1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
47 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
57 #include "typeprint.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "filestuff.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
83 #include <sys/types.h>
85 #include <unordered_set>
86 #include <unordered_map>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
111 static const struct objfile_data *dwarf2_objfile_data_key;
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
133 struct name_component
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
140 /* The symbol's index in the symbol and constant pool tables of a
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
148 struct mapped_index_base
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
166 /* Return whether the name at IDX in the symbol table should be
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
173 /* Build the symbol name component sorted vector, if we haven't
175 void build_name_components ();
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184 /* Prevent deleting/destroying via a base class pointer. */
186 ~mapped_index_base() = default;
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
196 const offset_type name;
197 const offset_type vec;
200 /* Index data format version. */
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
212 bool symbol_name_slot_invalid (offset_type idx) const override
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
218 /* Convenience method to get at the name of the symbol at IDX in the
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
253 /* Attribute name DW_IDX_*. */
256 /* Attribute form DW_FORM_*. */
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
262 std::vector<attr> attr_vec;
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
267 const char *namei_to_name (uint32_t namei) const;
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
275 size_t symbol_name_count () const override
276 { return this->name_count; }
279 /* See dwarf2read.h. */
282 get_dwarf2_per_objfile (struct objfile *objfile)
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
298 /* Default names of the debugging sections. */
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
326 /* List of DWO/DWP sections. */
328 static const struct dwop_section_names
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
359 /* local data types */
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
377 enum dwarf_unit_type unit_type;
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
399 /* The type to which the method is attached, i.e., its parent class. */
402 /* The index of the method in the type's function fieldlists. */
405 /* The index of the method in the fieldlist. */
408 /* The name of the DIE. */
411 /* The DIE associated with this method. */
412 struct die_info *die;
415 /* Internal state when decoding a particular compilation unit. */
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
429 /* Non-zero if base_address has been set. */
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
436 const char *producer = nullptr;
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
466 /* How many compilation units ago was this CU last referenced? */
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
506 struct dwo_unit *dwo_unit = nullptr;
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
555 unsigned int processing_has_namespace_info : 1;
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
563 struct stmt_list_hash
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
575 struct type_unit_group
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
602 /* The symbol tables for this TU (obtained from the files listed in
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
613 /* These sections are what may appear in a (real or virtual) DWO file. */
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
630 /* CUs/TUs in DWP/DWO files. */
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
657 enum dwp_v2_section_ids
662 /* Data for one DWO file.
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
704 /* These sections are what may appear in a DWP file. */
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
734 struct virtual_v1_dwo_sections
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
752 struct virtual_v2_dwo_sections
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
778 /* Contents of DWP hash tables. */
780 struct dwp_hash_table
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
789 const gdb_byte *indices;
793 /* This is indexed by column number and gives the id of the section
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
809 /* Data for one DWP file. */
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
815 dbfd (std::move (abfd))
819 /* Name of the file. */
822 /* File format version. */
826 gdb_bfd_ref_ptr dbfd;
828 /* Section info for this file. */
829 struct dwp_sections sections {};
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
847 /* This represents a '.dwz' file. */
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
866 gdb_bfd_ref_ptr dwz_bfd;
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
874 struct die_reader_specs
876 /* The bfd of die_section. */
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
912 enum class dir_index : unsigned int {};
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
919 file_entry () = default;
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
925 mod_time (mod_time_),
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
937 /* The directory index (1-based). */
938 dir_index d_index {};
940 unsigned int mod_time {};
942 unsigned int length {};
944 /* True if referenced by the Line Number Program. */
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
969 const char *include_dir_at (dir_index index) const
971 /* Convert directory index number (1-based) to vector index
973 size_t vec_index = to_underlying (index) - 1;
975 if (vec_index >= include_dirs.size ())
977 return include_dirs[vec_index];
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
982 file_entry *file_name_at (file_name_index index)
984 /* Convert file name index number (1-based) to vector index
986 size_t vec_index = to_underlying (index) - 1;
988 if (vec_index >= file_names.size ())
990 return &file_names[vec_index];
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
996 if (index >= file_names.size ())
998 return &file_names[index];
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1035 typedef std::unique_ptr<line_header> line_header_up;
1038 file_entry::include_dir (const line_header *lh) const
1040 return lh->include_dir_at (d_index);
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1056 void fixup (struct dwarf2_cu *cu);
1058 /* Read a minimal amount of information into the minimal die
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1083 /* Flag set if the SCOPE field of this structure has been
1085 unsigned int scope_set : 1;
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 has_specification = 0;
1168 main_subprogram = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1179 /* This data structure holds the information of an abbrev. */
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1202 /* Top level data structure to contain an abbreviation table. */
1206 explicit abbrev_table (sect_offset off)
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1216 /* Allocate space for a struct abbrev_info object in
1218 struct abbrev_info *alloc_abbrev ();
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1242 struct abbrev_info **m_abbrevs;
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1247 /* Attributes have a name and a value. */
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1261 struct dwarf_block *blk;
1270 /* This data structure holds a complete die structure. */
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1287 unsigned int abbrev;
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1306 /* Get at parts of an attribute structure. */
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1316 /* Blocks are a bunch of untyped bytes. */
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1337 static int bits_per_byte = 8;
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1343 struct variant_field
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1358 int accessibility = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1380 /* Number of fields (including baseclasses). */
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1395 /* Nested types defined by this class and the number of elements in this
1397 std::vector<struct decl_field> nested_types_list;
1400 /* One item on the queue of compilation units to read in full symbols
1402 struct dwarf2_queue_item
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1427 /* local function prototypes */
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1573 static void dwarf2_start_subfile (const char *, const char *);
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1595 static int need_gnat_info (struct dwarf2_cu *);
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1655 struct partial_symtab *);
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1676 struct dwarf2_cu *);
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1686 static struct using_direct **using_directives (enum language);
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1739 static const char *dwarf_tag_name (unsigned int);
1741 static const char *dwarf_attr_name (unsigned int);
1743 static const char *dwarf_form_name (unsigned int);
1745 static const char *dwarf_bool_name (unsigned int);
1747 static const char *dwarf_type_encoding_name (unsigned int);
1749 static struct die_info *sibling_die (struct die_info *);
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1753 static void dump_die_for_error (struct die_info *);
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1788 static void read_signatured_type (struct signatured_type *);
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1794 /* memory allocation interface */
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1802 static int attr_form_is_block (const struct attribute *);
1804 static int attr_form_is_section_offset (const struct attribute *);
1806 static int attr_form_is_constant (const struct attribute *);
1808 static int attr_form_is_ref (const struct attribute *);
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1816 struct dwarf2_cu *cu,
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1823 static hashval_t partial_die_hash (const void *item);
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1858 static void dwarf2_mark (struct dwarf2_cu *);
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1877 class dwarf2_queue_guard
1880 dwarf2_queue_guard () = default;
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1886 struct dwarf2_queue_item *item, *last;
1888 item = dwarf2_queue;
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1912 struct file_and_directory
1914 /* The filename. This is never NULL. */
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1973 static void free_dwo_file (struct dwo_file *);
1975 /* A unique_ptr helper to free a dwo_file. */
1977 struct dwo_file_deleter
1979 void operator() (struct dwo_file *df) const
1985 /* A unique pointer to a dwo_file. */
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1991 static void check_producer (struct dwarf2_cu *cu);
1993 static void free_line_header_voidp (void *arg);
1995 /* Various complaints about symbol reading that don't abort the process. */
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2004 dwarf2_debug_line_missing_file_complaint (void)
2006 complaint (_(".debug_line section has line data without a file"));
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2017 dwarf2_complex_location_expr_complaint (void)
2019 complaint (_("location expression too complex"));
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2033 complaint (_("debug info runs off end of %s section"
2035 get_section_name (section),
2036 get_section_file_name (section));
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2054 /* Hash function for line_header_hash. */
2057 line_header_hash (const struct line_header *ofs)
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2065 line_header_hash_voidp (const void *item)
2067 const struct line_header *ofs = (const struct line_header *) item;
2069 return line_header_hash (ofs);
2072 /* Equality function for line_header_hash. */
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2090 attr_value_as_address (struct attribute *attr)
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2111 addr = DW_ADDR (attr);
2116 /* See declaration. */
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2123 names = &dwarf2_elf_names;
2125 bfd *obfd = objfile->obfd;
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2150 VEC_free (dwarf2_section_info_def, types);
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2155 /* Everything else should be on the objfile obstack. */
2158 /* See declaration. */
2161 dwarf2_per_objfile::free_cached_comp_units ()
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2170 *last_chain = next_cu;
2175 /* A helper class that calls free_cached_comp_units on
2178 class free_cached_comp_units
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2187 ~free_cached_comp_units ()
2189 m_per_objfile->free_cached_comp_units ();
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2196 dwarf2_per_objfile *m_per_objfile;
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2208 if (objfile->flags & OBJF_READNEVER)
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2214 if (dwarf2_per_objfile == NULL)
2216 /* Initialize per-objfile state. */
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2228 /* Return the containing section of virtual section SECTION. */
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2237 /* Return the bfd owner of SECTION. */
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2242 if (section->is_virtual)
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2247 return section->s.section->owner;
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2256 if (section->is_virtual)
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2261 return section->s.section;
2264 /* Return the name of SECTION. */
2267 get_section_name (const struct dwarf2_section_info *section)
2269 asection *sectp = get_section_bfd_section (section);
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2275 /* Return the name of the file SECTION is in. */
2278 get_section_file_name (const struct dwarf2_section_info *section)
2280 bfd *abfd = get_section_bfd_owner (section);
2282 return bfd_get_filename (abfd);
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2289 get_section_id (const struct dwarf2_section_info *section)
2291 asection *sectp = get_section_bfd_section (section);
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2302 get_section_flags (const struct dwarf2_section_info *section)
2304 asection *sectp = get_section_bfd_section (section);
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2326 /* See declaration. */
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2337 else if (section_is_p (sectp->name, &names.info))
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2342 else if (section_is_p (sectp->name, &names.abbrev))
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2347 else if (section_is_p (sectp->name, &names.line))
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2352 else if (section_is_p (sectp->name, &names.loc))
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2357 else if (section_is_p (sectp->name, &names.loclists))
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2362 else if (section_is_p (sectp->name, &names.macinfo))
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2367 else if (section_is_p (sectp->name, &names.macro))
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2372 else if (section_is_p (sectp->name, &names.str))
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2377 else if (section_is_p (sectp->name, &names.line_str))
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2382 else if (section_is_p (sectp->name, &names.addr))
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2387 else if (section_is_p (sectp->name, &names.frame))
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2397 else if (section_is_p (sectp->name, &names.ranges))
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2402 else if (section_is_p (sectp->name, &names.rnglists))
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2407 else if (section_is_p (sectp->name, &names.types))
2409 struct dwarf2_section_info type_section;
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2423 else if (section_is_p (sectp->name, &names.debug_names))
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2439 /* A helper function that decides whether a section is empty,
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2450 /* See dwarf2read.h. */
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2457 gdb_byte *buf, *retbuf;
2461 info->buffer = NULL;
2464 if (dwarf2_section_empty_p (info))
2467 sectp = get_section_bfd_section (info);
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 info->buffer = retbuf;
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2540 dwarf2_read_section (objfile, info);
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2558 /* We may see an objfile without any DWARF, in which case we just
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2576 gdb_assert_not_reached ("unexpected section");
2579 dwarf2_read_section (objfile, info);
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2586 /* A helper function to find the sections for a .dwz file. */
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2653 if (bfd_get_error () == bfd_error_no_error)
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2661 buildid_len = (size_t) buildid_len_arg;
2663 filename = data.get ();
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2703 /* DWARF quick_symbols_functions support. */
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2718 /* The file names from the line table, after being run through
2720 const char **file_names;
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2750 /* Utility hash function for a stmt_list_hash. */
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2763 /* Utility equality function for a stmt_list_hash. */
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2775 return lhs->line_sect_off == rhs->line_sect_off;
2778 /* Hash function for a quick_file_names. */
2781 hash_file_name_entry (const void *e)
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2786 return hash_stmt_list_entry (&file_data->hash);
2789 /* Equality function for a quick_file_names. */
2792 eq_file_name_entry (const void *a, const void *b)
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2800 /* Delete function for a quick_file_names. */
2803 delete_file_name_entry (void *e)
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2808 for (i = 0; i < file_data->num_file_names; ++i)
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2819 /* Create a quick_file_names hash table. */
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2847 /* Read in the symbols for PER_CU. */
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2884 process_queue (dwarf2_per_objfile);
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2909 return per_cu->v.quick->compunit_symtab;
2912 /* See declaration. */
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2917 if (index >= this->all_comp_units.size ())
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2924 return this->all_comp_units[index];
2927 /* See declaration. */
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2934 return this->all_comp_units[index];
2937 /* See declaration. */
2940 dwarf2_per_objfile::get_tu (int index)
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2944 return this->all_type_units[index];
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2955 sect_offset sect_off, ULONGEST length)
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2971 /* A helper for create_cus_from_index that handles a given list of
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2980 for (offset_type i = 0; i < n_elements; i += 2)
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3011 if (dwz_elements == 0)
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3019 /* Create the signatured type hash table from the index. */
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3035 for (offset_type i = 0; i < elements; i += 3)
3037 struct signatured_type *sig_type;
3040 cu_offset type_offset_in_tu;
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3072 /* Create the signatured type hash table from .debug_names. */
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3093 struct signatured_type *sig_type;
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3100 map.dwarf5_byte_order));
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3105 section->buffer + to_underlying (sect_off),
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3142 auto_obstack temp_obstack;
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3218 dwarf2_read_section (objfile, section);
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3222 const gdb_byte *addr = section->buffer;
3224 while (addr < section->buffer + section->size)
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3312 if (addr + 2 * address_size > entry_end)
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3330 /* Symbol was eliminated due to a COMDAT group. */
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3365 if (strchr (name, '(') != NULL)
3367 without_params = cp_remove_params (name);
3369 if (without_params != NULL)
3370 name = without_params.get ();
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3415 Returns 1 if all went well, 0 otherwise. */
3418 read_gdb_index_from_section (struct objfile *objfile,
3419 const char *filename,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3433 if (dwarf2_section_empty_p (section))
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3441 dwarf2_read_section (objfile, section);
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3457 warning_printed = 1;
3461 /* Index version 4 uses a different hash function than index version
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3479 warning_printed = 1;
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3496 map->version = version;
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3535 dwarf2_read_gdb_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_gdb_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3554 /* If there is a .dwz file, read it so we can get its CU list as
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3563 if (!read_gdb_index_from_section (objfile,
3564 bfd_get_filename (dwz->dwz_bfd), 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3568 &dwz_types_elements_ignore))
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3579 if (types_list_elements)
3581 struct dwarf2_section_info *section;
3583 /* We can only handle a single .debug_types when we have an
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3605 /* die_reader_func for dw2_get_file_names. */
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3623 struct quick_file_names *qfn;
3625 gdb_assert (! this_cu->is_debug_types);
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3631 this_cu->v.quick->no_file_data = 1;
3639 sect_offset line_offset {};
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3644 struct quick_file_names find_entry;
3646 line_offset = (sect_offset) DW_UNSND (attr);
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3660 lh = dwarf_decode_line_header (line_offset, cu);
3664 lh_cu->v.quick->no_file_data = 1;
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3676 qfn->num_file_names = lh->file_names.size ();
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3683 lh_cu->v.quick->file_names = qfn;
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3705 if (this_cu->v.quick->no_file_data)
3707 return this_cu->v.quick->file_names;
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3724 return qfn->real_names[index];
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3738 return compunit_primary_filetab (cust);
3741 /* Traversal function for dw2_forget_cached_source_info. */
3744 dw2_free_cached_file_names (void **slot, void *info)
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3748 if (file_data->real_names)
3752 for (i = 0; i < file_data->num_file_names; ++i)
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3787 /* This may expand more than one symtab, and we want to iterate over
3789 dw2_instantiate_symtab (per_cu, false);
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3795 /* Implementation of the map_symtabs_matching_filename method. */
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3824 if (compare_filenames_for_search (this_name, name))
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3847 if (real_path != NULL)
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3868 struct dw2_symtab_iterator
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3877 /* The kind of symbol we're looking for. */
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3882 /* The next element in VEC to look at. */
3884 /* The number of elements in VEC, or zero if there is no match. */
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3910 iter->global_seen = 0;
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3924 /* Return the next matching CU or NULL if there are no more. */
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3931 for ( ; iter->next < iter->length; ++iter->next)
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3953 complaint (_(".gdb_index entry has bad CU index"
3955 objfile_name (dwarf2_per_objfile->objfile));
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3965 /* Check static vs global. */
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3975 iter->global_seen = 1;
3978 /* Only check the symbol's kind if it has one. */
3981 switch (iter->domain)
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4047 /* Keep looking through other CUs. */
4054 dw2_print_stats (struct objfile *objfile)
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4062 for (int i = 0; i < total; ++i)
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4066 if (!per_cu->v.quick->compunit_symtab)
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4079 dw2_dump (struct objfile *objfile)
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4101 /* There's nothing to relocate here. */
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4131 for (int i = 0; i < total_units; ++i)
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4168 const char *this_fullname = file_data->file_names[j];
4170 if (filename_cmp (this_fullname, fullname) == 0)
4172 dw2_instantiate_symtab (per_cu, false);
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4193 /* Symbol name matcher for .gdb_index names.
4195 Symbol names in .gdb_index have a few particularities:
4197 - There's no indication of which is the language of each symbol.
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4217 class gdb_index_symbol_name_matcher
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4231 /* A vector holding all the different symbol name matchers, for all
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4247 matchers.push_back (default_symbol_name_matcher);
4249 for (int i = 0; i < nr_languages; i++)
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4286 make_sort_after_prefix_name (const char *search_name)
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4307 Some examples of this operation:
4309 SEARCH_NAME => "+1" RESULT
4313 "\xff" "a" "\xff" => "\xff" "b"
4318 Then, with these symbols for example:
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4330 funcÿ (Latin1 'ÿ' [0xff])
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4339 ÿÿ (Latin1 'ÿ' [0xff])
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4353 /* See declaration. */
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4389 /* Find the lower bound. */
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4398 /* Find the upper bound. */
4401 if (lookup_name_without_params.completion_mode ())
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4407 function << lower bound
4409 other_function << upper bound
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4414 std::string after = make_sort_after_prefix_name (cplus);
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4424 return {lower, upper};
4427 /* See declaration. */
4430 mapped_index_base::build_name_components ()
4432 if (!this->name_components.empty ())
4435 this->name_components_casing = case_sensitivity;
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4449 if (this->symbol_name_slot_invalid (idx))
4452 const char *name = this->symbol_name_at (idx);
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4464 previous_len = current_len;
4466 this->name_components.push_back ({previous_len, idx});
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4479 return name_cmp (left_name, right_name) < 0;
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4507 /* Build the symbol name component sorted vector, if we haven't
4509 index.build_name_components ();
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4526 for (; bounds.first != bounds.second; ++bounds.first)
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4534 matches.push_back (bounds.first->idx);
4537 std::sort (matches.begin (), matches.end ());
4539 /* Finally call the callback, once per match. */
4541 for (offset_type idx : matches)
4545 match_callback (idx);
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4575 return m_symbol_table.size ();
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4581 return m_symbol_table[idx];
4585 gdb::array_view<const char *> m_symbol_table;
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4592 string_or_null (const char *str)
4594 return str != NULL ? str : "<null>";
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4613 bool matched = true;
4615 auto mismatch = [&] (const char *expected_str,
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4621 (match_type == symbol_name_match_type::FULL
4623 name, string_or_null (expected_str), string_or_null (got));
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4632 [&] (offset_type idx)
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4650 /* The symbols added to the mock mapped_index for testing (in
4652 static const char *test_symbols[] = {
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4727 test_mapped_index_find_name_component_bounds ()
4729 mock_mapped_index mock_index (test_symbols);
4731 mock_index.build_name_components ();
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4736 static const char *expected_syms[] = {
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4748 static const char *expected_syms1[] = {
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4755 static const char *expected_syms2[] = {
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4766 test_dw2_expand_symtabs_matching_symbol ()
4768 mock_mapped_index mock_index (test_symbols);
4770 /* We let all tests run until the end even if some fails, for debug
4772 bool any_mismatch = false;
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4794 /* Should be able to match all existing symbols with
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4829 /* Check that completion mode works at each prefix of the expected
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4836 for (size_t i = 1; i < len; i++)
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4853 /* Same, with a "complicated" symbol. */
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4859 for (size_t i = 1; i < len; i++)
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4927 /* Test lookup names that don't match anything. */
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4939 static const char *syms[] = {
4943 "A :: B :: C ( int )",
4948 for (const char *s : syms)
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4963 SELF_CHECK (!any_mismatch);
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4978 #endif /* GDB_SELF_TEST */
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4996 dw2_instantiate_symtab (per_cu, false);
4998 if (expansion_notify != NULL
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5039 /* Work around gold/15646. */
5042 if (!is_static && global_seen)
5048 /* Only check the symbol's kind if it has one. */
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5074 complaint (_(".gdb_index entry has bad CU index"
5076 objfile_name (dwarf2_per_objfile->objfile));
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5095 if (file_matcher == NULL)
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5105 NULL, xcalloc, xfree));
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5114 per_cu->v.quick->mark = 0;
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5128 per_cu->v.quick->mark = 1;
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5134 const char *this_real_name;
5136 if (file_matcher (file_data->file_names[j], false))
5138 per_cu->v.quick->mark = 1;
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5152 per_cu->v.quick->mark = 1;
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5187 kind, [&] (offset_type idx)
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5207 if (cust->includes == NULL)
5210 for (i = 0; cust->includes[i]; ++i)
5212 struct compunit_symtab *s = cust->includes[i];
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5226 struct obj_section *section,
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5232 if (!objfile->psymtabs_addrmap)
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 gdb_assert (result != NULL);
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5259 if (!dwarf2_per_objfile->filenames_cache)
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5273 if (per_cu->v.quick->compunit_symtab)
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5279 *slot = per_cu->v.quick->file_names;
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 /* Already visited. */
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5320 dw2_has_symbols (struct objfile *objfile)
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5342 dw2_map_symbol_filenames
5345 /* DWARF-5 debug_names reader. */
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5354 Returns true if all went well, false otherwise. */
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5362 if (dwarf2_section_empty_p (section))
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5370 dwarf2_read_section (objfile, section);
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374 const gdb_byte *addr = section->buffer;
5376 bfd *const abfd = get_section_bfd_owner (section);
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5406 uint16_t padding = read_2_bytes (abfd, addr);
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5420 /* local_type_unit_count - The number of TUs in the local TU
5422 map.tu_count = read_4_bytes (abfd, addr);
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 if (foreign_tu_count != 0)
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5437 /* bucket_count - The number of hash buckets in the hash lookup
5439 map.bucket_count = read_4_bytes (abfd, addr);
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5482 const gdb_byte *abbrev_table_start = addr;
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5511 if (attr.form == DW_FORM_implicit_const)
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5517 if (attr.dw_idx == 0 && attr.form == 0)
5519 indexval.attr_vec.push_back (std::move (attr));
5522 if (addr != abbrev_table_start + abbrev_table_size)
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5529 map.entry_pool = addr;
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info §ion,
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5553 map.dwarf5_byte_order));
5556 sect_off_next = (sect_offset) section.size;
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 sect_off_prev = sect_off_next;
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5584 if (dwz_map.cu_count == 0)
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5612 /* If there is a .dwz file, read it so we can get its CU list as
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629 if (map->tu_count != 0)
5631 /* We can only handle a single .debug_types when we have an
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5657 class dw2_debug_names_iterator
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5675 m_addr (find_vec_in_debug_names (map, namei))
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5704 const gdb_byte *m_addr;
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5727 int (*cmp) (const char *, const char *);
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5736 if (strchr (name, '(') != NULL)
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5741 if (without_params != NULL)
5743 name = without_params.get();
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5759 if (namei >= map.name_count)
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5777 if (full_hash == namei_full_hash)
5779 const char *const namei_string = map.namei_to_name (namei);
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5791 if (cmp (namei_string, name) == 0)
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5802 if (namei >= map.name_count)
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5811 if (namei >= map.name_count)
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5827 /* See dw2_debug_names_iterator. */
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5852 pulongest (abbrev), objfile_name (objfile));
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5867 case DW_FORM_flag_present:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5880 switch (attr.dw_idx)
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5886 complaint (_(".debug_names entry has bad CU index %s"
5889 objfile_name (dwarf2_per_objfile->objfile));
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5898 complaint (_(".debug_names entry has bad TU index %s"
5901 objfile_name (dwarf2_per_objfile->objfile));
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5909 have_is_static = true;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5915 have_is_static = true;
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5925 /* Check static vs global. */
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5938 switch (indexval.dwarf_tag)
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5951 switch (indexval.dwarf_tag)
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5961 switch (indexval.dwarf_tag)
5964 case DW_TAG_variable:
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5981 case DW_TAG_variable:
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5990 case DW_TAG_subprogram:
5997 switch (indexval.dwarf_tag)
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6024 /* index is NULL if OBJF_READNOW. */
6027 const auto &map = *mapp;
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6056 /* Keep looking through other CUs. */
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6067 dw2_debug_names_dump (struct objfile *objfile)
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6125 kind, [&] (offset_type namei)
6127 /* The name was matched, now expand corresponding CUs that were
6129 dw2_debug_names_iterator iter (map, kind, namei);
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6146 dw2_debug_names_dump,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6155 dw2_map_symbol_filenames
6158 /* See symfile.h. */
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6170 if ((objfile->flags & OBJF_READNOW))
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6191 *index_kind = dw_index_kind::GDB_INDEX;
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6201 if (dwarf2_read_gdb_index (dwarf2_per_objfile))
6203 *index_kind = dw_index_kind::GDB_INDEX;
6212 /* Build a partial symbol table. */
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6233 CATCH (except, RETURN_MASK_ERROR)
6235 exception_print (gdb_stderr, except);
6240 /* Return the total length of the CU described by HEADER. */
6243 get_cu_length (const struct comp_unit_head *header)
6245 return header->initial_length_size + header->length;
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6256 return sect_off >= bottom && sect_off < top;
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6268 struct attribute *attr;
6271 cu->base_address = 0;
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6276 cu->base_address = attr_value_as_address (attr);
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6284 cu->base_address = attr_value_as_address (attr);
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6311 if (cu_header->version < 2 || cu_header->version > 5)
6312 error (_("Dwarf Error: wrong version in compilation unit header "
6313 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6314 cu_header->version, filename);
6316 if (cu_header->version < 5)
6317 switch (section_kind)
6319 case rcuh_kind::COMPILE:
6320 cu_header->unit_type = DW_UT_compile;
6322 case rcuh_kind::TYPE:
6323 cu_header->unit_type = DW_UT_type;
6326 internal_error (__FILE__, __LINE__,
6327 _("read_comp_unit_head: invalid section_kind"));
6331 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6332 (read_1_byte (abfd, info_ptr));
6334 switch (cu_header->unit_type)
6337 if (section_kind != rcuh_kind::COMPILE)
6338 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6339 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6343 section_kind = rcuh_kind::TYPE;
6346 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6347 "(is %d, should be %d or %d) [in module %s]"),
6348 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6351 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6354 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6357 info_ptr += bytes_read;
6358 if (cu_header->version < 5)
6360 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6363 signed_addr = bfd_get_sign_extend_vma (abfd);
6364 if (signed_addr < 0)
6365 internal_error (__FILE__, __LINE__,
6366 _("read_comp_unit_head: dwarf from non elf file"));
6367 cu_header->signed_addr_p = signed_addr;
6369 if (section_kind == rcuh_kind::TYPE)
6371 LONGEST type_offset;
6373 cu_header->signature = read_8_bytes (abfd, info_ptr);
6376 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6377 info_ptr += bytes_read;
6378 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6379 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6380 error (_("Dwarf Error: Too big type_offset in compilation unit "
6381 "header (is %s) [in module %s]"), plongest (type_offset),
6388 /* Helper function that returns the proper abbrev section for
6391 static struct dwarf2_section_info *
6392 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6394 struct dwarf2_section_info *abbrev;
6395 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6397 if (this_cu->is_dwz)
6398 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6400 abbrev = &dwarf2_per_objfile->abbrev;
6405 /* Subroutine of read_and_check_comp_unit_head and
6406 read_and_check_type_unit_head to simplify them.
6407 Perform various error checking on the header. */
6410 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6411 struct comp_unit_head *header,
6412 struct dwarf2_section_info *section,
6413 struct dwarf2_section_info *abbrev_section)
6415 const char *filename = get_section_file_name (section);
6417 if (to_underlying (header->abbrev_sect_off)
6418 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6419 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6420 "(offset %s + 6) [in module %s]"),
6421 sect_offset_str (header->abbrev_sect_off),
6422 sect_offset_str (header->sect_off),
6425 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6426 avoid potential 32-bit overflow. */
6427 if (((ULONGEST) header->sect_off + get_cu_length (header))
6429 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6430 "(offset %s + 0) [in module %s]"),
6431 header->length, sect_offset_str (header->sect_off),
6435 /* Read in a CU/TU header and perform some basic error checking.
6436 The contents of the header are stored in HEADER.
6437 The result is a pointer to the start of the first DIE. */
6439 static const gdb_byte *
6440 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6441 struct comp_unit_head *header,
6442 struct dwarf2_section_info *section,
6443 struct dwarf2_section_info *abbrev_section,
6444 const gdb_byte *info_ptr,
6445 rcuh_kind section_kind)
6447 const gdb_byte *beg_of_comp_unit = info_ptr;
6449 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6451 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6453 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6455 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6461 /* Fetch the abbreviation table offset from a comp or type unit header. */
6464 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6465 struct dwarf2_section_info *section,
6466 sect_offset sect_off)
6468 bfd *abfd = get_section_bfd_owner (section);
6469 const gdb_byte *info_ptr;
6470 unsigned int initial_length_size, offset_size;
6473 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6474 info_ptr = section->buffer + to_underlying (sect_off);
6475 read_initial_length (abfd, info_ptr, &initial_length_size);
6476 offset_size = initial_length_size == 4 ? 4 : 8;
6477 info_ptr += initial_length_size;
6479 version = read_2_bytes (abfd, info_ptr);
6483 /* Skip unit type and address size. */
6487 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6490 /* Allocate a new partial symtab for file named NAME and mark this new
6491 partial symtab as being an include of PST. */
6494 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6495 struct objfile *objfile)
6497 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6499 if (!IS_ABSOLUTE_PATH (subpst->filename))
6501 /* It shares objfile->objfile_obstack. */
6502 subpst->dirname = pst->dirname;
6505 subpst->textlow = 0;
6506 subpst->texthigh = 0;
6508 subpst->dependencies
6509 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6510 subpst->dependencies[0] = pst;
6511 subpst->number_of_dependencies = 1;
6513 subpst->globals_offset = 0;
6514 subpst->n_global_syms = 0;
6515 subpst->statics_offset = 0;
6516 subpst->n_static_syms = 0;
6517 subpst->compunit_symtab = NULL;
6518 subpst->read_symtab = pst->read_symtab;
6521 /* No private part is necessary for include psymtabs. This property
6522 can be used to differentiate between such include psymtabs and
6523 the regular ones. */
6524 subpst->read_symtab_private = NULL;
6527 /* Read the Line Number Program data and extract the list of files
6528 included by the source file represented by PST. Build an include
6529 partial symtab for each of these included files. */
6532 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6533 struct die_info *die,
6534 struct partial_symtab *pst)
6537 struct attribute *attr;
6539 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6541 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6543 return; /* No linetable, so no includes. */
6545 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6546 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6550 hash_signatured_type (const void *item)
6552 const struct signatured_type *sig_type
6553 = (const struct signatured_type *) item;
6555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6556 return sig_type->signature;
6560 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6562 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6563 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6565 return lhs->signature == rhs->signature;
6568 /* Allocate a hash table for signatured types. */
6571 allocate_signatured_type_table (struct objfile *objfile)
6573 return htab_create_alloc_ex (41,
6574 hash_signatured_type,
6577 &objfile->objfile_obstack,
6578 hashtab_obstack_allocate,
6579 dummy_obstack_deallocate);
6582 /* A helper function to add a signatured type CU to a table. */
6585 add_signatured_type_cu_to_table (void **slot, void *datum)
6587 struct signatured_type *sigt = (struct signatured_type *) *slot;
6588 std::vector<signatured_type *> *all_type_units
6589 = (std::vector<signatured_type *> *) datum;
6591 all_type_units->push_back (sigt);
6596 /* A helper for create_debug_types_hash_table. Read types from SECTION
6597 and fill them into TYPES_HTAB. It will process only type units,
6598 therefore DW_UT_type. */
6601 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6602 struct dwo_file *dwo_file,
6603 dwarf2_section_info *section, htab_t &types_htab,
6604 rcuh_kind section_kind)
6606 struct objfile *objfile = dwarf2_per_objfile->objfile;
6607 struct dwarf2_section_info *abbrev_section;
6609 const gdb_byte *info_ptr, *end_ptr;
6611 abbrev_section = (dwo_file != NULL
6612 ? &dwo_file->sections.abbrev
6613 : &dwarf2_per_objfile->abbrev);
6615 if (dwarf_read_debug)
6616 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6617 get_section_name (section),
6618 get_section_file_name (abbrev_section));
6620 dwarf2_read_section (objfile, section);
6621 info_ptr = section->buffer;
6623 if (info_ptr == NULL)
6626 /* We can't set abfd until now because the section may be empty or
6627 not present, in which case the bfd is unknown. */
6628 abfd = get_section_bfd_owner (section);
6630 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6631 because we don't need to read any dies: the signature is in the
6634 end_ptr = info_ptr + section->size;
6635 while (info_ptr < end_ptr)
6637 struct signatured_type *sig_type;
6638 struct dwo_unit *dwo_tu;
6640 const gdb_byte *ptr = info_ptr;
6641 struct comp_unit_head header;
6642 unsigned int length;
6644 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6646 /* Initialize it due to a false compiler warning. */
6647 header.signature = -1;
6648 header.type_cu_offset_in_tu = (cu_offset) -1;
6650 /* We need to read the type's signature in order to build the hash
6651 table, but we don't need anything else just yet. */
6653 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6654 abbrev_section, ptr, section_kind);
6656 length = get_cu_length (&header);
6658 /* Skip dummy type units. */
6659 if (ptr >= info_ptr + length
6660 || peek_abbrev_code (abfd, ptr) == 0
6661 || header.unit_type != DW_UT_type)
6667 if (types_htab == NULL)
6670 types_htab = allocate_dwo_unit_table (objfile);
6672 types_htab = allocate_signatured_type_table (objfile);
6678 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6680 dwo_tu->dwo_file = dwo_file;
6681 dwo_tu->signature = header.signature;
6682 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6683 dwo_tu->section = section;
6684 dwo_tu->sect_off = sect_off;
6685 dwo_tu->length = length;
6689 /* N.B.: type_offset is not usable if this type uses a DWO file.
6690 The real type_offset is in the DWO file. */
6692 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6693 struct signatured_type);
6694 sig_type->signature = header.signature;
6695 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6696 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6697 sig_type->per_cu.is_debug_types = 1;
6698 sig_type->per_cu.section = section;
6699 sig_type->per_cu.sect_off = sect_off;
6700 sig_type->per_cu.length = length;
6703 slot = htab_find_slot (types_htab,
6704 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6706 gdb_assert (slot != NULL);
6709 sect_offset dup_sect_off;
6713 const struct dwo_unit *dup_tu
6714 = (const struct dwo_unit *) *slot;
6716 dup_sect_off = dup_tu->sect_off;
6720 const struct signatured_type *dup_tu
6721 = (const struct signatured_type *) *slot;
6723 dup_sect_off = dup_tu->per_cu.sect_off;
6726 complaint (_("debug type entry at offset %s is duplicate to"
6727 " the entry at offset %s, signature %s"),
6728 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6729 hex_string (header.signature));
6731 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6733 if (dwarf_read_debug > 1)
6734 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6735 sect_offset_str (sect_off),
6736 hex_string (header.signature));
6742 /* Create the hash table of all entries in the .debug_types
6743 (or .debug_types.dwo) section(s).
6744 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6745 otherwise it is NULL.
6747 The result is a pointer to the hash table or NULL if there are no types.
6749 Note: This function processes DWO files only, not DWP files. */
6752 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6753 struct dwo_file *dwo_file,
6754 VEC (dwarf2_section_info_def) *types,
6758 struct dwarf2_section_info *section;
6760 if (VEC_empty (dwarf2_section_info_def, types))
6764 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6766 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6767 types_htab, rcuh_kind::TYPE);
6770 /* Create the hash table of all entries in the .debug_types section,
6771 and initialize all_type_units.
6772 The result is zero if there is an error (e.g. missing .debug_types section),
6773 otherwise non-zero. */
6776 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6778 htab_t types_htab = NULL;
6780 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6781 &dwarf2_per_objfile->info, types_htab,
6782 rcuh_kind::COMPILE);
6783 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6784 dwarf2_per_objfile->types, types_htab);
6785 if (types_htab == NULL)
6787 dwarf2_per_objfile->signatured_types = NULL;
6791 dwarf2_per_objfile->signatured_types = types_htab;
6793 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6794 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6796 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6797 &dwarf2_per_objfile->all_type_units);
6802 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6803 If SLOT is non-NULL, it is the entry to use in the hash table.
6804 Otherwise we find one. */
6806 static struct signatured_type *
6807 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6810 struct objfile *objfile = dwarf2_per_objfile->objfile;
6812 if (dwarf2_per_objfile->all_type_units.size ()
6813 == dwarf2_per_objfile->all_type_units.capacity ())
6814 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6816 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6817 struct signatured_type);
6819 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6820 sig_type->signature = sig;
6821 sig_type->per_cu.is_debug_types = 1;
6822 if (dwarf2_per_objfile->using_index)
6824 sig_type->per_cu.v.quick =
6825 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6826 struct dwarf2_per_cu_quick_data);
6831 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6834 gdb_assert (*slot == NULL);
6836 /* The rest of sig_type must be filled in by the caller. */
6840 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6841 Fill in SIG_ENTRY with DWO_ENTRY. */
6844 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6845 struct signatured_type *sig_entry,
6846 struct dwo_unit *dwo_entry)
6848 /* Make sure we're not clobbering something we don't expect to. */
6849 gdb_assert (! sig_entry->per_cu.queued);
6850 gdb_assert (sig_entry->per_cu.cu == NULL);
6851 if (dwarf2_per_objfile->using_index)
6853 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6854 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6857 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6858 gdb_assert (sig_entry->signature == dwo_entry->signature);
6859 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6860 gdb_assert (sig_entry->type_unit_group == NULL);
6861 gdb_assert (sig_entry->dwo_unit == NULL);
6863 sig_entry->per_cu.section = dwo_entry->section;
6864 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6865 sig_entry->per_cu.length = dwo_entry->length;
6866 sig_entry->per_cu.reading_dwo_directly = 1;
6867 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6868 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6869 sig_entry->dwo_unit = dwo_entry;
6872 /* Subroutine of lookup_signatured_type.
6873 If we haven't read the TU yet, create the signatured_type data structure
6874 for a TU to be read in directly from a DWO file, bypassing the stub.
6875 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6876 using .gdb_index, then when reading a CU we want to stay in the DWO file
6877 containing that CU. Otherwise we could end up reading several other DWO
6878 files (due to comdat folding) to process the transitive closure of all the
6879 mentioned TUs, and that can be slow. The current DWO file will have every
6880 type signature that it needs.
6881 We only do this for .gdb_index because in the psymtab case we already have
6882 to read all the DWOs to build the type unit groups. */
6884 static struct signatured_type *
6885 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6887 struct dwarf2_per_objfile *dwarf2_per_objfile
6888 = cu->per_cu->dwarf2_per_objfile;
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890 struct dwo_file *dwo_file;
6891 struct dwo_unit find_dwo_entry, *dwo_entry;
6892 struct signatured_type find_sig_entry, *sig_entry;
6895 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6897 /* If TU skeletons have been removed then we may not have read in any
6899 if (dwarf2_per_objfile->signatured_types == NULL)
6901 dwarf2_per_objfile->signatured_types
6902 = allocate_signatured_type_table (objfile);
6905 /* We only ever need to read in one copy of a signatured type.
6906 Use the global signatured_types array to do our own comdat-folding
6907 of types. If this is the first time we're reading this TU, and
6908 the TU has an entry in .gdb_index, replace the recorded data from
6909 .gdb_index with this TU. */
6911 find_sig_entry.signature = sig;
6912 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6913 &find_sig_entry, INSERT);
6914 sig_entry = (struct signatured_type *) *slot;
6916 /* We can get here with the TU already read, *or* in the process of being
6917 read. Don't reassign the global entry to point to this DWO if that's
6918 the case. Also note that if the TU is already being read, it may not
6919 have come from a DWO, the program may be a mix of Fission-compiled
6920 code and non-Fission-compiled code. */
6922 /* Have we already tried to read this TU?
6923 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6924 needn't exist in the global table yet). */
6925 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6928 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6929 dwo_unit of the TU itself. */
6930 dwo_file = cu->dwo_unit->dwo_file;
6932 /* Ok, this is the first time we're reading this TU. */
6933 if (dwo_file->tus == NULL)
6935 find_dwo_entry.signature = sig;
6936 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6937 if (dwo_entry == NULL)
6940 /* If the global table doesn't have an entry for this TU, add one. */
6941 if (sig_entry == NULL)
6942 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6944 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6945 sig_entry->per_cu.tu_read = 1;
6949 /* Subroutine of lookup_signatured_type.
6950 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6951 then try the DWP file. If the TU stub (skeleton) has been removed then
6952 it won't be in .gdb_index. */
6954 static struct signatured_type *
6955 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6957 struct dwarf2_per_objfile *dwarf2_per_objfile
6958 = cu->per_cu->dwarf2_per_objfile;
6959 struct objfile *objfile = dwarf2_per_objfile->objfile;
6960 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6961 struct dwo_unit *dwo_entry;
6962 struct signatured_type find_sig_entry, *sig_entry;
6965 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6966 gdb_assert (dwp_file != NULL);
6968 /* If TU skeletons have been removed then we may not have read in any
6970 if (dwarf2_per_objfile->signatured_types == NULL)
6972 dwarf2_per_objfile->signatured_types
6973 = allocate_signatured_type_table (objfile);
6976 find_sig_entry.signature = sig;
6977 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6978 &find_sig_entry, INSERT);
6979 sig_entry = (struct signatured_type *) *slot;
6981 /* Have we already tried to read this TU?
6982 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6983 needn't exist in the global table yet). */
6984 if (sig_entry != NULL)
6987 if (dwp_file->tus == NULL)
6989 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6990 sig, 1 /* is_debug_types */);
6991 if (dwo_entry == NULL)
6994 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6995 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7000 /* Lookup a signature based type for DW_FORM_ref_sig8.
7001 Returns NULL if signature SIG is not present in the table.
7002 It is up to the caller to complain about this. */
7004 static struct signatured_type *
7005 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7007 struct dwarf2_per_objfile *dwarf2_per_objfile
7008 = cu->per_cu->dwarf2_per_objfile;
7011 && dwarf2_per_objfile->using_index)
7013 /* We're in a DWO/DWP file, and we're using .gdb_index.
7014 These cases require special processing. */
7015 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7016 return lookup_dwo_signatured_type (cu, sig);
7018 return lookup_dwp_signatured_type (cu, sig);
7022 struct signatured_type find_entry, *entry;
7024 if (dwarf2_per_objfile->signatured_types == NULL)
7026 find_entry.signature = sig;
7027 entry = ((struct signatured_type *)
7028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7033 /* Low level DIE reading support. */
7035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7038 init_cu_die_reader (struct die_reader_specs *reader,
7039 struct dwarf2_cu *cu,
7040 struct dwarf2_section_info *section,
7041 struct dwo_file *dwo_file,
7042 struct abbrev_table *abbrev_table)
7044 gdb_assert (section->readin && section->buffer != NULL);
7045 reader->abfd = get_section_bfd_owner (section);
7047 reader->dwo_file = dwo_file;
7048 reader->die_section = section;
7049 reader->buffer = section->buffer;
7050 reader->buffer_end = section->buffer + section->size;
7051 reader->comp_dir = NULL;
7052 reader->abbrev_table = abbrev_table;
7055 /* Subroutine of init_cutu_and_read_dies to simplify it.
7056 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7057 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7060 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7061 from it to the DIE in the DWO. If NULL we are skipping the stub.
7062 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7063 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7064 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7065 STUB_COMP_DIR may be non-NULL.
7066 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7067 are filled in with the info of the DIE from the DWO file.
7068 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7069 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7070 kept around for at least as long as *RESULT_READER.
7072 The result is non-zero if a valid (non-dummy) DIE was found. */
7075 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7076 struct dwo_unit *dwo_unit,
7077 struct die_info *stub_comp_unit_die,
7078 const char *stub_comp_dir,
7079 struct die_reader_specs *result_reader,
7080 const gdb_byte **result_info_ptr,
7081 struct die_info **result_comp_unit_die,
7082 int *result_has_children,
7083 abbrev_table_up *result_dwo_abbrev_table)
7085 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7086 struct objfile *objfile = dwarf2_per_objfile->objfile;
7087 struct dwarf2_cu *cu = this_cu->cu;
7089 const gdb_byte *begin_info_ptr, *info_ptr;
7090 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7091 int i,num_extra_attrs;
7092 struct dwarf2_section_info *dwo_abbrev_section;
7093 struct attribute *attr;
7094 struct die_info *comp_unit_die;
7096 /* At most one of these may be provided. */
7097 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7099 /* These attributes aren't processed until later:
7100 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7101 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7102 referenced later. However, these attributes are found in the stub
7103 which we won't have later. In order to not impose this complication
7104 on the rest of the code, we read them here and copy them to the
7113 if (stub_comp_unit_die != NULL)
7115 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7117 if (! this_cu->is_debug_types)
7118 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7119 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7120 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7121 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7122 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7124 /* There should be a DW_AT_addr_base attribute here (if needed).
7125 We need the value before we can process DW_FORM_GNU_addr_index. */
7127 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7129 cu->addr_base = DW_UNSND (attr);
7131 /* There should be a DW_AT_ranges_base attribute here (if needed).
7132 We need the value before we can process DW_AT_ranges. */
7133 cu->ranges_base = 0;
7134 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7136 cu->ranges_base = DW_UNSND (attr);
7138 else if (stub_comp_dir != NULL)
7140 /* Reconstruct the comp_dir attribute to simplify the code below. */
7141 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7142 comp_dir->name = DW_AT_comp_dir;
7143 comp_dir->form = DW_FORM_string;
7144 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7145 DW_STRING (comp_dir) = stub_comp_dir;
7148 /* Set up for reading the DWO CU/TU. */
7149 cu->dwo_unit = dwo_unit;
7150 dwarf2_section_info *section = dwo_unit->section;
7151 dwarf2_read_section (objfile, section);
7152 abfd = get_section_bfd_owner (section);
7153 begin_info_ptr = info_ptr = (section->buffer
7154 + to_underlying (dwo_unit->sect_off));
7155 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7157 if (this_cu->is_debug_types)
7159 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7161 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7162 &cu->header, section,
7164 info_ptr, rcuh_kind::TYPE);
7165 /* This is not an assert because it can be caused by bad debug info. */
7166 if (sig_type->signature != cu->header.signature)
7168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7169 " TU at offset %s [in module %s]"),
7170 hex_string (sig_type->signature),
7171 hex_string (cu->header.signature),
7172 sect_offset_str (dwo_unit->sect_off),
7173 bfd_get_filename (abfd));
7175 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7176 /* For DWOs coming from DWP files, we don't know the CU length
7177 nor the type's offset in the TU until now. */
7178 dwo_unit->length = get_cu_length (&cu->header);
7179 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7181 /* Establish the type offset that can be used to lookup the type.
7182 For DWO files, we don't know it until now. */
7183 sig_type->type_offset_in_section
7184 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7188 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7189 &cu->header, section,
7191 info_ptr, rcuh_kind::COMPILE);
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7195 dwo_unit->length = get_cu_length (&cu->header);
7198 *result_dwo_abbrev_table
7199 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7200 cu->header.abbrev_sect_off);
7201 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7202 result_dwo_abbrev_table->get ());
7204 /* Read in the die, but leave space to copy over the attributes
7205 from the stub. This has the benefit of simplifying the rest of
7206 the code - all the work to maintain the illusion of a single
7207 DW_TAG_{compile,type}_unit DIE is done here. */
7208 num_extra_attrs = ((stmt_list != NULL)
7212 + (comp_dir != NULL));
7213 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7214 result_has_children, num_extra_attrs);
7216 /* Copy over the attributes from the stub to the DIE we just read in. */
7217 comp_unit_die = *result_comp_unit_die;
7218 i = comp_unit_die->num_attrs;
7219 if (stmt_list != NULL)
7220 comp_unit_die->attrs[i++] = *stmt_list;
7222 comp_unit_die->attrs[i++] = *low_pc;
7223 if (high_pc != NULL)
7224 comp_unit_die->attrs[i++] = *high_pc;
7226 comp_unit_die->attrs[i++] = *ranges;
7227 if (comp_dir != NULL)
7228 comp_unit_die->attrs[i++] = *comp_dir;
7229 comp_unit_die->num_attrs += num_extra_attrs;
7231 if (dwarf_die_debug)
7233 fprintf_unfiltered (gdb_stdlog,
7234 "Read die from %s@0x%x of %s:\n",
7235 get_section_name (section),
7236 (unsigned) (begin_info_ptr - section->buffer),
7237 bfd_get_filename (abfd));
7238 dump_die (comp_unit_die, dwarf_die_debug);
7241 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7242 TUs by skipping the stub and going directly to the entry in the DWO file.
7243 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7244 to get it via circuitous means. Blech. */
7245 if (comp_dir != NULL)
7246 result_reader->comp_dir = DW_STRING (comp_dir);
7248 /* Skip dummy compilation units. */
7249 if (info_ptr >= begin_info_ptr + dwo_unit->length
7250 || peek_abbrev_code (abfd, info_ptr) == 0)
7253 *result_info_ptr = info_ptr;
7257 /* Subroutine of init_cutu_and_read_dies to simplify it.
7258 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7259 Returns NULL if the specified DWO unit cannot be found. */
7261 static struct dwo_unit *
7262 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7263 struct die_info *comp_unit_die)
7265 struct dwarf2_cu *cu = this_cu->cu;
7267 struct dwo_unit *dwo_unit;
7268 const char *comp_dir, *dwo_name;
7270 gdb_assert (cu != NULL);
7272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7273 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7274 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7276 if (this_cu->is_debug_types)
7278 struct signatured_type *sig_type;
7280 /* Since this_cu is the first member of struct signatured_type,
7281 we can go from a pointer to one to a pointer to the other. */
7282 sig_type = (struct signatured_type *) this_cu;
7283 signature = sig_type->signature;
7284 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7288 struct attribute *attr;
7290 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7292 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7294 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7295 signature = DW_UNSND (attr);
7296 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7303 /* Subroutine of init_cutu_and_read_dies to simplify it.
7304 See it for a description of the parameters.
7305 Read a TU directly from a DWO file, bypassing the stub. */
7308 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7309 int use_existing_cu, int keep,
7310 die_reader_func_ftype *die_reader_func,
7313 std::unique_ptr<dwarf2_cu> new_cu;
7314 struct signatured_type *sig_type;
7315 struct die_reader_specs reader;
7316 const gdb_byte *info_ptr;
7317 struct die_info *comp_unit_die;
7319 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7321 /* Verify we can do the following downcast, and that we have the
7323 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7324 sig_type = (struct signatured_type *) this_cu;
7325 gdb_assert (sig_type->dwo_unit != NULL);
7327 if (use_existing_cu && this_cu->cu != NULL)
7329 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7330 /* There's no need to do the rereading_dwo_cu handling that
7331 init_cutu_and_read_dies does since we don't read the stub. */
7335 /* If !use_existing_cu, this_cu->cu must be NULL. */
7336 gdb_assert (this_cu->cu == NULL);
7337 new_cu.reset (new dwarf2_cu (this_cu));
7340 /* A future optimization, if needed, would be to use an existing
7341 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7342 could share abbrev tables. */
7344 /* The abbreviation table used by READER, this must live at least as long as
7346 abbrev_table_up dwo_abbrev_table;
7348 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7349 NULL /* stub_comp_unit_die */,
7350 sig_type->dwo_unit->dwo_file->comp_dir,
7352 &comp_unit_die, &has_children,
7353 &dwo_abbrev_table) == 0)
7359 /* All the "real" work is done here. */
7360 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7362 /* This duplicates the code in init_cutu_and_read_dies,
7363 but the alternative is making the latter more complex.
7364 This function is only for the special case of using DWO files directly:
7365 no point in overly complicating the general case just to handle this. */
7366 if (new_cu != NULL && keep)
7368 /* Link this CU into read_in_chain. */
7369 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7370 dwarf2_per_objfile->read_in_chain = this_cu;
7371 /* The chain owns it now. */
7376 /* Initialize a CU (or TU) and read its DIEs.
7377 If the CU defers to a DWO file, read the DWO file as well.
7379 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7380 Otherwise the table specified in the comp unit header is read in and used.
7381 This is an optimization for when we already have the abbrev table.
7383 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7384 Otherwise, a new CU is allocated with xmalloc.
7386 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7387 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7389 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7390 linker) then DIE_READER_FUNC will not get called. */
7393 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7394 struct abbrev_table *abbrev_table,
7395 int use_existing_cu, int keep,
7397 die_reader_func_ftype *die_reader_func,
7400 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7401 struct objfile *objfile = dwarf2_per_objfile->objfile;
7402 struct dwarf2_section_info *section = this_cu->section;
7403 bfd *abfd = get_section_bfd_owner (section);
7404 struct dwarf2_cu *cu;
7405 const gdb_byte *begin_info_ptr, *info_ptr;
7406 struct die_reader_specs reader;
7407 struct die_info *comp_unit_die;
7409 struct attribute *attr;
7410 struct signatured_type *sig_type = NULL;
7411 struct dwarf2_section_info *abbrev_section;
7412 /* Non-zero if CU currently points to a DWO file and we need to
7413 reread it. When this happens we need to reread the skeleton die
7414 before we can reread the DWO file (this only applies to CUs, not TUs). */
7415 int rereading_dwo_cu = 0;
7417 if (dwarf_die_debug)
7418 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7419 this_cu->is_debug_types ? "type" : "comp",
7420 sect_offset_str (this_cu->sect_off));
7422 if (use_existing_cu)
7425 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7426 file (instead of going through the stub), short-circuit all of this. */
7427 if (this_cu->reading_dwo_directly)
7429 /* Narrow down the scope of possibilities to have to understand. */
7430 gdb_assert (this_cu->is_debug_types);
7431 gdb_assert (abbrev_table == NULL);
7432 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7433 die_reader_func, data);
7437 /* This is cheap if the section is already read in. */
7438 dwarf2_read_section (objfile, section);
7440 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7442 abbrev_section = get_abbrev_section_for_cu (this_cu);
7444 std::unique_ptr<dwarf2_cu> new_cu;
7445 if (use_existing_cu && this_cu->cu != NULL)
7448 /* If this CU is from a DWO file we need to start over, we need to
7449 refetch the attributes from the skeleton CU.
7450 This could be optimized by retrieving those attributes from when we
7451 were here the first time: the previous comp_unit_die was stored in
7452 comp_unit_obstack. But there's no data yet that we need this
7454 if (cu->dwo_unit != NULL)
7455 rereading_dwo_cu = 1;
7459 /* If !use_existing_cu, this_cu->cu must be NULL. */
7460 gdb_assert (this_cu->cu == NULL);
7461 new_cu.reset (new dwarf2_cu (this_cu));
7465 /* Get the header. */
7466 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7468 /* We already have the header, there's no need to read it in again. */
7469 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7473 if (this_cu->is_debug_types)
7475 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7476 &cu->header, section,
7477 abbrev_section, info_ptr,
7480 /* Since per_cu is the first member of struct signatured_type,
7481 we can go from a pointer to one to a pointer to the other. */
7482 sig_type = (struct signatured_type *) this_cu;
7483 gdb_assert (sig_type->signature == cu->header.signature);
7484 gdb_assert (sig_type->type_offset_in_tu
7485 == cu->header.type_cu_offset_in_tu);
7486 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7488 /* LENGTH has not been set yet for type units if we're
7489 using .gdb_index. */
7490 this_cu->length = get_cu_length (&cu->header);
7492 /* Establish the type offset that can be used to lookup the type. */
7493 sig_type->type_offset_in_section =
7494 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7496 this_cu->dwarf_version = cu->header.version;
7500 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7501 &cu->header, section,
7504 rcuh_kind::COMPILE);
7506 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7507 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7508 this_cu->dwarf_version = cu->header.version;
7512 /* Skip dummy compilation units. */
7513 if (info_ptr >= begin_info_ptr + this_cu->length
7514 || peek_abbrev_code (abfd, info_ptr) == 0)
7517 /* If we don't have them yet, read the abbrevs for this compilation unit.
7518 And if we need to read them now, make sure they're freed when we're
7519 done (own the table through ABBREV_TABLE_HOLDER). */
7520 abbrev_table_up abbrev_table_holder;
7521 if (abbrev_table != NULL)
7522 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7526 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7527 cu->header.abbrev_sect_off);
7528 abbrev_table = abbrev_table_holder.get ();
7531 /* Read the top level CU/TU die. */
7532 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7533 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7535 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7538 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7539 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7540 table from the DWO file and pass the ownership over to us. It will be
7541 referenced from READER, so we must make sure to free it after we're done
7544 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7545 DWO CU, that this test will fail (the attribute will not be present). */
7546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7547 abbrev_table_up dwo_abbrev_table;
7550 struct dwo_unit *dwo_unit;
7551 struct die_info *dwo_comp_unit_die;
7555 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7556 " has children (offset %s) [in module %s]"),
7557 sect_offset_str (this_cu->sect_off),
7558 bfd_get_filename (abfd));
7560 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7561 if (dwo_unit != NULL)
7563 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7564 comp_unit_die, NULL,
7566 &dwo_comp_unit_die, &has_children,
7567 &dwo_abbrev_table) == 0)
7572 comp_unit_die = dwo_comp_unit_die;
7576 /* Yikes, we couldn't find the rest of the DIE, we only have
7577 the stub. A complaint has already been logged. There's
7578 not much more we can do except pass on the stub DIE to
7579 die_reader_func. We don't want to throw an error on bad
7584 /* All of the above is setup for this call. Yikes. */
7585 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7587 /* Done, clean up. */
7588 if (new_cu != NULL && keep)
7590 /* Link this CU into read_in_chain. */
7591 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7592 dwarf2_per_objfile->read_in_chain = this_cu;
7593 /* The chain owns it now. */
7598 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7599 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7600 to have already done the lookup to find the DWO file).
7602 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7603 THIS_CU->is_debug_types, but nothing else.
7605 We fill in THIS_CU->length.
7607 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7608 linker) then DIE_READER_FUNC will not get called.
7610 THIS_CU->cu is always freed when done.
7611 This is done in order to not leave THIS_CU->cu in a state where we have
7612 to care whether it refers to the "main" CU or the DWO CU. */
7615 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7616 struct dwo_file *dwo_file,
7617 die_reader_func_ftype *die_reader_func,
7620 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7621 struct objfile *objfile = dwarf2_per_objfile->objfile;
7622 struct dwarf2_section_info *section = this_cu->section;
7623 bfd *abfd = get_section_bfd_owner (section);
7624 struct dwarf2_section_info *abbrev_section;
7625 const gdb_byte *begin_info_ptr, *info_ptr;
7626 struct die_reader_specs reader;
7627 struct die_info *comp_unit_die;
7630 if (dwarf_die_debug)
7631 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7632 this_cu->is_debug_types ? "type" : "comp",
7633 sect_offset_str (this_cu->sect_off));
7635 gdb_assert (this_cu->cu == NULL);
7637 abbrev_section = (dwo_file != NULL
7638 ? &dwo_file->sections.abbrev
7639 : get_abbrev_section_for_cu (this_cu));
7641 /* This is cheap if the section is already read in. */
7642 dwarf2_read_section (objfile, section);
7644 struct dwarf2_cu cu (this_cu);
7646 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7647 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7648 &cu.header, section,
7649 abbrev_section, info_ptr,
7650 (this_cu->is_debug_types
7652 : rcuh_kind::COMPILE));
7654 this_cu->length = get_cu_length (&cu.header);
7656 /* Skip dummy compilation units. */
7657 if (info_ptr >= begin_info_ptr + this_cu->length
7658 || peek_abbrev_code (abfd, info_ptr) == 0)
7661 abbrev_table_up abbrev_table
7662 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7663 cu.header.abbrev_sect_off);
7665 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7666 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7668 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7671 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7672 does not lookup the specified DWO file.
7673 This cannot be used to read DWO files.
7675 THIS_CU->cu is always freed when done.
7676 This is done in order to not leave THIS_CU->cu in a state where we have
7677 to care whether it refers to the "main" CU or the DWO CU.
7678 We can revisit this if the data shows there's a performance issue. */
7681 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7682 die_reader_func_ftype *die_reader_func,
7685 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7688 /* Type Unit Groups.
7690 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7691 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7692 so that all types coming from the same compilation (.o file) are grouped
7693 together. A future step could be to put the types in the same symtab as
7694 the CU the types ultimately came from. */
7697 hash_type_unit_group (const void *item)
7699 const struct type_unit_group *tu_group
7700 = (const struct type_unit_group *) item;
7702 return hash_stmt_list_entry (&tu_group->hash);
7706 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7708 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7709 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7711 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7714 /* Allocate a hash table for type unit groups. */
7717 allocate_type_unit_groups_table (struct objfile *objfile)
7719 return htab_create_alloc_ex (3,
7720 hash_type_unit_group,
7723 &objfile->objfile_obstack,
7724 hashtab_obstack_allocate,
7725 dummy_obstack_deallocate);
7728 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7729 partial symtabs. We combine several TUs per psymtab to not let the size
7730 of any one psymtab grow too big. */
7731 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7734 /* Helper routine for get_type_unit_group.
7735 Create the type_unit_group object used to hold one or more TUs. */
7737 static struct type_unit_group *
7738 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7740 struct dwarf2_per_objfile *dwarf2_per_objfile
7741 = cu->per_cu->dwarf2_per_objfile;
7742 struct objfile *objfile = dwarf2_per_objfile->objfile;
7743 struct dwarf2_per_cu_data *per_cu;
7744 struct type_unit_group *tu_group;
7746 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7747 struct type_unit_group);
7748 per_cu = &tu_group->per_cu;
7749 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7751 if (dwarf2_per_objfile->using_index)
7753 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7754 struct dwarf2_per_cu_quick_data);
7758 unsigned int line_offset = to_underlying (line_offset_struct);
7759 struct partial_symtab *pst;
7762 /* Give the symtab a useful name for debug purposes. */
7763 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7764 name = xstrprintf ("<type_units_%d>",
7765 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7767 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7769 pst = create_partial_symtab (per_cu, name);
7775 tu_group->hash.dwo_unit = cu->dwo_unit;
7776 tu_group->hash.line_sect_off = line_offset_struct;
7781 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7782 STMT_LIST is a DW_AT_stmt_list attribute. */
7784 static struct type_unit_group *
7785 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7787 struct dwarf2_per_objfile *dwarf2_per_objfile
7788 = cu->per_cu->dwarf2_per_objfile;
7789 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7790 struct type_unit_group *tu_group;
7792 unsigned int line_offset;
7793 struct type_unit_group type_unit_group_for_lookup;
7795 if (dwarf2_per_objfile->type_unit_groups == NULL)
7797 dwarf2_per_objfile->type_unit_groups =
7798 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7801 /* Do we need to create a new group, or can we use an existing one? */
7805 line_offset = DW_UNSND (stmt_list);
7806 ++tu_stats->nr_symtab_sharers;
7810 /* Ugh, no stmt_list. Rare, but we have to handle it.
7811 We can do various things here like create one group per TU or
7812 spread them over multiple groups to split up the expansion work.
7813 To avoid worst case scenarios (too many groups or too large groups)
7814 we, umm, group them in bunches. */
7815 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7816 | (tu_stats->nr_stmt_less_type_units
7817 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7818 ++tu_stats->nr_stmt_less_type_units;
7821 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7822 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7823 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7824 &type_unit_group_for_lookup, INSERT);
7827 tu_group = (struct type_unit_group *) *slot;
7828 gdb_assert (tu_group != NULL);
7832 sect_offset line_offset_struct = (sect_offset) line_offset;
7833 tu_group = create_type_unit_group (cu, line_offset_struct);
7835 ++tu_stats->nr_symtabs;
7841 /* Partial symbol tables. */
7843 /* Create a psymtab named NAME and assign it to PER_CU.
7845 The caller must fill in the following details:
7846 dirname, textlow, texthigh. */
7848 static struct partial_symtab *
7849 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7851 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7852 struct partial_symtab *pst;
7854 pst = start_psymtab_common (objfile, name, 0,
7855 objfile->global_psymbols,
7856 objfile->static_psymbols);
7858 pst->psymtabs_addrmap_supported = 1;
7860 /* This is the glue that links PST into GDB's symbol API. */
7861 pst->read_symtab_private = per_cu;
7862 pst->read_symtab = dwarf2_read_symtab;
7863 per_cu->v.psymtab = pst;
7868 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7871 struct process_psymtab_comp_unit_data
7873 /* True if we are reading a DW_TAG_partial_unit. */
7875 int want_partial_unit;
7877 /* The "pretend" language that is used if the CU doesn't declare a
7880 enum language pretend_language;
7883 /* die_reader_func for process_psymtab_comp_unit. */
7886 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7887 const gdb_byte *info_ptr,
7888 struct die_info *comp_unit_die,
7892 struct dwarf2_cu *cu = reader->cu;
7893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7895 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7897 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7898 struct partial_symtab *pst;
7899 enum pc_bounds_kind cu_bounds_kind;
7900 const char *filename;
7901 struct process_psymtab_comp_unit_data *info
7902 = (struct process_psymtab_comp_unit_data *) data;
7904 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7907 gdb_assert (! per_cu->is_debug_types);
7909 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7911 cu->list_in_scope = &file_symbols;
7913 /* Allocate a new partial symbol table structure. */
7914 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7915 if (filename == NULL)
7918 pst = create_partial_symtab (per_cu, filename);
7920 /* This must be done before calling dwarf2_build_include_psymtabs. */
7921 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7923 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7925 dwarf2_find_base_address (comp_unit_die, cu);
7927 /* Possibly set the default values of LOWPC and HIGHPC from
7929 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7930 &best_highpc, cu, pst);
7931 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7932 /* Store the contiguous range if it is not empty; it can be empty for
7933 CUs with no code. */
7934 addrmap_set_empty (objfile->psymtabs_addrmap,
7935 gdbarch_adjust_dwarf2_addr (gdbarch,
7936 best_lowpc + baseaddr),
7937 gdbarch_adjust_dwarf2_addr (gdbarch,
7938 best_highpc + baseaddr) - 1,
7941 /* Check if comp unit has_children.
7942 If so, read the rest of the partial symbols from this comp unit.
7943 If not, there's no more debug_info for this comp unit. */
7946 struct partial_die_info *first_die;
7947 CORE_ADDR lowpc, highpc;
7949 lowpc = ((CORE_ADDR) -1);
7950 highpc = ((CORE_ADDR) 0);
7952 first_die = load_partial_dies (reader, info_ptr, 1);
7954 scan_partial_symbols (first_die, &lowpc, &highpc,
7955 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7957 /* If we didn't find a lowpc, set it to highpc to avoid
7958 complaints from `maint check'. */
7959 if (lowpc == ((CORE_ADDR) -1))
7962 /* If the compilation unit didn't have an explicit address range,
7963 then use the information extracted from its child dies. */
7964 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7967 best_highpc = highpc;
7970 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7971 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7973 end_psymtab_common (objfile, pst);
7975 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7978 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7979 struct dwarf2_per_cu_data *iter;
7981 /* Fill in 'dependencies' here; we fill in 'users' in a
7983 pst->number_of_dependencies = len;
7985 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7987 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7990 pst->dependencies[i] = iter->v.psymtab;
7992 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7995 /* Get the list of files included in the current compilation unit,
7996 and build a psymtab for each of them. */
7997 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7999 if (dwarf_read_debug)
8001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8003 fprintf_unfiltered (gdb_stdlog,
8004 "Psymtab for %s unit @%s: %s - %s"
8005 ", %d global, %d static syms\n",
8006 per_cu->is_debug_types ? "type" : "comp",
8007 sect_offset_str (per_cu->sect_off),
8008 paddress (gdbarch, pst->textlow),
8009 paddress (gdbarch, pst->texthigh),
8010 pst->n_global_syms, pst->n_static_syms);
8014 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8015 Process compilation unit THIS_CU for a psymtab. */
8018 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8019 int want_partial_unit,
8020 enum language pretend_language)
8022 /* If this compilation unit was already read in, free the
8023 cached copy in order to read it in again. This is
8024 necessary because we skipped some symbols when we first
8025 read in the compilation unit (see load_partial_dies).
8026 This problem could be avoided, but the benefit is unclear. */
8027 if (this_cu->cu != NULL)
8028 free_one_cached_comp_unit (this_cu);
8030 if (this_cu->is_debug_types)
8031 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8032 build_type_psymtabs_reader, NULL);
8035 process_psymtab_comp_unit_data info;
8036 info.want_partial_unit = want_partial_unit;
8037 info.pretend_language = pretend_language;
8038 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8039 process_psymtab_comp_unit_reader, &info);
8042 /* Age out any secondary CUs. */
8043 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8046 /* Reader function for build_type_psymtabs. */
8049 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8050 const gdb_byte *info_ptr,
8051 struct die_info *type_unit_die,
8055 struct dwarf2_per_objfile *dwarf2_per_objfile
8056 = reader->cu->per_cu->dwarf2_per_objfile;
8057 struct objfile *objfile = dwarf2_per_objfile->objfile;
8058 struct dwarf2_cu *cu = reader->cu;
8059 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8060 struct signatured_type *sig_type;
8061 struct type_unit_group *tu_group;
8062 struct attribute *attr;
8063 struct partial_die_info *first_die;
8064 CORE_ADDR lowpc, highpc;
8065 struct partial_symtab *pst;
8067 gdb_assert (data == NULL);
8068 gdb_assert (per_cu->is_debug_types);
8069 sig_type = (struct signatured_type *) per_cu;
8074 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8075 tu_group = get_type_unit_group (cu, attr);
8077 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8079 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8080 cu->list_in_scope = &file_symbols;
8081 pst = create_partial_symtab (per_cu, "");
8084 first_die = load_partial_dies (reader, info_ptr, 1);
8086 lowpc = (CORE_ADDR) -1;
8087 highpc = (CORE_ADDR) 0;
8088 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8090 end_psymtab_common (objfile, pst);
8093 /* Struct used to sort TUs by their abbreviation table offset. */
8095 struct tu_abbrev_offset
8097 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8098 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8101 signatured_type *sig_type;
8102 sect_offset abbrev_offset;
8105 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8108 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8109 const struct tu_abbrev_offset &b)
8111 return a.abbrev_offset < b.abbrev_offset;
8114 /* Efficiently read all the type units.
8115 This does the bulk of the work for build_type_psymtabs.
8117 The efficiency is because we sort TUs by the abbrev table they use and
8118 only read each abbrev table once. In one program there are 200K TUs
8119 sharing 8K abbrev tables.
8121 The main purpose of this function is to support building the
8122 dwarf2_per_objfile->type_unit_groups table.
8123 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8124 can collapse the search space by grouping them by stmt_list.
8125 The savings can be significant, in the same program from above the 200K TUs
8126 share 8K stmt_list tables.
8128 FUNC is expected to call get_type_unit_group, which will create the
8129 struct type_unit_group if necessary and add it to
8130 dwarf2_per_objfile->type_unit_groups. */
8133 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8135 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8136 abbrev_table_up abbrev_table;
8137 sect_offset abbrev_offset;
8139 /* It's up to the caller to not call us multiple times. */
8140 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8142 if (dwarf2_per_objfile->all_type_units.empty ())
8145 /* TUs typically share abbrev tables, and there can be way more TUs than
8146 abbrev tables. Sort by abbrev table to reduce the number of times we
8147 read each abbrev table in.
8148 Alternatives are to punt or to maintain a cache of abbrev tables.
8149 This is simpler and efficient enough for now.
8151 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8152 symtab to use). Typically TUs with the same abbrev offset have the same
8153 stmt_list value too so in practice this should work well.
8155 The basic algorithm here is:
8157 sort TUs by abbrev table
8158 for each TU with same abbrev table:
8159 read abbrev table if first user
8160 read TU top level DIE
8161 [IWBN if DWO skeletons had DW_AT_stmt_list]
8164 if (dwarf_read_debug)
8165 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8167 /* Sort in a separate table to maintain the order of all_type_units
8168 for .gdb_index: TU indices directly index all_type_units. */
8169 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8170 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8172 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8173 sorted_by_abbrev.emplace_back
8174 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8175 sig_type->per_cu.section,
8176 sig_type->per_cu.sect_off));
8178 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8179 sort_tu_by_abbrev_offset);
8181 abbrev_offset = (sect_offset) ~(unsigned) 0;
8183 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8185 /* Switch to the next abbrev table if necessary. */
8186 if (abbrev_table == NULL
8187 || tu.abbrev_offset != abbrev_offset)
8189 abbrev_offset = tu.abbrev_offset;
8191 abbrev_table_read_table (dwarf2_per_objfile,
8192 &dwarf2_per_objfile->abbrev,
8194 ++tu_stats->nr_uniq_abbrev_tables;
8197 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8198 0, 0, false, build_type_psymtabs_reader, NULL);
8202 /* Print collected type unit statistics. */
8205 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8207 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8209 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8210 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8211 dwarf2_per_objfile->all_type_units.size ());
8212 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8213 tu_stats->nr_uniq_abbrev_tables);
8214 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8215 tu_stats->nr_symtabs);
8216 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8217 tu_stats->nr_symtab_sharers);
8218 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8219 tu_stats->nr_stmt_less_type_units);
8220 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8221 tu_stats->nr_all_type_units_reallocs);
8224 /* Traversal function for build_type_psymtabs. */
8227 build_type_psymtab_dependencies (void **slot, void *info)
8229 struct dwarf2_per_objfile *dwarf2_per_objfile
8230 = (struct dwarf2_per_objfile *) info;
8231 struct objfile *objfile = dwarf2_per_objfile->objfile;
8232 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8233 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8234 struct partial_symtab *pst = per_cu->v.psymtab;
8235 int len = VEC_length (sig_type_ptr, tu_group->tus);
8236 struct signatured_type *iter;
8239 gdb_assert (len > 0);
8240 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8242 pst->number_of_dependencies = len;
8244 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8246 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8249 gdb_assert (iter->per_cu.is_debug_types);
8250 pst->dependencies[i] = iter->per_cu.v.psymtab;
8251 iter->type_unit_group = tu_group;
8254 VEC_free (sig_type_ptr, tu_group->tus);
8259 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8260 Build partial symbol tables for the .debug_types comp-units. */
8263 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8265 if (! create_all_type_units (dwarf2_per_objfile))
8268 build_type_psymtabs_1 (dwarf2_per_objfile);
8271 /* Traversal function for process_skeletonless_type_unit.
8272 Read a TU in a DWO file and build partial symbols for it. */
8275 process_skeletonless_type_unit (void **slot, void *info)
8277 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8278 struct dwarf2_per_objfile *dwarf2_per_objfile
8279 = (struct dwarf2_per_objfile *) info;
8280 struct signatured_type find_entry, *entry;
8282 /* If this TU doesn't exist in the global table, add it and read it in. */
8284 if (dwarf2_per_objfile->signatured_types == NULL)
8286 dwarf2_per_objfile->signatured_types
8287 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8290 find_entry.signature = dwo_unit->signature;
8291 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8293 /* If we've already seen this type there's nothing to do. What's happening
8294 is we're doing our own version of comdat-folding here. */
8298 /* This does the job that create_all_type_units would have done for
8300 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8301 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8304 /* This does the job that build_type_psymtabs_1 would have done. */
8305 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8306 build_type_psymtabs_reader, NULL);
8311 /* Traversal function for process_skeletonless_type_units. */
8314 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8316 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8318 if (dwo_file->tus != NULL)
8320 htab_traverse_noresize (dwo_file->tus,
8321 process_skeletonless_type_unit, info);
8327 /* Scan all TUs of DWO files, verifying we've processed them.
8328 This is needed in case a TU was emitted without its skeleton.
8329 Note: This can't be done until we know what all the DWO files are. */
8332 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8334 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8335 if (get_dwp_file (dwarf2_per_objfile) == NULL
8336 && dwarf2_per_objfile->dwo_files != NULL)
8338 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8339 process_dwo_file_for_skeletonless_type_units,
8340 dwarf2_per_objfile);
8344 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8347 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8349 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8351 struct partial_symtab *pst = per_cu->v.psymtab;
8356 for (int j = 0; j < pst->number_of_dependencies; ++j)
8358 /* Set the 'user' field only if it is not already set. */
8359 if (pst->dependencies[j]->user == NULL)
8360 pst->dependencies[j]->user = pst;
8365 /* Build the partial symbol table by doing a quick pass through the
8366 .debug_info and .debug_abbrev sections. */
8369 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8371 struct objfile *objfile = dwarf2_per_objfile->objfile;
8373 if (dwarf_read_debug)
8375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8376 objfile_name (objfile));
8379 dwarf2_per_objfile->reading_partial_symbols = 1;
8381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8383 /* Any cached compilation units will be linked by the per-objfile
8384 read_in_chain. Make sure to free them when we're done. */
8385 free_cached_comp_units freer (dwarf2_per_objfile);
8387 build_type_psymtabs (dwarf2_per_objfile);
8389 create_all_comp_units (dwarf2_per_objfile);
8391 /* Create a temporary address map on a temporary obstack. We later
8392 copy this to the final obstack. */
8393 auto_obstack temp_obstack;
8395 scoped_restore save_psymtabs_addrmap
8396 = make_scoped_restore (&objfile->psymtabs_addrmap,
8397 addrmap_create_mutable (&temp_obstack));
8399 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8400 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8402 /* This has to wait until we read the CUs, we need the list of DWOs. */
8403 process_skeletonless_type_units (dwarf2_per_objfile);
8405 /* Now that all TUs have been processed we can fill in the dependencies. */
8406 if (dwarf2_per_objfile->type_unit_groups != NULL)
8408 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8409 build_type_psymtab_dependencies, dwarf2_per_objfile);
8412 if (dwarf_read_debug)
8413 print_tu_stats (dwarf2_per_objfile);
8415 set_partial_user (dwarf2_per_objfile);
8417 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8418 &objfile->objfile_obstack);
8419 /* At this point we want to keep the address map. */
8420 save_psymtabs_addrmap.release ();
8422 if (dwarf_read_debug)
8423 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8424 objfile_name (objfile));
8427 /* die_reader_func for load_partial_comp_unit. */
8430 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8431 const gdb_byte *info_ptr,
8432 struct die_info *comp_unit_die,
8436 struct dwarf2_cu *cu = reader->cu;
8438 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8440 /* Check if comp unit has_children.
8441 If so, read the rest of the partial symbols from this comp unit.
8442 If not, there's no more debug_info for this comp unit. */
8444 load_partial_dies (reader, info_ptr, 0);
8447 /* Load the partial DIEs for a secondary CU into memory.
8448 This is also used when rereading a primary CU with load_all_dies. */
8451 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8453 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8454 load_partial_comp_unit_reader, NULL);
8458 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8459 struct dwarf2_section_info *section,
8460 struct dwarf2_section_info *abbrev_section,
8461 unsigned int is_dwz)
8463 const gdb_byte *info_ptr;
8464 struct objfile *objfile = dwarf2_per_objfile->objfile;
8466 if (dwarf_read_debug)
8467 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8468 get_section_name (section),
8469 get_section_file_name (section));
8471 dwarf2_read_section (objfile, section);
8473 info_ptr = section->buffer;
8475 while (info_ptr < section->buffer + section->size)
8477 struct dwarf2_per_cu_data *this_cu;
8479 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8481 comp_unit_head cu_header;
8482 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8483 abbrev_section, info_ptr,
8484 rcuh_kind::COMPILE);
8486 /* Save the compilation unit for later lookup. */
8487 if (cu_header.unit_type != DW_UT_type)
8489 this_cu = XOBNEW (&objfile->objfile_obstack,
8490 struct dwarf2_per_cu_data);
8491 memset (this_cu, 0, sizeof (*this_cu));
8495 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8496 struct signatured_type);
8497 memset (sig_type, 0, sizeof (*sig_type));
8498 sig_type->signature = cu_header.signature;
8499 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8500 this_cu = &sig_type->per_cu;
8502 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8503 this_cu->sect_off = sect_off;
8504 this_cu->length = cu_header.length + cu_header.initial_length_size;
8505 this_cu->is_dwz = is_dwz;
8506 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8507 this_cu->section = section;
8509 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8511 info_ptr = info_ptr + this_cu->length;
8515 /* Create a list of all compilation units in OBJFILE.
8516 This is only done for -readnow and building partial symtabs. */
8519 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8521 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8522 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8523 &dwarf2_per_objfile->abbrev, 0);
8525 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8527 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8531 /* Process all loaded DIEs for compilation unit CU, starting at
8532 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8533 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8534 DW_AT_ranges). See the comments of add_partial_subprogram on how
8535 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8538 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8539 CORE_ADDR *highpc, int set_addrmap,
8540 struct dwarf2_cu *cu)
8542 struct partial_die_info *pdi;
8544 /* Now, march along the PDI's, descending into ones which have
8545 interesting children but skipping the children of the other ones,
8546 until we reach the end of the compilation unit. */
8554 /* Anonymous namespaces or modules have no name but have interesting
8555 children, so we need to look at them. Ditto for anonymous
8558 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8559 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8560 || pdi->tag == DW_TAG_imported_unit
8561 || pdi->tag == DW_TAG_inlined_subroutine)
8565 case DW_TAG_subprogram:
8566 case DW_TAG_inlined_subroutine:
8567 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8569 case DW_TAG_constant:
8570 case DW_TAG_variable:
8571 case DW_TAG_typedef:
8572 case DW_TAG_union_type:
8573 if (!pdi->is_declaration)
8575 add_partial_symbol (pdi, cu);
8578 case DW_TAG_class_type:
8579 case DW_TAG_interface_type:
8580 case DW_TAG_structure_type:
8581 if (!pdi->is_declaration)
8583 add_partial_symbol (pdi, cu);
8585 if ((cu->language == language_rust
8586 || cu->language == language_cplus) && pdi->has_children)
8587 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8590 case DW_TAG_enumeration_type:
8591 if (!pdi->is_declaration)
8592 add_partial_enumeration (pdi, cu);
8594 case DW_TAG_base_type:
8595 case DW_TAG_subrange_type:
8596 /* File scope base type definitions are added to the partial
8598 add_partial_symbol (pdi, cu);
8600 case DW_TAG_namespace:
8601 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8604 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8606 case DW_TAG_imported_unit:
8608 struct dwarf2_per_cu_data *per_cu;
8610 /* For now we don't handle imported units in type units. */
8611 if (cu->per_cu->is_debug_types)
8613 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8614 " supported in type units [in module %s]"),
8615 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8618 per_cu = dwarf2_find_containing_comp_unit
8619 (pdi->d.sect_off, pdi->is_dwz,
8620 cu->per_cu->dwarf2_per_objfile);
8622 /* Go read the partial unit, if needed. */
8623 if (per_cu->v.psymtab == NULL)
8624 process_psymtab_comp_unit (per_cu, 1, cu->language);
8626 VEC_safe_push (dwarf2_per_cu_ptr,
8627 cu->per_cu->imported_symtabs, per_cu);
8630 case DW_TAG_imported_declaration:
8631 add_partial_symbol (pdi, cu);
8638 /* If the die has a sibling, skip to the sibling. */
8640 pdi = pdi->die_sibling;
8644 /* Functions used to compute the fully scoped name of a partial DIE.
8646 Normally, this is simple. For C++, the parent DIE's fully scoped
8647 name is concatenated with "::" and the partial DIE's name.
8648 Enumerators are an exception; they use the scope of their parent
8649 enumeration type, i.e. the name of the enumeration type is not
8650 prepended to the enumerator.
8652 There are two complexities. One is DW_AT_specification; in this
8653 case "parent" means the parent of the target of the specification,
8654 instead of the direct parent of the DIE. The other is compilers
8655 which do not emit DW_TAG_namespace; in this case we try to guess
8656 the fully qualified name of structure types from their members'
8657 linkage names. This must be done using the DIE's children rather
8658 than the children of any DW_AT_specification target. We only need
8659 to do this for structures at the top level, i.e. if the target of
8660 any DW_AT_specification (if any; otherwise the DIE itself) does not
8663 /* Compute the scope prefix associated with PDI's parent, in
8664 compilation unit CU. The result will be allocated on CU's
8665 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8666 field. NULL is returned if no prefix is necessary. */
8668 partial_die_parent_scope (struct partial_die_info *pdi,
8669 struct dwarf2_cu *cu)
8671 const char *grandparent_scope;
8672 struct partial_die_info *parent, *real_pdi;
8674 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8675 then this means the parent of the specification DIE. */
8678 while (real_pdi->has_specification)
8679 real_pdi = find_partial_die (real_pdi->spec_offset,
8680 real_pdi->spec_is_dwz, cu);
8682 parent = real_pdi->die_parent;
8686 if (parent->scope_set)
8687 return parent->scope;
8691 grandparent_scope = partial_die_parent_scope (parent, cu);
8693 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8694 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8695 Work around this problem here. */
8696 if (cu->language == language_cplus
8697 && parent->tag == DW_TAG_namespace
8698 && strcmp (parent->name, "::") == 0
8699 && grandparent_scope == NULL)
8701 parent->scope = NULL;
8702 parent->scope_set = 1;
8706 if (pdi->tag == DW_TAG_enumerator)
8707 /* Enumerators should not get the name of the enumeration as a prefix. */
8708 parent->scope = grandparent_scope;
8709 else if (parent->tag == DW_TAG_namespace
8710 || parent->tag == DW_TAG_module
8711 || parent->tag == DW_TAG_structure_type
8712 || parent->tag == DW_TAG_class_type
8713 || parent->tag == DW_TAG_interface_type
8714 || parent->tag == DW_TAG_union_type
8715 || parent->tag == DW_TAG_enumeration_type)
8717 if (grandparent_scope == NULL)
8718 parent->scope = parent->name;
8720 parent->scope = typename_concat (&cu->comp_unit_obstack,
8722 parent->name, 0, cu);
8726 /* FIXME drow/2004-04-01: What should we be doing with
8727 function-local names? For partial symbols, we should probably be
8729 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8730 parent->tag, sect_offset_str (pdi->sect_off));
8731 parent->scope = grandparent_scope;
8734 parent->scope_set = 1;
8735 return parent->scope;
8738 /* Return the fully scoped name associated with PDI, from compilation unit
8739 CU. The result will be allocated with malloc. */
8742 partial_die_full_name (struct partial_die_info *pdi,
8743 struct dwarf2_cu *cu)
8745 const char *parent_scope;
8747 /* If this is a template instantiation, we can not work out the
8748 template arguments from partial DIEs. So, unfortunately, we have
8749 to go through the full DIEs. At least any work we do building
8750 types here will be reused if full symbols are loaded later. */
8751 if (pdi->has_template_arguments)
8755 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8757 struct die_info *die;
8758 struct attribute attr;
8759 struct dwarf2_cu *ref_cu = cu;
8761 /* DW_FORM_ref_addr is using section offset. */
8762 attr.name = (enum dwarf_attribute) 0;
8763 attr.form = DW_FORM_ref_addr;
8764 attr.u.unsnd = to_underlying (pdi->sect_off);
8765 die = follow_die_ref (NULL, &attr, &ref_cu);
8767 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8771 parent_scope = partial_die_parent_scope (pdi, cu);
8772 if (parent_scope == NULL)
8775 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8779 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8781 struct dwarf2_per_objfile *dwarf2_per_objfile
8782 = cu->per_cu->dwarf2_per_objfile;
8783 struct objfile *objfile = dwarf2_per_objfile->objfile;
8784 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8786 const char *actual_name = NULL;
8788 char *built_actual_name;
8790 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8792 built_actual_name = partial_die_full_name (pdi, cu);
8793 if (built_actual_name != NULL)
8794 actual_name = built_actual_name;
8796 if (actual_name == NULL)
8797 actual_name = pdi->name;
8801 case DW_TAG_inlined_subroutine:
8802 case DW_TAG_subprogram:
8803 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8804 if (pdi->is_external || cu->language == language_ada)
8806 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8807 of the global scope. But in Ada, we want to be able to access
8808 nested procedures globally. So all Ada subprograms are stored
8809 in the global scope. */
8810 add_psymbol_to_list (actual_name, strlen (actual_name),
8811 built_actual_name != NULL,
8812 VAR_DOMAIN, LOC_BLOCK,
8813 &objfile->global_psymbols,
8814 addr, cu->language, objfile);
8818 add_psymbol_to_list (actual_name, strlen (actual_name),
8819 built_actual_name != NULL,
8820 VAR_DOMAIN, LOC_BLOCK,
8821 &objfile->static_psymbols,
8822 addr, cu->language, objfile);
8825 if (pdi->main_subprogram && actual_name != NULL)
8826 set_objfile_main_name (objfile, actual_name, cu->language);
8828 case DW_TAG_constant:
8830 std::vector<partial_symbol *> *list;
8832 if (pdi->is_external)
8833 list = &objfile->global_psymbols;
8835 list = &objfile->static_psymbols;
8836 add_psymbol_to_list (actual_name, strlen (actual_name),
8837 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8838 list, 0, cu->language, objfile);
8841 case DW_TAG_variable:
8843 addr = decode_locdesc (pdi->d.locdesc, cu);
8847 && !dwarf2_per_objfile->has_section_at_zero)
8849 /* A global or static variable may also have been stripped
8850 out by the linker if unused, in which case its address
8851 will be nullified; do not add such variables into partial
8852 symbol table then. */
8854 else if (pdi->is_external)
8857 Don't enter into the minimal symbol tables as there is
8858 a minimal symbol table entry from the ELF symbols already.
8859 Enter into partial symbol table if it has a location
8860 descriptor or a type.
8861 If the location descriptor is missing, new_symbol will create
8862 a LOC_UNRESOLVED symbol, the address of the variable will then
8863 be determined from the minimal symbol table whenever the variable
8865 The address for the partial symbol table entry is not
8866 used by GDB, but it comes in handy for debugging partial symbol
8869 if (pdi->d.locdesc || pdi->has_type)
8870 add_psymbol_to_list (actual_name, strlen (actual_name),
8871 built_actual_name != NULL,
8872 VAR_DOMAIN, LOC_STATIC,
8873 &objfile->global_psymbols,
8875 cu->language, objfile);
8879 int has_loc = pdi->d.locdesc != NULL;
8881 /* Static Variable. Skip symbols whose value we cannot know (those
8882 without location descriptors or constant values). */
8883 if (!has_loc && !pdi->has_const_value)
8885 xfree (built_actual_name);
8889 add_psymbol_to_list (actual_name, strlen (actual_name),
8890 built_actual_name != NULL,
8891 VAR_DOMAIN, LOC_STATIC,
8892 &objfile->static_psymbols,
8893 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8894 cu->language, objfile);
8897 case DW_TAG_typedef:
8898 case DW_TAG_base_type:
8899 case DW_TAG_subrange_type:
8900 add_psymbol_to_list (actual_name, strlen (actual_name),
8901 built_actual_name != NULL,
8902 VAR_DOMAIN, LOC_TYPEDEF,
8903 &objfile->static_psymbols,
8904 0, cu->language, objfile);
8906 case DW_TAG_imported_declaration:
8907 case DW_TAG_namespace:
8908 add_psymbol_to_list (actual_name, strlen (actual_name),
8909 built_actual_name != NULL,
8910 VAR_DOMAIN, LOC_TYPEDEF,
8911 &objfile->global_psymbols,
8912 0, cu->language, objfile);
8915 add_psymbol_to_list (actual_name, strlen (actual_name),
8916 built_actual_name != NULL,
8917 MODULE_DOMAIN, LOC_TYPEDEF,
8918 &objfile->global_psymbols,
8919 0, cu->language, objfile);
8921 case DW_TAG_class_type:
8922 case DW_TAG_interface_type:
8923 case DW_TAG_structure_type:
8924 case DW_TAG_union_type:
8925 case DW_TAG_enumeration_type:
8926 /* Skip external references. The DWARF standard says in the section
8927 about "Structure, Union, and Class Type Entries": "An incomplete
8928 structure, union or class type is represented by a structure,
8929 union or class entry that does not have a byte size attribute
8930 and that has a DW_AT_declaration attribute." */
8931 if (!pdi->has_byte_size && pdi->is_declaration)
8933 xfree (built_actual_name);
8937 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8938 static vs. global. */
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL,
8941 STRUCT_DOMAIN, LOC_TYPEDEF,
8942 cu->language == language_cplus
8943 ? &objfile->global_psymbols
8944 : &objfile->static_psymbols,
8945 0, cu->language, objfile);
8948 case DW_TAG_enumerator:
8949 add_psymbol_to_list (actual_name, strlen (actual_name),
8950 built_actual_name != NULL,
8951 VAR_DOMAIN, LOC_CONST,
8952 cu->language == language_cplus
8953 ? &objfile->global_psymbols
8954 : &objfile->static_psymbols,
8955 0, cu->language, objfile);
8961 xfree (built_actual_name);
8964 /* Read a partial die corresponding to a namespace; also, add a symbol
8965 corresponding to that namespace to the symbol table. NAMESPACE is
8966 the name of the enclosing namespace. */
8969 add_partial_namespace (struct partial_die_info *pdi,
8970 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8971 int set_addrmap, struct dwarf2_cu *cu)
8973 /* Add a symbol for the namespace. */
8975 add_partial_symbol (pdi, cu);
8977 /* Now scan partial symbols in that namespace. */
8979 if (pdi->has_children)
8980 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8983 /* Read a partial die corresponding to a Fortran module. */
8986 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8987 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8989 /* Add a symbol for the namespace. */
8991 add_partial_symbol (pdi, cu);
8993 /* Now scan partial symbols in that module. */
8995 if (pdi->has_children)
8996 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8999 /* Read a partial die corresponding to a subprogram or an inlined
9000 subprogram and create a partial symbol for that subprogram.
9001 When the CU language allows it, this routine also defines a partial
9002 symbol for each nested subprogram that this subprogram contains.
9003 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9004 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9006 PDI may also be a lexical block, in which case we simply search
9007 recursively for subprograms defined inside that lexical block.
9008 Again, this is only performed when the CU language allows this
9009 type of definitions. */
9012 add_partial_subprogram (struct partial_die_info *pdi,
9013 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9014 int set_addrmap, struct dwarf2_cu *cu)
9016 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9018 if (pdi->has_pc_info)
9020 if (pdi->lowpc < *lowpc)
9021 *lowpc = pdi->lowpc;
9022 if (pdi->highpc > *highpc)
9023 *highpc = pdi->highpc;
9026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9032 baseaddr = ANOFFSET (objfile->section_offsets,
9033 SECT_OFF_TEXT (objfile));
9034 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9035 pdi->lowpc + baseaddr);
9036 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9037 pdi->highpc + baseaddr);
9038 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9039 cu->per_cu->v.psymtab);
9043 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9045 if (!pdi->is_declaration)
9046 /* Ignore subprogram DIEs that do not have a name, they are
9047 illegal. Do not emit a complaint at this point, we will
9048 do so when we convert this psymtab into a symtab. */
9050 add_partial_symbol (pdi, cu);
9054 if (! pdi->has_children)
9057 if (cu->language == language_ada)
9059 pdi = pdi->die_child;
9063 if (pdi->tag == DW_TAG_subprogram
9064 || pdi->tag == DW_TAG_inlined_subroutine
9065 || pdi->tag == DW_TAG_lexical_block)
9066 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9067 pdi = pdi->die_sibling;
9072 /* Read a partial die corresponding to an enumeration type. */
9075 add_partial_enumeration (struct partial_die_info *enum_pdi,
9076 struct dwarf2_cu *cu)
9078 struct partial_die_info *pdi;
9080 if (enum_pdi->name != NULL)
9081 add_partial_symbol (enum_pdi, cu);
9083 pdi = enum_pdi->die_child;
9086 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9087 complaint (_("malformed enumerator DIE ignored"));
9089 add_partial_symbol (pdi, cu);
9090 pdi = pdi->die_sibling;
9094 /* Return the initial uleb128 in the die at INFO_PTR. */
9097 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9099 unsigned int bytes_read;
9101 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9104 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9105 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9107 Return the corresponding abbrev, or NULL if the number is zero (indicating
9108 an empty DIE). In either case *BYTES_READ will be set to the length of
9109 the initial number. */
9111 static struct abbrev_info *
9112 peek_die_abbrev (const die_reader_specs &reader,
9113 const gdb_byte *info_ptr, unsigned int *bytes_read)
9115 dwarf2_cu *cu = reader.cu;
9116 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9117 unsigned int abbrev_number
9118 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9120 if (abbrev_number == 0)
9123 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9126 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9127 " at offset %s [in module %s]"),
9128 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9129 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9135 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9136 Returns a pointer to the end of a series of DIEs, terminated by an empty
9137 DIE. Any children of the skipped DIEs will also be skipped. */
9139 static const gdb_byte *
9140 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9144 unsigned int bytes_read;
9145 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9148 return info_ptr + bytes_read;
9150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9154 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9156 abbrev corresponding to that skipped uleb128 should be passed in
9157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9160 static const gdb_byte *
9161 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9162 struct abbrev_info *abbrev)
9164 unsigned int bytes_read;
9165 struct attribute attr;
9166 bfd *abfd = reader->abfd;
9167 struct dwarf2_cu *cu = reader->cu;
9168 const gdb_byte *buffer = reader->buffer;
9169 const gdb_byte *buffer_end = reader->buffer_end;
9170 unsigned int form, i;
9172 for (i = 0; i < abbrev->num_attrs; i++)
9174 /* The only abbrev we care about is DW_AT_sibling. */
9175 if (abbrev->attrs[i].name == DW_AT_sibling)
9177 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9178 if (attr.form == DW_FORM_ref_addr)
9179 complaint (_("ignoring absolute DW_AT_sibling"));
9182 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9183 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9185 if (sibling_ptr < info_ptr)
9186 complaint (_("DW_AT_sibling points backwards"));
9187 else if (sibling_ptr > reader->buffer_end)
9188 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9194 /* If it isn't DW_AT_sibling, skip this attribute. */
9195 form = abbrev->attrs[i].form;
9199 case DW_FORM_ref_addr:
9200 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9201 and later it is offset sized. */
9202 if (cu->header.version == 2)
9203 info_ptr += cu->header.addr_size;
9205 info_ptr += cu->header.offset_size;
9207 case DW_FORM_GNU_ref_alt:
9208 info_ptr += cu->header.offset_size;
9211 info_ptr += cu->header.addr_size;
9218 case DW_FORM_flag_present:
9219 case DW_FORM_implicit_const:
9231 case DW_FORM_ref_sig8:
9234 case DW_FORM_data16:
9237 case DW_FORM_string:
9238 read_direct_string (abfd, info_ptr, &bytes_read);
9239 info_ptr += bytes_read;
9241 case DW_FORM_sec_offset:
9243 case DW_FORM_GNU_strp_alt:
9244 info_ptr += cu->header.offset_size;
9246 case DW_FORM_exprloc:
9248 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9249 info_ptr += bytes_read;
9251 case DW_FORM_block1:
9252 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9254 case DW_FORM_block2:
9255 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9257 case DW_FORM_block4:
9258 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9262 case DW_FORM_ref_udata:
9263 case DW_FORM_GNU_addr_index:
9264 case DW_FORM_GNU_str_index:
9265 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9267 case DW_FORM_indirect:
9268 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9269 info_ptr += bytes_read;
9270 /* We need to continue parsing from here, so just go back to
9272 goto skip_attribute;
9275 error (_("Dwarf Error: Cannot handle %s "
9276 "in DWARF reader [in module %s]"),
9277 dwarf_form_name (form),
9278 bfd_get_filename (abfd));
9282 if (abbrev->has_children)
9283 return skip_children (reader, info_ptr);
9288 /* Locate ORIG_PDI's sibling.
9289 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9291 static const gdb_byte *
9292 locate_pdi_sibling (const struct die_reader_specs *reader,
9293 struct partial_die_info *orig_pdi,
9294 const gdb_byte *info_ptr)
9296 /* Do we know the sibling already? */
9298 if (orig_pdi->sibling)
9299 return orig_pdi->sibling;
9301 /* Are there any children to deal with? */
9303 if (!orig_pdi->has_children)
9306 /* Skip the children the long way. */
9308 return skip_children (reader, info_ptr);
9311 /* Expand this partial symbol table into a full symbol table. SELF is
9315 dwarf2_read_symtab (struct partial_symtab *self,
9316 struct objfile *objfile)
9318 struct dwarf2_per_objfile *dwarf2_per_objfile
9319 = get_dwarf2_per_objfile (objfile);
9323 warning (_("bug: psymtab for %s is already read in."),
9330 printf_filtered (_("Reading in symbols for %s..."),
9332 gdb_flush (gdb_stdout);
9335 /* If this psymtab is constructed from a debug-only objfile, the
9336 has_section_at_zero flag will not necessarily be correct. We
9337 can get the correct value for this flag by looking at the data
9338 associated with the (presumably stripped) associated objfile. */
9339 if (objfile->separate_debug_objfile_backlink)
9341 struct dwarf2_per_objfile *dpo_backlink
9342 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9344 dwarf2_per_objfile->has_section_at_zero
9345 = dpo_backlink->has_section_at_zero;
9348 dwarf2_per_objfile->reading_partial_symbols = 0;
9350 psymtab_to_symtab_1 (self);
9352 /* Finish up the debug error message. */
9354 printf_filtered (_("done.\n"));
9357 process_cu_includes (dwarf2_per_objfile);
9360 /* Reading in full CUs. */
9362 /* Add PER_CU to the queue. */
9365 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9366 enum language pretend_language)
9368 struct dwarf2_queue_item *item;
9371 item = XNEW (struct dwarf2_queue_item);
9372 item->per_cu = per_cu;
9373 item->pretend_language = pretend_language;
9376 if (dwarf2_queue == NULL)
9377 dwarf2_queue = item;
9379 dwarf2_queue_tail->next = item;
9381 dwarf2_queue_tail = item;
9384 /* If PER_CU is not yet queued, add it to the queue.
9385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9387 The result is non-zero if PER_CU was queued, otherwise the result is zero
9388 meaning either PER_CU is already queued or it is already loaded.
9390 N.B. There is an invariant here that if a CU is queued then it is loaded.
9391 The caller is required to load PER_CU if we return non-zero. */
9394 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9395 struct dwarf2_per_cu_data *per_cu,
9396 enum language pretend_language)
9398 /* We may arrive here during partial symbol reading, if we need full
9399 DIEs to process an unusual case (e.g. template arguments). Do
9400 not queue PER_CU, just tell our caller to load its DIEs. */
9401 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9408 /* Mark the dependence relation so that we don't flush PER_CU
9410 if (dependent_cu != NULL)
9411 dwarf2_add_dependence (dependent_cu, per_cu);
9413 /* If it's already on the queue, we have nothing to do. */
9417 /* If the compilation unit is already loaded, just mark it as
9419 if (per_cu->cu != NULL)
9421 per_cu->cu->last_used = 0;
9425 /* Add it to the queue. */
9426 queue_comp_unit (per_cu, pretend_language);
9431 /* Process the queue. */
9434 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9436 struct dwarf2_queue_item *item, *next_item;
9438 if (dwarf_read_debug)
9440 fprintf_unfiltered (gdb_stdlog,
9441 "Expanding one or more symtabs of objfile %s ...\n",
9442 objfile_name (dwarf2_per_objfile->objfile));
9445 /* The queue starts out with one item, but following a DIE reference
9446 may load a new CU, adding it to the end of the queue. */
9447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9449 if ((dwarf2_per_objfile->using_index
9450 ? !item->per_cu->v.quick->compunit_symtab
9451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9452 /* Skip dummy CUs. */
9453 && item->per_cu->cu != NULL)
9455 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9456 unsigned int debug_print_threshold;
9459 if (per_cu->is_debug_types)
9461 struct signatured_type *sig_type =
9462 (struct signatured_type *) per_cu;
9464 sprintf (buf, "TU %s at offset %s",
9465 hex_string (sig_type->signature),
9466 sect_offset_str (per_cu->sect_off));
9467 /* There can be 100s of TUs.
9468 Only print them in verbose mode. */
9469 debug_print_threshold = 2;
9473 sprintf (buf, "CU at offset %s",
9474 sect_offset_str (per_cu->sect_off));
9475 debug_print_threshold = 1;
9478 if (dwarf_read_debug >= debug_print_threshold)
9479 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9481 if (per_cu->is_debug_types)
9482 process_full_type_unit (per_cu, item->pretend_language);
9484 process_full_comp_unit (per_cu, item->pretend_language);
9486 if (dwarf_read_debug >= debug_print_threshold)
9487 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9490 item->per_cu->queued = 0;
9491 next_item = item->next;
9495 dwarf2_queue_tail = NULL;
9497 if (dwarf_read_debug)
9499 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9500 objfile_name (dwarf2_per_objfile->objfile));
9504 /* Read in full symbols for PST, and anything it depends on. */
9507 psymtab_to_symtab_1 (struct partial_symtab *pst)
9509 struct dwarf2_per_cu_data *per_cu;
9515 for (i = 0; i < pst->number_of_dependencies; i++)
9516 if (!pst->dependencies[i]->readin
9517 && pst->dependencies[i]->user == NULL)
9519 /* Inform about additional files that need to be read in. */
9522 /* FIXME: i18n: Need to make this a single string. */
9523 fputs_filtered (" ", gdb_stdout);
9525 fputs_filtered ("and ", gdb_stdout);
9527 printf_filtered ("%s...", pst->dependencies[i]->filename);
9528 wrap_here (""); /* Flush output. */
9529 gdb_flush (gdb_stdout);
9531 psymtab_to_symtab_1 (pst->dependencies[i]);
9534 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9538 /* It's an include file, no symbols to read for it.
9539 Everything is in the parent symtab. */
9544 dw2_do_instantiate_symtab (per_cu, false);
9547 /* Trivial hash function for die_info: the hash value of a DIE
9548 is its offset in .debug_info for this objfile. */
9551 die_hash (const void *item)
9553 const struct die_info *die = (const struct die_info *) item;
9555 return to_underlying (die->sect_off);
9558 /* Trivial comparison function for die_info structures: two DIEs
9559 are equal if they have the same offset. */
9562 die_eq (const void *item_lhs, const void *item_rhs)
9564 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9565 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9567 return die_lhs->sect_off == die_rhs->sect_off;
9570 /* die_reader_func for load_full_comp_unit.
9571 This is identical to read_signatured_type_reader,
9572 but is kept separate for now. */
9575 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9576 const gdb_byte *info_ptr,
9577 struct die_info *comp_unit_die,
9581 struct dwarf2_cu *cu = reader->cu;
9582 enum language *language_ptr = (enum language *) data;
9584 gdb_assert (cu->die_hash == NULL);
9586 htab_create_alloc_ex (cu->header.length / 12,
9590 &cu->comp_unit_obstack,
9591 hashtab_obstack_allocate,
9592 dummy_obstack_deallocate);
9595 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9596 &info_ptr, comp_unit_die);
9597 cu->dies = comp_unit_die;
9598 /* comp_unit_die is not stored in die_hash, no need. */
9600 /* We try not to read any attributes in this function, because not
9601 all CUs needed for references have been loaded yet, and symbol
9602 table processing isn't initialized. But we have to set the CU language,
9603 or we won't be able to build types correctly.
9604 Similarly, if we do not read the producer, we can not apply
9605 producer-specific interpretation. */
9606 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9609 /* Load the DIEs associated with PER_CU into memory. */
9612 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9614 enum language pretend_language)
9616 gdb_assert (! this_cu->is_debug_types);
9618 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9619 load_full_comp_unit_reader, &pretend_language);
9622 /* Add a DIE to the delayed physname list. */
9625 add_to_method_list (struct type *type, int fnfield_index, int index,
9626 const char *name, struct die_info *die,
9627 struct dwarf2_cu *cu)
9629 struct delayed_method_info mi;
9631 mi.fnfield_index = fnfield_index;
9635 cu->method_list.push_back (mi);
9638 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9639 "const" / "volatile". If so, decrements LEN by the length of the
9640 modifier and return true. Otherwise return false. */
9644 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9646 size_t mod_len = sizeof (mod) - 1;
9647 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9655 /* Compute the physnames of any methods on the CU's method list.
9657 The computation of method physnames is delayed in order to avoid the
9658 (bad) condition that one of the method's formal parameters is of an as yet
9662 compute_delayed_physnames (struct dwarf2_cu *cu)
9664 /* Only C++ delays computing physnames. */
9665 if (cu->method_list.empty ())
9667 gdb_assert (cu->language == language_cplus);
9669 for (const delayed_method_info &mi : cu->method_list)
9671 const char *physname;
9672 struct fn_fieldlist *fn_flp
9673 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9674 physname = dwarf2_physname (mi.name, mi.die, cu);
9675 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9676 = physname ? physname : "";
9678 /* Since there's no tag to indicate whether a method is a
9679 const/volatile overload, extract that information out of the
9681 if (physname != NULL)
9683 size_t len = strlen (physname);
9687 if (physname[len] == ')') /* shortcut */
9689 else if (check_modifier (physname, len, " const"))
9690 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9691 else if (check_modifier (physname, len, " volatile"))
9692 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9699 /* The list is no longer needed. */
9700 cu->method_list.clear ();
9703 /* Go objects should be embedded in a DW_TAG_module DIE,
9704 and it's not clear if/how imported objects will appear.
9705 To keep Go support simple until that's worked out,
9706 go back through what we've read and create something usable.
9707 We could do this while processing each DIE, and feels kinda cleaner,
9708 but that way is more invasive.
9709 This is to, for example, allow the user to type "p var" or "b main"
9710 without having to specify the package name, and allow lookups
9711 of module.object to work in contexts that use the expression
9715 fixup_go_packaging (struct dwarf2_cu *cu)
9717 char *package_name = NULL;
9718 struct pending *list;
9721 for (list = global_symbols; list != NULL; list = list->next)
9723 for (i = 0; i < list->nsyms; ++i)
9725 struct symbol *sym = list->symbol[i];
9727 if (SYMBOL_LANGUAGE (sym) == language_go
9728 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9730 char *this_package_name = go_symbol_package_name (sym);
9732 if (this_package_name == NULL)
9734 if (package_name == NULL)
9735 package_name = this_package_name;
9738 struct objfile *objfile
9739 = cu->per_cu->dwarf2_per_objfile->objfile;
9740 if (strcmp (package_name, this_package_name) != 0)
9741 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9742 (symbol_symtab (sym) != NULL
9743 ? symtab_to_filename_for_display
9744 (symbol_symtab (sym))
9745 : objfile_name (objfile)),
9746 this_package_name, package_name);
9747 xfree (this_package_name);
9753 if (package_name != NULL)
9755 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9756 const char *saved_package_name
9757 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9759 strlen (package_name));
9760 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9761 saved_package_name);
9764 sym = allocate_symbol (objfile);
9765 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9766 SYMBOL_SET_NAMES (sym, saved_package_name,
9767 strlen (saved_package_name), 0, objfile);
9768 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9769 e.g., "main" finds the "main" module and not C's main(). */
9770 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9771 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9772 SYMBOL_TYPE (sym) = type;
9774 add_symbol_to_list (sym, &global_symbols);
9776 xfree (package_name);
9780 /* Allocate a fully-qualified name consisting of the two parts on the
9784 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9786 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9789 /* A helper that allocates a struct discriminant_info to attach to a
9792 static struct discriminant_info *
9793 alloc_discriminant_info (struct type *type, int discriminant_index,
9796 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9797 gdb_assert (discriminant_index == -1
9798 || (discriminant_index >= 0
9799 && discriminant_index < TYPE_NFIELDS (type)));
9800 gdb_assert (default_index == -1
9801 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9803 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9805 struct discriminant_info *disc
9806 = ((struct discriminant_info *)
9808 offsetof (struct discriminant_info, discriminants)
9809 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9810 disc->default_index = default_index;
9811 disc->discriminant_index = discriminant_index;
9813 struct dynamic_prop prop;
9814 prop.kind = PROP_UNDEFINED;
9815 prop.data.baton = disc;
9817 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9822 /* Some versions of rustc emitted enums in an unusual way.
9824 Ordinary enums were emitted as unions. The first element of each
9825 structure in the union was named "RUST$ENUM$DISR". This element
9826 held the discriminant.
9828 These versions of Rust also implemented the "non-zero"
9829 optimization. When the enum had two values, and one is empty and
9830 the other holds a pointer that cannot be zero, the pointer is used
9831 as the discriminant, with a zero value meaning the empty variant.
9832 Here, the union's first member is of the form
9833 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9834 where the fieldnos are the indices of the fields that should be
9835 traversed in order to find the field (which may be several fields deep)
9836 and the variantname is the name of the variant of the case when the
9839 This function recognizes whether TYPE is of one of these forms,
9840 and, if so, smashes it to be a variant type. */
9843 quirk_rust_enum (struct type *type, struct objfile *objfile)
9845 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9847 /* We don't need to deal with empty enums. */
9848 if (TYPE_NFIELDS (type) == 0)
9851 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9852 if (TYPE_NFIELDS (type) == 1
9853 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9855 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9857 /* Decode the field name to find the offset of the
9859 ULONGEST bit_offset = 0;
9860 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9861 while (name[0] >= '0' && name[0] <= '9')
9864 unsigned long index = strtoul (name, &tail, 10);
9867 || index >= TYPE_NFIELDS (field_type)
9868 || (TYPE_FIELD_LOC_KIND (field_type, index)
9869 != FIELD_LOC_KIND_BITPOS))
9871 complaint (_("Could not parse Rust enum encoding string \"%s\""
9873 TYPE_FIELD_NAME (type, 0),
9874 objfile_name (objfile));
9879 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9880 field_type = TYPE_FIELD_TYPE (field_type, index);
9883 /* Make a union to hold the variants. */
9884 struct type *union_type = alloc_type (objfile);
9885 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9886 TYPE_NFIELDS (union_type) = 3;
9887 TYPE_FIELDS (union_type)
9888 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9889 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9890 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9892 /* Put the discriminant must at index 0. */
9893 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9894 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9895 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9896 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9898 /* The order of fields doesn't really matter, so put the real
9899 field at index 1 and the data-less field at index 2. */
9900 struct discriminant_info *disc
9901 = alloc_discriminant_info (union_type, 0, 1);
9902 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9903 TYPE_FIELD_NAME (union_type, 1)
9904 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9905 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9906 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9907 TYPE_FIELD_NAME (union_type, 1));
9909 const char *dataless_name
9910 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9912 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9914 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9915 /* NAME points into the original discriminant name, which
9916 already has the correct lifetime. */
9917 TYPE_FIELD_NAME (union_type, 2) = name;
9918 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9919 disc->discriminants[2] = 0;
9921 /* Smash this type to be a structure type. We have to do this
9922 because the type has already been recorded. */
9923 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9924 TYPE_NFIELDS (type) = 1;
9926 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9928 /* Install the variant part. */
9929 TYPE_FIELD_TYPE (type, 0) = union_type;
9930 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9931 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9933 else if (TYPE_NFIELDS (type) == 1)
9935 /* We assume that a union with a single field is a univariant
9937 /* Smash this type to be a structure type. We have to do this
9938 because the type has already been recorded. */
9939 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9941 /* Make a union to hold the variants. */
9942 struct type *union_type = alloc_type (objfile);
9943 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9944 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9945 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9946 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9947 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9949 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9950 const char *variant_name
9951 = rust_last_path_segment (TYPE_NAME (field_type));
9952 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9953 TYPE_NAME (field_type)
9954 = rust_fully_qualify (&objfile->objfile_obstack,
9955 TYPE_NAME (type), variant_name);
9957 /* Install the union in the outer struct type. */
9958 TYPE_NFIELDS (type) = 1;
9960 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9961 TYPE_FIELD_TYPE (type, 0) = union_type;
9962 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9963 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9965 alloc_discriminant_info (union_type, -1, 0);
9969 struct type *disr_type = nullptr;
9970 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9972 disr_type = TYPE_FIELD_TYPE (type, i);
9974 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9976 /* All fields of a true enum will be structs. */
9979 else if (TYPE_NFIELDS (disr_type) == 0)
9981 /* Could be data-less variant, so keep going. */
9982 disr_type = nullptr;
9984 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9985 "RUST$ENUM$DISR") != 0)
9987 /* Not a Rust enum. */
9997 /* If we got here without a discriminant, then it's probably
9999 if (disr_type == nullptr)
10002 /* Smash this type to be a structure type. We have to do this
10003 because the type has already been recorded. */
10004 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10006 /* Make a union to hold the variants. */
10007 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10008 struct type *union_type = alloc_type (objfile);
10009 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10010 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10011 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10012 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10013 TYPE_FIELDS (union_type)
10014 = (struct field *) TYPE_ZALLOC (union_type,
10015 (TYPE_NFIELDS (union_type)
10016 * sizeof (struct field)));
10018 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10019 TYPE_NFIELDS (type) * sizeof (struct field));
10021 /* Install the discriminant at index 0 in the union. */
10022 TYPE_FIELD (union_type, 0) = *disr_field;
10023 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10024 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10026 /* Install the union in the outer struct type. */
10027 TYPE_FIELD_TYPE (type, 0) = union_type;
10028 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10029 TYPE_NFIELDS (type) = 1;
10031 /* Set the size and offset of the union type. */
10032 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10034 /* We need a way to find the correct discriminant given a
10035 variant name. For convenience we build a map here. */
10036 struct type *enum_type = FIELD_TYPE (*disr_field);
10037 std::unordered_map<std::string, ULONGEST> discriminant_map;
10038 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10040 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10043 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10044 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10048 int n_fields = TYPE_NFIELDS (union_type);
10049 struct discriminant_info *disc
10050 = alloc_discriminant_info (union_type, 0, -1);
10051 /* Skip the discriminant here. */
10052 for (int i = 1; i < n_fields; ++i)
10054 /* Find the final word in the name of this variant's type.
10055 That name can be used to look up the correct
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10061 auto iter = discriminant_map.find (variant_name);
10062 if (iter != discriminant_map.end ())
10063 disc->discriminants[i] = iter->second;
10065 /* Remove the discriminant field, if it exists. */
10066 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10067 if (TYPE_NFIELDS (sub_type) > 0)
10069 --TYPE_NFIELDS (sub_type);
10070 ++TYPE_FIELDS (sub_type);
10072 TYPE_FIELD_NAME (union_type, i) = variant_name;
10073 TYPE_NAME (sub_type)
10074 = rust_fully_qualify (&objfile->objfile_obstack,
10075 TYPE_NAME (type), variant_name);
10080 /* Rewrite some Rust unions to be structures with variants parts. */
10083 rust_union_quirks (struct dwarf2_cu *cu)
10085 gdb_assert (cu->language == language_rust);
10086 for (type *type_ : cu->rust_unions)
10087 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10088 /* We don't need this any more. */
10089 cu->rust_unions.clear ();
10092 /* Return the symtab for PER_CU. This works properly regardless of
10093 whether we're using the index or psymtabs. */
10095 static struct compunit_symtab *
10096 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10098 return (per_cu->dwarf2_per_objfile->using_index
10099 ? per_cu->v.quick->compunit_symtab
10100 : per_cu->v.psymtab->compunit_symtab);
10103 /* A helper function for computing the list of all symbol tables
10104 included by PER_CU. */
10107 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10108 htab_t all_children, htab_t all_type_symtabs,
10109 struct dwarf2_per_cu_data *per_cu,
10110 struct compunit_symtab *immediate_parent)
10114 struct compunit_symtab *cust;
10115 struct dwarf2_per_cu_data *iter;
10117 slot = htab_find_slot (all_children, per_cu, INSERT);
10120 /* This inclusion and its children have been processed. */
10125 /* Only add a CU if it has a symbol table. */
10126 cust = get_compunit_symtab (per_cu);
10129 /* If this is a type unit only add its symbol table if we haven't
10130 seen it yet (type unit per_cu's can share symtabs). */
10131 if (per_cu->is_debug_types)
10133 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10137 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10138 if (cust->user == NULL)
10139 cust->user = immediate_parent;
10144 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10145 if (cust->user == NULL)
10146 cust->user = immediate_parent;
10151 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10154 recursively_compute_inclusions (result, all_children,
10155 all_type_symtabs, iter, cust);
10159 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10163 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10165 gdb_assert (! per_cu->is_debug_types);
10167 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10170 struct dwarf2_per_cu_data *per_cu_iter;
10171 struct compunit_symtab *compunit_symtab_iter;
10172 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10173 htab_t all_children, all_type_symtabs;
10174 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10176 /* If we don't have a symtab, we can just skip this case. */
10180 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10181 NULL, xcalloc, xfree);
10182 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10183 NULL, xcalloc, xfree);
10186 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10190 recursively_compute_inclusions (&result_symtabs, all_children,
10191 all_type_symtabs, per_cu_iter,
10195 /* Now we have a transitive closure of all the included symtabs. */
10196 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10198 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10199 struct compunit_symtab *, len + 1);
10201 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10202 compunit_symtab_iter);
10204 cust->includes[ix] = compunit_symtab_iter;
10205 cust->includes[len] = NULL;
10207 VEC_free (compunit_symtab_ptr, result_symtabs);
10208 htab_delete (all_children);
10209 htab_delete (all_type_symtabs);
10213 /* Compute the 'includes' field for the symtabs of all the CUs we just
10217 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10219 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10221 if (! iter->is_debug_types)
10222 compute_compunit_symtab_includes (iter);
10225 dwarf2_per_objfile->just_read_cus.clear ();
10228 /* Generate full symbol information for PER_CU, whose DIEs have
10229 already been loaded into memory. */
10232 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10233 enum language pretend_language)
10235 struct dwarf2_cu *cu = per_cu->cu;
10236 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10237 struct objfile *objfile = dwarf2_per_objfile->objfile;
10238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10239 CORE_ADDR lowpc, highpc;
10240 struct compunit_symtab *cust;
10241 CORE_ADDR baseaddr;
10242 struct block *static_block;
10245 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10248 scoped_free_pendings free_pending;
10250 /* Clear the list here in case something was left over. */
10251 cu->method_list.clear ();
10253 cu->list_in_scope = &file_symbols;
10255 cu->language = pretend_language;
10256 cu->language_defn = language_def (cu->language);
10258 /* Do line number decoding in read_file_scope () */
10259 process_die (cu->dies, cu);
10261 /* For now fudge the Go package. */
10262 if (cu->language == language_go)
10263 fixup_go_packaging (cu);
10265 /* Now that we have processed all the DIEs in the CU, all the types
10266 should be complete, and it should now be safe to compute all of the
10268 compute_delayed_physnames (cu);
10270 if (cu->language == language_rust)
10271 rust_union_quirks (cu);
10273 /* Some compilers don't define a DW_AT_high_pc attribute for the
10274 compilation unit. If the DW_AT_high_pc is missing, synthesize
10275 it, by scanning the DIE's below the compilation unit. */
10276 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10278 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10279 static_block = end_symtab_get_static_block (addr, 0, 1);
10281 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10282 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10283 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10284 addrmap to help ensure it has an accurate map of pc values belonging to
10286 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10288 cust = end_symtab_from_static_block (static_block,
10289 SECT_OFF_TEXT (objfile), 0);
10293 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10295 /* Set symtab language to language from DW_AT_language. If the
10296 compilation is from a C file generated by language preprocessors, do
10297 not set the language if it was already deduced by start_subfile. */
10298 if (!(cu->language == language_c
10299 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10300 COMPUNIT_FILETABS (cust)->language = cu->language;
10302 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10303 produce DW_AT_location with location lists but it can be possibly
10304 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10305 there were bugs in prologue debug info, fixed later in GCC-4.5
10306 by "unwind info for epilogues" patch (which is not directly related).
10308 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10309 needed, it would be wrong due to missing DW_AT_producer there.
10311 Still one can confuse GDB by using non-standard GCC compilation
10312 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10314 if (cu->has_loclist && gcc_4_minor >= 5)
10315 cust->locations_valid = 1;
10317 if (gcc_4_minor >= 5)
10318 cust->epilogue_unwind_valid = 1;
10320 cust->call_site_htab = cu->call_site_htab;
10323 if (dwarf2_per_objfile->using_index)
10324 per_cu->v.quick->compunit_symtab = cust;
10327 struct partial_symtab *pst = per_cu->v.psymtab;
10328 pst->compunit_symtab = cust;
10332 /* Push it for inclusion processing later. */
10333 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10336 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10337 already been loaded into memory. */
10340 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10341 enum language pretend_language)
10343 struct dwarf2_cu *cu = per_cu->cu;
10344 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10345 struct objfile *objfile = dwarf2_per_objfile->objfile;
10346 struct compunit_symtab *cust;
10347 struct signatured_type *sig_type;
10349 gdb_assert (per_cu->is_debug_types);
10350 sig_type = (struct signatured_type *) per_cu;
10353 scoped_free_pendings free_pending;
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
10358 cu->list_in_scope = &file_symbols;
10360 cu->language = pretend_language;
10361 cu->language_defn = language_def (cu->language);
10363 /* The symbol tables are set up in read_type_unit_scope. */
10364 process_die (cu->dies, cu);
10366 /* For now fudge the Go package. */
10367 if (cu->language == language_go)
10368 fixup_go_packaging (cu);
10370 /* Now that we have processed all the DIEs in the CU, all the types
10371 should be complete, and it should now be safe to compute all of the
10373 compute_delayed_physnames (cu);
10375 if (cu->language == language_rust)
10376 rust_union_quirks (cu);
10378 /* TUs share symbol tables.
10379 If this is the first TU to use this symtab, complete the construction
10380 of it with end_expandable_symtab. Otherwise, complete the addition of
10381 this TU's symbols to the existing symtab. */
10382 if (sig_type->type_unit_group->compunit_symtab == NULL)
10384 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10385 sig_type->type_unit_group->compunit_symtab = cust;
10389 /* Set symtab language to language from DW_AT_language. If the
10390 compilation is from a C file generated by language preprocessors,
10391 do not set the language if it was already deduced by
10393 if (!(cu->language == language_c
10394 && COMPUNIT_FILETABS (cust)->language != language_c))
10395 COMPUNIT_FILETABS (cust)->language = cu->language;
10400 augment_type_symtab ();
10401 cust = sig_type->type_unit_group->compunit_symtab;
10404 if (dwarf2_per_objfile->using_index)
10405 per_cu->v.quick->compunit_symtab = cust;
10408 struct partial_symtab *pst = per_cu->v.psymtab;
10409 pst->compunit_symtab = cust;
10414 /* Process an imported unit DIE. */
10417 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10419 struct attribute *attr;
10421 /* For now we don't handle imported units in type units. */
10422 if (cu->per_cu->is_debug_types)
10424 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10425 " supported in type units [in module %s]"),
10426 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10429 attr = dwarf2_attr (die, DW_AT_import, cu);
10432 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10433 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10434 dwarf2_per_cu_data *per_cu
10435 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10436 cu->per_cu->dwarf2_per_objfile);
10438 /* If necessary, add it to the queue and load its DIEs. */
10439 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10440 load_full_comp_unit (per_cu, false, cu->language);
10442 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10447 /* RAII object that represents a process_die scope: i.e.,
10448 starts/finishes processing a DIE. */
10449 class process_die_scope
10452 process_die_scope (die_info *die, dwarf2_cu *cu)
10453 : m_die (die), m_cu (cu)
10455 /* We should only be processing DIEs not already in process. */
10456 gdb_assert (!m_die->in_process);
10457 m_die->in_process = true;
10460 ~process_die_scope ()
10462 m_die->in_process = false;
10464 /* If we're done processing the DIE for the CU that owns the line
10465 header, we don't need the line header anymore. */
10466 if (m_cu->line_header_die_owner == m_die)
10468 delete m_cu->line_header;
10469 m_cu->line_header = NULL;
10470 m_cu->line_header_die_owner = NULL;
10479 /* Process a die and its children. */
10482 process_die (struct die_info *die, struct dwarf2_cu *cu)
10484 process_die_scope scope (die, cu);
10488 case DW_TAG_padding:
10490 case DW_TAG_compile_unit:
10491 case DW_TAG_partial_unit:
10492 read_file_scope (die, cu);
10494 case DW_TAG_type_unit:
10495 read_type_unit_scope (die, cu);
10497 case DW_TAG_subprogram:
10498 case DW_TAG_inlined_subroutine:
10499 read_func_scope (die, cu);
10501 case DW_TAG_lexical_block:
10502 case DW_TAG_try_block:
10503 case DW_TAG_catch_block:
10504 read_lexical_block_scope (die, cu);
10506 case DW_TAG_call_site:
10507 case DW_TAG_GNU_call_site:
10508 read_call_site_scope (die, cu);
10510 case DW_TAG_class_type:
10511 case DW_TAG_interface_type:
10512 case DW_TAG_structure_type:
10513 case DW_TAG_union_type:
10514 process_structure_scope (die, cu);
10516 case DW_TAG_enumeration_type:
10517 process_enumeration_scope (die, cu);
10520 /* These dies have a type, but processing them does not create
10521 a symbol or recurse to process the children. Therefore we can
10522 read them on-demand through read_type_die. */
10523 case DW_TAG_subroutine_type:
10524 case DW_TAG_set_type:
10525 case DW_TAG_array_type:
10526 case DW_TAG_pointer_type:
10527 case DW_TAG_ptr_to_member_type:
10528 case DW_TAG_reference_type:
10529 case DW_TAG_rvalue_reference_type:
10530 case DW_TAG_string_type:
10533 case DW_TAG_base_type:
10534 case DW_TAG_subrange_type:
10535 case DW_TAG_typedef:
10536 /* Add a typedef symbol for the type definition, if it has a
10538 new_symbol (die, read_type_die (die, cu), cu);
10540 case DW_TAG_common_block:
10541 read_common_block (die, cu);
10543 case DW_TAG_common_inclusion:
10545 case DW_TAG_namespace:
10546 cu->processing_has_namespace_info = 1;
10547 read_namespace (die, cu);
10549 case DW_TAG_module:
10550 cu->processing_has_namespace_info = 1;
10551 read_module (die, cu);
10553 case DW_TAG_imported_declaration:
10554 cu->processing_has_namespace_info = 1;
10555 if (read_namespace_alias (die, cu))
10557 /* The declaration is not a global namespace alias. */
10558 /* Fall through. */
10559 case DW_TAG_imported_module:
10560 cu->processing_has_namespace_info = 1;
10561 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10562 || cu->language != language_fortran))
10563 complaint (_("Tag '%s' has unexpected children"),
10564 dwarf_tag_name (die->tag));
10565 read_import_statement (die, cu);
10568 case DW_TAG_imported_unit:
10569 process_imported_unit_die (die, cu);
10572 case DW_TAG_variable:
10573 read_variable (die, cu);
10577 new_symbol (die, NULL, cu);
10582 /* DWARF name computation. */
10584 /* A helper function for dwarf2_compute_name which determines whether DIE
10585 needs to have the name of the scope prepended to the name listed in the
10589 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10591 struct attribute *attr;
10595 case DW_TAG_namespace:
10596 case DW_TAG_typedef:
10597 case DW_TAG_class_type:
10598 case DW_TAG_interface_type:
10599 case DW_TAG_structure_type:
10600 case DW_TAG_union_type:
10601 case DW_TAG_enumeration_type:
10602 case DW_TAG_enumerator:
10603 case DW_TAG_subprogram:
10604 case DW_TAG_inlined_subroutine:
10605 case DW_TAG_member:
10606 case DW_TAG_imported_declaration:
10609 case DW_TAG_variable:
10610 case DW_TAG_constant:
10611 /* We only need to prefix "globally" visible variables. These include
10612 any variable marked with DW_AT_external or any variable that
10613 lives in a namespace. [Variables in anonymous namespaces
10614 require prefixing, but they are not DW_AT_external.] */
10616 if (dwarf2_attr (die, DW_AT_specification, cu))
10618 struct dwarf2_cu *spec_cu = cu;
10620 return die_needs_namespace (die_specification (die, &spec_cu),
10624 attr = dwarf2_attr (die, DW_AT_external, cu);
10625 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10626 && die->parent->tag != DW_TAG_module)
10628 /* A variable in a lexical block of some kind does not need a
10629 namespace, even though in C++ such variables may be external
10630 and have a mangled name. */
10631 if (die->parent->tag == DW_TAG_lexical_block
10632 || die->parent->tag == DW_TAG_try_block
10633 || die->parent->tag == DW_TAG_catch_block
10634 || die->parent->tag == DW_TAG_subprogram)
10643 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10644 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10645 defined for the given DIE. */
10647 static struct attribute *
10648 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10650 struct attribute *attr;
10652 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10654 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10659 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10660 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10661 defined for the given DIE. */
10663 static const char *
10664 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10666 const char *linkage_name;
10668 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10669 if (linkage_name == NULL)
10670 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10672 return linkage_name;
10675 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10676 compute the physname for the object, which include a method's:
10677 - formal parameters (C++),
10678 - receiver type (Go),
10680 The term "physname" is a bit confusing.
10681 For C++, for example, it is the demangled name.
10682 For Go, for example, it's the mangled name.
10684 For Ada, return the DIE's linkage name rather than the fully qualified
10685 name. PHYSNAME is ignored..
10687 The result is allocated on the objfile_obstack and canonicalized. */
10689 static const char *
10690 dwarf2_compute_name (const char *name,
10691 struct die_info *die, struct dwarf2_cu *cu,
10694 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10697 name = dwarf2_name (die, cu);
10699 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10700 but otherwise compute it by typename_concat inside GDB.
10701 FIXME: Actually this is not really true, or at least not always true.
10702 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10703 Fortran names because there is no mangling standard. So new_symbol
10704 will set the demangled name to the result of dwarf2_full_name, and it is
10705 the demangled name that GDB uses if it exists. */
10706 if (cu->language == language_ada
10707 || (cu->language == language_fortran && physname))
10709 /* For Ada unit, we prefer the linkage name over the name, as
10710 the former contains the exported name, which the user expects
10711 to be able to reference. Ideally, we want the user to be able
10712 to reference this entity using either natural or linkage name,
10713 but we haven't started looking at this enhancement yet. */
10714 const char *linkage_name = dw2_linkage_name (die, cu);
10716 if (linkage_name != NULL)
10717 return linkage_name;
10720 /* These are the only languages we know how to qualify names in. */
10722 && (cu->language == language_cplus
10723 || cu->language == language_fortran || cu->language == language_d
10724 || cu->language == language_rust))
10726 if (die_needs_namespace (die, cu))
10728 const char *prefix;
10729 const char *canonical_name = NULL;
10733 prefix = determine_prefix (die, cu);
10734 if (*prefix != '\0')
10736 char *prefixed_name = typename_concat (NULL, prefix, name,
10739 buf.puts (prefixed_name);
10740 xfree (prefixed_name);
10745 /* Template parameters may be specified in the DIE's DW_AT_name, or
10746 as children with DW_TAG_template_type_param or
10747 DW_TAG_value_type_param. If the latter, add them to the name
10748 here. If the name already has template parameters, then
10749 skip this step; some versions of GCC emit both, and
10750 it is more efficient to use the pre-computed name.
10752 Something to keep in mind about this process: it is very
10753 unlikely, or in some cases downright impossible, to produce
10754 something that will match the mangled name of a function.
10755 If the definition of the function has the same debug info,
10756 we should be able to match up with it anyway. But fallbacks
10757 using the minimal symbol, for instance to find a method
10758 implemented in a stripped copy of libstdc++, will not work.
10759 If we do not have debug info for the definition, we will have to
10760 match them up some other way.
10762 When we do name matching there is a related problem with function
10763 templates; two instantiated function templates are allowed to
10764 differ only by their return types, which we do not add here. */
10766 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10768 struct attribute *attr;
10769 struct die_info *child;
10772 die->building_fullname = 1;
10774 for (child = die->child; child != NULL; child = child->sibling)
10778 const gdb_byte *bytes;
10779 struct dwarf2_locexpr_baton *baton;
10782 if (child->tag != DW_TAG_template_type_param
10783 && child->tag != DW_TAG_template_value_param)
10794 attr = dwarf2_attr (child, DW_AT_type, cu);
10797 complaint (_("template parameter missing DW_AT_type"));
10798 buf.puts ("UNKNOWN_TYPE");
10801 type = die_type (child, cu);
10803 if (child->tag == DW_TAG_template_type_param)
10805 c_print_type (type, "", &buf, -1, 0, cu->language,
10806 &type_print_raw_options);
10810 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10813 complaint (_("template parameter missing "
10814 "DW_AT_const_value"));
10815 buf.puts ("UNKNOWN_VALUE");
10819 dwarf2_const_value_attr (attr, type, name,
10820 &cu->comp_unit_obstack, cu,
10821 &value, &bytes, &baton);
10823 if (TYPE_NOSIGN (type))
10824 /* GDB prints characters as NUMBER 'CHAR'. If that's
10825 changed, this can use value_print instead. */
10826 c_printchar (value, type, &buf);
10829 struct value_print_options opts;
10832 v = dwarf2_evaluate_loc_desc (type, NULL,
10836 else if (bytes != NULL)
10838 v = allocate_value (type);
10839 memcpy (value_contents_writeable (v), bytes,
10840 TYPE_LENGTH (type));
10843 v = value_from_longest (type, value);
10845 /* Specify decimal so that we do not depend on
10847 get_formatted_print_options (&opts, 'd');
10849 value_print (v, &buf, &opts);
10854 die->building_fullname = 0;
10858 /* Close the argument list, with a space if necessary
10859 (nested templates). */
10860 if (!buf.empty () && buf.string ().back () == '>')
10867 /* For C++ methods, append formal parameter type
10868 information, if PHYSNAME. */
10870 if (physname && die->tag == DW_TAG_subprogram
10871 && cu->language == language_cplus)
10873 struct type *type = read_type_die (die, cu);
10875 c_type_print_args (type, &buf, 1, cu->language,
10876 &type_print_raw_options);
10878 if (cu->language == language_cplus)
10880 /* Assume that an artificial first parameter is
10881 "this", but do not crash if it is not. RealView
10882 marks unnamed (and thus unused) parameters as
10883 artificial; there is no way to differentiate
10885 if (TYPE_NFIELDS (type) > 0
10886 && TYPE_FIELD_ARTIFICIAL (type, 0)
10887 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10888 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10890 buf.puts (" const");
10894 const std::string &intermediate_name = buf.string ();
10896 if (cu->language == language_cplus)
10898 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10899 &objfile->per_bfd->storage_obstack);
10901 /* If we only computed INTERMEDIATE_NAME, or if
10902 INTERMEDIATE_NAME is already canonical, then we need to
10903 copy it to the appropriate obstack. */
10904 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10905 name = ((const char *)
10906 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10907 intermediate_name.c_str (),
10908 intermediate_name.length ()));
10910 name = canonical_name;
10917 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10918 If scope qualifiers are appropriate they will be added. The result
10919 will be allocated on the storage_obstack, or NULL if the DIE does
10920 not have a name. NAME may either be from a previous call to
10921 dwarf2_name or NULL.
10923 The output string will be canonicalized (if C++). */
10925 static const char *
10926 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10928 return dwarf2_compute_name (name, die, cu, 0);
10931 /* Construct a physname for the given DIE in CU. NAME may either be
10932 from a previous call to dwarf2_name or NULL. The result will be
10933 allocated on the objfile_objstack or NULL if the DIE does not have a
10936 The output string will be canonicalized (if C++). */
10938 static const char *
10939 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10942 const char *retval, *mangled = NULL, *canon = NULL;
10945 /* In this case dwarf2_compute_name is just a shortcut not building anything
10947 if (!die_needs_namespace (die, cu))
10948 return dwarf2_compute_name (name, die, cu, 1);
10950 mangled = dw2_linkage_name (die, cu);
10952 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10953 See https://github.com/rust-lang/rust/issues/32925. */
10954 if (cu->language == language_rust && mangled != NULL
10955 && strchr (mangled, '{') != NULL)
10958 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10960 gdb::unique_xmalloc_ptr<char> demangled;
10961 if (mangled != NULL)
10964 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10966 /* Do nothing (do not demangle the symbol name). */
10968 else if (cu->language == language_go)
10970 /* This is a lie, but we already lie to the caller new_symbol.
10971 new_symbol assumes we return the mangled name.
10972 This just undoes that lie until things are cleaned up. */
10976 /* Use DMGL_RET_DROP for C++ template functions to suppress
10977 their return type. It is easier for GDB users to search
10978 for such functions as `name(params)' than `long name(params)'.
10979 In such case the minimal symbol names do not match the full
10980 symbol names but for template functions there is never a need
10981 to look up their definition from their declaration so
10982 the only disadvantage remains the minimal symbol variant
10983 `long name(params)' does not have the proper inferior type. */
10984 demangled.reset (gdb_demangle (mangled,
10985 (DMGL_PARAMS | DMGL_ANSI
10986 | DMGL_RET_DROP)));
10989 canon = demangled.get ();
10997 if (canon == NULL || check_physname)
10999 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11001 if (canon != NULL && strcmp (physname, canon) != 0)
11003 /* It may not mean a bug in GDB. The compiler could also
11004 compute DW_AT_linkage_name incorrectly. But in such case
11005 GDB would need to be bug-to-bug compatible. */
11007 complaint (_("Computed physname <%s> does not match demangled <%s> "
11008 "(from linkage <%s>) - DIE at %s [in module %s]"),
11009 physname, canon, mangled, sect_offset_str (die->sect_off),
11010 objfile_name (objfile));
11012 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11013 is available here - over computed PHYSNAME. It is safer
11014 against both buggy GDB and buggy compilers. */
11028 retval = ((const char *)
11029 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11030 retval, strlen (retval)));
11035 /* Inspect DIE in CU for a namespace alias. If one exists, record
11036 a new symbol for it.
11038 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11041 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11043 struct attribute *attr;
11045 /* If the die does not have a name, this is not a namespace
11047 attr = dwarf2_attr (die, DW_AT_name, cu);
11051 struct die_info *d = die;
11052 struct dwarf2_cu *imported_cu = cu;
11054 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11055 keep inspecting DIEs until we hit the underlying import. */
11056 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11057 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11059 attr = dwarf2_attr (d, DW_AT_import, cu);
11063 d = follow_die_ref (d, attr, &imported_cu);
11064 if (d->tag != DW_TAG_imported_declaration)
11068 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11070 complaint (_("DIE at %s has too many recursively imported "
11071 "declarations"), sect_offset_str (d->sect_off));
11078 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11080 type = get_die_type_at_offset (sect_off, cu->per_cu);
11081 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11083 /* This declaration is a global namespace alias. Add
11084 a symbol for it whose type is the aliased namespace. */
11085 new_symbol (die, type, cu);
11094 /* Return the using directives repository (global or local?) to use in the
11095 current context for LANGUAGE.
11097 For Ada, imported declarations can materialize renamings, which *may* be
11098 global. However it is impossible (for now?) in DWARF to distinguish
11099 "external" imported declarations and "static" ones. As all imported
11100 declarations seem to be static in all other languages, make them all CU-wide
11101 global only in Ada. */
11103 static struct using_direct **
11104 using_directives (enum language language)
11106 if (language == language_ada && context_stack_depth == 0)
11107 return &global_using_directives;
11109 return &local_using_directives;
11112 /* Read the import statement specified by the given die and record it. */
11115 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11117 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11118 struct attribute *import_attr;
11119 struct die_info *imported_die, *child_die;
11120 struct dwarf2_cu *imported_cu;
11121 const char *imported_name;
11122 const char *imported_name_prefix;
11123 const char *canonical_name;
11124 const char *import_alias;
11125 const char *imported_declaration = NULL;
11126 const char *import_prefix;
11127 std::vector<const char *> excludes;
11129 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11130 if (import_attr == NULL)
11132 complaint (_("Tag '%s' has no DW_AT_import"),
11133 dwarf_tag_name (die->tag));
11138 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11139 imported_name = dwarf2_name (imported_die, imported_cu);
11140 if (imported_name == NULL)
11142 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11144 The import in the following code:
11158 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11159 <52> DW_AT_decl_file : 1
11160 <53> DW_AT_decl_line : 6
11161 <54> DW_AT_import : <0x75>
11162 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11163 <59> DW_AT_name : B
11164 <5b> DW_AT_decl_file : 1
11165 <5c> DW_AT_decl_line : 2
11166 <5d> DW_AT_type : <0x6e>
11168 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11169 <76> DW_AT_byte_size : 4
11170 <77> DW_AT_encoding : 5 (signed)
11172 imports the wrong die ( 0x75 instead of 0x58 ).
11173 This case will be ignored until the gcc bug is fixed. */
11177 /* Figure out the local name after import. */
11178 import_alias = dwarf2_name (die, cu);
11180 /* Figure out where the statement is being imported to. */
11181 import_prefix = determine_prefix (die, cu);
11183 /* Figure out what the scope of the imported die is and prepend it
11184 to the name of the imported die. */
11185 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11187 if (imported_die->tag != DW_TAG_namespace
11188 && imported_die->tag != DW_TAG_module)
11190 imported_declaration = imported_name;
11191 canonical_name = imported_name_prefix;
11193 else if (strlen (imported_name_prefix) > 0)
11194 canonical_name = obconcat (&objfile->objfile_obstack,
11195 imported_name_prefix,
11196 (cu->language == language_d ? "." : "::"),
11197 imported_name, (char *) NULL);
11199 canonical_name = imported_name;
11201 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11202 for (child_die = die->child; child_die && child_die->tag;
11203 child_die = sibling_die (child_die))
11205 /* DWARF-4: A Fortran use statement with a “rename list” may be
11206 represented by an imported module entry with an import attribute
11207 referring to the module and owned entries corresponding to those
11208 entities that are renamed as part of being imported. */
11210 if (child_die->tag != DW_TAG_imported_declaration)
11212 complaint (_("child DW_TAG_imported_declaration expected "
11213 "- DIE at %s [in module %s]"),
11214 sect_offset_str (child_die->sect_off),
11215 objfile_name (objfile));
11219 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11220 if (import_attr == NULL)
11222 complaint (_("Tag '%s' has no DW_AT_import"),
11223 dwarf_tag_name (child_die->tag));
11228 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11230 imported_name = dwarf2_name (imported_die, imported_cu);
11231 if (imported_name == NULL)
11233 complaint (_("child DW_TAG_imported_declaration has unknown "
11234 "imported name - DIE at %s [in module %s]"),
11235 sect_offset_str (child_die->sect_off),
11236 objfile_name (objfile));
11240 excludes.push_back (imported_name);
11242 process_die (child_die, cu);
11245 add_using_directive (using_directives (cu->language),
11249 imported_declaration,
11252 &objfile->objfile_obstack);
11255 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11256 types, but gives them a size of zero. Starting with version 14,
11257 ICC is compatible with GCC. */
11260 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11262 if (!cu->checked_producer)
11263 check_producer (cu);
11265 return cu->producer_is_icc_lt_14;
11268 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11269 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11270 this, it was first present in GCC release 4.3.0. */
11273 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11275 if (!cu->checked_producer)
11276 check_producer (cu);
11278 return cu->producer_is_gcc_lt_4_3;
11281 static file_and_directory
11282 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11284 file_and_directory res;
11286 /* Find the filename. Do not use dwarf2_name here, since the filename
11287 is not a source language identifier. */
11288 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11289 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11291 if (res.comp_dir == NULL
11292 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11293 && IS_ABSOLUTE_PATH (res.name))
11295 res.comp_dir_storage = ldirname (res.name);
11296 if (!res.comp_dir_storage.empty ())
11297 res.comp_dir = res.comp_dir_storage.c_str ();
11299 if (res.comp_dir != NULL)
11301 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11302 directory, get rid of it. */
11303 const char *cp = strchr (res.comp_dir, ':');
11305 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11306 res.comp_dir = cp + 1;
11309 if (res.name == NULL)
11310 res.name = "<unknown>";
11315 /* Handle DW_AT_stmt_list for a compilation unit.
11316 DIE is the DW_TAG_compile_unit die for CU.
11317 COMP_DIR is the compilation directory. LOWPC is passed to
11318 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11321 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11322 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11324 struct dwarf2_per_objfile *dwarf2_per_objfile
11325 = cu->per_cu->dwarf2_per_objfile;
11326 struct objfile *objfile = dwarf2_per_objfile->objfile;
11327 struct attribute *attr;
11328 struct line_header line_header_local;
11329 hashval_t line_header_local_hash;
11331 int decode_mapping;
11333 gdb_assert (! cu->per_cu->is_debug_types);
11335 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11339 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11341 /* The line header hash table is only created if needed (it exists to
11342 prevent redundant reading of the line table for partial_units).
11343 If we're given a partial_unit, we'll need it. If we're given a
11344 compile_unit, then use the line header hash table if it's already
11345 created, but don't create one just yet. */
11347 if (dwarf2_per_objfile->line_header_hash == NULL
11348 && die->tag == DW_TAG_partial_unit)
11350 dwarf2_per_objfile->line_header_hash
11351 = htab_create_alloc_ex (127, line_header_hash_voidp,
11352 line_header_eq_voidp,
11353 free_line_header_voidp,
11354 &objfile->objfile_obstack,
11355 hashtab_obstack_allocate,
11356 dummy_obstack_deallocate);
11359 line_header_local.sect_off = line_offset;
11360 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11361 line_header_local_hash = line_header_hash (&line_header_local);
11362 if (dwarf2_per_objfile->line_header_hash != NULL)
11364 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11365 &line_header_local,
11366 line_header_local_hash, NO_INSERT);
11368 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11369 is not present in *SLOT (since if there is something in *SLOT then
11370 it will be for a partial_unit). */
11371 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11373 gdb_assert (*slot != NULL);
11374 cu->line_header = (struct line_header *) *slot;
11379 /* dwarf_decode_line_header does not yet provide sufficient information.
11380 We always have to call also dwarf_decode_lines for it. */
11381 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11385 cu->line_header = lh.release ();
11386 cu->line_header_die_owner = die;
11388 if (dwarf2_per_objfile->line_header_hash == NULL)
11392 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11393 &line_header_local,
11394 line_header_local_hash, INSERT);
11395 gdb_assert (slot != NULL);
11397 if (slot != NULL && *slot == NULL)
11399 /* This newly decoded line number information unit will be owned
11400 by line_header_hash hash table. */
11401 *slot = cu->line_header;
11402 cu->line_header_die_owner = NULL;
11406 /* We cannot free any current entry in (*slot) as that struct line_header
11407 may be already used by multiple CUs. Create only temporary decoded
11408 line_header for this CU - it may happen at most once for each line
11409 number information unit. And if we're not using line_header_hash
11410 then this is what we want as well. */
11411 gdb_assert (die->tag != DW_TAG_partial_unit);
11413 decode_mapping = (die->tag != DW_TAG_partial_unit);
11414 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11419 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11422 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11424 struct dwarf2_per_objfile *dwarf2_per_objfile
11425 = cu->per_cu->dwarf2_per_objfile;
11426 struct objfile *objfile = dwarf2_per_objfile->objfile;
11427 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11428 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11429 CORE_ADDR highpc = ((CORE_ADDR) 0);
11430 struct attribute *attr;
11431 struct die_info *child_die;
11432 CORE_ADDR baseaddr;
11434 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11436 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11438 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11439 from finish_block. */
11440 if (lowpc == ((CORE_ADDR) -1))
11442 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11444 file_and_directory fnd = find_file_and_directory (die, cu);
11446 prepare_one_comp_unit (cu, die, cu->language);
11448 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11449 standardised yet. As a workaround for the language detection we fall
11450 back to the DW_AT_producer string. */
11451 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11452 cu->language = language_opencl;
11454 /* Similar hack for Go. */
11455 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11456 set_cu_language (DW_LANG_Go, cu);
11458 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11460 /* Decode line number information if present. We do this before
11461 processing child DIEs, so that the line header table is available
11462 for DW_AT_decl_file. */
11463 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11465 /* Process all dies in compilation unit. */
11466 if (die->child != NULL)
11468 child_die = die->child;
11469 while (child_die && child_die->tag)
11471 process_die (child_die, cu);
11472 child_die = sibling_die (child_die);
11476 /* Decode macro information, if present. Dwarf 2 macro information
11477 refers to information in the line number info statement program
11478 header, so we can only read it if we've read the header
11480 attr = dwarf2_attr (die, DW_AT_macros, cu);
11482 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11483 if (attr && cu->line_header)
11485 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11486 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11488 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11492 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11493 if (attr && cu->line_header)
11495 unsigned int macro_offset = DW_UNSND (attr);
11497 dwarf_decode_macros (cu, macro_offset, 0);
11502 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11503 Create the set of symtabs used by this TU, or if this TU is sharing
11504 symtabs with another TU and the symtabs have already been created
11505 then restore those symtabs in the line header.
11506 We don't need the pc/line-number mapping for type units. */
11509 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11511 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11512 struct type_unit_group *tu_group;
11514 struct attribute *attr;
11516 struct signatured_type *sig_type;
11518 gdb_assert (per_cu->is_debug_types);
11519 sig_type = (struct signatured_type *) per_cu;
11521 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11523 /* If we're using .gdb_index (includes -readnow) then
11524 per_cu->type_unit_group may not have been set up yet. */
11525 if (sig_type->type_unit_group == NULL)
11526 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11527 tu_group = sig_type->type_unit_group;
11529 /* If we've already processed this stmt_list there's no real need to
11530 do it again, we could fake it and just recreate the part we need
11531 (file name,index -> symtab mapping). If data shows this optimization
11532 is useful we can do it then. */
11533 first_time = tu_group->compunit_symtab == NULL;
11535 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11540 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11541 lh = dwarf_decode_line_header (line_offset, cu);
11546 dwarf2_start_symtab (cu, "", NULL, 0);
11549 gdb_assert (tu_group->symtabs == NULL);
11550 restart_symtab (tu_group->compunit_symtab, "", 0);
11555 cu->line_header = lh.release ();
11556 cu->line_header_die_owner = die;
11560 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11562 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11563 still initializing it, and our caller (a few levels up)
11564 process_full_type_unit still needs to know if this is the first
11567 tu_group->num_symtabs = cu->line_header->file_names.size ();
11568 tu_group->symtabs = XNEWVEC (struct symtab *,
11569 cu->line_header->file_names.size ());
11571 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11573 file_entry &fe = cu->line_header->file_names[i];
11575 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11577 if (current_subfile->symtab == NULL)
11579 /* NOTE: start_subfile will recognize when it's been
11580 passed a file it has already seen. So we can't
11581 assume there's a simple mapping from
11582 cu->line_header->file_names to subfiles, plus
11583 cu->line_header->file_names may contain dups. */
11584 current_subfile->symtab
11585 = allocate_symtab (cust, current_subfile->name);
11588 fe.symtab = current_subfile->symtab;
11589 tu_group->symtabs[i] = fe.symtab;
11594 restart_symtab (tu_group->compunit_symtab, "", 0);
11596 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11598 file_entry &fe = cu->line_header->file_names[i];
11600 fe.symtab = tu_group->symtabs[i];
11604 /* The main symtab is allocated last. Type units don't have DW_AT_name
11605 so they don't have a "real" (so to speak) symtab anyway.
11606 There is later code that will assign the main symtab to all symbols
11607 that don't have one. We need to handle the case of a symbol with a
11608 missing symtab (DW_AT_decl_file) anyway. */
11611 /* Process DW_TAG_type_unit.
11612 For TUs we want to skip the first top level sibling if it's not the
11613 actual type being defined by this TU. In this case the first top
11614 level sibling is there to provide context only. */
11617 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11619 struct die_info *child_die;
11621 prepare_one_comp_unit (cu, die, language_minimal);
11623 /* Initialize (or reinitialize) the machinery for building symtabs.
11624 We do this before processing child DIEs, so that the line header table
11625 is available for DW_AT_decl_file. */
11626 setup_type_unit_groups (die, cu);
11628 if (die->child != NULL)
11630 child_die = die->child;
11631 while (child_die && child_die->tag)
11633 process_die (child_die, cu);
11634 child_die = sibling_die (child_die);
11641 http://gcc.gnu.org/wiki/DebugFission
11642 http://gcc.gnu.org/wiki/DebugFissionDWP
11644 To simplify handling of both DWO files ("object" files with the DWARF info)
11645 and DWP files (a file with the DWOs packaged up into one file), we treat
11646 DWP files as having a collection of virtual DWO files. */
11649 hash_dwo_file (const void *item)
11651 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11654 hash = htab_hash_string (dwo_file->dwo_name);
11655 if (dwo_file->comp_dir != NULL)
11656 hash += htab_hash_string (dwo_file->comp_dir);
11661 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11663 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11664 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11666 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11668 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11669 return lhs->comp_dir == rhs->comp_dir;
11670 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11673 /* Allocate a hash table for DWO files. */
11676 allocate_dwo_file_hash_table (struct objfile *objfile)
11678 return htab_create_alloc_ex (41,
11682 &objfile->objfile_obstack,
11683 hashtab_obstack_allocate,
11684 dummy_obstack_deallocate);
11687 /* Lookup DWO file DWO_NAME. */
11690 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11691 const char *dwo_name,
11692 const char *comp_dir)
11694 struct dwo_file find_entry;
11697 if (dwarf2_per_objfile->dwo_files == NULL)
11698 dwarf2_per_objfile->dwo_files
11699 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11701 memset (&find_entry, 0, sizeof (find_entry));
11702 find_entry.dwo_name = dwo_name;
11703 find_entry.comp_dir = comp_dir;
11704 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11710 hash_dwo_unit (const void *item)
11712 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11714 /* This drops the top 32 bits of the id, but is ok for a hash. */
11715 return dwo_unit->signature;
11719 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11721 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11722 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11724 /* The signature is assumed to be unique within the DWO file.
11725 So while object file CU dwo_id's always have the value zero,
11726 that's OK, assuming each object file DWO file has only one CU,
11727 and that's the rule for now. */
11728 return lhs->signature == rhs->signature;
11731 /* Allocate a hash table for DWO CUs,TUs.
11732 There is one of these tables for each of CUs,TUs for each DWO file. */
11735 allocate_dwo_unit_table (struct objfile *objfile)
11737 /* Start out with a pretty small number.
11738 Generally DWO files contain only one CU and maybe some TUs. */
11739 return htab_create_alloc_ex (3,
11743 &objfile->objfile_obstack,
11744 hashtab_obstack_allocate,
11745 dummy_obstack_deallocate);
11748 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11750 struct create_dwo_cu_data
11752 struct dwo_file *dwo_file;
11753 struct dwo_unit dwo_unit;
11756 /* die_reader_func for create_dwo_cu. */
11759 create_dwo_cu_reader (const struct die_reader_specs *reader,
11760 const gdb_byte *info_ptr,
11761 struct die_info *comp_unit_die,
11765 struct dwarf2_cu *cu = reader->cu;
11766 sect_offset sect_off = cu->per_cu->sect_off;
11767 struct dwarf2_section_info *section = cu->per_cu->section;
11768 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11769 struct dwo_file *dwo_file = data->dwo_file;
11770 struct dwo_unit *dwo_unit = &data->dwo_unit;
11771 struct attribute *attr;
11773 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11776 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11777 " its dwo_id [in module %s]"),
11778 sect_offset_str (sect_off), dwo_file->dwo_name);
11782 dwo_unit->dwo_file = dwo_file;
11783 dwo_unit->signature = DW_UNSND (attr);
11784 dwo_unit->section = section;
11785 dwo_unit->sect_off = sect_off;
11786 dwo_unit->length = cu->per_cu->length;
11788 if (dwarf_read_debug)
11789 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11790 sect_offset_str (sect_off),
11791 hex_string (dwo_unit->signature));
11794 /* Create the dwo_units for the CUs in a DWO_FILE.
11795 Note: This function processes DWO files only, not DWP files. */
11798 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11799 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11802 struct objfile *objfile = dwarf2_per_objfile->objfile;
11803 const gdb_byte *info_ptr, *end_ptr;
11805 dwarf2_read_section (objfile, §ion);
11806 info_ptr = section.buffer;
11808 if (info_ptr == NULL)
11811 if (dwarf_read_debug)
11813 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11814 get_section_name (§ion),
11815 get_section_file_name (§ion));
11818 end_ptr = info_ptr + section.size;
11819 while (info_ptr < end_ptr)
11821 struct dwarf2_per_cu_data per_cu;
11822 struct create_dwo_cu_data create_dwo_cu_data;
11823 struct dwo_unit *dwo_unit;
11825 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11827 memset (&create_dwo_cu_data.dwo_unit, 0,
11828 sizeof (create_dwo_cu_data.dwo_unit));
11829 memset (&per_cu, 0, sizeof (per_cu));
11830 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11831 per_cu.is_debug_types = 0;
11832 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11833 per_cu.section = §ion;
11834 create_dwo_cu_data.dwo_file = &dwo_file;
11836 init_cutu_and_read_dies_no_follow (
11837 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11838 info_ptr += per_cu.length;
11840 // If the unit could not be parsed, skip it.
11841 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11844 if (cus_htab == NULL)
11845 cus_htab = allocate_dwo_unit_table (objfile);
11847 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11848 *dwo_unit = create_dwo_cu_data.dwo_unit;
11849 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11850 gdb_assert (slot != NULL);
11853 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11854 sect_offset dup_sect_off = dup_cu->sect_off;
11856 complaint (_("debug cu entry at offset %s is duplicate to"
11857 " the entry at offset %s, signature %s"),
11858 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11859 hex_string (dwo_unit->signature));
11861 *slot = (void *)dwo_unit;
11865 /* DWP file .debug_{cu,tu}_index section format:
11866 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11870 Both index sections have the same format, and serve to map a 64-bit
11871 signature to a set of section numbers. Each section begins with a header,
11872 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11873 indexes, and a pool of 32-bit section numbers. The index sections will be
11874 aligned at 8-byte boundaries in the file.
11876 The index section header consists of:
11878 V, 32 bit version number
11880 N, 32 bit number of compilation units or type units in the index
11881 M, 32 bit number of slots in the hash table
11883 Numbers are recorded using the byte order of the application binary.
11885 The hash table begins at offset 16 in the section, and consists of an array
11886 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11887 order of the application binary). Unused slots in the hash table are 0.
11888 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11890 The parallel table begins immediately after the hash table
11891 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11892 array of 32-bit indexes (using the byte order of the application binary),
11893 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11894 table contains a 32-bit index into the pool of section numbers. For unused
11895 hash table slots, the corresponding entry in the parallel table will be 0.
11897 The pool of section numbers begins immediately following the hash table
11898 (at offset 16 + 12 * M from the beginning of the section). The pool of
11899 section numbers consists of an array of 32-bit words (using the byte order
11900 of the application binary). Each item in the array is indexed starting
11901 from 0. The hash table entry provides the index of the first section
11902 number in the set. Additional section numbers in the set follow, and the
11903 set is terminated by a 0 entry (section number 0 is not used in ELF).
11905 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11906 section must be the first entry in the set, and the .debug_abbrev.dwo must
11907 be the second entry. Other members of the set may follow in any order.
11913 DWP Version 2 combines all the .debug_info, etc. sections into one,
11914 and the entries in the index tables are now offsets into these sections.
11915 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11918 Index Section Contents:
11920 Hash Table of Signatures dwp_hash_table.hash_table
11921 Parallel Table of Indices dwp_hash_table.unit_table
11922 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11923 Table of Section Sizes dwp_hash_table.v2.sizes
11925 The index section header consists of:
11927 V, 32 bit version number
11928 L, 32 bit number of columns in the table of section offsets
11929 N, 32 bit number of compilation units or type units in the index
11930 M, 32 bit number of slots in the hash table
11932 Numbers are recorded using the byte order of the application binary.
11934 The hash table has the same format as version 1.
11935 The parallel table of indices has the same format as version 1,
11936 except that the entries are origin-1 indices into the table of sections
11937 offsets and the table of section sizes.
11939 The table of offsets begins immediately following the parallel table
11940 (at offset 16 + 12 * M from the beginning of the section). The table is
11941 a two-dimensional array of 32-bit words (using the byte order of the
11942 application binary), with L columns and N+1 rows, in row-major order.
11943 Each row in the array is indexed starting from 0. The first row provides
11944 a key to the remaining rows: each column in this row provides an identifier
11945 for a debug section, and the offsets in the same column of subsequent rows
11946 refer to that section. The section identifiers are:
11948 DW_SECT_INFO 1 .debug_info.dwo
11949 DW_SECT_TYPES 2 .debug_types.dwo
11950 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11951 DW_SECT_LINE 4 .debug_line.dwo
11952 DW_SECT_LOC 5 .debug_loc.dwo
11953 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11954 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11955 DW_SECT_MACRO 8 .debug_macro.dwo
11957 The offsets provided by the CU and TU index sections are the base offsets
11958 for the contributions made by each CU or TU to the corresponding section
11959 in the package file. Each CU and TU header contains an abbrev_offset
11960 field, used to find the abbreviations table for that CU or TU within the
11961 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11962 be interpreted as relative to the base offset given in the index section.
11963 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11964 should be interpreted as relative to the base offset for .debug_line.dwo,
11965 and offsets into other debug sections obtained from DWARF attributes should
11966 also be interpreted as relative to the corresponding base offset.
11968 The table of sizes begins immediately following the table of offsets.
11969 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11970 with L columns and N rows, in row-major order. Each row in the array is
11971 indexed starting from 1 (row 0 is shared by the two tables).
11975 Hash table lookup is handled the same in version 1 and 2:
11977 We assume that N and M will not exceed 2^32 - 1.
11978 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11980 Given a 64-bit compilation unit signature or a type signature S, an entry
11981 in the hash table is located as follows:
11983 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11984 the low-order k bits all set to 1.
11986 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11988 3) If the hash table entry at index H matches the signature, use that
11989 entry. If the hash table entry at index H is unused (all zeroes),
11990 terminate the search: the signature is not present in the table.
11992 4) Let H = (H + H') modulo M. Repeat at Step 3.
11994 Because M > N and H' and M are relatively prime, the search is guaranteed
11995 to stop at an unused slot or find the match. */
11997 /* Create a hash table to map DWO IDs to their CU/TU entry in
11998 .debug_{info,types}.dwo in DWP_FILE.
11999 Returns NULL if there isn't one.
12000 Note: This function processes DWP files only, not DWO files. */
12002 static struct dwp_hash_table *
12003 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12004 struct dwp_file *dwp_file, int is_debug_types)
12006 struct objfile *objfile = dwarf2_per_objfile->objfile;
12007 bfd *dbfd = dwp_file->dbfd.get ();
12008 const gdb_byte *index_ptr, *index_end;
12009 struct dwarf2_section_info *index;
12010 uint32_t version, nr_columns, nr_units, nr_slots;
12011 struct dwp_hash_table *htab;
12013 if (is_debug_types)
12014 index = &dwp_file->sections.tu_index;
12016 index = &dwp_file->sections.cu_index;
12018 if (dwarf2_section_empty_p (index))
12020 dwarf2_read_section (objfile, index);
12022 index_ptr = index->buffer;
12023 index_end = index_ptr + index->size;
12025 version = read_4_bytes (dbfd, index_ptr);
12028 nr_columns = read_4_bytes (dbfd, index_ptr);
12032 nr_units = read_4_bytes (dbfd, index_ptr);
12034 nr_slots = read_4_bytes (dbfd, index_ptr);
12037 if (version != 1 && version != 2)
12039 error (_("Dwarf Error: unsupported DWP file version (%s)"
12040 " [in module %s]"),
12041 pulongest (version), dwp_file->name);
12043 if (nr_slots != (nr_slots & -nr_slots))
12045 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12046 " is not power of 2 [in module %s]"),
12047 pulongest (nr_slots), dwp_file->name);
12050 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12051 htab->version = version;
12052 htab->nr_columns = nr_columns;
12053 htab->nr_units = nr_units;
12054 htab->nr_slots = nr_slots;
12055 htab->hash_table = index_ptr;
12056 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12058 /* Exit early if the table is empty. */
12059 if (nr_slots == 0 || nr_units == 0
12060 || (version == 2 && nr_columns == 0))
12062 /* All must be zero. */
12063 if (nr_slots != 0 || nr_units != 0
12064 || (version == 2 && nr_columns != 0))
12066 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12067 " all zero [in modules %s]"),
12075 htab->section_pool.v1.indices =
12076 htab->unit_table + sizeof (uint32_t) * nr_slots;
12077 /* It's harder to decide whether the section is too small in v1.
12078 V1 is deprecated anyway so we punt. */
12082 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12083 int *ids = htab->section_pool.v2.section_ids;
12084 /* Reverse map for error checking. */
12085 int ids_seen[DW_SECT_MAX + 1];
12088 if (nr_columns < 2)
12090 error (_("Dwarf Error: bad DWP hash table, too few columns"
12091 " in section table [in module %s]"),
12094 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12096 error (_("Dwarf Error: bad DWP hash table, too many columns"
12097 " in section table [in module %s]"),
12100 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12101 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12102 for (i = 0; i < nr_columns; ++i)
12104 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12106 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12108 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12109 " in section table [in module %s]"),
12110 id, dwp_file->name);
12112 if (ids_seen[id] != -1)
12114 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12115 " id %d in section table [in module %s]"),
12116 id, dwp_file->name);
12121 /* Must have exactly one info or types section. */
12122 if (((ids_seen[DW_SECT_INFO] != -1)
12123 + (ids_seen[DW_SECT_TYPES] != -1))
12126 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12127 " DWO info/types section [in module %s]"),
12130 /* Must have an abbrev section. */
12131 if (ids_seen[DW_SECT_ABBREV] == -1)
12133 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12134 " section [in module %s]"),
12137 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12138 htab->section_pool.v2.sizes =
12139 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12140 * nr_units * nr_columns);
12141 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12142 * nr_units * nr_columns))
12145 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12146 " [in module %s]"),
12154 /* Update SECTIONS with the data from SECTP.
12156 This function is like the other "locate" section routines that are
12157 passed to bfd_map_over_sections, but in this context the sections to
12158 read comes from the DWP V1 hash table, not the full ELF section table.
12160 The result is non-zero for success, or zero if an error was found. */
12163 locate_v1_virtual_dwo_sections (asection *sectp,
12164 struct virtual_v1_dwo_sections *sections)
12166 const struct dwop_section_names *names = &dwop_section_names;
12168 if (section_is_p (sectp->name, &names->abbrev_dwo))
12170 /* There can be only one. */
12171 if (sections->abbrev.s.section != NULL)
12173 sections->abbrev.s.section = sectp;
12174 sections->abbrev.size = bfd_get_section_size (sectp);
12176 else if (section_is_p (sectp->name, &names->info_dwo)
12177 || section_is_p (sectp->name, &names->types_dwo))
12179 /* There can be only one. */
12180 if (sections->info_or_types.s.section != NULL)
12182 sections->info_or_types.s.section = sectp;
12183 sections->info_or_types.size = bfd_get_section_size (sectp);
12185 else if (section_is_p (sectp->name, &names->line_dwo))
12187 /* There can be only one. */
12188 if (sections->line.s.section != NULL)
12190 sections->line.s.section = sectp;
12191 sections->line.size = bfd_get_section_size (sectp);
12193 else if (section_is_p (sectp->name, &names->loc_dwo))
12195 /* There can be only one. */
12196 if (sections->loc.s.section != NULL)
12198 sections->loc.s.section = sectp;
12199 sections->loc.size = bfd_get_section_size (sectp);
12201 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12203 /* There can be only one. */
12204 if (sections->macinfo.s.section != NULL)
12206 sections->macinfo.s.section = sectp;
12207 sections->macinfo.size = bfd_get_section_size (sectp);
12209 else if (section_is_p (sectp->name, &names->macro_dwo))
12211 /* There can be only one. */
12212 if (sections->macro.s.section != NULL)
12214 sections->macro.s.section = sectp;
12215 sections->macro.size = bfd_get_section_size (sectp);
12217 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12219 /* There can be only one. */
12220 if (sections->str_offsets.s.section != NULL)
12222 sections->str_offsets.s.section = sectp;
12223 sections->str_offsets.size = bfd_get_section_size (sectp);
12227 /* No other kind of section is valid. */
12234 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12235 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12236 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12237 This is for DWP version 1 files. */
12239 static struct dwo_unit *
12240 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12241 struct dwp_file *dwp_file,
12242 uint32_t unit_index,
12243 const char *comp_dir,
12244 ULONGEST signature, int is_debug_types)
12246 struct objfile *objfile = dwarf2_per_objfile->objfile;
12247 const struct dwp_hash_table *dwp_htab =
12248 is_debug_types ? dwp_file->tus : dwp_file->cus;
12249 bfd *dbfd = dwp_file->dbfd.get ();
12250 const char *kind = is_debug_types ? "TU" : "CU";
12251 struct dwo_file *dwo_file;
12252 struct dwo_unit *dwo_unit;
12253 struct virtual_v1_dwo_sections sections;
12254 void **dwo_file_slot;
12257 gdb_assert (dwp_file->version == 1);
12259 if (dwarf_read_debug)
12261 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12263 pulongest (unit_index), hex_string (signature),
12267 /* Fetch the sections of this DWO unit.
12268 Put a limit on the number of sections we look for so that bad data
12269 doesn't cause us to loop forever. */
12271 #define MAX_NR_V1_DWO_SECTIONS \
12272 (1 /* .debug_info or .debug_types */ \
12273 + 1 /* .debug_abbrev */ \
12274 + 1 /* .debug_line */ \
12275 + 1 /* .debug_loc */ \
12276 + 1 /* .debug_str_offsets */ \
12277 + 1 /* .debug_macro or .debug_macinfo */ \
12278 + 1 /* trailing zero */)
12280 memset (§ions, 0, sizeof (sections));
12282 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12285 uint32_t section_nr =
12286 read_4_bytes (dbfd,
12287 dwp_htab->section_pool.v1.indices
12288 + (unit_index + i) * sizeof (uint32_t));
12290 if (section_nr == 0)
12292 if (section_nr >= dwp_file->num_sections)
12294 error (_("Dwarf Error: bad DWP hash table, section number too large"
12295 " [in module %s]"),
12299 sectp = dwp_file->elf_sections[section_nr];
12300 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12302 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12303 " [in module %s]"),
12309 || dwarf2_section_empty_p (§ions.info_or_types)
12310 || dwarf2_section_empty_p (§ions.abbrev))
12312 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12313 " [in module %s]"),
12316 if (i == MAX_NR_V1_DWO_SECTIONS)
12318 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12319 " [in module %s]"),
12323 /* It's easier for the rest of the code if we fake a struct dwo_file and
12324 have dwo_unit "live" in that. At least for now.
12326 The DWP file can be made up of a random collection of CUs and TUs.
12327 However, for each CU + set of TUs that came from the same original DWO
12328 file, we can combine them back into a virtual DWO file to save space
12329 (fewer struct dwo_file objects to allocate). Remember that for really
12330 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12332 std::string virtual_dwo_name =
12333 string_printf ("virtual-dwo/%d-%d-%d-%d",
12334 get_section_id (§ions.abbrev),
12335 get_section_id (§ions.line),
12336 get_section_id (§ions.loc),
12337 get_section_id (§ions.str_offsets));
12338 /* Can we use an existing virtual DWO file? */
12339 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12340 virtual_dwo_name.c_str (),
12342 /* Create one if necessary. */
12343 if (*dwo_file_slot == NULL)
12345 if (dwarf_read_debug)
12347 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12348 virtual_dwo_name.c_str ());
12350 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12352 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12353 virtual_dwo_name.c_str (),
12354 virtual_dwo_name.size ());
12355 dwo_file->comp_dir = comp_dir;
12356 dwo_file->sections.abbrev = sections.abbrev;
12357 dwo_file->sections.line = sections.line;
12358 dwo_file->sections.loc = sections.loc;
12359 dwo_file->sections.macinfo = sections.macinfo;
12360 dwo_file->sections.macro = sections.macro;
12361 dwo_file->sections.str_offsets = sections.str_offsets;
12362 /* The "str" section is global to the entire DWP file. */
12363 dwo_file->sections.str = dwp_file->sections.str;
12364 /* The info or types section is assigned below to dwo_unit,
12365 there's no need to record it in dwo_file.
12366 Also, we can't simply record type sections in dwo_file because
12367 we record a pointer into the vector in dwo_unit. As we collect more
12368 types we'll grow the vector and eventually have to reallocate space
12369 for it, invalidating all copies of pointers into the previous
12371 *dwo_file_slot = dwo_file;
12375 if (dwarf_read_debug)
12377 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12378 virtual_dwo_name.c_str ());
12380 dwo_file = (struct dwo_file *) *dwo_file_slot;
12383 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12384 dwo_unit->dwo_file = dwo_file;
12385 dwo_unit->signature = signature;
12386 dwo_unit->section =
12387 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12388 *dwo_unit->section = sections.info_or_types;
12389 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12394 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12395 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12396 piece within that section used by a TU/CU, return a virtual section
12397 of just that piece. */
12399 static struct dwarf2_section_info
12400 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12401 struct dwarf2_section_info *section,
12402 bfd_size_type offset, bfd_size_type size)
12404 struct dwarf2_section_info result;
12407 gdb_assert (section != NULL);
12408 gdb_assert (!section->is_virtual);
12410 memset (&result, 0, sizeof (result));
12411 result.s.containing_section = section;
12412 result.is_virtual = 1;
12417 sectp = get_section_bfd_section (section);
12419 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12420 bounds of the real section. This is a pretty-rare event, so just
12421 flag an error (easier) instead of a warning and trying to cope. */
12423 || offset + size > bfd_get_section_size (sectp))
12425 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12426 " in section %s [in module %s]"),
12427 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12428 objfile_name (dwarf2_per_objfile->objfile));
12431 result.virtual_offset = offset;
12432 result.size = size;
12436 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12437 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12438 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12439 This is for DWP version 2 files. */
12441 static struct dwo_unit *
12442 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12443 struct dwp_file *dwp_file,
12444 uint32_t unit_index,
12445 const char *comp_dir,
12446 ULONGEST signature, int is_debug_types)
12448 struct objfile *objfile = dwarf2_per_objfile->objfile;
12449 const struct dwp_hash_table *dwp_htab =
12450 is_debug_types ? dwp_file->tus : dwp_file->cus;
12451 bfd *dbfd = dwp_file->dbfd.get ();
12452 const char *kind = is_debug_types ? "TU" : "CU";
12453 struct dwo_file *dwo_file;
12454 struct dwo_unit *dwo_unit;
12455 struct virtual_v2_dwo_sections sections;
12456 void **dwo_file_slot;
12459 gdb_assert (dwp_file->version == 2);
12461 if (dwarf_read_debug)
12463 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12465 pulongest (unit_index), hex_string (signature),
12469 /* Fetch the section offsets of this DWO unit. */
12471 memset (§ions, 0, sizeof (sections));
12473 for (i = 0; i < dwp_htab->nr_columns; ++i)
12475 uint32_t offset = read_4_bytes (dbfd,
12476 dwp_htab->section_pool.v2.offsets
12477 + (((unit_index - 1) * dwp_htab->nr_columns
12479 * sizeof (uint32_t)));
12480 uint32_t size = read_4_bytes (dbfd,
12481 dwp_htab->section_pool.v2.sizes
12482 + (((unit_index - 1) * dwp_htab->nr_columns
12484 * sizeof (uint32_t)));
12486 switch (dwp_htab->section_pool.v2.section_ids[i])
12489 case DW_SECT_TYPES:
12490 sections.info_or_types_offset = offset;
12491 sections.info_or_types_size = size;
12493 case DW_SECT_ABBREV:
12494 sections.abbrev_offset = offset;
12495 sections.abbrev_size = size;
12498 sections.line_offset = offset;
12499 sections.line_size = size;
12502 sections.loc_offset = offset;
12503 sections.loc_size = size;
12505 case DW_SECT_STR_OFFSETS:
12506 sections.str_offsets_offset = offset;
12507 sections.str_offsets_size = size;
12509 case DW_SECT_MACINFO:
12510 sections.macinfo_offset = offset;
12511 sections.macinfo_size = size;
12513 case DW_SECT_MACRO:
12514 sections.macro_offset = offset;
12515 sections.macro_size = size;
12520 /* It's easier for the rest of the code if we fake a struct dwo_file and
12521 have dwo_unit "live" in that. At least for now.
12523 The DWP file can be made up of a random collection of CUs and TUs.
12524 However, for each CU + set of TUs that came from the same original DWO
12525 file, we can combine them back into a virtual DWO file to save space
12526 (fewer struct dwo_file objects to allocate). Remember that for really
12527 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12529 std::string virtual_dwo_name =
12530 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12531 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12532 (long) (sections.line_size ? sections.line_offset : 0),
12533 (long) (sections.loc_size ? sections.loc_offset : 0),
12534 (long) (sections.str_offsets_size
12535 ? sections.str_offsets_offset : 0));
12536 /* Can we use an existing virtual DWO file? */
12537 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12538 virtual_dwo_name.c_str (),
12540 /* Create one if necessary. */
12541 if (*dwo_file_slot == NULL)
12543 if (dwarf_read_debug)
12545 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12546 virtual_dwo_name.c_str ());
12548 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12550 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12551 virtual_dwo_name.c_str (),
12552 virtual_dwo_name.size ());
12553 dwo_file->comp_dir = comp_dir;
12554 dwo_file->sections.abbrev =
12555 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12556 sections.abbrev_offset, sections.abbrev_size);
12557 dwo_file->sections.line =
12558 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12559 sections.line_offset, sections.line_size);
12560 dwo_file->sections.loc =
12561 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12562 sections.loc_offset, sections.loc_size);
12563 dwo_file->sections.macinfo =
12564 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12565 sections.macinfo_offset, sections.macinfo_size);
12566 dwo_file->sections.macro =
12567 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12568 sections.macro_offset, sections.macro_size);
12569 dwo_file->sections.str_offsets =
12570 create_dwp_v2_section (dwarf2_per_objfile,
12571 &dwp_file->sections.str_offsets,
12572 sections.str_offsets_offset,
12573 sections.str_offsets_size);
12574 /* The "str" section is global to the entire DWP file. */
12575 dwo_file->sections.str = dwp_file->sections.str;
12576 /* The info or types section is assigned below to dwo_unit,
12577 there's no need to record it in dwo_file.
12578 Also, we can't simply record type sections in dwo_file because
12579 we record a pointer into the vector in dwo_unit. As we collect more
12580 types we'll grow the vector and eventually have to reallocate space
12581 for it, invalidating all copies of pointers into the previous
12583 *dwo_file_slot = dwo_file;
12587 if (dwarf_read_debug)
12589 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12590 virtual_dwo_name.c_str ());
12592 dwo_file = (struct dwo_file *) *dwo_file_slot;
12595 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12596 dwo_unit->dwo_file = dwo_file;
12597 dwo_unit->signature = signature;
12598 dwo_unit->section =
12599 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12600 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12602 ? &dwp_file->sections.types
12603 : &dwp_file->sections.info,
12604 sections.info_or_types_offset,
12605 sections.info_or_types_size);
12606 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12611 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12612 Returns NULL if the signature isn't found. */
12614 static struct dwo_unit *
12615 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12616 struct dwp_file *dwp_file, const char *comp_dir,
12617 ULONGEST signature, int is_debug_types)
12619 const struct dwp_hash_table *dwp_htab =
12620 is_debug_types ? dwp_file->tus : dwp_file->cus;
12621 bfd *dbfd = dwp_file->dbfd.get ();
12622 uint32_t mask = dwp_htab->nr_slots - 1;
12623 uint32_t hash = signature & mask;
12624 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12627 struct dwo_unit find_dwo_cu;
12629 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12630 find_dwo_cu.signature = signature;
12631 slot = htab_find_slot (is_debug_types
12632 ? dwp_file->loaded_tus
12633 : dwp_file->loaded_cus,
12634 &find_dwo_cu, INSERT);
12637 return (struct dwo_unit *) *slot;
12639 /* Use a for loop so that we don't loop forever on bad debug info. */
12640 for (i = 0; i < dwp_htab->nr_slots; ++i)
12642 ULONGEST signature_in_table;
12644 signature_in_table =
12645 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12646 if (signature_in_table == signature)
12648 uint32_t unit_index =
12649 read_4_bytes (dbfd,
12650 dwp_htab->unit_table + hash * sizeof (uint32_t));
12652 if (dwp_file->version == 1)
12654 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12655 dwp_file, unit_index,
12656 comp_dir, signature,
12661 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12662 dwp_file, unit_index,
12663 comp_dir, signature,
12666 return (struct dwo_unit *) *slot;
12668 if (signature_in_table == 0)
12670 hash = (hash + hash2) & mask;
12673 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12674 " [in module %s]"),
12678 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12679 Open the file specified by FILE_NAME and hand it off to BFD for
12680 preliminary analysis. Return a newly initialized bfd *, which
12681 includes a canonicalized copy of FILE_NAME.
12682 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12683 SEARCH_CWD is true if the current directory is to be searched.
12684 It will be searched before debug-file-directory.
12685 If successful, the file is added to the bfd include table of the
12686 objfile's bfd (see gdb_bfd_record_inclusion).
12687 If unable to find/open the file, return NULL.
12688 NOTE: This function is derived from symfile_bfd_open. */
12690 static gdb_bfd_ref_ptr
12691 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12692 const char *file_name, int is_dwp, int search_cwd)
12695 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12696 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12697 to debug_file_directory. */
12698 const char *search_path;
12699 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12701 gdb::unique_xmalloc_ptr<char> search_path_holder;
12704 if (*debug_file_directory != '\0')
12706 search_path_holder.reset (concat (".", dirname_separator_string,
12707 debug_file_directory,
12709 search_path = search_path_holder.get ();
12715 search_path = debug_file_directory;
12717 openp_flags flags = OPF_RETURN_REALPATH;
12719 flags |= OPF_SEARCH_IN_PATH;
12721 gdb::unique_xmalloc_ptr<char> absolute_name;
12722 desc = openp (search_path, flags, file_name,
12723 O_RDONLY | O_BINARY, &absolute_name);
12727 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12729 if (sym_bfd == NULL)
12731 bfd_set_cacheable (sym_bfd.get (), 1);
12733 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12736 /* Success. Record the bfd as having been included by the objfile's bfd.
12737 This is important because things like demangled_names_hash lives in the
12738 objfile's per_bfd space and may have references to things like symbol
12739 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12740 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12745 /* Try to open DWO file FILE_NAME.
12746 COMP_DIR is the DW_AT_comp_dir attribute.
12747 The result is the bfd handle of the file.
12748 If there is a problem finding or opening the file, return NULL.
12749 Upon success, the canonicalized path of the file is stored in the bfd,
12750 same as symfile_bfd_open. */
12752 static gdb_bfd_ref_ptr
12753 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12754 const char *file_name, const char *comp_dir)
12756 if (IS_ABSOLUTE_PATH (file_name))
12757 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12758 0 /*is_dwp*/, 0 /*search_cwd*/);
12760 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12762 if (comp_dir != NULL)
12764 char *path_to_try = concat (comp_dir, SLASH_STRING,
12765 file_name, (char *) NULL);
12767 /* NOTE: If comp_dir is a relative path, this will also try the
12768 search path, which seems useful. */
12769 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12772 1 /*search_cwd*/));
12773 xfree (path_to_try);
12778 /* That didn't work, try debug-file-directory, which, despite its name,
12779 is a list of paths. */
12781 if (*debug_file_directory == '\0')
12784 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12785 0 /*is_dwp*/, 1 /*search_cwd*/);
12788 /* This function is mapped across the sections and remembers the offset and
12789 size of each of the DWO debugging sections we are interested in. */
12792 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12794 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12795 const struct dwop_section_names *names = &dwop_section_names;
12797 if (section_is_p (sectp->name, &names->abbrev_dwo))
12799 dwo_sections->abbrev.s.section = sectp;
12800 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12802 else if (section_is_p (sectp->name, &names->info_dwo))
12804 dwo_sections->info.s.section = sectp;
12805 dwo_sections->info.size = bfd_get_section_size (sectp);
12807 else if (section_is_p (sectp->name, &names->line_dwo))
12809 dwo_sections->line.s.section = sectp;
12810 dwo_sections->line.size = bfd_get_section_size (sectp);
12812 else if (section_is_p (sectp->name, &names->loc_dwo))
12814 dwo_sections->loc.s.section = sectp;
12815 dwo_sections->loc.size = bfd_get_section_size (sectp);
12817 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12819 dwo_sections->macinfo.s.section = sectp;
12820 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12822 else if (section_is_p (sectp->name, &names->macro_dwo))
12824 dwo_sections->macro.s.section = sectp;
12825 dwo_sections->macro.size = bfd_get_section_size (sectp);
12827 else if (section_is_p (sectp->name, &names->str_dwo))
12829 dwo_sections->str.s.section = sectp;
12830 dwo_sections->str.size = bfd_get_section_size (sectp);
12832 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12834 dwo_sections->str_offsets.s.section = sectp;
12835 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12837 else if (section_is_p (sectp->name, &names->types_dwo))
12839 struct dwarf2_section_info type_section;
12841 memset (&type_section, 0, sizeof (type_section));
12842 type_section.s.section = sectp;
12843 type_section.size = bfd_get_section_size (sectp);
12844 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12849 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12850 by PER_CU. This is for the non-DWP case.
12851 The result is NULL if DWO_NAME can't be found. */
12853 static struct dwo_file *
12854 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12855 const char *dwo_name, const char *comp_dir)
12857 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12858 struct objfile *objfile = dwarf2_per_objfile->objfile;
12860 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12863 if (dwarf_read_debug)
12864 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12868 /* We use a unique pointer here, despite the obstack allocation,
12869 because a dwo_file needs some cleanup if it is abandoned. */
12870 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12872 dwo_file->dwo_name = dwo_name;
12873 dwo_file->comp_dir = comp_dir;
12874 dwo_file->dbfd = dbfd.release ();
12876 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12877 &dwo_file->sections);
12879 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12882 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12883 dwo_file->sections.types, dwo_file->tus);
12885 if (dwarf_read_debug)
12886 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12888 return dwo_file.release ();
12891 /* This function is mapped across the sections and remembers the offset and
12892 size of each of the DWP debugging sections common to version 1 and 2 that
12893 we are interested in. */
12896 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12897 void *dwp_file_ptr)
12899 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12900 const struct dwop_section_names *names = &dwop_section_names;
12901 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12903 /* Record the ELF section number for later lookup: this is what the
12904 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12905 gdb_assert (elf_section_nr < dwp_file->num_sections);
12906 dwp_file->elf_sections[elf_section_nr] = sectp;
12908 /* Look for specific sections that we need. */
12909 if (section_is_p (sectp->name, &names->str_dwo))
12911 dwp_file->sections.str.s.section = sectp;
12912 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12914 else if (section_is_p (sectp->name, &names->cu_index))
12916 dwp_file->sections.cu_index.s.section = sectp;
12917 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12919 else if (section_is_p (sectp->name, &names->tu_index))
12921 dwp_file->sections.tu_index.s.section = sectp;
12922 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12926 /* This function is mapped across the sections and remembers the offset and
12927 size of each of the DWP version 2 debugging sections that we are interested
12928 in. This is split into a separate function because we don't know if we
12929 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12932 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12934 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12935 const struct dwop_section_names *names = &dwop_section_names;
12936 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12938 /* Record the ELF section number for later lookup: this is what the
12939 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12940 gdb_assert (elf_section_nr < dwp_file->num_sections);
12941 dwp_file->elf_sections[elf_section_nr] = sectp;
12943 /* Look for specific sections that we need. */
12944 if (section_is_p (sectp->name, &names->abbrev_dwo))
12946 dwp_file->sections.abbrev.s.section = sectp;
12947 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12949 else if (section_is_p (sectp->name, &names->info_dwo))
12951 dwp_file->sections.info.s.section = sectp;
12952 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12954 else if (section_is_p (sectp->name, &names->line_dwo))
12956 dwp_file->sections.line.s.section = sectp;
12957 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12959 else if (section_is_p (sectp->name, &names->loc_dwo))
12961 dwp_file->sections.loc.s.section = sectp;
12962 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12964 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12966 dwp_file->sections.macinfo.s.section = sectp;
12967 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12969 else if (section_is_p (sectp->name, &names->macro_dwo))
12971 dwp_file->sections.macro.s.section = sectp;
12972 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12974 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12976 dwp_file->sections.str_offsets.s.section = sectp;
12977 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12979 else if (section_is_p (sectp->name, &names->types_dwo))
12981 dwp_file->sections.types.s.section = sectp;
12982 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12986 /* Hash function for dwp_file loaded CUs/TUs. */
12989 hash_dwp_loaded_cutus (const void *item)
12991 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12993 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12994 return dwo_unit->signature;
12997 /* Equality function for dwp_file loaded CUs/TUs. */
13000 eq_dwp_loaded_cutus (const void *a, const void *b)
13002 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13003 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13005 return dua->signature == dub->signature;
13008 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13011 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13013 return htab_create_alloc_ex (3,
13014 hash_dwp_loaded_cutus,
13015 eq_dwp_loaded_cutus,
13017 &objfile->objfile_obstack,
13018 hashtab_obstack_allocate,
13019 dummy_obstack_deallocate);
13022 /* Try to open DWP file FILE_NAME.
13023 The result is the bfd handle of the file.
13024 If there is a problem finding or opening the file, return NULL.
13025 Upon success, the canonicalized path of the file is stored in the bfd,
13026 same as symfile_bfd_open. */
13028 static gdb_bfd_ref_ptr
13029 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13030 const char *file_name)
13032 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13034 1 /*search_cwd*/));
13038 /* Work around upstream bug 15652.
13039 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13040 [Whether that's a "bug" is debatable, but it is getting in our way.]
13041 We have no real idea where the dwp file is, because gdb's realpath-ing
13042 of the executable's path may have discarded the needed info.
13043 [IWBN if the dwp file name was recorded in the executable, akin to
13044 .gnu_debuglink, but that doesn't exist yet.]
13045 Strip the directory from FILE_NAME and search again. */
13046 if (*debug_file_directory != '\0')
13048 /* Don't implicitly search the current directory here.
13049 If the user wants to search "." to handle this case,
13050 it must be added to debug-file-directory. */
13051 return try_open_dwop_file (dwarf2_per_objfile,
13052 lbasename (file_name), 1 /*is_dwp*/,
13059 /* Initialize the use of the DWP file for the current objfile.
13060 By convention the name of the DWP file is ${objfile}.dwp.
13061 The result is NULL if it can't be found. */
13063 static std::unique_ptr<struct dwp_file>
13064 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13066 struct objfile *objfile = dwarf2_per_objfile->objfile;
13068 /* Try to find first .dwp for the binary file before any symbolic links
13071 /* If the objfile is a debug file, find the name of the real binary
13072 file and get the name of dwp file from there. */
13073 std::string dwp_name;
13074 if (objfile->separate_debug_objfile_backlink != NULL)
13076 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13077 const char *backlink_basename = lbasename (backlink->original_name);
13079 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13082 dwp_name = objfile->original_name;
13084 dwp_name += ".dwp";
13086 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13088 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13090 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13091 dwp_name = objfile_name (objfile);
13092 dwp_name += ".dwp";
13093 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13098 if (dwarf_read_debug)
13099 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13100 return std::unique_ptr<dwp_file> ();
13103 const char *name = bfd_get_filename (dbfd.get ());
13104 std::unique_ptr<struct dwp_file> dwp_file
13105 (new struct dwp_file (name, std::move (dbfd)));
13107 /* +1: section 0 is unused */
13108 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13109 dwp_file->elf_sections =
13110 OBSTACK_CALLOC (&objfile->objfile_obstack,
13111 dwp_file->num_sections, asection *);
13113 bfd_map_over_sections (dwp_file->dbfd.get (),
13114 dwarf2_locate_common_dwp_sections,
13117 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13120 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13123 /* The DWP file version is stored in the hash table. Oh well. */
13124 if (dwp_file->cus && dwp_file->tus
13125 && dwp_file->cus->version != dwp_file->tus->version)
13127 /* Technically speaking, we should try to limp along, but this is
13128 pretty bizarre. We use pulongest here because that's the established
13129 portability solution (e.g, we cannot use %u for uint32_t). */
13130 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13131 " TU version %s [in DWP file %s]"),
13132 pulongest (dwp_file->cus->version),
13133 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13137 dwp_file->version = dwp_file->cus->version;
13138 else if (dwp_file->tus)
13139 dwp_file->version = dwp_file->tus->version;
13141 dwp_file->version = 2;
13143 if (dwp_file->version == 2)
13144 bfd_map_over_sections (dwp_file->dbfd.get (),
13145 dwarf2_locate_v2_dwp_sections,
13148 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13149 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13151 if (dwarf_read_debug)
13153 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13154 fprintf_unfiltered (gdb_stdlog,
13155 " %s CUs, %s TUs\n",
13156 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13157 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13163 /* Wrapper around open_and_init_dwp_file, only open it once. */
13165 static struct dwp_file *
13166 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13168 if (! dwarf2_per_objfile->dwp_checked)
13170 dwarf2_per_objfile->dwp_file
13171 = open_and_init_dwp_file (dwarf2_per_objfile);
13172 dwarf2_per_objfile->dwp_checked = 1;
13174 return dwarf2_per_objfile->dwp_file.get ();
13177 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13178 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13179 or in the DWP file for the objfile, referenced by THIS_UNIT.
13180 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13181 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13183 This is called, for example, when wanting to read a variable with a
13184 complex location. Therefore we don't want to do file i/o for every call.
13185 Therefore we don't want to look for a DWO file on every call.
13186 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13187 then we check if we've already seen DWO_NAME, and only THEN do we check
13190 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13191 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13193 static struct dwo_unit *
13194 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13195 const char *dwo_name, const char *comp_dir,
13196 ULONGEST signature, int is_debug_types)
13198 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13199 struct objfile *objfile = dwarf2_per_objfile->objfile;
13200 const char *kind = is_debug_types ? "TU" : "CU";
13201 void **dwo_file_slot;
13202 struct dwo_file *dwo_file;
13203 struct dwp_file *dwp_file;
13205 /* First see if there's a DWP file.
13206 If we have a DWP file but didn't find the DWO inside it, don't
13207 look for the original DWO file. It makes gdb behave differently
13208 depending on whether one is debugging in the build tree. */
13210 dwp_file = get_dwp_file (dwarf2_per_objfile);
13211 if (dwp_file != NULL)
13213 const struct dwp_hash_table *dwp_htab =
13214 is_debug_types ? dwp_file->tus : dwp_file->cus;
13216 if (dwp_htab != NULL)
13218 struct dwo_unit *dwo_cutu =
13219 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13220 signature, is_debug_types);
13222 if (dwo_cutu != NULL)
13224 if (dwarf_read_debug)
13226 fprintf_unfiltered (gdb_stdlog,
13227 "Virtual DWO %s %s found: @%s\n",
13228 kind, hex_string (signature),
13229 host_address_to_string (dwo_cutu));
13237 /* No DWP file, look for the DWO file. */
13239 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13240 dwo_name, comp_dir);
13241 if (*dwo_file_slot == NULL)
13243 /* Read in the file and build a table of the CUs/TUs it contains. */
13244 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13246 /* NOTE: This will be NULL if unable to open the file. */
13247 dwo_file = (struct dwo_file *) *dwo_file_slot;
13249 if (dwo_file != NULL)
13251 struct dwo_unit *dwo_cutu = NULL;
13253 if (is_debug_types && dwo_file->tus)
13255 struct dwo_unit find_dwo_cutu;
13257 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13258 find_dwo_cutu.signature = signature;
13260 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13262 else if (!is_debug_types && dwo_file->cus)
13264 struct dwo_unit find_dwo_cutu;
13266 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13267 find_dwo_cutu.signature = signature;
13268 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13272 if (dwo_cutu != NULL)
13274 if (dwarf_read_debug)
13276 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13277 kind, dwo_name, hex_string (signature),
13278 host_address_to_string (dwo_cutu));
13285 /* We didn't find it. This could mean a dwo_id mismatch, or
13286 someone deleted the DWO/DWP file, or the search path isn't set up
13287 correctly to find the file. */
13289 if (dwarf_read_debug)
13291 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13292 kind, dwo_name, hex_string (signature));
13295 /* This is a warning and not a complaint because it can be caused by
13296 pilot error (e.g., user accidentally deleting the DWO). */
13298 /* Print the name of the DWP file if we looked there, helps the user
13299 better diagnose the problem. */
13300 std::string dwp_text;
13302 if (dwp_file != NULL)
13303 dwp_text = string_printf (" [in DWP file %s]",
13304 lbasename (dwp_file->name));
13306 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13307 " [in module %s]"),
13308 kind, dwo_name, hex_string (signature),
13310 this_unit->is_debug_types ? "TU" : "CU",
13311 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13316 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13317 See lookup_dwo_cutu_unit for details. */
13319 static struct dwo_unit *
13320 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13321 const char *dwo_name, const char *comp_dir,
13322 ULONGEST signature)
13324 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13327 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13328 See lookup_dwo_cutu_unit for details. */
13330 static struct dwo_unit *
13331 lookup_dwo_type_unit (struct signatured_type *this_tu,
13332 const char *dwo_name, const char *comp_dir)
13334 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13337 /* Traversal function for queue_and_load_all_dwo_tus. */
13340 queue_and_load_dwo_tu (void **slot, void *info)
13342 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13343 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13344 ULONGEST signature = dwo_unit->signature;
13345 struct signatured_type *sig_type =
13346 lookup_dwo_signatured_type (per_cu->cu, signature);
13348 if (sig_type != NULL)
13350 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13352 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13353 a real dependency of PER_CU on SIG_TYPE. That is detected later
13354 while processing PER_CU. */
13355 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13356 load_full_type_unit (sig_cu);
13357 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13363 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13364 The DWO may have the only definition of the type, though it may not be
13365 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13366 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13369 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13371 struct dwo_unit *dwo_unit;
13372 struct dwo_file *dwo_file;
13374 gdb_assert (!per_cu->is_debug_types);
13375 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13376 gdb_assert (per_cu->cu != NULL);
13378 dwo_unit = per_cu->cu->dwo_unit;
13379 gdb_assert (dwo_unit != NULL);
13381 dwo_file = dwo_unit->dwo_file;
13382 if (dwo_file->tus != NULL)
13383 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13386 /* Free all resources associated with DWO_FILE.
13387 Close the DWO file and munmap the sections. */
13390 free_dwo_file (struct dwo_file *dwo_file)
13392 /* Note: dbfd is NULL for virtual DWO files. */
13393 gdb_bfd_unref (dwo_file->dbfd);
13395 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13398 /* Traversal function for free_dwo_files. */
13401 free_dwo_file_from_slot (void **slot, void *info)
13403 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13405 free_dwo_file (dwo_file);
13410 /* Free all resources associated with DWO_FILES. */
13413 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13415 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13418 /* Read in various DIEs. */
13420 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13421 Inherit only the children of the DW_AT_abstract_origin DIE not being
13422 already referenced by DW_AT_abstract_origin from the children of the
13426 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13428 struct die_info *child_die;
13429 sect_offset *offsetp;
13430 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13431 struct die_info *origin_die;
13432 /* Iterator of the ORIGIN_DIE children. */
13433 struct die_info *origin_child_die;
13434 struct attribute *attr;
13435 struct dwarf2_cu *origin_cu;
13436 struct pending **origin_previous_list_in_scope;
13438 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13442 /* Note that following die references may follow to a die in a
13446 origin_die = follow_die_ref (die, attr, &origin_cu);
13448 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13450 origin_previous_list_in_scope = origin_cu->list_in_scope;
13451 origin_cu->list_in_scope = cu->list_in_scope;
13453 if (die->tag != origin_die->tag
13454 && !(die->tag == DW_TAG_inlined_subroutine
13455 && origin_die->tag == DW_TAG_subprogram))
13456 complaint (_("DIE %s and its abstract origin %s have different tags"),
13457 sect_offset_str (die->sect_off),
13458 sect_offset_str (origin_die->sect_off));
13460 std::vector<sect_offset> offsets;
13462 for (child_die = die->child;
13463 child_die && child_die->tag;
13464 child_die = sibling_die (child_die))
13466 struct die_info *child_origin_die;
13467 struct dwarf2_cu *child_origin_cu;
13469 /* We are trying to process concrete instance entries:
13470 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13471 it's not relevant to our analysis here. i.e. detecting DIEs that are
13472 present in the abstract instance but not referenced in the concrete
13474 if (child_die->tag == DW_TAG_call_site
13475 || child_die->tag == DW_TAG_GNU_call_site)
13478 /* For each CHILD_DIE, find the corresponding child of
13479 ORIGIN_DIE. If there is more than one layer of
13480 DW_AT_abstract_origin, follow them all; there shouldn't be,
13481 but GCC versions at least through 4.4 generate this (GCC PR
13483 child_origin_die = child_die;
13484 child_origin_cu = cu;
13487 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13491 child_origin_die = follow_die_ref (child_origin_die, attr,
13495 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13496 counterpart may exist. */
13497 if (child_origin_die != child_die)
13499 if (child_die->tag != child_origin_die->tag
13500 && !(child_die->tag == DW_TAG_inlined_subroutine
13501 && child_origin_die->tag == DW_TAG_subprogram))
13502 complaint (_("Child DIE %s and its abstract origin %s have "
13504 sect_offset_str (child_die->sect_off),
13505 sect_offset_str (child_origin_die->sect_off));
13506 if (child_origin_die->parent != origin_die)
13507 complaint (_("Child DIE %s and its abstract origin %s have "
13508 "different parents"),
13509 sect_offset_str (child_die->sect_off),
13510 sect_offset_str (child_origin_die->sect_off));
13512 offsets.push_back (child_origin_die->sect_off);
13515 std::sort (offsets.begin (), offsets.end ());
13516 sect_offset *offsets_end = offsets.data () + offsets.size ();
13517 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13518 if (offsetp[-1] == *offsetp)
13519 complaint (_("Multiple children of DIE %s refer "
13520 "to DIE %s as their abstract origin"),
13521 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13523 offsetp = offsets.data ();
13524 origin_child_die = origin_die->child;
13525 while (origin_child_die && origin_child_die->tag)
13527 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13528 while (offsetp < offsets_end
13529 && *offsetp < origin_child_die->sect_off)
13531 if (offsetp >= offsets_end
13532 || *offsetp > origin_child_die->sect_off)
13534 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13535 Check whether we're already processing ORIGIN_CHILD_DIE.
13536 This can happen with mutually referenced abstract_origins.
13538 if (!origin_child_die->in_process)
13539 process_die (origin_child_die, origin_cu);
13541 origin_child_die = sibling_die (origin_child_die);
13543 origin_cu->list_in_scope = origin_previous_list_in_scope;
13547 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13549 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13551 struct context_stack *newobj;
13554 struct die_info *child_die;
13555 struct attribute *attr, *call_line, *call_file;
13557 CORE_ADDR baseaddr;
13558 struct block *block;
13559 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13560 std::vector<struct symbol *> template_args;
13561 struct template_symbol *templ_func = NULL;
13565 /* If we do not have call site information, we can't show the
13566 caller of this inlined function. That's too confusing, so
13567 only use the scope for local variables. */
13568 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13569 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13570 if (call_line == NULL || call_file == NULL)
13572 read_lexical_block_scope (die, cu);
13577 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13579 name = dwarf2_name (die, cu);
13581 /* Ignore functions with missing or empty names. These are actually
13582 illegal according to the DWARF standard. */
13585 complaint (_("missing name for subprogram DIE at %s"),
13586 sect_offset_str (die->sect_off));
13590 /* Ignore functions with missing or invalid low and high pc attributes. */
13591 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13592 <= PC_BOUNDS_INVALID)
13594 attr = dwarf2_attr (die, DW_AT_external, cu);
13595 if (!attr || !DW_UNSND (attr))
13596 complaint (_("cannot get low and high bounds "
13597 "for subprogram DIE at %s"),
13598 sect_offset_str (die->sect_off));
13602 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13603 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13605 /* If we have any template arguments, then we must allocate a
13606 different sort of symbol. */
13607 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13609 if (child_die->tag == DW_TAG_template_type_param
13610 || child_die->tag == DW_TAG_template_value_param)
13612 templ_func = allocate_template_symbol (objfile);
13613 templ_func->subclass = SYMBOL_TEMPLATE;
13618 newobj = push_context (0, lowpc);
13619 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13620 (struct symbol *) templ_func);
13622 /* If there is a location expression for DW_AT_frame_base, record
13624 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13626 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13628 /* If there is a location for the static link, record it. */
13629 newobj->static_link = NULL;
13630 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13633 newobj->static_link
13634 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13635 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13638 cu->list_in_scope = &local_symbols;
13640 if (die->child != NULL)
13642 child_die = die->child;
13643 while (child_die && child_die->tag)
13645 if (child_die->tag == DW_TAG_template_type_param
13646 || child_die->tag == DW_TAG_template_value_param)
13648 struct symbol *arg = new_symbol (child_die, NULL, cu);
13651 template_args.push_back (arg);
13654 process_die (child_die, cu);
13655 child_die = sibling_die (child_die);
13659 inherit_abstract_dies (die, cu);
13661 /* If we have a DW_AT_specification, we might need to import using
13662 directives from the context of the specification DIE. See the
13663 comment in determine_prefix. */
13664 if (cu->language == language_cplus
13665 && dwarf2_attr (die, DW_AT_specification, cu))
13667 struct dwarf2_cu *spec_cu = cu;
13668 struct die_info *spec_die = die_specification (die, &spec_cu);
13672 child_die = spec_die->child;
13673 while (child_die && child_die->tag)
13675 if (child_die->tag == DW_TAG_imported_module)
13676 process_die (child_die, spec_cu);
13677 child_die = sibling_die (child_die);
13680 /* In some cases, GCC generates specification DIEs that
13681 themselves contain DW_AT_specification attributes. */
13682 spec_die = die_specification (spec_die, &spec_cu);
13686 newobj = pop_context ();
13687 /* Make a block for the local symbols within. */
13688 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13689 newobj->static_link, lowpc, highpc);
13691 /* For C++, set the block's scope. */
13692 if ((cu->language == language_cplus
13693 || cu->language == language_fortran
13694 || cu->language == language_d
13695 || cu->language == language_rust)
13696 && cu->processing_has_namespace_info)
13697 block_set_scope (block, determine_prefix (die, cu),
13698 &objfile->objfile_obstack);
13700 /* If we have address ranges, record them. */
13701 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13703 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13705 /* Attach template arguments to function. */
13706 if (!template_args.empty ())
13708 gdb_assert (templ_func != NULL);
13710 templ_func->n_template_arguments = template_args.size ();
13711 templ_func->template_arguments
13712 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13713 templ_func->n_template_arguments);
13714 memcpy (templ_func->template_arguments,
13715 template_args.data (),
13716 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13719 /* In C++, we can have functions nested inside functions (e.g., when
13720 a function declares a class that has methods). This means that
13721 when we finish processing a function scope, we may need to go
13722 back to building a containing block's symbol lists. */
13723 local_symbols = newobj->locals;
13724 local_using_directives = newobj->local_using_directives;
13726 /* If we've finished processing a top-level function, subsequent
13727 symbols go in the file symbol list. */
13728 if (outermost_context_p ())
13729 cu->list_in_scope = &file_symbols;
13732 /* Process all the DIES contained within a lexical block scope. Start
13733 a new scope, process the dies, and then close the scope. */
13736 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13738 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13740 struct context_stack *newobj;
13741 CORE_ADDR lowpc, highpc;
13742 struct die_info *child_die;
13743 CORE_ADDR baseaddr;
13745 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13747 /* Ignore blocks with missing or invalid low and high pc attributes. */
13748 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13749 as multiple lexical blocks? Handling children in a sane way would
13750 be nasty. Might be easier to properly extend generic blocks to
13751 describe ranges. */
13752 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13754 case PC_BOUNDS_NOT_PRESENT:
13755 /* DW_TAG_lexical_block has no attributes, process its children as if
13756 there was no wrapping by that DW_TAG_lexical_block.
13757 GCC does no longer produces such DWARF since GCC r224161. */
13758 for (child_die = die->child;
13759 child_die != NULL && child_die->tag;
13760 child_die = sibling_die (child_die))
13761 process_die (child_die, cu);
13763 case PC_BOUNDS_INVALID:
13766 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13767 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13769 push_context (0, lowpc);
13770 if (die->child != NULL)
13772 child_die = die->child;
13773 while (child_die && child_die->tag)
13775 process_die (child_die, cu);
13776 child_die = sibling_die (child_die);
13779 inherit_abstract_dies (die, cu);
13780 newobj = pop_context ();
13782 if (local_symbols != NULL || local_using_directives != NULL)
13784 struct block *block
13785 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13786 newobj->start_addr, highpc);
13788 /* Note that recording ranges after traversing children, as we
13789 do here, means that recording a parent's ranges entails
13790 walking across all its children's ranges as they appear in
13791 the address map, which is quadratic behavior.
13793 It would be nicer to record the parent's ranges before
13794 traversing its children, simply overriding whatever you find
13795 there. But since we don't even decide whether to create a
13796 block until after we've traversed its children, that's hard
13798 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13800 local_symbols = newobj->locals;
13801 local_using_directives = newobj->local_using_directives;
13804 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13807 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13809 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13811 CORE_ADDR pc, baseaddr;
13812 struct attribute *attr;
13813 struct call_site *call_site, call_site_local;
13816 struct die_info *child_die;
13818 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13820 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13823 /* This was a pre-DWARF-5 GNU extension alias
13824 for DW_AT_call_return_pc. */
13825 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13829 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13830 "DIE %s [in module %s]"),
13831 sect_offset_str (die->sect_off), objfile_name (objfile));
13834 pc = attr_value_as_address (attr) + baseaddr;
13835 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13837 if (cu->call_site_htab == NULL)
13838 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13839 NULL, &objfile->objfile_obstack,
13840 hashtab_obstack_allocate, NULL);
13841 call_site_local.pc = pc;
13842 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13845 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13846 "DIE %s [in module %s]"),
13847 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13848 objfile_name (objfile));
13852 /* Count parameters at the caller. */
13855 for (child_die = die->child; child_die && child_die->tag;
13856 child_die = sibling_die (child_die))
13858 if (child_die->tag != DW_TAG_call_site_parameter
13859 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13861 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13862 "DW_TAG_call_site child DIE %s [in module %s]"),
13863 child_die->tag, sect_offset_str (child_die->sect_off),
13864 objfile_name (objfile));
13872 = ((struct call_site *)
13873 obstack_alloc (&objfile->objfile_obstack,
13874 sizeof (*call_site)
13875 + (sizeof (*call_site->parameter) * (nparams - 1))));
13877 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13878 call_site->pc = pc;
13880 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13881 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13883 struct die_info *func_die;
13885 /* Skip also over DW_TAG_inlined_subroutine. */
13886 for (func_die = die->parent;
13887 func_die && func_die->tag != DW_TAG_subprogram
13888 && func_die->tag != DW_TAG_subroutine_type;
13889 func_die = func_die->parent);
13891 /* DW_AT_call_all_calls is a superset
13892 of DW_AT_call_all_tail_calls. */
13894 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13895 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13896 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13897 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13899 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13900 not complete. But keep CALL_SITE for look ups via call_site_htab,
13901 both the initial caller containing the real return address PC and
13902 the final callee containing the current PC of a chain of tail
13903 calls do not need to have the tail call list complete. But any
13904 function candidate for a virtual tail call frame searched via
13905 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13906 determined unambiguously. */
13910 struct type *func_type = NULL;
13913 func_type = get_die_type (func_die, cu);
13914 if (func_type != NULL)
13916 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13918 /* Enlist this call site to the function. */
13919 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13920 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13923 complaint (_("Cannot find function owning DW_TAG_call_site "
13924 "DIE %s [in module %s]"),
13925 sect_offset_str (die->sect_off), objfile_name (objfile));
13929 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13931 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13933 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13936 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13937 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13939 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13940 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13941 /* Keep NULL DWARF_BLOCK. */;
13942 else if (attr_form_is_block (attr))
13944 struct dwarf2_locexpr_baton *dlbaton;
13946 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13947 dlbaton->data = DW_BLOCK (attr)->data;
13948 dlbaton->size = DW_BLOCK (attr)->size;
13949 dlbaton->per_cu = cu->per_cu;
13951 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13953 else if (attr_form_is_ref (attr))
13955 struct dwarf2_cu *target_cu = cu;
13956 struct die_info *target_die;
13958 target_die = follow_die_ref (die, attr, &target_cu);
13959 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13960 if (die_is_declaration (target_die, target_cu))
13962 const char *target_physname;
13964 /* Prefer the mangled name; otherwise compute the demangled one. */
13965 target_physname = dw2_linkage_name (target_die, target_cu);
13966 if (target_physname == NULL)
13967 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13968 if (target_physname == NULL)
13969 complaint (_("DW_AT_call_target target DIE has invalid "
13970 "physname, for referencing DIE %s [in module %s]"),
13971 sect_offset_str (die->sect_off), objfile_name (objfile));
13973 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13979 /* DW_AT_entry_pc should be preferred. */
13980 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13981 <= PC_BOUNDS_INVALID)
13982 complaint (_("DW_AT_call_target target DIE has invalid "
13983 "low pc, for referencing DIE %s [in module %s]"),
13984 sect_offset_str (die->sect_off), objfile_name (objfile));
13987 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13988 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13993 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13994 "block nor reference, for DIE %s [in module %s]"),
13995 sect_offset_str (die->sect_off), objfile_name (objfile));
13997 call_site->per_cu = cu->per_cu;
13999 for (child_die = die->child;
14000 child_die && child_die->tag;
14001 child_die = sibling_die (child_die))
14003 struct call_site_parameter *parameter;
14004 struct attribute *loc, *origin;
14006 if (child_die->tag != DW_TAG_call_site_parameter
14007 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14009 /* Already printed the complaint above. */
14013 gdb_assert (call_site->parameter_count < nparams);
14014 parameter = &call_site->parameter[call_site->parameter_count];
14016 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14017 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14018 register is contained in DW_AT_call_value. */
14020 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14021 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14022 if (origin == NULL)
14024 /* This was a pre-DWARF-5 GNU extension alias
14025 for DW_AT_call_parameter. */
14026 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14028 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14030 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14032 sect_offset sect_off
14033 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14034 if (!offset_in_cu_p (&cu->header, sect_off))
14036 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14037 binding can be done only inside one CU. Such referenced DIE
14038 therefore cannot be even moved to DW_TAG_partial_unit. */
14039 complaint (_("DW_AT_call_parameter offset is not in CU for "
14040 "DW_TAG_call_site child DIE %s [in module %s]"),
14041 sect_offset_str (child_die->sect_off),
14042 objfile_name (objfile));
14045 parameter->u.param_cu_off
14046 = (cu_offset) (sect_off - cu->header.sect_off);
14048 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14050 complaint (_("No DW_FORM_block* DW_AT_location for "
14051 "DW_TAG_call_site child DIE %s [in module %s]"),
14052 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14057 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14058 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14059 if (parameter->u.dwarf_reg != -1)
14060 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14061 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14062 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14063 ¶meter->u.fb_offset))
14064 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14067 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14068 "for DW_FORM_block* DW_AT_location is supported for "
14069 "DW_TAG_call_site child DIE %s "
14071 sect_offset_str (child_die->sect_off),
14072 objfile_name (objfile));
14077 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14079 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14080 if (!attr_form_is_block (attr))
14082 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14083 "DW_TAG_call_site child DIE %s [in module %s]"),
14084 sect_offset_str (child_die->sect_off),
14085 objfile_name (objfile));
14088 parameter->value = DW_BLOCK (attr)->data;
14089 parameter->value_size = DW_BLOCK (attr)->size;
14091 /* Parameters are not pre-cleared by memset above. */
14092 parameter->data_value = NULL;
14093 parameter->data_value_size = 0;
14094 call_site->parameter_count++;
14096 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14098 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14101 if (!attr_form_is_block (attr))
14102 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14103 "DW_TAG_call_site child DIE %s [in module %s]"),
14104 sect_offset_str (child_die->sect_off),
14105 objfile_name (objfile));
14108 parameter->data_value = DW_BLOCK (attr)->data;
14109 parameter->data_value_size = DW_BLOCK (attr)->size;
14115 /* Helper function for read_variable. If DIE represents a virtual
14116 table, then return the type of the concrete object that is
14117 associated with the virtual table. Otherwise, return NULL. */
14119 static struct type *
14120 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14122 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14126 /* Find the type DIE. */
14127 struct die_info *type_die = NULL;
14128 struct dwarf2_cu *type_cu = cu;
14130 if (attr_form_is_ref (attr))
14131 type_die = follow_die_ref (die, attr, &type_cu);
14132 if (type_die == NULL)
14135 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14137 return die_containing_type (type_die, type_cu);
14140 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14143 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14145 struct rust_vtable_symbol *storage = NULL;
14147 if (cu->language == language_rust)
14149 struct type *containing_type = rust_containing_type (die, cu);
14151 if (containing_type != NULL)
14153 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14155 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14156 struct rust_vtable_symbol);
14157 initialize_objfile_symbol (storage);
14158 storage->concrete_type = containing_type;
14159 storage->subclass = SYMBOL_RUST_VTABLE;
14163 new_symbol (die, NULL, cu, storage);
14166 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14167 reading .debug_rnglists.
14168 Callback's type should be:
14169 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14170 Return true if the attributes are present and valid, otherwise,
14173 template <typename Callback>
14175 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14176 Callback &&callback)
14178 struct dwarf2_per_objfile *dwarf2_per_objfile
14179 = cu->per_cu->dwarf2_per_objfile;
14180 struct objfile *objfile = dwarf2_per_objfile->objfile;
14181 bfd *obfd = objfile->obfd;
14182 /* Base address selection entry. */
14185 const gdb_byte *buffer;
14186 CORE_ADDR baseaddr;
14187 bool overflow = false;
14189 found_base = cu->base_known;
14190 base = cu->base_address;
14192 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14193 if (offset >= dwarf2_per_objfile->rnglists.size)
14195 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14199 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14201 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14205 /* Initialize it due to a false compiler warning. */
14206 CORE_ADDR range_beginning = 0, range_end = 0;
14207 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14208 + dwarf2_per_objfile->rnglists.size);
14209 unsigned int bytes_read;
14211 if (buffer == buf_end)
14216 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14219 case DW_RLE_end_of_list:
14221 case DW_RLE_base_address:
14222 if (buffer + cu->header.addr_size > buf_end)
14227 base = read_address (obfd, buffer, cu, &bytes_read);
14229 buffer += bytes_read;
14231 case DW_RLE_start_length:
14232 if (buffer + cu->header.addr_size > buf_end)
14237 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14238 buffer += bytes_read;
14239 range_end = (range_beginning
14240 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14241 buffer += bytes_read;
14242 if (buffer > buf_end)
14248 case DW_RLE_offset_pair:
14249 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14250 buffer += bytes_read;
14251 if (buffer > buf_end)
14256 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14257 buffer += bytes_read;
14258 if (buffer > buf_end)
14264 case DW_RLE_start_end:
14265 if (buffer + 2 * cu->header.addr_size > buf_end)
14270 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14271 buffer += bytes_read;
14272 range_end = read_address (obfd, buffer, cu, &bytes_read);
14273 buffer += bytes_read;
14276 complaint (_("Invalid .debug_rnglists data (no base address)"));
14279 if (rlet == DW_RLE_end_of_list || overflow)
14281 if (rlet == DW_RLE_base_address)
14286 /* We have no valid base address for the ranges
14288 complaint (_("Invalid .debug_rnglists data (no base address)"));
14292 if (range_beginning > range_end)
14294 /* Inverted range entries are invalid. */
14295 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14299 /* Empty range entries have no effect. */
14300 if (range_beginning == range_end)
14303 range_beginning += base;
14306 /* A not-uncommon case of bad debug info.
14307 Don't pollute the addrmap with bad data. */
14308 if (range_beginning + baseaddr == 0
14309 && !dwarf2_per_objfile->has_section_at_zero)
14311 complaint (_(".debug_rnglists entry has start address of zero"
14312 " [in module %s]"), objfile_name (objfile));
14316 callback (range_beginning, range_end);
14321 complaint (_("Offset %d is not terminated "
14322 "for DW_AT_ranges attribute"),
14330 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14331 Callback's type should be:
14332 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14333 Return 1 if the attributes are present and valid, otherwise, return 0. */
14335 template <typename Callback>
14337 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14338 Callback &&callback)
14340 struct dwarf2_per_objfile *dwarf2_per_objfile
14341 = cu->per_cu->dwarf2_per_objfile;
14342 struct objfile *objfile = dwarf2_per_objfile->objfile;
14343 struct comp_unit_head *cu_header = &cu->header;
14344 bfd *obfd = objfile->obfd;
14345 unsigned int addr_size = cu_header->addr_size;
14346 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14347 /* Base address selection entry. */
14350 unsigned int dummy;
14351 const gdb_byte *buffer;
14352 CORE_ADDR baseaddr;
14354 if (cu_header->version >= 5)
14355 return dwarf2_rnglists_process (offset, cu, callback);
14357 found_base = cu->base_known;
14358 base = cu->base_address;
14360 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14361 if (offset >= dwarf2_per_objfile->ranges.size)
14363 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14367 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14369 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14373 CORE_ADDR range_beginning, range_end;
14375 range_beginning = read_address (obfd, buffer, cu, &dummy);
14376 buffer += addr_size;
14377 range_end = read_address (obfd, buffer, cu, &dummy);
14378 buffer += addr_size;
14379 offset += 2 * addr_size;
14381 /* An end of list marker is a pair of zero addresses. */
14382 if (range_beginning == 0 && range_end == 0)
14383 /* Found the end of list entry. */
14386 /* Each base address selection entry is a pair of 2 values.
14387 The first is the largest possible address, the second is
14388 the base address. Check for a base address here. */
14389 if ((range_beginning & mask) == mask)
14391 /* If we found the largest possible address, then we already
14392 have the base address in range_end. */
14400 /* We have no valid base address for the ranges
14402 complaint (_("Invalid .debug_ranges data (no base address)"));
14406 if (range_beginning > range_end)
14408 /* Inverted range entries are invalid. */
14409 complaint (_("Invalid .debug_ranges data (inverted range)"));
14413 /* Empty range entries have no effect. */
14414 if (range_beginning == range_end)
14417 range_beginning += base;
14420 /* A not-uncommon case of bad debug info.
14421 Don't pollute the addrmap with bad data. */
14422 if (range_beginning + baseaddr == 0
14423 && !dwarf2_per_objfile->has_section_at_zero)
14425 complaint (_(".debug_ranges entry has start address of zero"
14426 " [in module %s]"), objfile_name (objfile));
14430 callback (range_beginning, range_end);
14436 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14437 Return 1 if the attributes are present and valid, otherwise, return 0.
14438 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14441 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14442 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14443 struct partial_symtab *ranges_pst)
14445 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14446 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14447 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14448 SECT_OFF_TEXT (objfile));
14451 CORE_ADDR high = 0;
14454 retval = dwarf2_ranges_process (offset, cu,
14455 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14457 if (ranges_pst != NULL)
14462 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14463 range_beginning + baseaddr);
14464 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14465 range_end + baseaddr);
14466 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14470 /* FIXME: This is recording everything as a low-high
14471 segment of consecutive addresses. We should have a
14472 data structure for discontiguous block ranges
14476 low = range_beginning;
14482 if (range_beginning < low)
14483 low = range_beginning;
14484 if (range_end > high)
14492 /* If the first entry is an end-of-list marker, the range
14493 describes an empty scope, i.e. no instructions. */
14499 *high_return = high;
14503 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14504 definition for the return value. *LOWPC and *HIGHPC are set iff
14505 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14507 static enum pc_bounds_kind
14508 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14509 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14510 struct partial_symtab *pst)
14512 struct dwarf2_per_objfile *dwarf2_per_objfile
14513 = cu->per_cu->dwarf2_per_objfile;
14514 struct attribute *attr;
14515 struct attribute *attr_high;
14517 CORE_ADDR high = 0;
14518 enum pc_bounds_kind ret;
14520 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14523 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14526 low = attr_value_as_address (attr);
14527 high = attr_value_as_address (attr_high);
14528 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14532 /* Found high w/o low attribute. */
14533 return PC_BOUNDS_INVALID;
14535 /* Found consecutive range of addresses. */
14536 ret = PC_BOUNDS_HIGH_LOW;
14540 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14543 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14544 We take advantage of the fact that DW_AT_ranges does not appear
14545 in DW_TAG_compile_unit of DWO files. */
14546 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14547 unsigned int ranges_offset = (DW_UNSND (attr)
14548 + (need_ranges_base
14552 /* Value of the DW_AT_ranges attribute is the offset in the
14553 .debug_ranges section. */
14554 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14555 return PC_BOUNDS_INVALID;
14556 /* Found discontinuous range of addresses. */
14557 ret = PC_BOUNDS_RANGES;
14560 return PC_BOUNDS_NOT_PRESENT;
14563 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14565 return PC_BOUNDS_INVALID;
14567 /* When using the GNU linker, .gnu.linkonce. sections are used to
14568 eliminate duplicate copies of functions and vtables and such.
14569 The linker will arbitrarily choose one and discard the others.
14570 The AT_*_pc values for such functions refer to local labels in
14571 these sections. If the section from that file was discarded, the
14572 labels are not in the output, so the relocs get a value of 0.
14573 If this is a discarded function, mark the pc bounds as invalid,
14574 so that GDB will ignore it. */
14575 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14576 return PC_BOUNDS_INVALID;
14584 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14585 its low and high PC addresses. Do nothing if these addresses could not
14586 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14587 and HIGHPC to the high address if greater than HIGHPC. */
14590 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14591 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14592 struct dwarf2_cu *cu)
14594 CORE_ADDR low, high;
14595 struct die_info *child = die->child;
14597 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14599 *lowpc = std::min (*lowpc, low);
14600 *highpc = std::max (*highpc, high);
14603 /* If the language does not allow nested subprograms (either inside
14604 subprograms or lexical blocks), we're done. */
14605 if (cu->language != language_ada)
14608 /* Check all the children of the given DIE. If it contains nested
14609 subprograms, then check their pc bounds. Likewise, we need to
14610 check lexical blocks as well, as they may also contain subprogram
14612 while (child && child->tag)
14614 if (child->tag == DW_TAG_subprogram
14615 || child->tag == DW_TAG_lexical_block)
14616 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14617 child = sibling_die (child);
14621 /* Get the low and high pc's represented by the scope DIE, and store
14622 them in *LOWPC and *HIGHPC. If the correct values can't be
14623 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14626 get_scope_pc_bounds (struct die_info *die,
14627 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14628 struct dwarf2_cu *cu)
14630 CORE_ADDR best_low = (CORE_ADDR) -1;
14631 CORE_ADDR best_high = (CORE_ADDR) 0;
14632 CORE_ADDR current_low, current_high;
14634 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14635 >= PC_BOUNDS_RANGES)
14637 best_low = current_low;
14638 best_high = current_high;
14642 struct die_info *child = die->child;
14644 while (child && child->tag)
14646 switch (child->tag) {
14647 case DW_TAG_subprogram:
14648 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14650 case DW_TAG_namespace:
14651 case DW_TAG_module:
14652 /* FIXME: carlton/2004-01-16: Should we do this for
14653 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14654 that current GCC's always emit the DIEs corresponding
14655 to definitions of methods of classes as children of a
14656 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14657 the DIEs giving the declarations, which could be
14658 anywhere). But I don't see any reason why the
14659 standards says that they have to be there. */
14660 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14662 if (current_low != ((CORE_ADDR) -1))
14664 best_low = std::min (best_low, current_low);
14665 best_high = std::max (best_high, current_high);
14673 child = sibling_die (child);
14678 *highpc = best_high;
14681 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14685 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14686 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14688 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14689 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14690 struct attribute *attr;
14691 struct attribute *attr_high;
14693 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14696 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14699 CORE_ADDR low = attr_value_as_address (attr);
14700 CORE_ADDR high = attr_value_as_address (attr_high);
14702 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14705 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14706 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14707 record_block_range (block, low, high - 1);
14711 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14714 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14715 We take advantage of the fact that DW_AT_ranges does not appear
14716 in DW_TAG_compile_unit of DWO files. */
14717 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14719 /* The value of the DW_AT_ranges attribute is the offset of the
14720 address range list in the .debug_ranges section. */
14721 unsigned long offset = (DW_UNSND (attr)
14722 + (need_ranges_base ? cu->ranges_base : 0));
14724 dwarf2_ranges_process (offset, cu,
14725 [&] (CORE_ADDR start, CORE_ADDR end)
14729 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14730 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14731 record_block_range (block, start, end - 1);
14736 /* Check whether the producer field indicates either of GCC < 4.6, or the
14737 Intel C/C++ compiler, and cache the result in CU. */
14740 check_producer (struct dwarf2_cu *cu)
14744 if (cu->producer == NULL)
14746 /* For unknown compilers expect their behavior is DWARF version
14749 GCC started to support .debug_types sections by -gdwarf-4 since
14750 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14751 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14752 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14753 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14755 else if (producer_is_gcc (cu->producer, &major, &minor))
14757 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14758 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14760 else if (producer_is_icc (cu->producer, &major, &minor))
14761 cu->producer_is_icc_lt_14 = major < 14;
14764 /* For other non-GCC compilers, expect their behavior is DWARF version
14768 cu->checked_producer = 1;
14771 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14772 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14773 during 4.6.0 experimental. */
14776 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14778 if (!cu->checked_producer)
14779 check_producer (cu);
14781 return cu->producer_is_gxx_lt_4_6;
14784 /* Return the default accessibility type if it is not overriden by
14785 DW_AT_accessibility. */
14787 static enum dwarf_access_attribute
14788 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14790 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14792 /* The default DWARF 2 accessibility for members is public, the default
14793 accessibility for inheritance is private. */
14795 if (die->tag != DW_TAG_inheritance)
14796 return DW_ACCESS_public;
14798 return DW_ACCESS_private;
14802 /* DWARF 3+ defines the default accessibility a different way. The same
14803 rules apply now for DW_TAG_inheritance as for the members and it only
14804 depends on the container kind. */
14806 if (die->parent->tag == DW_TAG_class_type)
14807 return DW_ACCESS_private;
14809 return DW_ACCESS_public;
14813 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14814 offset. If the attribute was not found return 0, otherwise return
14815 1. If it was found but could not properly be handled, set *OFFSET
14819 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14822 struct attribute *attr;
14824 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14829 /* Note that we do not check for a section offset first here.
14830 This is because DW_AT_data_member_location is new in DWARF 4,
14831 so if we see it, we can assume that a constant form is really
14832 a constant and not a section offset. */
14833 if (attr_form_is_constant (attr))
14834 *offset = dwarf2_get_attr_constant_value (attr, 0);
14835 else if (attr_form_is_section_offset (attr))
14836 dwarf2_complex_location_expr_complaint ();
14837 else if (attr_form_is_block (attr))
14838 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14840 dwarf2_complex_location_expr_complaint ();
14848 /* Add an aggregate field to the field list. */
14851 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14852 struct dwarf2_cu *cu)
14854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14855 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14856 struct nextfield *new_field;
14857 struct attribute *attr;
14859 const char *fieldname = "";
14861 if (die->tag == DW_TAG_inheritance)
14863 fip->baseclasses.emplace_back ();
14864 new_field = &fip->baseclasses.back ();
14868 fip->fields.emplace_back ();
14869 new_field = &fip->fields.back ();
14874 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14876 new_field->accessibility = DW_UNSND (attr);
14878 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14879 if (new_field->accessibility != DW_ACCESS_public)
14880 fip->non_public_fields = 1;
14882 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14884 new_field->virtuality = DW_UNSND (attr);
14886 new_field->virtuality = DW_VIRTUALITY_none;
14888 fp = &new_field->field;
14890 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14894 /* Data member other than a C++ static data member. */
14896 /* Get type of field. */
14897 fp->type = die_type (die, cu);
14899 SET_FIELD_BITPOS (*fp, 0);
14901 /* Get bit size of field (zero if none). */
14902 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14905 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14909 FIELD_BITSIZE (*fp) = 0;
14912 /* Get bit offset of field. */
14913 if (handle_data_member_location (die, cu, &offset))
14914 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14915 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14918 if (gdbarch_bits_big_endian (gdbarch))
14920 /* For big endian bits, the DW_AT_bit_offset gives the
14921 additional bit offset from the MSB of the containing
14922 anonymous object to the MSB of the field. We don't
14923 have to do anything special since we don't need to
14924 know the size of the anonymous object. */
14925 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14929 /* For little endian bits, compute the bit offset to the
14930 MSB of the anonymous object, subtract off the number of
14931 bits from the MSB of the field to the MSB of the
14932 object, and then subtract off the number of bits of
14933 the field itself. The result is the bit offset of
14934 the LSB of the field. */
14935 int anonymous_size;
14936 int bit_offset = DW_UNSND (attr);
14938 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14941 /* The size of the anonymous object containing
14942 the bit field is explicit, so use the
14943 indicated size (in bytes). */
14944 anonymous_size = DW_UNSND (attr);
14948 /* The size of the anonymous object containing
14949 the bit field must be inferred from the type
14950 attribute of the data member containing the
14952 anonymous_size = TYPE_LENGTH (fp->type);
14954 SET_FIELD_BITPOS (*fp,
14955 (FIELD_BITPOS (*fp)
14956 + anonymous_size * bits_per_byte
14957 - bit_offset - FIELD_BITSIZE (*fp)));
14960 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14962 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14963 + dwarf2_get_attr_constant_value (attr, 0)));
14965 /* Get name of field. */
14966 fieldname = dwarf2_name (die, cu);
14967 if (fieldname == NULL)
14970 /* The name is already allocated along with this objfile, so we don't
14971 need to duplicate it for the type. */
14972 fp->name = fieldname;
14974 /* Change accessibility for artificial fields (e.g. virtual table
14975 pointer or virtual base class pointer) to private. */
14976 if (dwarf2_attr (die, DW_AT_artificial, cu))
14978 FIELD_ARTIFICIAL (*fp) = 1;
14979 new_field->accessibility = DW_ACCESS_private;
14980 fip->non_public_fields = 1;
14983 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14985 /* C++ static member. */
14987 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14988 is a declaration, but all versions of G++ as of this writing
14989 (so through at least 3.2.1) incorrectly generate
14990 DW_TAG_variable tags. */
14992 const char *physname;
14994 /* Get name of field. */
14995 fieldname = dwarf2_name (die, cu);
14996 if (fieldname == NULL)
14999 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15001 /* Only create a symbol if this is an external value.
15002 new_symbol checks this and puts the value in the global symbol
15003 table, which we want. If it is not external, new_symbol
15004 will try to put the value in cu->list_in_scope which is wrong. */
15005 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15007 /* A static const member, not much different than an enum as far as
15008 we're concerned, except that we can support more types. */
15009 new_symbol (die, NULL, cu);
15012 /* Get physical name. */
15013 physname = dwarf2_physname (fieldname, die, cu);
15015 /* The name is already allocated along with this objfile, so we don't
15016 need to duplicate it for the type. */
15017 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15018 FIELD_TYPE (*fp) = die_type (die, cu);
15019 FIELD_NAME (*fp) = fieldname;
15021 else if (die->tag == DW_TAG_inheritance)
15025 /* C++ base class field. */
15026 if (handle_data_member_location (die, cu, &offset))
15027 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15028 FIELD_BITSIZE (*fp) = 0;
15029 FIELD_TYPE (*fp) = die_type (die, cu);
15030 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15032 else if (die->tag == DW_TAG_variant_part)
15034 /* process_structure_scope will treat this DIE as a union. */
15035 process_structure_scope (die, cu);
15037 /* The variant part is relative to the start of the enclosing
15039 SET_FIELD_BITPOS (*fp, 0);
15040 fp->type = get_die_type (die, cu);
15041 fp->artificial = 1;
15042 fp->name = "<<variant>>";
15045 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15048 /* Can the type given by DIE define another type? */
15051 type_can_define_types (const struct die_info *die)
15055 case DW_TAG_typedef:
15056 case DW_TAG_class_type:
15057 case DW_TAG_structure_type:
15058 case DW_TAG_union_type:
15059 case DW_TAG_enumeration_type:
15067 /* Add a type definition defined in the scope of the FIP's class. */
15070 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15071 struct dwarf2_cu *cu)
15073 struct decl_field fp;
15074 memset (&fp, 0, sizeof (fp));
15076 gdb_assert (type_can_define_types (die));
15078 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15079 fp.name = dwarf2_name (die, cu);
15080 fp.type = read_type_die (die, cu);
15082 /* Save accessibility. */
15083 enum dwarf_access_attribute accessibility;
15084 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15086 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15088 accessibility = dwarf2_default_access_attribute (die, cu);
15089 switch (accessibility)
15091 case DW_ACCESS_public:
15092 /* The assumed value if neither private nor protected. */
15094 case DW_ACCESS_private:
15097 case DW_ACCESS_protected:
15098 fp.is_protected = 1;
15101 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15104 if (die->tag == DW_TAG_typedef)
15105 fip->typedef_field_list.push_back (fp);
15107 fip->nested_types_list.push_back (fp);
15110 /* Create the vector of fields, and attach it to the type. */
15113 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15114 struct dwarf2_cu *cu)
15116 int nfields = fip->nfields;
15118 /* Record the field count, allocate space for the array of fields,
15119 and create blank accessibility bitfields if necessary. */
15120 TYPE_NFIELDS (type) = nfields;
15121 TYPE_FIELDS (type) = (struct field *)
15122 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15124 if (fip->non_public_fields && cu->language != language_ada)
15126 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15128 TYPE_FIELD_PRIVATE_BITS (type) =
15129 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15130 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15132 TYPE_FIELD_PROTECTED_BITS (type) =
15133 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15134 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15136 TYPE_FIELD_IGNORE_BITS (type) =
15137 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15138 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15141 /* If the type has baseclasses, allocate and clear a bit vector for
15142 TYPE_FIELD_VIRTUAL_BITS. */
15143 if (!fip->baseclasses.empty () && cu->language != language_ada)
15145 int num_bytes = B_BYTES (fip->baseclasses.size ());
15146 unsigned char *pointer;
15148 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15149 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15150 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15151 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15152 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15155 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15157 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15159 for (int index = 0; index < nfields; ++index)
15161 struct nextfield &field = fip->fields[index];
15163 if (field.variant.is_discriminant)
15164 di->discriminant_index = index;
15165 else if (field.variant.default_branch)
15166 di->default_index = index;
15168 di->discriminants[index] = field.variant.discriminant_value;
15172 /* Copy the saved-up fields into the field vector. */
15173 for (int i = 0; i < nfields; ++i)
15175 struct nextfield &field
15176 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15177 : fip->fields[i - fip->baseclasses.size ()]);
15179 TYPE_FIELD (type, i) = field.field;
15180 switch (field.accessibility)
15182 case DW_ACCESS_private:
15183 if (cu->language != language_ada)
15184 SET_TYPE_FIELD_PRIVATE (type, i);
15187 case DW_ACCESS_protected:
15188 if (cu->language != language_ada)
15189 SET_TYPE_FIELD_PROTECTED (type, i);
15192 case DW_ACCESS_public:
15196 /* Unknown accessibility. Complain and treat it as public. */
15198 complaint (_("unsupported accessibility %d"),
15199 field.accessibility);
15203 if (i < fip->baseclasses.size ())
15205 switch (field.virtuality)
15207 case DW_VIRTUALITY_virtual:
15208 case DW_VIRTUALITY_pure_virtual:
15209 if (cu->language == language_ada)
15210 error (_("unexpected virtuality in component of Ada type"));
15211 SET_TYPE_FIELD_VIRTUAL (type, i);
15218 /* Return true if this member function is a constructor, false
15222 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15224 const char *fieldname;
15225 const char *type_name;
15228 if (die->parent == NULL)
15231 if (die->parent->tag != DW_TAG_structure_type
15232 && die->parent->tag != DW_TAG_union_type
15233 && die->parent->tag != DW_TAG_class_type)
15236 fieldname = dwarf2_name (die, cu);
15237 type_name = dwarf2_name (die->parent, cu);
15238 if (fieldname == NULL || type_name == NULL)
15241 len = strlen (fieldname);
15242 return (strncmp (fieldname, type_name, len) == 0
15243 && (type_name[len] == '\0' || type_name[len] == '<'));
15246 /* Add a member function to the proper fieldlist. */
15249 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15250 struct type *type, struct dwarf2_cu *cu)
15252 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15253 struct attribute *attr;
15255 struct fnfieldlist *flp = nullptr;
15256 struct fn_field *fnp;
15257 const char *fieldname;
15258 struct type *this_type;
15259 enum dwarf_access_attribute accessibility;
15261 if (cu->language == language_ada)
15262 error (_("unexpected member function in Ada type"));
15264 /* Get name of member function. */
15265 fieldname = dwarf2_name (die, cu);
15266 if (fieldname == NULL)
15269 /* Look up member function name in fieldlist. */
15270 for (i = 0; i < fip->fnfieldlists.size (); i++)
15272 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15274 flp = &fip->fnfieldlists[i];
15279 /* Create a new fnfieldlist if necessary. */
15280 if (flp == nullptr)
15282 fip->fnfieldlists.emplace_back ();
15283 flp = &fip->fnfieldlists.back ();
15284 flp->name = fieldname;
15285 i = fip->fnfieldlists.size () - 1;
15288 /* Create a new member function field and add it to the vector of
15290 flp->fnfields.emplace_back ();
15291 fnp = &flp->fnfields.back ();
15293 /* Delay processing of the physname until later. */
15294 if (cu->language == language_cplus)
15295 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15299 const char *physname = dwarf2_physname (fieldname, die, cu);
15300 fnp->physname = physname ? physname : "";
15303 fnp->type = alloc_type (objfile);
15304 this_type = read_type_die (die, cu);
15305 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15307 int nparams = TYPE_NFIELDS (this_type);
15309 /* TYPE is the domain of this method, and THIS_TYPE is the type
15310 of the method itself (TYPE_CODE_METHOD). */
15311 smash_to_method_type (fnp->type, type,
15312 TYPE_TARGET_TYPE (this_type),
15313 TYPE_FIELDS (this_type),
15314 TYPE_NFIELDS (this_type),
15315 TYPE_VARARGS (this_type));
15317 /* Handle static member functions.
15318 Dwarf2 has no clean way to discern C++ static and non-static
15319 member functions. G++ helps GDB by marking the first
15320 parameter for non-static member functions (which is the this
15321 pointer) as artificial. We obtain this information from
15322 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15323 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15324 fnp->voffset = VOFFSET_STATIC;
15327 complaint (_("member function type missing for '%s'"),
15328 dwarf2_full_name (fieldname, die, cu));
15330 /* Get fcontext from DW_AT_containing_type if present. */
15331 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15332 fnp->fcontext = die_containing_type (die, cu);
15334 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15335 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15337 /* Get accessibility. */
15338 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15340 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15342 accessibility = dwarf2_default_access_attribute (die, cu);
15343 switch (accessibility)
15345 case DW_ACCESS_private:
15346 fnp->is_private = 1;
15348 case DW_ACCESS_protected:
15349 fnp->is_protected = 1;
15353 /* Check for artificial methods. */
15354 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15355 if (attr && DW_UNSND (attr) != 0)
15356 fnp->is_artificial = 1;
15358 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15360 /* Get index in virtual function table if it is a virtual member
15361 function. For older versions of GCC, this is an offset in the
15362 appropriate virtual table, as specified by DW_AT_containing_type.
15363 For everyone else, it is an expression to be evaluated relative
15364 to the object address. */
15366 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15369 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15371 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15373 /* Old-style GCC. */
15374 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15376 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15377 || (DW_BLOCK (attr)->size > 1
15378 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15379 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15381 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15382 if ((fnp->voffset % cu->header.addr_size) != 0)
15383 dwarf2_complex_location_expr_complaint ();
15385 fnp->voffset /= cu->header.addr_size;
15389 dwarf2_complex_location_expr_complaint ();
15391 if (!fnp->fcontext)
15393 /* If there is no `this' field and no DW_AT_containing_type,
15394 we cannot actually find a base class context for the
15396 if (TYPE_NFIELDS (this_type) == 0
15397 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15399 complaint (_("cannot determine context for virtual member "
15400 "function \"%s\" (offset %s)"),
15401 fieldname, sect_offset_str (die->sect_off));
15406 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15410 else if (attr_form_is_section_offset (attr))
15412 dwarf2_complex_location_expr_complaint ();
15416 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15422 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15423 if (attr && DW_UNSND (attr))
15425 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15426 complaint (_("Member function \"%s\" (offset %s) is virtual "
15427 "but the vtable offset is not specified"),
15428 fieldname, sect_offset_str (die->sect_off));
15429 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15430 TYPE_CPLUS_DYNAMIC (type) = 1;
15435 /* Create the vector of member function fields, and attach it to the type. */
15438 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15439 struct dwarf2_cu *cu)
15441 if (cu->language == language_ada)
15442 error (_("unexpected member functions in Ada type"));
15444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15445 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15447 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15449 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15451 struct fnfieldlist &nf = fip->fnfieldlists[i];
15452 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15454 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15455 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15456 fn_flp->fn_fields = (struct fn_field *)
15457 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15459 for (int k = 0; k < nf.fnfields.size (); ++k)
15460 fn_flp->fn_fields[k] = nf.fnfields[k];
15463 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15466 /* Returns non-zero if NAME is the name of a vtable member in CU's
15467 language, zero otherwise. */
15469 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15471 static const char vptr[] = "_vptr";
15473 /* Look for the C++ form of the vtable. */
15474 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15480 /* GCC outputs unnamed structures that are really pointers to member
15481 functions, with the ABI-specified layout. If TYPE describes
15482 such a structure, smash it into a member function type.
15484 GCC shouldn't do this; it should just output pointer to member DIEs.
15485 This is GCC PR debug/28767. */
15488 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15490 struct type *pfn_type, *self_type, *new_type;
15492 /* Check for a structure with no name and two children. */
15493 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15496 /* Check for __pfn and __delta members. */
15497 if (TYPE_FIELD_NAME (type, 0) == NULL
15498 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15499 || TYPE_FIELD_NAME (type, 1) == NULL
15500 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15503 /* Find the type of the method. */
15504 pfn_type = TYPE_FIELD_TYPE (type, 0);
15505 if (pfn_type == NULL
15506 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15507 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15510 /* Look for the "this" argument. */
15511 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15512 if (TYPE_NFIELDS (pfn_type) == 0
15513 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15514 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15517 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15518 new_type = alloc_type (objfile);
15519 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15520 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15521 TYPE_VARARGS (pfn_type));
15522 smash_to_methodptr_type (type, new_type);
15525 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15526 appropriate error checking and issuing complaints if there is a
15530 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15532 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15534 if (attr == nullptr)
15537 if (!attr_form_is_constant (attr))
15539 complaint (_("DW_AT_alignment must have constant form"
15540 " - DIE at %s [in module %s]"),
15541 sect_offset_str (die->sect_off),
15542 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15547 if (attr->form == DW_FORM_sdata)
15549 LONGEST val = DW_SND (attr);
15552 complaint (_("DW_AT_alignment value must not be negative"
15553 " - DIE at %s [in module %s]"),
15554 sect_offset_str (die->sect_off),
15555 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15561 align = DW_UNSND (attr);
15565 complaint (_("DW_AT_alignment value must not be zero"
15566 " - DIE at %s [in module %s]"),
15567 sect_offset_str (die->sect_off),
15568 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15571 if ((align & (align - 1)) != 0)
15573 complaint (_("DW_AT_alignment value must be a power of 2"
15574 " - DIE at %s [in module %s]"),
15575 sect_offset_str (die->sect_off),
15576 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15583 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15584 the alignment for TYPE. */
15587 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15590 if (!set_type_align (type, get_alignment (cu, die)))
15591 complaint (_("DW_AT_alignment value too large"
15592 " - DIE at %s [in module %s]"),
15593 sect_offset_str (die->sect_off),
15594 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15597 /* Called when we find the DIE that starts a structure or union scope
15598 (definition) to create a type for the structure or union. Fill in
15599 the type's name and general properties; the members will not be
15600 processed until process_structure_scope. A symbol table entry for
15601 the type will also not be done until process_structure_scope (assuming
15602 the type has a name).
15604 NOTE: we need to call these functions regardless of whether or not the
15605 DIE has a DW_AT_name attribute, since it might be an anonymous
15606 structure or union. This gets the type entered into our set of
15607 user defined types. */
15609 static struct type *
15610 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15612 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15614 struct attribute *attr;
15617 /* If the definition of this type lives in .debug_types, read that type.
15618 Don't follow DW_AT_specification though, that will take us back up
15619 the chain and we want to go down. */
15620 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15623 type = get_DW_AT_signature_type (die, attr, cu);
15625 /* The type's CU may not be the same as CU.
15626 Ensure TYPE is recorded with CU in die_type_hash. */
15627 return set_die_type (die, type, cu);
15630 type = alloc_type (objfile);
15631 INIT_CPLUS_SPECIFIC (type);
15633 name = dwarf2_name (die, cu);
15636 if (cu->language == language_cplus
15637 || cu->language == language_d
15638 || cu->language == language_rust)
15640 const char *full_name = dwarf2_full_name (name, die, cu);
15642 /* dwarf2_full_name might have already finished building the DIE's
15643 type. If so, there is no need to continue. */
15644 if (get_die_type (die, cu) != NULL)
15645 return get_die_type (die, cu);
15647 TYPE_NAME (type) = full_name;
15651 /* The name is already allocated along with this objfile, so
15652 we don't need to duplicate it for the type. */
15653 TYPE_NAME (type) = name;
15657 if (die->tag == DW_TAG_structure_type)
15659 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15661 else if (die->tag == DW_TAG_union_type)
15663 TYPE_CODE (type) = TYPE_CODE_UNION;
15665 else if (die->tag == DW_TAG_variant_part)
15667 TYPE_CODE (type) = TYPE_CODE_UNION;
15668 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15672 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15675 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15676 TYPE_DECLARED_CLASS (type) = 1;
15678 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15681 if (attr_form_is_constant (attr))
15682 TYPE_LENGTH (type) = DW_UNSND (attr);
15685 /* For the moment, dynamic type sizes are not supported
15686 by GDB's struct type. The actual size is determined
15687 on-demand when resolving the type of a given object,
15688 so set the type's length to zero for now. Otherwise,
15689 we record an expression as the length, and that expression
15690 could lead to a very large value, which could eventually
15691 lead to us trying to allocate that much memory when creating
15692 a value of that type. */
15693 TYPE_LENGTH (type) = 0;
15698 TYPE_LENGTH (type) = 0;
15701 maybe_set_alignment (cu, die, type);
15703 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15705 /* ICC<14 does not output the required DW_AT_declaration on
15706 incomplete types, but gives them a size of zero. */
15707 TYPE_STUB (type) = 1;
15710 TYPE_STUB_SUPPORTED (type) = 1;
15712 if (die_is_declaration (die, cu))
15713 TYPE_STUB (type) = 1;
15714 else if (attr == NULL && die->child == NULL
15715 && producer_is_realview (cu->producer))
15716 /* RealView does not output the required DW_AT_declaration
15717 on incomplete types. */
15718 TYPE_STUB (type) = 1;
15720 /* We need to add the type field to the die immediately so we don't
15721 infinitely recurse when dealing with pointers to the structure
15722 type within the structure itself. */
15723 set_die_type (die, type, cu);
15725 /* set_die_type should be already done. */
15726 set_descriptive_type (type, die, cu);
15731 /* A helper for process_structure_scope that handles a single member
15735 handle_struct_member_die (struct die_info *child_die, struct type *type,
15736 struct field_info *fi,
15737 std::vector<struct symbol *> *template_args,
15738 struct dwarf2_cu *cu)
15740 if (child_die->tag == DW_TAG_member
15741 || child_die->tag == DW_TAG_variable
15742 || child_die->tag == DW_TAG_variant_part)
15744 /* NOTE: carlton/2002-11-05: A C++ static data member
15745 should be a DW_TAG_member that is a declaration, but
15746 all versions of G++ as of this writing (so through at
15747 least 3.2.1) incorrectly generate DW_TAG_variable
15748 tags for them instead. */
15749 dwarf2_add_field (fi, child_die, cu);
15751 else if (child_die->tag == DW_TAG_subprogram)
15753 /* Rust doesn't have member functions in the C++ sense.
15754 However, it does emit ordinary functions as children
15755 of a struct DIE. */
15756 if (cu->language == language_rust)
15757 read_func_scope (child_die, cu);
15760 /* C++ member function. */
15761 dwarf2_add_member_fn (fi, child_die, type, cu);
15764 else if (child_die->tag == DW_TAG_inheritance)
15766 /* C++ base class field. */
15767 dwarf2_add_field (fi, child_die, cu);
15769 else if (type_can_define_types (child_die))
15770 dwarf2_add_type_defn (fi, child_die, cu);
15771 else if (child_die->tag == DW_TAG_template_type_param
15772 || child_die->tag == DW_TAG_template_value_param)
15774 struct symbol *arg = new_symbol (child_die, NULL, cu);
15777 template_args->push_back (arg);
15779 else if (child_die->tag == DW_TAG_variant)
15781 /* In a variant we want to get the discriminant and also add a
15782 field for our sole member child. */
15783 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15785 for (struct die_info *variant_child = child_die->child;
15786 variant_child != NULL;
15787 variant_child = sibling_die (variant_child))
15789 if (variant_child->tag == DW_TAG_member)
15791 handle_struct_member_die (variant_child, type, fi,
15792 template_args, cu);
15793 /* Only handle the one. */
15798 /* We don't handle this but we might as well report it if we see
15800 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15801 complaint (_("DW_AT_discr_list is not supported yet"
15802 " - DIE at %s [in module %s]"),
15803 sect_offset_str (child_die->sect_off),
15804 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15806 /* The first field was just added, so we can stash the
15807 discriminant there. */
15808 gdb_assert (!fi->fields.empty ());
15810 fi->fields.back ().variant.default_branch = true;
15812 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15816 /* Finish creating a structure or union type, including filling in
15817 its members and creating a symbol for it. */
15820 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15822 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15823 struct die_info *child_die;
15826 type = get_die_type (die, cu);
15828 type = read_structure_type (die, cu);
15830 /* When reading a DW_TAG_variant_part, we need to notice when we
15831 read the discriminant member, so we can record it later in the
15832 discriminant_info. */
15833 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15834 sect_offset discr_offset;
15836 if (is_variant_part)
15838 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15841 /* Maybe it's a univariant form, an extension we support.
15842 In this case arrange not to check the offset. */
15843 is_variant_part = false;
15845 else if (attr_form_is_ref (discr))
15847 struct dwarf2_cu *target_cu = cu;
15848 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15850 discr_offset = target_die->sect_off;
15854 complaint (_("DW_AT_discr does not have DIE reference form"
15855 " - DIE at %s [in module %s]"),
15856 sect_offset_str (die->sect_off),
15857 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15858 is_variant_part = false;
15862 if (die->child != NULL && ! die_is_declaration (die, cu))
15864 struct field_info fi;
15865 std::vector<struct symbol *> template_args;
15867 child_die = die->child;
15869 while (child_die && child_die->tag)
15871 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15873 if (is_variant_part && discr_offset == child_die->sect_off)
15874 fi.fields.back ().variant.is_discriminant = true;
15876 child_die = sibling_die (child_die);
15879 /* Attach template arguments to type. */
15880 if (!template_args.empty ())
15882 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15883 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15884 TYPE_TEMPLATE_ARGUMENTS (type)
15885 = XOBNEWVEC (&objfile->objfile_obstack,
15887 TYPE_N_TEMPLATE_ARGUMENTS (type));
15888 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15889 template_args.data (),
15890 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15891 * sizeof (struct symbol *)));
15894 /* Attach fields and member functions to the type. */
15896 dwarf2_attach_fields_to_type (&fi, type, cu);
15897 if (!fi.fnfieldlists.empty ())
15899 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15901 /* Get the type which refers to the base class (possibly this
15902 class itself) which contains the vtable pointer for the current
15903 class from the DW_AT_containing_type attribute. This use of
15904 DW_AT_containing_type is a GNU extension. */
15906 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15908 struct type *t = die_containing_type (die, cu);
15910 set_type_vptr_basetype (type, t);
15915 /* Our own class provides vtbl ptr. */
15916 for (i = TYPE_NFIELDS (t) - 1;
15917 i >= TYPE_N_BASECLASSES (t);
15920 const char *fieldname = TYPE_FIELD_NAME (t, i);
15922 if (is_vtable_name (fieldname, cu))
15924 set_type_vptr_fieldno (type, i);
15929 /* Complain if virtual function table field not found. */
15930 if (i < TYPE_N_BASECLASSES (t))
15931 complaint (_("virtual function table pointer "
15932 "not found when defining class '%s'"),
15933 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15937 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15940 else if (cu->producer
15941 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15943 /* The IBM XLC compiler does not provide direct indication
15944 of the containing type, but the vtable pointer is
15945 always named __vfp. */
15949 for (i = TYPE_NFIELDS (type) - 1;
15950 i >= TYPE_N_BASECLASSES (type);
15953 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15955 set_type_vptr_fieldno (type, i);
15956 set_type_vptr_basetype (type, type);
15963 /* Copy fi.typedef_field_list linked list elements content into the
15964 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15965 if (!fi.typedef_field_list.empty ())
15967 int count = fi.typedef_field_list.size ();
15969 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15970 TYPE_TYPEDEF_FIELD_ARRAY (type)
15971 = ((struct decl_field *)
15973 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15974 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15976 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15977 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15980 /* Copy fi.nested_types_list linked list elements content into the
15981 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15982 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15984 int count = fi.nested_types_list.size ();
15986 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15987 TYPE_NESTED_TYPES_ARRAY (type)
15988 = ((struct decl_field *)
15989 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15990 TYPE_NESTED_TYPES_COUNT (type) = count;
15992 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15993 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15997 quirk_gcc_member_function_pointer (type, objfile);
15998 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15999 cu->rust_unions.push_back (type);
16001 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16002 snapshots) has been known to create a die giving a declaration
16003 for a class that has, as a child, a die giving a definition for a
16004 nested class. So we have to process our children even if the
16005 current die is a declaration. Normally, of course, a declaration
16006 won't have any children at all. */
16008 child_die = die->child;
16010 while (child_die != NULL && child_die->tag)
16012 if (child_die->tag == DW_TAG_member
16013 || child_die->tag == DW_TAG_variable
16014 || child_die->tag == DW_TAG_inheritance
16015 || child_die->tag == DW_TAG_template_value_param
16016 || child_die->tag == DW_TAG_template_type_param)
16021 process_die (child_die, cu);
16023 child_die = sibling_die (child_die);
16026 /* Do not consider external references. According to the DWARF standard,
16027 these DIEs are identified by the fact that they have no byte_size
16028 attribute, and a declaration attribute. */
16029 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16030 || !die_is_declaration (die, cu))
16031 new_symbol (die, type, cu);
16034 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16035 update TYPE using some information only available in DIE's children. */
16038 update_enumeration_type_from_children (struct die_info *die,
16040 struct dwarf2_cu *cu)
16042 struct die_info *child_die;
16043 int unsigned_enum = 1;
16047 auto_obstack obstack;
16049 for (child_die = die->child;
16050 child_die != NULL && child_die->tag;
16051 child_die = sibling_die (child_die))
16053 struct attribute *attr;
16055 const gdb_byte *bytes;
16056 struct dwarf2_locexpr_baton *baton;
16059 if (child_die->tag != DW_TAG_enumerator)
16062 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16066 name = dwarf2_name (child_die, cu);
16068 name = "<anonymous enumerator>";
16070 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16071 &value, &bytes, &baton);
16077 else if ((mask & value) != 0)
16082 /* If we already know that the enum type is neither unsigned, nor
16083 a flag type, no need to look at the rest of the enumerates. */
16084 if (!unsigned_enum && !flag_enum)
16089 TYPE_UNSIGNED (type) = 1;
16091 TYPE_FLAG_ENUM (type) = 1;
16094 /* Given a DW_AT_enumeration_type die, set its type. We do not
16095 complete the type's fields yet, or create any symbols. */
16097 static struct type *
16098 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16100 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16102 struct attribute *attr;
16105 /* If the definition of this type lives in .debug_types, read that type.
16106 Don't follow DW_AT_specification though, that will take us back up
16107 the chain and we want to go down. */
16108 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16111 type = get_DW_AT_signature_type (die, attr, cu);
16113 /* The type's CU may not be the same as CU.
16114 Ensure TYPE is recorded with CU in die_type_hash. */
16115 return set_die_type (die, type, cu);
16118 type = alloc_type (objfile);
16120 TYPE_CODE (type) = TYPE_CODE_ENUM;
16121 name = dwarf2_full_name (NULL, die, cu);
16123 TYPE_NAME (type) = name;
16125 attr = dwarf2_attr (die, DW_AT_type, cu);
16128 struct type *underlying_type = die_type (die, cu);
16130 TYPE_TARGET_TYPE (type) = underlying_type;
16133 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16136 TYPE_LENGTH (type) = DW_UNSND (attr);
16140 TYPE_LENGTH (type) = 0;
16143 maybe_set_alignment (cu, die, type);
16145 /* The enumeration DIE can be incomplete. In Ada, any type can be
16146 declared as private in the package spec, and then defined only
16147 inside the package body. Such types are known as Taft Amendment
16148 Types. When another package uses such a type, an incomplete DIE
16149 may be generated by the compiler. */
16150 if (die_is_declaration (die, cu))
16151 TYPE_STUB (type) = 1;
16153 /* Finish the creation of this type by using the enum's children.
16154 We must call this even when the underlying type has been provided
16155 so that we can determine if we're looking at a "flag" enum. */
16156 update_enumeration_type_from_children (die, type, cu);
16158 /* If this type has an underlying type that is not a stub, then we
16159 may use its attributes. We always use the "unsigned" attribute
16160 in this situation, because ordinarily we guess whether the type
16161 is unsigned -- but the guess can be wrong and the underlying type
16162 can tell us the reality. However, we defer to a local size
16163 attribute if one exists, because this lets the compiler override
16164 the underlying type if needed. */
16165 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16167 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16168 if (TYPE_LENGTH (type) == 0)
16169 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16170 if (TYPE_RAW_ALIGN (type) == 0
16171 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16172 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16175 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16177 return set_die_type (die, type, cu);
16180 /* Given a pointer to a die which begins an enumeration, process all
16181 the dies that define the members of the enumeration, and create the
16182 symbol for the enumeration type.
16184 NOTE: We reverse the order of the element list. */
16187 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16189 struct type *this_type;
16191 this_type = get_die_type (die, cu);
16192 if (this_type == NULL)
16193 this_type = read_enumeration_type (die, cu);
16195 if (die->child != NULL)
16197 struct die_info *child_die;
16198 struct symbol *sym;
16199 struct field *fields = NULL;
16200 int num_fields = 0;
16203 child_die = die->child;
16204 while (child_die && child_die->tag)
16206 if (child_die->tag != DW_TAG_enumerator)
16208 process_die (child_die, cu);
16212 name = dwarf2_name (child_die, cu);
16215 sym = new_symbol (child_die, this_type, cu);
16217 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16219 fields = (struct field *)
16221 (num_fields + DW_FIELD_ALLOC_CHUNK)
16222 * sizeof (struct field));
16225 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16226 FIELD_TYPE (fields[num_fields]) = NULL;
16227 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16228 FIELD_BITSIZE (fields[num_fields]) = 0;
16234 child_die = sibling_die (child_die);
16239 TYPE_NFIELDS (this_type) = num_fields;
16240 TYPE_FIELDS (this_type) = (struct field *)
16241 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16242 memcpy (TYPE_FIELDS (this_type), fields,
16243 sizeof (struct field) * num_fields);
16248 /* If we are reading an enum from a .debug_types unit, and the enum
16249 is a declaration, and the enum is not the signatured type in the
16250 unit, then we do not want to add a symbol for it. Adding a
16251 symbol would in some cases obscure the true definition of the
16252 enum, giving users an incomplete type when the definition is
16253 actually available. Note that we do not want to do this for all
16254 enums which are just declarations, because C++0x allows forward
16255 enum declarations. */
16256 if (cu->per_cu->is_debug_types
16257 && die_is_declaration (die, cu))
16259 struct signatured_type *sig_type;
16261 sig_type = (struct signatured_type *) cu->per_cu;
16262 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16263 if (sig_type->type_offset_in_section != die->sect_off)
16267 new_symbol (die, this_type, cu);
16270 /* Extract all information from a DW_TAG_array_type DIE and put it in
16271 the DIE's type field. For now, this only handles one dimensional
16274 static struct type *
16275 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16277 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16278 struct die_info *child_die;
16280 struct type *element_type, *range_type, *index_type;
16281 struct attribute *attr;
16283 struct dynamic_prop *byte_stride_prop = NULL;
16284 unsigned int bit_stride = 0;
16286 element_type = die_type (die, cu);
16288 /* The die_type call above may have already set the type for this DIE. */
16289 type = get_die_type (die, cu);
16293 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16299 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16300 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16303 complaint (_("unable to read array DW_AT_byte_stride "
16304 " - DIE at %s [in module %s]"),
16305 sect_offset_str (die->sect_off),
16306 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16307 /* Ignore this attribute. We will likely not be able to print
16308 arrays of this type correctly, but there is little we can do
16309 to help if we cannot read the attribute's value. */
16310 byte_stride_prop = NULL;
16314 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16316 bit_stride = DW_UNSND (attr);
16318 /* Irix 6.2 native cc creates array types without children for
16319 arrays with unspecified length. */
16320 if (die->child == NULL)
16322 index_type = objfile_type (objfile)->builtin_int;
16323 range_type = create_static_range_type (NULL, index_type, 0, -1);
16324 type = create_array_type_with_stride (NULL, element_type, range_type,
16325 byte_stride_prop, bit_stride);
16326 return set_die_type (die, type, cu);
16329 std::vector<struct type *> range_types;
16330 child_die = die->child;
16331 while (child_die && child_die->tag)
16333 if (child_die->tag == DW_TAG_subrange_type)
16335 struct type *child_type = read_type_die (child_die, cu);
16337 if (child_type != NULL)
16339 /* The range type was succesfully read. Save it for the
16340 array type creation. */
16341 range_types.push_back (child_type);
16344 child_die = sibling_die (child_die);
16347 /* Dwarf2 dimensions are output from left to right, create the
16348 necessary array types in backwards order. */
16350 type = element_type;
16352 if (read_array_order (die, cu) == DW_ORD_col_major)
16356 while (i < range_types.size ())
16357 type = create_array_type_with_stride (NULL, type, range_types[i++],
16358 byte_stride_prop, bit_stride);
16362 size_t ndim = range_types.size ();
16364 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16365 byte_stride_prop, bit_stride);
16368 /* Understand Dwarf2 support for vector types (like they occur on
16369 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16370 array type. This is not part of the Dwarf2/3 standard yet, but a
16371 custom vendor extension. The main difference between a regular
16372 array and the vector variant is that vectors are passed by value
16374 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16376 make_vector_type (type);
16378 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16379 implementation may choose to implement triple vectors using this
16381 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16384 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16385 TYPE_LENGTH (type) = DW_UNSND (attr);
16387 complaint (_("DW_AT_byte_size for array type smaller "
16388 "than the total size of elements"));
16391 name = dwarf2_name (die, cu);
16393 TYPE_NAME (type) = name;
16395 maybe_set_alignment (cu, die, type);
16397 /* Install the type in the die. */
16398 set_die_type (die, type, cu);
16400 /* set_die_type should be already done. */
16401 set_descriptive_type (type, die, cu);
16406 static enum dwarf_array_dim_ordering
16407 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16409 struct attribute *attr;
16411 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16414 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16416 /* GNU F77 is a special case, as at 08/2004 array type info is the
16417 opposite order to the dwarf2 specification, but data is still
16418 laid out as per normal fortran.
16420 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16421 version checking. */
16423 if (cu->language == language_fortran
16424 && cu->producer && strstr (cu->producer, "GNU F77"))
16426 return DW_ORD_row_major;
16429 switch (cu->language_defn->la_array_ordering)
16431 case array_column_major:
16432 return DW_ORD_col_major;
16433 case array_row_major:
16435 return DW_ORD_row_major;
16439 /* Extract all information from a DW_TAG_set_type DIE and put it in
16440 the DIE's type field. */
16442 static struct type *
16443 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16445 struct type *domain_type, *set_type;
16446 struct attribute *attr;
16448 domain_type = die_type (die, cu);
16450 /* The die_type call above may have already set the type for this DIE. */
16451 set_type = get_die_type (die, cu);
16455 set_type = create_set_type (NULL, domain_type);
16457 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16459 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16461 maybe_set_alignment (cu, die, set_type);
16463 return set_die_type (die, set_type, cu);
16466 /* A helper for read_common_block that creates a locexpr baton.
16467 SYM is the symbol which we are marking as computed.
16468 COMMON_DIE is the DIE for the common block.
16469 COMMON_LOC is the location expression attribute for the common
16471 MEMBER_LOC is the location expression attribute for the particular
16472 member of the common block that we are processing.
16473 CU is the CU from which the above come. */
16476 mark_common_block_symbol_computed (struct symbol *sym,
16477 struct die_info *common_die,
16478 struct attribute *common_loc,
16479 struct attribute *member_loc,
16480 struct dwarf2_cu *cu)
16482 struct dwarf2_per_objfile *dwarf2_per_objfile
16483 = cu->per_cu->dwarf2_per_objfile;
16484 struct objfile *objfile = dwarf2_per_objfile->objfile;
16485 struct dwarf2_locexpr_baton *baton;
16487 unsigned int cu_off;
16488 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16489 LONGEST offset = 0;
16491 gdb_assert (common_loc && member_loc);
16492 gdb_assert (attr_form_is_block (common_loc));
16493 gdb_assert (attr_form_is_block (member_loc)
16494 || attr_form_is_constant (member_loc));
16496 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16497 baton->per_cu = cu->per_cu;
16498 gdb_assert (baton->per_cu);
16500 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16502 if (attr_form_is_constant (member_loc))
16504 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16505 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16508 baton->size += DW_BLOCK (member_loc)->size;
16510 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16513 *ptr++ = DW_OP_call4;
16514 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16515 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16518 if (attr_form_is_constant (member_loc))
16520 *ptr++ = DW_OP_addr;
16521 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16522 ptr += cu->header.addr_size;
16526 /* We have to copy the data here, because DW_OP_call4 will only
16527 use a DW_AT_location attribute. */
16528 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16529 ptr += DW_BLOCK (member_loc)->size;
16532 *ptr++ = DW_OP_plus;
16533 gdb_assert (ptr - baton->data == baton->size);
16535 SYMBOL_LOCATION_BATON (sym) = baton;
16536 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16539 /* Create appropriate locally-scoped variables for all the
16540 DW_TAG_common_block entries. Also create a struct common_block
16541 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16542 is used to sepate the common blocks name namespace from regular
16546 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16548 struct attribute *attr;
16550 attr = dwarf2_attr (die, DW_AT_location, cu);
16553 /* Support the .debug_loc offsets. */
16554 if (attr_form_is_block (attr))
16558 else if (attr_form_is_section_offset (attr))
16560 dwarf2_complex_location_expr_complaint ();
16565 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16566 "common block member");
16571 if (die->child != NULL)
16573 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16574 struct die_info *child_die;
16575 size_t n_entries = 0, size;
16576 struct common_block *common_block;
16577 struct symbol *sym;
16579 for (child_die = die->child;
16580 child_die && child_die->tag;
16581 child_die = sibling_die (child_die))
16584 size = (sizeof (struct common_block)
16585 + (n_entries - 1) * sizeof (struct symbol *));
16587 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16589 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16590 common_block->n_entries = 0;
16592 for (child_die = die->child;
16593 child_die && child_die->tag;
16594 child_die = sibling_die (child_die))
16596 /* Create the symbol in the DW_TAG_common_block block in the current
16598 sym = new_symbol (child_die, NULL, cu);
16601 struct attribute *member_loc;
16603 common_block->contents[common_block->n_entries++] = sym;
16605 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16609 /* GDB has handled this for a long time, but it is
16610 not specified by DWARF. It seems to have been
16611 emitted by gfortran at least as recently as:
16612 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16613 complaint (_("Variable in common block has "
16614 "DW_AT_data_member_location "
16615 "- DIE at %s [in module %s]"),
16616 sect_offset_str (child_die->sect_off),
16617 objfile_name (objfile));
16619 if (attr_form_is_section_offset (member_loc))
16620 dwarf2_complex_location_expr_complaint ();
16621 else if (attr_form_is_constant (member_loc)
16622 || attr_form_is_block (member_loc))
16625 mark_common_block_symbol_computed (sym, die, attr,
16629 dwarf2_complex_location_expr_complaint ();
16634 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16635 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16639 /* Create a type for a C++ namespace. */
16641 static struct type *
16642 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16644 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16645 const char *previous_prefix, *name;
16649 /* For extensions, reuse the type of the original namespace. */
16650 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16652 struct die_info *ext_die;
16653 struct dwarf2_cu *ext_cu = cu;
16655 ext_die = dwarf2_extension (die, &ext_cu);
16656 type = read_type_die (ext_die, ext_cu);
16658 /* EXT_CU may not be the same as CU.
16659 Ensure TYPE is recorded with CU in die_type_hash. */
16660 return set_die_type (die, type, cu);
16663 name = namespace_name (die, &is_anonymous, cu);
16665 /* Now build the name of the current namespace. */
16667 previous_prefix = determine_prefix (die, cu);
16668 if (previous_prefix[0] != '\0')
16669 name = typename_concat (&objfile->objfile_obstack,
16670 previous_prefix, name, 0, cu);
16672 /* Create the type. */
16673 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16675 return set_die_type (die, type, cu);
16678 /* Read a namespace scope. */
16681 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16683 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16686 /* Add a symbol associated to this if we haven't seen the namespace
16687 before. Also, add a using directive if it's an anonymous
16690 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16694 type = read_type_die (die, cu);
16695 new_symbol (die, type, cu);
16697 namespace_name (die, &is_anonymous, cu);
16700 const char *previous_prefix = determine_prefix (die, cu);
16702 std::vector<const char *> excludes;
16703 add_using_directive (using_directives (cu->language),
16704 previous_prefix, TYPE_NAME (type), NULL,
16705 NULL, excludes, 0, &objfile->objfile_obstack);
16709 if (die->child != NULL)
16711 struct die_info *child_die = die->child;
16713 while (child_die && child_die->tag)
16715 process_die (child_die, cu);
16716 child_die = sibling_die (child_die);
16721 /* Read a Fortran module as type. This DIE can be only a declaration used for
16722 imported module. Still we need that type as local Fortran "use ... only"
16723 declaration imports depend on the created type in determine_prefix. */
16725 static struct type *
16726 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16728 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16729 const char *module_name;
16732 module_name = dwarf2_name (die, cu);
16734 complaint (_("DW_TAG_module has no name, offset %s"),
16735 sect_offset_str (die->sect_off));
16736 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16738 return set_die_type (die, type, cu);
16741 /* Read a Fortran module. */
16744 read_module (struct die_info *die, struct dwarf2_cu *cu)
16746 struct die_info *child_die = die->child;
16749 type = read_type_die (die, cu);
16750 new_symbol (die, type, cu);
16752 while (child_die && child_die->tag)
16754 process_die (child_die, cu);
16755 child_die = sibling_die (child_die);
16759 /* Return the name of the namespace represented by DIE. Set
16760 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16763 static const char *
16764 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16766 struct die_info *current_die;
16767 const char *name = NULL;
16769 /* Loop through the extensions until we find a name. */
16771 for (current_die = die;
16772 current_die != NULL;
16773 current_die = dwarf2_extension (die, &cu))
16775 /* We don't use dwarf2_name here so that we can detect the absence
16776 of a name -> anonymous namespace. */
16777 name = dwarf2_string_attr (die, DW_AT_name, cu);
16783 /* Is it an anonymous namespace? */
16785 *is_anonymous = (name == NULL);
16787 name = CP_ANONYMOUS_NAMESPACE_STR;
16792 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16793 the user defined type vector. */
16795 static struct type *
16796 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16798 struct gdbarch *gdbarch
16799 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16800 struct comp_unit_head *cu_header = &cu->header;
16802 struct attribute *attr_byte_size;
16803 struct attribute *attr_address_class;
16804 int byte_size, addr_class;
16805 struct type *target_type;
16807 target_type = die_type (die, cu);
16809 /* The die_type call above may have already set the type for this DIE. */
16810 type = get_die_type (die, cu);
16814 type = lookup_pointer_type (target_type);
16816 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16817 if (attr_byte_size)
16818 byte_size = DW_UNSND (attr_byte_size);
16820 byte_size = cu_header->addr_size;
16822 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16823 if (attr_address_class)
16824 addr_class = DW_UNSND (attr_address_class);
16826 addr_class = DW_ADDR_none;
16828 ULONGEST alignment = get_alignment (cu, die);
16830 /* If the pointer size, alignment, or address class is different
16831 than the default, create a type variant marked as such and set
16832 the length accordingly. */
16833 if (TYPE_LENGTH (type) != byte_size
16834 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16835 && alignment != TYPE_RAW_ALIGN (type))
16836 || addr_class != DW_ADDR_none)
16838 if (gdbarch_address_class_type_flags_p (gdbarch))
16842 type_flags = gdbarch_address_class_type_flags
16843 (gdbarch, byte_size, addr_class);
16844 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16846 type = make_type_with_address_space (type, type_flags);
16848 else if (TYPE_LENGTH (type) != byte_size)
16850 complaint (_("invalid pointer size %d"), byte_size);
16852 else if (TYPE_RAW_ALIGN (type) != alignment)
16854 complaint (_("Invalid DW_AT_alignment"
16855 " - DIE at %s [in module %s]"),
16856 sect_offset_str (die->sect_off),
16857 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16861 /* Should we also complain about unhandled address classes? */
16865 TYPE_LENGTH (type) = byte_size;
16866 set_type_align (type, alignment);
16867 return set_die_type (die, type, cu);
16870 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16871 the user defined type vector. */
16873 static struct type *
16874 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16877 struct type *to_type;
16878 struct type *domain;
16880 to_type = die_type (die, cu);
16881 domain = die_containing_type (die, cu);
16883 /* The calls above may have already set the type for this DIE. */
16884 type = get_die_type (die, cu);
16888 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16889 type = lookup_methodptr_type (to_type);
16890 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16892 struct type *new_type
16893 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16895 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16896 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16897 TYPE_VARARGS (to_type));
16898 type = lookup_methodptr_type (new_type);
16901 type = lookup_memberptr_type (to_type, domain);
16903 return set_die_type (die, type, cu);
16906 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16907 the user defined type vector. */
16909 static struct type *
16910 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16911 enum type_code refcode)
16913 struct comp_unit_head *cu_header = &cu->header;
16914 struct type *type, *target_type;
16915 struct attribute *attr;
16917 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16919 target_type = die_type (die, cu);
16921 /* The die_type call above may have already set the type for this DIE. */
16922 type = get_die_type (die, cu);
16926 type = lookup_reference_type (target_type, refcode);
16927 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16930 TYPE_LENGTH (type) = DW_UNSND (attr);
16934 TYPE_LENGTH (type) = cu_header->addr_size;
16936 maybe_set_alignment (cu, die, type);
16937 return set_die_type (die, type, cu);
16940 /* Add the given cv-qualifiers to the element type of the array. GCC
16941 outputs DWARF type qualifiers that apply to an array, not the
16942 element type. But GDB relies on the array element type to carry
16943 the cv-qualifiers. This mimics section 6.7.3 of the C99
16946 static struct type *
16947 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16948 struct type *base_type, int cnst, int voltl)
16950 struct type *el_type, *inner_array;
16952 base_type = copy_type (base_type);
16953 inner_array = base_type;
16955 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16957 TYPE_TARGET_TYPE (inner_array) =
16958 copy_type (TYPE_TARGET_TYPE (inner_array));
16959 inner_array = TYPE_TARGET_TYPE (inner_array);
16962 el_type = TYPE_TARGET_TYPE (inner_array);
16963 cnst |= TYPE_CONST (el_type);
16964 voltl |= TYPE_VOLATILE (el_type);
16965 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16967 return set_die_type (die, base_type, cu);
16970 static struct type *
16971 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16973 struct type *base_type, *cv_type;
16975 base_type = die_type (die, cu);
16977 /* The die_type call above may have already set the type for this DIE. */
16978 cv_type = get_die_type (die, cu);
16982 /* In case the const qualifier is applied to an array type, the element type
16983 is so qualified, not the array type (section 6.7.3 of C99). */
16984 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16985 return add_array_cv_type (die, cu, base_type, 1, 0);
16987 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16988 return set_die_type (die, cv_type, cu);
16991 static struct type *
16992 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16994 struct type *base_type, *cv_type;
16996 base_type = die_type (die, cu);
16998 /* The die_type call above may have already set the type for this DIE. */
16999 cv_type = get_die_type (die, cu);
17003 /* In case the volatile qualifier is applied to an array type, the
17004 element type is so qualified, not the array type (section 6.7.3
17006 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17007 return add_array_cv_type (die, cu, base_type, 0, 1);
17009 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17010 return set_die_type (die, cv_type, cu);
17013 /* Handle DW_TAG_restrict_type. */
17015 static struct type *
17016 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17018 struct type *base_type, *cv_type;
17020 base_type = die_type (die, cu);
17022 /* The die_type call above may have already set the type for this DIE. */
17023 cv_type = get_die_type (die, cu);
17027 cv_type = make_restrict_type (base_type);
17028 return set_die_type (die, cv_type, cu);
17031 /* Handle DW_TAG_atomic_type. */
17033 static struct type *
17034 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17036 struct type *base_type, *cv_type;
17038 base_type = die_type (die, cu);
17040 /* The die_type call above may have already set the type for this DIE. */
17041 cv_type = get_die_type (die, cu);
17045 cv_type = make_atomic_type (base_type);
17046 return set_die_type (die, cv_type, cu);
17049 /* Extract all information from a DW_TAG_string_type DIE and add to
17050 the user defined type vector. It isn't really a user defined type,
17051 but it behaves like one, with other DIE's using an AT_user_def_type
17052 attribute to reference it. */
17054 static struct type *
17055 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17057 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17058 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17059 struct type *type, *range_type, *index_type, *char_type;
17060 struct attribute *attr;
17061 unsigned int length;
17063 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17066 length = DW_UNSND (attr);
17070 /* Check for the DW_AT_byte_size attribute. */
17071 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17074 length = DW_UNSND (attr);
17082 index_type = objfile_type (objfile)->builtin_int;
17083 range_type = create_static_range_type (NULL, index_type, 1, length);
17084 char_type = language_string_char_type (cu->language_defn, gdbarch);
17085 type = create_string_type (NULL, char_type, range_type);
17087 return set_die_type (die, type, cu);
17090 /* Assuming that DIE corresponds to a function, returns nonzero
17091 if the function is prototyped. */
17094 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17096 struct attribute *attr;
17098 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17099 if (attr && (DW_UNSND (attr) != 0))
17102 /* The DWARF standard implies that the DW_AT_prototyped attribute
17103 is only meaninful for C, but the concept also extends to other
17104 languages that allow unprototyped functions (Eg: Objective C).
17105 For all other languages, assume that functions are always
17107 if (cu->language != language_c
17108 && cu->language != language_objc
17109 && cu->language != language_opencl)
17112 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17113 prototyped and unprototyped functions; default to prototyped,
17114 since that is more common in modern code (and RealView warns
17115 about unprototyped functions). */
17116 if (producer_is_realview (cu->producer))
17122 /* Handle DIES due to C code like:
17126 int (*funcp)(int a, long l);
17130 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17132 static struct type *
17133 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17135 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17136 struct type *type; /* Type that this function returns. */
17137 struct type *ftype; /* Function that returns above type. */
17138 struct attribute *attr;
17140 type = die_type (die, cu);
17142 /* The die_type call above may have already set the type for this DIE. */
17143 ftype = get_die_type (die, cu);
17147 ftype = lookup_function_type (type);
17149 if (prototyped_function_p (die, cu))
17150 TYPE_PROTOTYPED (ftype) = 1;
17152 /* Store the calling convention in the type if it's available in
17153 the subroutine die. Otherwise set the calling convention to
17154 the default value DW_CC_normal. */
17155 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17157 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17158 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17159 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17161 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17163 /* Record whether the function returns normally to its caller or not
17164 if the DWARF producer set that information. */
17165 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17166 if (attr && (DW_UNSND (attr) != 0))
17167 TYPE_NO_RETURN (ftype) = 1;
17169 /* We need to add the subroutine type to the die immediately so
17170 we don't infinitely recurse when dealing with parameters
17171 declared as the same subroutine type. */
17172 set_die_type (die, ftype, cu);
17174 if (die->child != NULL)
17176 struct type *void_type = objfile_type (objfile)->builtin_void;
17177 struct die_info *child_die;
17178 int nparams, iparams;
17180 /* Count the number of parameters.
17181 FIXME: GDB currently ignores vararg functions, but knows about
17182 vararg member functions. */
17184 child_die = die->child;
17185 while (child_die && child_die->tag)
17187 if (child_die->tag == DW_TAG_formal_parameter)
17189 else if (child_die->tag == DW_TAG_unspecified_parameters)
17190 TYPE_VARARGS (ftype) = 1;
17191 child_die = sibling_die (child_die);
17194 /* Allocate storage for parameters and fill them in. */
17195 TYPE_NFIELDS (ftype) = nparams;
17196 TYPE_FIELDS (ftype) = (struct field *)
17197 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17199 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17200 even if we error out during the parameters reading below. */
17201 for (iparams = 0; iparams < nparams; iparams++)
17202 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17205 child_die = die->child;
17206 while (child_die && child_die->tag)
17208 if (child_die->tag == DW_TAG_formal_parameter)
17210 struct type *arg_type;
17212 /* DWARF version 2 has no clean way to discern C++
17213 static and non-static member functions. G++ helps
17214 GDB by marking the first parameter for non-static
17215 member functions (which is the this pointer) as
17216 artificial. We pass this information to
17217 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17219 DWARF version 3 added DW_AT_object_pointer, which GCC
17220 4.5 does not yet generate. */
17221 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17223 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17225 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17226 arg_type = die_type (child_die, cu);
17228 /* RealView does not mark THIS as const, which the testsuite
17229 expects. GCC marks THIS as const in method definitions,
17230 but not in the class specifications (GCC PR 43053). */
17231 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17232 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17235 struct dwarf2_cu *arg_cu = cu;
17236 const char *name = dwarf2_name (child_die, cu);
17238 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17241 /* If the compiler emits this, use it. */
17242 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17245 else if (name && strcmp (name, "this") == 0)
17246 /* Function definitions will have the argument names. */
17248 else if (name == NULL && iparams == 0)
17249 /* Declarations may not have the names, so like
17250 elsewhere in GDB, assume an artificial first
17251 argument is "this". */
17255 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17259 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17262 child_die = sibling_die (child_die);
17269 static struct type *
17270 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17272 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17273 const char *name = NULL;
17274 struct type *this_type, *target_type;
17276 name = dwarf2_full_name (NULL, die, cu);
17277 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17278 TYPE_TARGET_STUB (this_type) = 1;
17279 set_die_type (die, this_type, cu);
17280 target_type = die_type (die, cu);
17281 if (target_type != this_type)
17282 TYPE_TARGET_TYPE (this_type) = target_type;
17285 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17286 spec and cause infinite loops in GDB. */
17287 complaint (_("Self-referential DW_TAG_typedef "
17288 "- DIE at %s [in module %s]"),
17289 sect_offset_str (die->sect_off), objfile_name (objfile));
17290 TYPE_TARGET_TYPE (this_type) = NULL;
17295 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17296 (which may be different from NAME) to the architecture back-end to allow
17297 it to guess the correct format if necessary. */
17299 static struct type *
17300 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17301 const char *name_hint)
17303 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17304 const struct floatformat **format;
17307 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17309 type = init_float_type (objfile, bits, name, format);
17311 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17316 /* Find a representation of a given base type and install
17317 it in the TYPE field of the die. */
17319 static struct type *
17320 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17322 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17324 struct attribute *attr;
17325 int encoding = 0, bits = 0;
17328 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17331 encoding = DW_UNSND (attr);
17333 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17336 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17338 name = dwarf2_name (die, cu);
17341 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17346 case DW_ATE_address:
17347 /* Turn DW_ATE_address into a void * pointer. */
17348 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17349 type = init_pointer_type (objfile, bits, name, type);
17351 case DW_ATE_boolean:
17352 type = init_boolean_type (objfile, bits, 1, name);
17354 case DW_ATE_complex_float:
17355 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17356 type = init_complex_type (objfile, name, type);
17358 case DW_ATE_decimal_float:
17359 type = init_decfloat_type (objfile, bits, name);
17362 type = dwarf2_init_float_type (objfile, bits, name, name);
17364 case DW_ATE_signed:
17365 type = init_integer_type (objfile, bits, 0, name);
17367 case DW_ATE_unsigned:
17368 if (cu->language == language_fortran
17370 && startswith (name, "character("))
17371 type = init_character_type (objfile, bits, 1, name);
17373 type = init_integer_type (objfile, bits, 1, name);
17375 case DW_ATE_signed_char:
17376 if (cu->language == language_ada || cu->language == language_m2
17377 || cu->language == language_pascal
17378 || cu->language == language_fortran)
17379 type = init_character_type (objfile, bits, 0, name);
17381 type = init_integer_type (objfile, bits, 0, name);
17383 case DW_ATE_unsigned_char:
17384 if (cu->language == language_ada || cu->language == language_m2
17385 || cu->language == language_pascal
17386 || cu->language == language_fortran
17387 || cu->language == language_rust)
17388 type = init_character_type (objfile, bits, 1, name);
17390 type = init_integer_type (objfile, bits, 1, name);
17394 gdbarch *arch = get_objfile_arch (objfile);
17397 type = builtin_type (arch)->builtin_char16;
17398 else if (bits == 32)
17399 type = builtin_type (arch)->builtin_char32;
17402 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17404 type = init_integer_type (objfile, bits, 1, name);
17406 return set_die_type (die, type, cu);
17411 complaint (_("unsupported DW_AT_encoding: '%s'"),
17412 dwarf_type_encoding_name (encoding));
17413 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17417 if (name && strcmp (name, "char") == 0)
17418 TYPE_NOSIGN (type) = 1;
17420 maybe_set_alignment (cu, die, type);
17422 return set_die_type (die, type, cu);
17425 /* Parse dwarf attribute if it's a block, reference or constant and put the
17426 resulting value of the attribute into struct bound_prop.
17427 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17430 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17431 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17433 struct dwarf2_property_baton *baton;
17434 struct obstack *obstack
17435 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17437 if (attr == NULL || prop == NULL)
17440 if (attr_form_is_block (attr))
17442 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17443 baton->referenced_type = NULL;
17444 baton->locexpr.per_cu = cu->per_cu;
17445 baton->locexpr.size = DW_BLOCK (attr)->size;
17446 baton->locexpr.data = DW_BLOCK (attr)->data;
17447 prop->data.baton = baton;
17448 prop->kind = PROP_LOCEXPR;
17449 gdb_assert (prop->data.baton != NULL);
17451 else if (attr_form_is_ref (attr))
17453 struct dwarf2_cu *target_cu = cu;
17454 struct die_info *target_die;
17455 struct attribute *target_attr;
17457 target_die = follow_die_ref (die, attr, &target_cu);
17458 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17459 if (target_attr == NULL)
17460 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17462 if (target_attr == NULL)
17465 switch (target_attr->name)
17467 case DW_AT_location:
17468 if (attr_form_is_section_offset (target_attr))
17470 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17471 baton->referenced_type = die_type (target_die, target_cu);
17472 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17473 prop->data.baton = baton;
17474 prop->kind = PROP_LOCLIST;
17475 gdb_assert (prop->data.baton != NULL);
17477 else if (attr_form_is_block (target_attr))
17479 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17480 baton->referenced_type = die_type (target_die, target_cu);
17481 baton->locexpr.per_cu = cu->per_cu;
17482 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17483 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17484 prop->data.baton = baton;
17485 prop->kind = PROP_LOCEXPR;
17486 gdb_assert (prop->data.baton != NULL);
17490 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17491 "dynamic property");
17495 case DW_AT_data_member_location:
17499 if (!handle_data_member_location (target_die, target_cu,
17503 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17504 baton->referenced_type = read_type_die (target_die->parent,
17506 baton->offset_info.offset = offset;
17507 baton->offset_info.type = die_type (target_die, target_cu);
17508 prop->data.baton = baton;
17509 prop->kind = PROP_ADDR_OFFSET;
17514 else if (attr_form_is_constant (attr))
17516 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17517 prop->kind = PROP_CONST;
17521 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17522 dwarf2_name (die, cu));
17529 /* Read the given DW_AT_subrange DIE. */
17531 static struct type *
17532 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17534 struct type *base_type, *orig_base_type;
17535 struct type *range_type;
17536 struct attribute *attr;
17537 struct dynamic_prop low, high;
17538 int low_default_is_valid;
17539 int high_bound_is_count = 0;
17541 LONGEST negative_mask;
17543 orig_base_type = die_type (die, cu);
17544 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17545 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17546 creating the range type, but we use the result of check_typedef
17547 when examining properties of the type. */
17548 base_type = check_typedef (orig_base_type);
17550 /* The die_type call above may have already set the type for this DIE. */
17551 range_type = get_die_type (die, cu);
17555 low.kind = PROP_CONST;
17556 high.kind = PROP_CONST;
17557 high.data.const_val = 0;
17559 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17560 omitting DW_AT_lower_bound. */
17561 switch (cu->language)
17564 case language_cplus:
17565 low.data.const_val = 0;
17566 low_default_is_valid = 1;
17568 case language_fortran:
17569 low.data.const_val = 1;
17570 low_default_is_valid = 1;
17573 case language_objc:
17574 case language_rust:
17575 low.data.const_val = 0;
17576 low_default_is_valid = (cu->header.version >= 4);
17580 case language_pascal:
17581 low.data.const_val = 1;
17582 low_default_is_valid = (cu->header.version >= 4);
17585 low.data.const_val = 0;
17586 low_default_is_valid = 0;
17590 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17592 attr_to_dynamic_prop (attr, die, cu, &low);
17593 else if (!low_default_is_valid)
17594 complaint (_("Missing DW_AT_lower_bound "
17595 "- DIE at %s [in module %s]"),
17596 sect_offset_str (die->sect_off),
17597 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17599 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17600 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17602 attr = dwarf2_attr (die, DW_AT_count, cu);
17603 if (attr_to_dynamic_prop (attr, die, cu, &high))
17605 /* If bounds are constant do the final calculation here. */
17606 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17607 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17609 high_bound_is_count = 1;
17613 /* Dwarf-2 specifications explicitly allows to create subrange types
17614 without specifying a base type.
17615 In that case, the base type must be set to the type of
17616 the lower bound, upper bound or count, in that order, if any of these
17617 three attributes references an object that has a type.
17618 If no base type is found, the Dwarf-2 specifications say that
17619 a signed integer type of size equal to the size of an address should
17621 For the following C code: `extern char gdb_int [];'
17622 GCC produces an empty range DIE.
17623 FIXME: muller/2010-05-28: Possible references to object for low bound,
17624 high bound or count are not yet handled by this code. */
17625 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17627 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17629 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17630 struct type *int_type = objfile_type (objfile)->builtin_int;
17632 /* Test "int", "long int", and "long long int" objfile types,
17633 and select the first one having a size above or equal to the
17634 architecture address size. */
17635 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17636 base_type = int_type;
17639 int_type = objfile_type (objfile)->builtin_long;
17640 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17641 base_type = int_type;
17644 int_type = objfile_type (objfile)->builtin_long_long;
17645 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17646 base_type = int_type;
17651 /* Normally, the DWARF producers are expected to use a signed
17652 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17653 But this is unfortunately not always the case, as witnessed
17654 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17655 is used instead. To work around that ambiguity, we treat
17656 the bounds as signed, and thus sign-extend their values, when
17657 the base type is signed. */
17659 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17660 if (low.kind == PROP_CONST
17661 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17662 low.data.const_val |= negative_mask;
17663 if (high.kind == PROP_CONST
17664 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17665 high.data.const_val |= negative_mask;
17667 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17669 if (high_bound_is_count)
17670 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17672 /* Ada expects an empty array on no boundary attributes. */
17673 if (attr == NULL && cu->language != language_ada)
17674 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17676 name = dwarf2_name (die, cu);
17678 TYPE_NAME (range_type) = name;
17680 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17682 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17684 maybe_set_alignment (cu, die, range_type);
17686 set_die_type (die, range_type, cu);
17688 /* set_die_type should be already done. */
17689 set_descriptive_type (range_type, die, cu);
17694 static struct type *
17695 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17699 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17701 TYPE_NAME (type) = dwarf2_name (die, cu);
17703 /* In Ada, an unspecified type is typically used when the description
17704 of the type is defered to a different unit. When encountering
17705 such a type, we treat it as a stub, and try to resolve it later on,
17707 if (cu->language == language_ada)
17708 TYPE_STUB (type) = 1;
17710 return set_die_type (die, type, cu);
17713 /* Read a single die and all its descendents. Set the die's sibling
17714 field to NULL; set other fields in the die correctly, and set all
17715 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17716 location of the info_ptr after reading all of those dies. PARENT
17717 is the parent of the die in question. */
17719 static struct die_info *
17720 read_die_and_children (const struct die_reader_specs *reader,
17721 const gdb_byte *info_ptr,
17722 const gdb_byte **new_info_ptr,
17723 struct die_info *parent)
17725 struct die_info *die;
17726 const gdb_byte *cur_ptr;
17729 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17732 *new_info_ptr = cur_ptr;
17735 store_in_ref_table (die, reader->cu);
17738 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17742 *new_info_ptr = cur_ptr;
17745 die->sibling = NULL;
17746 die->parent = parent;
17750 /* Read a die, all of its descendents, and all of its siblings; set
17751 all of the fields of all of the dies correctly. Arguments are as
17752 in read_die_and_children. */
17754 static struct die_info *
17755 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17756 const gdb_byte *info_ptr,
17757 const gdb_byte **new_info_ptr,
17758 struct die_info *parent)
17760 struct die_info *first_die, *last_sibling;
17761 const gdb_byte *cur_ptr;
17763 cur_ptr = info_ptr;
17764 first_die = last_sibling = NULL;
17768 struct die_info *die
17769 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17773 *new_info_ptr = cur_ptr;
17780 last_sibling->sibling = die;
17782 last_sibling = die;
17786 /* Read a die, all of its descendents, and all of its siblings; set
17787 all of the fields of all of the dies correctly. Arguments are as
17788 in read_die_and_children.
17789 This the main entry point for reading a DIE and all its children. */
17791 static struct die_info *
17792 read_die_and_siblings (const struct die_reader_specs *reader,
17793 const gdb_byte *info_ptr,
17794 const gdb_byte **new_info_ptr,
17795 struct die_info *parent)
17797 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17798 new_info_ptr, parent);
17800 if (dwarf_die_debug)
17802 fprintf_unfiltered (gdb_stdlog,
17803 "Read die from %s@0x%x of %s:\n",
17804 get_section_name (reader->die_section),
17805 (unsigned) (info_ptr - reader->die_section->buffer),
17806 bfd_get_filename (reader->abfd));
17807 dump_die (die, dwarf_die_debug);
17813 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17815 The caller is responsible for filling in the extra attributes
17816 and updating (*DIEP)->num_attrs.
17817 Set DIEP to point to a newly allocated die with its information,
17818 except for its child, sibling, and parent fields.
17819 Set HAS_CHILDREN to tell whether the die has children or not. */
17821 static const gdb_byte *
17822 read_full_die_1 (const struct die_reader_specs *reader,
17823 struct die_info **diep, const gdb_byte *info_ptr,
17824 int *has_children, int num_extra_attrs)
17826 unsigned int abbrev_number, bytes_read, i;
17827 struct abbrev_info *abbrev;
17828 struct die_info *die;
17829 struct dwarf2_cu *cu = reader->cu;
17830 bfd *abfd = reader->abfd;
17832 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17833 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17834 info_ptr += bytes_read;
17835 if (!abbrev_number)
17842 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17844 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17846 bfd_get_filename (abfd));
17848 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17849 die->sect_off = sect_off;
17850 die->tag = abbrev->tag;
17851 die->abbrev = abbrev_number;
17853 /* Make the result usable.
17854 The caller needs to update num_attrs after adding the extra
17856 die->num_attrs = abbrev->num_attrs;
17858 for (i = 0; i < abbrev->num_attrs; ++i)
17859 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17863 *has_children = abbrev->has_children;
17867 /* Read a die and all its attributes.
17868 Set DIEP to point to a newly allocated die with its information,
17869 except for its child, sibling, and parent fields.
17870 Set HAS_CHILDREN to tell whether the die has children or not. */
17872 static const gdb_byte *
17873 read_full_die (const struct die_reader_specs *reader,
17874 struct die_info **diep, const gdb_byte *info_ptr,
17877 const gdb_byte *result;
17879 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17881 if (dwarf_die_debug)
17883 fprintf_unfiltered (gdb_stdlog,
17884 "Read die from %s@0x%x of %s:\n",
17885 get_section_name (reader->die_section),
17886 (unsigned) (info_ptr - reader->die_section->buffer),
17887 bfd_get_filename (reader->abfd));
17888 dump_die (*diep, dwarf_die_debug);
17894 /* Abbreviation tables.
17896 In DWARF version 2, the description of the debugging information is
17897 stored in a separate .debug_abbrev section. Before we read any
17898 dies from a section we read in all abbreviations and install them
17899 in a hash table. */
17901 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17903 struct abbrev_info *
17904 abbrev_table::alloc_abbrev ()
17906 struct abbrev_info *abbrev;
17908 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17909 memset (abbrev, 0, sizeof (struct abbrev_info));
17914 /* Add an abbreviation to the table. */
17917 abbrev_table::add_abbrev (unsigned int abbrev_number,
17918 struct abbrev_info *abbrev)
17920 unsigned int hash_number;
17922 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17923 abbrev->next = m_abbrevs[hash_number];
17924 m_abbrevs[hash_number] = abbrev;
17927 /* Look up an abbrev in the table.
17928 Returns NULL if the abbrev is not found. */
17930 struct abbrev_info *
17931 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17933 unsigned int hash_number;
17934 struct abbrev_info *abbrev;
17936 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17937 abbrev = m_abbrevs[hash_number];
17941 if (abbrev->number == abbrev_number)
17943 abbrev = abbrev->next;
17948 /* Read in an abbrev table. */
17950 static abbrev_table_up
17951 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17952 struct dwarf2_section_info *section,
17953 sect_offset sect_off)
17955 struct objfile *objfile = dwarf2_per_objfile->objfile;
17956 bfd *abfd = get_section_bfd_owner (section);
17957 const gdb_byte *abbrev_ptr;
17958 struct abbrev_info *cur_abbrev;
17959 unsigned int abbrev_number, bytes_read, abbrev_name;
17960 unsigned int abbrev_form;
17961 struct attr_abbrev *cur_attrs;
17962 unsigned int allocated_attrs;
17964 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17966 dwarf2_read_section (objfile, section);
17967 abbrev_ptr = section->buffer + to_underlying (sect_off);
17968 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17969 abbrev_ptr += bytes_read;
17971 allocated_attrs = ATTR_ALLOC_CHUNK;
17972 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17974 /* Loop until we reach an abbrev number of 0. */
17975 while (abbrev_number)
17977 cur_abbrev = abbrev_table->alloc_abbrev ();
17979 /* read in abbrev header */
17980 cur_abbrev->number = abbrev_number;
17982 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17983 abbrev_ptr += bytes_read;
17984 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17987 /* now read in declarations */
17990 LONGEST implicit_const;
17992 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17993 abbrev_ptr += bytes_read;
17994 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17995 abbrev_ptr += bytes_read;
17996 if (abbrev_form == DW_FORM_implicit_const)
17998 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18000 abbrev_ptr += bytes_read;
18004 /* Initialize it due to a false compiler warning. */
18005 implicit_const = -1;
18008 if (abbrev_name == 0)
18011 if (cur_abbrev->num_attrs == allocated_attrs)
18013 allocated_attrs += ATTR_ALLOC_CHUNK;
18015 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18018 cur_attrs[cur_abbrev->num_attrs].name
18019 = (enum dwarf_attribute) abbrev_name;
18020 cur_attrs[cur_abbrev->num_attrs].form
18021 = (enum dwarf_form) abbrev_form;
18022 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18023 ++cur_abbrev->num_attrs;
18026 cur_abbrev->attrs =
18027 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18028 cur_abbrev->num_attrs);
18029 memcpy (cur_abbrev->attrs, cur_attrs,
18030 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18032 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18034 /* Get next abbreviation.
18035 Under Irix6 the abbreviations for a compilation unit are not
18036 always properly terminated with an abbrev number of 0.
18037 Exit loop if we encounter an abbreviation which we have
18038 already read (which means we are about to read the abbreviations
18039 for the next compile unit) or if the end of the abbreviation
18040 table is reached. */
18041 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18043 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18044 abbrev_ptr += bytes_read;
18045 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18050 return abbrev_table;
18053 /* Returns nonzero if TAG represents a type that we might generate a partial
18057 is_type_tag_for_partial (int tag)
18062 /* Some types that would be reasonable to generate partial symbols for,
18063 that we don't at present. */
18064 case DW_TAG_array_type:
18065 case DW_TAG_file_type:
18066 case DW_TAG_ptr_to_member_type:
18067 case DW_TAG_set_type:
18068 case DW_TAG_string_type:
18069 case DW_TAG_subroutine_type:
18071 case DW_TAG_base_type:
18072 case DW_TAG_class_type:
18073 case DW_TAG_interface_type:
18074 case DW_TAG_enumeration_type:
18075 case DW_TAG_structure_type:
18076 case DW_TAG_subrange_type:
18077 case DW_TAG_typedef:
18078 case DW_TAG_union_type:
18085 /* Load all DIEs that are interesting for partial symbols into memory. */
18087 static struct partial_die_info *
18088 load_partial_dies (const struct die_reader_specs *reader,
18089 const gdb_byte *info_ptr, int building_psymtab)
18091 struct dwarf2_cu *cu = reader->cu;
18092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18093 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18094 unsigned int bytes_read;
18095 unsigned int load_all = 0;
18096 int nesting_level = 1;
18101 gdb_assert (cu->per_cu != NULL);
18102 if (cu->per_cu->load_all_dies)
18106 = htab_create_alloc_ex (cu->header.length / 12,
18110 &cu->comp_unit_obstack,
18111 hashtab_obstack_allocate,
18112 dummy_obstack_deallocate);
18116 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18118 /* A NULL abbrev means the end of a series of children. */
18119 if (abbrev == NULL)
18121 if (--nesting_level == 0)
18124 info_ptr += bytes_read;
18125 last_die = parent_die;
18126 parent_die = parent_die->die_parent;
18130 /* Check for template arguments. We never save these; if
18131 they're seen, we just mark the parent, and go on our way. */
18132 if (parent_die != NULL
18133 && cu->language == language_cplus
18134 && (abbrev->tag == DW_TAG_template_type_param
18135 || abbrev->tag == DW_TAG_template_value_param))
18137 parent_die->has_template_arguments = 1;
18141 /* We don't need a partial DIE for the template argument. */
18142 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18147 /* We only recurse into c++ subprograms looking for template arguments.
18148 Skip their other children. */
18150 && cu->language == language_cplus
18151 && parent_die != NULL
18152 && parent_die->tag == DW_TAG_subprogram)
18154 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18158 /* Check whether this DIE is interesting enough to save. Normally
18159 we would not be interested in members here, but there may be
18160 later variables referencing them via DW_AT_specification (for
18161 static members). */
18163 && !is_type_tag_for_partial (abbrev->tag)
18164 && abbrev->tag != DW_TAG_constant
18165 && abbrev->tag != DW_TAG_enumerator
18166 && abbrev->tag != DW_TAG_subprogram
18167 && abbrev->tag != DW_TAG_inlined_subroutine
18168 && abbrev->tag != DW_TAG_lexical_block
18169 && abbrev->tag != DW_TAG_variable
18170 && abbrev->tag != DW_TAG_namespace
18171 && abbrev->tag != DW_TAG_module
18172 && abbrev->tag != DW_TAG_member
18173 && abbrev->tag != DW_TAG_imported_unit
18174 && abbrev->tag != DW_TAG_imported_declaration)
18176 /* Otherwise we skip to the next sibling, if any. */
18177 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18181 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18184 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18186 /* This two-pass algorithm for processing partial symbols has a
18187 high cost in cache pressure. Thus, handle some simple cases
18188 here which cover the majority of C partial symbols. DIEs
18189 which neither have specification tags in them, nor could have
18190 specification tags elsewhere pointing at them, can simply be
18191 processed and discarded.
18193 This segment is also optional; scan_partial_symbols and
18194 add_partial_symbol will handle these DIEs if we chain
18195 them in normally. When compilers which do not emit large
18196 quantities of duplicate debug information are more common,
18197 this code can probably be removed. */
18199 /* Any complete simple types at the top level (pretty much all
18200 of them, for a language without namespaces), can be processed
18202 if (parent_die == NULL
18203 && pdi.has_specification == 0
18204 && pdi.is_declaration == 0
18205 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18206 || pdi.tag == DW_TAG_base_type
18207 || pdi.tag == DW_TAG_subrange_type))
18209 if (building_psymtab && pdi.name != NULL)
18210 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18211 VAR_DOMAIN, LOC_TYPEDEF,
18212 &objfile->static_psymbols,
18213 0, cu->language, objfile);
18214 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18218 /* The exception for DW_TAG_typedef with has_children above is
18219 a workaround of GCC PR debug/47510. In the case of this complaint
18220 type_name_or_error will error on such types later.
18222 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18223 it could not find the child DIEs referenced later, this is checked
18224 above. In correct DWARF DW_TAG_typedef should have no children. */
18226 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18227 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18228 "- DIE at %s [in module %s]"),
18229 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18231 /* If we're at the second level, and we're an enumerator, and
18232 our parent has no specification (meaning possibly lives in a
18233 namespace elsewhere), then we can add the partial symbol now
18234 instead of queueing it. */
18235 if (pdi.tag == DW_TAG_enumerator
18236 && parent_die != NULL
18237 && parent_die->die_parent == NULL
18238 && parent_die->tag == DW_TAG_enumeration_type
18239 && parent_die->has_specification == 0)
18241 if (pdi.name == NULL)
18242 complaint (_("malformed enumerator DIE ignored"));
18243 else if (building_psymtab)
18244 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18245 VAR_DOMAIN, LOC_CONST,
18246 cu->language == language_cplus
18247 ? &objfile->global_psymbols
18248 : &objfile->static_psymbols,
18249 0, cu->language, objfile);
18251 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18255 struct partial_die_info *part_die
18256 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18258 /* We'll save this DIE so link it in. */
18259 part_die->die_parent = parent_die;
18260 part_die->die_sibling = NULL;
18261 part_die->die_child = NULL;
18263 if (last_die && last_die == parent_die)
18264 last_die->die_child = part_die;
18266 last_die->die_sibling = part_die;
18268 last_die = part_die;
18270 if (first_die == NULL)
18271 first_die = part_die;
18273 /* Maybe add the DIE to the hash table. Not all DIEs that we
18274 find interesting need to be in the hash table, because we
18275 also have the parent/sibling/child chains; only those that we
18276 might refer to by offset later during partial symbol reading.
18278 For now this means things that might have be the target of a
18279 DW_AT_specification, DW_AT_abstract_origin, or
18280 DW_AT_extension. DW_AT_extension will refer only to
18281 namespaces; DW_AT_abstract_origin refers to functions (and
18282 many things under the function DIE, but we do not recurse
18283 into function DIEs during partial symbol reading) and
18284 possibly variables as well; DW_AT_specification refers to
18285 declarations. Declarations ought to have the DW_AT_declaration
18286 flag. It happens that GCC forgets to put it in sometimes, but
18287 only for functions, not for types.
18289 Adding more things than necessary to the hash table is harmless
18290 except for the performance cost. Adding too few will result in
18291 wasted time in find_partial_die, when we reread the compilation
18292 unit with load_all_dies set. */
18295 || abbrev->tag == DW_TAG_constant
18296 || abbrev->tag == DW_TAG_subprogram
18297 || abbrev->tag == DW_TAG_variable
18298 || abbrev->tag == DW_TAG_namespace
18299 || part_die->is_declaration)
18303 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18304 to_underlying (part_die->sect_off),
18309 /* For some DIEs we want to follow their children (if any). For C
18310 we have no reason to follow the children of structures; for other
18311 languages we have to, so that we can get at method physnames
18312 to infer fully qualified class names, for DW_AT_specification,
18313 and for C++ template arguments. For C++, we also look one level
18314 inside functions to find template arguments (if the name of the
18315 function does not already contain the template arguments).
18317 For Ada, we need to scan the children of subprograms and lexical
18318 blocks as well because Ada allows the definition of nested
18319 entities that could be interesting for the debugger, such as
18320 nested subprograms for instance. */
18321 if (last_die->has_children
18323 || last_die->tag == DW_TAG_namespace
18324 || last_die->tag == DW_TAG_module
18325 || last_die->tag == DW_TAG_enumeration_type
18326 || (cu->language == language_cplus
18327 && last_die->tag == DW_TAG_subprogram
18328 && (last_die->name == NULL
18329 || strchr (last_die->name, '<') == NULL))
18330 || (cu->language != language_c
18331 && (last_die->tag == DW_TAG_class_type
18332 || last_die->tag == DW_TAG_interface_type
18333 || last_die->tag == DW_TAG_structure_type
18334 || last_die->tag == DW_TAG_union_type))
18335 || (cu->language == language_ada
18336 && (last_die->tag == DW_TAG_subprogram
18337 || last_die->tag == DW_TAG_lexical_block))))
18340 parent_die = last_die;
18344 /* Otherwise we skip to the next sibling, if any. */
18345 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18347 /* Back to the top, do it again. */
18351 partial_die_info::partial_die_info (sect_offset sect_off_,
18352 struct abbrev_info *abbrev)
18353 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18357 /* Read a minimal amount of information into the minimal die structure.
18358 INFO_PTR should point just after the initial uleb128 of a DIE. */
18361 partial_die_info::read (const struct die_reader_specs *reader,
18362 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18364 struct dwarf2_cu *cu = reader->cu;
18365 struct dwarf2_per_objfile *dwarf2_per_objfile
18366 = cu->per_cu->dwarf2_per_objfile;
18368 int has_low_pc_attr = 0;
18369 int has_high_pc_attr = 0;
18370 int high_pc_relative = 0;
18372 for (i = 0; i < abbrev.num_attrs; ++i)
18374 struct attribute attr;
18376 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18378 /* Store the data if it is of an attribute we want to keep in a
18379 partial symbol table. */
18385 case DW_TAG_compile_unit:
18386 case DW_TAG_partial_unit:
18387 case DW_TAG_type_unit:
18388 /* Compilation units have a DW_AT_name that is a filename, not
18389 a source language identifier. */
18390 case DW_TAG_enumeration_type:
18391 case DW_TAG_enumerator:
18392 /* These tags always have simple identifiers already; no need
18393 to canonicalize them. */
18394 name = DW_STRING (&attr);
18398 struct objfile *objfile = dwarf2_per_objfile->objfile;
18401 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18402 &objfile->per_bfd->storage_obstack);
18407 case DW_AT_linkage_name:
18408 case DW_AT_MIPS_linkage_name:
18409 /* Note that both forms of linkage name might appear. We
18410 assume they will be the same, and we only store the last
18412 if (cu->language == language_ada)
18413 name = DW_STRING (&attr);
18414 linkage_name = DW_STRING (&attr);
18417 has_low_pc_attr = 1;
18418 lowpc = attr_value_as_address (&attr);
18420 case DW_AT_high_pc:
18421 has_high_pc_attr = 1;
18422 highpc = attr_value_as_address (&attr);
18423 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18424 high_pc_relative = 1;
18426 case DW_AT_location:
18427 /* Support the .debug_loc offsets. */
18428 if (attr_form_is_block (&attr))
18430 d.locdesc = DW_BLOCK (&attr);
18432 else if (attr_form_is_section_offset (&attr))
18434 dwarf2_complex_location_expr_complaint ();
18438 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18439 "partial symbol information");
18442 case DW_AT_external:
18443 is_external = DW_UNSND (&attr);
18445 case DW_AT_declaration:
18446 is_declaration = DW_UNSND (&attr);
18451 case DW_AT_abstract_origin:
18452 case DW_AT_specification:
18453 case DW_AT_extension:
18454 has_specification = 1;
18455 spec_offset = dwarf2_get_ref_die_offset (&attr);
18456 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18457 || cu->per_cu->is_dwz);
18459 case DW_AT_sibling:
18460 /* Ignore absolute siblings, they might point outside of
18461 the current compile unit. */
18462 if (attr.form == DW_FORM_ref_addr)
18463 complaint (_("ignoring absolute DW_AT_sibling"));
18466 const gdb_byte *buffer = reader->buffer;
18467 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18468 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18470 if (sibling_ptr < info_ptr)
18471 complaint (_("DW_AT_sibling points backwards"));
18472 else if (sibling_ptr > reader->buffer_end)
18473 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18475 sibling = sibling_ptr;
18478 case DW_AT_byte_size:
18481 case DW_AT_const_value:
18482 has_const_value = 1;
18484 case DW_AT_calling_convention:
18485 /* DWARF doesn't provide a way to identify a program's source-level
18486 entry point. DW_AT_calling_convention attributes are only meant
18487 to describe functions' calling conventions.
18489 However, because it's a necessary piece of information in
18490 Fortran, and before DWARF 4 DW_CC_program was the only
18491 piece of debugging information whose definition refers to
18492 a 'main program' at all, several compilers marked Fortran
18493 main programs with DW_CC_program --- even when those
18494 functions use the standard calling conventions.
18496 Although DWARF now specifies a way to provide this
18497 information, we support this practice for backward
18499 if (DW_UNSND (&attr) == DW_CC_program
18500 && cu->language == language_fortran)
18501 main_subprogram = 1;
18504 if (DW_UNSND (&attr) == DW_INL_inlined
18505 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18506 may_be_inlined = 1;
18510 if (tag == DW_TAG_imported_unit)
18512 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18513 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18514 || cu->per_cu->is_dwz);
18518 case DW_AT_main_subprogram:
18519 main_subprogram = DW_UNSND (&attr);
18527 if (high_pc_relative)
18530 if (has_low_pc_attr && has_high_pc_attr)
18532 /* When using the GNU linker, .gnu.linkonce. sections are used to
18533 eliminate duplicate copies of functions and vtables and such.
18534 The linker will arbitrarily choose one and discard the others.
18535 The AT_*_pc values for such functions refer to local labels in
18536 these sections. If the section from that file was discarded, the
18537 labels are not in the output, so the relocs get a value of 0.
18538 If this is a discarded function, mark the pc bounds as invalid,
18539 so that GDB will ignore it. */
18540 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18542 struct objfile *objfile = dwarf2_per_objfile->objfile;
18543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18545 complaint (_("DW_AT_low_pc %s is zero "
18546 "for DIE at %s [in module %s]"),
18547 paddress (gdbarch, lowpc),
18548 sect_offset_str (sect_off),
18549 objfile_name (objfile));
18551 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18552 else if (lowpc >= highpc)
18554 struct objfile *objfile = dwarf2_per_objfile->objfile;
18555 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18557 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18558 "for DIE at %s [in module %s]"),
18559 paddress (gdbarch, lowpc),
18560 paddress (gdbarch, highpc),
18561 sect_offset_str (sect_off),
18562 objfile_name (objfile));
18571 /* Find a cached partial DIE at OFFSET in CU. */
18573 struct partial_die_info *
18574 dwarf2_cu::find_partial_die (sect_offset sect_off)
18576 struct partial_die_info *lookup_die = NULL;
18577 struct partial_die_info part_die (sect_off);
18579 lookup_die = ((struct partial_die_info *)
18580 htab_find_with_hash (partial_dies, &part_die,
18581 to_underlying (sect_off)));
18586 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18587 except in the case of .debug_types DIEs which do not reference
18588 outside their CU (they do however referencing other types via
18589 DW_FORM_ref_sig8). */
18591 static struct partial_die_info *
18592 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18594 struct dwarf2_per_objfile *dwarf2_per_objfile
18595 = cu->per_cu->dwarf2_per_objfile;
18596 struct objfile *objfile = dwarf2_per_objfile->objfile;
18597 struct dwarf2_per_cu_data *per_cu = NULL;
18598 struct partial_die_info *pd = NULL;
18600 if (offset_in_dwz == cu->per_cu->is_dwz
18601 && offset_in_cu_p (&cu->header, sect_off))
18603 pd = cu->find_partial_die (sect_off);
18606 /* We missed recording what we needed.
18607 Load all dies and try again. */
18608 per_cu = cu->per_cu;
18612 /* TUs don't reference other CUs/TUs (except via type signatures). */
18613 if (cu->per_cu->is_debug_types)
18615 error (_("Dwarf Error: Type Unit at offset %s contains"
18616 " external reference to offset %s [in module %s].\n"),
18617 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18618 bfd_get_filename (objfile->obfd));
18620 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18621 dwarf2_per_objfile);
18623 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18624 load_partial_comp_unit (per_cu);
18626 per_cu->cu->last_used = 0;
18627 pd = per_cu->cu->find_partial_die (sect_off);
18630 /* If we didn't find it, and not all dies have been loaded,
18631 load them all and try again. */
18633 if (pd == NULL && per_cu->load_all_dies == 0)
18635 per_cu->load_all_dies = 1;
18637 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18638 THIS_CU->cu may already be in use. So we can't just free it and
18639 replace its DIEs with the ones we read in. Instead, we leave those
18640 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18641 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18643 load_partial_comp_unit (per_cu);
18645 pd = per_cu->cu->find_partial_die (sect_off);
18649 internal_error (__FILE__, __LINE__,
18650 _("could not find partial DIE %s "
18651 "in cache [from module %s]\n"),
18652 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18656 /* See if we can figure out if the class lives in a namespace. We do
18657 this by looking for a member function; its demangled name will
18658 contain namespace info, if there is any. */
18661 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18662 struct dwarf2_cu *cu)
18664 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18665 what template types look like, because the demangler
18666 frequently doesn't give the same name as the debug info. We
18667 could fix this by only using the demangled name to get the
18668 prefix (but see comment in read_structure_type). */
18670 struct partial_die_info *real_pdi;
18671 struct partial_die_info *child_pdi;
18673 /* If this DIE (this DIE's specification, if any) has a parent, then
18674 we should not do this. We'll prepend the parent's fully qualified
18675 name when we create the partial symbol. */
18677 real_pdi = struct_pdi;
18678 while (real_pdi->has_specification)
18679 real_pdi = find_partial_die (real_pdi->spec_offset,
18680 real_pdi->spec_is_dwz, cu);
18682 if (real_pdi->die_parent != NULL)
18685 for (child_pdi = struct_pdi->die_child;
18687 child_pdi = child_pdi->die_sibling)
18689 if (child_pdi->tag == DW_TAG_subprogram
18690 && child_pdi->linkage_name != NULL)
18692 char *actual_class_name
18693 = language_class_name_from_physname (cu->language_defn,
18694 child_pdi->linkage_name);
18695 if (actual_class_name != NULL)
18697 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18700 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18702 strlen (actual_class_name)));
18703 xfree (actual_class_name);
18711 partial_die_info::fixup (struct dwarf2_cu *cu)
18713 /* Once we've fixed up a die, there's no point in doing so again.
18714 This also avoids a memory leak if we were to call
18715 guess_partial_die_structure_name multiple times. */
18719 /* If we found a reference attribute and the DIE has no name, try
18720 to find a name in the referred to DIE. */
18722 if (name == NULL && has_specification)
18724 struct partial_die_info *spec_die;
18726 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18728 spec_die->fixup (cu);
18730 if (spec_die->name)
18732 name = spec_die->name;
18734 /* Copy DW_AT_external attribute if it is set. */
18735 if (spec_die->is_external)
18736 is_external = spec_die->is_external;
18740 /* Set default names for some unnamed DIEs. */
18742 if (name == NULL && tag == DW_TAG_namespace)
18743 name = CP_ANONYMOUS_NAMESPACE_STR;
18745 /* If there is no parent die to provide a namespace, and there are
18746 children, see if we can determine the namespace from their linkage
18748 if (cu->language == language_cplus
18749 && !VEC_empty (dwarf2_section_info_def,
18750 cu->per_cu->dwarf2_per_objfile->types)
18751 && die_parent == NULL
18753 && (tag == DW_TAG_class_type
18754 || tag == DW_TAG_structure_type
18755 || tag == DW_TAG_union_type))
18756 guess_partial_die_structure_name (this, cu);
18758 /* GCC might emit a nameless struct or union that has a linkage
18759 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18761 && (tag == DW_TAG_class_type
18762 || tag == DW_TAG_interface_type
18763 || tag == DW_TAG_structure_type
18764 || tag == DW_TAG_union_type)
18765 && linkage_name != NULL)
18769 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18774 /* Strip any leading namespaces/classes, keep only the base name.
18775 DW_AT_name for named DIEs does not contain the prefixes. */
18776 base = strrchr (demangled, ':');
18777 if (base && base > demangled && base[-1] == ':')
18782 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18785 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18786 base, strlen (base)));
18794 /* Read an attribute value described by an attribute form. */
18796 static const gdb_byte *
18797 read_attribute_value (const struct die_reader_specs *reader,
18798 struct attribute *attr, unsigned form,
18799 LONGEST implicit_const, const gdb_byte *info_ptr)
18801 struct dwarf2_cu *cu = reader->cu;
18802 struct dwarf2_per_objfile *dwarf2_per_objfile
18803 = cu->per_cu->dwarf2_per_objfile;
18804 struct objfile *objfile = dwarf2_per_objfile->objfile;
18805 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18806 bfd *abfd = reader->abfd;
18807 struct comp_unit_head *cu_header = &cu->header;
18808 unsigned int bytes_read;
18809 struct dwarf_block *blk;
18811 attr->form = (enum dwarf_form) form;
18814 case DW_FORM_ref_addr:
18815 if (cu->header.version == 2)
18816 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18818 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18819 &cu->header, &bytes_read);
18820 info_ptr += bytes_read;
18822 case DW_FORM_GNU_ref_alt:
18823 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18824 info_ptr += bytes_read;
18827 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18828 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18829 info_ptr += bytes_read;
18831 case DW_FORM_block2:
18832 blk = dwarf_alloc_block (cu);
18833 blk->size = read_2_bytes (abfd, info_ptr);
18835 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18836 info_ptr += blk->size;
18837 DW_BLOCK (attr) = blk;
18839 case DW_FORM_block4:
18840 blk = dwarf_alloc_block (cu);
18841 blk->size = read_4_bytes (abfd, info_ptr);
18843 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18844 info_ptr += blk->size;
18845 DW_BLOCK (attr) = blk;
18847 case DW_FORM_data2:
18848 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18851 case DW_FORM_data4:
18852 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18855 case DW_FORM_data8:
18856 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18859 case DW_FORM_data16:
18860 blk = dwarf_alloc_block (cu);
18862 blk->data = read_n_bytes (abfd, info_ptr, 16);
18864 DW_BLOCK (attr) = blk;
18866 case DW_FORM_sec_offset:
18867 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18868 info_ptr += bytes_read;
18870 case DW_FORM_string:
18871 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18872 DW_STRING_IS_CANONICAL (attr) = 0;
18873 info_ptr += bytes_read;
18876 if (!cu->per_cu->is_dwz)
18878 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18879 abfd, info_ptr, cu_header,
18881 DW_STRING_IS_CANONICAL (attr) = 0;
18882 info_ptr += bytes_read;
18886 case DW_FORM_line_strp:
18887 if (!cu->per_cu->is_dwz)
18889 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18891 cu_header, &bytes_read);
18892 DW_STRING_IS_CANONICAL (attr) = 0;
18893 info_ptr += bytes_read;
18897 case DW_FORM_GNU_strp_alt:
18899 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18900 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18903 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18905 DW_STRING_IS_CANONICAL (attr) = 0;
18906 info_ptr += bytes_read;
18909 case DW_FORM_exprloc:
18910 case DW_FORM_block:
18911 blk = dwarf_alloc_block (cu);
18912 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18913 info_ptr += bytes_read;
18914 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18915 info_ptr += blk->size;
18916 DW_BLOCK (attr) = blk;
18918 case DW_FORM_block1:
18919 blk = dwarf_alloc_block (cu);
18920 blk->size = read_1_byte (abfd, info_ptr);
18922 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18923 info_ptr += blk->size;
18924 DW_BLOCK (attr) = blk;
18926 case DW_FORM_data1:
18927 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18931 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18934 case DW_FORM_flag_present:
18935 DW_UNSND (attr) = 1;
18937 case DW_FORM_sdata:
18938 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18939 info_ptr += bytes_read;
18941 case DW_FORM_udata:
18942 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18943 info_ptr += bytes_read;
18946 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18947 + read_1_byte (abfd, info_ptr));
18951 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18952 + read_2_bytes (abfd, info_ptr));
18956 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18957 + read_4_bytes (abfd, info_ptr));
18961 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18962 + read_8_bytes (abfd, info_ptr));
18965 case DW_FORM_ref_sig8:
18966 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18969 case DW_FORM_ref_udata:
18970 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18971 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18972 info_ptr += bytes_read;
18974 case DW_FORM_indirect:
18975 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18976 info_ptr += bytes_read;
18977 if (form == DW_FORM_implicit_const)
18979 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18980 info_ptr += bytes_read;
18982 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18985 case DW_FORM_implicit_const:
18986 DW_SND (attr) = implicit_const;
18988 case DW_FORM_GNU_addr_index:
18989 if (reader->dwo_file == NULL)
18991 /* For now flag a hard error.
18992 Later we can turn this into a complaint. */
18993 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18994 dwarf_form_name (form),
18995 bfd_get_filename (abfd));
18997 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18998 info_ptr += bytes_read;
19000 case DW_FORM_GNU_str_index:
19001 if (reader->dwo_file == NULL)
19003 /* For now flag a hard error.
19004 Later we can turn this into a complaint if warranted. */
19005 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19006 dwarf_form_name (form),
19007 bfd_get_filename (abfd));
19010 ULONGEST str_index =
19011 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19013 DW_STRING (attr) = read_str_index (reader, str_index);
19014 DW_STRING_IS_CANONICAL (attr) = 0;
19015 info_ptr += bytes_read;
19019 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19020 dwarf_form_name (form),
19021 bfd_get_filename (abfd));
19025 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19026 attr->form = DW_FORM_GNU_ref_alt;
19028 /* We have seen instances where the compiler tried to emit a byte
19029 size attribute of -1 which ended up being encoded as an unsigned
19030 0xffffffff. Although 0xffffffff is technically a valid size value,
19031 an object of this size seems pretty unlikely so we can relatively
19032 safely treat these cases as if the size attribute was invalid and
19033 treat them as zero by default. */
19034 if (attr->name == DW_AT_byte_size
19035 && form == DW_FORM_data4
19036 && DW_UNSND (attr) >= 0xffffffff)
19039 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19040 hex_string (DW_UNSND (attr)));
19041 DW_UNSND (attr) = 0;
19047 /* Read an attribute described by an abbreviated attribute. */
19049 static const gdb_byte *
19050 read_attribute (const struct die_reader_specs *reader,
19051 struct attribute *attr, struct attr_abbrev *abbrev,
19052 const gdb_byte *info_ptr)
19054 attr->name = abbrev->name;
19055 return read_attribute_value (reader, attr, abbrev->form,
19056 abbrev->implicit_const, info_ptr);
19059 /* Read dwarf information from a buffer. */
19061 static unsigned int
19062 read_1_byte (bfd *abfd, const gdb_byte *buf)
19064 return bfd_get_8 (abfd, buf);
19068 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19070 return bfd_get_signed_8 (abfd, buf);
19073 static unsigned int
19074 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19076 return bfd_get_16 (abfd, buf);
19080 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19082 return bfd_get_signed_16 (abfd, buf);
19085 static unsigned int
19086 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19088 return bfd_get_32 (abfd, buf);
19092 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19094 return bfd_get_signed_32 (abfd, buf);
19098 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19100 return bfd_get_64 (abfd, buf);
19104 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19105 unsigned int *bytes_read)
19107 struct comp_unit_head *cu_header = &cu->header;
19108 CORE_ADDR retval = 0;
19110 if (cu_header->signed_addr_p)
19112 switch (cu_header->addr_size)
19115 retval = bfd_get_signed_16 (abfd, buf);
19118 retval = bfd_get_signed_32 (abfd, buf);
19121 retval = bfd_get_signed_64 (abfd, buf);
19124 internal_error (__FILE__, __LINE__,
19125 _("read_address: bad switch, signed [in module %s]"),
19126 bfd_get_filename (abfd));
19131 switch (cu_header->addr_size)
19134 retval = bfd_get_16 (abfd, buf);
19137 retval = bfd_get_32 (abfd, buf);
19140 retval = bfd_get_64 (abfd, buf);
19143 internal_error (__FILE__, __LINE__,
19144 _("read_address: bad switch, "
19145 "unsigned [in module %s]"),
19146 bfd_get_filename (abfd));
19150 *bytes_read = cu_header->addr_size;
19154 /* Read the initial length from a section. The (draft) DWARF 3
19155 specification allows the initial length to take up either 4 bytes
19156 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19157 bytes describe the length and all offsets will be 8 bytes in length
19160 An older, non-standard 64-bit format is also handled by this
19161 function. The older format in question stores the initial length
19162 as an 8-byte quantity without an escape value. Lengths greater
19163 than 2^32 aren't very common which means that the initial 4 bytes
19164 is almost always zero. Since a length value of zero doesn't make
19165 sense for the 32-bit format, this initial zero can be considered to
19166 be an escape value which indicates the presence of the older 64-bit
19167 format. As written, the code can't detect (old format) lengths
19168 greater than 4GB. If it becomes necessary to handle lengths
19169 somewhat larger than 4GB, we could allow other small values (such
19170 as the non-sensical values of 1, 2, and 3) to also be used as
19171 escape values indicating the presence of the old format.
19173 The value returned via bytes_read should be used to increment the
19174 relevant pointer after calling read_initial_length().
19176 [ Note: read_initial_length() and read_offset() are based on the
19177 document entitled "DWARF Debugging Information Format", revision
19178 3, draft 8, dated November 19, 2001. This document was obtained
19181 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19183 This document is only a draft and is subject to change. (So beware.)
19185 Details regarding the older, non-standard 64-bit format were
19186 determined empirically by examining 64-bit ELF files produced by
19187 the SGI toolchain on an IRIX 6.5 machine.
19189 - Kevin, July 16, 2002
19193 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19195 LONGEST length = bfd_get_32 (abfd, buf);
19197 if (length == 0xffffffff)
19199 length = bfd_get_64 (abfd, buf + 4);
19202 else if (length == 0)
19204 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19205 length = bfd_get_64 (abfd, buf);
19216 /* Cover function for read_initial_length.
19217 Returns the length of the object at BUF, and stores the size of the
19218 initial length in *BYTES_READ and stores the size that offsets will be in
19220 If the initial length size is not equivalent to that specified in
19221 CU_HEADER then issue a complaint.
19222 This is useful when reading non-comp-unit headers. */
19225 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19226 const struct comp_unit_head *cu_header,
19227 unsigned int *bytes_read,
19228 unsigned int *offset_size)
19230 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19232 gdb_assert (cu_header->initial_length_size == 4
19233 || cu_header->initial_length_size == 8
19234 || cu_header->initial_length_size == 12);
19236 if (cu_header->initial_length_size != *bytes_read)
19237 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19239 *offset_size = (*bytes_read == 4) ? 4 : 8;
19243 /* Read an offset from the data stream. The size of the offset is
19244 given by cu_header->offset_size. */
19247 read_offset (bfd *abfd, const gdb_byte *buf,
19248 const struct comp_unit_head *cu_header,
19249 unsigned int *bytes_read)
19251 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19253 *bytes_read = cu_header->offset_size;
19257 /* Read an offset from the data stream. */
19260 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19262 LONGEST retval = 0;
19264 switch (offset_size)
19267 retval = bfd_get_32 (abfd, buf);
19270 retval = bfd_get_64 (abfd, buf);
19273 internal_error (__FILE__, __LINE__,
19274 _("read_offset_1: bad switch [in module %s]"),
19275 bfd_get_filename (abfd));
19281 static const gdb_byte *
19282 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19284 /* If the size of a host char is 8 bits, we can return a pointer
19285 to the buffer, otherwise we have to copy the data to a buffer
19286 allocated on the temporary obstack. */
19287 gdb_assert (HOST_CHAR_BIT == 8);
19291 static const char *
19292 read_direct_string (bfd *abfd, const gdb_byte *buf,
19293 unsigned int *bytes_read_ptr)
19295 /* If the size of a host char is 8 bits, we can return a pointer
19296 to the string, otherwise we have to copy the string to a buffer
19297 allocated on the temporary obstack. */
19298 gdb_assert (HOST_CHAR_BIT == 8);
19301 *bytes_read_ptr = 1;
19304 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19305 return (const char *) buf;
19308 /* Return pointer to string at section SECT offset STR_OFFSET with error
19309 reporting strings FORM_NAME and SECT_NAME. */
19311 static const char *
19312 read_indirect_string_at_offset_from (struct objfile *objfile,
19313 bfd *abfd, LONGEST str_offset,
19314 struct dwarf2_section_info *sect,
19315 const char *form_name,
19316 const char *sect_name)
19318 dwarf2_read_section (objfile, sect);
19319 if (sect->buffer == NULL)
19320 error (_("%s used without %s section [in module %s]"),
19321 form_name, sect_name, bfd_get_filename (abfd));
19322 if (str_offset >= sect->size)
19323 error (_("%s pointing outside of %s section [in module %s]"),
19324 form_name, sect_name, bfd_get_filename (abfd));
19325 gdb_assert (HOST_CHAR_BIT == 8);
19326 if (sect->buffer[str_offset] == '\0')
19328 return (const char *) (sect->buffer + str_offset);
19331 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19333 static const char *
19334 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19335 bfd *abfd, LONGEST str_offset)
19337 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19339 &dwarf2_per_objfile->str,
19340 "DW_FORM_strp", ".debug_str");
19343 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19345 static const char *
19346 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19347 bfd *abfd, LONGEST str_offset)
19349 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19351 &dwarf2_per_objfile->line_str,
19352 "DW_FORM_line_strp",
19353 ".debug_line_str");
19356 /* Read a string at offset STR_OFFSET in the .debug_str section from
19357 the .dwz file DWZ. Throw an error if the offset is too large. If
19358 the string consists of a single NUL byte, return NULL; otherwise
19359 return a pointer to the string. */
19361 static const char *
19362 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19363 LONGEST str_offset)
19365 dwarf2_read_section (objfile, &dwz->str);
19367 if (dwz->str.buffer == NULL)
19368 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19369 "section [in module %s]"),
19370 bfd_get_filename (dwz->dwz_bfd));
19371 if (str_offset >= dwz->str.size)
19372 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19373 ".debug_str section [in module %s]"),
19374 bfd_get_filename (dwz->dwz_bfd));
19375 gdb_assert (HOST_CHAR_BIT == 8);
19376 if (dwz->str.buffer[str_offset] == '\0')
19378 return (const char *) (dwz->str.buffer + str_offset);
19381 /* Return pointer to string at .debug_str offset as read from BUF.
19382 BUF is assumed to be in a compilation unit described by CU_HEADER.
19383 Return *BYTES_READ_PTR count of bytes read from BUF. */
19385 static const char *
19386 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19387 const gdb_byte *buf,
19388 const struct comp_unit_head *cu_header,
19389 unsigned int *bytes_read_ptr)
19391 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19393 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19396 /* Return pointer to string at .debug_line_str offset as read from BUF.
19397 BUF is assumed to be in a compilation unit described by CU_HEADER.
19398 Return *BYTES_READ_PTR count of bytes read from BUF. */
19400 static const char *
19401 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19402 bfd *abfd, const gdb_byte *buf,
19403 const struct comp_unit_head *cu_header,
19404 unsigned int *bytes_read_ptr)
19406 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19408 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19413 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19414 unsigned int *bytes_read_ptr)
19417 unsigned int num_read;
19419 unsigned char byte;
19426 byte = bfd_get_8 (abfd, buf);
19429 result |= ((ULONGEST) (byte & 127) << shift);
19430 if ((byte & 128) == 0)
19436 *bytes_read_ptr = num_read;
19441 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19442 unsigned int *bytes_read_ptr)
19445 int shift, num_read;
19446 unsigned char byte;
19453 byte = bfd_get_8 (abfd, buf);
19456 result |= ((LONGEST) (byte & 127) << shift);
19458 if ((byte & 128) == 0)
19463 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19464 result |= -(((LONGEST) 1) << shift);
19465 *bytes_read_ptr = num_read;
19469 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19470 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19471 ADDR_SIZE is the size of addresses from the CU header. */
19474 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19475 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19477 struct objfile *objfile = dwarf2_per_objfile->objfile;
19478 bfd *abfd = objfile->obfd;
19479 const gdb_byte *info_ptr;
19481 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19482 if (dwarf2_per_objfile->addr.buffer == NULL)
19483 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19484 objfile_name (objfile));
19485 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19486 error (_("DW_FORM_addr_index pointing outside of "
19487 ".debug_addr section [in module %s]"),
19488 objfile_name (objfile));
19489 info_ptr = (dwarf2_per_objfile->addr.buffer
19490 + addr_base + addr_index * addr_size);
19491 if (addr_size == 4)
19492 return bfd_get_32 (abfd, info_ptr);
19494 return bfd_get_64 (abfd, info_ptr);
19497 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19500 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19502 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19503 cu->addr_base, cu->header.addr_size);
19506 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19509 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19510 unsigned int *bytes_read)
19512 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19513 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19515 return read_addr_index (cu, addr_index);
19518 /* Data structure to pass results from dwarf2_read_addr_index_reader
19519 back to dwarf2_read_addr_index. */
19521 struct dwarf2_read_addr_index_data
19523 ULONGEST addr_base;
19527 /* die_reader_func for dwarf2_read_addr_index. */
19530 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19531 const gdb_byte *info_ptr,
19532 struct die_info *comp_unit_die,
19536 struct dwarf2_cu *cu = reader->cu;
19537 struct dwarf2_read_addr_index_data *aidata =
19538 (struct dwarf2_read_addr_index_data *) data;
19540 aidata->addr_base = cu->addr_base;
19541 aidata->addr_size = cu->header.addr_size;
19544 /* Given an index in .debug_addr, fetch the value.
19545 NOTE: This can be called during dwarf expression evaluation,
19546 long after the debug information has been read, and thus per_cu->cu
19547 may no longer exist. */
19550 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19551 unsigned int addr_index)
19553 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19554 struct dwarf2_cu *cu = per_cu->cu;
19555 ULONGEST addr_base;
19558 /* We need addr_base and addr_size.
19559 If we don't have PER_CU->cu, we have to get it.
19560 Nasty, but the alternative is storing the needed info in PER_CU,
19561 which at this point doesn't seem justified: it's not clear how frequently
19562 it would get used and it would increase the size of every PER_CU.
19563 Entry points like dwarf2_per_cu_addr_size do a similar thing
19564 so we're not in uncharted territory here.
19565 Alas we need to be a bit more complicated as addr_base is contained
19568 We don't need to read the entire CU(/TU).
19569 We just need the header and top level die.
19571 IWBN to use the aging mechanism to let us lazily later discard the CU.
19572 For now we skip this optimization. */
19576 addr_base = cu->addr_base;
19577 addr_size = cu->header.addr_size;
19581 struct dwarf2_read_addr_index_data aidata;
19583 /* Note: We can't use init_cutu_and_read_dies_simple here,
19584 we need addr_base. */
19585 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19586 dwarf2_read_addr_index_reader, &aidata);
19587 addr_base = aidata.addr_base;
19588 addr_size = aidata.addr_size;
19591 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19595 /* Given a DW_FORM_GNU_str_index, fetch the string.
19596 This is only used by the Fission support. */
19598 static const char *
19599 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19601 struct dwarf2_cu *cu = reader->cu;
19602 struct dwarf2_per_objfile *dwarf2_per_objfile
19603 = cu->per_cu->dwarf2_per_objfile;
19604 struct objfile *objfile = dwarf2_per_objfile->objfile;
19605 const char *objf_name = objfile_name (objfile);
19606 bfd *abfd = objfile->obfd;
19607 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19608 struct dwarf2_section_info *str_offsets_section =
19609 &reader->dwo_file->sections.str_offsets;
19610 const gdb_byte *info_ptr;
19611 ULONGEST str_offset;
19612 static const char form_name[] = "DW_FORM_GNU_str_index";
19614 dwarf2_read_section (objfile, str_section);
19615 dwarf2_read_section (objfile, str_offsets_section);
19616 if (str_section->buffer == NULL)
19617 error (_("%s used without .debug_str.dwo section"
19618 " in CU at offset %s [in module %s]"),
19619 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19620 if (str_offsets_section->buffer == NULL)
19621 error (_("%s used without .debug_str_offsets.dwo section"
19622 " in CU at offset %s [in module %s]"),
19623 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19624 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19625 error (_("%s pointing outside of .debug_str_offsets.dwo"
19626 " section in CU at offset %s [in module %s]"),
19627 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19628 info_ptr = (str_offsets_section->buffer
19629 + str_index * cu->header.offset_size);
19630 if (cu->header.offset_size == 4)
19631 str_offset = bfd_get_32 (abfd, info_ptr);
19633 str_offset = bfd_get_64 (abfd, info_ptr);
19634 if (str_offset >= str_section->size)
19635 error (_("Offset from %s pointing outside of"
19636 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19637 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19638 return (const char *) (str_section->buffer + str_offset);
19641 /* Return the length of an LEB128 number in BUF. */
19644 leb128_size (const gdb_byte *buf)
19646 const gdb_byte *begin = buf;
19652 if ((byte & 128) == 0)
19653 return buf - begin;
19658 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19667 cu->language = language_c;
19670 case DW_LANG_C_plus_plus:
19671 case DW_LANG_C_plus_plus_11:
19672 case DW_LANG_C_plus_plus_14:
19673 cu->language = language_cplus;
19676 cu->language = language_d;
19678 case DW_LANG_Fortran77:
19679 case DW_LANG_Fortran90:
19680 case DW_LANG_Fortran95:
19681 case DW_LANG_Fortran03:
19682 case DW_LANG_Fortran08:
19683 cu->language = language_fortran;
19686 cu->language = language_go;
19688 case DW_LANG_Mips_Assembler:
19689 cu->language = language_asm;
19691 case DW_LANG_Ada83:
19692 case DW_LANG_Ada95:
19693 cu->language = language_ada;
19695 case DW_LANG_Modula2:
19696 cu->language = language_m2;
19698 case DW_LANG_Pascal83:
19699 cu->language = language_pascal;
19702 cu->language = language_objc;
19705 case DW_LANG_Rust_old:
19706 cu->language = language_rust;
19708 case DW_LANG_Cobol74:
19709 case DW_LANG_Cobol85:
19711 cu->language = language_minimal;
19714 cu->language_defn = language_def (cu->language);
19717 /* Return the named attribute or NULL if not there. */
19719 static struct attribute *
19720 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19725 struct attribute *spec = NULL;
19727 for (i = 0; i < die->num_attrs; ++i)
19729 if (die->attrs[i].name == name)
19730 return &die->attrs[i];
19731 if (die->attrs[i].name == DW_AT_specification
19732 || die->attrs[i].name == DW_AT_abstract_origin)
19733 spec = &die->attrs[i];
19739 die = follow_die_ref (die, spec, &cu);
19745 /* Return the named attribute or NULL if not there,
19746 but do not follow DW_AT_specification, etc.
19747 This is for use in contexts where we're reading .debug_types dies.
19748 Following DW_AT_specification, DW_AT_abstract_origin will take us
19749 back up the chain, and we want to go down. */
19751 static struct attribute *
19752 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19756 for (i = 0; i < die->num_attrs; ++i)
19757 if (die->attrs[i].name == name)
19758 return &die->attrs[i];
19763 /* Return the string associated with a string-typed attribute, or NULL if it
19764 is either not found or is of an incorrect type. */
19766 static const char *
19767 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19769 struct attribute *attr;
19770 const char *str = NULL;
19772 attr = dwarf2_attr (die, name, cu);
19776 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19777 || attr->form == DW_FORM_string
19778 || attr->form == DW_FORM_GNU_str_index
19779 || attr->form == DW_FORM_GNU_strp_alt)
19780 str = DW_STRING (attr);
19782 complaint (_("string type expected for attribute %s for "
19783 "DIE at %s in module %s"),
19784 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19785 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19791 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19792 and holds a non-zero value. This function should only be used for
19793 DW_FORM_flag or DW_FORM_flag_present attributes. */
19796 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19798 struct attribute *attr = dwarf2_attr (die, name, cu);
19800 return (attr && DW_UNSND (attr));
19804 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19806 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19807 which value is non-zero. However, we have to be careful with
19808 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19809 (via dwarf2_flag_true_p) follows this attribute. So we may
19810 end up accidently finding a declaration attribute that belongs
19811 to a different DIE referenced by the specification attribute,
19812 even though the given DIE does not have a declaration attribute. */
19813 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19814 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19817 /* Return the die giving the specification for DIE, if there is
19818 one. *SPEC_CU is the CU containing DIE on input, and the CU
19819 containing the return value on output. If there is no
19820 specification, but there is an abstract origin, that is
19823 static struct die_info *
19824 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19826 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19829 if (spec_attr == NULL)
19830 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19832 if (spec_attr == NULL)
19835 return follow_die_ref (die, spec_attr, spec_cu);
19838 /* Stub for free_line_header to match void * callback types. */
19841 free_line_header_voidp (void *arg)
19843 struct line_header *lh = (struct line_header *) arg;
19849 line_header::add_include_dir (const char *include_dir)
19851 if (dwarf_line_debug >= 2)
19852 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19853 include_dirs.size () + 1, include_dir);
19855 include_dirs.push_back (include_dir);
19859 line_header::add_file_name (const char *name,
19861 unsigned int mod_time,
19862 unsigned int length)
19864 if (dwarf_line_debug >= 2)
19865 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19866 (unsigned) file_names.size () + 1, name);
19868 file_names.emplace_back (name, d_index, mod_time, length);
19871 /* A convenience function to find the proper .debug_line section for a CU. */
19873 static struct dwarf2_section_info *
19874 get_debug_line_section (struct dwarf2_cu *cu)
19876 struct dwarf2_section_info *section;
19877 struct dwarf2_per_objfile *dwarf2_per_objfile
19878 = cu->per_cu->dwarf2_per_objfile;
19880 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19882 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19883 section = &cu->dwo_unit->dwo_file->sections.line;
19884 else if (cu->per_cu->is_dwz)
19886 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19888 section = &dwz->line;
19891 section = &dwarf2_per_objfile->line;
19896 /* Read directory or file name entry format, starting with byte of
19897 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19898 entries count and the entries themselves in the described entry
19902 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19903 bfd *abfd, const gdb_byte **bufp,
19904 struct line_header *lh,
19905 const struct comp_unit_head *cu_header,
19906 void (*callback) (struct line_header *lh,
19909 unsigned int mod_time,
19910 unsigned int length))
19912 gdb_byte format_count, formati;
19913 ULONGEST data_count, datai;
19914 const gdb_byte *buf = *bufp;
19915 const gdb_byte *format_header_data;
19916 unsigned int bytes_read;
19918 format_count = read_1_byte (abfd, buf);
19920 format_header_data = buf;
19921 for (formati = 0; formati < format_count; formati++)
19923 read_unsigned_leb128 (abfd, buf, &bytes_read);
19925 read_unsigned_leb128 (abfd, buf, &bytes_read);
19929 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19931 for (datai = 0; datai < data_count; datai++)
19933 const gdb_byte *format = format_header_data;
19934 struct file_entry fe;
19936 for (formati = 0; formati < format_count; formati++)
19938 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19939 format += bytes_read;
19941 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19942 format += bytes_read;
19944 gdb::optional<const char *> string;
19945 gdb::optional<unsigned int> uint;
19949 case DW_FORM_string:
19950 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19954 case DW_FORM_line_strp:
19955 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19962 case DW_FORM_data1:
19963 uint.emplace (read_1_byte (abfd, buf));
19967 case DW_FORM_data2:
19968 uint.emplace (read_2_bytes (abfd, buf));
19972 case DW_FORM_data4:
19973 uint.emplace (read_4_bytes (abfd, buf));
19977 case DW_FORM_data8:
19978 uint.emplace (read_8_bytes (abfd, buf));
19982 case DW_FORM_udata:
19983 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19987 case DW_FORM_block:
19988 /* It is valid only for DW_LNCT_timestamp which is ignored by
19993 switch (content_type)
19996 if (string.has_value ())
19999 case DW_LNCT_directory_index:
20000 if (uint.has_value ())
20001 fe.d_index = (dir_index) *uint;
20003 case DW_LNCT_timestamp:
20004 if (uint.has_value ())
20005 fe.mod_time = *uint;
20008 if (uint.has_value ())
20014 complaint (_("Unknown format content type %s"),
20015 pulongest (content_type));
20019 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20025 /* Read the statement program header starting at OFFSET in
20026 .debug_line, or .debug_line.dwo. Return a pointer
20027 to a struct line_header, allocated using xmalloc.
20028 Returns NULL if there is a problem reading the header, e.g., if it
20029 has a version we don't understand.
20031 NOTE: the strings in the include directory and file name tables of
20032 the returned object point into the dwarf line section buffer,
20033 and must not be freed. */
20035 static line_header_up
20036 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20038 const gdb_byte *line_ptr;
20039 unsigned int bytes_read, offset_size;
20041 const char *cur_dir, *cur_file;
20042 struct dwarf2_section_info *section;
20044 struct dwarf2_per_objfile *dwarf2_per_objfile
20045 = cu->per_cu->dwarf2_per_objfile;
20047 section = get_debug_line_section (cu);
20048 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20049 if (section->buffer == NULL)
20051 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20052 complaint (_("missing .debug_line.dwo section"));
20054 complaint (_("missing .debug_line section"));
20058 /* We can't do this until we know the section is non-empty.
20059 Only then do we know we have such a section. */
20060 abfd = get_section_bfd_owner (section);
20062 /* Make sure that at least there's room for the total_length field.
20063 That could be 12 bytes long, but we're just going to fudge that. */
20064 if (to_underlying (sect_off) + 4 >= section->size)
20066 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20070 line_header_up lh (new line_header ());
20072 lh->sect_off = sect_off;
20073 lh->offset_in_dwz = cu->per_cu->is_dwz;
20075 line_ptr = section->buffer + to_underlying (sect_off);
20077 /* Read in the header. */
20079 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20080 &bytes_read, &offset_size);
20081 line_ptr += bytes_read;
20082 if (line_ptr + lh->total_length > (section->buffer + section->size))
20084 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20087 lh->statement_program_end = line_ptr + lh->total_length;
20088 lh->version = read_2_bytes (abfd, line_ptr);
20090 if (lh->version > 5)
20092 /* This is a version we don't understand. The format could have
20093 changed in ways we don't handle properly so just punt. */
20094 complaint (_("unsupported version in .debug_line section"));
20097 if (lh->version >= 5)
20099 gdb_byte segment_selector_size;
20101 /* Skip address size. */
20102 read_1_byte (abfd, line_ptr);
20105 segment_selector_size = read_1_byte (abfd, line_ptr);
20107 if (segment_selector_size != 0)
20109 complaint (_("unsupported segment selector size %u "
20110 "in .debug_line section"),
20111 segment_selector_size);
20115 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20116 line_ptr += offset_size;
20117 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20119 if (lh->version >= 4)
20121 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20125 lh->maximum_ops_per_instruction = 1;
20127 if (lh->maximum_ops_per_instruction == 0)
20129 lh->maximum_ops_per_instruction = 1;
20130 complaint (_("invalid maximum_ops_per_instruction "
20131 "in `.debug_line' section"));
20134 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20136 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20138 lh->line_range = read_1_byte (abfd, line_ptr);
20140 lh->opcode_base = read_1_byte (abfd, line_ptr);
20142 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20144 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20145 for (i = 1; i < lh->opcode_base; ++i)
20147 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20151 if (lh->version >= 5)
20153 /* Read directory table. */
20154 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20156 [] (struct line_header *lh, const char *name,
20157 dir_index d_index, unsigned int mod_time,
20158 unsigned int length)
20160 lh->add_include_dir (name);
20163 /* Read file name table. */
20164 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20166 [] (struct line_header *lh, const char *name,
20167 dir_index d_index, unsigned int mod_time,
20168 unsigned int length)
20170 lh->add_file_name (name, d_index, mod_time, length);
20175 /* Read directory table. */
20176 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20178 line_ptr += bytes_read;
20179 lh->add_include_dir (cur_dir);
20181 line_ptr += bytes_read;
20183 /* Read file name table. */
20184 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20186 unsigned int mod_time, length;
20189 line_ptr += bytes_read;
20190 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20191 line_ptr += bytes_read;
20192 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20193 line_ptr += bytes_read;
20194 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20195 line_ptr += bytes_read;
20197 lh->add_file_name (cur_file, d_index, mod_time, length);
20199 line_ptr += bytes_read;
20201 lh->statement_program_start = line_ptr;
20203 if (line_ptr > (section->buffer + section->size))
20204 complaint (_("line number info header doesn't "
20205 "fit in `.debug_line' section"));
20210 /* Subroutine of dwarf_decode_lines to simplify it.
20211 Return the file name of the psymtab for included file FILE_INDEX
20212 in line header LH of PST.
20213 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20214 If space for the result is malloc'd, *NAME_HOLDER will be set.
20215 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20217 static const char *
20218 psymtab_include_file_name (const struct line_header *lh, int file_index,
20219 const struct partial_symtab *pst,
20220 const char *comp_dir,
20221 gdb::unique_xmalloc_ptr<char> *name_holder)
20223 const file_entry &fe = lh->file_names[file_index];
20224 const char *include_name = fe.name;
20225 const char *include_name_to_compare = include_name;
20226 const char *pst_filename;
20229 const char *dir_name = fe.include_dir (lh);
20231 gdb::unique_xmalloc_ptr<char> hold_compare;
20232 if (!IS_ABSOLUTE_PATH (include_name)
20233 && (dir_name != NULL || comp_dir != NULL))
20235 /* Avoid creating a duplicate psymtab for PST.
20236 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20237 Before we do the comparison, however, we need to account
20238 for DIR_NAME and COMP_DIR.
20239 First prepend dir_name (if non-NULL). If we still don't
20240 have an absolute path prepend comp_dir (if non-NULL).
20241 However, the directory we record in the include-file's
20242 psymtab does not contain COMP_DIR (to match the
20243 corresponding symtab(s)).
20248 bash$ gcc -g ./hello.c
20249 include_name = "hello.c"
20251 DW_AT_comp_dir = comp_dir = "/tmp"
20252 DW_AT_name = "./hello.c"
20256 if (dir_name != NULL)
20258 name_holder->reset (concat (dir_name, SLASH_STRING,
20259 include_name, (char *) NULL));
20260 include_name = name_holder->get ();
20261 include_name_to_compare = include_name;
20263 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20265 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20266 include_name, (char *) NULL));
20267 include_name_to_compare = hold_compare.get ();
20271 pst_filename = pst->filename;
20272 gdb::unique_xmalloc_ptr<char> copied_name;
20273 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20275 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20276 pst_filename, (char *) NULL));
20277 pst_filename = copied_name.get ();
20280 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20284 return include_name;
20287 /* State machine to track the state of the line number program. */
20289 class lnp_state_machine
20292 /* Initialize a machine state for the start of a line number
20294 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20296 file_entry *current_file ()
20298 /* lh->file_names is 0-based, but the file name numbers in the
20299 statement program are 1-based. */
20300 return m_line_header->file_name_at (m_file);
20303 /* Record the line in the state machine. END_SEQUENCE is true if
20304 we're processing the end of a sequence. */
20305 void record_line (bool end_sequence);
20307 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20308 nop-out rest of the lines in this sequence. */
20309 void check_line_address (struct dwarf2_cu *cu,
20310 const gdb_byte *line_ptr,
20311 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20313 void handle_set_discriminator (unsigned int discriminator)
20315 m_discriminator = discriminator;
20316 m_line_has_non_zero_discriminator |= discriminator != 0;
20319 /* Handle DW_LNE_set_address. */
20320 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20323 address += baseaddr;
20324 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20327 /* Handle DW_LNS_advance_pc. */
20328 void handle_advance_pc (CORE_ADDR adjust);
20330 /* Handle a special opcode. */
20331 void handle_special_opcode (unsigned char op_code);
20333 /* Handle DW_LNS_advance_line. */
20334 void handle_advance_line (int line_delta)
20336 advance_line (line_delta);
20339 /* Handle DW_LNS_set_file. */
20340 void handle_set_file (file_name_index file);
20342 /* Handle DW_LNS_negate_stmt. */
20343 void handle_negate_stmt ()
20345 m_is_stmt = !m_is_stmt;
20348 /* Handle DW_LNS_const_add_pc. */
20349 void handle_const_add_pc ();
20351 /* Handle DW_LNS_fixed_advance_pc. */
20352 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20354 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20358 /* Handle DW_LNS_copy. */
20359 void handle_copy ()
20361 record_line (false);
20362 m_discriminator = 0;
20365 /* Handle DW_LNE_end_sequence. */
20366 void handle_end_sequence ()
20368 m_record_line_callback = ::record_line;
20372 /* Advance the line by LINE_DELTA. */
20373 void advance_line (int line_delta)
20375 m_line += line_delta;
20377 if (line_delta != 0)
20378 m_line_has_non_zero_discriminator = m_discriminator != 0;
20381 gdbarch *m_gdbarch;
20383 /* True if we're recording lines.
20384 Otherwise we're building partial symtabs and are just interested in
20385 finding include files mentioned by the line number program. */
20386 bool m_record_lines_p;
20388 /* The line number header. */
20389 line_header *m_line_header;
20391 /* These are part of the standard DWARF line number state machine,
20392 and initialized according to the DWARF spec. */
20394 unsigned char m_op_index = 0;
20395 /* The line table index (1-based) of the current file. */
20396 file_name_index m_file = (file_name_index) 1;
20397 unsigned int m_line = 1;
20399 /* These are initialized in the constructor. */
20401 CORE_ADDR m_address;
20403 unsigned int m_discriminator;
20405 /* Additional bits of state we need to track. */
20407 /* The last file that we called dwarf2_start_subfile for.
20408 This is only used for TLLs. */
20409 unsigned int m_last_file = 0;
20410 /* The last file a line number was recorded for. */
20411 struct subfile *m_last_subfile = NULL;
20413 /* The function to call to record a line. */
20414 record_line_ftype *m_record_line_callback = NULL;
20416 /* The last line number that was recorded, used to coalesce
20417 consecutive entries for the same line. This can happen, for
20418 example, when discriminators are present. PR 17276. */
20419 unsigned int m_last_line = 0;
20420 bool m_line_has_non_zero_discriminator = false;
20424 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20426 CORE_ADDR addr_adj = (((m_op_index + adjust)
20427 / m_line_header->maximum_ops_per_instruction)
20428 * m_line_header->minimum_instruction_length);
20429 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20430 m_op_index = ((m_op_index + adjust)
20431 % m_line_header->maximum_ops_per_instruction);
20435 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20437 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20438 CORE_ADDR addr_adj = (((m_op_index
20439 + (adj_opcode / m_line_header->line_range))
20440 / m_line_header->maximum_ops_per_instruction)
20441 * m_line_header->minimum_instruction_length);
20442 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20443 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20444 % m_line_header->maximum_ops_per_instruction);
20446 int line_delta = (m_line_header->line_base
20447 + (adj_opcode % m_line_header->line_range));
20448 advance_line (line_delta);
20449 record_line (false);
20450 m_discriminator = 0;
20454 lnp_state_machine::handle_set_file (file_name_index file)
20458 const file_entry *fe = current_file ();
20460 dwarf2_debug_line_missing_file_complaint ();
20461 else if (m_record_lines_p)
20463 const char *dir = fe->include_dir (m_line_header);
20465 m_last_subfile = current_subfile;
20466 m_line_has_non_zero_discriminator = m_discriminator != 0;
20467 dwarf2_start_subfile (fe->name, dir);
20472 lnp_state_machine::handle_const_add_pc ()
20475 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20478 = (((m_op_index + adjust)
20479 / m_line_header->maximum_ops_per_instruction)
20480 * m_line_header->minimum_instruction_length);
20482 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20483 m_op_index = ((m_op_index + adjust)
20484 % m_line_header->maximum_ops_per_instruction);
20487 /* Ignore this record_line request. */
20490 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20495 /* Return non-zero if we should add LINE to the line number table.
20496 LINE is the line to add, LAST_LINE is the last line that was added,
20497 LAST_SUBFILE is the subfile for LAST_LINE.
20498 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20499 had a non-zero discriminator.
20501 We have to be careful in the presence of discriminators.
20502 E.g., for this line:
20504 for (i = 0; i < 100000; i++);
20506 clang can emit four line number entries for that one line,
20507 each with a different discriminator.
20508 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20510 However, we want gdb to coalesce all four entries into one.
20511 Otherwise the user could stepi into the middle of the line and
20512 gdb would get confused about whether the pc really was in the
20513 middle of the line.
20515 Things are further complicated by the fact that two consecutive
20516 line number entries for the same line is a heuristic used by gcc
20517 to denote the end of the prologue. So we can't just discard duplicate
20518 entries, we have to be selective about it. The heuristic we use is
20519 that we only collapse consecutive entries for the same line if at least
20520 one of those entries has a non-zero discriminator. PR 17276.
20522 Note: Addresses in the line number state machine can never go backwards
20523 within one sequence, thus this coalescing is ok. */
20526 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20527 int line_has_non_zero_discriminator,
20528 struct subfile *last_subfile)
20530 if (current_subfile != last_subfile)
20532 if (line != last_line)
20534 /* Same line for the same file that we've seen already.
20535 As a last check, for pr 17276, only record the line if the line
20536 has never had a non-zero discriminator. */
20537 if (!line_has_non_zero_discriminator)
20542 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20543 in the line table of subfile SUBFILE. */
20546 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20547 unsigned int line, CORE_ADDR address,
20548 record_line_ftype p_record_line)
20550 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20552 if (dwarf_line_debug)
20554 fprintf_unfiltered (gdb_stdlog,
20555 "Recording line %u, file %s, address %s\n",
20556 line, lbasename (subfile->name),
20557 paddress (gdbarch, address));
20560 (*p_record_line) (subfile, line, addr);
20563 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20564 Mark the end of a set of line number records.
20565 The arguments are the same as for dwarf_record_line_1.
20566 If SUBFILE is NULL the request is ignored. */
20569 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20570 CORE_ADDR address, record_line_ftype p_record_line)
20572 if (subfile == NULL)
20575 if (dwarf_line_debug)
20577 fprintf_unfiltered (gdb_stdlog,
20578 "Finishing current line, file %s, address %s\n",
20579 lbasename (subfile->name),
20580 paddress (gdbarch, address));
20583 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20587 lnp_state_machine::record_line (bool end_sequence)
20589 if (dwarf_line_debug)
20591 fprintf_unfiltered (gdb_stdlog,
20592 "Processing actual line %u: file %u,"
20593 " address %s, is_stmt %u, discrim %u\n",
20594 m_line, to_underlying (m_file),
20595 paddress (m_gdbarch, m_address),
20596 m_is_stmt, m_discriminator);
20599 file_entry *fe = current_file ();
20602 dwarf2_debug_line_missing_file_complaint ();
20603 /* For now we ignore lines not starting on an instruction boundary.
20604 But not when processing end_sequence for compatibility with the
20605 previous version of the code. */
20606 else if (m_op_index == 0 || end_sequence)
20608 fe->included_p = 1;
20609 if (m_record_lines_p && m_is_stmt)
20611 if (m_last_subfile != current_subfile || end_sequence)
20613 dwarf_finish_line (m_gdbarch, m_last_subfile,
20614 m_address, m_record_line_callback);
20619 if (dwarf_record_line_p (m_line, m_last_line,
20620 m_line_has_non_zero_discriminator,
20623 dwarf_record_line_1 (m_gdbarch, current_subfile,
20625 m_record_line_callback);
20627 m_last_subfile = current_subfile;
20628 m_last_line = m_line;
20634 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20635 bool record_lines_p)
20638 m_record_lines_p = record_lines_p;
20639 m_line_header = lh;
20641 m_record_line_callback = ::record_line;
20643 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20644 was a line entry for it so that the backend has a chance to adjust it
20645 and also record it in case it needs it. This is currently used by MIPS
20646 code, cf. `mips_adjust_dwarf2_line'. */
20647 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20648 m_is_stmt = lh->default_is_stmt;
20649 m_discriminator = 0;
20653 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20654 const gdb_byte *line_ptr,
20655 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20657 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20658 the pc range of the CU. However, we restrict the test to only ADDRESS
20659 values of zero to preserve GDB's previous behaviour which is to handle
20660 the specific case of a function being GC'd by the linker. */
20662 if (address == 0 && address < unrelocated_lowpc)
20664 /* This line table is for a function which has been
20665 GCd by the linker. Ignore it. PR gdb/12528 */
20667 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20668 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20670 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20671 line_offset, objfile_name (objfile));
20672 m_record_line_callback = noop_record_line;
20673 /* Note: record_line_callback is left as noop_record_line until
20674 we see DW_LNE_end_sequence. */
20678 /* Subroutine of dwarf_decode_lines to simplify it.
20679 Process the line number information in LH.
20680 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20681 program in order to set included_p for every referenced header. */
20684 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20685 const int decode_for_pst_p, CORE_ADDR lowpc)
20687 const gdb_byte *line_ptr, *extended_end;
20688 const gdb_byte *line_end;
20689 unsigned int bytes_read, extended_len;
20690 unsigned char op_code, extended_op;
20691 CORE_ADDR baseaddr;
20692 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20693 bfd *abfd = objfile->obfd;
20694 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20695 /* True if we're recording line info (as opposed to building partial
20696 symtabs and just interested in finding include files mentioned by
20697 the line number program). */
20698 bool record_lines_p = !decode_for_pst_p;
20700 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20702 line_ptr = lh->statement_program_start;
20703 line_end = lh->statement_program_end;
20705 /* Read the statement sequences until there's nothing left. */
20706 while (line_ptr < line_end)
20708 /* The DWARF line number program state machine. Reset the state
20709 machine at the start of each sequence. */
20710 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20711 bool end_sequence = false;
20713 if (record_lines_p)
20715 /* Start a subfile for the current file of the state
20717 const file_entry *fe = state_machine.current_file ();
20720 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20723 /* Decode the table. */
20724 while (line_ptr < line_end && !end_sequence)
20726 op_code = read_1_byte (abfd, line_ptr);
20729 if (op_code >= lh->opcode_base)
20731 /* Special opcode. */
20732 state_machine.handle_special_opcode (op_code);
20734 else switch (op_code)
20736 case DW_LNS_extended_op:
20737 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20739 line_ptr += bytes_read;
20740 extended_end = line_ptr + extended_len;
20741 extended_op = read_1_byte (abfd, line_ptr);
20743 switch (extended_op)
20745 case DW_LNE_end_sequence:
20746 state_machine.handle_end_sequence ();
20747 end_sequence = true;
20749 case DW_LNE_set_address:
20752 = read_address (abfd, line_ptr, cu, &bytes_read);
20753 line_ptr += bytes_read;
20755 state_machine.check_line_address (cu, line_ptr,
20756 lowpc - baseaddr, address);
20757 state_machine.handle_set_address (baseaddr, address);
20760 case DW_LNE_define_file:
20762 const char *cur_file;
20763 unsigned int mod_time, length;
20766 cur_file = read_direct_string (abfd, line_ptr,
20768 line_ptr += bytes_read;
20769 dindex = (dir_index)
20770 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20771 line_ptr += bytes_read;
20773 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20774 line_ptr += bytes_read;
20776 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20777 line_ptr += bytes_read;
20778 lh->add_file_name (cur_file, dindex, mod_time, length);
20781 case DW_LNE_set_discriminator:
20783 /* The discriminator is not interesting to the
20784 debugger; just ignore it. We still need to
20785 check its value though:
20786 if there are consecutive entries for the same
20787 (non-prologue) line we want to coalesce them.
20790 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20791 line_ptr += bytes_read;
20793 state_machine.handle_set_discriminator (discr);
20797 complaint (_("mangled .debug_line section"));
20800 /* Make sure that we parsed the extended op correctly. If e.g.
20801 we expected a different address size than the producer used,
20802 we may have read the wrong number of bytes. */
20803 if (line_ptr != extended_end)
20805 complaint (_("mangled .debug_line section"));
20810 state_machine.handle_copy ();
20812 case DW_LNS_advance_pc:
20815 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20816 line_ptr += bytes_read;
20818 state_machine.handle_advance_pc (adjust);
20821 case DW_LNS_advance_line:
20824 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20825 line_ptr += bytes_read;
20827 state_machine.handle_advance_line (line_delta);
20830 case DW_LNS_set_file:
20832 file_name_index file
20833 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20835 line_ptr += bytes_read;
20837 state_machine.handle_set_file (file);
20840 case DW_LNS_set_column:
20841 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20842 line_ptr += bytes_read;
20844 case DW_LNS_negate_stmt:
20845 state_machine.handle_negate_stmt ();
20847 case DW_LNS_set_basic_block:
20849 /* Add to the address register of the state machine the
20850 address increment value corresponding to special opcode
20851 255. I.e., this value is scaled by the minimum
20852 instruction length since special opcode 255 would have
20853 scaled the increment. */
20854 case DW_LNS_const_add_pc:
20855 state_machine.handle_const_add_pc ();
20857 case DW_LNS_fixed_advance_pc:
20859 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20862 state_machine.handle_fixed_advance_pc (addr_adj);
20867 /* Unknown standard opcode, ignore it. */
20870 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20872 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20873 line_ptr += bytes_read;
20880 dwarf2_debug_line_missing_end_sequence_complaint ();
20882 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20883 in which case we still finish recording the last line). */
20884 state_machine.record_line (true);
20888 /* Decode the Line Number Program (LNP) for the given line_header
20889 structure and CU. The actual information extracted and the type
20890 of structures created from the LNP depends on the value of PST.
20892 1. If PST is NULL, then this procedure uses the data from the program
20893 to create all necessary symbol tables, and their linetables.
20895 2. If PST is not NULL, this procedure reads the program to determine
20896 the list of files included by the unit represented by PST, and
20897 builds all the associated partial symbol tables.
20899 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20900 It is used for relative paths in the line table.
20901 NOTE: When processing partial symtabs (pst != NULL),
20902 comp_dir == pst->dirname.
20904 NOTE: It is important that psymtabs have the same file name (via strcmp)
20905 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20906 symtab we don't use it in the name of the psymtabs we create.
20907 E.g. expand_line_sal requires this when finding psymtabs to expand.
20908 A good testcase for this is mb-inline.exp.
20910 LOWPC is the lowest address in CU (or 0 if not known).
20912 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20913 for its PC<->lines mapping information. Otherwise only the filename
20914 table is read in. */
20917 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20918 struct dwarf2_cu *cu, struct partial_symtab *pst,
20919 CORE_ADDR lowpc, int decode_mapping)
20921 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20922 const int decode_for_pst_p = (pst != NULL);
20924 if (decode_mapping)
20925 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20927 if (decode_for_pst_p)
20931 /* Now that we're done scanning the Line Header Program, we can
20932 create the psymtab of each included file. */
20933 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20934 if (lh->file_names[file_index].included_p == 1)
20936 gdb::unique_xmalloc_ptr<char> name_holder;
20937 const char *include_name =
20938 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20940 if (include_name != NULL)
20941 dwarf2_create_include_psymtab (include_name, pst, objfile);
20946 /* Make sure a symtab is created for every file, even files
20947 which contain only variables (i.e. no code with associated
20949 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20952 for (i = 0; i < lh->file_names.size (); i++)
20954 file_entry &fe = lh->file_names[i];
20956 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20958 if (current_subfile->symtab == NULL)
20960 current_subfile->symtab
20961 = allocate_symtab (cust, current_subfile->name);
20963 fe.symtab = current_subfile->symtab;
20968 /* Start a subfile for DWARF. FILENAME is the name of the file and
20969 DIRNAME the name of the source directory which contains FILENAME
20970 or NULL if not known.
20971 This routine tries to keep line numbers from identical absolute and
20972 relative file names in a common subfile.
20974 Using the `list' example from the GDB testsuite, which resides in
20975 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20976 of /srcdir/list0.c yields the following debugging information for list0.c:
20978 DW_AT_name: /srcdir/list0.c
20979 DW_AT_comp_dir: /compdir
20980 files.files[0].name: list0.h
20981 files.files[0].dir: /srcdir
20982 files.files[1].name: list0.c
20983 files.files[1].dir: /srcdir
20985 The line number information for list0.c has to end up in a single
20986 subfile, so that `break /srcdir/list0.c:1' works as expected.
20987 start_subfile will ensure that this happens provided that we pass the
20988 concatenation of files.files[1].dir and files.files[1].name as the
20992 dwarf2_start_subfile (const char *filename, const char *dirname)
20996 /* In order not to lose the line information directory,
20997 we concatenate it to the filename when it makes sense.
20998 Note that the Dwarf3 standard says (speaking of filenames in line
20999 information): ``The directory index is ignored for file names
21000 that represent full path names''. Thus ignoring dirname in the
21001 `else' branch below isn't an issue. */
21003 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21005 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21009 start_subfile (filename);
21015 /* Start a symtab for DWARF.
21016 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21018 static struct compunit_symtab *
21019 dwarf2_start_symtab (struct dwarf2_cu *cu,
21020 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21022 struct compunit_symtab *cust
21023 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21024 low_pc, cu->language);
21026 record_debugformat ("DWARF 2");
21027 record_producer (cu->producer);
21029 cu->processing_has_namespace_info = 0;
21035 var_decode_location (struct attribute *attr, struct symbol *sym,
21036 struct dwarf2_cu *cu)
21038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21039 struct comp_unit_head *cu_header = &cu->header;
21041 /* NOTE drow/2003-01-30: There used to be a comment and some special
21042 code here to turn a symbol with DW_AT_external and a
21043 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21044 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21045 with some versions of binutils) where shared libraries could have
21046 relocations against symbols in their debug information - the
21047 minimal symbol would have the right address, but the debug info
21048 would not. It's no longer necessary, because we will explicitly
21049 apply relocations when we read in the debug information now. */
21051 /* A DW_AT_location attribute with no contents indicates that a
21052 variable has been optimized away. */
21053 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21055 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21059 /* Handle one degenerate form of location expression specially, to
21060 preserve GDB's previous behavior when section offsets are
21061 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21062 then mark this symbol as LOC_STATIC. */
21064 if (attr_form_is_block (attr)
21065 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21066 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21067 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21068 && (DW_BLOCK (attr)->size
21069 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21071 unsigned int dummy;
21073 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21074 SYMBOL_VALUE_ADDRESS (sym) =
21075 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21077 SYMBOL_VALUE_ADDRESS (sym) =
21078 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21079 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21080 fixup_symbol_section (sym, objfile);
21081 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21082 SYMBOL_SECTION (sym));
21086 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21087 expression evaluator, and use LOC_COMPUTED only when necessary
21088 (i.e. when the value of a register or memory location is
21089 referenced, or a thread-local block, etc.). Then again, it might
21090 not be worthwhile. I'm assuming that it isn't unless performance
21091 or memory numbers show me otherwise. */
21093 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21095 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21096 cu->has_loclist = 1;
21099 /* Given a pointer to a DWARF information entry, figure out if we need
21100 to make a symbol table entry for it, and if so, create a new entry
21101 and return a pointer to it.
21102 If TYPE is NULL, determine symbol type from the die, otherwise
21103 used the passed type.
21104 If SPACE is not NULL, use it to hold the new symbol. If it is
21105 NULL, allocate a new symbol on the objfile's obstack. */
21107 static struct symbol *
21108 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21109 struct symbol *space)
21111 struct dwarf2_per_objfile *dwarf2_per_objfile
21112 = cu->per_cu->dwarf2_per_objfile;
21113 struct objfile *objfile = dwarf2_per_objfile->objfile;
21114 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21115 struct symbol *sym = NULL;
21117 struct attribute *attr = NULL;
21118 struct attribute *attr2 = NULL;
21119 CORE_ADDR baseaddr;
21120 struct pending **list_to_add = NULL;
21122 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21126 name = dwarf2_name (die, cu);
21129 const char *linkagename;
21130 int suppress_add = 0;
21135 sym = allocate_symbol (objfile);
21136 OBJSTAT (objfile, n_syms++);
21138 /* Cache this symbol's name and the name's demangled form (if any). */
21139 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21140 linkagename = dwarf2_physname (name, die, cu);
21141 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21143 /* Fortran does not have mangling standard and the mangling does differ
21144 between gfortran, iFort etc. */
21145 if (cu->language == language_fortran
21146 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21147 symbol_set_demangled_name (&(sym->ginfo),
21148 dwarf2_full_name (name, die, cu),
21151 /* Default assumptions.
21152 Use the passed type or decode it from the die. */
21153 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21154 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21156 SYMBOL_TYPE (sym) = type;
21158 SYMBOL_TYPE (sym) = die_type (die, cu);
21159 attr = dwarf2_attr (die,
21160 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21164 SYMBOL_LINE (sym) = DW_UNSND (attr);
21167 attr = dwarf2_attr (die,
21168 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21172 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21173 struct file_entry *fe;
21175 if (cu->line_header != NULL)
21176 fe = cu->line_header->file_name_at (file_index);
21181 complaint (_("file index out of range"));
21183 symbol_set_symtab (sym, fe->symtab);
21189 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21194 addr = attr_value_as_address (attr);
21195 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21196 SYMBOL_VALUE_ADDRESS (sym) = addr;
21198 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21199 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21200 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21201 add_symbol_to_list (sym, cu->list_in_scope);
21203 case DW_TAG_subprogram:
21204 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21206 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21207 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21208 if ((attr2 && (DW_UNSND (attr2) != 0))
21209 || cu->language == language_ada)
21211 /* Subprograms marked external are stored as a global symbol.
21212 Ada subprograms, whether marked external or not, are always
21213 stored as a global symbol, because we want to be able to
21214 access them globally. For instance, we want to be able
21215 to break on a nested subprogram without having to
21216 specify the context. */
21217 list_to_add = &global_symbols;
21221 list_to_add = cu->list_in_scope;
21224 case DW_TAG_inlined_subroutine:
21225 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21227 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21228 SYMBOL_INLINED (sym) = 1;
21229 list_to_add = cu->list_in_scope;
21231 case DW_TAG_template_value_param:
21233 /* Fall through. */
21234 case DW_TAG_constant:
21235 case DW_TAG_variable:
21236 case DW_TAG_member:
21237 /* Compilation with minimal debug info may result in
21238 variables with missing type entries. Change the
21239 misleading `void' type to something sensible. */
21240 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21241 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21243 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21244 /* In the case of DW_TAG_member, we should only be called for
21245 static const members. */
21246 if (die->tag == DW_TAG_member)
21248 /* dwarf2_add_field uses die_is_declaration,
21249 so we do the same. */
21250 gdb_assert (die_is_declaration (die, cu));
21255 dwarf2_const_value (attr, sym, cu);
21256 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21259 if (attr2 && (DW_UNSND (attr2) != 0))
21260 list_to_add = &global_symbols;
21262 list_to_add = cu->list_in_scope;
21266 attr = dwarf2_attr (die, DW_AT_location, cu);
21269 var_decode_location (attr, sym, cu);
21270 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21272 /* Fortran explicitly imports any global symbols to the local
21273 scope by DW_TAG_common_block. */
21274 if (cu->language == language_fortran && die->parent
21275 && die->parent->tag == DW_TAG_common_block)
21278 if (SYMBOL_CLASS (sym) == LOC_STATIC
21279 && SYMBOL_VALUE_ADDRESS (sym) == 0
21280 && !dwarf2_per_objfile->has_section_at_zero)
21282 /* When a static variable is eliminated by the linker,
21283 the corresponding debug information is not stripped
21284 out, but the variable address is set to null;
21285 do not add such variables into symbol table. */
21287 else if (attr2 && (DW_UNSND (attr2) != 0))
21289 /* Workaround gfortran PR debug/40040 - it uses
21290 DW_AT_location for variables in -fPIC libraries which may
21291 get overriden by other libraries/executable and get
21292 a different address. Resolve it by the minimal symbol
21293 which may come from inferior's executable using copy
21294 relocation. Make this workaround only for gfortran as for
21295 other compilers GDB cannot guess the minimal symbol
21296 Fortran mangling kind. */
21297 if (cu->language == language_fortran && die->parent
21298 && die->parent->tag == DW_TAG_module
21300 && startswith (cu->producer, "GNU Fortran"))
21301 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21303 /* A variable with DW_AT_external is never static,
21304 but it may be block-scoped. */
21305 list_to_add = (cu->list_in_scope == &file_symbols
21306 ? &global_symbols : cu->list_in_scope);
21309 list_to_add = cu->list_in_scope;
21313 /* We do not know the address of this symbol.
21314 If it is an external symbol and we have type information
21315 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21316 The address of the variable will then be determined from
21317 the minimal symbol table whenever the variable is
21319 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21321 /* Fortran explicitly imports any global symbols to the local
21322 scope by DW_TAG_common_block. */
21323 if (cu->language == language_fortran && die->parent
21324 && die->parent->tag == DW_TAG_common_block)
21326 /* SYMBOL_CLASS doesn't matter here because
21327 read_common_block is going to reset it. */
21329 list_to_add = cu->list_in_scope;
21331 else if (attr2 && (DW_UNSND (attr2) != 0)
21332 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21334 /* A variable with DW_AT_external is never static, but it
21335 may be block-scoped. */
21336 list_to_add = (cu->list_in_scope == &file_symbols
21337 ? &global_symbols : cu->list_in_scope);
21339 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21341 else if (!die_is_declaration (die, cu))
21343 /* Use the default LOC_OPTIMIZED_OUT class. */
21344 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21346 list_to_add = cu->list_in_scope;
21350 case DW_TAG_formal_parameter:
21351 /* If we are inside a function, mark this as an argument. If
21352 not, we might be looking at an argument to an inlined function
21353 when we do not have enough information to show inlined frames;
21354 pretend it's a local variable in that case so that the user can
21356 if (context_stack_depth > 0
21357 && context_stack[context_stack_depth - 1].name != NULL)
21358 SYMBOL_IS_ARGUMENT (sym) = 1;
21359 attr = dwarf2_attr (die, DW_AT_location, cu);
21362 var_decode_location (attr, sym, cu);
21364 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21367 dwarf2_const_value (attr, sym, cu);
21370 list_to_add = cu->list_in_scope;
21372 case DW_TAG_unspecified_parameters:
21373 /* From varargs functions; gdb doesn't seem to have any
21374 interest in this information, so just ignore it for now.
21377 case DW_TAG_template_type_param:
21379 /* Fall through. */
21380 case DW_TAG_class_type:
21381 case DW_TAG_interface_type:
21382 case DW_TAG_structure_type:
21383 case DW_TAG_union_type:
21384 case DW_TAG_set_type:
21385 case DW_TAG_enumeration_type:
21386 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21387 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21390 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21391 really ever be static objects: otherwise, if you try
21392 to, say, break of a class's method and you're in a file
21393 which doesn't mention that class, it won't work unless
21394 the check for all static symbols in lookup_symbol_aux
21395 saves you. See the OtherFileClass tests in
21396 gdb.c++/namespace.exp. */
21400 list_to_add = (cu->list_in_scope == &file_symbols
21401 && cu->language == language_cplus
21402 ? &global_symbols : cu->list_in_scope);
21404 /* The semantics of C++ state that "struct foo {
21405 ... }" also defines a typedef for "foo". */
21406 if (cu->language == language_cplus
21407 || cu->language == language_ada
21408 || cu->language == language_d
21409 || cu->language == language_rust)
21411 /* The symbol's name is already allocated along
21412 with this objfile, so we don't need to
21413 duplicate it for the type. */
21414 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21415 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21420 case DW_TAG_typedef:
21421 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21422 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21423 list_to_add = cu->list_in_scope;
21425 case DW_TAG_base_type:
21426 case DW_TAG_subrange_type:
21427 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21428 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21429 list_to_add = cu->list_in_scope;
21431 case DW_TAG_enumerator:
21432 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21435 dwarf2_const_value (attr, sym, cu);
21438 /* NOTE: carlton/2003-11-10: See comment above in the
21439 DW_TAG_class_type, etc. block. */
21441 list_to_add = (cu->list_in_scope == &file_symbols
21442 && cu->language == language_cplus
21443 ? &global_symbols : cu->list_in_scope);
21446 case DW_TAG_imported_declaration:
21447 case DW_TAG_namespace:
21448 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21449 list_to_add = &global_symbols;
21451 case DW_TAG_module:
21452 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21453 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21454 list_to_add = &global_symbols;
21456 case DW_TAG_common_block:
21457 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21458 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21459 add_symbol_to_list (sym, cu->list_in_scope);
21462 /* Not a tag we recognize. Hopefully we aren't processing
21463 trash data, but since we must specifically ignore things
21464 we don't recognize, there is nothing else we should do at
21466 complaint (_("unsupported tag: '%s'"),
21467 dwarf_tag_name (die->tag));
21473 sym->hash_next = objfile->template_symbols;
21474 objfile->template_symbols = sym;
21475 list_to_add = NULL;
21478 if (list_to_add != NULL)
21479 add_symbol_to_list (sym, list_to_add);
21481 /* For the benefit of old versions of GCC, check for anonymous
21482 namespaces based on the demangled name. */
21483 if (!cu->processing_has_namespace_info
21484 && cu->language == language_cplus)
21485 cp_scan_for_anonymous_namespaces (sym, objfile);
21490 /* Given an attr with a DW_FORM_dataN value in host byte order,
21491 zero-extend it as appropriate for the symbol's type. The DWARF
21492 standard (v4) is not entirely clear about the meaning of using
21493 DW_FORM_dataN for a constant with a signed type, where the type is
21494 wider than the data. The conclusion of a discussion on the DWARF
21495 list was that this is unspecified. We choose to always zero-extend
21496 because that is the interpretation long in use by GCC. */
21499 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21500 struct dwarf2_cu *cu, LONGEST *value, int bits)
21502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21503 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21504 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21505 LONGEST l = DW_UNSND (attr);
21507 if (bits < sizeof (*value) * 8)
21509 l &= ((LONGEST) 1 << bits) - 1;
21512 else if (bits == sizeof (*value) * 8)
21516 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21517 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21524 /* Read a constant value from an attribute. Either set *VALUE, or if
21525 the value does not fit in *VALUE, set *BYTES - either already
21526 allocated on the objfile obstack, or newly allocated on OBSTACK,
21527 or, set *BATON, if we translated the constant to a location
21531 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21532 const char *name, struct obstack *obstack,
21533 struct dwarf2_cu *cu,
21534 LONGEST *value, const gdb_byte **bytes,
21535 struct dwarf2_locexpr_baton **baton)
21537 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21538 struct comp_unit_head *cu_header = &cu->header;
21539 struct dwarf_block *blk;
21540 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21541 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21547 switch (attr->form)
21550 case DW_FORM_GNU_addr_index:
21554 if (TYPE_LENGTH (type) != cu_header->addr_size)
21555 dwarf2_const_value_length_mismatch_complaint (name,
21556 cu_header->addr_size,
21557 TYPE_LENGTH (type));
21558 /* Symbols of this form are reasonably rare, so we just
21559 piggyback on the existing location code rather than writing
21560 a new implementation of symbol_computed_ops. */
21561 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21562 (*baton)->per_cu = cu->per_cu;
21563 gdb_assert ((*baton)->per_cu);
21565 (*baton)->size = 2 + cu_header->addr_size;
21566 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21567 (*baton)->data = data;
21569 data[0] = DW_OP_addr;
21570 store_unsigned_integer (&data[1], cu_header->addr_size,
21571 byte_order, DW_ADDR (attr));
21572 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21575 case DW_FORM_string:
21577 case DW_FORM_GNU_str_index:
21578 case DW_FORM_GNU_strp_alt:
21579 /* DW_STRING is already allocated on the objfile obstack, point
21581 *bytes = (const gdb_byte *) DW_STRING (attr);
21583 case DW_FORM_block1:
21584 case DW_FORM_block2:
21585 case DW_FORM_block4:
21586 case DW_FORM_block:
21587 case DW_FORM_exprloc:
21588 case DW_FORM_data16:
21589 blk = DW_BLOCK (attr);
21590 if (TYPE_LENGTH (type) != blk->size)
21591 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21592 TYPE_LENGTH (type));
21593 *bytes = blk->data;
21596 /* The DW_AT_const_value attributes are supposed to carry the
21597 symbol's value "represented as it would be on the target
21598 architecture." By the time we get here, it's already been
21599 converted to host endianness, so we just need to sign- or
21600 zero-extend it as appropriate. */
21601 case DW_FORM_data1:
21602 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21604 case DW_FORM_data2:
21605 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21607 case DW_FORM_data4:
21608 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21610 case DW_FORM_data8:
21611 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21614 case DW_FORM_sdata:
21615 case DW_FORM_implicit_const:
21616 *value = DW_SND (attr);
21619 case DW_FORM_udata:
21620 *value = DW_UNSND (attr);
21624 complaint (_("unsupported const value attribute form: '%s'"),
21625 dwarf_form_name (attr->form));
21632 /* Copy constant value from an attribute to a symbol. */
21635 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21636 struct dwarf2_cu *cu)
21638 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21640 const gdb_byte *bytes;
21641 struct dwarf2_locexpr_baton *baton;
21643 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21644 SYMBOL_PRINT_NAME (sym),
21645 &objfile->objfile_obstack, cu,
21646 &value, &bytes, &baton);
21650 SYMBOL_LOCATION_BATON (sym) = baton;
21651 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21653 else if (bytes != NULL)
21655 SYMBOL_VALUE_BYTES (sym) = bytes;
21656 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21660 SYMBOL_VALUE (sym) = value;
21661 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21665 /* Return the type of the die in question using its DW_AT_type attribute. */
21667 static struct type *
21668 die_type (struct die_info *die, struct dwarf2_cu *cu)
21670 struct attribute *type_attr;
21672 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21676 /* A missing DW_AT_type represents a void type. */
21677 return objfile_type (objfile)->builtin_void;
21680 return lookup_die_type (die, type_attr, cu);
21683 /* True iff CU's producer generates GNAT Ada auxiliary information
21684 that allows to find parallel types through that information instead
21685 of having to do expensive parallel lookups by type name. */
21688 need_gnat_info (struct dwarf2_cu *cu)
21690 /* Assume that the Ada compiler was GNAT, which always produces
21691 the auxiliary information. */
21692 return (cu->language == language_ada);
21695 /* Return the auxiliary type of the die in question using its
21696 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21697 attribute is not present. */
21699 static struct type *
21700 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21702 struct attribute *type_attr;
21704 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21708 return lookup_die_type (die, type_attr, cu);
21711 /* If DIE has a descriptive_type attribute, then set the TYPE's
21712 descriptive type accordingly. */
21715 set_descriptive_type (struct type *type, struct die_info *die,
21716 struct dwarf2_cu *cu)
21718 struct type *descriptive_type = die_descriptive_type (die, cu);
21720 if (descriptive_type)
21722 ALLOCATE_GNAT_AUX_TYPE (type);
21723 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21727 /* Return the containing type of the die in question using its
21728 DW_AT_containing_type attribute. */
21730 static struct type *
21731 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21733 struct attribute *type_attr;
21734 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21736 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21738 error (_("Dwarf Error: Problem turning containing type into gdb type "
21739 "[in module %s]"), objfile_name (objfile));
21741 return lookup_die_type (die, type_attr, cu);
21744 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21746 static struct type *
21747 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21749 struct dwarf2_per_objfile *dwarf2_per_objfile
21750 = cu->per_cu->dwarf2_per_objfile;
21751 struct objfile *objfile = dwarf2_per_objfile->objfile;
21752 char *message, *saved;
21754 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21755 objfile_name (objfile),
21756 sect_offset_str (cu->header.sect_off),
21757 sect_offset_str (die->sect_off));
21758 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21759 message, strlen (message));
21762 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21765 /* Look up the type of DIE in CU using its type attribute ATTR.
21766 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21767 DW_AT_containing_type.
21768 If there is no type substitute an error marker. */
21770 static struct type *
21771 lookup_die_type (struct die_info *die, const struct attribute *attr,
21772 struct dwarf2_cu *cu)
21774 struct dwarf2_per_objfile *dwarf2_per_objfile
21775 = cu->per_cu->dwarf2_per_objfile;
21776 struct objfile *objfile = dwarf2_per_objfile->objfile;
21777 struct type *this_type;
21779 gdb_assert (attr->name == DW_AT_type
21780 || attr->name == DW_AT_GNAT_descriptive_type
21781 || attr->name == DW_AT_containing_type);
21783 /* First see if we have it cached. */
21785 if (attr->form == DW_FORM_GNU_ref_alt)
21787 struct dwarf2_per_cu_data *per_cu;
21788 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21790 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21791 dwarf2_per_objfile);
21792 this_type = get_die_type_at_offset (sect_off, per_cu);
21794 else if (attr_form_is_ref (attr))
21796 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21798 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21800 else if (attr->form == DW_FORM_ref_sig8)
21802 ULONGEST signature = DW_SIGNATURE (attr);
21804 return get_signatured_type (die, signature, cu);
21808 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21809 " at %s [in module %s]"),
21810 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21811 objfile_name (objfile));
21812 return build_error_marker_type (cu, die);
21815 /* If not cached we need to read it in. */
21817 if (this_type == NULL)
21819 struct die_info *type_die = NULL;
21820 struct dwarf2_cu *type_cu = cu;
21822 if (attr_form_is_ref (attr))
21823 type_die = follow_die_ref (die, attr, &type_cu);
21824 if (type_die == NULL)
21825 return build_error_marker_type (cu, die);
21826 /* If we find the type now, it's probably because the type came
21827 from an inter-CU reference and the type's CU got expanded before
21829 this_type = read_type_die (type_die, type_cu);
21832 /* If we still don't have a type use an error marker. */
21834 if (this_type == NULL)
21835 return build_error_marker_type (cu, die);
21840 /* Return the type in DIE, CU.
21841 Returns NULL for invalid types.
21843 This first does a lookup in die_type_hash,
21844 and only reads the die in if necessary.
21846 NOTE: This can be called when reading in partial or full symbols. */
21848 static struct type *
21849 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21851 struct type *this_type;
21853 this_type = get_die_type (die, cu);
21857 return read_type_die_1 (die, cu);
21860 /* Read the type in DIE, CU.
21861 Returns NULL for invalid types. */
21863 static struct type *
21864 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21866 struct type *this_type = NULL;
21870 case DW_TAG_class_type:
21871 case DW_TAG_interface_type:
21872 case DW_TAG_structure_type:
21873 case DW_TAG_union_type:
21874 this_type = read_structure_type (die, cu);
21876 case DW_TAG_enumeration_type:
21877 this_type = read_enumeration_type (die, cu);
21879 case DW_TAG_subprogram:
21880 case DW_TAG_subroutine_type:
21881 case DW_TAG_inlined_subroutine:
21882 this_type = read_subroutine_type (die, cu);
21884 case DW_TAG_array_type:
21885 this_type = read_array_type (die, cu);
21887 case DW_TAG_set_type:
21888 this_type = read_set_type (die, cu);
21890 case DW_TAG_pointer_type:
21891 this_type = read_tag_pointer_type (die, cu);
21893 case DW_TAG_ptr_to_member_type:
21894 this_type = read_tag_ptr_to_member_type (die, cu);
21896 case DW_TAG_reference_type:
21897 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21899 case DW_TAG_rvalue_reference_type:
21900 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21902 case DW_TAG_const_type:
21903 this_type = read_tag_const_type (die, cu);
21905 case DW_TAG_volatile_type:
21906 this_type = read_tag_volatile_type (die, cu);
21908 case DW_TAG_restrict_type:
21909 this_type = read_tag_restrict_type (die, cu);
21911 case DW_TAG_string_type:
21912 this_type = read_tag_string_type (die, cu);
21914 case DW_TAG_typedef:
21915 this_type = read_typedef (die, cu);
21917 case DW_TAG_subrange_type:
21918 this_type = read_subrange_type (die, cu);
21920 case DW_TAG_base_type:
21921 this_type = read_base_type (die, cu);
21923 case DW_TAG_unspecified_type:
21924 this_type = read_unspecified_type (die, cu);
21926 case DW_TAG_namespace:
21927 this_type = read_namespace_type (die, cu);
21929 case DW_TAG_module:
21930 this_type = read_module_type (die, cu);
21932 case DW_TAG_atomic_type:
21933 this_type = read_tag_atomic_type (die, cu);
21936 complaint (_("unexpected tag in read_type_die: '%s'"),
21937 dwarf_tag_name (die->tag));
21944 /* See if we can figure out if the class lives in a namespace. We do
21945 this by looking for a member function; its demangled name will
21946 contain namespace info, if there is any.
21947 Return the computed name or NULL.
21948 Space for the result is allocated on the objfile's obstack.
21949 This is the full-die version of guess_partial_die_structure_name.
21950 In this case we know DIE has no useful parent. */
21953 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21955 struct die_info *spec_die;
21956 struct dwarf2_cu *spec_cu;
21957 struct die_info *child;
21958 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21961 spec_die = die_specification (die, &spec_cu);
21962 if (spec_die != NULL)
21968 for (child = die->child;
21970 child = child->sibling)
21972 if (child->tag == DW_TAG_subprogram)
21974 const char *linkage_name = dw2_linkage_name (child, cu);
21976 if (linkage_name != NULL)
21979 = language_class_name_from_physname (cu->language_defn,
21983 if (actual_name != NULL)
21985 const char *die_name = dwarf2_name (die, cu);
21987 if (die_name != NULL
21988 && strcmp (die_name, actual_name) != 0)
21990 /* Strip off the class name from the full name.
21991 We want the prefix. */
21992 int die_name_len = strlen (die_name);
21993 int actual_name_len = strlen (actual_name);
21995 /* Test for '::' as a sanity check. */
21996 if (actual_name_len > die_name_len + 2
21997 && actual_name[actual_name_len
21998 - die_name_len - 1] == ':')
21999 name = (char *) obstack_copy0 (
22000 &objfile->per_bfd->storage_obstack,
22001 actual_name, actual_name_len - die_name_len - 2);
22004 xfree (actual_name);
22013 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22014 prefix part in such case. See
22015 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22017 static const char *
22018 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22020 struct attribute *attr;
22023 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22024 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22027 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22030 attr = dw2_linkage_name_attr (die, cu);
22031 if (attr == NULL || DW_STRING (attr) == NULL)
22034 /* dwarf2_name had to be already called. */
22035 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22037 /* Strip the base name, keep any leading namespaces/classes. */
22038 base = strrchr (DW_STRING (attr), ':');
22039 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22042 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22043 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22045 &base[-1] - DW_STRING (attr));
22048 /* Return the name of the namespace/class that DIE is defined within,
22049 or "" if we can't tell. The caller should not xfree the result.
22051 For example, if we're within the method foo() in the following
22061 then determine_prefix on foo's die will return "N::C". */
22063 static const char *
22064 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22066 struct dwarf2_per_objfile *dwarf2_per_objfile
22067 = cu->per_cu->dwarf2_per_objfile;
22068 struct die_info *parent, *spec_die;
22069 struct dwarf2_cu *spec_cu;
22070 struct type *parent_type;
22071 const char *retval;
22073 if (cu->language != language_cplus
22074 && cu->language != language_fortran && cu->language != language_d
22075 && cu->language != language_rust)
22078 retval = anonymous_struct_prefix (die, cu);
22082 /* We have to be careful in the presence of DW_AT_specification.
22083 For example, with GCC 3.4, given the code
22087 // Definition of N::foo.
22091 then we'll have a tree of DIEs like this:
22093 1: DW_TAG_compile_unit
22094 2: DW_TAG_namespace // N
22095 3: DW_TAG_subprogram // declaration of N::foo
22096 4: DW_TAG_subprogram // definition of N::foo
22097 DW_AT_specification // refers to die #3
22099 Thus, when processing die #4, we have to pretend that we're in
22100 the context of its DW_AT_specification, namely the contex of die
22103 spec_die = die_specification (die, &spec_cu);
22104 if (spec_die == NULL)
22105 parent = die->parent;
22108 parent = spec_die->parent;
22112 if (parent == NULL)
22114 else if (parent->building_fullname)
22117 const char *parent_name;
22119 /* It has been seen on RealView 2.2 built binaries,
22120 DW_TAG_template_type_param types actually _defined_ as
22121 children of the parent class:
22124 template class <class Enum> Class{};
22125 Class<enum E> class_e;
22127 1: DW_TAG_class_type (Class)
22128 2: DW_TAG_enumeration_type (E)
22129 3: DW_TAG_enumerator (enum1:0)
22130 3: DW_TAG_enumerator (enum2:1)
22132 2: DW_TAG_template_type_param
22133 DW_AT_type DW_FORM_ref_udata (E)
22135 Besides being broken debug info, it can put GDB into an
22136 infinite loop. Consider:
22138 When we're building the full name for Class<E>, we'll start
22139 at Class, and go look over its template type parameters,
22140 finding E. We'll then try to build the full name of E, and
22141 reach here. We're now trying to build the full name of E,
22142 and look over the parent DIE for containing scope. In the
22143 broken case, if we followed the parent DIE of E, we'd again
22144 find Class, and once again go look at its template type
22145 arguments, etc., etc. Simply don't consider such parent die
22146 as source-level parent of this die (it can't be, the language
22147 doesn't allow it), and break the loop here. */
22148 name = dwarf2_name (die, cu);
22149 parent_name = dwarf2_name (parent, cu);
22150 complaint (_("template param type '%s' defined within parent '%s'"),
22151 name ? name : "<unknown>",
22152 parent_name ? parent_name : "<unknown>");
22156 switch (parent->tag)
22158 case DW_TAG_namespace:
22159 parent_type = read_type_die (parent, cu);
22160 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22161 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22162 Work around this problem here. */
22163 if (cu->language == language_cplus
22164 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22166 /* We give a name to even anonymous namespaces. */
22167 return TYPE_NAME (parent_type);
22168 case DW_TAG_class_type:
22169 case DW_TAG_interface_type:
22170 case DW_TAG_structure_type:
22171 case DW_TAG_union_type:
22172 case DW_TAG_module:
22173 parent_type = read_type_die (parent, cu);
22174 if (TYPE_NAME (parent_type) != NULL)
22175 return TYPE_NAME (parent_type);
22177 /* An anonymous structure is only allowed non-static data
22178 members; no typedefs, no member functions, et cetera.
22179 So it does not need a prefix. */
22181 case DW_TAG_compile_unit:
22182 case DW_TAG_partial_unit:
22183 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22184 if (cu->language == language_cplus
22185 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22186 && die->child != NULL
22187 && (die->tag == DW_TAG_class_type
22188 || die->tag == DW_TAG_structure_type
22189 || die->tag == DW_TAG_union_type))
22191 char *name = guess_full_die_structure_name (die, cu);
22196 case DW_TAG_enumeration_type:
22197 parent_type = read_type_die (parent, cu);
22198 if (TYPE_DECLARED_CLASS (parent_type))
22200 if (TYPE_NAME (parent_type) != NULL)
22201 return TYPE_NAME (parent_type);
22204 /* Fall through. */
22206 return determine_prefix (parent, cu);
22210 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22211 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22212 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22213 an obconcat, otherwise allocate storage for the result. The CU argument is
22214 used to determine the language and hence, the appropriate separator. */
22216 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22219 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22220 int physname, struct dwarf2_cu *cu)
22222 const char *lead = "";
22225 if (suffix == NULL || suffix[0] == '\0'
22226 || prefix == NULL || prefix[0] == '\0')
22228 else if (cu->language == language_d)
22230 /* For D, the 'main' function could be defined in any module, but it
22231 should never be prefixed. */
22232 if (strcmp (suffix, "D main") == 0)
22240 else if (cu->language == language_fortran && physname)
22242 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22243 DW_AT_MIPS_linkage_name is preferred and used instead. */
22251 if (prefix == NULL)
22253 if (suffix == NULL)
22260 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22262 strcpy (retval, lead);
22263 strcat (retval, prefix);
22264 strcat (retval, sep);
22265 strcat (retval, suffix);
22270 /* We have an obstack. */
22271 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22275 /* Return sibling of die, NULL if no sibling. */
22277 static struct die_info *
22278 sibling_die (struct die_info *die)
22280 return die->sibling;
22283 /* Get name of a die, return NULL if not found. */
22285 static const char *
22286 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22287 struct obstack *obstack)
22289 if (name && cu->language == language_cplus)
22291 std::string canon_name = cp_canonicalize_string (name);
22293 if (!canon_name.empty ())
22295 if (canon_name != name)
22296 name = (const char *) obstack_copy0 (obstack,
22297 canon_name.c_str (),
22298 canon_name.length ());
22305 /* Get name of a die, return NULL if not found.
22306 Anonymous namespaces are converted to their magic string. */
22308 static const char *
22309 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22311 struct attribute *attr;
22312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22314 attr = dwarf2_attr (die, DW_AT_name, cu);
22315 if ((!attr || !DW_STRING (attr))
22316 && die->tag != DW_TAG_namespace
22317 && die->tag != DW_TAG_class_type
22318 && die->tag != DW_TAG_interface_type
22319 && die->tag != DW_TAG_structure_type
22320 && die->tag != DW_TAG_union_type)
22325 case DW_TAG_compile_unit:
22326 case DW_TAG_partial_unit:
22327 /* Compilation units have a DW_AT_name that is a filename, not
22328 a source language identifier. */
22329 case DW_TAG_enumeration_type:
22330 case DW_TAG_enumerator:
22331 /* These tags always have simple identifiers already; no need
22332 to canonicalize them. */
22333 return DW_STRING (attr);
22335 case DW_TAG_namespace:
22336 if (attr != NULL && DW_STRING (attr) != NULL)
22337 return DW_STRING (attr);
22338 return CP_ANONYMOUS_NAMESPACE_STR;
22340 case DW_TAG_class_type:
22341 case DW_TAG_interface_type:
22342 case DW_TAG_structure_type:
22343 case DW_TAG_union_type:
22344 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22345 structures or unions. These were of the form "._%d" in GCC 4.1,
22346 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22347 and GCC 4.4. We work around this problem by ignoring these. */
22348 if (attr && DW_STRING (attr)
22349 && (startswith (DW_STRING (attr), "._")
22350 || startswith (DW_STRING (attr), "<anonymous")))
22353 /* GCC might emit a nameless typedef that has a linkage name. See
22354 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22355 if (!attr || DW_STRING (attr) == NULL)
22357 char *demangled = NULL;
22359 attr = dw2_linkage_name_attr (die, cu);
22360 if (attr == NULL || DW_STRING (attr) == NULL)
22363 /* Avoid demangling DW_STRING (attr) the second time on a second
22364 call for the same DIE. */
22365 if (!DW_STRING_IS_CANONICAL (attr))
22366 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22372 /* FIXME: we already did this for the partial symbol... */
22375 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22376 demangled, strlen (demangled)));
22377 DW_STRING_IS_CANONICAL (attr) = 1;
22380 /* Strip any leading namespaces/classes, keep only the base name.
22381 DW_AT_name for named DIEs does not contain the prefixes. */
22382 base = strrchr (DW_STRING (attr), ':');
22383 if (base && base > DW_STRING (attr) && base[-1] == ':')
22386 return DW_STRING (attr);
22395 if (!DW_STRING_IS_CANONICAL (attr))
22398 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22399 &objfile->per_bfd->storage_obstack);
22400 DW_STRING_IS_CANONICAL (attr) = 1;
22402 return DW_STRING (attr);
22405 /* Return the die that this die in an extension of, or NULL if there
22406 is none. *EXT_CU is the CU containing DIE on input, and the CU
22407 containing the return value on output. */
22409 static struct die_info *
22410 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22412 struct attribute *attr;
22414 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22418 return follow_die_ref (die, attr, ext_cu);
22421 /* Convert a DIE tag into its string name. */
22423 static const char *
22424 dwarf_tag_name (unsigned tag)
22426 const char *name = get_DW_TAG_name (tag);
22429 return "DW_TAG_<unknown>";
22434 /* Convert a DWARF attribute code into its string name. */
22436 static const char *
22437 dwarf_attr_name (unsigned attr)
22441 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22442 if (attr == DW_AT_MIPS_fde)
22443 return "DW_AT_MIPS_fde";
22445 if (attr == DW_AT_HP_block_index)
22446 return "DW_AT_HP_block_index";
22449 name = get_DW_AT_name (attr);
22452 return "DW_AT_<unknown>";
22457 /* Convert a DWARF value form code into its string name. */
22459 static const char *
22460 dwarf_form_name (unsigned form)
22462 const char *name = get_DW_FORM_name (form);
22465 return "DW_FORM_<unknown>";
22470 static const char *
22471 dwarf_bool_name (unsigned mybool)
22479 /* Convert a DWARF type code into its string name. */
22481 static const char *
22482 dwarf_type_encoding_name (unsigned enc)
22484 const char *name = get_DW_ATE_name (enc);
22487 return "DW_ATE_<unknown>";
22493 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22497 print_spaces (indent, f);
22498 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22499 dwarf_tag_name (die->tag), die->abbrev,
22500 sect_offset_str (die->sect_off));
22502 if (die->parent != NULL)
22504 print_spaces (indent, f);
22505 fprintf_unfiltered (f, " parent at offset: %s\n",
22506 sect_offset_str (die->parent->sect_off));
22509 print_spaces (indent, f);
22510 fprintf_unfiltered (f, " has children: %s\n",
22511 dwarf_bool_name (die->child != NULL));
22513 print_spaces (indent, f);
22514 fprintf_unfiltered (f, " attributes:\n");
22516 for (i = 0; i < die->num_attrs; ++i)
22518 print_spaces (indent, f);
22519 fprintf_unfiltered (f, " %s (%s) ",
22520 dwarf_attr_name (die->attrs[i].name),
22521 dwarf_form_name (die->attrs[i].form));
22523 switch (die->attrs[i].form)
22526 case DW_FORM_GNU_addr_index:
22527 fprintf_unfiltered (f, "address: ");
22528 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22530 case DW_FORM_block2:
22531 case DW_FORM_block4:
22532 case DW_FORM_block:
22533 case DW_FORM_block1:
22534 fprintf_unfiltered (f, "block: size %s",
22535 pulongest (DW_BLOCK (&die->attrs[i])->size));
22537 case DW_FORM_exprloc:
22538 fprintf_unfiltered (f, "expression: size %s",
22539 pulongest (DW_BLOCK (&die->attrs[i])->size));
22541 case DW_FORM_data16:
22542 fprintf_unfiltered (f, "constant of 16 bytes");
22544 case DW_FORM_ref_addr:
22545 fprintf_unfiltered (f, "ref address: ");
22546 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22548 case DW_FORM_GNU_ref_alt:
22549 fprintf_unfiltered (f, "alt ref address: ");
22550 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22556 case DW_FORM_ref_udata:
22557 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22558 (long) (DW_UNSND (&die->attrs[i])));
22560 case DW_FORM_data1:
22561 case DW_FORM_data2:
22562 case DW_FORM_data4:
22563 case DW_FORM_data8:
22564 case DW_FORM_udata:
22565 case DW_FORM_sdata:
22566 fprintf_unfiltered (f, "constant: %s",
22567 pulongest (DW_UNSND (&die->attrs[i])));
22569 case DW_FORM_sec_offset:
22570 fprintf_unfiltered (f, "section offset: %s",
22571 pulongest (DW_UNSND (&die->attrs[i])));
22573 case DW_FORM_ref_sig8:
22574 fprintf_unfiltered (f, "signature: %s",
22575 hex_string (DW_SIGNATURE (&die->attrs[i])));
22577 case DW_FORM_string:
22579 case DW_FORM_line_strp:
22580 case DW_FORM_GNU_str_index:
22581 case DW_FORM_GNU_strp_alt:
22582 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22583 DW_STRING (&die->attrs[i])
22584 ? DW_STRING (&die->attrs[i]) : "",
22585 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22588 if (DW_UNSND (&die->attrs[i]))
22589 fprintf_unfiltered (f, "flag: TRUE");
22591 fprintf_unfiltered (f, "flag: FALSE");
22593 case DW_FORM_flag_present:
22594 fprintf_unfiltered (f, "flag: TRUE");
22596 case DW_FORM_indirect:
22597 /* The reader will have reduced the indirect form to
22598 the "base form" so this form should not occur. */
22599 fprintf_unfiltered (f,
22600 "unexpected attribute form: DW_FORM_indirect");
22602 case DW_FORM_implicit_const:
22603 fprintf_unfiltered (f, "constant: %s",
22604 plongest (DW_SND (&die->attrs[i])));
22607 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22608 die->attrs[i].form);
22611 fprintf_unfiltered (f, "\n");
22616 dump_die_for_error (struct die_info *die)
22618 dump_die_shallow (gdb_stderr, 0, die);
22622 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22624 int indent = level * 4;
22626 gdb_assert (die != NULL);
22628 if (level >= max_level)
22631 dump_die_shallow (f, indent, die);
22633 if (die->child != NULL)
22635 print_spaces (indent, f);
22636 fprintf_unfiltered (f, " Children:");
22637 if (level + 1 < max_level)
22639 fprintf_unfiltered (f, "\n");
22640 dump_die_1 (f, level + 1, max_level, die->child);
22644 fprintf_unfiltered (f,
22645 " [not printed, max nesting level reached]\n");
22649 if (die->sibling != NULL && level > 0)
22651 dump_die_1 (f, level, max_level, die->sibling);
22655 /* This is called from the pdie macro in gdbinit.in.
22656 It's not static so gcc will keep a copy callable from gdb. */
22659 dump_die (struct die_info *die, int max_level)
22661 dump_die_1 (gdb_stdlog, 0, max_level, die);
22665 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22669 slot = htab_find_slot_with_hash (cu->die_hash, die,
22670 to_underlying (die->sect_off),
22676 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22680 dwarf2_get_ref_die_offset (const struct attribute *attr)
22682 if (attr_form_is_ref (attr))
22683 return (sect_offset) DW_UNSND (attr);
22685 complaint (_("unsupported die ref attribute form: '%s'"),
22686 dwarf_form_name (attr->form));
22690 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22691 * the value held by the attribute is not constant. */
22694 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22696 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22697 return DW_SND (attr);
22698 else if (attr->form == DW_FORM_udata
22699 || attr->form == DW_FORM_data1
22700 || attr->form == DW_FORM_data2
22701 || attr->form == DW_FORM_data4
22702 || attr->form == DW_FORM_data8)
22703 return DW_UNSND (attr);
22706 /* For DW_FORM_data16 see attr_form_is_constant. */
22707 complaint (_("Attribute value is not a constant (%s)"),
22708 dwarf_form_name (attr->form));
22709 return default_value;
22713 /* Follow reference or signature attribute ATTR of SRC_DIE.
22714 On entry *REF_CU is the CU of SRC_DIE.
22715 On exit *REF_CU is the CU of the result. */
22717 static struct die_info *
22718 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22719 struct dwarf2_cu **ref_cu)
22721 struct die_info *die;
22723 if (attr_form_is_ref (attr))
22724 die = follow_die_ref (src_die, attr, ref_cu);
22725 else if (attr->form == DW_FORM_ref_sig8)
22726 die = follow_die_sig (src_die, attr, ref_cu);
22729 dump_die_for_error (src_die);
22730 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22731 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22737 /* Follow reference OFFSET.
22738 On entry *REF_CU is the CU of the source die referencing OFFSET.
22739 On exit *REF_CU is the CU of the result.
22740 Returns NULL if OFFSET is invalid. */
22742 static struct die_info *
22743 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22744 struct dwarf2_cu **ref_cu)
22746 struct die_info temp_die;
22747 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22748 struct dwarf2_per_objfile *dwarf2_per_objfile
22749 = cu->per_cu->dwarf2_per_objfile;
22751 gdb_assert (cu->per_cu != NULL);
22755 if (cu->per_cu->is_debug_types)
22757 /* .debug_types CUs cannot reference anything outside their CU.
22758 If they need to, they have to reference a signatured type via
22759 DW_FORM_ref_sig8. */
22760 if (!offset_in_cu_p (&cu->header, sect_off))
22763 else if (offset_in_dwz != cu->per_cu->is_dwz
22764 || !offset_in_cu_p (&cu->header, sect_off))
22766 struct dwarf2_per_cu_data *per_cu;
22768 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22769 dwarf2_per_objfile);
22771 /* If necessary, add it to the queue and load its DIEs. */
22772 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22773 load_full_comp_unit (per_cu, false, cu->language);
22775 target_cu = per_cu->cu;
22777 else if (cu->dies == NULL)
22779 /* We're loading full DIEs during partial symbol reading. */
22780 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22781 load_full_comp_unit (cu->per_cu, false, language_minimal);
22784 *ref_cu = target_cu;
22785 temp_die.sect_off = sect_off;
22786 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22788 to_underlying (sect_off));
22791 /* Follow reference attribute ATTR of SRC_DIE.
22792 On entry *REF_CU is the CU of SRC_DIE.
22793 On exit *REF_CU is the CU of the result. */
22795 static struct die_info *
22796 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22797 struct dwarf2_cu **ref_cu)
22799 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22800 struct dwarf2_cu *cu = *ref_cu;
22801 struct die_info *die;
22803 die = follow_die_offset (sect_off,
22804 (attr->form == DW_FORM_GNU_ref_alt
22805 || cu->per_cu->is_dwz),
22808 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22809 "at %s [in module %s]"),
22810 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22811 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22816 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22817 Returned value is intended for DW_OP_call*. Returned
22818 dwarf2_locexpr_baton->data has lifetime of
22819 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22821 struct dwarf2_locexpr_baton
22822 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22823 struct dwarf2_per_cu_data *per_cu,
22824 CORE_ADDR (*get_frame_pc) (void *baton),
22827 struct dwarf2_cu *cu;
22828 struct die_info *die;
22829 struct attribute *attr;
22830 struct dwarf2_locexpr_baton retval;
22831 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22832 struct objfile *objfile = dwarf2_per_objfile->objfile;
22834 if (per_cu->cu == NULL)
22835 load_cu (per_cu, false);
22839 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22840 Instead just throw an error, not much else we can do. */
22841 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22842 sect_offset_str (sect_off), objfile_name (objfile));
22845 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22847 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22848 sect_offset_str (sect_off), objfile_name (objfile));
22850 attr = dwarf2_attr (die, DW_AT_location, cu);
22853 /* DWARF: "If there is no such attribute, then there is no effect.".
22854 DATA is ignored if SIZE is 0. */
22856 retval.data = NULL;
22859 else if (attr_form_is_section_offset (attr))
22861 struct dwarf2_loclist_baton loclist_baton;
22862 CORE_ADDR pc = (*get_frame_pc) (baton);
22865 fill_in_loclist_baton (cu, &loclist_baton, attr);
22867 retval.data = dwarf2_find_location_expression (&loclist_baton,
22869 retval.size = size;
22873 if (!attr_form_is_block (attr))
22874 error (_("Dwarf Error: DIE at %s referenced in module %s "
22875 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22876 sect_offset_str (sect_off), objfile_name (objfile));
22878 retval.data = DW_BLOCK (attr)->data;
22879 retval.size = DW_BLOCK (attr)->size;
22881 retval.per_cu = cu->per_cu;
22883 age_cached_comp_units (dwarf2_per_objfile);
22888 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22891 struct dwarf2_locexpr_baton
22892 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22893 struct dwarf2_per_cu_data *per_cu,
22894 CORE_ADDR (*get_frame_pc) (void *baton),
22897 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22899 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22902 /* Write a constant of a given type as target-ordered bytes into
22905 static const gdb_byte *
22906 write_constant_as_bytes (struct obstack *obstack,
22907 enum bfd_endian byte_order,
22914 *len = TYPE_LENGTH (type);
22915 result = (gdb_byte *) obstack_alloc (obstack, *len);
22916 store_unsigned_integer (result, *len, byte_order, value);
22921 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22922 pointer to the constant bytes and set LEN to the length of the
22923 data. If memory is needed, allocate it on OBSTACK. If the DIE
22924 does not have a DW_AT_const_value, return NULL. */
22927 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22928 struct dwarf2_per_cu_data *per_cu,
22929 struct obstack *obstack,
22932 struct dwarf2_cu *cu;
22933 struct die_info *die;
22934 struct attribute *attr;
22935 const gdb_byte *result = NULL;
22938 enum bfd_endian byte_order;
22939 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22941 if (per_cu->cu == NULL)
22942 load_cu (per_cu, false);
22946 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22947 Instead just throw an error, not much else we can do. */
22948 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22949 sect_offset_str (sect_off), objfile_name (objfile));
22952 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22954 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22955 sect_offset_str (sect_off), objfile_name (objfile));
22957 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22961 byte_order = (bfd_big_endian (objfile->obfd)
22962 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22964 switch (attr->form)
22967 case DW_FORM_GNU_addr_index:
22971 *len = cu->header.addr_size;
22972 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22973 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22977 case DW_FORM_string:
22979 case DW_FORM_GNU_str_index:
22980 case DW_FORM_GNU_strp_alt:
22981 /* DW_STRING is already allocated on the objfile obstack, point
22983 result = (const gdb_byte *) DW_STRING (attr);
22984 *len = strlen (DW_STRING (attr));
22986 case DW_FORM_block1:
22987 case DW_FORM_block2:
22988 case DW_FORM_block4:
22989 case DW_FORM_block:
22990 case DW_FORM_exprloc:
22991 case DW_FORM_data16:
22992 result = DW_BLOCK (attr)->data;
22993 *len = DW_BLOCK (attr)->size;
22996 /* The DW_AT_const_value attributes are supposed to carry the
22997 symbol's value "represented as it would be on the target
22998 architecture." By the time we get here, it's already been
22999 converted to host endianness, so we just need to sign- or
23000 zero-extend it as appropriate. */
23001 case DW_FORM_data1:
23002 type = die_type (die, cu);
23003 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23004 if (result == NULL)
23005 result = write_constant_as_bytes (obstack, byte_order,
23008 case DW_FORM_data2:
23009 type = die_type (die, cu);
23010 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23011 if (result == NULL)
23012 result = write_constant_as_bytes (obstack, byte_order,
23015 case DW_FORM_data4:
23016 type = die_type (die, cu);
23017 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23018 if (result == NULL)
23019 result = write_constant_as_bytes (obstack, byte_order,
23022 case DW_FORM_data8:
23023 type = die_type (die, cu);
23024 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23025 if (result == NULL)
23026 result = write_constant_as_bytes (obstack, byte_order,
23030 case DW_FORM_sdata:
23031 case DW_FORM_implicit_const:
23032 type = die_type (die, cu);
23033 result = write_constant_as_bytes (obstack, byte_order,
23034 type, DW_SND (attr), len);
23037 case DW_FORM_udata:
23038 type = die_type (die, cu);
23039 result = write_constant_as_bytes (obstack, byte_order,
23040 type, DW_UNSND (attr), len);
23044 complaint (_("unsupported const value attribute form: '%s'"),
23045 dwarf_form_name (attr->form));
23052 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23053 valid type for this die is found. */
23056 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23057 struct dwarf2_per_cu_data *per_cu)
23059 struct dwarf2_cu *cu;
23060 struct die_info *die;
23062 if (per_cu->cu == NULL)
23063 load_cu (per_cu, false);
23068 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23072 return die_type (die, cu);
23075 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23079 dwarf2_get_die_type (cu_offset die_offset,
23080 struct dwarf2_per_cu_data *per_cu)
23082 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23083 return get_die_type_at_offset (die_offset_sect, per_cu);
23086 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23087 On entry *REF_CU is the CU of SRC_DIE.
23088 On exit *REF_CU is the CU of the result.
23089 Returns NULL if the referenced DIE isn't found. */
23091 static struct die_info *
23092 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23093 struct dwarf2_cu **ref_cu)
23095 struct die_info temp_die;
23096 struct dwarf2_cu *sig_cu;
23097 struct die_info *die;
23099 /* While it might be nice to assert sig_type->type == NULL here,
23100 we can get here for DW_AT_imported_declaration where we need
23101 the DIE not the type. */
23103 /* If necessary, add it to the queue and load its DIEs. */
23105 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23106 read_signatured_type (sig_type);
23108 sig_cu = sig_type->per_cu.cu;
23109 gdb_assert (sig_cu != NULL);
23110 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23111 temp_die.sect_off = sig_type->type_offset_in_section;
23112 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23113 to_underlying (temp_die.sect_off));
23116 struct dwarf2_per_objfile *dwarf2_per_objfile
23117 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23119 /* For .gdb_index version 7 keep track of included TUs.
23120 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23121 if (dwarf2_per_objfile->index_table != NULL
23122 && dwarf2_per_objfile->index_table->version <= 7)
23124 VEC_safe_push (dwarf2_per_cu_ptr,
23125 (*ref_cu)->per_cu->imported_symtabs,
23136 /* Follow signatured type referenced by ATTR in SRC_DIE.
23137 On entry *REF_CU is the CU of SRC_DIE.
23138 On exit *REF_CU is the CU of the result.
23139 The result is the DIE of the type.
23140 If the referenced type cannot be found an error is thrown. */
23142 static struct die_info *
23143 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23144 struct dwarf2_cu **ref_cu)
23146 ULONGEST signature = DW_SIGNATURE (attr);
23147 struct signatured_type *sig_type;
23148 struct die_info *die;
23150 gdb_assert (attr->form == DW_FORM_ref_sig8);
23152 sig_type = lookup_signatured_type (*ref_cu, signature);
23153 /* sig_type will be NULL if the signatured type is missing from
23155 if (sig_type == NULL)
23157 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23158 " from DIE at %s [in module %s]"),
23159 hex_string (signature), sect_offset_str (src_die->sect_off),
23160 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23163 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23166 dump_die_for_error (src_die);
23167 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23168 " from DIE at %s [in module %s]"),
23169 hex_string (signature), sect_offset_str (src_die->sect_off),
23170 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23176 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23177 reading in and processing the type unit if necessary. */
23179 static struct type *
23180 get_signatured_type (struct die_info *die, ULONGEST signature,
23181 struct dwarf2_cu *cu)
23183 struct dwarf2_per_objfile *dwarf2_per_objfile
23184 = cu->per_cu->dwarf2_per_objfile;
23185 struct signatured_type *sig_type;
23186 struct dwarf2_cu *type_cu;
23187 struct die_info *type_die;
23190 sig_type = lookup_signatured_type (cu, signature);
23191 /* sig_type will be NULL if the signatured type is missing from
23193 if (sig_type == NULL)
23195 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23196 " from DIE at %s [in module %s]"),
23197 hex_string (signature), sect_offset_str (die->sect_off),
23198 objfile_name (dwarf2_per_objfile->objfile));
23199 return build_error_marker_type (cu, die);
23202 /* If we already know the type we're done. */
23203 if (sig_type->type != NULL)
23204 return sig_type->type;
23207 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23208 if (type_die != NULL)
23210 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23211 is created. This is important, for example, because for c++ classes
23212 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23213 type = read_type_die (type_die, type_cu);
23216 complaint (_("Dwarf Error: Cannot build signatured type %s"
23217 " referenced from DIE at %s [in module %s]"),
23218 hex_string (signature), sect_offset_str (die->sect_off),
23219 objfile_name (dwarf2_per_objfile->objfile));
23220 type = build_error_marker_type (cu, die);
23225 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23226 " from DIE at %s [in module %s]"),
23227 hex_string (signature), sect_offset_str (die->sect_off),
23228 objfile_name (dwarf2_per_objfile->objfile));
23229 type = build_error_marker_type (cu, die);
23231 sig_type->type = type;
23236 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23237 reading in and processing the type unit if necessary. */
23239 static struct type *
23240 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23241 struct dwarf2_cu *cu) /* ARI: editCase function */
23243 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23244 if (attr_form_is_ref (attr))
23246 struct dwarf2_cu *type_cu = cu;
23247 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23249 return read_type_die (type_die, type_cu);
23251 else if (attr->form == DW_FORM_ref_sig8)
23253 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23257 struct dwarf2_per_objfile *dwarf2_per_objfile
23258 = cu->per_cu->dwarf2_per_objfile;
23260 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23261 " at %s [in module %s]"),
23262 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23263 objfile_name (dwarf2_per_objfile->objfile));
23264 return build_error_marker_type (cu, die);
23268 /* Load the DIEs associated with type unit PER_CU into memory. */
23271 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23273 struct signatured_type *sig_type;
23275 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23276 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23278 /* We have the per_cu, but we need the signatured_type.
23279 Fortunately this is an easy translation. */
23280 gdb_assert (per_cu->is_debug_types);
23281 sig_type = (struct signatured_type *) per_cu;
23283 gdb_assert (per_cu->cu == NULL);
23285 read_signatured_type (sig_type);
23287 gdb_assert (per_cu->cu != NULL);
23290 /* die_reader_func for read_signatured_type.
23291 This is identical to load_full_comp_unit_reader,
23292 but is kept separate for now. */
23295 read_signatured_type_reader (const struct die_reader_specs *reader,
23296 const gdb_byte *info_ptr,
23297 struct die_info *comp_unit_die,
23301 struct dwarf2_cu *cu = reader->cu;
23303 gdb_assert (cu->die_hash == NULL);
23305 htab_create_alloc_ex (cu->header.length / 12,
23309 &cu->comp_unit_obstack,
23310 hashtab_obstack_allocate,
23311 dummy_obstack_deallocate);
23314 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23315 &info_ptr, comp_unit_die);
23316 cu->dies = comp_unit_die;
23317 /* comp_unit_die is not stored in die_hash, no need. */
23319 /* We try not to read any attributes in this function, because not
23320 all CUs needed for references have been loaded yet, and symbol
23321 table processing isn't initialized. But we have to set the CU language,
23322 or we won't be able to build types correctly.
23323 Similarly, if we do not read the producer, we can not apply
23324 producer-specific interpretation. */
23325 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23328 /* Read in a signatured type and build its CU and DIEs.
23329 If the type is a stub for the real type in a DWO file,
23330 read in the real type from the DWO file as well. */
23333 read_signatured_type (struct signatured_type *sig_type)
23335 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23337 gdb_assert (per_cu->is_debug_types);
23338 gdb_assert (per_cu->cu == NULL);
23340 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23341 read_signatured_type_reader, NULL);
23342 sig_type->per_cu.tu_read = 1;
23345 /* Decode simple location descriptions.
23346 Given a pointer to a dwarf block that defines a location, compute
23347 the location and return the value.
23349 NOTE drow/2003-11-18: This function is called in two situations
23350 now: for the address of static or global variables (partial symbols
23351 only) and for offsets into structures which are expected to be
23352 (more or less) constant. The partial symbol case should go away,
23353 and only the constant case should remain. That will let this
23354 function complain more accurately. A few special modes are allowed
23355 without complaint for global variables (for instance, global
23356 register values and thread-local values).
23358 A location description containing no operations indicates that the
23359 object is optimized out. The return value is 0 for that case.
23360 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23361 callers will only want a very basic result and this can become a
23364 Note that stack[0] is unused except as a default error return. */
23367 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23369 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23371 size_t size = blk->size;
23372 const gdb_byte *data = blk->data;
23373 CORE_ADDR stack[64];
23375 unsigned int bytes_read, unsnd;
23381 stack[++stacki] = 0;
23420 stack[++stacki] = op - DW_OP_lit0;
23455 stack[++stacki] = op - DW_OP_reg0;
23457 dwarf2_complex_location_expr_complaint ();
23461 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23463 stack[++stacki] = unsnd;
23465 dwarf2_complex_location_expr_complaint ();
23469 stack[++stacki] = read_address (objfile->obfd, &data[i],
23474 case DW_OP_const1u:
23475 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23479 case DW_OP_const1s:
23480 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23484 case DW_OP_const2u:
23485 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23489 case DW_OP_const2s:
23490 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23494 case DW_OP_const4u:
23495 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23499 case DW_OP_const4s:
23500 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23504 case DW_OP_const8u:
23505 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23510 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23516 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23521 stack[stacki + 1] = stack[stacki];
23526 stack[stacki - 1] += stack[stacki];
23530 case DW_OP_plus_uconst:
23531 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23537 stack[stacki - 1] -= stack[stacki];
23542 /* If we're not the last op, then we definitely can't encode
23543 this using GDB's address_class enum. This is valid for partial
23544 global symbols, although the variable's address will be bogus
23547 dwarf2_complex_location_expr_complaint ();
23550 case DW_OP_GNU_push_tls_address:
23551 case DW_OP_form_tls_address:
23552 /* The top of the stack has the offset from the beginning
23553 of the thread control block at which the variable is located. */
23554 /* Nothing should follow this operator, so the top of stack would
23556 /* This is valid for partial global symbols, but the variable's
23557 address will be bogus in the psymtab. Make it always at least
23558 non-zero to not look as a variable garbage collected by linker
23559 which have DW_OP_addr 0. */
23561 dwarf2_complex_location_expr_complaint ();
23565 case DW_OP_GNU_uninit:
23568 case DW_OP_GNU_addr_index:
23569 case DW_OP_GNU_const_index:
23570 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23577 const char *name = get_DW_OP_name (op);
23580 complaint (_("unsupported stack op: '%s'"),
23583 complaint (_("unsupported stack op: '%02x'"),
23587 return (stack[stacki]);
23590 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23591 outside of the allocated space. Also enforce minimum>0. */
23592 if (stacki >= ARRAY_SIZE (stack) - 1)
23594 complaint (_("location description stack overflow"));
23600 complaint (_("location description stack underflow"));
23604 return (stack[stacki]);
23607 /* memory allocation interface */
23609 static struct dwarf_block *
23610 dwarf_alloc_block (struct dwarf2_cu *cu)
23612 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23615 static struct die_info *
23616 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23618 struct die_info *die;
23619 size_t size = sizeof (struct die_info);
23622 size += (num_attrs - 1) * sizeof (struct attribute);
23624 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23625 memset (die, 0, sizeof (struct die_info));
23630 /* Macro support. */
23632 /* Return file name relative to the compilation directory of file number I in
23633 *LH's file name table. The result is allocated using xmalloc; the caller is
23634 responsible for freeing it. */
23637 file_file_name (int file, struct line_header *lh)
23639 /* Is the file number a valid index into the line header's file name
23640 table? Remember that file numbers start with one, not zero. */
23641 if (1 <= file && file <= lh->file_names.size ())
23643 const file_entry &fe = lh->file_names[file - 1];
23645 if (!IS_ABSOLUTE_PATH (fe.name))
23647 const char *dir = fe.include_dir (lh);
23649 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23651 return xstrdup (fe.name);
23655 /* The compiler produced a bogus file number. We can at least
23656 record the macro definitions made in the file, even if we
23657 won't be able to find the file by name. */
23658 char fake_name[80];
23660 xsnprintf (fake_name, sizeof (fake_name),
23661 "<bad macro file number %d>", file);
23663 complaint (_("bad file number in macro information (%d)"),
23666 return xstrdup (fake_name);
23670 /* Return the full name of file number I in *LH's file name table.
23671 Use COMP_DIR as the name of the current directory of the
23672 compilation. The result is allocated using xmalloc; the caller is
23673 responsible for freeing it. */
23675 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23677 /* Is the file number a valid index into the line header's file name
23678 table? Remember that file numbers start with one, not zero. */
23679 if (1 <= file && file <= lh->file_names.size ())
23681 char *relative = file_file_name (file, lh);
23683 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23685 return reconcat (relative, comp_dir, SLASH_STRING,
23686 relative, (char *) NULL);
23689 return file_file_name (file, lh);
23693 static struct macro_source_file *
23694 macro_start_file (int file, int line,
23695 struct macro_source_file *current_file,
23696 struct line_header *lh)
23698 /* File name relative to the compilation directory of this source file. */
23699 char *file_name = file_file_name (file, lh);
23701 if (! current_file)
23703 /* Note: We don't create a macro table for this compilation unit
23704 at all until we actually get a filename. */
23705 struct macro_table *macro_table = get_macro_table ();
23707 /* If we have no current file, then this must be the start_file
23708 directive for the compilation unit's main source file. */
23709 current_file = macro_set_main (macro_table, file_name);
23710 macro_define_special (macro_table);
23713 current_file = macro_include (current_file, line, file_name);
23717 return current_file;
23720 static const char *
23721 consume_improper_spaces (const char *p, const char *body)
23725 complaint (_("macro definition contains spaces "
23726 "in formal argument list:\n`%s'"),
23738 parse_macro_definition (struct macro_source_file *file, int line,
23743 /* The body string takes one of two forms. For object-like macro
23744 definitions, it should be:
23746 <macro name> " " <definition>
23748 For function-like macro definitions, it should be:
23750 <macro name> "() " <definition>
23752 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23754 Spaces may appear only where explicitly indicated, and in the
23757 The Dwarf 2 spec says that an object-like macro's name is always
23758 followed by a space, but versions of GCC around March 2002 omit
23759 the space when the macro's definition is the empty string.
23761 The Dwarf 2 spec says that there should be no spaces between the
23762 formal arguments in a function-like macro's formal argument list,
23763 but versions of GCC around March 2002 include spaces after the
23767 /* Find the extent of the macro name. The macro name is terminated
23768 by either a space or null character (for an object-like macro) or
23769 an opening paren (for a function-like macro). */
23770 for (p = body; *p; p++)
23771 if (*p == ' ' || *p == '(')
23774 if (*p == ' ' || *p == '\0')
23776 /* It's an object-like macro. */
23777 int name_len = p - body;
23778 char *name = savestring (body, name_len);
23779 const char *replacement;
23782 replacement = body + name_len + 1;
23785 dwarf2_macro_malformed_definition_complaint (body);
23786 replacement = body + name_len;
23789 macro_define_object (file, line, name, replacement);
23793 else if (*p == '(')
23795 /* It's a function-like macro. */
23796 char *name = savestring (body, p - body);
23799 char **argv = XNEWVEC (char *, argv_size);
23803 p = consume_improper_spaces (p, body);
23805 /* Parse the formal argument list. */
23806 while (*p && *p != ')')
23808 /* Find the extent of the current argument name. */
23809 const char *arg_start = p;
23811 while (*p && *p != ',' && *p != ')' && *p != ' ')
23814 if (! *p || p == arg_start)
23815 dwarf2_macro_malformed_definition_complaint (body);
23818 /* Make sure argv has room for the new argument. */
23819 if (argc >= argv_size)
23822 argv = XRESIZEVEC (char *, argv, argv_size);
23825 argv[argc++] = savestring (arg_start, p - arg_start);
23828 p = consume_improper_spaces (p, body);
23830 /* Consume the comma, if present. */
23835 p = consume_improper_spaces (p, body);
23844 /* Perfectly formed definition, no complaints. */
23845 macro_define_function (file, line, name,
23846 argc, (const char **) argv,
23848 else if (*p == '\0')
23850 /* Complain, but do define it. */
23851 dwarf2_macro_malformed_definition_complaint (body);
23852 macro_define_function (file, line, name,
23853 argc, (const char **) argv,
23857 /* Just complain. */
23858 dwarf2_macro_malformed_definition_complaint (body);
23861 /* Just complain. */
23862 dwarf2_macro_malformed_definition_complaint (body);
23868 for (i = 0; i < argc; i++)
23874 dwarf2_macro_malformed_definition_complaint (body);
23877 /* Skip some bytes from BYTES according to the form given in FORM.
23878 Returns the new pointer. */
23880 static const gdb_byte *
23881 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23882 enum dwarf_form form,
23883 unsigned int offset_size,
23884 struct dwarf2_section_info *section)
23886 unsigned int bytes_read;
23890 case DW_FORM_data1:
23895 case DW_FORM_data2:
23899 case DW_FORM_data4:
23903 case DW_FORM_data8:
23907 case DW_FORM_data16:
23911 case DW_FORM_string:
23912 read_direct_string (abfd, bytes, &bytes_read);
23913 bytes += bytes_read;
23916 case DW_FORM_sec_offset:
23918 case DW_FORM_GNU_strp_alt:
23919 bytes += offset_size;
23922 case DW_FORM_block:
23923 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23924 bytes += bytes_read;
23927 case DW_FORM_block1:
23928 bytes += 1 + read_1_byte (abfd, bytes);
23930 case DW_FORM_block2:
23931 bytes += 2 + read_2_bytes (abfd, bytes);
23933 case DW_FORM_block4:
23934 bytes += 4 + read_4_bytes (abfd, bytes);
23937 case DW_FORM_sdata:
23938 case DW_FORM_udata:
23939 case DW_FORM_GNU_addr_index:
23940 case DW_FORM_GNU_str_index:
23941 bytes = gdb_skip_leb128 (bytes, buffer_end);
23944 dwarf2_section_buffer_overflow_complaint (section);
23949 case DW_FORM_implicit_const:
23954 complaint (_("invalid form 0x%x in `%s'"),
23955 form, get_section_name (section));
23963 /* A helper for dwarf_decode_macros that handles skipping an unknown
23964 opcode. Returns an updated pointer to the macro data buffer; or,
23965 on error, issues a complaint and returns NULL. */
23967 static const gdb_byte *
23968 skip_unknown_opcode (unsigned int opcode,
23969 const gdb_byte **opcode_definitions,
23970 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23972 unsigned int offset_size,
23973 struct dwarf2_section_info *section)
23975 unsigned int bytes_read, i;
23977 const gdb_byte *defn;
23979 if (opcode_definitions[opcode] == NULL)
23981 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23986 defn = opcode_definitions[opcode];
23987 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23988 defn += bytes_read;
23990 for (i = 0; i < arg; ++i)
23992 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23993 (enum dwarf_form) defn[i], offset_size,
23995 if (mac_ptr == NULL)
23997 /* skip_form_bytes already issued the complaint. */
24005 /* A helper function which parses the header of a macro section.
24006 If the macro section is the extended (for now called "GNU") type,
24007 then this updates *OFFSET_SIZE. Returns a pointer to just after
24008 the header, or issues a complaint and returns NULL on error. */
24010 static const gdb_byte *
24011 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24013 const gdb_byte *mac_ptr,
24014 unsigned int *offset_size,
24015 int section_is_gnu)
24017 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24019 if (section_is_gnu)
24021 unsigned int version, flags;
24023 version = read_2_bytes (abfd, mac_ptr);
24024 if (version != 4 && version != 5)
24026 complaint (_("unrecognized version `%d' in .debug_macro section"),
24032 flags = read_1_byte (abfd, mac_ptr);
24034 *offset_size = (flags & 1) ? 8 : 4;
24036 if ((flags & 2) != 0)
24037 /* We don't need the line table offset. */
24038 mac_ptr += *offset_size;
24040 /* Vendor opcode descriptions. */
24041 if ((flags & 4) != 0)
24043 unsigned int i, count;
24045 count = read_1_byte (abfd, mac_ptr);
24047 for (i = 0; i < count; ++i)
24049 unsigned int opcode, bytes_read;
24052 opcode = read_1_byte (abfd, mac_ptr);
24054 opcode_definitions[opcode] = mac_ptr;
24055 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24056 mac_ptr += bytes_read;
24065 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24066 including DW_MACRO_import. */
24069 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24071 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24072 struct macro_source_file *current_file,
24073 struct line_header *lh,
24074 struct dwarf2_section_info *section,
24075 int section_is_gnu, int section_is_dwz,
24076 unsigned int offset_size,
24077 htab_t include_hash)
24079 struct objfile *objfile = dwarf2_per_objfile->objfile;
24080 enum dwarf_macro_record_type macinfo_type;
24081 int at_commandline;
24082 const gdb_byte *opcode_definitions[256];
24084 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24085 &offset_size, section_is_gnu);
24086 if (mac_ptr == NULL)
24088 /* We already issued a complaint. */
24092 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24093 GDB is still reading the definitions from command line. First
24094 DW_MACINFO_start_file will need to be ignored as it was already executed
24095 to create CURRENT_FILE for the main source holding also the command line
24096 definitions. On first met DW_MACINFO_start_file this flag is reset to
24097 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24099 at_commandline = 1;
24103 /* Do we at least have room for a macinfo type byte? */
24104 if (mac_ptr >= mac_end)
24106 dwarf2_section_buffer_overflow_complaint (section);
24110 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24113 /* Note that we rely on the fact that the corresponding GNU and
24114 DWARF constants are the same. */
24116 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24117 switch (macinfo_type)
24119 /* A zero macinfo type indicates the end of the macro
24124 case DW_MACRO_define:
24125 case DW_MACRO_undef:
24126 case DW_MACRO_define_strp:
24127 case DW_MACRO_undef_strp:
24128 case DW_MACRO_define_sup:
24129 case DW_MACRO_undef_sup:
24131 unsigned int bytes_read;
24136 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24137 mac_ptr += bytes_read;
24139 if (macinfo_type == DW_MACRO_define
24140 || macinfo_type == DW_MACRO_undef)
24142 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24143 mac_ptr += bytes_read;
24147 LONGEST str_offset;
24149 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24150 mac_ptr += offset_size;
24152 if (macinfo_type == DW_MACRO_define_sup
24153 || macinfo_type == DW_MACRO_undef_sup
24156 struct dwz_file *dwz
24157 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24159 body = read_indirect_string_from_dwz (objfile,
24163 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24167 is_define = (macinfo_type == DW_MACRO_define
24168 || macinfo_type == DW_MACRO_define_strp
24169 || macinfo_type == DW_MACRO_define_sup);
24170 if (! current_file)
24172 /* DWARF violation as no main source is present. */
24173 complaint (_("debug info with no main source gives macro %s "
24175 is_define ? _("definition") : _("undefinition"),
24179 if ((line == 0 && !at_commandline)
24180 || (line != 0 && at_commandline))
24181 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24182 at_commandline ? _("command-line") : _("in-file"),
24183 is_define ? _("definition") : _("undefinition"),
24184 line == 0 ? _("zero") : _("non-zero"), line, body);
24187 parse_macro_definition (current_file, line, body);
24190 gdb_assert (macinfo_type == DW_MACRO_undef
24191 || macinfo_type == DW_MACRO_undef_strp
24192 || macinfo_type == DW_MACRO_undef_sup);
24193 macro_undef (current_file, line, body);
24198 case DW_MACRO_start_file:
24200 unsigned int bytes_read;
24203 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24204 mac_ptr += bytes_read;
24205 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24206 mac_ptr += bytes_read;
24208 if ((line == 0 && !at_commandline)
24209 || (line != 0 && at_commandline))
24210 complaint (_("debug info gives source %d included "
24211 "from %s at %s line %d"),
24212 file, at_commandline ? _("command-line") : _("file"),
24213 line == 0 ? _("zero") : _("non-zero"), line);
24215 if (at_commandline)
24217 /* This DW_MACRO_start_file was executed in the
24219 at_commandline = 0;
24222 current_file = macro_start_file (file, line, current_file, lh);
24226 case DW_MACRO_end_file:
24227 if (! current_file)
24228 complaint (_("macro debug info has an unmatched "
24229 "`close_file' directive"));
24232 current_file = current_file->included_by;
24233 if (! current_file)
24235 enum dwarf_macro_record_type next_type;
24237 /* GCC circa March 2002 doesn't produce the zero
24238 type byte marking the end of the compilation
24239 unit. Complain if it's not there, but exit no
24242 /* Do we at least have room for a macinfo type byte? */
24243 if (mac_ptr >= mac_end)
24245 dwarf2_section_buffer_overflow_complaint (section);
24249 /* We don't increment mac_ptr here, so this is just
24252 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24254 if (next_type != 0)
24255 complaint (_("no terminating 0-type entry for "
24256 "macros in `.debug_macinfo' section"));
24263 case DW_MACRO_import:
24264 case DW_MACRO_import_sup:
24268 bfd *include_bfd = abfd;
24269 struct dwarf2_section_info *include_section = section;
24270 const gdb_byte *include_mac_end = mac_end;
24271 int is_dwz = section_is_dwz;
24272 const gdb_byte *new_mac_ptr;
24274 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24275 mac_ptr += offset_size;
24277 if (macinfo_type == DW_MACRO_import_sup)
24279 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24281 dwarf2_read_section (objfile, &dwz->macro);
24283 include_section = &dwz->macro;
24284 include_bfd = get_section_bfd_owner (include_section);
24285 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24289 new_mac_ptr = include_section->buffer + offset;
24290 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24294 /* This has actually happened; see
24295 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24296 complaint (_("recursive DW_MACRO_import in "
24297 ".debug_macro section"));
24301 *slot = (void *) new_mac_ptr;
24303 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24304 include_bfd, new_mac_ptr,
24305 include_mac_end, current_file, lh,
24306 section, section_is_gnu, is_dwz,
24307 offset_size, include_hash);
24309 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24314 case DW_MACINFO_vendor_ext:
24315 if (!section_is_gnu)
24317 unsigned int bytes_read;
24319 /* This reads the constant, but since we don't recognize
24320 any vendor extensions, we ignore it. */
24321 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24322 mac_ptr += bytes_read;
24323 read_direct_string (abfd, mac_ptr, &bytes_read);
24324 mac_ptr += bytes_read;
24326 /* We don't recognize any vendor extensions. */
24332 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24333 mac_ptr, mac_end, abfd, offset_size,
24335 if (mac_ptr == NULL)
24340 } while (macinfo_type != 0);
24344 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24345 int section_is_gnu)
24347 struct dwarf2_per_objfile *dwarf2_per_objfile
24348 = cu->per_cu->dwarf2_per_objfile;
24349 struct objfile *objfile = dwarf2_per_objfile->objfile;
24350 struct line_header *lh = cu->line_header;
24352 const gdb_byte *mac_ptr, *mac_end;
24353 struct macro_source_file *current_file = 0;
24354 enum dwarf_macro_record_type macinfo_type;
24355 unsigned int offset_size = cu->header.offset_size;
24356 const gdb_byte *opcode_definitions[256];
24358 struct dwarf2_section_info *section;
24359 const char *section_name;
24361 if (cu->dwo_unit != NULL)
24363 if (section_is_gnu)
24365 section = &cu->dwo_unit->dwo_file->sections.macro;
24366 section_name = ".debug_macro.dwo";
24370 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24371 section_name = ".debug_macinfo.dwo";
24376 if (section_is_gnu)
24378 section = &dwarf2_per_objfile->macro;
24379 section_name = ".debug_macro";
24383 section = &dwarf2_per_objfile->macinfo;
24384 section_name = ".debug_macinfo";
24388 dwarf2_read_section (objfile, section);
24389 if (section->buffer == NULL)
24391 complaint (_("missing %s section"), section_name);
24394 abfd = get_section_bfd_owner (section);
24396 /* First pass: Find the name of the base filename.
24397 This filename is needed in order to process all macros whose definition
24398 (or undefinition) comes from the command line. These macros are defined
24399 before the first DW_MACINFO_start_file entry, and yet still need to be
24400 associated to the base file.
24402 To determine the base file name, we scan the macro definitions until we
24403 reach the first DW_MACINFO_start_file entry. We then initialize
24404 CURRENT_FILE accordingly so that any macro definition found before the
24405 first DW_MACINFO_start_file can still be associated to the base file. */
24407 mac_ptr = section->buffer + offset;
24408 mac_end = section->buffer + section->size;
24410 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24411 &offset_size, section_is_gnu);
24412 if (mac_ptr == NULL)
24414 /* We already issued a complaint. */
24420 /* Do we at least have room for a macinfo type byte? */
24421 if (mac_ptr >= mac_end)
24423 /* Complaint is printed during the second pass as GDB will probably
24424 stop the first pass earlier upon finding
24425 DW_MACINFO_start_file. */
24429 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24432 /* Note that we rely on the fact that the corresponding GNU and
24433 DWARF constants are the same. */
24435 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24436 switch (macinfo_type)
24438 /* A zero macinfo type indicates the end of the macro
24443 case DW_MACRO_define:
24444 case DW_MACRO_undef:
24445 /* Only skip the data by MAC_PTR. */
24447 unsigned int bytes_read;
24449 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24450 mac_ptr += bytes_read;
24451 read_direct_string (abfd, mac_ptr, &bytes_read);
24452 mac_ptr += bytes_read;
24456 case DW_MACRO_start_file:
24458 unsigned int bytes_read;
24461 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24462 mac_ptr += bytes_read;
24463 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24464 mac_ptr += bytes_read;
24466 current_file = macro_start_file (file, line, current_file, lh);
24470 case DW_MACRO_end_file:
24471 /* No data to skip by MAC_PTR. */
24474 case DW_MACRO_define_strp:
24475 case DW_MACRO_undef_strp:
24476 case DW_MACRO_define_sup:
24477 case DW_MACRO_undef_sup:
24479 unsigned int bytes_read;
24481 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24482 mac_ptr += bytes_read;
24483 mac_ptr += offset_size;
24487 case DW_MACRO_import:
24488 case DW_MACRO_import_sup:
24489 /* Note that, according to the spec, a transparent include
24490 chain cannot call DW_MACRO_start_file. So, we can just
24491 skip this opcode. */
24492 mac_ptr += offset_size;
24495 case DW_MACINFO_vendor_ext:
24496 /* Only skip the data by MAC_PTR. */
24497 if (!section_is_gnu)
24499 unsigned int bytes_read;
24501 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24502 mac_ptr += bytes_read;
24503 read_direct_string (abfd, mac_ptr, &bytes_read);
24504 mac_ptr += bytes_read;
24509 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24510 mac_ptr, mac_end, abfd, offset_size,
24512 if (mac_ptr == NULL)
24517 } while (macinfo_type != 0 && current_file == NULL);
24519 /* Second pass: Process all entries.
24521 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24522 command-line macro definitions/undefinitions. This flag is unset when we
24523 reach the first DW_MACINFO_start_file entry. */
24525 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24527 NULL, xcalloc, xfree));
24528 mac_ptr = section->buffer + offset;
24529 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24530 *slot = (void *) mac_ptr;
24531 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24532 abfd, mac_ptr, mac_end,
24533 current_file, lh, section,
24534 section_is_gnu, 0, offset_size,
24535 include_hash.get ());
24538 /* Check if the attribute's form is a DW_FORM_block*
24539 if so return true else false. */
24542 attr_form_is_block (const struct attribute *attr)
24544 return (attr == NULL ? 0 :
24545 attr->form == DW_FORM_block1
24546 || attr->form == DW_FORM_block2
24547 || attr->form == DW_FORM_block4
24548 || attr->form == DW_FORM_block
24549 || attr->form == DW_FORM_exprloc);
24552 /* Return non-zero if ATTR's value is a section offset --- classes
24553 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24554 You may use DW_UNSND (attr) to retrieve such offsets.
24556 Section 7.5.4, "Attribute Encodings", explains that no attribute
24557 may have a value that belongs to more than one of these classes; it
24558 would be ambiguous if we did, because we use the same forms for all
24562 attr_form_is_section_offset (const struct attribute *attr)
24564 return (attr->form == DW_FORM_data4
24565 || attr->form == DW_FORM_data8
24566 || attr->form == DW_FORM_sec_offset);
24569 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24570 zero otherwise. When this function returns true, you can apply
24571 dwarf2_get_attr_constant_value to it.
24573 However, note that for some attributes you must check
24574 attr_form_is_section_offset before using this test. DW_FORM_data4
24575 and DW_FORM_data8 are members of both the constant class, and of
24576 the classes that contain offsets into other debug sections
24577 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24578 that, if an attribute's can be either a constant or one of the
24579 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24580 taken as section offsets, not constants.
24582 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24583 cannot handle that. */
24586 attr_form_is_constant (const struct attribute *attr)
24588 switch (attr->form)
24590 case DW_FORM_sdata:
24591 case DW_FORM_udata:
24592 case DW_FORM_data1:
24593 case DW_FORM_data2:
24594 case DW_FORM_data4:
24595 case DW_FORM_data8:
24596 case DW_FORM_implicit_const:
24604 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24605 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24608 attr_form_is_ref (const struct attribute *attr)
24610 switch (attr->form)
24612 case DW_FORM_ref_addr:
24617 case DW_FORM_ref_udata:
24618 case DW_FORM_GNU_ref_alt:
24625 /* Return the .debug_loc section to use for CU.
24626 For DWO files use .debug_loc.dwo. */
24628 static struct dwarf2_section_info *
24629 cu_debug_loc_section (struct dwarf2_cu *cu)
24631 struct dwarf2_per_objfile *dwarf2_per_objfile
24632 = cu->per_cu->dwarf2_per_objfile;
24636 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24638 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
24640 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24641 : &dwarf2_per_objfile->loc);
24644 /* A helper function that fills in a dwarf2_loclist_baton. */
24647 fill_in_loclist_baton (struct dwarf2_cu *cu,
24648 struct dwarf2_loclist_baton *baton,
24649 const struct attribute *attr)
24651 struct dwarf2_per_objfile *dwarf2_per_objfile
24652 = cu->per_cu->dwarf2_per_objfile;
24653 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24655 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24657 baton->per_cu = cu->per_cu;
24658 gdb_assert (baton->per_cu);
24659 /* We don't know how long the location list is, but make sure we
24660 don't run off the edge of the section. */
24661 baton->size = section->size - DW_UNSND (attr);
24662 baton->data = section->buffer + DW_UNSND (attr);
24663 baton->base_address = cu->base_address;
24664 baton->from_dwo = cu->dwo_unit != NULL;
24668 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24669 struct dwarf2_cu *cu, int is_block)
24671 struct dwarf2_per_objfile *dwarf2_per_objfile
24672 = cu->per_cu->dwarf2_per_objfile;
24673 struct objfile *objfile = dwarf2_per_objfile->objfile;
24674 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24676 if (attr_form_is_section_offset (attr)
24677 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24678 the section. If so, fall through to the complaint in the
24680 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24682 struct dwarf2_loclist_baton *baton;
24684 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24686 fill_in_loclist_baton (cu, baton, attr);
24688 if (cu->base_known == 0)
24689 complaint (_("Location list used without "
24690 "specifying the CU base address."));
24692 SYMBOL_ACLASS_INDEX (sym) = (is_block
24693 ? dwarf2_loclist_block_index
24694 : dwarf2_loclist_index);
24695 SYMBOL_LOCATION_BATON (sym) = baton;
24699 struct dwarf2_locexpr_baton *baton;
24701 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24702 baton->per_cu = cu->per_cu;
24703 gdb_assert (baton->per_cu);
24705 if (attr_form_is_block (attr))
24707 /* Note that we're just copying the block's data pointer
24708 here, not the actual data. We're still pointing into the
24709 info_buffer for SYM's objfile; right now we never release
24710 that buffer, but when we do clean up properly this may
24712 baton->size = DW_BLOCK (attr)->size;
24713 baton->data = DW_BLOCK (attr)->data;
24717 dwarf2_invalid_attrib_class_complaint ("location description",
24718 SYMBOL_NATURAL_NAME (sym));
24722 SYMBOL_ACLASS_INDEX (sym) = (is_block
24723 ? dwarf2_locexpr_block_index
24724 : dwarf2_locexpr_index);
24725 SYMBOL_LOCATION_BATON (sym) = baton;
24729 /* Return the OBJFILE associated with the compilation unit CU. If CU
24730 came from a separate debuginfo file, then the master objfile is
24734 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24736 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24738 /* Return the master objfile, so that we can report and look up the
24739 correct file containing this variable. */
24740 if (objfile->separate_debug_objfile_backlink)
24741 objfile = objfile->separate_debug_objfile_backlink;
24746 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24747 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24748 CU_HEADERP first. */
24750 static const struct comp_unit_head *
24751 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24752 struct dwarf2_per_cu_data *per_cu)
24754 const gdb_byte *info_ptr;
24757 return &per_cu->cu->header;
24759 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24761 memset (cu_headerp, 0, sizeof (*cu_headerp));
24762 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24763 rcuh_kind::COMPILE);
24768 /* Return the address size given in the compilation unit header for CU. */
24771 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24773 struct comp_unit_head cu_header_local;
24774 const struct comp_unit_head *cu_headerp;
24776 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24778 return cu_headerp->addr_size;
24781 /* Return the offset size given in the compilation unit header for CU. */
24784 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24786 struct comp_unit_head cu_header_local;
24787 const struct comp_unit_head *cu_headerp;
24789 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24791 return cu_headerp->offset_size;
24794 /* See its dwarf2loc.h declaration. */
24797 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24799 struct comp_unit_head cu_header_local;
24800 const struct comp_unit_head *cu_headerp;
24802 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24804 if (cu_headerp->version == 2)
24805 return cu_headerp->addr_size;
24807 return cu_headerp->offset_size;
24810 /* Return the text offset of the CU. The returned offset comes from
24811 this CU's objfile. If this objfile came from a separate debuginfo
24812 file, then the offset may be different from the corresponding
24813 offset in the parent objfile. */
24816 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24818 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24820 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24823 /* Return DWARF version number of PER_CU. */
24826 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24828 return per_cu->dwarf_version;
24831 /* Locate the .debug_info compilation unit from CU's objfile which contains
24832 the DIE at OFFSET. Raises an error on failure. */
24834 static struct dwarf2_per_cu_data *
24835 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24836 unsigned int offset_in_dwz,
24837 struct dwarf2_per_objfile *dwarf2_per_objfile)
24839 struct dwarf2_per_cu_data *this_cu;
24841 const sect_offset *cu_off;
24844 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24847 struct dwarf2_per_cu_data *mid_cu;
24848 int mid = low + (high - low) / 2;
24850 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24851 cu_off = &mid_cu->sect_off;
24852 if (mid_cu->is_dwz > offset_in_dwz
24853 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24858 gdb_assert (low == high);
24859 this_cu = dwarf2_per_objfile->all_comp_units[low];
24860 cu_off = &this_cu->sect_off;
24861 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24863 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24864 error (_("Dwarf Error: could not find partial DIE containing "
24865 "offset %s [in module %s]"),
24866 sect_offset_str (sect_off),
24867 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24869 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24871 return dwarf2_per_objfile->all_comp_units[low-1];
24875 this_cu = dwarf2_per_objfile->all_comp_units[low];
24876 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24877 && sect_off >= this_cu->sect_off + this_cu->length)
24878 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24879 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24884 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24886 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24887 : per_cu (per_cu_),
24890 checked_producer (0),
24891 producer_is_gxx_lt_4_6 (0),
24892 producer_is_gcc_lt_4_3 (0),
24893 producer_is_icc_lt_14 (0),
24894 processing_has_namespace_info (0)
24899 /* Destroy a dwarf2_cu. */
24901 dwarf2_cu::~dwarf2_cu ()
24906 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24909 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24910 enum language pretend_language)
24912 struct attribute *attr;
24914 /* Set the language we're debugging. */
24915 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24917 set_cu_language (DW_UNSND (attr), cu);
24920 cu->language = pretend_language;
24921 cu->language_defn = language_def (cu->language);
24924 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24927 /* Increase the age counter on each cached compilation unit, and free
24928 any that are too old. */
24931 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24933 struct dwarf2_per_cu_data *per_cu, **last_chain;
24935 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24936 per_cu = dwarf2_per_objfile->read_in_chain;
24937 while (per_cu != NULL)
24939 per_cu->cu->last_used ++;
24940 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24941 dwarf2_mark (per_cu->cu);
24942 per_cu = per_cu->cu->read_in_chain;
24945 per_cu = dwarf2_per_objfile->read_in_chain;
24946 last_chain = &dwarf2_per_objfile->read_in_chain;
24947 while (per_cu != NULL)
24949 struct dwarf2_per_cu_data *next_cu;
24951 next_cu = per_cu->cu->read_in_chain;
24953 if (!per_cu->cu->mark)
24956 *last_chain = next_cu;
24959 last_chain = &per_cu->cu->read_in_chain;
24965 /* Remove a single compilation unit from the cache. */
24968 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24970 struct dwarf2_per_cu_data *per_cu, **last_chain;
24971 struct dwarf2_per_objfile *dwarf2_per_objfile
24972 = target_per_cu->dwarf2_per_objfile;
24974 per_cu = dwarf2_per_objfile->read_in_chain;
24975 last_chain = &dwarf2_per_objfile->read_in_chain;
24976 while (per_cu != NULL)
24978 struct dwarf2_per_cu_data *next_cu;
24980 next_cu = per_cu->cu->read_in_chain;
24982 if (per_cu == target_per_cu)
24986 *last_chain = next_cu;
24990 last_chain = &per_cu->cu->read_in_chain;
24996 /* Cleanup function for the dwarf2_per_objfile data. */
24999 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25001 struct dwarf2_per_objfile *dwarf2_per_objfile
25002 = static_cast<struct dwarf2_per_objfile *> (datum);
25004 delete dwarf2_per_objfile;
25007 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25008 We store these in a hash table separate from the DIEs, and preserve them
25009 when the DIEs are flushed out of cache.
25011 The CU "per_cu" pointer is needed because offset alone is not enough to
25012 uniquely identify the type. A file may have multiple .debug_types sections,
25013 or the type may come from a DWO file. Furthermore, while it's more logical
25014 to use per_cu->section+offset, with Fission the section with the data is in
25015 the DWO file but we don't know that section at the point we need it.
25016 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25017 because we can enter the lookup routine, get_die_type_at_offset, from
25018 outside this file, and thus won't necessarily have PER_CU->cu.
25019 Fortunately, PER_CU is stable for the life of the objfile. */
25021 struct dwarf2_per_cu_offset_and_type
25023 const struct dwarf2_per_cu_data *per_cu;
25024 sect_offset sect_off;
25028 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25031 per_cu_offset_and_type_hash (const void *item)
25033 const struct dwarf2_per_cu_offset_and_type *ofs
25034 = (const struct dwarf2_per_cu_offset_and_type *) item;
25036 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25039 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25042 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25044 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25045 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25046 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25047 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25049 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25050 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25053 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25054 table if necessary. For convenience, return TYPE.
25056 The DIEs reading must have careful ordering to:
25057 * Not cause infite loops trying to read in DIEs as a prerequisite for
25058 reading current DIE.
25059 * Not trying to dereference contents of still incompletely read in types
25060 while reading in other DIEs.
25061 * Enable referencing still incompletely read in types just by a pointer to
25062 the type without accessing its fields.
25064 Therefore caller should follow these rules:
25065 * Try to fetch any prerequisite types we may need to build this DIE type
25066 before building the type and calling set_die_type.
25067 * After building type call set_die_type for current DIE as soon as
25068 possible before fetching more types to complete the current type.
25069 * Make the type as complete as possible before fetching more types. */
25071 static struct type *
25072 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25074 struct dwarf2_per_objfile *dwarf2_per_objfile
25075 = cu->per_cu->dwarf2_per_objfile;
25076 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25077 struct objfile *objfile = dwarf2_per_objfile->objfile;
25078 struct attribute *attr;
25079 struct dynamic_prop prop;
25081 /* For Ada types, make sure that the gnat-specific data is always
25082 initialized (if not already set). There are a few types where
25083 we should not be doing so, because the type-specific area is
25084 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25085 where the type-specific area is used to store the floatformat).
25086 But this is not a problem, because the gnat-specific information
25087 is actually not needed for these types. */
25088 if (need_gnat_info (cu)
25089 && TYPE_CODE (type) != TYPE_CODE_FUNC
25090 && TYPE_CODE (type) != TYPE_CODE_FLT
25091 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25092 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25093 && TYPE_CODE (type) != TYPE_CODE_METHOD
25094 && !HAVE_GNAT_AUX_INFO (type))
25095 INIT_GNAT_SPECIFIC (type);
25097 /* Read DW_AT_allocated and set in type. */
25098 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25099 if (attr_form_is_block (attr))
25101 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25102 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25104 else if (attr != NULL)
25106 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25107 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25108 sect_offset_str (die->sect_off));
25111 /* Read DW_AT_associated and set in type. */
25112 attr = dwarf2_attr (die, DW_AT_associated, cu);
25113 if (attr_form_is_block (attr))
25115 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25116 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25118 else if (attr != NULL)
25120 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25121 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25122 sect_offset_str (die->sect_off));
25125 /* Read DW_AT_data_location and set in type. */
25126 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25127 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25128 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25130 if (dwarf2_per_objfile->die_type_hash == NULL)
25132 dwarf2_per_objfile->die_type_hash =
25133 htab_create_alloc_ex (127,
25134 per_cu_offset_and_type_hash,
25135 per_cu_offset_and_type_eq,
25137 &objfile->objfile_obstack,
25138 hashtab_obstack_allocate,
25139 dummy_obstack_deallocate);
25142 ofs.per_cu = cu->per_cu;
25143 ofs.sect_off = die->sect_off;
25145 slot = (struct dwarf2_per_cu_offset_and_type **)
25146 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25148 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25149 sect_offset_str (die->sect_off));
25150 *slot = XOBNEW (&objfile->objfile_obstack,
25151 struct dwarf2_per_cu_offset_and_type);
25156 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25157 or return NULL if the die does not have a saved type. */
25159 static struct type *
25160 get_die_type_at_offset (sect_offset sect_off,
25161 struct dwarf2_per_cu_data *per_cu)
25163 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25164 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25166 if (dwarf2_per_objfile->die_type_hash == NULL)
25169 ofs.per_cu = per_cu;
25170 ofs.sect_off = sect_off;
25171 slot = ((struct dwarf2_per_cu_offset_and_type *)
25172 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25179 /* Look up the type for DIE in CU in die_type_hash,
25180 or return NULL if DIE does not have a saved type. */
25182 static struct type *
25183 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25185 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25188 /* Add a dependence relationship from CU to REF_PER_CU. */
25191 dwarf2_add_dependence (struct dwarf2_cu *cu,
25192 struct dwarf2_per_cu_data *ref_per_cu)
25196 if (cu->dependencies == NULL)
25198 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25199 NULL, &cu->comp_unit_obstack,
25200 hashtab_obstack_allocate,
25201 dummy_obstack_deallocate);
25203 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25205 *slot = ref_per_cu;
25208 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25209 Set the mark field in every compilation unit in the
25210 cache that we must keep because we are keeping CU. */
25213 dwarf2_mark_helper (void **slot, void *data)
25215 struct dwarf2_per_cu_data *per_cu;
25217 per_cu = (struct dwarf2_per_cu_data *) *slot;
25219 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25220 reading of the chain. As such dependencies remain valid it is not much
25221 useful to track and undo them during QUIT cleanups. */
25222 if (per_cu->cu == NULL)
25225 if (per_cu->cu->mark)
25227 per_cu->cu->mark = 1;
25229 if (per_cu->cu->dependencies != NULL)
25230 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25235 /* Set the mark field in CU and in every other compilation unit in the
25236 cache that we must keep because we are keeping CU. */
25239 dwarf2_mark (struct dwarf2_cu *cu)
25244 if (cu->dependencies != NULL)
25245 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25249 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25253 per_cu->cu->mark = 0;
25254 per_cu = per_cu->cu->read_in_chain;
25258 /* Trivial hash function for partial_die_info: the hash value of a DIE
25259 is its offset in .debug_info for this objfile. */
25262 partial_die_hash (const void *item)
25264 const struct partial_die_info *part_die
25265 = (const struct partial_die_info *) item;
25267 return to_underlying (part_die->sect_off);
25270 /* Trivial comparison function for partial_die_info structures: two DIEs
25271 are equal if they have the same offset. */
25274 partial_die_eq (const void *item_lhs, const void *item_rhs)
25276 const struct partial_die_info *part_die_lhs
25277 = (const struct partial_die_info *) item_lhs;
25278 const struct partial_die_info *part_die_rhs
25279 = (const struct partial_die_info *) item_rhs;
25281 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25284 static struct cmd_list_element *set_dwarf_cmdlist;
25285 static struct cmd_list_element *show_dwarf_cmdlist;
25288 set_dwarf_cmd (const char *args, int from_tty)
25290 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25295 show_dwarf_cmd (const char *args, int from_tty)
25297 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25300 int dwarf_always_disassemble;
25303 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25304 struct cmd_list_element *c, const char *value)
25306 fprintf_filtered (file,
25307 _("Whether to always disassemble "
25308 "DWARF expressions is %s.\n"),
25313 show_check_physname (struct ui_file *file, int from_tty,
25314 struct cmd_list_element *c, const char *value)
25316 fprintf_filtered (file,
25317 _("Whether to check \"physname\" is %s.\n"),
25322 _initialize_dwarf2_read (void)
25324 dwarf2_objfile_data_key
25325 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25327 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25328 Set DWARF specific variables.\n\
25329 Configure DWARF variables such as the cache size"),
25330 &set_dwarf_cmdlist, "maintenance set dwarf ",
25331 0/*allow-unknown*/, &maintenance_set_cmdlist);
25333 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25334 Show DWARF specific variables\n\
25335 Show DWARF variables such as the cache size"),
25336 &show_dwarf_cmdlist, "maintenance show dwarf ",
25337 0/*allow-unknown*/, &maintenance_show_cmdlist);
25339 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25340 &dwarf_max_cache_age, _("\
25341 Set the upper bound on the age of cached DWARF compilation units."), _("\
25342 Show the upper bound on the age of cached DWARF compilation units."), _("\
25343 A higher limit means that cached compilation units will be stored\n\
25344 in memory longer, and more total memory will be used. Zero disables\n\
25345 caching, which can slow down startup."),
25347 show_dwarf_max_cache_age,
25348 &set_dwarf_cmdlist,
25349 &show_dwarf_cmdlist);
25351 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25352 &dwarf_always_disassemble, _("\
25353 Set whether `info address' always disassembles DWARF expressions."), _("\
25354 Show whether `info address' always disassembles DWARF expressions."), _("\
25355 When enabled, DWARF expressions are always printed in an assembly-like\n\
25356 syntax. When disabled, expressions will be printed in a more\n\
25357 conversational style, when possible."),
25359 show_dwarf_always_disassemble,
25360 &set_dwarf_cmdlist,
25361 &show_dwarf_cmdlist);
25363 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25364 Set debugging of the DWARF reader."), _("\
25365 Show debugging of the DWARF reader."), _("\
25366 When enabled (non-zero), debugging messages are printed during DWARF\n\
25367 reading and symtab expansion. A value of 1 (one) provides basic\n\
25368 information. A value greater than 1 provides more verbose information."),
25371 &setdebuglist, &showdebuglist);
25373 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25374 Set debugging of the DWARF DIE reader."), _("\
25375 Show debugging of the DWARF DIE reader."), _("\
25376 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25377 The value is the maximum depth to print."),
25380 &setdebuglist, &showdebuglist);
25382 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25383 Set debugging of the dwarf line reader."), _("\
25384 Show debugging of the dwarf line reader."), _("\
25385 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25386 A value of 1 (one) provides basic information.\n\
25387 A value greater than 1 provides more verbose information."),
25390 &setdebuglist, &showdebuglist);
25392 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25393 Set cross-checking of \"physname\" code against demangler."), _("\
25394 Show cross-checking of \"physname\" code against demangler."), _("\
25395 When enabled, GDB's internal \"physname\" code is checked against\n\
25397 NULL, show_check_physname,
25398 &setdebuglist, &showdebuglist);
25400 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25401 no_class, &use_deprecated_index_sections, _("\
25402 Set whether to use deprecated gdb_index sections."), _("\
25403 Show whether to use deprecated gdb_index sections."), _("\
25404 When enabled, deprecated .gdb_index sections are used anyway.\n\
25405 Normally they are ignored either because of a missing feature or\n\
25406 performance issue.\n\
25407 Warning: This option must be enabled before gdb reads the file."),
25410 &setlist, &showlist);
25412 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25413 &dwarf2_locexpr_funcs);
25414 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25415 &dwarf2_loclist_funcs);
25417 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25418 &dwarf2_block_frame_base_locexpr_funcs);
25419 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25420 &dwarf2_block_frame_base_loclist_funcs);
25423 selftests::register_test ("dw2_expand_symtabs_matching",
25424 selftests::dw2_expand_symtabs_matching::run_test);