1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
58 #include "exceptions.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "filestuff.h"
75 #include <sys/types.h>
77 typedef struct symbol *symbolp;
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static unsigned int dwarf2_read_debug = 0;
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
94 static const struct objfile_data *dwarf2_objfile_data_key;
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
103 /* A descriptor for dwarf sections.
105 S.ASECTION, SIZE are typically initialized when the objfile is first
106 scanned. BUFFER, READIN are filled in later when the section is read.
107 If the section contained compressed data then SIZE is updated to record
108 the uncompressed size of the section.
110 DWP file format V2 introduces a wrinkle that is easiest to handle by
111 creating the concept of virtual sections contained within a real section.
112 In DWP V2 the sections of the input DWO files are concatenated together
113 into one section, but section offsets are kept relative to the original
115 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
116 the real section this "virtual" section is contained in, and BUFFER,SIZE
117 describe the virtual section. */
119 struct dwarf2_section_info
123 /* If this is a real section, the bfd section. */
125 /* If this is a virtual section, pointer to the containing ("real")
127 struct dwarf2_section_info *containing_section;
129 /* Pointer to section data, only valid if readin. */
130 const gdb_byte *buffer;
131 /* The size of the section, real or virtual. */
133 /* If this is a virtual section, the offset in the real section.
134 Only valid if is_virtual. */
135 bfd_size_type virtual_offset;
136 /* True if we have tried to read this section. */
138 /* True if this is a virtual section, False otherwise.
139 This specifies which of s.asection and s.containing_section to use. */
143 typedef struct dwarf2_section_info dwarf2_section_info_def;
144 DEF_VEC_O (dwarf2_section_info_def);
146 /* All offsets in the index are of this type. It must be
147 architecture-independent. */
148 typedef uint32_t offset_type;
150 DEF_VEC_I (offset_type);
152 /* Ensure only legit values are used. */
153 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
155 gdb_assert ((unsigned int) (value) <= 1); \
156 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 /* Ensure only legit values are used. */
160 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
162 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
163 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
164 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
168 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
170 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
171 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 /* A description of the mapped index. The file format is described in
175 a comment by the code that writes the index. */
178 /* Index data format version. */
181 /* The total length of the buffer. */
184 /* A pointer to the address table data. */
185 const gdb_byte *address_table;
187 /* Size of the address table data in bytes. */
188 offset_type address_table_size;
190 /* The symbol table, implemented as a hash table. */
191 const offset_type *symbol_table;
193 /* Size in slots, each slot is 2 offset_types. */
194 offset_type symbol_table_slots;
196 /* A pointer to the constant pool. */
197 const char *constant_pool;
200 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
201 DEF_VEC_P (dwarf2_per_cu_ptr);
203 /* Collection of data recorded per objfile.
204 This hangs off of dwarf2_objfile_data_key. */
206 struct dwarf2_per_objfile
208 struct dwarf2_section_info info;
209 struct dwarf2_section_info abbrev;
210 struct dwarf2_section_info line;
211 struct dwarf2_section_info loc;
212 struct dwarf2_section_info macinfo;
213 struct dwarf2_section_info macro;
214 struct dwarf2_section_info str;
215 struct dwarf2_section_info ranges;
216 struct dwarf2_section_info addr;
217 struct dwarf2_section_info frame;
218 struct dwarf2_section_info eh_frame;
219 struct dwarf2_section_info gdb_index;
221 VEC (dwarf2_section_info_def) *types;
224 struct objfile *objfile;
226 /* Table of all the compilation units. This is used to locate
227 the target compilation unit of a particular reference. */
228 struct dwarf2_per_cu_data **all_comp_units;
230 /* The number of compilation units in ALL_COMP_UNITS. */
233 /* The number of .debug_types-related CUs. */
236 /* The number of elements allocated in all_type_units.
237 If there are skeleton-less TUs, we add them to all_type_units lazily. */
238 int n_allocated_type_units;
240 /* The .debug_types-related CUs (TUs).
241 This is stored in malloc space because we may realloc it. */
242 struct signatured_type **all_type_units;
244 /* Table of struct type_unit_group objects.
245 The hash key is the DW_AT_stmt_list value. */
246 htab_t type_unit_groups;
248 /* A table mapping .debug_types signatures to its signatured_type entry.
249 This is NULL if the .debug_types section hasn't been read in yet. */
250 htab_t signatured_types;
252 /* Type unit statistics, to see how well the scaling improvements
256 int nr_uniq_abbrev_tables;
258 int nr_symtab_sharers;
259 int nr_stmt_less_type_units;
260 int nr_all_type_units_reallocs;
263 /* A chain of compilation units that are currently read in, so that
264 they can be freed later. */
265 struct dwarf2_per_cu_data *read_in_chain;
267 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
268 This is NULL if the table hasn't been allocated yet. */
271 /* Non-zero if we've check for whether there is a DWP file. */
274 /* The DWP file if there is one, or NULL. */
275 struct dwp_file *dwp_file;
277 /* The shared '.dwz' file, if one exists. This is used when the
278 original data was compressed using 'dwz -m'. */
279 struct dwz_file *dwz_file;
281 /* A flag indicating wether this objfile has a section loaded at a
283 int has_section_at_zero;
285 /* True if we are using the mapped index,
286 or we are faking it for OBJF_READNOW's sake. */
287 unsigned char using_index;
289 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
290 struct mapped_index *index_table;
292 /* When using index_table, this keeps track of all quick_file_names entries.
293 TUs typically share line table entries with a CU, so we maintain a
294 separate table of all line table entries to support the sharing.
295 Note that while there can be way more TUs than CUs, we've already
296 sorted all the TUs into "type unit groups", grouped by their
297 DW_AT_stmt_list value. Therefore the only sharing done here is with a
298 CU and its associated TU group if there is one. */
299 htab_t quick_file_names_table;
301 /* Set during partial symbol reading, to prevent queueing of full
303 int reading_partial_symbols;
305 /* Table mapping type DIEs to their struct type *.
306 This is NULL if not allocated yet.
307 The mapping is done via (CU/TU + DIE offset) -> type. */
308 htab_t die_type_hash;
310 /* The CUs we recently read. */
311 VEC (dwarf2_per_cu_ptr) *just_read_cus;
314 static struct dwarf2_per_objfile *dwarf2_per_objfile;
316 /* Default names of the debugging sections. */
318 /* Note that if the debugging section has been compressed, it might
319 have a name like .zdebug_info. */
321 static const struct dwarf2_debug_sections dwarf2_elf_names =
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_line", ".zdebug_line" },
326 { ".debug_loc", ".zdebug_loc" },
327 { ".debug_macinfo", ".zdebug_macinfo" },
328 { ".debug_macro", ".zdebug_macro" },
329 { ".debug_str", ".zdebug_str" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_types", ".zdebug_types" },
332 { ".debug_addr", ".zdebug_addr" },
333 { ".debug_frame", ".zdebug_frame" },
334 { ".eh_frame", NULL },
335 { ".gdb_index", ".zgdb_index" },
339 /* List of DWO/DWP sections. */
341 static const struct dwop_section_names
343 struct dwarf2_section_names abbrev_dwo;
344 struct dwarf2_section_names info_dwo;
345 struct dwarf2_section_names line_dwo;
346 struct dwarf2_section_names loc_dwo;
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
349 struct dwarf2_section_names str_dwo;
350 struct dwarf2_section_names str_offsets_dwo;
351 struct dwarf2_section_names types_dwo;
352 struct dwarf2_section_names cu_index;
353 struct dwarf2_section_names tu_index;
357 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
358 { ".debug_info.dwo", ".zdebug_info.dwo" },
359 { ".debug_line.dwo", ".zdebug_line.dwo" },
360 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
361 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
362 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
363 { ".debug_str.dwo", ".zdebug_str.dwo" },
364 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
365 { ".debug_types.dwo", ".zdebug_types.dwo" },
366 { ".debug_cu_index", ".zdebug_cu_index" },
367 { ".debug_tu_index", ".zdebug_tu_index" },
370 /* local data types */
372 /* The data in a compilation unit header, after target2host
373 translation, looks like this. */
374 struct comp_unit_head
378 unsigned char addr_size;
379 unsigned char signed_addr_p;
380 sect_offset abbrev_offset;
382 /* Size of file offsets; either 4 or 8. */
383 unsigned int offset_size;
385 /* Size of the length field; either 4 or 12. */
386 unsigned int initial_length_size;
388 /* Offset to the first byte of this compilation unit header in the
389 .debug_info section, for resolving relative reference dies. */
392 /* Offset to first die in this cu from the start of the cu.
393 This will be the first byte following the compilation unit header. */
394 cu_offset first_die_offset;
397 /* Type used for delaying computation of method physnames.
398 See comments for compute_delayed_physnames. */
399 struct delayed_method_info
401 /* The type to which the method is attached, i.e., its parent class. */
404 /* The index of the method in the type's function fieldlists. */
407 /* The index of the method in the fieldlist. */
410 /* The name of the DIE. */
413 /* The DIE associated with this method. */
414 struct die_info *die;
417 typedef struct delayed_method_info delayed_method_info;
418 DEF_VEC_O (delayed_method_info);
420 /* Internal state when decoding a particular compilation unit. */
423 /* The objfile containing this compilation unit. */
424 struct objfile *objfile;
426 /* The header of the compilation unit. */
427 struct comp_unit_head header;
429 /* Base address of this compilation unit. */
430 CORE_ADDR base_address;
432 /* Non-zero if base_address has been set. */
435 /* The language we are debugging. */
436 enum language language;
437 const struct language_defn *language_defn;
439 const char *producer;
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope;
452 /* The abbrev table for this CU.
453 Normally this points to the abbrev table in the objfile.
454 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
455 struct abbrev_table *abbrev_table;
457 /* Hash table holding all the loaded partial DIEs
458 with partial_die->offset.SECT_OFF as hash. */
461 /* Storage for things with the same lifetime as this read-in compilation
462 unit, including partial DIEs. */
463 struct obstack comp_unit_obstack;
465 /* When multiple dwarf2_cu structures are living in memory, this field
466 chains them all together, so that they can be released efficiently.
467 We will probably also want a generation counter so that most-recently-used
468 compilation units are cached... */
469 struct dwarf2_per_cu_data *read_in_chain;
471 /* Backlink to our per_cu entry. */
472 struct dwarf2_per_cu_data *per_cu;
474 /* How many compilation units ago was this CU last referenced? */
477 /* A hash table of DIE cu_offset for following references with
478 die_info->offset.sect_off as hash. */
481 /* Full DIEs if read in. */
482 struct die_info *dies;
484 /* A set of pointers to dwarf2_per_cu_data objects for compilation
485 units referenced by this one. Only set during full symbol processing;
486 partial symbol tables do not have dependencies. */
489 /* Header data from the line table, during full symbol processing. */
490 struct line_header *line_header;
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 VEC (delayed_method_info) *method_list;
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab;
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
508 struct dwo_unit *dwo_unit;
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
512 Note this value comes from the Fission stub CU/TU's DIE. */
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
517 Note this value comes from the Fission stub CU/TU's DIE.
518 Also note that the value is zero in the non-DWO case so this value can
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
525 ULONGEST ranges_base;
527 /* Mark used when releasing cached dies. */
528 unsigned int mark : 1;
530 /* This CU references .debug_loc. See the symtab->locations_valid field.
531 This test is imperfect as there may exist optimized debug code not using
532 any location list and still facing inlining issues if handled as
533 unoptimized code. For a future better test see GCC PR other/32998. */
534 unsigned int has_loclist : 1;
536 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
537 if all the producer_is_* fields are valid. This information is cached
538 because profiling CU expansion showed excessive time spent in
539 producer_is_gxx_lt_4_6. */
540 unsigned int checked_producer : 1;
541 unsigned int producer_is_gxx_lt_4_6 : 1;
542 unsigned int producer_is_gcc_lt_4_3 : 1;
543 unsigned int producer_is_icc : 1;
545 /* When set, the file that we're processing is known to have
546 debugging info for C++ namespaces. GCC 3.3.x did not produce
547 this information, but later versions do. */
549 unsigned int processing_has_namespace_info : 1;
552 /* Persistent data held for a compilation unit, even when not
553 processing it. We put a pointer to this structure in the
554 read_symtab_private field of the psymtab. */
556 struct dwarf2_per_cu_data
558 /* The start offset and length of this compilation unit.
559 NOTE: Unlike comp_unit_head.length, this length includes
561 If the DIE refers to a DWO file, this is always of the original die,
566 /* Flag indicating this compilation unit will be read in before
567 any of the current compilation units are processed. */
568 unsigned int queued : 1;
570 /* This flag will be set when reading partial DIEs if we need to load
571 absolutely all DIEs for this compilation unit, instead of just the ones
572 we think are interesting. It gets set if we look for a DIE in the
573 hash table and don't find it. */
574 unsigned int load_all_dies : 1;
576 /* Non-zero if this CU is from .debug_types.
577 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
579 unsigned int is_debug_types : 1;
581 /* Non-zero if this CU is from the .dwz file. */
582 unsigned int is_dwz : 1;
584 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
585 This flag is only valid if is_debug_types is true.
586 We can't read a CU directly from a DWO file: There are required
587 attributes in the stub. */
588 unsigned int reading_dwo_directly : 1;
590 /* Non-zero if the TU has been read.
591 This is used to assist the "Stay in DWO Optimization" for Fission:
592 When reading a DWO, it's faster to read TUs from the DWO instead of
593 fetching them from random other DWOs (due to comdat folding).
594 If the TU has already been read, the optimization is unnecessary
595 (and unwise - we don't want to change where gdb thinks the TU lives
597 This flag is only valid if is_debug_types is true. */
598 unsigned int tu_read : 1;
600 /* The section this CU/TU lives in.
601 If the DIE refers to a DWO file, this is always the original die,
603 struct dwarf2_section_info *section;
605 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
606 of the CU cache it gets reset to NULL again. */
607 struct dwarf2_cu *cu;
609 /* The corresponding objfile.
610 Normally we can get the objfile from dwarf2_per_objfile.
611 However we can enter this file with just a "per_cu" handle. */
612 struct objfile *objfile;
614 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
615 is active. Otherwise, the 'psymtab' field is active. */
618 /* The partial symbol table associated with this compilation unit,
619 or NULL for unread partial units. */
620 struct partial_symtab *psymtab;
622 /* Data needed by the "quick" functions. */
623 struct dwarf2_per_cu_quick_data *quick;
626 /* The CUs we import using DW_TAG_imported_unit. This is filled in
627 while reading psymtabs, used to compute the psymtab dependencies,
628 and then cleared. Then it is filled in again while reading full
629 symbols, and only deleted when the objfile is destroyed.
631 This is also used to work around a difference between the way gold
632 generates .gdb_index version <=7 and the way gdb does. Arguably this
633 is a gold bug. For symbols coming from TUs, gold records in the index
634 the CU that includes the TU instead of the TU itself. This breaks
635 dw2_lookup_symbol: It assumes that if the index says symbol X lives
636 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
637 will find X. Alas TUs live in their own symtab, so after expanding CU Y
638 we need to look in TU Z to find X. Fortunately, this is akin to
639 DW_TAG_imported_unit, so we just use the same mechanism: For
640 .gdb_index version <=7 this also records the TUs that the CU referred
641 to. Concurrently with this change gdb was modified to emit version 8
642 indices so we only pay a price for gold generated indices.
643 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
644 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 /* Entry in the signatured_types hash table. */
649 struct signatured_type
651 /* The "per_cu" object of this type.
652 This struct is used iff per_cu.is_debug_types.
653 N.B.: This is the first member so that it's easy to convert pointers
655 struct dwarf2_per_cu_data per_cu;
657 /* The type's signature. */
660 /* Offset in the TU of the type's DIE, as read from the TU header.
661 If this TU is a DWO stub and the definition lives in a DWO file
662 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
663 cu_offset type_offset_in_tu;
665 /* Offset in the section of the type's DIE.
666 If the definition lives in a DWO file, this is the offset in the
667 .debug_types.dwo section.
668 The value is zero until the actual value is known.
669 Zero is otherwise not a valid section offset. */
670 sect_offset type_offset_in_section;
672 /* Type units are grouped by their DW_AT_stmt_list entry so that they
673 can share them. This points to the containing symtab. */
674 struct type_unit_group *type_unit_group;
677 The first time we encounter this type we fully read it in and install it
678 in the symbol tables. Subsequent times we only need the type. */
681 /* Containing DWO unit.
682 This field is valid iff per_cu.reading_dwo_directly. */
683 struct dwo_unit *dwo_unit;
686 typedef struct signatured_type *sig_type_ptr;
687 DEF_VEC_P (sig_type_ptr);
689 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
690 This includes type_unit_group and quick_file_names. */
692 struct stmt_list_hash
694 /* The DWO unit this table is from or NULL if there is none. */
695 struct dwo_unit *dwo_unit;
697 /* Offset in .debug_line or .debug_line.dwo. */
698 sect_offset line_offset;
701 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
702 an object of this type. */
704 struct type_unit_group
706 /* dwarf2read.c's main "handle" on a TU symtab.
707 To simplify things we create an artificial CU that "includes" all the
708 type units using this stmt_list so that the rest of the code still has
709 a "per_cu" handle on the symtab.
710 This PER_CU is recognized by having no section. */
711 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
712 struct dwarf2_per_cu_data per_cu;
714 /* The TUs that share this DW_AT_stmt_list entry.
715 This is added to while parsing type units to build partial symtabs,
716 and is deleted afterwards and not used again. */
717 VEC (sig_type_ptr) *tus;
719 /* The primary symtab.
720 Type units in a group needn't all be defined in the same source file,
721 so we create an essentially anonymous symtab as the primary symtab. */
722 struct symtab *primary_symtab;
724 /* The data used to construct the hash key. */
725 struct stmt_list_hash hash;
727 /* The number of symtabs from the line header.
728 The value here must match line_header.num_file_names. */
729 unsigned int num_symtabs;
731 /* The symbol tables for this TU (obtained from the files listed in
733 WARNING: The order of entries here must match the order of entries
734 in the line header. After the first TU using this type_unit_group, the
735 line header for the subsequent TUs is recreated from this. This is done
736 because we need to use the same symtabs for each TU using the same
737 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
738 there's no guarantee the line header doesn't have duplicate entries. */
739 struct symtab **symtabs;
742 /* These sections are what may appear in a (real or virtual) DWO file. */
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info line;
748 struct dwarf2_section_info loc;
749 struct dwarf2_section_info macinfo;
750 struct dwarf2_section_info macro;
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info str_offsets;
753 /* In the case of a virtual DWO file, these two are unused. */
754 struct dwarf2_section_info info;
755 VEC (dwarf2_section_info_def) *types;
758 /* CUs/TUs in DWP/DWO files. */
762 /* Backlink to the containing struct dwo_file. */
763 struct dwo_file *dwo_file;
765 /* The "id" that distinguishes this CU/TU.
766 .debug_info calls this "dwo_id", .debug_types calls this "signature".
767 Since signatures came first, we stick with it for consistency. */
770 /* The section this CU/TU lives in, in the DWO file. */
771 struct dwarf2_section_info *section;
773 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
777 /* For types, offset in the type's DIE of the type defined by this TU. */
778 cu_offset type_offset_in_tu;
781 /* include/dwarf2.h defines the DWP section codes.
782 It defines a max value but it doesn't define a min value, which we
783 use for error checking, so provide one. */
785 enum dwp_v2_section_ids
790 /* Data for one DWO file.
792 This includes virtual DWO files (a virtual DWO file is a DWO file as it
793 appears in a DWP file). DWP files don't really have DWO files per se -
794 comdat folding of types "loses" the DWO file they came from, and from
795 a high level view DWP files appear to contain a mass of random types.
796 However, to maintain consistency with the non-DWP case we pretend DWP
797 files contain virtual DWO files, and we assign each TU with one virtual
798 DWO file (generally based on the line and abbrev section offsets -
799 a heuristic that seems to work in practice). */
803 /* The DW_AT_GNU_dwo_name attribute.
804 For virtual DWO files the name is constructed from the section offsets
805 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
806 from related CU+TUs. */
807 const char *dwo_name;
809 /* The DW_AT_comp_dir attribute. */
810 const char *comp_dir;
812 /* The bfd, when the file is open. Otherwise this is NULL.
813 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 /* The sections that make up this DWO file.
817 Remember that for virtual DWO files in DWP V2, these are virtual
818 sections (for lack of a better name). */
819 struct dwo_sections sections;
821 /* The CU in the file.
822 We only support one because having more than one requires hacking the
823 dwo_name of each to match, which is highly unlikely to happen.
824 Doing this means all TUs can share comp_dir: We also assume that
825 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 /* Table of TUs in the file.
829 Each element is a struct dwo_unit. */
833 /* These sections are what may appear in a DWP file. */
837 /* These are used by both DWP version 1 and 2. */
838 struct dwarf2_section_info str;
839 struct dwarf2_section_info cu_index;
840 struct dwarf2_section_info tu_index;
842 /* These are only used by DWP version 2 files.
843 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
844 sections are referenced by section number, and are not recorded here.
845 In DWP version 2 there is at most one copy of all these sections, each
846 section being (effectively) comprised of the concatenation of all of the
847 individual sections that exist in the version 1 format.
848 To keep the code simple we treat each of these concatenated pieces as a
849 section itself (a virtual section?). */
850 struct dwarf2_section_info abbrev;
851 struct dwarf2_section_info info;
852 struct dwarf2_section_info line;
853 struct dwarf2_section_info loc;
854 struct dwarf2_section_info macinfo;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info str_offsets;
857 struct dwarf2_section_info types;
860 /* These sections are what may appear in a virtual DWO file in DWP version 1.
861 A virtual DWO file is a DWO file as it appears in a DWP file. */
863 struct virtual_v1_dwo_sections
865 struct dwarf2_section_info abbrev;
866 struct dwarf2_section_info line;
867 struct dwarf2_section_info loc;
868 struct dwarf2_section_info macinfo;
869 struct dwarf2_section_info macro;
870 struct dwarf2_section_info str_offsets;
871 /* Each DWP hash table entry records one CU or one TU.
872 That is recorded here, and copied to dwo_unit.section. */
873 struct dwarf2_section_info info_or_types;
876 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
877 In version 2, the sections of the DWO files are concatenated together
878 and stored in one section of that name. Thus each ELF section contains
879 several "virtual" sections. */
881 struct virtual_v2_dwo_sections
883 bfd_size_type abbrev_offset;
884 bfd_size_type abbrev_size;
886 bfd_size_type line_offset;
887 bfd_size_type line_size;
889 bfd_size_type loc_offset;
890 bfd_size_type loc_size;
892 bfd_size_type macinfo_offset;
893 bfd_size_type macinfo_size;
895 bfd_size_type macro_offset;
896 bfd_size_type macro_size;
898 bfd_size_type str_offsets_offset;
899 bfd_size_type str_offsets_size;
901 /* Each DWP hash table entry records one CU or one TU.
902 That is recorded here, and copied to dwo_unit.section. */
903 bfd_size_type info_or_types_offset;
904 bfd_size_type info_or_types_size;
907 /* Contents of DWP hash tables. */
909 struct dwp_hash_table
911 uint32_t version, nr_columns;
912 uint32_t nr_units, nr_slots;
913 const gdb_byte *hash_table, *unit_table;
918 const gdb_byte *indices;
922 /* This is indexed by column number and gives the id of the section
924 #define MAX_NR_V2_DWO_SECTIONS \
925 (1 /* .debug_info or .debug_types */ \
926 + 1 /* .debug_abbrev */ \
927 + 1 /* .debug_line */ \
928 + 1 /* .debug_loc */ \
929 + 1 /* .debug_str_offsets */ \
930 + 1 /* .debug_macro or .debug_macinfo */)
931 int section_ids[MAX_NR_V2_DWO_SECTIONS];
932 const gdb_byte *offsets;
933 const gdb_byte *sizes;
938 /* Data for one DWP file. */
942 /* Name of the file. */
945 /* File format version. */
951 /* Section info for this file. */
952 struct dwp_sections sections;
954 /* Table of CUs in the file. */
955 const struct dwp_hash_table *cus;
957 /* Table of TUs in the file. */
958 const struct dwp_hash_table *tus;
960 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
964 /* Table to map ELF section numbers to their sections.
965 This is only needed for the DWP V1 file format. */
966 unsigned int num_sections;
967 asection **elf_sections;
970 /* This represents a '.dwz' file. */
974 /* A dwz file can only contain a few sections. */
975 struct dwarf2_section_info abbrev;
976 struct dwarf2_section_info info;
977 struct dwarf2_section_info str;
978 struct dwarf2_section_info line;
979 struct dwarf2_section_info macro;
980 struct dwarf2_section_info gdb_index;
986 /* Struct used to pass misc. parameters to read_die_and_children, et
987 al. which are used for both .debug_info and .debug_types dies.
988 All parameters here are unchanging for the life of the call. This
989 struct exists to abstract away the constant parameters of die reading. */
991 struct die_reader_specs
993 /* The bfd of die_section. */
996 /* The CU of the DIE we are parsing. */
997 struct dwarf2_cu *cu;
999 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1000 struct dwo_file *dwo_file;
1002 /* The section the die comes from.
1003 This is either .debug_info or .debug_types, or the .dwo variants. */
1004 struct dwarf2_section_info *die_section;
1006 /* die_section->buffer. */
1007 const gdb_byte *buffer;
1009 /* The end of the buffer. */
1010 const gdb_byte *buffer_end;
1012 /* The value of the DW_AT_comp_dir attribute. */
1013 const char *comp_dir;
1016 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1017 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1018 const gdb_byte *info_ptr,
1019 struct die_info *comp_unit_die,
1023 /* The line number information for a compilation unit (found in the
1024 .debug_line section) begins with a "statement program header",
1025 which contains the following information. */
1028 unsigned int total_length;
1029 unsigned short version;
1030 unsigned int header_length;
1031 unsigned char minimum_instruction_length;
1032 unsigned char maximum_ops_per_instruction;
1033 unsigned char default_is_stmt;
1035 unsigned char line_range;
1036 unsigned char opcode_base;
1038 /* standard_opcode_lengths[i] is the number of operands for the
1039 standard opcode whose value is i. This means that
1040 standard_opcode_lengths[0] is unused, and the last meaningful
1041 element is standard_opcode_lengths[opcode_base - 1]. */
1042 unsigned char *standard_opcode_lengths;
1044 /* The include_directories table. NOTE! These strings are not
1045 allocated with xmalloc; instead, they are pointers into
1046 debug_line_buffer. If you try to free them, `free' will get
1048 unsigned int num_include_dirs, include_dirs_size;
1049 const char **include_dirs;
1051 /* The file_names table. NOTE! These strings are not allocated
1052 with xmalloc; instead, they are pointers into debug_line_buffer.
1053 Don't try to free them directly. */
1054 unsigned int num_file_names, file_names_size;
1058 unsigned int dir_index;
1059 unsigned int mod_time;
1060 unsigned int length;
1061 int included_p; /* Non-zero if referenced by the Line Number Program. */
1062 struct symtab *symtab; /* The associated symbol table, if any. */
1065 /* The start and end of the statement program following this
1066 header. These point into dwarf2_per_objfile->line_buffer. */
1067 const gdb_byte *statement_program_start, *statement_program_end;
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info
1074 /* Offset of this DIE. */
1077 /* DWARF-2 tag for this DIE. */
1078 ENUM_BITFIELD(dwarf_tag) tag : 16;
1080 /* Assorted flags describing the data found in this DIE. */
1081 unsigned int has_children : 1;
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
1087 unsigned int may_be_inlined : 1;
1089 /* Flag set if the SCOPE field of this structure has been
1091 unsigned int scope_set : 1;
1093 /* Flag set if the DIE has a byte_size attribute. */
1094 unsigned int has_byte_size : 1;
1096 /* Flag set if any of the DIE's children are template arguments. */
1097 unsigned int has_template_arguments : 1;
1099 /* Flag set if fixup_partial_die has been called on this die. */
1100 unsigned int fixup_called : 1;
1102 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1103 unsigned int is_dwz : 1;
1105 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1106 unsigned int spec_is_dwz : 1;
1108 /* The name of this DIE. Normally the value of DW_AT_name, but
1109 sometimes a default name for unnamed DIEs. */
1112 /* The linkage name, if present. */
1113 const char *linkage_name;
1115 /* The scope to prepend to our children. This is generally
1116 allocated on the comp_unit_obstack, so will disappear
1117 when this compilation unit leaves the cache. */
1120 /* Some data associated with the partial DIE. The tag determines
1121 which field is live. */
1124 /* The location description associated with this DIE, if any. */
1125 struct dwarf_block *locdesc;
1126 /* The offset of an import, for DW_TAG_imported_unit. */
1130 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1134 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1135 DW_AT_sibling, if any. */
1136 /* NOTE: This member isn't strictly necessary, read_partial_die could
1137 return DW_AT_sibling values to its caller load_partial_dies. */
1138 const gdb_byte *sibling;
1140 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1141 DW_AT_specification (or DW_AT_abstract_origin or
1142 DW_AT_extension). */
1143 sect_offset spec_offset;
1145 /* Pointers to this DIE's parent, first child, and next sibling,
1147 struct partial_die_info *die_parent, *die_child, *die_sibling;
1150 /* This data structure holds the information of an abbrev. */
1153 unsigned int number; /* number identifying abbrev */
1154 enum dwarf_tag tag; /* dwarf tag */
1155 unsigned short has_children; /* boolean */
1156 unsigned short num_attrs; /* number of attributes */
1157 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1158 struct abbrev_info *next; /* next in chain */
1163 ENUM_BITFIELD(dwarf_attribute) name : 16;
1164 ENUM_BITFIELD(dwarf_form) form : 16;
1167 /* Size of abbrev_table.abbrev_hash_table. */
1168 #define ABBREV_HASH_SIZE 121
1170 /* Top level data structure to contain an abbreviation table. */
1174 /* Where the abbrev table came from.
1175 This is used as a sanity check when the table is used. */
1178 /* Storage for the abbrev table. */
1179 struct obstack abbrev_obstack;
1181 /* Hash table of abbrevs.
1182 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1183 It could be statically allocated, but the previous code didn't so we
1185 struct abbrev_info **abbrevs;
1188 /* Attributes have a name and a value. */
1191 ENUM_BITFIELD(dwarf_attribute) name : 16;
1192 ENUM_BITFIELD(dwarf_form) form : 15;
1194 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1195 field should be in u.str (existing only for DW_STRING) but it is kept
1196 here for better struct attribute alignment. */
1197 unsigned int string_is_canonical : 1;
1202 struct dwarf_block *blk;
1211 /* This data structure holds a complete die structure. */
1214 /* DWARF-2 tag for this DIE. */
1215 ENUM_BITFIELD(dwarf_tag) tag : 16;
1217 /* Number of attributes */
1218 unsigned char num_attrs;
1220 /* True if we're presently building the full type name for the
1221 type derived from this DIE. */
1222 unsigned char building_fullname : 1;
1224 /* True if this die is in process. PR 16581. */
1225 unsigned char in_process : 1;
1228 unsigned int abbrev;
1230 /* Offset in .debug_info or .debug_types section. */
1233 /* The dies in a compilation unit form an n-ary tree. PARENT
1234 points to this die's parent; CHILD points to the first child of
1235 this node; and all the children of a given node are chained
1236 together via their SIBLING fields. */
1237 struct die_info *child; /* Its first child, if any. */
1238 struct die_info *sibling; /* Its next sibling, if any. */
1239 struct die_info *parent; /* Its parent, if any. */
1241 /* An array of attributes, with NUM_ATTRS elements. There may be
1242 zero, but it's not common and zero-sized arrays are not
1243 sufficiently portable C. */
1244 struct attribute attrs[1];
1247 /* Get at parts of an attribute structure. */
1249 #define DW_STRING(attr) ((attr)->u.str)
1250 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1251 #define DW_UNSND(attr) ((attr)->u.unsnd)
1252 #define DW_BLOCK(attr) ((attr)->u.blk)
1253 #define DW_SND(attr) ((attr)->u.snd)
1254 #define DW_ADDR(attr) ((attr)->u.addr)
1255 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1257 /* Blocks are a bunch of untyped bytes. */
1262 /* Valid only if SIZE is not zero. */
1263 const gdb_byte *data;
1266 #ifndef ATTR_ALLOC_CHUNK
1267 #define ATTR_ALLOC_CHUNK 4
1270 /* Allocate fields for structs, unions and enums in this size. */
1271 #ifndef DW_FIELD_ALLOC_CHUNK
1272 #define DW_FIELD_ALLOC_CHUNK 4
1275 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1276 but this would require a corresponding change in unpack_field_as_long
1278 static int bits_per_byte = 8;
1280 /* The routines that read and process dies for a C struct or C++ class
1281 pass lists of data member fields and lists of member function fields
1282 in an instance of a field_info structure, as defined below. */
1285 /* List of data member and baseclasses fields. */
1288 struct nextfield *next;
1293 *fields, *baseclasses;
1295 /* Number of fields (including baseclasses). */
1298 /* Number of baseclasses. */
1301 /* Set if the accesibility of one of the fields is not public. */
1302 int non_public_fields;
1304 /* Member function fields array, entries are allocated in the order they
1305 are encountered in the object file. */
1308 struct nextfnfield *next;
1309 struct fn_field fnfield;
1313 /* Member function fieldlist array, contains name of possibly overloaded
1314 member function, number of overloaded member functions and a pointer
1315 to the head of the member function field chain. */
1320 struct nextfnfield *head;
1324 /* Number of entries in the fnfieldlists array. */
1327 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1328 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1329 struct typedef_field_list
1331 struct typedef_field field;
1332 struct typedef_field_list *next;
1334 *typedef_field_list;
1335 unsigned typedef_field_list_count;
1338 /* One item on the queue of compilation units to read in full symbols
1340 struct dwarf2_queue_item
1342 struct dwarf2_per_cu_data *per_cu;
1343 enum language pretend_language;
1344 struct dwarf2_queue_item *next;
1347 /* The current queue. */
1348 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350 /* Loaded secondary compilation units are kept in memory until they
1351 have not been referenced for the processing of this many
1352 compilation units. Set this to zero to disable caching. Cache
1353 sizes of up to at least twenty will improve startup time for
1354 typical inter-CU-reference binaries, at an obvious memory cost. */
1355 static int dwarf2_max_cache_age = 5;
1357 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1360 fprintf_filtered (file, _("The upper bound on the age of cached "
1361 "dwarf2 compilation units is %s.\n"),
1365 /* local function prototypes */
1367 static const char *get_section_name (const struct dwarf2_section_info *);
1369 static const char *get_section_file_name (const struct dwarf2_section_info *);
1371 static void dwarf2_locate_sections (bfd *, asection *, void *);
1373 static void dwarf2_find_base_address (struct die_info *die,
1374 struct dwarf2_cu *cu);
1376 static struct partial_symtab *create_partial_symtab
1377 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379 static void dwarf2_build_psymtabs_hard (struct objfile *);
1381 static void scan_partial_symbols (struct partial_die_info *,
1382 CORE_ADDR *, CORE_ADDR *,
1383 int, struct dwarf2_cu *);
1385 static void add_partial_symbol (struct partial_die_info *,
1386 struct dwarf2_cu *);
1388 static void add_partial_namespace (struct partial_die_info *pdi,
1389 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1390 int need_pc, struct dwarf2_cu *cu);
1392 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1393 CORE_ADDR *highpc, int need_pc,
1394 struct dwarf2_cu *cu);
1396 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1397 struct dwarf2_cu *cu);
1399 static void add_partial_subprogram (struct partial_die_info *pdi,
1400 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1401 int need_pc, struct dwarf2_cu *cu);
1403 static void dwarf2_read_symtab (struct partial_symtab *,
1406 static void psymtab_to_symtab_1 (struct partial_symtab *);
1408 static struct abbrev_info *abbrev_table_lookup_abbrev
1409 (const struct abbrev_table *, unsigned int);
1411 static struct abbrev_table *abbrev_table_read_table
1412 (struct dwarf2_section_info *, sect_offset);
1414 static void abbrev_table_free (struct abbrev_table *);
1416 static void abbrev_table_free_cleanup (void *);
1418 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1419 struct dwarf2_section_info *);
1421 static void dwarf2_free_abbrev_table (void *);
1423 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1425 static struct partial_die_info *load_partial_dies
1426 (const struct die_reader_specs *, const gdb_byte *, int);
1428 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1429 struct partial_die_info *,
1430 struct abbrev_info *,
1434 static struct partial_die_info *find_partial_die (sect_offset, int,
1435 struct dwarf2_cu *);
1437 static void fixup_partial_die (struct partial_die_info *,
1438 struct dwarf2_cu *);
1440 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1441 struct attribute *, struct attr_abbrev *,
1444 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1446 static int read_1_signed_byte (bfd *, const gdb_byte *);
1448 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1450 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1452 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1454 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1457 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1459 static LONGEST read_checked_initial_length_and_offset
1460 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1461 unsigned int *, unsigned int *);
1463 static LONGEST read_offset (bfd *, const gdb_byte *,
1464 const struct comp_unit_head *,
1467 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1469 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1472 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1474 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1476 static const char *read_indirect_string (bfd *, const gdb_byte *,
1477 const struct comp_unit_head *,
1480 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1482 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1490 static const char *read_str_index (const struct die_reader_specs *reader,
1491 ULONGEST str_index);
1493 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1495 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1496 struct dwarf2_cu *);
1498 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1501 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1502 struct dwarf2_cu *cu);
1504 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1506 static struct die_info *die_specification (struct die_info *die,
1507 struct dwarf2_cu **);
1509 static void free_line_header (struct line_header *lh);
1511 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1512 struct dwarf2_cu *cu);
1514 static void dwarf_decode_lines (struct line_header *, const char *,
1515 struct dwarf2_cu *, struct partial_symtab *,
1518 static void dwarf2_start_subfile (const char *, const char *, const char *);
1520 static void dwarf2_start_symtab (struct dwarf2_cu *,
1521 const char *, const char *, CORE_ADDR);
1523 static struct symbol *new_symbol (struct die_info *, struct type *,
1524 struct dwarf2_cu *);
1526 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1529 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1530 struct dwarf2_cu *);
1532 static void dwarf2_const_value_attr (const struct attribute *attr,
1535 struct obstack *obstack,
1536 struct dwarf2_cu *cu, LONGEST *value,
1537 const gdb_byte **bytes,
1538 struct dwarf2_locexpr_baton **baton);
1540 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1542 static int need_gnat_info (struct dwarf2_cu *);
1544 static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
1547 static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1550 static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
1553 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1554 struct dwarf2_cu *);
1556 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1558 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1560 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1562 static char *typename_concat (struct obstack *obs, const char *prefix,
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
1566 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1568 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1570 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1572 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1574 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1576 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1579 static int dwarf2_get_pc_bounds (struct die_info *,
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
1583 static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1587 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1590 static void dwarf2_add_field (struct field_info *, struct die_info *,
1591 struct dwarf2_cu *);
1593 static void dwarf2_attach_fields_to_type (struct field_info *,
1594 struct type *, struct dwarf2_cu *);
1596 static void dwarf2_add_member_fn (struct field_info *,
1597 struct die_info *, struct type *,
1598 struct dwarf2_cu *);
1600 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1602 struct dwarf2_cu *);
1604 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1606 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1608 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1610 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1612 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1614 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1616 static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1619 static const char *namespace_name (struct die_info *die,
1620 int *is_anonymous, struct dwarf2_cu *);
1622 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1624 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1626 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1627 struct dwarf2_cu *);
1629 static struct die_info *read_die_and_siblings_1
1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1633 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
1636 struct die_info *parent);
1638 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1642 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1646 static void process_die (struct die_info *, struct dwarf2_cu *);
1648 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1651 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1653 static const char *dwarf2_full_name (const char *name,
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1657 static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1660 static struct die_info *dwarf2_extension (struct die_info *die,
1661 struct dwarf2_cu **);
1663 static const char *dwarf_tag_name (unsigned int);
1665 static const char *dwarf_attr_name (unsigned int);
1667 static const char *dwarf_form_name (unsigned int);
1669 static char *dwarf_bool_name (unsigned int);
1671 static const char *dwarf_type_encoding_name (unsigned int);
1673 static struct die_info *sibling_die (struct die_info *);
1675 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1677 static void dump_die_for_error (struct die_info *);
1679 static void dump_die_1 (struct ui_file *, int level, int max_level,
1682 /*static*/ void dump_die (struct die_info *, int max_level);
1684 static void store_in_ref_table (struct die_info *,
1685 struct dwarf2_cu *);
1687 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1689 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1691 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1692 const struct attribute *,
1693 struct dwarf2_cu **);
1695 static struct die_info *follow_die_ref (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1699 static struct die_info *follow_die_sig (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1703 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1706 static struct type *get_DW_AT_signature_type (struct die_info *,
1707 const struct attribute *,
1708 struct dwarf2_cu *);
1710 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1712 static void read_signatured_type (struct signatured_type *);
1714 /* memory allocation interface */
1716 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1718 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1720 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1723 static int attr_form_is_block (const struct attribute *);
1725 static int attr_form_is_section_offset (const struct attribute *);
1727 static int attr_form_is_constant (const struct attribute *);
1729 static int attr_form_is_ref (const struct attribute *);
1731 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1732 struct dwarf2_loclist_baton *baton,
1733 const struct attribute *attr);
1735 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1737 struct dwarf2_cu *cu,
1740 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1741 const gdb_byte *info_ptr,
1742 struct abbrev_info *abbrev);
1744 static void free_stack_comp_unit (void *);
1746 static hashval_t partial_die_hash (const void *item);
1748 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1750 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1751 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1753 static void init_one_comp_unit (struct dwarf2_cu *cu,
1754 struct dwarf2_per_cu_data *per_cu);
1756 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1757 struct die_info *comp_unit_die,
1758 enum language pretend_language);
1760 static void free_heap_comp_unit (void *);
1762 static void free_cached_comp_units (void *);
1764 static void age_cached_comp_units (void);
1766 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1768 static struct type *set_die_type (struct die_info *, struct type *,
1769 struct dwarf2_cu *);
1771 static void create_all_comp_units (struct objfile *);
1773 static int create_all_type_units (struct objfile *);
1775 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1778 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1781 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1784 static void dwarf2_add_dependence (struct dwarf2_cu *,
1785 struct dwarf2_per_cu_data *);
1787 static void dwarf2_mark (struct dwarf2_cu *);
1789 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1791 static struct type *get_die_type_at_offset (sect_offset,
1792 struct dwarf2_per_cu_data *);
1794 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1796 static void dwarf2_release_queue (void *dummy);
1798 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1799 enum language pretend_language);
1801 static void process_queue (void);
1803 static void find_file_and_directory (struct die_info *die,
1804 struct dwarf2_cu *cu,
1805 const char **name, const char **comp_dir);
1807 static char *file_full_name (int file, struct line_header *lh,
1808 const char *comp_dir);
1810 static const gdb_byte *read_and_check_comp_unit_head
1811 (struct comp_unit_head *header,
1812 struct dwarf2_section_info *section,
1813 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1814 int is_debug_types_section);
1816 static void init_cutu_and_read_dies
1817 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1818 int use_existing_cu, int keep,
1819 die_reader_func_ftype *die_reader_func, void *data);
1821 static void init_cutu_and_read_dies_simple
1822 (struct dwarf2_per_cu_data *this_cu,
1823 die_reader_func_ftype *die_reader_func, void *data);
1825 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1827 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1829 static struct dwo_unit *lookup_dwo_unit_in_dwp
1830 (struct dwp_file *dwp_file, const char *comp_dir,
1831 ULONGEST signature, int is_debug_types);
1833 static struct dwp_file *get_dwp_file (void);
1835 static struct dwo_unit *lookup_dwo_comp_unit
1836 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1838 static struct dwo_unit *lookup_dwo_type_unit
1839 (struct signatured_type *, const char *, const char *);
1841 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1843 static void free_dwo_file_cleanup (void *);
1845 static void process_cu_includes (void);
1847 static void check_producer (struct dwarf2_cu *cu);
1849 /* Various complaints about symbol reading that don't abort the process. */
1852 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1854 complaint (&symfile_complaints,
1855 _("statement list doesn't fit in .debug_line section"));
1859 dwarf2_debug_line_missing_file_complaint (void)
1861 complaint (&symfile_complaints,
1862 _(".debug_line section has line data without a file"));
1866 dwarf2_debug_line_missing_end_sequence_complaint (void)
1868 complaint (&symfile_complaints,
1869 _(".debug_line section has line "
1870 "program sequence without an end"));
1874 dwarf2_complex_location_expr_complaint (void)
1876 complaint (&symfile_complaints, _("location expression too complex"));
1880 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1883 complaint (&symfile_complaints,
1884 _("const value length mismatch for '%s', got %d, expected %d"),
1889 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1891 complaint (&symfile_complaints,
1892 _("debug info runs off end of %s section"
1894 get_section_name (section),
1895 get_section_file_name (section));
1899 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1901 complaint (&symfile_complaints,
1902 _("macro debug info contains a "
1903 "malformed macro definition:\n`%s'"),
1908 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1910 complaint (&symfile_complaints,
1911 _("invalid attribute class or form for '%s' in '%s'"),
1917 /* Convert VALUE between big- and little-endian. */
1919 byte_swap (offset_type value)
1923 result = (value & 0xff) << 24;
1924 result |= (value & 0xff00) << 8;
1925 result |= (value & 0xff0000) >> 8;
1926 result |= (value & 0xff000000) >> 24;
1930 #define MAYBE_SWAP(V) byte_swap (V)
1933 #define MAYBE_SWAP(V) (V)
1934 #endif /* WORDS_BIGENDIAN */
1936 /* Read the given attribute value as an address, taking the attribute's
1937 form into account. */
1940 attr_value_as_address (struct attribute *attr)
1944 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1946 /* Aside from a few clearly defined exceptions, attributes that
1947 contain an address must always be in DW_FORM_addr form.
1948 Unfortunately, some compilers happen to be violating this
1949 requirement by encoding addresses using other forms, such
1950 as DW_FORM_data4 for example. For those broken compilers,
1951 we try to do our best, without any guarantee of success,
1952 to interpret the address correctly. It would also be nice
1953 to generate a complaint, but that would require us to maintain
1954 a list of legitimate cases where a non-address form is allowed,
1955 as well as update callers to pass in at least the CU's DWARF
1956 version. This is more overhead than what we're willing to
1957 expand for a pretty rare case. */
1958 addr = DW_UNSND (attr);
1961 addr = DW_ADDR (attr);
1966 /* The suffix for an index file. */
1967 #define INDEX_SUFFIX ".gdb-index"
1969 /* Try to locate the sections we need for DWARF 2 debugging
1970 information and return true if we have enough to do something.
1971 NAMES points to the dwarf2 section names, or is NULL if the standard
1972 ELF names are used. */
1975 dwarf2_has_info (struct objfile *objfile,
1976 const struct dwarf2_debug_sections *names)
1978 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1979 if (!dwarf2_per_objfile)
1981 /* Initialize per-objfile state. */
1982 struct dwarf2_per_objfile *data
1983 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1985 memset (data, 0, sizeof (*data));
1986 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1987 dwarf2_per_objfile = data;
1989 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1991 dwarf2_per_objfile->objfile = objfile;
1993 return (!dwarf2_per_objfile->info.is_virtual
1994 && dwarf2_per_objfile->info.s.asection != NULL
1995 && !dwarf2_per_objfile->abbrev.is_virtual
1996 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1999 /* Return the containing section of virtual section SECTION. */
2001 static struct dwarf2_section_info *
2002 get_containing_section (const struct dwarf2_section_info *section)
2004 gdb_assert (section->is_virtual);
2005 return section->s.containing_section;
2008 /* Return the bfd owner of SECTION. */
2011 get_section_bfd_owner (const struct dwarf2_section_info *section)
2013 if (section->is_virtual)
2015 section = get_containing_section (section);
2016 gdb_assert (!section->is_virtual);
2018 return section->s.asection->owner;
2021 /* Return the bfd section of SECTION.
2022 Returns NULL if the section is not present. */
2025 get_section_bfd_section (const struct dwarf2_section_info *section)
2027 if (section->is_virtual)
2029 section = get_containing_section (section);
2030 gdb_assert (!section->is_virtual);
2032 return section->s.asection;
2035 /* Return the name of SECTION. */
2038 get_section_name (const struct dwarf2_section_info *section)
2040 asection *sectp = get_section_bfd_section (section);
2042 gdb_assert (sectp != NULL);
2043 return bfd_section_name (get_section_bfd_owner (section), sectp);
2046 /* Return the name of the file SECTION is in. */
2049 get_section_file_name (const struct dwarf2_section_info *section)
2051 bfd *abfd = get_section_bfd_owner (section);
2053 return bfd_get_filename (abfd);
2056 /* Return the id of SECTION.
2057 Returns 0 if SECTION doesn't exist. */
2060 get_section_id (const struct dwarf2_section_info *section)
2062 asection *sectp = get_section_bfd_section (section);
2069 /* Return the flags of SECTION.
2070 SECTION (or containing section if this is a virtual section) must exist. */
2073 get_section_flags (const struct dwarf2_section_info *section)
2075 asection *sectp = get_section_bfd_section (section);
2077 gdb_assert (sectp != NULL);
2078 return bfd_get_section_flags (sectp->owner, sectp);
2081 /* When loading sections, we look either for uncompressed section or for
2082 compressed section names. */
2085 section_is_p (const char *section_name,
2086 const struct dwarf2_section_names *names)
2088 if (names->normal != NULL
2089 && strcmp (section_name, names->normal) == 0)
2091 if (names->compressed != NULL
2092 && strcmp (section_name, names->compressed) == 0)
2097 /* This function is mapped across the sections and remembers the
2098 offset and size of each of the debugging sections we are interested
2102 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2104 const struct dwarf2_debug_sections *names;
2105 flagword aflag = bfd_get_section_flags (abfd, sectp);
2108 names = &dwarf2_elf_names;
2110 names = (const struct dwarf2_debug_sections *) vnames;
2112 if ((aflag & SEC_HAS_CONTENTS) == 0)
2115 else if (section_is_p (sectp->name, &names->info))
2117 dwarf2_per_objfile->info.s.asection = sectp;
2118 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2120 else if (section_is_p (sectp->name, &names->abbrev))
2122 dwarf2_per_objfile->abbrev.s.asection = sectp;
2123 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2125 else if (section_is_p (sectp->name, &names->line))
2127 dwarf2_per_objfile->line.s.asection = sectp;
2128 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2130 else if (section_is_p (sectp->name, &names->loc))
2132 dwarf2_per_objfile->loc.s.asection = sectp;
2133 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2135 else if (section_is_p (sectp->name, &names->macinfo))
2137 dwarf2_per_objfile->macinfo.s.asection = sectp;
2138 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2140 else if (section_is_p (sectp->name, &names->macro))
2142 dwarf2_per_objfile->macro.s.asection = sectp;
2143 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2145 else if (section_is_p (sectp->name, &names->str))
2147 dwarf2_per_objfile->str.s.asection = sectp;
2148 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2150 else if (section_is_p (sectp->name, &names->addr))
2152 dwarf2_per_objfile->addr.s.asection = sectp;
2153 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2155 else if (section_is_p (sectp->name, &names->frame))
2157 dwarf2_per_objfile->frame.s.asection = sectp;
2158 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2160 else if (section_is_p (sectp->name, &names->eh_frame))
2162 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2163 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2165 else if (section_is_p (sectp->name, &names->ranges))
2167 dwarf2_per_objfile->ranges.s.asection = sectp;
2168 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2170 else if (section_is_p (sectp->name, &names->types))
2172 struct dwarf2_section_info type_section;
2174 memset (&type_section, 0, sizeof (type_section));
2175 type_section.s.asection = sectp;
2176 type_section.size = bfd_get_section_size (sectp);
2178 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2181 else if (section_is_p (sectp->name, &names->gdb_index))
2183 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2184 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2187 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2188 && bfd_section_vma (abfd, sectp) == 0)
2189 dwarf2_per_objfile->has_section_at_zero = 1;
2192 /* A helper function that decides whether a section is empty,
2196 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2198 if (section->is_virtual)
2199 return section->size == 0;
2200 return section->s.asection == NULL || section->size == 0;
2203 /* Read the contents of the section INFO.
2204 OBJFILE is the main object file, but not necessarily the file where
2205 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2207 If the section is compressed, uncompress it before returning. */
2210 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2214 gdb_byte *buf, *retbuf;
2218 info->buffer = NULL;
2221 if (dwarf2_section_empty_p (info))
2224 sectp = get_section_bfd_section (info);
2226 /* If this is a virtual section we need to read in the real one first. */
2227 if (info->is_virtual)
2229 struct dwarf2_section_info *containing_section =
2230 get_containing_section (info);
2232 gdb_assert (sectp != NULL);
2233 if ((sectp->flags & SEC_RELOC) != 0)
2235 error (_("Dwarf Error: DWP format V2 with relocations is not"
2236 " supported in section %s [in module %s]"),
2237 get_section_name (info), get_section_file_name (info));
2239 dwarf2_read_section (objfile, containing_section);
2240 /* Other code should have already caught virtual sections that don't
2242 gdb_assert (info->virtual_offset + info->size
2243 <= containing_section->size);
2244 /* If the real section is empty or there was a problem reading the
2245 section we shouldn't get here. */
2246 gdb_assert (containing_section->buffer != NULL);
2247 info->buffer = containing_section->buffer + info->virtual_offset;
2251 /* If the section has relocations, we must read it ourselves.
2252 Otherwise we attach it to the BFD. */
2253 if ((sectp->flags & SEC_RELOC) == 0)
2255 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2259 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2262 /* When debugging .o files, we may need to apply relocations; see
2263 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2264 We never compress sections in .o files, so we only need to
2265 try this when the section is not compressed. */
2266 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2269 info->buffer = retbuf;
2273 abfd = get_section_bfd_owner (info);
2274 gdb_assert (abfd != NULL);
2276 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2277 || bfd_bread (buf, info->size, abfd) != info->size)
2279 error (_("Dwarf Error: Can't read DWARF data"
2280 " in section %s [in module %s]"),
2281 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2285 /* A helper function that returns the size of a section in a safe way.
2286 If you are positive that the section has been read before using the
2287 size, then it is safe to refer to the dwarf2_section_info object's
2288 "size" field directly. In other cases, you must call this
2289 function, because for compressed sections the size field is not set
2290 correctly until the section has been read. */
2292 static bfd_size_type
2293 dwarf2_section_size (struct objfile *objfile,
2294 struct dwarf2_section_info *info)
2297 dwarf2_read_section (objfile, info);
2301 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2305 dwarf2_get_section_info (struct objfile *objfile,
2306 enum dwarf2_section_enum sect,
2307 asection **sectp, const gdb_byte **bufp,
2308 bfd_size_type *sizep)
2310 struct dwarf2_per_objfile *data
2311 = objfile_data (objfile, dwarf2_objfile_data_key);
2312 struct dwarf2_section_info *info;
2314 /* We may see an objfile without any DWARF, in which case we just
2325 case DWARF2_DEBUG_FRAME:
2326 info = &data->frame;
2328 case DWARF2_EH_FRAME:
2329 info = &data->eh_frame;
2332 gdb_assert_not_reached ("unexpected section");
2335 dwarf2_read_section (objfile, info);
2337 *sectp = get_section_bfd_section (info);
2338 *bufp = info->buffer;
2339 *sizep = info->size;
2342 /* A helper function to find the sections for a .dwz file. */
2345 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2347 struct dwz_file *dwz_file = arg;
2349 /* Note that we only support the standard ELF names, because .dwz
2350 is ELF-only (at the time of writing). */
2351 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2353 dwz_file->abbrev.s.asection = sectp;
2354 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2356 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2358 dwz_file->info.s.asection = sectp;
2359 dwz_file->info.size = bfd_get_section_size (sectp);
2361 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2363 dwz_file->str.s.asection = sectp;
2364 dwz_file->str.size = bfd_get_section_size (sectp);
2366 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2368 dwz_file->line.s.asection = sectp;
2369 dwz_file->line.size = bfd_get_section_size (sectp);
2371 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2373 dwz_file->macro.s.asection = sectp;
2374 dwz_file->macro.size = bfd_get_section_size (sectp);
2376 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2378 dwz_file->gdb_index.s.asection = sectp;
2379 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2383 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2384 there is no .gnu_debugaltlink section in the file. Error if there
2385 is such a section but the file cannot be found. */
2387 static struct dwz_file *
2388 dwarf2_get_dwz_file (void)
2392 struct cleanup *cleanup;
2393 const char *filename;
2394 struct dwz_file *result;
2395 bfd_size_type buildid_len_arg;
2399 if (dwarf2_per_objfile->dwz_file != NULL)
2400 return dwarf2_per_objfile->dwz_file;
2402 bfd_set_error (bfd_error_no_error);
2403 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2404 &buildid_len_arg, &buildid);
2407 if (bfd_get_error () == bfd_error_no_error)
2409 error (_("could not read '.gnu_debugaltlink' section: %s"),
2410 bfd_errmsg (bfd_get_error ()));
2412 cleanup = make_cleanup (xfree, data);
2413 make_cleanup (xfree, buildid);
2415 buildid_len = (size_t) buildid_len_arg;
2417 filename = (const char *) data;
2418 if (!IS_ABSOLUTE_PATH (filename))
2420 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2423 make_cleanup (xfree, abs);
2424 abs = ldirname (abs);
2425 make_cleanup (xfree, abs);
2427 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2428 make_cleanup (xfree, rel);
2432 /* First try the file name given in the section. If that doesn't
2433 work, try to use the build-id instead. */
2434 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2435 if (dwz_bfd != NULL)
2437 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2439 gdb_bfd_unref (dwz_bfd);
2444 if (dwz_bfd == NULL)
2445 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2447 if (dwz_bfd == NULL)
2448 error (_("could not find '.gnu_debugaltlink' file for %s"),
2449 objfile_name (dwarf2_per_objfile->objfile));
2451 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2453 result->dwz_bfd = dwz_bfd;
2455 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2457 do_cleanups (cleanup);
2459 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2460 dwarf2_per_objfile->dwz_file = result;
2464 /* DWARF quick_symbols_functions support. */
2466 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2467 unique line tables, so we maintain a separate table of all .debug_line
2468 derived entries to support the sharing.
2469 All the quick functions need is the list of file names. We discard the
2470 line_header when we're done and don't need to record it here. */
2471 struct quick_file_names
2473 /* The data used to construct the hash key. */
2474 struct stmt_list_hash hash;
2476 /* The number of entries in file_names, real_names. */
2477 unsigned int num_file_names;
2479 /* The file names from the line table, after being run through
2481 const char **file_names;
2483 /* The file names from the line table after being run through
2484 gdb_realpath. These are computed lazily. */
2485 const char **real_names;
2488 /* When using the index (and thus not using psymtabs), each CU has an
2489 object of this type. This is used to hold information needed by
2490 the various "quick" methods. */
2491 struct dwarf2_per_cu_quick_data
2493 /* The file table. This can be NULL if there was no file table
2494 or it's currently not read in.
2495 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2496 struct quick_file_names *file_names;
2498 /* The corresponding symbol table. This is NULL if symbols for this
2499 CU have not yet been read. */
2500 struct symtab *symtab;
2502 /* A temporary mark bit used when iterating over all CUs in
2503 expand_symtabs_matching. */
2504 unsigned int mark : 1;
2506 /* True if we've tried to read the file table and found there isn't one.
2507 There will be no point in trying to read it again next time. */
2508 unsigned int no_file_data : 1;
2511 /* Utility hash function for a stmt_list_hash. */
2514 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2518 if (stmt_list_hash->dwo_unit != NULL)
2519 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2520 v += stmt_list_hash->line_offset.sect_off;
2524 /* Utility equality function for a stmt_list_hash. */
2527 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2528 const struct stmt_list_hash *rhs)
2530 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2532 if (lhs->dwo_unit != NULL
2533 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2536 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2539 /* Hash function for a quick_file_names. */
2542 hash_file_name_entry (const void *e)
2544 const struct quick_file_names *file_data = e;
2546 return hash_stmt_list_entry (&file_data->hash);
2549 /* Equality function for a quick_file_names. */
2552 eq_file_name_entry (const void *a, const void *b)
2554 const struct quick_file_names *ea = a;
2555 const struct quick_file_names *eb = b;
2557 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2560 /* Delete function for a quick_file_names. */
2563 delete_file_name_entry (void *e)
2565 struct quick_file_names *file_data = e;
2568 for (i = 0; i < file_data->num_file_names; ++i)
2570 xfree ((void*) file_data->file_names[i]);
2571 if (file_data->real_names)
2572 xfree ((void*) file_data->real_names[i]);
2575 /* The space for the struct itself lives on objfile_obstack,
2576 so we don't free it here. */
2579 /* Create a quick_file_names hash table. */
2582 create_quick_file_names_table (unsigned int nr_initial_entries)
2584 return htab_create_alloc (nr_initial_entries,
2585 hash_file_name_entry, eq_file_name_entry,
2586 delete_file_name_entry, xcalloc, xfree);
2589 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2590 have to be created afterwards. You should call age_cached_comp_units after
2591 processing PER_CU->CU. dw2_setup must have been already called. */
2594 load_cu (struct dwarf2_per_cu_data *per_cu)
2596 if (per_cu->is_debug_types)
2597 load_full_type_unit (per_cu);
2599 load_full_comp_unit (per_cu, language_minimal);
2601 gdb_assert (per_cu->cu != NULL);
2603 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2606 /* Read in the symbols for PER_CU. */
2609 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2611 struct cleanup *back_to;
2613 /* Skip type_unit_groups, reading the type units they contain
2614 is handled elsewhere. */
2615 if (IS_TYPE_UNIT_GROUP (per_cu))
2618 back_to = make_cleanup (dwarf2_release_queue, NULL);
2620 if (dwarf2_per_objfile->using_index
2621 ? per_cu->v.quick->symtab == NULL
2622 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2624 queue_comp_unit (per_cu, language_minimal);
2627 /* If we just loaded a CU from a DWO, and we're working with an index
2628 that may badly handle TUs, load all the TUs in that DWO as well.
2629 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2630 if (!per_cu->is_debug_types
2631 && per_cu->cu->dwo_unit != NULL
2632 && dwarf2_per_objfile->index_table != NULL
2633 && dwarf2_per_objfile->index_table->version <= 7
2634 /* DWP files aren't supported yet. */
2635 && get_dwp_file () == NULL)
2636 queue_and_load_all_dwo_tus (per_cu);
2641 /* Age the cache, releasing compilation units that have not
2642 been used recently. */
2643 age_cached_comp_units ();
2645 do_cleanups (back_to);
2648 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2649 the objfile from which this CU came. Returns the resulting symbol
2652 static struct symtab *
2653 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2655 gdb_assert (dwarf2_per_objfile->using_index);
2656 if (!per_cu->v.quick->symtab)
2658 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2659 increment_reading_symtab ();
2660 dw2_do_instantiate_symtab (per_cu);
2661 process_cu_includes ();
2662 do_cleanups (back_to);
2664 return per_cu->v.quick->symtab;
2667 /* Return the CU/TU given its index.
2669 This is intended for loops like:
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2680 static struct dwarf2_per_cu_data *
2681 dw2_get_cutu (int index)
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2685 index -= dwarf2_per_objfile->n_comp_units;
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2690 return dwarf2_per_objfile->all_comp_units[index];
2693 /* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2697 static struct dwarf2_per_cu_data *
2698 dw2_get_cu (int index)
2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2702 return dwarf2_per_objfile->all_comp_units[index];
2705 /* A helper for create_cus_from_index that handles a given list of
2709 create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2717 for (i = 0; i < n_elements; i += 2)
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
2729 the_cu->offset.sect_off = offset;
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
2732 the_cu->section = section;
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2740 /* Read the CU list from the mapped index, and use it to create all
2741 the CU objects for this objfile. */
2744 create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2748 struct dwz_file *dwz;
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2759 if (dwz_elements == 0)
2762 dwz = dwarf2_get_dwz_file ();
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2767 /* Create the signatured type hash table from the index. */
2770 create_signatured_type_table_from_index (struct objfile *objfile,
2771 struct dwarf2_section_info *section,
2772 const gdb_byte *bytes,
2773 offset_type elements)
2776 htab_t sig_types_hash;
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2781 dwarf2_per_objfile->all_type_units
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
2785 sig_types_hash = allocate_signatured_type_table (objfile);
2787 for (i = 0; i < elements; i += 3)
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2801 struct signatured_type);
2802 sig_type->signature = signature;
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
2805 sig_type->per_cu.section = section;
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
2821 /* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2825 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2827 const gdb_byte *iter, *end;
2828 struct obstack temp_obstack;
2829 struct addrmap *mutable_map;
2830 struct cleanup *cleanup;
2833 obstack_init (&temp_obstack);
2834 cleanup = make_cleanup_obstack_free (&temp_obstack);
2835 mutable_map = addrmap_create_mutable (&temp_obstack);
2837 iter = index->address_table;
2838 end = iter + index->address_table_size;
2840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2844 ULONGEST hi, lo, cu_index;
2845 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2849 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2854 complaint (&symfile_complaints,
2855 _(".gdb_index address table has invalid range (%s - %s)"),
2856 hex_string (lo), hex_string (hi));
2860 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2862 complaint (&symfile_complaints,
2863 _(".gdb_index address table has invalid CU number %u"),
2864 (unsigned) cu_index);
2868 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2869 dw2_get_cutu (cu_index));
2872 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2873 &objfile->objfile_obstack);
2874 do_cleanups (cleanup);
2877 /* The hash function for strings in the mapped index. This is the same as
2878 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2879 implementation. This is necessary because the hash function is tied to the
2880 format of the mapped index file. The hash values do not have to match with
2883 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2886 mapped_index_string_hash (int index_version, const void *p)
2888 const unsigned char *str = (const unsigned char *) p;
2892 while ((c = *str++) != 0)
2894 if (index_version >= 5)
2896 r = r * 67 + c - 113;
2902 /* Find a slot in the mapped index INDEX for the object named NAME.
2903 If NAME is found, set *VEC_OUT to point to the CU vector in the
2904 constant pool and return 1. If NAME cannot be found, return 0. */
2907 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2908 offset_type **vec_out)
2910 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2912 offset_type slot, step;
2913 int (*cmp) (const char *, const char *);
2915 if (current_language->la_language == language_cplus
2916 || current_language->la_language == language_java
2917 || current_language->la_language == language_fortran)
2919 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2921 const char *paren = strchr (name, '(');
2927 dup = xmalloc (paren - name + 1);
2928 memcpy (dup, name, paren - name);
2929 dup[paren - name] = 0;
2931 make_cleanup (xfree, dup);
2936 /* Index version 4 did not support case insensitive searches. But the
2937 indices for case insensitive languages are built in lowercase, therefore
2938 simulate our NAME being searched is also lowercased. */
2939 hash = mapped_index_string_hash ((index->version == 4
2940 && case_sensitivity == case_sensitive_off
2941 ? 5 : index->version),
2944 slot = hash & (index->symbol_table_slots - 1);
2945 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2946 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2950 /* Convert a slot number to an offset into the table. */
2951 offset_type i = 2 * slot;
2953 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2955 do_cleanups (back_to);
2959 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2960 if (!cmp (name, str))
2962 *vec_out = (offset_type *) (index->constant_pool
2963 + MAYBE_SWAP (index->symbol_table[i + 1]));
2964 do_cleanups (back_to);
2968 slot = (slot + step) & (index->symbol_table_slots - 1);
2972 /* A helper function that reads the .gdb_index from SECTION and fills
2973 in MAP. FILENAME is the name of the file containing the section;
2974 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2975 ok to use deprecated sections.
2977 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2978 out parameters that are filled in with information about the CU and
2979 TU lists in the section.
2981 Returns 1 if all went well, 0 otherwise. */
2984 read_index_from_section (struct objfile *objfile,
2985 const char *filename,
2987 struct dwarf2_section_info *section,
2988 struct mapped_index *map,
2989 const gdb_byte **cu_list,
2990 offset_type *cu_list_elements,
2991 const gdb_byte **types_list,
2992 offset_type *types_list_elements)
2994 const gdb_byte *addr;
2995 offset_type version;
2996 offset_type *metadata;
2999 if (dwarf2_section_empty_p (section))
3002 /* Older elfutils strip versions could keep the section in the main
3003 executable while splitting it for the separate debug info file. */
3004 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3007 dwarf2_read_section (objfile, section);
3009 addr = section->buffer;
3010 /* Version check. */
3011 version = MAYBE_SWAP (*(offset_type *) addr);
3012 /* Versions earlier than 3 emitted every copy of a psymbol. This
3013 causes the index to behave very poorly for certain requests. Version 3
3014 contained incomplete addrmap. So, it seems better to just ignore such
3018 static int warning_printed = 0;
3019 if (!warning_printed)
3021 warning (_("Skipping obsolete .gdb_index section in %s."),
3023 warning_printed = 1;
3027 /* Index version 4 uses a different hash function than index version
3030 Versions earlier than 6 did not emit psymbols for inlined
3031 functions. Using these files will cause GDB not to be able to
3032 set breakpoints on inlined functions by name, so we ignore these
3033 indices unless the user has done
3034 "set use-deprecated-index-sections on". */
3035 if (version < 6 && !deprecated_ok)
3037 static int warning_printed = 0;
3038 if (!warning_printed)
3041 Skipping deprecated .gdb_index section in %s.\n\
3042 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3043 to use the section anyway."),
3045 warning_printed = 1;
3049 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3050 of the TU (for symbols coming from TUs),
3051 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3052 Plus gold-generated indices can have duplicate entries for global symbols,
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3054 These are just performance bugs, and we can't distinguish gdb-generated
3055 indices from gold-generated ones, so issue no warning here. */
3057 /* Indexes with higher version than the one supported by GDB may be no
3058 longer backward compatible. */
3062 map->version = version;
3063 map->total_size = section->size;
3065 metadata = (offset_type *) (addr + sizeof (offset_type));
3068 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3069 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3073 *types_list = addr + MAYBE_SWAP (metadata[i]);
3074 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3079 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3080 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3081 - MAYBE_SWAP (metadata[i]));
3084 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3085 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3086 - MAYBE_SWAP (metadata[i]))
3087 / (2 * sizeof (offset_type)));
3090 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3096 /* Read the index file. If everything went ok, initialize the "quick"
3097 elements of all the CUs and return 1. Otherwise, return 0. */
3100 dwarf2_read_index (struct objfile *objfile)
3102 struct mapped_index local_map, *map;
3103 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3104 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3105 struct dwz_file *dwz;
3107 if (!read_index_from_section (objfile, objfile_name (objfile),
3108 use_deprecated_index_sections,
3109 &dwarf2_per_objfile->gdb_index, &local_map,
3110 &cu_list, &cu_list_elements,
3111 &types_list, &types_list_elements))
3114 /* Don't use the index if it's empty. */
3115 if (local_map.symbol_table_slots == 0)
3118 /* If there is a .dwz file, read it so we can get its CU list as
3120 dwz = dwarf2_get_dwz_file ();
3123 struct mapped_index dwz_map;
3124 const gdb_byte *dwz_types_ignore;
3125 offset_type dwz_types_elements_ignore;
3127 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3129 &dwz->gdb_index, &dwz_map,
3130 &dwz_list, &dwz_list_elements,
3132 &dwz_types_elements_ignore))
3134 warning (_("could not read '.gdb_index' section from %s; skipping"),
3135 bfd_get_filename (dwz->dwz_bfd));
3140 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3143 if (types_list_elements)
3145 struct dwarf2_section_info *section;
3147 /* We can only handle a single .debug_types when we have an
3149 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3152 section = VEC_index (dwarf2_section_info_def,
3153 dwarf2_per_objfile->types, 0);
3155 create_signatured_type_table_from_index (objfile, section, types_list,
3156 types_list_elements);
3159 create_addrmap_from_index (objfile, &local_map);
3161 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3164 dwarf2_per_objfile->index_table = map;
3165 dwarf2_per_objfile->using_index = 1;
3166 dwarf2_per_objfile->quick_file_names_table =
3167 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3172 /* A helper for the "quick" functions which sets the global
3173 dwarf2_per_objfile according to OBJFILE. */
3176 dw2_setup (struct objfile *objfile)
3178 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3179 gdb_assert (dwarf2_per_objfile);
3182 /* die_reader_func for dw2_get_file_names. */
3185 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3186 const gdb_byte *info_ptr,
3187 struct die_info *comp_unit_die,
3191 struct dwarf2_cu *cu = reader->cu;
3192 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3193 struct objfile *objfile = dwarf2_per_objfile->objfile;
3194 struct dwarf2_per_cu_data *lh_cu;
3195 struct line_header *lh;
3196 struct attribute *attr;
3198 const char *name, *comp_dir;
3200 struct quick_file_names *qfn;
3201 unsigned int line_offset;
3203 gdb_assert (! this_cu->is_debug_types);
3205 /* Our callers never want to match partial units -- instead they
3206 will match the enclosing full CU. */
3207 if (comp_unit_die->tag == DW_TAG_partial_unit)
3209 this_cu->v.quick->no_file_data = 1;
3218 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3221 struct quick_file_names find_entry;
3223 line_offset = DW_UNSND (attr);
3225 /* We may have already read in this line header (TU line header sharing).
3226 If we have we're done. */
3227 find_entry.hash.dwo_unit = cu->dwo_unit;
3228 find_entry.hash.line_offset.sect_off = line_offset;
3229 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3230 &find_entry, INSERT);
3233 lh_cu->v.quick->file_names = *slot;
3237 lh = dwarf_decode_line_header (line_offset, cu);
3241 lh_cu->v.quick->no_file_data = 1;
3245 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3246 qfn->hash.dwo_unit = cu->dwo_unit;
3247 qfn->hash.line_offset.sect_off = line_offset;
3248 gdb_assert (slot != NULL);
3251 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3253 qfn->num_file_names = lh->num_file_names;
3254 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3255 lh->num_file_names * sizeof (char *));
3256 for (i = 0; i < lh->num_file_names; ++i)
3257 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3258 qfn->real_names = NULL;
3260 free_line_header (lh);
3262 lh_cu->v.quick->file_names = qfn;
3265 /* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3268 static struct quick_file_names *
3269 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3271 /* This should never be called for TUs. */
3272 gdb_assert (! this_cu->is_debug_types);
3273 /* Nor type unit groups. */
3274 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3276 if (this_cu->v.quick->file_names != NULL)
3277 return this_cu->v.quick->file_names;
3278 /* If we know there is no line data, no point in looking again. */
3279 if (this_cu->v.quick->no_file_data)
3282 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3284 if (this_cu->v.quick->no_file_data)
3286 return this_cu->v.quick->file_names;
3289 /* A helper for the "quick" functions which computes and caches the
3290 real path for a given file name from the line table. */
3293 dw2_get_real_path (struct objfile *objfile,
3294 struct quick_file_names *qfn, int index)
3296 if (qfn->real_names == NULL)
3297 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3298 qfn->num_file_names, const char *);
3300 if (qfn->real_names[index] == NULL)
3301 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3303 return qfn->real_names[index];
3306 static struct symtab *
3307 dw2_find_last_source_symtab (struct objfile *objfile)
3311 dw2_setup (objfile);
3312 index = dwarf2_per_objfile->n_comp_units - 1;
3313 return dw2_instantiate_symtab (dw2_get_cutu (index));
3316 /* Traversal function for dw2_forget_cached_source_info. */
3319 dw2_free_cached_file_names (void **slot, void *info)
3321 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3323 if (file_data->real_names)
3327 for (i = 0; i < file_data->num_file_names; ++i)
3329 xfree ((void*) file_data->real_names[i]);
3330 file_data->real_names[i] = NULL;
3338 dw2_forget_cached_source_info (struct objfile *objfile)
3340 dw2_setup (objfile);
3342 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3343 dw2_free_cached_file_names, NULL);
3346 /* Helper function for dw2_map_symtabs_matching_filename that expands
3347 the symtabs and calls the iterator. */
3350 dw2_map_expand_apply (struct objfile *objfile,
3351 struct dwarf2_per_cu_data *per_cu,
3352 const char *name, const char *real_path,
3353 int (*callback) (struct symtab *, void *),
3356 struct symtab *last_made = objfile->symtabs;
3358 /* Don't visit already-expanded CUs. */
3359 if (per_cu->v.quick->symtab)
3362 /* This may expand more than one symtab, and we want to iterate over
3364 dw2_instantiate_symtab (per_cu);
3366 return iterate_over_some_symtabs (name, real_path, callback, data,
3367 objfile->symtabs, last_made);
3370 /* Implementation of the map_symtabs_matching_filename method. */
3373 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3374 const char *real_path,
3375 int (*callback) (struct symtab *, void *),
3379 const char *name_basename = lbasename (name);
3381 dw2_setup (objfile);
3383 /* The rule is CUs specify all the files, including those used by
3384 any TU, so there's no need to scan TUs here. */
3386 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3389 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3390 struct quick_file_names *file_data;
3392 /* We only need to look at symtabs not already expanded. */
3393 if (per_cu->v.quick->symtab)
3396 file_data = dw2_get_file_names (per_cu);
3397 if (file_data == NULL)
3400 for (j = 0; j < file_data->num_file_names; ++j)
3402 const char *this_name = file_data->file_names[j];
3403 const char *this_real_name;
3405 if (compare_filenames_for_search (this_name, name))
3407 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3413 /* Before we invoke realpath, which can get expensive when many
3414 files are involved, do a quick comparison of the basenames. */
3415 if (! basenames_may_differ
3416 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3419 this_real_name = dw2_get_real_path (objfile, file_data, j);
3420 if (compare_filenames_for_search (this_real_name, name))
3422 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3428 if (real_path != NULL)
3430 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3431 gdb_assert (IS_ABSOLUTE_PATH (name));
3432 if (this_real_name != NULL
3433 && FILENAME_CMP (real_path, this_real_name) == 0)
3435 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3447 /* Struct used to manage iterating over all CUs looking for a symbol. */
3449 struct dw2_symtab_iterator
3451 /* The internalized form of .gdb_index. */
3452 struct mapped_index *index;
3453 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3454 int want_specific_block;
3455 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3456 Unused if !WANT_SPECIFIC_BLOCK. */
3458 /* The kind of symbol we're looking for. */
3460 /* The list of CUs from the index entry of the symbol,
3461 or NULL if not found. */
3463 /* The next element in VEC to look at. */
3465 /* The number of elements in VEC, or zero if there is no match. */
3467 /* Have we seen a global version of the symbol?
3468 If so we can ignore all further global instances.
3469 This is to work around gold/15646, inefficient gold-generated
3474 /* Initialize the index symtab iterator ITER.
3475 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3476 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3479 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3480 struct mapped_index *index,
3481 int want_specific_block,
3486 iter->index = index;
3487 iter->want_specific_block = want_specific_block;
3488 iter->block_index = block_index;
3489 iter->domain = domain;
3491 iter->global_seen = 0;
3493 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3494 iter->length = MAYBE_SWAP (*iter->vec);
3502 /* Return the next matching CU or NULL if there are no more. */
3504 static struct dwarf2_per_cu_data *
3505 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3507 for ( ; iter->next < iter->length; ++iter->next)
3509 offset_type cu_index_and_attrs =
3510 MAYBE_SWAP (iter->vec[iter->next + 1]);
3511 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3512 struct dwarf2_per_cu_data *per_cu;
3513 int want_static = iter->block_index != GLOBAL_BLOCK;
3514 /* This value is only valid for index versions >= 7. */
3515 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3516 gdb_index_symbol_kind symbol_kind =
3517 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3518 /* Only check the symbol attributes if they're present.
3519 Indices prior to version 7 don't record them,
3520 and indices >= 7 may elide them for certain symbols
3521 (gold does this). */
3523 (iter->index->version >= 7
3524 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3526 /* Don't crash on bad data. */
3527 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3528 + dwarf2_per_objfile->n_type_units))
3530 complaint (&symfile_complaints,
3531 _(".gdb_index entry has bad CU index"
3533 objfile_name (dwarf2_per_objfile->objfile));
3537 per_cu = dw2_get_cutu (cu_index);
3539 /* Skip if already read in. */
3540 if (per_cu->v.quick->symtab)
3543 /* Check static vs global. */
3546 if (iter->want_specific_block
3547 && want_static != is_static)
3549 /* Work around gold/15646. */
3550 if (!is_static && iter->global_seen)
3553 iter->global_seen = 1;
3556 /* Only check the symbol's kind if it has one. */
3559 switch (iter->domain)
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3563 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3564 /* Some types are also in VAR_DOMAIN. */
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3569 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3573 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3588 static struct symtab *
3589 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3590 const char *name, domain_enum domain)
3592 struct symtab *stab_best = NULL;
3593 struct mapped_index *index;
3595 dw2_setup (objfile);
3597 index = dwarf2_per_objfile->index_table;
3599 /* index is NULL if OBJF_READNOW. */
3602 struct dw2_symtab_iterator iter;
3603 struct dwarf2_per_cu_data *per_cu;
3605 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3607 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3609 struct symbol *sym = NULL;
3610 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3612 /* Some caution must be observed with overloaded functions
3613 and methods, since the index will not contain any overload
3614 information (but NAME might contain it). */
3617 const struct blockvector *bv = BLOCKVECTOR (stab);
3618 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3620 sym = lookup_block_symbol (block, name, domain);
3623 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3625 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3631 /* Keep looking through other CUs. */
3639 dw2_print_stats (struct objfile *objfile)
3641 int i, total, count;
3643 dw2_setup (objfile);
3644 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3646 for (i = 0; i < total; ++i)
3648 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3650 if (!per_cu->v.quick->symtab)
3653 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3654 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3657 /* This dumps minimal information about the index.
3658 It is called via "mt print objfiles".
3659 One use is to verify .gdb_index has been loaded by the
3660 gdb.dwarf2/gdb-index.exp testcase. */
3663 dw2_dump (struct objfile *objfile)
3665 dw2_setup (objfile);
3666 gdb_assert (dwarf2_per_objfile->using_index);
3667 printf_filtered (".gdb_index:");
3668 if (dwarf2_per_objfile->index_table != NULL)
3670 printf_filtered (" version %d\n",
3671 dwarf2_per_objfile->index_table->version);
3674 printf_filtered (" faked for \"readnow\"\n");
3675 printf_filtered ("\n");
3679 dw2_relocate (struct objfile *objfile,
3680 const struct section_offsets *new_offsets,
3681 const struct section_offsets *delta)
3683 /* There's nothing to relocate here. */
3687 dw2_expand_symtabs_for_function (struct objfile *objfile,
3688 const char *func_name)
3690 struct mapped_index *index;
3692 dw2_setup (objfile);
3694 index = dwarf2_per_objfile->index_table;
3696 /* index is NULL if OBJF_READNOW. */
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3702 /* Note: It doesn't matter what we pass for block_index here. */
3703 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3706 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3707 dw2_instantiate_symtab (per_cu);
3712 dw2_expand_all_symtabs (struct objfile *objfile)
3716 dw2_setup (objfile);
3718 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3719 + dwarf2_per_objfile->n_type_units); ++i)
3721 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3723 dw2_instantiate_symtab (per_cu);
3728 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3729 const char *fullname)
3733 dw2_setup (objfile);
3735 /* We don't need to consider type units here.
3736 This is only called for examining code, e.g. expand_line_sal.
3737 There can be an order of magnitude (or more) more type units
3738 than comp units, and we avoid them if we can. */
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3744 struct quick_file_names *file_data;
3746 /* We only need to look at symtabs not already expanded. */
3747 if (per_cu->v.quick->symtab)
3750 file_data = dw2_get_file_names (per_cu);
3751 if (file_data == NULL)
3754 for (j = 0; j < file_data->num_file_names; ++j)
3756 const char *this_fullname = file_data->file_names[j];
3758 if (filename_cmp (this_fullname, fullname) == 0)
3760 dw2_instantiate_symtab (per_cu);
3768 dw2_map_matching_symbols (struct objfile *objfile,
3769 const char * name, domain_enum namespace,
3771 int (*callback) (struct block *,
3772 struct symbol *, void *),
3773 void *data, symbol_compare_ftype *match,
3774 symbol_compare_ftype *ordered_compare)
3776 /* Currently unimplemented; used for Ada. The function can be called if the
3777 current language is Ada for a non-Ada objfile using GNU index. As Ada
3778 does not look for non-Ada symbols this function should just return. */
3782 dw2_expand_symtabs_matching
3783 (struct objfile *objfile,
3784 expand_symtabs_file_matcher_ftype *file_matcher,
3785 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3786 enum search_domain kind,
3791 struct mapped_index *index;
3793 dw2_setup (objfile);
3795 /* index_table is NULL if OBJF_READNOW. */
3796 if (!dwarf2_per_objfile->index_table)
3798 index = dwarf2_per_objfile->index_table;
3800 if (file_matcher != NULL)
3802 struct cleanup *cleanup;
3803 htab_t visited_found, visited_not_found;
3805 visited_found = htab_create_alloc (10,
3806 htab_hash_pointer, htab_eq_pointer,
3807 NULL, xcalloc, xfree);
3808 cleanup = make_cleanup_htab_delete (visited_found);
3809 visited_not_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 make_cleanup_htab_delete (visited_not_found);
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3817 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3820 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3821 struct quick_file_names *file_data;
3824 per_cu->v.quick->mark = 0;
3826 /* We only need to look at symtabs not already expanded. */
3827 if (per_cu->v.quick->symtab)
3830 file_data = dw2_get_file_names (per_cu);
3831 if (file_data == NULL)
3834 if (htab_find (visited_not_found, file_data) != NULL)
3836 else if (htab_find (visited_found, file_data) != NULL)
3838 per_cu->v.quick->mark = 1;
3842 for (j = 0; j < file_data->num_file_names; ++j)
3844 const char *this_real_name;
3846 if (file_matcher (file_data->file_names[j], data, 0))
3848 per_cu->v.quick->mark = 1;
3852 /* Before we invoke realpath, which can get expensive when many
3853 files are involved, do a quick comparison of the basenames. */
3854 if (!basenames_may_differ
3855 && !file_matcher (lbasename (file_data->file_names[j]),
3859 this_real_name = dw2_get_real_path (objfile, file_data, j);
3860 if (file_matcher (this_real_name, data, 0))
3862 per_cu->v.quick->mark = 1;
3867 slot = htab_find_slot (per_cu->v.quick->mark
3869 : visited_not_found,
3874 do_cleanups (cleanup);
3877 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3879 offset_type idx = 2 * iter;
3881 offset_type *vec, vec_len, vec_idx;
3882 int global_seen = 0;
3884 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3887 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3889 if (! (*symbol_matcher) (name, data))
3892 /* The name was matched, now expand corresponding CUs that were
3894 vec = (offset_type *) (index->constant_pool
3895 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3896 vec_len = MAYBE_SWAP (vec[0]);
3897 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3899 struct dwarf2_per_cu_data *per_cu;
3900 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3901 /* This value is only valid for index versions >= 7. */
3902 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3903 gdb_index_symbol_kind symbol_kind =
3904 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3905 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3906 /* Only check the symbol attributes if they're present.
3907 Indices prior to version 7 don't record them,
3908 and indices >= 7 may elide them for certain symbols
3909 (gold does this). */
3911 (index->version >= 7
3912 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3914 /* Work around gold/15646. */
3917 if (!is_static && global_seen)
3923 /* Only check the symbol's kind if it has one. */
3928 case VARIABLES_DOMAIN:
3929 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3932 case FUNCTIONS_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3945 /* Don't crash on bad data. */
3946 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3947 + dwarf2_per_objfile->n_type_units))
3949 complaint (&symfile_complaints,
3950 _(".gdb_index entry has bad CU index"
3951 " [in module %s]"), objfile_name (objfile));
3955 per_cu = dw2_get_cutu (cu_index);
3956 if (file_matcher == NULL || per_cu->v.quick->mark)
3957 dw2_instantiate_symtab (per_cu);
3962 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3965 static struct symtab *
3966 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3970 if (BLOCKVECTOR (symtab) != NULL
3971 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3974 if (symtab->includes == NULL)
3977 for (i = 0; symtab->includes[i]; ++i)
3979 struct symtab *s = symtab->includes[i];
3981 s = recursively_find_pc_sect_symtab (s, pc);
3989 static struct symtab *
3990 dw2_find_pc_sect_symtab (struct objfile *objfile,
3991 struct bound_minimal_symbol msymbol,
3993 struct obj_section *section,
3996 struct dwarf2_per_cu_data *data;
3997 struct symtab *result;
3999 dw2_setup (objfile);
4001 if (!objfile->psymtabs_addrmap)
4004 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4008 if (warn_if_readin && data->v.quick->symtab)
4009 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4010 paddress (get_objfile_arch (objfile), pc));
4012 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4013 gdb_assert (result != NULL);
4018 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4019 void *data, int need_fullname)
4022 struct cleanup *cleanup;
4023 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4024 NULL, xcalloc, xfree);
4026 cleanup = make_cleanup_htab_delete (visited);
4027 dw2_setup (objfile);
4029 /* The rule is CUs specify all the files, including those used by
4030 any TU, so there's no need to scan TUs here.
4031 We can ignore file names coming from already-expanded CUs. */
4033 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4035 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4037 if (per_cu->v.quick->symtab)
4039 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4042 *slot = per_cu->v.quick->file_names;
4046 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4049 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4050 struct quick_file_names *file_data;
4053 /* We only need to look at symtabs not already expanded. */
4054 if (per_cu->v.quick->symtab)
4057 file_data = dw2_get_file_names (per_cu);
4058 if (file_data == NULL)
4061 slot = htab_find_slot (visited, file_data, INSERT);
4064 /* Already visited. */
4069 for (j = 0; j < file_data->num_file_names; ++j)
4071 const char *this_real_name;
4074 this_real_name = dw2_get_real_path (objfile, file_data, j);
4076 this_real_name = NULL;
4077 (*fun) (file_data->file_names[j], this_real_name, data);
4081 do_cleanups (cleanup);
4085 dw2_has_symbols (struct objfile *objfile)
4090 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4093 dw2_find_last_source_symtab,
4094 dw2_forget_cached_source_info,
4095 dw2_map_symtabs_matching_filename,
4100 dw2_expand_symtabs_for_function,
4101 dw2_expand_all_symtabs,
4102 dw2_expand_symtabs_with_fullname,
4103 dw2_map_matching_symbols,
4104 dw2_expand_symtabs_matching,
4105 dw2_find_pc_sect_symtab,
4106 dw2_map_symbol_filenames
4109 /* Initialize for reading DWARF for this objfile. Return 0 if this
4110 file will use psymtabs, or 1 if using the GNU index. */
4113 dwarf2_initialize_objfile (struct objfile *objfile)
4115 /* If we're about to read full symbols, don't bother with the
4116 indices. In this case we also don't care if some other debug
4117 format is making psymtabs, because they are all about to be
4119 if ((objfile->flags & OBJF_READNOW))
4123 dwarf2_per_objfile->using_index = 1;
4124 create_all_comp_units (objfile);
4125 create_all_type_units (objfile);
4126 dwarf2_per_objfile->quick_file_names_table =
4127 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4129 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4130 + dwarf2_per_objfile->n_type_units); ++i)
4132 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4134 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4135 struct dwarf2_per_cu_quick_data);
4138 /* Return 1 so that gdb sees the "quick" functions. However,
4139 these functions will be no-ops because we will have expanded
4144 if (dwarf2_read_index (objfile))
4152 /* Build a partial symbol table. */
4155 dwarf2_build_psymtabs (struct objfile *objfile)
4157 volatile struct gdb_exception except;
4159 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4161 init_psymbol_list (objfile, 1024);
4164 TRY_CATCH (except, RETURN_MASK_ERROR)
4166 /* This isn't really ideal: all the data we allocate on the
4167 objfile's obstack is still uselessly kept around. However,
4168 freeing it seems unsafe. */
4169 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4171 dwarf2_build_psymtabs_hard (objfile);
4172 discard_cleanups (cleanups);
4174 if (except.reason < 0)
4175 exception_print (gdb_stderr, except);
4178 /* Return the total length of the CU described by HEADER. */
4181 get_cu_length (const struct comp_unit_head *header)
4183 return header->initial_length_size + header->length;
4186 /* Return TRUE if OFFSET is within CU_HEADER. */
4189 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4191 sect_offset bottom = { cu_header->offset.sect_off };
4192 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4194 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4197 /* Find the base address of the compilation unit for range lists and
4198 location lists. It will normally be specified by DW_AT_low_pc.
4199 In DWARF-3 draft 4, the base address could be overridden by
4200 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4201 compilation units with discontinuous ranges. */
4204 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4206 struct attribute *attr;
4209 cu->base_address = 0;
4211 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4214 cu->base_address = attr_value_as_address (attr);
4219 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4222 cu->base_address = attr_value_as_address (attr);
4228 /* Read in the comp unit header information from the debug_info at info_ptr.
4229 NOTE: This leaves members offset, first_die_offset to be filled in
4232 static const gdb_byte *
4233 read_comp_unit_head (struct comp_unit_head *cu_header,
4234 const gdb_byte *info_ptr, bfd *abfd)
4237 unsigned int bytes_read;
4239 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4240 cu_header->initial_length_size = bytes_read;
4241 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4242 info_ptr += bytes_read;
4243 cu_header->version = read_2_bytes (abfd, info_ptr);
4245 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4247 info_ptr += bytes_read;
4248 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4250 signed_addr = bfd_get_sign_extend_vma (abfd);
4251 if (signed_addr < 0)
4252 internal_error (__FILE__, __LINE__,
4253 _("read_comp_unit_head: dwarf from non elf file"));
4254 cu_header->signed_addr_p = signed_addr;
4259 /* Helper function that returns the proper abbrev section for
4262 static struct dwarf2_section_info *
4263 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4265 struct dwarf2_section_info *abbrev;
4267 if (this_cu->is_dwz)
4268 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4270 abbrev = &dwarf2_per_objfile->abbrev;
4275 /* Subroutine of read_and_check_comp_unit_head and
4276 read_and_check_type_unit_head to simplify them.
4277 Perform various error checking on the header. */
4280 error_check_comp_unit_head (struct comp_unit_head *header,
4281 struct dwarf2_section_info *section,
4282 struct dwarf2_section_info *abbrev_section)
4284 bfd *abfd = get_section_bfd_owner (section);
4285 const char *filename = get_section_file_name (section);
4287 if (header->version != 2 && header->version != 3 && header->version != 4)
4288 error (_("Dwarf Error: wrong version in compilation unit header "
4289 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4292 if (header->abbrev_offset.sect_off
4293 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4294 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4295 "(offset 0x%lx + 6) [in module %s]"),
4296 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4299 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4300 avoid potential 32-bit overflow. */
4301 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4303 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4304 "(offset 0x%lx + 0) [in module %s]"),
4305 (long) header->length, (long) header->offset.sect_off,
4309 /* Read in a CU/TU header and perform some basic error checking.
4310 The contents of the header are stored in HEADER.
4311 The result is a pointer to the start of the first DIE. */
4313 static const gdb_byte *
4314 read_and_check_comp_unit_head (struct comp_unit_head *header,
4315 struct dwarf2_section_info *section,
4316 struct dwarf2_section_info *abbrev_section,
4317 const gdb_byte *info_ptr,
4318 int is_debug_types_section)
4320 const gdb_byte *beg_of_comp_unit = info_ptr;
4321 bfd *abfd = get_section_bfd_owner (section);
4323 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4325 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4327 /* If we're reading a type unit, skip over the signature and
4328 type_offset fields. */
4329 if (is_debug_types_section)
4330 info_ptr += 8 /*signature*/ + header->offset_size;
4332 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4334 error_check_comp_unit_head (header, section, abbrev_section);
4339 /* Read in the types comp unit header information from .debug_types entry at
4340 types_ptr. The result is a pointer to one past the end of the header. */
4342 static const gdb_byte *
4343 read_and_check_type_unit_head (struct comp_unit_head *header,
4344 struct dwarf2_section_info *section,
4345 struct dwarf2_section_info *abbrev_section,
4346 const gdb_byte *info_ptr,
4347 ULONGEST *signature,
4348 cu_offset *type_offset_in_tu)
4350 const gdb_byte *beg_of_comp_unit = info_ptr;
4351 bfd *abfd = get_section_bfd_owner (section);
4353 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4355 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4357 /* If we're reading a type unit, skip over the signature and
4358 type_offset fields. */
4359 if (signature != NULL)
4360 *signature = read_8_bytes (abfd, info_ptr);
4362 if (type_offset_in_tu != NULL)
4363 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4364 header->offset_size);
4365 info_ptr += header->offset_size;
4367 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4369 error_check_comp_unit_head (header, section, abbrev_section);
4374 /* Fetch the abbreviation table offset from a comp or type unit header. */
4377 read_abbrev_offset (struct dwarf2_section_info *section,
4380 bfd *abfd = get_section_bfd_owner (section);
4381 const gdb_byte *info_ptr;
4382 unsigned int length, initial_length_size, offset_size;
4383 sect_offset abbrev_offset;
4385 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4386 info_ptr = section->buffer + offset.sect_off;
4387 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4388 offset_size = initial_length_size == 4 ? 4 : 8;
4389 info_ptr += initial_length_size + 2 /*version*/;
4390 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4391 return abbrev_offset;
4394 /* Allocate a new partial symtab for file named NAME and mark this new
4395 partial symtab as being an include of PST. */
4398 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4399 struct objfile *objfile)
4401 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4403 if (!IS_ABSOLUTE_PATH (subpst->filename))
4405 /* It shares objfile->objfile_obstack. */
4406 subpst->dirname = pst->dirname;
4409 subpst->section_offsets = pst->section_offsets;
4410 subpst->textlow = 0;
4411 subpst->texthigh = 0;
4413 subpst->dependencies = (struct partial_symtab **)
4414 obstack_alloc (&objfile->objfile_obstack,
4415 sizeof (struct partial_symtab *));
4416 subpst->dependencies[0] = pst;
4417 subpst->number_of_dependencies = 1;
4419 subpst->globals_offset = 0;
4420 subpst->n_global_syms = 0;
4421 subpst->statics_offset = 0;
4422 subpst->n_static_syms = 0;
4423 subpst->symtab = NULL;
4424 subpst->read_symtab = pst->read_symtab;
4427 /* No private part is necessary for include psymtabs. This property
4428 can be used to differentiate between such include psymtabs and
4429 the regular ones. */
4430 subpst->read_symtab_private = NULL;
4433 /* Read the Line Number Program data and extract the list of files
4434 included by the source file represented by PST. Build an include
4435 partial symtab for each of these included files. */
4438 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4439 struct die_info *die,
4440 struct partial_symtab *pst)
4442 struct line_header *lh = NULL;
4443 struct attribute *attr;
4445 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4447 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4449 return; /* No linetable, so no includes. */
4451 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4452 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4454 free_line_header (lh);
4458 hash_signatured_type (const void *item)
4460 const struct signatured_type *sig_type = item;
4462 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4463 return sig_type->signature;
4467 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4469 const struct signatured_type *lhs = item_lhs;
4470 const struct signatured_type *rhs = item_rhs;
4472 return lhs->signature == rhs->signature;
4475 /* Allocate a hash table for signatured types. */
4478 allocate_signatured_type_table (struct objfile *objfile)
4480 return htab_create_alloc_ex (41,
4481 hash_signatured_type,
4484 &objfile->objfile_obstack,
4485 hashtab_obstack_allocate,
4486 dummy_obstack_deallocate);
4489 /* A helper function to add a signatured type CU to a table. */
4492 add_signatured_type_cu_to_table (void **slot, void *datum)
4494 struct signatured_type *sigt = *slot;
4495 struct signatured_type ***datap = datum;
4503 /* Create the hash table of all entries in the .debug_types
4504 (or .debug_types.dwo) section(s).
4505 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4506 otherwise it is NULL.
4508 The result is a pointer to the hash table or NULL if there are no types.
4510 Note: This function processes DWO files only, not DWP files. */
4513 create_debug_types_hash_table (struct dwo_file *dwo_file,
4514 VEC (dwarf2_section_info_def) *types)
4516 struct objfile *objfile = dwarf2_per_objfile->objfile;
4517 htab_t types_htab = NULL;
4519 struct dwarf2_section_info *section;
4520 struct dwarf2_section_info *abbrev_section;
4522 if (VEC_empty (dwarf2_section_info_def, types))
4525 abbrev_section = (dwo_file != NULL
4526 ? &dwo_file->sections.abbrev
4527 : &dwarf2_per_objfile->abbrev);
4529 if (dwarf2_read_debug)
4530 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4531 dwo_file ? ".dwo" : "",
4532 get_section_file_name (abbrev_section));
4535 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4539 const gdb_byte *info_ptr, *end_ptr;
4541 dwarf2_read_section (objfile, section);
4542 info_ptr = section->buffer;
4544 if (info_ptr == NULL)
4547 /* We can't set abfd until now because the section may be empty or
4548 not present, in which case the bfd is unknown. */
4549 abfd = get_section_bfd_owner (section);
4551 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4552 because we don't need to read any dies: the signature is in the
4555 end_ptr = info_ptr + section->size;
4556 while (info_ptr < end_ptr)
4559 cu_offset type_offset_in_tu;
4561 struct signatured_type *sig_type;
4562 struct dwo_unit *dwo_tu;
4564 const gdb_byte *ptr = info_ptr;
4565 struct comp_unit_head header;
4566 unsigned int length;
4568 offset.sect_off = ptr - section->buffer;
4570 /* We need to read the type's signature in order to build the hash
4571 table, but we don't need anything else just yet. */
4573 ptr = read_and_check_type_unit_head (&header, section,
4574 abbrev_section, ptr,
4575 &signature, &type_offset_in_tu);
4577 length = get_cu_length (&header);
4579 /* Skip dummy type units. */
4580 if (ptr >= info_ptr + length
4581 || peek_abbrev_code (abfd, ptr) == 0)
4587 if (types_htab == NULL)
4590 types_htab = allocate_dwo_unit_table (objfile);
4592 types_htab = allocate_signatured_type_table (objfile);
4598 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4600 dwo_tu->dwo_file = dwo_file;
4601 dwo_tu->signature = signature;
4602 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4603 dwo_tu->section = section;
4604 dwo_tu->offset = offset;
4605 dwo_tu->length = length;
4609 /* N.B.: type_offset is not usable if this type uses a DWO file.
4610 The real type_offset is in the DWO file. */
4612 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4613 struct signatured_type);
4614 sig_type->signature = signature;
4615 sig_type->type_offset_in_tu = type_offset_in_tu;
4616 sig_type->per_cu.objfile = objfile;
4617 sig_type->per_cu.is_debug_types = 1;
4618 sig_type->per_cu.section = section;
4619 sig_type->per_cu.offset = offset;
4620 sig_type->per_cu.length = length;
4623 slot = htab_find_slot (types_htab,
4624 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4626 gdb_assert (slot != NULL);
4629 sect_offset dup_offset;
4633 const struct dwo_unit *dup_tu = *slot;
4635 dup_offset = dup_tu->offset;
4639 const struct signatured_type *dup_tu = *slot;
4641 dup_offset = dup_tu->per_cu.offset;
4644 complaint (&symfile_complaints,
4645 _("debug type entry at offset 0x%x is duplicate to"
4646 " the entry at offset 0x%x, signature %s"),
4647 offset.sect_off, dup_offset.sect_off,
4648 hex_string (signature));
4650 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4652 if (dwarf2_read_debug > 1)
4653 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4655 hex_string (signature));
4664 /* Create the hash table of all entries in the .debug_types section,
4665 and initialize all_type_units.
4666 The result is zero if there is an error (e.g. missing .debug_types section),
4667 otherwise non-zero. */
4670 create_all_type_units (struct objfile *objfile)
4673 struct signatured_type **iter;
4675 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4676 if (types_htab == NULL)
4678 dwarf2_per_objfile->signatured_types = NULL;
4682 dwarf2_per_objfile->signatured_types = types_htab;
4684 dwarf2_per_objfile->n_type_units
4685 = dwarf2_per_objfile->n_allocated_type_units
4686 = htab_elements (types_htab);
4687 dwarf2_per_objfile->all_type_units
4688 = xmalloc (dwarf2_per_objfile->n_type_units
4689 * sizeof (struct signatured_type *));
4690 iter = &dwarf2_per_objfile->all_type_units[0];
4691 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4692 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4693 == dwarf2_per_objfile->n_type_units);
4698 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4699 If SLOT is non-NULL, it is the entry to use in the hash table.
4700 Otherwise we find one. */
4702 static struct signatured_type *
4703 add_type_unit (ULONGEST sig, void **slot)
4705 struct objfile *objfile = dwarf2_per_objfile->objfile;
4706 int n_type_units = dwarf2_per_objfile->n_type_units;
4707 struct signatured_type *sig_type;
4709 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4711 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4713 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4714 dwarf2_per_objfile->n_allocated_type_units = 1;
4715 dwarf2_per_objfile->n_allocated_type_units *= 2;
4716 dwarf2_per_objfile->all_type_units
4717 = xrealloc (dwarf2_per_objfile->all_type_units,
4718 dwarf2_per_objfile->n_allocated_type_units
4719 * sizeof (struct signatured_type *));
4720 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4722 dwarf2_per_objfile->n_type_units = n_type_units;
4724 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4725 struct signatured_type);
4726 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4727 sig_type->signature = sig;
4728 sig_type->per_cu.is_debug_types = 1;
4729 if (dwarf2_per_objfile->using_index)
4731 sig_type->per_cu.v.quick =
4732 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4733 struct dwarf2_per_cu_quick_data);
4738 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4741 gdb_assert (*slot == NULL);
4743 /* The rest of sig_type must be filled in by the caller. */
4747 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4748 Fill in SIG_ENTRY with DWO_ENTRY. */
4751 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4752 struct signatured_type *sig_entry,
4753 struct dwo_unit *dwo_entry)
4755 /* Make sure we're not clobbering something we don't expect to. */
4756 gdb_assert (! sig_entry->per_cu.queued);
4757 gdb_assert (sig_entry->per_cu.cu == NULL);
4758 if (dwarf2_per_objfile->using_index)
4760 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4761 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4764 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4765 gdb_assert (sig_entry->signature == dwo_entry->signature);
4766 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4767 gdb_assert (sig_entry->type_unit_group == NULL);
4768 gdb_assert (sig_entry->dwo_unit == NULL);
4770 sig_entry->per_cu.section = dwo_entry->section;
4771 sig_entry->per_cu.offset = dwo_entry->offset;
4772 sig_entry->per_cu.length = dwo_entry->length;
4773 sig_entry->per_cu.reading_dwo_directly = 1;
4774 sig_entry->per_cu.objfile = objfile;
4775 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4776 sig_entry->dwo_unit = dwo_entry;
4779 /* Subroutine of lookup_signatured_type.
4780 If we haven't read the TU yet, create the signatured_type data structure
4781 for a TU to be read in directly from a DWO file, bypassing the stub.
4782 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4783 using .gdb_index, then when reading a CU we want to stay in the DWO file
4784 containing that CU. Otherwise we could end up reading several other DWO
4785 files (due to comdat folding) to process the transitive closure of all the
4786 mentioned TUs, and that can be slow. The current DWO file will have every
4787 type signature that it needs.
4788 We only do this for .gdb_index because in the psymtab case we already have
4789 to read all the DWOs to build the type unit groups. */
4791 static struct signatured_type *
4792 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4794 struct objfile *objfile = dwarf2_per_objfile->objfile;
4795 struct dwo_file *dwo_file;
4796 struct dwo_unit find_dwo_entry, *dwo_entry;
4797 struct signatured_type find_sig_entry, *sig_entry;
4800 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4802 /* If TU skeletons have been removed then we may not have read in any
4804 if (dwarf2_per_objfile->signatured_types == NULL)
4806 dwarf2_per_objfile->signatured_types
4807 = allocate_signatured_type_table (objfile);
4810 /* We only ever need to read in one copy of a signatured type.
4811 Use the global signatured_types array to do our own comdat-folding
4812 of types. If this is the first time we're reading this TU, and
4813 the TU has an entry in .gdb_index, replace the recorded data from
4814 .gdb_index with this TU. */
4816 find_sig_entry.signature = sig;
4817 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4818 &find_sig_entry, INSERT);
4821 /* We can get here with the TU already read, *or* in the process of being
4822 read. Don't reassign the global entry to point to this DWO if that's
4823 the case. Also note that if the TU is already being read, it may not
4824 have come from a DWO, the program may be a mix of Fission-compiled
4825 code and non-Fission-compiled code. */
4827 /* Have we already tried to read this TU?
4828 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4829 needn't exist in the global table yet). */
4830 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4833 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4834 dwo_unit of the TU itself. */
4835 dwo_file = cu->dwo_unit->dwo_file;
4837 /* Ok, this is the first time we're reading this TU. */
4838 if (dwo_file->tus == NULL)
4840 find_dwo_entry.signature = sig;
4841 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4842 if (dwo_entry == NULL)
4845 /* If the global table doesn't have an entry for this TU, add one. */
4846 if (sig_entry == NULL)
4847 sig_entry = add_type_unit (sig, slot);
4849 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4850 sig_entry->per_cu.tu_read = 1;
4854 /* Subroutine of lookup_signatured_type.
4855 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4856 then try the DWP file. If the TU stub (skeleton) has been removed then
4857 it won't be in .gdb_index. */
4859 static struct signatured_type *
4860 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4862 struct objfile *objfile = dwarf2_per_objfile->objfile;
4863 struct dwp_file *dwp_file = get_dwp_file ();
4864 struct dwo_unit *dwo_entry;
4865 struct signatured_type find_sig_entry, *sig_entry;
4868 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4869 gdb_assert (dwp_file != NULL);
4871 /* If TU skeletons have been removed then we may not have read in any
4873 if (dwarf2_per_objfile->signatured_types == NULL)
4875 dwarf2_per_objfile->signatured_types
4876 = allocate_signatured_type_table (objfile);
4879 find_sig_entry.signature = sig;
4880 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4881 &find_sig_entry, INSERT);
4884 /* Have we already tried to read this TU?
4885 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4886 needn't exist in the global table yet). */
4887 if (sig_entry != NULL)
4890 if (dwp_file->tus == NULL)
4892 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4893 sig, 1 /* is_debug_types */);
4894 if (dwo_entry == NULL)
4897 sig_entry = add_type_unit (sig, slot);
4898 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4903 /* Lookup a signature based type for DW_FORM_ref_sig8.
4904 Returns NULL if signature SIG is not present in the table.
4905 It is up to the caller to complain about this. */
4907 static struct signatured_type *
4908 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911 && dwarf2_per_objfile->using_index)
4913 /* We're in a DWO/DWP file, and we're using .gdb_index.
4914 These cases require special processing. */
4915 if (get_dwp_file () == NULL)
4916 return lookup_dwo_signatured_type (cu, sig);
4918 return lookup_dwp_signatured_type (cu, sig);
4922 struct signatured_type find_entry, *entry;
4924 if (dwarf2_per_objfile->signatured_types == NULL)
4926 find_entry.signature = sig;
4927 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4932 /* Low level DIE reading support. */
4934 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4937 init_cu_die_reader (struct die_reader_specs *reader,
4938 struct dwarf2_cu *cu,
4939 struct dwarf2_section_info *section,
4940 struct dwo_file *dwo_file)
4942 gdb_assert (section->readin && section->buffer != NULL);
4943 reader->abfd = get_section_bfd_owner (section);
4945 reader->dwo_file = dwo_file;
4946 reader->die_section = section;
4947 reader->buffer = section->buffer;
4948 reader->buffer_end = section->buffer + section->size;
4949 reader->comp_dir = NULL;
4952 /* Subroutine of init_cutu_and_read_dies to simplify it.
4953 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4954 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4957 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4958 from it to the DIE in the DWO. If NULL we are skipping the stub.
4959 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4960 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4961 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4962 STUB_COMP_DIR may be non-NULL.
4963 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4964 are filled in with the info of the DIE from the DWO file.
4965 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4966 provided an abbrev table to use.
4967 The result is non-zero if a valid (non-dummy) DIE was found. */
4970 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4971 struct dwo_unit *dwo_unit,
4972 int abbrev_table_provided,
4973 struct die_info *stub_comp_unit_die,
4974 const char *stub_comp_dir,
4975 struct die_reader_specs *result_reader,
4976 const gdb_byte **result_info_ptr,
4977 struct die_info **result_comp_unit_die,
4978 int *result_has_children)
4980 struct objfile *objfile = dwarf2_per_objfile->objfile;
4981 struct dwarf2_cu *cu = this_cu->cu;
4982 struct dwarf2_section_info *section;
4984 const gdb_byte *begin_info_ptr, *info_ptr;
4985 ULONGEST signature; /* Or dwo_id. */
4986 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4987 int i,num_extra_attrs;
4988 struct dwarf2_section_info *dwo_abbrev_section;
4989 struct attribute *attr;
4990 struct die_info *comp_unit_die;
4992 /* At most one of these may be provided. */
4993 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4995 /* These attributes aren't processed until later:
4996 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4997 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4998 referenced later. However, these attributes are found in the stub
4999 which we won't have later. In order to not impose this complication
5000 on the rest of the code, we read them here and copy them to the
5009 if (stub_comp_unit_die != NULL)
5011 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5013 if (! this_cu->is_debug_types)
5014 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5015 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5016 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5017 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5018 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5020 /* There should be a DW_AT_addr_base attribute here (if needed).
5021 We need the value before we can process DW_FORM_GNU_addr_index. */
5023 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5025 cu->addr_base = DW_UNSND (attr);
5027 /* There should be a DW_AT_ranges_base attribute here (if needed).
5028 We need the value before we can process DW_AT_ranges. */
5029 cu->ranges_base = 0;
5030 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5032 cu->ranges_base = DW_UNSND (attr);
5034 else if (stub_comp_dir != NULL)
5036 /* Reconstruct the comp_dir attribute to simplify the code below. */
5037 comp_dir = (struct attribute *)
5038 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5039 comp_dir->name = DW_AT_comp_dir;
5040 comp_dir->form = DW_FORM_string;
5041 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5042 DW_STRING (comp_dir) = stub_comp_dir;
5045 /* Set up for reading the DWO CU/TU. */
5046 cu->dwo_unit = dwo_unit;
5047 section = dwo_unit->section;
5048 dwarf2_read_section (objfile, section);
5049 abfd = get_section_bfd_owner (section);
5050 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5051 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5052 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5054 if (this_cu->is_debug_types)
5056 ULONGEST header_signature;
5057 cu_offset type_offset_in_tu;
5058 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5060 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5064 &type_offset_in_tu);
5065 /* This is not an assert because it can be caused by bad debug info. */
5066 if (sig_type->signature != header_signature)
5068 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5069 " TU at offset 0x%x [in module %s]"),
5070 hex_string (sig_type->signature),
5071 hex_string (header_signature),
5072 dwo_unit->offset.sect_off,
5073 bfd_get_filename (abfd));
5075 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5076 /* For DWOs coming from DWP files, we don't know the CU length
5077 nor the type's offset in the TU until now. */
5078 dwo_unit->length = get_cu_length (&cu->header);
5079 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5081 /* Establish the type offset that can be used to lookup the type.
5082 For DWO files, we don't know it until now. */
5083 sig_type->type_offset_in_section.sect_off =
5084 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5088 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5091 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5092 /* For DWOs coming from DWP files, we don't know the CU length
5094 dwo_unit->length = get_cu_length (&cu->header);
5097 /* Replace the CU's original abbrev table with the DWO's.
5098 Reminder: We can't read the abbrev table until we've read the header. */
5099 if (abbrev_table_provided)
5101 /* Don't free the provided abbrev table, the caller of
5102 init_cutu_and_read_dies owns it. */
5103 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5104 /* Ensure the DWO abbrev table gets freed. */
5105 make_cleanup (dwarf2_free_abbrev_table, cu);
5109 dwarf2_free_abbrev_table (cu);
5110 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5111 /* Leave any existing abbrev table cleanup as is. */
5114 /* Read in the die, but leave space to copy over the attributes
5115 from the stub. This has the benefit of simplifying the rest of
5116 the code - all the work to maintain the illusion of a single
5117 DW_TAG_{compile,type}_unit DIE is done here. */
5118 num_extra_attrs = ((stmt_list != NULL)
5122 + (comp_dir != NULL));
5123 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5124 result_has_children, num_extra_attrs);
5126 /* Copy over the attributes from the stub to the DIE we just read in. */
5127 comp_unit_die = *result_comp_unit_die;
5128 i = comp_unit_die->num_attrs;
5129 if (stmt_list != NULL)
5130 comp_unit_die->attrs[i++] = *stmt_list;
5132 comp_unit_die->attrs[i++] = *low_pc;
5133 if (high_pc != NULL)
5134 comp_unit_die->attrs[i++] = *high_pc;
5136 comp_unit_die->attrs[i++] = *ranges;
5137 if (comp_dir != NULL)
5138 comp_unit_die->attrs[i++] = *comp_dir;
5139 comp_unit_die->num_attrs += num_extra_attrs;
5141 if (dwarf2_die_debug)
5143 fprintf_unfiltered (gdb_stdlog,
5144 "Read die from %s@0x%x of %s:\n",
5145 get_section_name (section),
5146 (unsigned) (begin_info_ptr - section->buffer),
5147 bfd_get_filename (abfd));
5148 dump_die (comp_unit_die, dwarf2_die_debug);
5151 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5152 TUs by skipping the stub and going directly to the entry in the DWO file.
5153 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5154 to get it via circuitous means. Blech. */
5155 if (comp_dir != NULL)
5156 result_reader->comp_dir = DW_STRING (comp_dir);
5158 /* Skip dummy compilation units. */
5159 if (info_ptr >= begin_info_ptr + dwo_unit->length
5160 || peek_abbrev_code (abfd, info_ptr) == 0)
5163 *result_info_ptr = info_ptr;
5167 /* Subroutine of init_cutu_and_read_dies to simplify it.
5168 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5169 Returns NULL if the specified DWO unit cannot be found. */
5171 static struct dwo_unit *
5172 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5173 struct die_info *comp_unit_die)
5175 struct dwarf2_cu *cu = this_cu->cu;
5176 struct attribute *attr;
5178 struct dwo_unit *dwo_unit;
5179 const char *comp_dir, *dwo_name;
5181 gdb_assert (cu != NULL);
5183 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5184 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5185 gdb_assert (attr != NULL);
5186 dwo_name = DW_STRING (attr);
5188 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5190 comp_dir = DW_STRING (attr);
5192 if (this_cu->is_debug_types)
5194 struct signatured_type *sig_type;
5196 /* Since this_cu is the first member of struct signatured_type,
5197 we can go from a pointer to one to a pointer to the other. */
5198 sig_type = (struct signatured_type *) this_cu;
5199 signature = sig_type->signature;
5200 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5204 struct attribute *attr;
5206 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5208 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5210 dwo_name, objfile_name (this_cu->objfile));
5211 signature = DW_UNSND (attr);
5212 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5219 /* Subroutine of init_cutu_and_read_dies to simplify it.
5220 See it for a description of the parameters.
5221 Read a TU directly from a DWO file, bypassing the stub.
5223 Note: This function could be a little bit simpler if we shared cleanups
5224 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5225 to do, so we keep this function self-contained. Or we could move this
5226 into our caller, but it's complex enough already. */
5229 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5230 int use_existing_cu, int keep,
5231 die_reader_func_ftype *die_reader_func,
5234 struct dwarf2_cu *cu;
5235 struct signatured_type *sig_type;
5236 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5237 struct die_reader_specs reader;
5238 const gdb_byte *info_ptr;
5239 struct die_info *comp_unit_die;
5242 /* Verify we can do the following downcast, and that we have the
5244 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5245 sig_type = (struct signatured_type *) this_cu;
5246 gdb_assert (sig_type->dwo_unit != NULL);
5248 cleanups = make_cleanup (null_cleanup, NULL);
5250 if (use_existing_cu && this_cu->cu != NULL)
5252 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5254 /* There's no need to do the rereading_dwo_cu handling that
5255 init_cutu_and_read_dies does since we don't read the stub. */
5259 /* If !use_existing_cu, this_cu->cu must be NULL. */
5260 gdb_assert (this_cu->cu == NULL);
5261 cu = xmalloc (sizeof (*cu));
5262 init_one_comp_unit (cu, this_cu);
5263 /* If an error occurs while loading, release our storage. */
5264 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5267 /* A future optimization, if needed, would be to use an existing
5268 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5269 could share abbrev tables. */
5271 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5272 0 /* abbrev_table_provided */,
5273 NULL /* stub_comp_unit_die */,
5274 sig_type->dwo_unit->dwo_file->comp_dir,
5276 &comp_unit_die, &has_children) == 0)
5279 do_cleanups (cleanups);
5283 /* All the "real" work is done here. */
5284 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5286 /* This duplicates the code in init_cutu_and_read_dies,
5287 but the alternative is making the latter more complex.
5288 This function is only for the special case of using DWO files directly:
5289 no point in overly complicating the general case just to handle this. */
5290 if (free_cu_cleanup != NULL)
5294 /* We've successfully allocated this compilation unit. Let our
5295 caller clean it up when finished with it. */
5296 discard_cleanups (free_cu_cleanup);
5298 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5299 So we have to manually free the abbrev table. */
5300 dwarf2_free_abbrev_table (cu);
5302 /* Link this CU into read_in_chain. */
5303 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5304 dwarf2_per_objfile->read_in_chain = this_cu;
5307 do_cleanups (free_cu_cleanup);
5310 do_cleanups (cleanups);
5313 /* Initialize a CU (or TU) and read its DIEs.
5314 If the CU defers to a DWO file, read the DWO file as well.
5316 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5317 Otherwise the table specified in the comp unit header is read in and used.
5318 This is an optimization for when we already have the abbrev table.
5320 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5321 Otherwise, a new CU is allocated with xmalloc.
5323 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5324 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5326 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5327 linker) then DIE_READER_FUNC will not get called. */
5330 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5331 struct abbrev_table *abbrev_table,
5332 int use_existing_cu, int keep,
5333 die_reader_func_ftype *die_reader_func,
5336 struct objfile *objfile = dwarf2_per_objfile->objfile;
5337 struct dwarf2_section_info *section = this_cu->section;
5338 bfd *abfd = get_section_bfd_owner (section);
5339 struct dwarf2_cu *cu;
5340 const gdb_byte *begin_info_ptr, *info_ptr;
5341 struct die_reader_specs reader;
5342 struct die_info *comp_unit_die;
5344 struct attribute *attr;
5345 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5346 struct signatured_type *sig_type = NULL;
5347 struct dwarf2_section_info *abbrev_section;
5348 /* Non-zero if CU currently points to a DWO file and we need to
5349 reread it. When this happens we need to reread the skeleton die
5350 before we can reread the DWO file (this only applies to CUs, not TUs). */
5351 int rereading_dwo_cu = 0;
5353 if (dwarf2_die_debug)
5354 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5355 this_cu->is_debug_types ? "type" : "comp",
5356 this_cu->offset.sect_off);
5358 if (use_existing_cu)
5361 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5362 file (instead of going through the stub), short-circuit all of this. */
5363 if (this_cu->reading_dwo_directly)
5365 /* Narrow down the scope of possibilities to have to understand. */
5366 gdb_assert (this_cu->is_debug_types);
5367 gdb_assert (abbrev_table == NULL);
5368 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5369 die_reader_func, data);
5373 cleanups = make_cleanup (null_cleanup, NULL);
5375 /* This is cheap if the section is already read in. */
5376 dwarf2_read_section (objfile, section);
5378 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5380 abbrev_section = get_abbrev_section_for_cu (this_cu);
5382 if (use_existing_cu && this_cu->cu != NULL)
5385 /* If this CU is from a DWO file we need to start over, we need to
5386 refetch the attributes from the skeleton CU.
5387 This could be optimized by retrieving those attributes from when we
5388 were here the first time: the previous comp_unit_die was stored in
5389 comp_unit_obstack. But there's no data yet that we need this
5391 if (cu->dwo_unit != NULL)
5392 rereading_dwo_cu = 1;
5396 /* If !use_existing_cu, this_cu->cu must be NULL. */
5397 gdb_assert (this_cu->cu == NULL);
5398 cu = xmalloc (sizeof (*cu));
5399 init_one_comp_unit (cu, this_cu);
5400 /* If an error occurs while loading, release our storage. */
5401 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5404 /* Get the header. */
5405 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5407 /* We already have the header, there's no need to read it in again. */
5408 info_ptr += cu->header.first_die_offset.cu_off;
5412 if (this_cu->is_debug_types)
5415 cu_offset type_offset_in_tu;
5417 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5418 abbrev_section, info_ptr,
5420 &type_offset_in_tu);
5422 /* Since per_cu is the first member of struct signatured_type,
5423 we can go from a pointer to one to a pointer to the other. */
5424 sig_type = (struct signatured_type *) this_cu;
5425 gdb_assert (sig_type->signature == signature);
5426 gdb_assert (sig_type->type_offset_in_tu.cu_off
5427 == type_offset_in_tu.cu_off);
5428 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5430 /* LENGTH has not been set yet for type units if we're
5431 using .gdb_index. */
5432 this_cu->length = get_cu_length (&cu->header);
5434 /* Establish the type offset that can be used to lookup the type. */
5435 sig_type->type_offset_in_section.sect_off =
5436 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5440 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5444 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5445 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5449 /* Skip dummy compilation units. */
5450 if (info_ptr >= begin_info_ptr + this_cu->length
5451 || peek_abbrev_code (abfd, info_ptr) == 0)
5453 do_cleanups (cleanups);
5457 /* If we don't have them yet, read the abbrevs for this compilation unit.
5458 And if we need to read them now, make sure they're freed when we're
5459 done. Note that it's important that if the CU had an abbrev table
5460 on entry we don't free it when we're done: Somewhere up the call stack
5461 it may be in use. */
5462 if (abbrev_table != NULL)
5464 gdb_assert (cu->abbrev_table == NULL);
5465 gdb_assert (cu->header.abbrev_offset.sect_off
5466 == abbrev_table->offset.sect_off);
5467 cu->abbrev_table = abbrev_table;
5469 else if (cu->abbrev_table == NULL)
5471 dwarf2_read_abbrevs (cu, abbrev_section);
5472 make_cleanup (dwarf2_free_abbrev_table, cu);
5474 else if (rereading_dwo_cu)
5476 dwarf2_free_abbrev_table (cu);
5477 dwarf2_read_abbrevs (cu, abbrev_section);
5480 /* Read the top level CU/TU die. */
5481 init_cu_die_reader (&reader, cu, section, NULL);
5482 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5484 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5486 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5487 DWO CU, that this test will fail (the attribute will not be present). */
5488 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5491 struct dwo_unit *dwo_unit;
5492 struct die_info *dwo_comp_unit_die;
5496 complaint (&symfile_complaints,
5497 _("compilation unit with DW_AT_GNU_dwo_name"
5498 " has children (offset 0x%x) [in module %s]"),
5499 this_cu->offset.sect_off, bfd_get_filename (abfd));
5501 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5502 if (dwo_unit != NULL)
5504 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5505 abbrev_table != NULL,
5506 comp_unit_die, NULL,
5508 &dwo_comp_unit_die, &has_children) == 0)
5511 do_cleanups (cleanups);
5514 comp_unit_die = dwo_comp_unit_die;
5518 /* Yikes, we couldn't find the rest of the DIE, we only have
5519 the stub. A complaint has already been logged. There's
5520 not much more we can do except pass on the stub DIE to
5521 die_reader_func. We don't want to throw an error on bad
5526 /* All of the above is setup for this call. Yikes. */
5527 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5529 /* Done, clean up. */
5530 if (free_cu_cleanup != NULL)
5534 /* We've successfully allocated this compilation unit. Let our
5535 caller clean it up when finished with it. */
5536 discard_cleanups (free_cu_cleanup);
5538 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5539 So we have to manually free the abbrev table. */
5540 dwarf2_free_abbrev_table (cu);
5542 /* Link this CU into read_in_chain. */
5543 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5544 dwarf2_per_objfile->read_in_chain = this_cu;
5547 do_cleanups (free_cu_cleanup);
5550 do_cleanups (cleanups);
5553 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5554 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5555 to have already done the lookup to find the DWO file).
5557 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5558 THIS_CU->is_debug_types, but nothing else.
5560 We fill in THIS_CU->length.
5562 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5563 linker) then DIE_READER_FUNC will not get called.
5565 THIS_CU->cu is always freed when done.
5566 This is done in order to not leave THIS_CU->cu in a state where we have
5567 to care whether it refers to the "main" CU or the DWO CU. */
5570 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5571 struct dwo_file *dwo_file,
5572 die_reader_func_ftype *die_reader_func,
5575 struct objfile *objfile = dwarf2_per_objfile->objfile;
5576 struct dwarf2_section_info *section = this_cu->section;
5577 bfd *abfd = get_section_bfd_owner (section);
5578 struct dwarf2_section_info *abbrev_section;
5579 struct dwarf2_cu cu;
5580 const gdb_byte *begin_info_ptr, *info_ptr;
5581 struct die_reader_specs reader;
5582 struct cleanup *cleanups;
5583 struct die_info *comp_unit_die;
5586 if (dwarf2_die_debug)
5587 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5588 this_cu->is_debug_types ? "type" : "comp",
5589 this_cu->offset.sect_off);
5591 gdb_assert (this_cu->cu == NULL);
5593 abbrev_section = (dwo_file != NULL
5594 ? &dwo_file->sections.abbrev
5595 : get_abbrev_section_for_cu (this_cu));
5597 /* This is cheap if the section is already read in. */
5598 dwarf2_read_section (objfile, section);
5600 init_one_comp_unit (&cu, this_cu);
5602 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5604 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5605 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5606 abbrev_section, info_ptr,
5607 this_cu->is_debug_types);
5609 this_cu->length = get_cu_length (&cu.header);
5611 /* Skip dummy compilation units. */
5612 if (info_ptr >= begin_info_ptr + this_cu->length
5613 || peek_abbrev_code (abfd, info_ptr) == 0)
5615 do_cleanups (cleanups);
5619 dwarf2_read_abbrevs (&cu, abbrev_section);
5620 make_cleanup (dwarf2_free_abbrev_table, &cu);
5622 init_cu_die_reader (&reader, &cu, section, dwo_file);
5623 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5625 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5627 do_cleanups (cleanups);
5630 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5631 does not lookup the specified DWO file.
5632 This cannot be used to read DWO files.
5634 THIS_CU->cu is always freed when done.
5635 This is done in order to not leave THIS_CU->cu in a state where we have
5636 to care whether it refers to the "main" CU or the DWO CU.
5637 We can revisit this if the data shows there's a performance issue. */
5640 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5641 die_reader_func_ftype *die_reader_func,
5644 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5647 /* Type Unit Groups.
5649 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5650 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5651 so that all types coming from the same compilation (.o file) are grouped
5652 together. A future step could be to put the types in the same symtab as
5653 the CU the types ultimately came from. */
5656 hash_type_unit_group (const void *item)
5658 const struct type_unit_group *tu_group = item;
5660 return hash_stmt_list_entry (&tu_group->hash);
5664 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5666 const struct type_unit_group *lhs = item_lhs;
5667 const struct type_unit_group *rhs = item_rhs;
5669 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5672 /* Allocate a hash table for type unit groups. */
5675 allocate_type_unit_groups_table (void)
5677 return htab_create_alloc_ex (3,
5678 hash_type_unit_group,
5681 &dwarf2_per_objfile->objfile->objfile_obstack,
5682 hashtab_obstack_allocate,
5683 dummy_obstack_deallocate);
5686 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5687 partial symtabs. We combine several TUs per psymtab to not let the size
5688 of any one psymtab grow too big. */
5689 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5690 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5692 /* Helper routine for get_type_unit_group.
5693 Create the type_unit_group object used to hold one or more TUs. */
5695 static struct type_unit_group *
5696 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5698 struct objfile *objfile = dwarf2_per_objfile->objfile;
5699 struct dwarf2_per_cu_data *per_cu;
5700 struct type_unit_group *tu_group;
5702 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5703 struct type_unit_group);
5704 per_cu = &tu_group->per_cu;
5705 per_cu->objfile = objfile;
5707 if (dwarf2_per_objfile->using_index)
5709 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5710 struct dwarf2_per_cu_quick_data);
5714 unsigned int line_offset = line_offset_struct.sect_off;
5715 struct partial_symtab *pst;
5718 /* Give the symtab a useful name for debug purposes. */
5719 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5720 name = xstrprintf ("<type_units_%d>",
5721 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5723 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5725 pst = create_partial_symtab (per_cu, name);
5731 tu_group->hash.dwo_unit = cu->dwo_unit;
5732 tu_group->hash.line_offset = line_offset_struct;
5737 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5738 STMT_LIST is a DW_AT_stmt_list attribute. */
5740 static struct type_unit_group *
5741 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5743 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5744 struct type_unit_group *tu_group;
5746 unsigned int line_offset;
5747 struct type_unit_group type_unit_group_for_lookup;
5749 if (dwarf2_per_objfile->type_unit_groups == NULL)
5751 dwarf2_per_objfile->type_unit_groups =
5752 allocate_type_unit_groups_table ();
5755 /* Do we need to create a new group, or can we use an existing one? */
5759 line_offset = DW_UNSND (stmt_list);
5760 ++tu_stats->nr_symtab_sharers;
5764 /* Ugh, no stmt_list. Rare, but we have to handle it.
5765 We can do various things here like create one group per TU or
5766 spread them over multiple groups to split up the expansion work.
5767 To avoid worst case scenarios (too many groups or too large groups)
5768 we, umm, group them in bunches. */
5769 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5770 | (tu_stats->nr_stmt_less_type_units
5771 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5772 ++tu_stats->nr_stmt_less_type_units;
5775 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5776 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5777 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5778 &type_unit_group_for_lookup, INSERT);
5782 gdb_assert (tu_group != NULL);
5786 sect_offset line_offset_struct;
5788 line_offset_struct.sect_off = line_offset;
5789 tu_group = create_type_unit_group (cu, line_offset_struct);
5791 ++tu_stats->nr_symtabs;
5797 /* Partial symbol tables. */
5799 /* Create a psymtab named NAME and assign it to PER_CU.
5801 The caller must fill in the following details:
5802 dirname, textlow, texthigh. */
5804 static struct partial_symtab *
5805 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5807 struct objfile *objfile = per_cu->objfile;
5808 struct partial_symtab *pst;
5810 pst = start_psymtab_common (objfile, objfile->section_offsets,
5812 objfile->global_psymbols.next,
5813 objfile->static_psymbols.next);
5815 pst->psymtabs_addrmap_supported = 1;
5817 /* This is the glue that links PST into GDB's symbol API. */
5818 pst->read_symtab_private = per_cu;
5819 pst->read_symtab = dwarf2_read_symtab;
5820 per_cu->v.psymtab = pst;
5825 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5828 struct process_psymtab_comp_unit_data
5830 /* True if we are reading a DW_TAG_partial_unit. */
5832 int want_partial_unit;
5834 /* The "pretend" language that is used if the CU doesn't declare a
5837 enum language pretend_language;
5840 /* die_reader_func for process_psymtab_comp_unit. */
5843 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5844 const gdb_byte *info_ptr,
5845 struct die_info *comp_unit_die,
5849 struct dwarf2_cu *cu = reader->cu;
5850 struct objfile *objfile = cu->objfile;
5851 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5852 struct attribute *attr;
5854 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5855 struct partial_symtab *pst;
5857 const char *filename;
5858 struct process_psymtab_comp_unit_data *info = data;
5860 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5863 gdb_assert (! per_cu->is_debug_types);
5865 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5867 cu->list_in_scope = &file_symbols;
5869 /* Allocate a new partial symbol table structure. */
5870 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5871 if (attr == NULL || !DW_STRING (attr))
5874 filename = DW_STRING (attr);
5876 pst = create_partial_symtab (per_cu, filename);
5878 /* This must be done before calling dwarf2_build_include_psymtabs. */
5879 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5881 pst->dirname = DW_STRING (attr);
5883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5885 dwarf2_find_base_address (comp_unit_die, cu);
5887 /* Possibly set the default values of LOWPC and HIGHPC from
5889 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5890 &best_highpc, cu, pst);
5891 if (has_pc_info == 1 && best_lowpc < best_highpc)
5892 /* Store the contiguous range if it is not empty; it can be empty for
5893 CUs with no code. */
5894 addrmap_set_empty (objfile->psymtabs_addrmap,
5895 best_lowpc + baseaddr,
5896 best_highpc + baseaddr - 1, pst);
5898 /* Check if comp unit has_children.
5899 If so, read the rest of the partial symbols from this comp unit.
5900 If not, there's no more debug_info for this comp unit. */
5903 struct partial_die_info *first_die;
5904 CORE_ADDR lowpc, highpc;
5906 lowpc = ((CORE_ADDR) -1);
5907 highpc = ((CORE_ADDR) 0);
5909 first_die = load_partial_dies (reader, info_ptr, 1);
5911 scan_partial_symbols (first_die, &lowpc, &highpc,
5914 /* If we didn't find a lowpc, set it to highpc to avoid
5915 complaints from `maint check'. */
5916 if (lowpc == ((CORE_ADDR) -1))
5919 /* If the compilation unit didn't have an explicit address range,
5920 then use the information extracted from its child dies. */
5924 best_highpc = highpc;
5927 pst->textlow = best_lowpc + baseaddr;
5928 pst->texthigh = best_highpc + baseaddr;
5930 pst->n_global_syms = objfile->global_psymbols.next -
5931 (objfile->global_psymbols.list + pst->globals_offset);
5932 pst->n_static_syms = objfile->static_psymbols.next -
5933 (objfile->static_psymbols.list + pst->statics_offset);
5934 sort_pst_symbols (objfile, pst);
5936 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5939 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5940 struct dwarf2_per_cu_data *iter;
5942 /* Fill in 'dependencies' here; we fill in 'users' in a
5944 pst->number_of_dependencies = len;
5945 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5946 len * sizeof (struct symtab *));
5948 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5951 pst->dependencies[i] = iter->v.psymtab;
5953 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5956 /* Get the list of files included in the current compilation unit,
5957 and build a psymtab for each of them. */
5958 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5960 if (dwarf2_read_debug)
5962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5964 fprintf_unfiltered (gdb_stdlog,
5965 "Psymtab for %s unit @0x%x: %s - %s"
5966 ", %d global, %d static syms\n",
5967 per_cu->is_debug_types ? "type" : "comp",
5968 per_cu->offset.sect_off,
5969 paddress (gdbarch, pst->textlow),
5970 paddress (gdbarch, pst->texthigh),
5971 pst->n_global_syms, pst->n_static_syms);
5975 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5976 Process compilation unit THIS_CU for a psymtab. */
5979 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5980 int want_partial_unit,
5981 enum language pretend_language)
5983 struct process_psymtab_comp_unit_data info;
5985 /* If this compilation unit was already read in, free the
5986 cached copy in order to read it in again. This is
5987 necessary because we skipped some symbols when we first
5988 read in the compilation unit (see load_partial_dies).
5989 This problem could be avoided, but the benefit is unclear. */
5990 if (this_cu->cu != NULL)
5991 free_one_cached_comp_unit (this_cu);
5993 gdb_assert (! this_cu->is_debug_types);
5994 info.want_partial_unit = want_partial_unit;
5995 info.pretend_language = pretend_language;
5996 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5997 process_psymtab_comp_unit_reader,
6000 /* Age out any secondary CUs. */
6001 age_cached_comp_units ();
6004 /* Reader function for build_type_psymtabs. */
6007 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6008 const gdb_byte *info_ptr,
6009 struct die_info *type_unit_die,
6013 struct objfile *objfile = dwarf2_per_objfile->objfile;
6014 struct dwarf2_cu *cu = reader->cu;
6015 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6016 struct signatured_type *sig_type;
6017 struct type_unit_group *tu_group;
6018 struct attribute *attr;
6019 struct partial_die_info *first_die;
6020 CORE_ADDR lowpc, highpc;
6021 struct partial_symtab *pst;
6023 gdb_assert (data == NULL);
6024 gdb_assert (per_cu->is_debug_types);
6025 sig_type = (struct signatured_type *) per_cu;
6030 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6031 tu_group = get_type_unit_group (cu, attr);
6033 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6035 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6036 cu->list_in_scope = &file_symbols;
6037 pst = create_partial_symtab (per_cu, "");
6040 first_die = load_partial_dies (reader, info_ptr, 1);
6042 lowpc = (CORE_ADDR) -1;
6043 highpc = (CORE_ADDR) 0;
6044 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6046 pst->n_global_syms = objfile->global_psymbols.next -
6047 (objfile->global_psymbols.list + pst->globals_offset);
6048 pst->n_static_syms = objfile->static_psymbols.next -
6049 (objfile->static_psymbols.list + pst->statics_offset);
6050 sort_pst_symbols (objfile, pst);
6053 /* Struct used to sort TUs by their abbreviation table offset. */
6055 struct tu_abbrev_offset
6057 struct signatured_type *sig_type;
6058 sect_offset abbrev_offset;
6061 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6064 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6066 const struct tu_abbrev_offset * const *a = ap;
6067 const struct tu_abbrev_offset * const *b = bp;
6068 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6069 unsigned int boff = (*b)->abbrev_offset.sect_off;
6071 return (aoff > boff) - (aoff < boff);
6074 /* Efficiently read all the type units.
6075 This does the bulk of the work for build_type_psymtabs.
6077 The efficiency is because we sort TUs by the abbrev table they use and
6078 only read each abbrev table once. In one program there are 200K TUs
6079 sharing 8K abbrev tables.
6081 The main purpose of this function is to support building the
6082 dwarf2_per_objfile->type_unit_groups table.
6083 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6084 can collapse the search space by grouping them by stmt_list.
6085 The savings can be significant, in the same program from above the 200K TUs
6086 share 8K stmt_list tables.
6088 FUNC is expected to call get_type_unit_group, which will create the
6089 struct type_unit_group if necessary and add it to
6090 dwarf2_per_objfile->type_unit_groups. */
6093 build_type_psymtabs_1 (void)
6095 struct objfile *objfile = dwarf2_per_objfile->objfile;
6096 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6097 struct cleanup *cleanups;
6098 struct abbrev_table *abbrev_table;
6099 sect_offset abbrev_offset;
6100 struct tu_abbrev_offset *sorted_by_abbrev;
6101 struct type_unit_group **iter;
6104 /* It's up to the caller to not call us multiple times. */
6105 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6107 if (dwarf2_per_objfile->n_type_units == 0)
6110 /* TUs typically share abbrev tables, and there can be way more TUs than
6111 abbrev tables. Sort by abbrev table to reduce the number of times we
6112 read each abbrev table in.
6113 Alternatives are to punt or to maintain a cache of abbrev tables.
6114 This is simpler and efficient enough for now.
6116 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6117 symtab to use). Typically TUs with the same abbrev offset have the same
6118 stmt_list value too so in practice this should work well.
6120 The basic algorithm here is:
6122 sort TUs by abbrev table
6123 for each TU with same abbrev table:
6124 read abbrev table if first user
6125 read TU top level DIE
6126 [IWBN if DWO skeletons had DW_AT_stmt_list]
6129 if (dwarf2_read_debug)
6130 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6132 /* Sort in a separate table to maintain the order of all_type_units
6133 for .gdb_index: TU indices directly index all_type_units. */
6134 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6135 dwarf2_per_objfile->n_type_units);
6136 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6138 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6140 sorted_by_abbrev[i].sig_type = sig_type;
6141 sorted_by_abbrev[i].abbrev_offset =
6142 read_abbrev_offset (sig_type->per_cu.section,
6143 sig_type->per_cu.offset);
6145 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6146 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6147 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6149 abbrev_offset.sect_off = ~(unsigned) 0;
6150 abbrev_table = NULL;
6151 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6153 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6155 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6157 /* Switch to the next abbrev table if necessary. */
6158 if (abbrev_table == NULL
6159 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6161 if (abbrev_table != NULL)
6163 abbrev_table_free (abbrev_table);
6164 /* Reset to NULL in case abbrev_table_read_table throws
6165 an error: abbrev_table_free_cleanup will get called. */
6166 abbrev_table = NULL;
6168 abbrev_offset = tu->abbrev_offset;
6170 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6172 ++tu_stats->nr_uniq_abbrev_tables;
6175 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6176 build_type_psymtabs_reader, NULL);
6179 do_cleanups (cleanups);
6182 /* Print collected type unit statistics. */
6185 print_tu_stats (void)
6187 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6189 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6190 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6191 dwarf2_per_objfile->n_type_units);
6192 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6193 tu_stats->nr_uniq_abbrev_tables);
6194 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6195 tu_stats->nr_symtabs);
6196 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6197 tu_stats->nr_symtab_sharers);
6198 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6199 tu_stats->nr_stmt_less_type_units);
6200 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6201 tu_stats->nr_all_type_units_reallocs);
6204 /* Traversal function for build_type_psymtabs. */
6207 build_type_psymtab_dependencies (void **slot, void *info)
6209 struct objfile *objfile = dwarf2_per_objfile->objfile;
6210 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6211 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6212 struct partial_symtab *pst = per_cu->v.psymtab;
6213 int len = VEC_length (sig_type_ptr, tu_group->tus);
6214 struct signatured_type *iter;
6217 gdb_assert (len > 0);
6218 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6220 pst->number_of_dependencies = len;
6221 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6222 len * sizeof (struct psymtab *));
6224 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6227 gdb_assert (iter->per_cu.is_debug_types);
6228 pst->dependencies[i] = iter->per_cu.v.psymtab;
6229 iter->type_unit_group = tu_group;
6232 VEC_free (sig_type_ptr, tu_group->tus);
6237 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6238 Build partial symbol tables for the .debug_types comp-units. */
6241 build_type_psymtabs (struct objfile *objfile)
6243 if (! create_all_type_units (objfile))
6246 build_type_psymtabs_1 ();
6249 /* Traversal function for process_skeletonless_type_unit.
6250 Read a TU in a DWO file and build partial symbols for it. */
6253 process_skeletonless_type_unit (void **slot, void *info)
6255 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6256 struct objfile *objfile = info;
6257 struct signatured_type find_entry, *entry;
6259 /* If this TU doesn't exist in the global table, add it and read it in. */
6261 if (dwarf2_per_objfile->signatured_types == NULL)
6263 dwarf2_per_objfile->signatured_types
6264 = allocate_signatured_type_table (objfile);
6267 find_entry.signature = dwo_unit->signature;
6268 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6270 /* If we've already seen this type there's nothing to do. What's happening
6271 is we're doing our own version of comdat-folding here. */
6275 /* This does the job that create_all_type_units would have done for
6277 entry = add_type_unit (dwo_unit->signature, slot);
6278 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6281 /* This does the job that build_type_psymtabs_1 would have done. */
6282 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6283 build_type_psymtabs_reader, NULL);
6288 /* Traversal function for process_skeletonless_type_units. */
6291 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6293 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6295 if (dwo_file->tus != NULL)
6297 htab_traverse_noresize (dwo_file->tus,
6298 process_skeletonless_type_unit, info);
6304 /* Scan all TUs of DWO files, verifying we've processed them.
6305 This is needed in case a TU was emitted without its skeleton.
6306 Note: This can't be done until we know what all the DWO files are. */
6309 process_skeletonless_type_units (struct objfile *objfile)
6311 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6312 if (get_dwp_file () == NULL
6313 && dwarf2_per_objfile->dwo_files != NULL)
6315 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6316 process_dwo_file_for_skeletonless_type_units,
6321 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6324 psymtabs_addrmap_cleanup (void *o)
6326 struct objfile *objfile = o;
6328 objfile->psymtabs_addrmap = NULL;
6331 /* Compute the 'user' field for each psymtab in OBJFILE. */
6334 set_partial_user (struct objfile *objfile)
6338 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6340 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6341 struct partial_symtab *pst = per_cu->v.psymtab;
6347 for (j = 0; j < pst->number_of_dependencies; ++j)
6349 /* Set the 'user' field only if it is not already set. */
6350 if (pst->dependencies[j]->user == NULL)
6351 pst->dependencies[j]->user = pst;
6356 /* Build the partial symbol table by doing a quick pass through the
6357 .debug_info and .debug_abbrev sections. */
6360 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6362 struct cleanup *back_to, *addrmap_cleanup;
6363 struct obstack temp_obstack;
6366 if (dwarf2_read_debug)
6368 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6369 objfile_name (objfile));
6372 dwarf2_per_objfile->reading_partial_symbols = 1;
6374 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6376 /* Any cached compilation units will be linked by the per-objfile
6377 read_in_chain. Make sure to free them when we're done. */
6378 back_to = make_cleanup (free_cached_comp_units, NULL);
6380 build_type_psymtabs (objfile);
6382 create_all_comp_units (objfile);
6384 /* Create a temporary address map on a temporary obstack. We later
6385 copy this to the final obstack. */
6386 obstack_init (&temp_obstack);
6387 make_cleanup_obstack_free (&temp_obstack);
6388 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6389 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6391 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6393 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6395 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6398 /* This has to wait until we read the CUs, we need the list of DWOs. */
6399 process_skeletonless_type_units (objfile);
6401 /* Now that all TUs have been processed we can fill in the dependencies. */
6402 if (dwarf2_per_objfile->type_unit_groups != NULL)
6404 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6405 build_type_psymtab_dependencies, NULL);
6408 if (dwarf2_read_debug)
6411 set_partial_user (objfile);
6413 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6414 &objfile->objfile_obstack);
6415 discard_cleanups (addrmap_cleanup);
6417 do_cleanups (back_to);
6419 if (dwarf2_read_debug)
6420 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6421 objfile_name (objfile));
6424 /* die_reader_func for load_partial_comp_unit. */
6427 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6428 const gdb_byte *info_ptr,
6429 struct die_info *comp_unit_die,
6433 struct dwarf2_cu *cu = reader->cu;
6435 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6437 /* Check if comp unit has_children.
6438 If so, read the rest of the partial symbols from this comp unit.
6439 If not, there's no more debug_info for this comp unit. */
6441 load_partial_dies (reader, info_ptr, 0);
6444 /* Load the partial DIEs for a secondary CU into memory.
6445 This is also used when rereading a primary CU with load_all_dies. */
6448 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6450 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6451 load_partial_comp_unit_reader, NULL);
6455 read_comp_units_from_section (struct objfile *objfile,
6456 struct dwarf2_section_info *section,
6457 unsigned int is_dwz,
6460 struct dwarf2_per_cu_data ***all_comp_units)
6462 const gdb_byte *info_ptr;
6463 bfd *abfd = get_section_bfd_owner (section);
6465 if (dwarf2_read_debug)
6466 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6467 get_section_name (section),
6468 get_section_file_name (section));
6470 dwarf2_read_section (objfile, section);
6472 info_ptr = section->buffer;
6474 while (info_ptr < section->buffer + section->size)
6476 unsigned int length, initial_length_size;
6477 struct dwarf2_per_cu_data *this_cu;
6480 offset.sect_off = info_ptr - section->buffer;
6482 /* Read just enough information to find out where the next
6483 compilation unit is. */
6484 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6486 /* Save the compilation unit for later lookup. */
6487 this_cu = obstack_alloc (&objfile->objfile_obstack,
6488 sizeof (struct dwarf2_per_cu_data));
6489 memset (this_cu, 0, sizeof (*this_cu));
6490 this_cu->offset = offset;
6491 this_cu->length = length + initial_length_size;
6492 this_cu->is_dwz = is_dwz;
6493 this_cu->objfile = objfile;
6494 this_cu->section = section;
6496 if (*n_comp_units == *n_allocated)
6499 *all_comp_units = xrealloc (*all_comp_units,
6501 * sizeof (struct dwarf2_per_cu_data *));
6503 (*all_comp_units)[*n_comp_units] = this_cu;
6506 info_ptr = info_ptr + this_cu->length;
6510 /* Create a list of all compilation units in OBJFILE.
6511 This is only done for -readnow and building partial symtabs. */
6514 create_all_comp_units (struct objfile *objfile)
6518 struct dwarf2_per_cu_data **all_comp_units;
6519 struct dwz_file *dwz;
6523 all_comp_units = xmalloc (n_allocated
6524 * sizeof (struct dwarf2_per_cu_data *));
6526 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6527 &n_allocated, &n_comp_units, &all_comp_units);
6529 dwz = dwarf2_get_dwz_file ();
6531 read_comp_units_from_section (objfile, &dwz->info, 1,
6532 &n_allocated, &n_comp_units,
6535 dwarf2_per_objfile->all_comp_units
6536 = obstack_alloc (&objfile->objfile_obstack,
6537 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6538 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6539 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6540 xfree (all_comp_units);
6541 dwarf2_per_objfile->n_comp_units = n_comp_units;
6544 /* Process all loaded DIEs for compilation unit CU, starting at
6545 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6546 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6547 DW_AT_ranges). If NEED_PC is set, then this function will set
6548 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6549 and record the covered ranges in the addrmap. */
6552 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6553 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6555 struct partial_die_info *pdi;
6557 /* Now, march along the PDI's, descending into ones which have
6558 interesting children but skipping the children of the other ones,
6559 until we reach the end of the compilation unit. */
6565 fixup_partial_die (pdi, cu);
6567 /* Anonymous namespaces or modules have no name but have interesting
6568 children, so we need to look at them. Ditto for anonymous
6571 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6572 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6573 || pdi->tag == DW_TAG_imported_unit)
6577 case DW_TAG_subprogram:
6578 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6580 case DW_TAG_constant:
6581 case DW_TAG_variable:
6582 case DW_TAG_typedef:
6583 case DW_TAG_union_type:
6584 if (!pdi->is_declaration)
6586 add_partial_symbol (pdi, cu);
6589 case DW_TAG_class_type:
6590 case DW_TAG_interface_type:
6591 case DW_TAG_structure_type:
6592 if (!pdi->is_declaration)
6594 add_partial_symbol (pdi, cu);
6597 case DW_TAG_enumeration_type:
6598 if (!pdi->is_declaration)
6599 add_partial_enumeration (pdi, cu);
6601 case DW_TAG_base_type:
6602 case DW_TAG_subrange_type:
6603 /* File scope base type definitions are added to the partial
6605 add_partial_symbol (pdi, cu);
6607 case DW_TAG_namespace:
6608 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6611 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6613 case DW_TAG_imported_unit:
6615 struct dwarf2_per_cu_data *per_cu;
6617 /* For now we don't handle imported units in type units. */
6618 if (cu->per_cu->is_debug_types)
6620 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6621 " supported in type units [in module %s]"),
6622 objfile_name (cu->objfile));
6625 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6629 /* Go read the partial unit, if needed. */
6630 if (per_cu->v.psymtab == NULL)
6631 process_psymtab_comp_unit (per_cu, 1, cu->language);
6633 VEC_safe_push (dwarf2_per_cu_ptr,
6634 cu->per_cu->imported_symtabs, per_cu);
6637 case DW_TAG_imported_declaration:
6638 add_partial_symbol (pdi, cu);
6645 /* If the die has a sibling, skip to the sibling. */
6647 pdi = pdi->die_sibling;
6651 /* Functions used to compute the fully scoped name of a partial DIE.
6653 Normally, this is simple. For C++, the parent DIE's fully scoped
6654 name is concatenated with "::" and the partial DIE's name. For
6655 Java, the same thing occurs except that "." is used instead of "::".
6656 Enumerators are an exception; they use the scope of their parent
6657 enumeration type, i.e. the name of the enumeration type is not
6658 prepended to the enumerator.
6660 There are two complexities. One is DW_AT_specification; in this
6661 case "parent" means the parent of the target of the specification,
6662 instead of the direct parent of the DIE. The other is compilers
6663 which do not emit DW_TAG_namespace; in this case we try to guess
6664 the fully qualified name of structure types from their members'
6665 linkage names. This must be done using the DIE's children rather
6666 than the children of any DW_AT_specification target. We only need
6667 to do this for structures at the top level, i.e. if the target of
6668 any DW_AT_specification (if any; otherwise the DIE itself) does not
6671 /* Compute the scope prefix associated with PDI's parent, in
6672 compilation unit CU. The result will be allocated on CU's
6673 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6674 field. NULL is returned if no prefix is necessary. */
6676 partial_die_parent_scope (struct partial_die_info *pdi,
6677 struct dwarf2_cu *cu)
6679 const char *grandparent_scope;
6680 struct partial_die_info *parent, *real_pdi;
6682 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6683 then this means the parent of the specification DIE. */
6686 while (real_pdi->has_specification)
6687 real_pdi = find_partial_die (real_pdi->spec_offset,
6688 real_pdi->spec_is_dwz, cu);
6690 parent = real_pdi->die_parent;
6694 if (parent->scope_set)
6695 return parent->scope;
6697 fixup_partial_die (parent, cu);
6699 grandparent_scope = partial_die_parent_scope (parent, cu);
6701 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6702 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6703 Work around this problem here. */
6704 if (cu->language == language_cplus
6705 && parent->tag == DW_TAG_namespace
6706 && strcmp (parent->name, "::") == 0
6707 && grandparent_scope == NULL)
6709 parent->scope = NULL;
6710 parent->scope_set = 1;
6714 if (pdi->tag == DW_TAG_enumerator)
6715 /* Enumerators should not get the name of the enumeration as a prefix. */
6716 parent->scope = grandparent_scope;
6717 else if (parent->tag == DW_TAG_namespace
6718 || parent->tag == DW_TAG_module
6719 || parent->tag == DW_TAG_structure_type
6720 || parent->tag == DW_TAG_class_type
6721 || parent->tag == DW_TAG_interface_type
6722 || parent->tag == DW_TAG_union_type
6723 || parent->tag == DW_TAG_enumeration_type)
6725 if (grandparent_scope == NULL)
6726 parent->scope = parent->name;
6728 parent->scope = typename_concat (&cu->comp_unit_obstack,
6730 parent->name, 0, cu);
6734 /* FIXME drow/2004-04-01: What should we be doing with
6735 function-local names? For partial symbols, we should probably be
6737 complaint (&symfile_complaints,
6738 _("unhandled containing DIE tag %d for DIE at %d"),
6739 parent->tag, pdi->offset.sect_off);
6740 parent->scope = grandparent_scope;
6743 parent->scope_set = 1;
6744 return parent->scope;
6747 /* Return the fully scoped name associated with PDI, from compilation unit
6748 CU. The result will be allocated with malloc. */
6751 partial_die_full_name (struct partial_die_info *pdi,
6752 struct dwarf2_cu *cu)
6754 const char *parent_scope;
6756 /* If this is a template instantiation, we can not work out the
6757 template arguments from partial DIEs. So, unfortunately, we have
6758 to go through the full DIEs. At least any work we do building
6759 types here will be reused if full symbols are loaded later. */
6760 if (pdi->has_template_arguments)
6762 fixup_partial_die (pdi, cu);
6764 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6766 struct die_info *die;
6767 struct attribute attr;
6768 struct dwarf2_cu *ref_cu = cu;
6770 /* DW_FORM_ref_addr is using section offset. */
6772 attr.form = DW_FORM_ref_addr;
6773 attr.u.unsnd = pdi->offset.sect_off;
6774 die = follow_die_ref (NULL, &attr, &ref_cu);
6776 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6780 parent_scope = partial_die_parent_scope (pdi, cu);
6781 if (parent_scope == NULL)
6784 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6788 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6790 struct objfile *objfile = cu->objfile;
6792 const char *actual_name = NULL;
6794 char *built_actual_name;
6796 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6798 built_actual_name = partial_die_full_name (pdi, cu);
6799 if (built_actual_name != NULL)
6800 actual_name = built_actual_name;
6802 if (actual_name == NULL)
6803 actual_name = pdi->name;
6807 case DW_TAG_subprogram:
6808 if (pdi->is_external || cu->language == language_ada)
6810 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6811 of the global scope. But in Ada, we want to be able to access
6812 nested procedures globally. So all Ada subprograms are stored
6813 in the global scope. */
6814 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6815 mst_text, objfile); */
6816 add_psymbol_to_list (actual_name, strlen (actual_name),
6817 built_actual_name != NULL,
6818 VAR_DOMAIN, LOC_BLOCK,
6819 &objfile->global_psymbols,
6820 0, pdi->lowpc + baseaddr,
6821 cu->language, objfile);
6825 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6826 mst_file_text, objfile); */
6827 add_psymbol_to_list (actual_name, strlen (actual_name),
6828 built_actual_name != NULL,
6829 VAR_DOMAIN, LOC_BLOCK,
6830 &objfile->static_psymbols,
6831 0, pdi->lowpc + baseaddr,
6832 cu->language, objfile);
6835 case DW_TAG_constant:
6837 struct psymbol_allocation_list *list;
6839 if (pdi->is_external)
6840 list = &objfile->global_psymbols;
6842 list = &objfile->static_psymbols;
6843 add_psymbol_to_list (actual_name, strlen (actual_name),
6844 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6845 list, 0, 0, cu->language, objfile);
6848 case DW_TAG_variable:
6850 addr = decode_locdesc (pdi->d.locdesc, cu);
6854 && !dwarf2_per_objfile->has_section_at_zero)
6856 /* A global or static variable may also have been stripped
6857 out by the linker if unused, in which case its address
6858 will be nullified; do not add such variables into partial
6859 symbol table then. */
6861 else if (pdi->is_external)
6864 Don't enter into the minimal symbol tables as there is
6865 a minimal symbol table entry from the ELF symbols already.
6866 Enter into partial symbol table if it has a location
6867 descriptor or a type.
6868 If the location descriptor is missing, new_symbol will create
6869 a LOC_UNRESOLVED symbol, the address of the variable will then
6870 be determined from the minimal symbol table whenever the variable
6872 The address for the partial symbol table entry is not
6873 used by GDB, but it comes in handy for debugging partial symbol
6876 if (pdi->d.locdesc || pdi->has_type)
6877 add_psymbol_to_list (actual_name, strlen (actual_name),
6878 built_actual_name != NULL,
6879 VAR_DOMAIN, LOC_STATIC,
6880 &objfile->global_psymbols,
6882 cu->language, objfile);
6886 /* Static Variable. Skip symbols without location descriptors. */
6887 if (pdi->d.locdesc == NULL)
6889 xfree (built_actual_name);
6892 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6893 mst_file_data, objfile); */
6894 add_psymbol_to_list (actual_name, strlen (actual_name),
6895 built_actual_name != NULL,
6896 VAR_DOMAIN, LOC_STATIC,
6897 &objfile->static_psymbols,
6899 cu->language, objfile);
6902 case DW_TAG_typedef:
6903 case DW_TAG_base_type:
6904 case DW_TAG_subrange_type:
6905 add_psymbol_to_list (actual_name, strlen (actual_name),
6906 built_actual_name != NULL,
6907 VAR_DOMAIN, LOC_TYPEDEF,
6908 &objfile->static_psymbols,
6909 0, (CORE_ADDR) 0, cu->language, objfile);
6911 case DW_TAG_imported_declaration:
6912 case DW_TAG_namespace:
6913 add_psymbol_to_list (actual_name, strlen (actual_name),
6914 built_actual_name != NULL,
6915 VAR_DOMAIN, LOC_TYPEDEF,
6916 &objfile->global_psymbols,
6917 0, (CORE_ADDR) 0, cu->language, objfile);
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
6921 built_actual_name != NULL,
6922 MODULE_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6926 case DW_TAG_class_type:
6927 case DW_TAG_interface_type:
6928 case DW_TAG_structure_type:
6929 case DW_TAG_union_type:
6930 case DW_TAG_enumeration_type:
6931 /* Skip external references. The DWARF standard says in the section
6932 about "Structure, Union, and Class Type Entries": "An incomplete
6933 structure, union or class type is represented by a structure,
6934 union or class entry that does not have a byte size attribute
6935 and that has a DW_AT_declaration attribute." */
6936 if (!pdi->has_byte_size && pdi->is_declaration)
6938 xfree (built_actual_name);
6942 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6943 static vs. global. */
6944 add_psymbol_to_list (actual_name, strlen (actual_name),
6945 built_actual_name != NULL,
6946 STRUCT_DOMAIN, LOC_TYPEDEF,
6947 (cu->language == language_cplus
6948 || cu->language == language_java)
6949 ? &objfile->global_psymbols
6950 : &objfile->static_psymbols,
6951 0, (CORE_ADDR) 0, cu->language, objfile);
6954 case DW_TAG_enumerator:
6955 add_psymbol_to_list (actual_name, strlen (actual_name),
6956 built_actual_name != NULL,
6957 VAR_DOMAIN, LOC_CONST,
6958 (cu->language == language_cplus
6959 || cu->language == language_java)
6960 ? &objfile->global_psymbols
6961 : &objfile->static_psymbols,
6962 0, (CORE_ADDR) 0, cu->language, objfile);
6968 xfree (built_actual_name);
6971 /* Read a partial die corresponding to a namespace; also, add a symbol
6972 corresponding to that namespace to the symbol table. NAMESPACE is
6973 the name of the enclosing namespace. */
6976 add_partial_namespace (struct partial_die_info *pdi,
6977 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6978 int need_pc, struct dwarf2_cu *cu)
6980 /* Add a symbol for the namespace. */
6982 add_partial_symbol (pdi, cu);
6984 /* Now scan partial symbols in that namespace. */
6986 if (pdi->has_children)
6987 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6990 /* Read a partial die corresponding to a Fortran module. */
6993 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6994 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6996 /* Add a symbol for the namespace. */
6998 add_partial_symbol (pdi, cu);
7000 /* Now scan partial symbols in that module. */
7002 if (pdi->has_children)
7003 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
7006 /* Read a partial die corresponding to a subprogram and create a partial
7007 symbol for that subprogram. When the CU language allows it, this
7008 routine also defines a partial symbol for each nested subprogram
7009 that this subprogram contains.
7011 DIE my also be a lexical block, in which case we simply search
7012 recursively for suprograms defined inside that lexical block.
7013 Again, this is only performed when the CU language allows this
7014 type of definitions. */
7017 add_partial_subprogram (struct partial_die_info *pdi,
7018 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7019 int need_pc, struct dwarf2_cu *cu)
7021 if (pdi->tag == DW_TAG_subprogram)
7023 if (pdi->has_pc_info)
7025 if (pdi->lowpc < *lowpc)
7026 *lowpc = pdi->lowpc;
7027 if (pdi->highpc > *highpc)
7028 *highpc = pdi->highpc;
7032 struct objfile *objfile = cu->objfile;
7034 baseaddr = ANOFFSET (objfile->section_offsets,
7035 SECT_OFF_TEXT (objfile));
7036 addrmap_set_empty (objfile->psymtabs_addrmap,
7037 pdi->lowpc + baseaddr,
7038 pdi->highpc - 1 + baseaddr,
7039 cu->per_cu->v.psymtab);
7043 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7045 if (!pdi->is_declaration)
7046 /* Ignore subprogram DIEs that do not have a name, they are
7047 illegal. Do not emit a complaint at this point, we will
7048 do so when we convert this psymtab into a symtab. */
7050 add_partial_symbol (pdi, cu);
7054 if (! pdi->has_children)
7057 if (cu->language == language_ada)
7059 pdi = pdi->die_child;
7062 fixup_partial_die (pdi, cu);
7063 if (pdi->tag == DW_TAG_subprogram
7064 || pdi->tag == DW_TAG_lexical_block)
7065 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
7066 pdi = pdi->die_sibling;
7071 /* Read a partial die corresponding to an enumeration type. */
7074 add_partial_enumeration (struct partial_die_info *enum_pdi,
7075 struct dwarf2_cu *cu)
7077 struct partial_die_info *pdi;
7079 if (enum_pdi->name != NULL)
7080 add_partial_symbol (enum_pdi, cu);
7082 pdi = enum_pdi->die_child;
7085 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7086 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7088 add_partial_symbol (pdi, cu);
7089 pdi = pdi->die_sibling;
7093 /* Return the initial uleb128 in the die at INFO_PTR. */
7096 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7098 unsigned int bytes_read;
7100 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7103 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7104 Return the corresponding abbrev, or NULL if the number is zero (indicating
7105 an empty DIE). In either case *BYTES_READ will be set to the length of
7106 the initial number. */
7108 static struct abbrev_info *
7109 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7110 struct dwarf2_cu *cu)
7112 bfd *abfd = cu->objfile->obfd;
7113 unsigned int abbrev_number;
7114 struct abbrev_info *abbrev;
7116 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7118 if (abbrev_number == 0)
7121 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7124 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7125 abbrev_number, bfd_get_filename (abfd));
7131 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7132 Returns a pointer to the end of a series of DIEs, terminated by an empty
7133 DIE. Any children of the skipped DIEs will also be skipped. */
7135 static const gdb_byte *
7136 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7138 struct dwarf2_cu *cu = reader->cu;
7139 struct abbrev_info *abbrev;
7140 unsigned int bytes_read;
7144 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7146 return info_ptr + bytes_read;
7148 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7152 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7153 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7154 abbrev corresponding to that skipped uleb128 should be passed in
7155 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7158 static const gdb_byte *
7159 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7160 struct abbrev_info *abbrev)
7162 unsigned int bytes_read;
7163 struct attribute attr;
7164 bfd *abfd = reader->abfd;
7165 struct dwarf2_cu *cu = reader->cu;
7166 const gdb_byte *buffer = reader->buffer;
7167 const gdb_byte *buffer_end = reader->buffer_end;
7168 const gdb_byte *start_info_ptr = info_ptr;
7169 unsigned int form, i;
7171 for (i = 0; i < abbrev->num_attrs; i++)
7173 /* The only abbrev we care about is DW_AT_sibling. */
7174 if (abbrev->attrs[i].name == DW_AT_sibling)
7176 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7177 if (attr.form == DW_FORM_ref_addr)
7178 complaint (&symfile_complaints,
7179 _("ignoring absolute DW_AT_sibling"));
7182 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7183 const gdb_byte *sibling_ptr = buffer + off;
7185 if (sibling_ptr < info_ptr)
7186 complaint (&symfile_complaints,
7187 _("DW_AT_sibling points backwards"));
7188 else if (sibling_ptr > reader->buffer_end)
7189 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7195 /* If it isn't DW_AT_sibling, skip this attribute. */
7196 form = abbrev->attrs[i].form;
7200 case DW_FORM_ref_addr:
7201 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7202 and later it is offset sized. */
7203 if (cu->header.version == 2)
7204 info_ptr += cu->header.addr_size;
7206 info_ptr += cu->header.offset_size;
7208 case DW_FORM_GNU_ref_alt:
7209 info_ptr += cu->header.offset_size;
7212 info_ptr += cu->header.addr_size;
7219 case DW_FORM_flag_present:
7231 case DW_FORM_ref_sig8:
7234 case DW_FORM_string:
7235 read_direct_string (abfd, info_ptr, &bytes_read);
7236 info_ptr += bytes_read;
7238 case DW_FORM_sec_offset:
7240 case DW_FORM_GNU_strp_alt:
7241 info_ptr += cu->header.offset_size;
7243 case DW_FORM_exprloc:
7245 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7246 info_ptr += bytes_read;
7248 case DW_FORM_block1:
7249 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7251 case DW_FORM_block2:
7252 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7254 case DW_FORM_block4:
7255 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7259 case DW_FORM_ref_udata:
7260 case DW_FORM_GNU_addr_index:
7261 case DW_FORM_GNU_str_index:
7262 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7264 case DW_FORM_indirect:
7265 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7266 info_ptr += bytes_read;
7267 /* We need to continue parsing from here, so just go back to
7269 goto skip_attribute;
7272 error (_("Dwarf Error: Cannot handle %s "
7273 "in DWARF reader [in module %s]"),
7274 dwarf_form_name (form),
7275 bfd_get_filename (abfd));
7279 if (abbrev->has_children)
7280 return skip_children (reader, info_ptr);
7285 /* Locate ORIG_PDI's sibling.
7286 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7288 static const gdb_byte *
7289 locate_pdi_sibling (const struct die_reader_specs *reader,
7290 struct partial_die_info *orig_pdi,
7291 const gdb_byte *info_ptr)
7293 /* Do we know the sibling already? */
7295 if (orig_pdi->sibling)
7296 return orig_pdi->sibling;
7298 /* Are there any children to deal with? */
7300 if (!orig_pdi->has_children)
7303 /* Skip the children the long way. */
7305 return skip_children (reader, info_ptr);
7308 /* Expand this partial symbol table into a full symbol table. SELF is
7312 dwarf2_read_symtab (struct partial_symtab *self,
7313 struct objfile *objfile)
7317 warning (_("bug: psymtab for %s is already read in."),
7324 printf_filtered (_("Reading in symbols for %s..."),
7326 gdb_flush (gdb_stdout);
7329 /* Restore our global data. */
7330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7332 /* If this psymtab is constructed from a debug-only objfile, the
7333 has_section_at_zero flag will not necessarily be correct. We
7334 can get the correct value for this flag by looking at the data
7335 associated with the (presumably stripped) associated objfile. */
7336 if (objfile->separate_debug_objfile_backlink)
7338 struct dwarf2_per_objfile *dpo_backlink
7339 = objfile_data (objfile->separate_debug_objfile_backlink,
7340 dwarf2_objfile_data_key);
7342 dwarf2_per_objfile->has_section_at_zero
7343 = dpo_backlink->has_section_at_zero;
7346 dwarf2_per_objfile->reading_partial_symbols = 0;
7348 psymtab_to_symtab_1 (self);
7350 /* Finish up the debug error message. */
7352 printf_filtered (_("done.\n"));
7355 process_cu_includes ();
7358 /* Reading in full CUs. */
7360 /* Add PER_CU to the queue. */
7363 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7364 enum language pretend_language)
7366 struct dwarf2_queue_item *item;
7369 item = xmalloc (sizeof (*item));
7370 item->per_cu = per_cu;
7371 item->pretend_language = pretend_language;
7374 if (dwarf2_queue == NULL)
7375 dwarf2_queue = item;
7377 dwarf2_queue_tail->next = item;
7379 dwarf2_queue_tail = item;
7382 /* If PER_CU is not yet queued, add it to the queue.
7383 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7385 The result is non-zero if PER_CU was queued, otherwise the result is zero
7386 meaning either PER_CU is already queued or it is already loaded.
7388 N.B. There is an invariant here that if a CU is queued then it is loaded.
7389 The caller is required to load PER_CU if we return non-zero. */
7392 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7393 struct dwarf2_per_cu_data *per_cu,
7394 enum language pretend_language)
7396 /* We may arrive here during partial symbol reading, if we need full
7397 DIEs to process an unusual case (e.g. template arguments). Do
7398 not queue PER_CU, just tell our caller to load its DIEs. */
7399 if (dwarf2_per_objfile->reading_partial_symbols)
7401 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7406 /* Mark the dependence relation so that we don't flush PER_CU
7408 if (dependent_cu != NULL)
7409 dwarf2_add_dependence (dependent_cu, per_cu);
7411 /* If it's already on the queue, we have nothing to do. */
7415 /* If the compilation unit is already loaded, just mark it as
7417 if (per_cu->cu != NULL)
7419 per_cu->cu->last_used = 0;
7423 /* Add it to the queue. */
7424 queue_comp_unit (per_cu, pretend_language);
7429 /* Process the queue. */
7432 process_queue (void)
7434 struct dwarf2_queue_item *item, *next_item;
7436 if (dwarf2_read_debug)
7438 fprintf_unfiltered (gdb_stdlog,
7439 "Expanding one or more symtabs of objfile %s ...\n",
7440 objfile_name (dwarf2_per_objfile->objfile));
7443 /* The queue starts out with one item, but following a DIE reference
7444 may load a new CU, adding it to the end of the queue. */
7445 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7447 if (dwarf2_per_objfile->using_index
7448 ? !item->per_cu->v.quick->symtab
7449 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7451 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7452 unsigned int debug_print_threshold;
7455 if (per_cu->is_debug_types)
7457 struct signatured_type *sig_type =
7458 (struct signatured_type *) per_cu;
7460 sprintf (buf, "TU %s at offset 0x%x",
7461 hex_string (sig_type->signature),
7462 per_cu->offset.sect_off);
7463 /* There can be 100s of TUs.
7464 Only print them in verbose mode. */
7465 debug_print_threshold = 2;
7469 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7470 debug_print_threshold = 1;
7473 if (dwarf2_read_debug >= debug_print_threshold)
7474 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7476 if (per_cu->is_debug_types)
7477 process_full_type_unit (per_cu, item->pretend_language);
7479 process_full_comp_unit (per_cu, item->pretend_language);
7481 if (dwarf2_read_debug >= debug_print_threshold)
7482 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7485 item->per_cu->queued = 0;
7486 next_item = item->next;
7490 dwarf2_queue_tail = NULL;
7492 if (dwarf2_read_debug)
7494 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7495 objfile_name (dwarf2_per_objfile->objfile));
7499 /* Free all allocated queue entries. This function only releases anything if
7500 an error was thrown; if the queue was processed then it would have been
7501 freed as we went along. */
7504 dwarf2_release_queue (void *dummy)
7506 struct dwarf2_queue_item *item, *last;
7508 item = dwarf2_queue;
7511 /* Anything still marked queued is likely to be in an
7512 inconsistent state, so discard it. */
7513 if (item->per_cu->queued)
7515 if (item->per_cu->cu != NULL)
7516 free_one_cached_comp_unit (item->per_cu);
7517 item->per_cu->queued = 0;
7525 dwarf2_queue = dwarf2_queue_tail = NULL;
7528 /* Read in full symbols for PST, and anything it depends on. */
7531 psymtab_to_symtab_1 (struct partial_symtab *pst)
7533 struct dwarf2_per_cu_data *per_cu;
7539 for (i = 0; i < pst->number_of_dependencies; i++)
7540 if (!pst->dependencies[i]->readin
7541 && pst->dependencies[i]->user == NULL)
7543 /* Inform about additional files that need to be read in. */
7546 /* FIXME: i18n: Need to make this a single string. */
7547 fputs_filtered (" ", gdb_stdout);
7549 fputs_filtered ("and ", gdb_stdout);
7551 printf_filtered ("%s...", pst->dependencies[i]->filename);
7552 wrap_here (""); /* Flush output. */
7553 gdb_flush (gdb_stdout);
7555 psymtab_to_symtab_1 (pst->dependencies[i]);
7558 per_cu = pst->read_symtab_private;
7562 /* It's an include file, no symbols to read for it.
7563 Everything is in the parent symtab. */
7568 dw2_do_instantiate_symtab (per_cu);
7571 /* Trivial hash function for die_info: the hash value of a DIE
7572 is its offset in .debug_info for this objfile. */
7575 die_hash (const void *item)
7577 const struct die_info *die = item;
7579 return die->offset.sect_off;
7582 /* Trivial comparison function for die_info structures: two DIEs
7583 are equal if they have the same offset. */
7586 die_eq (const void *item_lhs, const void *item_rhs)
7588 const struct die_info *die_lhs = item_lhs;
7589 const struct die_info *die_rhs = item_rhs;
7591 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7594 /* die_reader_func for load_full_comp_unit.
7595 This is identical to read_signatured_type_reader,
7596 but is kept separate for now. */
7599 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7600 const gdb_byte *info_ptr,
7601 struct die_info *comp_unit_die,
7605 struct dwarf2_cu *cu = reader->cu;
7606 enum language *language_ptr = data;
7608 gdb_assert (cu->die_hash == NULL);
7610 htab_create_alloc_ex (cu->header.length / 12,
7614 &cu->comp_unit_obstack,
7615 hashtab_obstack_allocate,
7616 dummy_obstack_deallocate);
7619 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7620 &info_ptr, comp_unit_die);
7621 cu->dies = comp_unit_die;
7622 /* comp_unit_die is not stored in die_hash, no need. */
7624 /* We try not to read any attributes in this function, because not
7625 all CUs needed for references have been loaded yet, and symbol
7626 table processing isn't initialized. But we have to set the CU language,
7627 or we won't be able to build types correctly.
7628 Similarly, if we do not read the producer, we can not apply
7629 producer-specific interpretation. */
7630 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7633 /* Load the DIEs associated with PER_CU into memory. */
7636 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7637 enum language pretend_language)
7639 gdb_assert (! this_cu->is_debug_types);
7641 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7642 load_full_comp_unit_reader, &pretend_language);
7645 /* Add a DIE to the delayed physname list. */
7648 add_to_method_list (struct type *type, int fnfield_index, int index,
7649 const char *name, struct die_info *die,
7650 struct dwarf2_cu *cu)
7652 struct delayed_method_info mi;
7654 mi.fnfield_index = fnfield_index;
7658 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7661 /* A cleanup for freeing the delayed method list. */
7664 free_delayed_list (void *ptr)
7666 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7667 if (cu->method_list != NULL)
7669 VEC_free (delayed_method_info, cu->method_list);
7670 cu->method_list = NULL;
7674 /* Compute the physnames of any methods on the CU's method list.
7676 The computation of method physnames is delayed in order to avoid the
7677 (bad) condition that one of the method's formal parameters is of an as yet
7681 compute_delayed_physnames (struct dwarf2_cu *cu)
7684 struct delayed_method_info *mi;
7685 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7687 const char *physname;
7688 struct fn_fieldlist *fn_flp
7689 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7690 physname = dwarf2_physname (mi->name, mi->die, cu);
7691 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7695 /* Go objects should be embedded in a DW_TAG_module DIE,
7696 and it's not clear if/how imported objects will appear.
7697 To keep Go support simple until that's worked out,
7698 go back through what we've read and create something usable.
7699 We could do this while processing each DIE, and feels kinda cleaner,
7700 but that way is more invasive.
7701 This is to, for example, allow the user to type "p var" or "b main"
7702 without having to specify the package name, and allow lookups
7703 of module.object to work in contexts that use the expression
7707 fixup_go_packaging (struct dwarf2_cu *cu)
7709 char *package_name = NULL;
7710 struct pending *list;
7713 for (list = global_symbols; list != NULL; list = list->next)
7715 for (i = 0; i < list->nsyms; ++i)
7717 struct symbol *sym = list->symbol[i];
7719 if (SYMBOL_LANGUAGE (sym) == language_go
7720 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7722 char *this_package_name = go_symbol_package_name (sym);
7724 if (this_package_name == NULL)
7726 if (package_name == NULL)
7727 package_name = this_package_name;
7730 if (strcmp (package_name, this_package_name) != 0)
7731 complaint (&symfile_complaints,
7732 _("Symtab %s has objects from two different Go packages: %s and %s"),
7733 (SYMBOL_SYMTAB (sym)
7734 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7735 : objfile_name (cu->objfile)),
7736 this_package_name, package_name);
7737 xfree (this_package_name);
7743 if (package_name != NULL)
7745 struct objfile *objfile = cu->objfile;
7746 const char *saved_package_name
7747 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7749 strlen (package_name));
7750 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7751 saved_package_name, objfile);
7754 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7756 sym = allocate_symbol (objfile);
7757 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7758 SYMBOL_SET_NAMES (sym, saved_package_name,
7759 strlen (saved_package_name), 0, objfile);
7760 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7761 e.g., "main" finds the "main" module and not C's main(). */
7762 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7763 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7764 SYMBOL_TYPE (sym) = type;
7766 add_symbol_to_list (sym, &global_symbols);
7768 xfree (package_name);
7772 /* Return the symtab for PER_CU. This works properly regardless of
7773 whether we're using the index or psymtabs. */
7775 static struct symtab *
7776 get_symtab (struct dwarf2_per_cu_data *per_cu)
7778 return (dwarf2_per_objfile->using_index
7779 ? per_cu->v.quick->symtab
7780 : per_cu->v.psymtab->symtab);
7783 /* A helper function for computing the list of all symbol tables
7784 included by PER_CU. */
7787 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7788 htab_t all_children, htab_t all_type_symtabs,
7789 struct dwarf2_per_cu_data *per_cu,
7790 struct symtab *immediate_parent)
7794 struct symtab *symtab;
7795 struct dwarf2_per_cu_data *iter;
7797 slot = htab_find_slot (all_children, per_cu, INSERT);
7800 /* This inclusion and its children have been processed. */
7805 /* Only add a CU if it has a symbol table. */
7806 symtab = get_symtab (per_cu);
7809 /* If this is a type unit only add its symbol table if we haven't
7810 seen it yet (type unit per_cu's can share symtabs). */
7811 if (per_cu->is_debug_types)
7813 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7817 VEC_safe_push (symtab_ptr, *result, symtab);
7818 if (symtab->user == NULL)
7819 symtab->user = immediate_parent;
7824 VEC_safe_push (symtab_ptr, *result, symtab);
7825 if (symtab->user == NULL)
7826 symtab->user = immediate_parent;
7831 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7834 recursively_compute_inclusions (result, all_children,
7835 all_type_symtabs, iter, symtab);
7839 /* Compute the symtab 'includes' fields for the symtab related to
7843 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7845 gdb_assert (! per_cu->is_debug_types);
7847 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7850 struct dwarf2_per_cu_data *per_cu_iter;
7851 struct symtab *symtab_iter;
7852 VEC (symtab_ptr) *result_symtabs = NULL;
7853 htab_t all_children, all_type_symtabs;
7854 struct symtab *symtab = get_symtab (per_cu);
7856 /* If we don't have a symtab, we can just skip this case. */
7860 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7861 NULL, xcalloc, xfree);
7862 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7863 NULL, xcalloc, xfree);
7866 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7870 recursively_compute_inclusions (&result_symtabs, all_children,
7871 all_type_symtabs, per_cu_iter,
7875 /* Now we have a transitive closure of all the included symtabs. */
7876 len = VEC_length (symtab_ptr, result_symtabs);
7878 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7879 (len + 1) * sizeof (struct symtab *));
7881 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7883 symtab->includes[ix] = symtab_iter;
7884 symtab->includes[len] = NULL;
7886 VEC_free (symtab_ptr, result_symtabs);
7887 htab_delete (all_children);
7888 htab_delete (all_type_symtabs);
7892 /* Compute the 'includes' field for the symtabs of all the CUs we just
7896 process_cu_includes (void)
7899 struct dwarf2_per_cu_data *iter;
7902 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7906 if (! iter->is_debug_types)
7907 compute_symtab_includes (iter);
7910 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7913 /* Generate full symbol information for PER_CU, whose DIEs have
7914 already been loaded into memory. */
7917 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7918 enum language pretend_language)
7920 struct dwarf2_cu *cu = per_cu->cu;
7921 struct objfile *objfile = per_cu->objfile;
7922 CORE_ADDR lowpc, highpc;
7923 struct symtab *symtab;
7924 struct cleanup *back_to, *delayed_list_cleanup;
7926 struct block *static_block;
7928 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7931 back_to = make_cleanup (really_free_pendings, NULL);
7932 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7934 cu->list_in_scope = &file_symbols;
7936 cu->language = pretend_language;
7937 cu->language_defn = language_def (cu->language);
7939 /* Do line number decoding in read_file_scope () */
7940 process_die (cu->dies, cu);
7942 /* For now fudge the Go package. */
7943 if (cu->language == language_go)
7944 fixup_go_packaging (cu);
7946 /* Now that we have processed all the DIEs in the CU, all the types
7947 should be complete, and it should now be safe to compute all of the
7949 compute_delayed_physnames (cu);
7950 do_cleanups (delayed_list_cleanup);
7952 /* Some compilers don't define a DW_AT_high_pc attribute for the
7953 compilation unit. If the DW_AT_high_pc is missing, synthesize
7954 it, by scanning the DIE's below the compilation unit. */
7955 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7958 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7960 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7961 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7962 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7963 addrmap to help ensure it has an accurate map of pc values belonging to
7965 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7967 symtab = end_symtab_from_static_block (static_block, objfile,
7968 SECT_OFF_TEXT (objfile), 0);
7972 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7974 /* Set symtab language to language from DW_AT_language. If the
7975 compilation is from a C file generated by language preprocessors, do
7976 not set the language if it was already deduced by start_subfile. */
7977 if (!(cu->language == language_c && symtab->language != language_c))
7978 symtab->language = cu->language;
7980 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7981 produce DW_AT_location with location lists but it can be possibly
7982 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7983 there were bugs in prologue debug info, fixed later in GCC-4.5
7984 by "unwind info for epilogues" patch (which is not directly related).
7986 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7987 needed, it would be wrong due to missing DW_AT_producer there.
7989 Still one can confuse GDB by using non-standard GCC compilation
7990 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7992 if (cu->has_loclist && gcc_4_minor >= 5)
7993 symtab->locations_valid = 1;
7995 if (gcc_4_minor >= 5)
7996 symtab->epilogue_unwind_valid = 1;
7998 symtab->call_site_htab = cu->call_site_htab;
8001 if (dwarf2_per_objfile->using_index)
8002 per_cu->v.quick->symtab = symtab;
8005 struct partial_symtab *pst = per_cu->v.psymtab;
8006 pst->symtab = symtab;
8010 /* Push it for inclusion processing later. */
8011 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8013 do_cleanups (back_to);
8016 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8017 already been loaded into memory. */
8020 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8021 enum language pretend_language)
8023 struct dwarf2_cu *cu = per_cu->cu;
8024 struct objfile *objfile = per_cu->objfile;
8025 struct symtab *symtab;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8027 struct signatured_type *sig_type;
8029 gdb_assert (per_cu->is_debug_types);
8030 sig_type = (struct signatured_type *) per_cu;
8033 back_to = make_cleanup (really_free_pendings, NULL);
8034 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036 cu->list_in_scope = &file_symbols;
8038 cu->language = pretend_language;
8039 cu->language_defn = language_def (cu->language);
8041 /* The symbol tables are set up in read_type_unit_scope. */
8042 process_die (cu->dies, cu);
8044 /* For now fudge the Go package. */
8045 if (cu->language == language_go)
8046 fixup_go_packaging (cu);
8048 /* Now that we have processed all the DIEs in the CU, all the types
8049 should be complete, and it should now be safe to compute all of the
8051 compute_delayed_physnames (cu);
8052 do_cleanups (delayed_list_cleanup);
8054 /* TUs share symbol tables.
8055 If this is the first TU to use this symtab, complete the construction
8056 of it with end_expandable_symtab. Otherwise, complete the addition of
8057 this TU's symbols to the existing symtab. */
8058 if (sig_type->type_unit_group->primary_symtab == NULL)
8060 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8061 sig_type->type_unit_group->primary_symtab = symtab;
8065 /* Set symtab language to language from DW_AT_language. If the
8066 compilation is from a C file generated by language preprocessors,
8067 do not set the language if it was already deduced by
8069 if (!(cu->language == language_c && symtab->language != language_c))
8070 symtab->language = cu->language;
8075 augment_type_symtab (objfile,
8076 sig_type->type_unit_group->primary_symtab);
8077 symtab = sig_type->type_unit_group->primary_symtab;
8080 if (dwarf2_per_objfile->using_index)
8081 per_cu->v.quick->symtab = symtab;
8084 struct partial_symtab *pst = per_cu->v.psymtab;
8085 pst->symtab = symtab;
8089 do_cleanups (back_to);
8092 /* Process an imported unit DIE. */
8095 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8097 struct attribute *attr;
8099 /* For now we don't handle imported units in type units. */
8100 if (cu->per_cu->is_debug_types)
8102 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8103 " supported in type units [in module %s]"),
8104 objfile_name (cu->objfile));
8107 attr = dwarf2_attr (die, DW_AT_import, cu);
8110 struct dwarf2_per_cu_data *per_cu;
8111 struct symtab *imported_symtab;
8115 offset = dwarf2_get_ref_die_offset (attr);
8116 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8117 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8119 /* If necessary, add it to the queue and load its DIEs. */
8120 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8121 load_full_comp_unit (per_cu, cu->language);
8123 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8128 /* Reset the in_process bit of a die. */
8131 reset_die_in_process (void *arg)
8133 struct die_info *die = arg;
8135 die->in_process = 0;
8138 /* Process a die and its children. */
8141 process_die (struct die_info *die, struct dwarf2_cu *cu)
8143 struct cleanup *in_process;
8145 /* We should only be processing those not already in process. */
8146 gdb_assert (!die->in_process);
8148 die->in_process = 1;
8149 in_process = make_cleanup (reset_die_in_process,die);
8153 case DW_TAG_padding:
8155 case DW_TAG_compile_unit:
8156 case DW_TAG_partial_unit:
8157 read_file_scope (die, cu);
8159 case DW_TAG_type_unit:
8160 read_type_unit_scope (die, cu);
8162 case DW_TAG_subprogram:
8163 case DW_TAG_inlined_subroutine:
8164 read_func_scope (die, cu);
8166 case DW_TAG_lexical_block:
8167 case DW_TAG_try_block:
8168 case DW_TAG_catch_block:
8169 read_lexical_block_scope (die, cu);
8171 case DW_TAG_GNU_call_site:
8172 read_call_site_scope (die, cu);
8174 case DW_TAG_class_type:
8175 case DW_TAG_interface_type:
8176 case DW_TAG_structure_type:
8177 case DW_TAG_union_type:
8178 process_structure_scope (die, cu);
8180 case DW_TAG_enumeration_type:
8181 process_enumeration_scope (die, cu);
8184 /* These dies have a type, but processing them does not create
8185 a symbol or recurse to process the children. Therefore we can
8186 read them on-demand through read_type_die. */
8187 case DW_TAG_subroutine_type:
8188 case DW_TAG_set_type:
8189 case DW_TAG_array_type:
8190 case DW_TAG_pointer_type:
8191 case DW_TAG_ptr_to_member_type:
8192 case DW_TAG_reference_type:
8193 case DW_TAG_string_type:
8196 case DW_TAG_base_type:
8197 case DW_TAG_subrange_type:
8198 case DW_TAG_typedef:
8199 /* Add a typedef symbol for the type definition, if it has a
8201 new_symbol (die, read_type_die (die, cu), cu);
8203 case DW_TAG_common_block:
8204 read_common_block (die, cu);
8206 case DW_TAG_common_inclusion:
8208 case DW_TAG_namespace:
8209 cu->processing_has_namespace_info = 1;
8210 read_namespace (die, cu);
8213 cu->processing_has_namespace_info = 1;
8214 read_module (die, cu);
8216 case DW_TAG_imported_declaration:
8217 cu->processing_has_namespace_info = 1;
8218 if (read_namespace_alias (die, cu))
8220 /* The declaration is not a global namespace alias: fall through. */
8221 case DW_TAG_imported_module:
8222 cu->processing_has_namespace_info = 1;
8223 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8224 || cu->language != language_fortran))
8225 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8226 dwarf_tag_name (die->tag));
8227 read_import_statement (die, cu);
8230 case DW_TAG_imported_unit:
8231 process_imported_unit_die (die, cu);
8235 new_symbol (die, NULL, cu);
8239 do_cleanups (in_process);
8242 /* DWARF name computation. */
8244 /* A helper function for dwarf2_compute_name which determines whether DIE
8245 needs to have the name of the scope prepended to the name listed in the
8249 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8251 struct attribute *attr;
8255 case DW_TAG_namespace:
8256 case DW_TAG_typedef:
8257 case DW_TAG_class_type:
8258 case DW_TAG_interface_type:
8259 case DW_TAG_structure_type:
8260 case DW_TAG_union_type:
8261 case DW_TAG_enumeration_type:
8262 case DW_TAG_enumerator:
8263 case DW_TAG_subprogram:
8265 case DW_TAG_imported_declaration:
8268 case DW_TAG_variable:
8269 case DW_TAG_constant:
8270 /* We only need to prefix "globally" visible variables. These include
8271 any variable marked with DW_AT_external or any variable that
8272 lives in a namespace. [Variables in anonymous namespaces
8273 require prefixing, but they are not DW_AT_external.] */
8275 if (dwarf2_attr (die, DW_AT_specification, cu))
8277 struct dwarf2_cu *spec_cu = cu;
8279 return die_needs_namespace (die_specification (die, &spec_cu),
8283 attr = dwarf2_attr (die, DW_AT_external, cu);
8284 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8285 && die->parent->tag != DW_TAG_module)
8287 /* A variable in a lexical block of some kind does not need a
8288 namespace, even though in C++ such variables may be external
8289 and have a mangled name. */
8290 if (die->parent->tag == DW_TAG_lexical_block
8291 || die->parent->tag == DW_TAG_try_block
8292 || die->parent->tag == DW_TAG_catch_block
8293 || die->parent->tag == DW_TAG_subprogram)
8302 /* Retrieve the last character from a mem_file. */
8305 do_ui_file_peek_last (void *object, const char *buffer, long length)
8307 char *last_char_p = (char *) object;
8310 *last_char_p = buffer[length - 1];
8313 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8314 compute the physname for the object, which include a method's:
8315 - formal parameters (C++/Java),
8316 - receiver type (Go),
8317 - return type (Java).
8319 The term "physname" is a bit confusing.
8320 For C++, for example, it is the demangled name.
8321 For Go, for example, it's the mangled name.
8323 For Ada, return the DIE's linkage name rather than the fully qualified
8324 name. PHYSNAME is ignored..
8326 The result is allocated on the objfile_obstack and canonicalized. */
8329 dwarf2_compute_name (const char *name,
8330 struct die_info *die, struct dwarf2_cu *cu,
8333 struct objfile *objfile = cu->objfile;
8336 name = dwarf2_name (die, cu);
8338 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8339 compute it by typename_concat inside GDB. */
8340 if (cu->language == language_ada
8341 || (cu->language == language_fortran && physname))
8343 /* For Ada unit, we prefer the linkage name over the name, as
8344 the former contains the exported name, which the user expects
8345 to be able to reference. Ideally, we want the user to be able
8346 to reference this entity using either natural or linkage name,
8347 but we haven't started looking at this enhancement yet. */
8348 struct attribute *attr;
8350 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8352 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8353 if (attr && DW_STRING (attr))
8354 return DW_STRING (attr);
8357 /* These are the only languages we know how to qualify names in. */
8359 && (cu->language == language_cplus || cu->language == language_java
8360 || cu->language == language_fortran))
8362 if (die_needs_namespace (die, cu))
8366 struct ui_file *buf;
8367 char *intermediate_name;
8368 const char *canonical_name = NULL;
8370 prefix = determine_prefix (die, cu);
8371 buf = mem_fileopen ();
8372 if (*prefix != '\0')
8374 char *prefixed_name = typename_concat (NULL, prefix, name,
8377 fputs_unfiltered (prefixed_name, buf);
8378 xfree (prefixed_name);
8381 fputs_unfiltered (name, buf);
8383 /* Template parameters may be specified in the DIE's DW_AT_name, or
8384 as children with DW_TAG_template_type_param or
8385 DW_TAG_value_type_param. If the latter, add them to the name
8386 here. If the name already has template parameters, then
8387 skip this step; some versions of GCC emit both, and
8388 it is more efficient to use the pre-computed name.
8390 Something to keep in mind about this process: it is very
8391 unlikely, or in some cases downright impossible, to produce
8392 something that will match the mangled name of a function.
8393 If the definition of the function has the same debug info,
8394 we should be able to match up with it anyway. But fallbacks
8395 using the minimal symbol, for instance to find a method
8396 implemented in a stripped copy of libstdc++, will not work.
8397 If we do not have debug info for the definition, we will have to
8398 match them up some other way.
8400 When we do name matching there is a related problem with function
8401 templates; two instantiated function templates are allowed to
8402 differ only by their return types, which we do not add here. */
8404 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8406 struct attribute *attr;
8407 struct die_info *child;
8410 die->building_fullname = 1;
8412 for (child = die->child; child != NULL; child = child->sibling)
8416 const gdb_byte *bytes;
8417 struct dwarf2_locexpr_baton *baton;
8420 if (child->tag != DW_TAG_template_type_param
8421 && child->tag != DW_TAG_template_value_param)
8426 fputs_unfiltered ("<", buf);
8430 fputs_unfiltered (", ", buf);
8432 attr = dwarf2_attr (child, DW_AT_type, cu);
8435 complaint (&symfile_complaints,
8436 _("template parameter missing DW_AT_type"));
8437 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8440 type = die_type (child, cu);
8442 if (child->tag == DW_TAG_template_type_param)
8444 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8448 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8451 complaint (&symfile_complaints,
8452 _("template parameter missing "
8453 "DW_AT_const_value"));
8454 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8458 dwarf2_const_value_attr (attr, type, name,
8459 &cu->comp_unit_obstack, cu,
8460 &value, &bytes, &baton);
8462 if (TYPE_NOSIGN (type))
8463 /* GDB prints characters as NUMBER 'CHAR'. If that's
8464 changed, this can use value_print instead. */
8465 c_printchar (value, type, buf);
8468 struct value_print_options opts;
8471 v = dwarf2_evaluate_loc_desc (type, NULL,
8475 else if (bytes != NULL)
8477 v = allocate_value (type);
8478 memcpy (value_contents_writeable (v), bytes,
8479 TYPE_LENGTH (type));
8482 v = value_from_longest (type, value);
8484 /* Specify decimal so that we do not depend on
8486 get_formatted_print_options (&opts, 'd');
8488 value_print (v, buf, &opts);
8494 die->building_fullname = 0;
8498 /* Close the argument list, with a space if necessary
8499 (nested templates). */
8500 char last_char = '\0';
8501 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8502 if (last_char == '>')
8503 fputs_unfiltered (" >", buf);
8505 fputs_unfiltered (">", buf);
8509 /* For Java and C++ methods, append formal parameter type
8510 information, if PHYSNAME. */
8512 if (physname && die->tag == DW_TAG_subprogram
8513 && (cu->language == language_cplus
8514 || cu->language == language_java))
8516 struct type *type = read_type_die (die, cu);
8518 c_type_print_args (type, buf, 1, cu->language,
8519 &type_print_raw_options);
8521 if (cu->language == language_java)
8523 /* For java, we must append the return type to method
8525 if (die->tag == DW_TAG_subprogram)
8526 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8527 0, 0, &type_print_raw_options);
8529 else if (cu->language == language_cplus)
8531 /* Assume that an artificial first parameter is
8532 "this", but do not crash if it is not. RealView
8533 marks unnamed (and thus unused) parameters as
8534 artificial; there is no way to differentiate
8536 if (TYPE_NFIELDS (type) > 0
8537 && TYPE_FIELD_ARTIFICIAL (type, 0)
8538 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8539 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8541 fputs_unfiltered (" const", buf);
8545 intermediate_name = ui_file_xstrdup (buf, &length);
8546 ui_file_delete (buf);
8548 if (cu->language == language_cplus)
8550 = dwarf2_canonicalize_name (intermediate_name, cu,
8551 &objfile->per_bfd->storage_obstack);
8553 /* If we only computed INTERMEDIATE_NAME, or if
8554 INTERMEDIATE_NAME is already canonical, then we need to
8555 copy it to the appropriate obstack. */
8556 if (canonical_name == NULL || canonical_name == intermediate_name)
8557 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8559 strlen (intermediate_name));
8561 name = canonical_name;
8563 xfree (intermediate_name);
8570 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8571 If scope qualifiers are appropriate they will be added. The result
8572 will be allocated on the storage_obstack, or NULL if the DIE does
8573 not have a name. NAME may either be from a previous call to
8574 dwarf2_name or NULL.
8576 The output string will be canonicalized (if C++/Java). */
8579 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8581 return dwarf2_compute_name (name, die, cu, 0);
8584 /* Construct a physname for the given DIE in CU. NAME may either be
8585 from a previous call to dwarf2_name or NULL. The result will be
8586 allocated on the objfile_objstack or NULL if the DIE does not have a
8589 The output string will be canonicalized (if C++/Java). */
8592 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8594 struct objfile *objfile = cu->objfile;
8595 struct attribute *attr;
8596 const char *retval, *mangled = NULL, *canon = NULL;
8597 struct cleanup *back_to;
8600 /* In this case dwarf2_compute_name is just a shortcut not building anything
8602 if (!die_needs_namespace (die, cu))
8603 return dwarf2_compute_name (name, die, cu, 1);
8605 back_to = make_cleanup (null_cleanup, NULL);
8607 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8609 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8611 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8613 if (attr && DW_STRING (attr))
8617 mangled = DW_STRING (attr);
8619 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8620 type. It is easier for GDB users to search for such functions as
8621 `name(params)' than `long name(params)'. In such case the minimal
8622 symbol names do not match the full symbol names but for template
8623 functions there is never a need to look up their definition from their
8624 declaration so the only disadvantage remains the minimal symbol
8625 variant `long name(params)' does not have the proper inferior type.
8628 if (cu->language == language_go)
8630 /* This is a lie, but we already lie to the caller new_symbol_full.
8631 new_symbol_full assumes we return the mangled name.
8632 This just undoes that lie until things are cleaned up. */
8637 demangled = gdb_demangle (mangled,
8638 (DMGL_PARAMS | DMGL_ANSI
8639 | (cu->language == language_java
8640 ? DMGL_JAVA | DMGL_RET_POSTFIX
8645 make_cleanup (xfree, demangled);
8655 if (canon == NULL || check_physname)
8657 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8659 if (canon != NULL && strcmp (physname, canon) != 0)
8661 /* It may not mean a bug in GDB. The compiler could also
8662 compute DW_AT_linkage_name incorrectly. But in such case
8663 GDB would need to be bug-to-bug compatible. */
8665 complaint (&symfile_complaints,
8666 _("Computed physname <%s> does not match demangled <%s> "
8667 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8668 physname, canon, mangled, die->offset.sect_off,
8669 objfile_name (objfile));
8671 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8672 is available here - over computed PHYSNAME. It is safer
8673 against both buggy GDB and buggy compilers. */
8687 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8688 retval, strlen (retval));
8690 do_cleanups (back_to);
8694 /* Inspect DIE in CU for a namespace alias. If one exists, record
8695 a new symbol for it.
8697 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8700 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8702 struct attribute *attr;
8704 /* If the die does not have a name, this is not a namespace
8706 attr = dwarf2_attr (die, DW_AT_name, cu);
8710 struct die_info *d = die;
8711 struct dwarf2_cu *imported_cu = cu;
8713 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8714 keep inspecting DIEs until we hit the underlying import. */
8715 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8716 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8718 attr = dwarf2_attr (d, DW_AT_import, cu);
8722 d = follow_die_ref (d, attr, &imported_cu);
8723 if (d->tag != DW_TAG_imported_declaration)
8727 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8729 complaint (&symfile_complaints,
8730 _("DIE at 0x%x has too many recursively imported "
8731 "declarations"), d->offset.sect_off);
8738 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8740 type = get_die_type_at_offset (offset, cu->per_cu);
8741 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8743 /* This declaration is a global namespace alias. Add
8744 a symbol for it whose type is the aliased namespace. */
8745 new_symbol (die, type, cu);
8754 /* Read the import statement specified by the given die and record it. */
8757 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8759 struct objfile *objfile = cu->objfile;
8760 struct attribute *import_attr;
8761 struct die_info *imported_die, *child_die;
8762 struct dwarf2_cu *imported_cu;
8763 const char *imported_name;
8764 const char *imported_name_prefix;
8765 const char *canonical_name;
8766 const char *import_alias;
8767 const char *imported_declaration = NULL;
8768 const char *import_prefix;
8769 VEC (const_char_ptr) *excludes = NULL;
8770 struct cleanup *cleanups;
8772 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8773 if (import_attr == NULL)
8775 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8776 dwarf_tag_name (die->tag));
8781 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8782 imported_name = dwarf2_name (imported_die, imported_cu);
8783 if (imported_name == NULL)
8785 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8787 The import in the following code:
8801 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8802 <52> DW_AT_decl_file : 1
8803 <53> DW_AT_decl_line : 6
8804 <54> DW_AT_import : <0x75>
8805 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8807 <5b> DW_AT_decl_file : 1
8808 <5c> DW_AT_decl_line : 2
8809 <5d> DW_AT_type : <0x6e>
8811 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8812 <76> DW_AT_byte_size : 4
8813 <77> DW_AT_encoding : 5 (signed)
8815 imports the wrong die ( 0x75 instead of 0x58 ).
8816 This case will be ignored until the gcc bug is fixed. */
8820 /* Figure out the local name after import. */
8821 import_alias = dwarf2_name (die, cu);
8823 /* Figure out where the statement is being imported to. */
8824 import_prefix = determine_prefix (die, cu);
8826 /* Figure out what the scope of the imported die is and prepend it
8827 to the name of the imported die. */
8828 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8830 if (imported_die->tag != DW_TAG_namespace
8831 && imported_die->tag != DW_TAG_module)
8833 imported_declaration = imported_name;
8834 canonical_name = imported_name_prefix;
8836 else if (strlen (imported_name_prefix) > 0)
8837 canonical_name = obconcat (&objfile->objfile_obstack,
8838 imported_name_prefix, "::", imported_name,
8841 canonical_name = imported_name;
8843 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8845 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8846 for (child_die = die->child; child_die && child_die->tag;
8847 child_die = sibling_die (child_die))
8849 /* DWARF-4: A Fortran use statement with a “rename list” may be
8850 represented by an imported module entry with an import attribute
8851 referring to the module and owned entries corresponding to those
8852 entities that are renamed as part of being imported. */
8854 if (child_die->tag != DW_TAG_imported_declaration)
8856 complaint (&symfile_complaints,
8857 _("child DW_TAG_imported_declaration expected "
8858 "- DIE at 0x%x [in module %s]"),
8859 child_die->offset.sect_off, objfile_name (objfile));
8863 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8864 if (import_attr == NULL)
8866 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8867 dwarf_tag_name (child_die->tag));
8872 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8874 imported_name = dwarf2_name (imported_die, imported_cu);
8875 if (imported_name == NULL)
8877 complaint (&symfile_complaints,
8878 _("child DW_TAG_imported_declaration has unknown "
8879 "imported name - DIE at 0x%x [in module %s]"),
8880 child_die->offset.sect_off, objfile_name (objfile));
8884 VEC_safe_push (const_char_ptr, excludes, imported_name);
8886 process_die (child_die, cu);
8889 cp_add_using_directive (import_prefix,
8892 imported_declaration,
8895 &objfile->objfile_obstack);
8897 do_cleanups (cleanups);
8900 /* Cleanup function for handle_DW_AT_stmt_list. */
8903 free_cu_line_header (void *arg)
8905 struct dwarf2_cu *cu = arg;
8907 free_line_header (cu->line_header);
8908 cu->line_header = NULL;
8911 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8912 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8913 this, it was first present in GCC release 4.3.0. */
8916 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8918 if (!cu->checked_producer)
8919 check_producer (cu);
8921 return cu->producer_is_gcc_lt_4_3;
8925 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8926 const char **name, const char **comp_dir)
8928 struct attribute *attr;
8933 /* Find the filename. Do not use dwarf2_name here, since the filename
8934 is not a source language identifier. */
8935 attr = dwarf2_attr (die, DW_AT_name, cu);
8938 *name = DW_STRING (attr);
8941 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8943 *comp_dir = DW_STRING (attr);
8944 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8945 && IS_ABSOLUTE_PATH (*name))
8947 char *d = ldirname (*name);
8951 make_cleanup (xfree, d);
8953 if (*comp_dir != NULL)
8955 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8956 directory, get rid of it. */
8957 char *cp = strchr (*comp_dir, ':');
8959 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8964 *name = "<unknown>";
8967 /* Handle DW_AT_stmt_list for a compilation unit.
8968 DIE is the DW_TAG_compile_unit die for CU.
8969 COMP_DIR is the compilation directory.
8970 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8973 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8974 const char *comp_dir) /* ARI: editCase function */
8976 struct attribute *attr;
8978 gdb_assert (! cu->per_cu->is_debug_types);
8980 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8983 unsigned int line_offset = DW_UNSND (attr);
8984 struct line_header *line_header
8985 = dwarf_decode_line_header (line_offset, cu);
8989 cu->line_header = line_header;
8990 make_cleanup (free_cu_line_header, cu);
8991 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8996 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8999 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9001 struct objfile *objfile = dwarf2_per_objfile->objfile;
9002 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9003 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9004 CORE_ADDR highpc = ((CORE_ADDR) 0);
9005 struct attribute *attr;
9006 const char *name = NULL;
9007 const char *comp_dir = NULL;
9008 struct die_info *child_die;
9009 bfd *abfd = objfile->obfd;
9012 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9014 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9016 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9017 from finish_block. */
9018 if (lowpc == ((CORE_ADDR) -1))
9023 find_file_and_directory (die, cu, &name, &comp_dir);
9025 prepare_one_comp_unit (cu, die, cu->language);
9027 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9028 standardised yet. As a workaround for the language detection we fall
9029 back to the DW_AT_producer string. */
9030 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9031 cu->language = language_opencl;
9033 /* Similar hack for Go. */
9034 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9035 set_cu_language (DW_LANG_Go, cu);
9037 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9039 /* Decode line number information if present. We do this before
9040 processing child DIEs, so that the line header table is available
9041 for DW_AT_decl_file. */
9042 handle_DW_AT_stmt_list (die, cu, comp_dir);
9044 /* Process all dies in compilation unit. */
9045 if (die->child != NULL)
9047 child_die = die->child;
9048 while (child_die && child_die->tag)
9050 process_die (child_die, cu);
9051 child_die = sibling_die (child_die);
9055 /* Decode macro information, if present. Dwarf 2 macro information
9056 refers to information in the line number info statement program
9057 header, so we can only read it if we've read the header
9059 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9060 if (attr && cu->line_header)
9062 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9063 complaint (&symfile_complaints,
9064 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9066 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9070 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9071 if (attr && cu->line_header)
9073 unsigned int macro_offset = DW_UNSND (attr);
9075 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9079 do_cleanups (back_to);
9082 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9083 Create the set of symtabs used by this TU, or if this TU is sharing
9084 symtabs with another TU and the symtabs have already been created
9085 then restore those symtabs in the line header.
9086 We don't need the pc/line-number mapping for type units. */
9089 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9091 struct objfile *objfile = dwarf2_per_objfile->objfile;
9092 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9093 struct type_unit_group *tu_group;
9095 struct line_header *lh;
9096 struct attribute *attr;
9097 unsigned int i, line_offset;
9098 struct signatured_type *sig_type;
9100 gdb_assert (per_cu->is_debug_types);
9101 sig_type = (struct signatured_type *) per_cu;
9103 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9105 /* If we're using .gdb_index (includes -readnow) then
9106 per_cu->type_unit_group may not have been set up yet. */
9107 if (sig_type->type_unit_group == NULL)
9108 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9109 tu_group = sig_type->type_unit_group;
9111 /* If we've already processed this stmt_list there's no real need to
9112 do it again, we could fake it and just recreate the part we need
9113 (file name,index -> symtab mapping). If data shows this optimization
9114 is useful we can do it then. */
9115 first_time = tu_group->primary_symtab == NULL;
9117 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9122 line_offset = DW_UNSND (attr);
9123 lh = dwarf_decode_line_header (line_offset, cu);
9128 dwarf2_start_symtab (cu, "", NULL, 0);
9131 gdb_assert (tu_group->symtabs == NULL);
9134 /* Note: The primary symtab will get allocated at the end. */
9138 cu->line_header = lh;
9139 make_cleanup (free_cu_line_header, cu);
9143 dwarf2_start_symtab (cu, "", NULL, 0);
9145 tu_group->num_symtabs = lh->num_file_names;
9146 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9148 for (i = 0; i < lh->num_file_names; ++i)
9150 const char *dir = NULL;
9151 struct file_entry *fe = &lh->file_names[i];
9154 dir = lh->include_dirs[fe->dir_index - 1];
9155 dwarf2_start_subfile (fe->name, dir, NULL);
9157 /* Note: We don't have to watch for the main subfile here, type units
9158 don't have DW_AT_name. */
9160 if (current_subfile->symtab == NULL)
9162 /* NOTE: start_subfile will recognize when it's been passed
9163 a file it has already seen. So we can't assume there's a
9164 simple mapping from lh->file_names to subfiles,
9165 lh->file_names may contain dups. */
9166 current_subfile->symtab = allocate_symtab (current_subfile->name,
9170 fe->symtab = current_subfile->symtab;
9171 tu_group->symtabs[i] = fe->symtab;
9178 for (i = 0; i < lh->num_file_names; ++i)
9180 struct file_entry *fe = &lh->file_names[i];
9182 fe->symtab = tu_group->symtabs[i];
9186 /* The main symtab is allocated last. Type units don't have DW_AT_name
9187 so they don't have a "real" (so to speak) symtab anyway.
9188 There is later code that will assign the main symtab to all symbols
9189 that don't have one. We need to handle the case of a symbol with a
9190 missing symtab (DW_AT_decl_file) anyway. */
9193 /* Process DW_TAG_type_unit.
9194 For TUs we want to skip the first top level sibling if it's not the
9195 actual type being defined by this TU. In this case the first top
9196 level sibling is there to provide context only. */
9199 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9201 struct die_info *child_die;
9203 prepare_one_comp_unit (cu, die, language_minimal);
9205 /* Initialize (or reinitialize) the machinery for building symtabs.
9206 We do this before processing child DIEs, so that the line header table
9207 is available for DW_AT_decl_file. */
9208 setup_type_unit_groups (die, cu);
9210 if (die->child != NULL)
9212 child_die = die->child;
9213 while (child_die && child_die->tag)
9215 process_die (child_die, cu);
9216 child_die = sibling_die (child_die);
9223 http://gcc.gnu.org/wiki/DebugFission
9224 http://gcc.gnu.org/wiki/DebugFissionDWP
9226 To simplify handling of both DWO files ("object" files with the DWARF info)
9227 and DWP files (a file with the DWOs packaged up into one file), we treat
9228 DWP files as having a collection of virtual DWO files. */
9231 hash_dwo_file (const void *item)
9233 const struct dwo_file *dwo_file = item;
9236 hash = htab_hash_string (dwo_file->dwo_name);
9237 if (dwo_file->comp_dir != NULL)
9238 hash += htab_hash_string (dwo_file->comp_dir);
9243 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9245 const struct dwo_file *lhs = item_lhs;
9246 const struct dwo_file *rhs = item_rhs;
9248 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9250 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9251 return lhs->comp_dir == rhs->comp_dir;
9252 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9255 /* Allocate a hash table for DWO files. */
9258 allocate_dwo_file_hash_table (void)
9260 struct objfile *objfile = dwarf2_per_objfile->objfile;
9262 return htab_create_alloc_ex (41,
9266 &objfile->objfile_obstack,
9267 hashtab_obstack_allocate,
9268 dummy_obstack_deallocate);
9271 /* Lookup DWO file DWO_NAME. */
9274 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9276 struct dwo_file find_entry;
9279 if (dwarf2_per_objfile->dwo_files == NULL)
9280 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9282 memset (&find_entry, 0, sizeof (find_entry));
9283 find_entry.dwo_name = dwo_name;
9284 find_entry.comp_dir = comp_dir;
9285 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9291 hash_dwo_unit (const void *item)
9293 const struct dwo_unit *dwo_unit = item;
9295 /* This drops the top 32 bits of the id, but is ok for a hash. */
9296 return dwo_unit->signature;
9300 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9302 const struct dwo_unit *lhs = item_lhs;
9303 const struct dwo_unit *rhs = item_rhs;
9305 /* The signature is assumed to be unique within the DWO file.
9306 So while object file CU dwo_id's always have the value zero,
9307 that's OK, assuming each object file DWO file has only one CU,
9308 and that's the rule for now. */
9309 return lhs->signature == rhs->signature;
9312 /* Allocate a hash table for DWO CUs,TUs.
9313 There is one of these tables for each of CUs,TUs for each DWO file. */
9316 allocate_dwo_unit_table (struct objfile *objfile)
9318 /* Start out with a pretty small number.
9319 Generally DWO files contain only one CU and maybe some TUs. */
9320 return htab_create_alloc_ex (3,
9324 &objfile->objfile_obstack,
9325 hashtab_obstack_allocate,
9326 dummy_obstack_deallocate);
9329 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9331 struct create_dwo_cu_data
9333 struct dwo_file *dwo_file;
9334 struct dwo_unit dwo_unit;
9337 /* die_reader_func for create_dwo_cu. */
9340 create_dwo_cu_reader (const struct die_reader_specs *reader,
9341 const gdb_byte *info_ptr,
9342 struct die_info *comp_unit_die,
9346 struct dwarf2_cu *cu = reader->cu;
9347 struct objfile *objfile = dwarf2_per_objfile->objfile;
9348 sect_offset offset = cu->per_cu->offset;
9349 struct dwarf2_section_info *section = cu->per_cu->section;
9350 struct create_dwo_cu_data *data = datap;
9351 struct dwo_file *dwo_file = data->dwo_file;
9352 struct dwo_unit *dwo_unit = &data->dwo_unit;
9353 struct attribute *attr;
9355 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9358 complaint (&symfile_complaints,
9359 _("Dwarf Error: debug entry at offset 0x%x is missing"
9360 " its dwo_id [in module %s]"),
9361 offset.sect_off, dwo_file->dwo_name);
9365 dwo_unit->dwo_file = dwo_file;
9366 dwo_unit->signature = DW_UNSND (attr);
9367 dwo_unit->section = section;
9368 dwo_unit->offset = offset;
9369 dwo_unit->length = cu->per_cu->length;
9371 if (dwarf2_read_debug)
9372 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9373 offset.sect_off, hex_string (dwo_unit->signature));
9376 /* Create the dwo_unit for the lone CU in DWO_FILE.
9377 Note: This function processes DWO files only, not DWP files. */
9379 static struct dwo_unit *
9380 create_dwo_cu (struct dwo_file *dwo_file)
9382 struct objfile *objfile = dwarf2_per_objfile->objfile;
9383 struct dwarf2_section_info *section = &dwo_file->sections.info;
9386 const gdb_byte *info_ptr, *end_ptr;
9387 struct create_dwo_cu_data create_dwo_cu_data;
9388 struct dwo_unit *dwo_unit;
9390 dwarf2_read_section (objfile, section);
9391 info_ptr = section->buffer;
9393 if (info_ptr == NULL)
9396 /* We can't set abfd until now because the section may be empty or
9397 not present, in which case section->asection will be NULL. */
9398 abfd = get_section_bfd_owner (section);
9400 if (dwarf2_read_debug)
9402 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9403 get_section_name (section),
9404 get_section_file_name (section));
9407 create_dwo_cu_data.dwo_file = dwo_file;
9410 end_ptr = info_ptr + section->size;
9411 while (info_ptr < end_ptr)
9413 struct dwarf2_per_cu_data per_cu;
9415 memset (&create_dwo_cu_data.dwo_unit, 0,
9416 sizeof (create_dwo_cu_data.dwo_unit));
9417 memset (&per_cu, 0, sizeof (per_cu));
9418 per_cu.objfile = objfile;
9419 per_cu.is_debug_types = 0;
9420 per_cu.offset.sect_off = info_ptr - section->buffer;
9421 per_cu.section = section;
9423 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9424 create_dwo_cu_reader,
9425 &create_dwo_cu_data);
9427 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9429 /* If we've already found one, complain. We only support one
9430 because having more than one requires hacking the dwo_name of
9431 each to match, which is highly unlikely to happen. */
9432 if (dwo_unit != NULL)
9434 complaint (&symfile_complaints,
9435 _("Multiple CUs in DWO file %s [in module %s]"),
9436 dwo_file->dwo_name, objfile_name (objfile));
9440 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9441 *dwo_unit = create_dwo_cu_data.dwo_unit;
9444 info_ptr += per_cu.length;
9450 /* DWP file .debug_{cu,tu}_index section format:
9451 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9455 Both index sections have the same format, and serve to map a 64-bit
9456 signature to a set of section numbers. Each section begins with a header,
9457 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9458 indexes, and a pool of 32-bit section numbers. The index sections will be
9459 aligned at 8-byte boundaries in the file.
9461 The index section header consists of:
9463 V, 32 bit version number
9465 N, 32 bit number of compilation units or type units in the index
9466 M, 32 bit number of slots in the hash table
9468 Numbers are recorded using the byte order of the application binary.
9470 The hash table begins at offset 16 in the section, and consists of an array
9471 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9472 order of the application binary). Unused slots in the hash table are 0.
9473 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9475 The parallel table begins immediately after the hash table
9476 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9477 array of 32-bit indexes (using the byte order of the application binary),
9478 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9479 table contains a 32-bit index into the pool of section numbers. For unused
9480 hash table slots, the corresponding entry in the parallel table will be 0.
9482 The pool of section numbers begins immediately following the hash table
9483 (at offset 16 + 12 * M from the beginning of the section). The pool of
9484 section numbers consists of an array of 32-bit words (using the byte order
9485 of the application binary). Each item in the array is indexed starting
9486 from 0. The hash table entry provides the index of the first section
9487 number in the set. Additional section numbers in the set follow, and the
9488 set is terminated by a 0 entry (section number 0 is not used in ELF).
9490 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9491 section must be the first entry in the set, and the .debug_abbrev.dwo must
9492 be the second entry. Other members of the set may follow in any order.
9498 DWP Version 2 combines all the .debug_info, etc. sections into one,
9499 and the entries in the index tables are now offsets into these sections.
9500 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9503 Index Section Contents:
9505 Hash Table of Signatures dwp_hash_table.hash_table
9506 Parallel Table of Indices dwp_hash_table.unit_table
9507 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9508 Table of Section Sizes dwp_hash_table.v2.sizes
9510 The index section header consists of:
9512 V, 32 bit version number
9513 L, 32 bit number of columns in the table of section offsets
9514 N, 32 bit number of compilation units or type units in the index
9515 M, 32 bit number of slots in the hash table
9517 Numbers are recorded using the byte order of the application binary.
9519 The hash table has the same format as version 1.
9520 The parallel table of indices has the same format as version 1,
9521 except that the entries are origin-1 indices into the table of sections
9522 offsets and the table of section sizes.
9524 The table of offsets begins immediately following the parallel table
9525 (at offset 16 + 12 * M from the beginning of the section). The table is
9526 a two-dimensional array of 32-bit words (using the byte order of the
9527 application binary), with L columns and N+1 rows, in row-major order.
9528 Each row in the array is indexed starting from 0. The first row provides
9529 a key to the remaining rows: each column in this row provides an identifier
9530 for a debug section, and the offsets in the same column of subsequent rows
9531 refer to that section. The section identifiers are:
9533 DW_SECT_INFO 1 .debug_info.dwo
9534 DW_SECT_TYPES 2 .debug_types.dwo
9535 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9536 DW_SECT_LINE 4 .debug_line.dwo
9537 DW_SECT_LOC 5 .debug_loc.dwo
9538 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9539 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9540 DW_SECT_MACRO 8 .debug_macro.dwo
9542 The offsets provided by the CU and TU index sections are the base offsets
9543 for the contributions made by each CU or TU to the corresponding section
9544 in the package file. Each CU and TU header contains an abbrev_offset
9545 field, used to find the abbreviations table for that CU or TU within the
9546 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9547 be interpreted as relative to the base offset given in the index section.
9548 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9549 should be interpreted as relative to the base offset for .debug_line.dwo,
9550 and offsets into other debug sections obtained from DWARF attributes should
9551 also be interpreted as relative to the corresponding base offset.
9553 The table of sizes begins immediately following the table of offsets.
9554 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9555 with L columns and N rows, in row-major order. Each row in the array is
9556 indexed starting from 1 (row 0 is shared by the two tables).
9560 Hash table lookup is handled the same in version 1 and 2:
9562 We assume that N and M will not exceed 2^32 - 1.
9563 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9565 Given a 64-bit compilation unit signature or a type signature S, an entry
9566 in the hash table is located as follows:
9568 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9569 the low-order k bits all set to 1.
9571 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9573 3) If the hash table entry at index H matches the signature, use that
9574 entry. If the hash table entry at index H is unused (all zeroes),
9575 terminate the search: the signature is not present in the table.
9577 4) Let H = (H + H') modulo M. Repeat at Step 3.
9579 Because M > N and H' and M are relatively prime, the search is guaranteed
9580 to stop at an unused slot or find the match. */
9582 /* Create a hash table to map DWO IDs to their CU/TU entry in
9583 .debug_{info,types}.dwo in DWP_FILE.
9584 Returns NULL if there isn't one.
9585 Note: This function processes DWP files only, not DWO files. */
9587 static struct dwp_hash_table *
9588 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9590 struct objfile *objfile = dwarf2_per_objfile->objfile;
9591 bfd *dbfd = dwp_file->dbfd;
9592 const gdb_byte *index_ptr, *index_end;
9593 struct dwarf2_section_info *index;
9594 uint32_t version, nr_columns, nr_units, nr_slots;
9595 struct dwp_hash_table *htab;
9598 index = &dwp_file->sections.tu_index;
9600 index = &dwp_file->sections.cu_index;
9602 if (dwarf2_section_empty_p (index))
9604 dwarf2_read_section (objfile, index);
9606 index_ptr = index->buffer;
9607 index_end = index_ptr + index->size;
9609 version = read_4_bytes (dbfd, index_ptr);
9612 nr_columns = read_4_bytes (dbfd, index_ptr);
9616 nr_units = read_4_bytes (dbfd, index_ptr);
9618 nr_slots = read_4_bytes (dbfd, index_ptr);
9621 if (version != 1 && version != 2)
9623 error (_("Dwarf Error: unsupported DWP file version (%s)"
9625 pulongest (version), dwp_file->name);
9627 if (nr_slots != (nr_slots & -nr_slots))
9629 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9630 " is not power of 2 [in module %s]"),
9631 pulongest (nr_slots), dwp_file->name);
9634 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9635 htab->version = version;
9636 htab->nr_columns = nr_columns;
9637 htab->nr_units = nr_units;
9638 htab->nr_slots = nr_slots;
9639 htab->hash_table = index_ptr;
9640 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9642 /* Exit early if the table is empty. */
9643 if (nr_slots == 0 || nr_units == 0
9644 || (version == 2 && nr_columns == 0))
9646 /* All must be zero. */
9647 if (nr_slots != 0 || nr_units != 0
9648 || (version == 2 && nr_columns != 0))
9650 complaint (&symfile_complaints,
9651 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9652 " all zero [in modules %s]"),
9660 htab->section_pool.v1.indices =
9661 htab->unit_table + sizeof (uint32_t) * nr_slots;
9662 /* It's harder to decide whether the section is too small in v1.
9663 V1 is deprecated anyway so we punt. */
9667 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9668 int *ids = htab->section_pool.v2.section_ids;
9669 /* Reverse map for error checking. */
9670 int ids_seen[DW_SECT_MAX + 1];
9675 error (_("Dwarf Error: bad DWP hash table, too few columns"
9676 " in section table [in module %s]"),
9679 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9681 error (_("Dwarf Error: bad DWP hash table, too many columns"
9682 " in section table [in module %s]"),
9685 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9686 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9687 for (i = 0; i < nr_columns; ++i)
9689 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9691 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9693 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9694 " in section table [in module %s]"),
9695 id, dwp_file->name);
9697 if (ids_seen[id] != -1)
9699 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9700 " id %d in section table [in module %s]"),
9701 id, dwp_file->name);
9706 /* Must have exactly one info or types section. */
9707 if (((ids_seen[DW_SECT_INFO] != -1)
9708 + (ids_seen[DW_SECT_TYPES] != -1))
9711 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9712 " DWO info/types section [in module %s]"),
9715 /* Must have an abbrev section. */
9716 if (ids_seen[DW_SECT_ABBREV] == -1)
9718 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9719 " section [in module %s]"),
9722 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9723 htab->section_pool.v2.sizes =
9724 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9725 * nr_units * nr_columns);
9726 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9727 * nr_units * nr_columns))
9730 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9739 /* Update SECTIONS with the data from SECTP.
9741 This function is like the other "locate" section routines that are
9742 passed to bfd_map_over_sections, but in this context the sections to
9743 read comes from the DWP V1 hash table, not the full ELF section table.
9745 The result is non-zero for success, or zero if an error was found. */
9748 locate_v1_virtual_dwo_sections (asection *sectp,
9749 struct virtual_v1_dwo_sections *sections)
9751 const struct dwop_section_names *names = &dwop_section_names;
9753 if (section_is_p (sectp->name, &names->abbrev_dwo))
9755 /* There can be only one. */
9756 if (sections->abbrev.s.asection != NULL)
9758 sections->abbrev.s.asection = sectp;
9759 sections->abbrev.size = bfd_get_section_size (sectp);
9761 else if (section_is_p (sectp->name, &names->info_dwo)
9762 || section_is_p (sectp->name, &names->types_dwo))
9764 /* There can be only one. */
9765 if (sections->info_or_types.s.asection != NULL)
9767 sections->info_or_types.s.asection = sectp;
9768 sections->info_or_types.size = bfd_get_section_size (sectp);
9770 else if (section_is_p (sectp->name, &names->line_dwo))
9772 /* There can be only one. */
9773 if (sections->line.s.asection != NULL)
9775 sections->line.s.asection = sectp;
9776 sections->line.size = bfd_get_section_size (sectp);
9778 else if (section_is_p (sectp->name, &names->loc_dwo))
9780 /* There can be only one. */
9781 if (sections->loc.s.asection != NULL)
9783 sections->loc.s.asection = sectp;
9784 sections->loc.size = bfd_get_section_size (sectp);
9786 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9788 /* There can be only one. */
9789 if (sections->macinfo.s.asection != NULL)
9791 sections->macinfo.s.asection = sectp;
9792 sections->macinfo.size = bfd_get_section_size (sectp);
9794 else if (section_is_p (sectp->name, &names->macro_dwo))
9796 /* There can be only one. */
9797 if (sections->macro.s.asection != NULL)
9799 sections->macro.s.asection = sectp;
9800 sections->macro.size = bfd_get_section_size (sectp);
9802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9804 /* There can be only one. */
9805 if (sections->str_offsets.s.asection != NULL)
9807 sections->str_offsets.s.asection = sectp;
9808 sections->str_offsets.size = bfd_get_section_size (sectp);
9812 /* No other kind of section is valid. */
9819 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9820 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9821 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9822 This is for DWP version 1 files. */
9824 static struct dwo_unit *
9825 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9826 uint32_t unit_index,
9827 const char *comp_dir,
9828 ULONGEST signature, int is_debug_types)
9830 struct objfile *objfile = dwarf2_per_objfile->objfile;
9831 const struct dwp_hash_table *dwp_htab =
9832 is_debug_types ? dwp_file->tus : dwp_file->cus;
9833 bfd *dbfd = dwp_file->dbfd;
9834 const char *kind = is_debug_types ? "TU" : "CU";
9835 struct dwo_file *dwo_file;
9836 struct dwo_unit *dwo_unit;
9837 struct virtual_v1_dwo_sections sections;
9838 void **dwo_file_slot;
9839 char *virtual_dwo_name;
9840 struct dwarf2_section_info *cutu;
9841 struct cleanup *cleanups;
9844 gdb_assert (dwp_file->version == 1);
9846 if (dwarf2_read_debug)
9848 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9850 pulongest (unit_index), hex_string (signature),
9854 /* Fetch the sections of this DWO unit.
9855 Put a limit on the number of sections we look for so that bad data
9856 doesn't cause us to loop forever. */
9858 #define MAX_NR_V1_DWO_SECTIONS \
9859 (1 /* .debug_info or .debug_types */ \
9860 + 1 /* .debug_abbrev */ \
9861 + 1 /* .debug_line */ \
9862 + 1 /* .debug_loc */ \
9863 + 1 /* .debug_str_offsets */ \
9864 + 1 /* .debug_macro or .debug_macinfo */ \
9865 + 1 /* trailing zero */)
9867 memset (§ions, 0, sizeof (sections));
9868 cleanups = make_cleanup (null_cleanup, 0);
9870 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9873 uint32_t section_nr =
9875 dwp_htab->section_pool.v1.indices
9876 + (unit_index + i) * sizeof (uint32_t));
9878 if (section_nr == 0)
9880 if (section_nr >= dwp_file->num_sections)
9882 error (_("Dwarf Error: bad DWP hash table, section number too large"
9887 sectp = dwp_file->elf_sections[section_nr];
9888 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
9890 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9897 || dwarf2_section_empty_p (§ions.info_or_types)
9898 || dwarf2_section_empty_p (§ions.abbrev))
9900 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9904 if (i == MAX_NR_V1_DWO_SECTIONS)
9906 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9911 /* It's easier for the rest of the code if we fake a struct dwo_file and
9912 have dwo_unit "live" in that. At least for now.
9914 The DWP file can be made up of a random collection of CUs and TUs.
9915 However, for each CU + set of TUs that came from the same original DWO
9916 file, we can combine them back into a virtual DWO file to save space
9917 (fewer struct dwo_file objects to allocate). Remember that for really
9918 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9921 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9922 get_section_id (§ions.abbrev),
9923 get_section_id (§ions.line),
9924 get_section_id (§ions.loc),
9925 get_section_id (§ions.str_offsets));
9926 make_cleanup (xfree, virtual_dwo_name);
9927 /* Can we use an existing virtual DWO file? */
9928 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9929 /* Create one if necessary. */
9930 if (*dwo_file_slot == NULL)
9932 if (dwarf2_read_debug)
9934 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9937 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9938 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9940 strlen (virtual_dwo_name));
9941 dwo_file->comp_dir = comp_dir;
9942 dwo_file->sections.abbrev = sections.abbrev;
9943 dwo_file->sections.line = sections.line;
9944 dwo_file->sections.loc = sections.loc;
9945 dwo_file->sections.macinfo = sections.macinfo;
9946 dwo_file->sections.macro = sections.macro;
9947 dwo_file->sections.str_offsets = sections.str_offsets;
9948 /* The "str" section is global to the entire DWP file. */
9949 dwo_file->sections.str = dwp_file->sections.str;
9950 /* The info or types section is assigned below to dwo_unit,
9951 there's no need to record it in dwo_file.
9952 Also, we can't simply record type sections in dwo_file because
9953 we record a pointer into the vector in dwo_unit. As we collect more
9954 types we'll grow the vector and eventually have to reallocate space
9955 for it, invalidating all copies of pointers into the previous
9957 *dwo_file_slot = dwo_file;
9961 if (dwarf2_read_debug)
9963 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9966 dwo_file = *dwo_file_slot;
9968 do_cleanups (cleanups);
9970 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9971 dwo_unit->dwo_file = dwo_file;
9972 dwo_unit->signature = signature;
9973 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9974 sizeof (struct dwarf2_section_info));
9975 *dwo_unit->section = sections.info_or_types;
9976 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9981 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9982 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9983 piece within that section used by a TU/CU, return a virtual section
9984 of just that piece. */
9986 static struct dwarf2_section_info
9987 create_dwp_v2_section (struct dwarf2_section_info *section,
9988 bfd_size_type offset, bfd_size_type size)
9990 struct dwarf2_section_info result;
9993 gdb_assert (section != NULL);
9994 gdb_assert (!section->is_virtual);
9996 memset (&result, 0, sizeof (result));
9997 result.s.containing_section = section;
9998 result.is_virtual = 1;
10003 sectp = get_section_bfd_section (section);
10005 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10006 bounds of the real section. This is a pretty-rare event, so just
10007 flag an error (easier) instead of a warning and trying to cope. */
10009 || offset + size > bfd_get_section_size (sectp))
10011 bfd *abfd = sectp->owner;
10013 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10014 " in section %s [in module %s]"),
10015 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10016 objfile_name (dwarf2_per_objfile->objfile));
10019 result.virtual_offset = offset;
10020 result.size = size;
10024 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10025 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10026 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10027 This is for DWP version 2 files. */
10029 static struct dwo_unit *
10030 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10031 uint32_t unit_index,
10032 const char *comp_dir,
10033 ULONGEST signature, int is_debug_types)
10035 struct objfile *objfile = dwarf2_per_objfile->objfile;
10036 const struct dwp_hash_table *dwp_htab =
10037 is_debug_types ? dwp_file->tus : dwp_file->cus;
10038 bfd *dbfd = dwp_file->dbfd;
10039 const char *kind = is_debug_types ? "TU" : "CU";
10040 struct dwo_file *dwo_file;
10041 struct dwo_unit *dwo_unit;
10042 struct virtual_v2_dwo_sections sections;
10043 void **dwo_file_slot;
10044 char *virtual_dwo_name;
10045 struct dwarf2_section_info *cutu;
10046 struct cleanup *cleanups;
10049 gdb_assert (dwp_file->version == 2);
10051 if (dwarf2_read_debug)
10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10055 pulongest (unit_index), hex_string (signature),
10059 /* Fetch the section offsets of this DWO unit. */
10061 memset (§ions, 0, sizeof (sections));
10062 cleanups = make_cleanup (null_cleanup, 0);
10064 for (i = 0; i < dwp_htab->nr_columns; ++i)
10066 uint32_t offset = read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v2.offsets
10068 + (((unit_index - 1) * dwp_htab->nr_columns
10070 * sizeof (uint32_t)));
10071 uint32_t size = read_4_bytes (dbfd,
10072 dwp_htab->section_pool.v2.sizes
10073 + (((unit_index - 1) * dwp_htab->nr_columns
10075 * sizeof (uint32_t)));
10077 switch (dwp_htab->section_pool.v2.section_ids[i])
10080 case DW_SECT_TYPES:
10081 sections.info_or_types_offset = offset;
10082 sections.info_or_types_size = size;
10084 case DW_SECT_ABBREV:
10085 sections.abbrev_offset = offset;
10086 sections.abbrev_size = size;
10089 sections.line_offset = offset;
10090 sections.line_size = size;
10093 sections.loc_offset = offset;
10094 sections.loc_size = size;
10096 case DW_SECT_STR_OFFSETS:
10097 sections.str_offsets_offset = offset;
10098 sections.str_offsets_size = size;
10100 case DW_SECT_MACINFO:
10101 sections.macinfo_offset = offset;
10102 sections.macinfo_size = size;
10104 case DW_SECT_MACRO:
10105 sections.macro_offset = offset;
10106 sections.macro_size = size;
10111 /* It's easier for the rest of the code if we fake a struct dwo_file and
10112 have dwo_unit "live" in that. At least for now.
10114 The DWP file can be made up of a random collection of CUs and TUs.
10115 However, for each CU + set of TUs that came from the same original DWO
10116 file, we can combine them back into a virtual DWO file to save space
10117 (fewer struct dwo_file objects to allocate). Remember that for really
10118 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10121 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10122 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10123 (long) (sections.line_size ? sections.line_offset : 0),
10124 (long) (sections.loc_size ? sections.loc_offset : 0),
10125 (long) (sections.str_offsets_size
10126 ? sections.str_offsets_offset : 0));
10127 make_cleanup (xfree, virtual_dwo_name);
10128 /* Can we use an existing virtual DWO file? */
10129 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10130 /* Create one if necessary. */
10131 if (*dwo_file_slot == NULL)
10133 if (dwarf2_read_debug)
10135 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10138 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10139 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10141 strlen (virtual_dwo_name));
10142 dwo_file->comp_dir = comp_dir;
10143 dwo_file->sections.abbrev =
10144 create_dwp_v2_section (&dwp_file->sections.abbrev,
10145 sections.abbrev_offset, sections.abbrev_size);
10146 dwo_file->sections.line =
10147 create_dwp_v2_section (&dwp_file->sections.line,
10148 sections.line_offset, sections.line_size);
10149 dwo_file->sections.loc =
10150 create_dwp_v2_section (&dwp_file->sections.loc,
10151 sections.loc_offset, sections.loc_size);
10152 dwo_file->sections.macinfo =
10153 create_dwp_v2_section (&dwp_file->sections.macinfo,
10154 sections.macinfo_offset, sections.macinfo_size);
10155 dwo_file->sections.macro =
10156 create_dwp_v2_section (&dwp_file->sections.macro,
10157 sections.macro_offset, sections.macro_size);
10158 dwo_file->sections.str_offsets =
10159 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10160 sections.str_offsets_offset,
10161 sections.str_offsets_size);
10162 /* The "str" section is global to the entire DWP file. */
10163 dwo_file->sections.str = dwp_file->sections.str;
10164 /* The info or types section is assigned below to dwo_unit,
10165 there's no need to record it in dwo_file.
10166 Also, we can't simply record type sections in dwo_file because
10167 we record a pointer into the vector in dwo_unit. As we collect more
10168 types we'll grow the vector and eventually have to reallocate space
10169 for it, invalidating all copies of pointers into the previous
10171 *dwo_file_slot = dwo_file;
10175 if (dwarf2_read_debug)
10177 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10180 dwo_file = *dwo_file_slot;
10182 do_cleanups (cleanups);
10184 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10185 dwo_unit->dwo_file = dwo_file;
10186 dwo_unit->signature = signature;
10187 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10188 sizeof (struct dwarf2_section_info));
10189 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10190 ? &dwp_file->sections.types
10191 : &dwp_file->sections.info,
10192 sections.info_or_types_offset,
10193 sections.info_or_types_size);
10194 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10199 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10200 Returns NULL if the signature isn't found. */
10202 static struct dwo_unit *
10203 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10204 ULONGEST signature, int is_debug_types)
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 uint32_t mask = dwp_htab->nr_slots - 1;
10210 uint32_t hash = signature & mask;
10211 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10214 struct dwo_unit find_dwo_cu, *dwo_cu;
10216 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10217 find_dwo_cu.signature = signature;
10218 slot = htab_find_slot (is_debug_types
10219 ? dwp_file->loaded_tus
10220 : dwp_file->loaded_cus,
10221 &find_dwo_cu, INSERT);
10226 /* Use a for loop so that we don't loop forever on bad debug info. */
10227 for (i = 0; i < dwp_htab->nr_slots; ++i)
10229 ULONGEST signature_in_table;
10231 signature_in_table =
10232 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10233 if (signature_in_table == signature)
10235 uint32_t unit_index =
10236 read_4_bytes (dbfd,
10237 dwp_htab->unit_table + hash * sizeof (uint32_t));
10239 if (dwp_file->version == 1)
10241 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10242 comp_dir, signature,
10247 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10248 comp_dir, signature,
10253 if (signature_in_table == 0)
10255 hash = (hash + hash2) & mask;
10258 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10259 " [in module %s]"),
10263 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10264 Open the file specified by FILE_NAME and hand it off to BFD for
10265 preliminary analysis. Return a newly initialized bfd *, which
10266 includes a canonicalized copy of FILE_NAME.
10267 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10268 SEARCH_CWD is true if the current directory is to be searched.
10269 It will be searched before debug-file-directory.
10270 If successful, the file is added to the bfd include table of the
10271 objfile's bfd (see gdb_bfd_record_inclusion).
10272 If unable to find/open the file, return NULL.
10273 NOTE: This function is derived from symfile_bfd_open. */
10276 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10280 char *absolute_name;
10281 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10282 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10283 to debug_file_directory. */
10285 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10289 if (*debug_file_directory != '\0')
10290 search_path = concat (".", dirname_separator_string,
10291 debug_file_directory, NULL);
10293 search_path = xstrdup (".");
10296 search_path = xstrdup (debug_file_directory);
10298 flags = OPF_RETURN_REALPATH;
10300 flags |= OPF_SEARCH_IN_PATH;
10301 desc = openp (search_path, flags, file_name,
10302 O_RDONLY | O_BINARY, &absolute_name);
10303 xfree (search_path);
10307 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10308 xfree (absolute_name);
10309 if (sym_bfd == NULL)
10311 bfd_set_cacheable (sym_bfd, 1);
10313 if (!bfd_check_format (sym_bfd, bfd_object))
10315 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10319 /* Success. Record the bfd as having been included by the objfile's bfd.
10320 This is important because things like demangled_names_hash lives in the
10321 objfile's per_bfd space and may have references to things like symbol
10322 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10323 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10328 /* Try to open DWO file FILE_NAME.
10329 COMP_DIR is the DW_AT_comp_dir attribute.
10330 The result is the bfd handle of the file.
10331 If there is a problem finding or opening the file, return NULL.
10332 Upon success, the canonicalized path of the file is stored in the bfd,
10333 same as symfile_bfd_open. */
10336 open_dwo_file (const char *file_name, const char *comp_dir)
10340 if (IS_ABSOLUTE_PATH (file_name))
10341 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10343 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10345 if (comp_dir != NULL)
10347 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10349 /* NOTE: If comp_dir is a relative path, this will also try the
10350 search path, which seems useful. */
10351 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10352 xfree (path_to_try);
10357 /* That didn't work, try debug-file-directory, which, despite its name,
10358 is a list of paths. */
10360 if (*debug_file_directory == '\0')
10363 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10366 /* This function is mapped across the sections and remembers the offset and
10367 size of each of the DWO debugging sections we are interested in. */
10370 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10372 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10373 const struct dwop_section_names *names = &dwop_section_names;
10375 if (section_is_p (sectp->name, &names->abbrev_dwo))
10377 dwo_sections->abbrev.s.asection = sectp;
10378 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10380 else if (section_is_p (sectp->name, &names->info_dwo))
10382 dwo_sections->info.s.asection = sectp;
10383 dwo_sections->info.size = bfd_get_section_size (sectp);
10385 else if (section_is_p (sectp->name, &names->line_dwo))
10387 dwo_sections->line.s.asection = sectp;
10388 dwo_sections->line.size = bfd_get_section_size (sectp);
10390 else if (section_is_p (sectp->name, &names->loc_dwo))
10392 dwo_sections->loc.s.asection = sectp;
10393 dwo_sections->loc.size = bfd_get_section_size (sectp);
10395 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10397 dwo_sections->macinfo.s.asection = sectp;
10398 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10400 else if (section_is_p (sectp->name, &names->macro_dwo))
10402 dwo_sections->macro.s.asection = sectp;
10403 dwo_sections->macro.size = bfd_get_section_size (sectp);
10405 else if (section_is_p (sectp->name, &names->str_dwo))
10407 dwo_sections->str.s.asection = sectp;
10408 dwo_sections->str.size = bfd_get_section_size (sectp);
10410 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10412 dwo_sections->str_offsets.s.asection = sectp;
10413 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10415 else if (section_is_p (sectp->name, &names->types_dwo))
10417 struct dwarf2_section_info type_section;
10419 memset (&type_section, 0, sizeof (type_section));
10420 type_section.s.asection = sectp;
10421 type_section.size = bfd_get_section_size (sectp);
10422 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10427 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10428 by PER_CU. This is for the non-DWP case.
10429 The result is NULL if DWO_NAME can't be found. */
10431 static struct dwo_file *
10432 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10433 const char *dwo_name, const char *comp_dir)
10435 struct objfile *objfile = dwarf2_per_objfile->objfile;
10436 struct dwo_file *dwo_file;
10438 struct cleanup *cleanups;
10440 dbfd = open_dwo_file (dwo_name, comp_dir);
10443 if (dwarf2_read_debug)
10444 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10447 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10448 dwo_file->dwo_name = dwo_name;
10449 dwo_file->comp_dir = comp_dir;
10450 dwo_file->dbfd = dbfd;
10452 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10454 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10456 dwo_file->cu = create_dwo_cu (dwo_file);
10458 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10459 dwo_file->sections.types);
10461 discard_cleanups (cleanups);
10463 if (dwarf2_read_debug)
10464 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10469 /* This function is mapped across the sections and remembers the offset and
10470 size of each of the DWP debugging sections common to version 1 and 2 that
10471 we are interested in. */
10474 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10475 void *dwp_file_ptr)
10477 struct dwp_file *dwp_file = dwp_file_ptr;
10478 const struct dwop_section_names *names = &dwop_section_names;
10479 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10481 /* Record the ELF section number for later lookup: this is what the
10482 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10483 gdb_assert (elf_section_nr < dwp_file->num_sections);
10484 dwp_file->elf_sections[elf_section_nr] = sectp;
10486 /* Look for specific sections that we need. */
10487 if (section_is_p (sectp->name, &names->str_dwo))
10489 dwp_file->sections.str.s.asection = sectp;
10490 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10492 else if (section_is_p (sectp->name, &names->cu_index))
10494 dwp_file->sections.cu_index.s.asection = sectp;
10495 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10497 else if (section_is_p (sectp->name, &names->tu_index))
10499 dwp_file->sections.tu_index.s.asection = sectp;
10500 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10504 /* This function is mapped across the sections and remembers the offset and
10505 size of each of the DWP version 2 debugging sections that we are interested
10506 in. This is split into a separate function because we don't know if we
10507 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10510 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10512 struct dwp_file *dwp_file = dwp_file_ptr;
10513 const struct dwop_section_names *names = &dwop_section_names;
10514 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10516 /* Record the ELF section number for later lookup: this is what the
10517 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10518 gdb_assert (elf_section_nr < dwp_file->num_sections);
10519 dwp_file->elf_sections[elf_section_nr] = sectp;
10521 /* Look for specific sections that we need. */
10522 if (section_is_p (sectp->name, &names->abbrev_dwo))
10524 dwp_file->sections.abbrev.s.asection = sectp;
10525 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10527 else if (section_is_p (sectp->name, &names->info_dwo))
10529 dwp_file->sections.info.s.asection = sectp;
10530 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10532 else if (section_is_p (sectp->name, &names->line_dwo))
10534 dwp_file->sections.line.s.asection = sectp;
10535 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10537 else if (section_is_p (sectp->name, &names->loc_dwo))
10539 dwp_file->sections.loc.s.asection = sectp;
10540 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10542 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10544 dwp_file->sections.macinfo.s.asection = sectp;
10545 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10547 else if (section_is_p (sectp->name, &names->macro_dwo))
10549 dwp_file->sections.macro.s.asection = sectp;
10550 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10552 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10554 dwp_file->sections.str_offsets.s.asection = sectp;
10555 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10557 else if (section_is_p (sectp->name, &names->types_dwo))
10559 dwp_file->sections.types.s.asection = sectp;
10560 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10564 /* Hash function for dwp_file loaded CUs/TUs. */
10567 hash_dwp_loaded_cutus (const void *item)
10569 const struct dwo_unit *dwo_unit = item;
10571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10572 return dwo_unit->signature;
10575 /* Equality function for dwp_file loaded CUs/TUs. */
10578 eq_dwp_loaded_cutus (const void *a, const void *b)
10580 const struct dwo_unit *dua = a;
10581 const struct dwo_unit *dub = b;
10583 return dua->signature == dub->signature;
10586 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10589 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10591 return htab_create_alloc_ex (3,
10592 hash_dwp_loaded_cutus,
10593 eq_dwp_loaded_cutus,
10595 &objfile->objfile_obstack,
10596 hashtab_obstack_allocate,
10597 dummy_obstack_deallocate);
10600 /* Try to open DWP file FILE_NAME.
10601 The result is the bfd handle of the file.
10602 If there is a problem finding or opening the file, return NULL.
10603 Upon success, the canonicalized path of the file is stored in the bfd,
10604 same as symfile_bfd_open. */
10607 open_dwp_file (const char *file_name)
10611 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10615 /* Work around upstream bug 15652.
10616 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10617 [Whether that's a "bug" is debatable, but it is getting in our way.]
10618 We have no real idea where the dwp file is, because gdb's realpath-ing
10619 of the executable's path may have discarded the needed info.
10620 [IWBN if the dwp file name was recorded in the executable, akin to
10621 .gnu_debuglink, but that doesn't exist yet.]
10622 Strip the directory from FILE_NAME and search again. */
10623 if (*debug_file_directory != '\0')
10625 /* Don't implicitly search the current directory here.
10626 If the user wants to search "." to handle this case,
10627 it must be added to debug-file-directory. */
10628 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10635 /* Initialize the use of the DWP file for the current objfile.
10636 By convention the name of the DWP file is ${objfile}.dwp.
10637 The result is NULL if it can't be found. */
10639 static struct dwp_file *
10640 open_and_init_dwp_file (void)
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
10643 struct dwp_file *dwp_file;
10646 struct cleanup *cleanups;
10648 /* Try to find first .dwp for the binary file before any symbolic links
10650 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10651 cleanups = make_cleanup (xfree, dwp_name);
10653 dbfd = open_dwp_file (dwp_name);
10655 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10657 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10658 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10659 make_cleanup (xfree, dwp_name);
10660 dbfd = open_dwp_file (dwp_name);
10665 if (dwarf2_read_debug)
10666 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10667 do_cleanups (cleanups);
10670 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10671 dwp_file->name = bfd_get_filename (dbfd);
10672 dwp_file->dbfd = dbfd;
10673 do_cleanups (cleanups);
10675 /* +1: section 0 is unused */
10676 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10677 dwp_file->elf_sections =
10678 OBSTACK_CALLOC (&objfile->objfile_obstack,
10679 dwp_file->num_sections, asection *);
10681 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10683 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10685 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10687 /* The DWP file version is stored in the hash table. Oh well. */
10688 if (dwp_file->cus->version != dwp_file->tus->version)
10690 /* Technically speaking, we should try to limp along, but this is
10691 pretty bizarre. We use pulongest here because that's the established
10692 portability solution (e.g, we cannot use %u for uint32_t). */
10693 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10694 " TU version %s [in DWP file %s]"),
10695 pulongest (dwp_file->cus->version),
10696 pulongest (dwp_file->tus->version), dwp_name);
10698 dwp_file->version = dwp_file->cus->version;
10700 if (dwp_file->version == 2)
10701 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10703 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10704 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10706 if (dwarf2_read_debug)
10708 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10709 fprintf_unfiltered (gdb_stdlog,
10710 " %s CUs, %s TUs\n",
10711 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10712 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10718 /* Wrapper around open_and_init_dwp_file, only open it once. */
10720 static struct dwp_file *
10721 get_dwp_file (void)
10723 if (! dwarf2_per_objfile->dwp_checked)
10725 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10726 dwarf2_per_objfile->dwp_checked = 1;
10728 return dwarf2_per_objfile->dwp_file;
10731 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10732 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10733 or in the DWP file for the objfile, referenced by THIS_UNIT.
10734 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10735 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10737 This is called, for example, when wanting to read a variable with a
10738 complex location. Therefore we don't want to do file i/o for every call.
10739 Therefore we don't want to look for a DWO file on every call.
10740 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10741 then we check if we've already seen DWO_NAME, and only THEN do we check
10744 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10745 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10747 static struct dwo_unit *
10748 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10749 const char *dwo_name, const char *comp_dir,
10750 ULONGEST signature, int is_debug_types)
10752 struct objfile *objfile = dwarf2_per_objfile->objfile;
10753 const char *kind = is_debug_types ? "TU" : "CU";
10754 void **dwo_file_slot;
10755 struct dwo_file *dwo_file;
10756 struct dwp_file *dwp_file;
10758 /* First see if there's a DWP file.
10759 If we have a DWP file but didn't find the DWO inside it, don't
10760 look for the original DWO file. It makes gdb behave differently
10761 depending on whether one is debugging in the build tree. */
10763 dwp_file = get_dwp_file ();
10764 if (dwp_file != NULL)
10766 const struct dwp_hash_table *dwp_htab =
10767 is_debug_types ? dwp_file->tus : dwp_file->cus;
10769 if (dwp_htab != NULL)
10771 struct dwo_unit *dwo_cutu =
10772 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10773 signature, is_debug_types);
10775 if (dwo_cutu != NULL)
10777 if (dwarf2_read_debug)
10779 fprintf_unfiltered (gdb_stdlog,
10780 "Virtual DWO %s %s found: @%s\n",
10781 kind, hex_string (signature),
10782 host_address_to_string (dwo_cutu));
10790 /* No DWP file, look for the DWO file. */
10792 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10793 if (*dwo_file_slot == NULL)
10795 /* Read in the file and build a table of the CUs/TUs it contains. */
10796 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10798 /* NOTE: This will be NULL if unable to open the file. */
10799 dwo_file = *dwo_file_slot;
10801 if (dwo_file != NULL)
10803 struct dwo_unit *dwo_cutu = NULL;
10805 if (is_debug_types && dwo_file->tus)
10807 struct dwo_unit find_dwo_cutu;
10809 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10810 find_dwo_cutu.signature = signature;
10811 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10813 else if (!is_debug_types && dwo_file->cu)
10815 if (signature == dwo_file->cu->signature)
10816 dwo_cutu = dwo_file->cu;
10819 if (dwo_cutu != NULL)
10821 if (dwarf2_read_debug)
10823 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10824 kind, dwo_name, hex_string (signature),
10825 host_address_to_string (dwo_cutu));
10832 /* We didn't find it. This could mean a dwo_id mismatch, or
10833 someone deleted the DWO/DWP file, or the search path isn't set up
10834 correctly to find the file. */
10836 if (dwarf2_read_debug)
10838 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10839 kind, dwo_name, hex_string (signature));
10842 /* This is a warning and not a complaint because it can be caused by
10843 pilot error (e.g., user accidentally deleting the DWO). */
10845 /* Print the name of the DWP file if we looked there, helps the user
10846 better diagnose the problem. */
10847 char *dwp_text = NULL;
10848 struct cleanup *cleanups;
10850 if (dwp_file != NULL)
10851 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10852 cleanups = make_cleanup (xfree, dwp_text);
10854 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10855 " [in module %s]"),
10856 kind, dwo_name, hex_string (signature),
10857 dwp_text != NULL ? dwp_text : "",
10858 this_unit->is_debug_types ? "TU" : "CU",
10859 this_unit->offset.sect_off, objfile_name (objfile));
10861 do_cleanups (cleanups);
10866 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10867 See lookup_dwo_cutu_unit for details. */
10869 static struct dwo_unit *
10870 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10871 const char *dwo_name, const char *comp_dir,
10872 ULONGEST signature)
10874 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10877 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10878 See lookup_dwo_cutu_unit for details. */
10880 static struct dwo_unit *
10881 lookup_dwo_type_unit (struct signatured_type *this_tu,
10882 const char *dwo_name, const char *comp_dir)
10884 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10887 /* Traversal function for queue_and_load_all_dwo_tus. */
10890 queue_and_load_dwo_tu (void **slot, void *info)
10892 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10893 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10894 ULONGEST signature = dwo_unit->signature;
10895 struct signatured_type *sig_type =
10896 lookup_dwo_signatured_type (per_cu->cu, signature);
10898 if (sig_type != NULL)
10900 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10902 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10903 a real dependency of PER_CU on SIG_TYPE. That is detected later
10904 while processing PER_CU. */
10905 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10906 load_full_type_unit (sig_cu);
10907 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10913 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10914 The DWO may have the only definition of the type, though it may not be
10915 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10916 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10919 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10921 struct dwo_unit *dwo_unit;
10922 struct dwo_file *dwo_file;
10924 gdb_assert (!per_cu->is_debug_types);
10925 gdb_assert (get_dwp_file () == NULL);
10926 gdb_assert (per_cu->cu != NULL);
10928 dwo_unit = per_cu->cu->dwo_unit;
10929 gdb_assert (dwo_unit != NULL);
10931 dwo_file = dwo_unit->dwo_file;
10932 if (dwo_file->tus != NULL)
10933 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10936 /* Free all resources associated with DWO_FILE.
10937 Close the DWO file and munmap the sections.
10938 All memory should be on the objfile obstack. */
10941 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10944 struct dwarf2_section_info *section;
10946 /* Note: dbfd is NULL for virtual DWO files. */
10947 gdb_bfd_unref (dwo_file->dbfd);
10949 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10952 /* Wrapper for free_dwo_file for use in cleanups. */
10955 free_dwo_file_cleanup (void *arg)
10957 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10958 struct objfile *objfile = dwarf2_per_objfile->objfile;
10960 free_dwo_file (dwo_file, objfile);
10963 /* Traversal function for free_dwo_files. */
10966 free_dwo_file_from_slot (void **slot, void *info)
10968 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10969 struct objfile *objfile = (struct objfile *) info;
10971 free_dwo_file (dwo_file, objfile);
10976 /* Free all resources associated with DWO_FILES. */
10979 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10981 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10984 /* Read in various DIEs. */
10986 /* qsort helper for inherit_abstract_dies. */
10989 unsigned_int_compar (const void *ap, const void *bp)
10991 unsigned int a = *(unsigned int *) ap;
10992 unsigned int b = *(unsigned int *) bp;
10994 return (a > b) - (b > a);
10997 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10998 Inherit only the children of the DW_AT_abstract_origin DIE not being
10999 already referenced by DW_AT_abstract_origin from the children of the
11003 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11005 struct die_info *child_die;
11006 unsigned die_children_count;
11007 /* CU offsets which were referenced by children of the current DIE. */
11008 sect_offset *offsets;
11009 sect_offset *offsets_end, *offsetp;
11010 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11011 struct die_info *origin_die;
11012 /* Iterator of the ORIGIN_DIE children. */
11013 struct die_info *origin_child_die;
11014 struct cleanup *cleanups;
11015 struct attribute *attr;
11016 struct dwarf2_cu *origin_cu;
11017 struct pending **origin_previous_list_in_scope;
11019 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11023 /* Note that following die references may follow to a die in a
11027 origin_die = follow_die_ref (die, attr, &origin_cu);
11029 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11031 origin_previous_list_in_scope = origin_cu->list_in_scope;
11032 origin_cu->list_in_scope = cu->list_in_scope;
11034 if (die->tag != origin_die->tag
11035 && !(die->tag == DW_TAG_inlined_subroutine
11036 && origin_die->tag == DW_TAG_subprogram))
11037 complaint (&symfile_complaints,
11038 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11039 die->offset.sect_off, origin_die->offset.sect_off);
11041 child_die = die->child;
11042 die_children_count = 0;
11043 while (child_die && child_die->tag)
11045 child_die = sibling_die (child_die);
11046 die_children_count++;
11048 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11049 cleanups = make_cleanup (xfree, offsets);
11051 offsets_end = offsets;
11052 child_die = die->child;
11053 while (child_die && child_die->tag)
11055 /* For each CHILD_DIE, find the corresponding child of
11056 ORIGIN_DIE. If there is more than one layer of
11057 DW_AT_abstract_origin, follow them all; there shouldn't be,
11058 but GCC versions at least through 4.4 generate this (GCC PR
11060 struct die_info *child_origin_die = child_die;
11061 struct dwarf2_cu *child_origin_cu = cu;
11065 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11069 child_origin_die = follow_die_ref (child_origin_die, attr,
11073 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11074 counterpart may exist. */
11075 if (child_origin_die != child_die)
11077 if (child_die->tag != child_origin_die->tag
11078 && !(child_die->tag == DW_TAG_inlined_subroutine
11079 && child_origin_die->tag == DW_TAG_subprogram))
11080 complaint (&symfile_complaints,
11081 _("Child DIE 0x%x and its abstract origin 0x%x have "
11082 "different tags"), child_die->offset.sect_off,
11083 child_origin_die->offset.sect_off);
11084 if (child_origin_die->parent != origin_die)
11085 complaint (&symfile_complaints,
11086 _("Child DIE 0x%x and its abstract origin 0x%x have "
11087 "different parents"), child_die->offset.sect_off,
11088 child_origin_die->offset.sect_off);
11090 *offsets_end++ = child_origin_die->offset;
11092 child_die = sibling_die (child_die);
11094 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11095 unsigned_int_compar);
11096 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11097 if (offsetp[-1].sect_off == offsetp->sect_off)
11098 complaint (&symfile_complaints,
11099 _("Multiple children of DIE 0x%x refer "
11100 "to DIE 0x%x as their abstract origin"),
11101 die->offset.sect_off, offsetp->sect_off);
11104 origin_child_die = origin_die->child;
11105 while (origin_child_die && origin_child_die->tag)
11107 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11108 while (offsetp < offsets_end
11109 && offsetp->sect_off < origin_child_die->offset.sect_off)
11111 if (offsetp >= offsets_end
11112 || offsetp->sect_off > origin_child_die->offset.sect_off)
11114 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11115 Check whether we're already processing ORIGIN_CHILD_DIE.
11116 This can happen with mutually referenced abstract_origins.
11118 if (!origin_child_die->in_process)
11119 process_die (origin_child_die, origin_cu);
11121 origin_child_die = sibling_die (origin_child_die);
11123 origin_cu->list_in_scope = origin_previous_list_in_scope;
11125 do_cleanups (cleanups);
11129 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11131 struct objfile *objfile = cu->objfile;
11132 struct context_stack *new;
11135 struct die_info *child_die;
11136 struct attribute *attr, *call_line, *call_file;
11138 CORE_ADDR baseaddr;
11139 struct block *block;
11140 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11141 VEC (symbolp) *template_args = NULL;
11142 struct template_symbol *templ_func = NULL;
11146 /* If we do not have call site information, we can't show the
11147 caller of this inlined function. That's too confusing, so
11148 only use the scope for local variables. */
11149 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11150 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11151 if (call_line == NULL || call_file == NULL)
11153 read_lexical_block_scope (die, cu);
11158 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11160 name = dwarf2_name (die, cu);
11162 /* Ignore functions with missing or empty names. These are actually
11163 illegal according to the DWARF standard. */
11166 complaint (&symfile_complaints,
11167 _("missing name for subprogram DIE at %d"),
11168 die->offset.sect_off);
11172 /* Ignore functions with missing or invalid low and high pc attributes. */
11173 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11175 attr = dwarf2_attr (die, DW_AT_external, cu);
11176 if (!attr || !DW_UNSND (attr))
11177 complaint (&symfile_complaints,
11178 _("cannot get low and high bounds "
11179 "for subprogram DIE at %d"),
11180 die->offset.sect_off);
11185 highpc += baseaddr;
11187 /* If we have any template arguments, then we must allocate a
11188 different sort of symbol. */
11189 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11191 if (child_die->tag == DW_TAG_template_type_param
11192 || child_die->tag == DW_TAG_template_value_param)
11194 templ_func = allocate_template_symbol (objfile);
11195 templ_func->base.is_cplus_template_function = 1;
11200 new = push_context (0, lowpc);
11201 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11202 (struct symbol *) templ_func);
11204 /* If there is a location expression for DW_AT_frame_base, record
11206 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11208 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11210 cu->list_in_scope = &local_symbols;
11212 if (die->child != NULL)
11214 child_die = die->child;
11215 while (child_die && child_die->tag)
11217 if (child_die->tag == DW_TAG_template_type_param
11218 || child_die->tag == DW_TAG_template_value_param)
11220 struct symbol *arg = new_symbol (child_die, NULL, cu);
11223 VEC_safe_push (symbolp, template_args, arg);
11226 process_die (child_die, cu);
11227 child_die = sibling_die (child_die);
11231 inherit_abstract_dies (die, cu);
11233 /* If we have a DW_AT_specification, we might need to import using
11234 directives from the context of the specification DIE. See the
11235 comment in determine_prefix. */
11236 if (cu->language == language_cplus
11237 && dwarf2_attr (die, DW_AT_specification, cu))
11239 struct dwarf2_cu *spec_cu = cu;
11240 struct die_info *spec_die = die_specification (die, &spec_cu);
11244 child_die = spec_die->child;
11245 while (child_die && child_die->tag)
11247 if (child_die->tag == DW_TAG_imported_module)
11248 process_die (child_die, spec_cu);
11249 child_die = sibling_die (child_die);
11252 /* In some cases, GCC generates specification DIEs that
11253 themselves contain DW_AT_specification attributes. */
11254 spec_die = die_specification (spec_die, &spec_cu);
11258 new = pop_context ();
11259 /* Make a block for the local symbols within. */
11260 block = finish_block (new->name, &local_symbols, new->old_blocks,
11261 lowpc, highpc, objfile);
11263 /* For C++, set the block's scope. */
11264 if ((cu->language == language_cplus || cu->language == language_fortran)
11265 && cu->processing_has_namespace_info)
11266 block_set_scope (block, determine_prefix (die, cu),
11267 &objfile->objfile_obstack);
11269 /* If we have address ranges, record them. */
11270 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11272 /* Attach template arguments to function. */
11273 if (! VEC_empty (symbolp, template_args))
11275 gdb_assert (templ_func != NULL);
11277 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11278 templ_func->template_arguments
11279 = obstack_alloc (&objfile->objfile_obstack,
11280 (templ_func->n_template_arguments
11281 * sizeof (struct symbol *)));
11282 memcpy (templ_func->template_arguments,
11283 VEC_address (symbolp, template_args),
11284 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11285 VEC_free (symbolp, template_args);
11288 /* In C++, we can have functions nested inside functions (e.g., when
11289 a function declares a class that has methods). This means that
11290 when we finish processing a function scope, we may need to go
11291 back to building a containing block's symbol lists. */
11292 local_symbols = new->locals;
11293 using_directives = new->using_directives;
11295 /* If we've finished processing a top-level function, subsequent
11296 symbols go in the file symbol list. */
11297 if (outermost_context_p ())
11298 cu->list_in_scope = &file_symbols;
11301 /* Process all the DIES contained within a lexical block scope. Start
11302 a new scope, process the dies, and then close the scope. */
11305 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11307 struct objfile *objfile = cu->objfile;
11308 struct context_stack *new;
11309 CORE_ADDR lowpc, highpc;
11310 struct die_info *child_die;
11311 CORE_ADDR baseaddr;
11313 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11315 /* Ignore blocks with missing or invalid low and high pc attributes. */
11316 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11317 as multiple lexical blocks? Handling children in a sane way would
11318 be nasty. Might be easier to properly extend generic blocks to
11319 describe ranges. */
11320 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11323 highpc += baseaddr;
11325 push_context (0, lowpc);
11326 if (die->child != NULL)
11328 child_die = die->child;
11329 while (child_die && child_die->tag)
11331 process_die (child_die, cu);
11332 child_die = sibling_die (child_die);
11335 new = pop_context ();
11337 if (local_symbols != NULL || using_directives != NULL)
11339 struct block *block
11340 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11343 /* Note that recording ranges after traversing children, as we
11344 do here, means that recording a parent's ranges entails
11345 walking across all its children's ranges as they appear in
11346 the address map, which is quadratic behavior.
11348 It would be nicer to record the parent's ranges before
11349 traversing its children, simply overriding whatever you find
11350 there. But since we don't even decide whether to create a
11351 block until after we've traversed its children, that's hard
11353 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11355 local_symbols = new->locals;
11356 using_directives = new->using_directives;
11359 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11362 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11364 struct objfile *objfile = cu->objfile;
11365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11366 CORE_ADDR pc, baseaddr;
11367 struct attribute *attr;
11368 struct call_site *call_site, call_site_local;
11371 struct die_info *child_die;
11373 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11375 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11378 complaint (&symfile_complaints,
11379 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11380 "DIE 0x%x [in module %s]"),
11381 die->offset.sect_off, objfile_name (objfile));
11384 pc = attr_value_as_address (attr) + baseaddr;
11386 if (cu->call_site_htab == NULL)
11387 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11388 NULL, &objfile->objfile_obstack,
11389 hashtab_obstack_allocate, NULL);
11390 call_site_local.pc = pc;
11391 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11394 complaint (&symfile_complaints,
11395 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11396 "DIE 0x%x [in module %s]"),
11397 paddress (gdbarch, pc), die->offset.sect_off,
11398 objfile_name (objfile));
11402 /* Count parameters at the caller. */
11405 for (child_die = die->child; child_die && child_die->tag;
11406 child_die = sibling_die (child_die))
11408 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11410 complaint (&symfile_complaints,
11411 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11412 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11413 child_die->tag, child_die->offset.sect_off,
11414 objfile_name (objfile));
11421 call_site = obstack_alloc (&objfile->objfile_obstack,
11422 (sizeof (*call_site)
11423 + (sizeof (*call_site->parameter)
11424 * (nparams - 1))));
11426 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11427 call_site->pc = pc;
11429 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11431 struct die_info *func_die;
11433 /* Skip also over DW_TAG_inlined_subroutine. */
11434 for (func_die = die->parent;
11435 func_die && func_die->tag != DW_TAG_subprogram
11436 && func_die->tag != DW_TAG_subroutine_type;
11437 func_die = func_die->parent);
11439 /* DW_AT_GNU_all_call_sites is a superset
11440 of DW_AT_GNU_all_tail_call_sites. */
11442 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11443 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11445 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11446 not complete. But keep CALL_SITE for look ups via call_site_htab,
11447 both the initial caller containing the real return address PC and
11448 the final callee containing the current PC of a chain of tail
11449 calls do not need to have the tail call list complete. But any
11450 function candidate for a virtual tail call frame searched via
11451 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11452 determined unambiguously. */
11456 struct type *func_type = NULL;
11459 func_type = get_die_type (func_die, cu);
11460 if (func_type != NULL)
11462 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11464 /* Enlist this call site to the function. */
11465 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11466 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11469 complaint (&symfile_complaints,
11470 _("Cannot find function owning DW_TAG_GNU_call_site "
11471 "DIE 0x%x [in module %s]"),
11472 die->offset.sect_off, objfile_name (objfile));
11476 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11478 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11479 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11480 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11481 /* Keep NULL DWARF_BLOCK. */;
11482 else if (attr_form_is_block (attr))
11484 struct dwarf2_locexpr_baton *dlbaton;
11486 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11487 dlbaton->data = DW_BLOCK (attr)->data;
11488 dlbaton->size = DW_BLOCK (attr)->size;
11489 dlbaton->per_cu = cu->per_cu;
11491 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11493 else if (attr_form_is_ref (attr))
11495 struct dwarf2_cu *target_cu = cu;
11496 struct die_info *target_die;
11498 target_die = follow_die_ref (die, attr, &target_cu);
11499 gdb_assert (target_cu->objfile == objfile);
11500 if (die_is_declaration (target_die, target_cu))
11502 const char *target_physname = NULL;
11503 struct attribute *target_attr;
11505 /* Prefer the mangled name; otherwise compute the demangled one. */
11506 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11507 if (target_attr == NULL)
11508 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11510 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11511 target_physname = DW_STRING (target_attr);
11513 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11514 if (target_physname == NULL)
11515 complaint (&symfile_complaints,
11516 _("DW_AT_GNU_call_site_target target DIE has invalid "
11517 "physname, for referencing DIE 0x%x [in module %s]"),
11518 die->offset.sect_off, objfile_name (objfile));
11520 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11526 /* DW_AT_entry_pc should be preferred. */
11527 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11528 complaint (&symfile_complaints,
11529 _("DW_AT_GNU_call_site_target target DIE has invalid "
11530 "low pc, for referencing DIE 0x%x [in module %s]"),
11531 die->offset.sect_off, objfile_name (objfile));
11533 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11537 complaint (&symfile_complaints,
11538 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11539 "block nor reference, for DIE 0x%x [in module %s]"),
11540 die->offset.sect_off, objfile_name (objfile));
11542 call_site->per_cu = cu->per_cu;
11544 for (child_die = die->child;
11545 child_die && child_die->tag;
11546 child_die = sibling_die (child_die))
11548 struct call_site_parameter *parameter;
11549 struct attribute *loc, *origin;
11551 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11553 /* Already printed the complaint above. */
11557 gdb_assert (call_site->parameter_count < nparams);
11558 parameter = &call_site->parameter[call_site->parameter_count];
11560 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11561 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11562 register is contained in DW_AT_GNU_call_site_value. */
11564 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11565 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11566 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11568 sect_offset offset;
11570 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11571 offset = dwarf2_get_ref_die_offset (origin);
11572 if (!offset_in_cu_p (&cu->header, offset))
11574 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11575 binding can be done only inside one CU. Such referenced DIE
11576 therefore cannot be even moved to DW_TAG_partial_unit. */
11577 complaint (&symfile_complaints,
11578 _("DW_AT_abstract_origin offset is not in CU for "
11579 "DW_TAG_GNU_call_site child DIE 0x%x "
11581 child_die->offset.sect_off, objfile_name (objfile));
11584 parameter->u.param_offset.cu_off = (offset.sect_off
11585 - cu->header.offset.sect_off);
11587 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11589 complaint (&symfile_complaints,
11590 _("No DW_FORM_block* DW_AT_location for "
11591 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11592 child_die->offset.sect_off, objfile_name (objfile));
11597 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11598 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11599 if (parameter->u.dwarf_reg != -1)
11600 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11601 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11602 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11603 ¶meter->u.fb_offset))
11604 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11607 complaint (&symfile_complaints,
11608 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11609 "for DW_FORM_block* DW_AT_location is supported for "
11610 "DW_TAG_GNU_call_site child DIE 0x%x "
11612 child_die->offset.sect_off, objfile_name (objfile));
11617 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11618 if (!attr_form_is_block (attr))
11620 complaint (&symfile_complaints,
11621 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11622 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11623 child_die->offset.sect_off, objfile_name (objfile));
11626 parameter->value = DW_BLOCK (attr)->data;
11627 parameter->value_size = DW_BLOCK (attr)->size;
11629 /* Parameters are not pre-cleared by memset above. */
11630 parameter->data_value = NULL;
11631 parameter->data_value_size = 0;
11632 call_site->parameter_count++;
11634 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11637 if (!attr_form_is_block (attr))
11638 complaint (&symfile_complaints,
11639 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11640 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11641 child_die->offset.sect_off, objfile_name (objfile));
11644 parameter->data_value = DW_BLOCK (attr)->data;
11645 parameter->data_value_size = DW_BLOCK (attr)->size;
11651 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11652 Return 1 if the attributes are present and valid, otherwise, return 0.
11653 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11656 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11657 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11658 struct partial_symtab *ranges_pst)
11660 struct objfile *objfile = cu->objfile;
11661 struct comp_unit_head *cu_header = &cu->header;
11662 bfd *obfd = objfile->obfd;
11663 unsigned int addr_size = cu_header->addr_size;
11664 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11665 /* Base address selection entry. */
11668 unsigned int dummy;
11669 const gdb_byte *buffer;
11673 CORE_ADDR high = 0;
11674 CORE_ADDR baseaddr;
11676 found_base = cu->base_known;
11677 base = cu->base_address;
11679 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11680 if (offset >= dwarf2_per_objfile->ranges.size)
11682 complaint (&symfile_complaints,
11683 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11687 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11689 /* Read in the largest possible address. */
11690 marker = read_address (obfd, buffer, cu, &dummy);
11691 if ((marker & mask) == mask)
11693 /* If we found the largest possible address, then
11694 read the base address. */
11695 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11696 buffer += 2 * addr_size;
11697 offset += 2 * addr_size;
11703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11707 CORE_ADDR range_beginning, range_end;
11709 range_beginning = read_address (obfd, buffer, cu, &dummy);
11710 buffer += addr_size;
11711 range_end = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 offset += 2 * addr_size;
11715 /* An end of list marker is a pair of zero addresses. */
11716 if (range_beginning == 0 && range_end == 0)
11717 /* Found the end of list entry. */
11720 /* Each base address selection entry is a pair of 2 values.
11721 The first is the largest possible address, the second is
11722 the base address. Check for a base address here. */
11723 if ((range_beginning & mask) == mask)
11725 /* If we found the largest possible address, then
11726 read the base address. */
11727 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11734 /* We have no valid base address for the ranges
11736 complaint (&symfile_complaints,
11737 _("Invalid .debug_ranges data (no base address)"));
11741 if (range_beginning > range_end)
11743 /* Inverted range entries are invalid. */
11744 complaint (&symfile_complaints,
11745 _("Invalid .debug_ranges data (inverted range)"));
11749 /* Empty range entries have no effect. */
11750 if (range_beginning == range_end)
11753 range_beginning += base;
11756 /* A not-uncommon case of bad debug info.
11757 Don't pollute the addrmap with bad data. */
11758 if (range_beginning + baseaddr == 0
11759 && !dwarf2_per_objfile->has_section_at_zero)
11761 complaint (&symfile_complaints,
11762 _(".debug_ranges entry has start address of zero"
11763 " [in module %s]"), objfile_name (objfile));
11767 if (ranges_pst != NULL)
11768 addrmap_set_empty (objfile->psymtabs_addrmap,
11769 range_beginning + baseaddr,
11770 range_end - 1 + baseaddr,
11773 /* FIXME: This is recording everything as a low-high
11774 segment of consecutive addresses. We should have a
11775 data structure for discontiguous block ranges
11779 low = range_beginning;
11785 if (range_beginning < low)
11786 low = range_beginning;
11787 if (range_end > high)
11793 /* If the first entry is an end-of-list marker, the range
11794 describes an empty scope, i.e. no instructions. */
11800 *high_return = high;
11804 /* Get low and high pc attributes from a die. Return 1 if the attributes
11805 are present and valid, otherwise, return 0. Return -1 if the range is
11806 discontinuous, i.e. derived from DW_AT_ranges information. */
11809 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11810 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11811 struct partial_symtab *pst)
11813 struct attribute *attr;
11814 struct attribute *attr_high;
11816 CORE_ADDR high = 0;
11819 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11822 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11825 low = attr_value_as_address (attr);
11826 high = attr_value_as_address (attr_high);
11827 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11831 /* Found high w/o low attribute. */
11834 /* Found consecutive range of addresses. */
11839 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11842 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11843 We take advantage of the fact that DW_AT_ranges does not appear
11844 in DW_TAG_compile_unit of DWO files. */
11845 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11846 unsigned int ranges_offset = (DW_UNSND (attr)
11847 + (need_ranges_base
11851 /* Value of the DW_AT_ranges attribute is the offset in the
11852 .debug_ranges section. */
11853 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11855 /* Found discontinuous range of addresses. */
11860 /* read_partial_die has also the strict LOW < HIGH requirement. */
11864 /* When using the GNU linker, .gnu.linkonce. sections are used to
11865 eliminate duplicate copies of functions and vtables and such.
11866 The linker will arbitrarily choose one and discard the others.
11867 The AT_*_pc values for such functions refer to local labels in
11868 these sections. If the section from that file was discarded, the
11869 labels are not in the output, so the relocs get a value of 0.
11870 If this is a discarded function, mark the pc bounds as invalid,
11871 so that GDB will ignore it. */
11872 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11881 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11882 its low and high PC addresses. Do nothing if these addresses could not
11883 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11884 and HIGHPC to the high address if greater than HIGHPC. */
11887 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11888 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11889 struct dwarf2_cu *cu)
11891 CORE_ADDR low, high;
11892 struct die_info *child = die->child;
11894 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11896 *lowpc = min (*lowpc, low);
11897 *highpc = max (*highpc, high);
11900 /* If the language does not allow nested subprograms (either inside
11901 subprograms or lexical blocks), we're done. */
11902 if (cu->language != language_ada)
11905 /* Check all the children of the given DIE. If it contains nested
11906 subprograms, then check their pc bounds. Likewise, we need to
11907 check lexical blocks as well, as they may also contain subprogram
11909 while (child && child->tag)
11911 if (child->tag == DW_TAG_subprogram
11912 || child->tag == DW_TAG_lexical_block)
11913 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11914 child = sibling_die (child);
11918 /* Get the low and high pc's represented by the scope DIE, and store
11919 them in *LOWPC and *HIGHPC. If the correct values can't be
11920 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11923 get_scope_pc_bounds (struct die_info *die,
11924 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11925 struct dwarf2_cu *cu)
11927 CORE_ADDR best_low = (CORE_ADDR) -1;
11928 CORE_ADDR best_high = (CORE_ADDR) 0;
11929 CORE_ADDR current_low, current_high;
11931 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
11933 best_low = current_low;
11934 best_high = current_high;
11938 struct die_info *child = die->child;
11940 while (child && child->tag)
11942 switch (child->tag) {
11943 case DW_TAG_subprogram:
11944 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11946 case DW_TAG_namespace:
11947 case DW_TAG_module:
11948 /* FIXME: carlton/2004-01-16: Should we do this for
11949 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11950 that current GCC's always emit the DIEs corresponding
11951 to definitions of methods of classes as children of a
11952 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11953 the DIEs giving the declarations, which could be
11954 anywhere). But I don't see any reason why the
11955 standards says that they have to be there. */
11956 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
11958 if (current_low != ((CORE_ADDR) -1))
11960 best_low = min (best_low, current_low);
11961 best_high = max (best_high, current_high);
11969 child = sibling_die (child);
11974 *highpc = best_high;
11977 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11981 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11982 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11984 struct objfile *objfile = cu->objfile;
11985 struct attribute *attr;
11986 struct attribute *attr_high;
11988 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11991 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11994 CORE_ADDR low = attr_value_as_address (attr);
11995 CORE_ADDR high = attr_value_as_address (attr_high);
11997 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12000 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12004 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12007 bfd *obfd = objfile->obfd;
12008 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12009 We take advantage of the fact that DW_AT_ranges does not appear
12010 in DW_TAG_compile_unit of DWO files. */
12011 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12013 /* The value of the DW_AT_ranges attribute is the offset of the
12014 address range list in the .debug_ranges section. */
12015 unsigned long offset = (DW_UNSND (attr)
12016 + (need_ranges_base ? cu->ranges_base : 0));
12017 const gdb_byte *buffer;
12019 /* For some target architectures, but not others, the
12020 read_address function sign-extends the addresses it returns.
12021 To recognize base address selection entries, we need a
12023 unsigned int addr_size = cu->header.addr_size;
12024 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12026 /* The base address, to which the next pair is relative. Note
12027 that this 'base' is a DWARF concept: most entries in a range
12028 list are relative, to reduce the number of relocs against the
12029 debugging information. This is separate from this function's
12030 'baseaddr' argument, which GDB uses to relocate debugging
12031 information from a shared library based on the address at
12032 which the library was loaded. */
12033 CORE_ADDR base = cu->base_address;
12034 int base_known = cu->base_known;
12036 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12037 if (offset >= dwarf2_per_objfile->ranges.size)
12039 complaint (&symfile_complaints,
12040 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12044 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12048 unsigned int bytes_read;
12049 CORE_ADDR start, end;
12051 start = read_address (obfd, buffer, cu, &bytes_read);
12052 buffer += bytes_read;
12053 end = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12056 /* Did we find the end of the range list? */
12057 if (start == 0 && end == 0)
12060 /* Did we find a base address selection entry? */
12061 else if ((start & base_select_mask) == base_select_mask)
12067 /* We found an ordinary address range. */
12072 complaint (&symfile_complaints,
12073 _("Invalid .debug_ranges data "
12074 "(no base address)"));
12080 /* Inverted range entries are invalid. */
12081 complaint (&symfile_complaints,
12082 _("Invalid .debug_ranges data "
12083 "(inverted range)"));
12087 /* Empty range entries have no effect. */
12091 start += base + baseaddr;
12092 end += base + baseaddr;
12094 /* A not-uncommon case of bad debug info.
12095 Don't pollute the addrmap with bad data. */
12096 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12098 complaint (&symfile_complaints,
12099 _(".debug_ranges entry has start address of zero"
12100 " [in module %s]"), objfile_name (objfile));
12104 record_block_range (block, start, end - 1);
12110 /* Check whether the producer field indicates either of GCC < 4.6, or the
12111 Intel C/C++ compiler, and cache the result in CU. */
12114 check_producer (struct dwarf2_cu *cu)
12117 int major, minor, release;
12119 if (cu->producer == NULL)
12121 /* For unknown compilers expect their behavior is DWARF version
12124 GCC started to support .debug_types sections by -gdwarf-4 since
12125 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12126 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12127 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12128 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12130 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12132 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12134 cs = &cu->producer[strlen ("GNU ")];
12135 while (*cs && !isdigit (*cs))
12137 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12139 /* Not recognized as GCC. */
12143 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12144 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12147 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12148 cu->producer_is_icc = 1;
12151 /* For other non-GCC compilers, expect their behavior is DWARF version
12155 cu->checked_producer = 1;
12158 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12159 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12160 during 4.6.0 experimental. */
12163 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12165 if (!cu->checked_producer)
12166 check_producer (cu);
12168 return cu->producer_is_gxx_lt_4_6;
12171 /* Return the default accessibility type if it is not overriden by
12172 DW_AT_accessibility. */
12174 static enum dwarf_access_attribute
12175 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12177 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12179 /* The default DWARF 2 accessibility for members is public, the default
12180 accessibility for inheritance is private. */
12182 if (die->tag != DW_TAG_inheritance)
12183 return DW_ACCESS_public;
12185 return DW_ACCESS_private;
12189 /* DWARF 3+ defines the default accessibility a different way. The same
12190 rules apply now for DW_TAG_inheritance as for the members and it only
12191 depends on the container kind. */
12193 if (die->parent->tag == DW_TAG_class_type)
12194 return DW_ACCESS_private;
12196 return DW_ACCESS_public;
12200 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12201 offset. If the attribute was not found return 0, otherwise return
12202 1. If it was found but could not properly be handled, set *OFFSET
12206 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12209 struct attribute *attr;
12211 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12216 /* Note that we do not check for a section offset first here.
12217 This is because DW_AT_data_member_location is new in DWARF 4,
12218 so if we see it, we can assume that a constant form is really
12219 a constant and not a section offset. */
12220 if (attr_form_is_constant (attr))
12221 *offset = dwarf2_get_attr_constant_value (attr, 0);
12222 else if (attr_form_is_section_offset (attr))
12223 dwarf2_complex_location_expr_complaint ();
12224 else if (attr_form_is_block (attr))
12225 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12227 dwarf2_complex_location_expr_complaint ();
12235 /* Add an aggregate field to the field list. */
12238 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12239 struct dwarf2_cu *cu)
12241 struct objfile *objfile = cu->objfile;
12242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12243 struct nextfield *new_field;
12244 struct attribute *attr;
12246 const char *fieldname = "";
12248 /* Allocate a new field list entry and link it in. */
12249 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12250 make_cleanup (xfree, new_field);
12251 memset (new_field, 0, sizeof (struct nextfield));
12253 if (die->tag == DW_TAG_inheritance)
12255 new_field->next = fip->baseclasses;
12256 fip->baseclasses = new_field;
12260 new_field->next = fip->fields;
12261 fip->fields = new_field;
12265 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12267 new_field->accessibility = DW_UNSND (attr);
12269 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12270 if (new_field->accessibility != DW_ACCESS_public)
12271 fip->non_public_fields = 1;
12273 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12275 new_field->virtuality = DW_UNSND (attr);
12277 new_field->virtuality = DW_VIRTUALITY_none;
12279 fp = &new_field->field;
12281 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12285 /* Data member other than a C++ static data member. */
12287 /* Get type of field. */
12288 fp->type = die_type (die, cu);
12290 SET_FIELD_BITPOS (*fp, 0);
12292 /* Get bit size of field (zero if none). */
12293 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12296 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12300 FIELD_BITSIZE (*fp) = 0;
12303 /* Get bit offset of field. */
12304 if (handle_data_member_location (die, cu, &offset))
12305 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12306 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12309 if (gdbarch_bits_big_endian (gdbarch))
12311 /* For big endian bits, the DW_AT_bit_offset gives the
12312 additional bit offset from the MSB of the containing
12313 anonymous object to the MSB of the field. We don't
12314 have to do anything special since we don't need to
12315 know the size of the anonymous object. */
12316 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12320 /* For little endian bits, compute the bit offset to the
12321 MSB of the anonymous object, subtract off the number of
12322 bits from the MSB of the field to the MSB of the
12323 object, and then subtract off the number of bits of
12324 the field itself. The result is the bit offset of
12325 the LSB of the field. */
12326 int anonymous_size;
12327 int bit_offset = DW_UNSND (attr);
12329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12332 /* The size of the anonymous object containing
12333 the bit field is explicit, so use the
12334 indicated size (in bytes). */
12335 anonymous_size = DW_UNSND (attr);
12339 /* The size of the anonymous object containing
12340 the bit field must be inferred from the type
12341 attribute of the data member containing the
12343 anonymous_size = TYPE_LENGTH (fp->type);
12345 SET_FIELD_BITPOS (*fp,
12346 (FIELD_BITPOS (*fp)
12347 + anonymous_size * bits_per_byte
12348 - bit_offset - FIELD_BITSIZE (*fp)));
12352 /* Get name of field. */
12353 fieldname = dwarf2_name (die, cu);
12354 if (fieldname == NULL)
12357 /* The name is already allocated along with this objfile, so we don't
12358 need to duplicate it for the type. */
12359 fp->name = fieldname;
12361 /* Change accessibility for artificial fields (e.g. virtual table
12362 pointer or virtual base class pointer) to private. */
12363 if (dwarf2_attr (die, DW_AT_artificial, cu))
12365 FIELD_ARTIFICIAL (*fp) = 1;
12366 new_field->accessibility = DW_ACCESS_private;
12367 fip->non_public_fields = 1;
12370 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12372 /* C++ static member. */
12374 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12375 is a declaration, but all versions of G++ as of this writing
12376 (so through at least 3.2.1) incorrectly generate
12377 DW_TAG_variable tags. */
12379 const char *physname;
12381 /* Get name of field. */
12382 fieldname = dwarf2_name (die, cu);
12383 if (fieldname == NULL)
12386 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12388 /* Only create a symbol if this is an external value.
12389 new_symbol checks this and puts the value in the global symbol
12390 table, which we want. If it is not external, new_symbol
12391 will try to put the value in cu->list_in_scope which is wrong. */
12392 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12394 /* A static const member, not much different than an enum as far as
12395 we're concerned, except that we can support more types. */
12396 new_symbol (die, NULL, cu);
12399 /* Get physical name. */
12400 physname = dwarf2_physname (fieldname, die, cu);
12402 /* The name is already allocated along with this objfile, so we don't
12403 need to duplicate it for the type. */
12404 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12405 FIELD_TYPE (*fp) = die_type (die, cu);
12406 FIELD_NAME (*fp) = fieldname;
12408 else if (die->tag == DW_TAG_inheritance)
12412 /* C++ base class field. */
12413 if (handle_data_member_location (die, cu, &offset))
12414 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12415 FIELD_BITSIZE (*fp) = 0;
12416 FIELD_TYPE (*fp) = die_type (die, cu);
12417 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12418 fip->nbaseclasses++;
12422 /* Add a typedef defined in the scope of the FIP's class. */
12425 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12426 struct dwarf2_cu *cu)
12428 struct objfile *objfile = cu->objfile;
12429 struct typedef_field_list *new_field;
12430 struct attribute *attr;
12431 struct typedef_field *fp;
12432 char *fieldname = "";
12434 /* Allocate a new field list entry and link it in. */
12435 new_field = xzalloc (sizeof (*new_field));
12436 make_cleanup (xfree, new_field);
12438 gdb_assert (die->tag == DW_TAG_typedef);
12440 fp = &new_field->field;
12442 /* Get name of field. */
12443 fp->name = dwarf2_name (die, cu);
12444 if (fp->name == NULL)
12447 fp->type = read_type_die (die, cu);
12449 new_field->next = fip->typedef_field_list;
12450 fip->typedef_field_list = new_field;
12451 fip->typedef_field_list_count++;
12454 /* Create the vector of fields, and attach it to the type. */
12457 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12458 struct dwarf2_cu *cu)
12460 int nfields = fip->nfields;
12462 /* Record the field count, allocate space for the array of fields,
12463 and create blank accessibility bitfields if necessary. */
12464 TYPE_NFIELDS (type) = nfields;
12465 TYPE_FIELDS (type) = (struct field *)
12466 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12467 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12469 if (fip->non_public_fields && cu->language != language_ada)
12471 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12473 TYPE_FIELD_PRIVATE_BITS (type) =
12474 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12475 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12477 TYPE_FIELD_PROTECTED_BITS (type) =
12478 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12479 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12481 TYPE_FIELD_IGNORE_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12486 /* If the type has baseclasses, allocate and clear a bit vector for
12487 TYPE_FIELD_VIRTUAL_BITS. */
12488 if (fip->nbaseclasses && cu->language != language_ada)
12490 int num_bytes = B_BYTES (fip->nbaseclasses);
12491 unsigned char *pointer;
12493 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12494 pointer = TYPE_ALLOC (type, num_bytes);
12495 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12496 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12497 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12500 /* Copy the saved-up fields into the field vector. Start from the head of
12501 the list, adding to the tail of the field array, so that they end up in
12502 the same order in the array in which they were added to the list. */
12503 while (nfields-- > 0)
12505 struct nextfield *fieldp;
12509 fieldp = fip->fields;
12510 fip->fields = fieldp->next;
12514 fieldp = fip->baseclasses;
12515 fip->baseclasses = fieldp->next;
12518 TYPE_FIELD (type, nfields) = fieldp->field;
12519 switch (fieldp->accessibility)
12521 case DW_ACCESS_private:
12522 if (cu->language != language_ada)
12523 SET_TYPE_FIELD_PRIVATE (type, nfields);
12526 case DW_ACCESS_protected:
12527 if (cu->language != language_ada)
12528 SET_TYPE_FIELD_PROTECTED (type, nfields);
12531 case DW_ACCESS_public:
12535 /* Unknown accessibility. Complain and treat it as public. */
12537 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12538 fieldp->accessibility);
12542 if (nfields < fip->nbaseclasses)
12544 switch (fieldp->virtuality)
12546 case DW_VIRTUALITY_virtual:
12547 case DW_VIRTUALITY_pure_virtual:
12548 if (cu->language == language_ada)
12549 error (_("unexpected virtuality in component of Ada type"));
12550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12557 /* Return true if this member function is a constructor, false
12561 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12563 const char *fieldname;
12564 const char *typename;
12567 if (die->parent == NULL)
12570 if (die->parent->tag != DW_TAG_structure_type
12571 && die->parent->tag != DW_TAG_union_type
12572 && die->parent->tag != DW_TAG_class_type)
12575 fieldname = dwarf2_name (die, cu);
12576 typename = dwarf2_name (die->parent, cu);
12577 if (fieldname == NULL || typename == NULL)
12580 len = strlen (fieldname);
12581 return (strncmp (fieldname, typename, len) == 0
12582 && (typename[len] == '\0' || typename[len] == '<'));
12585 /* Add a member function to the proper fieldlist. */
12588 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12589 struct type *type, struct dwarf2_cu *cu)
12591 struct objfile *objfile = cu->objfile;
12592 struct attribute *attr;
12593 struct fnfieldlist *flp;
12595 struct fn_field *fnp;
12596 const char *fieldname;
12597 struct nextfnfield *new_fnfield;
12598 struct type *this_type;
12599 enum dwarf_access_attribute accessibility;
12601 if (cu->language == language_ada)
12602 error (_("unexpected member function in Ada type"));
12604 /* Get name of member function. */
12605 fieldname = dwarf2_name (die, cu);
12606 if (fieldname == NULL)
12609 /* Look up member function name in fieldlist. */
12610 for (i = 0; i < fip->nfnfields; i++)
12612 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12616 /* Create new list element if necessary. */
12617 if (i < fip->nfnfields)
12618 flp = &fip->fnfieldlists[i];
12621 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12623 fip->fnfieldlists = (struct fnfieldlist *)
12624 xrealloc (fip->fnfieldlists,
12625 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12626 * sizeof (struct fnfieldlist));
12627 if (fip->nfnfields == 0)
12628 make_cleanup (free_current_contents, &fip->fnfieldlists);
12630 flp = &fip->fnfieldlists[fip->nfnfields];
12631 flp->name = fieldname;
12634 i = fip->nfnfields++;
12637 /* Create a new member function field and chain it to the field list
12639 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12640 make_cleanup (xfree, new_fnfield);
12641 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12642 new_fnfield->next = flp->head;
12643 flp->head = new_fnfield;
12646 /* Fill in the member function field info. */
12647 fnp = &new_fnfield->fnfield;
12649 /* Delay processing of the physname until later. */
12650 if (cu->language == language_cplus || cu->language == language_java)
12652 add_to_method_list (type, i, flp->length - 1, fieldname,
12657 const char *physname = dwarf2_physname (fieldname, die, cu);
12658 fnp->physname = physname ? physname : "";
12661 fnp->type = alloc_type (objfile);
12662 this_type = read_type_die (die, cu);
12663 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12665 int nparams = TYPE_NFIELDS (this_type);
12667 /* TYPE is the domain of this method, and THIS_TYPE is the type
12668 of the method itself (TYPE_CODE_METHOD). */
12669 smash_to_method_type (fnp->type, type,
12670 TYPE_TARGET_TYPE (this_type),
12671 TYPE_FIELDS (this_type),
12672 TYPE_NFIELDS (this_type),
12673 TYPE_VARARGS (this_type));
12675 /* Handle static member functions.
12676 Dwarf2 has no clean way to discern C++ static and non-static
12677 member functions. G++ helps GDB by marking the first
12678 parameter for non-static member functions (which is the this
12679 pointer) as artificial. We obtain this information from
12680 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12681 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12682 fnp->voffset = VOFFSET_STATIC;
12685 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12686 dwarf2_full_name (fieldname, die, cu));
12688 /* Get fcontext from DW_AT_containing_type if present. */
12689 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12690 fnp->fcontext = die_containing_type (die, cu);
12692 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12693 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12695 /* Get accessibility. */
12696 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12698 accessibility = DW_UNSND (attr);
12700 accessibility = dwarf2_default_access_attribute (die, cu);
12701 switch (accessibility)
12703 case DW_ACCESS_private:
12704 fnp->is_private = 1;
12706 case DW_ACCESS_protected:
12707 fnp->is_protected = 1;
12711 /* Check for artificial methods. */
12712 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12713 if (attr && DW_UNSND (attr) != 0)
12714 fnp->is_artificial = 1;
12716 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12718 /* Get index in virtual function table if it is a virtual member
12719 function. For older versions of GCC, this is an offset in the
12720 appropriate virtual table, as specified by DW_AT_containing_type.
12721 For everyone else, it is an expression to be evaluated relative
12722 to the object address. */
12724 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12727 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12729 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12731 /* Old-style GCC. */
12732 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12734 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12735 || (DW_BLOCK (attr)->size > 1
12736 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12737 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12739 struct dwarf_block blk;
12742 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12744 blk.size = DW_BLOCK (attr)->size - offset;
12745 blk.data = DW_BLOCK (attr)->data + offset;
12746 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12747 if ((fnp->voffset % cu->header.addr_size) != 0)
12748 dwarf2_complex_location_expr_complaint ();
12750 fnp->voffset /= cu->header.addr_size;
12754 dwarf2_complex_location_expr_complaint ();
12756 if (!fnp->fcontext)
12757 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12759 else if (attr_form_is_section_offset (attr))
12761 dwarf2_complex_location_expr_complaint ();
12765 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12771 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12772 if (attr && DW_UNSND (attr))
12774 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12775 complaint (&symfile_complaints,
12776 _("Member function \"%s\" (offset %d) is virtual "
12777 "but the vtable offset is not specified"),
12778 fieldname, die->offset.sect_off);
12779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12780 TYPE_CPLUS_DYNAMIC (type) = 1;
12785 /* Create the vector of member function fields, and attach it to the type. */
12788 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12789 struct dwarf2_cu *cu)
12791 struct fnfieldlist *flp;
12794 if (cu->language == language_ada)
12795 error (_("unexpected member functions in Ada type"));
12797 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12798 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12799 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12801 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12803 struct nextfnfield *nfp = flp->head;
12804 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12807 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12808 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12809 fn_flp->fn_fields = (struct fn_field *)
12810 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12811 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12812 fn_flp->fn_fields[k] = nfp->fnfield;
12815 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12818 /* Returns non-zero if NAME is the name of a vtable member in CU's
12819 language, zero otherwise. */
12821 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12823 static const char vptr[] = "_vptr";
12824 static const char vtable[] = "vtable";
12826 /* Look for the C++ and Java forms of the vtable. */
12827 if ((cu->language == language_java
12828 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12829 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12830 && is_cplus_marker (name[sizeof (vptr) - 1])))
12836 /* GCC outputs unnamed structures that are really pointers to member
12837 functions, with the ABI-specified layout. If TYPE describes
12838 such a structure, smash it into a member function type.
12840 GCC shouldn't do this; it should just output pointer to member DIEs.
12841 This is GCC PR debug/28767. */
12844 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12846 struct type *pfn_type, *domain_type, *new_type;
12848 /* Check for a structure with no name and two children. */
12849 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12852 /* Check for __pfn and __delta members. */
12853 if (TYPE_FIELD_NAME (type, 0) == NULL
12854 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12855 || TYPE_FIELD_NAME (type, 1) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12859 /* Find the type of the method. */
12860 pfn_type = TYPE_FIELD_TYPE (type, 0);
12861 if (pfn_type == NULL
12862 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12863 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12866 /* Look for the "this" argument. */
12867 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12868 if (TYPE_NFIELDS (pfn_type) == 0
12869 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12870 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12873 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12874 new_type = alloc_type (objfile);
12875 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12876 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12877 TYPE_VARARGS (pfn_type));
12878 smash_to_methodptr_type (type, new_type);
12881 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12885 producer_is_icc (struct dwarf2_cu *cu)
12887 if (!cu->checked_producer)
12888 check_producer (cu);
12890 return cu->producer_is_icc;
12893 /* Called when we find the DIE that starts a structure or union scope
12894 (definition) to create a type for the structure or union. Fill in
12895 the type's name and general properties; the members will not be
12896 processed until process_structure_scope. A symbol table entry for
12897 the type will also not be done until process_structure_scope (assuming
12898 the type has a name).
12900 NOTE: we need to call these functions regardless of whether or not the
12901 DIE has a DW_AT_name attribute, since it might be an anonymous
12902 structure or union. This gets the type entered into our set of
12903 user defined types. */
12905 static struct type *
12906 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12908 struct objfile *objfile = cu->objfile;
12910 struct attribute *attr;
12913 /* If the definition of this type lives in .debug_types, read that type.
12914 Don't follow DW_AT_specification though, that will take us back up
12915 the chain and we want to go down. */
12916 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12919 type = get_DW_AT_signature_type (die, attr, cu);
12921 /* The type's CU may not be the same as CU.
12922 Ensure TYPE is recorded with CU in die_type_hash. */
12923 return set_die_type (die, type, cu);
12926 type = alloc_type (objfile);
12927 INIT_CPLUS_SPECIFIC (type);
12929 name = dwarf2_name (die, cu);
12932 if (cu->language == language_cplus
12933 || cu->language == language_java)
12935 const char *full_name = dwarf2_full_name (name, die, cu);
12937 /* dwarf2_full_name might have already finished building the DIE's
12938 type. If so, there is no need to continue. */
12939 if (get_die_type (die, cu) != NULL)
12940 return get_die_type (die, cu);
12942 TYPE_TAG_NAME (type) = full_name;
12943 if (die->tag == DW_TAG_structure_type
12944 || die->tag == DW_TAG_class_type)
12945 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12949 /* The name is already allocated along with this objfile, so
12950 we don't need to duplicate it for the type. */
12951 TYPE_TAG_NAME (type) = name;
12952 if (die->tag == DW_TAG_class_type)
12953 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12957 if (die->tag == DW_TAG_structure_type)
12959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12961 else if (die->tag == DW_TAG_union_type)
12963 TYPE_CODE (type) = TYPE_CODE_UNION;
12967 TYPE_CODE (type) = TYPE_CODE_CLASS;
12970 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12971 TYPE_DECLARED_CLASS (type) = 1;
12973 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12976 TYPE_LENGTH (type) = DW_UNSND (attr);
12980 TYPE_LENGTH (type) = 0;
12983 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12985 /* ICC does not output the required DW_AT_declaration
12986 on incomplete types, but gives them a size of zero. */
12987 TYPE_STUB (type) = 1;
12990 TYPE_STUB_SUPPORTED (type) = 1;
12992 if (die_is_declaration (die, cu))
12993 TYPE_STUB (type) = 1;
12994 else if (attr == NULL && die->child == NULL
12995 && producer_is_realview (cu->producer))
12996 /* RealView does not output the required DW_AT_declaration
12997 on incomplete types. */
12998 TYPE_STUB (type) = 1;
13000 /* We need to add the type field to the die immediately so we don't
13001 infinitely recurse when dealing with pointers to the structure
13002 type within the structure itself. */
13003 set_die_type (die, type, cu);
13005 /* set_die_type should be already done. */
13006 set_descriptive_type (type, die, cu);
13011 /* Finish creating a structure or union type, including filling in
13012 its members and creating a symbol for it. */
13015 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13017 struct objfile *objfile = cu->objfile;
13018 struct die_info *child_die = die->child;
13021 type = get_die_type (die, cu);
13023 type = read_structure_type (die, cu);
13025 if (die->child != NULL && ! die_is_declaration (die, cu))
13027 struct field_info fi;
13028 struct die_info *child_die;
13029 VEC (symbolp) *template_args = NULL;
13030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13032 memset (&fi, 0, sizeof (struct field_info));
13034 child_die = die->child;
13036 while (child_die && child_die->tag)
13038 if (child_die->tag == DW_TAG_member
13039 || child_die->tag == DW_TAG_variable)
13041 /* NOTE: carlton/2002-11-05: A C++ static data member
13042 should be a DW_TAG_member that is a declaration, but
13043 all versions of G++ as of this writing (so through at
13044 least 3.2.1) incorrectly generate DW_TAG_variable
13045 tags for them instead. */
13046 dwarf2_add_field (&fi, child_die, cu);
13048 else if (child_die->tag == DW_TAG_subprogram)
13050 /* C++ member function. */
13051 dwarf2_add_member_fn (&fi, child_die, type, cu);
13053 else if (child_die->tag == DW_TAG_inheritance)
13055 /* C++ base class field. */
13056 dwarf2_add_field (&fi, child_die, cu);
13058 else if (child_die->tag == DW_TAG_typedef)
13059 dwarf2_add_typedef (&fi, child_die, cu);
13060 else if (child_die->tag == DW_TAG_template_type_param
13061 || child_die->tag == DW_TAG_template_value_param)
13063 struct symbol *arg = new_symbol (child_die, NULL, cu);
13066 VEC_safe_push (symbolp, template_args, arg);
13069 child_die = sibling_die (child_die);
13072 /* Attach template arguments to type. */
13073 if (! VEC_empty (symbolp, template_args))
13075 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13076 TYPE_N_TEMPLATE_ARGUMENTS (type)
13077 = VEC_length (symbolp, template_args);
13078 TYPE_TEMPLATE_ARGUMENTS (type)
13079 = obstack_alloc (&objfile->objfile_obstack,
13080 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13081 * sizeof (struct symbol *)));
13082 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13083 VEC_address (symbolp, template_args),
13084 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13085 * sizeof (struct symbol *)));
13086 VEC_free (symbolp, template_args);
13089 /* Attach fields and member functions to the type. */
13091 dwarf2_attach_fields_to_type (&fi, type, cu);
13094 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13096 /* Get the type which refers to the base class (possibly this
13097 class itself) which contains the vtable pointer for the current
13098 class from the DW_AT_containing_type attribute. This use of
13099 DW_AT_containing_type is a GNU extension. */
13101 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13103 struct type *t = die_containing_type (die, cu);
13105 TYPE_VPTR_BASETYPE (type) = t;
13110 /* Our own class provides vtbl ptr. */
13111 for (i = TYPE_NFIELDS (t) - 1;
13112 i >= TYPE_N_BASECLASSES (t);
13115 const char *fieldname = TYPE_FIELD_NAME (t, i);
13117 if (is_vtable_name (fieldname, cu))
13119 TYPE_VPTR_FIELDNO (type) = i;
13124 /* Complain if virtual function table field not found. */
13125 if (i < TYPE_N_BASECLASSES (t))
13126 complaint (&symfile_complaints,
13127 _("virtual function table pointer "
13128 "not found when defining class '%s'"),
13129 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13134 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13137 else if (cu->producer
13138 && strncmp (cu->producer,
13139 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13141 /* The IBM XLC compiler does not provide direct indication
13142 of the containing type, but the vtable pointer is
13143 always named __vfp. */
13147 for (i = TYPE_NFIELDS (type) - 1;
13148 i >= TYPE_N_BASECLASSES (type);
13151 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13153 TYPE_VPTR_FIELDNO (type) = i;
13154 TYPE_VPTR_BASETYPE (type) = type;
13161 /* Copy fi.typedef_field_list linked list elements content into the
13162 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13163 if (fi.typedef_field_list)
13165 int i = fi.typedef_field_list_count;
13167 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13168 TYPE_TYPEDEF_FIELD_ARRAY (type)
13169 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13170 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13172 /* Reverse the list order to keep the debug info elements order. */
13175 struct typedef_field *dest, *src;
13177 dest = &TYPE_TYPEDEF_FIELD (type, i);
13178 src = &fi.typedef_field_list->field;
13179 fi.typedef_field_list = fi.typedef_field_list->next;
13184 do_cleanups (back_to);
13186 if (HAVE_CPLUS_STRUCT (type))
13187 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13190 quirk_gcc_member_function_pointer (type, objfile);
13192 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13193 snapshots) has been known to create a die giving a declaration
13194 for a class that has, as a child, a die giving a definition for a
13195 nested class. So we have to process our children even if the
13196 current die is a declaration. Normally, of course, a declaration
13197 won't have any children at all. */
13199 while (child_die != NULL && child_die->tag)
13201 if (child_die->tag == DW_TAG_member
13202 || child_die->tag == DW_TAG_variable
13203 || child_die->tag == DW_TAG_inheritance
13204 || child_die->tag == DW_TAG_template_value_param
13205 || child_die->tag == DW_TAG_template_type_param)
13210 process_die (child_die, cu);
13212 child_die = sibling_die (child_die);
13215 /* Do not consider external references. According to the DWARF standard,
13216 these DIEs are identified by the fact that they have no byte_size
13217 attribute, and a declaration attribute. */
13218 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13219 || !die_is_declaration (die, cu))
13220 new_symbol (die, type, cu);
13223 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13224 update TYPE using some information only available in DIE's children. */
13227 update_enumeration_type_from_children (struct die_info *die,
13229 struct dwarf2_cu *cu)
13231 struct obstack obstack;
13232 struct die_info *child_die = die->child;
13233 int unsigned_enum = 1;
13236 struct cleanup *old_chain;
13238 obstack_init (&obstack);
13239 old_chain = make_cleanup_obstack_free (&obstack);
13241 while (child_die != NULL && child_die->tag)
13243 struct attribute *attr;
13245 const gdb_byte *bytes;
13246 struct dwarf2_locexpr_baton *baton;
13248 if (child_die->tag != DW_TAG_enumerator)
13251 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13255 name = dwarf2_name (child_die, cu);
13257 name = "<anonymous enumerator>";
13259 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13260 &value, &bytes, &baton);
13266 else if ((mask & value) != 0)
13271 /* If we already know that the enum type is neither unsigned, nor
13272 a flag type, no need to look at the rest of the enumerates. */
13273 if (!unsigned_enum && !flag_enum)
13275 child_die = sibling_die (child_die);
13279 TYPE_UNSIGNED (type) = 1;
13281 TYPE_FLAG_ENUM (type) = 1;
13283 do_cleanups (old_chain);
13286 /* Given a DW_AT_enumeration_type die, set its type. We do not
13287 complete the type's fields yet, or create any symbols. */
13289 static struct type *
13290 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13292 struct objfile *objfile = cu->objfile;
13294 struct attribute *attr;
13297 /* If the definition of this type lives in .debug_types, read that type.
13298 Don't follow DW_AT_specification though, that will take us back up
13299 the chain and we want to go down. */
13300 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13303 type = get_DW_AT_signature_type (die, attr, cu);
13305 /* The type's CU may not be the same as CU.
13306 Ensure TYPE is recorded with CU in die_type_hash. */
13307 return set_die_type (die, type, cu);
13310 type = alloc_type (objfile);
13312 TYPE_CODE (type) = TYPE_CODE_ENUM;
13313 name = dwarf2_full_name (NULL, die, cu);
13315 TYPE_TAG_NAME (type) = name;
13317 attr = dwarf2_attr (die, DW_AT_type, cu);
13320 struct type *underlying_type = die_type (die, cu);
13322 TYPE_TARGET_TYPE (type) = underlying_type;
13325 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13328 TYPE_LENGTH (type) = DW_UNSND (attr);
13332 TYPE_LENGTH (type) = 0;
13335 /* The enumeration DIE can be incomplete. In Ada, any type can be
13336 declared as private in the package spec, and then defined only
13337 inside the package body. Such types are known as Taft Amendment
13338 Types. When another package uses such a type, an incomplete DIE
13339 may be generated by the compiler. */
13340 if (die_is_declaration (die, cu))
13341 TYPE_STUB (type) = 1;
13343 /* Finish the creation of this type by using the enum's children.
13344 We must call this even when the underlying type has been provided
13345 so that we can determine if we're looking at a "flag" enum. */
13346 update_enumeration_type_from_children (die, type, cu);
13348 /* If this type has an underlying type that is not a stub, then we
13349 may use its attributes. We always use the "unsigned" attribute
13350 in this situation, because ordinarily we guess whether the type
13351 is unsigned -- but the guess can be wrong and the underlying type
13352 can tell us the reality. However, we defer to a local size
13353 attribute if one exists, because this lets the compiler override
13354 the underlying type if needed. */
13355 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13357 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13358 if (TYPE_LENGTH (type) == 0)
13359 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13362 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13364 return set_die_type (die, type, cu);
13367 /* Given a pointer to a die which begins an enumeration, process all
13368 the dies that define the members of the enumeration, and create the
13369 symbol for the enumeration type.
13371 NOTE: We reverse the order of the element list. */
13374 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13376 struct type *this_type;
13378 this_type = get_die_type (die, cu);
13379 if (this_type == NULL)
13380 this_type = read_enumeration_type (die, cu);
13382 if (die->child != NULL)
13384 struct die_info *child_die;
13385 struct symbol *sym;
13386 struct field *fields = NULL;
13387 int num_fields = 0;
13390 child_die = die->child;
13391 while (child_die && child_die->tag)
13393 if (child_die->tag != DW_TAG_enumerator)
13395 process_die (child_die, cu);
13399 name = dwarf2_name (child_die, cu);
13402 sym = new_symbol (child_die, this_type, cu);
13404 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13406 fields = (struct field *)
13408 (num_fields + DW_FIELD_ALLOC_CHUNK)
13409 * sizeof (struct field));
13412 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13413 FIELD_TYPE (fields[num_fields]) = NULL;
13414 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13415 FIELD_BITSIZE (fields[num_fields]) = 0;
13421 child_die = sibling_die (child_die);
13426 TYPE_NFIELDS (this_type) = num_fields;
13427 TYPE_FIELDS (this_type) = (struct field *)
13428 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13429 memcpy (TYPE_FIELDS (this_type), fields,
13430 sizeof (struct field) * num_fields);
13435 /* If we are reading an enum from a .debug_types unit, and the enum
13436 is a declaration, and the enum is not the signatured type in the
13437 unit, then we do not want to add a symbol for it. Adding a
13438 symbol would in some cases obscure the true definition of the
13439 enum, giving users an incomplete type when the definition is
13440 actually available. Note that we do not want to do this for all
13441 enums which are just declarations, because C++0x allows forward
13442 enum declarations. */
13443 if (cu->per_cu->is_debug_types
13444 && die_is_declaration (die, cu))
13446 struct signatured_type *sig_type;
13448 sig_type = (struct signatured_type *) cu->per_cu;
13449 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13450 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13454 new_symbol (die, this_type, cu);
13457 /* Extract all information from a DW_TAG_array_type DIE and put it in
13458 the DIE's type field. For now, this only handles one dimensional
13461 static struct type *
13462 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13464 struct objfile *objfile = cu->objfile;
13465 struct die_info *child_die;
13467 struct type *element_type, *range_type, *index_type;
13468 struct type **range_types = NULL;
13469 struct attribute *attr;
13471 struct cleanup *back_to;
13473 unsigned int bit_stride = 0;
13475 element_type = die_type (die, cu);
13477 /* The die_type call above may have already set the type for this DIE. */
13478 type = get_die_type (die, cu);
13482 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13484 bit_stride = DW_UNSND (attr) * 8;
13486 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13488 bit_stride = DW_UNSND (attr);
13490 /* Irix 6.2 native cc creates array types without children for
13491 arrays with unspecified length. */
13492 if (die->child == NULL)
13494 index_type = objfile_type (objfile)->builtin_int;
13495 range_type = create_static_range_type (NULL, index_type, 0, -1);
13496 type = create_array_type_with_stride (NULL, element_type, range_type,
13498 return set_die_type (die, type, cu);
13501 back_to = make_cleanup (null_cleanup, NULL);
13502 child_die = die->child;
13503 while (child_die && child_die->tag)
13505 if (child_die->tag == DW_TAG_subrange_type)
13507 struct type *child_type = read_type_die (child_die, cu);
13509 if (child_type != NULL)
13511 /* The range type was succesfully read. Save it for the
13512 array type creation. */
13513 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13515 range_types = (struct type **)
13516 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13517 * sizeof (struct type *));
13519 make_cleanup (free_current_contents, &range_types);
13521 range_types[ndim++] = child_type;
13524 child_die = sibling_die (child_die);
13527 /* Dwarf2 dimensions are output from left to right, create the
13528 necessary array types in backwards order. */
13530 type = element_type;
13532 if (read_array_order (die, cu) == DW_ORD_col_major)
13537 type = create_array_type_with_stride (NULL, type, range_types[i++],
13543 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13547 /* Understand Dwarf2 support for vector types (like they occur on
13548 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13549 array type. This is not part of the Dwarf2/3 standard yet, but a
13550 custom vendor extension. The main difference between a regular
13551 array and the vector variant is that vectors are passed by value
13553 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13555 make_vector_type (type);
13557 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13558 implementation may choose to implement triple vectors using this
13560 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13563 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13564 TYPE_LENGTH (type) = DW_UNSND (attr);
13566 complaint (&symfile_complaints,
13567 _("DW_AT_byte_size for array type smaller "
13568 "than the total size of elements"));
13571 name = dwarf2_name (die, cu);
13573 TYPE_NAME (type) = name;
13575 /* Install the type in the die. */
13576 set_die_type (die, type, cu);
13578 /* set_die_type should be already done. */
13579 set_descriptive_type (type, die, cu);
13581 do_cleanups (back_to);
13586 static enum dwarf_array_dim_ordering
13587 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13589 struct attribute *attr;
13591 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13593 if (attr) return DW_SND (attr);
13595 /* GNU F77 is a special case, as at 08/2004 array type info is the
13596 opposite order to the dwarf2 specification, but data is still
13597 laid out as per normal fortran.
13599 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13600 version checking. */
13602 if (cu->language == language_fortran
13603 && cu->producer && strstr (cu->producer, "GNU F77"))
13605 return DW_ORD_row_major;
13608 switch (cu->language_defn->la_array_ordering)
13610 case array_column_major:
13611 return DW_ORD_col_major;
13612 case array_row_major:
13614 return DW_ORD_row_major;
13618 /* Extract all information from a DW_TAG_set_type DIE and put it in
13619 the DIE's type field. */
13621 static struct type *
13622 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13624 struct type *domain_type, *set_type;
13625 struct attribute *attr;
13627 domain_type = die_type (die, cu);
13629 /* The die_type call above may have already set the type for this DIE. */
13630 set_type = get_die_type (die, cu);
13634 set_type = create_set_type (NULL, domain_type);
13636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13638 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13640 return set_die_type (die, set_type, cu);
13643 /* A helper for read_common_block that creates a locexpr baton.
13644 SYM is the symbol which we are marking as computed.
13645 COMMON_DIE is the DIE for the common block.
13646 COMMON_LOC is the location expression attribute for the common
13648 MEMBER_LOC is the location expression attribute for the particular
13649 member of the common block that we are processing.
13650 CU is the CU from which the above come. */
13653 mark_common_block_symbol_computed (struct symbol *sym,
13654 struct die_info *common_die,
13655 struct attribute *common_loc,
13656 struct attribute *member_loc,
13657 struct dwarf2_cu *cu)
13659 struct objfile *objfile = dwarf2_per_objfile->objfile;
13660 struct dwarf2_locexpr_baton *baton;
13662 unsigned int cu_off;
13663 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13664 LONGEST offset = 0;
13666 gdb_assert (common_loc && member_loc);
13667 gdb_assert (attr_form_is_block (common_loc));
13668 gdb_assert (attr_form_is_block (member_loc)
13669 || attr_form_is_constant (member_loc));
13671 baton = obstack_alloc (&objfile->objfile_obstack,
13672 sizeof (struct dwarf2_locexpr_baton));
13673 baton->per_cu = cu->per_cu;
13674 gdb_assert (baton->per_cu);
13676 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13678 if (attr_form_is_constant (member_loc))
13680 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13681 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13684 baton->size += DW_BLOCK (member_loc)->size;
13686 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13689 *ptr++ = DW_OP_call4;
13690 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13691 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13694 if (attr_form_is_constant (member_loc))
13696 *ptr++ = DW_OP_addr;
13697 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13698 ptr += cu->header.addr_size;
13702 /* We have to copy the data here, because DW_OP_call4 will only
13703 use a DW_AT_location attribute. */
13704 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13705 ptr += DW_BLOCK (member_loc)->size;
13708 *ptr++ = DW_OP_plus;
13709 gdb_assert (ptr - baton->data == baton->size);
13711 SYMBOL_LOCATION_BATON (sym) = baton;
13712 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13715 /* Create appropriate locally-scoped variables for all the
13716 DW_TAG_common_block entries. Also create a struct common_block
13717 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13718 is used to sepate the common blocks name namespace from regular
13722 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13724 struct attribute *attr;
13726 attr = dwarf2_attr (die, DW_AT_location, cu);
13729 /* Support the .debug_loc offsets. */
13730 if (attr_form_is_block (attr))
13734 else if (attr_form_is_section_offset (attr))
13736 dwarf2_complex_location_expr_complaint ();
13741 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13742 "common block member");
13747 if (die->child != NULL)
13749 struct objfile *objfile = cu->objfile;
13750 struct die_info *child_die;
13751 size_t n_entries = 0, size;
13752 struct common_block *common_block;
13753 struct symbol *sym;
13755 for (child_die = die->child;
13756 child_die && child_die->tag;
13757 child_die = sibling_die (child_die))
13760 size = (sizeof (struct common_block)
13761 + (n_entries - 1) * sizeof (struct symbol *));
13762 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13763 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13764 common_block->n_entries = 0;
13766 for (child_die = die->child;
13767 child_die && child_die->tag;
13768 child_die = sibling_die (child_die))
13770 /* Create the symbol in the DW_TAG_common_block block in the current
13772 sym = new_symbol (child_die, NULL, cu);
13775 struct attribute *member_loc;
13777 common_block->contents[common_block->n_entries++] = sym;
13779 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13783 /* GDB has handled this for a long time, but it is
13784 not specified by DWARF. It seems to have been
13785 emitted by gfortran at least as recently as:
13786 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13787 complaint (&symfile_complaints,
13788 _("Variable in common block has "
13789 "DW_AT_data_member_location "
13790 "- DIE at 0x%x [in module %s]"),
13791 child_die->offset.sect_off,
13792 objfile_name (cu->objfile));
13794 if (attr_form_is_section_offset (member_loc))
13795 dwarf2_complex_location_expr_complaint ();
13796 else if (attr_form_is_constant (member_loc)
13797 || attr_form_is_block (member_loc))
13800 mark_common_block_symbol_computed (sym, die, attr,
13804 dwarf2_complex_location_expr_complaint ();
13809 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13810 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13814 /* Create a type for a C++ namespace. */
13816 static struct type *
13817 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13819 struct objfile *objfile = cu->objfile;
13820 const char *previous_prefix, *name;
13824 /* For extensions, reuse the type of the original namespace. */
13825 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13827 struct die_info *ext_die;
13828 struct dwarf2_cu *ext_cu = cu;
13830 ext_die = dwarf2_extension (die, &ext_cu);
13831 type = read_type_die (ext_die, ext_cu);
13833 /* EXT_CU may not be the same as CU.
13834 Ensure TYPE is recorded with CU in die_type_hash. */
13835 return set_die_type (die, type, cu);
13838 name = namespace_name (die, &is_anonymous, cu);
13840 /* Now build the name of the current namespace. */
13842 previous_prefix = determine_prefix (die, cu);
13843 if (previous_prefix[0] != '\0')
13844 name = typename_concat (&objfile->objfile_obstack,
13845 previous_prefix, name, 0, cu);
13847 /* Create the type. */
13848 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13850 TYPE_NAME (type) = name;
13851 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13853 return set_die_type (die, type, cu);
13856 /* Read a C++ namespace. */
13859 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13861 struct objfile *objfile = cu->objfile;
13864 /* Add a symbol associated to this if we haven't seen the namespace
13865 before. Also, add a using directive if it's an anonymous
13868 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13872 type = read_type_die (die, cu);
13873 new_symbol (die, type, cu);
13875 namespace_name (die, &is_anonymous, cu);
13878 const char *previous_prefix = determine_prefix (die, cu);
13880 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13881 NULL, NULL, 0, &objfile->objfile_obstack);
13885 if (die->child != NULL)
13887 struct die_info *child_die = die->child;
13889 while (child_die && child_die->tag)
13891 process_die (child_die, cu);
13892 child_die = sibling_die (child_die);
13897 /* Read a Fortran module as type. This DIE can be only a declaration used for
13898 imported module. Still we need that type as local Fortran "use ... only"
13899 declaration imports depend on the created type in determine_prefix. */
13901 static struct type *
13902 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13904 struct objfile *objfile = cu->objfile;
13905 const char *module_name;
13908 module_name = dwarf2_name (die, cu);
13910 complaint (&symfile_complaints,
13911 _("DW_TAG_module has no name, offset 0x%x"),
13912 die->offset.sect_off);
13913 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13915 /* determine_prefix uses TYPE_TAG_NAME. */
13916 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13918 return set_die_type (die, type, cu);
13921 /* Read a Fortran module. */
13924 read_module (struct die_info *die, struct dwarf2_cu *cu)
13926 struct die_info *child_die = die->child;
13929 type = read_type_die (die, cu);
13930 new_symbol (die, type, cu);
13932 while (child_die && child_die->tag)
13934 process_die (child_die, cu);
13935 child_die = sibling_die (child_die);
13939 /* Return the name of the namespace represented by DIE. Set
13940 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13943 static const char *
13944 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13946 struct die_info *current_die;
13947 const char *name = NULL;
13949 /* Loop through the extensions until we find a name. */
13951 for (current_die = die;
13952 current_die != NULL;
13953 current_die = dwarf2_extension (die, &cu))
13955 name = dwarf2_name (current_die, cu);
13960 /* Is it an anonymous namespace? */
13962 *is_anonymous = (name == NULL);
13964 name = CP_ANONYMOUS_NAMESPACE_STR;
13969 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13970 the user defined type vector. */
13972 static struct type *
13973 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13975 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13976 struct comp_unit_head *cu_header = &cu->header;
13978 struct attribute *attr_byte_size;
13979 struct attribute *attr_address_class;
13980 int byte_size, addr_class;
13981 struct type *target_type;
13983 target_type = die_type (die, cu);
13985 /* The die_type call above may have already set the type for this DIE. */
13986 type = get_die_type (die, cu);
13990 type = lookup_pointer_type (target_type);
13992 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13993 if (attr_byte_size)
13994 byte_size = DW_UNSND (attr_byte_size);
13996 byte_size = cu_header->addr_size;
13998 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13999 if (attr_address_class)
14000 addr_class = DW_UNSND (attr_address_class);
14002 addr_class = DW_ADDR_none;
14004 /* If the pointer size or address class is different than the
14005 default, create a type variant marked as such and set the
14006 length accordingly. */
14007 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14009 if (gdbarch_address_class_type_flags_p (gdbarch))
14013 type_flags = gdbarch_address_class_type_flags
14014 (gdbarch, byte_size, addr_class);
14015 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14017 type = make_type_with_address_space (type, type_flags);
14019 else if (TYPE_LENGTH (type) != byte_size)
14021 complaint (&symfile_complaints,
14022 _("invalid pointer size %d"), byte_size);
14026 /* Should we also complain about unhandled address classes? */
14030 TYPE_LENGTH (type) = byte_size;
14031 return set_die_type (die, type, cu);
14034 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14035 the user defined type vector. */
14037 static struct type *
14038 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14041 struct type *to_type;
14042 struct type *domain;
14044 to_type = die_type (die, cu);
14045 domain = die_containing_type (die, cu);
14047 /* The calls above may have already set the type for this DIE. */
14048 type = get_die_type (die, cu);
14052 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14053 type = lookup_methodptr_type (to_type);
14054 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14056 struct type *new_type = alloc_type (cu->objfile);
14058 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14059 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14060 TYPE_VARARGS (to_type));
14061 type = lookup_methodptr_type (new_type);
14064 type = lookup_memberptr_type (to_type, domain);
14066 return set_die_type (die, type, cu);
14069 /* Extract all information from a DW_TAG_reference_type DIE and add to
14070 the user defined type vector. */
14072 static struct type *
14073 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14075 struct comp_unit_head *cu_header = &cu->header;
14076 struct type *type, *target_type;
14077 struct attribute *attr;
14079 target_type = die_type (die, cu);
14081 /* The die_type call above may have already set the type for this DIE. */
14082 type = get_die_type (die, cu);
14086 type = lookup_reference_type (target_type);
14087 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14090 TYPE_LENGTH (type) = DW_UNSND (attr);
14094 TYPE_LENGTH (type) = cu_header->addr_size;
14096 return set_die_type (die, type, cu);
14099 /* Add the given cv-qualifiers to the element type of the array. GCC
14100 outputs DWARF type qualifiers that apply to an array, not the
14101 element type. But GDB relies on the array element type to carry
14102 the cv-qualifiers. This mimics section 6.7.3 of the C99
14105 static struct type *
14106 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14107 struct type *base_type, int cnst, int voltl)
14109 struct type *el_type, *inner_array;
14111 base_type = copy_type (base_type);
14112 inner_array = base_type;
14114 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14116 TYPE_TARGET_TYPE (inner_array) =
14117 copy_type (TYPE_TARGET_TYPE (inner_array));
14118 inner_array = TYPE_TARGET_TYPE (inner_array);
14121 el_type = TYPE_TARGET_TYPE (inner_array);
14122 cnst |= TYPE_CONST (el_type);
14123 voltl |= TYPE_VOLATILE (el_type);
14124 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14126 return set_die_type (die, base_type, cu);
14129 static struct type *
14130 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14132 struct type *base_type, *cv_type;
14134 base_type = die_type (die, cu);
14136 /* The die_type call above may have already set the type for this DIE. */
14137 cv_type = get_die_type (die, cu);
14141 /* In case the const qualifier is applied to an array type, the element type
14142 is so qualified, not the array type (section 6.7.3 of C99). */
14143 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14144 return add_array_cv_type (die, cu, base_type, 1, 0);
14146 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14147 return set_die_type (die, cv_type, cu);
14150 static struct type *
14151 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14153 struct type *base_type, *cv_type;
14155 base_type = die_type (die, cu);
14157 /* The die_type call above may have already set the type for this DIE. */
14158 cv_type = get_die_type (die, cu);
14162 /* In case the volatile qualifier is applied to an array type, the
14163 element type is so qualified, not the array type (section 6.7.3
14165 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14166 return add_array_cv_type (die, cu, base_type, 0, 1);
14168 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14169 return set_die_type (die, cv_type, cu);
14172 /* Handle DW_TAG_restrict_type. */
14174 static struct type *
14175 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14177 struct type *base_type, *cv_type;
14179 base_type = die_type (die, cu);
14181 /* The die_type call above may have already set the type for this DIE. */
14182 cv_type = get_die_type (die, cu);
14186 cv_type = make_restrict_type (base_type);
14187 return set_die_type (die, cv_type, cu);
14190 /* Extract all information from a DW_TAG_string_type DIE and add to
14191 the user defined type vector. It isn't really a user defined type,
14192 but it behaves like one, with other DIE's using an AT_user_def_type
14193 attribute to reference it. */
14195 static struct type *
14196 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14198 struct objfile *objfile = cu->objfile;
14199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14200 struct type *type, *range_type, *index_type, *char_type;
14201 struct attribute *attr;
14202 unsigned int length;
14204 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14207 length = DW_UNSND (attr);
14211 /* Check for the DW_AT_byte_size attribute. */
14212 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14215 length = DW_UNSND (attr);
14223 index_type = objfile_type (objfile)->builtin_int;
14224 range_type = create_static_range_type (NULL, index_type, 1, length);
14225 char_type = language_string_char_type (cu->language_defn, gdbarch);
14226 type = create_string_type (NULL, char_type, range_type);
14228 return set_die_type (die, type, cu);
14231 /* Assuming that DIE corresponds to a function, returns nonzero
14232 if the function is prototyped. */
14235 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14237 struct attribute *attr;
14239 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14240 if (attr && (DW_UNSND (attr) != 0))
14243 /* The DWARF standard implies that the DW_AT_prototyped attribute
14244 is only meaninful for C, but the concept also extends to other
14245 languages that allow unprototyped functions (Eg: Objective C).
14246 For all other languages, assume that functions are always
14248 if (cu->language != language_c
14249 && cu->language != language_objc
14250 && cu->language != language_opencl)
14253 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14254 prototyped and unprototyped functions; default to prototyped,
14255 since that is more common in modern code (and RealView warns
14256 about unprototyped functions). */
14257 if (producer_is_realview (cu->producer))
14263 /* Handle DIES due to C code like:
14267 int (*funcp)(int a, long l);
14271 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14273 static struct type *
14274 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14276 struct objfile *objfile = cu->objfile;
14277 struct type *type; /* Type that this function returns. */
14278 struct type *ftype; /* Function that returns above type. */
14279 struct attribute *attr;
14281 type = die_type (die, cu);
14283 /* The die_type call above may have already set the type for this DIE. */
14284 ftype = get_die_type (die, cu);
14288 ftype = lookup_function_type (type);
14290 if (prototyped_function_p (die, cu))
14291 TYPE_PROTOTYPED (ftype) = 1;
14293 /* Store the calling convention in the type if it's available in
14294 the subroutine die. Otherwise set the calling convention to
14295 the default value DW_CC_normal. */
14296 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14298 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14299 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14300 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14304 /* We need to add the subroutine type to the die immediately so
14305 we don't infinitely recurse when dealing with parameters
14306 declared as the same subroutine type. */
14307 set_die_type (die, ftype, cu);
14309 if (die->child != NULL)
14311 struct type *void_type = objfile_type (objfile)->builtin_void;
14312 struct die_info *child_die;
14313 int nparams, iparams;
14315 /* Count the number of parameters.
14316 FIXME: GDB currently ignores vararg functions, but knows about
14317 vararg member functions. */
14319 child_die = die->child;
14320 while (child_die && child_die->tag)
14322 if (child_die->tag == DW_TAG_formal_parameter)
14324 else if (child_die->tag == DW_TAG_unspecified_parameters)
14325 TYPE_VARARGS (ftype) = 1;
14326 child_die = sibling_die (child_die);
14329 /* Allocate storage for parameters and fill them in. */
14330 TYPE_NFIELDS (ftype) = nparams;
14331 TYPE_FIELDS (ftype) = (struct field *)
14332 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14334 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14335 even if we error out during the parameters reading below. */
14336 for (iparams = 0; iparams < nparams; iparams++)
14337 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14340 child_die = die->child;
14341 while (child_die && child_die->tag)
14343 if (child_die->tag == DW_TAG_formal_parameter)
14345 struct type *arg_type;
14347 /* DWARF version 2 has no clean way to discern C++
14348 static and non-static member functions. G++ helps
14349 GDB by marking the first parameter for non-static
14350 member functions (which is the this pointer) as
14351 artificial. We pass this information to
14352 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14354 DWARF version 3 added DW_AT_object_pointer, which GCC
14355 4.5 does not yet generate. */
14356 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14358 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14361 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14363 /* GCC/43521: In java, the formal parameter
14364 "this" is sometimes not marked with DW_AT_artificial. */
14365 if (cu->language == language_java)
14367 const char *name = dwarf2_name (child_die, cu);
14369 if (name && !strcmp (name, "this"))
14370 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14373 arg_type = die_type (child_die, cu);
14375 /* RealView does not mark THIS as const, which the testsuite
14376 expects. GCC marks THIS as const in method definitions,
14377 but not in the class specifications (GCC PR 43053). */
14378 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14379 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14382 struct dwarf2_cu *arg_cu = cu;
14383 const char *name = dwarf2_name (child_die, cu);
14385 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14388 /* If the compiler emits this, use it. */
14389 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14392 else if (name && strcmp (name, "this") == 0)
14393 /* Function definitions will have the argument names. */
14395 else if (name == NULL && iparams == 0)
14396 /* Declarations may not have the names, so like
14397 elsewhere in GDB, assume an artificial first
14398 argument is "this". */
14402 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14406 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14409 child_die = sibling_die (child_die);
14416 static struct type *
14417 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14419 struct objfile *objfile = cu->objfile;
14420 const char *name = NULL;
14421 struct type *this_type, *target_type;
14423 name = dwarf2_full_name (NULL, die, cu);
14424 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14425 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14426 TYPE_NAME (this_type) = name;
14427 set_die_type (die, this_type, cu);
14428 target_type = die_type (die, cu);
14429 if (target_type != this_type)
14430 TYPE_TARGET_TYPE (this_type) = target_type;
14433 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14434 spec and cause infinite loops in GDB. */
14435 complaint (&symfile_complaints,
14436 _("Self-referential DW_TAG_typedef "
14437 "- DIE at 0x%x [in module %s]"),
14438 die->offset.sect_off, objfile_name (objfile));
14439 TYPE_TARGET_TYPE (this_type) = NULL;
14444 /* Find a representation of a given base type and install
14445 it in the TYPE field of the die. */
14447 static struct type *
14448 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14450 struct objfile *objfile = cu->objfile;
14452 struct attribute *attr;
14453 int encoding = 0, size = 0;
14455 enum type_code code = TYPE_CODE_INT;
14456 int type_flags = 0;
14457 struct type *target_type = NULL;
14459 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14462 encoding = DW_UNSND (attr);
14464 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14467 size = DW_UNSND (attr);
14469 name = dwarf2_name (die, cu);
14472 complaint (&symfile_complaints,
14473 _("DW_AT_name missing from DW_TAG_base_type"));
14478 case DW_ATE_address:
14479 /* Turn DW_ATE_address into a void * pointer. */
14480 code = TYPE_CODE_PTR;
14481 type_flags |= TYPE_FLAG_UNSIGNED;
14482 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14484 case DW_ATE_boolean:
14485 code = TYPE_CODE_BOOL;
14486 type_flags |= TYPE_FLAG_UNSIGNED;
14488 case DW_ATE_complex_float:
14489 code = TYPE_CODE_COMPLEX;
14490 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14492 case DW_ATE_decimal_float:
14493 code = TYPE_CODE_DECFLOAT;
14496 code = TYPE_CODE_FLT;
14498 case DW_ATE_signed:
14500 case DW_ATE_unsigned:
14501 type_flags |= TYPE_FLAG_UNSIGNED;
14502 if (cu->language == language_fortran
14504 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14505 code = TYPE_CODE_CHAR;
14507 case DW_ATE_signed_char:
14508 if (cu->language == language_ada || cu->language == language_m2
14509 || cu->language == language_pascal
14510 || cu->language == language_fortran)
14511 code = TYPE_CODE_CHAR;
14513 case DW_ATE_unsigned_char:
14514 if (cu->language == language_ada || cu->language == language_m2
14515 || cu->language == language_pascal
14516 || cu->language == language_fortran)
14517 code = TYPE_CODE_CHAR;
14518 type_flags |= TYPE_FLAG_UNSIGNED;
14521 /* We just treat this as an integer and then recognize the
14522 type by name elsewhere. */
14526 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14527 dwarf_type_encoding_name (encoding));
14531 type = init_type (code, size, type_flags, NULL, objfile);
14532 TYPE_NAME (type) = name;
14533 TYPE_TARGET_TYPE (type) = target_type;
14535 if (name && strcmp (name, "char") == 0)
14536 TYPE_NOSIGN (type) = 1;
14538 return set_die_type (die, type, cu);
14541 /* Parse dwarf attribute if it's a block, reference or constant and put the
14542 resulting value of the attribute into struct bound_prop.
14543 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14546 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14547 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14549 struct dwarf2_property_baton *baton;
14550 struct obstack *obstack = &cu->objfile->objfile_obstack;
14552 if (attr == NULL || prop == NULL)
14555 if (attr_form_is_block (attr))
14557 baton = obstack_alloc (obstack, sizeof (*baton));
14558 baton->referenced_type = NULL;
14559 baton->locexpr.per_cu = cu->per_cu;
14560 baton->locexpr.size = DW_BLOCK (attr)->size;
14561 baton->locexpr.data = DW_BLOCK (attr)->data;
14562 prop->data.baton = baton;
14563 prop->kind = PROP_LOCEXPR;
14564 gdb_assert (prop->data.baton != NULL);
14566 else if (attr_form_is_ref (attr))
14568 struct dwarf2_cu *target_cu = cu;
14569 struct die_info *target_die;
14570 struct attribute *target_attr;
14572 target_die = follow_die_ref (die, attr, &target_cu);
14573 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14574 if (target_attr == NULL)
14577 if (attr_form_is_section_offset (target_attr))
14579 baton = obstack_alloc (obstack, sizeof (*baton));
14580 baton->referenced_type = die_type (target_die, target_cu);
14581 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14582 prop->data.baton = baton;
14583 prop->kind = PROP_LOCLIST;
14584 gdb_assert (prop->data.baton != NULL);
14586 else if (attr_form_is_block (target_attr))
14588 baton = obstack_alloc (obstack, sizeof (*baton));
14589 baton->referenced_type = die_type (target_die, target_cu);
14590 baton->locexpr.per_cu = cu->per_cu;
14591 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14592 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14593 prop->data.baton = baton;
14594 prop->kind = PROP_LOCEXPR;
14595 gdb_assert (prop->data.baton != NULL);
14599 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14600 "dynamic property");
14604 else if (attr_form_is_constant (attr))
14606 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14607 prop->kind = PROP_CONST;
14611 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14612 dwarf2_name (die, cu));
14619 /* Read the given DW_AT_subrange DIE. */
14621 static struct type *
14622 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14624 struct type *base_type, *orig_base_type;
14625 struct type *range_type;
14626 struct attribute *attr;
14627 struct dynamic_prop low, high;
14628 int low_default_is_valid;
14629 int high_bound_is_count = 0;
14631 LONGEST negative_mask;
14633 orig_base_type = die_type (die, cu);
14634 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14635 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14636 creating the range type, but we use the result of check_typedef
14637 when examining properties of the type. */
14638 base_type = check_typedef (orig_base_type);
14640 /* The die_type call above may have already set the type for this DIE. */
14641 range_type = get_die_type (die, cu);
14645 low.kind = PROP_CONST;
14646 high.kind = PROP_CONST;
14647 high.data.const_val = 0;
14649 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14650 omitting DW_AT_lower_bound. */
14651 switch (cu->language)
14654 case language_cplus:
14655 low.data.const_val = 0;
14656 low_default_is_valid = 1;
14658 case language_fortran:
14659 low.data.const_val = 1;
14660 low_default_is_valid = 1;
14663 case language_java:
14664 case language_objc:
14665 low.data.const_val = 0;
14666 low_default_is_valid = (cu->header.version >= 4);
14670 case language_pascal:
14671 low.data.const_val = 1;
14672 low_default_is_valid = (cu->header.version >= 4);
14675 low.data.const_val = 0;
14676 low_default_is_valid = 0;
14680 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14682 attr_to_dynamic_prop (attr, die, cu, &low);
14683 else if (!low_default_is_valid)
14684 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14685 "- DIE at 0x%x [in module %s]"),
14686 die->offset.sect_off, objfile_name (cu->objfile));
14688 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14689 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14691 attr = dwarf2_attr (die, DW_AT_count, cu);
14692 if (attr_to_dynamic_prop (attr, die, cu, &high))
14694 /* If bounds are constant do the final calculation here. */
14695 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14696 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14698 high_bound_is_count = 1;
14702 /* Dwarf-2 specifications explicitly allows to create subrange types
14703 without specifying a base type.
14704 In that case, the base type must be set to the type of
14705 the lower bound, upper bound or count, in that order, if any of these
14706 three attributes references an object that has a type.
14707 If no base type is found, the Dwarf-2 specifications say that
14708 a signed integer type of size equal to the size of an address should
14710 For the following C code: `extern char gdb_int [];'
14711 GCC produces an empty range DIE.
14712 FIXME: muller/2010-05-28: Possible references to object for low bound,
14713 high bound or count are not yet handled by this code. */
14714 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14716 struct objfile *objfile = cu->objfile;
14717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14718 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14719 struct type *int_type = objfile_type (objfile)->builtin_int;
14721 /* Test "int", "long int", and "long long int" objfile types,
14722 and select the first one having a size above or equal to the
14723 architecture address size. */
14724 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14725 base_type = int_type;
14728 int_type = objfile_type (objfile)->builtin_long;
14729 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14730 base_type = int_type;
14733 int_type = objfile_type (objfile)->builtin_long_long;
14734 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14735 base_type = int_type;
14740 /* Normally, the DWARF producers are expected to use a signed
14741 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14742 But this is unfortunately not always the case, as witnessed
14743 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14744 is used instead. To work around that ambiguity, we treat
14745 the bounds as signed, and thus sign-extend their values, when
14746 the base type is signed. */
14748 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14749 if (low.kind == PROP_CONST
14750 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14751 low.data.const_val |= negative_mask;
14752 if (high.kind == PROP_CONST
14753 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14754 high.data.const_val |= negative_mask;
14756 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14758 if (high_bound_is_count)
14759 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14761 /* Ada expects an empty array on no boundary attributes. */
14762 if (attr == NULL && cu->language != language_ada)
14763 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14765 name = dwarf2_name (die, cu);
14767 TYPE_NAME (range_type) = name;
14769 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14771 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14773 set_die_type (die, range_type, cu);
14775 /* set_die_type should be already done. */
14776 set_descriptive_type (range_type, die, cu);
14781 static struct type *
14782 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14786 /* For now, we only support the C meaning of an unspecified type: void. */
14788 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14789 TYPE_NAME (type) = dwarf2_name (die, cu);
14791 return set_die_type (die, type, cu);
14794 /* Read a single die and all its descendents. Set the die's sibling
14795 field to NULL; set other fields in the die correctly, and set all
14796 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14797 location of the info_ptr after reading all of those dies. PARENT
14798 is the parent of the die in question. */
14800 static struct die_info *
14801 read_die_and_children (const struct die_reader_specs *reader,
14802 const gdb_byte *info_ptr,
14803 const gdb_byte **new_info_ptr,
14804 struct die_info *parent)
14806 struct die_info *die;
14807 const gdb_byte *cur_ptr;
14810 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14813 *new_info_ptr = cur_ptr;
14816 store_in_ref_table (die, reader->cu);
14819 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14823 *new_info_ptr = cur_ptr;
14826 die->sibling = NULL;
14827 die->parent = parent;
14831 /* Read a die, all of its descendents, and all of its siblings; set
14832 all of the fields of all of the dies correctly. Arguments are as
14833 in read_die_and_children. */
14835 static struct die_info *
14836 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14837 const gdb_byte *info_ptr,
14838 const gdb_byte **new_info_ptr,
14839 struct die_info *parent)
14841 struct die_info *first_die, *last_sibling;
14842 const gdb_byte *cur_ptr;
14844 cur_ptr = info_ptr;
14845 first_die = last_sibling = NULL;
14849 struct die_info *die
14850 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14854 *new_info_ptr = cur_ptr;
14861 last_sibling->sibling = die;
14863 last_sibling = die;
14867 /* Read a die, all of its descendents, and all of its siblings; set
14868 all of the fields of all of the dies correctly. Arguments are as
14869 in read_die_and_children.
14870 This the main entry point for reading a DIE and all its children. */
14872 static struct die_info *
14873 read_die_and_siblings (const struct die_reader_specs *reader,
14874 const gdb_byte *info_ptr,
14875 const gdb_byte **new_info_ptr,
14876 struct die_info *parent)
14878 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14879 new_info_ptr, parent);
14881 if (dwarf2_die_debug)
14883 fprintf_unfiltered (gdb_stdlog,
14884 "Read die from %s@0x%x of %s:\n",
14885 get_section_name (reader->die_section),
14886 (unsigned) (info_ptr - reader->die_section->buffer),
14887 bfd_get_filename (reader->abfd));
14888 dump_die (die, dwarf2_die_debug);
14894 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14896 The caller is responsible for filling in the extra attributes
14897 and updating (*DIEP)->num_attrs.
14898 Set DIEP to point to a newly allocated die with its information,
14899 except for its child, sibling, and parent fields.
14900 Set HAS_CHILDREN to tell whether the die has children or not. */
14902 static const gdb_byte *
14903 read_full_die_1 (const struct die_reader_specs *reader,
14904 struct die_info **diep, const gdb_byte *info_ptr,
14905 int *has_children, int num_extra_attrs)
14907 unsigned int abbrev_number, bytes_read, i;
14908 sect_offset offset;
14909 struct abbrev_info *abbrev;
14910 struct die_info *die;
14911 struct dwarf2_cu *cu = reader->cu;
14912 bfd *abfd = reader->abfd;
14914 offset.sect_off = info_ptr - reader->buffer;
14915 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14916 info_ptr += bytes_read;
14917 if (!abbrev_number)
14924 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14926 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14928 bfd_get_filename (abfd));
14930 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14931 die->offset = offset;
14932 die->tag = abbrev->tag;
14933 die->abbrev = abbrev_number;
14935 /* Make the result usable.
14936 The caller needs to update num_attrs after adding the extra
14938 die->num_attrs = abbrev->num_attrs;
14940 for (i = 0; i < abbrev->num_attrs; ++i)
14941 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14945 *has_children = abbrev->has_children;
14949 /* Read a die and all its attributes.
14950 Set DIEP to point to a newly allocated die with its information,
14951 except for its child, sibling, and parent fields.
14952 Set HAS_CHILDREN to tell whether the die has children or not. */
14954 static const gdb_byte *
14955 read_full_die (const struct die_reader_specs *reader,
14956 struct die_info **diep, const gdb_byte *info_ptr,
14959 const gdb_byte *result;
14961 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14963 if (dwarf2_die_debug)
14965 fprintf_unfiltered (gdb_stdlog,
14966 "Read die from %s@0x%x of %s:\n",
14967 get_section_name (reader->die_section),
14968 (unsigned) (info_ptr - reader->die_section->buffer),
14969 bfd_get_filename (reader->abfd));
14970 dump_die (*diep, dwarf2_die_debug);
14976 /* Abbreviation tables.
14978 In DWARF version 2, the description of the debugging information is
14979 stored in a separate .debug_abbrev section. Before we read any
14980 dies from a section we read in all abbreviations and install them
14981 in a hash table. */
14983 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14985 static struct abbrev_info *
14986 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14988 struct abbrev_info *abbrev;
14990 abbrev = (struct abbrev_info *)
14991 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14992 memset (abbrev, 0, sizeof (struct abbrev_info));
14996 /* Add an abbreviation to the table. */
14999 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15000 unsigned int abbrev_number,
15001 struct abbrev_info *abbrev)
15003 unsigned int hash_number;
15005 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15006 abbrev->next = abbrev_table->abbrevs[hash_number];
15007 abbrev_table->abbrevs[hash_number] = abbrev;
15010 /* Look up an abbrev in the table.
15011 Returns NULL if the abbrev is not found. */
15013 static struct abbrev_info *
15014 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15015 unsigned int abbrev_number)
15017 unsigned int hash_number;
15018 struct abbrev_info *abbrev;
15020 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15021 abbrev = abbrev_table->abbrevs[hash_number];
15025 if (abbrev->number == abbrev_number)
15027 abbrev = abbrev->next;
15032 /* Read in an abbrev table. */
15034 static struct abbrev_table *
15035 abbrev_table_read_table (struct dwarf2_section_info *section,
15036 sect_offset offset)
15038 struct objfile *objfile = dwarf2_per_objfile->objfile;
15039 bfd *abfd = get_section_bfd_owner (section);
15040 struct abbrev_table *abbrev_table;
15041 const gdb_byte *abbrev_ptr;
15042 struct abbrev_info *cur_abbrev;
15043 unsigned int abbrev_number, bytes_read, abbrev_name;
15044 unsigned int abbrev_form;
15045 struct attr_abbrev *cur_attrs;
15046 unsigned int allocated_attrs;
15048 abbrev_table = XNEW (struct abbrev_table);
15049 abbrev_table->offset = offset;
15050 obstack_init (&abbrev_table->abbrev_obstack);
15051 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15053 * sizeof (struct abbrev_info *)));
15054 memset (abbrev_table->abbrevs, 0,
15055 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15057 dwarf2_read_section (objfile, section);
15058 abbrev_ptr = section->buffer + offset.sect_off;
15059 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15060 abbrev_ptr += bytes_read;
15062 allocated_attrs = ATTR_ALLOC_CHUNK;
15063 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15065 /* Loop until we reach an abbrev number of 0. */
15066 while (abbrev_number)
15068 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15070 /* read in abbrev header */
15071 cur_abbrev->number = abbrev_number;
15072 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15073 abbrev_ptr += bytes_read;
15074 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15077 /* now read in declarations */
15078 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15079 abbrev_ptr += bytes_read;
15080 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 while (abbrev_name)
15084 if (cur_abbrev->num_attrs == allocated_attrs)
15086 allocated_attrs += ATTR_ALLOC_CHUNK;
15088 = xrealloc (cur_attrs, (allocated_attrs
15089 * sizeof (struct attr_abbrev)));
15092 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15093 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15094 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15095 abbrev_ptr += bytes_read;
15096 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15100 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15101 (cur_abbrev->num_attrs
15102 * sizeof (struct attr_abbrev)));
15103 memcpy (cur_abbrev->attrs, cur_attrs,
15104 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15106 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15108 /* Get next abbreviation.
15109 Under Irix6 the abbreviations for a compilation unit are not
15110 always properly terminated with an abbrev number of 0.
15111 Exit loop if we encounter an abbreviation which we have
15112 already read (which means we are about to read the abbreviations
15113 for the next compile unit) or if the end of the abbreviation
15114 table is reached. */
15115 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15117 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15118 abbrev_ptr += bytes_read;
15119 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15124 return abbrev_table;
15127 /* Free the resources held by ABBREV_TABLE. */
15130 abbrev_table_free (struct abbrev_table *abbrev_table)
15132 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15133 xfree (abbrev_table);
15136 /* Same as abbrev_table_free but as a cleanup.
15137 We pass in a pointer to the pointer to the table so that we can
15138 set the pointer to NULL when we're done. It also simplifies
15139 build_type_psymtabs_1. */
15142 abbrev_table_free_cleanup (void *table_ptr)
15144 struct abbrev_table **abbrev_table_ptr = table_ptr;
15146 if (*abbrev_table_ptr != NULL)
15147 abbrev_table_free (*abbrev_table_ptr);
15148 *abbrev_table_ptr = NULL;
15151 /* Read the abbrev table for CU from ABBREV_SECTION. */
15154 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15155 struct dwarf2_section_info *abbrev_section)
15158 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15161 /* Release the memory used by the abbrev table for a compilation unit. */
15164 dwarf2_free_abbrev_table (void *ptr_to_cu)
15166 struct dwarf2_cu *cu = ptr_to_cu;
15168 if (cu->abbrev_table != NULL)
15169 abbrev_table_free (cu->abbrev_table);
15170 /* Set this to NULL so that we SEGV if we try to read it later,
15171 and also because free_comp_unit verifies this is NULL. */
15172 cu->abbrev_table = NULL;
15175 /* Returns nonzero if TAG represents a type that we might generate a partial
15179 is_type_tag_for_partial (int tag)
15184 /* Some types that would be reasonable to generate partial symbols for,
15185 that we don't at present. */
15186 case DW_TAG_array_type:
15187 case DW_TAG_file_type:
15188 case DW_TAG_ptr_to_member_type:
15189 case DW_TAG_set_type:
15190 case DW_TAG_string_type:
15191 case DW_TAG_subroutine_type:
15193 case DW_TAG_base_type:
15194 case DW_TAG_class_type:
15195 case DW_TAG_interface_type:
15196 case DW_TAG_enumeration_type:
15197 case DW_TAG_structure_type:
15198 case DW_TAG_subrange_type:
15199 case DW_TAG_typedef:
15200 case DW_TAG_union_type:
15207 /* Load all DIEs that are interesting for partial symbols into memory. */
15209 static struct partial_die_info *
15210 load_partial_dies (const struct die_reader_specs *reader,
15211 const gdb_byte *info_ptr, int building_psymtab)
15213 struct dwarf2_cu *cu = reader->cu;
15214 struct objfile *objfile = cu->objfile;
15215 struct partial_die_info *part_die;
15216 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15217 struct abbrev_info *abbrev;
15218 unsigned int bytes_read;
15219 unsigned int load_all = 0;
15220 int nesting_level = 1;
15225 gdb_assert (cu->per_cu != NULL);
15226 if (cu->per_cu->load_all_dies)
15230 = htab_create_alloc_ex (cu->header.length / 12,
15234 &cu->comp_unit_obstack,
15235 hashtab_obstack_allocate,
15236 dummy_obstack_deallocate);
15238 part_die = obstack_alloc (&cu->comp_unit_obstack,
15239 sizeof (struct partial_die_info));
15243 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15245 /* A NULL abbrev means the end of a series of children. */
15246 if (abbrev == NULL)
15248 if (--nesting_level == 0)
15250 /* PART_DIE was probably the last thing allocated on the
15251 comp_unit_obstack, so we could call obstack_free
15252 here. We don't do that because the waste is small,
15253 and will be cleaned up when we're done with this
15254 compilation unit. This way, we're also more robust
15255 against other users of the comp_unit_obstack. */
15258 info_ptr += bytes_read;
15259 last_die = parent_die;
15260 parent_die = parent_die->die_parent;
15264 /* Check for template arguments. We never save these; if
15265 they're seen, we just mark the parent, and go on our way. */
15266 if (parent_die != NULL
15267 && cu->language == language_cplus
15268 && (abbrev->tag == DW_TAG_template_type_param
15269 || abbrev->tag == DW_TAG_template_value_param))
15271 parent_die->has_template_arguments = 1;
15275 /* We don't need a partial DIE for the template argument. */
15276 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15281 /* We only recurse into c++ subprograms looking for template arguments.
15282 Skip their other children. */
15284 && cu->language == language_cplus
15285 && parent_die != NULL
15286 && parent_die->tag == DW_TAG_subprogram)
15288 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15292 /* Check whether this DIE is interesting enough to save. Normally
15293 we would not be interested in members here, but there may be
15294 later variables referencing them via DW_AT_specification (for
15295 static members). */
15297 && !is_type_tag_for_partial (abbrev->tag)
15298 && abbrev->tag != DW_TAG_constant
15299 && abbrev->tag != DW_TAG_enumerator
15300 && abbrev->tag != DW_TAG_subprogram
15301 && abbrev->tag != DW_TAG_lexical_block
15302 && abbrev->tag != DW_TAG_variable
15303 && abbrev->tag != DW_TAG_namespace
15304 && abbrev->tag != DW_TAG_module
15305 && abbrev->tag != DW_TAG_member
15306 && abbrev->tag != DW_TAG_imported_unit
15307 && abbrev->tag != DW_TAG_imported_declaration)
15309 /* Otherwise we skip to the next sibling, if any. */
15310 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15314 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15317 /* This two-pass algorithm for processing partial symbols has a
15318 high cost in cache pressure. Thus, handle some simple cases
15319 here which cover the majority of C partial symbols. DIEs
15320 which neither have specification tags in them, nor could have
15321 specification tags elsewhere pointing at them, can simply be
15322 processed and discarded.
15324 This segment is also optional; scan_partial_symbols and
15325 add_partial_symbol will handle these DIEs if we chain
15326 them in normally. When compilers which do not emit large
15327 quantities of duplicate debug information are more common,
15328 this code can probably be removed. */
15330 /* Any complete simple types at the top level (pretty much all
15331 of them, for a language without namespaces), can be processed
15333 if (parent_die == NULL
15334 && part_die->has_specification == 0
15335 && part_die->is_declaration == 0
15336 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15337 || part_die->tag == DW_TAG_base_type
15338 || part_die->tag == DW_TAG_subrange_type))
15340 if (building_psymtab && part_die->name != NULL)
15341 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15342 VAR_DOMAIN, LOC_TYPEDEF,
15343 &objfile->static_psymbols,
15344 0, (CORE_ADDR) 0, cu->language, objfile);
15345 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15349 /* The exception for DW_TAG_typedef with has_children above is
15350 a workaround of GCC PR debug/47510. In the case of this complaint
15351 type_name_no_tag_or_error will error on such types later.
15353 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15354 it could not find the child DIEs referenced later, this is checked
15355 above. In correct DWARF DW_TAG_typedef should have no children. */
15357 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15358 complaint (&symfile_complaints,
15359 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15360 "- DIE at 0x%x [in module %s]"),
15361 part_die->offset.sect_off, objfile_name (objfile));
15363 /* If we're at the second level, and we're an enumerator, and
15364 our parent has no specification (meaning possibly lives in a
15365 namespace elsewhere), then we can add the partial symbol now
15366 instead of queueing it. */
15367 if (part_die->tag == DW_TAG_enumerator
15368 && parent_die != NULL
15369 && parent_die->die_parent == NULL
15370 && parent_die->tag == DW_TAG_enumeration_type
15371 && parent_die->has_specification == 0)
15373 if (part_die->name == NULL)
15374 complaint (&symfile_complaints,
15375 _("malformed enumerator DIE ignored"));
15376 else if (building_psymtab)
15377 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15378 VAR_DOMAIN, LOC_CONST,
15379 (cu->language == language_cplus
15380 || cu->language == language_java)
15381 ? &objfile->global_psymbols
15382 : &objfile->static_psymbols,
15383 0, (CORE_ADDR) 0, cu->language, objfile);
15385 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15389 /* We'll save this DIE so link it in. */
15390 part_die->die_parent = parent_die;
15391 part_die->die_sibling = NULL;
15392 part_die->die_child = NULL;
15394 if (last_die && last_die == parent_die)
15395 last_die->die_child = part_die;
15397 last_die->die_sibling = part_die;
15399 last_die = part_die;
15401 if (first_die == NULL)
15402 first_die = part_die;
15404 /* Maybe add the DIE to the hash table. Not all DIEs that we
15405 find interesting need to be in the hash table, because we
15406 also have the parent/sibling/child chains; only those that we
15407 might refer to by offset later during partial symbol reading.
15409 For now this means things that might have be the target of a
15410 DW_AT_specification, DW_AT_abstract_origin, or
15411 DW_AT_extension. DW_AT_extension will refer only to
15412 namespaces; DW_AT_abstract_origin refers to functions (and
15413 many things under the function DIE, but we do not recurse
15414 into function DIEs during partial symbol reading) and
15415 possibly variables as well; DW_AT_specification refers to
15416 declarations. Declarations ought to have the DW_AT_declaration
15417 flag. It happens that GCC forgets to put it in sometimes, but
15418 only for functions, not for types.
15420 Adding more things than necessary to the hash table is harmless
15421 except for the performance cost. Adding too few will result in
15422 wasted time in find_partial_die, when we reread the compilation
15423 unit with load_all_dies set. */
15426 || abbrev->tag == DW_TAG_constant
15427 || abbrev->tag == DW_TAG_subprogram
15428 || abbrev->tag == DW_TAG_variable
15429 || abbrev->tag == DW_TAG_namespace
15430 || part_die->is_declaration)
15434 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15435 part_die->offset.sect_off, INSERT);
15439 part_die = obstack_alloc (&cu->comp_unit_obstack,
15440 sizeof (struct partial_die_info));
15442 /* For some DIEs we want to follow their children (if any). For C
15443 we have no reason to follow the children of structures; for other
15444 languages we have to, so that we can get at method physnames
15445 to infer fully qualified class names, for DW_AT_specification,
15446 and for C++ template arguments. For C++, we also look one level
15447 inside functions to find template arguments (if the name of the
15448 function does not already contain the template arguments).
15450 For Ada, we need to scan the children of subprograms and lexical
15451 blocks as well because Ada allows the definition of nested
15452 entities that could be interesting for the debugger, such as
15453 nested subprograms for instance. */
15454 if (last_die->has_children
15456 || last_die->tag == DW_TAG_namespace
15457 || last_die->tag == DW_TAG_module
15458 || last_die->tag == DW_TAG_enumeration_type
15459 || (cu->language == language_cplus
15460 && last_die->tag == DW_TAG_subprogram
15461 && (last_die->name == NULL
15462 || strchr (last_die->name, '<') == NULL))
15463 || (cu->language != language_c
15464 && (last_die->tag == DW_TAG_class_type
15465 || last_die->tag == DW_TAG_interface_type
15466 || last_die->tag == DW_TAG_structure_type
15467 || last_die->tag == DW_TAG_union_type))
15468 || (cu->language == language_ada
15469 && (last_die->tag == DW_TAG_subprogram
15470 || last_die->tag == DW_TAG_lexical_block))))
15473 parent_die = last_die;
15477 /* Otherwise we skip to the next sibling, if any. */
15478 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15480 /* Back to the top, do it again. */
15484 /* Read a minimal amount of information into the minimal die structure. */
15486 static const gdb_byte *
15487 read_partial_die (const struct die_reader_specs *reader,
15488 struct partial_die_info *part_die,
15489 struct abbrev_info *abbrev, unsigned int abbrev_len,
15490 const gdb_byte *info_ptr)
15492 struct dwarf2_cu *cu = reader->cu;
15493 struct objfile *objfile = cu->objfile;
15494 const gdb_byte *buffer = reader->buffer;
15496 struct attribute attr;
15497 int has_low_pc_attr = 0;
15498 int has_high_pc_attr = 0;
15499 int high_pc_relative = 0;
15501 memset (part_die, 0, sizeof (struct partial_die_info));
15503 part_die->offset.sect_off = info_ptr - buffer;
15505 info_ptr += abbrev_len;
15507 if (abbrev == NULL)
15510 part_die->tag = abbrev->tag;
15511 part_die->has_children = abbrev->has_children;
15513 for (i = 0; i < abbrev->num_attrs; ++i)
15515 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15517 /* Store the data if it is of an attribute we want to keep in a
15518 partial symbol table. */
15522 switch (part_die->tag)
15524 case DW_TAG_compile_unit:
15525 case DW_TAG_partial_unit:
15526 case DW_TAG_type_unit:
15527 /* Compilation units have a DW_AT_name that is a filename, not
15528 a source language identifier. */
15529 case DW_TAG_enumeration_type:
15530 case DW_TAG_enumerator:
15531 /* These tags always have simple identifiers already; no need
15532 to canonicalize them. */
15533 part_die->name = DW_STRING (&attr);
15537 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15538 &objfile->per_bfd->storage_obstack);
15542 case DW_AT_linkage_name:
15543 case DW_AT_MIPS_linkage_name:
15544 /* Note that both forms of linkage name might appear. We
15545 assume they will be the same, and we only store the last
15547 if (cu->language == language_ada)
15548 part_die->name = DW_STRING (&attr);
15549 part_die->linkage_name = DW_STRING (&attr);
15552 has_low_pc_attr = 1;
15553 part_die->lowpc = attr_value_as_address (&attr);
15555 case DW_AT_high_pc:
15556 has_high_pc_attr = 1;
15557 part_die->highpc = attr_value_as_address (&attr);
15558 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15559 high_pc_relative = 1;
15561 case DW_AT_location:
15562 /* Support the .debug_loc offsets. */
15563 if (attr_form_is_block (&attr))
15565 part_die->d.locdesc = DW_BLOCK (&attr);
15567 else if (attr_form_is_section_offset (&attr))
15569 dwarf2_complex_location_expr_complaint ();
15573 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15574 "partial symbol information");
15577 case DW_AT_external:
15578 part_die->is_external = DW_UNSND (&attr);
15580 case DW_AT_declaration:
15581 part_die->is_declaration = DW_UNSND (&attr);
15584 part_die->has_type = 1;
15586 case DW_AT_abstract_origin:
15587 case DW_AT_specification:
15588 case DW_AT_extension:
15589 part_die->has_specification = 1;
15590 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15591 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15592 || cu->per_cu->is_dwz);
15594 case DW_AT_sibling:
15595 /* Ignore absolute siblings, they might point outside of
15596 the current compile unit. */
15597 if (attr.form == DW_FORM_ref_addr)
15598 complaint (&symfile_complaints,
15599 _("ignoring absolute DW_AT_sibling"));
15602 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15603 const gdb_byte *sibling_ptr = buffer + off;
15605 if (sibling_ptr < info_ptr)
15606 complaint (&symfile_complaints,
15607 _("DW_AT_sibling points backwards"));
15608 else if (sibling_ptr > reader->buffer_end)
15609 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15611 part_die->sibling = sibling_ptr;
15614 case DW_AT_byte_size:
15615 part_die->has_byte_size = 1;
15617 case DW_AT_calling_convention:
15618 /* DWARF doesn't provide a way to identify a program's source-level
15619 entry point. DW_AT_calling_convention attributes are only meant
15620 to describe functions' calling conventions.
15622 However, because it's a necessary piece of information in
15623 Fortran, and because DW_CC_program is the only piece of debugging
15624 information whose definition refers to a 'main program' at all,
15625 several compilers have begun marking Fortran main programs with
15626 DW_CC_program --- even when those functions use the standard
15627 calling conventions.
15629 So until DWARF specifies a way to provide this information and
15630 compilers pick up the new representation, we'll support this
15632 if (DW_UNSND (&attr) == DW_CC_program
15633 && cu->language == language_fortran)
15634 set_objfile_main_name (objfile, part_die->name, language_fortran);
15637 if (DW_UNSND (&attr) == DW_INL_inlined
15638 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15639 part_die->may_be_inlined = 1;
15643 if (part_die->tag == DW_TAG_imported_unit)
15645 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15646 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15647 || cu->per_cu->is_dwz);
15656 if (high_pc_relative)
15657 part_die->highpc += part_die->lowpc;
15659 if (has_low_pc_attr && has_high_pc_attr)
15661 /* When using the GNU linker, .gnu.linkonce. sections are used to
15662 eliminate duplicate copies of functions and vtables and such.
15663 The linker will arbitrarily choose one and discard the others.
15664 The AT_*_pc values for such functions refer to local labels in
15665 these sections. If the section from that file was discarded, the
15666 labels are not in the output, so the relocs get a value of 0.
15667 If this is a discarded function, mark the pc bounds as invalid,
15668 so that GDB will ignore it. */
15669 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15671 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15673 complaint (&symfile_complaints,
15674 _("DW_AT_low_pc %s is zero "
15675 "for DIE at 0x%x [in module %s]"),
15676 paddress (gdbarch, part_die->lowpc),
15677 part_die->offset.sect_off, objfile_name (objfile));
15679 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15680 else if (part_die->lowpc >= part_die->highpc)
15682 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15684 complaint (&symfile_complaints,
15685 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15686 "for DIE at 0x%x [in module %s]"),
15687 paddress (gdbarch, part_die->lowpc),
15688 paddress (gdbarch, part_die->highpc),
15689 part_die->offset.sect_off, objfile_name (objfile));
15692 part_die->has_pc_info = 1;
15698 /* Find a cached partial DIE at OFFSET in CU. */
15700 static struct partial_die_info *
15701 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15703 struct partial_die_info *lookup_die = NULL;
15704 struct partial_die_info part_die;
15706 part_die.offset = offset;
15707 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15713 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15714 except in the case of .debug_types DIEs which do not reference
15715 outside their CU (they do however referencing other types via
15716 DW_FORM_ref_sig8). */
15718 static struct partial_die_info *
15719 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15721 struct objfile *objfile = cu->objfile;
15722 struct dwarf2_per_cu_data *per_cu = NULL;
15723 struct partial_die_info *pd = NULL;
15725 if (offset_in_dwz == cu->per_cu->is_dwz
15726 && offset_in_cu_p (&cu->header, offset))
15728 pd = find_partial_die_in_comp_unit (offset, cu);
15731 /* We missed recording what we needed.
15732 Load all dies and try again. */
15733 per_cu = cu->per_cu;
15737 /* TUs don't reference other CUs/TUs (except via type signatures). */
15738 if (cu->per_cu->is_debug_types)
15740 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15741 " external reference to offset 0x%lx [in module %s].\n"),
15742 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15743 bfd_get_filename (objfile->obfd));
15745 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15748 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15749 load_partial_comp_unit (per_cu);
15751 per_cu->cu->last_used = 0;
15752 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15755 /* If we didn't find it, and not all dies have been loaded,
15756 load them all and try again. */
15758 if (pd == NULL && per_cu->load_all_dies == 0)
15760 per_cu->load_all_dies = 1;
15762 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15763 THIS_CU->cu may already be in use. So we can't just free it and
15764 replace its DIEs with the ones we read in. Instead, we leave those
15765 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15766 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15768 load_partial_comp_unit (per_cu);
15770 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15774 internal_error (__FILE__, __LINE__,
15775 _("could not find partial DIE 0x%x "
15776 "in cache [from module %s]\n"),
15777 offset.sect_off, bfd_get_filename (objfile->obfd));
15781 /* See if we can figure out if the class lives in a namespace. We do
15782 this by looking for a member function; its demangled name will
15783 contain namespace info, if there is any. */
15786 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15787 struct dwarf2_cu *cu)
15789 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15790 what template types look like, because the demangler
15791 frequently doesn't give the same name as the debug info. We
15792 could fix this by only using the demangled name to get the
15793 prefix (but see comment in read_structure_type). */
15795 struct partial_die_info *real_pdi;
15796 struct partial_die_info *child_pdi;
15798 /* If this DIE (this DIE's specification, if any) has a parent, then
15799 we should not do this. We'll prepend the parent's fully qualified
15800 name when we create the partial symbol. */
15802 real_pdi = struct_pdi;
15803 while (real_pdi->has_specification)
15804 real_pdi = find_partial_die (real_pdi->spec_offset,
15805 real_pdi->spec_is_dwz, cu);
15807 if (real_pdi->die_parent != NULL)
15810 for (child_pdi = struct_pdi->die_child;
15812 child_pdi = child_pdi->die_sibling)
15814 if (child_pdi->tag == DW_TAG_subprogram
15815 && child_pdi->linkage_name != NULL)
15817 char *actual_class_name
15818 = language_class_name_from_physname (cu->language_defn,
15819 child_pdi->linkage_name);
15820 if (actual_class_name != NULL)
15823 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15825 strlen (actual_class_name));
15826 xfree (actual_class_name);
15833 /* Adjust PART_DIE before generating a symbol for it. This function
15834 may set the is_external flag or change the DIE's name. */
15837 fixup_partial_die (struct partial_die_info *part_die,
15838 struct dwarf2_cu *cu)
15840 /* Once we've fixed up a die, there's no point in doing so again.
15841 This also avoids a memory leak if we were to call
15842 guess_partial_die_structure_name multiple times. */
15843 if (part_die->fixup_called)
15846 /* If we found a reference attribute and the DIE has no name, try
15847 to find a name in the referred to DIE. */
15849 if (part_die->name == NULL && part_die->has_specification)
15851 struct partial_die_info *spec_die;
15853 spec_die = find_partial_die (part_die->spec_offset,
15854 part_die->spec_is_dwz, cu);
15856 fixup_partial_die (spec_die, cu);
15858 if (spec_die->name)
15860 part_die->name = spec_die->name;
15862 /* Copy DW_AT_external attribute if it is set. */
15863 if (spec_die->is_external)
15864 part_die->is_external = spec_die->is_external;
15868 /* Set default names for some unnamed DIEs. */
15870 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15871 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15873 /* If there is no parent die to provide a namespace, and there are
15874 children, see if we can determine the namespace from their linkage
15876 if (cu->language == language_cplus
15877 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15878 && part_die->die_parent == NULL
15879 && part_die->has_children
15880 && (part_die->tag == DW_TAG_class_type
15881 || part_die->tag == DW_TAG_structure_type
15882 || part_die->tag == DW_TAG_union_type))
15883 guess_partial_die_structure_name (part_die, cu);
15885 /* GCC might emit a nameless struct or union that has a linkage
15886 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15887 if (part_die->name == NULL
15888 && (part_die->tag == DW_TAG_class_type
15889 || part_die->tag == DW_TAG_interface_type
15890 || part_die->tag == DW_TAG_structure_type
15891 || part_die->tag == DW_TAG_union_type)
15892 && part_die->linkage_name != NULL)
15896 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15901 /* Strip any leading namespaces/classes, keep only the base name.
15902 DW_AT_name for named DIEs does not contain the prefixes. */
15903 base = strrchr (demangled, ':');
15904 if (base && base > demangled && base[-1] == ':')
15910 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15911 base, strlen (base));
15916 part_die->fixup_called = 1;
15919 /* Read an attribute value described by an attribute form. */
15921 static const gdb_byte *
15922 read_attribute_value (const struct die_reader_specs *reader,
15923 struct attribute *attr, unsigned form,
15924 const gdb_byte *info_ptr)
15926 struct dwarf2_cu *cu = reader->cu;
15927 bfd *abfd = reader->abfd;
15928 struct comp_unit_head *cu_header = &cu->header;
15929 unsigned int bytes_read;
15930 struct dwarf_block *blk;
15935 case DW_FORM_ref_addr:
15936 if (cu->header.version == 2)
15937 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15939 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15940 &cu->header, &bytes_read);
15941 info_ptr += bytes_read;
15943 case DW_FORM_GNU_ref_alt:
15944 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15945 info_ptr += bytes_read;
15948 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15949 info_ptr += bytes_read;
15951 case DW_FORM_block2:
15952 blk = dwarf_alloc_block (cu);
15953 blk->size = read_2_bytes (abfd, info_ptr);
15955 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15956 info_ptr += blk->size;
15957 DW_BLOCK (attr) = blk;
15959 case DW_FORM_block4:
15960 blk = dwarf_alloc_block (cu);
15961 blk->size = read_4_bytes (abfd, info_ptr);
15963 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15964 info_ptr += blk->size;
15965 DW_BLOCK (attr) = blk;
15967 case DW_FORM_data2:
15968 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15971 case DW_FORM_data4:
15972 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15975 case DW_FORM_data8:
15976 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15979 case DW_FORM_sec_offset:
15980 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15981 info_ptr += bytes_read;
15983 case DW_FORM_string:
15984 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15985 DW_STRING_IS_CANONICAL (attr) = 0;
15986 info_ptr += bytes_read;
15989 if (!cu->per_cu->is_dwz)
15991 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15993 DW_STRING_IS_CANONICAL (attr) = 0;
15994 info_ptr += bytes_read;
15998 case DW_FORM_GNU_strp_alt:
16000 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16001 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16004 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16005 DW_STRING_IS_CANONICAL (attr) = 0;
16006 info_ptr += bytes_read;
16009 case DW_FORM_exprloc:
16010 case DW_FORM_block:
16011 blk = dwarf_alloc_block (cu);
16012 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16013 info_ptr += bytes_read;
16014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16015 info_ptr += blk->size;
16016 DW_BLOCK (attr) = blk;
16018 case DW_FORM_block1:
16019 blk = dwarf_alloc_block (cu);
16020 blk->size = read_1_byte (abfd, info_ptr);
16022 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16023 info_ptr += blk->size;
16024 DW_BLOCK (attr) = blk;
16026 case DW_FORM_data1:
16027 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16031 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16034 case DW_FORM_flag_present:
16035 DW_UNSND (attr) = 1;
16037 case DW_FORM_sdata:
16038 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16039 info_ptr += bytes_read;
16041 case DW_FORM_udata:
16042 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16043 info_ptr += bytes_read;
16046 DW_UNSND (attr) = (cu->header.offset.sect_off
16047 + read_1_byte (abfd, info_ptr));
16051 DW_UNSND (attr) = (cu->header.offset.sect_off
16052 + read_2_bytes (abfd, info_ptr));
16056 DW_UNSND (attr) = (cu->header.offset.sect_off
16057 + read_4_bytes (abfd, info_ptr));
16061 DW_UNSND (attr) = (cu->header.offset.sect_off
16062 + read_8_bytes (abfd, info_ptr));
16065 case DW_FORM_ref_sig8:
16066 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16069 case DW_FORM_ref_udata:
16070 DW_UNSND (attr) = (cu->header.offset.sect_off
16071 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16072 info_ptr += bytes_read;
16074 case DW_FORM_indirect:
16075 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16076 info_ptr += bytes_read;
16077 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16079 case DW_FORM_GNU_addr_index:
16080 if (reader->dwo_file == NULL)
16082 /* For now flag a hard error.
16083 Later we can turn this into a complaint. */
16084 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16085 dwarf_form_name (form),
16086 bfd_get_filename (abfd));
16088 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16089 info_ptr += bytes_read;
16091 case DW_FORM_GNU_str_index:
16092 if (reader->dwo_file == NULL)
16094 /* For now flag a hard error.
16095 Later we can turn this into a complaint if warranted. */
16096 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16097 dwarf_form_name (form),
16098 bfd_get_filename (abfd));
16101 ULONGEST str_index =
16102 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16104 DW_STRING (attr) = read_str_index (reader, str_index);
16105 DW_STRING_IS_CANONICAL (attr) = 0;
16106 info_ptr += bytes_read;
16110 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16111 dwarf_form_name (form),
16112 bfd_get_filename (abfd));
16116 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16117 attr->form = DW_FORM_GNU_ref_alt;
16119 /* We have seen instances where the compiler tried to emit a byte
16120 size attribute of -1 which ended up being encoded as an unsigned
16121 0xffffffff. Although 0xffffffff is technically a valid size value,
16122 an object of this size seems pretty unlikely so we can relatively
16123 safely treat these cases as if the size attribute was invalid and
16124 treat them as zero by default. */
16125 if (attr->name == DW_AT_byte_size
16126 && form == DW_FORM_data4
16127 && DW_UNSND (attr) >= 0xffffffff)
16130 (&symfile_complaints,
16131 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16132 hex_string (DW_UNSND (attr)));
16133 DW_UNSND (attr) = 0;
16139 /* Read an attribute described by an abbreviated attribute. */
16141 static const gdb_byte *
16142 read_attribute (const struct die_reader_specs *reader,
16143 struct attribute *attr, struct attr_abbrev *abbrev,
16144 const gdb_byte *info_ptr)
16146 attr->name = abbrev->name;
16147 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16150 /* Read dwarf information from a buffer. */
16152 static unsigned int
16153 read_1_byte (bfd *abfd, const gdb_byte *buf)
16155 return bfd_get_8 (abfd, buf);
16159 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16161 return bfd_get_signed_8 (abfd, buf);
16164 static unsigned int
16165 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16167 return bfd_get_16 (abfd, buf);
16171 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16173 return bfd_get_signed_16 (abfd, buf);
16176 static unsigned int
16177 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16179 return bfd_get_32 (abfd, buf);
16183 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16185 return bfd_get_signed_32 (abfd, buf);
16189 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16191 return bfd_get_64 (abfd, buf);
16195 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16196 unsigned int *bytes_read)
16198 struct comp_unit_head *cu_header = &cu->header;
16199 CORE_ADDR retval = 0;
16201 if (cu_header->signed_addr_p)
16203 switch (cu_header->addr_size)
16206 retval = bfd_get_signed_16 (abfd, buf);
16209 retval = bfd_get_signed_32 (abfd, buf);
16212 retval = bfd_get_signed_64 (abfd, buf);
16215 internal_error (__FILE__, __LINE__,
16216 _("read_address: bad switch, signed [in module %s]"),
16217 bfd_get_filename (abfd));
16222 switch (cu_header->addr_size)
16225 retval = bfd_get_16 (abfd, buf);
16228 retval = bfd_get_32 (abfd, buf);
16231 retval = bfd_get_64 (abfd, buf);
16234 internal_error (__FILE__, __LINE__,
16235 _("read_address: bad switch, "
16236 "unsigned [in module %s]"),
16237 bfd_get_filename (abfd));
16241 *bytes_read = cu_header->addr_size;
16245 /* Read the initial length from a section. The (draft) DWARF 3
16246 specification allows the initial length to take up either 4 bytes
16247 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16248 bytes describe the length and all offsets will be 8 bytes in length
16251 An older, non-standard 64-bit format is also handled by this
16252 function. The older format in question stores the initial length
16253 as an 8-byte quantity without an escape value. Lengths greater
16254 than 2^32 aren't very common which means that the initial 4 bytes
16255 is almost always zero. Since a length value of zero doesn't make
16256 sense for the 32-bit format, this initial zero can be considered to
16257 be an escape value which indicates the presence of the older 64-bit
16258 format. As written, the code can't detect (old format) lengths
16259 greater than 4GB. If it becomes necessary to handle lengths
16260 somewhat larger than 4GB, we could allow other small values (such
16261 as the non-sensical values of 1, 2, and 3) to also be used as
16262 escape values indicating the presence of the old format.
16264 The value returned via bytes_read should be used to increment the
16265 relevant pointer after calling read_initial_length().
16267 [ Note: read_initial_length() and read_offset() are based on the
16268 document entitled "DWARF Debugging Information Format", revision
16269 3, draft 8, dated November 19, 2001. This document was obtained
16272 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16274 This document is only a draft and is subject to change. (So beware.)
16276 Details regarding the older, non-standard 64-bit format were
16277 determined empirically by examining 64-bit ELF files produced by
16278 the SGI toolchain on an IRIX 6.5 machine.
16280 - Kevin, July 16, 2002
16284 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16286 LONGEST length = bfd_get_32 (abfd, buf);
16288 if (length == 0xffffffff)
16290 length = bfd_get_64 (abfd, buf + 4);
16293 else if (length == 0)
16295 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16296 length = bfd_get_64 (abfd, buf);
16307 /* Cover function for read_initial_length.
16308 Returns the length of the object at BUF, and stores the size of the
16309 initial length in *BYTES_READ and stores the size that offsets will be in
16311 If the initial length size is not equivalent to that specified in
16312 CU_HEADER then issue a complaint.
16313 This is useful when reading non-comp-unit headers. */
16316 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16317 const struct comp_unit_head *cu_header,
16318 unsigned int *bytes_read,
16319 unsigned int *offset_size)
16321 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16323 gdb_assert (cu_header->initial_length_size == 4
16324 || cu_header->initial_length_size == 8
16325 || cu_header->initial_length_size == 12);
16327 if (cu_header->initial_length_size != *bytes_read)
16328 complaint (&symfile_complaints,
16329 _("intermixed 32-bit and 64-bit DWARF sections"));
16331 *offset_size = (*bytes_read == 4) ? 4 : 8;
16335 /* Read an offset from the data stream. The size of the offset is
16336 given by cu_header->offset_size. */
16339 read_offset (bfd *abfd, const gdb_byte *buf,
16340 const struct comp_unit_head *cu_header,
16341 unsigned int *bytes_read)
16343 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16345 *bytes_read = cu_header->offset_size;
16349 /* Read an offset from the data stream. */
16352 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16354 LONGEST retval = 0;
16356 switch (offset_size)
16359 retval = bfd_get_32 (abfd, buf);
16362 retval = bfd_get_64 (abfd, buf);
16365 internal_error (__FILE__, __LINE__,
16366 _("read_offset_1: bad switch [in module %s]"),
16367 bfd_get_filename (abfd));
16373 static const gdb_byte *
16374 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16376 /* If the size of a host char is 8 bits, we can return a pointer
16377 to the buffer, otherwise we have to copy the data to a buffer
16378 allocated on the temporary obstack. */
16379 gdb_assert (HOST_CHAR_BIT == 8);
16383 static const char *
16384 read_direct_string (bfd *abfd, const gdb_byte *buf,
16385 unsigned int *bytes_read_ptr)
16387 /* If the size of a host char is 8 bits, we can return a pointer
16388 to the string, otherwise we have to copy the string to a buffer
16389 allocated on the temporary obstack. */
16390 gdb_assert (HOST_CHAR_BIT == 8);
16393 *bytes_read_ptr = 1;
16396 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16397 return (const char *) buf;
16400 static const char *
16401 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16403 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16404 if (dwarf2_per_objfile->str.buffer == NULL)
16405 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16406 bfd_get_filename (abfd));
16407 if (str_offset >= dwarf2_per_objfile->str.size)
16408 error (_("DW_FORM_strp pointing outside of "
16409 ".debug_str section [in module %s]"),
16410 bfd_get_filename (abfd));
16411 gdb_assert (HOST_CHAR_BIT == 8);
16412 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16414 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16417 /* Read a string at offset STR_OFFSET in the .debug_str section from
16418 the .dwz file DWZ. Throw an error if the offset is too large. If
16419 the string consists of a single NUL byte, return NULL; otherwise
16420 return a pointer to the string. */
16422 static const char *
16423 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16425 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16427 if (dwz->str.buffer == NULL)
16428 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16429 "section [in module %s]"),
16430 bfd_get_filename (dwz->dwz_bfd));
16431 if (str_offset >= dwz->str.size)
16432 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16433 ".debug_str section [in module %s]"),
16434 bfd_get_filename (dwz->dwz_bfd));
16435 gdb_assert (HOST_CHAR_BIT == 8);
16436 if (dwz->str.buffer[str_offset] == '\0')
16438 return (const char *) (dwz->str.buffer + str_offset);
16441 static const char *
16442 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16443 const struct comp_unit_head *cu_header,
16444 unsigned int *bytes_read_ptr)
16446 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16448 return read_indirect_string_at_offset (abfd, str_offset);
16452 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16453 unsigned int *bytes_read_ptr)
16456 unsigned int num_read;
16458 unsigned char byte;
16466 byte = bfd_get_8 (abfd, buf);
16469 result |= ((ULONGEST) (byte & 127) << shift);
16470 if ((byte & 128) == 0)
16476 *bytes_read_ptr = num_read;
16481 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16482 unsigned int *bytes_read_ptr)
16485 int i, shift, num_read;
16486 unsigned char byte;
16494 byte = bfd_get_8 (abfd, buf);
16497 result |= ((LONGEST) (byte & 127) << shift);
16499 if ((byte & 128) == 0)
16504 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16505 result |= -(((LONGEST) 1) << shift);
16506 *bytes_read_ptr = num_read;
16510 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16511 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16512 ADDR_SIZE is the size of addresses from the CU header. */
16515 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16517 struct objfile *objfile = dwarf2_per_objfile->objfile;
16518 bfd *abfd = objfile->obfd;
16519 const gdb_byte *info_ptr;
16521 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16522 if (dwarf2_per_objfile->addr.buffer == NULL)
16523 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16524 objfile_name (objfile));
16525 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16526 error (_("DW_FORM_addr_index pointing outside of "
16527 ".debug_addr section [in module %s]"),
16528 objfile_name (objfile));
16529 info_ptr = (dwarf2_per_objfile->addr.buffer
16530 + addr_base + addr_index * addr_size);
16531 if (addr_size == 4)
16532 return bfd_get_32 (abfd, info_ptr);
16534 return bfd_get_64 (abfd, info_ptr);
16537 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16540 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16542 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16545 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16548 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16549 unsigned int *bytes_read)
16551 bfd *abfd = cu->objfile->obfd;
16552 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16554 return read_addr_index (cu, addr_index);
16557 /* Data structure to pass results from dwarf2_read_addr_index_reader
16558 back to dwarf2_read_addr_index. */
16560 struct dwarf2_read_addr_index_data
16562 ULONGEST addr_base;
16566 /* die_reader_func for dwarf2_read_addr_index. */
16569 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16570 const gdb_byte *info_ptr,
16571 struct die_info *comp_unit_die,
16575 struct dwarf2_cu *cu = reader->cu;
16576 struct dwarf2_read_addr_index_data *aidata =
16577 (struct dwarf2_read_addr_index_data *) data;
16579 aidata->addr_base = cu->addr_base;
16580 aidata->addr_size = cu->header.addr_size;
16583 /* Given an index in .debug_addr, fetch the value.
16584 NOTE: This can be called during dwarf expression evaluation,
16585 long after the debug information has been read, and thus per_cu->cu
16586 may no longer exist. */
16589 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16590 unsigned int addr_index)
16592 struct objfile *objfile = per_cu->objfile;
16593 struct dwarf2_cu *cu = per_cu->cu;
16594 ULONGEST addr_base;
16597 /* This is intended to be called from outside this file. */
16598 dw2_setup (objfile);
16600 /* We need addr_base and addr_size.
16601 If we don't have PER_CU->cu, we have to get it.
16602 Nasty, but the alternative is storing the needed info in PER_CU,
16603 which at this point doesn't seem justified: it's not clear how frequently
16604 it would get used and it would increase the size of every PER_CU.
16605 Entry points like dwarf2_per_cu_addr_size do a similar thing
16606 so we're not in uncharted territory here.
16607 Alas we need to be a bit more complicated as addr_base is contained
16610 We don't need to read the entire CU(/TU).
16611 We just need the header and top level die.
16613 IWBN to use the aging mechanism to let us lazily later discard the CU.
16614 For now we skip this optimization. */
16618 addr_base = cu->addr_base;
16619 addr_size = cu->header.addr_size;
16623 struct dwarf2_read_addr_index_data aidata;
16625 /* Note: We can't use init_cutu_and_read_dies_simple here,
16626 we need addr_base. */
16627 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16628 dwarf2_read_addr_index_reader, &aidata);
16629 addr_base = aidata.addr_base;
16630 addr_size = aidata.addr_size;
16633 return read_addr_index_1 (addr_index, addr_base, addr_size);
16636 /* Given a DW_FORM_GNU_str_index, fetch the string.
16637 This is only used by the Fission support. */
16639 static const char *
16640 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16642 struct objfile *objfile = dwarf2_per_objfile->objfile;
16643 const char *objf_name = objfile_name (objfile);
16644 bfd *abfd = objfile->obfd;
16645 struct dwarf2_cu *cu = reader->cu;
16646 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16647 struct dwarf2_section_info *str_offsets_section =
16648 &reader->dwo_file->sections.str_offsets;
16649 const gdb_byte *info_ptr;
16650 ULONGEST str_offset;
16651 static const char form_name[] = "DW_FORM_GNU_str_index";
16653 dwarf2_read_section (objfile, str_section);
16654 dwarf2_read_section (objfile, str_offsets_section);
16655 if (str_section->buffer == NULL)
16656 error (_("%s used without .debug_str.dwo section"
16657 " in CU at offset 0x%lx [in module %s]"),
16658 form_name, (long) cu->header.offset.sect_off, objf_name);
16659 if (str_offsets_section->buffer == NULL)
16660 error (_("%s used without .debug_str_offsets.dwo section"
16661 " in CU at offset 0x%lx [in module %s]"),
16662 form_name, (long) cu->header.offset.sect_off, objf_name);
16663 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16664 error (_("%s pointing outside of .debug_str_offsets.dwo"
16665 " section in CU at offset 0x%lx [in module %s]"),
16666 form_name, (long) cu->header.offset.sect_off, objf_name);
16667 info_ptr = (str_offsets_section->buffer
16668 + str_index * cu->header.offset_size);
16669 if (cu->header.offset_size == 4)
16670 str_offset = bfd_get_32 (abfd, info_ptr);
16672 str_offset = bfd_get_64 (abfd, info_ptr);
16673 if (str_offset >= str_section->size)
16674 error (_("Offset from %s pointing outside of"
16675 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16676 form_name, (long) cu->header.offset.sect_off, objf_name);
16677 return (const char *) (str_section->buffer + str_offset);
16680 /* Return the length of an LEB128 number in BUF. */
16683 leb128_size (const gdb_byte *buf)
16685 const gdb_byte *begin = buf;
16691 if ((byte & 128) == 0)
16692 return buf - begin;
16697 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16705 cu->language = language_c;
16707 case DW_LANG_C_plus_plus:
16708 cu->language = language_cplus;
16711 cu->language = language_d;
16713 case DW_LANG_Fortran77:
16714 case DW_LANG_Fortran90:
16715 case DW_LANG_Fortran95:
16716 cu->language = language_fortran;
16719 cu->language = language_go;
16721 case DW_LANG_Mips_Assembler:
16722 cu->language = language_asm;
16725 cu->language = language_java;
16727 case DW_LANG_Ada83:
16728 case DW_LANG_Ada95:
16729 cu->language = language_ada;
16731 case DW_LANG_Modula2:
16732 cu->language = language_m2;
16734 case DW_LANG_Pascal83:
16735 cu->language = language_pascal;
16738 cu->language = language_objc;
16740 case DW_LANG_Cobol74:
16741 case DW_LANG_Cobol85:
16743 cu->language = language_minimal;
16746 cu->language_defn = language_def (cu->language);
16749 /* Return the named attribute or NULL if not there. */
16751 static struct attribute *
16752 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16757 struct attribute *spec = NULL;
16759 for (i = 0; i < die->num_attrs; ++i)
16761 if (die->attrs[i].name == name)
16762 return &die->attrs[i];
16763 if (die->attrs[i].name == DW_AT_specification
16764 || die->attrs[i].name == DW_AT_abstract_origin)
16765 spec = &die->attrs[i];
16771 die = follow_die_ref (die, spec, &cu);
16777 /* Return the named attribute or NULL if not there,
16778 but do not follow DW_AT_specification, etc.
16779 This is for use in contexts where we're reading .debug_types dies.
16780 Following DW_AT_specification, DW_AT_abstract_origin will take us
16781 back up the chain, and we want to go down. */
16783 static struct attribute *
16784 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16788 for (i = 0; i < die->num_attrs; ++i)
16789 if (die->attrs[i].name == name)
16790 return &die->attrs[i];
16795 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16796 and holds a non-zero value. This function should only be used for
16797 DW_FORM_flag or DW_FORM_flag_present attributes. */
16800 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16802 struct attribute *attr = dwarf2_attr (die, name, cu);
16804 return (attr && DW_UNSND (attr));
16808 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16810 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16811 which value is non-zero. However, we have to be careful with
16812 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16813 (via dwarf2_flag_true_p) follows this attribute. So we may
16814 end up accidently finding a declaration attribute that belongs
16815 to a different DIE referenced by the specification attribute,
16816 even though the given DIE does not have a declaration attribute. */
16817 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16818 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16821 /* Return the die giving the specification for DIE, if there is
16822 one. *SPEC_CU is the CU containing DIE on input, and the CU
16823 containing the return value on output. If there is no
16824 specification, but there is an abstract origin, that is
16827 static struct die_info *
16828 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16830 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16833 if (spec_attr == NULL)
16834 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16836 if (spec_attr == NULL)
16839 return follow_die_ref (die, spec_attr, spec_cu);
16842 /* Free the line_header structure *LH, and any arrays and strings it
16844 NOTE: This is also used as a "cleanup" function. */
16847 free_line_header (struct line_header *lh)
16849 if (lh->standard_opcode_lengths)
16850 xfree (lh->standard_opcode_lengths);
16852 /* Remember that all the lh->file_names[i].name pointers are
16853 pointers into debug_line_buffer, and don't need to be freed. */
16854 if (lh->file_names)
16855 xfree (lh->file_names);
16857 /* Similarly for the include directory names. */
16858 if (lh->include_dirs)
16859 xfree (lh->include_dirs);
16864 /* Add an entry to LH's include directory table. */
16867 add_include_dir (struct line_header *lh, const char *include_dir)
16869 /* Grow the array if necessary. */
16870 if (lh->include_dirs_size == 0)
16872 lh->include_dirs_size = 1; /* for testing */
16873 lh->include_dirs = xmalloc (lh->include_dirs_size
16874 * sizeof (*lh->include_dirs));
16876 else if (lh->num_include_dirs >= lh->include_dirs_size)
16878 lh->include_dirs_size *= 2;
16879 lh->include_dirs = xrealloc (lh->include_dirs,
16880 (lh->include_dirs_size
16881 * sizeof (*lh->include_dirs)));
16884 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16887 /* Add an entry to LH's file name table. */
16890 add_file_name (struct line_header *lh,
16892 unsigned int dir_index,
16893 unsigned int mod_time,
16894 unsigned int length)
16896 struct file_entry *fe;
16898 /* Grow the array if necessary. */
16899 if (lh->file_names_size == 0)
16901 lh->file_names_size = 1; /* for testing */
16902 lh->file_names = xmalloc (lh->file_names_size
16903 * sizeof (*lh->file_names));
16905 else if (lh->num_file_names >= lh->file_names_size)
16907 lh->file_names_size *= 2;
16908 lh->file_names = xrealloc (lh->file_names,
16909 (lh->file_names_size
16910 * sizeof (*lh->file_names)));
16913 fe = &lh->file_names[lh->num_file_names++];
16915 fe->dir_index = dir_index;
16916 fe->mod_time = mod_time;
16917 fe->length = length;
16918 fe->included_p = 0;
16922 /* A convenience function to find the proper .debug_line section for a
16925 static struct dwarf2_section_info *
16926 get_debug_line_section (struct dwarf2_cu *cu)
16928 struct dwarf2_section_info *section;
16930 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16932 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16933 section = &cu->dwo_unit->dwo_file->sections.line;
16934 else if (cu->per_cu->is_dwz)
16936 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16938 section = &dwz->line;
16941 section = &dwarf2_per_objfile->line;
16946 /* Read the statement program header starting at OFFSET in
16947 .debug_line, or .debug_line.dwo. Return a pointer
16948 to a struct line_header, allocated using xmalloc.
16950 NOTE: the strings in the include directory and file name tables of
16951 the returned object point into the dwarf line section buffer,
16952 and must not be freed. */
16954 static struct line_header *
16955 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16957 struct cleanup *back_to;
16958 struct line_header *lh;
16959 const gdb_byte *line_ptr;
16960 unsigned int bytes_read, offset_size;
16962 const char *cur_dir, *cur_file;
16963 struct dwarf2_section_info *section;
16966 section = get_debug_line_section (cu);
16967 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16968 if (section->buffer == NULL)
16970 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16971 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16973 complaint (&symfile_complaints, _("missing .debug_line section"));
16977 /* We can't do this until we know the section is non-empty.
16978 Only then do we know we have such a section. */
16979 abfd = get_section_bfd_owner (section);
16981 /* Make sure that at least there's room for the total_length field.
16982 That could be 12 bytes long, but we're just going to fudge that. */
16983 if (offset + 4 >= section->size)
16985 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16989 lh = xmalloc (sizeof (*lh));
16990 memset (lh, 0, sizeof (*lh));
16991 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16994 line_ptr = section->buffer + offset;
16996 /* Read in the header. */
16998 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16999 &bytes_read, &offset_size);
17000 line_ptr += bytes_read;
17001 if (line_ptr + lh->total_length > (section->buffer + section->size))
17003 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17004 do_cleanups (back_to);
17007 lh->statement_program_end = line_ptr + lh->total_length;
17008 lh->version = read_2_bytes (abfd, line_ptr);
17010 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17011 line_ptr += offset_size;
17012 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17014 if (lh->version >= 4)
17016 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17020 lh->maximum_ops_per_instruction = 1;
17022 if (lh->maximum_ops_per_instruction == 0)
17024 lh->maximum_ops_per_instruction = 1;
17025 complaint (&symfile_complaints,
17026 _("invalid maximum_ops_per_instruction "
17027 "in `.debug_line' section"));
17030 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17032 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17034 lh->line_range = read_1_byte (abfd, line_ptr);
17036 lh->opcode_base = read_1_byte (abfd, line_ptr);
17038 lh->standard_opcode_lengths
17039 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17041 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17042 for (i = 1; i < lh->opcode_base; ++i)
17044 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17048 /* Read directory table. */
17049 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17051 line_ptr += bytes_read;
17052 add_include_dir (lh, cur_dir);
17054 line_ptr += bytes_read;
17056 /* Read file name table. */
17057 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17059 unsigned int dir_index, mod_time, length;
17061 line_ptr += bytes_read;
17062 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17063 line_ptr += bytes_read;
17064 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17069 add_file_name (lh, cur_file, dir_index, mod_time, length);
17071 line_ptr += bytes_read;
17072 lh->statement_program_start = line_ptr;
17074 if (line_ptr > (section->buffer + section->size))
17075 complaint (&symfile_complaints,
17076 _("line number info header doesn't "
17077 "fit in `.debug_line' section"));
17079 discard_cleanups (back_to);
17083 /* Subroutine of dwarf_decode_lines to simplify it.
17084 Return the file name of the psymtab for included file FILE_INDEX
17085 in line header LH of PST.
17086 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17087 If space for the result is malloc'd, it will be freed by a cleanup.
17088 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17090 The function creates dangling cleanup registration. */
17092 static const char *
17093 psymtab_include_file_name (const struct line_header *lh, int file_index,
17094 const struct partial_symtab *pst,
17095 const char *comp_dir)
17097 const struct file_entry fe = lh->file_names [file_index];
17098 const char *include_name = fe.name;
17099 const char *include_name_to_compare = include_name;
17100 const char *dir_name = NULL;
17101 const char *pst_filename;
17102 char *copied_name = NULL;
17106 dir_name = lh->include_dirs[fe.dir_index - 1];
17108 if (!IS_ABSOLUTE_PATH (include_name)
17109 && (dir_name != NULL || comp_dir != NULL))
17111 /* Avoid creating a duplicate psymtab for PST.
17112 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17113 Before we do the comparison, however, we need to account
17114 for DIR_NAME and COMP_DIR.
17115 First prepend dir_name (if non-NULL). If we still don't
17116 have an absolute path prepend comp_dir (if non-NULL).
17117 However, the directory we record in the include-file's
17118 psymtab does not contain COMP_DIR (to match the
17119 corresponding symtab(s)).
17124 bash$ gcc -g ./hello.c
17125 include_name = "hello.c"
17127 DW_AT_comp_dir = comp_dir = "/tmp"
17128 DW_AT_name = "./hello.c" */
17130 if (dir_name != NULL)
17132 char *tem = concat (dir_name, SLASH_STRING,
17133 include_name, (char *)NULL);
17135 make_cleanup (xfree, tem);
17136 include_name = tem;
17137 include_name_to_compare = include_name;
17139 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17141 char *tem = concat (comp_dir, SLASH_STRING,
17142 include_name, (char *)NULL);
17144 make_cleanup (xfree, tem);
17145 include_name_to_compare = tem;
17149 pst_filename = pst->filename;
17150 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17152 copied_name = concat (pst->dirname, SLASH_STRING,
17153 pst_filename, (char *)NULL);
17154 pst_filename = copied_name;
17157 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17159 if (copied_name != NULL)
17160 xfree (copied_name);
17164 return include_name;
17167 /* Ignore this record_line request. */
17170 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17175 /* Subroutine of dwarf_decode_lines to simplify it.
17176 Process the line number information in LH. */
17179 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17180 struct dwarf2_cu *cu, const int decode_for_pst_p)
17182 const gdb_byte *line_ptr, *extended_end;
17183 const gdb_byte *line_end;
17184 unsigned int bytes_read, extended_len;
17185 unsigned char op_code, extended_op;
17186 CORE_ADDR baseaddr;
17187 struct objfile *objfile = cu->objfile;
17188 bfd *abfd = objfile->obfd;
17189 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17190 struct subfile *last_subfile = NULL;
17191 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17194 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17196 line_ptr = lh->statement_program_start;
17197 line_end = lh->statement_program_end;
17199 /* Read the statement sequences until there's nothing left. */
17200 while (line_ptr < line_end)
17202 /* state machine registers */
17203 CORE_ADDR address = 0;
17204 unsigned int file = 1;
17205 unsigned int line = 1;
17206 int is_stmt = lh->default_is_stmt;
17207 int end_sequence = 0;
17209 unsigned char op_index = 0;
17211 if (!decode_for_pst_p && lh->num_file_names >= file)
17213 /* Start a subfile for the current file of the state machine. */
17214 /* lh->include_dirs and lh->file_names are 0-based, but the
17215 directory and file name numbers in the statement program
17217 struct file_entry *fe = &lh->file_names[file - 1];
17218 const char *dir = NULL;
17221 dir = lh->include_dirs[fe->dir_index - 1];
17223 dwarf2_start_subfile (fe->name, dir, comp_dir);
17226 /* Decode the table. */
17227 while (!end_sequence)
17229 op_code = read_1_byte (abfd, line_ptr);
17231 if (line_ptr > line_end)
17233 dwarf2_debug_line_missing_end_sequence_complaint ();
17237 if (op_code >= lh->opcode_base)
17239 /* Special opcode. */
17240 unsigned char adj_opcode;
17242 adj_opcode = op_code - lh->opcode_base;
17243 address += (((op_index + (adj_opcode / lh->line_range))
17244 / lh->maximum_ops_per_instruction)
17245 * lh->minimum_instruction_length);
17246 op_index = ((op_index + (adj_opcode / lh->line_range))
17247 % lh->maximum_ops_per_instruction);
17248 line += lh->line_base + (adj_opcode % lh->line_range);
17249 if (lh->num_file_names < file || file == 0)
17250 dwarf2_debug_line_missing_file_complaint ();
17251 /* For now we ignore lines not starting on an
17252 instruction boundary. */
17253 else if (op_index == 0)
17255 lh->file_names[file - 1].included_p = 1;
17256 if (!decode_for_pst_p && is_stmt)
17258 if (last_subfile != current_subfile)
17260 addr = gdbarch_addr_bits_remove (gdbarch, address);
17262 (*p_record_line) (last_subfile, 0, addr);
17263 last_subfile = current_subfile;
17265 /* Append row to matrix using current values. */
17266 addr = gdbarch_addr_bits_remove (gdbarch, address);
17267 (*p_record_line) (current_subfile, line, addr);
17271 else switch (op_code)
17273 case DW_LNS_extended_op:
17274 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17276 line_ptr += bytes_read;
17277 extended_end = line_ptr + extended_len;
17278 extended_op = read_1_byte (abfd, line_ptr);
17280 switch (extended_op)
17282 case DW_LNE_end_sequence:
17283 p_record_line = record_line;
17286 case DW_LNE_set_address:
17287 address = read_address (abfd, line_ptr, cu, &bytes_read);
17289 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17291 /* This line table is for a function which has been
17292 GCd by the linker. Ignore it. PR gdb/12528 */
17295 = line_ptr - get_debug_line_section (cu)->buffer;
17297 complaint (&symfile_complaints,
17298 _(".debug_line address at offset 0x%lx is 0 "
17300 line_offset, objfile_name (objfile));
17301 p_record_line = noop_record_line;
17302 /* Note: p_record_line is left as noop_record_line
17303 until we see DW_LNE_end_sequence. */
17307 line_ptr += bytes_read;
17308 address += baseaddr;
17310 case DW_LNE_define_file:
17312 const char *cur_file;
17313 unsigned int dir_index, mod_time, length;
17315 cur_file = read_direct_string (abfd, line_ptr,
17317 line_ptr += bytes_read;
17319 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17320 line_ptr += bytes_read;
17322 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17323 line_ptr += bytes_read;
17325 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17326 line_ptr += bytes_read;
17327 add_file_name (lh, cur_file, dir_index, mod_time, length);
17330 case DW_LNE_set_discriminator:
17331 /* The discriminator is not interesting to the debugger;
17333 line_ptr = extended_end;
17336 complaint (&symfile_complaints,
17337 _("mangled .debug_line section"));
17340 /* Make sure that we parsed the extended op correctly. If e.g.
17341 we expected a different address size than the producer used,
17342 we may have read the wrong number of bytes. */
17343 if (line_ptr != extended_end)
17345 complaint (&symfile_complaints,
17346 _("mangled .debug_line section"));
17351 if (lh->num_file_names < file || file == 0)
17352 dwarf2_debug_line_missing_file_complaint ();
17355 lh->file_names[file - 1].included_p = 1;
17356 if (!decode_for_pst_p && is_stmt)
17358 if (last_subfile != current_subfile)
17360 addr = gdbarch_addr_bits_remove (gdbarch, address);
17362 (*p_record_line) (last_subfile, 0, addr);
17363 last_subfile = current_subfile;
17365 addr = gdbarch_addr_bits_remove (gdbarch, address);
17366 (*p_record_line) (current_subfile, line, addr);
17370 case DW_LNS_advance_pc:
17373 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17375 address += (((op_index + adjust)
17376 / lh->maximum_ops_per_instruction)
17377 * lh->minimum_instruction_length);
17378 op_index = ((op_index + adjust)
17379 % lh->maximum_ops_per_instruction);
17380 line_ptr += bytes_read;
17383 case DW_LNS_advance_line:
17384 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17385 line_ptr += bytes_read;
17387 case DW_LNS_set_file:
17389 /* The arrays lh->include_dirs and lh->file_names are
17390 0-based, but the directory and file name numbers in
17391 the statement program are 1-based. */
17392 struct file_entry *fe;
17393 const char *dir = NULL;
17395 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17396 line_ptr += bytes_read;
17397 if (lh->num_file_names < file || file == 0)
17398 dwarf2_debug_line_missing_file_complaint ();
17401 fe = &lh->file_names[file - 1];
17403 dir = lh->include_dirs[fe->dir_index - 1];
17404 if (!decode_for_pst_p)
17406 last_subfile = current_subfile;
17407 dwarf2_start_subfile (fe->name, dir, comp_dir);
17412 case DW_LNS_set_column:
17413 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17414 line_ptr += bytes_read;
17416 case DW_LNS_negate_stmt:
17417 is_stmt = (!is_stmt);
17419 case DW_LNS_set_basic_block:
17421 /* Add to the address register of the state machine the
17422 address increment value corresponding to special opcode
17423 255. I.e., this value is scaled by the minimum
17424 instruction length since special opcode 255 would have
17425 scaled the increment. */
17426 case DW_LNS_const_add_pc:
17428 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17430 address += (((op_index + adjust)
17431 / lh->maximum_ops_per_instruction)
17432 * lh->minimum_instruction_length);
17433 op_index = ((op_index + adjust)
17434 % lh->maximum_ops_per_instruction);
17437 case DW_LNS_fixed_advance_pc:
17438 address += read_2_bytes (abfd, line_ptr);
17444 /* Unknown standard opcode, ignore it. */
17447 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17449 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17450 line_ptr += bytes_read;
17455 if (lh->num_file_names < file || file == 0)
17456 dwarf2_debug_line_missing_file_complaint ();
17459 lh->file_names[file - 1].included_p = 1;
17460 if (!decode_for_pst_p)
17462 addr = gdbarch_addr_bits_remove (gdbarch, address);
17463 (*p_record_line) (current_subfile, 0, addr);
17469 /* Decode the Line Number Program (LNP) for the given line_header
17470 structure and CU. The actual information extracted and the type
17471 of structures created from the LNP depends on the value of PST.
17473 1. If PST is NULL, then this procedure uses the data from the program
17474 to create all necessary symbol tables, and their linetables.
17476 2. If PST is not NULL, this procedure reads the program to determine
17477 the list of files included by the unit represented by PST, and
17478 builds all the associated partial symbol tables.
17480 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17481 It is used for relative paths in the line table.
17482 NOTE: When processing partial symtabs (pst != NULL),
17483 comp_dir == pst->dirname.
17485 NOTE: It is important that psymtabs have the same file name (via strcmp)
17486 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17487 symtab we don't use it in the name of the psymtabs we create.
17488 E.g. expand_line_sal requires this when finding psymtabs to expand.
17489 A good testcase for this is mb-inline.exp. */
17492 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17493 struct dwarf2_cu *cu, struct partial_symtab *pst,
17494 int want_line_info)
17496 struct objfile *objfile = cu->objfile;
17497 const int decode_for_pst_p = (pst != NULL);
17498 struct subfile *first_subfile = current_subfile;
17500 if (want_line_info)
17501 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p);
17503 if (decode_for_pst_p)
17507 /* Now that we're done scanning the Line Header Program, we can
17508 create the psymtab of each included file. */
17509 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17510 if (lh->file_names[file_index].included_p == 1)
17512 const char *include_name =
17513 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17514 if (include_name != NULL)
17515 dwarf2_create_include_psymtab (include_name, pst, objfile);
17520 /* Make sure a symtab is created for every file, even files
17521 which contain only variables (i.e. no code with associated
17525 for (i = 0; i < lh->num_file_names; i++)
17527 const char *dir = NULL;
17528 struct file_entry *fe;
17530 fe = &lh->file_names[i];
17532 dir = lh->include_dirs[fe->dir_index - 1];
17533 dwarf2_start_subfile (fe->name, dir, comp_dir);
17535 /* Skip the main file; we don't need it, and it must be
17536 allocated last, so that it will show up before the
17537 non-primary symtabs in the objfile's symtab list. */
17538 if (current_subfile == first_subfile)
17541 if (current_subfile->symtab == NULL)
17542 current_subfile->symtab = allocate_symtab (current_subfile->name,
17544 fe->symtab = current_subfile->symtab;
17549 /* Start a subfile for DWARF. FILENAME is the name of the file and
17550 DIRNAME the name of the source directory which contains FILENAME
17551 or NULL if not known. COMP_DIR is the compilation directory for the
17552 linetable's compilation unit or NULL if not known.
17553 This routine tries to keep line numbers from identical absolute and
17554 relative file names in a common subfile.
17556 Using the `list' example from the GDB testsuite, which resides in
17557 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17558 of /srcdir/list0.c yields the following debugging information for list0.c:
17560 DW_AT_name: /srcdir/list0.c
17561 DW_AT_comp_dir: /compdir
17562 files.files[0].name: list0.h
17563 files.files[0].dir: /srcdir
17564 files.files[1].name: list0.c
17565 files.files[1].dir: /srcdir
17567 The line number information for list0.c has to end up in a single
17568 subfile, so that `break /srcdir/list0.c:1' works as expected.
17569 start_subfile will ensure that this happens provided that we pass the
17570 concatenation of files.files[1].dir and files.files[1].name as the
17574 dwarf2_start_subfile (const char *filename, const char *dirname,
17575 const char *comp_dir)
17579 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17580 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17581 second argument to start_subfile. To be consistent, we do the
17582 same here. In order not to lose the line information directory,
17583 we concatenate it to the filename when it makes sense.
17584 Note that the Dwarf3 standard says (speaking of filenames in line
17585 information): ``The directory index is ignored for file names
17586 that represent full path names''. Thus ignoring dirname in the
17587 `else' branch below isn't an issue. */
17589 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17591 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17595 start_subfile (filename, comp_dir);
17601 /* Start a symtab for DWARF.
17602 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17605 dwarf2_start_symtab (struct dwarf2_cu *cu,
17606 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17608 start_symtab (name, comp_dir, low_pc);
17609 record_debugformat ("DWARF 2");
17610 record_producer (cu->producer);
17612 /* We assume that we're processing GCC output. */
17613 processing_gcc_compilation = 2;
17615 cu->processing_has_namespace_info = 0;
17619 var_decode_location (struct attribute *attr, struct symbol *sym,
17620 struct dwarf2_cu *cu)
17622 struct objfile *objfile = cu->objfile;
17623 struct comp_unit_head *cu_header = &cu->header;
17625 /* NOTE drow/2003-01-30: There used to be a comment and some special
17626 code here to turn a symbol with DW_AT_external and a
17627 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17628 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17629 with some versions of binutils) where shared libraries could have
17630 relocations against symbols in their debug information - the
17631 minimal symbol would have the right address, but the debug info
17632 would not. It's no longer necessary, because we will explicitly
17633 apply relocations when we read in the debug information now. */
17635 /* A DW_AT_location attribute with no contents indicates that a
17636 variable has been optimized away. */
17637 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17639 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17643 /* Handle one degenerate form of location expression specially, to
17644 preserve GDB's previous behavior when section offsets are
17645 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17646 then mark this symbol as LOC_STATIC. */
17648 if (attr_form_is_block (attr)
17649 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17650 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17651 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17652 && (DW_BLOCK (attr)->size
17653 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17655 unsigned int dummy;
17657 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17658 SYMBOL_VALUE_ADDRESS (sym) =
17659 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17661 SYMBOL_VALUE_ADDRESS (sym) =
17662 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17663 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17664 fixup_symbol_section (sym, objfile);
17665 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17666 SYMBOL_SECTION (sym));
17670 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17671 expression evaluator, and use LOC_COMPUTED only when necessary
17672 (i.e. when the value of a register or memory location is
17673 referenced, or a thread-local block, etc.). Then again, it might
17674 not be worthwhile. I'm assuming that it isn't unless performance
17675 or memory numbers show me otherwise. */
17677 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17679 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17680 cu->has_loclist = 1;
17683 /* Given a pointer to a DWARF information entry, figure out if we need
17684 to make a symbol table entry for it, and if so, create a new entry
17685 and return a pointer to it.
17686 If TYPE is NULL, determine symbol type from the die, otherwise
17687 used the passed type.
17688 If SPACE is not NULL, use it to hold the new symbol. If it is
17689 NULL, allocate a new symbol on the objfile's obstack. */
17691 static struct symbol *
17692 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17693 struct symbol *space)
17695 struct objfile *objfile = cu->objfile;
17696 struct symbol *sym = NULL;
17698 struct attribute *attr = NULL;
17699 struct attribute *attr2 = NULL;
17700 CORE_ADDR baseaddr;
17701 struct pending **list_to_add = NULL;
17703 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17705 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17707 name = dwarf2_name (die, cu);
17710 const char *linkagename;
17711 int suppress_add = 0;
17716 sym = allocate_symbol (objfile);
17717 OBJSTAT (objfile, n_syms++);
17719 /* Cache this symbol's name and the name's demangled form (if any). */
17720 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17721 linkagename = dwarf2_physname (name, die, cu);
17722 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17724 /* Fortran does not have mangling standard and the mangling does differ
17725 between gfortran, iFort etc. */
17726 if (cu->language == language_fortran
17727 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17728 symbol_set_demangled_name (&(sym->ginfo),
17729 dwarf2_full_name (name, die, cu),
17732 /* Default assumptions.
17733 Use the passed type or decode it from the die. */
17734 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17735 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17737 SYMBOL_TYPE (sym) = type;
17739 SYMBOL_TYPE (sym) = die_type (die, cu);
17740 attr = dwarf2_attr (die,
17741 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17745 SYMBOL_LINE (sym) = DW_UNSND (attr);
17748 attr = dwarf2_attr (die,
17749 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17753 int file_index = DW_UNSND (attr);
17755 if (cu->line_header == NULL
17756 || file_index > cu->line_header->num_file_names)
17757 complaint (&symfile_complaints,
17758 _("file index out of range"));
17759 else if (file_index > 0)
17761 struct file_entry *fe;
17763 fe = &cu->line_header->file_names[file_index - 1];
17764 SYMBOL_SYMTAB (sym) = fe->symtab;
17771 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17773 SYMBOL_VALUE_ADDRESS (sym)
17774 = attr_value_as_address (attr) + baseaddr;
17775 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17776 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17777 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17778 add_symbol_to_list (sym, cu->list_in_scope);
17780 case DW_TAG_subprogram:
17781 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17783 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17784 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17785 if ((attr2 && (DW_UNSND (attr2) != 0))
17786 || cu->language == language_ada)
17788 /* Subprograms marked external are stored as a global symbol.
17789 Ada subprograms, whether marked external or not, are always
17790 stored as a global symbol, because we want to be able to
17791 access them globally. For instance, we want to be able
17792 to break on a nested subprogram without having to
17793 specify the context. */
17794 list_to_add = &global_symbols;
17798 list_to_add = cu->list_in_scope;
17801 case DW_TAG_inlined_subroutine:
17802 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17804 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17805 SYMBOL_INLINED (sym) = 1;
17806 list_to_add = cu->list_in_scope;
17808 case DW_TAG_template_value_param:
17810 /* Fall through. */
17811 case DW_TAG_constant:
17812 case DW_TAG_variable:
17813 case DW_TAG_member:
17814 /* Compilation with minimal debug info may result in
17815 variables with missing type entries. Change the
17816 misleading `void' type to something sensible. */
17817 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17819 = objfile_type (objfile)->nodebug_data_symbol;
17821 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17822 /* In the case of DW_TAG_member, we should only be called for
17823 static const members. */
17824 if (die->tag == DW_TAG_member)
17826 /* dwarf2_add_field uses die_is_declaration,
17827 so we do the same. */
17828 gdb_assert (die_is_declaration (die, cu));
17833 dwarf2_const_value (attr, sym, cu);
17834 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17837 if (attr2 && (DW_UNSND (attr2) != 0))
17838 list_to_add = &global_symbols;
17840 list_to_add = cu->list_in_scope;
17844 attr = dwarf2_attr (die, DW_AT_location, cu);
17847 var_decode_location (attr, sym, cu);
17848 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17850 /* Fortran explicitly imports any global symbols to the local
17851 scope by DW_TAG_common_block. */
17852 if (cu->language == language_fortran && die->parent
17853 && die->parent->tag == DW_TAG_common_block)
17856 if (SYMBOL_CLASS (sym) == LOC_STATIC
17857 && SYMBOL_VALUE_ADDRESS (sym) == 0
17858 && !dwarf2_per_objfile->has_section_at_zero)
17860 /* When a static variable is eliminated by the linker,
17861 the corresponding debug information is not stripped
17862 out, but the variable address is set to null;
17863 do not add such variables into symbol table. */
17865 else if (attr2 && (DW_UNSND (attr2) != 0))
17867 /* Workaround gfortran PR debug/40040 - it uses
17868 DW_AT_location for variables in -fPIC libraries which may
17869 get overriden by other libraries/executable and get
17870 a different address. Resolve it by the minimal symbol
17871 which may come from inferior's executable using copy
17872 relocation. Make this workaround only for gfortran as for
17873 other compilers GDB cannot guess the minimal symbol
17874 Fortran mangling kind. */
17875 if (cu->language == language_fortran && die->parent
17876 && die->parent->tag == DW_TAG_module
17878 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17879 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17881 /* A variable with DW_AT_external is never static,
17882 but it may be block-scoped. */
17883 list_to_add = (cu->list_in_scope == &file_symbols
17884 ? &global_symbols : cu->list_in_scope);
17887 list_to_add = cu->list_in_scope;
17891 /* We do not know the address of this symbol.
17892 If it is an external symbol and we have type information
17893 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17894 The address of the variable will then be determined from
17895 the minimal symbol table whenever the variable is
17897 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17899 /* Fortran explicitly imports any global symbols to the local
17900 scope by DW_TAG_common_block. */
17901 if (cu->language == language_fortran && die->parent
17902 && die->parent->tag == DW_TAG_common_block)
17904 /* SYMBOL_CLASS doesn't matter here because
17905 read_common_block is going to reset it. */
17907 list_to_add = cu->list_in_scope;
17909 else if (attr2 && (DW_UNSND (attr2) != 0)
17910 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17912 /* A variable with DW_AT_external is never static, but it
17913 may be block-scoped. */
17914 list_to_add = (cu->list_in_scope == &file_symbols
17915 ? &global_symbols : cu->list_in_scope);
17917 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17919 else if (!die_is_declaration (die, cu))
17921 /* Use the default LOC_OPTIMIZED_OUT class. */
17922 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17924 list_to_add = cu->list_in_scope;
17928 case DW_TAG_formal_parameter:
17929 /* If we are inside a function, mark this as an argument. If
17930 not, we might be looking at an argument to an inlined function
17931 when we do not have enough information to show inlined frames;
17932 pretend it's a local variable in that case so that the user can
17934 if (context_stack_depth > 0
17935 && context_stack[context_stack_depth - 1].name != NULL)
17936 SYMBOL_IS_ARGUMENT (sym) = 1;
17937 attr = dwarf2_attr (die, DW_AT_location, cu);
17940 var_decode_location (attr, sym, cu);
17942 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17945 dwarf2_const_value (attr, sym, cu);
17948 list_to_add = cu->list_in_scope;
17950 case DW_TAG_unspecified_parameters:
17951 /* From varargs functions; gdb doesn't seem to have any
17952 interest in this information, so just ignore it for now.
17955 case DW_TAG_template_type_param:
17957 /* Fall through. */
17958 case DW_TAG_class_type:
17959 case DW_TAG_interface_type:
17960 case DW_TAG_structure_type:
17961 case DW_TAG_union_type:
17962 case DW_TAG_set_type:
17963 case DW_TAG_enumeration_type:
17964 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17965 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17968 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17969 really ever be static objects: otherwise, if you try
17970 to, say, break of a class's method and you're in a file
17971 which doesn't mention that class, it won't work unless
17972 the check for all static symbols in lookup_symbol_aux
17973 saves you. See the OtherFileClass tests in
17974 gdb.c++/namespace.exp. */
17978 list_to_add = (cu->list_in_scope == &file_symbols
17979 && (cu->language == language_cplus
17980 || cu->language == language_java)
17981 ? &global_symbols : cu->list_in_scope);
17983 /* The semantics of C++ state that "struct foo {
17984 ... }" also defines a typedef for "foo". A Java
17985 class declaration also defines a typedef for the
17987 if (cu->language == language_cplus
17988 || cu->language == language_java
17989 || cu->language == language_ada)
17991 /* The symbol's name is already allocated along
17992 with this objfile, so we don't need to
17993 duplicate it for the type. */
17994 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17995 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18000 case DW_TAG_typedef:
18001 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18002 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18003 list_to_add = cu->list_in_scope;
18005 case DW_TAG_base_type:
18006 case DW_TAG_subrange_type:
18007 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18008 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18009 list_to_add = cu->list_in_scope;
18011 case DW_TAG_enumerator:
18012 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18015 dwarf2_const_value (attr, sym, cu);
18018 /* NOTE: carlton/2003-11-10: See comment above in the
18019 DW_TAG_class_type, etc. block. */
18021 list_to_add = (cu->list_in_scope == &file_symbols
18022 && (cu->language == language_cplus
18023 || cu->language == language_java)
18024 ? &global_symbols : cu->list_in_scope);
18027 case DW_TAG_imported_declaration:
18028 case DW_TAG_namespace:
18029 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18030 list_to_add = &global_symbols;
18032 case DW_TAG_module:
18033 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18034 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18035 list_to_add = &global_symbols;
18037 case DW_TAG_common_block:
18038 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18039 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18040 add_symbol_to_list (sym, cu->list_in_scope);
18043 /* Not a tag we recognize. Hopefully we aren't processing
18044 trash data, but since we must specifically ignore things
18045 we don't recognize, there is nothing else we should do at
18047 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18048 dwarf_tag_name (die->tag));
18054 sym->hash_next = objfile->template_symbols;
18055 objfile->template_symbols = sym;
18056 list_to_add = NULL;
18059 if (list_to_add != NULL)
18060 add_symbol_to_list (sym, list_to_add);
18062 /* For the benefit of old versions of GCC, check for anonymous
18063 namespaces based on the demangled name. */
18064 if (!cu->processing_has_namespace_info
18065 && cu->language == language_cplus)
18066 cp_scan_for_anonymous_namespaces (sym, objfile);
18071 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18073 static struct symbol *
18074 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18076 return new_symbol_full (die, type, cu, NULL);
18079 /* Given an attr with a DW_FORM_dataN value in host byte order,
18080 zero-extend it as appropriate for the symbol's type. The DWARF
18081 standard (v4) is not entirely clear about the meaning of using
18082 DW_FORM_dataN for a constant with a signed type, where the type is
18083 wider than the data. The conclusion of a discussion on the DWARF
18084 list was that this is unspecified. We choose to always zero-extend
18085 because that is the interpretation long in use by GCC. */
18088 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18089 struct dwarf2_cu *cu, LONGEST *value, int bits)
18091 struct objfile *objfile = cu->objfile;
18092 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18093 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18094 LONGEST l = DW_UNSND (attr);
18096 if (bits < sizeof (*value) * 8)
18098 l &= ((LONGEST) 1 << bits) - 1;
18101 else if (bits == sizeof (*value) * 8)
18105 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18106 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18113 /* Read a constant value from an attribute. Either set *VALUE, or if
18114 the value does not fit in *VALUE, set *BYTES - either already
18115 allocated on the objfile obstack, or newly allocated on OBSTACK,
18116 or, set *BATON, if we translated the constant to a location
18120 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18121 const char *name, struct obstack *obstack,
18122 struct dwarf2_cu *cu,
18123 LONGEST *value, const gdb_byte **bytes,
18124 struct dwarf2_locexpr_baton **baton)
18126 struct objfile *objfile = cu->objfile;
18127 struct comp_unit_head *cu_header = &cu->header;
18128 struct dwarf_block *blk;
18129 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18130 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18136 switch (attr->form)
18139 case DW_FORM_GNU_addr_index:
18143 if (TYPE_LENGTH (type) != cu_header->addr_size)
18144 dwarf2_const_value_length_mismatch_complaint (name,
18145 cu_header->addr_size,
18146 TYPE_LENGTH (type));
18147 /* Symbols of this form are reasonably rare, so we just
18148 piggyback on the existing location code rather than writing
18149 a new implementation of symbol_computed_ops. */
18150 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18151 (*baton)->per_cu = cu->per_cu;
18152 gdb_assert ((*baton)->per_cu);
18154 (*baton)->size = 2 + cu_header->addr_size;
18155 data = obstack_alloc (obstack, (*baton)->size);
18156 (*baton)->data = data;
18158 data[0] = DW_OP_addr;
18159 store_unsigned_integer (&data[1], cu_header->addr_size,
18160 byte_order, DW_ADDR (attr));
18161 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18164 case DW_FORM_string:
18166 case DW_FORM_GNU_str_index:
18167 case DW_FORM_GNU_strp_alt:
18168 /* DW_STRING is already allocated on the objfile obstack, point
18170 *bytes = (const gdb_byte *) DW_STRING (attr);
18172 case DW_FORM_block1:
18173 case DW_FORM_block2:
18174 case DW_FORM_block4:
18175 case DW_FORM_block:
18176 case DW_FORM_exprloc:
18177 blk = DW_BLOCK (attr);
18178 if (TYPE_LENGTH (type) != blk->size)
18179 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18180 TYPE_LENGTH (type));
18181 *bytes = blk->data;
18184 /* The DW_AT_const_value attributes are supposed to carry the
18185 symbol's value "represented as it would be on the target
18186 architecture." By the time we get here, it's already been
18187 converted to host endianness, so we just need to sign- or
18188 zero-extend it as appropriate. */
18189 case DW_FORM_data1:
18190 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18192 case DW_FORM_data2:
18193 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18195 case DW_FORM_data4:
18196 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18198 case DW_FORM_data8:
18199 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18202 case DW_FORM_sdata:
18203 *value = DW_SND (attr);
18206 case DW_FORM_udata:
18207 *value = DW_UNSND (attr);
18211 complaint (&symfile_complaints,
18212 _("unsupported const value attribute form: '%s'"),
18213 dwarf_form_name (attr->form));
18220 /* Copy constant value from an attribute to a symbol. */
18223 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18224 struct dwarf2_cu *cu)
18226 struct objfile *objfile = cu->objfile;
18227 struct comp_unit_head *cu_header = &cu->header;
18229 const gdb_byte *bytes;
18230 struct dwarf2_locexpr_baton *baton;
18232 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18233 SYMBOL_PRINT_NAME (sym),
18234 &objfile->objfile_obstack, cu,
18235 &value, &bytes, &baton);
18239 SYMBOL_LOCATION_BATON (sym) = baton;
18240 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18242 else if (bytes != NULL)
18244 SYMBOL_VALUE_BYTES (sym) = bytes;
18245 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18249 SYMBOL_VALUE (sym) = value;
18250 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18254 /* Return the type of the die in question using its DW_AT_type attribute. */
18256 static struct type *
18257 die_type (struct die_info *die, struct dwarf2_cu *cu)
18259 struct attribute *type_attr;
18261 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18264 /* A missing DW_AT_type represents a void type. */
18265 return objfile_type (cu->objfile)->builtin_void;
18268 return lookup_die_type (die, type_attr, cu);
18271 /* True iff CU's producer generates GNAT Ada auxiliary information
18272 that allows to find parallel types through that information instead
18273 of having to do expensive parallel lookups by type name. */
18276 need_gnat_info (struct dwarf2_cu *cu)
18278 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18279 of GNAT produces this auxiliary information, without any indication
18280 that it is produced. Part of enhancing the FSF version of GNAT
18281 to produce that information will be to put in place an indicator
18282 that we can use in order to determine whether the descriptive type
18283 info is available or not. One suggestion that has been made is
18284 to use a new attribute, attached to the CU die. For now, assume
18285 that the descriptive type info is not available. */
18289 /* Return the auxiliary type of the die in question using its
18290 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18291 attribute is not present. */
18293 static struct type *
18294 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18296 struct attribute *type_attr;
18298 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18302 return lookup_die_type (die, type_attr, cu);
18305 /* If DIE has a descriptive_type attribute, then set the TYPE's
18306 descriptive type accordingly. */
18309 set_descriptive_type (struct type *type, struct die_info *die,
18310 struct dwarf2_cu *cu)
18312 struct type *descriptive_type = die_descriptive_type (die, cu);
18314 if (descriptive_type)
18316 ALLOCATE_GNAT_AUX_TYPE (type);
18317 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18321 /* Return the containing type of the die in question using its
18322 DW_AT_containing_type attribute. */
18324 static struct type *
18325 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18327 struct attribute *type_attr;
18329 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18331 error (_("Dwarf Error: Problem turning containing type into gdb type "
18332 "[in module %s]"), objfile_name (cu->objfile));
18334 return lookup_die_type (die, type_attr, cu);
18337 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18339 static struct type *
18340 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18342 struct objfile *objfile = dwarf2_per_objfile->objfile;
18343 char *message, *saved;
18345 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18346 objfile_name (objfile),
18347 cu->header.offset.sect_off,
18348 die->offset.sect_off);
18349 saved = obstack_copy0 (&objfile->objfile_obstack,
18350 message, strlen (message));
18353 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18356 /* Look up the type of DIE in CU using its type attribute ATTR.
18357 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18358 DW_AT_containing_type.
18359 If there is no type substitute an error marker. */
18361 static struct type *
18362 lookup_die_type (struct die_info *die, const struct attribute *attr,
18363 struct dwarf2_cu *cu)
18365 struct objfile *objfile = cu->objfile;
18366 struct type *this_type;
18368 gdb_assert (attr->name == DW_AT_type
18369 || attr->name == DW_AT_GNAT_descriptive_type
18370 || attr->name == DW_AT_containing_type);
18372 /* First see if we have it cached. */
18374 if (attr->form == DW_FORM_GNU_ref_alt)
18376 struct dwarf2_per_cu_data *per_cu;
18377 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18379 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18380 this_type = get_die_type_at_offset (offset, per_cu);
18382 else if (attr_form_is_ref (attr))
18384 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18386 this_type = get_die_type_at_offset (offset, cu->per_cu);
18388 else if (attr->form == DW_FORM_ref_sig8)
18390 ULONGEST signature = DW_SIGNATURE (attr);
18392 return get_signatured_type (die, signature, cu);
18396 complaint (&symfile_complaints,
18397 _("Dwarf Error: Bad type attribute %s in DIE"
18398 " at 0x%x [in module %s]"),
18399 dwarf_attr_name (attr->name), die->offset.sect_off,
18400 objfile_name (objfile));
18401 return build_error_marker_type (cu, die);
18404 /* If not cached we need to read it in. */
18406 if (this_type == NULL)
18408 struct die_info *type_die = NULL;
18409 struct dwarf2_cu *type_cu = cu;
18411 if (attr_form_is_ref (attr))
18412 type_die = follow_die_ref (die, attr, &type_cu);
18413 if (type_die == NULL)
18414 return build_error_marker_type (cu, die);
18415 /* If we find the type now, it's probably because the type came
18416 from an inter-CU reference and the type's CU got expanded before
18418 this_type = read_type_die (type_die, type_cu);
18421 /* If we still don't have a type use an error marker. */
18423 if (this_type == NULL)
18424 return build_error_marker_type (cu, die);
18429 /* Return the type in DIE, CU.
18430 Returns NULL for invalid types.
18432 This first does a lookup in die_type_hash,
18433 and only reads the die in if necessary.
18435 NOTE: This can be called when reading in partial or full symbols. */
18437 static struct type *
18438 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18440 struct type *this_type;
18442 this_type = get_die_type (die, cu);
18446 return read_type_die_1 (die, cu);
18449 /* Read the type in DIE, CU.
18450 Returns NULL for invalid types. */
18452 static struct type *
18453 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18455 struct type *this_type = NULL;
18459 case DW_TAG_class_type:
18460 case DW_TAG_interface_type:
18461 case DW_TAG_structure_type:
18462 case DW_TAG_union_type:
18463 this_type = read_structure_type (die, cu);
18465 case DW_TAG_enumeration_type:
18466 this_type = read_enumeration_type (die, cu);
18468 case DW_TAG_subprogram:
18469 case DW_TAG_subroutine_type:
18470 case DW_TAG_inlined_subroutine:
18471 this_type = read_subroutine_type (die, cu);
18473 case DW_TAG_array_type:
18474 this_type = read_array_type (die, cu);
18476 case DW_TAG_set_type:
18477 this_type = read_set_type (die, cu);
18479 case DW_TAG_pointer_type:
18480 this_type = read_tag_pointer_type (die, cu);
18482 case DW_TAG_ptr_to_member_type:
18483 this_type = read_tag_ptr_to_member_type (die, cu);
18485 case DW_TAG_reference_type:
18486 this_type = read_tag_reference_type (die, cu);
18488 case DW_TAG_const_type:
18489 this_type = read_tag_const_type (die, cu);
18491 case DW_TAG_volatile_type:
18492 this_type = read_tag_volatile_type (die, cu);
18494 case DW_TAG_restrict_type:
18495 this_type = read_tag_restrict_type (die, cu);
18497 case DW_TAG_string_type:
18498 this_type = read_tag_string_type (die, cu);
18500 case DW_TAG_typedef:
18501 this_type = read_typedef (die, cu);
18503 case DW_TAG_subrange_type:
18504 this_type = read_subrange_type (die, cu);
18506 case DW_TAG_base_type:
18507 this_type = read_base_type (die, cu);
18509 case DW_TAG_unspecified_type:
18510 this_type = read_unspecified_type (die, cu);
18512 case DW_TAG_namespace:
18513 this_type = read_namespace_type (die, cu);
18515 case DW_TAG_module:
18516 this_type = read_module_type (die, cu);
18519 complaint (&symfile_complaints,
18520 _("unexpected tag in read_type_die: '%s'"),
18521 dwarf_tag_name (die->tag));
18528 /* See if we can figure out if the class lives in a namespace. We do
18529 this by looking for a member function; its demangled name will
18530 contain namespace info, if there is any.
18531 Return the computed name or NULL.
18532 Space for the result is allocated on the objfile's obstack.
18533 This is the full-die version of guess_partial_die_structure_name.
18534 In this case we know DIE has no useful parent. */
18537 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18539 struct die_info *spec_die;
18540 struct dwarf2_cu *spec_cu;
18541 struct die_info *child;
18544 spec_die = die_specification (die, &spec_cu);
18545 if (spec_die != NULL)
18551 for (child = die->child;
18553 child = child->sibling)
18555 if (child->tag == DW_TAG_subprogram)
18557 struct attribute *attr;
18559 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18561 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18565 = language_class_name_from_physname (cu->language_defn,
18569 if (actual_name != NULL)
18571 const char *die_name = dwarf2_name (die, cu);
18573 if (die_name != NULL
18574 && strcmp (die_name, actual_name) != 0)
18576 /* Strip off the class name from the full name.
18577 We want the prefix. */
18578 int die_name_len = strlen (die_name);
18579 int actual_name_len = strlen (actual_name);
18581 /* Test for '::' as a sanity check. */
18582 if (actual_name_len > die_name_len + 2
18583 && actual_name[actual_name_len
18584 - die_name_len - 1] == ':')
18586 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18588 actual_name_len - die_name_len - 2);
18591 xfree (actual_name);
18600 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18601 prefix part in such case. See
18602 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18605 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18607 struct attribute *attr;
18610 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18611 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18614 attr = dwarf2_attr (die, DW_AT_name, cu);
18615 if (attr != NULL && DW_STRING (attr) != NULL)
18618 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18620 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18621 if (attr == NULL || DW_STRING (attr) == NULL)
18624 /* dwarf2_name had to be already called. */
18625 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18627 /* Strip the base name, keep any leading namespaces/classes. */
18628 base = strrchr (DW_STRING (attr), ':');
18629 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18632 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18633 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18636 /* Return the name of the namespace/class that DIE is defined within,
18637 or "" if we can't tell. The caller should not xfree the result.
18639 For example, if we're within the method foo() in the following
18649 then determine_prefix on foo's die will return "N::C". */
18651 static const char *
18652 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18654 struct die_info *parent, *spec_die;
18655 struct dwarf2_cu *spec_cu;
18656 struct type *parent_type;
18659 if (cu->language != language_cplus && cu->language != language_java
18660 && cu->language != language_fortran)
18663 retval = anonymous_struct_prefix (die, cu);
18667 /* We have to be careful in the presence of DW_AT_specification.
18668 For example, with GCC 3.4, given the code
18672 // Definition of N::foo.
18676 then we'll have a tree of DIEs like this:
18678 1: DW_TAG_compile_unit
18679 2: DW_TAG_namespace // N
18680 3: DW_TAG_subprogram // declaration of N::foo
18681 4: DW_TAG_subprogram // definition of N::foo
18682 DW_AT_specification // refers to die #3
18684 Thus, when processing die #4, we have to pretend that we're in
18685 the context of its DW_AT_specification, namely the contex of die
18688 spec_die = die_specification (die, &spec_cu);
18689 if (spec_die == NULL)
18690 parent = die->parent;
18693 parent = spec_die->parent;
18697 if (parent == NULL)
18699 else if (parent->building_fullname)
18702 const char *parent_name;
18704 /* It has been seen on RealView 2.2 built binaries,
18705 DW_TAG_template_type_param types actually _defined_ as
18706 children of the parent class:
18709 template class <class Enum> Class{};
18710 Class<enum E> class_e;
18712 1: DW_TAG_class_type (Class)
18713 2: DW_TAG_enumeration_type (E)
18714 3: DW_TAG_enumerator (enum1:0)
18715 3: DW_TAG_enumerator (enum2:1)
18717 2: DW_TAG_template_type_param
18718 DW_AT_type DW_FORM_ref_udata (E)
18720 Besides being broken debug info, it can put GDB into an
18721 infinite loop. Consider:
18723 When we're building the full name for Class<E>, we'll start
18724 at Class, and go look over its template type parameters,
18725 finding E. We'll then try to build the full name of E, and
18726 reach here. We're now trying to build the full name of E,
18727 and look over the parent DIE for containing scope. In the
18728 broken case, if we followed the parent DIE of E, we'd again
18729 find Class, and once again go look at its template type
18730 arguments, etc., etc. Simply don't consider such parent die
18731 as source-level parent of this die (it can't be, the language
18732 doesn't allow it), and break the loop here. */
18733 name = dwarf2_name (die, cu);
18734 parent_name = dwarf2_name (parent, cu);
18735 complaint (&symfile_complaints,
18736 _("template param type '%s' defined within parent '%s'"),
18737 name ? name : "<unknown>",
18738 parent_name ? parent_name : "<unknown>");
18742 switch (parent->tag)
18744 case DW_TAG_namespace:
18745 parent_type = read_type_die (parent, cu);
18746 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18747 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18748 Work around this problem here. */
18749 if (cu->language == language_cplus
18750 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18752 /* We give a name to even anonymous namespaces. */
18753 return TYPE_TAG_NAME (parent_type);
18754 case DW_TAG_class_type:
18755 case DW_TAG_interface_type:
18756 case DW_TAG_structure_type:
18757 case DW_TAG_union_type:
18758 case DW_TAG_module:
18759 parent_type = read_type_die (parent, cu);
18760 if (TYPE_TAG_NAME (parent_type) != NULL)
18761 return TYPE_TAG_NAME (parent_type);
18763 /* An anonymous structure is only allowed non-static data
18764 members; no typedefs, no member functions, et cetera.
18765 So it does not need a prefix. */
18767 case DW_TAG_compile_unit:
18768 case DW_TAG_partial_unit:
18769 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18770 if (cu->language == language_cplus
18771 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18772 && die->child != NULL
18773 && (die->tag == DW_TAG_class_type
18774 || die->tag == DW_TAG_structure_type
18775 || die->tag == DW_TAG_union_type))
18777 char *name = guess_full_die_structure_name (die, cu);
18782 case DW_TAG_enumeration_type:
18783 parent_type = read_type_die (parent, cu);
18784 if (TYPE_DECLARED_CLASS (parent_type))
18786 if (TYPE_TAG_NAME (parent_type) != NULL)
18787 return TYPE_TAG_NAME (parent_type);
18790 /* Fall through. */
18792 return determine_prefix (parent, cu);
18796 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18797 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18798 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18799 an obconcat, otherwise allocate storage for the result. The CU argument is
18800 used to determine the language and hence, the appropriate separator. */
18802 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18805 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18806 int physname, struct dwarf2_cu *cu)
18808 const char *lead = "";
18811 if (suffix == NULL || suffix[0] == '\0'
18812 || prefix == NULL || prefix[0] == '\0')
18814 else if (cu->language == language_java)
18816 else if (cu->language == language_fortran && physname)
18818 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18819 DW_AT_MIPS_linkage_name is preferred and used instead. */
18827 if (prefix == NULL)
18829 if (suffix == NULL)
18835 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18837 strcpy (retval, lead);
18838 strcat (retval, prefix);
18839 strcat (retval, sep);
18840 strcat (retval, suffix);
18845 /* We have an obstack. */
18846 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18850 /* Return sibling of die, NULL if no sibling. */
18852 static struct die_info *
18853 sibling_die (struct die_info *die)
18855 return die->sibling;
18858 /* Get name of a die, return NULL if not found. */
18860 static const char *
18861 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18862 struct obstack *obstack)
18864 if (name && cu->language == language_cplus)
18866 char *canon_name = cp_canonicalize_string (name);
18868 if (canon_name != NULL)
18870 if (strcmp (canon_name, name) != 0)
18871 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18872 xfree (canon_name);
18879 /* Get name of a die, return NULL if not found. */
18881 static const char *
18882 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18884 struct attribute *attr;
18886 attr = dwarf2_attr (die, DW_AT_name, cu);
18887 if ((!attr || !DW_STRING (attr))
18888 && die->tag != DW_TAG_class_type
18889 && die->tag != DW_TAG_interface_type
18890 && die->tag != DW_TAG_structure_type
18891 && die->tag != DW_TAG_union_type)
18896 case DW_TAG_compile_unit:
18897 case DW_TAG_partial_unit:
18898 /* Compilation units have a DW_AT_name that is a filename, not
18899 a source language identifier. */
18900 case DW_TAG_enumeration_type:
18901 case DW_TAG_enumerator:
18902 /* These tags always have simple identifiers already; no need
18903 to canonicalize them. */
18904 return DW_STRING (attr);
18906 case DW_TAG_subprogram:
18907 /* Java constructors will all be named "<init>", so return
18908 the class name when we see this special case. */
18909 if (cu->language == language_java
18910 && DW_STRING (attr) != NULL
18911 && strcmp (DW_STRING (attr), "<init>") == 0)
18913 struct dwarf2_cu *spec_cu = cu;
18914 struct die_info *spec_die;
18916 /* GCJ will output '<init>' for Java constructor names.
18917 For this special case, return the name of the parent class. */
18919 /* GCJ may output suprogram DIEs with AT_specification set.
18920 If so, use the name of the specified DIE. */
18921 spec_die = die_specification (die, &spec_cu);
18922 if (spec_die != NULL)
18923 return dwarf2_name (spec_die, spec_cu);
18928 if (die->tag == DW_TAG_class_type)
18929 return dwarf2_name (die, cu);
18931 while (die->tag != DW_TAG_compile_unit
18932 && die->tag != DW_TAG_partial_unit);
18936 case DW_TAG_class_type:
18937 case DW_TAG_interface_type:
18938 case DW_TAG_structure_type:
18939 case DW_TAG_union_type:
18940 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18941 structures or unions. These were of the form "._%d" in GCC 4.1,
18942 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18943 and GCC 4.4. We work around this problem by ignoring these. */
18944 if (attr && DW_STRING (attr)
18945 && (strncmp (DW_STRING (attr), "._", 2) == 0
18946 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18949 /* GCC might emit a nameless typedef that has a linkage name. See
18950 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18951 if (!attr || DW_STRING (attr) == NULL)
18953 char *demangled = NULL;
18955 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18957 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18959 if (attr == NULL || DW_STRING (attr) == NULL)
18962 /* Avoid demangling DW_STRING (attr) the second time on a second
18963 call for the same DIE. */
18964 if (!DW_STRING_IS_CANONICAL (attr))
18965 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18971 /* FIXME: we already did this for the partial symbol... */
18973 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18974 demangled, strlen (demangled));
18975 DW_STRING_IS_CANONICAL (attr) = 1;
18978 /* Strip any leading namespaces/classes, keep only the base name.
18979 DW_AT_name for named DIEs does not contain the prefixes. */
18980 base = strrchr (DW_STRING (attr), ':');
18981 if (base && base > DW_STRING (attr) && base[-1] == ':')
18984 return DW_STRING (attr);
18993 if (!DW_STRING_IS_CANONICAL (attr))
18996 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18997 &cu->objfile->per_bfd->storage_obstack);
18998 DW_STRING_IS_CANONICAL (attr) = 1;
19000 return DW_STRING (attr);
19003 /* Return the die that this die in an extension of, or NULL if there
19004 is none. *EXT_CU is the CU containing DIE on input, and the CU
19005 containing the return value on output. */
19007 static struct die_info *
19008 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19010 struct attribute *attr;
19012 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19016 return follow_die_ref (die, attr, ext_cu);
19019 /* Convert a DIE tag into its string name. */
19021 static const char *
19022 dwarf_tag_name (unsigned tag)
19024 const char *name = get_DW_TAG_name (tag);
19027 return "DW_TAG_<unknown>";
19032 /* Convert a DWARF attribute code into its string name. */
19034 static const char *
19035 dwarf_attr_name (unsigned attr)
19039 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19040 if (attr == DW_AT_MIPS_fde)
19041 return "DW_AT_MIPS_fde";
19043 if (attr == DW_AT_HP_block_index)
19044 return "DW_AT_HP_block_index";
19047 name = get_DW_AT_name (attr);
19050 return "DW_AT_<unknown>";
19055 /* Convert a DWARF value form code into its string name. */
19057 static const char *
19058 dwarf_form_name (unsigned form)
19060 const char *name = get_DW_FORM_name (form);
19063 return "DW_FORM_<unknown>";
19069 dwarf_bool_name (unsigned mybool)
19077 /* Convert a DWARF type code into its string name. */
19079 static const char *
19080 dwarf_type_encoding_name (unsigned enc)
19082 const char *name = get_DW_ATE_name (enc);
19085 return "DW_ATE_<unknown>";
19091 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19095 print_spaces (indent, f);
19096 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19097 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19099 if (die->parent != NULL)
19101 print_spaces (indent, f);
19102 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19103 die->parent->offset.sect_off);
19106 print_spaces (indent, f);
19107 fprintf_unfiltered (f, " has children: %s\n",
19108 dwarf_bool_name (die->child != NULL));
19110 print_spaces (indent, f);
19111 fprintf_unfiltered (f, " attributes:\n");
19113 for (i = 0; i < die->num_attrs; ++i)
19115 print_spaces (indent, f);
19116 fprintf_unfiltered (f, " %s (%s) ",
19117 dwarf_attr_name (die->attrs[i].name),
19118 dwarf_form_name (die->attrs[i].form));
19120 switch (die->attrs[i].form)
19123 case DW_FORM_GNU_addr_index:
19124 fprintf_unfiltered (f, "address: ");
19125 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19127 case DW_FORM_block2:
19128 case DW_FORM_block4:
19129 case DW_FORM_block:
19130 case DW_FORM_block1:
19131 fprintf_unfiltered (f, "block: size %s",
19132 pulongest (DW_BLOCK (&die->attrs[i])->size));
19134 case DW_FORM_exprloc:
19135 fprintf_unfiltered (f, "expression: size %s",
19136 pulongest (DW_BLOCK (&die->attrs[i])->size));
19138 case DW_FORM_ref_addr:
19139 fprintf_unfiltered (f, "ref address: ");
19140 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19142 case DW_FORM_GNU_ref_alt:
19143 fprintf_unfiltered (f, "alt ref address: ");
19144 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19150 case DW_FORM_ref_udata:
19151 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19152 (long) (DW_UNSND (&die->attrs[i])));
19154 case DW_FORM_data1:
19155 case DW_FORM_data2:
19156 case DW_FORM_data4:
19157 case DW_FORM_data8:
19158 case DW_FORM_udata:
19159 case DW_FORM_sdata:
19160 fprintf_unfiltered (f, "constant: %s",
19161 pulongest (DW_UNSND (&die->attrs[i])));
19163 case DW_FORM_sec_offset:
19164 fprintf_unfiltered (f, "section offset: %s",
19165 pulongest (DW_UNSND (&die->attrs[i])));
19167 case DW_FORM_ref_sig8:
19168 fprintf_unfiltered (f, "signature: %s",
19169 hex_string (DW_SIGNATURE (&die->attrs[i])));
19171 case DW_FORM_string:
19173 case DW_FORM_GNU_str_index:
19174 case DW_FORM_GNU_strp_alt:
19175 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19176 DW_STRING (&die->attrs[i])
19177 ? DW_STRING (&die->attrs[i]) : "",
19178 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19181 if (DW_UNSND (&die->attrs[i]))
19182 fprintf_unfiltered (f, "flag: TRUE");
19184 fprintf_unfiltered (f, "flag: FALSE");
19186 case DW_FORM_flag_present:
19187 fprintf_unfiltered (f, "flag: TRUE");
19189 case DW_FORM_indirect:
19190 /* The reader will have reduced the indirect form to
19191 the "base form" so this form should not occur. */
19192 fprintf_unfiltered (f,
19193 "unexpected attribute form: DW_FORM_indirect");
19196 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19197 die->attrs[i].form);
19200 fprintf_unfiltered (f, "\n");
19205 dump_die_for_error (struct die_info *die)
19207 dump_die_shallow (gdb_stderr, 0, die);
19211 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19213 int indent = level * 4;
19215 gdb_assert (die != NULL);
19217 if (level >= max_level)
19220 dump_die_shallow (f, indent, die);
19222 if (die->child != NULL)
19224 print_spaces (indent, f);
19225 fprintf_unfiltered (f, " Children:");
19226 if (level + 1 < max_level)
19228 fprintf_unfiltered (f, "\n");
19229 dump_die_1 (f, level + 1, max_level, die->child);
19233 fprintf_unfiltered (f,
19234 " [not printed, max nesting level reached]\n");
19238 if (die->sibling != NULL && level > 0)
19240 dump_die_1 (f, level, max_level, die->sibling);
19244 /* This is called from the pdie macro in gdbinit.in.
19245 It's not static so gcc will keep a copy callable from gdb. */
19248 dump_die (struct die_info *die, int max_level)
19250 dump_die_1 (gdb_stdlog, 0, max_level, die);
19254 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19258 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19264 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19268 dwarf2_get_ref_die_offset (const struct attribute *attr)
19270 sect_offset retval = { DW_UNSND (attr) };
19272 if (attr_form_is_ref (attr))
19275 retval.sect_off = 0;
19276 complaint (&symfile_complaints,
19277 _("unsupported die ref attribute form: '%s'"),
19278 dwarf_form_name (attr->form));
19282 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19283 * the value held by the attribute is not constant. */
19286 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19288 if (attr->form == DW_FORM_sdata)
19289 return DW_SND (attr);
19290 else if (attr->form == DW_FORM_udata
19291 || attr->form == DW_FORM_data1
19292 || attr->form == DW_FORM_data2
19293 || attr->form == DW_FORM_data4
19294 || attr->form == DW_FORM_data8)
19295 return DW_UNSND (attr);
19298 complaint (&symfile_complaints,
19299 _("Attribute value is not a constant (%s)"),
19300 dwarf_form_name (attr->form));
19301 return default_value;
19305 /* Follow reference or signature attribute ATTR of SRC_DIE.
19306 On entry *REF_CU is the CU of SRC_DIE.
19307 On exit *REF_CU is the CU of the result. */
19309 static struct die_info *
19310 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19311 struct dwarf2_cu **ref_cu)
19313 struct die_info *die;
19315 if (attr_form_is_ref (attr))
19316 die = follow_die_ref (src_die, attr, ref_cu);
19317 else if (attr->form == DW_FORM_ref_sig8)
19318 die = follow_die_sig (src_die, attr, ref_cu);
19321 dump_die_for_error (src_die);
19322 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19323 objfile_name ((*ref_cu)->objfile));
19329 /* Follow reference OFFSET.
19330 On entry *REF_CU is the CU of the source die referencing OFFSET.
19331 On exit *REF_CU is the CU of the result.
19332 Returns NULL if OFFSET is invalid. */
19334 static struct die_info *
19335 follow_die_offset (sect_offset offset, int offset_in_dwz,
19336 struct dwarf2_cu **ref_cu)
19338 struct die_info temp_die;
19339 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19341 gdb_assert (cu->per_cu != NULL);
19345 if (cu->per_cu->is_debug_types)
19347 /* .debug_types CUs cannot reference anything outside their CU.
19348 If they need to, they have to reference a signatured type via
19349 DW_FORM_ref_sig8. */
19350 if (! offset_in_cu_p (&cu->header, offset))
19353 else if (offset_in_dwz != cu->per_cu->is_dwz
19354 || ! offset_in_cu_p (&cu->header, offset))
19356 struct dwarf2_per_cu_data *per_cu;
19358 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19361 /* If necessary, add it to the queue and load its DIEs. */
19362 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19363 load_full_comp_unit (per_cu, cu->language);
19365 target_cu = per_cu->cu;
19367 else if (cu->dies == NULL)
19369 /* We're loading full DIEs during partial symbol reading. */
19370 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19371 load_full_comp_unit (cu->per_cu, language_minimal);
19374 *ref_cu = target_cu;
19375 temp_die.offset = offset;
19376 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19379 /* Follow reference attribute ATTR of SRC_DIE.
19380 On entry *REF_CU is the CU of SRC_DIE.
19381 On exit *REF_CU is the CU of the result. */
19383 static struct die_info *
19384 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19385 struct dwarf2_cu **ref_cu)
19387 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19388 struct dwarf2_cu *cu = *ref_cu;
19389 struct die_info *die;
19391 die = follow_die_offset (offset,
19392 (attr->form == DW_FORM_GNU_ref_alt
19393 || cu->per_cu->is_dwz),
19396 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19397 "at 0x%x [in module %s]"),
19398 offset.sect_off, src_die->offset.sect_off,
19399 objfile_name (cu->objfile));
19404 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19405 Returned value is intended for DW_OP_call*. Returned
19406 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19408 struct dwarf2_locexpr_baton
19409 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19410 struct dwarf2_per_cu_data *per_cu,
19411 CORE_ADDR (*get_frame_pc) (void *baton),
19414 struct dwarf2_cu *cu;
19415 struct die_info *die;
19416 struct attribute *attr;
19417 struct dwarf2_locexpr_baton retval;
19419 dw2_setup (per_cu->objfile);
19421 if (per_cu->cu == NULL)
19425 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19427 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19428 offset.sect_off, objfile_name (per_cu->objfile));
19430 attr = dwarf2_attr (die, DW_AT_location, cu);
19433 /* DWARF: "If there is no such attribute, then there is no effect.".
19434 DATA is ignored if SIZE is 0. */
19436 retval.data = NULL;
19439 else if (attr_form_is_section_offset (attr))
19441 struct dwarf2_loclist_baton loclist_baton;
19442 CORE_ADDR pc = (*get_frame_pc) (baton);
19445 fill_in_loclist_baton (cu, &loclist_baton, attr);
19447 retval.data = dwarf2_find_location_expression (&loclist_baton,
19449 retval.size = size;
19453 if (!attr_form_is_block (attr))
19454 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19455 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19456 offset.sect_off, objfile_name (per_cu->objfile));
19458 retval.data = DW_BLOCK (attr)->data;
19459 retval.size = DW_BLOCK (attr)->size;
19461 retval.per_cu = cu->per_cu;
19463 age_cached_comp_units ();
19468 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19471 struct dwarf2_locexpr_baton
19472 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19473 struct dwarf2_per_cu_data *per_cu,
19474 CORE_ADDR (*get_frame_pc) (void *baton),
19477 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19479 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19482 /* Write a constant of a given type as target-ordered bytes into
19485 static const gdb_byte *
19486 write_constant_as_bytes (struct obstack *obstack,
19487 enum bfd_endian byte_order,
19494 *len = TYPE_LENGTH (type);
19495 result = obstack_alloc (obstack, *len);
19496 store_unsigned_integer (result, *len, byte_order, value);
19501 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19502 pointer to the constant bytes and set LEN to the length of the
19503 data. If memory is needed, allocate it on OBSTACK. If the DIE
19504 does not have a DW_AT_const_value, return NULL. */
19507 dwarf2_fetch_constant_bytes (sect_offset offset,
19508 struct dwarf2_per_cu_data *per_cu,
19509 struct obstack *obstack,
19512 struct dwarf2_cu *cu;
19513 struct die_info *die;
19514 struct attribute *attr;
19515 const gdb_byte *result = NULL;
19518 enum bfd_endian byte_order;
19520 dw2_setup (per_cu->objfile);
19522 if (per_cu->cu == NULL)
19526 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19528 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19529 offset.sect_off, objfile_name (per_cu->objfile));
19532 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19536 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19537 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19539 switch (attr->form)
19542 case DW_FORM_GNU_addr_index:
19546 *len = cu->header.addr_size;
19547 tem = obstack_alloc (obstack, *len);
19548 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19552 case DW_FORM_string:
19554 case DW_FORM_GNU_str_index:
19555 case DW_FORM_GNU_strp_alt:
19556 /* DW_STRING is already allocated on the objfile obstack, point
19558 result = (const gdb_byte *) DW_STRING (attr);
19559 *len = strlen (DW_STRING (attr));
19561 case DW_FORM_block1:
19562 case DW_FORM_block2:
19563 case DW_FORM_block4:
19564 case DW_FORM_block:
19565 case DW_FORM_exprloc:
19566 result = DW_BLOCK (attr)->data;
19567 *len = DW_BLOCK (attr)->size;
19570 /* The DW_AT_const_value attributes are supposed to carry the
19571 symbol's value "represented as it would be on the target
19572 architecture." By the time we get here, it's already been
19573 converted to host endianness, so we just need to sign- or
19574 zero-extend it as appropriate. */
19575 case DW_FORM_data1:
19576 type = die_type (die, cu);
19577 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19578 if (result == NULL)
19579 result = write_constant_as_bytes (obstack, byte_order,
19582 case DW_FORM_data2:
19583 type = die_type (die, cu);
19584 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19585 if (result == NULL)
19586 result = write_constant_as_bytes (obstack, byte_order,
19589 case DW_FORM_data4:
19590 type = die_type (die, cu);
19591 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19592 if (result == NULL)
19593 result = write_constant_as_bytes (obstack, byte_order,
19596 case DW_FORM_data8:
19597 type = die_type (die, cu);
19598 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19599 if (result == NULL)
19600 result = write_constant_as_bytes (obstack, byte_order,
19604 case DW_FORM_sdata:
19605 type = die_type (die, cu);
19606 result = write_constant_as_bytes (obstack, byte_order,
19607 type, DW_SND (attr), len);
19610 case DW_FORM_udata:
19611 type = die_type (die, cu);
19612 result = write_constant_as_bytes (obstack, byte_order,
19613 type, DW_UNSND (attr), len);
19617 complaint (&symfile_complaints,
19618 _("unsupported const value attribute form: '%s'"),
19619 dwarf_form_name (attr->form));
19626 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19630 dwarf2_get_die_type (cu_offset die_offset,
19631 struct dwarf2_per_cu_data *per_cu)
19633 sect_offset die_offset_sect;
19635 dw2_setup (per_cu->objfile);
19637 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19638 return get_die_type_at_offset (die_offset_sect, per_cu);
19641 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19642 On entry *REF_CU is the CU of SRC_DIE.
19643 On exit *REF_CU is the CU of the result.
19644 Returns NULL if the referenced DIE isn't found. */
19646 static struct die_info *
19647 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19648 struct dwarf2_cu **ref_cu)
19650 struct objfile *objfile = (*ref_cu)->objfile;
19651 struct die_info temp_die;
19652 struct dwarf2_cu *sig_cu;
19653 struct die_info *die;
19655 /* While it might be nice to assert sig_type->type == NULL here,
19656 we can get here for DW_AT_imported_declaration where we need
19657 the DIE not the type. */
19659 /* If necessary, add it to the queue and load its DIEs. */
19661 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19662 read_signatured_type (sig_type);
19664 sig_cu = sig_type->per_cu.cu;
19665 gdb_assert (sig_cu != NULL);
19666 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19667 temp_die.offset = sig_type->type_offset_in_section;
19668 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19669 temp_die.offset.sect_off);
19672 /* For .gdb_index version 7 keep track of included TUs.
19673 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19674 if (dwarf2_per_objfile->index_table != NULL
19675 && dwarf2_per_objfile->index_table->version <= 7)
19677 VEC_safe_push (dwarf2_per_cu_ptr,
19678 (*ref_cu)->per_cu->imported_symtabs,
19689 /* Follow signatured type referenced by ATTR in SRC_DIE.
19690 On entry *REF_CU is the CU of SRC_DIE.
19691 On exit *REF_CU is the CU of the result.
19692 The result is the DIE of the type.
19693 If the referenced type cannot be found an error is thrown. */
19695 static struct die_info *
19696 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19697 struct dwarf2_cu **ref_cu)
19699 ULONGEST signature = DW_SIGNATURE (attr);
19700 struct signatured_type *sig_type;
19701 struct die_info *die;
19703 gdb_assert (attr->form == DW_FORM_ref_sig8);
19705 sig_type = lookup_signatured_type (*ref_cu, signature);
19706 /* sig_type will be NULL if the signatured type is missing from
19708 if (sig_type == NULL)
19710 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19711 " from DIE at 0x%x [in module %s]"),
19712 hex_string (signature), src_die->offset.sect_off,
19713 objfile_name ((*ref_cu)->objfile));
19716 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19719 dump_die_for_error (src_die);
19720 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19721 " from DIE at 0x%x [in module %s]"),
19722 hex_string (signature), src_die->offset.sect_off,
19723 objfile_name ((*ref_cu)->objfile));
19729 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19730 reading in and processing the type unit if necessary. */
19732 static struct type *
19733 get_signatured_type (struct die_info *die, ULONGEST signature,
19734 struct dwarf2_cu *cu)
19736 struct signatured_type *sig_type;
19737 struct dwarf2_cu *type_cu;
19738 struct die_info *type_die;
19741 sig_type = lookup_signatured_type (cu, signature);
19742 /* sig_type will be NULL if the signatured type is missing from
19744 if (sig_type == NULL)
19746 complaint (&symfile_complaints,
19747 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19748 " from DIE at 0x%x [in module %s]"),
19749 hex_string (signature), die->offset.sect_off,
19750 objfile_name (dwarf2_per_objfile->objfile));
19751 return build_error_marker_type (cu, die);
19754 /* If we already know the type we're done. */
19755 if (sig_type->type != NULL)
19756 return sig_type->type;
19759 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19760 if (type_die != NULL)
19762 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19763 is created. This is important, for example, because for c++ classes
19764 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19765 type = read_type_die (type_die, type_cu);
19768 complaint (&symfile_complaints,
19769 _("Dwarf Error: Cannot build signatured type %s"
19770 " referenced from DIE at 0x%x [in module %s]"),
19771 hex_string (signature), die->offset.sect_off,
19772 objfile_name (dwarf2_per_objfile->objfile));
19773 type = build_error_marker_type (cu, die);
19778 complaint (&symfile_complaints,
19779 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19780 " from DIE at 0x%x [in module %s]"),
19781 hex_string (signature), die->offset.sect_off,
19782 objfile_name (dwarf2_per_objfile->objfile));
19783 type = build_error_marker_type (cu, die);
19785 sig_type->type = type;
19790 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19791 reading in and processing the type unit if necessary. */
19793 static struct type *
19794 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19795 struct dwarf2_cu *cu) /* ARI: editCase function */
19797 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19798 if (attr_form_is_ref (attr))
19800 struct dwarf2_cu *type_cu = cu;
19801 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19803 return read_type_die (type_die, type_cu);
19805 else if (attr->form == DW_FORM_ref_sig8)
19807 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19811 complaint (&symfile_complaints,
19812 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19813 " at 0x%x [in module %s]"),
19814 dwarf_form_name (attr->form), die->offset.sect_off,
19815 objfile_name (dwarf2_per_objfile->objfile));
19816 return build_error_marker_type (cu, die);
19820 /* Load the DIEs associated with type unit PER_CU into memory. */
19823 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19825 struct signatured_type *sig_type;
19827 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19828 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19830 /* We have the per_cu, but we need the signatured_type.
19831 Fortunately this is an easy translation. */
19832 gdb_assert (per_cu->is_debug_types);
19833 sig_type = (struct signatured_type *) per_cu;
19835 gdb_assert (per_cu->cu == NULL);
19837 read_signatured_type (sig_type);
19839 gdb_assert (per_cu->cu != NULL);
19842 /* die_reader_func for read_signatured_type.
19843 This is identical to load_full_comp_unit_reader,
19844 but is kept separate for now. */
19847 read_signatured_type_reader (const struct die_reader_specs *reader,
19848 const gdb_byte *info_ptr,
19849 struct die_info *comp_unit_die,
19853 struct dwarf2_cu *cu = reader->cu;
19855 gdb_assert (cu->die_hash == NULL);
19857 htab_create_alloc_ex (cu->header.length / 12,
19861 &cu->comp_unit_obstack,
19862 hashtab_obstack_allocate,
19863 dummy_obstack_deallocate);
19866 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19867 &info_ptr, comp_unit_die);
19868 cu->dies = comp_unit_die;
19869 /* comp_unit_die is not stored in die_hash, no need. */
19871 /* We try not to read any attributes in this function, because not
19872 all CUs needed for references have been loaded yet, and symbol
19873 table processing isn't initialized. But we have to set the CU language,
19874 or we won't be able to build types correctly.
19875 Similarly, if we do not read the producer, we can not apply
19876 producer-specific interpretation. */
19877 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19880 /* Read in a signatured type and build its CU and DIEs.
19881 If the type is a stub for the real type in a DWO file,
19882 read in the real type from the DWO file as well. */
19885 read_signatured_type (struct signatured_type *sig_type)
19887 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19889 gdb_assert (per_cu->is_debug_types);
19890 gdb_assert (per_cu->cu == NULL);
19892 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19893 read_signatured_type_reader, NULL);
19894 sig_type->per_cu.tu_read = 1;
19897 /* Decode simple location descriptions.
19898 Given a pointer to a dwarf block that defines a location, compute
19899 the location and return the value.
19901 NOTE drow/2003-11-18: This function is called in two situations
19902 now: for the address of static or global variables (partial symbols
19903 only) and for offsets into structures which are expected to be
19904 (more or less) constant. The partial symbol case should go away,
19905 and only the constant case should remain. That will let this
19906 function complain more accurately. A few special modes are allowed
19907 without complaint for global variables (for instance, global
19908 register values and thread-local values).
19910 A location description containing no operations indicates that the
19911 object is optimized out. The return value is 0 for that case.
19912 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19913 callers will only want a very basic result and this can become a
19916 Note that stack[0] is unused except as a default error return. */
19919 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19921 struct objfile *objfile = cu->objfile;
19923 size_t size = blk->size;
19924 const gdb_byte *data = blk->data;
19925 CORE_ADDR stack[64];
19927 unsigned int bytes_read, unsnd;
19933 stack[++stacki] = 0;
19972 stack[++stacki] = op - DW_OP_lit0;
20007 stack[++stacki] = op - DW_OP_reg0;
20009 dwarf2_complex_location_expr_complaint ();
20013 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20015 stack[++stacki] = unsnd;
20017 dwarf2_complex_location_expr_complaint ();
20021 stack[++stacki] = read_address (objfile->obfd, &data[i],
20026 case DW_OP_const1u:
20027 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20031 case DW_OP_const1s:
20032 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20036 case DW_OP_const2u:
20037 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20041 case DW_OP_const2s:
20042 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20046 case DW_OP_const4u:
20047 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20051 case DW_OP_const4s:
20052 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20056 case DW_OP_const8u:
20057 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20062 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20068 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20073 stack[stacki + 1] = stack[stacki];
20078 stack[stacki - 1] += stack[stacki];
20082 case DW_OP_plus_uconst:
20083 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20089 stack[stacki - 1] -= stack[stacki];
20094 /* If we're not the last op, then we definitely can't encode
20095 this using GDB's address_class enum. This is valid for partial
20096 global symbols, although the variable's address will be bogus
20099 dwarf2_complex_location_expr_complaint ();
20102 case DW_OP_GNU_push_tls_address:
20103 /* The top of the stack has the offset from the beginning
20104 of the thread control block at which the variable is located. */
20105 /* Nothing should follow this operator, so the top of stack would
20107 /* This is valid for partial global symbols, but the variable's
20108 address will be bogus in the psymtab. Make it always at least
20109 non-zero to not look as a variable garbage collected by linker
20110 which have DW_OP_addr 0. */
20112 dwarf2_complex_location_expr_complaint ();
20116 case DW_OP_GNU_uninit:
20119 case DW_OP_GNU_addr_index:
20120 case DW_OP_GNU_const_index:
20121 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20128 const char *name = get_DW_OP_name (op);
20131 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20134 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20138 return (stack[stacki]);
20141 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20142 outside of the allocated space. Also enforce minimum>0. */
20143 if (stacki >= ARRAY_SIZE (stack) - 1)
20145 complaint (&symfile_complaints,
20146 _("location description stack overflow"));
20152 complaint (&symfile_complaints,
20153 _("location description stack underflow"));
20157 return (stack[stacki]);
20160 /* memory allocation interface */
20162 static struct dwarf_block *
20163 dwarf_alloc_block (struct dwarf2_cu *cu)
20165 struct dwarf_block *blk;
20167 blk = (struct dwarf_block *)
20168 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20172 static struct die_info *
20173 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20175 struct die_info *die;
20176 size_t size = sizeof (struct die_info);
20179 size += (num_attrs - 1) * sizeof (struct attribute);
20181 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20182 memset (die, 0, sizeof (struct die_info));
20187 /* Macro support. */
20189 /* Return file name relative to the compilation directory of file number I in
20190 *LH's file name table. The result is allocated using xmalloc; the caller is
20191 responsible for freeing it. */
20194 file_file_name (int file, struct line_header *lh)
20196 /* Is the file number a valid index into the line header's file name
20197 table? Remember that file numbers start with one, not zero. */
20198 if (1 <= file && file <= lh->num_file_names)
20200 struct file_entry *fe = &lh->file_names[file - 1];
20202 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20203 return xstrdup (fe->name);
20204 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20209 /* The compiler produced a bogus file number. We can at least
20210 record the macro definitions made in the file, even if we
20211 won't be able to find the file by name. */
20212 char fake_name[80];
20214 xsnprintf (fake_name, sizeof (fake_name),
20215 "<bad macro file number %d>", file);
20217 complaint (&symfile_complaints,
20218 _("bad file number in macro information (%d)"),
20221 return xstrdup (fake_name);
20225 /* Return the full name of file number I in *LH's file name table.
20226 Use COMP_DIR as the name of the current directory of the
20227 compilation. The result is allocated using xmalloc; the caller is
20228 responsible for freeing it. */
20230 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20232 /* Is the file number a valid index into the line header's file name
20233 table? Remember that file numbers start with one, not zero. */
20234 if (1 <= file && file <= lh->num_file_names)
20236 char *relative = file_file_name (file, lh);
20238 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20240 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20243 return file_file_name (file, lh);
20247 static struct macro_source_file *
20248 macro_start_file (int file, int line,
20249 struct macro_source_file *current_file,
20250 const char *comp_dir,
20251 struct line_header *lh, struct objfile *objfile)
20253 /* File name relative to the compilation directory of this source file. */
20254 char *file_name = file_file_name (file, lh);
20256 if (! current_file)
20258 /* Note: We don't create a macro table for this compilation unit
20259 at all until we actually get a filename. */
20260 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20262 /* If we have no current file, then this must be the start_file
20263 directive for the compilation unit's main source file. */
20264 current_file = macro_set_main (macro_table, file_name);
20265 macro_define_special (macro_table);
20268 current_file = macro_include (current_file, line, file_name);
20272 return current_file;
20276 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20277 followed by a null byte. */
20279 copy_string (const char *buf, int len)
20281 char *s = xmalloc (len + 1);
20283 memcpy (s, buf, len);
20289 static const char *
20290 consume_improper_spaces (const char *p, const char *body)
20294 complaint (&symfile_complaints,
20295 _("macro definition contains spaces "
20296 "in formal argument list:\n`%s'"),
20308 parse_macro_definition (struct macro_source_file *file, int line,
20313 /* The body string takes one of two forms. For object-like macro
20314 definitions, it should be:
20316 <macro name> " " <definition>
20318 For function-like macro definitions, it should be:
20320 <macro name> "() " <definition>
20322 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20324 Spaces may appear only where explicitly indicated, and in the
20327 The Dwarf 2 spec says that an object-like macro's name is always
20328 followed by a space, but versions of GCC around March 2002 omit
20329 the space when the macro's definition is the empty string.
20331 The Dwarf 2 spec says that there should be no spaces between the
20332 formal arguments in a function-like macro's formal argument list,
20333 but versions of GCC around March 2002 include spaces after the
20337 /* Find the extent of the macro name. The macro name is terminated
20338 by either a space or null character (for an object-like macro) or
20339 an opening paren (for a function-like macro). */
20340 for (p = body; *p; p++)
20341 if (*p == ' ' || *p == '(')
20344 if (*p == ' ' || *p == '\0')
20346 /* It's an object-like macro. */
20347 int name_len = p - body;
20348 char *name = copy_string (body, name_len);
20349 const char *replacement;
20352 replacement = body + name_len + 1;
20355 dwarf2_macro_malformed_definition_complaint (body);
20356 replacement = body + name_len;
20359 macro_define_object (file, line, name, replacement);
20363 else if (*p == '(')
20365 /* It's a function-like macro. */
20366 char *name = copy_string (body, p - body);
20369 char **argv = xmalloc (argv_size * sizeof (*argv));
20373 p = consume_improper_spaces (p, body);
20375 /* Parse the formal argument list. */
20376 while (*p && *p != ')')
20378 /* Find the extent of the current argument name. */
20379 const char *arg_start = p;
20381 while (*p && *p != ',' && *p != ')' && *p != ' ')
20384 if (! *p || p == arg_start)
20385 dwarf2_macro_malformed_definition_complaint (body);
20388 /* Make sure argv has room for the new argument. */
20389 if (argc >= argv_size)
20392 argv = xrealloc (argv, argv_size * sizeof (*argv));
20395 argv[argc++] = copy_string (arg_start, p - arg_start);
20398 p = consume_improper_spaces (p, body);
20400 /* Consume the comma, if present. */
20405 p = consume_improper_spaces (p, body);
20414 /* Perfectly formed definition, no complaints. */
20415 macro_define_function (file, line, name,
20416 argc, (const char **) argv,
20418 else if (*p == '\0')
20420 /* Complain, but do define it. */
20421 dwarf2_macro_malformed_definition_complaint (body);
20422 macro_define_function (file, line, name,
20423 argc, (const char **) argv,
20427 /* Just complain. */
20428 dwarf2_macro_malformed_definition_complaint (body);
20431 /* Just complain. */
20432 dwarf2_macro_malformed_definition_complaint (body);
20438 for (i = 0; i < argc; i++)
20444 dwarf2_macro_malformed_definition_complaint (body);
20447 /* Skip some bytes from BYTES according to the form given in FORM.
20448 Returns the new pointer. */
20450 static const gdb_byte *
20451 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20452 enum dwarf_form form,
20453 unsigned int offset_size,
20454 struct dwarf2_section_info *section)
20456 unsigned int bytes_read;
20460 case DW_FORM_data1:
20465 case DW_FORM_data2:
20469 case DW_FORM_data4:
20473 case DW_FORM_data8:
20477 case DW_FORM_string:
20478 read_direct_string (abfd, bytes, &bytes_read);
20479 bytes += bytes_read;
20482 case DW_FORM_sec_offset:
20484 case DW_FORM_GNU_strp_alt:
20485 bytes += offset_size;
20488 case DW_FORM_block:
20489 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20490 bytes += bytes_read;
20493 case DW_FORM_block1:
20494 bytes += 1 + read_1_byte (abfd, bytes);
20496 case DW_FORM_block2:
20497 bytes += 2 + read_2_bytes (abfd, bytes);
20499 case DW_FORM_block4:
20500 bytes += 4 + read_4_bytes (abfd, bytes);
20503 case DW_FORM_sdata:
20504 case DW_FORM_udata:
20505 case DW_FORM_GNU_addr_index:
20506 case DW_FORM_GNU_str_index:
20507 bytes = gdb_skip_leb128 (bytes, buffer_end);
20510 dwarf2_section_buffer_overflow_complaint (section);
20518 complaint (&symfile_complaints,
20519 _("invalid form 0x%x in `%s'"),
20520 form, get_section_name (section));
20528 /* A helper for dwarf_decode_macros that handles skipping an unknown
20529 opcode. Returns an updated pointer to the macro data buffer; or,
20530 on error, issues a complaint and returns NULL. */
20532 static const gdb_byte *
20533 skip_unknown_opcode (unsigned int opcode,
20534 const gdb_byte **opcode_definitions,
20535 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20537 unsigned int offset_size,
20538 struct dwarf2_section_info *section)
20540 unsigned int bytes_read, i;
20542 const gdb_byte *defn;
20544 if (opcode_definitions[opcode] == NULL)
20546 complaint (&symfile_complaints,
20547 _("unrecognized DW_MACFINO opcode 0x%x"),
20552 defn = opcode_definitions[opcode];
20553 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20554 defn += bytes_read;
20556 for (i = 0; i < arg; ++i)
20558 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20560 if (mac_ptr == NULL)
20562 /* skip_form_bytes already issued the complaint. */
20570 /* A helper function which parses the header of a macro section.
20571 If the macro section is the extended (for now called "GNU") type,
20572 then this updates *OFFSET_SIZE. Returns a pointer to just after
20573 the header, or issues a complaint and returns NULL on error. */
20575 static const gdb_byte *
20576 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20578 const gdb_byte *mac_ptr,
20579 unsigned int *offset_size,
20580 int section_is_gnu)
20582 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20584 if (section_is_gnu)
20586 unsigned int version, flags;
20588 version = read_2_bytes (abfd, mac_ptr);
20591 complaint (&symfile_complaints,
20592 _("unrecognized version `%d' in .debug_macro section"),
20598 flags = read_1_byte (abfd, mac_ptr);
20600 *offset_size = (flags & 1) ? 8 : 4;
20602 if ((flags & 2) != 0)
20603 /* We don't need the line table offset. */
20604 mac_ptr += *offset_size;
20606 /* Vendor opcode descriptions. */
20607 if ((flags & 4) != 0)
20609 unsigned int i, count;
20611 count = read_1_byte (abfd, mac_ptr);
20613 for (i = 0; i < count; ++i)
20615 unsigned int opcode, bytes_read;
20618 opcode = read_1_byte (abfd, mac_ptr);
20620 opcode_definitions[opcode] = mac_ptr;
20621 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20622 mac_ptr += bytes_read;
20631 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20632 including DW_MACRO_GNU_transparent_include. */
20635 dwarf_decode_macro_bytes (bfd *abfd,
20636 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20637 struct macro_source_file *current_file,
20638 struct line_header *lh, const char *comp_dir,
20639 struct dwarf2_section_info *section,
20640 int section_is_gnu, int section_is_dwz,
20641 unsigned int offset_size,
20642 struct objfile *objfile,
20643 htab_t include_hash)
20645 enum dwarf_macro_record_type macinfo_type;
20646 int at_commandline;
20647 const gdb_byte *opcode_definitions[256];
20649 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20650 &offset_size, section_is_gnu);
20651 if (mac_ptr == NULL)
20653 /* We already issued a complaint. */
20657 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20658 GDB is still reading the definitions from command line. First
20659 DW_MACINFO_start_file will need to be ignored as it was already executed
20660 to create CURRENT_FILE for the main source holding also the command line
20661 definitions. On first met DW_MACINFO_start_file this flag is reset to
20662 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20664 at_commandline = 1;
20668 /* Do we at least have room for a macinfo type byte? */
20669 if (mac_ptr >= mac_end)
20671 dwarf2_section_buffer_overflow_complaint (section);
20675 macinfo_type = read_1_byte (abfd, mac_ptr);
20678 /* Note that we rely on the fact that the corresponding GNU and
20679 DWARF constants are the same. */
20680 switch (macinfo_type)
20682 /* A zero macinfo type indicates the end of the macro
20687 case DW_MACRO_GNU_define:
20688 case DW_MACRO_GNU_undef:
20689 case DW_MACRO_GNU_define_indirect:
20690 case DW_MACRO_GNU_undef_indirect:
20691 case DW_MACRO_GNU_define_indirect_alt:
20692 case DW_MACRO_GNU_undef_indirect_alt:
20694 unsigned int bytes_read;
20699 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20700 mac_ptr += bytes_read;
20702 if (macinfo_type == DW_MACRO_GNU_define
20703 || macinfo_type == DW_MACRO_GNU_undef)
20705 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20706 mac_ptr += bytes_read;
20710 LONGEST str_offset;
20712 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20713 mac_ptr += offset_size;
20715 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20716 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20719 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20721 body = read_indirect_string_from_dwz (dwz, str_offset);
20724 body = read_indirect_string_at_offset (abfd, str_offset);
20727 is_define = (macinfo_type == DW_MACRO_GNU_define
20728 || macinfo_type == DW_MACRO_GNU_define_indirect
20729 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20730 if (! current_file)
20732 /* DWARF violation as no main source is present. */
20733 complaint (&symfile_complaints,
20734 _("debug info with no main source gives macro %s "
20736 is_define ? _("definition") : _("undefinition"),
20740 if ((line == 0 && !at_commandline)
20741 || (line != 0 && at_commandline))
20742 complaint (&symfile_complaints,
20743 _("debug info gives %s macro %s with %s line %d: %s"),
20744 at_commandline ? _("command-line") : _("in-file"),
20745 is_define ? _("definition") : _("undefinition"),
20746 line == 0 ? _("zero") : _("non-zero"), line, body);
20749 parse_macro_definition (current_file, line, body);
20752 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20753 || macinfo_type == DW_MACRO_GNU_undef_indirect
20754 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20755 macro_undef (current_file, line, body);
20760 case DW_MACRO_GNU_start_file:
20762 unsigned int bytes_read;
20765 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20766 mac_ptr += bytes_read;
20767 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20768 mac_ptr += bytes_read;
20770 if ((line == 0 && !at_commandline)
20771 || (line != 0 && at_commandline))
20772 complaint (&symfile_complaints,
20773 _("debug info gives source %d included "
20774 "from %s at %s line %d"),
20775 file, at_commandline ? _("command-line") : _("file"),
20776 line == 0 ? _("zero") : _("non-zero"), line);
20778 if (at_commandline)
20780 /* This DW_MACRO_GNU_start_file was executed in the
20782 at_commandline = 0;
20785 current_file = macro_start_file (file, line,
20786 current_file, comp_dir,
20791 case DW_MACRO_GNU_end_file:
20792 if (! current_file)
20793 complaint (&symfile_complaints,
20794 _("macro debug info has an unmatched "
20795 "`close_file' directive"));
20798 current_file = current_file->included_by;
20799 if (! current_file)
20801 enum dwarf_macro_record_type next_type;
20803 /* GCC circa March 2002 doesn't produce the zero
20804 type byte marking the end of the compilation
20805 unit. Complain if it's not there, but exit no
20808 /* Do we at least have room for a macinfo type byte? */
20809 if (mac_ptr >= mac_end)
20811 dwarf2_section_buffer_overflow_complaint (section);
20815 /* We don't increment mac_ptr here, so this is just
20817 next_type = read_1_byte (abfd, mac_ptr);
20818 if (next_type != 0)
20819 complaint (&symfile_complaints,
20820 _("no terminating 0-type entry for "
20821 "macros in `.debug_macinfo' section"));
20828 case DW_MACRO_GNU_transparent_include:
20829 case DW_MACRO_GNU_transparent_include_alt:
20833 bfd *include_bfd = abfd;
20834 struct dwarf2_section_info *include_section = section;
20835 struct dwarf2_section_info alt_section;
20836 const gdb_byte *include_mac_end = mac_end;
20837 int is_dwz = section_is_dwz;
20838 const gdb_byte *new_mac_ptr;
20840 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20841 mac_ptr += offset_size;
20843 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20845 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20847 dwarf2_read_section (dwarf2_per_objfile->objfile,
20850 include_section = &dwz->macro;
20851 include_bfd = get_section_bfd_owner (include_section);
20852 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20856 new_mac_ptr = include_section->buffer + offset;
20857 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20861 /* This has actually happened; see
20862 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20863 complaint (&symfile_complaints,
20864 _("recursive DW_MACRO_GNU_transparent_include in "
20865 ".debug_macro section"));
20869 *slot = (void *) new_mac_ptr;
20871 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20872 include_mac_end, current_file,
20874 section, section_is_gnu, is_dwz,
20875 offset_size, objfile, include_hash);
20877 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20882 case DW_MACINFO_vendor_ext:
20883 if (!section_is_gnu)
20885 unsigned int bytes_read;
20888 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20889 mac_ptr += bytes_read;
20890 read_direct_string (abfd, mac_ptr, &bytes_read);
20891 mac_ptr += bytes_read;
20893 /* We don't recognize any vendor extensions. */
20899 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20900 mac_ptr, mac_end, abfd, offset_size,
20902 if (mac_ptr == NULL)
20906 } while (macinfo_type != 0);
20910 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20911 const char *comp_dir, int section_is_gnu)
20913 struct objfile *objfile = dwarf2_per_objfile->objfile;
20914 struct line_header *lh = cu->line_header;
20916 const gdb_byte *mac_ptr, *mac_end;
20917 struct macro_source_file *current_file = 0;
20918 enum dwarf_macro_record_type macinfo_type;
20919 unsigned int offset_size = cu->header.offset_size;
20920 const gdb_byte *opcode_definitions[256];
20921 struct cleanup *cleanup;
20922 htab_t include_hash;
20924 struct dwarf2_section_info *section;
20925 const char *section_name;
20927 if (cu->dwo_unit != NULL)
20929 if (section_is_gnu)
20931 section = &cu->dwo_unit->dwo_file->sections.macro;
20932 section_name = ".debug_macro.dwo";
20936 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20937 section_name = ".debug_macinfo.dwo";
20942 if (section_is_gnu)
20944 section = &dwarf2_per_objfile->macro;
20945 section_name = ".debug_macro";
20949 section = &dwarf2_per_objfile->macinfo;
20950 section_name = ".debug_macinfo";
20954 dwarf2_read_section (objfile, section);
20955 if (section->buffer == NULL)
20957 complaint (&symfile_complaints, _("missing %s section"), section_name);
20960 abfd = get_section_bfd_owner (section);
20962 /* First pass: Find the name of the base filename.
20963 This filename is needed in order to process all macros whose definition
20964 (or undefinition) comes from the command line. These macros are defined
20965 before the first DW_MACINFO_start_file entry, and yet still need to be
20966 associated to the base file.
20968 To determine the base file name, we scan the macro definitions until we
20969 reach the first DW_MACINFO_start_file entry. We then initialize
20970 CURRENT_FILE accordingly so that any macro definition found before the
20971 first DW_MACINFO_start_file can still be associated to the base file. */
20973 mac_ptr = section->buffer + offset;
20974 mac_end = section->buffer + section->size;
20976 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20977 &offset_size, section_is_gnu);
20978 if (mac_ptr == NULL)
20980 /* We already issued a complaint. */
20986 /* Do we at least have room for a macinfo type byte? */
20987 if (mac_ptr >= mac_end)
20989 /* Complaint is printed during the second pass as GDB will probably
20990 stop the first pass earlier upon finding
20991 DW_MACINFO_start_file. */
20995 macinfo_type = read_1_byte (abfd, mac_ptr);
20998 /* Note that we rely on the fact that the corresponding GNU and
20999 DWARF constants are the same. */
21000 switch (macinfo_type)
21002 /* A zero macinfo type indicates the end of the macro
21007 case DW_MACRO_GNU_define:
21008 case DW_MACRO_GNU_undef:
21009 /* Only skip the data by MAC_PTR. */
21011 unsigned int bytes_read;
21013 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21014 mac_ptr += bytes_read;
21015 read_direct_string (abfd, mac_ptr, &bytes_read);
21016 mac_ptr += bytes_read;
21020 case DW_MACRO_GNU_start_file:
21022 unsigned int bytes_read;
21025 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21026 mac_ptr += bytes_read;
21027 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21028 mac_ptr += bytes_read;
21030 current_file = macro_start_file (file, line, current_file,
21031 comp_dir, lh, objfile);
21035 case DW_MACRO_GNU_end_file:
21036 /* No data to skip by MAC_PTR. */
21039 case DW_MACRO_GNU_define_indirect:
21040 case DW_MACRO_GNU_undef_indirect:
21041 case DW_MACRO_GNU_define_indirect_alt:
21042 case DW_MACRO_GNU_undef_indirect_alt:
21044 unsigned int bytes_read;
21046 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21047 mac_ptr += bytes_read;
21048 mac_ptr += offset_size;
21052 case DW_MACRO_GNU_transparent_include:
21053 case DW_MACRO_GNU_transparent_include_alt:
21054 /* Note that, according to the spec, a transparent include
21055 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21056 skip this opcode. */
21057 mac_ptr += offset_size;
21060 case DW_MACINFO_vendor_ext:
21061 /* Only skip the data by MAC_PTR. */
21062 if (!section_is_gnu)
21064 unsigned int bytes_read;
21066 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21067 mac_ptr += bytes_read;
21068 read_direct_string (abfd, mac_ptr, &bytes_read);
21069 mac_ptr += bytes_read;
21074 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21075 mac_ptr, mac_end, abfd, offset_size,
21077 if (mac_ptr == NULL)
21081 } while (macinfo_type != 0 && current_file == NULL);
21083 /* Second pass: Process all entries.
21085 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21086 command-line macro definitions/undefinitions. This flag is unset when we
21087 reach the first DW_MACINFO_start_file entry. */
21089 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21090 NULL, xcalloc, xfree);
21091 cleanup = make_cleanup_htab_delete (include_hash);
21092 mac_ptr = section->buffer + offset;
21093 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21094 *slot = (void *) mac_ptr;
21095 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21096 current_file, lh, comp_dir, section,
21098 offset_size, objfile, include_hash);
21099 do_cleanups (cleanup);
21102 /* Check if the attribute's form is a DW_FORM_block*
21103 if so return true else false. */
21106 attr_form_is_block (const struct attribute *attr)
21108 return (attr == NULL ? 0 :
21109 attr->form == DW_FORM_block1
21110 || attr->form == DW_FORM_block2
21111 || attr->form == DW_FORM_block4
21112 || attr->form == DW_FORM_block
21113 || attr->form == DW_FORM_exprloc);
21116 /* Return non-zero if ATTR's value is a section offset --- classes
21117 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21118 You may use DW_UNSND (attr) to retrieve such offsets.
21120 Section 7.5.4, "Attribute Encodings", explains that no attribute
21121 may have a value that belongs to more than one of these classes; it
21122 would be ambiguous if we did, because we use the same forms for all
21126 attr_form_is_section_offset (const struct attribute *attr)
21128 return (attr->form == DW_FORM_data4
21129 || attr->form == DW_FORM_data8
21130 || attr->form == DW_FORM_sec_offset);
21133 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21134 zero otherwise. When this function returns true, you can apply
21135 dwarf2_get_attr_constant_value to it.
21137 However, note that for some attributes you must check
21138 attr_form_is_section_offset before using this test. DW_FORM_data4
21139 and DW_FORM_data8 are members of both the constant class, and of
21140 the classes that contain offsets into other debug sections
21141 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21142 that, if an attribute's can be either a constant or one of the
21143 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21144 taken as section offsets, not constants. */
21147 attr_form_is_constant (const struct attribute *attr)
21149 switch (attr->form)
21151 case DW_FORM_sdata:
21152 case DW_FORM_udata:
21153 case DW_FORM_data1:
21154 case DW_FORM_data2:
21155 case DW_FORM_data4:
21156 case DW_FORM_data8:
21164 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21165 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21168 attr_form_is_ref (const struct attribute *attr)
21170 switch (attr->form)
21172 case DW_FORM_ref_addr:
21177 case DW_FORM_ref_udata:
21178 case DW_FORM_GNU_ref_alt:
21185 /* Return the .debug_loc section to use for CU.
21186 For DWO files use .debug_loc.dwo. */
21188 static struct dwarf2_section_info *
21189 cu_debug_loc_section (struct dwarf2_cu *cu)
21192 return &cu->dwo_unit->dwo_file->sections.loc;
21193 return &dwarf2_per_objfile->loc;
21196 /* A helper function that fills in a dwarf2_loclist_baton. */
21199 fill_in_loclist_baton (struct dwarf2_cu *cu,
21200 struct dwarf2_loclist_baton *baton,
21201 const struct attribute *attr)
21203 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21205 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21207 baton->per_cu = cu->per_cu;
21208 gdb_assert (baton->per_cu);
21209 /* We don't know how long the location list is, but make sure we
21210 don't run off the edge of the section. */
21211 baton->size = section->size - DW_UNSND (attr);
21212 baton->data = section->buffer + DW_UNSND (attr);
21213 baton->base_address = cu->base_address;
21214 baton->from_dwo = cu->dwo_unit != NULL;
21218 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21219 struct dwarf2_cu *cu, int is_block)
21221 struct objfile *objfile = dwarf2_per_objfile->objfile;
21222 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21224 if (attr_form_is_section_offset (attr)
21225 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21226 the section. If so, fall through to the complaint in the
21228 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21230 struct dwarf2_loclist_baton *baton;
21232 baton = obstack_alloc (&objfile->objfile_obstack,
21233 sizeof (struct dwarf2_loclist_baton));
21235 fill_in_loclist_baton (cu, baton, attr);
21237 if (cu->base_known == 0)
21238 complaint (&symfile_complaints,
21239 _("Location list used without "
21240 "specifying the CU base address."));
21242 SYMBOL_ACLASS_INDEX (sym) = (is_block
21243 ? dwarf2_loclist_block_index
21244 : dwarf2_loclist_index);
21245 SYMBOL_LOCATION_BATON (sym) = baton;
21249 struct dwarf2_locexpr_baton *baton;
21251 baton = obstack_alloc (&objfile->objfile_obstack,
21252 sizeof (struct dwarf2_locexpr_baton));
21253 baton->per_cu = cu->per_cu;
21254 gdb_assert (baton->per_cu);
21256 if (attr_form_is_block (attr))
21258 /* Note that we're just copying the block's data pointer
21259 here, not the actual data. We're still pointing into the
21260 info_buffer for SYM's objfile; right now we never release
21261 that buffer, but when we do clean up properly this may
21263 baton->size = DW_BLOCK (attr)->size;
21264 baton->data = DW_BLOCK (attr)->data;
21268 dwarf2_invalid_attrib_class_complaint ("location description",
21269 SYMBOL_NATURAL_NAME (sym));
21273 SYMBOL_ACLASS_INDEX (sym) = (is_block
21274 ? dwarf2_locexpr_block_index
21275 : dwarf2_locexpr_index);
21276 SYMBOL_LOCATION_BATON (sym) = baton;
21280 /* Return the OBJFILE associated with the compilation unit CU. If CU
21281 came from a separate debuginfo file, then the master objfile is
21285 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21287 struct objfile *objfile = per_cu->objfile;
21289 /* Return the master objfile, so that we can report and look up the
21290 correct file containing this variable. */
21291 if (objfile->separate_debug_objfile_backlink)
21292 objfile = objfile->separate_debug_objfile_backlink;
21297 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21298 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21299 CU_HEADERP first. */
21301 static const struct comp_unit_head *
21302 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21303 struct dwarf2_per_cu_data *per_cu)
21305 const gdb_byte *info_ptr;
21308 return &per_cu->cu->header;
21310 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21312 memset (cu_headerp, 0, sizeof (*cu_headerp));
21313 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21318 /* Return the address size given in the compilation unit header for CU. */
21321 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21323 struct comp_unit_head cu_header_local;
21324 const struct comp_unit_head *cu_headerp;
21326 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21328 return cu_headerp->addr_size;
21331 /* Return the offset size given in the compilation unit header for CU. */
21334 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21336 struct comp_unit_head cu_header_local;
21337 const struct comp_unit_head *cu_headerp;
21339 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21341 return cu_headerp->offset_size;
21344 /* See its dwarf2loc.h declaration. */
21347 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21349 struct comp_unit_head cu_header_local;
21350 const struct comp_unit_head *cu_headerp;
21352 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21354 if (cu_headerp->version == 2)
21355 return cu_headerp->addr_size;
21357 return cu_headerp->offset_size;
21360 /* Return the text offset of the CU. The returned offset comes from
21361 this CU's objfile. If this objfile came from a separate debuginfo
21362 file, then the offset may be different from the corresponding
21363 offset in the parent objfile. */
21366 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21368 struct objfile *objfile = per_cu->objfile;
21370 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21373 /* Locate the .debug_info compilation unit from CU's objfile which contains
21374 the DIE at OFFSET. Raises an error on failure. */
21376 static struct dwarf2_per_cu_data *
21377 dwarf2_find_containing_comp_unit (sect_offset offset,
21378 unsigned int offset_in_dwz,
21379 struct objfile *objfile)
21381 struct dwarf2_per_cu_data *this_cu;
21383 const sect_offset *cu_off;
21386 high = dwarf2_per_objfile->n_comp_units - 1;
21389 struct dwarf2_per_cu_data *mid_cu;
21390 int mid = low + (high - low) / 2;
21392 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21393 cu_off = &mid_cu->offset;
21394 if (mid_cu->is_dwz > offset_in_dwz
21395 || (mid_cu->is_dwz == offset_in_dwz
21396 && cu_off->sect_off >= offset.sect_off))
21401 gdb_assert (low == high);
21402 this_cu = dwarf2_per_objfile->all_comp_units[low];
21403 cu_off = &this_cu->offset;
21404 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21406 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21407 error (_("Dwarf Error: could not find partial DIE containing "
21408 "offset 0x%lx [in module %s]"),
21409 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21411 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21412 <= offset.sect_off);
21413 return dwarf2_per_objfile->all_comp_units[low-1];
21417 this_cu = dwarf2_per_objfile->all_comp_units[low];
21418 if (low == dwarf2_per_objfile->n_comp_units - 1
21419 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21420 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21421 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21426 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21429 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21431 memset (cu, 0, sizeof (*cu));
21433 cu->per_cu = per_cu;
21434 cu->objfile = per_cu->objfile;
21435 obstack_init (&cu->comp_unit_obstack);
21438 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21441 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21442 enum language pretend_language)
21444 struct attribute *attr;
21446 /* Set the language we're debugging. */
21447 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21449 set_cu_language (DW_UNSND (attr), cu);
21452 cu->language = pretend_language;
21453 cu->language_defn = language_def (cu->language);
21456 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21458 cu->producer = DW_STRING (attr);
21461 /* Release one cached compilation unit, CU. We unlink it from the tree
21462 of compilation units, but we don't remove it from the read_in_chain;
21463 the caller is responsible for that.
21464 NOTE: DATA is a void * because this function is also used as a
21465 cleanup routine. */
21468 free_heap_comp_unit (void *data)
21470 struct dwarf2_cu *cu = data;
21472 gdb_assert (cu->per_cu != NULL);
21473 cu->per_cu->cu = NULL;
21476 obstack_free (&cu->comp_unit_obstack, NULL);
21481 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21482 when we're finished with it. We can't free the pointer itself, but be
21483 sure to unlink it from the cache. Also release any associated storage. */
21486 free_stack_comp_unit (void *data)
21488 struct dwarf2_cu *cu = data;
21490 gdb_assert (cu->per_cu != NULL);
21491 cu->per_cu->cu = NULL;
21494 obstack_free (&cu->comp_unit_obstack, NULL);
21495 cu->partial_dies = NULL;
21498 /* Free all cached compilation units. */
21501 free_cached_comp_units (void *data)
21503 struct dwarf2_per_cu_data *per_cu, **last_chain;
21505 per_cu = dwarf2_per_objfile->read_in_chain;
21506 last_chain = &dwarf2_per_objfile->read_in_chain;
21507 while (per_cu != NULL)
21509 struct dwarf2_per_cu_data *next_cu;
21511 next_cu = per_cu->cu->read_in_chain;
21513 free_heap_comp_unit (per_cu->cu);
21514 *last_chain = next_cu;
21520 /* Increase the age counter on each cached compilation unit, and free
21521 any that are too old. */
21524 age_cached_comp_units (void)
21526 struct dwarf2_per_cu_data *per_cu, **last_chain;
21528 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21529 per_cu = dwarf2_per_objfile->read_in_chain;
21530 while (per_cu != NULL)
21532 per_cu->cu->last_used ++;
21533 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21534 dwarf2_mark (per_cu->cu);
21535 per_cu = per_cu->cu->read_in_chain;
21538 per_cu = dwarf2_per_objfile->read_in_chain;
21539 last_chain = &dwarf2_per_objfile->read_in_chain;
21540 while (per_cu != NULL)
21542 struct dwarf2_per_cu_data *next_cu;
21544 next_cu = per_cu->cu->read_in_chain;
21546 if (!per_cu->cu->mark)
21548 free_heap_comp_unit (per_cu->cu);
21549 *last_chain = next_cu;
21552 last_chain = &per_cu->cu->read_in_chain;
21558 /* Remove a single compilation unit from the cache. */
21561 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21563 struct dwarf2_per_cu_data *per_cu, **last_chain;
21565 per_cu = dwarf2_per_objfile->read_in_chain;
21566 last_chain = &dwarf2_per_objfile->read_in_chain;
21567 while (per_cu != NULL)
21569 struct dwarf2_per_cu_data *next_cu;
21571 next_cu = per_cu->cu->read_in_chain;
21573 if (per_cu == target_per_cu)
21575 free_heap_comp_unit (per_cu->cu);
21577 *last_chain = next_cu;
21581 last_chain = &per_cu->cu->read_in_chain;
21587 /* Release all extra memory associated with OBJFILE. */
21590 dwarf2_free_objfile (struct objfile *objfile)
21592 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21594 if (dwarf2_per_objfile == NULL)
21597 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21598 free_cached_comp_units (NULL);
21600 if (dwarf2_per_objfile->quick_file_names_table)
21601 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21603 /* Everything else should be on the objfile obstack. */
21606 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21607 We store these in a hash table separate from the DIEs, and preserve them
21608 when the DIEs are flushed out of cache.
21610 The CU "per_cu" pointer is needed because offset alone is not enough to
21611 uniquely identify the type. A file may have multiple .debug_types sections,
21612 or the type may come from a DWO file. Furthermore, while it's more logical
21613 to use per_cu->section+offset, with Fission the section with the data is in
21614 the DWO file but we don't know that section at the point we need it.
21615 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21616 because we can enter the lookup routine, get_die_type_at_offset, from
21617 outside this file, and thus won't necessarily have PER_CU->cu.
21618 Fortunately, PER_CU is stable for the life of the objfile. */
21620 struct dwarf2_per_cu_offset_and_type
21622 const struct dwarf2_per_cu_data *per_cu;
21623 sect_offset offset;
21627 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21630 per_cu_offset_and_type_hash (const void *item)
21632 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21634 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21637 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21640 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21642 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21643 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21645 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21646 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21649 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21650 table if necessary. For convenience, return TYPE.
21652 The DIEs reading must have careful ordering to:
21653 * Not cause infite loops trying to read in DIEs as a prerequisite for
21654 reading current DIE.
21655 * Not trying to dereference contents of still incompletely read in types
21656 while reading in other DIEs.
21657 * Enable referencing still incompletely read in types just by a pointer to
21658 the type without accessing its fields.
21660 Therefore caller should follow these rules:
21661 * Try to fetch any prerequisite types we may need to build this DIE type
21662 before building the type and calling set_die_type.
21663 * After building type call set_die_type for current DIE as soon as
21664 possible before fetching more types to complete the current type.
21665 * Make the type as complete as possible before fetching more types. */
21667 static struct type *
21668 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21670 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21671 struct objfile *objfile = cu->objfile;
21673 /* For Ada types, make sure that the gnat-specific data is always
21674 initialized (if not already set). There are a few types where
21675 we should not be doing so, because the type-specific area is
21676 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21677 where the type-specific area is used to store the floatformat).
21678 But this is not a problem, because the gnat-specific information
21679 is actually not needed for these types. */
21680 if (need_gnat_info (cu)
21681 && TYPE_CODE (type) != TYPE_CODE_FUNC
21682 && TYPE_CODE (type) != TYPE_CODE_FLT
21683 && !HAVE_GNAT_AUX_INFO (type))
21684 INIT_GNAT_SPECIFIC (type);
21686 if (dwarf2_per_objfile->die_type_hash == NULL)
21688 dwarf2_per_objfile->die_type_hash =
21689 htab_create_alloc_ex (127,
21690 per_cu_offset_and_type_hash,
21691 per_cu_offset_and_type_eq,
21693 &objfile->objfile_obstack,
21694 hashtab_obstack_allocate,
21695 dummy_obstack_deallocate);
21698 ofs.per_cu = cu->per_cu;
21699 ofs.offset = die->offset;
21701 slot = (struct dwarf2_per_cu_offset_and_type **)
21702 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21704 complaint (&symfile_complaints,
21705 _("A problem internal to GDB: DIE 0x%x has type already set"),
21706 die->offset.sect_off);
21707 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21712 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21713 or return NULL if the die does not have a saved type. */
21715 static struct type *
21716 get_die_type_at_offset (sect_offset offset,
21717 struct dwarf2_per_cu_data *per_cu)
21719 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21721 if (dwarf2_per_objfile->die_type_hash == NULL)
21724 ofs.per_cu = per_cu;
21725 ofs.offset = offset;
21726 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21733 /* Look up the type for DIE in CU in die_type_hash,
21734 or return NULL if DIE does not have a saved type. */
21736 static struct type *
21737 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21739 return get_die_type_at_offset (die->offset, cu->per_cu);
21742 /* Add a dependence relationship from CU to REF_PER_CU. */
21745 dwarf2_add_dependence (struct dwarf2_cu *cu,
21746 struct dwarf2_per_cu_data *ref_per_cu)
21750 if (cu->dependencies == NULL)
21752 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21753 NULL, &cu->comp_unit_obstack,
21754 hashtab_obstack_allocate,
21755 dummy_obstack_deallocate);
21757 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21759 *slot = ref_per_cu;
21762 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21763 Set the mark field in every compilation unit in the
21764 cache that we must keep because we are keeping CU. */
21767 dwarf2_mark_helper (void **slot, void *data)
21769 struct dwarf2_per_cu_data *per_cu;
21771 per_cu = (struct dwarf2_per_cu_data *) *slot;
21773 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21774 reading of the chain. As such dependencies remain valid it is not much
21775 useful to track and undo them during QUIT cleanups. */
21776 if (per_cu->cu == NULL)
21779 if (per_cu->cu->mark)
21781 per_cu->cu->mark = 1;
21783 if (per_cu->cu->dependencies != NULL)
21784 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21789 /* Set the mark field in CU and in every other compilation unit in the
21790 cache that we must keep because we are keeping CU. */
21793 dwarf2_mark (struct dwarf2_cu *cu)
21798 if (cu->dependencies != NULL)
21799 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21803 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21807 per_cu->cu->mark = 0;
21808 per_cu = per_cu->cu->read_in_chain;
21812 /* Trivial hash function for partial_die_info: the hash value of a DIE
21813 is its offset in .debug_info for this objfile. */
21816 partial_die_hash (const void *item)
21818 const struct partial_die_info *part_die = item;
21820 return part_die->offset.sect_off;
21823 /* Trivial comparison function for partial_die_info structures: two DIEs
21824 are equal if they have the same offset. */
21827 partial_die_eq (const void *item_lhs, const void *item_rhs)
21829 const struct partial_die_info *part_die_lhs = item_lhs;
21830 const struct partial_die_info *part_die_rhs = item_rhs;
21832 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21835 static struct cmd_list_element *set_dwarf2_cmdlist;
21836 static struct cmd_list_element *show_dwarf2_cmdlist;
21839 set_dwarf2_cmd (char *args, int from_tty)
21841 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21846 show_dwarf2_cmd (char *args, int from_tty)
21848 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21851 /* Free data associated with OBJFILE, if necessary. */
21854 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21856 struct dwarf2_per_objfile *data = d;
21859 /* Make sure we don't accidentally use dwarf2_per_objfile while
21861 dwarf2_per_objfile = NULL;
21863 for (ix = 0; ix < data->n_comp_units; ++ix)
21864 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21866 for (ix = 0; ix < data->n_type_units; ++ix)
21867 VEC_free (dwarf2_per_cu_ptr,
21868 data->all_type_units[ix]->per_cu.imported_symtabs);
21869 xfree (data->all_type_units);
21871 VEC_free (dwarf2_section_info_def, data->types);
21873 if (data->dwo_files)
21874 free_dwo_files (data->dwo_files, objfile);
21875 if (data->dwp_file)
21876 gdb_bfd_unref (data->dwp_file->dbfd);
21878 if (data->dwz_file && data->dwz_file->dwz_bfd)
21879 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21883 /* The "save gdb-index" command. */
21885 /* The contents of the hash table we create when building the string
21887 struct strtab_entry
21889 offset_type offset;
21893 /* Hash function for a strtab_entry.
21895 Function is used only during write_hash_table so no index format backward
21896 compatibility is needed. */
21899 hash_strtab_entry (const void *e)
21901 const struct strtab_entry *entry = e;
21902 return mapped_index_string_hash (INT_MAX, entry->str);
21905 /* Equality function for a strtab_entry. */
21908 eq_strtab_entry (const void *a, const void *b)
21910 const struct strtab_entry *ea = a;
21911 const struct strtab_entry *eb = b;
21912 return !strcmp (ea->str, eb->str);
21915 /* Create a strtab_entry hash table. */
21918 create_strtab (void)
21920 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21921 xfree, xcalloc, xfree);
21924 /* Add a string to the constant pool. Return the string's offset in
21928 add_string (htab_t table, struct obstack *cpool, const char *str)
21931 struct strtab_entry entry;
21932 struct strtab_entry *result;
21935 slot = htab_find_slot (table, &entry, INSERT);
21940 result = XNEW (struct strtab_entry);
21941 result->offset = obstack_object_size (cpool);
21943 obstack_grow_str0 (cpool, str);
21946 return result->offset;
21949 /* An entry in the symbol table. */
21950 struct symtab_index_entry
21952 /* The name of the symbol. */
21954 /* The offset of the name in the constant pool. */
21955 offset_type index_offset;
21956 /* A sorted vector of the indices of all the CUs that hold an object
21958 VEC (offset_type) *cu_indices;
21961 /* The symbol table. This is a power-of-2-sized hash table. */
21962 struct mapped_symtab
21964 offset_type n_elements;
21966 struct symtab_index_entry **data;
21969 /* Hash function for a symtab_index_entry. */
21972 hash_symtab_entry (const void *e)
21974 const struct symtab_index_entry *entry = e;
21975 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21976 sizeof (offset_type) * VEC_length (offset_type,
21977 entry->cu_indices),
21981 /* Equality function for a symtab_index_entry. */
21984 eq_symtab_entry (const void *a, const void *b)
21986 const struct symtab_index_entry *ea = a;
21987 const struct symtab_index_entry *eb = b;
21988 int len = VEC_length (offset_type, ea->cu_indices);
21989 if (len != VEC_length (offset_type, eb->cu_indices))
21991 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21992 VEC_address (offset_type, eb->cu_indices),
21993 sizeof (offset_type) * len);
21996 /* Destroy a symtab_index_entry. */
21999 delete_symtab_entry (void *p)
22001 struct symtab_index_entry *entry = p;
22002 VEC_free (offset_type, entry->cu_indices);
22006 /* Create a hash table holding symtab_index_entry objects. */
22009 create_symbol_hash_table (void)
22011 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22012 delete_symtab_entry, xcalloc, xfree);
22015 /* Create a new mapped symtab object. */
22017 static struct mapped_symtab *
22018 create_mapped_symtab (void)
22020 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22021 symtab->n_elements = 0;
22022 symtab->size = 1024;
22023 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22027 /* Destroy a mapped_symtab. */
22030 cleanup_mapped_symtab (void *p)
22032 struct mapped_symtab *symtab = p;
22033 /* The contents of the array are freed when the other hash table is
22035 xfree (symtab->data);
22039 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22042 Function is used only during write_hash_table so no index format backward
22043 compatibility is needed. */
22045 static struct symtab_index_entry **
22046 find_slot (struct mapped_symtab *symtab, const char *name)
22048 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22050 index = hash & (symtab->size - 1);
22051 step = ((hash * 17) & (symtab->size - 1)) | 1;
22055 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22056 return &symtab->data[index];
22057 index = (index + step) & (symtab->size - 1);
22061 /* Expand SYMTAB's hash table. */
22064 hash_expand (struct mapped_symtab *symtab)
22066 offset_type old_size = symtab->size;
22068 struct symtab_index_entry **old_entries = symtab->data;
22071 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22073 for (i = 0; i < old_size; ++i)
22075 if (old_entries[i])
22077 struct symtab_index_entry **slot = find_slot (symtab,
22078 old_entries[i]->name);
22079 *slot = old_entries[i];
22083 xfree (old_entries);
22086 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22087 CU_INDEX is the index of the CU in which the symbol appears.
22088 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22091 add_index_entry (struct mapped_symtab *symtab, const char *name,
22092 int is_static, gdb_index_symbol_kind kind,
22093 offset_type cu_index)
22095 struct symtab_index_entry **slot;
22096 offset_type cu_index_and_attrs;
22098 ++symtab->n_elements;
22099 if (4 * symtab->n_elements / 3 >= symtab->size)
22100 hash_expand (symtab);
22102 slot = find_slot (symtab, name);
22105 *slot = XNEW (struct symtab_index_entry);
22106 (*slot)->name = name;
22107 /* index_offset is set later. */
22108 (*slot)->cu_indices = NULL;
22111 cu_index_and_attrs = 0;
22112 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22113 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22114 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22116 /* We don't want to record an index value twice as we want to avoid the
22118 We process all global symbols and then all static symbols
22119 (which would allow us to avoid the duplication by only having to check
22120 the last entry pushed), but a symbol could have multiple kinds in one CU.
22121 To keep things simple we don't worry about the duplication here and
22122 sort and uniqufy the list after we've processed all symbols. */
22123 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22126 /* qsort helper routine for uniquify_cu_indices. */
22129 offset_type_compare (const void *ap, const void *bp)
22131 offset_type a = *(offset_type *) ap;
22132 offset_type b = *(offset_type *) bp;
22134 return (a > b) - (b > a);
22137 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22140 uniquify_cu_indices (struct mapped_symtab *symtab)
22144 for (i = 0; i < symtab->size; ++i)
22146 struct symtab_index_entry *entry = symtab->data[i];
22149 && entry->cu_indices != NULL)
22151 unsigned int next_to_insert, next_to_check;
22152 offset_type last_value;
22154 qsort (VEC_address (offset_type, entry->cu_indices),
22155 VEC_length (offset_type, entry->cu_indices),
22156 sizeof (offset_type), offset_type_compare);
22158 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22159 next_to_insert = 1;
22160 for (next_to_check = 1;
22161 next_to_check < VEC_length (offset_type, entry->cu_indices);
22164 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22167 last_value = VEC_index (offset_type, entry->cu_indices,
22169 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22174 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22179 /* Add a vector of indices to the constant pool. */
22182 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22183 struct symtab_index_entry *entry)
22187 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22190 offset_type len = VEC_length (offset_type, entry->cu_indices);
22191 offset_type val = MAYBE_SWAP (len);
22196 entry->index_offset = obstack_object_size (cpool);
22198 obstack_grow (cpool, &val, sizeof (val));
22200 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22203 val = MAYBE_SWAP (iter);
22204 obstack_grow (cpool, &val, sizeof (val));
22209 struct symtab_index_entry *old_entry = *slot;
22210 entry->index_offset = old_entry->index_offset;
22213 return entry->index_offset;
22216 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22217 constant pool entries going into the obstack CPOOL. */
22220 write_hash_table (struct mapped_symtab *symtab,
22221 struct obstack *output, struct obstack *cpool)
22224 htab_t symbol_hash_table;
22227 symbol_hash_table = create_symbol_hash_table ();
22228 str_table = create_strtab ();
22230 /* We add all the index vectors to the constant pool first, to
22231 ensure alignment is ok. */
22232 for (i = 0; i < symtab->size; ++i)
22234 if (symtab->data[i])
22235 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22238 /* Now write out the hash table. */
22239 for (i = 0; i < symtab->size; ++i)
22241 offset_type str_off, vec_off;
22243 if (symtab->data[i])
22245 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22246 vec_off = symtab->data[i]->index_offset;
22250 /* While 0 is a valid constant pool index, it is not valid
22251 to have 0 for both offsets. */
22256 str_off = MAYBE_SWAP (str_off);
22257 vec_off = MAYBE_SWAP (vec_off);
22259 obstack_grow (output, &str_off, sizeof (str_off));
22260 obstack_grow (output, &vec_off, sizeof (vec_off));
22263 htab_delete (str_table);
22264 htab_delete (symbol_hash_table);
22267 /* Struct to map psymtab to CU index in the index file. */
22268 struct psymtab_cu_index_map
22270 struct partial_symtab *psymtab;
22271 unsigned int cu_index;
22275 hash_psymtab_cu_index (const void *item)
22277 const struct psymtab_cu_index_map *map = item;
22279 return htab_hash_pointer (map->psymtab);
22283 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22285 const struct psymtab_cu_index_map *lhs = item_lhs;
22286 const struct psymtab_cu_index_map *rhs = item_rhs;
22288 return lhs->psymtab == rhs->psymtab;
22291 /* Helper struct for building the address table. */
22292 struct addrmap_index_data
22294 struct objfile *objfile;
22295 struct obstack *addr_obstack;
22296 htab_t cu_index_htab;
22298 /* Non-zero if the previous_* fields are valid.
22299 We can't write an entry until we see the next entry (since it is only then
22300 that we know the end of the entry). */
22301 int previous_valid;
22302 /* Index of the CU in the table of all CUs in the index file. */
22303 unsigned int previous_cu_index;
22304 /* Start address of the CU. */
22305 CORE_ADDR previous_cu_start;
22308 /* Write an address entry to OBSTACK. */
22311 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22312 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22314 offset_type cu_index_to_write;
22316 CORE_ADDR baseaddr;
22318 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22320 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22321 obstack_grow (obstack, addr, 8);
22322 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22323 obstack_grow (obstack, addr, 8);
22324 cu_index_to_write = MAYBE_SWAP (cu_index);
22325 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22328 /* Worker function for traversing an addrmap to build the address table. */
22331 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22333 struct addrmap_index_data *data = datap;
22334 struct partial_symtab *pst = obj;
22336 if (data->previous_valid)
22337 add_address_entry (data->objfile, data->addr_obstack,
22338 data->previous_cu_start, start_addr,
22339 data->previous_cu_index);
22341 data->previous_cu_start = start_addr;
22344 struct psymtab_cu_index_map find_map, *map;
22345 find_map.psymtab = pst;
22346 map = htab_find (data->cu_index_htab, &find_map);
22347 gdb_assert (map != NULL);
22348 data->previous_cu_index = map->cu_index;
22349 data->previous_valid = 1;
22352 data->previous_valid = 0;
22357 /* Write OBJFILE's address map to OBSTACK.
22358 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22359 in the index file. */
22362 write_address_map (struct objfile *objfile, struct obstack *obstack,
22363 htab_t cu_index_htab)
22365 struct addrmap_index_data addrmap_index_data;
22367 /* When writing the address table, we have to cope with the fact that
22368 the addrmap iterator only provides the start of a region; we have to
22369 wait until the next invocation to get the start of the next region. */
22371 addrmap_index_data.objfile = objfile;
22372 addrmap_index_data.addr_obstack = obstack;
22373 addrmap_index_data.cu_index_htab = cu_index_htab;
22374 addrmap_index_data.previous_valid = 0;
22376 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22377 &addrmap_index_data);
22379 /* It's highly unlikely the last entry (end address = 0xff...ff)
22380 is valid, but we should still handle it.
22381 The end address is recorded as the start of the next region, but that
22382 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22384 if (addrmap_index_data.previous_valid)
22385 add_address_entry (objfile, obstack,
22386 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22387 addrmap_index_data.previous_cu_index);
22390 /* Return the symbol kind of PSYM. */
22392 static gdb_index_symbol_kind
22393 symbol_kind (struct partial_symbol *psym)
22395 domain_enum domain = PSYMBOL_DOMAIN (psym);
22396 enum address_class aclass = PSYMBOL_CLASS (psym);
22404 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22406 return GDB_INDEX_SYMBOL_KIND_TYPE;
22408 case LOC_CONST_BYTES:
22409 case LOC_OPTIMIZED_OUT:
22411 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22413 /* Note: It's currently impossible to recognize psyms as enum values
22414 short of reading the type info. For now punt. */
22415 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22417 /* There are other LOC_FOO values that one might want to classify
22418 as variables, but dwarf2read.c doesn't currently use them. */
22419 return GDB_INDEX_SYMBOL_KIND_OTHER;
22421 case STRUCT_DOMAIN:
22422 return GDB_INDEX_SYMBOL_KIND_TYPE;
22424 return GDB_INDEX_SYMBOL_KIND_OTHER;
22428 /* Add a list of partial symbols to SYMTAB. */
22431 write_psymbols (struct mapped_symtab *symtab,
22433 struct partial_symbol **psymp,
22435 offset_type cu_index,
22438 for (; count-- > 0; ++psymp)
22440 struct partial_symbol *psym = *psymp;
22443 if (SYMBOL_LANGUAGE (psym) == language_ada)
22444 error (_("Ada is not currently supported by the index"));
22446 /* Only add a given psymbol once. */
22447 slot = htab_find_slot (psyms_seen, psym, INSERT);
22450 gdb_index_symbol_kind kind = symbol_kind (psym);
22453 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22454 is_static, kind, cu_index);
22459 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22460 exception if there is an error. */
22463 write_obstack (FILE *file, struct obstack *obstack)
22465 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22467 != obstack_object_size (obstack))
22468 error (_("couldn't data write to file"));
22471 /* Unlink a file if the argument is not NULL. */
22474 unlink_if_set (void *p)
22476 char **filename = p;
22478 unlink (*filename);
22481 /* A helper struct used when iterating over debug_types. */
22482 struct signatured_type_index_data
22484 struct objfile *objfile;
22485 struct mapped_symtab *symtab;
22486 struct obstack *types_list;
22491 /* A helper function that writes a single signatured_type to an
22495 write_one_signatured_type (void **slot, void *d)
22497 struct signatured_type_index_data *info = d;
22498 struct signatured_type *entry = (struct signatured_type *) *slot;
22499 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22502 write_psymbols (info->symtab,
22504 info->objfile->global_psymbols.list
22505 + psymtab->globals_offset,
22506 psymtab->n_global_syms, info->cu_index,
22508 write_psymbols (info->symtab,
22510 info->objfile->static_psymbols.list
22511 + psymtab->statics_offset,
22512 psymtab->n_static_syms, info->cu_index,
22515 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22516 entry->per_cu.offset.sect_off);
22517 obstack_grow (info->types_list, val, 8);
22518 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22519 entry->type_offset_in_tu.cu_off);
22520 obstack_grow (info->types_list, val, 8);
22521 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22522 obstack_grow (info->types_list, val, 8);
22529 /* Recurse into all "included" dependencies and write their symbols as
22530 if they appeared in this psymtab. */
22533 recursively_write_psymbols (struct objfile *objfile,
22534 struct partial_symtab *psymtab,
22535 struct mapped_symtab *symtab,
22537 offset_type cu_index)
22541 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22542 if (psymtab->dependencies[i]->user != NULL)
22543 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22544 symtab, psyms_seen, cu_index);
22546 write_psymbols (symtab,
22548 objfile->global_psymbols.list + psymtab->globals_offset,
22549 psymtab->n_global_syms, cu_index,
22551 write_psymbols (symtab,
22553 objfile->static_psymbols.list + psymtab->statics_offset,
22554 psymtab->n_static_syms, cu_index,
22558 /* Create an index file for OBJFILE in the directory DIR. */
22561 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22563 struct cleanup *cleanup;
22564 char *filename, *cleanup_filename;
22565 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22566 struct obstack cu_list, types_cu_list;
22569 struct mapped_symtab *symtab;
22570 offset_type val, size_of_contents, total_len;
22573 htab_t cu_index_htab;
22574 struct psymtab_cu_index_map *psymtab_cu_index_map;
22576 if (dwarf2_per_objfile->using_index)
22577 error (_("Cannot use an index to create the index"));
22579 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22580 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22582 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22585 if (stat (objfile_name (objfile), &st) < 0)
22586 perror_with_name (objfile_name (objfile));
22588 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22589 INDEX_SUFFIX, (char *) NULL);
22590 cleanup = make_cleanup (xfree, filename);
22592 out_file = gdb_fopen_cloexec (filename, "wb");
22594 error (_("Can't open `%s' for writing"), filename);
22596 cleanup_filename = filename;
22597 make_cleanup (unlink_if_set, &cleanup_filename);
22599 symtab = create_mapped_symtab ();
22600 make_cleanup (cleanup_mapped_symtab, symtab);
22602 obstack_init (&addr_obstack);
22603 make_cleanup_obstack_free (&addr_obstack);
22605 obstack_init (&cu_list);
22606 make_cleanup_obstack_free (&cu_list);
22608 obstack_init (&types_cu_list);
22609 make_cleanup_obstack_free (&types_cu_list);
22611 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22612 NULL, xcalloc, xfree);
22613 make_cleanup_htab_delete (psyms_seen);
22615 /* While we're scanning CU's create a table that maps a psymtab pointer
22616 (which is what addrmap records) to its index (which is what is recorded
22617 in the index file). This will later be needed to write the address
22619 cu_index_htab = htab_create_alloc (100,
22620 hash_psymtab_cu_index,
22621 eq_psymtab_cu_index,
22622 NULL, xcalloc, xfree);
22623 make_cleanup_htab_delete (cu_index_htab);
22624 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22625 xmalloc (sizeof (struct psymtab_cu_index_map)
22626 * dwarf2_per_objfile->n_comp_units);
22627 make_cleanup (xfree, psymtab_cu_index_map);
22629 /* The CU list is already sorted, so we don't need to do additional
22630 work here. Also, the debug_types entries do not appear in
22631 all_comp_units, but only in their own hash table. */
22632 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22634 struct dwarf2_per_cu_data *per_cu
22635 = dwarf2_per_objfile->all_comp_units[i];
22636 struct partial_symtab *psymtab = per_cu->v.psymtab;
22638 struct psymtab_cu_index_map *map;
22641 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22642 It may be referenced from a local scope but in such case it does not
22643 need to be present in .gdb_index. */
22644 if (psymtab == NULL)
22647 if (psymtab->user == NULL)
22648 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22650 map = &psymtab_cu_index_map[i];
22651 map->psymtab = psymtab;
22653 slot = htab_find_slot (cu_index_htab, map, INSERT);
22654 gdb_assert (slot != NULL);
22655 gdb_assert (*slot == NULL);
22658 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22659 per_cu->offset.sect_off);
22660 obstack_grow (&cu_list, val, 8);
22661 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22662 obstack_grow (&cu_list, val, 8);
22665 /* Dump the address map. */
22666 write_address_map (objfile, &addr_obstack, cu_index_htab);
22668 /* Write out the .debug_type entries, if any. */
22669 if (dwarf2_per_objfile->signatured_types)
22671 struct signatured_type_index_data sig_data;
22673 sig_data.objfile = objfile;
22674 sig_data.symtab = symtab;
22675 sig_data.types_list = &types_cu_list;
22676 sig_data.psyms_seen = psyms_seen;
22677 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22678 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22679 write_one_signatured_type, &sig_data);
22682 /* Now that we've processed all symbols we can shrink their cu_indices
22684 uniquify_cu_indices (symtab);
22686 obstack_init (&constant_pool);
22687 make_cleanup_obstack_free (&constant_pool);
22688 obstack_init (&symtab_obstack);
22689 make_cleanup_obstack_free (&symtab_obstack);
22690 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22692 obstack_init (&contents);
22693 make_cleanup_obstack_free (&contents);
22694 size_of_contents = 6 * sizeof (offset_type);
22695 total_len = size_of_contents;
22697 /* The version number. */
22698 val = MAYBE_SWAP (8);
22699 obstack_grow (&contents, &val, sizeof (val));
22701 /* The offset of the CU list from the start of the file. */
22702 val = MAYBE_SWAP (total_len);
22703 obstack_grow (&contents, &val, sizeof (val));
22704 total_len += obstack_object_size (&cu_list);
22706 /* The offset of the types CU list from the start of the file. */
22707 val = MAYBE_SWAP (total_len);
22708 obstack_grow (&contents, &val, sizeof (val));
22709 total_len += obstack_object_size (&types_cu_list);
22711 /* The offset of the address table from the start of the file. */
22712 val = MAYBE_SWAP (total_len);
22713 obstack_grow (&contents, &val, sizeof (val));
22714 total_len += obstack_object_size (&addr_obstack);
22716 /* The offset of the symbol table from the start of the file. */
22717 val = MAYBE_SWAP (total_len);
22718 obstack_grow (&contents, &val, sizeof (val));
22719 total_len += obstack_object_size (&symtab_obstack);
22721 /* The offset of the constant pool from the start of the file. */
22722 val = MAYBE_SWAP (total_len);
22723 obstack_grow (&contents, &val, sizeof (val));
22724 total_len += obstack_object_size (&constant_pool);
22726 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22728 write_obstack (out_file, &contents);
22729 write_obstack (out_file, &cu_list);
22730 write_obstack (out_file, &types_cu_list);
22731 write_obstack (out_file, &addr_obstack);
22732 write_obstack (out_file, &symtab_obstack);
22733 write_obstack (out_file, &constant_pool);
22737 /* We want to keep the file, so we set cleanup_filename to NULL
22738 here. See unlink_if_set. */
22739 cleanup_filename = NULL;
22741 do_cleanups (cleanup);
22744 /* Implementation of the `save gdb-index' command.
22746 Note that the file format used by this command is documented in the
22747 GDB manual. Any changes here must be documented there. */
22750 save_gdb_index_command (char *arg, int from_tty)
22752 struct objfile *objfile;
22755 error (_("usage: save gdb-index DIRECTORY"));
22757 ALL_OBJFILES (objfile)
22761 /* If the objfile does not correspond to an actual file, skip it. */
22762 if (stat (objfile_name (objfile), &st) < 0)
22765 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22766 if (dwarf2_per_objfile)
22768 volatile struct gdb_exception except;
22770 TRY_CATCH (except, RETURN_MASK_ERROR)
22772 write_psymtabs_to_index (objfile, arg);
22774 if (except.reason < 0)
22775 exception_fprintf (gdb_stderr, except,
22776 _("Error while writing index for `%s': "),
22777 objfile_name (objfile));
22784 int dwarf2_always_disassemble;
22787 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22788 struct cmd_list_element *c, const char *value)
22790 fprintf_filtered (file,
22791 _("Whether to always disassemble "
22792 "DWARF expressions is %s.\n"),
22797 show_check_physname (struct ui_file *file, int from_tty,
22798 struct cmd_list_element *c, const char *value)
22800 fprintf_filtered (file,
22801 _("Whether to check \"physname\" is %s.\n"),
22805 void _initialize_dwarf2_read (void);
22808 _initialize_dwarf2_read (void)
22810 struct cmd_list_element *c;
22812 dwarf2_objfile_data_key
22813 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22815 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22816 Set DWARF 2 specific variables.\n\
22817 Configure DWARF 2 variables such as the cache size"),
22818 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22819 0/*allow-unknown*/, &maintenance_set_cmdlist);
22821 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22822 Show DWARF 2 specific variables\n\
22823 Show DWARF 2 variables such as the cache size"),
22824 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22825 0/*allow-unknown*/, &maintenance_show_cmdlist);
22827 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22828 &dwarf2_max_cache_age, _("\
22829 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22830 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22831 A higher limit means that cached compilation units will be stored\n\
22832 in memory longer, and more total memory will be used. Zero disables\n\
22833 caching, which can slow down startup."),
22835 show_dwarf2_max_cache_age,
22836 &set_dwarf2_cmdlist,
22837 &show_dwarf2_cmdlist);
22839 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22840 &dwarf2_always_disassemble, _("\
22841 Set whether `info address' always disassembles DWARF expressions."), _("\
22842 Show whether `info address' always disassembles DWARF expressions."), _("\
22843 When enabled, DWARF expressions are always printed in an assembly-like\n\
22844 syntax. When disabled, expressions will be printed in a more\n\
22845 conversational style, when possible."),
22847 show_dwarf2_always_disassemble,
22848 &set_dwarf2_cmdlist,
22849 &show_dwarf2_cmdlist);
22851 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22852 Set debugging of the dwarf2 reader."), _("\
22853 Show debugging of the dwarf2 reader."), _("\
22854 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22855 reading and symtab expansion. A value of 1 (one) provides basic\n\
22856 information. A value greater than 1 provides more verbose information."),
22859 &setdebuglist, &showdebuglist);
22861 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22862 Set debugging of the dwarf2 DIE reader."), _("\
22863 Show debugging of the dwarf2 DIE reader."), _("\
22864 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22865 The value is the maximum depth to print."),
22868 &setdebuglist, &showdebuglist);
22870 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22871 Set cross-checking of \"physname\" code against demangler."), _("\
22872 Show cross-checking of \"physname\" code against demangler."), _("\
22873 When enabled, GDB's internal \"physname\" code is checked against\n\
22875 NULL, show_check_physname,
22876 &setdebuglist, &showdebuglist);
22878 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22879 no_class, &use_deprecated_index_sections, _("\
22880 Set whether to use deprecated gdb_index sections."), _("\
22881 Show whether to use deprecated gdb_index sections."), _("\
22882 When enabled, deprecated .gdb_index sections are used anyway.\n\
22883 Normally they are ignored either because of a missing feature or\n\
22884 performance issue.\n\
22885 Warning: This option must be enabled before gdb reads the file."),
22888 &setlist, &showlist);
22890 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22892 Save a gdb-index file.\n\
22893 Usage: save gdb-index DIRECTORY"),
22895 set_cmd_completer (c, filename_completer);
22897 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22898 &dwarf2_locexpr_funcs);
22899 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22900 &dwarf2_loclist_funcs);
22902 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22903 &dwarf2_block_frame_base_locexpr_funcs);
22904 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22905 &dwarf2_block_frame_base_loclist_funcs);