partial_symbol (pdi, cu);
9169 if (! pdi->has_children)
9172 if (cu->language == language_ada)
9174 pdi = pdi->die_child;
9178 if (pdi->tag == DW_TAG_subprogram
9179 || pdi->tag == DW_TAG_inlined_subroutine
9180 || pdi->tag == DW_TAG_lexical_block)
9181 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9182 pdi = pdi->die_sibling;
9187 /* Read a partial die corresponding to an enumeration type. */
9190 add_partial_enumeration (struct partial_die_info *enum_pdi,
9191 struct dwarf2_cu *cu)
9193 struct partial_die_info *pdi;
9195 if (enum_pdi->name != NULL)
9196 add_partial_symbol (enum_pdi, cu);
9198 pdi = enum_pdi->die_child;
9201 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9202 complaint (_("malformed enumerator DIE ignored"));
9204 add_partial_symbol (pdi, cu);
9205 pdi = pdi->die_sibling;
9209 /* Return the initial uleb128 in the die at INFO_PTR. */
9212 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9214 unsigned int bytes_read;
9216 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9219 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9220 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9222 Return the corresponding abbrev, or NULL if the number is zero (indicating
9223 an empty DIE). In either case *BYTES_READ will be set to the length of
9224 the initial number. */
9226 static struct abbrev_info *
9227 peek_die_abbrev (const die_reader_specs &reader,
9228 const gdb_byte *info_ptr, unsigned int *bytes_read)
9230 dwarf2_cu *cu = reader.cu;
9231 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9232 unsigned int abbrev_number
9233 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9235 if (abbrev_number == 0)
9238 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9241 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9242 " at offset %s [in module %s]"),
9243 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9244 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9250 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9251 Returns a pointer to the end of a series of DIEs, terminated by an empty
9252 DIE. Any children of the skipped DIEs will also be skipped. */
9254 static const gdb_byte *
9255 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9259 unsigned int bytes_read;
9260 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9263 return info_ptr + bytes_read;
9265 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9269 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9270 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9271 abbrev corresponding to that skipped uleb128 should be passed in
9272 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9275 static const gdb_byte *
9276 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9277 struct abbrev_info *abbrev)
9279 unsigned int bytes_read;
9280 struct attribute attr;
9281 bfd *abfd = reader->abfd;
9282 struct dwarf2_cu *cu = reader->cu;
9283 const gdb_byte *buffer = reader->buffer;
9284 const gdb_byte *buffer_end = reader->buffer_end;
9285 unsigned int form, i;
9287 for (i = 0; i < abbrev->num_attrs; i++)
9289 /* The only abbrev we care about is DW_AT_sibling. */
9290 if (abbrev->attrs[i].name == DW_AT_sibling)
9292 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9293 if (attr.form == DW_FORM_ref_addr)
9294 complaint (_("ignoring absolute DW_AT_sibling"));
9297 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9298 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9300 if (sibling_ptr < info_ptr)
9301 complaint (_("DW_AT_sibling points backwards"));
9302 else if (sibling_ptr > reader->buffer_end)
9303 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9309 /* If it isn't DW_AT_sibling, skip this attribute. */
9310 form = abbrev->attrs[i].form;
9314 case DW_FORM_ref_addr:
9315 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9316 and later it is offset sized. */
9317 if (cu->header.version == 2)
9318 info_ptr += cu->header.addr_size;
9320 info_ptr += cu->header.offset_size;
9322 case DW_FORM_GNU_ref_alt:
9323 info_ptr += cu->header.offset_size;
9326 info_ptr += cu->header.addr_size;
9333 case DW_FORM_flag_present:
9334 case DW_FORM_implicit_const:
9346 case DW_FORM_ref_sig8:
9349 case DW_FORM_data16:
9352 case DW_FORM_string:
9353 read_direct_string (abfd, info_ptr, &bytes_read);
9354 info_ptr += bytes_read;
9356 case DW_FORM_sec_offset:
9358 case DW_FORM_GNU_strp_alt:
9359 info_ptr += cu->header.offset_size;
9361 case DW_FORM_exprloc:
9363 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9364 info_ptr += bytes_read;
9366 case DW_FORM_block1:
9367 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9369 case DW_FORM_block2:
9370 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9372 case DW_FORM_block4:
9373 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9379 case DW_FORM_ref_udata:
9380 case DW_FORM_GNU_addr_index:
9381 case DW_FORM_GNU_str_index:
9382 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9384 case DW_FORM_indirect:
9385 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9386 info_ptr += bytes_read;
9387 /* We need to continue parsing from here, so just go back to
9389 goto skip_attribute;
9392 error (_("Dwarf Error: Cannot handle %s "
9393 "in DWARF reader [in module %s]"),
9394 dwarf_form_name (form),
9395 bfd_get_filename (abfd));
9399 if (abbrev->has_children)
9400 return skip_children (reader, info_ptr);
9405 /* Locate ORIG_PDI's sibling.
9406 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9408 static const gdb_byte *
9409 locate_pdi_sibling (const struct die_reader_specs *reader,
9410 struct partial_die_info *orig_pdi,
9411 const gdb_byte *info_ptr)
9413 /* Do we know the sibling already? */
9415 if (orig_pdi->sibling)
9416 return orig_pdi->sibling;
9418 /* Are there any children to deal with? */
9420 if (!orig_pdi->has_children)
9423 /* Skip the children the long way. */
9425 return skip_children (reader, info_ptr);
9428 /* Expand this partial symbol table into a full symbol table. SELF is
9432 dwarf2_read_symtab (struct partial_symtab *self,
9433 struct objfile *objfile)
9435 struct dwarf2_per_objfile *dwarf2_per_objfile
9436 = get_dwarf2_per_objfile (objfile);
9440 warning (_("bug: psymtab for %s is already read in."),
9447 printf_filtered (_("Reading in symbols for %s..."),
9449 gdb_flush (gdb_stdout);
9452 /* If this psymtab is constructed from a debug-only objfile, the
9453 has_section_at_zero flag will not necessarily be correct. We
9454 can get the correct value for this flag by looking at the data
9455 associated with the (presumably stripped) associated objfile. */
9456 if (objfile->separate_debug_objfile_backlink)
9458 struct dwarf2_per_objfile *dpo_backlink
9459 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9461 dwarf2_per_objfile->has_section_at_zero
9462 = dpo_backlink->has_section_at_zero;
9465 dwarf2_per_objfile->reading_partial_symbols = 0;
9467 psymtab_to_symtab_1 (self);
9469 /* Finish up the debug error message. */
9471 printf_filtered (_("done.\n"));
9474 process_cu_includes (dwarf2_per_objfile);
9477 /* Reading in full CUs. */
9479 /* Add PER_CU to the queue. */
9482 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9483 enum language pretend_language)
9485 struct dwarf2_queue_item *item;
9488 item = XNEW (struct dwarf2_queue_item);
9489 item->per_cu = per_cu;
9490 item->pretend_language = pretend_language;
9493 if (dwarf2_queue == NULL)
9494 dwarf2_queue = item;
9496 dwarf2_queue_tail->next = item;
9498 dwarf2_queue_tail = item;
9501 /* If PER_CU is not yet queued, add it to the queue.
9502 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9504 The result is non-zero if PER_CU was queued, otherwise the result is zero
9505 meaning either PER_CU is already queued or it is already loaded.
9507 N.B. There is an invariant here that if a CU is queued then it is loaded.
9508 The caller is required to load PER_CU if we return non-zero. */
9511 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9512 struct dwarf2_per_cu_data *per_cu,
9513 enum language pretend_language)
9515 /* We may arrive here during partial symbol reading, if we need full
9516 DIEs to process an unusual case (e.g. template arguments). Do
9517 not queue PER_CU, just tell our caller to load its DIEs. */
9518 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9520 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9525 /* Mark the dependence relation so that we don't flush PER_CU
9527 if (dependent_cu != NULL)
9528 dwarf2_add_dependence (dependent_cu, per_cu);
9530 /* If it's already on the queue, we have nothing to do. */
9534 /* If the compilation unit is already loaded, just mark it as
9536 if (per_cu->cu != NULL)
9538 per_cu->cu->last_used = 0;
9542 /* Add it to the queue. */
9543 queue_comp_unit (per_cu, pretend_language);
9548 /* Process the queue. */
9551 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9553 struct dwarf2_queue_item *item, *next_item;
9555 if (dwarf_read_debug)
9557 fprintf_unfiltered (gdb_stdlog,
9558 "Expanding one or more symtabs of objfile %s ...\n",
9559 objfile_name (dwarf2_per_objfile->objfile));
9562 /* The queue starts out with one item, but following a DIE reference
9563 may load a new CU, adding it to the end of the queue. */
9564 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9566 if ((dwarf2_per_objfile->using_index
9567 ? !item->per_cu->v.quick->compunit_symtab
9568 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9569 /* Skip dummy CUs. */
9570 && item->per_cu->cu != NULL)
9572 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9573 unsigned int debug_print_threshold;
9576 if (per_cu->is_debug_types)
9578 struct signatured_type *sig_type =
9579 (struct signatured_type *) per_cu;
9581 sprintf (buf, "TU %s at offset %s",
9582 hex_string (sig_type->signature),
9583 sect_offset_str (per_cu->sect_off));
9584 /* There can be 100s of TUs.
9585 Only print them in verbose mode. */
9586 debug_print_threshold = 2;
9590 sprintf (buf, "CU at offset %s",
9591 sect_offset_str (per_cu->sect_off));
9592 debug_print_threshold = 1;
9595 if (dwarf_read_debug >= debug_print_threshold)
9596 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9598 if (per_cu->is_debug_types)
9599 process_full_type_unit (per_cu, item->pretend_language);
9601 process_full_comp_unit (per_cu, item->pretend_language);
9603 if (dwarf_read_debug >= debug_print_threshold)
9604 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9607 item->per_cu->queued = 0;
9608 next_item = item->next;
9612 dwarf2_queue_tail = NULL;
9614 if (dwarf_read_debug)
9616 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9617 objfile_name (dwarf2_per_objfile->objfile));
9621 /* Read in full symbols for PST, and anything it depends on. */
9624 psymtab_to_symtab_1 (struct partial_symtab *pst)
9626 struct dwarf2_per_cu_data *per_cu;
9632 for (i = 0; i < pst->number_of_dependencies; i++)
9633 if (!pst->dependencies[i]->readin
9634 && pst->dependencies[i]->user == NULL)
9636 /* Inform about additional files that need to be read in. */
9639 /* FIXME: i18n: Need to make this a single string. */
9640 fputs_filtered (" ", gdb_stdout);
9642 fputs_filtered ("and ", gdb_stdout);
9644 printf_filtered ("%s...", pst->dependencies[i]->filename);
9645 wrap_here (""); /* Flush output. */
9646 gdb_flush (gdb_stdout);
9648 psymtab_to_symtab_1 (pst->dependencies[i]);
9651 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9655 /* It's an include file, no symbols to read for it.
9656 Everything is in the parent symtab. */
9661 dw2_do_instantiate_symtab (per_cu, false);
9664 /* Trivial hash function for die_info: the hash value of a DIE
9665 is its offset in .debug_info for this objfile. */
9668 die_hash (const void *item)
9670 const struct die_info *die = (const struct die_info *) item;
9672 return to_underlying (die->sect_off);
9675 /* Trivial comparison function for die_info structures: two DIEs
9676 are equal if they have the same offset. */
9679 die_eq (const void *item_lhs, const void *item_rhs)
9681 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9682 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9684 return die_lhs->sect_off == die_rhs->sect_off;
9687 /* die_reader_func for load_full_comp_unit.
9688 This is identical to read_signatured_type_reader,
9689 but is kept separate for now. */
9692 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9693 const gdb_byte *info_ptr,
9694 struct die_info *comp_unit_die,
9698 struct dwarf2_cu *cu = reader->cu;
9699 enum language *language_ptr = (enum language *) data;
9701 gdb_assert (cu->die_hash == NULL);
9703 htab_create_alloc_ex (cu->header.length / 12,
9707 &cu->comp_unit_obstack,
9708 hashtab_obstack_allocate,
9709 dummy_obstack_deallocate);
9712 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9713 &info_ptr, comp_unit_die);
9714 cu->dies = comp_unit_die;
9715 /* comp_unit_die is not stored in die_hash, no need. */
9717 /* We try not to read any attributes in this function, because not
9718 all CUs needed for references have been loaded yet, and symbol
9719 table processing isn't initialized. But we have to set the CU language,
9720 or we won't be able to build types correctly.
9721 Similarly, if we do not read the producer, we can not apply
9722 producer-specific interpretation. */
9723 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9726 /* Load the DIEs associated with PER_CU into memory. */
9729 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9731 enum language pretend_language)
9733 gdb_assert (! this_cu->is_debug_types);
9735 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9736 load_full_comp_unit_reader, &pretend_language);
9739 /* Add a DIE to the delayed physname list. */
9742 add_to_method_list (struct type *type, int fnfield_index, int index,
9743 const char *name, struct die_info *die,
9744 struct dwarf2_cu *cu)
9746 struct delayed_method_info mi;
9748 mi.fnfield_index = fnfield_index;
9752 cu->method_list.push_back (mi);
9755 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9756 "const" / "volatile". If so, decrements LEN by the length of the
9757 modifier and return true. Otherwise return false. */
9761 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9763 size_t mod_len = sizeof (mod) - 1;
9764 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9772 /* Compute the physnames of any methods on the CU's method list.
9774 The computation of method physnames is delayed in order to avoid the
9775 (bad) condition that one of the method's formal parameters is of an as yet
9779 compute_delayed_physnames (struct dwarf2_cu *cu)
9781 /* Only C++ delays computing physnames. */
9782 if (cu->method_list.empty ())
9784 gdb_assert (cu->language == language_cplus);
9786 for (const delayed_method_info &mi : cu->method_list)
9788 const char *physname;
9789 struct fn_fieldlist *fn_flp
9790 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9791 physname = dwarf2_physname (mi.name, mi.die, cu);
9792 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9793 = physname ? physname : "";
9795 /* Since there's no tag to indicate whether a method is a
9796 const/volatile overload, extract that information out of the
9798 if (physname != NULL)
9800 size_t len = strlen (physname);
9804 if (physname[len] == ')') /* shortcut */
9806 else if (check_modifier (physname, len, " const"))
9807 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9808 else if (check_modifier (physname, len, " volatile"))
9809 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9816 /* The list is no longer needed. */
9817 cu->method_list.clear ();
9820 /* Go objects should be embedded in a DW_TAG_module DIE,
9821 and it's not clear if/how imported objects will appear.
9822 To keep Go support simple until that's worked out,
9823 go back through what we've read and create something usable.
9824 We could do this while processing each DIE, and feels kinda cleaner,
9825 but that way is more invasive.
9826 This is to, for example, allow the user to type "p var" or "b main"
9827 without having to specify the package name, and allow lookups
9828 of module.object to work in contexts that use the expression
9832 fixup_go_packaging (struct dwarf2_cu *cu)
9834 char *package_name = NULL;
9835 struct pending *list;
9838 for (list = *cu->get_builder ()->get_global_symbols ();
9842 for (i = 0; i < list->nsyms; ++i)
9844 struct symbol *sym = list->symbol[i];
9846 if (SYMBOL_LANGUAGE (sym) == language_go
9847 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9849 char *this_package_name = go_symbol_package_name (sym);
9851 if (this_package_name == NULL)
9853 if (package_name == NULL)
9854 package_name = this_package_name;
9857 struct objfile *objfile
9858 = cu->per_cu->dwarf2_per_objfile->objfile;
9859 if (strcmp (package_name, this_package_name) != 0)
9860 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9861 (symbol_symtab (sym) != NULL
9862 ? symtab_to_filename_for_display
9863 (symbol_symtab (sym))
9864 : objfile_name (objfile)),
9865 this_package_name, package_name);
9866 xfree (this_package_name);
9872 if (package_name != NULL)
9874 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9875 const char *saved_package_name
9876 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9878 strlen (package_name));
9879 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9880 saved_package_name);
9883 sym = allocate_symbol (objfile);
9884 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9885 SYMBOL_SET_NAMES (sym, saved_package_name,
9886 strlen (saved_package_name), 0, objfile);
9887 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9888 e.g., "main" finds the "main" module and not C's main(). */
9889 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9890 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9891 SYMBOL_TYPE (sym) = type;
9893 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9895 xfree (package_name);
9899 /* Allocate a fully-qualified name consisting of the two parts on the
9903 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9905 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9908 /* A helper that allocates a struct discriminant_info to attach to a
9911 static struct discriminant_info *
9912 alloc_discriminant_info (struct type *type, int discriminant_index,
9915 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9916 gdb_assert (discriminant_index == -1
9917 || (discriminant_index >= 0
9918 && discriminant_index < TYPE_NFIELDS (type)));
9919 gdb_assert (default_index == -1
9920 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9922 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9924 struct discriminant_info *disc
9925 = ((struct discriminant_info *)
9927 offsetof (struct discriminant_info, discriminants)
9928 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9929 disc->default_index = default_index;
9930 disc->discriminant_index = discriminant_index;
9932 struct dynamic_prop prop;
9933 prop.kind = PROP_UNDEFINED;
9934 prop.data.baton = disc;
9936 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9941 /* Some versions of rustc emitted enums in an unusual way.
9943 Ordinary enums were emitted as unions. The first element of each
9944 structure in the union was named "RUST$ENUM$DISR". This element
9945 held the discriminant.
9947 These versions of Rust also implemented the "non-zero"
9948 optimization. When the enum had two values, and one is empty and
9949 the other holds a pointer that cannot be zero, the pointer is used
9950 as the discriminant, with a zero value meaning the empty variant.
9951 Here, the union's first member is of the form
9952 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9953 where the fieldnos are the indices of the fields that should be
9954 traversed in order to find the field (which may be several fields deep)
9955 and the variantname is the name of the variant of the case when the
9958 This function recognizes whether TYPE is of one of these forms,
9959 and, if so, smashes it to be a variant type. */
9962 quirk_rust_enum (struct type *type, struct objfile *objfile)
9964 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9966 /* We don't need to deal with empty enums. */
9967 if (TYPE_NFIELDS (type) == 0)
9970 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9971 if (TYPE_NFIELDS (type) == 1
9972 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9974 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9976 /* Decode the field name to find the offset of the
9978 ULONGEST bit_offset = 0;
9979 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9980 while (name[0] >= '0' && name[0] <= '9')
9983 unsigned long index = strtoul (name, &tail, 10);
9986 || index >= TYPE_NFIELDS (field_type)
9987 || (TYPE_FIELD_LOC_KIND (field_type, index)
9988 != FIELD_LOC_KIND_BITPOS))
9990 complaint (_("Could not parse Rust enum encoding string \"%s\""
9992 TYPE_FIELD_NAME (type, 0),
9993 objfile_name (objfile));
9998 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9999 field_type = TYPE_FIELD_TYPE (field_type, index);
10002 /* Make a union to hold the variants. */
10003 struct type *union_type = alloc_type (objfile);
10004 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10005 TYPE_NFIELDS (union_type) = 3;
10006 TYPE_FIELDS (union_type)
10007 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10008 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10009 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10011 /* Put the discriminant must at index 0. */
10012 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10013 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10014 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10015 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10017 /* The order of fields doesn't really matter, so put the real
10018 field at index 1 and the data-less field at index 2. */
10019 struct discriminant_info *disc
10020 = alloc_discriminant_info (union_type, 0, 1);
10021 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10022 TYPE_FIELD_NAME (union_type, 1)
10023 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10024 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10025 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10026 TYPE_FIELD_NAME (union_type, 1));
10028 const char *dataless_name
10029 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10031 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10033 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10034 /* NAME points into the original discriminant name, which
10035 already has the correct lifetime. */
10036 TYPE_FIELD_NAME (union_type, 2) = name;
10037 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10038 disc->discriminants[2] = 0;
10040 /* Smash this type to be a structure type. We have to do this
10041 because the type has already been recorded. */
10042 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10043 TYPE_NFIELDS (type) = 1;
10045 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10047 /* Install the variant part. */
10048 TYPE_FIELD_TYPE (type, 0) = union_type;
10049 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10050 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10052 else if (TYPE_NFIELDS (type) == 1)
10054 /* We assume that a union with a single field is a univariant
10056 /* Smash this type to be a structure type. We have to do this
10057 because the type has already been recorded. */
10058 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10060 /* Make a union to hold the variants. */
10061 struct type *union_type = alloc_type (objfile);
10062 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10063 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10064 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10065 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10066 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10068 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10069 const char *variant_name
10070 = rust_last_path_segment (TYPE_NAME (field_type));
10071 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10072 TYPE_NAME (field_type)
10073 = rust_fully_qualify (&objfile->objfile_obstack,
10074 TYPE_NAME (type), variant_name);
10076 /* Install the union in the outer struct type. */
10077 TYPE_NFIELDS (type) = 1;
10079 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10080 TYPE_FIELD_TYPE (type, 0) = union_type;
10081 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10082 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10084 alloc_discriminant_info (union_type, -1, 0);
10088 struct type *disr_type = nullptr;
10089 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10091 disr_type = TYPE_FIELD_TYPE (type, i);
10093 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10095 /* All fields of a true enum will be structs. */
10098 else if (TYPE_NFIELDS (disr_type) == 0)
10100 /* Could be data-less variant, so keep going. */
10101 disr_type = nullptr;
10103 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10104 "RUST$ENUM$DISR") != 0)
10106 /* Not a Rust enum. */
10116 /* If we got here without a discriminant, then it's probably
10118 if (disr_type == nullptr)
10121 /* Smash this type to be a structure type. We have to do this
10122 because the type has already been recorded. */
10123 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10125 /* Make a union to hold the variants. */
10126 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10127 struct type *union_type = alloc_type (objfile);
10128 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10129 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10130 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10131 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10132 TYPE_FIELDS (union_type)
10133 = (struct field *) TYPE_ZALLOC (union_type,
10134 (TYPE_NFIELDS (union_type)
10135 * sizeof (struct field)));
10137 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10138 TYPE_NFIELDS (type) * sizeof (struct field));
10140 /* Install the discriminant at index 0 in the union. */
10141 TYPE_FIELD (union_type, 0) = *disr_field;
10142 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10143 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10145 /* Install the union in the outer struct type. */
10146 TYPE_FIELD_TYPE (type, 0) = union_type;
10147 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10148 TYPE_NFIELDS (type) = 1;
10150 /* Set the size and offset of the union type. */
10151 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10153 /* We need a way to find the correct discriminant given a
10154 variant name. For convenience we build a map here. */
10155 struct type *enum_type = FIELD_TYPE (*disr_field);
10156 std::unordered_map<std::string, ULONGEST> discriminant_map;
10157 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10159 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10162 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10163 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10167 int n_fields = TYPE_NFIELDS (union_type);
10168 struct discriminant_info *disc
10169 = alloc_discriminant_info (union_type, 0, -1);
10170 /* Skip the discriminant here. */
10171 for (int i = 1; i < n_fields; ++i)
10173 /* Find the final word in the name of this variant's type.
10174 That name can be used to look up the correct
10176 const char *variant_name
10177 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10180 auto iter = discriminant_map.find (variant_name);
10181 if (iter != discriminant_map.end ())
10182 disc->discriminants[i] = iter->second;
10184 /* Remove the discriminant field, if it exists. */
10185 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10186 if (TYPE_NFIELDS (sub_type) > 0)
10188 --TYPE_NFIELDS (sub_type);
10189 ++TYPE_FIELDS (sub_type);
10191 TYPE_FIELD_NAME (union_type, i) = variant_name;
10192 TYPE_NAME (sub_type)
10193 = rust_fully_qualify (&objfile->objfile_obstack,
10194 TYPE_NAME (type), variant_name);
10199 /* Rewrite some Rust unions to be structures with variants parts. */
10202 rust_union_quirks (struct dwarf2_cu *cu)
10204 gdb_assert (cu->language == language_rust);
10205 for (type *type_ : cu->rust_unions)
10206 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10207 /* We don't need this any more. */
10208 cu->rust_unions.clear ();
10211 /* Return the symtab for PER_CU. This works properly regardless of
10212 whether we're using the index or psymtabs. */
10214 static struct compunit_symtab *
10215 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10217 return (per_cu->dwarf2_per_objfile->using_index
10218 ? per_cu->v.quick->compunit_symtab
10219 : per_cu->v.psymtab->compunit_symtab);
10222 /* A helper function for computing the list of all symbol tables
10223 included by PER_CU. */
10226 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10227 htab_t all_children, htab_t all_type_symtabs,
10228 struct dwarf2_per_cu_data *per_cu,
10229 struct compunit_symtab *immediate_parent)
10233 struct compunit_symtab *cust;
10234 struct dwarf2_per_cu_data *iter;
10236 slot = htab_find_slot (all_children, per_cu, INSERT);
10239 /* This inclusion and its children have been processed. */
10244 /* Only add a CU if it has a symbol table. */
10245 cust = get_compunit_symtab (per_cu);
10248 /* If this is a type unit only add its symbol table if we haven't
10249 seen it yet (type unit per_cu's can share symtabs). */
10250 if (per_cu->is_debug_types)
10252 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10256 result->push_back (cust);
10257 if (cust->user == NULL)
10258 cust->user = immediate_parent;
10263 result->push_back (cust);
10264 if (cust->user == NULL)
10265 cust->user = immediate_parent;
10270 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10273 recursively_compute_inclusions (result, all_children,
10274 all_type_symtabs, iter, cust);
10278 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10282 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10284 gdb_assert (! per_cu->is_debug_types);
10286 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10289 struct dwarf2_per_cu_data *per_cu_iter;
10290 std::vector<compunit_symtab *> result_symtabs;
10291 htab_t all_children, all_type_symtabs;
10292 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10294 /* If we don't have a symtab, we can just skip this case. */
10298 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10299 NULL, xcalloc, xfree);
10300 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10301 NULL, xcalloc, xfree);
10304 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10308 recursively_compute_inclusions (&result_symtabs, all_children,
10309 all_type_symtabs, per_cu_iter,
10313 /* Now we have a transitive closure of all the included symtabs. */
10314 len = result_symtabs.size ();
10316 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10317 struct compunit_symtab *, len + 1);
10318 memcpy (cust->includes, result_symtabs.data (),
10319 len * sizeof (compunit_symtab *));
10320 cust->includes[len] = NULL;
10322 htab_delete (all_children);
10323 htab_delete (all_type_symtabs);
10327 /* Compute the 'includes' field for the symtabs of all the CUs we just
10331 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10333 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10335 if (! iter->is_debug_types)
10336 compute_compunit_symtab_includes (iter);
10339 dwarf2_per_objfile->just_read_cus.clear ();
10342 /* Generate full symbol information for PER_CU, whose DIEs have
10343 already been loaded into memory. */
10346 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10347 enum language pretend_language)
10349 struct dwarf2_cu *cu = per_cu->cu;
10350 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10351 struct objfile *objfile = dwarf2_per_objfile->objfile;
10352 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10353 CORE_ADDR lowpc, highpc;
10354 struct compunit_symtab *cust;
10355 CORE_ADDR baseaddr;
10356 struct block *static_block;
10359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10361 /* Clear the list here in case something was left over. */
10362 cu->method_list.clear ();
10364 cu->language = pretend_language;
10365 cu->language_defn = language_def (cu->language);
10367 /* Do line number decoding in read_file_scope () */
10368 process_die (cu->dies, cu);
10370 /* For now fudge the Go package. */
10371 if (cu->language == language_go)
10372 fixup_go_packaging (cu);
10374 /* Now that we have processed all the DIEs in the CU, all the types
10375 should be complete, and it should now be safe to compute all of the
10377 compute_delayed_physnames (cu);
10379 if (cu->language == language_rust)
10380 rust_union_quirks (cu);
10382 /* Some compilers don't define a DW_AT_high_pc attribute for the
10383 compilation unit. If the DW_AT_high_pc is missing, synthesize
10384 it, by scanning the DIE's below the compilation unit. */
10385 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10387 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10388 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10390 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10391 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10392 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10393 addrmap to help ensure it has an accurate map of pc values belonging to
10395 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10397 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10398 SECT_OFF_TEXT (objfile),
10403 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10405 /* Set symtab language to language from DW_AT_language. If the
10406 compilation is from a C file generated by language preprocessors, do
10407 not set the language if it was already deduced by start_subfile. */
10408 if (!(cu->language == language_c
10409 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10410 COMPUNIT_FILETABS (cust)->language = cu->language;
10412 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10413 produce DW_AT_location with location lists but it can be possibly
10414 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10415 there were bugs in prologue debug info, fixed later in GCC-4.5
10416 by "unwind info for epilogues" patch (which is not directly related).
10418 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10419 needed, it would be wrong due to missing DW_AT_producer there.
10421 Still one can confuse GDB by using non-standard GCC compilation
10422 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10424 if (cu->has_loclist && gcc_4_minor >= 5)
10425 cust->locations_valid = 1;
10427 if (gcc_4_minor >= 5)
10428 cust->epilogue_unwind_valid = 1;
10430 cust->call_site_htab = cu->call_site_htab;
10433 if (dwarf2_per_objfile->using_index)
10434 per_cu->v.quick->compunit_symtab = cust;
10437 struct partial_symtab *pst = per_cu->v.psymtab;
10438 pst->compunit_symtab = cust;
10442 /* Push it for inclusion processing later. */
10443 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10445 /* Not needed any more. */
10446 cu->reset_builder ();
10449 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10450 already been loaded into memory. */
10453 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10454 enum language pretend_language)
10456 struct dwarf2_cu *cu = per_cu->cu;
10457 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10458 struct objfile *objfile = dwarf2_per_objfile->objfile;
10459 struct compunit_symtab *cust;
10460 struct signatured_type *sig_type;
10462 gdb_assert (per_cu->is_debug_types);
10463 sig_type = (struct signatured_type *) per_cu;
10465 /* Clear the list here in case something was left over. */
10466 cu->method_list.clear ();
10468 cu->language = pretend_language;
10469 cu->language_defn = language_def (cu->language);
10471 /* The symbol tables are set up in read_type_unit_scope. */
10472 process_die (cu->dies, cu);
10474 /* For now fudge the Go package. */
10475 if (cu->language == language_go)
10476 fixup_go_packaging (cu);
10478 /* Now that we have processed all the DIEs in the CU, all the types
10479 should be complete, and it should now be safe to compute all of the
10481 compute_delayed_physnames (cu);
10483 if (cu->language == language_rust)
10484 rust_union_quirks (cu);
10486 /* TUs share symbol tables.
10487 If this is the first TU to use this symtab, complete the construction
10488 of it with end_expandable_symtab. Otherwise, complete the addition of
10489 this TU's symbols to the existing symtab. */
10490 if (sig_type->type_unit_group->compunit_symtab == NULL)
10492 buildsym_compunit *builder = cu->get_builder ();
10493 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10494 sig_type->type_unit_group->compunit_symtab = cust;
10498 /* Set symtab language to language from DW_AT_language. If the
10499 compilation is from a C file generated by language preprocessors,
10500 do not set the language if it was already deduced by
10502 if (!(cu->language == language_c
10503 && COMPUNIT_FILETABS (cust)->language != language_c))
10504 COMPUNIT_FILETABS (cust)->language = cu->language;
10509 cu->get_builder ()->augment_type_symtab ();
10510 cust = sig_type->type_unit_group->compunit_symtab;
10513 if (dwarf2_per_objfile->using_index)
10514 per_cu->v.quick->compunit_symtab = cust;
10517 struct partial_symtab *pst = per_cu->v.psymtab;
10518 pst->compunit_symtab = cust;
10522 /* Not needed any more. */
10523 cu->reset_builder ();
10526 /* Process an imported unit DIE. */
10529 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10531 struct attribute *attr;
10533 /* For now we don't handle imported units in type units. */
10534 if (cu->per_cu->is_debug_types)
10536 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10537 " supported in type units [in module %s]"),
10538 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10541 attr = dwarf2_attr (die, DW_AT_import, cu);
10544 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10545 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10546 dwarf2_per_cu_data *per_cu
10547 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10548 cu->per_cu->dwarf2_per_objfile);
10550 /* If necessary, add it to the queue and load its DIEs. */
10551 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10552 load_full_comp_unit (per_cu, false, cu->language);
10554 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10559 /* RAII object that represents a process_die scope: i.e.,
10560 starts/finishes processing a DIE. */
10561 class process_die_scope
10564 process_die_scope (die_info *die, dwarf2_cu *cu)
10565 : m_die (die), m_cu (cu)
10567 /* We should only be processing DIEs not already in process. */
10568 gdb_assert (!m_die->in_process);
10569 m_die->in_process = true;
10572 ~process_die_scope ()
10574 m_die->in_process = false;
10576 /* If we're done processing the DIE for the CU that owns the line
10577 header, we don't need the line header anymore. */
10578 if (m_cu->line_header_die_owner == m_die)
10580 delete m_cu->line_header;
10581 m_cu->line_header = NULL;
10582 m_cu->line_header_die_owner = NULL;
10591 /* Process a die and its children. */
10594 process_die (struct die_info *die, struct dwarf2_cu *cu)
10596 process_die_scope scope (die, cu);
10600 case DW_TAG_padding:
10602 case DW_TAG_compile_unit:
10603 case DW_TAG_partial_unit:
10604 read_file_scope (die, cu);
10606 case DW_TAG_type_unit:
10607 read_type_unit_scope (die, cu);
10609 case DW_TAG_subprogram:
10610 case DW_TAG_inlined_subroutine:
10611 read_func_scope (die, cu);
10613 case DW_TAG_lexical_block:
10614 case DW_TAG_try_block:
10615 case DW_TAG_catch_block:
10616 read_lexical_block_scope (die, cu);
10618 case DW_TAG_call_site:
10619 case DW_TAG_GNU_call_site:
10620 read_call_site_scope (die, cu);
10622 case DW_TAG_class_type:
10623 case DW_TAG_interface_type:
10624 case DW_TAG_structure_type:
10625 case DW_TAG_union_type:
10626 process_structure_scope (die, cu);
10628 case DW_TAG_enumeration_type:
10629 process_enumeration_scope (die, cu);
10632 /* These dies have a type, but processing them does not create
10633 a symbol or recurse to process the children. Therefore we can
10634 read them on-demand through read_type_die. */
10635 case DW_TAG_subroutine_type:
10636 case DW_TAG_set_type:
10637 case DW_TAG_array_type:
10638 case DW_TAG_pointer_type:
10639 case DW_TAG_ptr_to_member_type:
10640 case DW_TAG_reference_type:
10641 case DW_TAG_rvalue_reference_type:
10642 case DW_TAG_string_type:
10645 case DW_TAG_base_type:
10646 case DW_TAG_subrange_type:
10647 case DW_TAG_typedef:
10648 /* Add a typedef symbol for the type definition, if it has a
10650 new_symbol (die, read_type_die (die, cu), cu);
10652 case DW_TAG_common_block:
10653 read_common_block (die, cu);
10655 case DW_TAG_common_inclusion:
10657 case DW_TAG_namespace:
10658 cu->processing_has_namespace_info = true;
10659 read_namespace (die, cu);
10661 case DW_TAG_module:
10662 cu->processing_has_namespace_info = true;
10663 read_module (die, cu);
10665 case DW_TAG_imported_declaration:
10666 cu->processing_has_namespace_info = true;
10667 if (read_namespace_alias (die, cu))
10669 /* The declaration is not a global namespace alias. */
10670 /* Fall through. */
10671 case DW_TAG_imported_module:
10672 cu->processing_has_namespace_info = true;
10673 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10674 || cu->language != language_fortran))
10675 complaint (_("Tag '%s' has unexpected children"),
10676 dwarf_tag_name (die->tag));
10677 read_import_statement (die, cu);
10680 case DW_TAG_imported_unit:
10681 process_imported_unit_die (die, cu);
10684 case DW_TAG_variable:
10685 read_variable (die, cu);
10689 new_symbol (die, NULL, cu);
10694 /* DWARF name computation. */
10696 /* A helper function for dwarf2_compute_name which determines whether DIE
10697 needs to have the name of the scope prepended to the name listed in the
10701 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10703 struct attribute *attr;
10707 case DW_TAG_namespace:
10708 case DW_TAG_typedef:
10709 case DW_TAG_class_type:
10710 case DW_TAG_interface_type:
10711 case DW_TAG_structure_type:
10712 case DW_TAG_union_type:
10713 case DW_TAG_enumeration_type:
10714 case DW_TAG_enumerator:
10715 case DW_TAG_subprogram:
10716 case DW_TAG_inlined_subroutine:
10717 case DW_TAG_member:
10718 case DW_TAG_imported_declaration:
10721 case DW_TAG_variable:
10722 case DW_TAG_constant:
10723 /* We only need to prefix "globally" visible variables. These include
10724 any variable marked with DW_AT_external or any variable that
10725 lives in a namespace. [Variables in anonymous namespaces
10726 require prefixing, but they are not DW_AT_external.] */
10728 if (dwarf2_attr (die, DW_AT_specification, cu))
10730 struct dwarf2_cu *spec_cu = cu;
10732 return die_needs_namespace (die_specification (die, &spec_cu),
10736 attr = dwarf2_attr (die, DW_AT_external, cu);
10737 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10738 && die->parent->tag != DW_TAG_module)
10740 /* A variable in a lexical block of some kind does not need a
10741 namespace, even though in C++ such variables may be external
10742 and have a mangled name. */
10743 if (die->parent->tag == DW_TAG_lexical_block
10744 || die->parent->tag == DW_TAG_try_block
10745 || die->parent->tag == DW_TAG_catch_block
10746 || die->parent->tag == DW_TAG_subprogram)
10755 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10756 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10757 defined for the given DIE. */
10759 static struct attribute *
10760 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10762 struct attribute *attr;
10764 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10766 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10771 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10772 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10773 defined for the given DIE. */
10775 static const char *
10776 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10778 const char *linkage_name;
10780 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10781 if (linkage_name == NULL)
10782 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10784 return linkage_name;
10787 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10788 compute the physname for the object, which include a method's:
10789 - formal parameters (C++),
10790 - receiver type (Go),
10792 The term "physname" is a bit confusing.
10793 For C++, for example, it is the demangled name.
10794 For Go, for example, it's the mangled name.
10796 For Ada, return the DIE's linkage name rather than the fully qualified
10797 name. PHYSNAME is ignored..
10799 The result is allocated on the objfile_obstack and canonicalized. */
10801 static const char *
10802 dwarf2_compute_name (const char *name,
10803 struct die_info *die, struct dwarf2_cu *cu,
10806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10809 name = dwarf2_name (die, cu);
10811 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10812 but otherwise compute it by typename_concat inside GDB.
10813 FIXME: Actually this is not really true, or at least not always true.
10814 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10815 Fortran names because there is no mangling standard. So new_symbol
10816 will set the demangled name to the result of dwarf2_full_name, and it is
10817 the demangled name that GDB uses if it exists. */
10818 if (cu->language == language_ada
10819 || (cu->language == language_fortran && physname))
10821 /* For Ada unit, we prefer the linkage name over the name, as
10822 the former contains the exported name, which the user expects
10823 to be able to reference. Ideally, we want the user to be able
10824 to reference this entity using either natural or linkage name,
10825 but we haven't started looking at this enhancement yet. */
10826 const char *linkage_name = dw2_linkage_name (die, cu);
10828 if (linkage_name != NULL)
10829 return linkage_name;
10832 /* These are the only languages we know how to qualify names in. */
10834 && (cu->language == language_cplus
10835 || cu->language == language_fortran || cu->language == language_d
10836 || cu->language == language_rust))
10838 if (die_needs_namespace (die, cu))
10840 const char *prefix;
10841 const char *canonical_name = NULL;
10845 prefix = determine_prefix (die, cu);
10846 if (*prefix != '\0')
10848 char *prefixed_name = typename_concat (NULL, prefix, name,
10851 buf.puts (prefixed_name);
10852 xfree (prefixed_name);
10857 /* Template parameters may be specified in the DIE's DW_AT_name, or
10858 as children with DW_TAG_template_type_param or
10859 DW_TAG_value_type_param. If the latter, add them to the name
10860 here. If the name already has template parameters, then
10861 skip this step; some versions of GCC emit both, and
10862 it is more efficient to use the pre-computed name.
10864 Something to keep in mind about this process: it is very
10865 unlikely, or in some cases downright impossible, to produce
10866 something that will match the mangled name of a function.
10867 If the definition of the function has the same debug info,
10868 we should be able to match up with it anyway. But fallbacks
10869 using the minimal symbol, for instance to find a method
10870 implemented in a stripped copy of libstdc++, will not work.
10871 If we do not have debug info for the definition, we will have to
10872 match them up some other way.
10874 When we do name matching there is a related problem with function
10875 templates; two instantiated function templates are allowed to
10876 differ only by their return types, which we do not add here. */
10878 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10880 struct attribute *attr;
10881 struct die_info *child;
10884 die->building_fullname = 1;
10886 for (child = die->child; child != NULL; child = child->sibling)
10890 const gdb_byte *bytes;
10891 struct dwarf2_locexpr_baton *baton;
10894 if (child->tag != DW_TAG_template_type_param
10895 && child->tag != DW_TAG_template_value_param)
10906 attr = dwarf2_attr (child, DW_AT_type, cu);
10909 complaint (_("template parameter missing DW_AT_type"));
10910 buf.puts ("UNKNOWN_TYPE");
10913 type = die_type (child, cu);
10915 if (child->tag == DW_TAG_template_type_param)
10917 c_print_type (type, "", &buf, -1, 0, cu->language,
10918 &type_print_raw_options);
10922 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10925 complaint (_("template parameter missing "
10926 "DW_AT_const_value"));
10927 buf.puts ("UNKNOWN_VALUE");
10931 dwarf2_const_value_attr (attr, type, name,
10932 &cu->comp_unit_obstack, cu,
10933 &value, &bytes, &baton);
10935 if (TYPE_NOSIGN (type))
10936 /* GDB prints characters as NUMBER 'CHAR'. If that's
10937 changed, this can use value_print instead. */
10938 c_printchar (value, type, &buf);
10941 struct value_print_options opts;
10944 v = dwarf2_evaluate_loc_desc (type, NULL,
10948 else if (bytes != NULL)
10950 v = allocate_value (type);
10951 memcpy (value_contents_writeable (v), bytes,
10952 TYPE_LENGTH (type));
10955 v = value_from_longest (type, value);
10957 /* Specify decimal so that we do not depend on
10959 get_formatted_print_options (&opts, 'd');
10961 value_print (v, &buf, &opts);
10966 die->building_fullname = 0;
10970 /* Close the argument list, with a space if necessary
10971 (nested templates). */
10972 if (!buf.empty () && buf.string ().back () == '>')
10979 /* For C++ methods, append formal parameter type
10980 information, if PHYSNAME. */
10982 if (physname && die->tag == DW_TAG_subprogram
10983 && cu->language == language_cplus)
10985 struct type *type = read_type_die (die, cu);
10987 c_type_print_args (type, &buf, 1, cu->language,
10988 &type_print_raw_options);
10990 if (cu->language == language_cplus)
10992 /* Assume that an artificial first parameter is
10993 "this", but do not crash if it is not. RealView
10994 marks unnamed (and thus unused) parameters as
10995 artificial; there is no way to differentiate
10997 if (TYPE_NFIELDS (type) > 0
10998 && TYPE_FIELD_ARTIFICIAL (type, 0)
10999 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11000 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11002 buf.puts (" const");
11006 const std::string &intermediate_name = buf.string ();
11008 if (cu->language == language_cplus)
11010 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11011 &objfile->per_bfd->storage_obstack);
11013 /* If we only computed INTERMEDIATE_NAME, or if
11014 INTERMEDIATE_NAME is already canonical, then we need to
11015 copy it to the appropriate obstack. */
11016 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11017 name = ((const char *)
11018 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11019 intermediate_name.c_str (),
11020 intermediate_name.length ()));
11022 name = canonical_name;
11029 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11030 If scope qualifiers are appropriate they will be added. The result
11031 will be allocated on the storage_obstack, or NULL if the DIE does
11032 not have a name. NAME may either be from a previous call to
11033 dwarf2_name or NULL.
11035 The output string will be canonicalized (if C++). */
11037 static const char *
11038 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11040 return dwarf2_compute_name (name, die, cu, 0);
11043 /* Construct a physname for the given DIE in CU. NAME may either be
11044 from a previous call to dwarf2_name or NULL. The result will be
11045 allocated on the objfile_objstack or NULL if the DIE does not have a
11048 The output string will be canonicalized (if C++). */
11050 static const char *
11051 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11053 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11054 const char *retval, *mangled = NULL, *canon = NULL;
11057 /* In this case dwarf2_compute_name is just a shortcut not building anything
11059 if (!die_needs_namespace (die, cu))
11060 return dwarf2_compute_name (name, die, cu, 1);
11062 mangled = dw2_linkage_name (die, cu);
11064 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11065 See https://github.com/rust-lang/rust/issues/32925. */
11066 if (cu->language == language_rust && mangled != NULL
11067 && strchr (mangled, '{') != NULL)
11070 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11072 gdb::unique_xmalloc_ptr<char> demangled;
11073 if (mangled != NULL)
11076 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11078 /* Do nothing (do not demangle the symbol name). */
11080 else if (cu->language == language_go)
11082 /* This is a lie, but we already lie to the caller new_symbol.
11083 new_symbol assumes we return the mangled name.
11084 This just undoes that lie until things are cleaned up. */
11088 /* Use DMGL_RET_DROP for C++ template functions to suppress
11089 their return type. It is easier for GDB users to search
11090 for such functions as `name(params)' than `long name(params)'.
11091 In such case the minimal symbol names do not match the full
11092 symbol names but for template functions there is never a need
11093 to look up their definition from their declaration so
11094 the only disadvantage remains the minimal symbol variant
11095 `long name(params)' does not have the proper inferior type. */
11096 demangled.reset (gdb_demangle (mangled,
11097 (DMGL_PARAMS | DMGL_ANSI
11098 | DMGL_RET_DROP)));
11101 canon = demangled.get ();
11109 if (canon == NULL || check_physname)
11111 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11113 if (canon != NULL && strcmp (physname, canon) != 0)
11115 /* It may not mean a bug in GDB. The compiler could also
11116 compute DW_AT_linkage_name incorrectly. But in such case
11117 GDB would need to be bug-to-bug compatible. */
11119 complaint (_("Computed physname <%s> does not match demangled <%s> "
11120 "(from linkage <%s>) - DIE at %s [in module %s]"),
11121 physname, canon, mangled, sect_offset_str (die->sect_off),
11122 objfile_name (objfile));
11124 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11125 is available here - over computed PHYSNAME. It is safer
11126 against both buggy GDB and buggy compilers. */
11140 retval = ((const char *)
11141 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11142 retval, strlen (retval)));
11147 /* Inspect DIE in CU for a namespace alias. If one exists, record
11148 a new symbol for it.
11150 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11153 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11155 struct attribute *attr;
11157 /* If the die does not have a name, this is not a namespace
11159 attr = dwarf2_attr (die, DW_AT_name, cu);
11163 struct die_info *d = die;
11164 struct dwarf2_cu *imported_cu = cu;
11166 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11167 keep inspecting DIEs until we hit the underlying import. */
11168 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11169 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11171 attr = dwarf2_attr (d, DW_AT_import, cu);
11175 d = follow_die_ref (d, attr, &imported_cu);
11176 if (d->tag != DW_TAG_imported_declaration)
11180 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11182 complaint (_("DIE at %s has too many recursively imported "
11183 "declarations"), sect_offset_str (d->sect_off));
11190 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11192 type = get_die_type_at_offset (sect_off, cu->per_cu);
11193 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11195 /* This declaration is a global namespace alias. Add
11196 a symbol for it whose type is the aliased namespace. */
11197 new_symbol (die, type, cu);
11206 /* Return the using directives repository (global or local?) to use in the
11207 current context for CU.
11209 For Ada, imported declarations can materialize renamings, which *may* be
11210 global. However it is impossible (for now?) in DWARF to distinguish
11211 "external" imported declarations and "static" ones. As all imported
11212 declarations seem to be static in all other languages, make them all CU-wide
11213 global only in Ada. */
11215 static struct using_direct **
11216 using_directives (struct dwarf2_cu *cu)
11218 if (cu->language == language_ada
11219 && cu->get_builder ()->outermost_context_p ())
11220 return cu->get_builder ()->get_global_using_directives ();
11222 return cu->get_builder ()->get_local_using_directives ();
11225 /* Read the import statement specified by the given die and record it. */
11228 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11231 struct attribute *import_attr;
11232 struct die_info *imported_die, *child_die;
11233 struct dwarf2_cu *imported_cu;
11234 const char *imported_name;
11235 const char *imported_name_prefix;
11236 const char *canonical_name;
11237 const char *import_alias;
11238 const char *imported_declaration = NULL;
11239 const char *import_prefix;
11240 std::vector<const char *> excludes;
11242 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11243 if (import_attr == NULL)
11245 complaint (_("Tag '%s' has no DW_AT_import"),
11246 dwarf_tag_name (die->tag));
11251 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11252 imported_name = dwarf2_name (imported_die, imported_cu);
11253 if (imported_name == NULL)
11255 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11257 The import in the following code:
11271 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11272 <52> DW_AT_decl_file : 1
11273 <53> DW_AT_decl_line : 6
11274 <54> DW_AT_import : <0x75>
11275 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11276 <59> DW_AT_name : B
11277 <5b> DW_AT_decl_file : 1
11278 <5c> DW_AT_decl_line : 2
11279 <5d> DW_AT_type : <0x6e>
11281 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11282 <76> DW_AT_byte_size : 4
11283 <77> DW_AT_encoding : 5 (signed)
11285 imports the wrong die ( 0x75 instead of 0x58 ).
11286 This case will be ignored until the gcc bug is fixed. */
11290 /* Figure out the local name after import. */
11291 import_alias = dwarf2_name (die, cu);
11293 /* Figure out where the statement is being imported to. */
11294 import_prefix = determine_prefix (die, cu);
11296 /* Figure out what the scope of the imported die is and prepend it
11297 to the name of the imported die. */
11298 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11300 if (imported_die->tag != DW_TAG_namespace
11301 && imported_die->tag != DW_TAG_module)
11303 imported_declaration = imported_name;
11304 canonical_name = imported_name_prefix;
11306 else if (strlen (imported_name_prefix) > 0)
11307 canonical_name = obconcat (&objfile->objfile_obstack,
11308 imported_name_prefix,
11309 (cu->language == language_d ? "." : "::"),
11310 imported_name, (char *) NULL);
11312 canonical_name = imported_name;
11314 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11315 for (child_die = die->child; child_die && child_die->tag;
11316 child_die = sibling_die (child_die))
11318 /* DWARF-4: A Fortran use statement with a “rename list” may be
11319 represented by an imported module entry with an import attribute
11320 referring to the module and owned entries corresponding to those
11321 entities that are renamed as part of being imported. */
11323 if (child_die->tag != DW_TAG_imported_declaration)
11325 complaint (_("child DW_TAG_imported_declaration expected "
11326 "- DIE at %s [in module %s]"),
11327 sect_offset_str (child_die->sect_off),
11328 objfile_name (objfile));
11332 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11333 if (import_attr == NULL)
11335 complaint (_("Tag '%s' has no DW_AT_import"),
11336 dwarf_tag_name (child_die->tag));
11341 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11343 imported_name = dwarf2_name (imported_die, imported_cu);
11344 if (imported_name == NULL)
11346 complaint (_("child DW_TAG_imported_declaration has unknown "
11347 "imported name - DIE at %s [in module %s]"),
11348 sect_offset_str (child_die->sect_off),
11349 objfile_name (objfile));
11353 excludes.push_back (imported_name);
11355 process_die (child_die, cu);
11358 add_using_directive (using_directives (cu),
11362 imported_declaration,
11365 &objfile->objfile_obstack);
11368 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11369 types, but gives them a size of zero. Starting with version 14,
11370 ICC is compatible with GCC. */
11373 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11375 if (!cu->checked_producer)
11376 check_producer (cu);
11378 return cu->producer_is_icc_lt_14;
11381 /* ICC generates a DW_AT_type for C void functions. This was observed on
11382 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11383 which says that void functions should not have a DW_AT_type. */
11386 producer_is_icc (struct dwarf2_cu *cu)
11388 if (!cu->checked_producer)
11389 check_producer (cu);
11391 return cu->producer_is_icc;
11394 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11395 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11396 this, it was first present in GCC release 4.3.0. */
11399 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11401 if (!cu->checked_producer)
11402 check_producer (cu);
11404 return cu->producer_is_gcc_lt_4_3;
11407 static file_and_directory
11408 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11410 file_and_directory res;
11412 /* Find the filename. Do not use dwarf2_name here, since the filename
11413 is not a source language identifier. */
11414 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11415 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11417 if (res.comp_dir == NULL
11418 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11419 && IS_ABSOLUTE_PATH (res.name))
11421 res.comp_dir_storage = ldirname (res.name);
11422 if (!res.comp_dir_storage.empty ())
11423 res.comp_dir = res.comp_dir_storage.c_str ();
11425 if (res.comp_dir != NULL)
11427 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11428 directory, get rid of it. */
11429 const char *cp = strchr (res.comp_dir, ':');
11431 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11432 res.comp_dir = cp + 1;
11435 if (res.name == NULL)
11436 res.name = "<unknown>";
11441 /* Handle DW_AT_stmt_list for a compilation unit.
11442 DIE is the DW_TAG_compile_unit die for CU.
11443 COMP_DIR is the compilation directory. LOWPC is passed to
11444 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11447 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11448 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11450 struct dwarf2_per_objfile *dwarf2_per_objfile
11451 = cu->per_cu->dwarf2_per_objfile;
11452 struct objfile *objfile = dwarf2_per_objfile->objfile;
11453 struct attribute *attr;
11454 struct line_header line_header_local;
11455 hashval_t line_header_local_hash;
11457 int decode_mapping;
11459 gdb_assert (! cu->per_cu->is_debug_types);
11461 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11465 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11467 /* The line header hash table is only created if needed (it exists to
11468 prevent redundant reading of the line table for partial_units).
11469 If we're given a partial_unit, we'll need it. If we're given a
11470 compile_unit, then use the line header hash table if it's already
11471 created, but don't create one just yet. */
11473 if (dwarf2_per_objfile->line_header_hash == NULL
11474 && die->tag == DW_TAG_partial_unit)
11476 dwarf2_per_objfile->line_header_hash
11477 = htab_create_alloc_ex (127, line_header_hash_voidp,
11478 line_header_eq_voidp,
11479 free_line_header_voidp,
11480 &objfile->objfile_obstack,
11481 hashtab_obstack_allocate,
11482 dummy_obstack_deallocate);
11485 line_header_local.sect_off = line_offset;
11486 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11487 line_header_local_hash = line_header_hash (&line_header_local);
11488 if (dwarf2_per_objfile->line_header_hash != NULL)
11490 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11491 &line_header_local,
11492 line_header_local_hash, NO_INSERT);
11494 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11495 is not present in *SLOT (since if there is something in *SLOT then
11496 it will be for a partial_unit). */
11497 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11499 gdb_assert (*slot != NULL);
11500 cu->line_header = (struct line_header *) *slot;
11505 /* dwarf_decode_line_header does not yet provide sufficient information.
11506 We always have to call also dwarf_decode_lines for it. */
11507 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11511 cu->line_header = lh.release ();
11512 cu->line_header_die_owner = die;
11514 if (dwarf2_per_objfile->line_header_hash == NULL)
11518 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11519 &line_header_local,
11520 line_header_local_hash, INSERT);
11521 gdb_assert (slot != NULL);
11523 if (slot != NULL && *slot == NULL)
11525 /* This newly decoded line number information unit will be owned
11526 by line_header_hash hash table. */
11527 *slot = cu->line_header;
11528 cu->line_header_die_owner = NULL;
11532 /* We cannot free any current entry in (*slot) as that struct line_header
11533 may be already used by multiple CUs. Create only temporary decoded
11534 line_header for this CU - it may happen at most once for each line
11535 number information unit. And if we're not using line_header_hash
11536 then this is what we want as well. */
11537 gdb_assert (die->tag != DW_TAG_partial_unit);
11539 decode_mapping = (die->tag != DW_TAG_partial_unit);
11540 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11545 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11548 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11550 struct dwarf2_per_objfile *dwarf2_per_objfile
11551 = cu->per_cu->dwarf2_per_objfile;
11552 struct objfile *objfile = dwarf2_per_objfile->objfile;
11553 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11554 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11555 CORE_ADDR highpc = ((CORE_ADDR) 0);
11556 struct attribute *attr;
11557 struct die_info *child_die;
11558 CORE_ADDR baseaddr;
11560 prepare_one_comp_unit (cu, die, cu->language);
11561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11563 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11565 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11566 from finish_block. */
11567 if (lowpc == ((CORE_ADDR) -1))
11569 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11571 file_and_directory fnd = find_file_and_directory (die, cu);
11573 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11574 standardised yet. As a workaround for the language detection we fall
11575 back to the DW_AT_producer string. */
11576 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11577 cu->language = language_opencl;
11579 /* Similar hack for Go. */
11580 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11581 set_cu_language (DW_LANG_Go, cu);
11583 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11585 /* Decode line number information if present. We do this before
11586 processing child DIEs, so that the line header table is available
11587 for DW_AT_decl_file. */
11588 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11590 /* Process all dies in compilation unit. */
11591 if (die->child != NULL)
11593 child_die = die->child;
11594 while (child_die && child_die->tag)
11596 process_die (child_die, cu);
11597 child_die = sibling_die (child_die);
11601 /* Decode macro information, if present. Dwarf 2 macro information
11602 refers to information in the line number info statement program
11603 header, so we can only read it if we've read the header
11605 attr = dwarf2_attr (die, DW_AT_macros, cu);
11607 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11608 if (attr && cu->line_header)
11610 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11611 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11613 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11617 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11618 if (attr && cu->line_header)
11620 unsigned int macro_offset = DW_UNSND (attr);
11622 dwarf_decode_macros (cu, macro_offset, 0);
11628 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11630 struct type_unit_group *tu_group;
11632 struct attribute *attr;
11634 struct signatured_type *sig_type;
11636 gdb_assert (per_cu->is_debug_types);
11637 sig_type = (struct signatured_type *) per_cu;
11639 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11641 /* If we're using .gdb_index (includes -readnow) then
11642 per_cu->type_unit_group may not have been set up yet. */
11643 if (sig_type->type_unit_group == NULL)
11644 sig_type->type_unit_group = get_type_unit_group (this, attr);
11645 tu_group = sig_type->type_unit_group;
11647 /* If we've already processed this stmt_list there's no real need to
11648 do it again, we could fake it and just recreate the part we need
11649 (file name,index -> symtab mapping). If data shows this optimization
11650 is useful we can do it then. */
11651 first_time = tu_group->compunit_symtab == NULL;
11653 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11658 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11659 lh = dwarf_decode_line_header (line_offset, this);
11664 start_symtab ("", NULL, 0);
11667 gdb_assert (tu_group->symtabs == NULL);
11668 gdb_assert (m_builder == nullptr);
11669 struct compunit_symtab *cust = tu_group->compunit_symtab;
11670 m_builder.reset (new struct buildsym_compunit
11671 (COMPUNIT_OBJFILE (cust), "",
11672 COMPUNIT_DIRNAME (cust),
11673 compunit_language (cust),
11679 line_header = lh.release ();
11680 line_header_die_owner = die;
11684 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11686 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11687 still initializing it, and our caller (a few levels up)
11688 process_full_type_unit still needs to know if this is the first
11691 tu_group->num_symtabs = line_header->file_names.size ();
11692 tu_group->symtabs = XNEWVEC (struct symtab *,
11693 line_header->file_names.size ());
11695 for (i = 0; i < line_header->file_names.size (); ++i)
11697 file_entry &fe = line_header->file_names[i];
11699 dwarf2_start_subfile (this, fe.name,
11700 fe.include_dir (line_header));
11701 buildsym_compunit *b = get_builder ();
11702 if (b->get_current_subfile ()->symtab == NULL)
11704 /* NOTE: start_subfile will recognize when it's been
11705 passed a file it has already seen. So we can't
11706 assume there's a simple mapping from
11707 cu->line_header->file_names to subfiles, plus
11708 cu->line_header->file_names may contain dups. */
11709 b->get_current_subfile ()->symtab
11710 = allocate_symtab (cust, b->get_current_subfile ()->name);
11713 fe.symtab = b->get_current_subfile ()->symtab;
11714 tu_group->symtabs[i] = fe.symtab;
11719 gdb_assert (m_builder == nullptr);
11720 struct compunit_symtab *cust = tu_group->compunit_symtab;
11721 m_builder.reset (new struct buildsym_compunit
11722 (COMPUNIT_OBJFILE (cust), "",
11723 COMPUNIT_DIRNAME (cust),
11724 compunit_language (cust),
11727 for (i = 0; i < line_header->file_names.size (); ++i)
11729 file_entry &fe = line_header->file_names[i];
11731 fe.symtab = tu_group->symtabs[i];
11735 /* The main symtab is allocated last. Type units don't have DW_AT_name
11736 so they don't have a "real" (so to speak) symtab anyway.
11737 There is later code that will assign the main symtab to all symbols
11738 that don't have one. We need to handle the case of a symbol with a
11739 missing symtab (DW_AT_decl_file) anyway. */
11742 /* Process DW_TAG_type_unit.
11743 For TUs we want to skip the first top level sibling if it's not the
11744 actual type being defined by this TU. In this case the first top
11745 level sibling is there to provide context only. */
11748 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11750 struct die_info *child_die;
11752 prepare_one_comp_unit (cu, die, language_minimal);
11754 /* Initialize (or reinitialize) the machinery for building symtabs.
11755 We do this before processing child DIEs, so that the line header table
11756 is available for DW_AT_decl_file. */
11757 cu->setup_type_unit_groups (die);
11759 if (die->child != NULL)
11761 child_die = die->child;
11762 while (child_die && child_die->tag)
11764 process_die (child_die, cu);
11765 child_die = sibling_die (child_die);
11772 http://gcc.gnu.org/wiki/DebugFission
11773 http://gcc.gnu.org/wiki/DebugFissionDWP
11775 To simplify handling of both DWO files ("object" files with the DWARF info)
11776 and DWP files (a file with the DWOs packaged up into one file), we treat
11777 DWP files as having a collection of virtual DWO files. */
11780 hash_dwo_file (const void *item)
11782 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11785 hash = htab_hash_string (dwo_file->dwo_name);
11786 if (dwo_file->comp_dir != NULL)
11787 hash += htab_hash_string (dwo_file->comp_dir);
11792 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11794 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11795 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11797 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11799 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11800 return lhs->comp_dir == rhs->comp_dir;
11801 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11804 /* Allocate a hash table for DWO files. */
11807 allocate_dwo_file_hash_table (struct objfile *objfile)
11809 return htab_create_alloc_ex (41,
11813 &objfile->objfile_obstack,
11814 hashtab_obstack_allocate,
11815 dummy_obstack_deallocate);
11818 /* Lookup DWO file DWO_NAME. */
11821 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11822 const char *dwo_name,
11823 const char *comp_dir)
11825 struct dwo_file find_entry;
11828 if (dwarf2_per_objfile->dwo_files == NULL)
11829 dwarf2_per_objfile->dwo_files
11830 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11832 memset (&find_entry, 0, sizeof (find_entry));
11833 find_entry.dwo_name = dwo_name;
11834 find_entry.comp_dir = comp_dir;
11835 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11841 hash_dwo_unit (const void *item)
11843 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11845 /* This drops the top 32 bits of the id, but is ok for a hash. */
11846 return dwo_unit->signature;
11850 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11852 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11853 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11855 /* The signature is assumed to be unique within the DWO file.
11856 So while object file CU dwo_id's always have the value zero,
11857 that's OK, assuming each object file DWO file has only one CU,
11858 and that's the rule for now. */
11859 return lhs->signature == rhs->signature;
11862 /* Allocate a hash table for DWO CUs,TUs.
11863 There is one of these tables for each of CUs,TUs for each DWO file. */
11866 allocate_dwo_unit_table (struct objfile *objfile)
11868 /* Start out with a pretty small number.
11869 Generally DWO files contain only one CU and maybe some TUs. */
11870 return htab_create_alloc_ex (3,
11874 &objfile->objfile_obstack,
11875 hashtab_obstack_allocate,
11876 dummy_obstack_deallocate);
11879 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11881 struct create_dwo_cu_data
11883 struct dwo_file *dwo_file;
11884 struct dwo_unit dwo_unit;
11887 /* die_reader_func for create_dwo_cu. */
11890 create_dwo_cu_reader (const struct die_reader_specs *reader,
11891 const gdb_byte *info_ptr,
11892 struct die_info *comp_unit_die,
11896 struct dwarf2_cu *cu = reader->cu;
11897 sect_offset sect_off = cu->per_cu->sect_off;
11898 struct dwarf2_section_info *section = cu->per_cu->section;
11899 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11900 struct dwo_file *dwo_file = data->dwo_file;
11901 struct dwo_unit *dwo_unit = &data->dwo_unit;
11902 struct attribute *attr;
11904 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11907 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11908 " its dwo_id [in module %s]"),
11909 sect_offset_str (sect_off), dwo_file->dwo_name);
11913 dwo_unit->dwo_file = dwo_file;
11914 dwo_unit->signature = DW_UNSND (attr);
11915 dwo_unit->section = section;
11916 dwo_unit->sect_off = sect_off;
11917 dwo_unit->length = cu->per_cu->length;
11919 if (dwarf_read_debug)
11920 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11921 sect_offset_str (sect_off),
11922 hex_string (dwo_unit->signature));
11925 /* Create the dwo_units for the CUs in a DWO_FILE.
11926 Note: This function processes DWO files only, not DWP files. */
11929 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11930 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11933 struct objfile *objfile = dwarf2_per_objfile->objfile;
11934 const gdb_byte *info_ptr, *end_ptr;
11936 dwarf2_read_section (objfile, §ion);
11937 info_ptr = section.buffer;
11939 if (info_ptr == NULL)
11942 if (dwarf_read_debug)
11944 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11945 get_section_name (§ion),
11946 get_section_file_name (§ion));
11949 end_ptr = info_ptr + section.size;
11950 while (info_ptr < end_ptr)
11952 struct dwarf2_per_cu_data per_cu;
11953 struct create_dwo_cu_data create_dwo_cu_data;
11954 struct dwo_unit *dwo_unit;
11956 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11958 memset (&create_dwo_cu_data.dwo_unit, 0,
11959 sizeof (create_dwo_cu_data.dwo_unit));
11960 memset (&per_cu, 0, sizeof (per_cu));
11961 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11962 per_cu.is_debug_types = 0;
11963 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11964 per_cu.section = §ion;
11965 create_dwo_cu_data.dwo_file = &dwo_file;
11967 init_cutu_and_read_dies_no_follow (
11968 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11969 info_ptr += per_cu.length;
11971 // If the unit could not be parsed, skip it.
11972 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11975 if (cus_htab == NULL)
11976 cus_htab = allocate_dwo_unit_table (objfile);
11978 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11979 *dwo_unit = create_dwo_cu_data.dwo_unit;
11980 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11981 gdb_assert (slot != NULL);
11984 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11985 sect_offset dup_sect_off = dup_cu->sect_off;
11987 complaint (_("debug cu entry at offset %s is duplicate to"
11988 " the entry at offset %s, signature %s"),
11989 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11990 hex_string (dwo_unit->signature));
11992 *slot = (void *)dwo_unit;
11996 /* DWP file .debug_{cu,tu}_index section format:
11997 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12001 Both index sections have the same format, and serve to map a 64-bit
12002 signature to a set of section numbers. Each section begins with a header,
12003 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12004 indexes, and a pool of 32-bit section numbers. The index sections will be
12005 aligned at 8-byte boundaries in the file.
12007 The index section header consists of:
12009 V, 32 bit version number
12011 N, 32 bit number of compilation units or type units in the index
12012 M, 32 bit number of slots in the hash table
12014 Numbers are recorded using the byte order of the application binary.
12016 The hash table begins at offset 16 in the section, and consists of an array
12017 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12018 order of the application binary). Unused slots in the hash table are 0.
12019 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12021 The parallel table begins immediately after the hash table
12022 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12023 array of 32-bit indexes (using the byte order of the application binary),
12024 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12025 table contains a 32-bit index into the pool of section numbers. For unused
12026 hash table slots, the corresponding entry in the parallel table will be 0.
12028 The pool of section numbers begins immediately following the hash table
12029 (at offset 16 + 12 * M from the beginning of the section). The pool of
12030 section numbers consists of an array of 32-bit words (using the byte order
12031 of the application binary). Each item in the array is indexed starting
12032 from 0. The hash table entry provides the index of the first section
12033 number in the set. Additional section numbers in the set follow, and the
12034 set is terminated by a 0 entry (section number 0 is not used in ELF).
12036 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12037 section must be the first entry in the set, and the .debug_abbrev.dwo must
12038 be the second entry. Other members of the set may follow in any order.
12044 DWP Version 2 combines all the .debug_info, etc. sections into one,
12045 and the entries in the index tables are now offsets into these sections.
12046 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12049 Index Section Contents:
12051 Hash Table of Signatures dwp_hash_table.hash_table
12052 Parallel Table of Indices dwp_hash_table.unit_table
12053 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12054 Table of Section Sizes dwp_hash_table.v2.sizes
12056 The index section header consists of:
12058 V, 32 bit version number
12059 L, 32 bit number of columns in the table of section offsets
12060 N, 32 bit number of compilation units or type units in the index
12061 M, 32 bit number of slots in the hash table
12063 Numbers are recorded using the byte order of the application binary.
12065 The hash table has the same format as version 1.
12066 The parallel table of indices has the same format as version 1,
12067 except that the entries are origin-1 indices into the table of sections
12068 offsets and the table of section sizes.
12070 The table of offsets begins immediately following the parallel table
12071 (at offset 16 + 12 * M from the beginning of the section). The table is
12072 a two-dimensional array of 32-bit words (using the byte order of the
12073 application binary), with L columns and N+1 rows, in row-major order.
12074 Each row in the array is indexed starting from 0. The first row provides
12075 a key to the remaining rows: each column in this row provides an identifier
12076 for a debug section, and the offsets in the same column of subsequent rows
12077 refer to that section. The section identifiers are:
12079 DW_SECT_INFO 1 .debug_info.dwo
12080 DW_SECT_TYPES 2 .debug_types.dwo
12081 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12082 DW_SECT_LINE 4 .debug_line.dwo
12083 DW_SECT_LOC 5 .debug_loc.dwo
12084 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12085 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12086 DW_SECT_MACRO 8 .debug_macro.dwo
12088 The offsets provided by the CU and TU index sections are the base offsets
12089 for the contributions made by each CU or TU to the corresponding section
12090 in the package file. Each CU and TU header contains an abbrev_offset
12091 field, used to find the abbreviations table for that CU or TU within the
12092 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12093 be interpreted as relative to the base offset given in the index section.
12094 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12095 should be interpreted as relative to the base offset for .debug_line.dwo,
12096 and offsets into other debug sections obtained from DWARF attributes should
12097 also be interpreted as relative to the corresponding base offset.
12099 The table of sizes begins immediately following the table of offsets.
12100 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12101 with L columns and N rows, in row-major order. Each row in the array is
12102 indexed starting from 1 (row 0 is shared by the two tables).
12106 Hash table lookup is handled the same in version 1 and 2:
12108 We assume that N and M will not exceed 2^32 - 1.
12109 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12111 Given a 64-bit compilation unit signature or a type signature S, an entry
12112 in the hash table is located as follows:
12114 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12115 the low-order k bits all set to 1.
12117 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12119 3) If the hash table entry at index H matches the signature, use that
12120 entry. If the hash table entry at index H is unused (all zeroes),
12121 terminate the search: the signature is not present in the table.
12123 4) Let H = (H + H') modulo M. Repeat at Step 3.
12125 Because M > N and H' and M are relatively prime, the search is guaranteed
12126 to stop at an unused slot or find the match. */
12128 /* Create a hash table to map DWO IDs to their CU/TU entry in
12129 .debug_{info,types}.dwo in DWP_FILE.
12130 Returns NULL if there isn't one.
12131 Note: This function processes DWP files only, not DWO files. */
12133 static struct dwp_hash_table *
12134 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12135 struct dwp_file *dwp_file, int is_debug_types)
12137 struct objfile *objfile = dwarf2_per_objfile->objfile;
12138 bfd *dbfd = dwp_file->dbfd.get ();
12139 const gdb_byte *index_ptr, *index_end;
12140 struct dwarf2_section_info *index;
12141 uint32_t version, nr_columns, nr_units, nr_slots;
12142 struct dwp_hash_table *htab;
12144 if (is_debug_types)
12145 index = &dwp_file->sections.tu_index;
12147 index = &dwp_file->sections.cu_index;
12149 if (dwarf2_section_empty_p (index))
12151 dwarf2_read_section (objfile, index);
12153 index_ptr = index->buffer;
12154 index_end = index_ptr + index->size;
12156 version = read_4_bytes (dbfd, index_ptr);
12159 nr_columns = read_4_bytes (dbfd, index_ptr);
12163 nr_units = read_4_bytes (dbfd, index_ptr);
12165 nr_slots = read_4_bytes (dbfd, index_ptr);
12168 if (version != 1 && version != 2)
12170 error (_("Dwarf Error: unsupported DWP file version (%s)"
12171 " [in module %s]"),
12172 pulongest (version), dwp_file->name);
12174 if (nr_slots != (nr_slots & -nr_slots))
12176 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12177 " is not power of 2 [in module %s]"),
12178 pulongest (nr_slots), dwp_file->name);
12181 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12182 htab->version = version;
12183 htab->nr_columns = nr_columns;
12184 htab->nr_units = nr_units;
12185 htab->nr_slots = nr_slots;
12186 htab->hash_table = index_ptr;
12187 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12189 /* Exit early if the table is empty. */
12190 if (nr_slots == 0 || nr_units == 0
12191 || (version == 2 && nr_columns == 0))
12193 /* All must be zero. */
12194 if (nr_slots != 0 || nr_units != 0
12195 || (version == 2 && nr_columns != 0))
12197 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12198 " all zero [in modules %s]"),
12206 htab->section_pool.v1.indices =
12207 htab->unit_table + sizeof (uint32_t) * nr_slots;
12208 /* It's harder to decide whether the section is too small in v1.
12209 V1 is deprecated anyway so we punt. */
12213 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12214 int *ids = htab->section_pool.v2.section_ids;
12215 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12216 /* Reverse map for error checking. */
12217 int ids_seen[DW_SECT_MAX + 1];
12220 if (nr_columns < 2)
12222 error (_("Dwarf Error: bad DWP hash table, too few columns"
12223 " in section table [in module %s]"),
12226 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12228 error (_("Dwarf Error: bad DWP hash table, too many columns"
12229 " in section table [in module %s]"),
12232 memset (ids, 255, sizeof_ids);
12233 memset (ids_seen, 255, sizeof (ids_seen));
12234 for (i = 0; i < nr_columns; ++i)
12236 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12238 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12240 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12241 " in section table [in module %s]"),
12242 id, dwp_file->name);
12244 if (ids_seen[id] != -1)
12246 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12247 " id %d in section table [in module %s]"),
12248 id, dwp_file->name);
12253 /* Must have exactly one info or types section. */
12254 if (((ids_seen[DW_SECT_INFO] != -1)
12255 + (ids_seen[DW_SECT_TYPES] != -1))
12258 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12259 " DWO info/types section [in module %s]"),
12262 /* Must have an abbrev section. */
12263 if (ids_seen[DW_SECT_ABBREV] == -1)
12265 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12266 " section [in module %s]"),
12269 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12270 htab->section_pool.v2.sizes =
12271 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12272 * nr_units * nr_columns);
12273 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12274 * nr_units * nr_columns))
12277 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12278 " [in module %s]"),
12286 /* Update SECTIONS with the data from SECTP.
12288 This function is like the other "locate" section routines that are
12289 passed to bfd_map_over_sections, but in this context the sections to
12290 read comes from the DWP V1 hash table, not the full ELF section table.
12292 The result is non-zero for success, or zero if an error was found. */
12295 locate_v1_virtual_dwo_sections (asection *sectp,
12296 struct virtual_v1_dwo_sections *sections)
12298 const struct dwop_section_names *names = &dwop_section_names;
12300 if (section_is_p (sectp->name, &names->abbrev_dwo))
12302 /* There can be only one. */
12303 if (sections->abbrev.s.section != NULL)
12305 sections->abbrev.s.section = sectp;
12306 sections->abbrev.size = bfd_get_section_size (sectp);
12308 else if (section_is_p (sectp->name, &names->info_dwo)
12309 || section_is_p (sectp->name, &names->types_dwo))
12311 /* There can be only one. */
12312 if (sections->info_or_types.s.section != NULL)
12314 sections->info_or_types.s.section = sectp;
12315 sections->info_or_types.size = bfd_get_section_size (sectp);
12317 else if (section_is_p (sectp->name, &names->line_dwo))
12319 /* There can be only one. */
12320 if (sections->line.s.section != NULL)
12322 sections->line.s.section = sectp;
12323 sections->line.size = bfd_get_section_size (sectp);
12325 else if (section_is_p (sectp->name, &names->loc_dwo))
12327 /* There can be only one. */
12328 if (sections->loc.s.section != NULL)
12330 sections->loc.s.section = sectp;
12331 sections->loc.size = bfd_get_section_size (sectp);
12333 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12335 /* There can be only one. */
12336 if (sections->macinfo.s.section != NULL)
12338 sections->macinfo.s.section = sectp;
12339 sections->macinfo.size = bfd_get_section_size (sectp);
12341 else if (section_is_p (sectp->name, &names->macro_dwo))
12343 /* There can be only one. */
12344 if (sections->macro.s.section != NULL)
12346 sections->macro.s.section = sectp;
12347 sections->macro.size = bfd_get_section_size (sectp);
12349 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12351 /* There can be only one. */
12352 if (sections->str_offsets.s.section != NULL)
12354 sections->str_offsets.s.section = sectp;
12355 sections->str_offsets.size = bfd_get_section_size (sectp);
12359 /* No other kind of section is valid. */
12366 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12367 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12368 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12369 This is for DWP version 1 files. */
12371 static struct dwo_unit *
12372 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12373 struct dwp_file *dwp_file,
12374 uint32_t unit_index,
12375 const char *comp_dir,
12376 ULONGEST signature, int is_debug_types)
12378 struct objfile *objfile = dwarf2_per_objfile->objfile;
12379 const struct dwp_hash_table *dwp_htab =
12380 is_debug_types ? dwp_file->tus : dwp_file->cus;
12381 bfd *dbfd = dwp_file->dbfd.get ();
12382 const char *kind = is_debug_types ? "TU" : "CU";
12383 struct dwo_file *dwo_file;
12384 struct dwo_unit *dwo_unit;
12385 struct virtual_v1_dwo_sections sections;
12386 void **dwo_file_slot;
12389 gdb_assert (dwp_file->version == 1);
12391 if (dwarf_read_debug)
12393 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12395 pulongest (unit_index), hex_string (signature),
12399 /* Fetch the sections of this DWO unit.
12400 Put a limit on the number of sections we look for so that bad data
12401 doesn't cause us to loop forever. */
12403 #define MAX_NR_V1_DWO_SECTIONS \
12404 (1 /* .debug_info or .debug_types */ \
12405 + 1 /* .debug_abbrev */ \
12406 + 1 /* .debug_line */ \
12407 + 1 /* .debug_loc */ \
12408 + 1 /* .debug_str_offsets */ \
12409 + 1 /* .debug_macro or .debug_macinfo */ \
12410 + 1 /* trailing zero */)
12412 memset (§ions, 0, sizeof (sections));
12414 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12417 uint32_t section_nr =
12418 read_4_bytes (dbfd,
12419 dwp_htab->section_pool.v1.indices
12420 + (unit_index + i) * sizeof (uint32_t));
12422 if (section_nr == 0)
12424 if (section_nr >= dwp_file->num_sections)
12426 error (_("Dwarf Error: bad DWP hash table, section number too large"
12427 " [in module %s]"),
12431 sectp = dwp_file->elf_sections[section_nr];
12432 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12434 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12435 " [in module %s]"),
12441 || dwarf2_section_empty_p (§ions.info_or_types)
12442 || dwarf2_section_empty_p (§ions.abbrev))
12444 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12445 " [in module %s]"),
12448 if (i == MAX_NR_V1_DWO_SECTIONS)
12450 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12451 " [in module %s]"),
12455 /* It's easier for the rest of the code if we fake a struct dwo_file and
12456 have dwo_unit "live" in that. At least for now.
12458 The DWP file can be made up of a random collection of CUs and TUs.
12459 However, for each CU + set of TUs that came from the same original DWO
12460 file, we can combine them back into a virtual DWO file to save space
12461 (fewer struct dwo_file objects to allocate). Remember that for really
12462 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12464 std::string virtual_dwo_name =
12465 string_printf ("virtual-dwo/%d-%d-%d-%d",
12466 get_section_id (§ions.abbrev),
12467 get_section_id (§ions.line),
12468 get_section_id (§ions.loc),
12469 get_section_id (§ions.str_offsets));
12470 /* Can we use an existing virtual DWO file? */
12471 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12472 virtual_dwo_name.c_str (),
12474 /* Create one if necessary. */
12475 if (*dwo_file_slot == NULL)
12477 if (dwarf_read_debug)
12479 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12480 virtual_dwo_name.c_str ());
12482 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12484 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12485 virtual_dwo_name.c_str (),
12486 virtual_dwo_name.size ());
12487 dwo_file->comp_dir = comp_dir;
12488 dwo_file->sections.abbrev = sections.abbrev;
12489 dwo_file->sections.line = sections.line;
12490 dwo_file->sections.loc = sections.loc;
12491 dwo_file->sections.macinfo = sections.macinfo;
12492 dwo_file->sections.macro = sections.macro;
12493 dwo_file->sections.str_offsets = sections.str_offsets;
12494 /* The "str" section is global to the entire DWP file. */
12495 dwo_file->sections.str = dwp_file->sections.str;
12496 /* The info or types section is assigned below to dwo_unit,
12497 there's no need to record it in dwo_file.
12498 Also, we can't simply record type sections in dwo_file because
12499 we record a pointer into the vector in dwo_unit. As we collect more
12500 types we'll grow the vector and eventually have to reallocate space
12501 for it, invalidating all copies of pointers into the previous
12503 *dwo_file_slot = dwo_file;
12507 if (dwarf_read_debug)
12509 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12510 virtual_dwo_name.c_str ());
12512 dwo_file = (struct dwo_file *) *dwo_file_slot;
12515 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12516 dwo_unit->dwo_file = dwo_file;
12517 dwo_unit->signature = signature;
12518 dwo_unit->section =
12519 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12520 *dwo_unit->section = sections.info_or_types;
12521 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12526 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12527 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12528 piece within that section used by a TU/CU, return a virtual section
12529 of just that piece. */
12531 static struct dwarf2_section_info
12532 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12533 struct dwarf2_section_info *section,
12534 bfd_size_type offset, bfd_size_type size)
12536 struct dwarf2_section_info result;
12539 gdb_assert (section != NULL);
12540 gdb_assert (!section->is_virtual);
12542 memset (&result, 0, sizeof (result));
12543 result.s.containing_section = section;
12544 result.is_virtual = 1;
12549 sectp = get_section_bfd_section (section);
12551 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12552 bounds of the real section. This is a pretty-rare event, so just
12553 flag an error (easier) instead of a warning and trying to cope. */
12555 || offset + size > bfd_get_section_size (sectp))
12557 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12558 " in section %s [in module %s]"),
12559 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12560 objfile_name (dwarf2_per_objfile->objfile));
12563 result.virtual_offset = offset;
12564 result.size = size;
12568 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12569 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12570 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12571 This is for DWP version 2 files. */
12573 static struct dwo_unit *
12574 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12575 struct dwp_file *dwp_file,
12576 uint32_t unit_index,
12577 const char *comp_dir,
12578 ULONGEST signature, int is_debug_types)
12580 struct objfile *objfile = dwarf2_per_objfile->objfile;
12581 const struct dwp_hash_table *dwp_htab =
12582 is_debug_types ? dwp_file->tus : dwp_file->cus;
12583 bfd *dbfd = dwp_file->dbfd.get ();
12584 const char *kind = is_debug_types ? "TU" : "CU";
12585 struct dwo_file *dwo_file;
12586 struct dwo_unit *dwo_unit;
12587 struct virtual_v2_dwo_sections sections;
12588 void **dwo_file_slot;
12591 gdb_assert (dwp_file->version == 2);
12593 if (dwarf_read_debug)
12595 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12597 pulongest (unit_index), hex_string (signature),
12601 /* Fetch the section offsets of this DWO unit. */
12603 memset (§ions, 0, sizeof (sections));
12605 for (i = 0; i < dwp_htab->nr_columns; ++i)
12607 uint32_t offset = read_4_bytes (dbfd,
12608 dwp_htab->section_pool.v2.offsets
12609 + (((unit_index - 1) * dwp_htab->nr_columns
12611 * sizeof (uint32_t)));
12612 uint32_t size = read_4_bytes (dbfd,
12613 dwp_htab->section_pool.v2.sizes
12614 + (((unit_index - 1) * dwp_htab->nr_columns
12616 * sizeof (uint32_t)));
12618 switch (dwp_htab->section_pool.v2.section_ids[i])
12621 case DW_SECT_TYPES:
12622 sections.info_or_types_offset = offset;
12623 sections.info_or_types_size = size;
12625 case DW_SECT_ABBREV:
12626 sections.abbrev_offset = offset;
12627 sections.abbrev_size = size;
12630 sections.line_offset = offset;
12631 sections.line_size = size;
12634 sections.loc_offset = offset;
12635 sections.loc_size = size;
12637 case DW_SECT_STR_OFFSETS:
12638 sections.str_offsets_offset = offset;
12639 sections.str_offsets_size = size;
12641 case DW_SECT_MACINFO:
12642 sections.macinfo_offset = offset;
12643 sections.macinfo_size = size;
12645 case DW_SECT_MACRO:
12646 sections.macro_offset = offset;
12647 sections.macro_size = size;
12652 /* It's easier for the rest of the code if we fake a struct dwo_file and
12653 have dwo_unit "live" in that. At least for now.
12655 The DWP file can be made up of a random collection of CUs and TUs.
12656 However, for each CU + set of TUs that came from the same original DWO
12657 file, we can combine them back into a virtual DWO file to save space
12658 (fewer struct dwo_file objects to allocate). Remember that for really
12659 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12661 std::string virtual_dwo_name =
12662 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12663 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12664 (long) (sections.line_size ? sections.line_offset : 0),
12665 (long) (sections.loc_size ? sections.loc_offset : 0),
12666 (long) (sections.str_offsets_size
12667 ? sections.str_offsets_offset : 0));
12668 /* Can we use an existing virtual DWO file? */
12669 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12670 virtual_dwo_name.c_str (),
12672 /* Create one if necessary. */
12673 if (*dwo_file_slot == NULL)
12675 if (dwarf_read_debug)
12677 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12678 virtual_dwo_name.c_str ());
12680 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12682 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12683 virtual_dwo_name.c_str (),
12684 virtual_dwo_name.size ());
12685 dwo_file->comp_dir = comp_dir;
12686 dwo_file->sections.abbrev =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12688 sections.abbrev_offset, sections.abbrev_size);
12689 dwo_file->sections.line =
12690 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12691 sections.line_offset, sections.line_size);
12692 dwo_file->sections.loc =
12693 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12694 sections.loc_offset, sections.loc_size);
12695 dwo_file->sections.macinfo =
12696 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12697 sections.macinfo_offset, sections.macinfo_size);
12698 dwo_file->sections.macro =
12699 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12700 sections.macro_offset, sections.macro_size);
12701 dwo_file->sections.str_offsets =
12702 create_dwp_v2_section (dwarf2_per_objfile,
12703 &dwp_file->sections.str_offsets,
12704 sections.str_offsets_offset,
12705 sections.str_offsets_size);
12706 /* The "str" section is global to the entire DWP file. */
12707 dwo_file->sections.str = dwp_file->sections.str;
12708 /* The info or types section is assigned below to dwo_unit,
12709 there's no need to record it in dwo_file.
12710 Also, we can't simply record type sections in dwo_file because
12711 we record a pointer into the vector in dwo_unit. As we collect more
12712 types we'll grow the vector and eventually have to reallocate space
12713 for it, invalidating all copies of pointers into the previous
12715 *dwo_file_slot = dwo_file;
12719 if (dwarf_read_debug)
12721 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12722 virtual_dwo_name.c_str ());
12724 dwo_file = (struct dwo_file *) *dwo_file_slot;
12727 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12728 dwo_unit->dwo_file = dwo_file;
12729 dwo_unit->signature = signature;
12730 dwo_unit->section =
12731 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12732 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12734 ? &dwp_file->sections.types
12735 : &dwp_file->sections.info,
12736 sections.info_or_types_offset,
12737 sections.info_or_types_size);
12738 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12743 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12744 Returns NULL if the signature isn't found. */
12746 static struct dwo_unit *
12747 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12748 struct dwp_file *dwp_file, const char *comp_dir,
12749 ULONGEST signature, int is_debug_types)
12751 const struct dwp_hash_table *dwp_htab =
12752 is_debug_types ? dwp_file->tus : dwp_file->cus;
12753 bfd *dbfd = dwp_file->dbfd.get ();
12754 uint32_t mask = dwp_htab->nr_slots - 1;
12755 uint32_t hash = signature & mask;
12756 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12759 struct dwo_unit find_dwo_cu;
12761 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12762 find_dwo_cu.signature = signature;
12763 slot = htab_find_slot (is_debug_types
12764 ? dwp_file->loaded_tus
12765 : dwp_file->loaded_cus,
12766 &find_dwo_cu, INSERT);
12769 return (struct dwo_unit *) *slot;
12771 /* Use a for loop so that we don't loop forever on bad debug info. */
12772 for (i = 0; i < dwp_htab->nr_slots; ++i)
12774 ULONGEST signature_in_table;
12776 signature_in_table =
12777 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12778 if (signature_in_table == signature)
12780 uint32_t unit_index =
12781 read_4_bytes (dbfd,
12782 dwp_htab->unit_table + hash * sizeof (uint32_t));
12784 if (dwp_file->version == 1)
12786 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12787 dwp_file, unit_index,
12788 comp_dir, signature,
12793 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12794 dwp_file, unit_index,
12795 comp_dir, signature,
12798 return (struct dwo_unit *) *slot;
12800 if (signature_in_table == 0)
12802 hash = (hash + hash2) & mask;
12805 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12806 " [in module %s]"),
12810 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12811 Open the file specified by FILE_NAME and hand it off to BFD for
12812 preliminary analysis. Return a newly initialized bfd *, which
12813 includes a canonicalized copy of FILE_NAME.
12814 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12815 SEARCH_CWD is true if the current directory is to be searched.
12816 It will be searched before debug-file-directory.
12817 If successful, the file is added to the bfd include table of the
12818 objfile's bfd (see gdb_bfd_record_inclusion).
12819 If unable to find/open the file, return NULL.
12820 NOTE: This function is derived from symfile_bfd_open. */
12822 static gdb_bfd_ref_ptr
12823 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12824 const char *file_name, int is_dwp, int search_cwd)
12827 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12828 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12829 to debug_file_directory. */
12830 const char *search_path;
12831 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12833 gdb::unique_xmalloc_ptr<char> search_path_holder;
12836 if (*debug_file_directory != '\0')
12838 search_path_holder.reset (concat (".", dirname_separator_string,
12839 debug_file_directory,
12841 search_path = search_path_holder.get ();
12847 search_path = debug_file_directory;
12849 openp_flags flags = OPF_RETURN_REALPATH;
12851 flags |= OPF_SEARCH_IN_PATH;
12853 gdb::unique_xmalloc_ptr<char> absolute_name;
12854 desc = openp (search_path, flags, file_name,
12855 O_RDONLY | O_BINARY, &absolute_name);
12859 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12861 if (sym_bfd == NULL)
12863 bfd_set_cacheable (sym_bfd.get (), 1);
12865 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12868 /* Success. Record the bfd as having been included by the objfile's bfd.
12869 This is important because things like demangled_names_hash lives in the
12870 objfile's per_bfd space and may have references to things like symbol
12871 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12872 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12877 /* Try to open DWO file FILE_NAME.
12878 COMP_DIR is the DW_AT_comp_dir attribute.
12879 The result is the bfd handle of the file.
12880 If there is a problem finding or opening the file, return NULL.
12881 Upon success, the canonicalized path of the file is stored in the bfd,
12882 same as symfile_bfd_open. */
12884 static gdb_bfd_ref_ptr
12885 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12886 const char *file_name, const char *comp_dir)
12888 if (IS_ABSOLUTE_PATH (file_name))
12889 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12890 0 /*is_dwp*/, 0 /*search_cwd*/);
12892 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12894 if (comp_dir != NULL)
12896 char *path_to_try = concat (comp_dir, SLASH_STRING,
12897 file_name, (char *) NULL);
12899 /* NOTE: If comp_dir is a relative path, this will also try the
12900 search path, which seems useful. */
12901 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12904 1 /*search_cwd*/));
12905 xfree (path_to_try);
12910 /* That didn't work, try debug-file-directory, which, despite its name,
12911 is a list of paths. */
12913 if (*debug_file_directory == '\0')
12916 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12917 0 /*is_dwp*/, 1 /*search_cwd*/);
12920 /* This function is mapped across the sections and remembers the offset and
12921 size of each of the DWO debugging sections we are interested in. */
12924 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12926 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12927 const struct dwop_section_names *names = &dwop_section_names;
12929 if (section_is_p (sectp->name, &names->abbrev_dwo))
12931 dwo_sections->abbrev.s.section = sectp;
12932 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12934 else if (section_is_p (sectp->name, &names->info_dwo))
12936 dwo_sections->info.s.section = sectp;
12937 dwo_sections->info.size = bfd_get_section_size (sectp);
12939 else if (section_is_p (sectp->name, &names->line_dwo))
12941 dwo_sections->line.s.section = sectp;
12942 dwo_sections->line.size = bfd_get_section_size (sectp);
12944 else if (section_is_p (sectp->name, &names->loc_dwo))
12946 dwo_sections->loc.s.section = sectp;
12947 dwo_sections->loc.size = bfd_get_section_size (sectp);
12949 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12951 dwo_sections->macinfo.s.section = sectp;
12952 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12954 else if (section_is_p (sectp->name, &names->macro_dwo))
12956 dwo_sections->macro.s.section = sectp;
12957 dwo_sections->macro.size = bfd_get_section_size (sectp);
12959 else if (section_is_p (sectp->name, &names->str_dwo))
12961 dwo_sections->str.s.section = sectp;
12962 dwo_sections->str.size = bfd_get_section_size (sectp);
12964 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12966 dwo_sections->str_offsets.s.section = sectp;
12967 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12969 else if (section_is_p (sectp->name, &names->types_dwo))
12971 struct dwarf2_section_info type_section;
12973 memset (&type_section, 0, sizeof (type_section));
12974 type_section.s.section = sectp;
12975 type_section.size = bfd_get_section_size (sectp);
12976 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12981 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12982 by PER_CU. This is for the non-DWP case.
12983 The result is NULL if DWO_NAME can't be found. */
12985 static struct dwo_file *
12986 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12987 const char *dwo_name, const char *comp_dir)
12989 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12990 struct objfile *objfile = dwarf2_per_objfile->objfile;
12992 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12995 if (dwarf_read_debug)
12996 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13000 /* We use a unique pointer here, despite the obstack allocation,
13001 because a dwo_file needs some cleanup if it is abandoned. */
13002 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
13004 dwo_file->dwo_name = dwo_name;
13005 dwo_file->comp_dir = comp_dir;
13006 dwo_file->dbfd = dbfd.release ();
13008 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13009 &dwo_file->sections);
13011 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13014 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13015 dwo_file->sections.types, dwo_file->tus);
13017 if (dwarf_read_debug)
13018 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13020 return dwo_file.release ();
13023 /* This function is mapped across the sections and remembers the offset and
13024 size of each of the DWP debugging sections common to version 1 and 2 that
13025 we are interested in. */
13028 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13029 void *dwp_file_ptr)
13031 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13032 const struct dwop_section_names *names = &dwop_section_names;
13033 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13035 /* Record the ELF section number for later lookup: this is what the
13036 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13037 gdb_assert (elf_section_nr < dwp_file->num_sections);
13038 dwp_file->elf_sections[elf_section_nr] = sectp;
13040 /* Look for specific sections that we need. */
13041 if (section_is_p (sectp->name, &names->str_dwo))
13043 dwp_file->sections.str.s.section = sectp;
13044 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13046 else if (section_is_p (sectp->name, &names->cu_index))
13048 dwp_file->sections.cu_index.s.section = sectp;
13049 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13051 else if (section_is_p (sectp->name, &names->tu_index))
13053 dwp_file->sections.tu_index.s.section = sectp;
13054 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13058 /* This function is mapped across the sections and remembers the offset and
13059 size of each of the DWP version 2 debugging sections that we are interested
13060 in. This is split into a separate function because we don't know if we
13061 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13064 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13066 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13067 const struct dwop_section_names *names = &dwop_section_names;
13068 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13070 /* Record the ELF section number for later lookup: this is what the
13071 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13072 gdb_assert (elf_section_nr < dwp_file->num_sections);
13073 dwp_file->elf_sections[elf_section_nr] = sectp;
13075 /* Look for specific sections that we need. */
13076 if (section_is_p (sectp->name, &names->abbrev_dwo))
13078 dwp_file->sections.abbrev.s.section = sectp;
13079 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13081 else if (section_is_p (sectp->name, &names->info_dwo))
13083 dwp_file->sections.info.s.section = sectp;
13084 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13086 else if (section_is_p (sectp->name, &names->line_dwo))
13088 dwp_file->sections.line.s.section = sectp;
13089 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13091 else if (section_is_p (sectp->name, &names->loc_dwo))
13093 dwp_file->sections.loc.s.section = sectp;
13094 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13096 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13098 dwp_file->sections.macinfo.s.section = sectp;
13099 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13101 else if (section_is_p (sectp->name, &names->macro_dwo))
13103 dwp_file->sections.macro.s.section = sectp;
13104 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13106 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13108 dwp_file->sections.str_offsets.s.section = sectp;
13109 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13111 else if (section_is_p (sectp->name, &names->types_dwo))
13113 dwp_file->sections.types.s.section = sectp;
13114 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13118 /* Hash function for dwp_file loaded CUs/TUs. */
13121 hash_dwp_loaded_cutus (const void *item)
13123 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13125 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13126 return dwo_unit->signature;
13129 /* Equality function for dwp_file loaded CUs/TUs. */
13132 eq_dwp_loaded_cutus (const void *a, const void *b)
13134 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13135 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13137 return dua->signature == dub->signature;
13140 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13143 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13145 return htab_create_alloc_ex (3,
13146 hash_dwp_loaded_cutus,
13147 eq_dwp_loaded_cutus,
13149 &objfile->objfile_obstack,
13150 hashtab_obstack_allocate,
13151 dummy_obstack_deallocate);
13154 /* Try to open DWP file FILE_NAME.
13155 The result is the bfd handle of the file.
13156 If there is a problem finding or opening the file, return NULL.
13157 Upon success, the canonicalized path of the file is stored in the bfd,
13158 same as symfile_bfd_open. */
13160 static gdb_bfd_ref_ptr
13161 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13162 const char *file_name)
13164 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13166 1 /*search_cwd*/));
13170 /* Work around upstream bug 15652.
13171 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13172 [Whether that's a "bug" is debatable, but it is getting in our way.]
13173 We have no real idea where the dwp file is, because gdb's realpath-ing
13174 of the executable's path may have discarded the needed info.
13175 [IWBN if the dwp file name was recorded in the executable, akin to
13176 .gnu_debuglink, but that doesn't exist yet.]
13177 Strip the directory from FILE_NAME and search again. */
13178 if (*debug_file_directory != '\0')
13180 /* Don't implicitly search the current directory here.
13181 If the user wants to search "." to handle this case,
13182 it must be added to debug-file-directory. */
13183 return try_open_dwop_file (dwarf2_per_objfile,
13184 lbasename (file_name), 1 /*is_dwp*/,
13191 /* Initialize the use of the DWP file for the current objfile.
13192 By convention the name of the DWP file is ${objfile}.dwp.
13193 The result is NULL if it can't be found. */
13195 static std::unique_ptr<struct dwp_file>
13196 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13198 struct objfile *objfile = dwarf2_per_objfile->objfile;
13200 /* Try to find first .dwp for the binary file before any symbolic links
13203 /* If the objfile is a debug file, find the name of the real binary
13204 file and get the name of dwp file from there. */
13205 std::string dwp_name;
13206 if (objfile->separate_debug_objfile_backlink != NULL)
13208 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13209 const char *backlink_basename = lbasename (backlink->original_name);
13211 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13214 dwp_name = objfile->original_name;
13216 dwp_name += ".dwp";
13218 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13220 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13222 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13223 dwp_name = objfile_name (objfile);
13224 dwp_name += ".dwp";
13225 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13230 if (dwarf_read_debug)
13231 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13232 return std::unique_ptr<dwp_file> ();
13235 const char *name = bfd_get_filename (dbfd.get ());
13236 std::unique_ptr<struct dwp_file> dwp_file
13237 (new struct dwp_file (name, std::move (dbfd)));
13239 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13240 dwp_file->elf_sections =
13241 OBSTACK_CALLOC (&objfile->objfile_obstack,
13242 dwp_file->num_sections, asection *);
13244 bfd_map_over_sections (dwp_file->dbfd.get (),
13245 dwarf2_locate_common_dwp_sections,
13248 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13251 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13254 /* The DWP file version is stored in the hash table. Oh well. */
13255 if (dwp_file->cus && dwp_file->tus
13256 && dwp_file->cus->version != dwp_file->tus->version)
13258 /* Technically speaking, we should try to limp along, but this is
13259 pretty bizarre. We use pulongest here because that's the established
13260 portability solution (e.g, we cannot use %u for uint32_t). */
13261 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13262 " TU version %s [in DWP file %s]"),
13263 pulongest (dwp_file->cus->version),
13264 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13268 dwp_file->version = dwp_file->cus->version;
13269 else if (dwp_file->tus)
13270 dwp_file->version = dwp_file->tus->version;
13272 dwp_file->version = 2;
13274 if (dwp_file->version == 2)
13275 bfd_map_over_sections (dwp_file->dbfd.get (),
13276 dwarf2_locate_v2_dwp_sections,
13279 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13280 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13282 if (dwarf_read_debug)
13284 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13285 fprintf_unfiltered (gdb_stdlog,
13286 " %s CUs, %s TUs\n",
13287 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13288 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13294 /* Wrapper around open_and_init_dwp_file, only open it once. */
13296 static struct dwp_file *
13297 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13299 if (! dwarf2_per_objfile->dwp_checked)
13301 dwarf2_per_objfile->dwp_file
13302 = open_and_init_dwp_file (dwarf2_per_objfile);
13303 dwarf2_per_objfile->dwp_checked = 1;
13305 return dwarf2_per_objfile->dwp_file.get ();
13308 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13309 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13310 or in the DWP file for the objfile, referenced by THIS_UNIT.
13311 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13312 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13314 This is called, for example, when wanting to read a variable with a
13315 complex location. Therefore we don't want to do file i/o for every call.
13316 Therefore we don't want to look for a DWO file on every call.
13317 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13318 then we check if we've already seen DWO_NAME, and only THEN do we check
13321 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13322 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13324 static struct dwo_unit *
13325 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13326 const char *dwo_name, const char *comp_dir,
13327 ULONGEST signature, int is_debug_types)
13329 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13330 struct objfile *objfile = dwarf2_per_objfile->objfile;
13331 const char *kind = is_debug_types ? "TU" : "CU";
13332 void **dwo_file_slot;
13333 struct dwo_file *dwo_file;
13334 struct dwp_file *dwp_file;
13336 /* First see if there's a DWP file.
13337 If we have a DWP file but didn't find the DWO inside it, don't
13338 look for the original DWO file. It makes gdb behave differently
13339 depending on whether one is debugging in the build tree. */
13341 dwp_file = get_dwp_file (dwarf2_per_objfile);
13342 if (dwp_file != NULL)
13344 const struct dwp_hash_table *dwp_htab =
13345 is_debug_types ? dwp_file->tus : dwp_file->cus;
13347 if (dwp_htab != NULL)
13349 struct dwo_unit *dwo_cutu =
13350 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13351 signature, is_debug_types);
13353 if (dwo_cutu != NULL)
13355 if (dwarf_read_debug)
13357 fprintf_unfiltered (gdb_stdlog,
13358 "Virtual DWO %s %s found: @%s\n",
13359 kind, hex_string (signature),
13360 host_address_to_string (dwo_cutu));
13368 /* No DWP file, look for the DWO file. */
13370 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13371 dwo_name, comp_dir);
13372 if (*dwo_file_slot == NULL)
13374 /* Read in the file and build a table of the CUs/TUs it contains. */
13375 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13377 /* NOTE: This will be NULL if unable to open the file. */
13378 dwo_file = (struct dwo_file *) *dwo_file_slot;
13380 if (dwo_file != NULL)
13382 struct dwo_unit *dwo_cutu = NULL;
13384 if (is_debug_types && dwo_file->tus)
13386 struct dwo_unit find_dwo_cutu;
13388 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13389 find_dwo_cutu.signature = signature;
13391 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13393 else if (!is_debug_types && dwo_file->cus)
13395 struct dwo_unit find_dwo_cutu;
13397 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13398 find_dwo_cutu.signature = signature;
13399 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13403 if (dwo_cutu != NULL)
13405 if (dwarf_read_debug)
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13408 kind, dwo_name, hex_string (signature),
13409 host_address_to_string (dwo_cutu));
13416 /* We didn't find it. This could mean a dwo_id mismatch, or
13417 someone deleted the DWO/DWP file, or the search path isn't set up
13418 correctly to find the file. */
13420 if (dwarf_read_debug)
13422 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13423 kind, dwo_name, hex_string (signature));
13426 /* This is a warning and not a complaint because it can be caused by
13427 pilot error (e.g., user accidentally deleting the DWO). */
13429 /* Print the name of the DWP file if we looked there, helps the user
13430 better diagnose the problem. */
13431 std::string dwp_text;
13433 if (dwp_file != NULL)
13434 dwp_text = string_printf (" [in DWP file %s]",
13435 lbasename (dwp_file->name));
13437 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13438 " [in module %s]"),
13439 kind, dwo_name, hex_string (signature),
13441 this_unit->is_debug_types ? "TU" : "CU",
13442 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13447 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13448 See lookup_dwo_cutu_unit for details. */
13450 static struct dwo_unit *
13451 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13452 const char *dwo_name, const char *comp_dir,
13453 ULONGEST signature)
13455 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13458 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13459 See lookup_dwo_cutu_unit for details. */
13461 static struct dwo_unit *
13462 lookup_dwo_type_unit (struct signatured_type *this_tu,
13463 const char *dwo_name, const char *comp_dir)
13465 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13468 /* Traversal function for queue_and_load_all_dwo_tus. */
13471 queue_and_load_dwo_tu (void **slot, void *info)
13473 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13474 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13475 ULONGEST signature = dwo_unit->signature;
13476 struct signatured_type *sig_type =
13477 lookup_dwo_signatured_type (per_cu->cu, signature);
13479 if (sig_type != NULL)
13481 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13483 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13484 a real dependency of PER_CU on SIG_TYPE. That is detected later
13485 while processing PER_CU. */
13486 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13487 load_full_type_unit (sig_cu);
13488 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13494 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13495 The DWO may have the only definition of the type, though it may not be
13496 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13497 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13500 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13502 struct dwo_unit *dwo_unit;
13503 struct dwo_file *dwo_file;
13505 gdb_assert (!per_cu->is_debug_types);
13506 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13507 gdb_assert (per_cu->cu != NULL);
13509 dwo_unit = per_cu->cu->dwo_unit;
13510 gdb_assert (dwo_unit != NULL);
13512 dwo_file = dwo_unit->dwo_file;
13513 if (dwo_file->tus != NULL)
13514 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13517 /* Free all resources associated with DWO_FILE.
13518 Close the DWO file and munmap the sections. */
13521 free_dwo_file (struct dwo_file *dwo_file)
13523 /* Note: dbfd is NULL for virtual DWO files. */
13524 gdb_bfd_unref (dwo_file->dbfd);
13526 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13529 /* Traversal function for free_dwo_files. */
13532 free_dwo_file_from_slot (void **slot, void *info)
13534 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13536 free_dwo_file (dwo_file);
13541 /* Free all resources associated with DWO_FILES. */
13544 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13546 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13549 /* Read in various DIEs. */
13551 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13552 Inherit only the children of the DW_AT_abstract_origin DIE not being
13553 already referenced by DW_AT_abstract_origin from the children of the
13557 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13559 struct die_info *child_die;
13560 sect_offset *offsetp;
13561 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13562 struct die_info *origin_die;
13563 /* Iterator of the ORIGIN_DIE children. */
13564 struct die_info *origin_child_die;
13565 struct attribute *attr;
13566 struct dwarf2_cu *origin_cu;
13567 struct pending **origin_previous_list_in_scope;
13569 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13573 /* Note that following die references may follow to a die in a
13577 origin_die = follow_die_ref (die, attr, &origin_cu);
13579 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13581 origin_previous_list_in_scope = origin_cu->list_in_scope;
13582 origin_cu->list_in_scope = cu->list_in_scope;
13584 if (die->tag != origin_die->tag
13585 && !(die->tag == DW_TAG_inlined_subroutine
13586 && origin_die->tag == DW_TAG_subprogram))
13587 complaint (_("DIE %s and its abstract origin %s have different tags"),
13588 sect_offset_str (die->sect_off),
13589 sect_offset_str (origin_die->sect_off));
13591 std::vector<sect_offset> offsets;
13593 for (child_die = die->child;
13594 child_die && child_die->tag;
13595 child_die = sibling_die (child_die))
13597 struct die_info *child_origin_die;
13598 struct dwarf2_cu *child_origin_cu;
13600 /* We are trying to process concrete instance entries:
13601 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13602 it's not relevant to our analysis here. i.e. detecting DIEs that are
13603 present in the abstract instance but not referenced in the concrete
13605 if (child_die->tag == DW_TAG_call_site
13606 || child_die->tag == DW_TAG_GNU_call_site)
13609 /* For each CHILD_DIE, find the corresponding child of
13610 ORIGIN_DIE. If there is more than one layer of
13611 DW_AT_abstract_origin, follow them all; there shouldn't be,
13612 but GCC versions at least through 4.4 generate this (GCC PR
13614 child_origin_die = child_die;
13615 child_origin_cu = cu;
13618 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13622 child_origin_die = follow_die_ref (child_origin_die, attr,
13626 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13627 counterpart may exist. */
13628 if (child_origin_die != child_die)
13630 if (child_die->tag != child_origin_die->tag
13631 && !(child_die->tag == DW_TAG_inlined_subroutine
13632 && child_origin_die->tag == DW_TAG_subprogram))
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13637 if (child_origin_die->parent != origin_die)
13638 complaint (_("Child DIE %s and its abstract origin %s have "
13639 "different parents"),
13640 sect_offset_str (child_die->sect_off),
13641 sect_offset_str (child_origin_die->sect_off));
13643 offsets.push_back (child_origin_die->sect_off);
13646 std::sort (offsets.begin (), offsets.end ());
13647 sect_offset *offsets_end = offsets.data () + offsets.size ();
13648 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13649 if (offsetp[-1] == *offsetp)
13650 complaint (_("Multiple children of DIE %s refer "
13651 "to DIE %s as their abstract origin"),
13652 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13654 offsetp = offsets.data ();
13655 origin_child_die = origin_die->child;
13656 while (origin_child_die && origin_child_die->tag)
13658 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13659 while (offsetp < offsets_end
13660 && *offsetp < origin_child_die->sect_off)
13662 if (offsetp >= offsets_end
13663 || *offsetp > origin_child_die->sect_off)
13665 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13666 Check whether we're already processing ORIGIN_CHILD_DIE.
13667 This can happen with mutually referenced abstract_origins.
13669 if (!origin_child_die->in_process)
13670 process_die (origin_child_die, origin_cu);
13672 origin_child_die = sibling_die (origin_child_die);
13674 origin_cu->list_in_scope = origin_previous_list_in_scope;
13678 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13682 struct context_stack *newobj;
13685 struct die_info *child_die;
13686 struct attribute *attr, *call_line, *call_file;
13688 CORE_ADDR baseaddr;
13689 struct block *block;
13690 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13691 std::vector<struct symbol *> template_args;
13692 struct template_symbol *templ_func = NULL;
13696 /* If we do not have call site information, we can't show the
13697 caller of this inlined function. That's too confusing, so
13698 only use the scope for local variables. */
13699 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13700 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13701 if (call_line == NULL || call_file == NULL)
13703 read_lexical_block_scope (die, cu);
13708 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13710 name = dwarf2_name (die, cu);
13712 /* Ignore functions with missing or empty names. These are actually
13713 illegal according to the DWARF standard. */
13716 complaint (_("missing name for subprogram DIE at %s"),
13717 sect_offset_str (die->sect_off));
13721 /* Ignore functions with missing or invalid low and high pc attributes. */
13722 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13723 <= PC_BOUNDS_INVALID)
13725 attr = dwarf2_attr (die, DW_AT_external, cu);
13726 if (!attr || !DW_UNSND (attr))
13727 complaint (_("cannot get low and high bounds "
13728 "for subprogram DIE at %s"),
13729 sect_offset_str (die->sect_off));
13733 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13734 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13736 /* If we have any template arguments, then we must allocate a
13737 different sort of symbol. */
13738 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13740 if (child_die->tag == DW_TAG_template_type_param
13741 || child_die->tag == DW_TAG_template_value_param)
13743 templ_func = allocate_template_symbol (objfile);
13744 templ_func->subclass = SYMBOL_TEMPLATE;
13749 newobj = cu->get_builder ()->push_context (0, lowpc);
13750 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13751 (struct symbol *) templ_func);
13753 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13754 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13757 /* If there is a location expression for DW_AT_frame_base, record
13759 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13761 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13763 /* If there is a location for the static link, record it. */
13764 newobj->static_link = NULL;
13765 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13768 newobj->static_link
13769 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13770 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13773 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13775 if (die->child != NULL)
13777 child_die = die->child;
13778 while (child_die && child_die->tag)
13780 if (child_die->tag == DW_TAG_template_type_param
13781 || child_die->tag == DW_TAG_template_value_param)
13783 struct symbol *arg = new_symbol (child_die, NULL, cu);
13786 template_args.push_back (arg);
13789 process_die (child_die, cu);
13790 child_die = sibling_die (child_die);
13794 inherit_abstract_dies (die, cu);
13796 /* If we have a DW_AT_specification, we might need to import using
13797 directives from the context of the specification DIE. See the
13798 comment in determine_prefix. */
13799 if (cu->language == language_cplus
13800 && dwarf2_attr (die, DW_AT_specification, cu))
13802 struct dwarf2_cu *spec_cu = cu;
13803 struct die_info *spec_die = die_specification (die, &spec_cu);
13807 child_die = spec_die->child;
13808 while (child_die && child_die->tag)
13810 if (child_die->tag == DW_TAG_imported_module)
13811 process_die (child_die, spec_cu);
13812 child_die = sibling_die (child_die);
13815 /* In some cases, GCC generates specification DIEs that
13816 themselves contain DW_AT_specification attributes. */
13817 spec_die = die_specification (spec_die, &spec_cu);
13821 struct context_stack cstk = cu->get_builder ()->pop_context ();
13822 /* Make a block for the local symbols within. */
13823 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13824 cstk.static_link, lowpc, highpc);
13826 /* For C++, set the block's scope. */
13827 if ((cu->language == language_cplus
13828 || cu->language == language_fortran
13829 || cu->language == language_d
13830 || cu->language == language_rust)
13831 && cu->processing_has_namespace_info)
13832 block_set_scope (block, determine_prefix (die, cu),
13833 &objfile->objfile_obstack);
13835 /* If we have address ranges, record them. */
13836 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13838 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13840 /* Attach template arguments to function. */
13841 if (!template_args.empty ())
13843 gdb_assert (templ_func != NULL);
13845 templ_func->n_template_arguments = template_args.size ();
13846 templ_func->template_arguments
13847 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13848 templ_func->n_template_arguments);
13849 memcpy (templ_func->template_arguments,
13850 template_args.data (),
13851 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13853 /* Make sure that the symtab is set on the new symbols. Even
13854 though they don't appear in this symtab directly, other parts
13855 of gdb assume that symbols do, and this is reasonably
13857 for (symbol *sym : template_args)
13858 symbol_set_symtab (sym, symbol_symtab (templ_func));
13861 /* In C++, we can have functions nested inside functions (e.g., when
13862 a function declares a class that has methods). This means that
13863 when we finish processing a function scope, we may need to go
13864 back to building a containing block's symbol lists. */
13865 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13866 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13868 /* If we've finished processing a top-level function, subsequent
13869 symbols go in the file symbol list. */
13870 if (cu->get_builder ()->outermost_context_p ())
13871 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13874 /* Process all the DIES contained within a lexical block scope. Start
13875 a new scope, process the dies, and then close the scope. */
13878 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13880 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13881 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13882 CORE_ADDR lowpc, highpc;
13883 struct die_info *child_die;
13884 CORE_ADDR baseaddr;
13886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13888 /* Ignore blocks with missing or invalid low and high pc attributes. */
13889 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13890 as multiple lexical blocks? Handling children in a sane way would
13891 be nasty. Might be easier to properly extend generic blocks to
13892 describe ranges. */
13893 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13895 case PC_BOUNDS_NOT_PRESENT:
13896 /* DW_TAG_lexical_block has no attributes, process its children as if
13897 there was no wrapping by that DW_TAG_lexical_block.
13898 GCC does no longer produces such DWARF since GCC r224161. */
13899 for (child_die = die->child;
13900 child_die != NULL && child_die->tag;
13901 child_die = sibling_die (child_die))
13902 process_die (child_die, cu);
13904 case PC_BOUNDS_INVALID:
13907 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13908 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13910 cu->get_builder ()->push_context (0, lowpc);
13911 if (die->child != NULL)
13913 child_die = die->child;
13914 while (child_die && child_die->tag)
13916 process_die (child_die, cu);
13917 child_die = sibling_die (child_die);
13920 inherit_abstract_dies (die, cu);
13921 struct context_stack cstk = cu->get_builder ()->pop_context ();
13923 if (*cu->get_builder ()->get_local_symbols () != NULL
13924 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13926 struct block *block
13927 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13928 cstk.start_addr, highpc);
13930 /* Note that recording ranges after traversing children, as we
13931 do here, means that recording a parent's ranges entails
13932 walking across all its children's ranges as they appear in
13933 the address map, which is quadratic behavior.
13935 It would be nicer to record the parent's ranges before
13936 traversing its children, simply overriding whatever you find
13937 there. But since we don't even decide whether to create a
13938 block until after we've traversed its children, that's hard
13940 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13942 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13943 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13946 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13949 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13953 CORE_ADDR pc, baseaddr;
13954 struct attribute *attr;
13955 struct call_site *call_site, call_site_local;
13958 struct die_info *child_die;
13960 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13962 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13965 /* This was a pre-DWARF-5 GNU extension alias
13966 for DW_AT_call_return_pc. */
13967 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13971 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13972 "DIE %s [in module %s]"),
13973 sect_offset_str (die->sect_off), objfile_name (objfile));
13976 pc = attr_value_as_address (attr) + baseaddr;
13977 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13979 if (cu->call_site_htab == NULL)
13980 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13981 NULL, &objfile->objfile_obstack,
13982 hashtab_obstack_allocate, NULL);
13983 call_site_local.pc = pc;
13984 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13987 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13988 "DIE %s [in module %s]"),
13989 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13990 objfile_name (objfile));
13994 /* Count parameters at the caller. */
13997 for (child_die = die->child; child_die && child_die->tag;
13998 child_die = sibling_die (child_die))
14000 if (child_die->tag != DW_TAG_call_site_parameter
14001 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14003 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
14004 "DW_TAG_call_site child DIE %s [in module %s]"),
14005 child_die->tag, sect_offset_str (child_die->sect_off),
14006 objfile_name (objfile));
14014 = ((struct call_site *)
14015 obstack_alloc (&objfile->objfile_obstack,
14016 sizeof (*call_site)
14017 + (sizeof (*call_site->parameter) * (nparams - 1))));
14019 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14020 call_site->pc = pc;
14022 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14023 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14025 struct die_info *func_die;
14027 /* Skip also over DW_TAG_inlined_subroutine. */
14028 for (func_die = die->parent;
14029 func_die && func_die->tag != DW_TAG_subprogram
14030 && func_die->tag != DW_TAG_subroutine_type;
14031 func_die = func_die->parent);
14033 /* DW_AT_call_all_calls is a superset
14034 of DW_AT_call_all_tail_calls. */
14036 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14037 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14038 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14039 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14041 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14042 not complete. But keep CALL_SITE for look ups via call_site_htab,
14043 both the initial caller containing the real return address PC and
14044 the final callee containing the current PC of a chain of tail
14045 calls do not need to have the tail call list complete. But any
14046 function candidate for a virtual tail call frame searched via
14047 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14048 determined unambiguously. */
14052 struct type *func_type = NULL;
14055 func_type = get_die_type (func_die, cu);
14056 if (func_type != NULL)
14058 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14060 /* Enlist this call site to the function. */
14061 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14062 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14065 complaint (_("Cannot find function owning DW_TAG_call_site "
14066 "DIE %s [in module %s]"),
14067 sect_offset_str (die->sect_off), objfile_name (objfile));
14071 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14073 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14075 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14078 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14079 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14081 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14082 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14083 /* Keep NULL DWARF_BLOCK. */;
14084 else if (attr_form_is_block (attr))
14086 struct dwarf2_locexpr_baton *dlbaton;
14088 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14089 dlbaton->data = DW_BLOCK (attr)->data;
14090 dlbaton->size = DW_BLOCK (attr)->size;
14091 dlbaton->per_cu = cu->per_cu;
14093 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14095 else if (attr_form_is_ref (attr))
14097 struct dwarf2_cu *target_cu = cu;
14098 struct die_info *target_die;
14100 target_die = follow_die_ref (die, attr, &target_cu);
14101 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14102 if (die_is_declaration (target_die, target_cu))
14104 const char *target_physname;
14106 /* Prefer the mangled name; otherwise compute the demangled one. */
14107 target_physname = dw2_linkage_name (target_die, target_cu);
14108 if (target_physname == NULL)
14109 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14110 if (target_physname == NULL)
14111 complaint (_("DW_AT_call_target target DIE has invalid "
14112 "physname, for referencing DIE %s [in module %s]"),
14113 sect_offset_str (die->sect_off), objfile_name (objfile));
14115 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14121 /* DW_AT_entry_pc should be preferred. */
14122 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14123 <= PC_BOUNDS_INVALID)
14124 complaint (_("DW_AT_call_target target DIE has invalid "
14125 "low pc, for referencing DIE %s [in module %s]"),
14126 sect_offset_str (die->sect_off), objfile_name (objfile));
14129 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14130 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14135 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14136 "block nor reference, for DIE %s [in module %s]"),
14137 sect_offset_str (die->sect_off), objfile_name (objfile));
14139 call_site->per_cu = cu->per_cu;
14141 for (child_die = die->child;
14142 child_die && child_die->tag;
14143 child_die = sibling_die (child_die))
14145 struct call_site_parameter *parameter;
14146 struct attribute *loc, *origin;
14148 if (child_die->tag != DW_TAG_call_site_parameter
14149 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14151 /* Already printed the complaint above. */
14155 gdb_assert (call_site->parameter_count < nparams);
14156 parameter = &call_site->parameter[call_site->parameter_count];
14158 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14159 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14160 register is contained in DW_AT_call_value. */
14162 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14163 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14164 if (origin == NULL)
14166 /* This was a pre-DWARF-5 GNU extension alias
14167 for DW_AT_call_parameter. */
14168 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14170 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14172 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14174 sect_offset sect_off
14175 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14176 if (!offset_in_cu_p (&cu->header, sect_off))
14178 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14179 binding can be done only inside one CU. Such referenced DIE
14180 therefore cannot be even moved to DW_TAG_partial_unit. */
14181 complaint (_("DW_AT_call_parameter offset is not in CU for "
14182 "DW_TAG_call_site child DIE %s [in module %s]"),
14183 sect_offset_str (child_die->sect_off),
14184 objfile_name (objfile));
14187 parameter->u.param_cu_off
14188 = (cu_offset) (sect_off - cu->header.sect_off);
14190 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14192 complaint (_("No DW_FORM_block* DW_AT_location for "
14193 "DW_TAG_call_site child DIE %s [in module %s]"),
14194 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14199 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14200 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14201 if (parameter->u.dwarf_reg != -1)
14202 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14203 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14204 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14205 ¶meter->u.fb_offset))
14206 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14209 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14210 "for DW_FORM_block* DW_AT_location is supported for "
14211 "DW_TAG_call_site child DIE %s "
14213 sect_offset_str (child_die->sect_off),
14214 objfile_name (objfile));
14219 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14222 if (!attr_form_is_block (attr))
14224 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14225 "DW_TAG_call_site child DIE %s [in module %s]"),
14226 sect_offset_str (child_die->sect_off),
14227 objfile_name (objfile));
14230 parameter->value = DW_BLOCK (attr)->data;
14231 parameter->value_size = DW_BLOCK (attr)->size;
14233 /* Parameters are not pre-cleared by memset above. */
14234 parameter->data_value = NULL;
14235 parameter->data_value_size = 0;
14236 call_site->parameter_count++;
14238 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14240 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14243 if (!attr_form_is_block (attr))
14244 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14245 "DW_TAG_call_site child DIE %s [in module %s]"),
14246 sect_offset_str (child_die->sect_off),
14247 objfile_name (objfile));
14250 parameter->data_value = DW_BLOCK (attr)->data;
14251 parameter->data_value_size = DW_BLOCK (attr)->size;
14257 /* Helper function for read_variable. If DIE represents a virtual
14258 table, then return the type of the concrete object that is
14259 associated with the virtual table. Otherwise, return NULL. */
14261 static struct type *
14262 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14264 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14268 /* Find the type DIE. */
14269 struct die_info *type_die = NULL;
14270 struct dwarf2_cu *type_cu = cu;
14272 if (attr_form_is_ref (attr))
14273 type_die = follow_die_ref (die, attr, &type_cu);
14274 if (type_die == NULL)
14277 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14279 return die_containing_type (type_die, type_cu);
14282 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14285 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14287 struct rust_vtable_symbol *storage = NULL;
14289 if (cu->language == language_rust)
14291 struct type *containing_type = rust_containing_type (die, cu);
14293 if (containing_type != NULL)
14295 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14297 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14298 struct rust_vtable_symbol);
14299 initialize_objfile_symbol (storage);
14300 storage->concrete_type = containing_type;
14301 storage->subclass = SYMBOL_RUST_VTABLE;
14305 struct symbol *res = new_symbol (die, NULL, cu, storage);
14306 struct attribute *abstract_origin
14307 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14308 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14309 if (res == NULL && loc && abstract_origin)
14311 /* We have a variable without a name, but with a location and an abstract
14312 origin. This may be a concrete instance of an abstract variable
14313 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14315 struct dwarf2_cu *origin_cu = cu;
14316 struct die_info *origin_die
14317 = follow_die_ref (die, abstract_origin, &origin_cu);
14318 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14319 dpo->abstract_to_concrete[origin_die].push_back (die);
14323 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14324 reading .debug_rnglists.
14325 Callback's type should be:
14326 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14327 Return true if the attributes are present and valid, otherwise,
14330 template <typename Callback>
14332 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14333 Callback &&callback)
14335 struct dwarf2_per_objfile *dwarf2_per_objfile
14336 = cu->per_cu->dwarf2_per_objfile;
14337 struct objfile *objfile = dwarf2_per_objfile->objfile;
14338 bfd *obfd = objfile->obfd;
14339 /* Base address selection entry. */
14342 const gdb_byte *buffer;
14343 CORE_ADDR baseaddr;
14344 bool overflow = false;
14346 found_base = cu->base_known;
14347 base = cu->base_address;
14349 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14350 if (offset >= dwarf2_per_objfile->rnglists.size)
14352 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14356 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14358 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14362 /* Initialize it due to a false compiler warning. */
14363 CORE_ADDR range_beginning = 0, range_end = 0;
14364 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14365 + dwarf2_per_objfile->rnglists.size);
14366 unsigned int bytes_read;
14368 if (buffer == buf_end)
14373 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14376 case DW_RLE_end_of_list:
14378 case DW_RLE_base_address:
14379 if (buffer + cu->header.addr_size > buf_end)
14384 base = read_address (obfd, buffer, cu, &bytes_read);
14386 buffer += bytes_read;
14388 case DW_RLE_start_length:
14389 if (buffer + cu->header.addr_size > buf_end)
14394 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14395 buffer += bytes_read;
14396 range_end = (range_beginning
14397 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14405 case DW_RLE_offset_pair:
14406 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14407 buffer += bytes_read;
14408 if (buffer > buf_end)
14413 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14414 buffer += bytes_read;
14415 if (buffer > buf_end)
14421 case DW_RLE_start_end:
14422 if (buffer + 2 * cu->header.addr_size > buf_end)
14427 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14428 buffer += bytes_read;
14429 range_end = read_address (obfd, buffer, cu, &bytes_read);
14430 buffer += bytes_read;
14433 complaint (_("Invalid .debug_rnglists data (no base address)"));
14436 if (rlet == DW_RLE_end_of_list || overflow)
14438 if (rlet == DW_RLE_base_address)
14443 /* We have no valid base address for the ranges
14445 complaint (_("Invalid .debug_rnglists data (no base address)"));
14449 if (range_beginning > range_end)
14451 /* Inverted range entries are invalid. */
14452 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14456 /* Empty range entries have no effect. */
14457 if (range_beginning == range_end)
14460 range_beginning += base;
14463 /* A not-uncommon case of bad debug info.
14464 Don't pollute the addrmap with bad data. */
14465 if (range_beginning + baseaddr == 0
14466 && !dwarf2_per_objfile->has_section_at_zero)
14468 complaint (_(".debug_rnglists entry has start address of zero"
14469 " [in module %s]"), objfile_name (objfile));
14473 callback (range_beginning, range_end);
14478 complaint (_("Offset %d is not terminated "
14479 "for DW_AT_ranges attribute"),
14487 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14488 Callback's type should be:
14489 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14490 Return 1 if the attributes are present and valid, otherwise, return 0. */
14492 template <typename Callback>
14494 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14495 Callback &&callback)
14497 struct dwarf2_per_objfile *dwarf2_per_objfile
14498 = cu->per_cu->dwarf2_per_objfile;
14499 struct objfile *objfile = dwarf2_per_objfile->objfile;
14500 struct comp_unit_head *cu_header = &cu->header;
14501 bfd *obfd = objfile->obfd;
14502 unsigned int addr_size = cu_header->addr_size;
14503 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14504 /* Base address selection entry. */
14507 unsigned int dummy;
14508 const gdb_byte *buffer;
14509 CORE_ADDR baseaddr;
14511 if (cu_header->version >= 5)
14512 return dwarf2_rnglists_process (offset, cu, callback);
14514 found_base = cu->base_known;
14515 base = cu->base_address;
14517 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14518 if (offset >= dwarf2_per_objfile->ranges.size)
14520 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14524 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14526 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14530 CORE_ADDR range_beginning, range_end;
14532 range_beginning = read_address (obfd, buffer, cu, &dummy);
14533 buffer += addr_size;
14534 range_end = read_address (obfd, buffer, cu, &dummy);
14535 buffer += addr_size;
14536 offset += 2 * addr_size;
14538 /* An end of list marker is a pair of zero addresses. */
14539 if (range_beginning == 0 && range_end == 0)
14540 /* Found the end of list entry. */
14543 /* Each base address selection entry is a pair of 2 values.
14544 The first is the largest possible address, the second is
14545 the base address. Check for a base address here. */
14546 if ((range_beginning & mask) == mask)
14548 /* If we found the largest possible address, then we already
14549 have the base address in range_end. */
14557 /* We have no valid base address for the ranges
14559 complaint (_("Invalid .debug_ranges data (no base address)"));
14563 if (range_beginning > range_end)
14565 /* Inverted range entries are invalid. */
14566 complaint (_("Invalid .debug_ranges data (inverted range)"));
14570 /* Empty range entries have no effect. */
14571 if (range_beginning == range_end)
14574 range_beginning += base;
14577 /* A not-uncommon case of bad debug info.
14578 Don't pollute the addrmap with bad data. */
14579 if (range_beginning + baseaddr == 0
14580 && !dwarf2_per_objfile->has_section_at_zero)
14582 complaint (_(".debug_ranges entry has start address of zero"
14583 " [in module %s]"), objfile_name (objfile));
14587 callback (range_beginning, range_end);
14593 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14594 Return 1 if the attributes are present and valid, otherwise, return 0.
14595 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14598 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14599 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14600 struct partial_symtab *ranges_pst)
14602 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14604 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14605 SECT_OFF_TEXT (objfile));
14608 CORE_ADDR high = 0;
14611 retval = dwarf2_ranges_process (offset, cu,
14612 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14614 if (ranges_pst != NULL)
14619 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14620 range_beginning + baseaddr)
14622 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14623 range_end + baseaddr)
14625 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14626 lowpc, highpc - 1, ranges_pst);
14629 /* FIXME: This is recording everything as a low-high
14630 segment of consecutive addresses. We should have a
14631 data structure for discontiguous block ranges
14635 low = range_beginning;
14641 if (range_beginning < low)
14642 low = range_beginning;
14643 if (range_end > high)
14651 /* If the first entry is an end-of-list marker, the range
14652 describes an empty scope, i.e. no instructions. */
14658 *high_return = high;
14662 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14663 definition for the return value. *LOWPC and *HIGHPC are set iff
14664 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14666 static enum pc_bounds_kind
14667 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14668 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14669 struct partial_symtab *pst)
14671 struct dwarf2_per_objfile *dwarf2_per_objfile
14672 = cu->per_cu->dwarf2_per_objfile;
14673 struct attribute *attr;
14674 struct attribute *attr_high;
14676 CORE_ADDR high = 0;
14677 enum pc_bounds_kind ret;
14679 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14682 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14685 low = attr_value_as_address (attr);
14686 high = attr_value_as_address (attr_high);
14687 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14691 /* Found high w/o low attribute. */
14692 return PC_BOUNDS_INVALID;
14694 /* Found consecutive range of addresses. */
14695 ret = PC_BOUNDS_HIGH_LOW;
14699 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14702 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14703 We take advantage of the fact that DW_AT_ranges does not appear
14704 in DW_TAG_compile_unit of DWO files. */
14705 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14706 unsigned int ranges_offset = (DW_UNSND (attr)
14707 + (need_ranges_base
14711 /* Value of the DW_AT_ranges attribute is the offset in the
14712 .debug_ranges section. */
14713 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14714 return PC_BOUNDS_INVALID;
14715 /* Found discontinuous range of addresses. */
14716 ret = PC_BOUNDS_RANGES;
14719 return PC_BOUNDS_NOT_PRESENT;
14722 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14724 return PC_BOUNDS_INVALID;
14726 /* When using the GNU linker, .gnu.linkonce. sections are used to
14727 eliminate duplicate copies of functions and vtables and such.
14728 The linker will arbitrarily choose one and discard the others.
14729 The AT_*_pc values for such functions refer to local labels in
14730 these sections. If the section from that file was discarded, the
14731 labels are not in the output, so the relocs get a value of 0.
14732 If this is a discarded function, mark the pc bounds as invalid,
14733 so that GDB will ignore it. */
14734 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14735 return PC_BOUNDS_INVALID;
14743 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14744 its low and high PC addresses. Do nothing if these addresses could not
14745 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14746 and HIGHPC to the high address if greater than HIGHPC. */
14749 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14750 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14751 struct dwarf2_cu *cu)
14753 CORE_ADDR low, high;
14754 struct die_info *child = die->child;
14756 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14758 *lowpc = std::min (*lowpc, low);
14759 *highpc = std::max (*highpc, high);
14762 /* If the language does not allow nested subprograms (either inside
14763 subprograms or lexical blocks), we're done. */
14764 if (cu->language != language_ada)
14767 /* Check all the children of the given DIE. If it contains nested
14768 subprograms, then check their pc bounds. Likewise, we need to
14769 check lexical blocks as well, as they may also contain subprogram
14771 while (child && child->tag)
14773 if (child->tag == DW_TAG_subprogram
14774 || child->tag == DW_TAG_lexical_block)
14775 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14776 child = sibling_die (child);
14780 /* Get the low and high pc's represented by the scope DIE, and store
14781 them in *LOWPC and *HIGHPC. If the correct values can't be
14782 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14785 get_scope_pc_bounds (struct die_info *die,
14786 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14787 struct dwarf2_cu *cu)
14789 CORE_ADDR best_low = (CORE_ADDR) -1;
14790 CORE_ADDR best_high = (CORE_ADDR) 0;
14791 CORE_ADDR current_low, current_high;
14793 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14794 >= PC_BOUNDS_RANGES)
14796 best_low = current_low;
14797 best_high = current_high;
14801 struct die_info *child = die->child;
14803 while (child && child->tag)
14805 switch (child->tag) {
14806 case DW_TAG_subprogram:
14807 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14809 case DW_TAG_namespace:
14810 case DW_TAG_module:
14811 /* FIXME: carlton/2004-01-16: Should we do this for
14812 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14813 that current GCC's always emit the DIEs corresponding
14814 to definitions of methods of classes as children of a
14815 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14816 the DIEs giving the declarations, which could be
14817 anywhere). But I don't see any reason why the
14818 standards says that they have to be there. */
14819 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14821 if (current_low != ((CORE_ADDR) -1))
14823 best_low = std::min (best_low, current_low);
14824 best_high = std::max (best_high, current_high);
14832 child = sibling_die (child);
14837 *highpc = best_high;
14840 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14844 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14845 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14847 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14848 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14849 struct attribute *attr;
14850 struct attribute *attr_high;
14852 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14855 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14858 CORE_ADDR low = attr_value_as_address (attr);
14859 CORE_ADDR high = attr_value_as_address (attr_high);
14861 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14864 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14865 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14866 cu->get_builder ()->record_block_range (block, low, high - 1);
14870 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14873 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14874 We take advantage of the fact that DW_AT_ranges does not appear
14875 in DW_TAG_compile_unit of DWO files. */
14876 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14878 /* The value of the DW_AT_ranges attribute is the offset of the
14879 address range list in the .debug_ranges section. */
14880 unsigned long offset = (DW_UNSND (attr)
14881 + (need_ranges_base ? cu->ranges_base : 0));
14883 std::vector<blockrange> blockvec;
14884 dwarf2_ranges_process (offset, cu,
14885 [&] (CORE_ADDR start, CORE_ADDR end)
14889 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14890 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14891 cu->get_builder ()->record_block_range (block, start, end - 1);
14892 blockvec.emplace_back (start, end);
14895 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14899 /* Check whether the producer field indicates either of GCC < 4.6, or the
14900 Intel C/C++ compiler, and cache the result in CU. */
14903 check_producer (struct dwarf2_cu *cu)
14907 if (cu->producer == NULL)
14909 /* For unknown compilers expect their behavior is DWARF version
14912 GCC started to support .debug_types sections by -gdwarf-4 since
14913 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14914 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14915 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14916 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14918 else if (producer_is_gcc (cu->producer, &major, &minor))
14920 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14921 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14923 else if (producer_is_icc (cu->producer, &major, &minor))
14925 cu->producer_is_icc = true;
14926 cu->producer_is_icc_lt_14 = major < 14;
14928 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14929 cu->producer_is_codewarrior = true;
14932 /* For other non-GCC compilers, expect their behavior is DWARF version
14936 cu->checked_producer = true;
14939 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14940 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14941 during 4.6.0 experimental. */
14944 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14946 if (!cu->checked_producer)
14947 check_producer (cu);
14949 return cu->producer_is_gxx_lt_4_6;
14953 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14954 with incorrect is_stmt attributes. */
14957 producer_is_codewarrior (struct dwarf2_cu *cu)
14959 if (!cu->checked_producer)
14960 check_producer (cu);
14962 return cu->producer_is_codewarrior;
14965 /* Return the default accessibility type if it is not overriden by
14966 DW_AT_accessibility. */
14968 static enum dwarf_access_attribute
14969 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14971 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14973 /* The default DWARF 2 accessibility for members is public, the default
14974 accessibility for inheritance is private. */
14976 if (die->tag != DW_TAG_inheritance)
14977 return DW_ACCESS_public;
14979 return DW_ACCESS_private;
14983 /* DWARF 3+ defines the default accessibility a different way. The same
14984 rules apply now for DW_TAG_inheritance as for the members and it only
14985 depends on the container kind. */
14987 if (die->parent->tag == DW_TAG_class_type)
14988 return DW_ACCESS_private;
14990 return DW_ACCESS_public;
14994 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14995 offset. If the attribute was not found return 0, otherwise return
14996 1. If it was found but could not properly be handled, set *OFFSET
15000 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15003 struct attribute *attr;
15005 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15010 /* Note that we do not check for a section offset first here.
15011 This is because DW_AT_data_member_location is new in DWARF 4,
15012 so if we see it, we can assume that a constant form is really
15013 a constant and not a section offset. */
15014 if (attr_form_is_constant (attr))
15015 *offset = dwarf2_get_attr_constant_value (attr, 0);
15016 else if (attr_form_is_section_offset (attr))
15017 dwarf2_complex_location_expr_complaint ();
15018 else if (attr_form_is_block (attr))
15019 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15021 dwarf2_complex_location_expr_complaint ();
15029 /* Add an aggregate field to the field list. */
15032 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15033 struct dwarf2_cu *cu)
15035 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15037 struct nextfield *new_field;
15038 struct attribute *attr;
15040 const char *fieldname = "";
15042 if (die->tag == DW_TAG_inheritance)
15044 fip->baseclasses.emplace_back ();
15045 new_field = &fip->baseclasses.back ();
15049 fip->fields.emplace_back ();
15050 new_field = &fip->fields.back ();
15055 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15057 new_field->accessibility = DW_UNSND (attr);
15059 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15060 if (new_field->accessibility != DW_ACCESS_public)
15061 fip->non_public_fields = 1;
15063 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15065 new_field->virtuality = DW_UNSND (attr);
15067 new_field->virtuality = DW_VIRTUALITY_none;
15069 fp = &new_field->field;
15071 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15075 /* Data member other than a C++ static data member. */
15077 /* Get type of field. */
15078 fp->type = die_type (die, cu);
15080 SET_FIELD_BITPOS (*fp, 0);
15082 /* Get bit size of field (zero if none). */
15083 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15086 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15090 FIELD_BITSIZE (*fp) = 0;
15093 /* Get bit offset of field. */
15094 if (handle_data_member_location (die, cu, &offset))
15095 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15096 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15099 if (gdbarch_bits_big_endian (gdbarch))
15101 /* For big endian bits, the DW_AT_bit_offset gives the
15102 additional bit offset from the MSB of the containing
15103 anonymous object to the MSB of the field. We don't
15104 have to do anything special since we don't need to
15105 know the size of the anonymous object. */
15106 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15110 /* For little endian bits, compute the bit offset to the
15111 MSB of the anonymous object, subtract off the number of
15112 bits from the MSB of the field to the MSB of the
15113 object, and then subtract off the number of bits of
15114 the field itself. The result is the bit offset of
15115 the LSB of the field. */
15116 int anonymous_size;
15117 int bit_offset = DW_UNSND (attr);
15119 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15122 /* The size of the anonymous object containing
15123 the bit field is explicit, so use the
15124 indicated size (in bytes). */
15125 anonymous_size = DW_UNSND (attr);
15129 /* The size of the anonymous object containing
15130 the bit field must be inferred from the type
15131 attribute of the data member containing the
15133 anonymous_size = TYPE_LENGTH (fp->type);
15135 SET_FIELD_BITPOS (*fp,
15136 (FIELD_BITPOS (*fp)
15137 + anonymous_size * bits_per_byte
15138 - bit_offset - FIELD_BITSIZE (*fp)));
15141 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15143 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15144 + dwarf2_get_attr_constant_value (attr, 0)));
15146 /* Get name of field. */
15147 fieldname = dwarf2_name (die, cu);
15148 if (fieldname == NULL)
15151 /* The name is already allocated along with this objfile, so we don't
15152 need to duplicate it for the type. */
15153 fp->name = fieldname;
15155 /* Change accessibility for artificial fields (e.g. virtual table
15156 pointer or virtual base class pointer) to private. */
15157 if (dwarf2_attr (die, DW_AT_artificial, cu))
15159 FIELD_ARTIFICIAL (*fp) = 1;
15160 new_field->accessibility = DW_ACCESS_private;
15161 fip->non_public_fields = 1;
15164 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15166 /* C++ static member. */
15168 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15169 is a declaration, but all versions of G++ as of this writing
15170 (so through at least 3.2.1) incorrectly generate
15171 DW_TAG_variable tags. */
15173 const char *physname;
15175 /* Get name of field. */
15176 fieldname = dwarf2_name (die, cu);
15177 if (fieldname == NULL)
15180 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15182 /* Only create a symbol if this is an external value.
15183 new_symbol checks this and puts the value in the global symbol
15184 table, which we want. If it is not external, new_symbol
15185 will try to put the value in cu->list_in_scope which is wrong. */
15186 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15188 /* A static const member, not much different than an enum as far as
15189 we're concerned, except that we can support more types. */
15190 new_symbol (die, NULL, cu);
15193 /* Get physical name. */
15194 physname = dwarf2_physname (fieldname, die, cu);
15196 /* The name is already allocated along with this objfile, so we don't
15197 need to duplicate it for the type. */
15198 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15199 FIELD_TYPE (*fp) = die_type (die, cu);
15200 FIELD_NAME (*fp) = fieldname;
15202 else if (die->tag == DW_TAG_inheritance)
15206 /* C++ base class field. */
15207 if (handle_data_member_location (die, cu, &offset))
15208 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15209 FIELD_BITSIZE (*fp) = 0;
15210 FIELD_TYPE (*fp) = die_type (die, cu);
15211 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15213 else if (die->tag == DW_TAG_variant_part)
15215 /* process_structure_scope will treat this DIE as a union. */
15216 process_structure_scope (die, cu);
15218 /* The variant part is relative to the start of the enclosing
15220 SET_FIELD_BITPOS (*fp, 0);
15221 fp->type = get_die_type (die, cu);
15222 fp->artificial = 1;
15223 fp->name = "<<variant>>";
15225 /* Normally a DW_TAG_variant_part won't have a size, but our
15226 representation requires one, so set it to the maximum of the
15228 if (TYPE_LENGTH (fp->type) == 0)
15231 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15232 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15233 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15234 TYPE_LENGTH (fp->type) = max;
15238 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15241 /* Can the type given by DIE define another type? */
15244 type_can_define_types (const struct die_info *die)
15248 case DW_TAG_typedef:
15249 case DW_TAG_class_type:
15250 case DW_TAG_structure_type:
15251 case DW_TAG_union_type:
15252 case DW_TAG_enumeration_type:
15260 /* Add a type definition defined in the scope of the FIP's class. */
15263 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15264 struct dwarf2_cu *cu)
15266 struct decl_field fp;
15267 memset (&fp, 0, sizeof (fp));
15269 gdb_assert (type_can_define_types (die));
15271 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15272 fp.name = dwarf2_name (die, cu);
15273 fp.type = read_type_die (die, cu);
15275 /* Save accessibility. */
15276 enum dwarf_access_attribute accessibility;
15277 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15279 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15281 accessibility = dwarf2_default_access_attribute (die, cu);
15282 switch (accessibility)
15284 case DW_ACCESS_public:
15285 /* The assumed value if neither private nor protected. */
15287 case DW_ACCESS_private:
15290 case DW_ACCESS_protected:
15291 fp.is_protected = 1;
15294 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15297 if (die->tag == DW_TAG_typedef)
15298 fip->typedef_field_list.push_back (fp);
15300 fip->nested_types_list.push_back (fp);
15303 /* Create the vector of fields, and attach it to the type. */
15306 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15307 struct dwarf2_cu *cu)
15309 int nfields = fip->nfields;
15311 /* Record the field count, allocate space for the array of fields,
15312 and create blank accessibility bitfields if necessary. */
15313 TYPE_NFIELDS (type) = nfields;
15314 TYPE_FIELDS (type) = (struct field *)
15315 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15317 if (fip->non_public_fields && cu->language != language_ada)
15319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15321 TYPE_FIELD_PRIVATE_BITS (type) =
15322 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15323 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15325 TYPE_FIELD_PROTECTED_BITS (type) =
15326 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15327 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15329 TYPE_FIELD_IGNORE_BITS (type) =
15330 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15331 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15334 /* If the type has baseclasses, allocate and clear a bit vector for
15335 TYPE_FIELD_VIRTUAL_BITS. */
15336 if (!fip->baseclasses.empty () && cu->language != language_ada)
15338 int num_bytes = B_BYTES (fip->baseclasses.size ());
15339 unsigned char *pointer;
15341 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15342 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15343 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15344 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15345 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15348 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15350 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15352 for (int index = 0; index < nfields; ++index)
15354 struct nextfield &field = fip->fields[index];
15356 if (field.variant.is_discriminant)
15357 di->discriminant_index = index;
15358 else if (field.variant.default_branch)
15359 di->default_index = index;
15361 di->discriminants[index] = field.variant.discriminant_value;
15365 /* Copy the saved-up fields into the field vector. */
15366 for (int i = 0; i < nfields; ++i)
15368 struct nextfield &field
15369 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15370 : fip->fields[i - fip->baseclasses.size ()]);
15372 TYPE_FIELD (type, i) = field.field;
15373 switch (field.accessibility)
15375 case DW_ACCESS_private:
15376 if (cu->language != language_ada)
15377 SET_TYPE_FIELD_PRIVATE (type, i);
15380 case DW_ACCESS_protected:
15381 if (cu->language != language_ada)
15382 SET_TYPE_FIELD_PROTECTED (type, i);
15385 case DW_ACCESS_public:
15389 /* Unknown accessibility. Complain and treat it as public. */
15391 complaint (_("unsupported accessibility %d"),
15392 field.accessibility);
15396 if (i < fip->baseclasses.size ())
15398 switch (field.virtuality)
15400 case DW_VIRTUALITY_virtual:
15401 case DW_VIRTUALITY_pure_virtual:
15402 if (cu->language == language_ada)
15403 error (_("unexpected virtuality in component of Ada type"));
15404 SET_TYPE_FIELD_VIRTUAL (type, i);
15411 /* Return true if this member function is a constructor, false
15415 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15417 const char *fieldname;
15418 const char *type_name;
15421 if (die->parent == NULL)
15424 if (die->parent->tag != DW_TAG_structure_type
15425 && die->parent->tag != DW_TAG_union_type
15426 && die->parent->tag != DW_TAG_class_type)
15429 fieldname = dwarf2_name (die, cu);
15430 type_name = dwarf2_name (die->parent, cu);
15431 if (fieldname == NULL || type_name == NULL)
15434 len = strlen (fieldname);
15435 return (strncmp (fieldname, type_name, len) == 0
15436 && (type_name[len] == '\0' || type_name[len] == '<'));
15439 /* Add a member function to the proper fieldlist. */
15442 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15443 struct type *type, struct dwarf2_cu *cu)
15445 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15446 struct attribute *attr;
15448 struct fnfieldlist *flp = nullptr;
15449 struct fn_field *fnp;
15450 const char *fieldname;
15451 struct type *this_type;
15452 enum dwarf_access_attribute accessibility;
15454 if (cu->language == language_ada)
15455 error (_("unexpected member function in Ada type"));
15457 /* Get name of member function. */
15458 fieldname = dwarf2_name (die, cu);
15459 if (fieldname == NULL)
15462 /* Look up member function name in fieldlist. */
15463 for (i = 0; i < fip->fnfieldlists.size (); i++)
15465 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15467 flp = &fip->fnfieldlists[i];
15472 /* Create a new fnfieldlist if necessary. */
15473 if (flp == nullptr)
15475 fip->fnfieldlists.emplace_back ();
15476 flp = &fip->fnfieldlists.back ();
15477 flp->name = fieldname;
15478 i = fip->fnfieldlists.size () - 1;
15481 /* Create a new member function field and add it to the vector of
15483 flp->fnfields.emplace_back ();
15484 fnp = &flp->fnfields.back ();
15486 /* Delay processing of the physname until later. */
15487 if (cu->language == language_cplus)
15488 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15492 const char *physname = dwarf2_physname (fieldname, die, cu);
15493 fnp->physname = physname ? physname : "";
15496 fnp->type = alloc_type (objfile);
15497 this_type = read_type_die (die, cu);
15498 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15500 int nparams = TYPE_NFIELDS (this_type);
15502 /* TYPE is the domain of this method, and THIS_TYPE is the type
15503 of the method itself (TYPE_CODE_METHOD). */
15504 smash_to_method_type (fnp->type, type,
15505 TYPE_TARGET_TYPE (this_type),
15506 TYPE_FIELDS (this_type),
15507 TYPE_NFIELDS (this_type),
15508 TYPE_VARARGS (this_type));
15510 /* Handle static member functions.
15511 Dwarf2 has no clean way to discern C++ static and non-static
15512 member functions. G++ helps GDB by marking the first
15513 parameter for non-static member functions (which is the this
15514 pointer) as artificial. We obtain this information from
15515 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15516 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15517 fnp->voffset = VOFFSET_STATIC;
15520 complaint (_("member function type missing for '%s'"),
15521 dwarf2_full_name (fieldname, die, cu));
15523 /* Get fcontext from DW_AT_containing_type if present. */
15524 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15525 fnp->fcontext = die_containing_type (die, cu);
15527 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15528 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15530 /* Get accessibility. */
15531 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15533 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15535 accessibility = dwarf2_default_access_attribute (die, cu);
15536 switch (accessibility)
15538 case DW_ACCESS_private:
15539 fnp->is_private = 1;
15541 case DW_ACCESS_protected:
15542 fnp->is_protected = 1;
15546 /* Check for artificial methods. */
15547 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15548 if (attr && DW_UNSND (attr) != 0)
15549 fnp->is_artificial = 1;
15551 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15553 /* Get index in virtual function table if it is a virtual member
15554 function. For older versions of GCC, this is an offset in the
15555 appropriate virtual table, as specified by DW_AT_containing_type.
15556 For everyone else, it is an expression to be evaluated relative
15557 to the object address. */
15559 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15562 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15564 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15566 /* Old-style GCC. */
15567 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15569 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15570 || (DW_BLOCK (attr)->size > 1
15571 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15572 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15574 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15575 if ((fnp->voffset % cu->header.addr_size) != 0)
15576 dwarf2_complex_location_expr_complaint ();
15578 fnp->voffset /= cu->header.addr_size;
15582 dwarf2_complex_location_expr_complaint ();
15584 if (!fnp->fcontext)
15586 /* If there is no `this' field and no DW_AT_containing_type,
15587 we cannot actually find a base class context for the
15589 if (TYPE_NFIELDS (this_type) == 0
15590 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15592 complaint (_("cannot determine context for virtual member "
15593 "function \"%s\" (offset %s)"),
15594 fieldname, sect_offset_str (die->sect_off));
15599 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15603 else if (attr_form_is_section_offset (attr))
15605 dwarf2_complex_location_expr_complaint ();
15609 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15615 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15616 if (attr && DW_UNSND (attr))
15618 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15619 complaint (_("Member function \"%s\" (offset %s) is virtual "
15620 "but the vtable offset is not specified"),
15621 fieldname, sect_offset_str (die->sect_off));
15622 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15623 TYPE_CPLUS_DYNAMIC (type) = 1;
15628 /* Create the vector of member function fields, and attach it to the type. */
15631 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15632 struct dwarf2_cu *cu)
15634 if (cu->language == language_ada)
15635 error (_("unexpected member functions in Ada type"));
15637 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15638 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15640 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15642 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15644 struct fnfieldlist &nf = fip->fnfieldlists[i];
15645 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15647 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15648 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15649 fn_flp->fn_fields = (struct fn_field *)
15650 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15652 for (int k = 0; k < nf.fnfields.size (); ++k)
15653 fn_flp->fn_fields[k] = nf.fnfields[k];
15656 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15659 /* Returns non-zero if NAME is the name of a vtable member in CU's
15660 language, zero otherwise. */
15662 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15664 static const char vptr[] = "_vptr";
15666 /* Look for the C++ form of the vtable. */
15667 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15673 /* GCC outputs unnamed structures that are really pointers to member
15674 functions, with the ABI-specified layout. If TYPE describes
15675 such a structure, smash it into a member function type.
15677 GCC shouldn't do this; it should just output pointer to member DIEs.
15678 This is GCC PR debug/28767. */
15681 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15683 struct type *pfn_type, *self_type, *new_type;
15685 /* Check for a structure with no name and two children. */
15686 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15689 /* Check for __pfn and __delta members. */
15690 if (TYPE_FIELD_NAME (type, 0) == NULL
15691 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15692 || TYPE_FIELD_NAME (type, 1) == NULL
15693 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15696 /* Find the type of the method. */
15697 pfn_type = TYPE_FIELD_TYPE (type, 0);
15698 if (pfn_type == NULL
15699 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15700 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15703 /* Look for the "this" argument. */
15704 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15705 if (TYPE_NFIELDS (pfn_type) == 0
15706 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15707 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15710 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15711 new_type = alloc_type (objfile);
15712 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15713 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15714 TYPE_VARARGS (pfn_type));
15715 smash_to_methodptr_type (type, new_type);
15718 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15719 appropriate error checking and issuing complaints if there is a
15723 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15725 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15727 if (attr == nullptr)
15730 if (!attr_form_is_constant (attr))
15732 complaint (_("DW_AT_alignment must have constant form"
15733 " - DIE at %s [in module %s]"),
15734 sect_offset_str (die->sect_off),
15735 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15740 if (attr->form == DW_FORM_sdata)
15742 LONGEST val = DW_SND (attr);
15745 complaint (_("DW_AT_alignment value must not be negative"
15746 " - DIE at %s [in module %s]"),
15747 sect_offset_str (die->sect_off),
15748 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15754 align = DW_UNSND (attr);
15758 complaint (_("DW_AT_alignment value must not be zero"
15759 " - DIE at %s [in module %s]"),
15760 sect_offset_str (die->sect_off),
15761 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15764 if ((align & (align - 1)) != 0)
15766 complaint (_("DW_AT_alignment value must be a power of 2"
15767 " - DIE at %s [in module %s]"),
15768 sect_offset_str (die->sect_off),
15769 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15776 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15777 the alignment for TYPE. */
15780 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15783 if (!set_type_align (type, get_alignment (cu, die)))
15784 complaint (_("DW_AT_alignment value too large"
15785 " - DIE at %s [in module %s]"),
15786 sect_offset_str (die->sect_off),
15787 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15790 /* Called when we find the DIE that starts a structure or union scope
15791 (definition) to create a type for the structure or union. Fill in
15792 the type's name and general properties; the members will not be
15793 processed until process_structure_scope. A symbol table entry for
15794 the type will also not be done until process_structure_scope (assuming
15795 the type has a name).
15797 NOTE: we need to call these functions regardless of whether or not the
15798 DIE has a DW_AT_name attribute, since it might be an anonymous
15799 structure or union. This gets the type entered into our set of
15800 user defined types. */
15802 static struct type *
15803 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15807 struct attribute *attr;
15810 /* If the definition of this type lives in .debug_types, read that type.
15811 Don't follow DW_AT_specification though, that will take us back up
15812 the chain and we want to go down. */
15813 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15816 type = get_DW_AT_signature_type (die, attr, cu);
15818 /* The type's CU may not be the same as CU.
15819 Ensure TYPE is recorded with CU in die_type_hash. */
15820 return set_die_type (die, type, cu);
15823 type = alloc_type (objfile);
15824 INIT_CPLUS_SPECIFIC (type);
15826 name = dwarf2_name (die, cu);
15829 if (cu->language == language_cplus
15830 || cu->language == language_d
15831 || cu->language == language_rust)
15833 const char *full_name = dwarf2_full_name (name, die, cu);
15835 /* dwarf2_full_name might have already finished building the DIE's
15836 type. If so, there is no need to continue. */
15837 if (get_die_type (die, cu) != NULL)
15838 return get_die_type (die, cu);
15840 TYPE_NAME (type) = full_name;
15844 /* The name is already allocated along with this objfile, so
15845 we don't need to duplicate it for the type. */
15846 TYPE_NAME (type) = name;
15850 if (die->tag == DW_TAG_structure_type)
15852 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15854 else if (die->tag == DW_TAG_union_type)
15856 TYPE_CODE (type) = TYPE_CODE_UNION;
15858 else if (die->tag == DW_TAG_variant_part)
15860 TYPE_CODE (type) = TYPE_CODE_UNION;
15861 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15865 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15868 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15869 TYPE_DECLARED_CLASS (type) = 1;
15871 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15874 if (attr_form_is_constant (attr))
15875 TYPE_LENGTH (type) = DW_UNSND (attr);
15878 /* For the moment, dynamic type sizes are not supported
15879 by GDB's struct type. The actual size is determined
15880 on-demand when resolving the type of a given object,
15881 so set the type's length to zero for now. Otherwise,
15882 we record an expression as the length, and that expression
15883 could lead to a very large value, which could eventually
15884 lead to us trying to allocate that much memory when creating
15885 a value of that type. */
15886 TYPE_LENGTH (type) = 0;
15891 TYPE_LENGTH (type) = 0;
15894 maybe_set_alignment (cu, die, type);
15896 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15898 /* ICC<14 does not output the required DW_AT_declaration on
15899 incomplete types, but gives them a size of zero. */
15900 TYPE_STUB (type) = 1;
15903 TYPE_STUB_SUPPORTED (type) = 1;
15905 if (die_is_declaration (die, cu))
15906 TYPE_STUB (type) = 1;
15907 else if (attr == NULL && die->child == NULL
15908 && producer_is_realview (cu->producer))
15909 /* RealView does not output the required DW_AT_declaration
15910 on incomplete types. */
15911 TYPE_STUB (type) = 1;
15913 /* We need to add the type field to the die immediately so we don't
15914 infinitely recurse when dealing with pointers to the structure
15915 type within the structure itself. */
15916 set_die_type (die, type, cu);
15918 /* set_die_type should be already done. */
15919 set_descriptive_type (type, die, cu);
15924 /* A helper for process_structure_scope that handles a single member
15928 handle_struct_member_die (struct die_info *child_die, struct type *type,
15929 struct field_info *fi,
15930 std::vector<struct symbol *> *template_args,
15931 struct dwarf2_cu *cu)
15933 if (child_die->tag == DW_TAG_member
15934 || child_die->tag == DW_TAG_variable
15935 || child_die->tag == DW_TAG_variant_part)
15937 /* NOTE: carlton/2002-11-05: A C++ static data member
15938 should be a DW_TAG_member that is a declaration, but
15939 all versions of G++ as of this writing (so through at
15940 least 3.2.1) incorrectly generate DW_TAG_variable
15941 tags for them instead. */
15942 dwarf2_add_field (fi, child_die, cu);
15944 else if (child_die->tag == DW_TAG_subprogram)
15946 /* Rust doesn't have member functions in the C++ sense.
15947 However, it does emit ordinary functions as children
15948 of a struct DIE. */
15949 if (cu->language == language_rust)
15950 read_func_scope (child_die, cu);
15953 /* C++ member function. */
15954 dwarf2_add_member_fn (fi, child_die, type, cu);
15957 else if (child_die->tag == DW_TAG_inheritance)
15959 /* C++ base class field. */
15960 dwarf2_add_field (fi, child_die, cu);
15962 else if (type_can_define_types (child_die))
15963 dwarf2_add_type_defn (fi, child_die, cu);
15964 else if (child_die->tag == DW_TAG_template_type_param
15965 || child_die->tag == DW_TAG_template_value_param)
15967 struct symbol *arg = new_symbol (child_die, NULL, cu);
15970 template_args->push_back (arg);
15972 else if (child_die->tag == DW_TAG_variant)
15974 /* In a variant we want to get the discriminant and also add a
15975 field for our sole member child. */
15976 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15978 for (die_info *variant_child = child_die->child;
15979 variant_child != NULL;
15980 variant_child = sibling_die (variant_child))
15982 if (variant_child->tag == DW_TAG_member)
15984 handle_struct_member_die (variant_child, type, fi,
15985 template_args, cu);
15986 /* Only handle the one. */
15991 /* We don't handle this but we might as well report it if we see
15993 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15994 complaint (_("DW_AT_discr_list is not supported yet"
15995 " - DIE at %s [in module %s]"),
15996 sect_offset_str (child_die->sect_off),
15997 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15999 /* The first field was just added, so we can stash the
16000 discriminant there. */
16001 gdb_assert (!fi->fields.empty ());
16003 fi->fields.back ().variant.default_branch = true;
16005 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16009 /* Finish creating a structure or union type, including filling in
16010 its members and creating a symbol for it. */
16013 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16015 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16016 struct die_info *child_die;
16019 type = get_die_type (die, cu);
16021 type = read_structure_type (die, cu);
16023 /* When reading a DW_TAG_variant_part, we need to notice when we
16024 read the discriminant member, so we can record it later in the
16025 discriminant_info. */
16026 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16027 sect_offset discr_offset;
16028 bool has_template_parameters = false;
16030 if (is_variant_part)
16032 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16035 /* Maybe it's a univariant form, an extension we support.
16036 In this case arrange not to check the offset. */
16037 is_variant_part = false;
16039 else if (attr_form_is_ref (discr))
16041 struct dwarf2_cu *target_cu = cu;
16042 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16044 discr_offset = target_die->sect_off;
16048 complaint (_("DW_AT_discr does not have DIE reference form"
16049 " - DIE at %s [in module %s]"),
16050 sect_offset_str (die->sect_off),
16051 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16052 is_variant_part = false;
16056 if (die->child != NULL && ! die_is_declaration (die, cu))
16058 struct field_info fi;
16059 std::vector<struct symbol *> template_args;
16061 child_die = die->child;
16063 while (child_die && child_die->tag)
16065 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16067 if (is_variant_part && discr_offset == child_die->sect_off)
16068 fi.fields.back ().variant.is_discriminant = true;
16070 child_die = sibling_die (child_die);
16073 /* Attach template arguments to type. */
16074 if (!template_args.empty ())
16076 has_template_parameters = true;
16077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16078 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16079 TYPE_TEMPLATE_ARGUMENTS (type)
16080 = XOBNEWVEC (&objfile->objfile_obstack,
16082 TYPE_N_TEMPLATE_ARGUMENTS (type));
16083 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16084 template_args.data (),
16085 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16086 * sizeof (struct symbol *)));
16089 /* Attach fields and member functions to the type. */
16091 dwarf2_attach_fields_to_type (&fi, type, cu);
16092 if (!fi.fnfieldlists.empty ())
16094 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16096 /* Get the type which refers to the base class (possibly this
16097 class itself) which contains the vtable pointer for the current
16098 class from the DW_AT_containing_type attribute. This use of
16099 DW_AT_containing_type is a GNU extension. */
16101 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16103 struct type *t = die_containing_type (die, cu);
16105 set_type_vptr_basetype (type, t);
16110 /* Our own class provides vtbl ptr. */
16111 for (i = TYPE_NFIELDS (t) - 1;
16112 i >= TYPE_N_BASECLASSES (t);
16115 const char *fieldname = TYPE_FIELD_NAME (t, i);
16117 if (is_vtable_name (fieldname, cu))
16119 set_type_vptr_fieldno (type, i);
16124 /* Complain if virtual function table field not found. */
16125 if (i < TYPE_N_BASECLASSES (t))
16126 complaint (_("virtual function table pointer "
16127 "not found when defining class '%s'"),
16128 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16132 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16135 else if (cu->producer
16136 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16138 /* The IBM XLC compiler does not provide direct indication
16139 of the containing type, but the vtable pointer is
16140 always named __vfp. */
16144 for (i = TYPE_NFIELDS (type) - 1;
16145 i >= TYPE_N_BASECLASSES (type);
16148 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16150 set_type_vptr_fieldno (type, i);
16151 set_type_vptr_basetype (type, type);
16158 /* Copy fi.typedef_field_list linked list elements content into the
16159 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16160 if (!fi.typedef_field_list.empty ())
16162 int count = fi.typedef_field_list.size ();
16164 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16165 TYPE_TYPEDEF_FIELD_ARRAY (type)
16166 = ((struct decl_field *)
16168 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16169 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16171 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16172 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16175 /* Copy fi.nested_types_list linked list elements content into the
16176 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16177 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16179 int count = fi.nested_types_list.size ();
16181 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16182 TYPE_NESTED_TYPES_ARRAY (type)
16183 = ((struct decl_field *)
16184 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16185 TYPE_NESTED_TYPES_COUNT (type) = count;
16187 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16188 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16192 quirk_gcc_member_function_pointer (type, objfile);
16193 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16194 cu->rust_unions.push_back (type);
16196 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16197 snapshots) has been known to create a die giving a declaration
16198 for a class that has, as a child, a die giving a definition for a
16199 nested class. So we have to process our children even if the
16200 current die is a declaration. Normally, of course, a declaration
16201 won't have any children at all. */
16203 child_die = die->child;
16205 while (child_die != NULL && child_die->tag)
16207 if (child_die->tag == DW_TAG_member
16208 || child_die->tag == DW_TAG_variable
16209 || child_die->tag == DW_TAG_inheritance
16210 || child_die->tag == DW_TAG_template_value_param
16211 || child_die->tag == DW_TAG_template_type_param)
16216 process_die (child_die, cu);
16218 child_die = sibling_die (child_die);
16221 /* Do not consider external references. According to the DWARF standard,
16222 these DIEs are identified by the fact that they have no byte_size
16223 attribute, and a declaration attribute. */
16224 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16225 || !die_is_declaration (die, cu))
16227 struct symbol *sym = new_symbol (die, type, cu);
16229 if (has_template_parameters)
16231 struct symtab *symtab;
16232 if (sym != nullptr)
16233 symtab = symbol_symtab (sym);
16234 else if (cu->line_header != nullptr)
16236 /* Any related symtab will do. */
16238 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16243 complaint (_("could not find suitable "
16244 "symtab for template parameter"
16245 " - DIE at %s [in module %s]"),
16246 sect_offset_str (die->sect_off),
16247 objfile_name (objfile));
16250 if (symtab != nullptr)
16252 /* Make sure that the symtab is set on the new symbols.
16253 Even though they don't appear in this symtab directly,
16254 other parts of gdb assume that symbols do, and this is
16255 reasonably true. */
16256 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16257 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16263 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16264 update TYPE using some information only available in DIE's children. */
16267 update_enumeration_type_from_children (struct die_info *die,
16269 struct dwarf2_cu *cu)
16271 struct die_info *child_die;
16272 int unsigned_enum = 1;
16276 auto_obstack obstack;
16278 for (child_die = die->child;
16279 child_die != NULL && child_die->tag;
16280 child_die = sibling_die (child_die))
16282 struct attribute *attr;
16284 const gdb_byte *bytes;
16285 struct dwarf2_locexpr_baton *baton;
16288 if (child_die->tag != DW_TAG_enumerator)
16291 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16295 name = dwarf2_name (child_die, cu);
16297 name = "<anonymous enumerator>";
16299 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16300 &value, &bytes, &baton);
16306 else if ((mask & value) != 0)
16311 /* If we already know that the enum type is neither unsigned, nor
16312 a flag type, no need to look at the rest of the enumerates. */
16313 if (!unsigned_enum && !flag_enum)
16318 TYPE_UNSIGNED (type) = 1;
16320 TYPE_FLAG_ENUM (type) = 1;
16323 /* Given a DW_AT_enumeration_type die, set its type. We do not
16324 complete the type's fields yet, or create any symbols. */
16326 static struct type *
16327 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16329 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16331 struct attribute *attr;
16334 /* If the definition of this type lives in .debug_types, read that type.
16335 Don't follow DW_AT_specification though, that will take us back up
16336 the chain and we want to go down. */
16337 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16340 type = get_DW_AT_signature_type (die, attr, cu);
16342 /* The type's CU may not be the same as CU.
16343 Ensure TYPE is recorded with CU in die_type_hash. */
16344 return set_die_type (die, type, cu);
16347 type = alloc_type (objfile);
16349 TYPE_CODE (type) = TYPE_CODE_ENUM;
16350 name = dwarf2_full_name (NULL, die, cu);
16352 TYPE_NAME (type) = name;
16354 attr = dwarf2_attr (die, DW_AT_type, cu);
16357 struct type *underlying_type = die_type (die, cu);
16359 TYPE_TARGET_TYPE (type) = underlying_type;
16362 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16365 TYPE_LENGTH (type) = DW_UNSND (attr);
16369 TYPE_LENGTH (type) = 0;
16372 maybe_set_alignment (cu, die, type);
16374 /* The enumeration DIE can be incomplete. In Ada, any type can be
16375 declared as private in the package spec, and then defined only
16376 inside the package body. Such types are known as Taft Amendment
16377 Types. When another package uses such a type, an incomplete DIE
16378 may be generated by the compiler. */
16379 if (die_is_declaration (die, cu))
16380 TYPE_STUB (type) = 1;
16382 /* Finish the creation of this type by using the enum's children.
16383 We must call this even when the underlying type has been provided
16384 so that we can determine if we're looking at a "flag" enum. */
16385 update_enumeration_type_from_children (die, type, cu);
16387 /* If this type has an underlying type that is not a stub, then we
16388 may use its attributes. We always use the "unsigned" attribute
16389 in this situation, because ordinarily we guess whether the type
16390 is unsigned -- but the guess can be wrong and the underlying type
16391 can tell us the reality. However, we defer to a local size
16392 attribute if one exists, because this lets the compiler override
16393 the underlying type if needed. */
16394 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16396 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16397 if (TYPE_LENGTH (type) == 0)
16398 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16399 if (TYPE_RAW_ALIGN (type) == 0
16400 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16401 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16404 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16406 return set_die_type (die, type, cu);
16409 /* Given a pointer to a die which begins an enumeration, process all
16410 the dies that define the members of the enumeration, and create the
16411 symbol for the enumeration type.
16413 NOTE: We reverse the order of the element list. */
16416 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16418 struct type *this_type;
16420 this_type = get_die_type (die, cu);
16421 if (this_type == NULL)
16422 this_type = read_enumeration_type (die, cu);
16424 if (die->child != NULL)
16426 struct die_info *child_die;
16427 struct symbol *sym;
16428 struct field *fields = NULL;
16429 int num_fields = 0;
16432 child_die = die->child;
16433 while (child_die && child_die->tag)
16435 if (child_die->tag != DW_TAG_enumerator)
16437 process_die (child_die, cu);
16441 name = dwarf2_name (child_die, cu);
16444 sym = new_symbol (child_die, this_type, cu);
16446 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16448 fields = (struct field *)
16450 (num_fields + DW_FIELD_ALLOC_CHUNK)
16451 * sizeof (struct field));
16454 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16455 FIELD_TYPE (fields[num_fields]) = NULL;
16456 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16457 FIELD_BITSIZE (fields[num_fields]) = 0;
16463 child_die = sibling_die (child_die);
16468 TYPE_NFIELDS (this_type) = num_fields;
16469 TYPE_FIELDS (this_type) = (struct field *)
16470 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16471 memcpy (TYPE_FIELDS (this_type), fields,
16472 sizeof (struct field) * num_fields);
16477 /* If we are reading an enum from a .debug_types unit, and the enum
16478 is a declaration, and the enum is not the signatured type in the
16479 unit, then we do not want to add a symbol for it. Adding a
16480 symbol would in some cases obscure the true definition of the
16481 enum, giving users an incomplete type when the definition is
16482 actually available. Note that we do not want to do this for all
16483 enums which are just declarations, because C++0x allows forward
16484 enum declarations. */
16485 if (cu->per_cu->is_debug_types
16486 && die_is_declaration (die, cu))
16488 struct signatured_type *sig_type;
16490 sig_type = (struct signatured_type *) cu->per_cu;
16491 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16492 if (sig_type->type_offset_in_section != die->sect_off)
16496 new_symbol (die, this_type, cu);
16499 /* Extract all information from a DW_TAG_array_type DIE and put it in
16500 the DIE's type field. For now, this only handles one dimensional
16503 static struct type *
16504 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16506 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16507 struct die_info *child_die;
16509 struct type *element_type, *range_type, *index_type;
16510 struct attribute *attr;
16512 struct dynamic_prop *byte_stride_prop = NULL;
16513 unsigned int bit_stride = 0;
16515 element_type = die_type (die, cu);
16517 /* The die_type call above may have already set the type for this DIE. */
16518 type = get_die_type (die, cu);
16522 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16528 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16529 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16532 complaint (_("unable to read array DW_AT_byte_stride "
16533 " - DIE at %s [in module %s]"),
16534 sect_offset_str (die->sect_off),
16535 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16536 /* Ignore this attribute. We will likely not be able to print
16537 arrays of this type correctly, but there is little we can do
16538 to help if we cannot read the attribute's value. */
16539 byte_stride_prop = NULL;
16543 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16545 bit_stride = DW_UNSND (attr);
16547 /* Irix 6.2 native cc creates array types without children for
16548 arrays with unspecified length. */
16549 if (die->child == NULL)
16551 index_type = objfile_type (objfile)->builtin_int;
16552 range_type = create_static_range_type (NULL, index_type, 0, -1);
16553 type = create_array_type_with_stride (NULL, element_type, range_type,
16554 byte_stride_prop, bit_stride);
16555 return set_die_type (die, type, cu);
16558 std::vector<struct type *> range_types;
16559 child_die = die->child;
16560 while (child_die && child_die->tag)
16562 if (child_die->tag == DW_TAG_subrange_type)
16564 struct type *child_type = read_type_die (child_die, cu);
16566 if (child_type != NULL)
16568 /* The range type was succesfully read. Save it for the
16569 array type creation. */
16570 range_types.push_back (child_type);
16573 child_die = sibling_die (child_die);
16576 /* Dwarf2 dimensions are output from left to right, create the
16577 necessary array types in backwards order. */
16579 type = element_type;
16581 if (read_array_order (die, cu) == DW_ORD_col_major)
16585 while (i < range_types.size ())
16586 type = create_array_type_with_stride (NULL, type, range_types[i++],
16587 byte_stride_prop, bit_stride);
16591 size_t ndim = range_types.size ();
16593 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16594 byte_stride_prop, bit_stride);
16597 /* Understand Dwarf2 support for vector types (like they occur on
16598 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16599 array type. This is not part of the Dwarf2/3 standard yet, but a
16600 custom vendor extension. The main difference between a regular
16601 array and the vector variant is that vectors are passed by value
16603 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16605 make_vector_type (type);
16607 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16608 implementation may choose to implement triple vectors using this
16610 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16613 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16614 TYPE_LENGTH (type) = DW_UNSND (attr);
16616 complaint (_("DW_AT_byte_size for array type smaller "
16617 "than the total size of elements"));
16620 name = dwarf2_name (die, cu);
16622 TYPE_NAME (type) = name;
16624 maybe_set_alignment (cu, die, type);
16626 /* Install the type in the die. */
16627 set_die_type (die, type, cu);
16629 /* set_die_type should be already done. */
16630 set_descriptive_type (type, die, cu);
16635 static enum dwarf_array_dim_ordering
16636 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16638 struct attribute *attr;
16640 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16643 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16645 /* GNU F77 is a special case, as at 08/2004 array type info is the
16646 opposite order to the dwarf2 specification, but data is still
16647 laid out as per normal fortran.
16649 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16650 version checking. */
16652 if (cu->language == language_fortran
16653 && cu->producer && strstr (cu->producer, "GNU F77"))
16655 return DW_ORD_row_major;
16658 switch (cu->language_defn->la_array_ordering)
16660 case array_column_major:
16661 return DW_ORD_col_major;
16662 case array_row_major:
16664 return DW_ORD_row_major;
16668 /* Extract all information from a DW_TAG_set_type DIE and put it in
16669 the DIE's type field. */
16671 static struct type *
16672 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16674 struct type *domain_type, *set_type;
16675 struct attribute *attr;
16677 domain_type = die_type (die, cu);
16679 /* The die_type call above may have already set the type for this DIE. */
16680 set_type = get_die_type (die, cu);
16684 set_type = create_set_type (NULL, domain_type);
16686 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16688 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16690 maybe_set_alignment (cu, die, set_type);
16692 return set_die_type (die, set_type, cu);
16695 /* A helper for read_common_block that creates a locexpr baton.
16696 SYM is the symbol which we are marking as computed.
16697 COMMON_DIE is the DIE for the common block.
16698 COMMON_LOC is the location expression attribute for the common
16700 MEMBER_LOC is the location expression attribute for the particular
16701 member of the common block that we are processing.
16702 CU is the CU from which the above come. */
16705 mark_common_block_symbol_computed (struct symbol *sym,
16706 struct die_info *common_die,
16707 struct attribute *common_loc,
16708 struct attribute *member_loc,
16709 struct dwarf2_cu *cu)
16711 struct dwarf2_per_objfile *dwarf2_per_objfile
16712 = cu->per_cu->dwarf2_per_objfile;
16713 struct objfile *objfile = dwarf2_per_objfile->objfile;
16714 struct dwarf2_locexpr_baton *baton;
16716 unsigned int cu_off;
16717 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16718 LONGEST offset = 0;
16720 gdb_assert (common_loc && member_loc);
16721 gdb_assert (attr_form_is_block (common_loc));
16722 gdb_assert (attr_form_is_block (member_loc)
16723 || attr_form_is_constant (member_loc));
16725 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16726 baton->per_cu = cu->per_cu;
16727 gdb_assert (baton->per_cu);
16729 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16731 if (attr_form_is_constant (member_loc))
16733 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16734 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16737 baton->size += DW_BLOCK (member_loc)->size;
16739 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16742 *ptr++ = DW_OP_call4;
16743 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16744 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16747 if (attr_form_is_constant (member_loc))
16749 *ptr++ = DW_OP_addr;
16750 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16751 ptr += cu->header.addr_size;
16755 /* We have to copy the data here, because DW_OP_call4 will only
16756 use a DW_AT_location attribute. */
16757 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16758 ptr += DW_BLOCK (member_loc)->size;
16761 *ptr++ = DW_OP_plus;
16762 gdb_assert (ptr - baton->data == baton->size);
16764 SYMBOL_LOCATION_BATON (sym) = baton;
16765 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16768 /* Create appropriate locally-scoped variables for all the
16769 DW_TAG_common_block entries. Also create a struct common_block
16770 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16771 is used to sepate the common blocks name namespace from regular
16775 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16777 struct attribute *attr;
16779 attr = dwarf2_attr (die, DW_AT_location, cu);
16782 /* Support the .debug_loc offsets. */
16783 if (attr_form_is_block (attr))
16787 else if (attr_form_is_section_offset (attr))
16789 dwarf2_complex_location_expr_complaint ();
16794 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16795 "common block member");
16800 if (die->child != NULL)
16802 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16803 struct die_info *child_die;
16804 size_t n_entries = 0, size;
16805 struct common_block *common_block;
16806 struct symbol *sym;
16808 for (child_die = die->child;
16809 child_die && child_die->tag;
16810 child_die = sibling_die (child_die))
16813 size = (sizeof (struct common_block)
16814 + (n_entries - 1) * sizeof (struct symbol *));
16816 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16818 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16819 common_block->n_entries = 0;
16821 for (child_die = die->child;
16822 child_die && child_die->tag;
16823 child_die = sibling_die (child_die))
16825 /* Create the symbol in the DW_TAG_common_block block in the current
16827 sym = new_symbol (child_die, NULL, cu);
16830 struct attribute *member_loc;
16832 common_block->contents[common_block->n_entries++] = sym;
16834 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16838 /* GDB has handled this for a long time, but it is
16839 not specified by DWARF. It seems to have been
16840 emitted by gfortran at least as recently as:
16841 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16842 complaint (_("Variable in common block has "
16843 "DW_AT_data_member_location "
16844 "- DIE at %s [in module %s]"),
16845 sect_offset_str (child_die->sect_off),
16846 objfile_name (objfile));
16848 if (attr_form_is_section_offset (member_loc))
16849 dwarf2_complex_location_expr_complaint ();
16850 else if (attr_form_is_constant (member_loc)
16851 || attr_form_is_block (member_loc))
16854 mark_common_block_symbol_computed (sym, die, attr,
16858 dwarf2_complex_location_expr_complaint ();
16863 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16864 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16868 /* Create a type for a C++ namespace. */
16870 static struct type *
16871 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16874 const char *previous_prefix, *name;
16878 /* For extensions, reuse the type of the original namespace. */
16879 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16881 struct die_info *ext_die;
16882 struct dwarf2_cu *ext_cu = cu;
16884 ext_die = dwarf2_extension (die, &ext_cu);
16885 type = read_type_die (ext_die, ext_cu);
16887 /* EXT_CU may not be the same as CU.
16888 Ensure TYPE is recorded with CU in die_type_hash. */
16889 return set_die_type (die, type, cu);
16892 name = namespace_name (die, &is_anonymous, cu);
16894 /* Now build the name of the current namespace. */
16896 previous_prefix = determine_prefix (die, cu);
16897 if (previous_prefix[0] != '\0')
16898 name = typename_concat (&objfile->objfile_obstack,
16899 previous_prefix, name, 0, cu);
16901 /* Create the type. */
16902 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16904 return set_die_type (die, type, cu);
16907 /* Read a namespace scope. */
16910 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16912 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16915 /* Add a symbol associated to this if we haven't seen the namespace
16916 before. Also, add a using directive if it's an anonymous
16919 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16923 type = read_type_die (die, cu);
16924 new_symbol (die, type, cu);
16926 namespace_name (die, &is_anonymous, cu);
16929 const char *previous_prefix = determine_prefix (die, cu);
16931 std::vector<const char *> excludes;
16932 add_using_directive (using_directives (cu),
16933 previous_prefix, TYPE_NAME (type), NULL,
16934 NULL, excludes, 0, &objfile->objfile_obstack);
16938 if (die->child != NULL)
16940 struct die_info *child_die = die->child;
16942 while (child_die && child_die->tag)
16944 process_die (child_die, cu);
16945 child_die = sibling_die (child_die);
16950 /* Read a Fortran module as type. This DIE can be only a declaration used for
16951 imported module. Still we need that type as local Fortran "use ... only"
16952 declaration imports depend on the created type in determine_prefix. */
16954 static struct type *
16955 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16957 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16958 const char *module_name;
16961 module_name = dwarf2_name (die, cu);
16962 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16964 return set_die_type (die, type, cu);
16967 /* Read a Fortran module. */
16970 read_module (struct die_info *die, struct dwarf2_cu *cu)
16972 struct die_info *child_die = die->child;
16975 type = read_type_die (die, cu);
16976 new_symbol (die, type, cu);
16978 while (child_die && child_die->tag)
16980 process_die (child_die, cu);
16981 child_die = sibling_die (child_die);
16985 /* Return the name of the namespace represented by DIE. Set
16986 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16989 static const char *
16990 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16992 struct die_info *current_die;
16993 const char *name = NULL;
16995 /* Loop through the extensions until we find a name. */
16997 for (current_die = die;
16998 current_die != NULL;
16999 current_die = dwarf2_extension (die, &cu))
17001 /* We don't use dwarf2_name here so that we can detect the absence
17002 of a name -> anonymous namespace. */
17003 name = dwarf2_string_attr (die, DW_AT_name, cu);
17009 /* Is it an anonymous namespace? */
17011 *is_anonymous = (name == NULL);
17013 name = CP_ANONYMOUS_NAMESPACE_STR;
17018 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17019 the user defined type vector. */
17021 static struct type *
17022 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17024 struct gdbarch *gdbarch
17025 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17026 struct comp_unit_head *cu_header = &cu->header;
17028 struct attribute *attr_byte_size;
17029 struct attribute *attr_address_class;
17030 int byte_size, addr_class;
17031 struct type *target_type;
17033 target_type = die_type (die, cu);
17035 /* The die_type call above may have already set the type for this DIE. */
17036 type = get_die_type (die, cu);
17040 type = lookup_pointer_type (target_type);
17042 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17043 if (attr_byte_size)
17044 byte_size = DW_UNSND (attr_byte_size);
17046 byte_size = cu_header->addr_size;
17048 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17049 if (attr_address_class)
17050 addr_class = DW_UNSND (attr_address_class);
17052 addr_class = DW_ADDR_none;
17054 ULONGEST alignment = get_alignment (cu, die);
17056 /* If the pointer size, alignment, or address class is different
17057 than the default, create a type variant marked as such and set
17058 the length accordingly. */
17059 if (TYPE_LENGTH (type) != byte_size
17060 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17061 && alignment != TYPE_RAW_ALIGN (type))
17062 || addr_class != DW_ADDR_none)
17064 if (gdbarch_address_class_type_flags_p (gdbarch))
17068 type_flags = gdbarch_address_class_type_flags
17069 (gdbarch, byte_size, addr_class);
17070 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17072 type = make_type_with_address_space (type, type_flags);
17074 else if (TYPE_LENGTH (type) != byte_size)
17076 complaint (_("invalid pointer size %d"), byte_size);
17078 else if (TYPE_RAW_ALIGN (type) != alignment)
17080 complaint (_("Invalid DW_AT_alignment"
17081 " - DIE at %s [in module %s]"),
17082 sect_offset_str (die->sect_off),
17083 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17087 /* Should we also complain about unhandled address classes? */
17091 TYPE_LENGTH (type) = byte_size;
17092 set_type_align (type, alignment);
17093 return set_die_type (die, type, cu);
17096 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17097 the user defined type vector. */
17099 static struct type *
17100 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17103 struct type *to_type;
17104 struct type *domain;
17106 to_type = die_type (die, cu);
17107 domain = die_containing_type (die, cu);
17109 /* The calls above may have already set the type for this DIE. */
17110 type = get_die_type (die, cu);
17114 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17115 type = lookup_methodptr_type (to_type);
17116 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17118 struct type *new_type
17119 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17121 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17122 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17123 TYPE_VARARGS (to_type));
17124 type = lookup_methodptr_type (new_type);
17127 type = lookup_memberptr_type (to_type, domain);
17129 return set_die_type (die, type, cu);
17132 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17133 the user defined type vector. */
17135 static struct type *
17136 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17137 enum type_code refcode)
17139 struct comp_unit_head *cu_header = &cu->header;
17140 struct type *type, *target_type;
17141 struct attribute *attr;
17143 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17145 target_type = die_type (die, cu);
17147 /* The die_type call above may have already set the type for this DIE. */
17148 type = get_die_type (die, cu);
17152 type = lookup_reference_type (target_type, refcode);
17153 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17156 TYPE_LENGTH (type) = DW_UNSND (attr);
17160 TYPE_LENGTH (type) = cu_header->addr_size;
17162 maybe_set_alignment (cu, die, type);
17163 return set_die_type (die, type, cu);
17166 /* Add the given cv-qualifiers to the element type of the array. GCC
17167 outputs DWARF type qualifiers that apply to an array, not the
17168 element type. But GDB relies on the array element type to carry
17169 the cv-qualifiers. This mimics section 6.7.3 of the C99
17172 static struct type *
17173 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17174 struct type *base_type, int cnst, int voltl)
17176 struct type *el_type, *inner_array;
17178 base_type = copy_type (base_type);
17179 inner_array = base_type;
17181 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17183 TYPE_TARGET_TYPE (inner_array) =
17184 copy_type (TYPE_TARGET_TYPE (inner_array));
17185 inner_array = TYPE_TARGET_TYPE (inner_array);
17188 el_type = TYPE_TARGET_TYPE (inner_array);
17189 cnst |= TYPE_CONST (el_type);
17190 voltl |= TYPE_VOLATILE (el_type);
17191 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17193 return set_die_type (die, base_type, cu);
17196 static struct type *
17197 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17199 struct type *base_type, *cv_type;
17201 base_type = die_type (die, cu);
17203 /* The die_type call above may have already set the type for this DIE. */
17204 cv_type = get_die_type (die, cu);
17208 /* In case the const qualifier is applied to an array type, the element type
17209 is so qualified, not the array type (section 6.7.3 of C99). */
17210 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17211 return add_array_cv_type (die, cu, base_type, 1, 0);
17213 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17214 return set_die_type (die, cv_type, cu);
17217 static struct type *
17218 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17220 struct type *base_type, *cv_type;
17222 base_type = die_type (die, cu);
17224 /* The die_type call above may have already set the type for this DIE. */
17225 cv_type = get_die_type (die, cu);
17229 /* In case the volatile qualifier is applied to an array type, the
17230 element type is so qualified, not the array type (section 6.7.3
17232 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17233 return add_array_cv_type (die, cu, base_type, 0, 1);
17235 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17236 return set_die_type (die, cv_type, cu);
17239 /* Handle DW_TAG_restrict_type. */
17241 static struct type *
17242 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17244 struct type *base_type, *cv_type;
17246 base_type = die_type (die, cu);
17248 /* The die_type call above may have already set the type for this DIE. */
17249 cv_type = get_die_type (die, cu);
17253 cv_type = make_restrict_type (base_type);
17254 return set_die_type (die, cv_type, cu);
17257 /* Handle DW_TAG_atomic_type. */
17259 static struct type *
17260 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17262 struct type *base_type, *cv_type;
17264 base_type = die_type (die, cu);
17266 /* The die_type call above may have already set the type for this DIE. */
17267 cv_type = get_die_type (die, cu);
17271 cv_type = make_atomic_type (base_type);
17272 return set_die_type (die, cv_type, cu);
17275 /* Extract all information from a DW_TAG_string_type DIE and add to
17276 the user defined type vector. It isn't really a user defined type,
17277 but it behaves like one, with other DIE's using an AT_user_def_type
17278 attribute to reference it. */
17280 static struct type *
17281 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17283 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17284 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17285 struct type *type, *range_type, *index_type, *char_type;
17286 struct attribute *attr;
17287 unsigned int length;
17289 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17292 length = DW_UNSND (attr);
17296 /* Check for the DW_AT_byte_size attribute. */
17297 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17300 length = DW_UNSND (attr);
17308 index_type = objfile_type (objfile)->builtin_int;
17309 range_type = create_static_range_type (NULL, index_type, 1, length);
17310 char_type = language_string_char_type (cu->language_defn, gdbarch);
17311 type = create_string_type (NULL, char_type, range_type);
17313 return set_die_type (die, type, cu);
17316 /* Assuming that DIE corresponds to a function, returns nonzero
17317 if the function is prototyped. */
17320 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17322 struct attribute *attr;
17324 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17325 if (attr && (DW_UNSND (attr) != 0))
17328 /* The DWARF standard implies that the DW_AT_prototyped attribute
17329 is only meaninful for C, but the concept also extends to other
17330 languages that allow unprototyped functions (Eg: Objective C).
17331 For all other languages, assume that functions are always
17333 if (cu->language != language_c
17334 && cu->language != language_objc
17335 && cu->language != language_opencl)
17338 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17339 prototyped and unprototyped functions; default to prototyped,
17340 since that is more common in modern code (and RealView warns
17341 about unprototyped functions). */
17342 if (producer_is_realview (cu->producer))
17348 /* Handle DIES due to C code like:
17352 int (*funcp)(int a, long l);
17356 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17358 static struct type *
17359 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17361 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17362 struct type *type; /* Type that this function returns. */
17363 struct type *ftype; /* Function that returns above type. */
17364 struct attribute *attr;
17366 type = die_type (die, cu);
17368 /* The die_type call above may have already set the type for this DIE. */
17369 ftype = get_die_type (die, cu);
17373 ftype = lookup_function_type (type);
17375 if (prototyped_function_p (die, cu))
17376 TYPE_PROTOTYPED (ftype) = 1;
17378 /* Store the calling convention in the type if it's available in
17379 the subroutine die. Otherwise set the calling convention to
17380 the default value DW_CC_normal. */
17381 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17383 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17384 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17385 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17387 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17389 /* Record whether the function returns normally to its caller or not
17390 if the DWARF producer set that information. */
17391 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17392 if (attr && (DW_UNSND (attr) != 0))
17393 TYPE_NO_RETURN (ftype) = 1;
17395 /* We need to add the subroutine type to the die immediately so
17396 we don't infinitely recurse when dealing with parameters
17397 declared as the same subroutine type. */
17398 set_die_type (die, ftype, cu);
17400 if (die->child != NULL)
17402 struct type *void_type = objfile_type (objfile)->builtin_void;
17403 struct die_info *child_die;
17404 int nparams, iparams;
17406 /* Count the number of parameters.
17407 FIXME: GDB currently ignores vararg functions, but knows about
17408 vararg member functions. */
17410 child_die = die->child;
17411 while (child_die && child_die->tag)
17413 if (child_die->tag == DW_TAG_formal_parameter)
17415 else if (child_die->tag == DW_TAG_unspecified_parameters)
17416 TYPE_VARARGS (ftype) = 1;
17417 child_die = sibling_die (child_die);
17420 /* Allocate storage for parameters and fill them in. */
17421 TYPE_NFIELDS (ftype) = nparams;
17422 TYPE_FIELDS (ftype) = (struct field *)
17423 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17425 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17426 even if we error out during the parameters reading below. */
17427 for (iparams = 0; iparams < nparams; iparams++)
17428 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17431 child_die = die->child;
17432 while (child_die && child_die->tag)
17434 if (child_die->tag == DW_TAG_formal_parameter)
17436 struct type *arg_type;
17438 /* DWARF version 2 has no clean way to discern C++
17439 static and non-static member functions. G++ helps
17440 GDB by marking the first parameter for non-static
17441 member functions (which is the this pointer) as
17442 artificial. We pass this information to
17443 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17445 DWARF version 3 added DW_AT_object_pointer, which GCC
17446 4.5 does not yet generate. */
17447 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17449 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17451 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17452 arg_type = die_type (child_die, cu);
17454 /* RealView does not mark THIS as const, which the testsuite
17455 expects. GCC marks THIS as const in method definitions,
17456 but not in the class specifications (GCC PR 43053). */
17457 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17458 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17461 struct dwarf2_cu *arg_cu = cu;
17462 const char *name = dwarf2_name (child_die, cu);
17464 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17467 /* If the compiler emits this, use it. */
17468 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17471 else if (name && strcmp (name, "this") == 0)
17472 /* Function definitions will have the argument names. */
17474 else if (name == NULL && iparams == 0)
17475 /* Declarations may not have the names, so like
17476 elsewhere in GDB, assume an artificial first
17477 argument is "this". */
17481 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17485 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17488 child_die = sibling_die (child_die);
17495 static struct type *
17496 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17498 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17499 const char *name = NULL;
17500 struct type *this_type, *target_type;
17502 name = dwarf2_full_name (NULL, die, cu);
17503 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17504 TYPE_TARGET_STUB (this_type) = 1;
17505 set_die_type (die, this_type, cu);
17506 target_type = die_type (die, cu);
17507 if (target_type != this_type)
17508 TYPE_TARGET_TYPE (this_type) = target_type;
17511 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17512 spec and cause infinite loops in GDB. */
17513 complaint (_("Self-referential DW_TAG_typedef "
17514 "- DIE at %s [in module %s]"),
17515 sect_offset_str (die->sect_off), objfile_name (objfile));
17516 TYPE_TARGET_TYPE (this_type) = NULL;
17521 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17522 (which may be different from NAME) to the architecture back-end to allow
17523 it to guess the correct format if necessary. */
17525 static struct type *
17526 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17527 const char *name_hint)
17529 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17530 const struct floatformat **format;
17533 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17535 type = init_float_type (objfile, bits, name, format);
17537 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17542 /* Allocate an integer type of size BITS and name NAME. */
17544 static struct type *
17545 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17546 int bits, int unsigned_p, const char *name)
17550 /* Versions of Intel's C Compiler generate an integer type called "void"
17551 instead of using DW_TAG_unspecified_type. This has been seen on
17552 at least versions 14, 17, and 18. */
17553 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17554 && strcmp (name, "void") == 0)
17555 type = objfile_type (objfile)->builtin_void;
17557 type = init_integer_type (objfile, bits, unsigned_p, name);
17562 /* Initialise and return a floating point type of size BITS suitable for
17563 use as a component of a complex number. The NAME_HINT is passed through
17564 when initialising the floating point type and is the name of the complex
17567 As DWARF doesn't currently provide an explicit name for the components
17568 of a complex number, but it can be helpful to have these components
17569 named, we try to select a suitable name based on the size of the
17571 static struct type *
17572 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17573 struct objfile *objfile,
17574 int bits, const char *name_hint)
17576 gdbarch *gdbarch = get_objfile_arch (objfile);
17577 struct type *tt = nullptr;
17579 /* Try to find a suitable floating point builtin type of size BITS.
17580 We're going to use the name of this type as the name for the complex
17581 target type that we are about to create. */
17582 switch (cu->language)
17584 case language_fortran:
17588 tt = builtin_f_type (gdbarch)->builtin_real;
17591 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17593 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17595 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17603 tt = builtin_type (gdbarch)->builtin_float;
17606 tt = builtin_type (gdbarch)->builtin_double;
17608 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17610 tt = builtin_type (gdbarch)->builtin_long_double;
17616 /* If the type we found doesn't match the size we were looking for, then
17617 pretend we didn't find a type at all, the complex target type we
17618 create will then be nameless. */
17619 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17622 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17623 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17626 /* Find a representation of a given base type and install
17627 it in the TYPE field of the die. */
17629 static struct type *
17630 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17632 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17634 struct attribute *attr;
17635 int encoding = 0, bits = 0;
17638 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17641 encoding = DW_UNSND (attr);
17643 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17646 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17648 name = dwarf2_name (die, cu);
17651 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17656 case DW_ATE_address:
17657 /* Turn DW_ATE_address into a void * pointer. */
17658 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17659 type = init_pointer_type (objfile, bits, name, type);
17661 case DW_ATE_boolean:
17662 type = init_boolean_type (objfile, bits, 1, name);
17664 case DW_ATE_complex_float:
17665 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17666 type = init_complex_type (objfile, name, type);
17668 case DW_ATE_decimal_float:
17669 type = init_decfloat_type (objfile, bits, name);
17672 type = dwarf2_init_float_type (objfile, bits, name, name);
17674 case DW_ATE_signed:
17675 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17677 case DW_ATE_unsigned:
17678 if (cu->language == language_fortran
17680 && startswith (name, "character("))
17681 type = init_character_type (objfile, bits, 1, name);
17683 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17685 case DW_ATE_signed_char:
17686 if (cu->language == language_ada || cu->language == language_m2
17687 || cu->language == language_pascal
17688 || cu->language == language_fortran)
17689 type = init_character_type (objfile, bits, 0, name);
17691 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17693 case DW_ATE_unsigned_char:
17694 if (cu->language == language_ada || cu->language == language_m2
17695 || cu->language == language_pascal
17696 || cu->language == language_fortran
17697 || cu->language == language_rust)
17698 type = init_character_type (objfile, bits, 1, name);
17700 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17704 gdbarch *arch = get_objfile_arch (objfile);
17707 type = builtin_type (arch)->builtin_char16;
17708 else if (bits == 32)
17709 type = builtin_type (arch)->builtin_char32;
17712 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17714 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17716 return set_die_type (die, type, cu);
17721 complaint (_("unsupported DW_AT_encoding: '%s'"),
17722 dwarf_type_encoding_name (encoding));
17723 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17727 if (name && strcmp (name, "char") == 0)
17728 TYPE_NOSIGN (type) = 1;
17730 maybe_set_alignment (cu, die, type);
17732 return set_die_type (die, type, cu);
17735 /* Parse dwarf attribute if it's a block, reference or constant and put the
17736 resulting value of the attribute into struct bound_prop.
17737 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17740 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17741 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17743 struct dwarf2_property_baton *baton;
17744 struct obstack *obstack
17745 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17747 if (attr == NULL || prop == NULL)
17750 if (attr_form_is_block (attr))
17752 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17753 baton->referenced_type = NULL;
17754 baton->locexpr.per_cu = cu->per_cu;
17755 baton->locexpr.size = DW_BLOCK (attr)->size;
17756 baton->locexpr.data = DW_BLOCK (attr)->data;
17757 prop->data.baton = baton;
17758 prop->kind = PROP_LOCEXPR;
17759 gdb_assert (prop->data.baton != NULL);
17761 else if (attr_form_is_ref (attr))
17763 struct dwarf2_cu *target_cu = cu;
17764 struct die_info *target_die;
17765 struct attribute *target_attr;
17767 target_die = follow_die_ref (die, attr, &target_cu);
17768 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17769 if (target_attr == NULL)
17770 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17772 if (target_attr == NULL)
17775 switch (target_attr->name)
17777 case DW_AT_location:
17778 if (attr_form_is_section_offset (target_attr))
17780 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17781 baton->referenced_type = die_type (target_die, target_cu);
17782 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17783 prop->data.baton = baton;
17784 prop->kind = PROP_LOCLIST;
17785 gdb_assert (prop->data.baton != NULL);
17787 else if (attr_form_is_block (target_attr))
17789 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17790 baton->referenced_type = die_type (target_die, target_cu);
17791 baton->locexpr.per_cu = cu->per_cu;
17792 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17793 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17794 prop->data.baton = baton;
17795 prop->kind = PROP_LOCEXPR;
17796 gdb_assert (prop->data.baton != NULL);
17800 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17801 "dynamic property");
17805 case DW_AT_data_member_location:
17809 if (!handle_data_member_location (target_die, target_cu,
17813 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17814 baton->referenced_type = read_type_die (target_die->parent,
17816 baton->offset_info.offset = offset;
17817 baton->offset_info.type = die_type (target_die, target_cu);
17818 prop->data.baton = baton;
17819 prop->kind = PROP_ADDR_OFFSET;
17824 else if (attr_form_is_constant (attr))
17826 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17827 prop->kind = PROP_CONST;
17831 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17832 dwarf2_name (die, cu));
17839 /* Read the given DW_AT_subrange DIE. */
17841 static struct type *
17842 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17844 struct type *base_type, *orig_base_type;
17845 struct type *range_type;
17846 struct attribute *attr;
17847 struct dynamic_prop low, high;
17848 int low_default_is_valid;
17849 int high_bound_is_count = 0;
17851 ULONGEST negative_mask;
17853 orig_base_type = die_type (die, cu);
17854 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17855 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17856 creating the range type, but we use the result of check_typedef
17857 when examining properties of the type. */
17858 base_type = check_typedef (orig_base_type);
17860 /* The die_type call above may have already set the type for this DIE. */
17861 range_type = get_die_type (die, cu);
17865 low.kind = PROP_CONST;
17866 high.kind = PROP_CONST;
17867 high.data.const_val = 0;
17869 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17870 omitting DW_AT_lower_bound. */
17871 switch (cu->language)
17874 case language_cplus:
17875 low.data.const_val = 0;
17876 low_default_is_valid = 1;
17878 case language_fortran:
17879 low.data.const_val = 1;
17880 low_default_is_valid = 1;
17883 case language_objc:
17884 case language_rust:
17885 low.data.const_val = 0;
17886 low_default_is_valid = (cu->header.version >= 4);
17890 case language_pascal:
17891 low.data.const_val = 1;
17892 low_default_is_valid = (cu->header.version >= 4);
17895 low.data.const_val = 0;
17896 low_default_is_valid = 0;
17900 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17902 attr_to_dynamic_prop (attr, die, cu, &low);
17903 else if (!low_default_is_valid)
17904 complaint (_("Missing DW_AT_lower_bound "
17905 "- DIE at %s [in module %s]"),
17906 sect_offset_str (die->sect_off),
17907 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17909 struct attribute *attr_ub, *attr_count;
17910 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17911 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17913 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17914 if (attr_to_dynamic_prop (attr, die, cu, &high))
17916 /* If bounds are constant do the final calculation here. */
17917 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17918 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17920 high_bound_is_count = 1;
17924 if (attr_ub != NULL)
17925 complaint (_("Unresolved DW_AT_upper_bound "
17926 "- DIE at %s [in module %s]"),
17927 sect_offset_str (die->sect_off),
17928 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17929 if (attr_count != NULL)
17930 complaint (_("Unresolved DW_AT_count "
17931 "- DIE at %s [in module %s]"),
17932 sect_offset_str (die->sect_off),
17933 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17938 /* Dwarf-2 specifications explicitly allows to create subrange types
17939 without specifying a base type.
17940 In that case, the base type must be set to the type of
17941 the lower bound, upper bound or count, in that order, if any of these
17942 three attributes references an object that has a type.
17943 If no base type is found, the Dwarf-2 specifications say that
17944 a signed integer type of size equal to the size of an address should
17946 For the following C code: `extern char gdb_int [];'
17947 GCC produces an empty range DIE.
17948 FIXME: muller/2010-05-28: Possible references to object for low bound,
17949 high bound or count are not yet handled by this code. */
17950 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17952 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17953 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17954 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17955 struct type *int_type = objfile_type (objfile)->builtin_int;
17957 /* Test "int", "long int", and "long long int" objfile types,
17958 and select the first one having a size above or equal to the
17959 architecture address size. */
17960 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17961 base_type = int_type;
17964 int_type = objfile_type (objfile)->builtin_long;
17965 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17966 base_type = int_type;
17969 int_type = objfile_type (objfile)->builtin_long_long;
17970 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17971 base_type = int_type;
17976 /* Normally, the DWARF producers are expected to use a signed
17977 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17978 But this is unfortunately not always the case, as witnessed
17979 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17980 is used instead. To work around that ambiguity, we treat
17981 the bounds as signed, and thus sign-extend their values, when
17982 the base type is signed. */
17984 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17985 if (low.kind == PROP_CONST
17986 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17987 low.data.const_val |= negative_mask;
17988 if (high.kind == PROP_CONST
17989 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17990 high.data.const_val |= negative_mask;
17992 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17994 if (high_bound_is_count)
17995 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17997 /* Ada expects an empty array on no boundary attributes. */
17998 if (attr == NULL && cu->language != language_ada)
17999 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18001 name = dwarf2_name (die, cu);
18003 TYPE_NAME (range_type) = name;
18005 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18007 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18009 maybe_set_alignment (cu, die, range_type);
18011 set_die_type (die, range_type, cu);
18013 /* set_die_type should be already done. */
18014 set_descriptive_type (range_type, die, cu);
18019 static struct type *
18020 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18024 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18026 TYPE_NAME (type) = dwarf2_name (die, cu);
18028 /* In Ada, an unspecified type is typically used when the description
18029 of the type is defered to a different unit. When encountering
18030 such a type, we treat it as a stub, and try to resolve it later on,
18032 if (cu->language == language_ada)
18033 TYPE_STUB (type) = 1;
18035 return set_die_type (die, type, cu);
18038 /* Read a single die and all its descendents. Set the die's sibling
18039 field to NULL; set other fields in the die correctly, and set all
18040 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18041 location of the info_ptr after reading all of those dies. PARENT
18042 is the parent of the die in question. */
18044 static struct die_info *
18045 read_die_and_children (const struct die_reader_specs *reader,
18046 const gdb_byte *info_ptr,
18047 const gdb_byte **new_info_ptr,
18048 struct die_info *parent)
18050 struct die_info *die;
18051 const gdb_byte *cur_ptr;
18054 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18057 *new_info_ptr = cur_ptr;
18060 store_in_ref_table (die, reader->cu);
18063 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18067 *new_info_ptr = cur_ptr;
18070 die->sibling = NULL;
18071 die->parent = parent;
18075 /* Read a die, all of its descendents, and all of its siblings; set
18076 all of the fields of all of the dies correctly. Arguments are as
18077 in read_die_and_children. */
18079 static struct die_info *
18080 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18081 const gdb_byte *info_ptr,
18082 const gdb_byte **new_info_ptr,
18083 struct die_info *parent)
18085 struct die_info *first_die, *last_sibling;
18086 const gdb_byte *cur_ptr;
18088 cur_ptr = info_ptr;
18089 first_die = last_sibling = NULL;
18093 struct die_info *die
18094 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18098 *new_info_ptr = cur_ptr;
18105 last_sibling->sibling = die;
18107 last_sibling = die;
18111 /* Read a die, all of its descendents, and all of its siblings; set
18112 all of the fields of all of the dies correctly. Arguments are as
18113 in read_die_and_children.
18114 This the main entry point for reading a DIE and all its children. */
18116 static struct die_info *
18117 read_die_and_siblings (const struct die_reader_specs *reader,
18118 const gdb_byte *info_ptr,
18119 const gdb_byte **new_info_ptr,
18120 struct die_info *parent)
18122 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18123 new_info_ptr, parent);
18125 if (dwarf_die_debug)
18127 fprintf_unfiltered (gdb_stdlog,
18128 "Read die from %s@0x%x of %s:\n",
18129 get_section_name (reader->die_section),
18130 (unsigned) (info_ptr - reader->die_section->buffer),
18131 bfd_get_filename (reader->abfd));
18132 dump_die (die, dwarf_die_debug);
18138 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18140 The caller is responsible for filling in the extra attributes
18141 and updating (*DIEP)->num_attrs.
18142 Set DIEP to point to a newly allocated die with its information,
18143 except for its child, sibling, and parent fields.
18144 Set HAS_CHILDREN to tell whether the die has children or not. */
18146 static const gdb_byte *
18147 read_full_die_1 (const struct die_reader_specs *reader,
18148 struct die_info **diep, const gdb_byte *info_ptr,
18149 int *has_children, int num_extra_attrs)
18151 unsigned int abbrev_number, bytes_read, i;
18152 struct abbrev_info *abbrev;
18153 struct die_info *die;
18154 struct dwarf2_cu *cu = reader->cu;
18155 bfd *abfd = reader->abfd;
18157 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18158 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18159 info_ptr += bytes_read;
18160 if (!abbrev_number)
18167 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18169 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18171 bfd_get_filename (abfd));
18173 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18174 die->sect_off = sect_off;
18175 die->tag = abbrev->tag;
18176 die->abbrev = abbrev_number;
18178 /* Make the result usable.
18179 The caller needs to update num_attrs after adding the extra
18181 die->num_attrs = abbrev->num_attrs;
18183 for (i = 0; i < abbrev->num_attrs; ++i)
18184 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18188 *has_children = abbrev->has_children;
18192 /* Read a die and all its attributes.
18193 Set DIEP to point to a newly allocated die with its information,
18194 except for its child, sibling, and parent fields.
18195 Set HAS_CHILDREN to tell whether the die has children or not. */
18197 static const gdb_byte *
18198 read_full_die (const struct die_reader_specs *reader,
18199 struct die_info **diep, const gdb_byte *info_ptr,
18202 const gdb_byte *result;
18204 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18206 if (dwarf_die_debug)
18208 fprintf_unfiltered (gdb_stdlog,
18209 "Read die from %s@0x%x of %s:\n",
18210 get_section_name (reader->die_section),
18211 (unsigned) (info_ptr - reader->die_section->buffer),
18212 bfd_get_filename (reader->abfd));
18213 dump_die (*diep, dwarf_die_debug);
18219 /* Abbreviation tables.
18221 In DWARF version 2, the description of the debugging information is
18222 stored in a separate .debug_abbrev section. Before we read any
18223 dies from a section we read in all abbreviations and install them
18224 in a hash table. */
18226 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18228 struct abbrev_info *
18229 abbrev_table::alloc_abbrev ()
18231 struct abbrev_info *abbrev;
18233 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18234 memset (abbrev, 0, sizeof (struct abbrev_info));
18239 /* Add an abbreviation to the table. */
18242 abbrev_table::add_abbrev (unsigned int abbrev_number,
18243 struct abbrev_info *abbrev)
18245 unsigned int hash_number;
18247 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18248 abbrev->next = m_abbrevs[hash_number];
18249 m_abbrevs[hash_number] = abbrev;
18252 /* Look up an abbrev in the table.
18253 Returns NULL if the abbrev is not found. */
18255 struct abbrev_info *
18256 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18258 unsigned int hash_number;
18259 struct abbrev_info *abbrev;
18261 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18262 abbrev = m_abbrevs[hash_number];
18266 if (abbrev->number == abbrev_number)
18268 abbrev = abbrev->next;
18273 /* Read in an abbrev table. */
18275 static abbrev_table_up
18276 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18277 struct dwarf2_section_info *section,
18278 sect_offset sect_off)
18280 struct objfile *objfile = dwarf2_per_objfile->objfile;
18281 bfd *abfd = get_section_bfd_owner (section);
18282 const gdb_byte *abbrev_ptr;
18283 struct abbrev_info *cur_abbrev;
18284 unsigned int abbrev_number, bytes_read, abbrev_name;
18285 unsigned int abbrev_form;
18286 struct attr_abbrev *cur_attrs;
18287 unsigned int allocated_attrs;
18289 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18291 dwarf2_read_section (objfile, section);
18292 abbrev_ptr = section->buffer + to_underlying (sect_off);
18293 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18294 abbrev_ptr += bytes_read;
18296 allocated_attrs = ATTR_ALLOC_CHUNK;
18297 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18299 /* Loop until we reach an abbrev number of 0. */
18300 while (abbrev_number)
18302 cur_abbrev = abbrev_table->alloc_abbrev ();
18304 /* read in abbrev header */
18305 cur_abbrev->number = abbrev_number;
18307 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18308 abbrev_ptr += bytes_read;
18309 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18312 /* now read in declarations */
18315 LONGEST implicit_const;
18317 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18318 abbrev_ptr += bytes_read;
18319 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18320 abbrev_ptr += bytes_read;
18321 if (abbrev_form == DW_FORM_implicit_const)
18323 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18325 abbrev_ptr += bytes_read;
18329 /* Initialize it due to a false compiler warning. */
18330 implicit_const = -1;
18333 if (abbrev_name == 0)
18336 if (cur_abbrev->num_attrs == allocated_attrs)
18338 allocated_attrs += ATTR_ALLOC_CHUNK;
18340 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18343 cur_attrs[cur_abbrev->num_attrs].name
18344 = (enum dwarf_attribute) abbrev_name;
18345 cur_attrs[cur_abbrev->num_attrs].form
18346 = (enum dwarf_form) abbrev_form;
18347 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18348 ++cur_abbrev->num_attrs;
18351 cur_abbrev->attrs =
18352 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18353 cur_abbrev->num_attrs);
18354 memcpy (cur_abbrev->attrs, cur_attrs,
18355 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18357 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18359 /* Get next abbreviation.
18360 Under Irix6 the abbreviations for a compilation unit are not
18361 always properly terminated with an abbrev number of 0.
18362 Exit loop if we encounter an abbreviation which we have
18363 already read (which means we are about to read the abbreviations
18364 for the next compile unit) or if the end of the abbreviation
18365 table is reached. */
18366 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18368 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18369 abbrev_ptr += bytes_read;
18370 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18375 return abbrev_table;
18378 /* Returns nonzero if TAG represents a type that we might generate a partial
18382 is_type_tag_for_partial (int tag)
18387 /* Some types that would be reasonable to generate partial symbols for,
18388 that we don't at present. */
18389 case DW_TAG_array_type:
18390 case DW_TAG_file_type:
18391 case DW_TAG_ptr_to_member_type:
18392 case DW_TAG_set_type:
18393 case DW_TAG_string_type:
18394 case DW_TAG_subroutine_type:
18396 case DW_TAG_base_type:
18397 case DW_TAG_class_type:
18398 case DW_TAG_interface_type:
18399 case DW_TAG_enumeration_type:
18400 case DW_TAG_structure_type:
18401 case DW_TAG_subrange_type:
18402 case DW_TAG_typedef:
18403 case DW_TAG_union_type:
18410 /* Load all DIEs that are interesting for partial symbols into memory. */
18412 static struct partial_die_info *
18413 load_partial_dies (const struct die_reader_specs *reader,
18414 const gdb_byte *info_ptr, int building_psymtab)
18416 struct dwarf2_cu *cu = reader->cu;
18417 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18418 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18419 unsigned int bytes_read;
18420 unsigned int load_all = 0;
18421 int nesting_level = 1;
18426 gdb_assert (cu->per_cu != NULL);
18427 if (cu->per_cu->load_all_dies)
18431 = htab_create_alloc_ex (cu->header.length / 12,
18435 &cu->comp_unit_obstack,
18436 hashtab_obstack_allocate,
18437 dummy_obstack_deallocate);
18441 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18443 /* A NULL abbrev means the end of a series of children. */
18444 if (abbrev == NULL)
18446 if (--nesting_level == 0)
18449 info_ptr += bytes_read;
18450 last_die = parent_die;
18451 parent_die = parent_die->die_parent;
18455 /* Check for template arguments. We never save these; if
18456 they're seen, we just mark the parent, and go on our way. */
18457 if (parent_die != NULL
18458 && cu->language == language_cplus
18459 && (abbrev->tag == DW_TAG_template_type_param
18460 || abbrev->tag == DW_TAG_template_value_param))
18462 parent_die->has_template_arguments = 1;
18466 /* We don't need a partial DIE for the template argument. */
18467 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18472 /* We only recurse into c++ subprograms looking for template arguments.
18473 Skip their other children. */
18475 && cu->language == language_cplus
18476 && parent_die != NULL
18477 && parent_die->tag == DW_TAG_subprogram)
18479 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18483 /* Check whether this DIE is interesting enough to save. Normally
18484 we would not be interested in members here, but there may be
18485 later variables referencing them via DW_AT_specification (for
18486 static members). */
18488 && !is_type_tag_for_partial (abbrev->tag)
18489 && abbrev->tag != DW_TAG_constant
18490 && abbrev->tag != DW_TAG_enumerator
18491 && abbrev->tag != DW_TAG_subprogram
18492 && abbrev->tag != DW_TAG_inlined_subroutine
18493 && abbrev->tag != DW_TAG_lexical_block
18494 && abbrev->tag != DW_TAG_variable
18495 && abbrev->tag != DW_TAG_namespace
18496 && abbrev->tag != DW_TAG_module
18497 && abbrev->tag != DW_TAG_member
18498 && abbrev->tag != DW_TAG_imported_unit
18499 && abbrev->tag != DW_TAG_imported_declaration)
18501 /* Otherwise we skip to the next sibling, if any. */
18502 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18506 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18509 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18511 /* This two-pass algorithm for processing partial symbols has a
18512 high cost in cache pressure. Thus, handle some simple cases
18513 here which cover the majority of C partial symbols. DIEs
18514 which neither have specification tags in them, nor could have
18515 specification tags elsewhere pointing at them, can simply be
18516 processed and discarded.
18518 This segment is also optional; scan_partial_symbols and
18519 add_partial_symbol will handle these DIEs if we chain
18520 them in normally. When compilers which do not emit large
18521 quantities of duplicate debug information are more common,
18522 this code can probably be removed. */
18524 /* Any complete simple types at the top level (pretty much all
18525 of them, for a language without namespaces), can be processed
18527 if (parent_die == NULL
18528 && pdi.has_specification == 0
18529 && pdi.is_declaration == 0
18530 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18531 || pdi.tag == DW_TAG_base_type
18532 || pdi.tag == DW_TAG_subrange_type))
18534 if (building_psymtab && pdi.name != NULL)
18535 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18536 VAR_DOMAIN, LOC_TYPEDEF, -1,
18537 psymbol_placement::STATIC,
18538 0, cu->language, objfile);
18539 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18543 /* The exception for DW_TAG_typedef with has_children above is
18544 a workaround of GCC PR debug/47510. In the case of this complaint
18545 type_name_or_error will error on such types later.
18547 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18548 it could not find the child DIEs referenced later, this is checked
18549 above. In correct DWARF DW_TAG_typedef should have no children. */
18551 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18552 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18553 "- DIE at %s [in module %s]"),
18554 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18556 /* If we're at the second level, and we're an enumerator, and
18557 our parent has no specification (meaning possibly lives in a
18558 namespace elsewhere), then we can add the partial symbol now
18559 instead of queueing it. */
18560 if (pdi.tag == DW_TAG_enumerator
18561 && parent_die != NULL
18562 && parent_die->die_parent == NULL
18563 && parent_die->tag == DW_TAG_enumeration_type
18564 && parent_die->has_specification == 0)
18566 if (pdi.name == NULL)
18567 complaint (_("malformed enumerator DIE ignored"));
18568 else if (building_psymtab)
18569 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18570 VAR_DOMAIN, LOC_CONST, -1,
18571 cu->language == language_cplus
18572 ? psymbol_placement::GLOBAL
18573 : psymbol_placement::STATIC,
18574 0, cu->language, objfile);
18576 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18580 struct partial_die_info *part_die
18581 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18583 /* We'll save this DIE so link it in. */
18584 part_die->die_parent = parent_die;
18585 part_die->die_sibling = NULL;
18586 part_die->die_child = NULL;
18588 if (last_die && last_die == parent_die)
18589 last_die->die_child = part_die;
18591 last_die->die_sibling = part_die;
18593 last_die = part_die;
18595 if (first_die == NULL)
18596 first_die = part_die;
18598 /* Maybe add the DIE to the hash table. Not all DIEs that we
18599 find interesting need to be in the hash table, because we
18600 also have the parent/sibling/child chains; only those that we
18601 might refer to by offset later during partial symbol reading.
18603 For now this means things that might have be the target of a
18604 DW_AT_specification, DW_AT_abstract_origin, or
18605 DW_AT_extension. DW_AT_extension will refer only to
18606 namespaces; DW_AT_abstract_origin refers to functions (and
18607 many things under the function DIE, but we do not recurse
18608 into function DIEs during partial symbol reading) and
18609 possibly variables as well; DW_AT_specification refers to
18610 declarations. Declarations ought to have the DW_AT_declaration
18611 flag. It happens that GCC forgets to put it in sometimes, but
18612 only for functions, not for types.
18614 Adding more things than necessary to the hash table is harmless
18615 except for the performance cost. Adding too few will result in
18616 wasted time in find_partial_die, when we reread the compilation
18617 unit with load_all_dies set. */
18620 || abbrev->tag == DW_TAG_constant
18621 || abbrev->tag == DW_TAG_subprogram
18622 || abbrev->tag == DW_TAG_variable
18623 || abbrev->tag == DW_TAG_namespace
18624 || part_die->is_declaration)
18628 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18629 to_underlying (part_die->sect_off),
18634 /* For some DIEs we want to follow their children (if any). For C
18635 we have no reason to follow the children of structures; for other
18636 languages we have to, so that we can get at method physnames
18637 to infer fully qualified class names, for DW_AT_specification,
18638 and for C++ template arguments. For C++, we also look one level
18639 inside functions to find template arguments (if the name of the
18640 function does not already contain the template arguments).
18642 For Ada, we need to scan the children of subprograms and lexical
18643 blocks as well because Ada allows the definition of nested
18644 entities that could be interesting for the debugger, such as
18645 nested subprograms for instance. */
18646 if (last_die->has_children
18648 || last_die->tag == DW_TAG_namespace
18649 || last_die->tag == DW_TAG_module
18650 || last_die->tag == DW_TAG_enumeration_type
18651 || (cu->language == language_cplus
18652 && last_die->tag == DW_TAG_subprogram
18653 && (last_die->name == NULL
18654 || strchr (last_die->name, '<') == NULL))
18655 || (cu->language != language_c
18656 && (last_die->tag == DW_TAG_class_type
18657 || last_die->tag == DW_TAG_interface_type
18658 || last_die->tag == DW_TAG_structure_type
18659 || last_die->tag == DW_TAG_union_type))
18660 || (cu->language == language_ada
18661 && (last_die->tag == DW_TAG_subprogram
18662 || last_die->tag == DW_TAG_lexical_block))))
18665 parent_die = last_die;
18669 /* Otherwise we skip to the next sibling, if any. */
18670 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18672 /* Back to the top, do it again. */
18676 partial_die_info::partial_die_info (sect_offset sect_off_,
18677 struct abbrev_info *abbrev)
18678 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18682 /* Read a minimal amount of information into the minimal die structure.
18683 INFO_PTR should point just after the initial uleb128 of a DIE. */
18686 partial_die_info::read (const struct die_reader_specs *reader,
18687 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18689 struct dwarf2_cu *cu = reader->cu;
18690 struct dwarf2_per_objfile *dwarf2_per_objfile
18691 = cu->per_cu->dwarf2_per_objfile;
18693 int has_low_pc_attr = 0;
18694 int has_high_pc_attr = 0;
18695 int high_pc_relative = 0;
18697 for (i = 0; i < abbrev.num_attrs; ++i)
18699 struct attribute attr;
18701 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18703 /* Store the data if it is of an attribute we want to keep in a
18704 partial symbol table. */
18710 case DW_TAG_compile_unit:
18711 case DW_TAG_partial_unit:
18712 case DW_TAG_type_unit:
18713 /* Compilation units have a DW_AT_name that is a filename, not
18714 a source language identifier. */
18715 case DW_TAG_enumeration_type:
18716 case DW_TAG_enumerator:
18717 /* These tags always have simple identifiers already; no need
18718 to canonicalize them. */
18719 name = DW_STRING (&attr);
18723 struct objfile *objfile = dwarf2_per_objfile->objfile;
18726 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18727 &objfile->per_bfd->storage_obstack);
18732 case DW_AT_linkage_name:
18733 case DW_AT_MIPS_linkage_name:
18734 /* Note that both forms of linkage name might appear. We
18735 assume they will be the same, and we only store the last
18737 if (cu->language == language_ada)
18738 name = DW_STRING (&attr);
18739 linkage_name = DW_STRING (&attr);
18742 has_low_pc_attr = 1;
18743 lowpc = attr_value_as_address (&attr);
18745 case DW_AT_high_pc:
18746 has_high_pc_attr = 1;
18747 highpc = attr_value_as_address (&attr);
18748 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18749 high_pc_relative = 1;
18751 case DW_AT_location:
18752 /* Support the .debug_loc offsets. */
18753 if (attr_form_is_block (&attr))
18755 d.locdesc = DW_BLOCK (&attr);
18757 else if (attr_form_is_section_offset (&attr))
18759 dwarf2_complex_location_expr_complaint ();
18763 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18764 "partial symbol information");
18767 case DW_AT_external:
18768 is_external = DW_UNSND (&attr);
18770 case DW_AT_declaration:
18771 is_declaration = DW_UNSND (&attr);
18776 case DW_AT_abstract_origin:
18777 case DW_AT_specification:
18778 case DW_AT_extension:
18779 has_specification = 1;
18780 spec_offset = dwarf2_get_ref_die_offset (&attr);
18781 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18782 || cu->per_cu->is_dwz);
18784 case DW_AT_sibling:
18785 /* Ignore absolute siblings, they might point outside of
18786 the current compile unit. */
18787 if (attr.form == DW_FORM_ref_addr)
18788 complaint (_("ignoring absolute DW_AT_sibling"));
18791 const gdb_byte *buffer = reader->buffer;
18792 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18793 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18795 if (sibling_ptr < info_ptr)
18796 complaint (_("DW_AT_sibling points backwards"));
18797 else if (sibling_ptr > reader->buffer_end)
18798 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18800 sibling = sibling_ptr;
18803 case DW_AT_byte_size:
18806 case DW_AT_const_value:
18807 has_const_value = 1;
18809 case DW_AT_calling_convention:
18810 /* DWARF doesn't provide a way to identify a program's source-level
18811 entry point. DW_AT_calling_convention attributes are only meant
18812 to describe functions' calling conventions.
18814 However, because it's a necessary piece of information in
18815 Fortran, and before DWARF 4 DW_CC_program was the only
18816 piece of debugging information whose definition refers to
18817 a 'main program' at all, several compilers marked Fortran
18818 main programs with DW_CC_program --- even when those
18819 functions use the standard calling conventions.
18821 Although DWARF now specifies a way to provide this
18822 information, we support this practice for backward
18824 if (DW_UNSND (&attr) == DW_CC_program
18825 && cu->language == language_fortran)
18826 main_subprogram = 1;
18829 if (DW_UNSND (&attr) == DW_INL_inlined
18830 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18831 may_be_inlined = 1;
18835 if (tag == DW_TAG_imported_unit)
18837 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18838 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18839 || cu->per_cu->is_dwz);
18843 case DW_AT_main_subprogram:
18844 main_subprogram = DW_UNSND (&attr);
18849 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18850 but that requires a full DIE, so instead we just
18852 int need_ranges_base = tag != DW_TAG_compile_unit;
18853 unsigned int ranges_offset = (DW_UNSND (&attr)
18854 + (need_ranges_base
18858 /* Value of the DW_AT_ranges attribute is the offset in the
18859 .debug_ranges section. */
18860 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18871 if (high_pc_relative)
18874 if (has_low_pc_attr && has_high_pc_attr)
18876 /* When using the GNU linker, .gnu.linkonce. sections are used to
18877 eliminate duplicate copies of functions and vtables and such.
18878 The linker will arbitrarily choose one and discard the others.
18879 The AT_*_pc values for such functions refer to local labels in
18880 these sections. If the section from that file was discarded, the
18881 labels are not in the output, so the relocs get a value of 0.
18882 If this is a discarded function, mark the pc bounds as invalid,
18883 so that GDB will ignore it. */
18884 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18886 struct objfile *objfile = dwarf2_per_objfile->objfile;
18887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18889 complaint (_("DW_AT_low_pc %s is zero "
18890 "for DIE at %s [in module %s]"),
18891 paddress (gdbarch, lowpc),
18892 sect_offset_str (sect_off),
18893 objfile_name (objfile));
18895 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18896 else if (lowpc >= highpc)
18898 struct objfile *objfile = dwarf2_per_objfile->objfile;
18899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18901 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18902 "for DIE at %s [in module %s]"),
18903 paddress (gdbarch, lowpc),
18904 paddress (gdbarch, highpc),
18905 sect_offset_str (sect_off),
18906 objfile_name (objfile));
18915 /* Find a cached partial DIE at OFFSET in CU. */
18917 struct partial_die_info *
18918 dwarf2_cu::find_partial_die (sect_offset sect_off)
18920 struct partial_die_info *lookup_die = NULL;
18921 struct partial_die_info part_die (sect_off);
18923 lookup_die = ((struct partial_die_info *)
18924 htab_find_with_hash (partial_dies, &part_die,
18925 to_underlying (sect_off)));
18930 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18931 except in the case of .debug_types DIEs which do not reference
18932 outside their CU (they do however referencing other types via
18933 DW_FORM_ref_sig8). */
18935 static const struct cu_partial_die_info
18936 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18938 struct dwarf2_per_objfile *dwarf2_per_objfile
18939 = cu->per_cu->dwarf2_per_objfile;
18940 struct objfile *objfile = dwarf2_per_objfile->objfile;
18941 struct dwarf2_per_cu_data *per_cu = NULL;
18942 struct partial_die_info *pd = NULL;
18944 if (offset_in_dwz == cu->per_cu->is_dwz
18945 && offset_in_cu_p (&cu->header, sect_off))
18947 pd = cu->find_partial_die (sect_off);
18950 /* We missed recording what we needed.
18951 Load all dies and try again. */
18952 per_cu = cu->per_cu;
18956 /* TUs don't reference other CUs/TUs (except via type signatures). */
18957 if (cu->per_cu->is_debug_types)
18959 error (_("Dwarf Error: Type Unit at offset %s contains"
18960 " external reference to offset %s [in module %s].\n"),
18961 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18962 bfd_get_filename (objfile->obfd));
18964 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18965 dwarf2_per_objfile);
18967 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18968 load_partial_comp_unit (per_cu);
18970 per_cu->cu->last_used = 0;
18971 pd = per_cu->cu->find_partial_die (sect_off);
18974 /* If we didn't find it, and not all dies have been loaded,
18975 load them all and try again. */
18977 if (pd == NULL && per_cu->load_all_dies == 0)
18979 per_cu->load_all_dies = 1;
18981 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18982 THIS_CU->cu may already be in use. So we can't just free it and
18983 replace its DIEs with the ones we read in. Instead, we leave those
18984 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18985 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18987 load_partial_comp_unit (per_cu);
18989 pd = per_cu->cu->find_partial_die (sect_off);
18993 internal_error (__FILE__, __LINE__,
18994 _("could not find partial DIE %s "
18995 "in cache [from module %s]\n"),
18996 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18997 return { per_cu->cu, pd };
19000 /* See if we can figure out if the class lives in a namespace. We do
19001 this by looking for a member function; its demangled name will
19002 contain namespace info, if there is any. */
19005 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19006 struct dwarf2_cu *cu)
19008 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19009 what template types look like, because the demangler
19010 frequently doesn't give the same name as the debug info. We
19011 could fix this by only using the demangled name to get the
19012 prefix (but see comment in read_structure_type). */
19014 struct partial_die_info *real_pdi;
19015 struct partial_die_info *child_pdi;
19017 /* If this DIE (this DIE's specification, if any) has a parent, then
19018 we should not do this. We'll prepend the parent's fully qualified
19019 name when we create the partial symbol. */
19021 real_pdi = struct_pdi;
19022 while (real_pdi->has_specification)
19024 auto res = find_partial_die (real_pdi->spec_offset,
19025 real_pdi->spec_is_dwz, cu);
19026 real_pdi = res.pdi;
19030 if (real_pdi->die_parent != NULL)
19033 for (child_pdi = struct_pdi->die_child;
19035 child_pdi = child_pdi->die_sibling)
19037 if (child_pdi->tag == DW_TAG_subprogram
19038 && child_pdi->linkage_name != NULL)
19040 char *actual_class_name
19041 = language_class_name_from_physname (cu->language_defn,
19042 child_pdi->linkage_name);
19043 if (actual_class_name != NULL)
19045 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19048 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19050 strlen (actual_class_name)));
19051 xfree (actual_class_name);
19059 partial_die_info::fixup (struct dwarf2_cu *cu)
19061 /* Once we've fixed up a die, there's no point in doing so again.
19062 This also avoids a memory leak if we were to call
19063 guess_partial_die_structure_name multiple times. */
19067 /* If we found a reference attribute and the DIE has no name, try
19068 to find a name in the referred to DIE. */
19070 if (name == NULL && has_specification)
19072 struct partial_die_info *spec_die;
19074 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19075 spec_die = res.pdi;
19078 spec_die->fixup (cu);
19080 if (spec_die->name)
19082 name = spec_die->name;
19084 /* Copy DW_AT_external attribute if it is set. */
19085 if (spec_die->is_external)
19086 is_external = spec_die->is_external;
19090 /* Set default names for some unnamed DIEs. */
19092 if (name == NULL && tag == DW_TAG_namespace)
19093 name = CP_ANONYMOUS_NAMESPACE_STR;
19095 /* If there is no parent die to provide a namespace, and there are
19096 children, see if we can determine the namespace from their linkage
19098 if (cu->language == language_cplus
19099 && !VEC_empty (dwarf2_section_info_def,
19100 cu->per_cu->dwarf2_per_objfile->types)
19101 && die_parent == NULL
19103 && (tag == DW_TAG_class_type
19104 || tag == DW_TAG_structure_type
19105 || tag == DW_TAG_union_type))
19106 guess_partial_die_structure_name (this, cu);
19108 /* GCC might emit a nameless struct or union that has a linkage
19109 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19111 && (tag == DW_TAG_class_type
19112 || tag == DW_TAG_interface_type
19113 || tag == DW_TAG_structure_type
19114 || tag == DW_TAG_union_type)
19115 && linkage_name != NULL)
19119 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19124 /* Strip any leading namespaces/classes, keep only the base name.
19125 DW_AT_name for named DIEs does not contain the prefixes. */
19126 base = strrchr (demangled, ':');
19127 if (base && base > demangled && base[-1] == ':')
19132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19135 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19136 base, strlen (base)));
19144 /* Read an attribute value described by an attribute form. */
19146 static const gdb_byte *
19147 read_attribute_value (const struct die_reader_specs *reader,
19148 struct attribute *attr, unsigned form,
19149 LONGEST implicit_const, const gdb_byte *info_ptr)
19151 struct dwarf2_cu *cu = reader->cu;
19152 struct dwarf2_per_objfile *dwarf2_per_objfile
19153 = cu->per_cu->dwarf2_per_objfile;
19154 struct objfile *objfile = dwarf2_per_objfile->objfile;
19155 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19156 bfd *abfd = reader->abfd;
19157 struct comp_unit_head *cu_header = &cu->header;
19158 unsigned int bytes_read;
19159 struct dwarf_block *blk;
19161 attr->form = (enum dwarf_form) form;
19164 case DW_FORM_ref_addr:
19165 if (cu->header.version == 2)
19166 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19168 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19169 &cu->header, &bytes_read);
19170 info_ptr += bytes_read;
19172 case DW_FORM_GNU_ref_alt:
19173 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19174 info_ptr += bytes_read;
19177 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19178 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19179 info_ptr += bytes_read;
19181 case DW_FORM_block2:
19182 blk = dwarf_alloc_block (cu);
19183 blk->size = read_2_bytes (abfd, info_ptr);
19185 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19186 info_ptr += blk->size;
19187 DW_BLOCK (attr) = blk;
19189 case DW_FORM_block4:
19190 blk = dwarf_alloc_block (cu);
19191 blk->size = read_4_bytes (abfd, info_ptr);
19193 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19194 info_ptr += blk->size;
19195 DW_BLOCK (attr) = blk;
19197 case DW_FORM_data2:
19198 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19201 case DW_FORM_data4:
19202 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19205 case DW_FORM_data8:
19206 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19209 case DW_FORM_data16:
19210 blk = dwarf_alloc_block (cu);
19212 blk->data = read_n_bytes (abfd, info_ptr, 16);
19214 DW_BLOCK (attr) = blk;
19216 case DW_FORM_sec_offset:
19217 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19218 info_ptr += bytes_read;
19220 case DW_FORM_string:
19221 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19222 DW_STRING_IS_CANONICAL (attr) = 0;
19223 info_ptr += bytes_read;
19226 if (!cu->per_cu->is_dwz)
19228 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19229 abfd, info_ptr, cu_header,
19231 DW_STRING_IS_CANONICAL (attr) = 0;
19232 info_ptr += bytes_read;
19236 case DW_FORM_line_strp:
19237 if (!cu->per_cu->is_dwz)
19239 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19241 cu_header, &bytes_read);
19242 DW_STRING_IS_CANONICAL (attr) = 0;
19243 info_ptr += bytes_read;
19247 case DW_FORM_GNU_strp_alt:
19249 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19250 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19253 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19255 DW_STRING_IS_CANONICAL (attr) = 0;
19256 info_ptr += bytes_read;
19259 case DW_FORM_exprloc:
19260 case DW_FORM_block:
19261 blk = dwarf_alloc_block (cu);
19262 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19263 info_ptr += bytes_read;
19264 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19265 info_ptr += blk->size;
19266 DW_BLOCK (attr) = blk;
19268 case DW_FORM_block1:
19269 blk = dwarf_alloc_block (cu);
19270 blk->size = read_1_byte (abfd, info_ptr);
19272 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19273 info_ptr += blk->size;
19274 DW_BLOCK (attr) = blk;
19276 case DW_FORM_data1:
19277 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19281 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19284 case DW_FORM_flag_present:
19285 DW_UNSND (attr) = 1;
19287 case DW_FORM_sdata:
19288 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19289 info_ptr += bytes_read;
19291 case DW_FORM_udata:
19292 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19293 info_ptr += bytes_read;
19296 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19297 + read_1_byte (abfd, info_ptr));
19301 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19302 + read_2_bytes (abfd, info_ptr));
19306 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19307 + read_4_bytes (abfd, info_ptr));
19311 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19312 + read_8_bytes (abfd, info_ptr));
19315 case DW_FORM_ref_sig8:
19316 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19319 case DW_FORM_ref_udata:
19320 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19321 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19322 info_ptr += bytes_read;
19324 case DW_FORM_indirect:
19325 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19326 info_ptr += bytes_read;
19327 if (form == DW_FORM_implicit_const)
19329 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19330 info_ptr += bytes_read;
19332 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19335 case DW_FORM_implicit_const:
19336 DW_SND (attr) = implicit_const;
19338 case DW_FORM_addrx:
19339 case DW_FORM_GNU_addr_index:
19340 if (reader->dwo_file == NULL)
19342 /* For now flag a hard error.
19343 Later we can turn this into a complaint. */
19344 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19345 dwarf_form_name (form),
19346 bfd_get_filename (abfd));
19348 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19349 info_ptr += bytes_read;
19352 case DW_FORM_strx1:
19353 case DW_FORM_strx2:
19354 case DW_FORM_strx3:
19355 case DW_FORM_strx4:
19356 case DW_FORM_GNU_str_index:
19357 if (reader->dwo_file == NULL)
19359 /* For now flag a hard error.
19360 Later we can turn this into a complaint if warranted. */
19361 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19362 dwarf_form_name (form),
19363 bfd_get_filename (abfd));
19366 ULONGEST str_index;
19367 if (form == DW_FORM_strx1)
19369 str_index = read_1_byte (abfd, info_ptr);
19372 else if (form == DW_FORM_strx2)
19374 str_index = read_2_bytes (abfd, info_ptr);
19377 else if (form == DW_FORM_strx3)
19379 str_index = read_3_bytes (abfd, info_ptr);
19382 else if (form == DW_FORM_strx4)
19384 str_index = read_4_bytes (abfd, info_ptr);
19389 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19390 info_ptr += bytes_read;
19392 DW_STRING (attr) = read_str_index (reader, str_index);
19393 DW_STRING_IS_CANONICAL (attr) = 0;
19397 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19398 dwarf_form_name (form),
19399 bfd_get_filename (abfd));
19403 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19404 attr->form = DW_FORM_GNU_ref_alt;
19406 /* We have seen instances where the compiler tried to emit a byte
19407 size attribute of -1 which ended up being encoded as an unsigned
19408 0xffffffff. Although 0xffffffff is technically a valid size value,
19409 an object of this size seems pretty unlikely so we can relatively
19410 safely treat these cases as if the size attribute was invalid and
19411 treat them as zero by default. */
19412 if (attr->name == DW_AT_byte_size
19413 && form == DW_FORM_data4
19414 && DW_UNSND (attr) >= 0xffffffff)
19417 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19418 hex_string (DW_UNSND (attr)));
19419 DW_UNSND (attr) = 0;
19425 /* Read an attribute described by an abbreviated attribute. */
19427 static const gdb_byte *
19428 read_attribute (const struct die_reader_specs *reader,
19429 struct attribute *attr, struct attr_abbrev *abbrev,
19430 const gdb_byte *info_ptr)
19432 attr->name = abbrev->name;
19433 return read_attribute_value (reader, attr, abbrev->form,
19434 abbrev->implicit_const, info_ptr);
19437 /* Read dwarf information from a buffer. */
19439 static unsigned int
19440 read_1_byte (bfd *abfd, const gdb_byte *buf)
19442 return bfd_get_8 (abfd, buf);
19446 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19448 return bfd_get_signed_8 (abfd, buf);
19451 static unsigned int
19452 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19454 return bfd_get_16 (abfd, buf);
19458 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19460 return bfd_get_signed_16 (abfd, buf);
19463 static unsigned int
19464 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19466 unsigned int result = 0;
19467 for (int i = 0; i < 3; ++i)
19469 unsigned char byte = bfd_get_8 (abfd, buf);
19471 result |= ((unsigned int) byte << (i * 8));
19476 static unsigned int
19477 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19479 return bfd_get_32 (abfd, buf);
19483 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19485 return bfd_get_signed_32 (abfd, buf);
19489 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19491 return bfd_get_64 (abfd, buf);
19495 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19496 unsigned int *bytes_read)
19498 struct comp_unit_head *cu_header = &cu->header;
19499 CORE_ADDR retval = 0;
19501 if (cu_header->signed_addr_p)
19503 switch (cu_header->addr_size)
19506 retval = bfd_get_signed_16 (abfd, buf);
19509 retval = bfd_get_signed_32 (abfd, buf);
19512 retval = bfd_get_signed_64 (abfd, buf);
19515 internal_error (__FILE__, __LINE__,
19516 _("read_address: bad switch, signed [in module %s]"),
19517 bfd_get_filename (abfd));
19522 switch (cu_header->addr_size)
19525 retval = bfd_get_16 (abfd, buf);
19528 retval = bfd_get_32 (abfd, buf);
19531 retval = bfd_get_64 (abfd, buf);
19534 internal_error (__FILE__, __LINE__,
19535 _("read_address: bad switch, "
19536 "unsigned [in module %s]"),
19537 bfd_get_filename (abfd));
19541 *bytes_read = cu_header->addr_size;
19545 /* Read the initial length from a section. The (draft) DWARF 3
19546 specification allows the initial length to take up either 4 bytes
19547 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19548 bytes describe the length and all offsets will be 8 bytes in length
19551 An older, non-standard 64-bit format is also handled by this
19552 function. The older format in question stores the initial length
19553 as an 8-byte quantity without an escape value. Lengths greater
19554 than 2^32 aren't very common which means that the initial 4 bytes
19555 is almost always zero. Since a length value of zero doesn't make
19556 sense for the 32-bit format, this initial zero can be considered to
19557 be an escape value which indicates the presence of the older 64-bit
19558 format. As written, the code can't detect (old format) lengths
19559 greater than 4GB. If it becomes necessary to handle lengths
19560 somewhat larger than 4GB, we could allow other small values (such
19561 as the non-sensical values of 1, 2, and 3) to also be used as
19562 escape values indicating the presence of the old format.
19564 The value returned via bytes_read should be used to increment the
19565 relevant pointer after calling read_initial_length().
19567 [ Note: read_initial_length() and read_offset() are based on the
19568 document entitled "DWARF Debugging Information Format", revision
19569 3, draft 8, dated November 19, 2001. This document was obtained
19572 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19574 This document is only a draft and is subject to change. (So beware.)
19576 Details regarding the older, non-standard 64-bit format were
19577 determined empirically by examining 64-bit ELF files produced by
19578 the SGI toolchain on an IRIX 6.5 machine.
19580 - Kevin, July 16, 2002
19584 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19586 LONGEST length = bfd_get_32 (abfd, buf);
19588 if (length == 0xffffffff)
19590 length = bfd_get_64 (abfd, buf + 4);
19593 else if (length == 0)
19595 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19596 length = bfd_get_64 (abfd, buf);
19607 /* Cover function for read_initial_length.
19608 Returns the length of the object at BUF, and stores the size of the
19609 initial length in *BYTES_READ and stores the size that offsets will be in
19611 If the initial length size is not equivalent to that specified in
19612 CU_HEADER then issue a complaint.
19613 This is useful when reading non-comp-unit headers. */
19616 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19617 const struct comp_unit_head *cu_header,
19618 unsigned int *bytes_read,
19619 unsigned int *offset_size)
19621 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19623 gdb_assert (cu_header->initial_length_size == 4
19624 || cu_header->initial_length_size == 8
19625 || cu_header->initial_length_size == 12);
19627 if (cu_header->initial_length_size != *bytes_read)
19628 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19630 *offset_size = (*bytes_read == 4) ? 4 : 8;
19634 /* Read an offset from the data stream. The size of the offset is
19635 given by cu_header->offset_size. */
19638 read_offset (bfd *abfd, const gdb_byte *buf,
19639 const struct comp_unit_head *cu_header,
19640 unsigned int *bytes_read)
19642 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19644 *bytes_read = cu_header->offset_size;
19648 /* Read an offset from the data stream. */
19651 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19653 LONGEST retval = 0;
19655 switch (offset_size)
19658 retval = bfd_get_32 (abfd, buf);
19661 retval = bfd_get_64 (abfd, buf);
19664 internal_error (__FILE__, __LINE__,
19665 _("read_offset_1: bad switch [in module %s]"),
19666 bfd_get_filename (abfd));
19672 static const gdb_byte *
19673 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19675 /* If the size of a host char is 8 bits, we can return a pointer
19676 to the buffer, otherwise we have to copy the data to a buffer
19677 allocated on the temporary obstack. */
19678 gdb_assert (HOST_CHAR_BIT == 8);
19682 static const char *
19683 read_direct_string (bfd *abfd, const gdb_byte *buf,
19684 unsigned int *bytes_read_ptr)
19686 /* If the size of a host char is 8 bits, we can return a pointer
19687 to the string, otherwise we have to copy the string to a buffer
19688 allocated on the temporary obstack. */
19689 gdb_assert (HOST_CHAR_BIT == 8);
19692 *bytes_read_ptr = 1;
19695 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19696 return (const char *) buf;
19699 /* Return pointer to string at section SECT offset STR_OFFSET with error
19700 reporting strings FORM_NAME and SECT_NAME. */
19702 static const char *
19703 read_indirect_string_at_offset_from (struct objfile *objfile,
19704 bfd *abfd, LONGEST str_offset,
19705 struct dwarf2_section_info *sect,
19706 const char *form_name,
19707 const char *sect_name)
19709 dwarf2_read_section (objfile, sect);
19710 if (sect->buffer == NULL)
19711 error (_("%s used without %s section [in module %s]"),
19712 form_name, sect_name, bfd_get_filename (abfd));
19713 if (str_offset >= sect->size)
19714 error (_("%s pointing outside of %s section [in module %s]"),
19715 form_name, sect_name, bfd_get_filename (abfd));
19716 gdb_assert (HOST_CHAR_BIT == 8);
19717 if (sect->buffer[str_offset] == '\0')
19719 return (const char *) (sect->buffer + str_offset);
19722 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19724 static const char *
19725 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19726 bfd *abfd, LONGEST str_offset)
19728 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19730 &dwarf2_per_objfile->str,
19731 "DW_FORM_strp", ".debug_str");
19734 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19736 static const char *
19737 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19738 bfd *abfd, LONGEST str_offset)
19740 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19742 &dwarf2_per_objfile->line_str,
19743 "DW_FORM_line_strp",
19744 ".debug_line_str");
19747 /* Read a string at offset STR_OFFSET in the .debug_str section from
19748 the .dwz file DWZ. Throw an error if the offset is too large. If
19749 the string consists of a single NUL byte, return NULL; otherwise
19750 return a pointer to the string. */
19752 static const char *
19753 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19754 LONGEST str_offset)
19756 dwarf2_read_section (objfile, &dwz->str);
19758 if (dwz->str.buffer == NULL)
19759 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19760 "section [in module %s]"),
19761 bfd_get_filename (dwz->dwz_bfd));
19762 if (str_offset >= dwz->str.size)
19763 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19764 ".debug_str section [in module %s]"),
19765 bfd_get_filename (dwz->dwz_bfd));
19766 gdb_assert (HOST_CHAR_BIT == 8);
19767 if (dwz->str.buffer[str_offset] == '\0')
19769 return (const char *) (dwz->str.buffer + str_offset);
19772 /* Return pointer to string at .debug_str offset as read from BUF.
19773 BUF is assumed to be in a compilation unit described by CU_HEADER.
19774 Return *BYTES_READ_PTR count of bytes read from BUF. */
19776 static const char *
19777 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19778 const gdb_byte *buf,
19779 const struct comp_unit_head *cu_header,
19780 unsigned int *bytes_read_ptr)
19782 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19784 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19787 /* Return pointer to string at .debug_line_str offset as read from BUF.
19788 BUF is assumed to be in a compilation unit described by CU_HEADER.
19789 Return *BYTES_READ_PTR count of bytes read from BUF. */
19791 static const char *
19792 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19793 bfd *abfd, const gdb_byte *buf,
19794 const struct comp_unit_head *cu_header,
19795 unsigned int *bytes_read_ptr)
19797 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19799 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19804 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19805 unsigned int *bytes_read_ptr)
19808 unsigned int num_read;
19810 unsigned char byte;
19817 byte = bfd_get_8 (abfd, buf);
19820 result |= ((ULONGEST) (byte & 127) << shift);
19821 if ((byte & 128) == 0)
19827 *bytes_read_ptr = num_read;
19832 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19833 unsigned int *bytes_read_ptr)
19836 int shift, num_read;
19837 unsigned char byte;
19844 byte = bfd_get_8 (abfd, buf);
19847 result |= ((ULONGEST) (byte & 127) << shift);
19849 if ((byte & 128) == 0)
19854 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19855 result |= -(((ULONGEST) 1) << shift);
19856 *bytes_read_ptr = num_read;
19860 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19861 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19862 ADDR_SIZE is the size of addresses from the CU header. */
19865 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19866 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19868 struct objfile *objfile = dwarf2_per_objfile->objfile;
19869 bfd *abfd = objfile->obfd;
19870 const gdb_byte *info_ptr;
19872 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19873 if (dwarf2_per_objfile->addr.buffer == NULL)
19874 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19875 objfile_name (objfile));
19876 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19877 error (_("DW_FORM_addr_index pointing outside of "
19878 ".debug_addr section [in module %s]"),
19879 objfile_name (objfile));
19880 info_ptr = (dwarf2_per_objfile->addr.buffer
19881 + addr_base + addr_index * addr_size);
19882 if (addr_size == 4)
19883 return bfd_get_32 (abfd, info_ptr);
19885 return bfd_get_64 (abfd, info_ptr);
19888 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19891 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19893 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19894 cu->addr_base, cu->header.addr_size);
19897 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19900 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19901 unsigned int *bytes_read)
19903 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19904 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19906 return read_addr_index (cu, addr_index);
19909 /* Data structure to pass results from dwarf2_read_addr_index_reader
19910 back to dwarf2_read_addr_index. */
19912 struct dwarf2_read_addr_index_data
19914 ULONGEST addr_base;
19918 /* die_reader_func for dwarf2_read_addr_index. */
19921 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19922 const gdb_byte *info_ptr,
19923 struct die_info *comp_unit_die,
19927 struct dwarf2_cu *cu = reader->cu;
19928 struct dwarf2_read_addr_index_data *aidata =
19929 (struct dwarf2_read_addr_index_data *) data;
19931 aidata->addr_base = cu->addr_base;
19932 aidata->addr_size = cu->header.addr_size;
19935 /* Given an index in .debug_addr, fetch the value.
19936 NOTE: This can be called during dwarf expression evaluation,
19937 long after the debug information has been read, and thus per_cu->cu
19938 may no longer exist. */
19941 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19942 unsigned int addr_index)
19944 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19945 struct dwarf2_cu *cu = per_cu->cu;
19946 ULONGEST addr_base;
19949 /* We need addr_base and addr_size.
19950 If we don't have PER_CU->cu, we have to get it.
19951 Nasty, but the alternative is storing the needed info in PER_CU,
19952 which at this point doesn't seem justified: it's not clear how frequently
19953 it would get used and it would increase the size of every PER_CU.
19954 Entry points like dwarf2_per_cu_addr_size do a similar thing
19955 so we're not in uncharted territory here.
19956 Alas we need to be a bit more complicated as addr_base is contained
19959 We don't need to read the entire CU(/TU).
19960 We just need the header and top level die.
19962 IWBN to use the aging mechanism to let us lazily later discard the CU.
19963 For now we skip this optimization. */
19967 addr_base = cu->addr_base;
19968 addr_size = cu->header.addr_size;
19972 struct dwarf2_read_addr_index_data aidata;
19974 /* Note: We can't use init_cutu_and_read_dies_simple here,
19975 we need addr_base. */
19976 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19977 dwarf2_read_addr_index_reader, &aidata);
19978 addr_base = aidata.addr_base;
19979 addr_size = aidata.addr_size;
19982 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19986 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19987 This is only used by the Fission support. */
19989 static const char *
19990 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19992 struct dwarf2_cu *cu = reader->cu;
19993 struct dwarf2_per_objfile *dwarf2_per_objfile
19994 = cu->per_cu->dwarf2_per_objfile;
19995 struct objfile *objfile = dwarf2_per_objfile->objfile;
19996 const char *objf_name = objfile_name (objfile);
19997 bfd *abfd = objfile->obfd;
19998 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19999 struct dwarf2_section_info *str_offsets_section =
20000 &reader->dwo_file->sections.str_offsets;
20001 const gdb_byte *info_ptr;
20002 ULONGEST str_offset;
20003 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20005 dwarf2_read_section (objfile, str_section);
20006 dwarf2_read_section (objfile, str_offsets_section);
20007 if (str_section->buffer == NULL)
20008 error (_("%s used without .debug_str.dwo section"
20009 " in CU at offset %s [in module %s]"),
20010 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20011 if (str_offsets_section->buffer == NULL)
20012 error (_("%s used without .debug_str_offsets.dwo section"
20013 " in CU at offset %s [in module %s]"),
20014 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20015 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20016 error (_("%s pointing outside of .debug_str_offsets.dwo"
20017 " section in CU at offset %s [in module %s]"),
20018 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20019 info_ptr = (str_offsets_section->buffer
20020 + str_index * cu->header.offset_size);
20021 if (cu->header.offset_size == 4)
20022 str_offset = bfd_get_32 (abfd, info_ptr);
20024 str_offset = bfd_get_64 (abfd, info_ptr);
20025 if (str_offset >= str_section->size)
20026 error (_("Offset from %s pointing outside of"
20027 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20028 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20029 return (const char *) (str_section->buffer + str_offset);
20032 /* Return the length of an LEB128 number in BUF. */
20035 leb128_size (const gdb_byte *buf)
20037 const gdb_byte *begin = buf;
20043 if ((byte & 128) == 0)
20044 return buf - begin;
20049 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20058 cu->language = language_c;
20061 case DW_LANG_C_plus_plus:
20062 case DW_LANG_C_plus_plus_11:
20063 case DW_LANG_C_plus_plus_14:
20064 cu->language = language_cplus;
20067 cu->language = language_d;
20069 case DW_LANG_Fortran77:
20070 case DW_LANG_Fortran90:
20071 case DW_LANG_Fortran95:
20072 case DW_LANG_Fortran03:
20073 case DW_LANG_Fortran08:
20074 cu->language = language_fortran;
20077 cu->language = language_go;
20079 case DW_LANG_Mips_Assembler:
20080 cu->language = language_asm;
20082 case DW_LANG_Ada83:
20083 case DW_LANG_Ada95:
20084 cu->language = language_ada;
20086 case DW_LANG_Modula2:
20087 cu->language = language_m2;
20089 case DW_LANG_Pascal83:
20090 cu->language = language_pascal;
20093 cu->language = language_objc;
20096 case DW_LANG_Rust_old:
20097 cu->language = language_rust;
20099 case DW_LANG_Cobol74:
20100 case DW_LANG_Cobol85:
20102 cu->language = language_minimal;
20105 cu->language_defn = language_def (cu->language);
20108 /* Return the named attribute or NULL if not there. */
20110 static struct attribute *
20111 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20116 struct attribute *spec = NULL;
20118 for (i = 0; i < die->num_attrs; ++i)
20120 if (die->attrs[i].name == name)
20121 return &die->attrs[i];
20122 if (die->attrs[i].name == DW_AT_specification
20123 || die->attrs[i].name == DW_AT_abstract_origin)
20124 spec = &die->attrs[i];
20130 die = follow_die_ref (die, spec, &cu);
20136 /* Return the named attribute or NULL if not there,
20137 but do not follow DW_AT_specification, etc.
20138 This is for use in contexts where we're reading .debug_types dies.
20139 Following DW_AT_specification, DW_AT_abstract_origin will take us
20140 back up the chain, and we want to go down. */
20142 static struct attribute *
20143 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20147 for (i = 0; i < die->num_attrs; ++i)
20148 if (die->attrs[i].name == name)
20149 return &die->attrs[i];
20154 /* Return the string associated with a string-typed attribute, or NULL if it
20155 is either not found or is of an incorrect type. */
20157 static const char *
20158 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20160 struct attribute *attr;
20161 const char *str = NULL;
20163 attr = dwarf2_attr (die, name, cu);
20167 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20168 || attr->form == DW_FORM_string
20169 || attr->form == DW_FORM_strx
20170 || attr->form == DW_FORM_GNU_str_index
20171 || attr->form == DW_FORM_GNU_strp_alt)
20172 str = DW_STRING (attr);
20174 complaint (_("string type expected for attribute %s for "
20175 "DIE at %s in module %s"),
20176 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20177 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20183 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20184 and holds a non-zero value. This function should only be used for
20185 DW_FORM_flag or DW_FORM_flag_present attributes. */
20188 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20190 struct attribute *attr = dwarf2_attr (die, name, cu);
20192 return (attr && DW_UNSND (attr));
20196 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20198 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20199 which value is non-zero. However, we have to be careful with
20200 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20201 (via dwarf2_flag_true_p) follows this attribute. So we may
20202 end up accidently finding a declaration attribute that belongs
20203 to a different DIE referenced by the specification attribute,
20204 even though the given DIE does not have a declaration attribute. */
20205 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20206 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20209 /* Return the die giving the specification for DIE, if there is
20210 one. *SPEC_CU is the CU containing DIE on input, and the CU
20211 containing the return value on output. If there is no
20212 specification, but there is an abstract origin, that is
20215 static struct die_info *
20216 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20218 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20221 if (spec_attr == NULL)
20222 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20224 if (spec_attr == NULL)
20227 return follow_die_ref (die, spec_attr, spec_cu);
20230 /* Stub for free_line_header to match void * callback types. */
20233 free_line_header_voidp (void *arg)
20235 struct line_header *lh = (struct line_header *) arg;
20241 line_header::add_include_dir (const char *include_dir)
20243 if (dwarf_line_debug >= 2)
20244 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20245 include_dirs.size () + 1, include_dir);
20247 include_dirs.push_back (include_dir);
20251 line_header::add_file_name (const char *name,
20253 unsigned int mod_time,
20254 unsigned int length)
20256 if (dwarf_line_debug >= 2)
20257 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20258 (unsigned) file_names.size () + 1, name);
20260 file_names.emplace_back (name, d_index, mod_time, length);
20263 /* A convenience function to find the proper .debug_line section for a CU. */
20265 static struct dwarf2_section_info *
20266 get_debug_line_section (struct dwarf2_cu *cu)
20268 struct dwarf2_section_info *section;
20269 struct dwarf2_per_objfile *dwarf2_per_objfile
20270 = cu->per_cu->dwarf2_per_objfile;
20272 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20274 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20275 section = &cu->dwo_unit->dwo_file->sections.line;
20276 else if (cu->per_cu->is_dwz)
20278 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20280 section = &dwz->line;
20283 section = &dwarf2_per_objfile->line;
20288 /* Read directory or file name entry format, starting with byte of
20289 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20290 entries count and the entries themselves in the described entry
20294 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20295 bfd *abfd, const gdb_byte **bufp,
20296 struct line_header *lh,
20297 const struct comp_unit_head *cu_header,
20298 void (*callback) (struct line_header *lh,
20301 unsigned int mod_time,
20302 unsigned int length))
20304 gdb_byte format_count, formati;
20305 ULONGEST data_count, datai;
20306 const gdb_byte *buf = *bufp;
20307 const gdb_byte *format_header_data;
20308 unsigned int bytes_read;
20310 format_count = read_1_byte (abfd, buf);
20312 format_header_data = buf;
20313 for (formati = 0; formati < format_count; formati++)
20315 read_unsigned_leb128 (abfd, buf, &bytes_read);
20317 read_unsigned_leb128 (abfd, buf, &bytes_read);
20321 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20323 for (datai = 0; datai < data_count; datai++)
20325 const gdb_byte *format = format_header_data;
20326 struct file_entry fe;
20328 for (formati = 0; formati < format_count; formati++)
20330 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20331 format += bytes_read;
20333 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20334 format += bytes_read;
20336 gdb::optional<const char *> string;
20337 gdb::optional<unsigned int> uint;
20341 case DW_FORM_string:
20342 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20346 case DW_FORM_line_strp:
20347 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20354 case DW_FORM_data1:
20355 uint.emplace (read_1_byte (abfd, buf));
20359 case DW_FORM_data2:
20360 uint.emplace (read_2_bytes (abfd, buf));
20364 case DW_FORM_data4:
20365 uint.emplace (read_4_bytes (abfd, buf));
20369 case DW_FORM_data8:
20370 uint.emplace (read_8_bytes (abfd, buf));
20374 case DW_FORM_udata:
20375 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20379 case DW_FORM_block:
20380 /* It is valid only for DW_LNCT_timestamp which is ignored by
20385 switch (content_type)
20388 if (string.has_value ())
20391 case DW_LNCT_directory_index:
20392 if (uint.has_value ())
20393 fe.d_index = (dir_index) *uint;
20395 case DW_LNCT_timestamp:
20396 if (uint.has_value ())
20397 fe.mod_time = *uint;
20400 if (uint.has_value ())
20406 complaint (_("Unknown format content type %s"),
20407 pulongest (content_type));
20411 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20417 /* Read the statement program header starting at OFFSET in
20418 .debug_line, or .debug_line.dwo. Return a pointer
20419 to a struct line_header, allocated using xmalloc.
20420 Returns NULL if there is a problem reading the header, e.g., if it
20421 has a version we don't understand.
20423 NOTE: the strings in the include directory and file name tables of
20424 the returned object point into the dwarf line section buffer,
20425 and must not be freed. */
20427 static line_header_up
20428 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20430 const gdb_byte *line_ptr;
20431 unsigned int bytes_read, offset_size;
20433 const char *cur_dir, *cur_file;
20434 struct dwarf2_section_info *section;
20436 struct dwarf2_per_objfile *dwarf2_per_objfile
20437 = cu->per_cu->dwarf2_per_objfile;
20439 section = get_debug_line_section (cu);
20440 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20441 if (section->buffer == NULL)
20443 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20444 complaint (_("missing .debug_line.dwo section"));
20446 complaint (_("missing .debug_line section"));
20450 /* We can't do this until we know the section is non-empty.
20451 Only then do we know we have such a section. */
20452 abfd = get_section_bfd_owner (section);
20454 /* Make sure that at least there's room for the total_length field.
20455 That could be 12 bytes long, but we're just going to fudge that. */
20456 if (to_underlying (sect_off) + 4 >= section->size)
20458 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20462 line_header_up lh (new line_header ());
20464 lh->sect_off = sect_off;
20465 lh->offset_in_dwz = cu->per_cu->is_dwz;
20467 line_ptr = section->buffer + to_underlying (sect_off);
20469 /* Read in the header. */
20471 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20472 &bytes_read, &offset_size);
20473 line_ptr += bytes_read;
20474 if (line_ptr + lh->total_length > (section->buffer + section->size))
20476 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20479 lh->statement_program_end = line_ptr + lh->total_length;
20480 lh->version = read_2_bytes (abfd, line_ptr);
20482 if (lh->version > 5)
20484 /* This is a version we don't understand. The format could have
20485 changed in ways we don't handle properly so just punt. */
20486 complaint (_("unsupported version in .debug_line section"));
20489 if (lh->version >= 5)
20491 gdb_byte segment_selector_size;
20493 /* Skip address size. */
20494 read_1_byte (abfd, line_ptr);
20497 segment_selector_size = read_1_byte (abfd, line_ptr);
20499 if (segment_selector_size != 0)
20501 complaint (_("unsupported segment selector size %u "
20502 "in .debug_line section"),
20503 segment_selector_size);
20507 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20508 line_ptr += offset_size;
20509 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20511 if (lh->version >= 4)
20513 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20517 lh->maximum_ops_per_instruction = 1;
20519 if (lh->maximum_ops_per_instruction == 0)
20521 lh->maximum_ops_per_instruction = 1;
20522 complaint (_("invalid maximum_ops_per_instruction "
20523 "in `.debug_line' section"));
20526 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20528 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20530 lh->line_range = read_1_byte (abfd, line_ptr);
20532 lh->opcode_base = read_1_byte (abfd, line_ptr);
20534 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20536 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20537 for (i = 1; i < lh->opcode_base; ++i)
20539 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20543 if (lh->version >= 5)
20545 /* Read directory table. */
20546 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20548 [] (struct line_header *header, const char *name,
20549 dir_index d_index, unsigned int mod_time,
20550 unsigned int length)
20552 header->add_include_dir (name);
20555 /* Read file name table. */
20556 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20558 [] (struct line_header *header, const char *name,
20559 dir_index d_index, unsigned int mod_time,
20560 unsigned int length)
20562 header->add_file_name (name, d_index, mod_time, length);
20567 /* Read directory table. */
20568 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20570 line_ptr += bytes_read;
20571 lh->add_include_dir (cur_dir);
20573 line_ptr += bytes_read;
20575 /* Read file name table. */
20576 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20578 unsigned int mod_time, length;
20581 line_ptr += bytes_read;
20582 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20583 line_ptr += bytes_read;
20584 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20585 line_ptr += bytes_read;
20586 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20587 line_ptr += bytes_read;
20589 lh->add_file_name (cur_file, d_index, mod_time, length);
20591 line_ptr += bytes_read;
20593 lh->statement_program_start = line_ptr;
20595 if (line_ptr > (section->buffer + section->size))
20596 complaint (_("line number info header doesn't "
20597 "fit in `.debug_line' section"));
20602 /* Subroutine of dwarf_decode_lines to simplify it.
20603 Return the file name of the psymtab for included file FILE_INDEX
20604 in line header LH of PST.
20605 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20606 If space for the result is malloc'd, *NAME_HOLDER will be set.
20607 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20609 static const char *
20610 psymtab_include_file_name (const struct line_header *lh, int file_index,
20611 const struct partial_symtab *pst,
20612 const char *comp_dir,
20613 gdb::unique_xmalloc_ptr<char> *name_holder)
20615 const file_entry &fe = lh->file_names[file_index];
20616 const char *include_name = fe.name;
20617 const char *include_name_to_compare = include_name;
20618 const char *pst_filename;
20621 const char *dir_name = fe.include_dir (lh);
20623 gdb::unique_xmalloc_ptr<char> hold_compare;
20624 if (!IS_ABSOLUTE_PATH (include_name)
20625 && (dir_name != NULL || comp_dir != NULL))
20627 /* Avoid creating a duplicate psymtab for PST.
20628 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20629 Before we do the comparison, however, we need to account
20630 for DIR_NAME and COMP_DIR.
20631 First prepend dir_name (if non-NULL). If we still don't
20632 have an absolute path prepend comp_dir (if non-NULL).
20633 However, the directory we record in the include-file's
20634 psymtab does not contain COMP_DIR (to match the
20635 corresponding symtab(s)).
20640 bash$ gcc -g ./hello.c
20641 include_name = "hello.c"
20643 DW_AT_comp_dir = comp_dir = "/tmp"
20644 DW_AT_name = "./hello.c"
20648 if (dir_name != NULL)
20650 name_holder->reset (concat (dir_name, SLASH_STRING,
20651 include_name, (char *) NULL));
20652 include_name = name_holder->get ();
20653 include_name_to_compare = include_name;
20655 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20657 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20658 include_name, (char *) NULL));
20659 include_name_to_compare = hold_compare.get ();
20663 pst_filename = pst->filename;
20664 gdb::unique_xmalloc_ptr<char> copied_name;
20665 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20667 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20668 pst_filename, (char *) NULL));
20669 pst_filename = copied_name.get ();
20672 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20676 return include_name;
20679 /* State machine to track the state of the line number program. */
20681 class lnp_state_machine
20684 /* Initialize a machine state for the start of a line number
20686 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20687 bool record_lines_p);
20689 file_entry *current_file ()
20691 /* lh->file_names is 0-based, but the file name numbers in the
20692 statement program are 1-based. */
20693 return m_line_header->file_name_at (m_file);
20696 /* Record the line in the state machine. END_SEQUENCE is true if
20697 we're processing the end of a sequence. */
20698 void record_line (bool end_sequence);
20700 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20701 nop-out rest of the lines in this sequence. */
20702 void check_line_address (struct dwarf2_cu *cu,
20703 const gdb_byte *line_ptr,
20704 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20706 void handle_set_discriminator (unsigned int discriminator)
20708 m_discriminator = discriminator;
20709 m_line_has_non_zero_discriminator |= discriminator != 0;
20712 /* Handle DW_LNE_set_address. */
20713 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20716 address += baseaddr;
20717 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20720 /* Handle DW_LNS_advance_pc. */
20721 void handle_advance_pc (CORE_ADDR adjust);
20723 /* Handle a special opcode. */
20724 void handle_special_opcode (unsigned char op_code);
20726 /* Handle DW_LNS_advance_line. */
20727 void handle_advance_line (int line_delta)
20729 advance_line (line_delta);
20732 /* Handle DW_LNS_set_file. */
20733 void handle_set_file (file_name_index file);
20735 /* Handle DW_LNS_negate_stmt. */
20736 void handle_negate_stmt ()
20738 m_is_stmt = !m_is_stmt;
20741 /* Handle DW_LNS_const_add_pc. */
20742 void handle_const_add_pc ();
20744 /* Handle DW_LNS_fixed_advance_pc. */
20745 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20747 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20751 /* Handle DW_LNS_copy. */
20752 void handle_copy ()
20754 record_line (false);
20755 m_discriminator = 0;
20758 /* Handle DW_LNE_end_sequence. */
20759 void handle_end_sequence ()
20761 m_currently_recording_lines = true;
20765 /* Advance the line by LINE_DELTA. */
20766 void advance_line (int line_delta)
20768 m_line += line_delta;
20770 if (line_delta != 0)
20771 m_line_has_non_zero_discriminator = m_discriminator != 0;
20774 struct dwarf2_cu *m_cu;
20776 gdbarch *m_gdbarch;
20778 /* True if we're recording lines.
20779 Otherwise we're building partial symtabs and are just interested in
20780 finding include files mentioned by the line number program. */
20781 bool m_record_lines_p;
20783 /* The line number header. */
20784 line_header *m_line_header;
20786 /* These are part of the standard DWARF line number state machine,
20787 and initialized according to the DWARF spec. */
20789 unsigned char m_op_index = 0;
20790 /* The line table index (1-based) of the current file. */
20791 file_name_index m_file = (file_name_index) 1;
20792 unsigned int m_line = 1;
20794 /* These are initialized in the constructor. */
20796 CORE_ADDR m_address;
20798 unsigned int m_discriminator;
20800 /* Additional bits of state we need to track. */
20802 /* The last file that we called dwarf2_start_subfile for.
20803 This is only used for TLLs. */
20804 unsigned int m_last_file = 0;
20805 /* The last file a line number was recorded for. */
20806 struct subfile *m_last_subfile = NULL;
20808 /* When true, record the lines we decode. */
20809 bool m_currently_recording_lines = false;
20811 /* The last line number that was recorded, used to coalesce
20812 consecutive entries for the same line. This can happen, for
20813 example, when discriminators are present. PR 17276. */
20814 unsigned int m_last_line = 0;
20815 bool m_line_has_non_zero_discriminator = false;
20819 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20821 CORE_ADDR addr_adj = (((m_op_index + adjust)
20822 / m_line_header->maximum_ops_per_instruction)
20823 * m_line_header->minimum_instruction_length);
20824 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20825 m_op_index = ((m_op_index + adjust)
20826 % m_line_header->maximum_ops_per_instruction);
20830 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20832 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20833 CORE_ADDR addr_adj = (((m_op_index
20834 + (adj_opcode / m_line_header->line_range))
20835 / m_line_header->maximum_ops_per_instruction)
20836 * m_line_header->minimum_instruction_length);
20837 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20838 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20839 % m_line_header->maximum_ops_per_instruction);
20841 int line_delta = (m_line_header->line_base
20842 + (adj_opcode % m_line_header->line_range));
20843 advance_line (line_delta);
20844 record_line (false);
20845 m_discriminator = 0;
20849 lnp_state_machine::handle_set_file (file_name_index file)
20853 const file_entry *fe = current_file ();
20855 dwarf2_debug_line_missing_file_complaint ();
20856 else if (m_record_lines_p)
20858 const char *dir = fe->include_dir (m_line_header);
20860 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20861 m_line_has_non_zero_discriminator = m_discriminator != 0;
20862 dwarf2_start_subfile (m_cu, fe->name, dir);
20867 lnp_state_machine::handle_const_add_pc ()
20870 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20873 = (((m_op_index + adjust)
20874 / m_line_header->maximum_ops_per_instruction)
20875 * m_line_header->minimum_instruction_length);
20877 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20878 m_op_index = ((m_op_index + adjust)
20879 % m_line_header->maximum_ops_per_instruction);
20882 /* Return non-zero if we should add LINE to the line number table.
20883 LINE is the line to add, LAST_LINE is the last line that was added,
20884 LAST_SUBFILE is the subfile for LAST_LINE.
20885 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20886 had a non-zero discriminator.
20888 We have to be careful in the presence of discriminators.
20889 E.g., for this line:
20891 for (i = 0; i < 100000; i++);
20893 clang can emit four line number entries for that one line,
20894 each with a different discriminator.
20895 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20897 However, we want gdb to coalesce all four entries into one.
20898 Otherwise the user could stepi into the middle of the line and
20899 gdb would get confused about whether the pc really was in the
20900 middle of the line.
20902 Things are further complicated by the fact that two consecutive
20903 line number entries for the same line is a heuristic used by gcc
20904 to denote the end of the prologue. So we can't just discard duplicate
20905 entries, we have to be selective about it. The heuristic we use is
20906 that we only collapse consecutive entries for the same line if at least
20907 one of those entries has a non-zero discriminator. PR 17276.
20909 Note: Addresses in the line number state machine can never go backwards
20910 within one sequence, thus this coalescing is ok. */
20913 dwarf_record_line_p (struct dwarf2_cu *cu,
20914 unsigned int line, unsigned int last_line,
20915 int line_has_non_zero_discriminator,
20916 struct subfile *last_subfile)
20918 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20920 if (line != last_line)
20922 /* Same line for the same file that we've seen already.
20923 As a last check, for pr 17276, only record the line if the line
20924 has never had a non-zero discriminator. */
20925 if (!line_has_non_zero_discriminator)
20930 /* Use the CU's builder to record line number LINE beginning at
20931 address ADDRESS in the line table of subfile SUBFILE. */
20934 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20935 unsigned int line, CORE_ADDR address,
20936 struct dwarf2_cu *cu)
20938 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20940 if (dwarf_line_debug)
20942 fprintf_unfiltered (gdb_stdlog,
20943 "Recording line %u, file %s, address %s\n",
20944 line, lbasename (subfile->name),
20945 paddress (gdbarch, address));
20949 cu->get_builder ()->record_line (subfile, line, addr);
20952 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20953 Mark the end of a set of line number records.
20954 The arguments are the same as for dwarf_record_line_1.
20955 If SUBFILE is NULL the request is ignored. */
20958 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20959 CORE_ADDR address, struct dwarf2_cu *cu)
20961 if (subfile == NULL)
20964 if (dwarf_line_debug)
20966 fprintf_unfiltered (gdb_stdlog,
20967 "Finishing current line, file %s, address %s\n",
20968 lbasename (subfile->name),
20969 paddress (gdbarch, address));
20972 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20976 lnp_state_machine::record_line (bool end_sequence)
20978 if (dwarf_line_debug)
20980 fprintf_unfiltered (gdb_stdlog,
20981 "Processing actual line %u: file %u,"
20982 " address %s, is_stmt %u, discrim %u\n",
20983 m_line, to_underlying (m_file),
20984 paddress (m_gdbarch, m_address),
20985 m_is_stmt, m_discriminator);
20988 file_entry *fe = current_file ();
20991 dwarf2_debug_line_missing_file_complaint ();
20992 /* For now we ignore lines not starting on an instruction boundary.
20993 But not when processing end_sequence for compatibility with the
20994 previous version of the code. */
20995 else if (m_op_index == 0 || end_sequence)
20997 fe->included_p = 1;
20998 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
21000 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21003 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21004 m_currently_recording_lines ? m_cu : nullptr);
21009 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21010 m_line_has_non_zero_discriminator,
21013 buildsym_compunit *builder = m_cu->get_builder ();
21014 dwarf_record_line_1 (m_gdbarch,
21015 builder->get_current_subfile (),
21017 m_currently_recording_lines ? m_cu : nullptr);
21019 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21020 m_last_line = m_line;
21026 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21027 line_header *lh, bool record_lines_p)
21031 m_record_lines_p = record_lines_p;
21032 m_line_header = lh;
21034 m_currently_recording_lines = true;
21036 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21037 was a line entry for it so that the backend has a chance to adjust it
21038 and also record it in case it needs it. This is currently used by MIPS
21039 code, cf. `mips_adjust_dwarf2_line'. */
21040 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21041 m_is_stmt = lh->default_is_stmt;
21042 m_discriminator = 0;
21046 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21047 const gdb_byte *line_ptr,
21048 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21050 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21051 the pc range of the CU. However, we restrict the test to only ADDRESS
21052 values of zero to preserve GDB's previous behaviour which is to handle
21053 the specific case of a function being GC'd by the linker. */
21055 if (address == 0 && address < unrelocated_lowpc)
21057 /* This line table is for a function which has been
21058 GCd by the linker. Ignore it. PR gdb/12528 */
21060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21061 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21063 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21064 line_offset, objfile_name (objfile));
21065 m_currently_recording_lines = false;
21066 /* Note: m_currently_recording_lines is left as false until we see
21067 DW_LNE_end_sequence. */
21071 /* Subroutine of dwarf_decode_lines to simplify it.
21072 Process the line number information in LH.
21073 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21074 program in order to set included_p for every referenced header. */
21077 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21078 const int decode_for_pst_p, CORE_ADDR lowpc)
21080 const gdb_byte *line_ptr, *extended_end;
21081 const gdb_byte *line_end;
21082 unsigned int bytes_read, extended_len;
21083 unsigned char op_code, extended_op;
21084 CORE_ADDR baseaddr;
21085 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21086 bfd *abfd = objfile->obfd;
21087 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21088 /* True if we're recording line info (as opposed to building partial
21089 symtabs and just interested in finding include files mentioned by
21090 the line number program). */
21091 bool record_lines_p = !decode_for_pst_p;
21093 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21095 line_ptr = lh->statement_program_start;
21096 line_end = lh->statement_program_end;
21098 /* Read the statement sequences until there's nothing left. */
21099 while (line_ptr < line_end)
21101 /* The DWARF line number program state machine. Reset the state
21102 machine at the start of each sequence. */
21103 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21104 bool end_sequence = false;
21106 if (record_lines_p)
21108 /* Start a subfile for the current file of the state
21110 const file_entry *fe = state_machine.current_file ();
21113 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21116 /* Decode the table. */
21117 while (line_ptr < line_end && !end_sequence)
21119 op_code = read_1_byte (abfd, line_ptr);
21122 if (op_code >= lh->opcode_base)
21124 /* Special opcode. */
21125 state_machine.handle_special_opcode (op_code);
21127 else switch (op_code)
21129 case DW_LNS_extended_op:
21130 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21132 line_ptr += bytes_read;
21133 extended_end = line_ptr + extended_len;
21134 extended_op = read_1_byte (abfd, line_ptr);
21136 switch (extended_op)
21138 case DW_LNE_end_sequence:
21139 state_machine.handle_end_sequence ();
21140 end_sequence = true;
21142 case DW_LNE_set_address:
21145 = read_address (abfd, line_ptr, cu, &bytes_read);
21146 line_ptr += bytes_read;
21148 state_machine.check_line_address (cu, line_ptr,
21149 lowpc - baseaddr, address);
21150 state_machine.handle_set_address (baseaddr, address);
21153 case DW_LNE_define_file:
21155 const char *cur_file;
21156 unsigned int mod_time, length;
21159 cur_file = read_direct_string (abfd, line_ptr,
21161 line_ptr += bytes_read;
21162 dindex = (dir_index)
21163 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21164 line_ptr += bytes_read;
21166 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21167 line_ptr += bytes_read;
21169 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21170 line_ptr += bytes_read;
21171 lh->add_file_name (cur_file, dindex, mod_time, length);
21174 case DW_LNE_set_discriminator:
21176 /* The discriminator is not interesting to the
21177 debugger; just ignore it. We still need to
21178 check its value though:
21179 if there are consecutive entries for the same
21180 (non-prologue) line we want to coalesce them.
21183 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21184 line_ptr += bytes_read;
21186 state_machine.handle_set_discriminator (discr);
21190 complaint (_("mangled .debug_line section"));
21193 /* Make sure that we parsed the extended op correctly. If e.g.
21194 we expected a different address size than the producer used,
21195 we may have read the wrong number of bytes. */
21196 if (line_ptr != extended_end)
21198 complaint (_("mangled .debug_line section"));
21203 state_machine.handle_copy ();
21205 case DW_LNS_advance_pc:
21208 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21209 line_ptr += bytes_read;
21211 state_machine.handle_advance_pc (adjust);
21214 case DW_LNS_advance_line:
21217 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21218 line_ptr += bytes_read;
21220 state_machine.handle_advance_line (line_delta);
21223 case DW_LNS_set_file:
21225 file_name_index file
21226 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21228 line_ptr += bytes_read;
21230 state_machine.handle_set_file (file);
21233 case DW_LNS_set_column:
21234 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21235 line_ptr += bytes_read;
21237 case DW_LNS_negate_stmt:
21238 state_machine.handle_negate_stmt ();
21240 case DW_LNS_set_basic_block:
21242 /* Add to the address register of the state machine the
21243 address increment value corresponding to special opcode
21244 255. I.e., this value is scaled by the minimum
21245 instruction length since special opcode 255 would have
21246 scaled the increment. */
21247 case DW_LNS_const_add_pc:
21248 state_machine.handle_const_add_pc ();
21250 case DW_LNS_fixed_advance_pc:
21252 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21255 state_machine.handle_fixed_advance_pc (addr_adj);
21260 /* Unknown standard opcode, ignore it. */
21263 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21265 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21266 line_ptr += bytes_read;
21273 dwarf2_debug_line_missing_end_sequence_complaint ();
21275 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21276 in which case we still finish recording the last line). */
21277 state_machine.record_line (true);
21281 /* Decode the Line Number Program (LNP) for the given line_header
21282 structure and CU. The actual information extracted and the type
21283 of structures created from the LNP depends on the value of PST.
21285 1. If PST is NULL, then this procedure uses the data from the program
21286 to create all necessary symbol tables, and their linetables.
21288 2. If PST is not NULL, this procedure reads the program to determine
21289 the list of files included by the unit represented by PST, and
21290 builds all the associated partial symbol tables.
21292 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21293 It is used for relative paths in the line table.
21294 NOTE: When processing partial symtabs (pst != NULL),
21295 comp_dir == pst->dirname.
21297 NOTE: It is important that psymtabs have the same file name (via strcmp)
21298 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21299 symtab we don't use it in the name of the psymtabs we create.
21300 E.g. expand_line_sal requires this when finding psymtabs to expand.
21301 A good testcase for this is mb-inline.exp.
21303 LOWPC is the lowest address in CU (or 0 if not known).
21305 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21306 for its PC<->lines mapping information. Otherwise only the filename
21307 table is read in. */
21310 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21311 struct dwarf2_cu *cu, struct partial_symtab *pst,
21312 CORE_ADDR lowpc, int decode_mapping)
21314 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21315 const int decode_for_pst_p = (pst != NULL);
21317 if (decode_mapping)
21318 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21320 if (decode_for_pst_p)
21324 /* Now that we're done scanning the Line Header Program, we can
21325 create the psymtab of each included file. */
21326 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21327 if (lh->file_names[file_index].included_p == 1)
21329 gdb::unique_xmalloc_ptr<char> name_holder;
21330 const char *include_name =
21331 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21333 if (include_name != NULL)
21334 dwarf2_create_include_psymtab (include_name, pst, objfile);
21339 /* Make sure a symtab is created for every file, even files
21340 which contain only variables (i.e. no code with associated
21342 buildsym_compunit *builder = cu->get_builder ();
21343 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21346 for (i = 0; i < lh->file_names.size (); i++)
21348 file_entry &fe = lh->file_names[i];
21350 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21352 if (builder->get_current_subfile ()->symtab == NULL)
21354 builder->get_current_subfile ()->symtab
21355 = allocate_symtab (cust,
21356 builder->get_current_subfile ()->name);
21358 fe.symtab = builder->get_current_subfile ()->symtab;
21363 /* Start a subfile for DWARF. FILENAME is the name of the file and
21364 DIRNAME the name of the source directory which contains FILENAME
21365 or NULL if not known.
21366 This routine tries to keep line numbers from identical absolute and
21367 relative file names in a common subfile.
21369 Using the `list' example from the GDB testsuite, which resides in
21370 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21371 of /srcdir/list0.c yields the following debugging information for list0.c:
21373 DW_AT_name: /srcdir/list0.c
21374 DW_AT_comp_dir: /compdir
21375 files.files[0].name: list0.h
21376 files.files[0].dir: /srcdir
21377 files.files[1].name: list0.c
21378 files.files[1].dir: /srcdir
21380 The line number information for list0.c has to end up in a single
21381 subfile, so that `break /srcdir/list0.c:1' works as expected.
21382 start_subfile will ensure that this happens provided that we pass the
21383 concatenation of files.files[1].dir and files.files[1].name as the
21387 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21388 const char *dirname)
21392 /* In order not to lose the line information directory,
21393 we concatenate it to the filename when it makes sense.
21394 Note that the Dwarf3 standard says (speaking of filenames in line
21395 information): ``The directory index is ignored for file names
21396 that represent full path names''. Thus ignoring dirname in the
21397 `else' branch below isn't an issue. */
21399 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21401 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21405 cu->get_builder ()->start_subfile (filename);
21411 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21412 buildsym_compunit constructor. */
21414 struct compunit_symtab *
21415 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21418 gdb_assert (m_builder == nullptr);
21420 m_builder.reset (new struct buildsym_compunit
21421 (per_cu->dwarf2_per_objfile->objfile,
21422 name, comp_dir, language, low_pc));
21424 list_in_scope = get_builder ()->get_file_symbols ();
21426 get_builder ()->record_debugformat ("DWARF 2");
21427 get_builder ()->record_producer (producer);
21429 processing_has_namespace_info = false;
21431 return get_builder ()->get_compunit_symtab ();
21435 var_decode_location (struct attribute *attr, struct symbol *sym,
21436 struct dwarf2_cu *cu)
21438 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21439 struct comp_unit_head *cu_header = &cu->header;
21441 /* NOTE drow/2003-01-30: There used to be a comment and some special
21442 code here to turn a symbol with DW_AT_external and a
21443 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21444 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21445 with some versions of binutils) where shared libraries could have
21446 relocations against symbols in their debug information - the
21447 minimal symbol would have the right address, but the debug info
21448 would not. It's no longer necessary, because we will explicitly
21449 apply relocations when we read in the debug information now. */
21451 /* A DW_AT_location attribute with no contents indicates that a
21452 variable has been optimized away. */
21453 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21455 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21459 /* Handle one degenerate form of location expression specially, to
21460 preserve GDB's previous behavior when section offsets are
21461 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21462 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21464 if (attr_form_is_block (attr)
21465 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21466 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21467 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21468 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21469 && (DW_BLOCK (attr)->size
21470 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21472 unsigned int dummy;
21474 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21475 SYMBOL_VALUE_ADDRESS (sym) =
21476 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21478 SYMBOL_VALUE_ADDRESS (sym) =
21479 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21480 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21481 fixup_symbol_section (sym, objfile);
21482 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21483 SYMBOL_SECTION (sym));
21487 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21488 expression evaluator, and use LOC_COMPUTED only when necessary
21489 (i.e. when the value of a register or memory location is
21490 referenced, or a thread-local block, etc.). Then again, it might
21491 not be worthwhile. I'm assuming that it isn't unless performance
21492 or memory numbers show me otherwise. */
21494 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21496 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21497 cu->has_loclist = true;
21500 /* Given a pointer to a DWARF information entry, figure out if we need
21501 to make a symbol table entry for it, and if so, create a new entry
21502 and return a pointer to it.
21503 If TYPE is NULL, determine symbol type from the die, otherwise
21504 used the passed type.
21505 If SPACE is not NULL, use it to hold the new symbol. If it is
21506 NULL, allocate a new symbol on the objfile's obstack. */
21508 static struct symbol *
21509 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21510 struct symbol *space)
21512 struct dwarf2_per_objfile *dwarf2_per_objfile
21513 = cu->per_cu->dwarf2_per_objfile;
21514 struct objfile *objfile = dwarf2_per_objfile->objfile;
21515 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21516 struct symbol *sym = NULL;
21518 struct attribute *attr = NULL;
21519 struct attribute *attr2 = NULL;
21520 CORE_ADDR baseaddr;
21521 struct pending **list_to_add = NULL;
21523 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21525 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21527 name = dwarf2_name (die, cu);
21530 const char *linkagename;
21531 int suppress_add = 0;
21536 sym = allocate_symbol (objfile);
21537 OBJSTAT (objfile, n_syms++);
21539 /* Cache this symbol's name and the name's demangled form (if any). */
21540 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21541 linkagename = dwarf2_physname (name, die, cu);
21542 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21544 /* Fortran does not have mangling standard and the mangling does differ
21545 between gfortran, iFort etc. */
21546 if (cu->language == language_fortran
21547 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21548 symbol_set_demangled_name (&(sym->ginfo),
21549 dwarf2_full_name (name, die, cu),
21552 /* Default assumptions.
21553 Use the passed type or decode it from the die. */
21554 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21555 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21557 SYMBOL_TYPE (sym) = type;
21559 SYMBOL_TYPE (sym) = die_type (die, cu);
21560 attr = dwarf2_attr (die,
21561 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21565 SYMBOL_LINE (sym) = DW_UNSND (attr);
21568 attr = dwarf2_attr (die,
21569 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21573 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21574 struct file_entry *fe;
21576 if (cu->line_header != NULL)
21577 fe = cu->line_header->file_name_at (file_index);
21582 complaint (_("file index out of range"));
21584 symbol_set_symtab (sym, fe->symtab);
21590 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21595 addr = attr_value_as_address (attr);
21596 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21597 SYMBOL_VALUE_ADDRESS (sym) = addr;
21599 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21600 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21601 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21602 add_symbol_to_list (sym, cu->list_in_scope);
21604 case DW_TAG_subprogram:
21605 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21607 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21608 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21609 if ((attr2 && (DW_UNSND (attr2) != 0))
21610 || cu->language == language_ada)
21612 /* Subprograms marked external are stored as a global symbol.
21613 Ada subprograms, whether marked external or not, are always
21614 stored as a global symbol, because we want to be able to
21615 access them globally. For instance, we want to be able
21616 to break on a nested subprogram without having to
21617 specify the context. */
21618 list_to_add = cu->get_builder ()->get_global_symbols ();
21622 list_to_add = cu->list_in_scope;
21625 case DW_TAG_inlined_subroutine:
21626 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21628 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21629 SYMBOL_INLINED (sym) = 1;
21630 list_to_add = cu->list_in_scope;
21632 case DW_TAG_template_value_param:
21634 /* Fall through. */
21635 case DW_TAG_constant:
21636 case DW_TAG_variable:
21637 case DW_TAG_member:
21638 /* Compilation with minimal debug info may result in
21639 variables with missing type entries. Change the
21640 misleading `void' type to something sensible. */
21641 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21642 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21644 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21645 /* In the case of DW_TAG_member, we should only be called for
21646 static const members. */
21647 if (die->tag == DW_TAG_member)
21649 /* dwarf2_add_field uses die_is_declaration,
21650 so we do the same. */
21651 gdb_assert (die_is_declaration (die, cu));
21656 dwarf2_const_value (attr, sym, cu);
21657 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21660 if (attr2 && (DW_UNSND (attr2) != 0))
21661 list_to_add = cu->get_builder ()->get_global_symbols ();
21663 list_to_add = cu->list_in_scope;
21667 attr = dwarf2_attr (die, DW_AT_location, cu);
21670 var_decode_location (attr, sym, cu);
21671 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21673 /* Fortran explicitly imports any global symbols to the local
21674 scope by DW_TAG_common_block. */
21675 if (cu->language == language_fortran && die->parent
21676 && die->parent->tag == DW_TAG_common_block)
21679 if (SYMBOL_CLASS (sym) == LOC_STATIC
21680 && SYMBOL_VALUE_ADDRESS (sym) == 0
21681 && !dwarf2_per_objfile->has_section_at_zero)
21683 /* When a static variable is eliminated by the linker,
21684 the corresponding debug information is not stripped
21685 out, but the variable address is set to null;
21686 do not add such variables into symbol table. */
21688 else if (attr2 && (DW_UNSND (attr2) != 0))
21690 /* Workaround gfortran PR debug/40040 - it uses
21691 DW_AT_location for variables in -fPIC libraries which may
21692 get overriden by other libraries/executable and get
21693 a different address. Resolve it by the minimal symbol
21694 which may come from inferior's executable using copy
21695 relocation. Make this workaround only for gfortran as for
21696 other compilers GDB cannot guess the minimal symbol
21697 Fortran mangling kind. */
21698 if (cu->language == language_fortran && die->parent
21699 && die->parent->tag == DW_TAG_module
21701 && startswith (cu->producer, "GNU Fortran"))
21702 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21704 /* A variable with DW_AT_external is never static,
21705 but it may be block-scoped. */
21707 = ((cu->list_in_scope
21708 == cu->get_builder ()->get_file_symbols ())
21709 ? cu->get_builder ()->get_global_symbols ()
21710 : cu->list_in_scope);
21713 list_to_add = cu->list_in_scope;
21717 /* We do not know the address of this symbol.
21718 If it is an external symbol and we have type information
21719 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21720 The address of the variable will then be determined from
21721 the minimal symbol table whenever the variable is
21723 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21725 /* Fortran explicitly imports any global symbols to the local
21726 scope by DW_TAG_common_block. */
21727 if (cu->language == language_fortran && die->parent
21728 && die->parent->tag == DW_TAG_common_block)
21730 /* SYMBOL_CLASS doesn't matter here because
21731 read_common_block is going to reset it. */
21733 list_to_add = cu->list_in_scope;
21735 else if (attr2 && (DW_UNSND (attr2) != 0)
21736 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21738 /* A variable with DW_AT_external is never static, but it
21739 may be block-scoped. */
21741 = ((cu->list_in_scope
21742 == cu->get_builder ()->get_file_symbols ())
21743 ? cu->get_builder ()->get_global_symbols ()
21744 : cu->list_in_scope);
21746 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21748 else if (!die_is_declaration (die, cu))
21750 /* Use the default LOC_OPTIMIZED_OUT class. */
21751 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21753 list_to_add = cu->list_in_scope;
21757 case DW_TAG_formal_parameter:
21759 /* If we are inside a function, mark this as an argument. If
21760 not, we might be looking at an argument to an inlined function
21761 when we do not have enough information to show inlined frames;
21762 pretend it's a local variable in that case so that the user can
21764 struct context_stack *curr
21765 = cu->get_builder ()->get_current_context_stack ();
21766 if (curr != nullptr && curr->name != nullptr)
21767 SYMBOL_IS_ARGUMENT (sym) = 1;
21768 attr = dwarf2_attr (die, DW_AT_location, cu);
21771 var_decode_location (attr, sym, cu);
21773 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21776 dwarf2_const_value (attr, sym, cu);
21779 list_to_add = cu->list_in_scope;
21782 case DW_TAG_unspecified_parameters:
21783 /* From varargs functions; gdb doesn't seem to have any
21784 interest in this information, so just ignore it for now.
21787 case DW_TAG_template_type_param:
21789 /* Fall through. */
21790 case DW_TAG_class_type:
21791 case DW_TAG_interface_type:
21792 case DW_TAG_structure_type:
21793 case DW_TAG_union_type:
21794 case DW_TAG_set_type:
21795 case DW_TAG_enumeration_type:
21796 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21797 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21800 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21801 really ever be static objects: otherwise, if you try
21802 to, say, break of a class's method and you're in a file
21803 which doesn't mention that class, it won't work unless
21804 the check for all static symbols in lookup_symbol_aux
21805 saves you. See the OtherFileClass tests in
21806 gdb.c++/namespace.exp. */
21810 buildsym_compunit *builder = cu->get_builder ();
21812 = (cu->list_in_scope == builder->get_file_symbols ()
21813 && cu->language == language_cplus
21814 ? builder->get_global_symbols ()
21815 : cu->list_in_scope);
21817 /* The semantics of C++ state that "struct foo {
21818 ... }" also defines a typedef for "foo". */
21819 if (cu->language == language_cplus
21820 || cu->language == language_ada
21821 || cu->language == language_d
21822 || cu->language == language_rust)
21824 /* The symbol's name is already allocated along
21825 with this objfile, so we don't need to
21826 duplicate it for the type. */
21827 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21828 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21833 case DW_TAG_typedef:
21834 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21836 list_to_add = cu->list_in_scope;
21838 case DW_TAG_base_type:
21839 case DW_TAG_subrange_type:
21840 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21842 list_to_add = cu->list_in_scope;
21844 case DW_TAG_enumerator:
21845 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21848 dwarf2_const_value (attr, sym, cu);
21851 /* NOTE: carlton/2003-11-10: See comment above in the
21852 DW_TAG_class_type, etc. block. */
21855 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21856 && cu->language == language_cplus
21857 ? cu->get_builder ()->get_global_symbols ()
21858 : cu->list_in_scope);
21861 case DW_TAG_imported_declaration:
21862 case DW_TAG_namespace:
21863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21864 list_to_add = cu->get_builder ()->get_global_symbols ();
21866 case DW_TAG_module:
21867 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21868 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21869 list_to_add = cu->get_builder ()->get_global_symbols ();
21871 case DW_TAG_common_block:
21872 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21873 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21874 add_symbol_to_list (sym, cu->list_in_scope);
21877 /* Not a tag we recognize. Hopefully we aren't processing
21878 trash data, but since we must specifically ignore things
21879 we don't recognize, there is nothing else we should do at
21881 complaint (_("unsupported tag: '%s'"),
21882 dwarf_tag_name (die->tag));
21888 sym->hash_next = objfile->template_symbols;
21889 objfile->template_symbols = sym;
21890 list_to_add = NULL;
21893 if (list_to_add != NULL)
21894 add_symbol_to_list (sym, list_to_add);
21896 /* For the benefit of old versions of GCC, check for anonymous
21897 namespaces based on the demangled name. */
21898 if (!cu->processing_has_namespace_info
21899 && cu->language == language_cplus)
21900 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21905 /* Given an attr with a DW_FORM_dataN value in host byte order,
21906 zero-extend it as appropriate for the symbol's type. The DWARF
21907 standard (v4) is not entirely clear about the meaning of using
21908 DW_FORM_dataN for a constant with a signed type, where the type is
21909 wider than the data. The conclusion of a discussion on the DWARF
21910 list was that this is unspecified. We choose to always zero-extend
21911 because that is the interpretation long in use by GCC. */
21914 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21915 struct dwarf2_cu *cu, LONGEST *value, int bits)
21917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21918 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21919 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21920 LONGEST l = DW_UNSND (attr);
21922 if (bits < sizeof (*value) * 8)
21924 l &= ((LONGEST) 1 << bits) - 1;
21927 else if (bits == sizeof (*value) * 8)
21931 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21932 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21939 /* Read a constant value from an attribute. Either set *VALUE, or if
21940 the value does not fit in *VALUE, set *BYTES - either already
21941 allocated on the objfile obstack, or newly allocated on OBSTACK,
21942 or, set *BATON, if we translated the constant to a location
21946 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21947 const char *name, struct obstack *obstack,
21948 struct dwarf2_cu *cu,
21949 LONGEST *value, const gdb_byte **bytes,
21950 struct dwarf2_locexpr_baton **baton)
21952 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21953 struct comp_unit_head *cu_header = &cu->header;
21954 struct dwarf_block *blk;
21955 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21956 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21962 switch (attr->form)
21965 case DW_FORM_addrx:
21966 case DW_FORM_GNU_addr_index:
21970 if (TYPE_LENGTH (type) != cu_header->addr_size)
21971 dwarf2_const_value_length_mismatch_complaint (name,
21972 cu_header->addr_size,
21973 TYPE_LENGTH (type));
21974 /* Symbols of this form are reasonably rare, so we just
21975 piggyback on the existing location code rather than writing
21976 a new implementation of symbol_computed_ops. */
21977 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21978 (*baton)->per_cu = cu->per_cu;
21979 gdb_assert ((*baton)->per_cu);
21981 (*baton)->size = 2 + cu_header->addr_size;
21982 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21983 (*baton)->data = data;
21985 data[0] = DW_OP_addr;
21986 store_unsigned_integer (&data[1], cu_header->addr_size,
21987 byte_order, DW_ADDR (attr));
21988 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21991 case DW_FORM_string:
21994 case DW_FORM_GNU_str_index:
21995 case DW_FORM_GNU_strp_alt:
21996 /* DW_STRING is already allocated on the objfile obstack, point
21998 *bytes = (const gdb_byte *) DW_STRING (attr);
22000 case DW_FORM_block1:
22001 case DW_FORM_block2:
22002 case DW_FORM_block4:
22003 case DW_FORM_block:
22004 case DW_FORM_exprloc:
22005 case DW_FORM_data16:
22006 blk = DW_BLOCK (attr);
22007 if (TYPE_LENGTH (type) != blk->size)
22008 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22009 TYPE_LENGTH (type));
22010 *bytes = blk->data;
22013 /* The DW_AT_const_value attributes are supposed to carry the
22014 symbol's value "represented as it would be on the target
22015 architecture." By the time we get here, it's already been
22016 converted to host endianness, so we just need to sign- or
22017 zero-extend it as appropriate. */
22018 case DW_FORM_data1:
22019 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22021 case DW_FORM_data2:
22022 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22024 case DW_FORM_data4:
22025 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22027 case DW_FORM_data8:
22028 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22031 case DW_FORM_sdata:
22032 case DW_FORM_implicit_const:
22033 *value = DW_SND (attr);
22036 case DW_FORM_udata:
22037 *value = DW_UNSND (attr);
22041 complaint (_("unsupported const value attribute form: '%s'"),
22042 dwarf_form_name (attr->form));
22049 /* Copy constant value from an attribute to a symbol. */
22052 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22053 struct dwarf2_cu *cu)
22055 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22057 const gdb_byte *bytes;
22058 struct dwarf2_locexpr_baton *baton;
22060 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22061 SYMBOL_PRINT_NAME (sym),
22062 &objfile->objfile_obstack, cu,
22063 &value, &bytes, &baton);
22067 SYMBOL_LOCATION_BATON (sym) = baton;
22068 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22070 else if (bytes != NULL)
22072 SYMBOL_VALUE_BYTES (sym) = bytes;
22073 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22077 SYMBOL_VALUE (sym) = value;
22078 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22082 /* Return the type of the die in question using its DW_AT_type attribute. */
22084 static struct type *
22085 die_type (struct die_info *die, struct dwarf2_cu *cu)
22087 struct attribute *type_attr;
22089 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22093 /* A missing DW_AT_type represents a void type. */
22094 return objfile_type (objfile)->builtin_void;
22097 return lookup_die_type (die, type_attr, cu);
22100 /* True iff CU's producer generates GNAT Ada auxiliary information
22101 that allows to find parallel types through that information instead
22102 of having to do expensive parallel lookups by type name. */
22105 need_gnat_info (struct dwarf2_cu *cu)
22107 /* Assume that the Ada compiler was GNAT, which always produces
22108 the auxiliary information. */
22109 return (cu->language == language_ada);
22112 /* Return the auxiliary type of the die in question using its
22113 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22114 attribute is not present. */
22116 static struct type *
22117 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22119 struct attribute *type_attr;
22121 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22125 return lookup_die_type (die, type_attr, cu);
22128 /* If DIE has a descriptive_type attribute, then set the TYPE's
22129 descriptive type accordingly. */
22132 set_descriptive_type (struct type *type, struct die_info *die,
22133 struct dwarf2_cu *cu)
22135 struct type *descriptive_type = die_descriptive_type (die, cu);
22137 if (descriptive_type)
22139 ALLOCATE_GNAT_AUX_TYPE (type);
22140 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22144 /* Return the containing type of the die in question using its
22145 DW_AT_containing_type attribute. */
22147 static struct type *
22148 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22150 struct attribute *type_attr;
22151 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22153 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22155 error (_("Dwarf Error: Problem turning containing type into gdb type "
22156 "[in module %s]"), objfile_name (objfile));
22158 return lookup_die_type (die, type_attr, cu);
22161 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22163 static struct type *
22164 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22166 struct dwarf2_per_objfile *dwarf2_per_objfile
22167 = cu->per_cu->dwarf2_per_objfile;
22168 struct objfile *objfile = dwarf2_per_objfile->objfile;
22171 std::string message
22172 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22173 objfile_name (objfile),
22174 sect_offset_str (cu->header.sect_off),
22175 sect_offset_str (die->sect_off));
22176 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22177 message.c_str (), message.length ());
22179 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22182 /* Look up the type of DIE in CU using its type attribute ATTR.
22183 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22184 DW_AT_containing_type.
22185 If there is no type substitute an error marker. */
22187 static struct type *
22188 lookup_die_type (struct die_info *die, const struct attribute *attr,
22189 struct dwarf2_cu *cu)
22191 struct dwarf2_per_objfile *dwarf2_per_objfile
22192 = cu->per_cu->dwarf2_per_objfile;
22193 struct objfile *objfile = dwarf2_per_objfile->objfile;
22194 struct type *this_type;
22196 gdb_assert (attr->name == DW_AT_type
22197 || attr->name == DW_AT_GNAT_descriptive_type
22198 || attr->name == DW_AT_containing_type);
22200 /* First see if we have it cached. */
22202 if (attr->form == DW_FORM_GNU_ref_alt)
22204 struct dwarf2_per_cu_data *per_cu;
22205 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22207 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22208 dwarf2_per_objfile);
22209 this_type = get_die_type_at_offset (sect_off, per_cu);
22211 else if (attr_form_is_ref (attr))
22213 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22215 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22217 else if (attr->form == DW_FORM_ref_sig8)
22219 ULONGEST signature = DW_SIGNATURE (attr);
22221 return get_signatured_type (die, signature, cu);
22225 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22226 " at %s [in module %s]"),
22227 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22228 objfile_name (objfile));
22229 return build_error_marker_type (cu, die);
22232 /* If not cached we need to read it in. */
22234 if (this_type == NULL)
22236 struct die_info *type_die = NULL;
22237 struct dwarf2_cu *type_cu = cu;
22239 if (attr_form_is_ref (attr))
22240 type_die = follow_die_ref (die, attr, &type_cu);
22241 if (type_die == NULL)
22242 return build_error_marker_type (cu, die);
22243 /* If we find the type now, it's probably because the type came
22244 from an inter-CU reference and the type's CU got expanded before
22246 this_type = read_type_die (type_die, type_cu);
22249 /* If we still don't have a type use an error marker. */
22251 if (this_type == NULL)
22252 return build_error_marker_type (cu, die);
22257 /* Return the type in DIE, CU.
22258 Returns NULL for invalid types.
22260 This first does a lookup in die_type_hash,
22261 and only reads the die in if necessary.
22263 NOTE: This can be called when reading in partial or full symbols. */
22265 static struct type *
22266 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22268 struct type *this_type;
22270 this_type = get_die_type (die, cu);
22274 return read_type_die_1 (die, cu);
22277 /* Read the type in DIE, CU.
22278 Returns NULL for invalid types. */
22280 static struct type *
22281 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22283 struct type *this_type = NULL;
22287 case DW_TAG_class_type:
22288 case DW_TAG_interface_type:
22289 case DW_TAG_structure_type:
22290 case DW_TAG_union_type:
22291 this_type = read_structure_type (die, cu);
22293 case DW_TAG_enumeration_type:
22294 this_type = read_enumeration_type (die, cu);
22296 case DW_TAG_subprogram:
22297 case DW_TAG_subroutine_type:
22298 case DW_TAG_inlined_subroutine:
22299 this_type = read_subroutine_type (die, cu);
22301 case DW_TAG_array_type:
22302 this_type = read_array_type (die, cu);
22304 case DW_TAG_set_type:
22305 this_type = read_set_type (die, cu);
22307 case DW_TAG_pointer_type:
22308 this_type = read_tag_pointer_type (die, cu);
22310 case DW_TAG_ptr_to_member_type:
22311 this_type = read_tag_ptr_to_member_type (die, cu);
22313 case DW_TAG_reference_type:
22314 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22316 case DW_TAG_rvalue_reference_type:
22317 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22319 case DW_TAG_const_type:
22320 this_type = read_tag_const_type (die, cu);
22322 case DW_TAG_volatile_type:
22323 this_type = read_tag_volatile_type (die, cu);
22325 case DW_TAG_restrict_type:
22326 this_type = read_tag_restrict_type (die, cu);
22328 case DW_TAG_string_type:
22329 this_type = read_tag_string_type (die, cu);
22331 case DW_TAG_typedef:
22332 this_type = read_typedef (die, cu);
22334 case DW_TAG_subrange_type:
22335 this_type = read_subrange_type (die, cu);
22337 case DW_TAG_base_type:
22338 this_type = read_base_type (die, cu);
22340 case DW_TAG_unspecified_type:
22341 this_type = read_unspecified_type (die, cu);
22343 case DW_TAG_namespace:
22344 this_type = read_namespace_type (die, cu);
22346 case DW_TAG_module:
22347 this_type = read_module_type (die, cu);
22349 case DW_TAG_atomic_type:
22350 this_type = read_tag_atomic_type (die, cu);
22353 complaint (_("unexpected tag in read_type_die: '%s'"),
22354 dwarf_tag_name (die->tag));
22361 /* See if we can figure out if the class lives in a namespace. We do
22362 this by looking for a member function; its demangled name will
22363 contain namespace info, if there is any.
22364 Return the computed name or NULL.
22365 Space for the result is allocated on the objfile's obstack.
22366 This is the full-die version of guess_partial_die_structure_name.
22367 In this case we know DIE has no useful parent. */
22370 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22372 struct die_info *spec_die;
22373 struct dwarf2_cu *spec_cu;
22374 struct die_info *child;
22375 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22378 spec_die = die_specification (die, &spec_cu);
22379 if (spec_die != NULL)
22385 for (child = die->child;
22387 child = child->sibling)
22389 if (child->tag == DW_TAG_subprogram)
22391 const char *linkage_name = dw2_linkage_name (child, cu);
22393 if (linkage_name != NULL)
22396 = language_class_name_from_physname (cu->language_defn,
22400 if (actual_name != NULL)
22402 const char *die_name = dwarf2_name (die, cu);
22404 if (die_name != NULL
22405 && strcmp (die_name, actual_name) != 0)
22407 /* Strip off the class name from the full name.
22408 We want the prefix. */
22409 int die_name_len = strlen (die_name);
22410 int actual_name_len = strlen (actual_name);
22412 /* Test for '::' as a sanity check. */
22413 if (actual_name_len > die_name_len + 2
22414 && actual_name[actual_name_len
22415 - die_name_len - 1] == ':')
22416 name = (char *) obstack_copy0 (
22417 &objfile->per_bfd->storage_obstack,
22418 actual_name, actual_name_len - die_name_len - 2);
22421 xfree (actual_name);
22430 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22431 prefix part in such case. See
22432 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22434 static const char *
22435 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22437 struct attribute *attr;
22440 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22441 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22444 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22447 attr = dw2_linkage_name_attr (die, cu);
22448 if (attr == NULL || DW_STRING (attr) == NULL)
22451 /* dwarf2_name had to be already called. */
22452 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22454 /* Strip the base name, keep any leading namespaces/classes. */
22455 base = strrchr (DW_STRING (attr), ':');
22456 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22459 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22460 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22462 &base[-1] - DW_STRING (attr));
22465 /* Return the name of the namespace/class that DIE is defined within,
22466 or "" if we can't tell. The caller should not xfree the result.
22468 For example, if we're within the method foo() in the following
22478 then determine_prefix on foo's die will return "N::C". */
22480 static const char *
22481 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22483 struct dwarf2_per_objfile *dwarf2_per_objfile
22484 = cu->per_cu->dwarf2_per_objfile;
22485 struct die_info *parent, *spec_die;
22486 struct dwarf2_cu *spec_cu;
22487 struct type *parent_type;
22488 const char *retval;
22490 if (cu->language != language_cplus
22491 && cu->language != language_fortran && cu->language != language_d
22492 && cu->language != language_rust)
22495 retval = anonymous_struct_prefix (die, cu);
22499 /* We have to be careful in the presence of DW_AT_specification.
22500 For example, with GCC 3.4, given the code
22504 // Definition of N::foo.
22508 then we'll have a tree of DIEs like this:
22510 1: DW_TAG_compile_unit
22511 2: DW_TAG_namespace // N
22512 3: DW_TAG_subprogram // declaration of N::foo
22513 4: DW_TAG_subprogram // definition of N::foo
22514 DW_AT_specification // refers to die #3
22516 Thus, when processing die #4, we have to pretend that we're in
22517 the context of its DW_AT_specification, namely the contex of die
22520 spec_die = die_specification (die, &spec_cu);
22521 if (spec_die == NULL)
22522 parent = die->parent;
22525 parent = spec_die->parent;
22529 if (parent == NULL)
22531 else if (parent->building_fullname)
22534 const char *parent_name;
22536 /* It has been seen on RealView 2.2 built binaries,
22537 DW_TAG_template_type_param types actually _defined_ as
22538 children of the parent class:
22541 template class <class Enum> Class{};
22542 Class<enum E> class_e;
22544 1: DW_TAG_class_type (Class)
22545 2: DW_TAG_enumeration_type (E)
22546 3: DW_TAG_enumerator (enum1:0)
22547 3: DW_TAG_enumerator (enum2:1)
22549 2: DW_TAG_template_type_param
22550 DW_AT_type DW_FORM_ref_udata (E)
22552 Besides being broken debug info, it can put GDB into an
22553 infinite loop. Consider:
22555 When we're building the full name for Class<E>, we'll start
22556 at Class, and go look over its template type parameters,
22557 finding E. We'll then try to build the full name of E, and
22558 reach here. We're now trying to build the full name of E,
22559 and look over the parent DIE for containing scope. In the
22560 broken case, if we followed the parent DIE of E, we'd again
22561 find Class, and once again go look at its template type
22562 arguments, etc., etc. Simply don't consider such parent die
22563 as source-level parent of this die (it can't be, the language
22564 doesn't allow it), and break the loop here. */
22565 name = dwarf2_name (die, cu);
22566 parent_name = dwarf2_name (parent, cu);
22567 complaint (_("template param type '%s' defined within parent '%s'"),
22568 name ? name : "<unknown>",
22569 parent_name ? parent_name : "<unknown>");
22573 switch (parent->tag)
22575 case DW_TAG_namespace:
22576 parent_type = read_type_die (parent, cu);
22577 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22578 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22579 Work around this problem here. */
22580 if (cu->language == language_cplus
22581 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22583 /* We give a name to even anonymous namespaces. */
22584 return TYPE_NAME (parent_type);
22585 case DW_TAG_class_type:
22586 case DW_TAG_interface_type:
22587 case DW_TAG_structure_type:
22588 case DW_TAG_union_type:
22589 case DW_TAG_module:
22590 parent_type = read_type_die (parent, cu);
22591 if (TYPE_NAME (parent_type) != NULL)
22592 return TYPE_NAME (parent_type);
22594 /* An anonymous structure is only allowed non-static data
22595 members; no typedefs, no member functions, et cetera.
22596 So it does not need a prefix. */
22598 case DW_TAG_compile_unit:
22599 case DW_TAG_partial_unit:
22600 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22601 if (cu->language == language_cplus
22602 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22603 && die->child != NULL
22604 && (die->tag == DW_TAG_class_type
22605 || die->tag == DW_TAG_structure_type
22606 || die->tag == DW_TAG_union_type))
22608 char *name = guess_full_die_structure_name (die, cu);
22613 case DW_TAG_enumeration_type:
22614 parent_type = read_type_die (parent, cu);
22615 if (TYPE_DECLARED_CLASS (parent_type))
22617 if (TYPE_NAME (parent_type) != NULL)
22618 return TYPE_NAME (parent_type);
22621 /* Fall through. */
22623 return determine_prefix (parent, cu);
22627 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22628 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22629 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22630 an obconcat, otherwise allocate storage for the result. The CU argument is
22631 used to determine the language and hence, the appropriate separator. */
22633 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22636 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22637 int physname, struct dwarf2_cu *cu)
22639 const char *lead = "";
22642 if (suffix == NULL || suffix[0] == '\0'
22643 || prefix == NULL || prefix[0] == '\0')
22645 else if (cu->language == language_d)
22647 /* For D, the 'main' function could be defined in any module, but it
22648 should never be prefixed. */
22649 if (strcmp (suffix, "D main") == 0)
22657 else if (cu->language == language_fortran && physname)
22659 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22660 DW_AT_MIPS_linkage_name is preferred and used instead. */
22668 if (prefix == NULL)
22670 if (suffix == NULL)
22677 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22679 strcpy (retval, lead);
22680 strcat (retval, prefix);
22681 strcat (retval, sep);
22682 strcat (retval, suffix);
22687 /* We have an obstack. */
22688 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22692 /* Return sibling of die, NULL if no sibling. */
22694 static struct die_info *
22695 sibling_die (struct die_info *die)
22697 return die->sibling;
22700 /* Get name of a die, return NULL if not found. */
22702 static const char *
22703 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22704 struct obstack *obstack)
22706 if (name && cu->language == language_cplus)
22708 std::string canon_name = cp_canonicalize_string (name);
22710 if (!canon_name.empty ())
22712 if (canon_name != name)
22713 name = (const char *) obstack_copy0 (obstack,
22714 canon_name.c_str (),
22715 canon_name.length ());
22722 /* Get name of a die, return NULL if not found.
22723 Anonymous namespaces are converted to their magic string. */
22725 static const char *
22726 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22728 struct attribute *attr;
22729 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22731 attr = dwarf2_attr (die, DW_AT_name, cu);
22732 if ((!attr || !DW_STRING (attr))
22733 && die->tag != DW_TAG_namespace
22734 && die->tag != DW_TAG_class_type
22735 && die->tag != DW_TAG_interface_type
22736 && die->tag != DW_TAG_structure_type
22737 && die->tag != DW_TAG_union_type)
22742 case DW_TAG_compile_unit:
22743 case DW_TAG_partial_unit:
22744 /* Compilation units have a DW_AT_name that is a filename, not
22745 a source language identifier. */
22746 case DW_TAG_enumeration_type:
22747 case DW_TAG_enumerator:
22748 /* These tags always have simple identifiers already; no need
22749 to canonicalize them. */
22750 return DW_STRING (attr);
22752 case DW_TAG_namespace:
22753 if (attr != NULL && DW_STRING (attr) != NULL)
22754 return DW_STRING (attr);
22755 return CP_ANONYMOUS_NAMESPACE_STR;
22757 case DW_TAG_class_type:
22758 case DW_TAG_interface_type:
22759 case DW_TAG_structure_type:
22760 case DW_TAG_union_type:
22761 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22762 structures or unions. These were of the form "._%d" in GCC 4.1,
22763 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22764 and GCC 4.4. We work around this problem by ignoring these. */
22765 if (attr && DW_STRING (attr)
22766 && (startswith (DW_STRING (attr), "._")
22767 || startswith (DW_STRING (attr), "<anonymous")))
22770 /* GCC might emit a nameless typedef that has a linkage name. See
22771 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22772 if (!attr || DW_STRING (attr) == NULL)
22774 char *demangled = NULL;
22776 attr = dw2_linkage_name_attr (die, cu);
22777 if (attr == NULL || DW_STRING (attr) == NULL)
22780 /* Avoid demangling DW_STRING (attr) the second time on a second
22781 call for the same DIE. */
22782 if (!DW_STRING_IS_CANONICAL (attr))
22783 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22789 /* FIXME: we already did this for the partial symbol... */
22792 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22793 demangled, strlen (demangled)));
22794 DW_STRING_IS_CANONICAL (attr) = 1;
22797 /* Strip any leading namespaces/classes, keep only the base name.
22798 DW_AT_name for named DIEs does not contain the prefixes. */
22799 base = strrchr (DW_STRING (attr), ':');
22800 if (base && base > DW_STRING (attr) && base[-1] == ':')
22803 return DW_STRING (attr);
22812 if (!DW_STRING_IS_CANONICAL (attr))
22815 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22816 &objfile->per_bfd->storage_obstack);
22817 DW_STRING_IS_CANONICAL (attr) = 1;
22819 return DW_STRING (attr);
22822 /* Return the die that this die in an extension of, or NULL if there
22823 is none. *EXT_CU is the CU containing DIE on input, and the CU
22824 containing the return value on output. */
22826 static struct die_info *
22827 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22829 struct attribute *attr;
22831 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22835 return follow_die_ref (die, attr, ext_cu);
22838 /* A convenience function that returns an "unknown" DWARF name,
22839 including the value of V. STR is the name of the entity being
22840 printed, e.g., "TAG". */
22842 static const char *
22843 dwarf_unknown (const char *str, unsigned v)
22845 char *cell = get_print_cell ();
22846 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22850 /* Convert a DIE tag into its string name. */
22852 static const char *
22853 dwarf_tag_name (unsigned tag)
22855 const char *name = get_DW_TAG_name (tag);
22858 return dwarf_unknown ("TAG", tag);
22863 /* Convert a DWARF attribute code into its string name. */
22865 static const char *
22866 dwarf_attr_name (unsigned attr)
22870 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22871 if (attr == DW_AT_MIPS_fde)
22872 return "DW_AT_MIPS_fde";
22874 if (attr == DW_AT_HP_block_index)
22875 return "DW_AT_HP_block_index";
22878 name = get_DW_AT_name (attr);
22881 return dwarf_unknown ("AT", attr);
22886 /* Convert a DWARF value form code into its string name. */
22888 static const char *
22889 dwarf_form_name (unsigned form)
22891 const char *name = get_DW_FORM_name (form);
22894 return dwarf_unknown ("FORM", form);
22899 static const char *
22900 dwarf_bool_name (unsigned mybool)
22908 /* Convert a DWARF type code into its string name. */
22910 static const char *
22911 dwarf_type_encoding_name (unsigned enc)
22913 const char *name = get_DW_ATE_name (enc);
22916 return dwarf_unknown ("ATE", enc);
22922 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22926 print_spaces (indent, f);
22927 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22928 dwarf_tag_name (die->tag), die->abbrev,
22929 sect_offset_str (die->sect_off));
22931 if (die->parent != NULL)
22933 print_spaces (indent, f);
22934 fprintf_unfiltered (f, " parent at offset: %s\n",
22935 sect_offset_str (die->parent->sect_off));
22938 print_spaces (indent, f);
22939 fprintf_unfiltered (f, " has children: %s\n",
22940 dwarf_bool_name (die->child != NULL));
22942 print_spaces (indent, f);
22943 fprintf_unfiltered (f, " attributes:\n");
22945 for (i = 0; i < die->num_attrs; ++i)
22947 print_spaces (indent, f);
22948 fprintf_unfiltered (f, " %s (%s) ",
22949 dwarf_attr_name (die->attrs[i].name),
22950 dwarf_form_name (die->attrs[i].form));
22952 switch (die->attrs[i].form)
22955 case DW_FORM_addrx:
22956 case DW_FORM_GNU_addr_index:
22957 fprintf_unfiltered (f, "address: ");
22958 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22960 case DW_FORM_block2:
22961 case DW_FORM_block4:
22962 case DW_FORM_block:
22963 case DW_FORM_block1:
22964 fprintf_unfiltered (f, "block: size %s",
22965 pulongest (DW_BLOCK (&die->attrs[i])->size));
22967 case DW_FORM_exprloc:
22968 fprintf_unfiltered (f, "expression: size %s",
22969 pulongest (DW_BLOCK (&die->attrs[i])->size));
22971 case DW_FORM_data16:
22972 fprintf_unfiltered (f, "constant of 16 bytes");
22974 case DW_FORM_ref_addr:
22975 fprintf_unfiltered (f, "ref address: ");
22976 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22978 case DW_FORM_GNU_ref_alt:
22979 fprintf_unfiltered (f, "alt ref address: ");
22980 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22986 case DW_FORM_ref_udata:
22987 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22988 (long) (DW_UNSND (&die->attrs[i])));
22990 case DW_FORM_data1:
22991 case DW_FORM_data2:
22992 case DW_FORM_data4:
22993 case DW_FORM_data8:
22994 case DW_FORM_udata:
22995 case DW_FORM_sdata:
22996 fprintf_unfiltered (f, "constant: %s",
22997 pulongest (DW_UNSND (&die->attrs[i])));
22999 case DW_FORM_sec_offset:
23000 fprintf_unfiltered (f, "section offset: %s",
23001 pulongest (DW_UNSND (&die->attrs[i])));
23003 case DW_FORM_ref_sig8:
23004 fprintf_unfiltered (f, "signature: %s",
23005 hex_string (DW_SIGNATURE (&die->attrs[i])));
23007 case DW_FORM_string:
23009 case DW_FORM_line_strp:
23011 case DW_FORM_GNU_str_index:
23012 case DW_FORM_GNU_strp_alt:
23013 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23014 DW_STRING (&die->attrs[i])
23015 ? DW_STRING (&die->attrs[i]) : "",
23016 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23019 if (DW_UNSND (&die->attrs[i]))
23020 fprintf_unfiltered (f, "flag: TRUE");
23022 fprintf_unfiltered (f, "flag: FALSE");
23024 case DW_FORM_flag_present:
23025 fprintf_unfiltered (f, "flag: TRUE");
23027 case DW_FORM_indirect:
23028 /* The reader will have reduced the indirect form to
23029 the "base form" so this form should not occur. */
23030 fprintf_unfiltered (f,
23031 "unexpected attribute form: DW_FORM_indirect");
23033 case DW_FORM_implicit_const:
23034 fprintf_unfiltered (f, "constant: %s",
23035 plongest (DW_SND (&die->attrs[i])));
23038 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23039 die->attrs[i].form);
23042 fprintf_unfiltered (f, "\n");
23047 dump_die_for_error (struct die_info *die)
23049 dump_die_shallow (gdb_stderr, 0, die);
23053 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23055 int indent = level * 4;
23057 gdb_assert (die != NULL);
23059 if (level >= max_level)
23062 dump_die_shallow (f, indent, die);
23064 if (die->child != NULL)
23066 print_spaces (indent, f);
23067 fprintf_unfiltered (f, " Children:");
23068 if (level + 1 < max_level)
23070 fprintf_unfiltered (f, "\n");
23071 dump_die_1 (f, level + 1, max_level, die->child);
23075 fprintf_unfiltered (f,
23076 " [not printed, max nesting level reached]\n");
23080 if (die->sibling != NULL && level > 0)
23082 dump_die_1 (f, level, max_level, die->sibling);
23086 /* This is called from the pdie macro in gdbinit.in.
23087 It's not static so gcc will keep a copy callable from gdb. */
23090 dump_die (struct die_info *die, int max_level)
23092 dump_die_1 (gdb_stdlog, 0, max_level, die);
23096 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23100 slot = htab_find_slot_with_hash (cu->die_hash, die,
23101 to_underlying (die->sect_off),
23107 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23111 dwarf2_get_ref_die_offset (const struct attribute *attr)
23113 if (attr_form_is_ref (attr))
23114 return (sect_offset) DW_UNSND (attr);
23116 complaint (_("unsupported die ref attribute form: '%s'"),
23117 dwarf_form_name (attr->form));
23121 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23122 * the value held by the attribute is not constant. */
23125 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23127 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23128 return DW_SND (attr);
23129 else if (attr->form == DW_FORM_udata
23130 || attr->form == DW_FORM_data1
23131 || attr->form == DW_FORM_data2
23132 || attr->form == DW_FORM_data4
23133 || attr->form == DW_FORM_data8)
23134 return DW_UNSND (attr);
23137 /* For DW_FORM_data16 see attr_form_is_constant. */
23138 complaint (_("Attribute value is not a constant (%s)"),
23139 dwarf_form_name (attr->form));
23140 return default_value;
23144 /* Follow reference or signature attribute ATTR of SRC_DIE.
23145 On entry *REF_CU is the CU of SRC_DIE.
23146 On exit *REF_CU is the CU of the result. */
23148 static struct die_info *
23149 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23150 struct dwarf2_cu **ref_cu)
23152 struct die_info *die;
23154 if (attr_form_is_ref (attr))
23155 die = follow_die_ref (src_die, attr, ref_cu);
23156 else if (attr->form == DW_FORM_ref_sig8)
23157 die = follow_die_sig (src_die, attr, ref_cu);
23160 dump_die_for_error (src_die);
23161 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23162 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23168 /* Follow reference OFFSET.
23169 On entry *REF_CU is the CU of the source die referencing OFFSET.
23170 On exit *REF_CU is the CU of the result.
23171 Returns NULL if OFFSET is invalid. */
23173 static struct die_info *
23174 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23175 struct dwarf2_cu **ref_cu)
23177 struct die_info temp_die;
23178 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23179 struct dwarf2_per_objfile *dwarf2_per_objfile
23180 = cu->per_cu->dwarf2_per_objfile;
23182 gdb_assert (cu->per_cu != NULL);
23186 if (cu->per_cu->is_debug_types)
23188 /* .debug_types CUs cannot reference anything outside their CU.
23189 If they need to, they have to reference a signatured type via
23190 DW_FORM_ref_sig8. */
23191 if (!offset_in_cu_p (&cu->header, sect_off))
23194 else if (offset_in_dwz != cu->per_cu->is_dwz
23195 || !offset_in_cu_p (&cu->header, sect_off))
23197 struct dwarf2_per_cu_data *per_cu;
23199 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23200 dwarf2_per_objfile);
23202 /* If necessary, add it to the queue and load its DIEs. */
23203 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23204 load_full_comp_unit (per_cu, false, cu->language);
23206 target_cu = per_cu->cu;
23208 else if (cu->dies == NULL)
23210 /* We're loading full DIEs during partial symbol reading. */
23211 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23212 load_full_comp_unit (cu->per_cu, false, language_minimal);
23215 *ref_cu = target_cu;
23216 temp_die.sect_off = sect_off;
23218 if (target_cu != cu)
23219 target_cu->ancestor = cu;
23221 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23223 to_underlying (sect_off));
23226 /* Follow reference attribute ATTR of SRC_DIE.
23227 On entry *REF_CU is the CU of SRC_DIE.
23228 On exit *REF_CU is the CU of the result. */
23230 static struct die_info *
23231 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23232 struct dwarf2_cu **ref_cu)
23234 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23235 struct dwarf2_cu *cu = *ref_cu;
23236 struct die_info *die;
23238 die = follow_die_offset (sect_off,
23239 (attr->form == DW_FORM_GNU_ref_alt
23240 || cu->per_cu->is_dwz),
23243 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23244 "at %s [in module %s]"),
23245 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23246 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23251 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23252 Returned value is intended for DW_OP_call*. Returned
23253 dwarf2_locexpr_baton->data has lifetime of
23254 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23256 struct dwarf2_locexpr_baton
23257 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23258 struct dwarf2_per_cu_data *per_cu,
23259 CORE_ADDR (*get_frame_pc) (void *baton),
23260 void *baton, bool resolve_abstract_p)
23262 struct dwarf2_cu *cu;
23263 struct die_info *die;
23264 struct attribute *attr;
23265 struct dwarf2_locexpr_baton retval;
23266 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23267 struct objfile *objfile = dwarf2_per_objfile->objfile;
23269 if (per_cu->cu == NULL)
23270 load_cu (per_cu, false);
23274 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23275 Instead just throw an error, not much else we can do. */
23276 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23277 sect_offset_str (sect_off), objfile_name (objfile));
23280 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23282 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23283 sect_offset_str (sect_off), objfile_name (objfile));
23285 attr = dwarf2_attr (die, DW_AT_location, cu);
23286 if (!attr && resolve_abstract_p
23287 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23288 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23290 CORE_ADDR pc = (*get_frame_pc) (baton);
23292 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23295 || cand->parent->tag != DW_TAG_subprogram)
23298 CORE_ADDR pc_low, pc_high;
23299 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23300 if (pc_low == ((CORE_ADDR) -1)
23301 || !(pc_low <= pc && pc < pc_high))
23305 attr = dwarf2_attr (die, DW_AT_location, cu);
23312 /* DWARF: "If there is no such attribute, then there is no effect.".
23313 DATA is ignored if SIZE is 0. */
23315 retval.data = NULL;
23318 else if (attr_form_is_section_offset (attr))
23320 struct dwarf2_loclist_baton loclist_baton;
23321 CORE_ADDR pc = (*get_frame_pc) (baton);
23324 fill_in_loclist_baton (cu, &loclist_baton, attr);
23326 retval.data = dwarf2_find_location_expression (&loclist_baton,
23328 retval.size = size;
23332 if (!attr_form_is_block (attr))
23333 error (_("Dwarf Error: DIE at %s referenced in module %s "
23334 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23335 sect_offset_str (sect_off), objfile_name (objfile));
23337 retval.data = DW_BLOCK (attr)->data;
23338 retval.size = DW_BLOCK (attr)->size;
23340 retval.per_cu = cu->per_cu;
23342 age_cached_comp_units (dwarf2_per_objfile);
23347 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23350 struct dwarf2_locexpr_baton
23351 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23352 struct dwarf2_per_cu_data *per_cu,
23353 CORE_ADDR (*get_frame_pc) (void *baton),
23356 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23358 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23361 /* Write a constant of a given type as target-ordered bytes into
23364 static const gdb_byte *
23365 write_constant_as_bytes (struct obstack *obstack,
23366 enum bfd_endian byte_order,
23373 *len = TYPE_LENGTH (type);
23374 result = (gdb_byte *) obstack_alloc (obstack, *len);
23375 store_unsigned_integer (result, *len, byte_order, value);
23380 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23381 pointer to the constant bytes and set LEN to the length of the
23382 data. If memory is needed, allocate it on OBSTACK. If the DIE
23383 does not have a DW_AT_const_value, return NULL. */
23386 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23387 struct dwarf2_per_cu_data *per_cu,
23388 struct obstack *obstack,
23391 struct dwarf2_cu *cu;
23392 struct die_info *die;
23393 struct attribute *attr;
23394 const gdb_byte *result = NULL;
23397 enum bfd_endian byte_order;
23398 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23400 if (per_cu->cu == NULL)
23401 load_cu (per_cu, false);
23405 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23406 Instead just throw an error, not much else we can do. */
23407 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23408 sect_offset_str (sect_off), objfile_name (objfile));
23411 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23413 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23414 sect_offset_str (sect_off), objfile_name (objfile));
23416 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23420 byte_order = (bfd_big_endian (objfile->obfd)
23421 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23423 switch (attr->form)
23426 case DW_FORM_addrx:
23427 case DW_FORM_GNU_addr_index:
23431 *len = cu->header.addr_size;
23432 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23433 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23437 case DW_FORM_string:
23440 case DW_FORM_GNU_str_index:
23441 case DW_FORM_GNU_strp_alt:
23442 /* DW_STRING is already allocated on the objfile obstack, point
23444 result = (const gdb_byte *) DW_STRING (attr);
23445 *len = strlen (DW_STRING (attr));
23447 case DW_FORM_block1:
23448 case DW_FORM_block2:
23449 case DW_FORM_block4:
23450 case DW_FORM_block:
23451 case DW_FORM_exprloc:
23452 case DW_FORM_data16:
23453 result = DW_BLOCK (attr)->data;
23454 *len = DW_BLOCK (attr)->size;
23457 /* The DW_AT_const_value attributes are supposed to carry the
23458 symbol's value "represented as it would be on the target
23459 architecture." By the time we get here, it's already been
23460 converted to host endianness, so we just need to sign- or
23461 zero-extend it as appropriate. */
23462 case DW_FORM_data1:
23463 type = die_type (die, cu);
23464 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23465 if (result == NULL)
23466 result = write_constant_as_bytes (obstack, byte_order,
23469 case DW_FORM_data2:
23470 type = die_type (die, cu);
23471 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23472 if (result == NULL)
23473 result = write_constant_as_bytes (obstack, byte_order,
23476 case DW_FORM_data4:
23477 type = die_type (die, cu);
23478 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23479 if (result == NULL)
23480 result = write_constant_as_bytes (obstack, byte_order,
23483 case DW_FORM_data8:
23484 type = die_type (die, cu);
23485 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23486 if (result == NULL)
23487 result = write_constant_as_bytes (obstack, byte_order,
23491 case DW_FORM_sdata:
23492 case DW_FORM_implicit_const:
23493 type = die_type (die, cu);
23494 result = write_constant_as_bytes (obstack, byte_order,
23495 type, DW_SND (attr), len);
23498 case DW_FORM_udata:
23499 type = die_type (die, cu);
23500 result = write_constant_as_bytes (obstack, byte_order,
23501 type, DW_UNSND (attr), len);
23505 complaint (_("unsupported const value attribute form: '%s'"),
23506 dwarf_form_name (attr->form));
23513 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23514 valid type for this die is found. */
23517 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23518 struct dwarf2_per_cu_data *per_cu)
23520 struct dwarf2_cu *cu;
23521 struct die_info *die;
23523 if (per_cu->cu == NULL)
23524 load_cu (per_cu, false);
23529 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23533 return die_type (die, cu);
23536 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23540 dwarf2_get_die_type (cu_offset die_offset,
23541 struct dwarf2_per_cu_data *per_cu)
23543 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23544 return get_die_type_at_offset (die_offset_sect, per_cu);
23547 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23548 On entry *REF_CU is the CU of SRC_DIE.
23549 On exit *REF_CU is the CU of the result.
23550 Returns NULL if the referenced DIE isn't found. */
23552 static struct die_info *
23553 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23554 struct dwarf2_cu **ref_cu)
23556 struct die_info temp_die;
23557 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23558 struct die_info *die;
23560 /* While it might be nice to assert sig_type->type == NULL here,
23561 we can get here for DW_AT_imported_declaration where we need
23562 the DIE not the type. */
23564 /* If necessary, add it to the queue and load its DIEs. */
23566 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23567 read_signatured_type (sig_type);
23569 sig_cu = sig_type->per_cu.cu;
23570 gdb_assert (sig_cu != NULL);
23571 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23572 temp_die.sect_off = sig_type->type_offset_in_section;
23573 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23574 to_underlying (temp_die.sect_off));
23577 struct dwarf2_per_objfile *dwarf2_per_objfile
23578 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23580 /* For .gdb_index version 7 keep track of included TUs.
23581 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23582 if (dwarf2_per_objfile->index_table != NULL
23583 && dwarf2_per_objfile->index_table->version <= 7)
23585 VEC_safe_push (dwarf2_per_cu_ptr,
23586 (*ref_cu)->per_cu->imported_symtabs,
23592 sig_cu->ancestor = cu;
23600 /* Follow signatured type referenced by ATTR in SRC_DIE.
23601 On entry *REF_CU is the CU of SRC_DIE.
23602 On exit *REF_CU is the CU of the result.
23603 The result is the DIE of the type.
23604 If the referenced type cannot be found an error is thrown. */
23606 static struct die_info *
23607 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23608 struct dwarf2_cu **ref_cu)
23610 ULONGEST signature = DW_SIGNATURE (attr);
23611 struct signatured_type *sig_type;
23612 struct die_info *die;
23614 gdb_assert (attr->form == DW_FORM_ref_sig8);
23616 sig_type = lookup_signatured_type (*ref_cu, signature);
23617 /* sig_type will be NULL if the signatured type is missing from
23619 if (sig_type == NULL)
23621 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23622 " from DIE at %s [in module %s]"),
23623 hex_string (signature), sect_offset_str (src_die->sect_off),
23624 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23627 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23630 dump_die_for_error (src_die);
23631 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23632 " from DIE at %s [in module %s]"),
23633 hex_string (signature), sect_offset_str (src_die->sect_off),
23634 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23640 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23641 reading in and processing the type unit if necessary. */
23643 static struct type *
23644 get_signatured_type (struct die_info *die, ULONGEST signature,
23645 struct dwarf2_cu *cu)
23647 struct dwarf2_per_objfile *dwarf2_per_objfile
23648 = cu->per_cu->dwarf2_per_objfile;
23649 struct signatured_type *sig_type;
23650 struct dwarf2_cu *type_cu;
23651 struct die_info *type_die;
23654 sig_type = lookup_signatured_type (cu, signature);
23655 /* sig_type will be NULL if the signatured type is missing from
23657 if (sig_type == NULL)
23659 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23660 " from DIE at %s [in module %s]"),
23661 hex_string (signature), sect_offset_str (die->sect_off),
23662 objfile_name (dwarf2_per_objfile->objfile));
23663 return build_error_marker_type (cu, die);
23666 /* If we already know the type we're done. */
23667 if (sig_type->type != NULL)
23668 return sig_type->type;
23671 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23672 if (type_die != NULL)
23674 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23675 is created. This is important, for example, because for c++ classes
23676 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23677 type = read_type_die (type_die, type_cu);
23680 complaint (_("Dwarf Error: Cannot build signatured type %s"
23681 " referenced from DIE at %s [in module %s]"),
23682 hex_string (signature), sect_offset_str (die->sect_off),
23683 objfile_name (dwarf2_per_objfile->objfile));
23684 type = build_error_marker_type (cu, die);
23689 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23690 " from DIE at %s [in module %s]"),
23691 hex_string (signature), sect_offset_str (die->sect_off),
23692 objfile_name (dwarf2_per_objfile->objfile));
23693 type = build_error_marker_type (cu, die);
23695 sig_type->type = type;
23700 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23701 reading in and processing the type unit if necessary. */
23703 static struct type *
23704 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23705 struct dwarf2_cu *cu) /* ARI: editCase function */
23707 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23708 if (attr_form_is_ref (attr))
23710 struct dwarf2_cu *type_cu = cu;
23711 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23713 return read_type_die (type_die, type_cu);
23715 else if (attr->form == DW_FORM_ref_sig8)
23717 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23721 struct dwarf2_per_objfile *dwarf2_per_objfile
23722 = cu->per_cu->dwarf2_per_objfile;
23724 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23725 " at %s [in module %s]"),
23726 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23727 objfile_name (dwarf2_per_objfile->objfile));
23728 return build_error_marker_type (cu, die);
23732 /* Load the DIEs associated with type unit PER_CU into memory. */
23735 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23737 struct signatured_type *sig_type;
23739 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23740 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23742 /* We have the per_cu, but we need the signatured_type.
23743 Fortunately this is an easy translation. */
23744 gdb_assert (per_cu->is_debug_types);
23745 sig_type = (struct signatured_type *) per_cu;
23747 gdb_assert (per_cu->cu == NULL);
23749 read_signatured_type (sig_type);
23751 gdb_assert (per_cu->cu != NULL);
23754 /* die_reader_func for read_signatured_type.
23755 This is identical to load_full_comp_unit_reader,
23756 but is kept separate for now. */
23759 read_signatured_type_reader (const struct die_reader_specs *reader,
23760 const gdb_byte *info_ptr,
23761 struct die_info *comp_unit_die,
23765 struct dwarf2_cu *cu = reader->cu;
23767 gdb_assert (cu->die_hash == NULL);
23769 htab_create_alloc_ex (cu->header.length / 12,
23773 &cu->comp_unit_obstack,
23774 hashtab_obstack_allocate,
23775 dummy_obstack_deallocate);
23778 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23779 &info_ptr, comp_unit_die);
23780 cu->dies = comp_unit_die;
23781 /* comp_unit_die is not stored in die_hash, no need. */
23783 /* We try not to read any attributes in this function, because not
23784 all CUs needed for references have been loaded yet, and symbol
23785 table processing isn't initialized. But we have to set the CU language,
23786 or we won't be able to build types correctly.
23787 Similarly, if we do not read the producer, we can not apply
23788 producer-specific interpretation. */
23789 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23792 /* Read in a signatured type and build its CU and DIEs.
23793 If the type is a stub for the real type in a DWO file,
23794 read in the real type from the DWO file as well. */
23797 read_signatured_type (struct signatured_type *sig_type)
23799 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23801 gdb_assert (per_cu->is_debug_types);
23802 gdb_assert (per_cu->cu == NULL);
23804 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23805 read_signatured_type_reader, NULL);
23806 sig_type->per_cu.tu_read = 1;
23809 /* Decode simple location descriptions.
23810 Given a pointer to a dwarf block that defines a location, compute
23811 the location and return the value.
23813 NOTE drow/2003-11-18: This function is called in two situations
23814 now: for the address of static or global variables (partial symbols
23815 only) and for offsets into structures which are expected to be
23816 (more or less) constant. The partial symbol case should go away,
23817 and only the constant case should remain. That will let this
23818 function complain more accurately. A few special modes are allowed
23819 without complaint for global variables (for instance, global
23820 register values and thread-local values).
23822 A location description containing no operations indicates that the
23823 object is optimized out. The return value is 0 for that case.
23824 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23825 callers will only want a very basic result and this can become a
23828 Note that stack[0] is unused except as a default error return. */
23831 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23833 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23835 size_t size = blk->size;
23836 const gdb_byte *data = blk->data;
23837 CORE_ADDR stack[64];
23839 unsigned int bytes_read, unsnd;
23845 stack[++stacki] = 0;
23884 stack[++stacki] = op - DW_OP_lit0;
23919 stack[++stacki] = op - DW_OP_reg0;
23921 dwarf2_complex_location_expr_complaint ();
23925 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23927 stack[++stacki] = unsnd;
23929 dwarf2_complex_location_expr_complaint ();
23933 stack[++stacki] = read_address (objfile->obfd, &data[i],
23938 case DW_OP_const1u:
23939 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23943 case DW_OP_const1s:
23944 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23948 case DW_OP_const2u:
23949 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23953 case DW_OP_const2s:
23954 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23958 case DW_OP_const4u:
23959 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23963 case DW_OP_const4s:
23964 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23968 case DW_OP_const8u:
23969 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23974 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23980 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23985 stack[stacki + 1] = stack[stacki];
23990 stack[stacki - 1] += stack[stacki];
23994 case DW_OP_plus_uconst:
23995 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24001 stack[stacki - 1] -= stack[stacki];
24006 /* If we're not the last op, then we definitely can't encode
24007 this using GDB's address_class enum. This is valid for partial
24008 global symbols, although the variable's address will be bogus
24011 dwarf2_complex_location_expr_complaint ();
24014 case DW_OP_GNU_push_tls_address:
24015 case DW_OP_form_tls_address:
24016 /* The top of the stack has the offset from the beginning
24017 of the thread control block at which the variable is located. */
24018 /* Nothing should follow this operator, so the top of stack would
24020 /* This is valid for partial global symbols, but the variable's
24021 address will be bogus in the psymtab. Make it always at least
24022 non-zero to not look as a variable garbage collected by linker
24023 which have DW_OP_addr 0. */
24025 dwarf2_complex_location_expr_complaint ();
24029 case DW_OP_GNU_uninit:
24033 case DW_OP_GNU_addr_index:
24034 case DW_OP_GNU_const_index:
24035 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24042 const char *name = get_DW_OP_name (op);
24045 complaint (_("unsupported stack op: '%s'"),
24048 complaint (_("unsupported stack op: '%02x'"),
24052 return (stack[stacki]);
24055 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24056 outside of the allocated space. Also enforce minimum>0. */
24057 if (stacki >= ARRAY_SIZE (stack) - 1)
24059 complaint (_("location description stack overflow"));
24065 complaint (_("location description stack underflow"));
24069 return (stack[stacki]);
24072 /* memory allocation interface */
24074 static struct dwarf_block *
24075 dwarf_alloc_block (struct dwarf2_cu *cu)
24077 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24080 static struct die_info *
24081 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24083 struct die_info *die;
24084 size_t size = sizeof (struct die_info);
24087 size += (num_attrs - 1) * sizeof (struct attribute);
24089 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24090 memset (die, 0, sizeof (struct die_info));
24095 /* Macro support. */
24097 /* Return file name relative to the compilation directory of file number I in
24098 *LH's file name table. The result is allocated using xmalloc; the caller is
24099 responsible for freeing it. */
24102 file_file_name (int file, struct line_header *lh)
24104 /* Is the file number a valid index into the line header's file name
24105 table? Remember that file numbers start with one, not zero. */
24106 if (1 <= file && file <= lh->file_names.size ())
24108 const file_entry &fe = lh->file_names[file - 1];
24110 if (!IS_ABSOLUTE_PATH (fe.name))
24112 const char *dir = fe.include_dir (lh);
24114 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24116 return xstrdup (fe.name);
24120 /* The compiler produced a bogus file number. We can at least
24121 record the macro definitions made in the file, even if we
24122 won't be able to find the file by name. */
24123 char fake_name[80];
24125 xsnprintf (fake_name, sizeof (fake_name),
24126 "<bad macro file number %d>", file);
24128 complaint (_("bad file number in macro information (%d)"),
24131 return xstrdup (fake_name);
24135 /* Return the full name of file number I in *LH's file name table.
24136 Use COMP_DIR as the name of the current directory of the
24137 compilation. The result is allocated using xmalloc; the caller is
24138 responsible for freeing it. */
24140 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24142 /* Is the file number a valid index into the line header's file name
24143 table? Remember that file numbers start with one, not zero. */
24144 if (1 <= file && file <= lh->file_names.size ())
24146 char *relative = file_file_name (file, lh);
24148 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24150 return reconcat (relative, comp_dir, SLASH_STRING,
24151 relative, (char *) NULL);
24154 return file_file_name (file, lh);
24158 static struct macro_source_file *
24159 macro_start_file (struct dwarf2_cu *cu,
24160 int file, int line,
24161 struct macro_source_file *current_file,
24162 struct line_header *lh)
24164 /* File name relative to the compilation directory of this source file. */
24165 char *file_name = file_file_name (file, lh);
24167 if (! current_file)
24169 /* Note: We don't create a macro table for this compilation unit
24170 at all until we actually get a filename. */
24171 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24173 /* If we have no current file, then this must be the start_file
24174 directive for the compilation unit's main source file. */
24175 current_file = macro_set_main (macro_table, file_name);
24176 macro_define_special (macro_table);
24179 current_file = macro_include (current_file, line, file_name);
24183 return current_file;
24186 static const char *
24187 consume_improper_spaces (const char *p, const char *body)
24191 complaint (_("macro definition contains spaces "
24192 "in formal argument list:\n`%s'"),
24204 parse_macro_definition (struct macro_source_file *file, int line,
24209 /* The body string takes one of two forms. For object-like macro
24210 definitions, it should be:
24212 <macro name> " " <definition>
24214 For function-like macro definitions, it should be:
24216 <macro name> "() " <definition>
24218 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24220 Spaces may appear only where explicitly indicated, and in the
24223 The Dwarf 2 spec says that an object-like macro's name is always
24224 followed by a space, but versions of GCC around March 2002 omit
24225 the space when the macro's definition is the empty string.
24227 The Dwarf 2 spec says that there should be no spaces between the
24228 formal arguments in a function-like macro's formal argument list,
24229 but versions of GCC around March 2002 include spaces after the
24233 /* Find the extent of the macro name. The macro name is terminated
24234 by either a space or null character (for an object-like macro) or
24235 an opening paren (for a function-like macro). */
24236 for (p = body; *p; p++)
24237 if (*p == ' ' || *p == '(')
24240 if (*p == ' ' || *p == '\0')
24242 /* It's an object-like macro. */
24243 int name_len = p - body;
24244 char *name = savestring (body, name_len);
24245 const char *replacement;
24248 replacement = body + name_len + 1;
24251 dwarf2_macro_malformed_definition_complaint (body);
24252 replacement = body + name_len;
24255 macro_define_object (file, line, name, replacement);
24259 else if (*p == '(')
24261 /* It's a function-like macro. */
24262 char *name = savestring (body, p - body);
24265 char **argv = XNEWVEC (char *, argv_size);
24269 p = consume_improper_spaces (p, body);
24271 /* Parse the formal argument list. */
24272 while (*p && *p != ')')
24274 /* Find the extent of the current argument name. */
24275 const char *arg_start = p;
24277 while (*p && *p != ',' && *p != ')' && *p != ' ')
24280 if (! *p || p == arg_start)
24281 dwarf2_macro_malformed_definition_complaint (body);
24284 /* Make sure argv has room for the new argument. */
24285 if (argc >= argv_size)
24288 argv = XRESIZEVEC (char *, argv, argv_size);
24291 argv[argc++] = savestring (arg_start, p - arg_start);
24294 p = consume_improper_spaces (p, body);
24296 /* Consume the comma, if present. */
24301 p = consume_improper_spaces (p, body);
24310 /* Perfectly formed definition, no complaints. */
24311 macro_define_function (file, line, name,
24312 argc, (const char **) argv,
24314 else if (*p == '\0')
24316 /* Complain, but do define it. */
24317 dwarf2_macro_malformed_definition_complaint (body);
24318 macro_define_function (file, line, name,
24319 argc, (const char **) argv,
24323 /* Just complain. */
24324 dwarf2_macro_malformed_definition_complaint (body);
24327 /* Just complain. */
24328 dwarf2_macro_malformed_definition_complaint (body);
24334 for (i = 0; i < argc; i++)
24340 dwarf2_macro_malformed_definition_complaint (body);
24343 /* Skip some bytes from BYTES according to the form given in FORM.
24344 Returns the new pointer. */
24346 static const gdb_byte *
24347 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24348 enum dwarf_form form,
24349 unsigned int offset_size,
24350 struct dwarf2_section_info *section)
24352 unsigned int bytes_read;
24356 case DW_FORM_data1:
24361 case DW_FORM_data2:
24365 case DW_FORM_data4:
24369 case DW_FORM_data8:
24373 case DW_FORM_data16:
24377 case DW_FORM_string:
24378 read_direct_string (abfd, bytes, &bytes_read);
24379 bytes += bytes_read;
24382 case DW_FORM_sec_offset:
24384 case DW_FORM_GNU_strp_alt:
24385 bytes += offset_size;
24388 case DW_FORM_block:
24389 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24390 bytes += bytes_read;
24393 case DW_FORM_block1:
24394 bytes += 1 + read_1_byte (abfd, bytes);
24396 case DW_FORM_block2:
24397 bytes += 2 + read_2_bytes (abfd, bytes);
24399 case DW_FORM_block4:
24400 bytes += 4 + read_4_bytes (abfd, bytes);
24403 case DW_FORM_addrx:
24404 case DW_FORM_sdata:
24406 case DW_FORM_udata:
24407 case DW_FORM_GNU_addr_index:
24408 case DW_FORM_GNU_str_index:
24409 bytes = gdb_skip_leb128 (bytes, buffer_end);
24412 dwarf2_section_buffer_overflow_complaint (section);
24417 case DW_FORM_implicit_const:
24422 complaint (_("invalid form 0x%x in `%s'"),
24423 form, get_section_name (section));
24431 /* A helper for dwarf_decode_macros that handles skipping an unknown
24432 opcode. Returns an updated pointer to the macro data buffer; or,
24433 on error, issues a complaint and returns NULL. */
24435 static const gdb_byte *
24436 skip_unknown_opcode (unsigned int opcode,
24437 const gdb_byte **opcode_definitions,
24438 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24440 unsigned int offset_size,
24441 struct dwarf2_section_info *section)
24443 unsigned int bytes_read, i;
24445 const gdb_byte *defn;
24447 if (opcode_definitions[opcode] == NULL)
24449 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24454 defn = opcode_definitions[opcode];
24455 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24456 defn += bytes_read;
24458 for (i = 0; i < arg; ++i)
24460 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24461 (enum dwarf_form) defn[i], offset_size,
24463 if (mac_ptr == NULL)
24465 /* skip_form_bytes already issued the complaint. */
24473 /* A helper function which parses the header of a macro section.
24474 If the macro section is the extended (for now called "GNU") type,
24475 then this updates *OFFSET_SIZE. Returns a pointer to just after
24476 the header, or issues a complaint and returns NULL on error. */
24478 static const gdb_byte *
24479 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24481 const gdb_byte *mac_ptr,
24482 unsigned int *offset_size,
24483 int section_is_gnu)
24485 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24487 if (section_is_gnu)
24489 unsigned int version, flags;
24491 version = read_2_bytes (abfd, mac_ptr);
24492 if (version != 4 && version != 5)
24494 complaint (_("unrecognized version `%d' in .debug_macro section"),
24500 flags = read_1_byte (abfd, mac_ptr);
24502 *offset_size = (flags & 1) ? 8 : 4;
24504 if ((flags & 2) != 0)
24505 /* We don't need the line table offset. */
24506 mac_ptr += *offset_size;
24508 /* Vendor opcode descriptions. */
24509 if ((flags & 4) != 0)
24511 unsigned int i, count;
24513 count = read_1_byte (abfd, mac_ptr);
24515 for (i = 0; i < count; ++i)
24517 unsigned int opcode, bytes_read;
24520 opcode = read_1_byte (abfd, mac_ptr);
24522 opcode_definitions[opcode] = mac_ptr;
24523 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24524 mac_ptr += bytes_read;
24533 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24534 including DW_MACRO_import. */
24537 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24539 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24540 struct macro_source_file *current_file,
24541 struct line_header *lh,
24542 struct dwarf2_section_info *section,
24543 int section_is_gnu, int section_is_dwz,
24544 unsigned int offset_size,
24545 htab_t include_hash)
24547 struct dwarf2_per_objfile *dwarf2_per_objfile
24548 = cu->per_cu->dwarf2_per_objfile;
24549 struct objfile *objfile = dwarf2_per_objfile->objfile;
24550 enum dwarf_macro_record_type macinfo_type;
24551 int at_commandline;
24552 const gdb_byte *opcode_definitions[256];
24554 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24555 &offset_size, section_is_gnu);
24556 if (mac_ptr == NULL)
24558 /* We already issued a complaint. */
24562 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24563 GDB is still reading the definitions from command line. First
24564 DW_MACINFO_start_file will need to be ignored as it was already executed
24565 to create CURRENT_FILE for the main source holding also the command line
24566 definitions. On first met DW_MACINFO_start_file this flag is reset to
24567 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24569 at_commandline = 1;
24573 /* Do we at least have room for a macinfo type byte? */
24574 if (mac_ptr >= mac_end)
24576 dwarf2_section_buffer_overflow_complaint (section);
24580 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24583 /* Note that we rely on the fact that the corresponding GNU and
24584 DWARF constants are the same. */
24586 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24587 switch (macinfo_type)
24589 /* A zero macinfo type indicates the end of the macro
24594 case DW_MACRO_define:
24595 case DW_MACRO_undef:
24596 case DW_MACRO_define_strp:
24597 case DW_MACRO_undef_strp:
24598 case DW_MACRO_define_sup:
24599 case DW_MACRO_undef_sup:
24601 unsigned int bytes_read;
24606 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24607 mac_ptr += bytes_read;
24609 if (macinfo_type == DW_MACRO_define
24610 || macinfo_type == DW_MACRO_undef)
24612 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24613 mac_ptr += bytes_read;
24617 LONGEST str_offset;
24619 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24620 mac_ptr += offset_size;
24622 if (macinfo_type == DW_MACRO_define_sup
24623 || macinfo_type == DW_MACRO_undef_sup
24626 struct dwz_file *dwz
24627 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24629 body = read_indirect_string_from_dwz (objfile,
24633 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24637 is_define = (macinfo_type == DW_MACRO_define
24638 || macinfo_type == DW_MACRO_define_strp
24639 || macinfo_type == DW_MACRO_define_sup);
24640 if (! current_file)
24642 /* DWARF violation as no main source is present. */
24643 complaint (_("debug info with no main source gives macro %s "
24645 is_define ? _("definition") : _("undefinition"),
24649 if ((line == 0 && !at_commandline)
24650 || (line != 0 && at_commandline))
24651 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24652 at_commandline ? _("command-line") : _("in-file"),
24653 is_define ? _("definition") : _("undefinition"),
24654 line == 0 ? _("zero") : _("non-zero"), line, body);
24658 /* Fedora's rpm-build's "debugedit" binary
24659 corrupted .debug_macro sections.
24662 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24663 complaint (_("debug info gives %s invalid macro %s "
24664 "without body (corrupted?) at line %d "
24666 at_commandline ? _("command-line") : _("in-file"),
24667 is_define ? _("definition") : _("undefinition"),
24668 line, current_file->filename);
24670 else if (is_define)
24671 parse_macro_definition (current_file, line, body);
24674 gdb_assert (macinfo_type == DW_MACRO_undef
24675 || macinfo_type == DW_MACRO_undef_strp
24676 || macinfo_type == DW_MACRO_undef_sup);
24677 macro_undef (current_file, line, body);
24682 case DW_MACRO_start_file:
24684 unsigned int bytes_read;
24687 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24688 mac_ptr += bytes_read;
24689 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24690 mac_ptr += bytes_read;
24692 if ((line == 0 && !at_commandline)
24693 || (line != 0 && at_commandline))
24694 complaint (_("debug info gives source %d included "
24695 "from %s at %s line %d"),
24696 file, at_commandline ? _("command-line") : _("file"),
24697 line == 0 ? _("zero") : _("non-zero"), line);
24699 if (at_commandline)
24701 /* This DW_MACRO_start_file was executed in the
24703 at_commandline = 0;
24706 current_file = macro_start_file (cu, file, line, current_file,
24711 case DW_MACRO_end_file:
24712 if (! current_file)
24713 complaint (_("macro debug info has an unmatched "
24714 "`close_file' directive"));
24717 current_file = current_file->included_by;
24718 if (! current_file)
24720 enum dwarf_macro_record_type next_type;
24722 /* GCC circa March 2002 doesn't produce the zero
24723 type byte marking the end of the compilation
24724 unit. Complain if it's not there, but exit no
24727 /* Do we at least have room for a macinfo type byte? */
24728 if (mac_ptr >= mac_end)
24730 dwarf2_section_buffer_overflow_complaint (section);
24734 /* We don't increment mac_ptr here, so this is just
24737 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24739 if (next_type != 0)
24740 complaint (_("no terminating 0-type entry for "
24741 "macros in `.debug_macinfo' section"));
24748 case DW_MACRO_import:
24749 case DW_MACRO_import_sup:
24753 bfd *include_bfd = abfd;
24754 struct dwarf2_section_info *include_section = section;
24755 const gdb_byte *include_mac_end = mac_end;
24756 int is_dwz = section_is_dwz;
24757 const gdb_byte *new_mac_ptr;
24759 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24760 mac_ptr += offset_size;
24762 if (macinfo_type == DW_MACRO_import_sup)
24764 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24766 dwarf2_read_section (objfile, &dwz->macro);
24768 include_section = &dwz->macro;
24769 include_bfd = get_section_bfd_owner (include_section);
24770 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24774 new_mac_ptr = include_section->buffer + offset;
24775 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24779 /* This has actually happened; see
24780 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24781 complaint (_("recursive DW_MACRO_import in "
24782 ".debug_macro section"));
24786 *slot = (void *) new_mac_ptr;
24788 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24789 include_mac_end, current_file, lh,
24790 section, section_is_gnu, is_dwz,
24791 offset_size, include_hash);
24793 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24798 case DW_MACINFO_vendor_ext:
24799 if (!section_is_gnu)
24801 unsigned int bytes_read;
24803 /* This reads the constant, but since we don't recognize
24804 any vendor extensions, we ignore it. */
24805 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24806 mac_ptr += bytes_read;
24807 read_direct_string (abfd, mac_ptr, &bytes_read);
24808 mac_ptr += bytes_read;
24810 /* We don't recognize any vendor extensions. */
24816 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24817 mac_ptr, mac_end, abfd, offset_size,
24819 if (mac_ptr == NULL)
24824 } while (macinfo_type != 0);
24828 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24829 int section_is_gnu)
24831 struct dwarf2_per_objfile *dwarf2_per_objfile
24832 = cu->per_cu->dwarf2_per_objfile;
24833 struct objfile *objfile = dwarf2_per_objfile->objfile;
24834 struct line_header *lh = cu->line_header;
24836 const gdb_byte *mac_ptr, *mac_end;
24837 struct macro_source_file *current_file = 0;
24838 enum dwarf_macro_record_type macinfo_type;
24839 unsigned int offset_size = cu->header.offset_size;
24840 const gdb_byte *opcode_definitions[256];
24842 struct dwarf2_section_info *section;
24843 const char *section_name;
24845 if (cu->dwo_unit != NULL)
24847 if (section_is_gnu)
24849 section = &cu->dwo_unit->dwo_file->sections.macro;
24850 section_name = ".debug_macro.dwo";
24854 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24855 section_name = ".debug_macinfo.dwo";
24860 if (section_is_gnu)
24862 section = &dwarf2_per_objfile->macro;
24863 section_name = ".debug_macro";
24867 section = &dwarf2_per_objfile->macinfo;
24868 section_name = ".debug_macinfo";
24872 dwarf2_read_section (objfile, section);
24873 if (section->buffer == NULL)
24875 complaint (_("missing %s section"), section_name);
24878 abfd = get_section_bfd_owner (section);
24880 /* First pass: Find the name of the base filename.
24881 This filename is needed in order to process all macros whose definition
24882 (or undefinition) comes from the command line. These macros are defined
24883 before the first DW_MACINFO_start_file entry, and yet still need to be
24884 associated to the base file.
24886 To determine the base file name, we scan the macro definitions until we
24887 reach the first DW_MACINFO_start_file entry. We then initialize
24888 CURRENT_FILE accordingly so that any macro definition found before the
24889 first DW_MACINFO_start_file can still be associated to the base file. */
24891 mac_ptr = section->buffer + offset;
24892 mac_end = section->buffer + section->size;
24894 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24895 &offset_size, section_is_gnu);
24896 if (mac_ptr == NULL)
24898 /* We already issued a complaint. */
24904 /* Do we at least have room for a macinfo type byte? */
24905 if (mac_ptr >= mac_end)
24907 /* Complaint is printed during the second pass as GDB will probably
24908 stop the first pass earlier upon finding
24909 DW_MACINFO_start_file. */
24913 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24916 /* Note that we rely on the fact that the corresponding GNU and
24917 DWARF constants are the same. */
24919 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24920 switch (macinfo_type)
24922 /* A zero macinfo type indicates the end of the macro
24927 case DW_MACRO_define:
24928 case DW_MACRO_undef:
24929 /* Only skip the data by MAC_PTR. */
24931 unsigned int bytes_read;
24933 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24934 mac_ptr += bytes_read;
24935 read_direct_string (abfd, mac_ptr, &bytes_read);
24936 mac_ptr += bytes_read;
24940 case DW_MACRO_start_file:
24942 unsigned int bytes_read;
24945 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24946 mac_ptr += bytes_read;
24947 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24948 mac_ptr += bytes_read;
24950 current_file = macro_start_file (cu, file, line, current_file, lh);
24954 case DW_MACRO_end_file:
24955 /* No data to skip by MAC_PTR. */
24958 case DW_MACRO_define_strp:
24959 case DW_MACRO_undef_strp:
24960 case DW_MACRO_define_sup:
24961 case DW_MACRO_undef_sup:
24963 unsigned int bytes_read;
24965 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24966 mac_ptr += bytes_read;
24967 mac_ptr += offset_size;
24971 case DW_MACRO_import:
24972 case DW_MACRO_import_sup:
24973 /* Note that, according to the spec, a transparent include
24974 chain cannot call DW_MACRO_start_file. So, we can just
24975 skip this opcode. */
24976 mac_ptr += offset_size;
24979 case DW_MACINFO_vendor_ext:
24980 /* Only skip the data by MAC_PTR. */
24981 if (!section_is_gnu)
24983 unsigned int bytes_read;
24985 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24986 mac_ptr += bytes_read;
24987 read_direct_string (abfd, mac_ptr, &bytes_read);
24988 mac_ptr += bytes_read;
24993 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24994 mac_ptr, mac_end, abfd, offset_size,
24996 if (mac_ptr == NULL)
25001 } while (macinfo_type != 0 && current_file == NULL);
25003 /* Second pass: Process all entries.
25005 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25006 command-line macro definitions/undefinitions. This flag is unset when we
25007 reach the first DW_MACINFO_start_file entry. */
25009 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25011 NULL, xcalloc, xfree));
25012 mac_ptr = section->buffer + offset;
25013 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25014 *slot = (void *) mac_ptr;
25015 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25016 current_file, lh, section,
25017 section_is_gnu, 0, offset_size,
25018 include_hash.get ());
25021 /* Check if the attribute's form is a DW_FORM_block*
25022 if so return true else false. */
25025 attr_form_is_block (const struct attribute *attr)
25027 return (attr == NULL ? 0 :
25028 attr->form == DW_FORM_block1
25029 || attr->form == DW_FORM_block2
25030 || attr->form == DW_FORM_block4
25031 || attr->form == DW_FORM_block
25032 || attr->form == DW_FORM_exprloc);
25035 /* Return non-zero if ATTR's value is a section offset --- classes
25036 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25037 You may use DW_UNSND (attr) to retrieve such offsets.
25039 Section 7.5.4, "Attribute Encodings", explains that no attribute
25040 may have a value that belongs to more than one of these classes; it
25041 would be ambiguous if we did, because we use the same forms for all
25045 attr_form_is_section_offset (const struct attribute *attr)
25047 return (attr->form == DW_FORM_data4
25048 || attr->form == DW_FORM_data8
25049 || attr->form == DW_FORM_sec_offset);
25052 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25053 zero otherwise. When this function returns true, you can apply
25054 dwarf2_get_attr_constant_value to it.
25056 However, note that for some attributes you must check
25057 attr_form_is_section_offset before using this test. DW_FORM_data4
25058 and DW_FORM_data8 are members of both the constant class, and of
25059 the classes that contain offsets into other debug sections
25060 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25061 that, if an attribute's can be either a constant or one of the
25062 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25063 taken as section offsets, not constants.
25065 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25066 cannot handle that. */
25069 attr_form_is_constant (const struct attribute *attr)
25071 switch (attr->form)
25073 case DW_FORM_sdata:
25074 case DW_FORM_udata:
25075 case DW_FORM_data1:
25076 case DW_FORM_data2:
25077 case DW_FORM_data4:
25078 case DW_FORM_data8:
25079 case DW_FORM_implicit_const:
25087 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25088 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25091 attr_form_is_ref (const struct attribute *attr)
25093 switch (attr->form)
25095 case DW_FORM_ref_addr:
25100 case DW_FORM_ref_udata:
25101 case DW_FORM_GNU_ref_alt:
25108 /* Return the .debug_loc section to use for CU.
25109 For DWO files use .debug_loc.dwo. */
25111 static struct dwarf2_section_info *
25112 cu_debug_loc_section (struct dwarf2_cu *cu)
25114 struct dwarf2_per_objfile *dwarf2_per_objfile
25115 = cu->per_cu->dwarf2_per_objfile;
25119 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25121 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
25123 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25124 : &dwarf2_per_objfile->loc);
25127 /* A helper function that fills in a dwarf2_loclist_baton. */
25130 fill_in_loclist_baton (struct dwarf2_cu *cu,
25131 struct dwarf2_loclist_baton *baton,
25132 const struct attribute *attr)
25134 struct dwarf2_per_objfile *dwarf2_per_objfile
25135 = cu->per_cu->dwarf2_per_objfile;
25136 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25138 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25140 baton->per_cu = cu->per_cu;
25141 gdb_assert (baton->per_cu);
25142 /* We don't know how long the location list is, but make sure we
25143 don't run off the edge of the section. */
25144 baton->size = section->size - DW_UNSND (attr);
25145 baton->data = section->buffer + DW_UNSND (attr);
25146 baton->base_address = cu->base_address;
25147 baton->from_dwo = cu->dwo_unit != NULL;
25151 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25152 struct dwarf2_cu *cu, int is_block)
25154 struct dwarf2_per_objfile *dwarf2_per_objfile
25155 = cu->per_cu->dwarf2_per_objfile;
25156 struct objfile *objfile = dwarf2_per_objfile->objfile;
25157 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25159 if (attr_form_is_section_offset (attr)
25160 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25161 the section. If so, fall through to the complaint in the
25163 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25165 struct dwarf2_loclist_baton *baton;
25167 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25169 fill_in_loclist_baton (cu, baton, attr);
25171 if (cu->base_known == 0)
25172 complaint (_("Location list used without "
25173 "specifying the CU base address."));
25175 SYMBOL_ACLASS_INDEX (sym) = (is_block
25176 ? dwarf2_loclist_block_index
25177 : dwarf2_loclist_index);
25178 SYMBOL_LOCATION_BATON (sym) = baton;
25182 struct dwarf2_locexpr_baton *baton;
25184 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25185 baton->per_cu = cu->per_cu;
25186 gdb_assert (baton->per_cu);
25188 if (attr_form_is_block (attr))
25190 /* Note that we're just copying the block's data pointer
25191 here, not the actual data. We're still pointing into the
25192 info_buffer for SYM's objfile; right now we never release
25193 that buffer, but when we do clean up properly this may
25195 baton->size = DW_BLOCK (attr)->size;
25196 baton->data = DW_BLOCK (attr)->data;
25200 dwarf2_invalid_attrib_class_complaint ("location description",
25201 SYMBOL_NATURAL_NAME (sym));
25205 SYMBOL_ACLASS_INDEX (sym) = (is_block
25206 ? dwarf2_locexpr_block_index
25207 : dwarf2_locexpr_index);
25208 SYMBOL_LOCATION_BATON (sym) = baton;
25212 /* Return the OBJFILE associated with the compilation unit CU. If CU
25213 came from a separate debuginfo file, then the master objfile is
25217 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25219 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25221 /* Return the master objfile, so that we can report and look up the
25222 correct file containing this variable. */
25223 if (objfile->separate_debug_objfile_backlink)
25224 objfile = objfile->separate_debug_objfile_backlink;
25229 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25230 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25231 CU_HEADERP first. */
25233 static const struct comp_unit_head *
25234 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25235 struct dwarf2_per_cu_data *per_cu)
25237 const gdb_byte *info_ptr;
25240 return &per_cu->cu->header;
25242 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25244 memset (cu_headerp, 0, sizeof (*cu_headerp));
25245 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25246 rcuh_kind::COMPILE);
25251 /* Return the address size given in the compilation unit header for CU. */
25254 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25256 struct comp_unit_head cu_header_local;
25257 const struct comp_unit_head *cu_headerp;
25259 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25261 return cu_headerp->addr_size;
25264 /* Return the offset size given in the compilation unit header for CU. */
25267 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25269 struct comp_unit_head cu_header_local;
25270 const struct comp_unit_head *cu_headerp;
25272 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25274 return cu_headerp->offset_size;
25277 /* See its dwarf2loc.h declaration. */
25280 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25282 struct comp_unit_head cu_header_local;
25283 const struct comp_unit_head *cu_headerp;
25285 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25287 if (cu_headerp->version == 2)
25288 return cu_headerp->addr_size;
25290 return cu_headerp->offset_size;
25293 /* Return the text offset of the CU. The returned offset comes from
25294 this CU's objfile. If this objfile came from a separate debuginfo
25295 file, then the offset may be different from the corresponding
25296 offset in the parent objfile. */
25299 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25301 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25303 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25306 /* Return DWARF version number of PER_CU. */
25309 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25311 return per_cu->dwarf_version;
25314 /* Locate the .debug_info compilation unit from CU's objfile which contains
25315 the DIE at OFFSET. Raises an error on failure. */
25317 static struct dwarf2_per_cu_data *
25318 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25319 unsigned int offset_in_dwz,
25320 struct dwarf2_per_objfile *dwarf2_per_objfile)
25322 struct dwarf2_per_cu_data *this_cu;
25326 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25329 struct dwarf2_per_cu_data *mid_cu;
25330 int mid = low + (high - low) / 2;
25332 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25333 if (mid_cu->is_dwz > offset_in_dwz
25334 || (mid_cu->is_dwz == offset_in_dwz
25335 && mid_cu->sect_off + mid_cu->length >= sect_off))
25340 gdb_assert (low == high);
25341 this_cu = dwarf2_per_objfile->all_comp_units[low];
25342 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25344 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25345 error (_("Dwarf Error: could not find partial DIE containing "
25346 "offset %s [in module %s]"),
25347 sect_offset_str (sect_off),
25348 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25350 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25352 return dwarf2_per_objfile->all_comp_units[low-1];
25356 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25357 && sect_off >= this_cu->sect_off + this_cu->length)
25358 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25359 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25364 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25366 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25367 : per_cu (per_cu_),
25369 has_loclist (false),
25370 checked_producer (false),
25371 producer_is_gxx_lt_4_6 (false),
25372 producer_is_gcc_lt_4_3 (false),
25373 producer_is_icc (false),
25374 producer_is_icc_lt_14 (false),
25375 producer_is_codewarrior (false),
25376 processing_has_namespace_info (false)
25381 /* Destroy a dwarf2_cu. */
25383 dwarf2_cu::~dwarf2_cu ()
25388 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25391 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25392 enum language pretend_language)
25394 struct attribute *attr;
25396 /* Set the language we're debugging. */
25397 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25399 set_cu_language (DW_UNSND (attr), cu);
25402 cu->language = pretend_language;
25403 cu->language_defn = language_def (cu->language);
25406 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25409 /* Increase the age counter on each cached compilation unit, and free
25410 any that are too old. */
25413 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25415 struct dwarf2_per_cu_data *per_cu, **last_chain;
25417 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25418 per_cu = dwarf2_per_objfile->read_in_chain;
25419 while (per_cu != NULL)
25421 per_cu->cu->last_used ++;
25422 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25423 dwarf2_mark (per_cu->cu);
25424 per_cu = per_cu->cu->read_in_chain;
25427 per_cu = dwarf2_per_objfile->read_in_chain;
25428 last_chain = &dwarf2_per_objfile->read_in_chain;
25429 while (per_cu != NULL)
25431 struct dwarf2_per_cu_data *next_cu;
25433 next_cu = per_cu->cu->read_in_chain;
25435 if (!per_cu->cu->mark)
25438 *last_chain = next_cu;
25441 last_chain = &per_cu->cu->read_in_chain;
25447 /* Remove a single compilation unit from the cache. */
25450 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25452 struct dwarf2_per_cu_data *per_cu, **last_chain;
25453 struct dwarf2_per_objfile *dwarf2_per_objfile
25454 = target_per_cu->dwarf2_per_objfile;
25456 per_cu = dwarf2_per_objfile->read_in_chain;
25457 last_chain = &dwarf2_per_objfile->read_in_chain;
25458 while (per_cu != NULL)
25460 struct dwarf2_per_cu_data *next_cu;
25462 next_cu = per_cu->cu->read_in_chain;
25464 if (per_cu == target_per_cu)
25468 *last_chain = next_cu;
25472 last_chain = &per_cu->cu->read_in_chain;
25478 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25479 We store these in a hash table separate from the DIEs, and preserve them
25480 when the DIEs are flushed out of cache.
25482 The CU "per_cu" pointer is needed because offset alone is not enough to
25483 uniquely identify the type. A file may have multiple .debug_types sections,
25484 or the type may come from a DWO file. Furthermore, while it's more logical
25485 to use per_cu->section+offset, with Fission the section with the data is in
25486 the DWO file but we don't know that section at the point we need it.
25487 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25488 because we can enter the lookup routine, get_die_type_at_offset, from
25489 outside this file, and thus won't necessarily have PER_CU->cu.
25490 Fortunately, PER_CU is stable for the life of the objfile. */
25492 struct dwarf2_per_cu_offset_and_type
25494 const struct dwarf2_per_cu_data *per_cu;
25495 sect_offset sect_off;
25499 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25502 per_cu_offset_and_type_hash (const void *item)
25504 const struct dwarf2_per_cu_offset_and_type *ofs
25505 = (const struct dwarf2_per_cu_offset_and_type *) item;
25507 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25510 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25513 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25515 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25516 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25517 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25518 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25520 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25521 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25524 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25525 table if necessary. For convenience, return TYPE.
25527 The DIEs reading must have careful ordering to:
25528 * Not cause infite loops trying to read in DIEs as a prerequisite for
25529 reading current DIE.
25530 * Not trying to dereference contents of still incompletely read in types
25531 while reading in other DIEs.
25532 * Enable referencing still incompletely read in types just by a pointer to
25533 the type without accessing its fields.
25535 Therefore caller should follow these rules:
25536 * Try to fetch any prerequisite types we may need to build this DIE type
25537 before building the type and calling set_die_type.
25538 * After building type call set_die_type for current DIE as soon as
25539 possible before fetching more types to complete the current type.
25540 * Make the type as complete as possible before fetching more types. */
25542 static struct type *
25543 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25545 struct dwarf2_per_objfile *dwarf2_per_objfile
25546 = cu->per_cu->dwarf2_per_objfile;
25547 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25548 struct objfile *objfile = dwarf2_per_objfile->objfile;
25549 struct attribute *attr;
25550 struct dynamic_prop prop;
25552 /* For Ada types, make sure that the gnat-specific data is always
25553 initialized (if not already set). There are a few types where
25554 we should not be doing so, because the type-specific area is
25555 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25556 where the type-specific area is used to store the floatformat).
25557 But this is not a problem, because the gnat-specific information
25558 is actually not needed for these types. */
25559 if (need_gnat_info (cu)
25560 && TYPE_CODE (type) != TYPE_CODE_FUNC
25561 && TYPE_CODE (type) != TYPE_CODE_FLT
25562 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25563 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25564 && TYPE_CODE (type) != TYPE_CODE_METHOD
25565 && !HAVE_GNAT_AUX_INFO (type))
25566 INIT_GNAT_SPECIFIC (type);
25568 /* Read DW_AT_allocated and set in type. */
25569 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25570 if (attr_form_is_block (attr))
25572 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25573 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25575 else if (attr != NULL)
25577 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25578 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25579 sect_offset_str (die->sect_off));
25582 /* Read DW_AT_associated and set in type. */
25583 attr = dwarf2_attr (die, DW_AT_associated, cu);
25584 if (attr_form_is_block (attr))
25586 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25587 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25589 else if (attr != NULL)
25591 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25592 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25593 sect_offset_str (die->sect_off));
25596 /* Read DW_AT_data_location and set in type. */
25597 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25598 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25599 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25601 if (dwarf2_per_objfile->die_type_hash == NULL)
25603 dwarf2_per_objfile->die_type_hash =
25604 htab_create_alloc_ex (127,
25605 per_cu_offset_and_type_hash,
25606 per_cu_offset_and_type_eq,
25608 &objfile->objfile_obstack,
25609 hashtab_obstack_allocate,
25610 dummy_obstack_deallocate);
25613 ofs.per_cu = cu->per_cu;
25614 ofs.sect_off = die->sect_off;
25616 slot = (struct dwarf2_per_cu_offset_and_type **)
25617 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25619 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25620 sect_offset_str (die->sect_off));
25621 *slot = XOBNEW (&objfile->objfile_obstack,
25622 struct dwarf2_per_cu_offset_and_type);
25627 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25628 or return NULL if the die does not have a saved type. */
25630 static struct type *
25631 get_die_type_at_offset (sect_offset sect_off,
25632 struct dwarf2_per_cu_data *per_cu)
25634 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25635 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25637 if (dwarf2_per_objfile->die_type_hash == NULL)
25640 ofs.per_cu = per_cu;
25641 ofs.sect_off = sect_off;
25642 slot = ((struct dwarf2_per_cu_offset_and_type *)
25643 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25650 /* Look up the type for DIE in CU in die_type_hash,
25651 or return NULL if DIE does not have a saved type. */
25653 static struct type *
25654 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25656 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25659 /* Add a dependence relationship from CU to REF_PER_CU. */
25662 dwarf2_add_dependence (struct dwarf2_cu *cu,
25663 struct dwarf2_per_cu_data *ref_per_cu)
25667 if (cu->dependencies == NULL)
25669 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25670 NULL, &cu->comp_unit_obstack,
25671 hashtab_obstack_allocate,
25672 dummy_obstack_deallocate);
25674 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25676 *slot = ref_per_cu;
25679 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25680 Set the mark field in every compilation unit in the
25681 cache that we must keep because we are keeping CU. */
25684 dwarf2_mark_helper (void **slot, void *data)
25686 struct dwarf2_per_cu_data *per_cu;
25688 per_cu = (struct dwarf2_per_cu_data *) *slot;
25690 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25691 reading of the chain. As such dependencies remain valid it is not much
25692 useful to track and undo them during QUIT cleanups. */
25693 if (per_cu->cu == NULL)
25696 if (per_cu->cu->mark)
25698 per_cu->cu->mark = true;
25700 if (per_cu->cu->dependencies != NULL)
25701 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25706 /* Set the mark field in CU and in every other compilation unit in the
25707 cache that we must keep because we are keeping CU. */
25710 dwarf2_mark (struct dwarf2_cu *cu)
25715 if (cu->dependencies != NULL)
25716 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25720 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25724 per_cu->cu->mark = false;
25725 per_cu = per_cu->cu->read_in_chain;
25729 /* Trivial hash function for partial_die_info: the hash value of a DIE
25730 is its offset in .debug_info for this objfile. */
25733 partial_die_hash (const void *item)
25735 const struct partial_die_info *part_die
25736 = (const struct partial_die_info *) item;
25738 return to_underlying (part_die->sect_off);
25741 /* Trivial comparison function for partial_die_info structures: two DIEs
25742 are equal if they have the same offset. */
25745 partial_die_eq (const void *item_lhs, const void *item_rhs)
25747 const struct partial_die_info *part_die_lhs
25748 = (const struct partial_die_info *) item_lhs;
25749 const struct partial_die_info *part_die_rhs
25750 = (const struct partial_die_info *) item_rhs;
25752 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25755 struct cmd_list_element *set_dwarf_cmdlist;
25756 struct cmd_list_element *show_dwarf_cmdlist;
25759 set_dwarf_cmd (const char *args, int from_tty)
25761 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25766 show_dwarf_cmd (const char *args, int from_tty)
25768 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25771 int dwarf_always_disassemble;
25774 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25775 struct cmd_list_element *c, const char *value)
25777 fprintf_filtered (file,
25778 _("Whether to always disassemble "
25779 "DWARF expressions is %s.\n"),
25784 show_check_physname (struct ui_file *file, int from_tty,
25785 struct cmd_list_element *c, const char *value)
25787 fprintf_filtered (file,
25788 _("Whether to check \"physname\" is %s.\n"),
25793 _initialize_dwarf2_read (void)
25795 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25796 Set DWARF specific variables.\n\
25797 Configure DWARF variables such as the cache size"),
25798 &set_dwarf_cmdlist, "maintenance set dwarf ",
25799 0/*allow-unknown*/, &maintenance_set_cmdlist);
25801 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25802 Show DWARF specific variables\n\
25803 Show DWARF variables such as the cache size"),
25804 &show_dwarf_cmdlist, "maintenance show dwarf ",
25805 0/*allow-unknown*/, &maintenance_show_cmdlist);
25807 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25808 &dwarf_max_cache_age, _("\
25809 Set the upper bound on the age of cached DWARF compilation units."), _("\
25810 Show the upper bound on the age of cached DWARF compilation units."), _("\
25811 A higher limit means that cached compilation units will be stored\n\
25812 in memory longer, and more total memory will be used. Zero disables\n\
25813 caching, which can slow down startup."),
25815 show_dwarf_max_cache_age,
25816 &set_dwarf_cmdlist,
25817 &show_dwarf_cmdlist);
25819 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25820 &dwarf_always_disassemble, _("\
25821 Set whether `info address' always disassembles DWARF expressions."), _("\
25822 Show whether `info address' always disassembles DWARF expressions."), _("\
25823 When enabled, DWARF expressions are always printed in an assembly-like\n\
25824 syntax. When disabled, expressions will be printed in a more\n\
25825 conversational style, when possible."),
25827 show_dwarf_always_disassemble,
25828 &set_dwarf_cmdlist,
25829 &show_dwarf_cmdlist);
25831 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25832 Set debugging of the DWARF reader."), _("\
25833 Show debugging of the DWARF reader."), _("\
25834 When enabled (non-zero), debugging messages are printed during DWARF\n\
25835 reading and symtab expansion. A value of 1 (one) provides basic\n\
25836 information. A value greater than 1 provides more verbose information."),
25839 &setdebuglist, &showdebuglist);
25841 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25842 Set debugging of the DWARF DIE reader."), _("\
25843 Show debugging of the DWARF DIE reader."), _("\
25844 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25845 The value is the maximum depth to print."),
25848 &setdebuglist, &showdebuglist);
25850 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25851 Set debugging of the dwarf line reader."), _("\
25852 Show debugging of the dwarf line reader."), _("\
25853 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25854 A value of 1 (one) provides basic information.\n\
25855 A value greater than 1 provides more verbose information."),
25858 &setdebuglist, &showdebuglist);
25860 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25861 Set cross-checking of \"physname\" code against demangler."), _("\
25862 Show cross-checking of \"physname\" code against demangler."), _("\
25863 When enabled, GDB's internal \"physname\" code is checked against\n\
25865 NULL, show_check_physname,
25866 &setdebuglist, &showdebuglist);
25868 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25869 no_class, &use_deprecated_index_sections, _("\
25870 Set whether to use deprecated gdb_index sections."), _("\
25871 Show whether to use deprecated gdb_index sections."), _("\
25872 When enabled, deprecated .gdb_index sections are used anyway.\n\
25873 Normally they are ignored either because of a missing feature or\n\
25874 performance issue.\n\
25875 Warning: This option must be enabled before gdb reads the file."),
25878 &setlist, &showlist);
25880 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25881 &dwarf2_locexpr_funcs);
25882 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25883 &dwarf2_loclist_funcs);
25885 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25886 &dwarf2_block_frame_base_locexpr_funcs);
25887 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25888 &dwarf2_block_frame_base_loclist_funcs);
25891 selftests::register_test ("dw2_expand_symtabs_matching",
25892 selftests::dw2_expand_symtabs_matching::run_test);