1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
58 #include "exceptions.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
77 typedef struct symbol *symbolp;
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
93 static const struct objfile_data *dwarf2_objfile_data_key;
95 struct dwarf2_section_info
100 /* True if we have tried to read this section. */
104 typedef struct dwarf2_section_info dwarf2_section_info_def;
105 DEF_VEC_O (dwarf2_section_info_def);
107 /* All offsets in the index are of this type. It must be
108 architecture-independent. */
109 typedef uint32_t offset_type;
111 DEF_VEC_I (offset_type);
113 /* Ensure only legit values are used. */
114 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
116 gdb_assert ((unsigned int) (value) <= 1); \
117 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
123 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
124 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
125 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
128 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
129 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
131 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
132 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
135 /* A description of the mapped index. The file format is described in
136 a comment by the code that writes the index. */
139 /* Index data format version. */
142 /* The total length of the buffer. */
145 /* A pointer to the address table data. */
146 const gdb_byte *address_table;
148 /* Size of the address table data in bytes. */
149 offset_type address_table_size;
151 /* The symbol table, implemented as a hash table. */
152 const offset_type *symbol_table;
154 /* Size in slots, each slot is 2 offset_types. */
155 offset_type symbol_table_slots;
157 /* A pointer to the constant pool. */
158 const char *constant_pool;
161 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
162 DEF_VEC_P (dwarf2_per_cu_ptr);
164 /* Collection of data recorded per objfile.
165 This hangs off of dwarf2_objfile_data_key. */
167 struct dwarf2_per_objfile
169 struct dwarf2_section_info info;
170 struct dwarf2_section_info abbrev;
171 struct dwarf2_section_info line;
172 struct dwarf2_section_info loc;
173 struct dwarf2_section_info macinfo;
174 struct dwarf2_section_info macro;
175 struct dwarf2_section_info str;
176 struct dwarf2_section_info ranges;
177 struct dwarf2_section_info addr;
178 struct dwarf2_section_info frame;
179 struct dwarf2_section_info eh_frame;
180 struct dwarf2_section_info gdb_index;
182 VEC (dwarf2_section_info_def) *types;
185 struct objfile *objfile;
187 /* Table of all the compilation units. This is used to locate
188 the target compilation unit of a particular reference. */
189 struct dwarf2_per_cu_data **all_comp_units;
191 /* The number of compilation units in ALL_COMP_UNITS. */
194 /* The number of .debug_types-related CUs. */
197 /* The .debug_types-related CUs (TUs). */
198 struct signatured_type **all_type_units;
200 /* The number of entries in all_type_unit_groups. */
201 int n_type_unit_groups;
203 /* Table of type unit groups.
204 This exists to make it easy to iterate over all CUs and TU groups. */
205 struct type_unit_group **all_type_unit_groups;
207 /* Table of struct type_unit_group objects.
208 The hash key is the DW_AT_stmt_list value. */
209 htab_t type_unit_groups;
211 /* A table mapping .debug_types signatures to its signatured_type entry.
212 This is NULL if the .debug_types section hasn't been read in yet. */
213 htab_t signatured_types;
215 /* Type unit statistics, to see how well the scaling improvements
219 int nr_uniq_abbrev_tables;
221 int nr_symtab_sharers;
222 int nr_stmt_less_type_units;
225 /* A chain of compilation units that are currently read in, so that
226 they can be freed later. */
227 struct dwarf2_per_cu_data *read_in_chain;
229 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
230 This is NULL if the table hasn't been allocated yet. */
233 /* Non-zero if we've check for whether there is a DWP file. */
236 /* The DWP file if there is one, or NULL. */
237 struct dwp_file *dwp_file;
239 /* The shared '.dwz' file, if one exists. This is used when the
240 original data was compressed using 'dwz -m'. */
241 struct dwz_file *dwz_file;
243 /* A flag indicating wether this objfile has a section loaded at a
245 int has_section_at_zero;
247 /* True if we are using the mapped index,
248 or we are faking it for OBJF_READNOW's sake. */
249 unsigned char using_index;
251 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
252 struct mapped_index *index_table;
254 /* When using index_table, this keeps track of all quick_file_names entries.
255 TUs typically share line table entries with a CU, so we maintain a
256 separate table of all line table entries to support the sharing.
257 Note that while there can be way more TUs than CUs, we've already
258 sorted all the TUs into "type unit groups", grouped by their
259 DW_AT_stmt_list value. Therefore the only sharing done here is with a
260 CU and its associated TU group if there is one. */
261 htab_t quick_file_names_table;
263 /* Set during partial symbol reading, to prevent queueing of full
265 int reading_partial_symbols;
267 /* Table mapping type DIEs to their struct type *.
268 This is NULL if not allocated yet.
269 The mapping is done via (CU/TU signature + DIE offset) -> type. */
270 htab_t die_type_hash;
272 /* The CUs we recently read. */
273 VEC (dwarf2_per_cu_ptr) *just_read_cus;
276 static struct dwarf2_per_objfile *dwarf2_per_objfile;
278 /* Default names of the debugging sections. */
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_macinfo", ".zdebug_macinfo" },
290 { ".debug_macro", ".zdebug_macro" },
291 { ".debug_str", ".zdebug_str" },
292 { ".debug_ranges", ".zdebug_ranges" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
301 /* List of DWO/DWP sections. */
303 static const struct dwop_section_names
305 struct dwarf2_section_names abbrev_dwo;
306 struct dwarf2_section_names info_dwo;
307 struct dwarf2_section_names line_dwo;
308 struct dwarf2_section_names loc_dwo;
309 struct dwarf2_section_names macinfo_dwo;
310 struct dwarf2_section_names macro_dwo;
311 struct dwarf2_section_names str_dwo;
312 struct dwarf2_section_names str_offsets_dwo;
313 struct dwarf2_section_names types_dwo;
314 struct dwarf2_section_names cu_index;
315 struct dwarf2_section_names tu_index;
319 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
320 { ".debug_info.dwo", ".zdebug_info.dwo" },
321 { ".debug_line.dwo", ".zdebug_line.dwo" },
322 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
323 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
324 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
325 { ".debug_str.dwo", ".zdebug_str.dwo" },
326 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
327 { ".debug_types.dwo", ".zdebug_types.dwo" },
328 { ".debug_cu_index", ".zdebug_cu_index" },
329 { ".debug_tu_index", ".zdebug_tu_index" },
332 /* local data types */
334 /* The data in a compilation unit header, after target2host
335 translation, looks like this. */
336 struct comp_unit_head
340 unsigned char addr_size;
341 unsigned char signed_addr_p;
342 sect_offset abbrev_offset;
344 /* Size of file offsets; either 4 or 8. */
345 unsigned int offset_size;
347 /* Size of the length field; either 4 or 12. */
348 unsigned int initial_length_size;
350 /* Offset to the first byte of this compilation unit header in the
351 .debug_info section, for resolving relative reference dies. */
354 /* Offset to first die in this cu from the start of the cu.
355 This will be the first byte following the compilation unit header. */
356 cu_offset first_die_offset;
359 /* Type used for delaying computation of method physnames.
360 See comments for compute_delayed_physnames. */
361 struct delayed_method_info
363 /* The type to which the method is attached, i.e., its parent class. */
366 /* The index of the method in the type's function fieldlists. */
369 /* The index of the method in the fieldlist. */
372 /* The name of the DIE. */
375 /* The DIE associated with this method. */
376 struct die_info *die;
379 typedef struct delayed_method_info delayed_method_info;
380 DEF_VEC_O (delayed_method_info);
382 /* Internal state when decoding a particular compilation unit. */
385 /* The objfile containing this compilation unit. */
386 struct objfile *objfile;
388 /* The header of the compilation unit. */
389 struct comp_unit_head header;
391 /* Base address of this compilation unit. */
392 CORE_ADDR base_address;
394 /* Non-zero if base_address has been set. */
397 /* The language we are debugging. */
398 enum language language;
399 const struct language_defn *language_defn;
401 const char *producer;
403 /* The generic symbol table building routines have separate lists for
404 file scope symbols and all all other scopes (local scopes). So
405 we need to select the right one to pass to add_symbol_to_list().
406 We do it by keeping a pointer to the correct list in list_in_scope.
408 FIXME: The original dwarf code just treated the file scope as the
409 first local scope, and all other local scopes as nested local
410 scopes, and worked fine. Check to see if we really need to
411 distinguish these in buildsym.c. */
412 struct pending **list_in_scope;
414 /* The abbrev table for this CU.
415 Normally this points to the abbrev table in the objfile.
416 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
417 struct abbrev_table *abbrev_table;
419 /* Hash table holding all the loaded partial DIEs
420 with partial_die->offset.SECT_OFF as hash. */
423 /* Storage for things with the same lifetime as this read-in compilation
424 unit, including partial DIEs. */
425 struct obstack comp_unit_obstack;
427 /* When multiple dwarf2_cu structures are living in memory, this field
428 chains them all together, so that they can be released efficiently.
429 We will probably also want a generation counter so that most-recently-used
430 compilation units are cached... */
431 struct dwarf2_per_cu_data *read_in_chain;
433 /* Backchain to our per_cu entry if the tree has been built. */
434 struct dwarf2_per_cu_data *per_cu;
436 /* How many compilation units ago was this CU last referenced? */
439 /* A hash table of DIE cu_offset for following references with
440 die_info->offset.sect_off as hash. */
443 /* Full DIEs if read in. */
444 struct die_info *dies;
446 /* A set of pointers to dwarf2_per_cu_data objects for compilation
447 units referenced by this one. Only set during full symbol processing;
448 partial symbol tables do not have dependencies. */
451 /* Header data from the line table, during full symbol processing. */
452 struct line_header *line_header;
454 /* A list of methods which need to have physnames computed
455 after all type information has been read. */
456 VEC (delayed_method_info) *method_list;
458 /* To be copied to symtab->call_site_htab. */
459 htab_t call_site_htab;
461 /* Non-NULL if this CU came from a DWO file.
462 There is an invariant here that is important to remember:
463 Except for attributes copied from the top level DIE in the "main"
464 (or "stub") file in preparation for reading the DWO file
465 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
466 Either there isn't a DWO file (in which case this is NULL and the point
467 is moot), or there is and either we're not going to read it (in which
468 case this is NULL) or there is and we are reading it (in which case this
470 struct dwo_unit *dwo_unit;
472 /* The DW_AT_addr_base attribute if present, zero otherwise
473 (zero is a valid value though).
474 Note this value comes from the stub CU/TU's DIE. */
477 /* The DW_AT_ranges_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE.
480 Also note that the value is zero in the non-DWO case so this value can
481 be used without needing to know whether DWO files are in use or not.
482 N.B. This does not apply to DW_AT_ranges appearing in
483 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
484 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
485 DW_AT_ranges_base *would* have to be applied, and we'd have to care
486 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
487 ULONGEST ranges_base;
489 /* Mark used when releasing cached dies. */
490 unsigned int mark : 1;
492 /* This CU references .debug_loc. See the symtab->locations_valid field.
493 This test is imperfect as there may exist optimized debug code not using
494 any location list and still facing inlining issues if handled as
495 unoptimized code. For a future better test see GCC PR other/32998. */
496 unsigned int has_loclist : 1;
498 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
499 if all the producer_is_* fields are valid. This information is cached
500 because profiling CU expansion showed excessive time spent in
501 producer_is_gxx_lt_4_6. */
502 unsigned int checked_producer : 1;
503 unsigned int producer_is_gxx_lt_4_6 : 1;
504 unsigned int producer_is_gcc_lt_4_3 : 1;
505 unsigned int producer_is_icc : 1;
507 /* When set, the file that we're processing is known to have
508 debugging info for C++ namespaces. GCC 3.3.x did not produce
509 this information, but later versions do. */
511 unsigned int processing_has_namespace_info : 1;
514 /* Persistent data held for a compilation unit, even when not
515 processing it. We put a pointer to this structure in the
516 read_symtab_private field of the psymtab. */
518 struct dwarf2_per_cu_data
520 /* The start offset and length of this compilation unit.
521 NOTE: Unlike comp_unit_head.length, this length includes
523 If the DIE refers to a DWO file, this is always of the original die,
528 /* Flag indicating this compilation unit will be read in before
529 any of the current compilation units are processed. */
530 unsigned int queued : 1;
532 /* This flag will be set when reading partial DIEs if we need to load
533 absolutely all DIEs for this compilation unit, instead of just the ones
534 we think are interesting. It gets set if we look for a DIE in the
535 hash table and don't find it. */
536 unsigned int load_all_dies : 1;
538 /* Non-zero if this CU is from .debug_types. */
539 unsigned int is_debug_types : 1;
541 /* Non-zero if this CU is from the .dwz file. */
542 unsigned int is_dwz : 1;
544 /* The section this CU/TU lives in.
545 If the DIE refers to a DWO file, this is always the original die,
547 struct dwarf2_section_info *info_or_types_section;
549 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
550 of the CU cache it gets reset to NULL again. */
551 struct dwarf2_cu *cu;
553 /* The corresponding objfile.
554 Normally we can get the objfile from dwarf2_per_objfile.
555 However we can enter this file with just a "per_cu" handle. */
556 struct objfile *objfile;
558 /* When using partial symbol tables, the 'psymtab' field is active.
559 Otherwise the 'quick' field is active. */
562 /* The partial symbol table associated with this compilation unit,
563 or NULL for unread partial units. */
564 struct partial_symtab *psymtab;
566 /* Data needed by the "quick" functions. */
567 struct dwarf2_per_cu_quick_data *quick;
570 /* The CUs we import using DW_TAG_imported_unit. This is filled in
571 while reading psymtabs, used to compute the psymtab dependencies,
572 and then cleared. Then it is filled in again while reading full
573 symbols, and only deleted when the objfile is destroyed.
575 This is also used to work around a difference between the way gold
576 generates .gdb_index version <=7 and the way gdb does. Arguably this
577 is a gold bug. For symbols coming from TUs, gold records in the index
578 the CU that includes the TU instead of the TU itself. This breaks
579 dw2_lookup_symbol: It assumes that if the index says symbol X lives
580 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
581 will find X. Alas TUs live in their own symtab, so after expanding CU Y
582 we need to look in TU Z to find X. Fortunately, this is akin to
583 DW_TAG_imported_unit, so we just use the same mechanism: For
584 .gdb_index version <=7 this also records the TUs that the CU referred
585 to. Concurrently with this change gdb was modified to emit version 8
586 indices so we only pay a price for gold generated indices. */
587 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
589 /* Type units are grouped by their DW_AT_stmt_list entry so that they
590 can share them. If this is a TU, this points to the containing
592 struct type_unit_group *type_unit_group;
595 /* Entry in the signatured_types hash table. */
597 struct signatured_type
599 /* The "per_cu" object of this type.
600 N.B.: This is the first member so that it's easy to convert pointers
602 struct dwarf2_per_cu_data per_cu;
604 /* The type's signature. */
607 /* Offset in the TU of the type's DIE, as read from the TU header.
608 If the definition lives in a DWO file, this value is unusable. */
609 cu_offset type_offset_in_tu;
611 /* Offset in the section of the type's DIE.
612 If the definition lives in a DWO file, this is the offset in the
613 .debug_types.dwo section.
614 The value is zero until the actual value is known.
615 Zero is otherwise not a valid section offset. */
616 sect_offset type_offset_in_section;
619 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
620 This includes type_unit_group and quick_file_names. */
622 struct stmt_list_hash
624 /* The DWO unit this table is from or NULL if there is none. */
625 struct dwo_unit *dwo_unit;
627 /* Offset in .debug_line or .debug_line.dwo. */
628 sect_offset line_offset;
631 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
632 an object of this type. */
634 struct type_unit_group
636 /* dwarf2read.c's main "handle" on the symtab.
637 To simplify things we create an artificial CU that "includes" all the
638 type units using this stmt_list so that the rest of the code still has
639 a "per_cu" handle on the symtab.
640 This PER_CU is recognized by having no section. */
641 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
642 struct dwarf2_per_cu_data per_cu;
646 /* The TUs that share this DW_AT_stmt_list entry.
647 This is added to while parsing type units to build partial symtabs,
648 and is deleted afterwards and not used again. */
649 VEC (dwarf2_per_cu_ptr) *tus;
651 /* When reading the line table in "quick" functions, we need a real TU.
652 Any will do, we know they all share the same DW_AT_stmt_list entry.
653 For simplicity's sake, we pick the first one. */
654 struct dwarf2_per_cu_data *first_tu;
657 /* The primary symtab.
658 Type units in a group needn't all be defined in the same source file,
659 so we create an essentially anonymous symtab as the primary symtab. */
660 struct symtab *primary_symtab;
662 /* The data used to construct the hash key. */
663 struct stmt_list_hash hash;
665 /* The number of symtabs from the line header.
666 The value here must match line_header.num_file_names. */
667 unsigned int num_symtabs;
669 /* The symbol tables for this TU (obtained from the files listed in
671 WARNING: The order of entries here must match the order of entries
672 in the line header. After the first TU using this type_unit_group, the
673 line header for the subsequent TUs is recreated from this. This is done
674 because we need to use the same symtabs for each TU using the same
675 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
676 there's no guarantee the line header doesn't have duplicate entries. */
677 struct symtab **symtabs;
680 /* These sections are what may appear in a DWO file. */
684 struct dwarf2_section_info abbrev;
685 struct dwarf2_section_info line;
686 struct dwarf2_section_info loc;
687 struct dwarf2_section_info macinfo;
688 struct dwarf2_section_info macro;
689 struct dwarf2_section_info str;
690 struct dwarf2_section_info str_offsets;
691 /* In the case of a virtual DWO file, these two are unused. */
692 struct dwarf2_section_info info;
693 VEC (dwarf2_section_info_def) *types;
696 /* Common bits of DWO CUs/TUs. */
700 /* Backlink to the containing struct dwo_file. */
701 struct dwo_file *dwo_file;
703 /* The "id" that distinguishes this CU/TU.
704 .debug_info calls this "dwo_id", .debug_types calls this "signature".
705 Since signatures came first, we stick with it for consistency. */
708 /* The section this CU/TU lives in, in the DWO file. */
709 struct dwarf2_section_info *info_or_types_section;
711 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
715 /* For types, offset in the type's DIE of the type defined by this TU. */
716 cu_offset type_offset_in_tu;
719 /* Data for one DWO file.
720 This includes virtual DWO files that have been packaged into a
725 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
726 For virtual DWO files the name is constructed from the section offsets
727 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
728 from related CU+TUs. */
731 /* The bfd, when the file is open. Otherwise this is NULL.
732 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
735 /* Section info for this file. */
736 struct dwo_sections sections;
738 /* Table of CUs in the file.
739 Each element is a struct dwo_unit. */
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
747 /* These sections are what may appear in a DWP file. */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
755 by section number. We don't need to record them here. */
758 /* These sections are what may appear in a virtual DWO file. */
760 struct virtual_dwo_sections
762 struct dwarf2_section_info abbrev;
763 struct dwarf2_section_info line;
764 struct dwarf2_section_info loc;
765 struct dwarf2_section_info macinfo;
766 struct dwarf2_section_info macro;
767 struct dwarf2_section_info str_offsets;
768 /* Each DWP hash table entry records one CU or one TU.
769 That is recorded here, and copied to dwo_unit.info_or_types_section. */
770 struct dwarf2_section_info info_or_types;
773 /* Contents of DWP hash tables. */
775 struct dwp_hash_table
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table, *section_pool;
781 /* Data for one DWP file. */
785 /* Name of the file. */
788 /* The bfd, when the file is open. Otherwise this is NULL. */
791 /* Section info for this file. */
792 struct dwp_sections sections;
794 /* Table of CUs in the file. */
795 const struct dwp_hash_table *cus;
797 /* Table of TUs in the file. */
798 const struct dwp_hash_table *tus;
800 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
803 /* Table to map ELF section numbers to their sections. */
804 unsigned int num_sections;
805 asection **elf_sections;
808 /* This represents a '.dwz' file. */
812 /* A dwz file can only contain a few sections. */
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info info;
815 struct dwarf2_section_info str;
816 struct dwarf2_section_info line;
817 struct dwarf2_section_info macro;
818 struct dwarf2_section_info gdb_index;
824 /* Struct used to pass misc. parameters to read_die_and_children, et
825 al. which are used for both .debug_info and .debug_types dies.
826 All parameters here are unchanging for the life of the call. This
827 struct exists to abstract away the constant parameters of die reading. */
829 struct die_reader_specs
831 /* die_section->asection->owner. */
834 /* The CU of the DIE we are parsing. */
835 struct dwarf2_cu *cu;
837 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
838 struct dwo_file *dwo_file;
840 /* The section the die comes from.
841 This is either .debug_info or .debug_types, or the .dwo variants. */
842 struct dwarf2_section_info *die_section;
844 /* die_section->buffer. */
847 /* The end of the buffer. */
848 const gdb_byte *buffer_end;
851 /* Type of function passed to init_cutu_and_read_dies, et.al. */
852 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
854 struct die_info *comp_unit_die,
858 /* The line number information for a compilation unit (found in the
859 .debug_line section) begins with a "statement program header",
860 which contains the following information. */
863 unsigned int total_length;
864 unsigned short version;
865 unsigned int header_length;
866 unsigned char minimum_instruction_length;
867 unsigned char maximum_ops_per_instruction;
868 unsigned char default_is_stmt;
870 unsigned char line_range;
871 unsigned char opcode_base;
873 /* standard_opcode_lengths[i] is the number of operands for the
874 standard opcode whose value is i. This means that
875 standard_opcode_lengths[0] is unused, and the last meaningful
876 element is standard_opcode_lengths[opcode_base - 1]. */
877 unsigned char *standard_opcode_lengths;
879 /* The include_directories table. NOTE! These strings are not
880 allocated with xmalloc; instead, they are pointers into
881 debug_line_buffer. If you try to free them, `free' will get
883 unsigned int num_include_dirs, include_dirs_size;
886 /* The file_names table. NOTE! These strings are not allocated
887 with xmalloc; instead, they are pointers into debug_line_buffer.
888 Don't try to free them directly. */
889 unsigned int num_file_names, file_names_size;
893 unsigned int dir_index;
894 unsigned int mod_time;
896 int included_p; /* Non-zero if referenced by the Line Number Program. */
897 struct symtab *symtab; /* The associated symbol table, if any. */
900 /* The start and end of the statement program following this
901 header. These point into dwarf2_per_objfile->line_buffer. */
902 gdb_byte *statement_program_start, *statement_program_end;
905 /* When we construct a partial symbol table entry we only
906 need this much information. */
907 struct partial_die_info
909 /* Offset of this DIE. */
912 /* DWARF-2 tag for this DIE. */
913 ENUM_BITFIELD(dwarf_tag) tag : 16;
915 /* Assorted flags describing the data found in this DIE. */
916 unsigned int has_children : 1;
917 unsigned int is_external : 1;
918 unsigned int is_declaration : 1;
919 unsigned int has_type : 1;
920 unsigned int has_specification : 1;
921 unsigned int has_pc_info : 1;
922 unsigned int may_be_inlined : 1;
924 /* Flag set if the SCOPE field of this structure has been
926 unsigned int scope_set : 1;
928 /* Flag set if the DIE has a byte_size attribute. */
929 unsigned int has_byte_size : 1;
931 /* Flag set if any of the DIE's children are template arguments. */
932 unsigned int has_template_arguments : 1;
934 /* Flag set if fixup_partial_die has been called on this die. */
935 unsigned int fixup_called : 1;
937 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
938 unsigned int is_dwz : 1;
940 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
941 unsigned int spec_is_dwz : 1;
943 /* The name of this DIE. Normally the value of DW_AT_name, but
944 sometimes a default name for unnamed DIEs. */
947 /* The linkage name, if present. */
948 const char *linkage_name;
950 /* The scope to prepend to our children. This is generally
951 allocated on the comp_unit_obstack, so will disappear
952 when this compilation unit leaves the cache. */
955 /* Some data associated with the partial DIE. The tag determines
956 which field is live. */
959 /* The location description associated with this DIE, if any. */
960 struct dwarf_block *locdesc;
961 /* The offset of an import, for DW_TAG_imported_unit. */
965 /* If HAS_PC_INFO, the PC range associated with this DIE. */
969 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
970 DW_AT_sibling, if any. */
971 /* NOTE: This member isn't strictly necessary, read_partial_die could
972 return DW_AT_sibling values to its caller load_partial_dies. */
975 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
976 DW_AT_specification (or DW_AT_abstract_origin or
978 sect_offset spec_offset;
980 /* Pointers to this DIE's parent, first child, and next sibling,
982 struct partial_die_info *die_parent, *die_child, *die_sibling;
985 /* This data structure holds the information of an abbrev. */
988 unsigned int number; /* number identifying abbrev */
989 enum dwarf_tag tag; /* dwarf tag */
990 unsigned short has_children; /* boolean */
991 unsigned short num_attrs; /* number of attributes */
992 struct attr_abbrev *attrs; /* an array of attribute descriptions */
993 struct abbrev_info *next; /* next in chain */
998 ENUM_BITFIELD(dwarf_attribute) name : 16;
999 ENUM_BITFIELD(dwarf_form) form : 16;
1002 /* Size of abbrev_table.abbrev_hash_table. */
1003 #define ABBREV_HASH_SIZE 121
1005 /* Top level data structure to contain an abbreviation table. */
1009 /* Where the abbrev table came from.
1010 This is used as a sanity check when the table is used. */
1013 /* Storage for the abbrev table. */
1014 struct obstack abbrev_obstack;
1016 /* Hash table of abbrevs.
1017 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1018 It could be statically allocated, but the previous code didn't so we
1020 struct abbrev_info **abbrevs;
1023 /* Attributes have a name and a value. */
1026 ENUM_BITFIELD(dwarf_attribute) name : 16;
1027 ENUM_BITFIELD(dwarf_form) form : 15;
1029 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1030 field should be in u.str (existing only for DW_STRING) but it is kept
1031 here for better struct attribute alignment. */
1032 unsigned int string_is_canonical : 1;
1037 struct dwarf_block *blk;
1041 struct signatured_type *signatured_type;
1046 /* This data structure holds a complete die structure. */
1049 /* DWARF-2 tag for this DIE. */
1050 ENUM_BITFIELD(dwarf_tag) tag : 16;
1052 /* Number of attributes */
1053 unsigned char num_attrs;
1055 /* True if we're presently building the full type name for the
1056 type derived from this DIE. */
1057 unsigned char building_fullname : 1;
1060 unsigned int abbrev;
1062 /* Offset in .debug_info or .debug_types section. */
1065 /* The dies in a compilation unit form an n-ary tree. PARENT
1066 points to this die's parent; CHILD points to the first child of
1067 this node; and all the children of a given node are chained
1068 together via their SIBLING fields. */
1069 struct die_info *child; /* Its first child, if any. */
1070 struct die_info *sibling; /* Its next sibling, if any. */
1071 struct die_info *parent; /* Its parent, if any. */
1073 /* An array of attributes, with NUM_ATTRS elements. There may be
1074 zero, but it's not common and zero-sized arrays are not
1075 sufficiently portable C. */
1076 struct attribute attrs[1];
1079 /* Get at parts of an attribute structure. */
1081 #define DW_STRING(attr) ((attr)->u.str)
1082 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1083 #define DW_UNSND(attr) ((attr)->u.unsnd)
1084 #define DW_BLOCK(attr) ((attr)->u.blk)
1085 #define DW_SND(attr) ((attr)->u.snd)
1086 #define DW_ADDR(attr) ((attr)->u.addr)
1087 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1089 /* Blocks are a bunch of untyped bytes. */
1094 /* Valid only if SIZE is not zero. */
1098 #ifndef ATTR_ALLOC_CHUNK
1099 #define ATTR_ALLOC_CHUNK 4
1102 /* Allocate fields for structs, unions and enums in this size. */
1103 #ifndef DW_FIELD_ALLOC_CHUNK
1104 #define DW_FIELD_ALLOC_CHUNK 4
1107 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1108 but this would require a corresponding change in unpack_field_as_long
1110 static int bits_per_byte = 8;
1112 /* The routines that read and process dies for a C struct or C++ class
1113 pass lists of data member fields and lists of member function fields
1114 in an instance of a field_info structure, as defined below. */
1117 /* List of data member and baseclasses fields. */
1120 struct nextfield *next;
1125 *fields, *baseclasses;
1127 /* Number of fields (including baseclasses). */
1130 /* Number of baseclasses. */
1133 /* Set if the accesibility of one of the fields is not public. */
1134 int non_public_fields;
1136 /* Member function fields array, entries are allocated in the order they
1137 are encountered in the object file. */
1140 struct nextfnfield *next;
1141 struct fn_field fnfield;
1145 /* Member function fieldlist array, contains name of possibly overloaded
1146 member function, number of overloaded member functions and a pointer
1147 to the head of the member function field chain. */
1152 struct nextfnfield *head;
1156 /* Number of entries in the fnfieldlists array. */
1159 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1160 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1161 struct typedef_field_list
1163 struct typedef_field field;
1164 struct typedef_field_list *next;
1166 *typedef_field_list;
1167 unsigned typedef_field_list_count;
1170 /* One item on the queue of compilation units to read in full symbols
1172 struct dwarf2_queue_item
1174 struct dwarf2_per_cu_data *per_cu;
1175 enum language pretend_language;
1176 struct dwarf2_queue_item *next;
1179 /* The current queue. */
1180 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1182 /* Loaded secondary compilation units are kept in memory until they
1183 have not been referenced for the processing of this many
1184 compilation units. Set this to zero to disable caching. Cache
1185 sizes of up to at least twenty will improve startup time for
1186 typical inter-CU-reference binaries, at an obvious memory cost. */
1187 static int dwarf2_max_cache_age = 5;
1189 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1190 struct cmd_list_element *c, const char *value)
1192 fprintf_filtered (file, _("The upper bound on the age of cached "
1193 "dwarf2 compilation units is %s.\n"),
1198 /* Various complaints about symbol reading that don't abort the process. */
1201 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1203 complaint (&symfile_complaints,
1204 _("statement list doesn't fit in .debug_line section"));
1208 dwarf2_debug_line_missing_file_complaint (void)
1210 complaint (&symfile_complaints,
1211 _(".debug_line section has line data without a file"));
1215 dwarf2_debug_line_missing_end_sequence_complaint (void)
1217 complaint (&symfile_complaints,
1218 _(".debug_line section has line "
1219 "program sequence without an end"));
1223 dwarf2_complex_location_expr_complaint (void)
1225 complaint (&symfile_complaints, _("location expression too complex"));
1229 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1232 complaint (&symfile_complaints,
1233 _("const value length mismatch for '%s', got %d, expected %d"),
1238 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1240 complaint (&symfile_complaints,
1241 _("debug info runs off end of %s section"
1243 section->asection->name,
1244 bfd_get_filename (section->asection->owner));
1248 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1250 complaint (&symfile_complaints,
1251 _("macro debug info contains a "
1252 "malformed macro definition:\n`%s'"),
1257 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1259 complaint (&symfile_complaints,
1260 _("invalid attribute class or form for '%s' in '%s'"),
1264 /* local function prototypes */
1266 static void dwarf2_locate_sections (bfd *, asection *, void *);
1268 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1271 static void dwarf2_find_base_address (struct die_info *die,
1272 struct dwarf2_cu *cu);
1274 static void dwarf2_build_psymtabs_hard (struct objfile *);
1276 static void scan_partial_symbols (struct partial_die_info *,
1277 CORE_ADDR *, CORE_ADDR *,
1278 int, struct dwarf2_cu *);
1280 static void add_partial_symbol (struct partial_die_info *,
1281 struct dwarf2_cu *);
1283 static void add_partial_namespace (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1287 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1288 CORE_ADDR *highpc, int need_pc,
1289 struct dwarf2_cu *cu);
1291 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1292 struct dwarf2_cu *cu);
1294 static void add_partial_subprogram (struct partial_die_info *pdi,
1295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1296 int need_pc, struct dwarf2_cu *cu);
1298 static void dwarf2_read_symtab (struct partial_symtab *,
1301 static void psymtab_to_symtab_1 (struct partial_symtab *);
1303 static struct abbrev_info *abbrev_table_lookup_abbrev
1304 (const struct abbrev_table *, unsigned int);
1306 static struct abbrev_table *abbrev_table_read_table
1307 (struct dwarf2_section_info *, sect_offset);
1309 static void abbrev_table_free (struct abbrev_table *);
1311 static void abbrev_table_free_cleanup (void *);
1313 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1314 struct dwarf2_section_info *);
1316 static void dwarf2_free_abbrev_table (void *);
1318 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1320 static struct partial_die_info *load_partial_dies
1321 (const struct die_reader_specs *, gdb_byte *, int);
1323 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1324 struct partial_die_info *,
1325 struct abbrev_info *,
1329 static struct partial_die_info *find_partial_die (sect_offset, int,
1330 struct dwarf2_cu *);
1332 static void fixup_partial_die (struct partial_die_info *,
1333 struct dwarf2_cu *);
1335 static gdb_byte *read_attribute (const struct die_reader_specs *,
1336 struct attribute *, struct attr_abbrev *,
1339 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1341 static int read_1_signed_byte (bfd *, const gdb_byte *);
1343 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1345 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1347 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1349 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1352 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1354 static LONGEST read_checked_initial_length_and_offset
1355 (bfd *, gdb_byte *, const struct comp_unit_head *,
1356 unsigned int *, unsigned int *);
1358 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1361 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1363 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1366 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1368 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1370 static char *read_indirect_string (bfd *, gdb_byte *,
1371 const struct comp_unit_head *,
1374 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1376 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1378 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1380 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1383 static char *read_str_index (const struct die_reader_specs *reader,
1384 struct dwarf2_cu *cu, ULONGEST str_index);
1386 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1388 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1389 struct dwarf2_cu *);
1391 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1394 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1395 struct dwarf2_cu *cu);
1397 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1399 static struct die_info *die_specification (struct die_info *die,
1400 struct dwarf2_cu **);
1402 static void free_line_header (struct line_header *lh);
1404 static void add_file_name (struct line_header *, char *, unsigned int,
1405 unsigned int, unsigned int);
1407 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1408 struct dwarf2_cu *cu);
1410 static void dwarf_decode_lines (struct line_header *, const char *,
1411 struct dwarf2_cu *, struct partial_symtab *,
1414 static void dwarf2_start_subfile (char *, const char *, const char *);
1416 static void dwarf2_start_symtab (struct dwarf2_cu *,
1417 const char *, const char *, CORE_ADDR);
1419 static struct symbol *new_symbol (struct die_info *, struct type *,
1420 struct dwarf2_cu *);
1422 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1423 struct dwarf2_cu *, struct symbol *);
1425 static void dwarf2_const_value (struct attribute *, struct symbol *,
1426 struct dwarf2_cu *);
1428 static void dwarf2_const_value_attr (struct attribute *attr,
1431 struct obstack *obstack,
1432 struct dwarf2_cu *cu, LONGEST *value,
1434 struct dwarf2_locexpr_baton **baton);
1436 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1438 static int need_gnat_info (struct dwarf2_cu *);
1440 static struct type *die_descriptive_type (struct die_info *,
1441 struct dwarf2_cu *);
1443 static void set_descriptive_type (struct type *, struct die_info *,
1444 struct dwarf2_cu *);
1446 static struct type *die_containing_type (struct die_info *,
1447 struct dwarf2_cu *);
1449 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1450 struct dwarf2_cu *);
1452 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1454 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1456 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1458 static char *typename_concat (struct obstack *obs, const char *prefix,
1459 const char *suffix, int physname,
1460 struct dwarf2_cu *cu);
1462 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1464 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1466 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1468 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1470 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1472 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1473 struct dwarf2_cu *, struct partial_symtab *);
1475 static int dwarf2_get_pc_bounds (struct die_info *,
1476 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1477 struct partial_symtab *);
1479 static void get_scope_pc_bounds (struct die_info *,
1480 CORE_ADDR *, CORE_ADDR *,
1481 struct dwarf2_cu *);
1483 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1484 CORE_ADDR, struct dwarf2_cu *);
1486 static void dwarf2_add_field (struct field_info *, struct die_info *,
1487 struct dwarf2_cu *);
1489 static void dwarf2_attach_fields_to_type (struct field_info *,
1490 struct type *, struct dwarf2_cu *);
1492 static void dwarf2_add_member_fn (struct field_info *,
1493 struct die_info *, struct type *,
1494 struct dwarf2_cu *);
1496 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1498 struct dwarf2_cu *);
1500 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1502 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1504 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1506 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1508 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1510 static struct type *read_module_type (struct die_info *die,
1511 struct dwarf2_cu *cu);
1513 static const char *namespace_name (struct die_info *die,
1514 int *is_anonymous, struct dwarf2_cu *);
1516 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1518 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1520 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1521 struct dwarf2_cu *);
1523 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1525 gdb_byte **new_info_ptr,
1526 struct die_info *parent);
1528 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1530 gdb_byte **new_info_ptr,
1531 struct die_info *parent);
1533 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1534 struct die_info **, gdb_byte *, int *, int);
1536 static gdb_byte *read_full_die (const struct die_reader_specs *,
1537 struct die_info **, gdb_byte *, int *);
1539 static void process_die (struct die_info *, struct dwarf2_cu *);
1541 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1544 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1546 static const char *dwarf2_full_name (const char *name,
1547 struct die_info *die,
1548 struct dwarf2_cu *cu);
1550 static struct die_info *dwarf2_extension (struct die_info *die,
1551 struct dwarf2_cu **);
1553 static const char *dwarf_tag_name (unsigned int);
1555 static const char *dwarf_attr_name (unsigned int);
1557 static const char *dwarf_form_name (unsigned int);
1559 static char *dwarf_bool_name (unsigned int);
1561 static const char *dwarf_type_encoding_name (unsigned int);
1563 static struct die_info *sibling_die (struct die_info *);
1565 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1567 static void dump_die_for_error (struct die_info *);
1569 static void dump_die_1 (struct ui_file *, int level, int max_level,
1572 /*static*/ void dump_die (struct die_info *, int max_level);
1574 static void store_in_ref_table (struct die_info *,
1575 struct dwarf2_cu *);
1577 static int is_ref_attr (struct attribute *);
1579 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1581 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1583 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1585 struct dwarf2_cu **);
1587 static struct die_info *follow_die_ref (struct die_info *,
1589 struct dwarf2_cu **);
1591 static struct die_info *follow_die_sig (struct die_info *,
1593 struct dwarf2_cu **);
1595 static struct signatured_type *lookup_signatured_type_at_offset
1596 (struct objfile *objfile,
1597 struct dwarf2_section_info *section, sect_offset offset);
1599 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1601 static void read_signatured_type (struct signatured_type *);
1603 static struct type_unit_group *get_type_unit_group
1604 (struct dwarf2_cu *, struct attribute *);
1606 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1608 /* memory allocation interface */
1610 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1612 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1614 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1617 static int attr_form_is_block (struct attribute *);
1619 static int attr_form_is_section_offset (struct attribute *);
1621 static int attr_form_is_constant (struct attribute *);
1623 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1624 struct dwarf2_loclist_baton *baton,
1625 struct attribute *attr);
1627 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1629 struct dwarf2_cu *cu);
1631 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1633 struct abbrev_info *abbrev);
1635 static void free_stack_comp_unit (void *);
1637 static hashval_t partial_die_hash (const void *item);
1639 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1641 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1642 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1644 static void init_one_comp_unit (struct dwarf2_cu *cu,
1645 struct dwarf2_per_cu_data *per_cu);
1647 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1648 struct die_info *comp_unit_die,
1649 enum language pretend_language);
1651 static void free_heap_comp_unit (void *);
1653 static void free_cached_comp_units (void *);
1655 static void age_cached_comp_units (void);
1657 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1659 static struct type *set_die_type (struct die_info *, struct type *,
1660 struct dwarf2_cu *);
1662 static void create_all_comp_units (struct objfile *);
1664 static int create_all_type_units (struct objfile *);
1666 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1669 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1672 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1675 static void dwarf2_add_dependence (struct dwarf2_cu *,
1676 struct dwarf2_per_cu_data *);
1678 static void dwarf2_mark (struct dwarf2_cu *);
1680 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1682 static struct type *get_die_type_at_offset (sect_offset,
1683 struct dwarf2_per_cu_data *per_cu);
1685 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1687 static void dwarf2_release_queue (void *dummy);
1689 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1690 enum language pretend_language);
1692 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1693 struct dwarf2_per_cu_data *per_cu,
1694 enum language pretend_language);
1696 static void process_queue (void);
1698 static void find_file_and_directory (struct die_info *die,
1699 struct dwarf2_cu *cu,
1700 const char **name, const char **comp_dir);
1702 static char *file_full_name (int file, struct line_header *lh,
1703 const char *comp_dir);
1705 static gdb_byte *read_and_check_comp_unit_head
1706 (struct comp_unit_head *header,
1707 struct dwarf2_section_info *section,
1708 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1709 int is_debug_types_section);
1711 static void init_cutu_and_read_dies
1712 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1713 int use_existing_cu, int keep,
1714 die_reader_func_ftype *die_reader_func, void *data);
1716 static void init_cutu_and_read_dies_simple
1717 (struct dwarf2_per_cu_data *this_cu,
1718 die_reader_func_ftype *die_reader_func, void *data);
1720 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1722 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1724 static struct dwo_unit *lookup_dwo_comp_unit
1725 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1727 static struct dwo_unit *lookup_dwo_type_unit
1728 (struct signatured_type *, const char *, const char *);
1730 static void free_dwo_file_cleanup (void *);
1732 static void process_cu_includes (void);
1734 static void check_producer (struct dwarf2_cu *cu);
1738 /* Convert VALUE between big- and little-endian. */
1740 byte_swap (offset_type value)
1744 result = (value & 0xff) << 24;
1745 result |= (value & 0xff00) << 8;
1746 result |= (value & 0xff0000) >> 8;
1747 result |= (value & 0xff000000) >> 24;
1751 #define MAYBE_SWAP(V) byte_swap (V)
1754 #define MAYBE_SWAP(V) (V)
1755 #endif /* WORDS_BIGENDIAN */
1757 /* The suffix for an index file. */
1758 #define INDEX_SUFFIX ".gdb-index"
1760 static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1763 /* Try to locate the sections we need for DWARF 2 debugging
1764 information and return true if we have enough to do something.
1765 NAMES points to the dwarf2 section names, or is NULL if the standard
1766 ELF names are used. */
1769 dwarf2_has_info (struct objfile *objfile,
1770 const struct dwarf2_debug_sections *names)
1772 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1773 if (!dwarf2_per_objfile)
1775 /* Initialize per-objfile state. */
1776 struct dwarf2_per_objfile *data
1777 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1779 memset (data, 0, sizeof (*data));
1780 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1781 dwarf2_per_objfile = data;
1783 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1785 dwarf2_per_objfile->objfile = objfile;
1787 return (dwarf2_per_objfile->info.asection != NULL
1788 && dwarf2_per_objfile->abbrev.asection != NULL);
1791 /* When loading sections, we look either for uncompressed section or for
1792 compressed section names. */
1795 section_is_p (const char *section_name,
1796 const struct dwarf2_section_names *names)
1798 if (names->normal != NULL
1799 && strcmp (section_name, names->normal) == 0)
1801 if (names->compressed != NULL
1802 && strcmp (section_name, names->compressed) == 0)
1807 /* This function is mapped across the sections and remembers the
1808 offset and size of each of the debugging sections we are interested
1812 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1814 const struct dwarf2_debug_sections *names;
1815 flagword aflag = bfd_get_section_flags (abfd, sectp);
1818 names = &dwarf2_elf_names;
1820 names = (const struct dwarf2_debug_sections *) vnames;
1822 if ((aflag & SEC_HAS_CONTENTS) == 0)
1825 else if (section_is_p (sectp->name, &names->info))
1827 dwarf2_per_objfile->info.asection = sectp;
1828 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1830 else if (section_is_p (sectp->name, &names->abbrev))
1832 dwarf2_per_objfile->abbrev.asection = sectp;
1833 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1835 else if (section_is_p (sectp->name, &names->line))
1837 dwarf2_per_objfile->line.asection = sectp;
1838 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1840 else if (section_is_p (sectp->name, &names->loc))
1842 dwarf2_per_objfile->loc.asection = sectp;
1843 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1845 else if (section_is_p (sectp->name, &names->macinfo))
1847 dwarf2_per_objfile->macinfo.asection = sectp;
1848 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1850 else if (section_is_p (sectp->name, &names->macro))
1852 dwarf2_per_objfile->macro.asection = sectp;
1853 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1855 else if (section_is_p (sectp->name, &names->str))
1857 dwarf2_per_objfile->str.asection = sectp;
1858 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1860 else if (section_is_p (sectp->name, &names->addr))
1862 dwarf2_per_objfile->addr.asection = sectp;
1863 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1865 else if (section_is_p (sectp->name, &names->frame))
1867 dwarf2_per_objfile->frame.asection = sectp;
1868 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1870 else if (section_is_p (sectp->name, &names->eh_frame))
1872 dwarf2_per_objfile->eh_frame.asection = sectp;
1873 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1875 else if (section_is_p (sectp->name, &names->ranges))
1877 dwarf2_per_objfile->ranges.asection = sectp;
1878 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1880 else if (section_is_p (sectp->name, &names->types))
1882 struct dwarf2_section_info type_section;
1884 memset (&type_section, 0, sizeof (type_section));
1885 type_section.asection = sectp;
1886 type_section.size = bfd_get_section_size (sectp);
1888 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1891 else if (section_is_p (sectp->name, &names->gdb_index))
1893 dwarf2_per_objfile->gdb_index.asection = sectp;
1894 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1897 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1898 && bfd_section_vma (abfd, sectp) == 0)
1899 dwarf2_per_objfile->has_section_at_zero = 1;
1902 /* A helper function that decides whether a section is empty,
1906 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1908 return info->asection == NULL || info->size == 0;
1911 /* Read the contents of the section INFO.
1912 OBJFILE is the main object file, but not necessarily the file where
1913 the section comes from. E.g., for DWO files INFO->asection->owner
1914 is the bfd of the DWO file.
1915 If the section is compressed, uncompress it before returning. */
1918 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1920 asection *sectp = info->asection;
1922 gdb_byte *buf, *retbuf;
1923 unsigned char header[4];
1927 info->buffer = NULL;
1930 if (dwarf2_section_empty_p (info))
1933 abfd = sectp->owner;
1935 /* If the section has relocations, we must read it ourselves.
1936 Otherwise we attach it to the BFD. */
1937 if ((sectp->flags & SEC_RELOC) == 0)
1939 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1941 /* We have to cast away const here for historical reasons.
1942 Fixing dwarf2read to be const-correct would be quite nice. */
1943 info->buffer = (gdb_byte *) bytes;
1947 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1950 /* When debugging .o files, we may need to apply relocations; see
1951 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1952 We never compress sections in .o files, so we only need to
1953 try this when the section is not compressed. */
1954 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1957 info->buffer = retbuf;
1961 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1962 || bfd_bread (buf, info->size, abfd) != info->size)
1963 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1964 bfd_get_filename (abfd));
1967 /* A helper function that returns the size of a section in a safe way.
1968 If you are positive that the section has been read before using the
1969 size, then it is safe to refer to the dwarf2_section_info object's
1970 "size" field directly. In other cases, you must call this
1971 function, because for compressed sections the size field is not set
1972 correctly until the section has been read. */
1974 static bfd_size_type
1975 dwarf2_section_size (struct objfile *objfile,
1976 struct dwarf2_section_info *info)
1979 dwarf2_read_section (objfile, info);
1983 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1987 dwarf2_get_section_info (struct objfile *objfile,
1988 enum dwarf2_section_enum sect,
1989 asection **sectp, gdb_byte **bufp,
1990 bfd_size_type *sizep)
1992 struct dwarf2_per_objfile *data
1993 = objfile_data (objfile, dwarf2_objfile_data_key);
1994 struct dwarf2_section_info *info;
1996 /* We may see an objfile without any DWARF, in which case we just
2007 case DWARF2_DEBUG_FRAME:
2008 info = &data->frame;
2010 case DWARF2_EH_FRAME:
2011 info = &data->eh_frame;
2014 gdb_assert_not_reached ("unexpected section");
2017 dwarf2_read_section (objfile, info);
2019 *sectp = info->asection;
2020 *bufp = info->buffer;
2021 *sizep = info->size;
2024 /* A helper function to find the sections for a .dwz file. */
2027 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2029 struct dwz_file *dwz_file = arg;
2031 /* Note that we only support the standard ELF names, because .dwz
2032 is ELF-only (at the time of writing). */
2033 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2035 dwz_file->abbrev.asection = sectp;
2036 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2038 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2040 dwz_file->info.asection = sectp;
2041 dwz_file->info.size = bfd_get_section_size (sectp);
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2045 dwz_file->str.asection = sectp;
2046 dwz_file->str.size = bfd_get_section_size (sectp);
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2050 dwz_file->line.asection = sectp;
2051 dwz_file->line.size = bfd_get_section_size (sectp);
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2055 dwz_file->macro.asection = sectp;
2056 dwz_file->macro.size = bfd_get_section_size (sectp);
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2060 dwz_file->gdb_index.asection = sectp;
2061 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2065 /* Open the separate '.dwz' debug file, if needed. Error if the file
2068 static struct dwz_file *
2069 dwarf2_get_dwz_file (void)
2071 bfd *abfd, *dwz_bfd;
2074 struct cleanup *cleanup;
2075 const char *filename;
2076 struct dwz_file *result;
2078 if (dwarf2_per_objfile->dwz_file != NULL)
2079 return dwarf2_per_objfile->dwz_file;
2081 abfd = dwarf2_per_objfile->objfile->obfd;
2082 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2083 if (section == NULL)
2084 error (_("could not find '.gnu_debugaltlink' section"));
2085 if (!bfd_malloc_and_get_section (abfd, section, &data))
2086 error (_("could not read '.gnu_debugaltlink' section: %s"),
2087 bfd_errmsg (bfd_get_error ()));
2088 cleanup = make_cleanup (xfree, data);
2091 if (!IS_ABSOLUTE_PATH (filename))
2093 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2096 make_cleanup (xfree, abs);
2097 abs = ldirname (abs);
2098 make_cleanup (xfree, abs);
2100 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2101 make_cleanup (xfree, rel);
2105 /* The format is just a NUL-terminated file name, followed by the
2106 build-id. For now, though, we ignore the build-id. */
2107 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2108 if (dwz_bfd == NULL)
2109 error (_("could not read '%s': %s"), filename,
2110 bfd_errmsg (bfd_get_error ()));
2112 if (!bfd_check_format (dwz_bfd, bfd_object))
2114 gdb_bfd_unref (dwz_bfd);
2115 error (_("file '%s' was not usable: %s"), filename,
2116 bfd_errmsg (bfd_get_error ()));
2119 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2121 result->dwz_bfd = dwz_bfd;
2123 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2125 do_cleanups (cleanup);
2127 dwarf2_per_objfile->dwz_file = result;
2131 /* DWARF quick_symbols_functions support. */
2133 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2134 unique line tables, so we maintain a separate table of all .debug_line
2135 derived entries to support the sharing.
2136 All the quick functions need is the list of file names. We discard the
2137 line_header when we're done and don't need to record it here. */
2138 struct quick_file_names
2140 /* The data used to construct the hash key. */
2141 struct stmt_list_hash hash;
2143 /* The number of entries in file_names, real_names. */
2144 unsigned int num_file_names;
2146 /* The file names from the line table, after being run through
2148 const char **file_names;
2150 /* The file names from the line table after being run through
2151 gdb_realpath. These are computed lazily. */
2152 const char **real_names;
2155 /* When using the index (and thus not using psymtabs), each CU has an
2156 object of this type. This is used to hold information needed by
2157 the various "quick" methods. */
2158 struct dwarf2_per_cu_quick_data
2160 /* The file table. This can be NULL if there was no file table
2161 or it's currently not read in.
2162 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2163 struct quick_file_names *file_names;
2165 /* The corresponding symbol table. This is NULL if symbols for this
2166 CU have not yet been read. */
2167 struct symtab *symtab;
2169 /* A temporary mark bit used when iterating over all CUs in
2170 expand_symtabs_matching. */
2171 unsigned int mark : 1;
2173 /* True if we've tried to read the file table and found there isn't one.
2174 There will be no point in trying to read it again next time. */
2175 unsigned int no_file_data : 1;
2178 /* Utility hash function for a stmt_list_hash. */
2181 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2185 if (stmt_list_hash->dwo_unit != NULL)
2186 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2187 v += stmt_list_hash->line_offset.sect_off;
2191 /* Utility equality function for a stmt_list_hash. */
2194 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2195 const struct stmt_list_hash *rhs)
2197 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2199 if (lhs->dwo_unit != NULL
2200 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2203 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2206 /* Hash function for a quick_file_names. */
2209 hash_file_name_entry (const void *e)
2211 const struct quick_file_names *file_data = e;
2213 return hash_stmt_list_entry (&file_data->hash);
2216 /* Equality function for a quick_file_names. */
2219 eq_file_name_entry (const void *a, const void *b)
2221 const struct quick_file_names *ea = a;
2222 const struct quick_file_names *eb = b;
2224 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2227 /* Delete function for a quick_file_names. */
2230 delete_file_name_entry (void *e)
2232 struct quick_file_names *file_data = e;
2235 for (i = 0; i < file_data->num_file_names; ++i)
2237 xfree ((void*) file_data->file_names[i]);
2238 if (file_data->real_names)
2239 xfree ((void*) file_data->real_names[i]);
2242 /* The space for the struct itself lives on objfile_obstack,
2243 so we don't free it here. */
2246 /* Create a quick_file_names hash table. */
2249 create_quick_file_names_table (unsigned int nr_initial_entries)
2251 return htab_create_alloc (nr_initial_entries,
2252 hash_file_name_entry, eq_file_name_entry,
2253 delete_file_name_entry, xcalloc, xfree);
2256 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2257 have to be created afterwards. You should call age_cached_comp_units after
2258 processing PER_CU->CU. dw2_setup must have been already called. */
2261 load_cu (struct dwarf2_per_cu_data *per_cu)
2263 if (per_cu->is_debug_types)
2264 load_full_type_unit (per_cu);
2266 load_full_comp_unit (per_cu, language_minimal);
2268 gdb_assert (per_cu->cu != NULL);
2270 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2273 /* Read in the symbols for PER_CU. */
2276 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2278 struct cleanup *back_to;
2280 /* Skip type_unit_groups, reading the type units they contain
2281 is handled elsewhere. */
2282 if (IS_TYPE_UNIT_GROUP (per_cu))
2285 back_to = make_cleanup (dwarf2_release_queue, NULL);
2287 if (dwarf2_per_objfile->using_index
2288 ? per_cu->v.quick->symtab == NULL
2289 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2291 queue_comp_unit (per_cu, language_minimal);
2297 /* Age the cache, releasing compilation units that have not
2298 been used recently. */
2299 age_cached_comp_units ();
2301 do_cleanups (back_to);
2304 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2305 the objfile from which this CU came. Returns the resulting symbol
2308 static struct symtab *
2309 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2311 gdb_assert (dwarf2_per_objfile->using_index);
2312 if (!per_cu->v.quick->symtab)
2314 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2315 increment_reading_symtab ();
2316 dw2_do_instantiate_symtab (per_cu);
2317 process_cu_includes ();
2318 do_cleanups (back_to);
2320 return per_cu->v.quick->symtab;
2323 /* Return the CU given its index.
2325 This is intended for loops like:
2327 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2328 + dwarf2_per_objfile->n_type_units); ++i)
2330 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2336 static struct dwarf2_per_cu_data *
2337 dw2_get_cu (int index)
2339 if (index >= dwarf2_per_objfile->n_comp_units)
2341 index -= dwarf2_per_objfile->n_comp_units;
2342 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2343 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2346 return dwarf2_per_objfile->all_comp_units[index];
2349 /* Return the primary CU given its index.
2350 The difference between this function and dw2_get_cu is in the handling
2351 of type units (TUs). Here we return the type_unit_group object.
2353 This is intended for loops like:
2355 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2356 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2358 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2364 static struct dwarf2_per_cu_data *
2365 dw2_get_primary_cu (int index)
2367 if (index >= dwarf2_per_objfile->n_comp_units)
2369 index -= dwarf2_per_objfile->n_comp_units;
2370 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2371 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2374 return dwarf2_per_objfile->all_comp_units[index];
2377 /* A helper for create_cus_from_index that handles a given list of
2381 create_cus_from_index_list (struct objfile *objfile,
2382 const gdb_byte *cu_list, offset_type n_elements,
2383 struct dwarf2_section_info *section,
2389 for (i = 0; i < n_elements; i += 2)
2391 struct dwarf2_per_cu_data *the_cu;
2392 ULONGEST offset, length;
2394 gdb_static_assert (sizeof (ULONGEST) >= 8);
2395 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2396 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2399 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2400 struct dwarf2_per_cu_data);
2401 the_cu->offset.sect_off = offset;
2402 the_cu->length = length;
2403 the_cu->objfile = objfile;
2404 the_cu->info_or_types_section = section;
2405 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2406 struct dwarf2_per_cu_quick_data);
2407 the_cu->is_dwz = is_dwz;
2408 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2412 /* Read the CU list from the mapped index, and use it to create all
2413 the CU objects for this objfile. */
2416 create_cus_from_index (struct objfile *objfile,
2417 const gdb_byte *cu_list, offset_type cu_list_elements,
2418 const gdb_byte *dwz_list, offset_type dwz_elements)
2420 struct dwz_file *dwz;
2422 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2423 dwarf2_per_objfile->all_comp_units
2424 = obstack_alloc (&objfile->objfile_obstack,
2425 dwarf2_per_objfile->n_comp_units
2426 * sizeof (struct dwarf2_per_cu_data *));
2428 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2429 &dwarf2_per_objfile->info, 0, 0);
2431 if (dwz_elements == 0)
2434 dwz = dwarf2_get_dwz_file ();
2435 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2436 cu_list_elements / 2);
2439 /* Create the signatured type hash table from the index. */
2442 create_signatured_type_table_from_index (struct objfile *objfile,
2443 struct dwarf2_section_info *section,
2444 const gdb_byte *bytes,
2445 offset_type elements)
2448 htab_t sig_types_hash;
2450 dwarf2_per_objfile->n_type_units = elements / 3;
2451 dwarf2_per_objfile->all_type_units
2452 = obstack_alloc (&objfile->objfile_obstack,
2453 dwarf2_per_objfile->n_type_units
2454 * sizeof (struct signatured_type *));
2456 sig_types_hash = allocate_signatured_type_table (objfile);
2458 for (i = 0; i < elements; i += 3)
2460 struct signatured_type *sig_type;
2461 ULONGEST offset, type_offset_in_tu, signature;
2464 gdb_static_assert (sizeof (ULONGEST) >= 8);
2465 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2466 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2468 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2471 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2472 struct signatured_type);
2473 sig_type->signature = signature;
2474 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2475 sig_type->per_cu.is_debug_types = 1;
2476 sig_type->per_cu.info_or_types_section = section;
2477 sig_type->per_cu.offset.sect_off = offset;
2478 sig_type->per_cu.objfile = objfile;
2479 sig_type->per_cu.v.quick
2480 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2481 struct dwarf2_per_cu_quick_data);
2483 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2486 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2489 dwarf2_per_objfile->signatured_types = sig_types_hash;
2492 /* Read the address map data from the mapped index, and use it to
2493 populate the objfile's psymtabs_addrmap. */
2496 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2498 const gdb_byte *iter, *end;
2499 struct obstack temp_obstack;
2500 struct addrmap *mutable_map;
2501 struct cleanup *cleanup;
2504 obstack_init (&temp_obstack);
2505 cleanup = make_cleanup_obstack_free (&temp_obstack);
2506 mutable_map = addrmap_create_mutable (&temp_obstack);
2508 iter = index->address_table;
2509 end = iter + index->address_table_size;
2511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2515 ULONGEST hi, lo, cu_index;
2516 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2518 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2520 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2523 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2524 dw2_get_cu (cu_index));
2527 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2528 &objfile->objfile_obstack);
2529 do_cleanups (cleanup);
2532 /* The hash function for strings in the mapped index. This is the same as
2533 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2534 implementation. This is necessary because the hash function is tied to the
2535 format of the mapped index file. The hash values do not have to match with
2538 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2541 mapped_index_string_hash (int index_version, const void *p)
2543 const unsigned char *str = (const unsigned char *) p;
2547 while ((c = *str++) != 0)
2549 if (index_version >= 5)
2551 r = r * 67 + c - 113;
2557 /* Find a slot in the mapped index INDEX for the object named NAME.
2558 If NAME is found, set *VEC_OUT to point to the CU vector in the
2559 constant pool and return 1. If NAME cannot be found, return 0. */
2562 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2563 offset_type **vec_out)
2565 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2567 offset_type slot, step;
2568 int (*cmp) (const char *, const char *);
2570 if (current_language->la_language == language_cplus
2571 || current_language->la_language == language_java
2572 || current_language->la_language == language_fortran)
2574 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2576 const char *paren = strchr (name, '(');
2582 dup = xmalloc (paren - name + 1);
2583 memcpy (dup, name, paren - name);
2584 dup[paren - name] = 0;
2586 make_cleanup (xfree, dup);
2591 /* Index version 4 did not support case insensitive searches. But the
2592 indices for case insensitive languages are built in lowercase, therefore
2593 simulate our NAME being searched is also lowercased. */
2594 hash = mapped_index_string_hash ((index->version == 4
2595 && case_sensitivity == case_sensitive_off
2596 ? 5 : index->version),
2599 slot = hash & (index->symbol_table_slots - 1);
2600 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2601 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2605 /* Convert a slot number to an offset into the table. */
2606 offset_type i = 2 * slot;
2608 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2610 do_cleanups (back_to);
2614 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2615 if (!cmp (name, str))
2617 *vec_out = (offset_type *) (index->constant_pool
2618 + MAYBE_SWAP (index->symbol_table[i + 1]));
2619 do_cleanups (back_to);
2623 slot = (slot + step) & (index->symbol_table_slots - 1);
2627 /* A helper function that reads the .gdb_index from SECTION and fills
2628 in MAP. FILENAME is the name of the file containing the section;
2629 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2630 ok to use deprecated sections.
2632 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2633 out parameters that are filled in with information about the CU and
2634 TU lists in the section.
2636 Returns 1 if all went well, 0 otherwise. */
2639 read_index_from_section (struct objfile *objfile,
2640 const char *filename,
2642 struct dwarf2_section_info *section,
2643 struct mapped_index *map,
2644 const gdb_byte **cu_list,
2645 offset_type *cu_list_elements,
2646 const gdb_byte **types_list,
2647 offset_type *types_list_elements)
2650 offset_type version;
2651 offset_type *metadata;
2654 if (dwarf2_section_empty_p (section))
2657 /* Older elfutils strip versions could keep the section in the main
2658 executable while splitting it for the separate debug info file. */
2659 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2662 dwarf2_read_section (objfile, section);
2664 addr = section->buffer;
2665 /* Version check. */
2666 version = MAYBE_SWAP (*(offset_type *) addr);
2667 /* Versions earlier than 3 emitted every copy of a psymbol. This
2668 causes the index to behave very poorly for certain requests. Version 3
2669 contained incomplete addrmap. So, it seems better to just ignore such
2673 static int warning_printed = 0;
2674 if (!warning_printed)
2676 warning (_("Skipping obsolete .gdb_index section in %s."),
2678 warning_printed = 1;
2682 /* Index version 4 uses a different hash function than index version
2685 Versions earlier than 6 did not emit psymbols for inlined
2686 functions. Using these files will cause GDB not to be able to
2687 set breakpoints on inlined functions by name, so we ignore these
2688 indices unless the user has done
2689 "set use-deprecated-index-sections on". */
2690 if (version < 6 && !deprecated_ok)
2692 static int warning_printed = 0;
2693 if (!warning_printed)
2696 Skipping deprecated .gdb_index section in %s.\n\
2697 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2698 to use the section anyway."),
2700 warning_printed = 1;
2704 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2705 of the TU (for symbols coming from TUs). It's just a performance bug, and
2706 we can't distinguish gdb-generated indices from gold-generated ones, so
2707 nothing to do here. */
2709 /* Indexes with higher version than the one supported by GDB may be no
2710 longer backward compatible. */
2714 map->version = version;
2715 map->total_size = section->size;
2717 metadata = (offset_type *) (addr + sizeof (offset_type));
2720 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2721 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2725 *types_list = addr + MAYBE_SWAP (metadata[i]);
2726 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2727 - MAYBE_SWAP (metadata[i]))
2731 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2732 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2733 - MAYBE_SWAP (metadata[i]));
2736 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2737 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2738 - MAYBE_SWAP (metadata[i]))
2739 / (2 * sizeof (offset_type)));
2742 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2748 /* Read the index file. If everything went ok, initialize the "quick"
2749 elements of all the CUs and return 1. Otherwise, return 0. */
2752 dwarf2_read_index (struct objfile *objfile)
2754 struct mapped_index local_map, *map;
2755 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2756 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2758 if (!read_index_from_section (objfile, objfile->name,
2759 use_deprecated_index_sections,
2760 &dwarf2_per_objfile->gdb_index, &local_map,
2761 &cu_list, &cu_list_elements,
2762 &types_list, &types_list_elements))
2765 /* Don't use the index if it's empty. */
2766 if (local_map.symbol_table_slots == 0)
2769 /* If there is a .dwz file, read it so we can get its CU list as
2771 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2773 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2774 struct mapped_index dwz_map;
2775 const gdb_byte *dwz_types_ignore;
2776 offset_type dwz_types_elements_ignore;
2778 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2780 &dwz->gdb_index, &dwz_map,
2781 &dwz_list, &dwz_list_elements,
2783 &dwz_types_elements_ignore))
2785 warning (_("could not read '.gdb_index' section from %s; skipping"),
2786 bfd_get_filename (dwz->dwz_bfd));
2791 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2794 if (types_list_elements)
2796 struct dwarf2_section_info *section;
2798 /* We can only handle a single .debug_types when we have an
2800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2803 section = VEC_index (dwarf2_section_info_def,
2804 dwarf2_per_objfile->types, 0);
2806 create_signatured_type_table_from_index (objfile, section, types_list,
2807 types_list_elements);
2810 create_addrmap_from_index (objfile, &local_map);
2812 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2815 dwarf2_per_objfile->index_table = map;
2816 dwarf2_per_objfile->using_index = 1;
2817 dwarf2_per_objfile->quick_file_names_table =
2818 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2823 /* A helper for the "quick" functions which sets the global
2824 dwarf2_per_objfile according to OBJFILE. */
2827 dw2_setup (struct objfile *objfile)
2829 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2830 gdb_assert (dwarf2_per_objfile);
2833 /* die_reader_func for dw2_get_file_names. */
2836 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2838 struct die_info *comp_unit_die,
2842 struct dwarf2_cu *cu = reader->cu;
2843 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2844 struct objfile *objfile = dwarf2_per_objfile->objfile;
2845 struct dwarf2_per_cu_data *lh_cu;
2846 struct line_header *lh;
2847 struct attribute *attr;
2849 const char *name, *comp_dir;
2851 struct quick_file_names *qfn;
2852 unsigned int line_offset;
2854 /* Our callers never want to match partial units -- instead they
2855 will match the enclosing full CU. */
2856 if (comp_unit_die->tag == DW_TAG_partial_unit)
2858 this_cu->v.quick->no_file_data = 1;
2862 /* If we're reading the line header for TUs, store it in the "per_cu"
2864 if (this_cu->is_debug_types)
2866 struct type_unit_group *tu_group = data;
2868 gdb_assert (tu_group != NULL);
2869 lh_cu = &tu_group->per_cu;
2878 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2881 struct quick_file_names find_entry;
2883 line_offset = DW_UNSND (attr);
2885 /* We may have already read in this line header (TU line header sharing).
2886 If we have we're done. */
2887 find_entry.hash.dwo_unit = cu->dwo_unit;
2888 find_entry.hash.line_offset.sect_off = line_offset;
2889 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2890 &find_entry, INSERT);
2893 lh_cu->v.quick->file_names = *slot;
2897 lh = dwarf_decode_line_header (line_offset, cu);
2901 lh_cu->v.quick->no_file_data = 1;
2905 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2906 qfn->hash.dwo_unit = cu->dwo_unit;
2907 qfn->hash.line_offset.sect_off = line_offset;
2908 gdb_assert (slot != NULL);
2911 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2913 qfn->num_file_names = lh->num_file_names;
2914 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2915 lh->num_file_names * sizeof (char *));
2916 for (i = 0; i < lh->num_file_names; ++i)
2917 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2918 qfn->real_names = NULL;
2920 free_line_header (lh);
2922 lh_cu->v.quick->file_names = qfn;
2925 /* A helper for the "quick" functions which attempts to read the line
2926 table for THIS_CU. */
2928 static struct quick_file_names *
2929 dw2_get_file_names (struct objfile *objfile,
2930 struct dwarf2_per_cu_data *this_cu)
2932 /* For TUs this should only be called on the parent group. */
2933 if (this_cu->is_debug_types)
2934 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2936 if (this_cu->v.quick->file_names != NULL)
2937 return this_cu->v.quick->file_names;
2938 /* If we know there is no line data, no point in looking again. */
2939 if (this_cu->v.quick->no_file_data)
2942 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2943 in the stub for CUs, there's is no need to lookup the DWO file.
2944 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2946 if (this_cu->is_debug_types)
2948 struct type_unit_group *tu_group = this_cu->type_unit_group;
2950 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2951 dw2_get_file_names_reader, tu_group);
2954 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2956 if (this_cu->v.quick->no_file_data)
2958 return this_cu->v.quick->file_names;
2961 /* A helper for the "quick" functions which computes and caches the
2962 real path for a given file name from the line table. */
2965 dw2_get_real_path (struct objfile *objfile,
2966 struct quick_file_names *qfn, int index)
2968 if (qfn->real_names == NULL)
2969 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2970 qfn->num_file_names, sizeof (char *));
2972 if (qfn->real_names[index] == NULL)
2973 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2975 return qfn->real_names[index];
2978 static struct symtab *
2979 dw2_find_last_source_symtab (struct objfile *objfile)
2983 dw2_setup (objfile);
2984 index = dwarf2_per_objfile->n_comp_units - 1;
2985 return dw2_instantiate_symtab (dw2_get_cu (index));
2988 /* Traversal function for dw2_forget_cached_source_info. */
2991 dw2_free_cached_file_names (void **slot, void *info)
2993 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2995 if (file_data->real_names)
2999 for (i = 0; i < file_data->num_file_names; ++i)
3001 xfree ((void*) file_data->real_names[i]);
3002 file_data->real_names[i] = NULL;
3010 dw2_forget_cached_source_info (struct objfile *objfile)
3012 dw2_setup (objfile);
3014 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3015 dw2_free_cached_file_names, NULL);
3018 /* Helper function for dw2_map_symtabs_matching_filename that expands
3019 the symtabs and calls the iterator. */
3022 dw2_map_expand_apply (struct objfile *objfile,
3023 struct dwarf2_per_cu_data *per_cu,
3024 const char *name, const char *real_path,
3025 int (*callback) (struct symtab *, void *),
3028 struct symtab *last_made = objfile->symtabs;
3030 /* Don't visit already-expanded CUs. */
3031 if (per_cu->v.quick->symtab)
3034 /* This may expand more than one symtab, and we want to iterate over
3036 dw2_instantiate_symtab (per_cu);
3038 return iterate_over_some_symtabs (name, real_path, callback, data,
3039 objfile->symtabs, last_made);
3042 /* Implementation of the map_symtabs_matching_filename method. */
3045 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3046 const char *real_path,
3047 int (*callback) (struct symtab *, void *),
3051 const char *name_basename = lbasename (name);
3053 dw2_setup (objfile);
3055 /* The rule is CUs specify all the files, including those used by
3056 any TU, so there's no need to scan TUs here. */
3058 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3061 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3062 struct quick_file_names *file_data;
3064 /* We only need to look at symtabs not already expanded. */
3065 if (per_cu->v.quick->symtab)
3068 file_data = dw2_get_file_names (objfile, per_cu);
3069 if (file_data == NULL)
3072 for (j = 0; j < file_data->num_file_names; ++j)
3074 const char *this_name = file_data->file_names[j];
3075 const char *this_real_name;
3077 if (compare_filenames_for_search (this_name, name))
3079 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3084 /* Before we invoke realpath, which can get expensive when many
3085 files are involved, do a quick comparison of the basenames. */
3086 if (! basenames_may_differ
3087 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3090 this_real_name = dw2_get_real_path (objfile, file_data, j);
3091 if (compare_filenames_for_search (this_real_name, name))
3093 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3098 if (real_path != NULL)
3100 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3101 gdb_assert (IS_ABSOLUTE_PATH (name));
3102 if (this_real_name != NULL
3103 && FILENAME_CMP (real_path, this_real_name) == 0)
3105 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3116 /* Struct used to manage iterating over all CUs looking for a symbol. */
3118 struct dw2_symtab_iterator
3120 /* The internalized form of .gdb_index. */
3121 struct mapped_index *index;
3122 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3123 int want_specific_block;
3124 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3125 Unused if !WANT_SPECIFIC_BLOCK. */
3127 /* The kind of symbol we're looking for. */
3129 /* The list of CUs from the index entry of the symbol,
3130 or NULL if not found. */
3132 /* The next element in VEC to look at. */
3134 /* The number of elements in VEC, or zero if there is no match. */
3138 /* Initialize the index symtab iterator ITER.
3139 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3140 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3143 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3144 struct mapped_index *index,
3145 int want_specific_block,
3150 iter->index = index;
3151 iter->want_specific_block = want_specific_block;
3152 iter->block_index = block_index;
3153 iter->domain = domain;
3156 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3157 iter->length = MAYBE_SWAP (*iter->vec);
3165 /* Return the next matching CU or NULL if there are no more. */
3167 static struct dwarf2_per_cu_data *
3168 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3170 for ( ; iter->next < iter->length; ++iter->next)
3172 offset_type cu_index_and_attrs =
3173 MAYBE_SWAP (iter->vec[iter->next + 1]);
3174 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3175 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3176 int want_static = iter->block_index != GLOBAL_BLOCK;
3177 /* This value is only valid for index versions >= 7. */
3178 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3179 gdb_index_symbol_kind symbol_kind =
3180 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3181 /* Only check the symbol attributes if they're present.
3182 Indices prior to version 7 don't record them,
3183 and indices >= 7 may elide them for certain symbols
3184 (gold does this). */
3186 (iter->index->version >= 7
3187 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3189 /* Skip if already read in. */
3190 if (per_cu->v.quick->symtab)
3194 && iter->want_specific_block
3195 && want_static != is_static)
3198 /* Only check the symbol's kind if it has one. */
3201 switch (iter->domain)
3204 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3205 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3206 /* Some types are also in VAR_DOMAIN. */
3207 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3230 static struct symtab *
3231 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3232 const char *name, domain_enum domain)
3234 struct symtab *stab_best = NULL;
3235 struct mapped_index *index;
3237 dw2_setup (objfile);
3239 index = dwarf2_per_objfile->index_table;
3241 /* index is NULL if OBJF_READNOW. */
3244 struct dw2_symtab_iterator iter;
3245 struct dwarf2_per_cu_data *per_cu;
3247 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3249 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3251 struct symbol *sym = NULL;
3252 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3254 /* Some caution must be observed with overloaded functions
3255 and methods, since the index will not contain any overload
3256 information (but NAME might contain it). */
3259 struct blockvector *bv = BLOCKVECTOR (stab);
3260 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3262 sym = lookup_block_symbol (block, name, domain);
3265 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3267 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3273 /* Keep looking through other CUs. */
3281 dw2_print_stats (struct objfile *objfile)
3285 dw2_setup (objfile);
3287 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3288 + dwarf2_per_objfile->n_type_units); ++i)
3290 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3292 if (!per_cu->v.quick->symtab)
3295 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3299 dw2_dump (struct objfile *objfile)
3301 /* Nothing worth printing. */
3305 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3306 struct section_offsets *delta)
3308 /* There's nothing to relocate here. */
3312 dw2_expand_symtabs_for_function (struct objfile *objfile,
3313 const char *func_name)
3315 struct mapped_index *index;
3317 dw2_setup (objfile);
3319 index = dwarf2_per_objfile->index_table;
3321 /* index is NULL if OBJF_READNOW. */
3324 struct dw2_symtab_iterator iter;
3325 struct dwarf2_per_cu_data *per_cu;
3327 /* Note: It doesn't matter what we pass for block_index here. */
3328 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3331 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3332 dw2_instantiate_symtab (per_cu);
3337 dw2_expand_all_symtabs (struct objfile *objfile)
3341 dw2_setup (objfile);
3343 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3344 + dwarf2_per_objfile->n_type_units); ++i)
3346 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3348 dw2_instantiate_symtab (per_cu);
3353 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3354 const char *fullname)
3358 dw2_setup (objfile);
3360 /* We don't need to consider type units here.
3361 This is only called for examining code, e.g. expand_line_sal.
3362 There can be an order of magnitude (or more) more type units
3363 than comp units, and we avoid them if we can. */
3365 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3368 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3369 struct quick_file_names *file_data;
3371 /* We only need to look at symtabs not already expanded. */
3372 if (per_cu->v.quick->symtab)
3375 file_data = dw2_get_file_names (objfile, per_cu);
3376 if (file_data == NULL)
3379 for (j = 0; j < file_data->num_file_names; ++j)
3381 const char *this_fullname = file_data->file_names[j];
3383 if (filename_cmp (this_fullname, fullname) == 0)
3385 dw2_instantiate_symtab (per_cu);
3392 /* A helper function for dw2_find_symbol_file that finds the primary
3393 file name for a given CU. This is a die_reader_func. */
3396 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3398 struct die_info *comp_unit_die,
3402 const char **result_ptr = data;
3403 struct dwarf2_cu *cu = reader->cu;
3404 struct attribute *attr;
3406 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3410 *result_ptr = DW_STRING (attr);
3414 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3416 struct dwarf2_per_cu_data *per_cu;
3418 const char *filename;
3420 dw2_setup (objfile);
3422 /* index_table is NULL if OBJF_READNOW. */
3423 if (!dwarf2_per_objfile->index_table)
3427 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3429 struct blockvector *bv = BLOCKVECTOR (s);
3430 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3431 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3435 /* Only file extension of returned filename is recognized. */
3436 return SYMBOL_SYMTAB (sym)->filename;
3442 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3446 /* Note that this just looks at the very first one named NAME -- but
3447 actually we are looking for a function. find_main_filename
3448 should be rewritten so that it doesn't require a custom hook. It
3449 could just use the ordinary symbol tables. */
3450 /* vec[0] is the length, which must always be >0. */
3451 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3453 if (per_cu->v.quick->symtab != NULL)
3455 /* Only file extension of returned filename is recognized. */
3456 return per_cu->v.quick->symtab->filename;
3459 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3460 dw2_get_primary_filename_reader, &filename);
3462 /* Only file extension of returned filename is recognized. */
3467 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3468 struct objfile *objfile, int global,
3469 int (*callback) (struct block *,
3470 struct symbol *, void *),
3471 void *data, symbol_compare_ftype *match,
3472 symbol_compare_ftype *ordered_compare)
3474 /* Currently unimplemented; used for Ada. The function can be called if the
3475 current language is Ada for a non-Ada objfile using GNU index. As Ada
3476 does not look for non-Ada symbols this function should just return. */
3480 dw2_expand_symtabs_matching
3481 (struct objfile *objfile,
3482 int (*file_matcher) (const char *, void *, int basenames),
3483 int (*name_matcher) (const char *, void *),
3484 enum search_domain kind,
3489 struct mapped_index *index;
3491 dw2_setup (objfile);
3493 /* index_table is NULL if OBJF_READNOW. */
3494 if (!dwarf2_per_objfile->index_table)
3496 index = dwarf2_per_objfile->index_table;
3498 if (file_matcher != NULL)
3500 struct cleanup *cleanup;
3501 htab_t visited_found, visited_not_found;
3503 visited_found = htab_create_alloc (10,
3504 htab_hash_pointer, htab_eq_pointer,
3505 NULL, xcalloc, xfree);
3506 cleanup = make_cleanup_htab_delete (visited_found);
3507 visited_not_found = htab_create_alloc (10,
3508 htab_hash_pointer, htab_eq_pointer,
3509 NULL, xcalloc, xfree);
3510 make_cleanup_htab_delete (visited_not_found);
3512 /* The rule is CUs specify all the files, including those used by
3513 any TU, so there's no need to scan TUs here. */
3515 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3518 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3519 struct quick_file_names *file_data;
3522 per_cu->v.quick->mark = 0;
3524 /* We only need to look at symtabs not already expanded. */
3525 if (per_cu->v.quick->symtab)
3528 file_data = dw2_get_file_names (objfile, per_cu);
3529 if (file_data == NULL)
3532 if (htab_find (visited_not_found, file_data) != NULL)
3534 else if (htab_find (visited_found, file_data) != NULL)
3536 per_cu->v.quick->mark = 1;
3540 for (j = 0; j < file_data->num_file_names; ++j)
3542 const char *this_real_name;
3544 if (file_matcher (file_data->file_names[j], data, 0))
3546 per_cu->v.quick->mark = 1;
3550 /* Before we invoke realpath, which can get expensive when many
3551 files are involved, do a quick comparison of the basenames. */
3552 if (!basenames_may_differ
3553 && !file_matcher (lbasename (file_data->file_names[j]),
3557 this_real_name = dw2_get_real_path (objfile, file_data, j);
3558 if (file_matcher (this_real_name, data, 0))
3560 per_cu->v.quick->mark = 1;
3565 slot = htab_find_slot (per_cu->v.quick->mark
3567 : visited_not_found,
3572 do_cleanups (cleanup);
3575 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3577 offset_type idx = 2 * iter;
3579 offset_type *vec, vec_len, vec_idx;
3581 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3584 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3586 if (! (*name_matcher) (name, data))
3589 /* The name was matched, now expand corresponding CUs that were
3591 vec = (offset_type *) (index->constant_pool
3592 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3593 vec_len = MAYBE_SWAP (vec[0]);
3594 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3596 struct dwarf2_per_cu_data *per_cu;
3597 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3598 gdb_index_symbol_kind symbol_kind =
3599 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3600 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3602 /* Don't crash on bad data. */
3603 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3604 + dwarf2_per_objfile->n_type_units))
3607 /* Only check the symbol's kind if it has one.
3608 Indices prior to version 7 don't record it. */
3609 if (index->version >= 7)
3613 case VARIABLES_DOMAIN:
3614 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3617 case FUNCTIONS_DOMAIN:
3618 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3622 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3630 per_cu = dw2_get_cu (cu_index);
3631 if (file_matcher == NULL || per_cu->v.quick->mark)
3632 dw2_instantiate_symtab (per_cu);
3637 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3640 static struct symtab *
3641 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3645 if (BLOCKVECTOR (symtab) != NULL
3646 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3649 if (symtab->includes == NULL)
3652 for (i = 0; symtab->includes[i]; ++i)
3654 struct symtab *s = symtab->includes[i];
3656 s = recursively_find_pc_sect_symtab (s, pc);
3664 static struct symtab *
3665 dw2_find_pc_sect_symtab (struct objfile *objfile,
3666 struct minimal_symbol *msymbol,
3668 struct obj_section *section,
3671 struct dwarf2_per_cu_data *data;
3672 struct symtab *result;
3674 dw2_setup (objfile);
3676 if (!objfile->psymtabs_addrmap)
3679 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3683 if (warn_if_readin && data->v.quick->symtab)
3684 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3685 paddress (get_objfile_arch (objfile), pc));
3687 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3688 gdb_assert (result != NULL);
3693 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3694 void *data, int need_fullname)
3697 struct cleanup *cleanup;
3698 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3699 NULL, xcalloc, xfree);
3701 cleanup = make_cleanup_htab_delete (visited);
3702 dw2_setup (objfile);
3704 /* The rule is CUs specify all the files, including those used by
3705 any TU, so there's no need to scan TUs here.
3706 We can ignore file names coming from already-expanded CUs. */
3708 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3710 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3712 if (per_cu->v.quick->symtab)
3714 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3717 *slot = per_cu->v.quick->file_names;
3721 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3725 struct quick_file_names *file_data;
3728 /* We only need to look at symtabs not already expanded. */
3729 if (per_cu->v.quick->symtab)
3732 file_data = dw2_get_file_names (objfile, per_cu);
3733 if (file_data == NULL)
3736 slot = htab_find_slot (visited, file_data, INSERT);
3739 /* Already visited. */
3744 for (j = 0; j < file_data->num_file_names; ++j)
3746 const char *this_real_name;
3749 this_real_name = dw2_get_real_path (objfile, file_data, j);
3751 this_real_name = NULL;
3752 (*fun) (file_data->file_names[j], this_real_name, data);
3756 do_cleanups (cleanup);
3760 dw2_has_symbols (struct objfile *objfile)
3765 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3768 dw2_find_last_source_symtab,
3769 dw2_forget_cached_source_info,
3770 dw2_map_symtabs_matching_filename,
3775 dw2_expand_symtabs_for_function,
3776 dw2_expand_all_symtabs,
3777 dw2_expand_symtabs_with_fullname,
3778 dw2_find_symbol_file,
3779 dw2_map_matching_symbols,
3780 dw2_expand_symtabs_matching,
3781 dw2_find_pc_sect_symtab,
3782 dw2_map_symbol_filenames
3785 /* Initialize for reading DWARF for this objfile. Return 0 if this
3786 file will use psymtabs, or 1 if using the GNU index. */
3789 dwarf2_initialize_objfile (struct objfile *objfile)
3791 /* If we're about to read full symbols, don't bother with the
3792 indices. In this case we also don't care if some other debug
3793 format is making psymtabs, because they are all about to be
3795 if ((objfile->flags & OBJF_READNOW))
3799 dwarf2_per_objfile->using_index = 1;
3800 create_all_comp_units (objfile);
3801 create_all_type_units (objfile);
3802 dwarf2_per_objfile->quick_file_names_table =
3803 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3805 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3806 + dwarf2_per_objfile->n_type_units); ++i)
3808 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3810 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3811 struct dwarf2_per_cu_quick_data);
3814 /* Return 1 so that gdb sees the "quick" functions. However,
3815 these functions will be no-ops because we will have expanded
3820 if (dwarf2_read_index (objfile))
3828 /* Build a partial symbol table. */
3831 dwarf2_build_psymtabs (struct objfile *objfile)
3833 volatile struct gdb_exception except;
3835 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3837 init_psymbol_list (objfile, 1024);
3840 TRY_CATCH (except, RETURN_MASK_ERROR)
3842 /* This isn't really ideal: all the data we allocate on the
3843 objfile's obstack is still uselessly kept around. However,
3844 freeing it seems unsafe. */
3845 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3847 dwarf2_build_psymtabs_hard (objfile);
3848 discard_cleanups (cleanups);
3850 if (except.reason < 0)
3851 exception_print (gdb_stderr, except);
3854 /* Return the total length of the CU described by HEADER. */
3857 get_cu_length (const struct comp_unit_head *header)
3859 return header->initial_length_size + header->length;
3862 /* Return TRUE if OFFSET is within CU_HEADER. */
3865 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3867 sect_offset bottom = { cu_header->offset.sect_off };
3868 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3870 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3873 /* Find the base address of the compilation unit for range lists and
3874 location lists. It will normally be specified by DW_AT_low_pc.
3875 In DWARF-3 draft 4, the base address could be overridden by
3876 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3877 compilation units with discontinuous ranges. */
3880 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3882 struct attribute *attr;
3885 cu->base_address = 0;
3887 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3890 cu->base_address = DW_ADDR (attr);
3895 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3898 cu->base_address = DW_ADDR (attr);
3904 /* Read in the comp unit header information from the debug_info at info_ptr.
3905 NOTE: This leaves members offset, first_die_offset to be filled in
3909 read_comp_unit_head (struct comp_unit_head *cu_header,
3910 gdb_byte *info_ptr, bfd *abfd)
3913 unsigned int bytes_read;
3915 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3916 cu_header->initial_length_size = bytes_read;
3917 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3918 info_ptr += bytes_read;
3919 cu_header->version = read_2_bytes (abfd, info_ptr);
3921 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3923 info_ptr += bytes_read;
3924 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3926 signed_addr = bfd_get_sign_extend_vma (abfd);
3927 if (signed_addr < 0)
3928 internal_error (__FILE__, __LINE__,
3929 _("read_comp_unit_head: dwarf from non elf file"));
3930 cu_header->signed_addr_p = signed_addr;
3935 /* Helper function that returns the proper abbrev section for
3938 static struct dwarf2_section_info *
3939 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3941 struct dwarf2_section_info *abbrev;
3943 if (this_cu->is_dwz)
3944 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3946 abbrev = &dwarf2_per_objfile->abbrev;
3951 /* Subroutine of read_and_check_comp_unit_head and
3952 read_and_check_type_unit_head to simplify them.
3953 Perform various error checking on the header. */
3956 error_check_comp_unit_head (struct comp_unit_head *header,
3957 struct dwarf2_section_info *section,
3958 struct dwarf2_section_info *abbrev_section)
3960 bfd *abfd = section->asection->owner;
3961 const char *filename = bfd_get_filename (abfd);
3963 if (header->version != 2 && header->version != 3 && header->version != 4)
3964 error (_("Dwarf Error: wrong version in compilation unit header "
3965 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3968 if (header->abbrev_offset.sect_off
3969 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3970 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3971 "(offset 0x%lx + 6) [in module %s]"),
3972 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3975 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3976 avoid potential 32-bit overflow. */
3977 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3979 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3980 "(offset 0x%lx + 0) [in module %s]"),
3981 (long) header->length, (long) header->offset.sect_off,
3985 /* Read in a CU/TU header and perform some basic error checking.
3986 The contents of the header are stored in HEADER.
3987 The result is a pointer to the start of the first DIE. */
3990 read_and_check_comp_unit_head (struct comp_unit_head *header,
3991 struct dwarf2_section_info *section,
3992 struct dwarf2_section_info *abbrev_section,
3994 int is_debug_types_section)
3996 gdb_byte *beg_of_comp_unit = info_ptr;
3997 bfd *abfd = section->asection->owner;
3999 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4001 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4003 /* If we're reading a type unit, skip over the signature and
4004 type_offset fields. */
4005 if (is_debug_types_section)
4006 info_ptr += 8 /*signature*/ + header->offset_size;
4008 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4010 error_check_comp_unit_head (header, section, abbrev_section);
4015 /* Read in the types comp unit header information from .debug_types entry at
4016 types_ptr. The result is a pointer to one past the end of the header. */
4019 read_and_check_type_unit_head (struct comp_unit_head *header,
4020 struct dwarf2_section_info *section,
4021 struct dwarf2_section_info *abbrev_section,
4023 ULONGEST *signature,
4024 cu_offset *type_offset_in_tu)
4026 gdb_byte *beg_of_comp_unit = info_ptr;
4027 bfd *abfd = section->asection->owner;
4029 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4031 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4033 /* If we're reading a type unit, skip over the signature and
4034 type_offset fields. */
4035 if (signature != NULL)
4036 *signature = read_8_bytes (abfd, info_ptr);
4038 if (type_offset_in_tu != NULL)
4039 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4040 header->offset_size);
4041 info_ptr += header->offset_size;
4043 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4045 error_check_comp_unit_head (header, section, abbrev_section);
4050 /* Fetch the abbreviation table offset from a comp or type unit header. */
4053 read_abbrev_offset (struct dwarf2_section_info *section,
4056 bfd *abfd = section->asection->owner;
4058 unsigned int length, initial_length_size, offset_size;
4059 sect_offset abbrev_offset;
4061 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4062 info_ptr = section->buffer + offset.sect_off;
4063 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4064 offset_size = initial_length_size == 4 ? 4 : 8;
4065 info_ptr += initial_length_size + 2 /*version*/;
4066 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4067 return abbrev_offset;
4070 /* Allocate a new partial symtab for file named NAME and mark this new
4071 partial symtab as being an include of PST. */
4074 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4075 struct objfile *objfile)
4077 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4079 if (!IS_ABSOLUTE_PATH (subpst->filename))
4081 /* It shares objfile->objfile_obstack. */
4082 subpst->dirname = pst->dirname;
4085 subpst->section_offsets = pst->section_offsets;
4086 subpst->textlow = 0;
4087 subpst->texthigh = 0;
4089 subpst->dependencies = (struct partial_symtab **)
4090 obstack_alloc (&objfile->objfile_obstack,
4091 sizeof (struct partial_symtab *));
4092 subpst->dependencies[0] = pst;
4093 subpst->number_of_dependencies = 1;
4095 subpst->globals_offset = 0;
4096 subpst->n_global_syms = 0;
4097 subpst->statics_offset = 0;
4098 subpst->n_static_syms = 0;
4099 subpst->symtab = NULL;
4100 subpst->read_symtab = pst->read_symtab;
4103 /* No private part is necessary for include psymtabs. This property
4104 can be used to differentiate between such include psymtabs and
4105 the regular ones. */
4106 subpst->read_symtab_private = NULL;
4109 /* Read the Line Number Program data and extract the list of files
4110 included by the source file represented by PST. Build an include
4111 partial symtab for each of these included files. */
4114 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4115 struct die_info *die,
4116 struct partial_symtab *pst)
4118 struct line_header *lh = NULL;
4119 struct attribute *attr;
4121 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4123 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4125 return; /* No linetable, so no includes. */
4127 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4128 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4130 free_line_header (lh);
4134 hash_signatured_type (const void *item)
4136 const struct signatured_type *sig_type = item;
4138 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4139 return sig_type->signature;
4143 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4145 const struct signatured_type *lhs = item_lhs;
4146 const struct signatured_type *rhs = item_rhs;
4148 return lhs->signature == rhs->signature;
4151 /* Allocate a hash table for signatured types. */
4154 allocate_signatured_type_table (struct objfile *objfile)
4156 return htab_create_alloc_ex (41,
4157 hash_signatured_type,
4160 &objfile->objfile_obstack,
4161 hashtab_obstack_allocate,
4162 dummy_obstack_deallocate);
4165 /* A helper function to add a signatured type CU to a table. */
4168 add_signatured_type_cu_to_table (void **slot, void *datum)
4170 struct signatured_type *sigt = *slot;
4171 struct signatured_type ***datap = datum;
4179 /* Create the hash table of all entries in the .debug_types section.
4180 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4182 Note: This function processes DWO files only, not DWP files.
4183 The result is a pointer to the hash table or NULL if there are
4187 create_debug_types_hash_table (struct dwo_file *dwo_file,
4188 VEC (dwarf2_section_info_def) *types)
4190 struct objfile *objfile = dwarf2_per_objfile->objfile;
4191 htab_t types_htab = NULL;
4193 struct dwarf2_section_info *section;
4194 struct dwarf2_section_info *abbrev_section;
4196 if (VEC_empty (dwarf2_section_info_def, types))
4199 abbrev_section = (dwo_file != NULL
4200 ? &dwo_file->sections.abbrev
4201 : &dwarf2_per_objfile->abbrev);
4203 if (dwarf2_read_debug)
4204 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4205 dwo_file ? ".dwo" : "",
4206 bfd_get_filename (abbrev_section->asection->owner));
4209 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4213 gdb_byte *info_ptr, *end_ptr;
4214 struct dwarf2_section_info *abbrev_section;
4216 dwarf2_read_section (objfile, section);
4217 info_ptr = section->buffer;
4219 if (info_ptr == NULL)
4222 /* We can't set abfd until now because the section may be empty or
4223 not present, in which case section->asection will be NULL. */
4224 abfd = section->asection->owner;
4227 abbrev_section = &dwo_file->sections.abbrev;
4229 abbrev_section = &dwarf2_per_objfile->abbrev;
4231 if (types_htab == NULL)
4234 types_htab = allocate_dwo_unit_table (objfile);
4236 types_htab = allocate_signatured_type_table (objfile);
4239 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4240 because we don't need to read any dies: the signature is in the
4243 end_ptr = info_ptr + section->size;
4244 while (info_ptr < end_ptr)
4247 cu_offset type_offset_in_tu;
4249 struct signatured_type *sig_type;
4250 struct dwo_unit *dwo_tu;
4252 gdb_byte *ptr = info_ptr;
4253 struct comp_unit_head header;
4254 unsigned int length;
4256 offset.sect_off = ptr - section->buffer;
4258 /* We need to read the type's signature in order to build the hash
4259 table, but we don't need anything else just yet. */
4261 ptr = read_and_check_type_unit_head (&header, section,
4262 abbrev_section, ptr,
4263 &signature, &type_offset_in_tu);
4265 length = get_cu_length (&header);
4267 /* Skip dummy type units. */
4268 if (ptr >= info_ptr + length
4269 || peek_abbrev_code (abfd, ptr) == 0)
4278 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4280 dwo_tu->dwo_file = dwo_file;
4281 dwo_tu->signature = signature;
4282 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4283 dwo_tu->info_or_types_section = section;
4284 dwo_tu->offset = offset;
4285 dwo_tu->length = length;
4289 /* N.B.: type_offset is not usable if this type uses a DWO file.
4290 The real type_offset is in the DWO file. */
4292 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4293 struct signatured_type);
4294 sig_type->signature = signature;
4295 sig_type->type_offset_in_tu = type_offset_in_tu;
4296 sig_type->per_cu.objfile = objfile;
4297 sig_type->per_cu.is_debug_types = 1;
4298 sig_type->per_cu.info_or_types_section = section;
4299 sig_type->per_cu.offset = offset;
4300 sig_type->per_cu.length = length;
4303 slot = htab_find_slot (types_htab,
4304 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4306 gdb_assert (slot != NULL);
4309 sect_offset dup_offset;
4313 const struct dwo_unit *dup_tu = *slot;
4315 dup_offset = dup_tu->offset;
4319 const struct signatured_type *dup_tu = *slot;
4321 dup_offset = dup_tu->per_cu.offset;
4324 complaint (&symfile_complaints,
4325 _("debug type entry at offset 0x%x is duplicate to the "
4326 "entry at offset 0x%x, signature 0x%s"),
4327 offset.sect_off, dup_offset.sect_off,
4328 phex (signature, sizeof (signature)));
4330 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4332 if (dwarf2_read_debug)
4333 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4335 phex (signature, sizeof (signature)));
4344 /* Create the hash table of all entries in the .debug_types section,
4345 and initialize all_type_units.
4346 The result is zero if there is an error (e.g. missing .debug_types section),
4347 otherwise non-zero. */
4350 create_all_type_units (struct objfile *objfile)
4353 struct signatured_type **iter;
4355 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4356 if (types_htab == NULL)
4358 dwarf2_per_objfile->signatured_types = NULL;
4362 dwarf2_per_objfile->signatured_types = types_htab;
4364 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4365 dwarf2_per_objfile->all_type_units
4366 = obstack_alloc (&objfile->objfile_obstack,
4367 dwarf2_per_objfile->n_type_units
4368 * sizeof (struct signatured_type *));
4369 iter = &dwarf2_per_objfile->all_type_units[0];
4370 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4371 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4372 == dwarf2_per_objfile->n_type_units);
4377 /* Lookup a signature based type for DW_FORM_ref_sig8.
4378 Returns NULL if signature SIG is not present in the table. */
4380 static struct signatured_type *
4381 lookup_signatured_type (ULONGEST sig)
4383 struct signatured_type find_entry, *entry;
4385 if (dwarf2_per_objfile->signatured_types == NULL)
4387 complaint (&symfile_complaints,
4388 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4392 find_entry.signature = sig;
4393 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4397 /* Low level DIE reading support. */
4399 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4402 init_cu_die_reader (struct die_reader_specs *reader,
4403 struct dwarf2_cu *cu,
4404 struct dwarf2_section_info *section,
4405 struct dwo_file *dwo_file)
4407 gdb_assert (section->readin && section->buffer != NULL);
4408 reader->abfd = section->asection->owner;
4410 reader->dwo_file = dwo_file;
4411 reader->die_section = section;
4412 reader->buffer = section->buffer;
4413 reader->buffer_end = section->buffer + section->size;
4416 /* Initialize a CU (or TU) and read its DIEs.
4417 If the CU defers to a DWO file, read the DWO file as well.
4419 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4420 Otherwise the table specified in the comp unit header is read in and used.
4421 This is an optimization for when we already have the abbrev table.
4423 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4424 Otherwise, a new CU is allocated with xmalloc.
4426 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4427 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4429 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4430 linker) then DIE_READER_FUNC will not get called. */
4433 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4434 struct abbrev_table *abbrev_table,
4435 int use_existing_cu, int keep,
4436 die_reader_func_ftype *die_reader_func,
4439 struct objfile *objfile = dwarf2_per_objfile->objfile;
4440 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4441 bfd *abfd = section->asection->owner;
4442 struct dwarf2_cu *cu;
4443 gdb_byte *begin_info_ptr, *info_ptr;
4444 struct die_reader_specs reader;
4445 struct die_info *comp_unit_die;
4447 struct attribute *attr;
4448 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4449 struct signatured_type *sig_type = NULL;
4450 struct dwarf2_section_info *abbrev_section;
4451 /* Non-zero if CU currently points to a DWO file and we need to
4452 reread it. When this happens we need to reread the skeleton die
4453 before we can reread the DWO file. */
4454 int rereading_dwo_cu = 0;
4456 if (dwarf2_die_debug)
4457 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4458 this_cu->is_debug_types ? "type" : "comp",
4459 this_cu->offset.sect_off);
4461 if (use_existing_cu)
4464 cleanups = make_cleanup (null_cleanup, NULL);
4466 /* This is cheap if the section is already read in. */
4467 dwarf2_read_section (objfile, section);
4469 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4471 abbrev_section = get_abbrev_section_for_cu (this_cu);
4473 if (use_existing_cu && this_cu->cu != NULL)
4477 /* If this CU is from a DWO file we need to start over, we need to
4478 refetch the attributes from the skeleton CU.
4479 This could be optimized by retrieving those attributes from when we
4480 were here the first time: the previous comp_unit_die was stored in
4481 comp_unit_obstack. But there's no data yet that we need this
4483 if (cu->dwo_unit != NULL)
4484 rereading_dwo_cu = 1;
4488 /* If !use_existing_cu, this_cu->cu must be NULL. */
4489 gdb_assert (this_cu->cu == NULL);
4491 cu = xmalloc (sizeof (*cu));
4492 init_one_comp_unit (cu, this_cu);
4494 /* If an error occurs while loading, release our storage. */
4495 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4498 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4500 /* We already have the header, there's no need to read it in again. */
4501 info_ptr += cu->header.first_die_offset.cu_off;
4505 if (this_cu->is_debug_types)
4508 cu_offset type_offset_in_tu;
4510 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4511 abbrev_section, info_ptr,
4513 &type_offset_in_tu);
4515 /* Since per_cu is the first member of struct signatured_type,
4516 we can go from a pointer to one to a pointer to the other. */
4517 sig_type = (struct signatured_type *) this_cu;
4518 gdb_assert (sig_type->signature == signature);
4519 gdb_assert (sig_type->type_offset_in_tu.cu_off
4520 == type_offset_in_tu.cu_off);
4521 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4523 /* LENGTH has not been set yet for type units if we're
4524 using .gdb_index. */
4525 this_cu->length = get_cu_length (&cu->header);
4527 /* Establish the type offset that can be used to lookup the type. */
4528 sig_type->type_offset_in_section.sect_off =
4529 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4533 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4537 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4538 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4542 /* Skip dummy compilation units. */
4543 if (info_ptr >= begin_info_ptr + this_cu->length
4544 || peek_abbrev_code (abfd, info_ptr) == 0)
4546 do_cleanups (cleanups);
4550 /* If we don't have them yet, read the abbrevs for this compilation unit.
4551 And if we need to read them now, make sure they're freed when we're
4552 done. Note that it's important that if the CU had an abbrev table
4553 on entry we don't free it when we're done: Somewhere up the call stack
4554 it may be in use. */
4555 if (abbrev_table != NULL)
4557 gdb_assert (cu->abbrev_table == NULL);
4558 gdb_assert (cu->header.abbrev_offset.sect_off
4559 == abbrev_table->offset.sect_off);
4560 cu->abbrev_table = abbrev_table;
4562 else if (cu->abbrev_table == NULL)
4564 dwarf2_read_abbrevs (cu, abbrev_section);
4565 make_cleanup (dwarf2_free_abbrev_table, cu);
4567 else if (rereading_dwo_cu)
4569 dwarf2_free_abbrev_table (cu);
4570 dwarf2_read_abbrevs (cu, abbrev_section);
4573 /* Read the top level CU/TU die. */
4574 init_cu_die_reader (&reader, cu, section, NULL);
4575 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4577 /* If we have a DWO stub, process it and then read in the DWO file.
4578 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4579 a DWO CU, that this test will fail. */
4580 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4583 const char *dwo_name = DW_STRING (attr);
4584 const char *comp_dir_string;
4585 struct dwo_unit *dwo_unit;
4586 ULONGEST signature; /* Or dwo_id. */
4587 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4588 int i,num_extra_attrs;
4589 struct dwarf2_section_info *dwo_abbrev_section;
4592 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4593 " has children (offset 0x%x) [in module %s]"),
4594 this_cu->offset.sect_off, bfd_get_filename (abfd));
4596 /* These attributes aren't processed until later:
4597 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4598 However, the attribute is found in the stub which we won't have later.
4599 In order to not impose this complication on the rest of the code,
4600 we read them here and copy them to the DWO CU/TU die. */
4602 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4605 if (! this_cu->is_debug_types)
4606 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4607 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4608 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4609 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4610 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4612 /* There should be a DW_AT_addr_base attribute here (if needed).
4613 We need the value before we can process DW_FORM_GNU_addr_index. */
4615 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4617 cu->addr_base = DW_UNSND (attr);
4619 /* There should be a DW_AT_ranges_base attribute here (if needed).
4620 We need the value before we can process DW_AT_ranges. */
4621 cu->ranges_base = 0;
4622 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4624 cu->ranges_base = DW_UNSND (attr);
4626 if (this_cu->is_debug_types)
4628 gdb_assert (sig_type != NULL);
4629 signature = sig_type->signature;
4633 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4635 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4637 signature = DW_UNSND (attr);
4640 /* We may need the comp_dir in order to find the DWO file. */
4641 comp_dir_string = NULL;
4643 comp_dir_string = DW_STRING (comp_dir);
4645 if (this_cu->is_debug_types)
4646 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4648 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4651 if (dwo_unit == NULL)
4653 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4654 " with ID %s [in module %s]"),
4655 this_cu->offset.sect_off,
4656 phex (signature, sizeof (signature)),
4660 /* Set up for reading the DWO CU/TU. */
4661 cu->dwo_unit = dwo_unit;
4662 section = dwo_unit->info_or_types_section;
4663 dwarf2_read_section (objfile, section);
4664 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4665 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4666 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4668 if (this_cu->is_debug_types)
4671 cu_offset type_offset_in_tu;
4673 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4677 &type_offset_in_tu);
4678 gdb_assert (sig_type->signature == signature);
4679 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4680 /* For DWOs coming from DWP files, we don't know the CU length
4681 nor the type's offset in the TU until now. */
4682 dwo_unit->length = get_cu_length (&cu->header);
4683 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4685 /* Establish the type offset that can be used to lookup the type.
4686 For DWO files, we don't know it until now. */
4687 sig_type->type_offset_in_section.sect_off =
4688 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4692 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4695 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4696 /* For DWOs coming from DWP files, we don't know the CU length
4698 dwo_unit->length = get_cu_length (&cu->header);
4701 /* Discard the original CU's abbrev table, and read the DWO's. */
4702 if (abbrev_table == NULL)
4704 dwarf2_free_abbrev_table (cu);
4705 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4709 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4710 make_cleanup (dwarf2_free_abbrev_table, cu);
4713 /* Read in the die, but leave space to copy over the attributes
4714 from the stub. This has the benefit of simplifying the rest of
4715 the code - all the real work is done here. */
4716 num_extra_attrs = ((stmt_list != NULL)
4720 + (comp_dir != NULL));
4721 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4722 &has_children, num_extra_attrs);
4724 /* Copy over the attributes from the stub to the DWO die. */
4725 i = comp_unit_die->num_attrs;
4726 if (stmt_list != NULL)
4727 comp_unit_die->attrs[i++] = *stmt_list;
4729 comp_unit_die->attrs[i++] = *low_pc;
4730 if (high_pc != NULL)
4731 comp_unit_die->attrs[i++] = *high_pc;
4733 comp_unit_die->attrs[i++] = *ranges;
4734 if (comp_dir != NULL)
4735 comp_unit_die->attrs[i++] = *comp_dir;
4736 comp_unit_die->num_attrs += num_extra_attrs;
4738 /* Skip dummy compilation units. */
4739 if (info_ptr >= begin_info_ptr + dwo_unit->length
4740 || peek_abbrev_code (abfd, info_ptr) == 0)
4742 do_cleanups (cleanups);
4747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4749 if (free_cu_cleanup != NULL)
4753 /* We've successfully allocated this compilation unit. Let our
4754 caller clean it up when finished with it. */
4755 discard_cleanups (free_cu_cleanup);
4757 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4758 So we have to manually free the abbrev table. */
4759 dwarf2_free_abbrev_table (cu);
4761 /* Link this CU into read_in_chain. */
4762 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4763 dwarf2_per_objfile->read_in_chain = this_cu;
4766 do_cleanups (free_cu_cleanup);
4769 do_cleanups (cleanups);
4772 /* Read CU/TU THIS_CU in section SECTION,
4773 but do not follow DW_AT_GNU_dwo_name if present.
4774 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4775 to have already done the lookup to find the DWO/DWP file).
4777 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4778 THIS_CU->is_debug_types, but nothing else.
4780 We fill in THIS_CU->length.
4782 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4783 linker) then DIE_READER_FUNC will not get called.
4785 THIS_CU->cu is always freed when done.
4786 This is done in order to not leave THIS_CU->cu in a state where we have
4787 to care whether it refers to the "main" CU or the DWO CU. */
4790 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4791 struct dwarf2_section_info *abbrev_section,
4792 struct dwo_file *dwo_file,
4793 die_reader_func_ftype *die_reader_func,
4796 struct objfile *objfile = dwarf2_per_objfile->objfile;
4797 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4798 bfd *abfd = section->asection->owner;
4799 struct dwarf2_cu cu;
4800 gdb_byte *begin_info_ptr, *info_ptr;
4801 struct die_reader_specs reader;
4802 struct cleanup *cleanups;
4803 struct die_info *comp_unit_die;
4806 if (dwarf2_die_debug)
4807 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4808 this_cu->is_debug_types ? "type" : "comp",
4809 this_cu->offset.sect_off);
4811 gdb_assert (this_cu->cu == NULL);
4813 /* This is cheap if the section is already read in. */
4814 dwarf2_read_section (objfile, section);
4816 init_one_comp_unit (&cu, this_cu);
4818 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4820 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4821 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4822 abbrev_section, info_ptr,
4823 this_cu->is_debug_types);
4825 this_cu->length = get_cu_length (&cu.header);
4827 /* Skip dummy compilation units. */
4828 if (info_ptr >= begin_info_ptr + this_cu->length
4829 || peek_abbrev_code (abfd, info_ptr) == 0)
4831 do_cleanups (cleanups);
4835 dwarf2_read_abbrevs (&cu, abbrev_section);
4836 make_cleanup (dwarf2_free_abbrev_table, &cu);
4838 init_cu_die_reader (&reader, &cu, section, dwo_file);
4839 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4841 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4843 do_cleanups (cleanups);
4846 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4847 does not lookup the specified DWO file.
4848 This cannot be used to read DWO files.
4850 THIS_CU->cu is always freed when done.
4851 This is done in order to not leave THIS_CU->cu in a state where we have
4852 to care whether it refers to the "main" CU or the DWO CU.
4853 We can revisit this if the data shows there's a performance issue. */
4856 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4857 die_reader_func_ftype *die_reader_func,
4860 init_cutu_and_read_dies_no_follow (this_cu,
4861 get_abbrev_section_for_cu (this_cu),
4863 die_reader_func, data);
4866 /* Create a psymtab named NAME and assign it to PER_CU.
4868 The caller must fill in the following details:
4869 dirname, textlow, texthigh. */
4871 static struct partial_symtab *
4872 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4874 struct objfile *objfile = per_cu->objfile;
4875 struct partial_symtab *pst;
4877 pst = start_psymtab_common (objfile, objfile->section_offsets,
4879 objfile->global_psymbols.next,
4880 objfile->static_psymbols.next);
4882 pst->psymtabs_addrmap_supported = 1;
4884 /* This is the glue that links PST into GDB's symbol API. */
4885 pst->read_symtab_private = per_cu;
4886 pst->read_symtab = dwarf2_read_symtab;
4887 per_cu->v.psymtab = pst;
4892 /* die_reader_func for process_psymtab_comp_unit. */
4895 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4897 struct die_info *comp_unit_die,
4901 struct dwarf2_cu *cu = reader->cu;
4902 struct objfile *objfile = cu->objfile;
4903 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4904 struct attribute *attr;
4906 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4907 struct partial_symtab *pst;
4909 const char *filename;
4910 int *want_partial_unit_ptr = data;
4912 if (comp_unit_die->tag == DW_TAG_partial_unit
4913 && (want_partial_unit_ptr == NULL
4914 || !*want_partial_unit_ptr))
4917 gdb_assert (! per_cu->is_debug_types);
4919 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4921 cu->list_in_scope = &file_symbols;
4923 /* Allocate a new partial symbol table structure. */
4924 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4925 if (attr == NULL || !DW_STRING (attr))
4928 filename = DW_STRING (attr);
4930 pst = create_partial_symtab (per_cu, filename);
4932 /* This must be done before calling dwarf2_build_include_psymtabs. */
4933 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4935 pst->dirname = DW_STRING (attr);
4937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4939 dwarf2_find_base_address (comp_unit_die, cu);
4941 /* Possibly set the default values of LOWPC and HIGHPC from
4943 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4944 &best_highpc, cu, pst);
4945 if (has_pc_info == 1 && best_lowpc < best_highpc)
4946 /* Store the contiguous range if it is not empty; it can be empty for
4947 CUs with no code. */
4948 addrmap_set_empty (objfile->psymtabs_addrmap,
4949 best_lowpc + baseaddr,
4950 best_highpc + baseaddr - 1, pst);
4952 /* Check if comp unit has_children.
4953 If so, read the rest of the partial symbols from this comp unit.
4954 If not, there's no more debug_info for this comp unit. */
4957 struct partial_die_info *first_die;
4958 CORE_ADDR lowpc, highpc;
4960 lowpc = ((CORE_ADDR) -1);
4961 highpc = ((CORE_ADDR) 0);
4963 first_die = load_partial_dies (reader, info_ptr, 1);
4965 scan_partial_symbols (first_die, &lowpc, &highpc,
4968 /* If we didn't find a lowpc, set it to highpc to avoid
4969 complaints from `maint check'. */
4970 if (lowpc == ((CORE_ADDR) -1))
4973 /* If the compilation unit didn't have an explicit address range,
4974 then use the information extracted from its child dies. */
4978 best_highpc = highpc;
4981 pst->textlow = best_lowpc + baseaddr;
4982 pst->texthigh = best_highpc + baseaddr;
4984 pst->n_global_syms = objfile->global_psymbols.next -
4985 (objfile->global_psymbols.list + pst->globals_offset);
4986 pst->n_static_syms = objfile->static_psymbols.next -
4987 (objfile->static_psymbols.list + pst->statics_offset);
4988 sort_pst_symbols (objfile, pst);
4990 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4993 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4994 struct dwarf2_per_cu_data *iter;
4996 /* Fill in 'dependencies' here; we fill in 'users' in a
4998 pst->number_of_dependencies = len;
4999 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5000 len * sizeof (struct symtab *));
5002 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5005 pst->dependencies[i] = iter->v.psymtab;
5007 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5010 /* Get the list of files included in the current compilation unit,
5011 and build a psymtab for each of them. */
5012 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5014 if (dwarf2_read_debug)
5016 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5018 fprintf_unfiltered (gdb_stdlog,
5019 "Psymtab for %s unit @0x%x: %s - %s"
5020 ", %d global, %d static syms\n",
5021 per_cu->is_debug_types ? "type" : "comp",
5022 per_cu->offset.sect_off,
5023 paddress (gdbarch, pst->textlow),
5024 paddress (gdbarch, pst->texthigh),
5025 pst->n_global_syms, pst->n_static_syms);
5029 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5030 Process compilation unit THIS_CU for a psymtab. */
5033 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5034 int want_partial_unit)
5036 /* If this compilation unit was already read in, free the
5037 cached copy in order to read it in again. This is
5038 necessary because we skipped some symbols when we first
5039 read in the compilation unit (see load_partial_dies).
5040 This problem could be avoided, but the benefit is unclear. */
5041 if (this_cu->cu != NULL)
5042 free_one_cached_comp_unit (this_cu);
5044 gdb_assert (! this_cu->is_debug_types);
5045 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5046 process_psymtab_comp_unit_reader,
5047 &want_partial_unit);
5049 /* Age out any secondary CUs. */
5050 age_cached_comp_units ();
5054 hash_type_unit_group (const void *item)
5056 const struct type_unit_group *tu_group = item;
5058 return hash_stmt_list_entry (&tu_group->hash);
5062 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5064 const struct type_unit_group *lhs = item_lhs;
5065 const struct type_unit_group *rhs = item_rhs;
5067 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5070 /* Allocate a hash table for type unit groups. */
5073 allocate_type_unit_groups_table (void)
5075 return htab_create_alloc_ex (3,
5076 hash_type_unit_group,
5079 &dwarf2_per_objfile->objfile->objfile_obstack,
5080 hashtab_obstack_allocate,
5081 dummy_obstack_deallocate);
5084 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5085 partial symtabs. We combine several TUs per psymtab to not let the size
5086 of any one psymtab grow too big. */
5087 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5088 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5090 /* Helper routine for get_type_unit_group.
5091 Create the type_unit_group object used to hold one or more TUs. */
5093 static struct type_unit_group *
5094 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5096 struct objfile *objfile = dwarf2_per_objfile->objfile;
5097 struct dwarf2_per_cu_data *per_cu;
5098 struct type_unit_group *tu_group;
5100 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5101 struct type_unit_group);
5102 per_cu = &tu_group->per_cu;
5103 per_cu->objfile = objfile;
5104 per_cu->is_debug_types = 1;
5105 per_cu->type_unit_group = tu_group;
5107 if (dwarf2_per_objfile->using_index)
5109 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5110 struct dwarf2_per_cu_quick_data);
5111 tu_group->t.first_tu = cu->per_cu;
5115 unsigned int line_offset = line_offset_struct.sect_off;
5116 struct partial_symtab *pst;
5119 /* Give the symtab a useful name for debug purposes. */
5120 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5121 name = xstrprintf ("<type_units_%d>",
5122 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5124 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5126 pst = create_partial_symtab (per_cu, name);
5132 tu_group->hash.dwo_unit = cu->dwo_unit;
5133 tu_group->hash.line_offset = line_offset_struct;
5138 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5139 STMT_LIST is a DW_AT_stmt_list attribute. */
5141 static struct type_unit_group *
5142 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5144 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5145 struct type_unit_group *tu_group;
5147 unsigned int line_offset;
5148 struct type_unit_group type_unit_group_for_lookup;
5150 if (dwarf2_per_objfile->type_unit_groups == NULL)
5152 dwarf2_per_objfile->type_unit_groups =
5153 allocate_type_unit_groups_table ();
5156 /* Do we need to create a new group, or can we use an existing one? */
5160 line_offset = DW_UNSND (stmt_list);
5161 ++tu_stats->nr_symtab_sharers;
5165 /* Ugh, no stmt_list. Rare, but we have to handle it.
5166 We can do various things here like create one group per TU or
5167 spread them over multiple groups to split up the expansion work.
5168 To avoid worst case scenarios (too many groups or too large groups)
5169 we, umm, group them in bunches. */
5170 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5171 | (tu_stats->nr_stmt_less_type_units
5172 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5173 ++tu_stats->nr_stmt_less_type_units;
5176 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5177 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5178 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5179 &type_unit_group_for_lookup, INSERT);
5183 gdb_assert (tu_group != NULL);
5187 sect_offset line_offset_struct;
5189 line_offset_struct.sect_off = line_offset;
5190 tu_group = create_type_unit_group (cu, line_offset_struct);
5192 ++tu_stats->nr_symtabs;
5198 /* Struct used to sort TUs by their abbreviation table offset. */
5200 struct tu_abbrev_offset
5202 struct signatured_type *sig_type;
5203 sect_offset abbrev_offset;
5206 /* Helper routine for build_type_unit_groups, passed to qsort. */
5209 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5211 const struct tu_abbrev_offset * const *a = ap;
5212 const struct tu_abbrev_offset * const *b = bp;
5213 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5214 unsigned int boff = (*b)->abbrev_offset.sect_off;
5216 return (aoff > boff) - (aoff < boff);
5219 /* A helper function to add a type_unit_group to a table. */
5222 add_type_unit_group_to_table (void **slot, void *datum)
5224 struct type_unit_group *tu_group = *slot;
5225 struct type_unit_group ***datap = datum;
5233 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5234 each one passing FUNC,DATA.
5236 The efficiency is because we sort TUs by the abbrev table they use and
5237 only read each abbrev table once. In one program there are 200K TUs
5238 sharing 8K abbrev tables.
5240 The main purpose of this function is to support building the
5241 dwarf2_per_objfile->type_unit_groups table.
5242 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5243 can collapse the search space by grouping them by stmt_list.
5244 The savings can be significant, in the same program from above the 200K TUs
5245 share 8K stmt_list tables.
5247 FUNC is expected to call get_type_unit_group, which will create the
5248 struct type_unit_group if necessary and add it to
5249 dwarf2_per_objfile->type_unit_groups. */
5252 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5254 struct objfile *objfile = dwarf2_per_objfile->objfile;
5255 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5256 struct cleanup *cleanups;
5257 struct abbrev_table *abbrev_table;
5258 sect_offset abbrev_offset;
5259 struct tu_abbrev_offset *sorted_by_abbrev;
5260 struct type_unit_group **iter;
5263 /* It's up to the caller to not call us multiple times. */
5264 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5266 if (dwarf2_per_objfile->n_type_units == 0)
5269 /* TUs typically share abbrev tables, and there can be way more TUs than
5270 abbrev tables. Sort by abbrev table to reduce the number of times we
5271 read each abbrev table in.
5272 Alternatives are to punt or to maintain a cache of abbrev tables.
5273 This is simpler and efficient enough for now.
5275 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5276 symtab to use). Typically TUs with the same abbrev offset have the same
5277 stmt_list value too so in practice this should work well.
5279 The basic algorithm here is:
5281 sort TUs by abbrev table
5282 for each TU with same abbrev table:
5283 read abbrev table if first user
5284 read TU top level DIE
5285 [IWBN if DWO skeletons had DW_AT_stmt_list]
5288 if (dwarf2_read_debug)
5289 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5291 /* Sort in a separate table to maintain the order of all_type_units
5292 for .gdb_index: TU indices directly index all_type_units. */
5293 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5294 dwarf2_per_objfile->n_type_units);
5295 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5297 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5299 sorted_by_abbrev[i].sig_type = sig_type;
5300 sorted_by_abbrev[i].abbrev_offset =
5301 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5302 sig_type->per_cu.offset);
5304 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5305 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5306 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5308 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5309 called any number of times, so we don't reset tu_stats here. */
5311 abbrev_offset.sect_off = ~(unsigned) 0;
5312 abbrev_table = NULL;
5313 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5315 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5317 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5319 /* Switch to the next abbrev table if necessary. */
5320 if (abbrev_table == NULL
5321 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5323 if (abbrev_table != NULL)
5325 abbrev_table_free (abbrev_table);
5326 /* Reset to NULL in case abbrev_table_read_table throws
5327 an error: abbrev_table_free_cleanup will get called. */
5328 abbrev_table = NULL;
5330 abbrev_offset = tu->abbrev_offset;
5332 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5334 ++tu_stats->nr_uniq_abbrev_tables;
5337 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5341 /* Create a vector of pointers to primary type units to make it easy to
5342 iterate over them and CUs. See dw2_get_primary_cu. */
5343 dwarf2_per_objfile->n_type_unit_groups =
5344 htab_elements (dwarf2_per_objfile->type_unit_groups);
5345 dwarf2_per_objfile->all_type_unit_groups =
5346 obstack_alloc (&objfile->objfile_obstack,
5347 dwarf2_per_objfile->n_type_unit_groups
5348 * sizeof (struct type_unit_group *));
5349 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5350 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5351 add_type_unit_group_to_table, &iter);
5352 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5353 == dwarf2_per_objfile->n_type_unit_groups);
5355 do_cleanups (cleanups);
5357 if (dwarf2_read_debug)
5359 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5360 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5361 dwarf2_per_objfile->n_type_units);
5362 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5363 tu_stats->nr_uniq_abbrev_tables);
5364 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5365 tu_stats->nr_symtabs);
5366 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5367 tu_stats->nr_symtab_sharers);
5368 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5369 tu_stats->nr_stmt_less_type_units);
5373 /* Reader function for build_type_psymtabs. */
5376 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5378 struct die_info *type_unit_die,
5382 struct objfile *objfile = dwarf2_per_objfile->objfile;
5383 struct dwarf2_cu *cu = reader->cu;
5384 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5385 struct type_unit_group *tu_group;
5386 struct attribute *attr;
5387 struct partial_die_info *first_die;
5388 CORE_ADDR lowpc, highpc;
5389 struct partial_symtab *pst;
5391 gdb_assert (data == NULL);
5396 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5397 tu_group = get_type_unit_group (cu, attr);
5399 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5401 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5402 cu->list_in_scope = &file_symbols;
5403 pst = create_partial_symtab (per_cu, "");
5406 first_die = load_partial_dies (reader, info_ptr, 1);
5408 lowpc = (CORE_ADDR) -1;
5409 highpc = (CORE_ADDR) 0;
5410 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5412 pst->n_global_syms = objfile->global_psymbols.next -
5413 (objfile->global_psymbols.list + pst->globals_offset);
5414 pst->n_static_syms = objfile->static_psymbols.next -
5415 (objfile->static_psymbols.list + pst->statics_offset);
5416 sort_pst_symbols (objfile, pst);
5419 /* Traversal function for build_type_psymtabs. */
5422 build_type_psymtab_dependencies (void **slot, void *info)
5424 struct objfile *objfile = dwarf2_per_objfile->objfile;
5425 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5426 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5427 struct partial_symtab *pst = per_cu->v.psymtab;
5428 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5429 struct dwarf2_per_cu_data *iter;
5432 gdb_assert (len > 0);
5434 pst->number_of_dependencies = len;
5435 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5436 len * sizeof (struct psymtab *));
5438 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5441 pst->dependencies[i] = iter->v.psymtab;
5442 iter->type_unit_group = tu_group;
5445 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5450 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5451 Build partial symbol tables for the .debug_types comp-units. */
5454 build_type_psymtabs (struct objfile *objfile)
5456 if (! create_all_type_units (objfile))
5459 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5461 /* Now that all TUs have been processed we can fill in the dependencies. */
5462 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5463 build_type_psymtab_dependencies, NULL);
5466 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5469 psymtabs_addrmap_cleanup (void *o)
5471 struct objfile *objfile = o;
5473 objfile->psymtabs_addrmap = NULL;
5476 /* Compute the 'user' field for each psymtab in OBJFILE. */
5479 set_partial_user (struct objfile *objfile)
5483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5486 struct partial_symtab *pst = per_cu->v.psymtab;
5492 for (j = 0; j < pst->number_of_dependencies; ++j)
5494 /* Set the 'user' field only if it is not already set. */
5495 if (pst->dependencies[j]->user == NULL)
5496 pst->dependencies[j]->user = pst;
5501 /* Build the partial symbol table by doing a quick pass through the
5502 .debug_info and .debug_abbrev sections. */
5505 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5507 struct cleanup *back_to, *addrmap_cleanup;
5508 struct obstack temp_obstack;
5511 if (dwarf2_read_debug)
5513 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5517 dwarf2_per_objfile->reading_partial_symbols = 1;
5519 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5521 /* Any cached compilation units will be linked by the per-objfile
5522 read_in_chain. Make sure to free them when we're done. */
5523 back_to = make_cleanup (free_cached_comp_units, NULL);
5525 build_type_psymtabs (objfile);
5527 create_all_comp_units (objfile);
5529 /* Create a temporary address map on a temporary obstack. We later
5530 copy this to the final obstack. */
5531 obstack_init (&temp_obstack);
5532 make_cleanup_obstack_free (&temp_obstack);
5533 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5534 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5536 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5538 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5540 process_psymtab_comp_unit (per_cu, 0);
5543 set_partial_user (objfile);
5545 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5546 &objfile->objfile_obstack);
5547 discard_cleanups (addrmap_cleanup);
5549 do_cleanups (back_to);
5551 if (dwarf2_read_debug)
5552 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5556 /* die_reader_func for load_partial_comp_unit. */
5559 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5561 struct die_info *comp_unit_die,
5565 struct dwarf2_cu *cu = reader->cu;
5567 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5569 /* Check if comp unit has_children.
5570 If so, read the rest of the partial symbols from this comp unit.
5571 If not, there's no more debug_info for this comp unit. */
5573 load_partial_dies (reader, info_ptr, 0);
5576 /* Load the partial DIEs for a secondary CU into memory.
5577 This is also used when rereading a primary CU with load_all_dies. */
5580 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5582 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5583 load_partial_comp_unit_reader, NULL);
5587 read_comp_units_from_section (struct objfile *objfile,
5588 struct dwarf2_section_info *section,
5589 unsigned int is_dwz,
5592 struct dwarf2_per_cu_data ***all_comp_units)
5595 bfd *abfd = section->asection->owner;
5597 dwarf2_read_section (objfile, section);
5599 info_ptr = section->buffer;
5601 while (info_ptr < section->buffer + section->size)
5603 unsigned int length, initial_length_size;
5604 struct dwarf2_per_cu_data *this_cu;
5607 offset.sect_off = info_ptr - section->buffer;
5609 /* Read just enough information to find out where the next
5610 compilation unit is. */
5611 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5613 /* Save the compilation unit for later lookup. */
5614 this_cu = obstack_alloc (&objfile->objfile_obstack,
5615 sizeof (struct dwarf2_per_cu_data));
5616 memset (this_cu, 0, sizeof (*this_cu));
5617 this_cu->offset = offset;
5618 this_cu->length = length + initial_length_size;
5619 this_cu->is_dwz = is_dwz;
5620 this_cu->objfile = objfile;
5621 this_cu->info_or_types_section = section;
5623 if (*n_comp_units == *n_allocated)
5626 *all_comp_units = xrealloc (*all_comp_units,
5628 * sizeof (struct dwarf2_per_cu_data *));
5630 (*all_comp_units)[*n_comp_units] = this_cu;
5633 info_ptr = info_ptr + this_cu->length;
5637 /* Create a list of all compilation units in OBJFILE.
5638 This is only done for -readnow and building partial symtabs. */
5641 create_all_comp_units (struct objfile *objfile)
5645 struct dwarf2_per_cu_data **all_comp_units;
5649 all_comp_units = xmalloc (n_allocated
5650 * sizeof (struct dwarf2_per_cu_data *));
5652 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5653 &n_allocated, &n_comp_units, &all_comp_units);
5655 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5657 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5659 read_comp_units_from_section (objfile, &dwz->info, 1,
5660 &n_allocated, &n_comp_units,
5664 dwarf2_per_objfile->all_comp_units
5665 = obstack_alloc (&objfile->objfile_obstack,
5666 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5667 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5668 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5669 xfree (all_comp_units);
5670 dwarf2_per_objfile->n_comp_units = n_comp_units;
5673 /* Process all loaded DIEs for compilation unit CU, starting at
5674 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5675 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5676 DW_AT_ranges). If NEED_PC is set, then this function will set
5677 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5678 and record the covered ranges in the addrmap. */
5681 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5682 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5684 struct partial_die_info *pdi;
5686 /* Now, march along the PDI's, descending into ones which have
5687 interesting children but skipping the children of the other ones,
5688 until we reach the end of the compilation unit. */
5694 fixup_partial_die (pdi, cu);
5696 /* Anonymous namespaces or modules have no name but have interesting
5697 children, so we need to look at them. Ditto for anonymous
5700 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5701 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5702 || pdi->tag == DW_TAG_imported_unit)
5706 case DW_TAG_subprogram:
5707 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5709 case DW_TAG_constant:
5710 case DW_TAG_variable:
5711 case DW_TAG_typedef:
5712 case DW_TAG_union_type:
5713 if (!pdi->is_declaration)
5715 add_partial_symbol (pdi, cu);
5718 case DW_TAG_class_type:
5719 case DW_TAG_interface_type:
5720 case DW_TAG_structure_type:
5721 if (!pdi->is_declaration)
5723 add_partial_symbol (pdi, cu);
5726 case DW_TAG_enumeration_type:
5727 if (!pdi->is_declaration)
5728 add_partial_enumeration (pdi, cu);
5730 case DW_TAG_base_type:
5731 case DW_TAG_subrange_type:
5732 /* File scope base type definitions are added to the partial
5734 add_partial_symbol (pdi, cu);
5736 case DW_TAG_namespace:
5737 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5740 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5742 case DW_TAG_imported_unit:
5744 struct dwarf2_per_cu_data *per_cu;
5746 /* For now we don't handle imported units in type units. */
5747 if (cu->per_cu->is_debug_types)
5749 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5750 " supported in type units [in module %s]"),
5754 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5758 /* Go read the partial unit, if needed. */
5759 if (per_cu->v.psymtab == NULL)
5760 process_psymtab_comp_unit (per_cu, 1);
5762 VEC_safe_push (dwarf2_per_cu_ptr,
5763 cu->per_cu->imported_symtabs, per_cu);
5771 /* If the die has a sibling, skip to the sibling. */
5773 pdi = pdi->die_sibling;
5777 /* Functions used to compute the fully scoped name of a partial DIE.
5779 Normally, this is simple. For C++, the parent DIE's fully scoped
5780 name is concatenated with "::" and the partial DIE's name. For
5781 Java, the same thing occurs except that "." is used instead of "::".
5782 Enumerators are an exception; they use the scope of their parent
5783 enumeration type, i.e. the name of the enumeration type is not
5784 prepended to the enumerator.
5786 There are two complexities. One is DW_AT_specification; in this
5787 case "parent" means the parent of the target of the specification,
5788 instead of the direct parent of the DIE. The other is compilers
5789 which do not emit DW_TAG_namespace; in this case we try to guess
5790 the fully qualified name of structure types from their members'
5791 linkage names. This must be done using the DIE's children rather
5792 than the children of any DW_AT_specification target. We only need
5793 to do this for structures at the top level, i.e. if the target of
5794 any DW_AT_specification (if any; otherwise the DIE itself) does not
5797 /* Compute the scope prefix associated with PDI's parent, in
5798 compilation unit CU. The result will be allocated on CU's
5799 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5800 field. NULL is returned if no prefix is necessary. */
5802 partial_die_parent_scope (struct partial_die_info *pdi,
5803 struct dwarf2_cu *cu)
5805 const char *grandparent_scope;
5806 struct partial_die_info *parent, *real_pdi;
5808 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5809 then this means the parent of the specification DIE. */
5812 while (real_pdi->has_specification)
5813 real_pdi = find_partial_die (real_pdi->spec_offset,
5814 real_pdi->spec_is_dwz, cu);
5816 parent = real_pdi->die_parent;
5820 if (parent->scope_set)
5821 return parent->scope;
5823 fixup_partial_die (parent, cu);
5825 grandparent_scope = partial_die_parent_scope (parent, cu);
5827 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5828 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5829 Work around this problem here. */
5830 if (cu->language == language_cplus
5831 && parent->tag == DW_TAG_namespace
5832 && strcmp (parent->name, "::") == 0
5833 && grandparent_scope == NULL)
5835 parent->scope = NULL;
5836 parent->scope_set = 1;
5840 if (pdi->tag == DW_TAG_enumerator)
5841 /* Enumerators should not get the name of the enumeration as a prefix. */
5842 parent->scope = grandparent_scope;
5843 else if (parent->tag == DW_TAG_namespace
5844 || parent->tag == DW_TAG_module
5845 || parent->tag == DW_TAG_structure_type
5846 || parent->tag == DW_TAG_class_type
5847 || parent->tag == DW_TAG_interface_type
5848 || parent->tag == DW_TAG_union_type
5849 || parent->tag == DW_TAG_enumeration_type)
5851 if (grandparent_scope == NULL)
5852 parent->scope = parent->name;
5854 parent->scope = typename_concat (&cu->comp_unit_obstack,
5856 parent->name, 0, cu);
5860 /* FIXME drow/2004-04-01: What should we be doing with
5861 function-local names? For partial symbols, we should probably be
5863 complaint (&symfile_complaints,
5864 _("unhandled containing DIE tag %d for DIE at %d"),
5865 parent->tag, pdi->offset.sect_off);
5866 parent->scope = grandparent_scope;
5869 parent->scope_set = 1;
5870 return parent->scope;
5873 /* Return the fully scoped name associated with PDI, from compilation unit
5874 CU. The result will be allocated with malloc. */
5877 partial_die_full_name (struct partial_die_info *pdi,
5878 struct dwarf2_cu *cu)
5880 const char *parent_scope;
5882 /* If this is a template instantiation, we can not work out the
5883 template arguments from partial DIEs. So, unfortunately, we have
5884 to go through the full DIEs. At least any work we do building
5885 types here will be reused if full symbols are loaded later. */
5886 if (pdi->has_template_arguments)
5888 fixup_partial_die (pdi, cu);
5890 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5892 struct die_info *die;
5893 struct attribute attr;
5894 struct dwarf2_cu *ref_cu = cu;
5896 /* DW_FORM_ref_addr is using section offset. */
5898 attr.form = DW_FORM_ref_addr;
5899 attr.u.unsnd = pdi->offset.sect_off;
5900 die = follow_die_ref (NULL, &attr, &ref_cu);
5902 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5906 parent_scope = partial_die_parent_scope (pdi, cu);
5907 if (parent_scope == NULL)
5910 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5914 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5916 struct objfile *objfile = cu->objfile;
5918 const char *actual_name = NULL;
5920 char *built_actual_name;
5922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5924 built_actual_name = partial_die_full_name (pdi, cu);
5925 if (built_actual_name != NULL)
5926 actual_name = built_actual_name;
5928 if (actual_name == NULL)
5929 actual_name = pdi->name;
5933 case DW_TAG_subprogram:
5934 if (pdi->is_external || cu->language == language_ada)
5936 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5937 of the global scope. But in Ada, we want to be able to access
5938 nested procedures globally. So all Ada subprograms are stored
5939 in the global scope. */
5940 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5941 mst_text, objfile); */
5942 add_psymbol_to_list (actual_name, strlen (actual_name),
5943 built_actual_name != NULL,
5944 VAR_DOMAIN, LOC_BLOCK,
5945 &objfile->global_psymbols,
5946 0, pdi->lowpc + baseaddr,
5947 cu->language, objfile);
5951 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5952 mst_file_text, objfile); */
5953 add_psymbol_to_list (actual_name, strlen (actual_name),
5954 built_actual_name != NULL,
5955 VAR_DOMAIN, LOC_BLOCK,
5956 &objfile->static_psymbols,
5957 0, pdi->lowpc + baseaddr,
5958 cu->language, objfile);
5961 case DW_TAG_constant:
5963 struct psymbol_allocation_list *list;
5965 if (pdi->is_external)
5966 list = &objfile->global_psymbols;
5968 list = &objfile->static_psymbols;
5969 add_psymbol_to_list (actual_name, strlen (actual_name),
5970 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
5971 list, 0, 0, cu->language, objfile);
5974 case DW_TAG_variable:
5976 addr = decode_locdesc (pdi->d.locdesc, cu);
5980 && !dwarf2_per_objfile->has_section_at_zero)
5982 /* A global or static variable may also have been stripped
5983 out by the linker if unused, in which case its address
5984 will be nullified; do not add such variables into partial
5985 symbol table then. */
5987 else if (pdi->is_external)
5990 Don't enter into the minimal symbol tables as there is
5991 a minimal symbol table entry from the ELF symbols already.
5992 Enter into partial symbol table if it has a location
5993 descriptor or a type.
5994 If the location descriptor is missing, new_symbol will create
5995 a LOC_UNRESOLVED symbol, the address of the variable will then
5996 be determined from the minimal symbol table whenever the variable
5998 The address for the partial symbol table entry is not
5999 used by GDB, but it comes in handy for debugging partial symbol
6002 if (pdi->d.locdesc || pdi->has_type)
6003 add_psymbol_to_list (actual_name, strlen (actual_name),
6004 built_actual_name != NULL,
6005 VAR_DOMAIN, LOC_STATIC,
6006 &objfile->global_psymbols,
6008 cu->language, objfile);
6012 /* Static Variable. Skip symbols without location descriptors. */
6013 if (pdi->d.locdesc == NULL)
6015 xfree (built_actual_name);
6018 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6019 mst_file_data, objfile); */
6020 add_psymbol_to_list (actual_name, strlen (actual_name),
6021 built_actual_name != NULL,
6022 VAR_DOMAIN, LOC_STATIC,
6023 &objfile->static_psymbols,
6025 cu->language, objfile);
6028 case DW_TAG_typedef:
6029 case DW_TAG_base_type:
6030 case DW_TAG_subrange_type:
6031 add_psymbol_to_list (actual_name, strlen (actual_name),
6032 built_actual_name != NULL,
6033 VAR_DOMAIN, LOC_TYPEDEF,
6034 &objfile->static_psymbols,
6035 0, (CORE_ADDR) 0, cu->language, objfile);
6037 case DW_TAG_namespace:
6038 add_psymbol_to_list (actual_name, strlen (actual_name),
6039 built_actual_name != NULL,
6040 VAR_DOMAIN, LOC_TYPEDEF,
6041 &objfile->global_psymbols,
6042 0, (CORE_ADDR) 0, cu->language, objfile);
6044 case DW_TAG_class_type:
6045 case DW_TAG_interface_type:
6046 case DW_TAG_structure_type:
6047 case DW_TAG_union_type:
6048 case DW_TAG_enumeration_type:
6049 /* Skip external references. The DWARF standard says in the section
6050 about "Structure, Union, and Class Type Entries": "An incomplete
6051 structure, union or class type is represented by a structure,
6052 union or class entry that does not have a byte size attribute
6053 and that has a DW_AT_declaration attribute." */
6054 if (!pdi->has_byte_size && pdi->is_declaration)
6056 xfree (built_actual_name);
6060 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6061 static vs. global. */
6062 add_psymbol_to_list (actual_name, strlen (actual_name),
6063 built_actual_name != NULL,
6064 STRUCT_DOMAIN, LOC_TYPEDEF,
6065 (cu->language == language_cplus
6066 || cu->language == language_java)
6067 ? &objfile->global_psymbols
6068 : &objfile->static_psymbols,
6069 0, (CORE_ADDR) 0, cu->language, objfile);
6072 case DW_TAG_enumerator:
6073 add_psymbol_to_list (actual_name, strlen (actual_name),
6074 built_actual_name != NULL,
6075 VAR_DOMAIN, LOC_CONST,
6076 (cu->language == language_cplus
6077 || cu->language == language_java)
6078 ? &objfile->global_psymbols
6079 : &objfile->static_psymbols,
6080 0, (CORE_ADDR) 0, cu->language, objfile);
6086 xfree (built_actual_name);
6089 /* Read a partial die corresponding to a namespace; also, add a symbol
6090 corresponding to that namespace to the symbol table. NAMESPACE is
6091 the name of the enclosing namespace. */
6094 add_partial_namespace (struct partial_die_info *pdi,
6095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6096 int need_pc, struct dwarf2_cu *cu)
6098 /* Add a symbol for the namespace. */
6100 add_partial_symbol (pdi, cu);
6102 /* Now scan partial symbols in that namespace. */
6104 if (pdi->has_children)
6105 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6108 /* Read a partial die corresponding to a Fortran module. */
6111 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6112 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6114 /* Now scan partial symbols in that module. */
6116 if (pdi->has_children)
6117 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6120 /* Read a partial die corresponding to a subprogram and create a partial
6121 symbol for that subprogram. When the CU language allows it, this
6122 routine also defines a partial symbol for each nested subprogram
6123 that this subprogram contains.
6125 DIE my also be a lexical block, in which case we simply search
6126 recursively for suprograms defined inside that lexical block.
6127 Again, this is only performed when the CU language allows this
6128 type of definitions. */
6131 add_partial_subprogram (struct partial_die_info *pdi,
6132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6133 int need_pc, struct dwarf2_cu *cu)
6135 if (pdi->tag == DW_TAG_subprogram)
6137 if (pdi->has_pc_info)
6139 if (pdi->lowpc < *lowpc)
6140 *lowpc = pdi->lowpc;
6141 if (pdi->highpc > *highpc)
6142 *highpc = pdi->highpc;
6146 struct objfile *objfile = cu->objfile;
6148 baseaddr = ANOFFSET (objfile->section_offsets,
6149 SECT_OFF_TEXT (objfile));
6150 addrmap_set_empty (objfile->psymtabs_addrmap,
6151 pdi->lowpc + baseaddr,
6152 pdi->highpc - 1 + baseaddr,
6153 cu->per_cu->v.psymtab);
6157 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6159 if (!pdi->is_declaration)
6160 /* Ignore subprogram DIEs that do not have a name, they are
6161 illegal. Do not emit a complaint at this point, we will
6162 do so when we convert this psymtab into a symtab. */
6164 add_partial_symbol (pdi, cu);
6168 if (! pdi->has_children)
6171 if (cu->language == language_ada)
6173 pdi = pdi->die_child;
6176 fixup_partial_die (pdi, cu);
6177 if (pdi->tag == DW_TAG_subprogram
6178 || pdi->tag == DW_TAG_lexical_block)
6179 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6180 pdi = pdi->die_sibling;
6185 /* Read a partial die corresponding to an enumeration type. */
6188 add_partial_enumeration (struct partial_die_info *enum_pdi,
6189 struct dwarf2_cu *cu)
6191 struct partial_die_info *pdi;
6193 if (enum_pdi->name != NULL)
6194 add_partial_symbol (enum_pdi, cu);
6196 pdi = enum_pdi->die_child;
6199 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6200 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6202 add_partial_symbol (pdi, cu);
6203 pdi = pdi->die_sibling;
6207 /* Return the initial uleb128 in the die at INFO_PTR. */
6210 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6212 unsigned int bytes_read;
6214 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6217 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6218 Return the corresponding abbrev, or NULL if the number is zero (indicating
6219 an empty DIE). In either case *BYTES_READ will be set to the length of
6220 the initial number. */
6222 static struct abbrev_info *
6223 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6224 struct dwarf2_cu *cu)
6226 bfd *abfd = cu->objfile->obfd;
6227 unsigned int abbrev_number;
6228 struct abbrev_info *abbrev;
6230 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6232 if (abbrev_number == 0)
6235 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6238 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6239 abbrev_number, bfd_get_filename (abfd));
6245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6246 Returns a pointer to the end of a series of DIEs, terminated by an empty
6247 DIE. Any children of the skipped DIEs will also be skipped. */
6250 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6252 struct dwarf2_cu *cu = reader->cu;
6253 struct abbrev_info *abbrev;
6254 unsigned int bytes_read;
6258 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6260 return info_ptr + bytes_read;
6262 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6266 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6267 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6268 abbrev corresponding to that skipped uleb128 should be passed in
6269 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6273 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6274 struct abbrev_info *abbrev)
6276 unsigned int bytes_read;
6277 struct attribute attr;
6278 bfd *abfd = reader->abfd;
6279 struct dwarf2_cu *cu = reader->cu;
6280 gdb_byte *buffer = reader->buffer;
6281 const gdb_byte *buffer_end = reader->buffer_end;
6282 gdb_byte *start_info_ptr = info_ptr;
6283 unsigned int form, i;
6285 for (i = 0; i < abbrev->num_attrs; i++)
6287 /* The only abbrev we care about is DW_AT_sibling. */
6288 if (abbrev->attrs[i].name == DW_AT_sibling)
6290 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6291 if (attr.form == DW_FORM_ref_addr)
6292 complaint (&symfile_complaints,
6293 _("ignoring absolute DW_AT_sibling"));
6295 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6298 /* If it isn't DW_AT_sibling, skip this attribute. */
6299 form = abbrev->attrs[i].form;
6303 case DW_FORM_ref_addr:
6304 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6305 and later it is offset sized. */
6306 if (cu->header.version == 2)
6307 info_ptr += cu->header.addr_size;
6309 info_ptr += cu->header.offset_size;
6311 case DW_FORM_GNU_ref_alt:
6312 info_ptr += cu->header.offset_size;
6315 info_ptr += cu->header.addr_size;
6322 case DW_FORM_flag_present:
6334 case DW_FORM_ref_sig8:
6337 case DW_FORM_string:
6338 read_direct_string (abfd, info_ptr, &bytes_read);
6339 info_ptr += bytes_read;
6341 case DW_FORM_sec_offset:
6343 case DW_FORM_GNU_strp_alt:
6344 info_ptr += cu->header.offset_size;
6346 case DW_FORM_exprloc:
6348 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6349 info_ptr += bytes_read;
6351 case DW_FORM_block1:
6352 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6354 case DW_FORM_block2:
6355 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6357 case DW_FORM_block4:
6358 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6362 case DW_FORM_ref_udata:
6363 case DW_FORM_GNU_addr_index:
6364 case DW_FORM_GNU_str_index:
6365 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6367 case DW_FORM_indirect:
6368 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6369 info_ptr += bytes_read;
6370 /* We need to continue parsing from here, so just go back to
6372 goto skip_attribute;
6375 error (_("Dwarf Error: Cannot handle %s "
6376 "in DWARF reader [in module %s]"),
6377 dwarf_form_name (form),
6378 bfd_get_filename (abfd));
6382 if (abbrev->has_children)
6383 return skip_children (reader, info_ptr);
6388 /* Locate ORIG_PDI's sibling.
6389 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6392 locate_pdi_sibling (const struct die_reader_specs *reader,
6393 struct partial_die_info *orig_pdi,
6396 /* Do we know the sibling already? */
6398 if (orig_pdi->sibling)
6399 return orig_pdi->sibling;
6401 /* Are there any children to deal with? */
6403 if (!orig_pdi->has_children)
6406 /* Skip the children the long way. */
6408 return skip_children (reader, info_ptr);
6411 /* Expand this partial symbol table into a full symbol table. SELF is
6415 dwarf2_read_symtab (struct partial_symtab *self,
6416 struct objfile *objfile)
6420 warning (_("bug: psymtab for %s is already read in."),
6427 printf_filtered (_("Reading in symbols for %s..."),
6429 gdb_flush (gdb_stdout);
6432 /* Restore our global data. */
6433 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6435 /* If this psymtab is constructed from a debug-only objfile, the
6436 has_section_at_zero flag will not necessarily be correct. We
6437 can get the correct value for this flag by looking at the data
6438 associated with the (presumably stripped) associated objfile. */
6439 if (objfile->separate_debug_objfile_backlink)
6441 struct dwarf2_per_objfile *dpo_backlink
6442 = objfile_data (objfile->separate_debug_objfile_backlink,
6443 dwarf2_objfile_data_key);
6445 dwarf2_per_objfile->has_section_at_zero
6446 = dpo_backlink->has_section_at_zero;
6449 dwarf2_per_objfile->reading_partial_symbols = 0;
6451 psymtab_to_symtab_1 (self);
6453 /* Finish up the debug error message. */
6455 printf_filtered (_("done.\n"));
6458 process_cu_includes ();
6461 /* Reading in full CUs. */
6463 /* Add PER_CU to the queue. */
6466 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6467 enum language pretend_language)
6469 struct dwarf2_queue_item *item;
6472 item = xmalloc (sizeof (*item));
6473 item->per_cu = per_cu;
6474 item->pretend_language = pretend_language;
6477 if (dwarf2_queue == NULL)
6478 dwarf2_queue = item;
6480 dwarf2_queue_tail->next = item;
6482 dwarf2_queue_tail = item;
6485 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6486 unit and add it to our queue.
6487 The result is non-zero if PER_CU was queued, otherwise the result is zero
6488 meaning either PER_CU is already queued or it is already loaded. */
6491 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6492 struct dwarf2_per_cu_data *per_cu,
6493 enum language pretend_language)
6495 /* We may arrive here during partial symbol reading, if we need full
6496 DIEs to process an unusual case (e.g. template arguments). Do
6497 not queue PER_CU, just tell our caller to load its DIEs. */
6498 if (dwarf2_per_objfile->reading_partial_symbols)
6500 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6505 /* Mark the dependence relation so that we don't flush PER_CU
6507 dwarf2_add_dependence (this_cu, per_cu);
6509 /* If it's already on the queue, we have nothing to do. */
6513 /* If the compilation unit is already loaded, just mark it as
6515 if (per_cu->cu != NULL)
6517 per_cu->cu->last_used = 0;
6521 /* Add it to the queue. */
6522 queue_comp_unit (per_cu, pretend_language);
6527 /* Process the queue. */
6530 process_queue (void)
6532 struct dwarf2_queue_item *item, *next_item;
6534 if (dwarf2_read_debug)
6536 fprintf_unfiltered (gdb_stdlog,
6537 "Expanding one or more symtabs of objfile %s ...\n",
6538 dwarf2_per_objfile->objfile->name);
6541 /* The queue starts out with one item, but following a DIE reference
6542 may load a new CU, adding it to the end of the queue. */
6543 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6545 if (dwarf2_per_objfile->using_index
6546 ? !item->per_cu->v.quick->symtab
6547 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6551 if (dwarf2_read_debug)
6553 fprintf_unfiltered (gdb_stdlog,
6554 "Expanding symtab of %s at offset 0x%x\n",
6555 per_cu->is_debug_types ? "TU" : "CU",
6556 per_cu->offset.sect_off);
6559 if (per_cu->is_debug_types)
6560 process_full_type_unit (per_cu, item->pretend_language);
6562 process_full_comp_unit (per_cu, item->pretend_language);
6564 if (dwarf2_read_debug)
6566 fprintf_unfiltered (gdb_stdlog,
6567 "Done expanding %s at offset 0x%x\n",
6568 per_cu->is_debug_types ? "TU" : "CU",
6569 per_cu->offset.sect_off);
6573 item->per_cu->queued = 0;
6574 next_item = item->next;
6578 dwarf2_queue_tail = NULL;
6580 if (dwarf2_read_debug)
6582 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6583 dwarf2_per_objfile->objfile->name);
6587 /* Free all allocated queue entries. This function only releases anything if
6588 an error was thrown; if the queue was processed then it would have been
6589 freed as we went along. */
6592 dwarf2_release_queue (void *dummy)
6594 struct dwarf2_queue_item *item, *last;
6596 item = dwarf2_queue;
6599 /* Anything still marked queued is likely to be in an
6600 inconsistent state, so discard it. */
6601 if (item->per_cu->queued)
6603 if (item->per_cu->cu != NULL)
6604 free_one_cached_comp_unit (item->per_cu);
6605 item->per_cu->queued = 0;
6613 dwarf2_queue = dwarf2_queue_tail = NULL;
6616 /* Read in full symbols for PST, and anything it depends on. */
6619 psymtab_to_symtab_1 (struct partial_symtab *pst)
6621 struct dwarf2_per_cu_data *per_cu;
6627 for (i = 0; i < pst->number_of_dependencies; i++)
6628 if (!pst->dependencies[i]->readin
6629 && pst->dependencies[i]->user == NULL)
6631 /* Inform about additional files that need to be read in. */
6634 /* FIXME: i18n: Need to make this a single string. */
6635 fputs_filtered (" ", gdb_stdout);
6637 fputs_filtered ("and ", gdb_stdout);
6639 printf_filtered ("%s...", pst->dependencies[i]->filename);
6640 wrap_here (""); /* Flush output. */
6641 gdb_flush (gdb_stdout);
6643 psymtab_to_symtab_1 (pst->dependencies[i]);
6646 per_cu = pst->read_symtab_private;
6650 /* It's an include file, no symbols to read for it.
6651 Everything is in the parent symtab. */
6656 dw2_do_instantiate_symtab (per_cu);
6659 /* Trivial hash function for die_info: the hash value of a DIE
6660 is its offset in .debug_info for this objfile. */
6663 die_hash (const void *item)
6665 const struct die_info *die = item;
6667 return die->offset.sect_off;
6670 /* Trivial comparison function for die_info structures: two DIEs
6671 are equal if they have the same offset. */
6674 die_eq (const void *item_lhs, const void *item_rhs)
6676 const struct die_info *die_lhs = item_lhs;
6677 const struct die_info *die_rhs = item_rhs;
6679 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6682 /* die_reader_func for load_full_comp_unit.
6683 This is identical to read_signatured_type_reader,
6684 but is kept separate for now. */
6687 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6689 struct die_info *comp_unit_die,
6693 struct dwarf2_cu *cu = reader->cu;
6694 enum language *language_ptr = data;
6696 gdb_assert (cu->die_hash == NULL);
6698 htab_create_alloc_ex (cu->header.length / 12,
6702 &cu->comp_unit_obstack,
6703 hashtab_obstack_allocate,
6704 dummy_obstack_deallocate);
6707 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6708 &info_ptr, comp_unit_die);
6709 cu->dies = comp_unit_die;
6710 /* comp_unit_die is not stored in die_hash, no need. */
6712 /* We try not to read any attributes in this function, because not
6713 all CUs needed for references have been loaded yet, and symbol
6714 table processing isn't initialized. But we have to set the CU language,
6715 or we won't be able to build types correctly.
6716 Similarly, if we do not read the producer, we can not apply
6717 producer-specific interpretation. */
6718 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6721 /* Load the DIEs associated with PER_CU into memory. */
6724 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6725 enum language pretend_language)
6727 gdb_assert (! this_cu->is_debug_types);
6729 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6730 load_full_comp_unit_reader, &pretend_language);
6733 /* Add a DIE to the delayed physname list. */
6736 add_to_method_list (struct type *type, int fnfield_index, int index,
6737 const char *name, struct die_info *die,
6738 struct dwarf2_cu *cu)
6740 struct delayed_method_info mi;
6742 mi.fnfield_index = fnfield_index;
6746 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6749 /* A cleanup for freeing the delayed method list. */
6752 free_delayed_list (void *ptr)
6754 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6755 if (cu->method_list != NULL)
6757 VEC_free (delayed_method_info, cu->method_list);
6758 cu->method_list = NULL;
6762 /* Compute the physnames of any methods on the CU's method list.
6764 The computation of method physnames is delayed in order to avoid the
6765 (bad) condition that one of the method's formal parameters is of an as yet
6769 compute_delayed_physnames (struct dwarf2_cu *cu)
6772 struct delayed_method_info *mi;
6773 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6775 const char *physname;
6776 struct fn_fieldlist *fn_flp
6777 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6778 physname = dwarf2_physname (mi->name, mi->die, cu);
6779 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6783 /* Go objects should be embedded in a DW_TAG_module DIE,
6784 and it's not clear if/how imported objects will appear.
6785 To keep Go support simple until that's worked out,
6786 go back through what we've read and create something usable.
6787 We could do this while processing each DIE, and feels kinda cleaner,
6788 but that way is more invasive.
6789 This is to, for example, allow the user to type "p var" or "b main"
6790 without having to specify the package name, and allow lookups
6791 of module.object to work in contexts that use the expression
6795 fixup_go_packaging (struct dwarf2_cu *cu)
6797 char *package_name = NULL;
6798 struct pending *list;
6801 for (list = global_symbols; list != NULL; list = list->next)
6803 for (i = 0; i < list->nsyms; ++i)
6805 struct symbol *sym = list->symbol[i];
6807 if (SYMBOL_LANGUAGE (sym) == language_go
6808 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6810 char *this_package_name = go_symbol_package_name (sym);
6812 if (this_package_name == NULL)
6814 if (package_name == NULL)
6815 package_name = this_package_name;
6818 if (strcmp (package_name, this_package_name) != 0)
6819 complaint (&symfile_complaints,
6820 _("Symtab %s has objects from two different Go packages: %s and %s"),
6821 (SYMBOL_SYMTAB (sym)
6822 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6823 : cu->objfile->name),
6824 this_package_name, package_name);
6825 xfree (this_package_name);
6831 if (package_name != NULL)
6833 struct objfile *objfile = cu->objfile;
6834 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6836 strlen (package_name));
6837 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6838 saved_package_name, objfile);
6841 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6843 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6844 SYMBOL_SET_LANGUAGE (sym, language_go);
6845 SYMBOL_SET_NAMES (sym, saved_package_name,
6846 strlen (saved_package_name), 0, objfile);
6847 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6848 e.g., "main" finds the "main" module and not C's main(). */
6849 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6850 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6851 SYMBOL_TYPE (sym) = type;
6853 add_symbol_to_list (sym, &global_symbols);
6855 xfree (package_name);
6859 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6861 /* Return the symtab for PER_CU. This works properly regardless of
6862 whether we're using the index or psymtabs. */
6864 static struct symtab *
6865 get_symtab (struct dwarf2_per_cu_data *per_cu)
6867 return (dwarf2_per_objfile->using_index
6868 ? per_cu->v.quick->symtab
6869 : per_cu->v.psymtab->symtab);
6872 /* A helper function for computing the list of all symbol tables
6873 included by PER_CU. */
6876 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6877 htab_t all_children,
6878 struct dwarf2_per_cu_data *per_cu)
6882 struct dwarf2_per_cu_data *iter;
6884 slot = htab_find_slot (all_children, per_cu, INSERT);
6887 /* This inclusion and its children have been processed. */
6892 /* Only add a CU if it has a symbol table. */
6893 if (get_symtab (per_cu) != NULL)
6894 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6897 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6899 recursively_compute_inclusions (result, all_children, iter);
6902 /* Compute the symtab 'includes' fields for the symtab related to
6906 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6908 gdb_assert (! per_cu->is_debug_types);
6910 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6913 struct dwarf2_per_cu_data *iter;
6914 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6915 htab_t all_children;
6916 struct symtab *symtab = get_symtab (per_cu);
6918 /* If we don't have a symtab, we can just skip this case. */
6922 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6923 NULL, xcalloc, xfree);
6926 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6929 recursively_compute_inclusions (&result_children, all_children, iter);
6931 /* Now we have a transitive closure of all the included CUs, and
6932 for .gdb_index version 7 the included TUs, so we can convert it
6933 to a list of symtabs. */
6934 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6936 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6937 (len + 1) * sizeof (struct symtab *));
6939 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6941 symtab->includes[ix] = get_symtab (iter);
6942 symtab->includes[len] = NULL;
6944 VEC_free (dwarf2_per_cu_ptr, result_children);
6945 htab_delete (all_children);
6949 /* Compute the 'includes' field for the symtabs of all the CUs we just
6953 process_cu_includes (void)
6956 struct dwarf2_per_cu_data *iter;
6959 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6963 if (! iter->is_debug_types)
6964 compute_symtab_includes (iter);
6967 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6970 /* Generate full symbol information for PER_CU, whose DIEs have
6971 already been loaded into memory. */
6974 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6975 enum language pretend_language)
6977 struct dwarf2_cu *cu = per_cu->cu;
6978 struct objfile *objfile = per_cu->objfile;
6979 CORE_ADDR lowpc, highpc;
6980 struct symtab *symtab;
6981 struct cleanup *back_to, *delayed_list_cleanup;
6983 struct block *static_block;
6985 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6988 back_to = make_cleanup (really_free_pendings, NULL);
6989 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6991 cu->list_in_scope = &file_symbols;
6993 cu->language = pretend_language;
6994 cu->language_defn = language_def (cu->language);
6996 /* Do line number decoding in read_file_scope () */
6997 process_die (cu->dies, cu);
6999 /* For now fudge the Go package. */
7000 if (cu->language == language_go)
7001 fixup_go_packaging (cu);
7003 /* Now that we have processed all the DIEs in the CU, all the types
7004 should be complete, and it should now be safe to compute all of the
7006 compute_delayed_physnames (cu);
7007 do_cleanups (delayed_list_cleanup);
7009 /* Some compilers don't define a DW_AT_high_pc attribute for the
7010 compilation unit. If the DW_AT_high_pc is missing, synthesize
7011 it, by scanning the DIE's below the compilation unit. */
7012 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7015 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7016 per_cu->imported_symtabs != NULL);
7018 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7019 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7020 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7021 addrmap to help ensure it has an accurate map of pc values belonging to
7023 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7025 symtab = end_symtab_from_static_block (static_block, objfile,
7026 SECT_OFF_TEXT (objfile), 0);
7030 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7032 /* Set symtab language to language from DW_AT_language. If the
7033 compilation is from a C file generated by language preprocessors, do
7034 not set the language if it was already deduced by start_subfile. */
7035 if (!(cu->language == language_c && symtab->language != language_c))
7036 symtab->language = cu->language;
7038 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7039 produce DW_AT_location with location lists but it can be possibly
7040 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7041 there were bugs in prologue debug info, fixed later in GCC-4.5
7042 by "unwind info for epilogues" patch (which is not directly related).
7044 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7045 needed, it would be wrong due to missing DW_AT_producer there.
7047 Still one can confuse GDB by using non-standard GCC compilation
7048 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7050 if (cu->has_loclist && gcc_4_minor >= 5)
7051 symtab->locations_valid = 1;
7053 if (gcc_4_minor >= 5)
7054 symtab->epilogue_unwind_valid = 1;
7056 symtab->call_site_htab = cu->call_site_htab;
7059 if (dwarf2_per_objfile->using_index)
7060 per_cu->v.quick->symtab = symtab;
7063 struct partial_symtab *pst = per_cu->v.psymtab;
7064 pst->symtab = symtab;
7068 /* Push it for inclusion processing later. */
7069 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7071 do_cleanups (back_to);
7074 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7075 already been loaded into memory. */
7078 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7079 enum language pretend_language)
7081 struct dwarf2_cu *cu = per_cu->cu;
7082 struct objfile *objfile = per_cu->objfile;
7083 struct symtab *symtab;
7084 struct cleanup *back_to, *delayed_list_cleanup;
7087 back_to = make_cleanup (really_free_pendings, NULL);
7088 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7090 cu->list_in_scope = &file_symbols;
7092 cu->language = pretend_language;
7093 cu->language_defn = language_def (cu->language);
7095 /* The symbol tables are set up in read_type_unit_scope. */
7096 process_die (cu->dies, cu);
7098 /* For now fudge the Go package. */
7099 if (cu->language == language_go)
7100 fixup_go_packaging (cu);
7102 /* Now that we have processed all the DIEs in the CU, all the types
7103 should be complete, and it should now be safe to compute all of the
7105 compute_delayed_physnames (cu);
7106 do_cleanups (delayed_list_cleanup);
7108 /* TUs share symbol tables.
7109 If this is the first TU to use this symtab, complete the construction
7110 of it with end_expandable_symtab. Otherwise, complete the addition of
7111 this TU's symbols to the existing symtab. */
7112 if (per_cu->type_unit_group->primary_symtab == NULL)
7114 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7115 per_cu->type_unit_group->primary_symtab = symtab;
7119 /* Set symtab language to language from DW_AT_language. If the
7120 compilation is from a C file generated by language preprocessors,
7121 do not set the language if it was already deduced by
7123 if (!(cu->language == language_c && symtab->language != language_c))
7124 symtab->language = cu->language;
7129 augment_type_symtab (objfile,
7130 per_cu->type_unit_group->primary_symtab);
7131 symtab = per_cu->type_unit_group->primary_symtab;
7134 if (dwarf2_per_objfile->using_index)
7135 per_cu->v.quick->symtab = symtab;
7138 struct partial_symtab *pst = per_cu->v.psymtab;
7139 pst->symtab = symtab;
7143 do_cleanups (back_to);
7146 /* Process an imported unit DIE. */
7149 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7151 struct attribute *attr;
7153 /* For now we don't handle imported units in type units. */
7154 if (cu->per_cu->is_debug_types)
7156 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7157 " supported in type units [in module %s]"),
7161 attr = dwarf2_attr (die, DW_AT_import, cu);
7164 struct dwarf2_per_cu_data *per_cu;
7165 struct symtab *imported_symtab;
7169 offset = dwarf2_get_ref_die_offset (attr);
7170 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7171 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7173 /* Queue the unit, if needed. */
7174 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7175 load_full_comp_unit (per_cu, cu->language);
7177 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7182 /* Process a die and its children. */
7185 process_die (struct die_info *die, struct dwarf2_cu *cu)
7189 case DW_TAG_padding:
7191 case DW_TAG_compile_unit:
7192 case DW_TAG_partial_unit:
7193 read_file_scope (die, cu);
7195 case DW_TAG_type_unit:
7196 read_type_unit_scope (die, cu);
7198 case DW_TAG_subprogram:
7199 case DW_TAG_inlined_subroutine:
7200 read_func_scope (die, cu);
7202 case DW_TAG_lexical_block:
7203 case DW_TAG_try_block:
7204 case DW_TAG_catch_block:
7205 read_lexical_block_scope (die, cu);
7207 case DW_TAG_GNU_call_site:
7208 read_call_site_scope (die, cu);
7210 case DW_TAG_class_type:
7211 case DW_TAG_interface_type:
7212 case DW_TAG_structure_type:
7213 case DW_TAG_union_type:
7214 process_structure_scope (die, cu);
7216 case DW_TAG_enumeration_type:
7217 process_enumeration_scope (die, cu);
7220 /* These dies have a type, but processing them does not create
7221 a symbol or recurse to process the children. Therefore we can
7222 read them on-demand through read_type_die. */
7223 case DW_TAG_subroutine_type:
7224 case DW_TAG_set_type:
7225 case DW_TAG_array_type:
7226 case DW_TAG_pointer_type:
7227 case DW_TAG_ptr_to_member_type:
7228 case DW_TAG_reference_type:
7229 case DW_TAG_string_type:
7232 case DW_TAG_base_type:
7233 case DW_TAG_subrange_type:
7234 case DW_TAG_typedef:
7235 /* Add a typedef symbol for the type definition, if it has a
7237 new_symbol (die, read_type_die (die, cu), cu);
7239 case DW_TAG_common_block:
7240 read_common_block (die, cu);
7242 case DW_TAG_common_inclusion:
7244 case DW_TAG_namespace:
7245 cu->processing_has_namespace_info = 1;
7246 read_namespace (die, cu);
7249 cu->processing_has_namespace_info = 1;
7250 read_module (die, cu);
7252 case DW_TAG_imported_declaration:
7253 case DW_TAG_imported_module:
7254 cu->processing_has_namespace_info = 1;
7255 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7256 || cu->language != language_fortran))
7257 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7258 dwarf_tag_name (die->tag));
7259 read_import_statement (die, cu);
7262 case DW_TAG_imported_unit:
7263 process_imported_unit_die (die, cu);
7267 new_symbol (die, NULL, cu);
7272 /* A helper function for dwarf2_compute_name which determines whether DIE
7273 needs to have the name of the scope prepended to the name listed in the
7277 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7279 struct attribute *attr;
7283 case DW_TAG_namespace:
7284 case DW_TAG_typedef:
7285 case DW_TAG_class_type:
7286 case DW_TAG_interface_type:
7287 case DW_TAG_structure_type:
7288 case DW_TAG_union_type:
7289 case DW_TAG_enumeration_type:
7290 case DW_TAG_enumerator:
7291 case DW_TAG_subprogram:
7295 case DW_TAG_variable:
7296 case DW_TAG_constant:
7297 /* We only need to prefix "globally" visible variables. These include
7298 any variable marked with DW_AT_external or any variable that
7299 lives in a namespace. [Variables in anonymous namespaces
7300 require prefixing, but they are not DW_AT_external.] */
7302 if (dwarf2_attr (die, DW_AT_specification, cu))
7304 struct dwarf2_cu *spec_cu = cu;
7306 return die_needs_namespace (die_specification (die, &spec_cu),
7310 attr = dwarf2_attr (die, DW_AT_external, cu);
7311 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7312 && die->parent->tag != DW_TAG_module)
7314 /* A variable in a lexical block of some kind does not need a
7315 namespace, even though in C++ such variables may be external
7316 and have a mangled name. */
7317 if (die->parent->tag == DW_TAG_lexical_block
7318 || die->parent->tag == DW_TAG_try_block
7319 || die->parent->tag == DW_TAG_catch_block
7320 || die->parent->tag == DW_TAG_subprogram)
7329 /* Retrieve the last character from a mem_file. */
7332 do_ui_file_peek_last (void *object, const char *buffer, long length)
7334 char *last_char_p = (char *) object;
7337 *last_char_p = buffer[length - 1];
7340 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7341 compute the physname for the object, which include a method's:
7342 - formal parameters (C++/Java),
7343 - receiver type (Go),
7344 - return type (Java).
7346 The term "physname" is a bit confusing.
7347 For C++, for example, it is the demangled name.
7348 For Go, for example, it's the mangled name.
7350 For Ada, return the DIE's linkage name rather than the fully qualified
7351 name. PHYSNAME is ignored..
7353 The result is allocated on the objfile_obstack and canonicalized. */
7356 dwarf2_compute_name (const char *name,
7357 struct die_info *die, struct dwarf2_cu *cu,
7360 struct objfile *objfile = cu->objfile;
7363 name = dwarf2_name (die, cu);
7365 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7366 compute it by typename_concat inside GDB. */
7367 if (cu->language == language_ada
7368 || (cu->language == language_fortran && physname))
7370 /* For Ada unit, we prefer the linkage name over the name, as
7371 the former contains the exported name, which the user expects
7372 to be able to reference. Ideally, we want the user to be able
7373 to reference this entity using either natural or linkage name,
7374 but we haven't started looking at this enhancement yet. */
7375 struct attribute *attr;
7377 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7379 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7380 if (attr && DW_STRING (attr))
7381 return DW_STRING (attr);
7384 /* These are the only languages we know how to qualify names in. */
7386 && (cu->language == language_cplus || cu->language == language_java
7387 || cu->language == language_fortran))
7389 if (die_needs_namespace (die, cu))
7393 struct ui_file *buf;
7395 prefix = determine_prefix (die, cu);
7396 buf = mem_fileopen ();
7397 if (*prefix != '\0')
7399 char *prefixed_name = typename_concat (NULL, prefix, name,
7402 fputs_unfiltered (prefixed_name, buf);
7403 xfree (prefixed_name);
7406 fputs_unfiltered (name, buf);
7408 /* Template parameters may be specified in the DIE's DW_AT_name, or
7409 as children with DW_TAG_template_type_param or
7410 DW_TAG_value_type_param. If the latter, add them to the name
7411 here. If the name already has template parameters, then
7412 skip this step; some versions of GCC emit both, and
7413 it is more efficient to use the pre-computed name.
7415 Something to keep in mind about this process: it is very
7416 unlikely, or in some cases downright impossible, to produce
7417 something that will match the mangled name of a function.
7418 If the definition of the function has the same debug info,
7419 we should be able to match up with it anyway. But fallbacks
7420 using the minimal symbol, for instance to find a method
7421 implemented in a stripped copy of libstdc++, will not work.
7422 If we do not have debug info for the definition, we will have to
7423 match them up some other way.
7425 When we do name matching there is a related problem with function
7426 templates; two instantiated function templates are allowed to
7427 differ only by their return types, which we do not add here. */
7429 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7431 struct attribute *attr;
7432 struct die_info *child;
7435 die->building_fullname = 1;
7437 for (child = die->child; child != NULL; child = child->sibling)
7442 struct dwarf2_locexpr_baton *baton;
7445 if (child->tag != DW_TAG_template_type_param
7446 && child->tag != DW_TAG_template_value_param)
7451 fputs_unfiltered ("<", buf);
7455 fputs_unfiltered (", ", buf);
7457 attr = dwarf2_attr (child, DW_AT_type, cu);
7460 complaint (&symfile_complaints,
7461 _("template parameter missing DW_AT_type"));
7462 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7465 type = die_type (child, cu);
7467 if (child->tag == DW_TAG_template_type_param)
7469 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7473 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7476 complaint (&symfile_complaints,
7477 _("template parameter missing "
7478 "DW_AT_const_value"));
7479 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7483 dwarf2_const_value_attr (attr, type, name,
7484 &cu->comp_unit_obstack, cu,
7485 &value, &bytes, &baton);
7487 if (TYPE_NOSIGN (type))
7488 /* GDB prints characters as NUMBER 'CHAR'. If that's
7489 changed, this can use value_print instead. */
7490 c_printchar (value, type, buf);
7493 struct value_print_options opts;
7496 v = dwarf2_evaluate_loc_desc (type, NULL,
7500 else if (bytes != NULL)
7502 v = allocate_value (type);
7503 memcpy (value_contents_writeable (v), bytes,
7504 TYPE_LENGTH (type));
7507 v = value_from_longest (type, value);
7509 /* Specify decimal so that we do not depend on
7511 get_formatted_print_options (&opts, 'd');
7513 value_print (v, buf, &opts);
7519 die->building_fullname = 0;
7523 /* Close the argument list, with a space if necessary
7524 (nested templates). */
7525 char last_char = '\0';
7526 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7527 if (last_char == '>')
7528 fputs_unfiltered (" >", buf);
7530 fputs_unfiltered (">", buf);
7534 /* For Java and C++ methods, append formal parameter type
7535 information, if PHYSNAME. */
7537 if (physname && die->tag == DW_TAG_subprogram
7538 && (cu->language == language_cplus
7539 || cu->language == language_java))
7541 struct type *type = read_type_die (die, cu);
7543 c_type_print_args (type, buf, 1, cu->language,
7544 &type_print_raw_options);
7546 if (cu->language == language_java)
7548 /* For java, we must append the return type to method
7550 if (die->tag == DW_TAG_subprogram)
7551 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7552 0, 0, &type_print_raw_options);
7554 else if (cu->language == language_cplus)
7556 /* Assume that an artificial first parameter is
7557 "this", but do not crash if it is not. RealView
7558 marks unnamed (and thus unused) parameters as
7559 artificial; there is no way to differentiate
7561 if (TYPE_NFIELDS (type) > 0
7562 && TYPE_FIELD_ARTIFICIAL (type, 0)
7563 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7564 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7566 fputs_unfiltered (" const", buf);
7570 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7572 ui_file_delete (buf);
7574 if (cu->language == language_cplus)
7577 = dwarf2_canonicalize_name (name, cu,
7578 &objfile->objfile_obstack);
7589 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7590 If scope qualifiers are appropriate they will be added. The result
7591 will be allocated on the objfile_obstack, or NULL if the DIE does
7592 not have a name. NAME may either be from a previous call to
7593 dwarf2_name or NULL.
7595 The output string will be canonicalized (if C++/Java). */
7598 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7600 return dwarf2_compute_name (name, die, cu, 0);
7603 /* Construct a physname for the given DIE in CU. NAME may either be
7604 from a previous call to dwarf2_name or NULL. The result will be
7605 allocated on the objfile_objstack or NULL if the DIE does not have a
7608 The output string will be canonicalized (if C++/Java). */
7611 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7613 struct objfile *objfile = cu->objfile;
7614 struct attribute *attr;
7615 const char *retval, *mangled = NULL, *canon = NULL;
7616 struct cleanup *back_to;
7619 /* In this case dwarf2_compute_name is just a shortcut not building anything
7621 if (!die_needs_namespace (die, cu))
7622 return dwarf2_compute_name (name, die, cu, 1);
7624 back_to = make_cleanup (null_cleanup, NULL);
7626 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7628 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7630 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7632 if (attr && DW_STRING (attr))
7636 mangled = DW_STRING (attr);
7638 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7639 type. It is easier for GDB users to search for such functions as
7640 `name(params)' than `long name(params)'. In such case the minimal
7641 symbol names do not match the full symbol names but for template
7642 functions there is never a need to look up their definition from their
7643 declaration so the only disadvantage remains the minimal symbol
7644 variant `long name(params)' does not have the proper inferior type.
7647 if (cu->language == language_go)
7649 /* This is a lie, but we already lie to the caller new_symbol_full.
7650 new_symbol_full assumes we return the mangled name.
7651 This just undoes that lie until things are cleaned up. */
7656 demangled = cplus_demangle (mangled,
7657 (DMGL_PARAMS | DMGL_ANSI
7658 | (cu->language == language_java
7659 ? DMGL_JAVA | DMGL_RET_POSTFIX
7664 make_cleanup (xfree, demangled);
7674 if (canon == NULL || check_physname)
7676 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7678 if (canon != NULL && strcmp (physname, canon) != 0)
7680 /* It may not mean a bug in GDB. The compiler could also
7681 compute DW_AT_linkage_name incorrectly. But in such case
7682 GDB would need to be bug-to-bug compatible. */
7684 complaint (&symfile_complaints,
7685 _("Computed physname <%s> does not match demangled <%s> "
7686 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7687 physname, canon, mangled, die->offset.sect_off, objfile->name);
7689 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7690 is available here - over computed PHYSNAME. It is safer
7691 against both buggy GDB and buggy compilers. */
7705 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7707 do_cleanups (back_to);
7711 /* Read the import statement specified by the given die and record it. */
7714 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7716 struct objfile *objfile = cu->objfile;
7717 struct attribute *import_attr;
7718 struct die_info *imported_die, *child_die;
7719 struct dwarf2_cu *imported_cu;
7720 const char *imported_name;
7721 const char *imported_name_prefix;
7722 const char *canonical_name;
7723 const char *import_alias;
7724 const char *imported_declaration = NULL;
7725 const char *import_prefix;
7726 VEC (const_char_ptr) *excludes = NULL;
7727 struct cleanup *cleanups;
7729 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7730 if (import_attr == NULL)
7732 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7733 dwarf_tag_name (die->tag));
7738 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7739 imported_name = dwarf2_name (imported_die, imported_cu);
7740 if (imported_name == NULL)
7742 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7744 The import in the following code:
7758 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7759 <52> DW_AT_decl_file : 1
7760 <53> DW_AT_decl_line : 6
7761 <54> DW_AT_import : <0x75>
7762 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7764 <5b> DW_AT_decl_file : 1
7765 <5c> DW_AT_decl_line : 2
7766 <5d> DW_AT_type : <0x6e>
7768 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7769 <76> DW_AT_byte_size : 4
7770 <77> DW_AT_encoding : 5 (signed)
7772 imports the wrong die ( 0x75 instead of 0x58 ).
7773 This case will be ignored until the gcc bug is fixed. */
7777 /* Figure out the local name after import. */
7778 import_alias = dwarf2_name (die, cu);
7780 /* Figure out where the statement is being imported to. */
7781 import_prefix = determine_prefix (die, cu);
7783 /* Figure out what the scope of the imported die is and prepend it
7784 to the name of the imported die. */
7785 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7787 if (imported_die->tag != DW_TAG_namespace
7788 && imported_die->tag != DW_TAG_module)
7790 imported_declaration = imported_name;
7791 canonical_name = imported_name_prefix;
7793 else if (strlen (imported_name_prefix) > 0)
7794 canonical_name = obconcat (&objfile->objfile_obstack,
7795 imported_name_prefix, "::", imported_name,
7798 canonical_name = imported_name;
7800 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7802 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7803 for (child_die = die->child; child_die && child_die->tag;
7804 child_die = sibling_die (child_die))
7806 /* DWARF-4: A Fortran use statement with a “rename list” may be
7807 represented by an imported module entry with an import attribute
7808 referring to the module and owned entries corresponding to those
7809 entities that are renamed as part of being imported. */
7811 if (child_die->tag != DW_TAG_imported_declaration)
7813 complaint (&symfile_complaints,
7814 _("child DW_TAG_imported_declaration expected "
7815 "- DIE at 0x%x [in module %s]"),
7816 child_die->offset.sect_off, objfile->name);
7820 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7821 if (import_attr == NULL)
7823 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7824 dwarf_tag_name (child_die->tag));
7829 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7831 imported_name = dwarf2_name (imported_die, imported_cu);
7832 if (imported_name == NULL)
7834 complaint (&symfile_complaints,
7835 _("child DW_TAG_imported_declaration has unknown "
7836 "imported name - DIE at 0x%x [in module %s]"),
7837 child_die->offset.sect_off, objfile->name);
7841 VEC_safe_push (const_char_ptr, excludes, imported_name);
7843 process_die (child_die, cu);
7846 cp_add_using_directive (import_prefix,
7849 imported_declaration,
7852 &objfile->objfile_obstack);
7854 do_cleanups (cleanups);
7857 /* Cleanup function for handle_DW_AT_stmt_list. */
7860 free_cu_line_header (void *arg)
7862 struct dwarf2_cu *cu = arg;
7864 free_line_header (cu->line_header);
7865 cu->line_header = NULL;
7868 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7869 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7870 this, it was first present in GCC release 4.3.0. */
7873 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7875 if (!cu->checked_producer)
7876 check_producer (cu);
7878 return cu->producer_is_gcc_lt_4_3;
7882 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7883 const char **name, const char **comp_dir)
7885 struct attribute *attr;
7890 /* Find the filename. Do not use dwarf2_name here, since the filename
7891 is not a source language identifier. */
7892 attr = dwarf2_attr (die, DW_AT_name, cu);
7895 *name = DW_STRING (attr);
7898 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7900 *comp_dir = DW_STRING (attr);
7901 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7902 && IS_ABSOLUTE_PATH (*name))
7904 char *d = ldirname (*name);
7908 make_cleanup (xfree, d);
7910 if (*comp_dir != NULL)
7912 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7913 directory, get rid of it. */
7914 char *cp = strchr (*comp_dir, ':');
7916 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7921 *name = "<unknown>";
7924 /* Handle DW_AT_stmt_list for a compilation unit.
7925 DIE is the DW_TAG_compile_unit die for CU.
7926 COMP_DIR is the compilation directory.
7927 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7930 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7931 const char *comp_dir)
7933 struct attribute *attr;
7935 gdb_assert (! cu->per_cu->is_debug_types);
7937 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7940 unsigned int line_offset = DW_UNSND (attr);
7941 struct line_header *line_header
7942 = dwarf_decode_line_header (line_offset, cu);
7946 cu->line_header = line_header;
7947 make_cleanup (free_cu_line_header, cu);
7948 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7953 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7956 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7958 struct objfile *objfile = dwarf2_per_objfile->objfile;
7959 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7960 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7961 CORE_ADDR highpc = ((CORE_ADDR) 0);
7962 struct attribute *attr;
7963 const char *name = NULL;
7964 const char *comp_dir = NULL;
7965 struct die_info *child_die;
7966 bfd *abfd = objfile->obfd;
7969 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7971 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7973 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7974 from finish_block. */
7975 if (lowpc == ((CORE_ADDR) -1))
7980 find_file_and_directory (die, cu, &name, &comp_dir);
7982 prepare_one_comp_unit (cu, die, cu->language);
7984 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7985 standardised yet. As a workaround for the language detection we fall
7986 back to the DW_AT_producer string. */
7987 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7988 cu->language = language_opencl;
7990 /* Similar hack for Go. */
7991 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7992 set_cu_language (DW_LANG_Go, cu);
7994 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7996 /* Decode line number information if present. We do this before
7997 processing child DIEs, so that the line header table is available
7998 for DW_AT_decl_file. */
7999 handle_DW_AT_stmt_list (die, cu, comp_dir);
8001 /* Process all dies in compilation unit. */
8002 if (die->child != NULL)
8004 child_die = die->child;
8005 while (child_die && child_die->tag)
8007 process_die (child_die, cu);
8008 child_die = sibling_die (child_die);
8012 /* Decode macro information, if present. Dwarf 2 macro information
8013 refers to information in the line number info statement program
8014 header, so we can only read it if we've read the header
8016 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8017 if (attr && cu->line_header)
8019 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8020 complaint (&symfile_complaints,
8021 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8023 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8027 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8028 if (attr && cu->line_header)
8030 unsigned int macro_offset = DW_UNSND (attr);
8032 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8036 do_cleanups (back_to);
8039 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8040 Create the set of symtabs used by this TU, or if this TU is sharing
8041 symtabs with another TU and the symtabs have already been created
8042 then restore those symtabs in the line header.
8043 We don't need the pc/line-number mapping for type units. */
8046 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8048 struct objfile *objfile = dwarf2_per_objfile->objfile;
8049 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8050 struct type_unit_group *tu_group;
8052 struct line_header *lh;
8053 struct attribute *attr;
8054 unsigned int i, line_offset;
8056 gdb_assert (per_cu->is_debug_types);
8058 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8060 /* If we're using .gdb_index (includes -readnow) then
8061 per_cu->s.type_unit_group may not have been set up yet. */
8062 if (per_cu->type_unit_group == NULL)
8063 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8064 tu_group = per_cu->type_unit_group;
8066 /* If we've already processed this stmt_list there's no real need to
8067 do it again, we could fake it and just recreate the part we need
8068 (file name,index -> symtab mapping). If data shows this optimization
8069 is useful we can do it then. */
8070 first_time = tu_group->primary_symtab == NULL;
8072 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8077 line_offset = DW_UNSND (attr);
8078 lh = dwarf_decode_line_header (line_offset, cu);
8083 dwarf2_start_symtab (cu, "", NULL, 0);
8086 gdb_assert (tu_group->symtabs == NULL);
8089 /* Note: The primary symtab will get allocated at the end. */
8093 cu->line_header = lh;
8094 make_cleanup (free_cu_line_header, cu);
8098 dwarf2_start_symtab (cu, "", NULL, 0);
8100 tu_group->num_symtabs = lh->num_file_names;
8101 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8103 for (i = 0; i < lh->num_file_names; ++i)
8106 struct file_entry *fe = &lh->file_names[i];
8109 dir = lh->include_dirs[fe->dir_index - 1];
8110 dwarf2_start_subfile (fe->name, dir, NULL);
8112 /* Note: We don't have to watch for the main subfile here, type units
8113 don't have DW_AT_name. */
8115 if (current_subfile->symtab == NULL)
8117 /* NOTE: start_subfile will recognize when it's been passed
8118 a file it has already seen. So we can't assume there's a
8119 simple mapping from lh->file_names to subfiles,
8120 lh->file_names may contain dups. */
8121 current_subfile->symtab = allocate_symtab (current_subfile->name,
8125 fe->symtab = current_subfile->symtab;
8126 tu_group->symtabs[i] = fe->symtab;
8133 for (i = 0; i < lh->num_file_names; ++i)
8135 struct file_entry *fe = &lh->file_names[i];
8137 fe->symtab = tu_group->symtabs[i];
8141 /* The main symtab is allocated last. Type units don't have DW_AT_name
8142 so they don't have a "real" (so to speak) symtab anyway.
8143 There is later code that will assign the main symtab to all symbols
8144 that don't have one. We need to handle the case of a symbol with a
8145 missing symtab (DW_AT_decl_file) anyway. */
8148 /* Process DW_TAG_type_unit.
8149 For TUs we want to skip the first top level sibling if it's not the
8150 actual type being defined by this TU. In this case the first top
8151 level sibling is there to provide context only. */
8154 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8156 struct die_info *child_die;
8158 prepare_one_comp_unit (cu, die, language_minimal);
8160 /* Initialize (or reinitialize) the machinery for building symtabs.
8161 We do this before processing child DIEs, so that the line header table
8162 is available for DW_AT_decl_file. */
8163 setup_type_unit_groups (die, cu);
8165 if (die->child != NULL)
8167 child_die = die->child;
8168 while (child_die && child_die->tag)
8170 process_die (child_die, cu);
8171 child_die = sibling_die (child_die);
8178 http://gcc.gnu.org/wiki/DebugFission
8179 http://gcc.gnu.org/wiki/DebugFissionDWP
8181 To simplify handling of both DWO files ("object" files with the DWARF info)
8182 and DWP files (a file with the DWOs packaged up into one file), we treat
8183 DWP files as having a collection of virtual DWO files. */
8186 hash_dwo_file (const void *item)
8188 const struct dwo_file *dwo_file = item;
8190 return htab_hash_string (dwo_file->name);
8194 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8196 const struct dwo_file *lhs = item_lhs;
8197 const struct dwo_file *rhs = item_rhs;
8199 return strcmp (lhs->name, rhs->name) == 0;
8202 /* Allocate a hash table for DWO files. */
8205 allocate_dwo_file_hash_table (void)
8207 struct objfile *objfile = dwarf2_per_objfile->objfile;
8209 return htab_create_alloc_ex (41,
8213 &objfile->objfile_obstack,
8214 hashtab_obstack_allocate,
8215 dummy_obstack_deallocate);
8218 /* Lookup DWO file DWO_NAME. */
8221 lookup_dwo_file_slot (const char *dwo_name)
8223 struct dwo_file find_entry;
8226 if (dwarf2_per_objfile->dwo_files == NULL)
8227 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8229 memset (&find_entry, 0, sizeof (find_entry));
8230 find_entry.name = dwo_name;
8231 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8237 hash_dwo_unit (const void *item)
8239 const struct dwo_unit *dwo_unit = item;
8241 /* This drops the top 32 bits of the id, but is ok for a hash. */
8242 return dwo_unit->signature;
8246 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8248 const struct dwo_unit *lhs = item_lhs;
8249 const struct dwo_unit *rhs = item_rhs;
8251 /* The signature is assumed to be unique within the DWO file.
8252 So while object file CU dwo_id's always have the value zero,
8253 that's OK, assuming each object file DWO file has only one CU,
8254 and that's the rule for now. */
8255 return lhs->signature == rhs->signature;
8258 /* Allocate a hash table for DWO CUs,TUs.
8259 There is one of these tables for each of CUs,TUs for each DWO file. */
8262 allocate_dwo_unit_table (struct objfile *objfile)
8264 /* Start out with a pretty small number.
8265 Generally DWO files contain only one CU and maybe some TUs. */
8266 return htab_create_alloc_ex (3,
8270 &objfile->objfile_obstack,
8271 hashtab_obstack_allocate,
8272 dummy_obstack_deallocate);
8275 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8277 struct create_dwo_info_table_data
8279 struct dwo_file *dwo_file;
8283 /* die_reader_func for create_dwo_debug_info_hash_table. */
8286 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8288 struct die_info *comp_unit_die,
8292 struct dwarf2_cu *cu = reader->cu;
8293 struct objfile *objfile = dwarf2_per_objfile->objfile;
8294 sect_offset offset = cu->per_cu->offset;
8295 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8296 struct create_dwo_info_table_data *data = datap;
8297 struct dwo_file *dwo_file = data->dwo_file;
8298 htab_t cu_htab = data->cu_htab;
8300 struct attribute *attr;
8301 struct dwo_unit *dwo_unit;
8303 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8306 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8307 " its dwo_id [in module %s]"),
8308 offset.sect_off, dwo_file->name);
8312 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8313 dwo_unit->dwo_file = dwo_file;
8314 dwo_unit->signature = DW_UNSND (attr);
8315 dwo_unit->info_or_types_section = section;
8316 dwo_unit->offset = offset;
8317 dwo_unit->length = cu->per_cu->length;
8319 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8320 gdb_assert (slot != NULL);
8323 const struct dwo_unit *dup_dwo_unit = *slot;
8325 complaint (&symfile_complaints,
8326 _("debug entry at offset 0x%x is duplicate to the entry at"
8327 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8328 offset.sect_off, dup_dwo_unit->offset.sect_off,
8329 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8335 if (dwarf2_read_debug)
8336 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8338 phex (dwo_unit->signature,
8339 sizeof (dwo_unit->signature)));
8342 /* Create a hash table to map DWO IDs to their CU entry in
8343 .debug_info.dwo in DWO_FILE.
8344 Note: This function processes DWO files only, not DWP files. */
8347 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8349 struct objfile *objfile = dwarf2_per_objfile->objfile;
8350 struct dwarf2_section_info *section = &dwo_file->sections.info;
8353 gdb_byte *info_ptr, *end_ptr;
8354 struct create_dwo_info_table_data create_dwo_info_table_data;
8356 dwarf2_read_section (objfile, section);
8357 info_ptr = section->buffer;
8359 if (info_ptr == NULL)
8362 /* We can't set abfd until now because the section may be empty or
8363 not present, in which case section->asection will be NULL. */
8364 abfd = section->asection->owner;
8366 if (dwarf2_read_debug)
8367 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8368 bfd_get_filename (abfd));
8370 cu_htab = allocate_dwo_unit_table (objfile);
8372 create_dwo_info_table_data.dwo_file = dwo_file;
8373 create_dwo_info_table_data.cu_htab = cu_htab;
8375 end_ptr = info_ptr + section->size;
8376 while (info_ptr < end_ptr)
8378 struct dwarf2_per_cu_data per_cu;
8380 memset (&per_cu, 0, sizeof (per_cu));
8381 per_cu.objfile = objfile;
8382 per_cu.is_debug_types = 0;
8383 per_cu.offset.sect_off = info_ptr - section->buffer;
8384 per_cu.info_or_types_section = section;
8386 init_cutu_and_read_dies_no_follow (&per_cu,
8387 &dwo_file->sections.abbrev,
8389 create_dwo_debug_info_hash_table_reader,
8390 &create_dwo_info_table_data);
8392 info_ptr += per_cu.length;
8398 /* DWP file .debug_{cu,tu}_index section format:
8399 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8401 Both index sections have the same format, and serve to map a 64-bit
8402 signature to a set of section numbers. Each section begins with a header,
8403 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8404 indexes, and a pool of 32-bit section numbers. The index sections will be
8405 aligned at 8-byte boundaries in the file.
8407 The index section header contains two unsigned 32-bit values (using the
8408 byte order of the application binary):
8410 N, the number of compilation units or type units in the index
8411 M, the number of slots in the hash table
8413 (We assume that N and M will not exceed 2^32 - 1.)
8415 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8417 The hash table begins at offset 8 in the section, and consists of an array
8418 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8419 order of the application binary). Unused slots in the hash table are 0.
8420 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8422 The parallel table begins immediately after the hash table
8423 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8424 array of 32-bit indexes (using the byte order of the application binary),
8425 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8426 table contains a 32-bit index into the pool of section numbers. For unused
8427 hash table slots, the corresponding entry in the parallel table will be 0.
8429 Given a 64-bit compilation unit signature or a type signature S, an entry
8430 in the hash table is located as follows:
8432 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8433 the low-order k bits all set to 1.
8435 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8437 3) If the hash table entry at index H matches the signature, use that
8438 entry. If the hash table entry at index H is unused (all zeroes),
8439 terminate the search: the signature is not present in the table.
8441 4) Let H = (H + H') modulo M. Repeat at Step 3.
8443 Because M > N and H' and M are relatively prime, the search is guaranteed
8444 to stop at an unused slot or find the match.
8446 The pool of section numbers begins immediately following the hash table
8447 (at offset 8 + 12 * M from the beginning of the section). The pool of
8448 section numbers consists of an array of 32-bit words (using the byte order
8449 of the application binary). Each item in the array is indexed starting
8450 from 0. The hash table entry provides the index of the first section
8451 number in the set. Additional section numbers in the set follow, and the
8452 set is terminated by a 0 entry (section number 0 is not used in ELF).
8454 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8455 section must be the first entry in the set, and the .debug_abbrev.dwo must
8456 be the second entry. Other members of the set may follow in any order. */
8458 /* Create a hash table to map DWO IDs to their CU/TU entry in
8459 .debug_{info,types}.dwo in DWP_FILE.
8460 Returns NULL if there isn't one.
8461 Note: This function processes DWP files only, not DWO files. */
8463 static struct dwp_hash_table *
8464 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8466 struct objfile *objfile = dwarf2_per_objfile->objfile;
8467 bfd *dbfd = dwp_file->dbfd;
8468 char *index_ptr, *index_end;
8469 struct dwarf2_section_info *index;
8470 uint32_t version, nr_units, nr_slots;
8471 struct dwp_hash_table *htab;
8474 index = &dwp_file->sections.tu_index;
8476 index = &dwp_file->sections.cu_index;
8478 if (dwarf2_section_empty_p (index))
8480 dwarf2_read_section (objfile, index);
8482 index_ptr = index->buffer;
8483 index_end = index_ptr + index->size;
8485 version = read_4_bytes (dbfd, index_ptr);
8486 index_ptr += 8; /* Skip the unused word. */
8487 nr_units = read_4_bytes (dbfd, index_ptr);
8489 nr_slots = read_4_bytes (dbfd, index_ptr);
8494 error (_("Dwarf Error: unsupported DWP file version (%u)"
8496 version, dwp_file->name);
8498 if (nr_slots != (nr_slots & -nr_slots))
8500 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8501 " is not power of 2 [in module %s]"),
8502 nr_slots, dwp_file->name);
8505 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8506 htab->nr_units = nr_units;
8507 htab->nr_slots = nr_slots;
8508 htab->hash_table = index_ptr;
8509 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8510 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8515 /* Update SECTIONS with the data from SECTP.
8517 This function is like the other "locate" section routines that are
8518 passed to bfd_map_over_sections, but in this context the sections to
8519 read comes from the DWP hash table, not the full ELF section table.
8521 The result is non-zero for success, or zero if an error was found. */
8524 locate_virtual_dwo_sections (asection *sectp,
8525 struct virtual_dwo_sections *sections)
8527 const struct dwop_section_names *names = &dwop_section_names;
8529 if (section_is_p (sectp->name, &names->abbrev_dwo))
8531 /* There can be only one. */
8532 if (sections->abbrev.asection != NULL)
8534 sections->abbrev.asection = sectp;
8535 sections->abbrev.size = bfd_get_section_size (sectp);
8537 else if (section_is_p (sectp->name, &names->info_dwo)
8538 || section_is_p (sectp->name, &names->types_dwo))
8540 /* There can be only one. */
8541 if (sections->info_or_types.asection != NULL)
8543 sections->info_or_types.asection = sectp;
8544 sections->info_or_types.size = bfd_get_section_size (sectp);
8546 else if (section_is_p (sectp->name, &names->line_dwo))
8548 /* There can be only one. */
8549 if (sections->line.asection != NULL)
8551 sections->line.asection = sectp;
8552 sections->line.size = bfd_get_section_size (sectp);
8554 else if (section_is_p (sectp->name, &names->loc_dwo))
8556 /* There can be only one. */
8557 if (sections->loc.asection != NULL)
8559 sections->loc.asection = sectp;
8560 sections->loc.size = bfd_get_section_size (sectp);
8562 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8564 /* There can be only one. */
8565 if (sections->macinfo.asection != NULL)
8567 sections->macinfo.asection = sectp;
8568 sections->macinfo.size = bfd_get_section_size (sectp);
8570 else if (section_is_p (sectp->name, &names->macro_dwo))
8572 /* There can be only one. */
8573 if (sections->macro.asection != NULL)
8575 sections->macro.asection = sectp;
8576 sections->macro.size = bfd_get_section_size (sectp);
8578 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8580 /* There can be only one. */
8581 if (sections->str_offsets.asection != NULL)
8583 sections->str_offsets.asection = sectp;
8584 sections->str_offsets.size = bfd_get_section_size (sectp);
8588 /* No other kind of section is valid. */
8595 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8596 HTAB is the hash table from the DWP file.
8597 SECTION_INDEX is the index of the DWO in HTAB. */
8599 static struct dwo_unit *
8600 create_dwo_in_dwp (struct dwp_file *dwp_file,
8601 const struct dwp_hash_table *htab,
8602 uint32_t section_index,
8603 ULONGEST signature, int is_debug_types)
8605 struct objfile *objfile = dwarf2_per_objfile->objfile;
8606 bfd *dbfd = dwp_file->dbfd;
8607 const char *kind = is_debug_types ? "TU" : "CU";
8608 struct dwo_file *dwo_file;
8609 struct dwo_unit *dwo_unit;
8610 struct virtual_dwo_sections sections;
8611 void **dwo_file_slot;
8612 char *virtual_dwo_name;
8613 struct dwarf2_section_info *cutu;
8614 struct cleanup *cleanups;
8617 if (dwarf2_read_debug)
8619 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8621 section_index, phex (signature, sizeof (signature)),
8625 /* Fetch the sections of this DWO.
8626 Put a limit on the number of sections we look for so that bad data
8627 doesn't cause us to loop forever. */
8629 #define MAX_NR_DWO_SECTIONS \
8630 (1 /* .debug_info or .debug_types */ \
8631 + 1 /* .debug_abbrev */ \
8632 + 1 /* .debug_line */ \
8633 + 1 /* .debug_loc */ \
8634 + 1 /* .debug_str_offsets */ \
8635 + 1 /* .debug_macro */ \
8636 + 1 /* .debug_macinfo */ \
8637 + 1 /* trailing zero */)
8639 memset (§ions, 0, sizeof (sections));
8640 cleanups = make_cleanup (null_cleanup, 0);
8642 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8645 uint32_t section_nr =
8648 + (section_index + i) * sizeof (uint32_t));
8650 if (section_nr == 0)
8652 if (section_nr >= dwp_file->num_sections)
8654 error (_("Dwarf Error: bad DWP hash table, section number too large"
8659 sectp = dwp_file->elf_sections[section_nr];
8660 if (! locate_virtual_dwo_sections (sectp, §ions))
8662 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8669 || sections.info_or_types.asection == NULL
8670 || sections.abbrev.asection == NULL)
8672 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8676 if (i == MAX_NR_DWO_SECTIONS)
8678 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8683 /* It's easier for the rest of the code if we fake a struct dwo_file and
8684 have dwo_unit "live" in that. At least for now.
8686 The DWP file can be made up of a random collection of CUs and TUs.
8687 However, for each CU + set of TUs that came from the same original DWO
8688 file, we want to combine them back into a virtual DWO file to save space
8689 (fewer struct dwo_file objects to allocated). Remember that for really
8690 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8693 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8694 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8695 sections.line.asection ? sections.line.asection->id : 0,
8696 sections.loc.asection ? sections.loc.asection->id : 0,
8697 (sections.str_offsets.asection
8698 ? sections.str_offsets.asection->id
8700 make_cleanup (xfree, virtual_dwo_name);
8701 /* Can we use an existing virtual DWO file? */
8702 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8703 /* Create one if necessary. */
8704 if (*dwo_file_slot == NULL)
8706 if (dwarf2_read_debug)
8708 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8711 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8712 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8714 strlen (virtual_dwo_name));
8715 dwo_file->sections.abbrev = sections.abbrev;
8716 dwo_file->sections.line = sections.line;
8717 dwo_file->sections.loc = sections.loc;
8718 dwo_file->sections.macinfo = sections.macinfo;
8719 dwo_file->sections.macro = sections.macro;
8720 dwo_file->sections.str_offsets = sections.str_offsets;
8721 /* The "str" section is global to the entire DWP file. */
8722 dwo_file->sections.str = dwp_file->sections.str;
8723 /* The info or types section is assigned later to dwo_unit,
8724 there's no need to record it in dwo_file.
8725 Also, we can't simply record type sections in dwo_file because
8726 we record a pointer into the vector in dwo_unit. As we collect more
8727 types we'll grow the vector and eventually have to reallocate space
8728 for it, invalidating all the pointers into the current copy. */
8729 *dwo_file_slot = dwo_file;
8733 if (dwarf2_read_debug)
8735 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8738 dwo_file = *dwo_file_slot;
8740 do_cleanups (cleanups);
8742 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8743 dwo_unit->dwo_file = dwo_file;
8744 dwo_unit->signature = signature;
8745 dwo_unit->info_or_types_section =
8746 obstack_alloc (&objfile->objfile_obstack,
8747 sizeof (struct dwarf2_section_info));
8748 *dwo_unit->info_or_types_section = sections.info_or_types;
8749 /* offset, length, type_offset_in_tu are set later. */
8754 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8756 static struct dwo_unit *
8757 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8758 const struct dwp_hash_table *htab,
8759 ULONGEST signature, int is_debug_types)
8761 bfd *dbfd = dwp_file->dbfd;
8762 uint32_t mask = htab->nr_slots - 1;
8763 uint32_t hash = signature & mask;
8764 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8767 struct dwo_unit find_dwo_cu, *dwo_cu;
8769 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8770 find_dwo_cu.signature = signature;
8771 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8776 /* Use a for loop so that we don't loop forever on bad debug info. */
8777 for (i = 0; i < htab->nr_slots; ++i)
8779 ULONGEST signature_in_table;
8781 signature_in_table =
8782 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8783 if (signature_in_table == signature)
8785 uint32_t section_index =
8786 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8788 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8789 signature, is_debug_types);
8792 if (signature_in_table == 0)
8794 hash = (hash + hash2) & mask;
8797 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8802 /* Subroutine of open_dwop_file to simplify it.
8803 Open the file specified by FILE_NAME and hand it off to BFD for
8804 preliminary analysis. Return a newly initialized bfd *, which
8805 includes a canonicalized copy of FILE_NAME.
8806 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8807 In case of trouble, return NULL.
8808 NOTE: This function is derived from symfile_bfd_open. */
8811 try_open_dwop_file (const char *file_name, int is_dwp)
8815 char *absolute_name;
8817 flags = OPF_TRY_CWD_FIRST;
8819 flags |= OPF_SEARCH_IN_PATH;
8820 desc = openp (debug_file_directory, flags, file_name,
8821 O_RDONLY | O_BINARY, &absolute_name);
8825 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8828 xfree (absolute_name);
8831 xfree (absolute_name);
8832 bfd_set_cacheable (sym_bfd, 1);
8834 if (!bfd_check_format (sym_bfd, bfd_object))
8836 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8843 /* Try to open DWO/DWP file FILE_NAME.
8844 COMP_DIR is the DW_AT_comp_dir attribute.
8845 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8846 The result is the bfd handle of the file.
8847 If there is a problem finding or opening the file, return NULL.
8848 Upon success, the canonicalized path of the file is stored in the bfd,
8849 same as symfile_bfd_open. */
8852 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8856 if (IS_ABSOLUTE_PATH (file_name))
8857 return try_open_dwop_file (file_name, is_dwp);
8859 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8861 if (comp_dir != NULL)
8863 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8865 /* NOTE: If comp_dir is a relative path, this will also try the
8866 search path, which seems useful. */
8867 abfd = try_open_dwop_file (path_to_try, is_dwp);
8868 xfree (path_to_try);
8873 /* That didn't work, try debug-file-directory, which, despite its name,
8874 is a list of paths. */
8876 if (*debug_file_directory == '\0')
8879 return try_open_dwop_file (file_name, is_dwp);
8882 /* This function is mapped across the sections and remembers the offset and
8883 size of each of the DWO debugging sections we are interested in. */
8886 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8888 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8889 const struct dwop_section_names *names = &dwop_section_names;
8891 if (section_is_p (sectp->name, &names->abbrev_dwo))
8893 dwo_sections->abbrev.asection = sectp;
8894 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8896 else if (section_is_p (sectp->name, &names->info_dwo))
8898 dwo_sections->info.asection = sectp;
8899 dwo_sections->info.size = bfd_get_section_size (sectp);
8901 else if (section_is_p (sectp->name, &names->line_dwo))
8903 dwo_sections->line.asection = sectp;
8904 dwo_sections->line.size = bfd_get_section_size (sectp);
8906 else if (section_is_p (sectp->name, &names->loc_dwo))
8908 dwo_sections->loc.asection = sectp;
8909 dwo_sections->loc.size = bfd_get_section_size (sectp);
8911 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8913 dwo_sections->macinfo.asection = sectp;
8914 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8916 else if (section_is_p (sectp->name, &names->macro_dwo))
8918 dwo_sections->macro.asection = sectp;
8919 dwo_sections->macro.size = bfd_get_section_size (sectp);
8921 else if (section_is_p (sectp->name, &names->str_dwo))
8923 dwo_sections->str.asection = sectp;
8924 dwo_sections->str.size = bfd_get_section_size (sectp);
8926 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8928 dwo_sections->str_offsets.asection = sectp;
8929 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8931 else if (section_is_p (sectp->name, &names->types_dwo))
8933 struct dwarf2_section_info type_section;
8935 memset (&type_section, 0, sizeof (type_section));
8936 type_section.asection = sectp;
8937 type_section.size = bfd_get_section_size (sectp);
8938 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8943 /* Initialize the use of the DWO file specified by DWO_NAME.
8944 The result is NULL if DWO_NAME can't be found. */
8946 static struct dwo_file *
8947 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8949 struct objfile *objfile = dwarf2_per_objfile->objfile;
8950 struct dwo_file *dwo_file;
8952 struct cleanup *cleanups;
8954 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8957 if (dwarf2_read_debug)
8958 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8961 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8962 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8963 dwo_name, strlen (dwo_name));
8964 dwo_file->dbfd = dbfd;
8966 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8968 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8970 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8972 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8973 dwo_file->sections.types);
8975 discard_cleanups (cleanups);
8977 if (dwarf2_read_debug)
8978 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8983 /* This function is mapped across the sections and remembers the offset and
8984 size of each of the DWP debugging sections we are interested in. */
8987 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8989 struct dwp_file *dwp_file = dwp_file_ptr;
8990 const struct dwop_section_names *names = &dwop_section_names;
8991 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8993 /* Record the ELF section number for later lookup: this is what the
8994 .debug_cu_index,.debug_tu_index tables use. */
8995 gdb_assert (elf_section_nr < dwp_file->num_sections);
8996 dwp_file->elf_sections[elf_section_nr] = sectp;
8998 /* Look for specific sections that we need. */
8999 if (section_is_p (sectp->name, &names->str_dwo))
9001 dwp_file->sections.str.asection = sectp;
9002 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9004 else if (section_is_p (sectp->name, &names->cu_index))
9006 dwp_file->sections.cu_index.asection = sectp;
9007 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9009 else if (section_is_p (sectp->name, &names->tu_index))
9011 dwp_file->sections.tu_index.asection = sectp;
9012 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9016 /* Hash function for dwp_file loaded CUs/TUs. */
9019 hash_dwp_loaded_cutus (const void *item)
9021 const struct dwo_unit *dwo_unit = item;
9023 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9024 return dwo_unit->signature;
9027 /* Equality function for dwp_file loaded CUs/TUs. */
9030 eq_dwp_loaded_cutus (const void *a, const void *b)
9032 const struct dwo_unit *dua = a;
9033 const struct dwo_unit *dub = b;
9035 return dua->signature == dub->signature;
9038 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9041 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9043 return htab_create_alloc_ex (3,
9044 hash_dwp_loaded_cutus,
9045 eq_dwp_loaded_cutus,
9047 &objfile->objfile_obstack,
9048 hashtab_obstack_allocate,
9049 dummy_obstack_deallocate);
9052 /* Initialize the use of the DWP file for the current objfile.
9053 By convention the name of the DWP file is ${objfile}.dwp.
9054 The result is NULL if it can't be found. */
9056 static struct dwp_file *
9057 open_and_init_dwp_file (const char *comp_dir)
9059 struct objfile *objfile = dwarf2_per_objfile->objfile;
9060 struct dwp_file *dwp_file;
9063 struct cleanup *cleanups;
9065 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9066 cleanups = make_cleanup (xfree, dwp_name);
9068 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9071 if (dwarf2_read_debug)
9072 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9073 do_cleanups (cleanups);
9076 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9077 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9078 dwp_name, strlen (dwp_name));
9079 dwp_file->dbfd = dbfd;
9080 do_cleanups (cleanups);
9082 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9084 /* +1: section 0 is unused */
9085 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9086 dwp_file->elf_sections =
9087 OBSTACK_CALLOC (&objfile->objfile_obstack,
9088 dwp_file->num_sections, asection *);
9090 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9092 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9094 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9096 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9098 discard_cleanups (cleanups);
9100 if (dwarf2_read_debug)
9102 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9103 fprintf_unfiltered (gdb_stdlog,
9104 " %u CUs, %u TUs\n",
9105 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9106 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9112 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9113 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9114 or in the DWP file for the objfile, referenced by THIS_UNIT.
9115 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9116 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9118 This is called, for example, when wanting to read a variable with a
9119 complex location. Therefore we don't want to do file i/o for every call.
9120 Therefore we don't want to look for a DWO file on every call.
9121 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9122 then we check if we've already seen DWO_NAME, and only THEN do we check
9125 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9126 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9128 static struct dwo_unit *
9129 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9130 const char *dwo_name, const char *comp_dir,
9131 ULONGEST signature, int is_debug_types)
9133 struct objfile *objfile = dwarf2_per_objfile->objfile;
9134 const char *kind = is_debug_types ? "TU" : "CU";
9135 void **dwo_file_slot;
9136 struct dwo_file *dwo_file;
9137 struct dwp_file *dwp_file;
9139 /* Have we already read SIGNATURE from a DWP file? */
9141 if (! dwarf2_per_objfile->dwp_checked)
9143 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9144 dwarf2_per_objfile->dwp_checked = 1;
9146 dwp_file = dwarf2_per_objfile->dwp_file;
9148 if (dwp_file != NULL)
9150 const struct dwp_hash_table *dwp_htab =
9151 is_debug_types ? dwp_file->tus : dwp_file->cus;
9153 if (dwp_htab != NULL)
9155 struct dwo_unit *dwo_cutu =
9156 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9158 if (dwo_cutu != NULL)
9160 if (dwarf2_read_debug)
9162 fprintf_unfiltered (gdb_stdlog,
9163 "Virtual DWO %s %s found: @%s\n",
9164 kind, hex_string (signature),
9165 host_address_to_string (dwo_cutu));
9172 /* Have we already seen DWO_NAME? */
9174 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9175 if (*dwo_file_slot == NULL)
9177 /* Read in the file and build a table of the DWOs it contains. */
9178 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9180 /* NOTE: This will be NULL if unable to open the file. */
9181 dwo_file = *dwo_file_slot;
9183 if (dwo_file != NULL)
9185 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9189 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9191 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9192 find_dwo_cutu.signature = signature;
9193 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9195 if (dwo_cutu != NULL)
9197 if (dwarf2_read_debug)
9199 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9200 kind, dwo_name, hex_string (signature),
9201 host_address_to_string (dwo_cutu));
9208 /* We didn't find it. This could mean a dwo_id mismatch, or
9209 someone deleted the DWO/DWP file, or the search path isn't set up
9210 correctly to find the file. */
9212 if (dwarf2_read_debug)
9214 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9215 kind, dwo_name, hex_string (signature));
9218 complaint (&symfile_complaints,
9219 _("Could not find DWO CU referenced by CU at offset 0x%x"
9221 this_unit->offset.sect_off, objfile->name);
9225 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9226 See lookup_dwo_cutu_unit for details. */
9228 static struct dwo_unit *
9229 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9230 const char *dwo_name, const char *comp_dir,
9233 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9236 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9237 See lookup_dwo_cutu_unit for details. */
9239 static struct dwo_unit *
9240 lookup_dwo_type_unit (struct signatured_type *this_tu,
9241 const char *dwo_name, const char *comp_dir)
9243 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9246 /* Free all resources associated with DWO_FILE.
9247 Close the DWO file and munmap the sections.
9248 All memory should be on the objfile obstack. */
9251 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9254 struct dwarf2_section_info *section;
9256 gdb_bfd_unref (dwo_file->dbfd);
9258 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9261 /* Wrapper for free_dwo_file for use in cleanups. */
9264 free_dwo_file_cleanup (void *arg)
9266 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9267 struct objfile *objfile = dwarf2_per_objfile->objfile;
9269 free_dwo_file (dwo_file, objfile);
9272 /* Traversal function for free_dwo_files. */
9275 free_dwo_file_from_slot (void **slot, void *info)
9277 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9278 struct objfile *objfile = (struct objfile *) info;
9280 free_dwo_file (dwo_file, objfile);
9285 /* Free all resources associated with DWO_FILES. */
9288 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9290 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9293 /* Read in various DIEs. */
9295 /* qsort helper for inherit_abstract_dies. */
9298 unsigned_int_compar (const void *ap, const void *bp)
9300 unsigned int a = *(unsigned int *) ap;
9301 unsigned int b = *(unsigned int *) bp;
9303 return (a > b) - (b > a);
9306 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9307 Inherit only the children of the DW_AT_abstract_origin DIE not being
9308 already referenced by DW_AT_abstract_origin from the children of the
9312 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9314 struct die_info *child_die;
9315 unsigned die_children_count;
9316 /* CU offsets which were referenced by children of the current DIE. */
9317 sect_offset *offsets;
9318 sect_offset *offsets_end, *offsetp;
9319 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9320 struct die_info *origin_die;
9321 /* Iterator of the ORIGIN_DIE children. */
9322 struct die_info *origin_child_die;
9323 struct cleanup *cleanups;
9324 struct attribute *attr;
9325 struct dwarf2_cu *origin_cu;
9326 struct pending **origin_previous_list_in_scope;
9328 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9332 /* Note that following die references may follow to a die in a
9336 origin_die = follow_die_ref (die, attr, &origin_cu);
9338 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9340 origin_previous_list_in_scope = origin_cu->list_in_scope;
9341 origin_cu->list_in_scope = cu->list_in_scope;
9343 if (die->tag != origin_die->tag
9344 && !(die->tag == DW_TAG_inlined_subroutine
9345 && origin_die->tag == DW_TAG_subprogram))
9346 complaint (&symfile_complaints,
9347 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9348 die->offset.sect_off, origin_die->offset.sect_off);
9350 child_die = die->child;
9351 die_children_count = 0;
9352 while (child_die && child_die->tag)
9354 child_die = sibling_die (child_die);
9355 die_children_count++;
9357 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9358 cleanups = make_cleanup (xfree, offsets);
9360 offsets_end = offsets;
9361 child_die = die->child;
9362 while (child_die && child_die->tag)
9364 /* For each CHILD_DIE, find the corresponding child of
9365 ORIGIN_DIE. If there is more than one layer of
9366 DW_AT_abstract_origin, follow them all; there shouldn't be,
9367 but GCC versions at least through 4.4 generate this (GCC PR
9369 struct die_info *child_origin_die = child_die;
9370 struct dwarf2_cu *child_origin_cu = cu;
9374 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9378 child_origin_die = follow_die_ref (child_origin_die, attr,
9382 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9383 counterpart may exist. */
9384 if (child_origin_die != child_die)
9386 if (child_die->tag != child_origin_die->tag
9387 && !(child_die->tag == DW_TAG_inlined_subroutine
9388 && child_origin_die->tag == DW_TAG_subprogram))
9389 complaint (&symfile_complaints,
9390 _("Child DIE 0x%x and its abstract origin 0x%x have "
9391 "different tags"), child_die->offset.sect_off,
9392 child_origin_die->offset.sect_off);
9393 if (child_origin_die->parent != origin_die)
9394 complaint (&symfile_complaints,
9395 _("Child DIE 0x%x and its abstract origin 0x%x have "
9396 "different parents"), child_die->offset.sect_off,
9397 child_origin_die->offset.sect_off);
9399 *offsets_end++ = child_origin_die->offset;
9401 child_die = sibling_die (child_die);
9403 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9404 unsigned_int_compar);
9405 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9406 if (offsetp[-1].sect_off == offsetp->sect_off)
9407 complaint (&symfile_complaints,
9408 _("Multiple children of DIE 0x%x refer "
9409 "to DIE 0x%x as their abstract origin"),
9410 die->offset.sect_off, offsetp->sect_off);
9413 origin_child_die = origin_die->child;
9414 while (origin_child_die && origin_child_die->tag)
9416 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9417 while (offsetp < offsets_end
9418 && offsetp->sect_off < origin_child_die->offset.sect_off)
9420 if (offsetp >= offsets_end
9421 || offsetp->sect_off > origin_child_die->offset.sect_off)
9423 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9424 process_die (origin_child_die, origin_cu);
9426 origin_child_die = sibling_die (origin_child_die);
9428 origin_cu->list_in_scope = origin_previous_list_in_scope;
9430 do_cleanups (cleanups);
9434 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9436 struct objfile *objfile = cu->objfile;
9437 struct context_stack *new;
9440 struct die_info *child_die;
9441 struct attribute *attr, *call_line, *call_file;
9444 struct block *block;
9445 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9446 VEC (symbolp) *template_args = NULL;
9447 struct template_symbol *templ_func = NULL;
9451 /* If we do not have call site information, we can't show the
9452 caller of this inlined function. That's too confusing, so
9453 only use the scope for local variables. */
9454 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9455 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9456 if (call_line == NULL || call_file == NULL)
9458 read_lexical_block_scope (die, cu);
9463 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9465 name = dwarf2_name (die, cu);
9467 /* Ignore functions with missing or empty names. These are actually
9468 illegal according to the DWARF standard. */
9471 complaint (&symfile_complaints,
9472 _("missing name for subprogram DIE at %d"),
9473 die->offset.sect_off);
9477 /* Ignore functions with missing or invalid low and high pc attributes. */
9478 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9480 attr = dwarf2_attr (die, DW_AT_external, cu);
9481 if (!attr || !DW_UNSND (attr))
9482 complaint (&symfile_complaints,
9483 _("cannot get low and high bounds "
9484 "for subprogram DIE at %d"),
9485 die->offset.sect_off);
9492 /* If we have any template arguments, then we must allocate a
9493 different sort of symbol. */
9494 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9496 if (child_die->tag == DW_TAG_template_type_param
9497 || child_die->tag == DW_TAG_template_value_param)
9499 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9500 struct template_symbol);
9501 templ_func->base.is_cplus_template_function = 1;
9506 new = push_context (0, lowpc);
9507 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9508 (struct symbol *) templ_func);
9510 /* If there is a location expression for DW_AT_frame_base, record
9512 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9514 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9515 expression is being recorded directly in the function's symbol
9516 and not in a separate frame-base object. I guess this hack is
9517 to avoid adding some sort of frame-base adjunct/annex to the
9518 function's symbol :-(. The problem with doing this is that it
9519 results in a function symbol with a location expression that
9520 has nothing to do with the location of the function, ouch! The
9521 relationship should be: a function's symbol has-a frame base; a
9522 frame-base has-a location expression. */
9523 dwarf2_symbol_mark_computed (attr, new->name, cu);
9525 cu->list_in_scope = &local_symbols;
9527 if (die->child != NULL)
9529 child_die = die->child;
9530 while (child_die && child_die->tag)
9532 if (child_die->tag == DW_TAG_template_type_param
9533 || child_die->tag == DW_TAG_template_value_param)
9535 struct symbol *arg = new_symbol (child_die, NULL, cu);
9538 VEC_safe_push (symbolp, template_args, arg);
9541 process_die (child_die, cu);
9542 child_die = sibling_die (child_die);
9546 inherit_abstract_dies (die, cu);
9548 /* If we have a DW_AT_specification, we might need to import using
9549 directives from the context of the specification DIE. See the
9550 comment in determine_prefix. */
9551 if (cu->language == language_cplus
9552 && dwarf2_attr (die, DW_AT_specification, cu))
9554 struct dwarf2_cu *spec_cu = cu;
9555 struct die_info *spec_die = die_specification (die, &spec_cu);
9559 child_die = spec_die->child;
9560 while (child_die && child_die->tag)
9562 if (child_die->tag == DW_TAG_imported_module)
9563 process_die (child_die, spec_cu);
9564 child_die = sibling_die (child_die);
9567 /* In some cases, GCC generates specification DIEs that
9568 themselves contain DW_AT_specification attributes. */
9569 spec_die = die_specification (spec_die, &spec_cu);
9573 new = pop_context ();
9574 /* Make a block for the local symbols within. */
9575 block = finish_block (new->name, &local_symbols, new->old_blocks,
9576 lowpc, highpc, objfile);
9578 /* For C++, set the block's scope. */
9579 if ((cu->language == language_cplus || cu->language == language_fortran)
9580 && cu->processing_has_namespace_info)
9581 block_set_scope (block, determine_prefix (die, cu),
9582 &objfile->objfile_obstack);
9584 /* If we have address ranges, record them. */
9585 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9587 /* Attach template arguments to function. */
9588 if (! VEC_empty (symbolp, template_args))
9590 gdb_assert (templ_func != NULL);
9592 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9593 templ_func->template_arguments
9594 = obstack_alloc (&objfile->objfile_obstack,
9595 (templ_func->n_template_arguments
9596 * sizeof (struct symbol *)));
9597 memcpy (templ_func->template_arguments,
9598 VEC_address (symbolp, template_args),
9599 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9600 VEC_free (symbolp, template_args);
9603 /* In C++, we can have functions nested inside functions (e.g., when
9604 a function declares a class that has methods). This means that
9605 when we finish processing a function scope, we may need to go
9606 back to building a containing block's symbol lists. */
9607 local_symbols = new->locals;
9608 using_directives = new->using_directives;
9610 /* If we've finished processing a top-level function, subsequent
9611 symbols go in the file symbol list. */
9612 if (outermost_context_p ())
9613 cu->list_in_scope = &file_symbols;
9616 /* Process all the DIES contained within a lexical block scope. Start
9617 a new scope, process the dies, and then close the scope. */
9620 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9622 struct objfile *objfile = cu->objfile;
9623 struct context_stack *new;
9624 CORE_ADDR lowpc, highpc;
9625 struct die_info *child_die;
9628 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9630 /* Ignore blocks with missing or invalid low and high pc attributes. */
9631 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9632 as multiple lexical blocks? Handling children in a sane way would
9633 be nasty. Might be easier to properly extend generic blocks to
9635 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9640 push_context (0, lowpc);
9641 if (die->child != NULL)
9643 child_die = die->child;
9644 while (child_die && child_die->tag)
9646 process_die (child_die, cu);
9647 child_die = sibling_die (child_die);
9650 new = pop_context ();
9652 if (local_symbols != NULL || using_directives != NULL)
9655 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9658 /* Note that recording ranges after traversing children, as we
9659 do here, means that recording a parent's ranges entails
9660 walking across all its children's ranges as they appear in
9661 the address map, which is quadratic behavior.
9663 It would be nicer to record the parent's ranges before
9664 traversing its children, simply overriding whatever you find
9665 there. But since we don't even decide whether to create a
9666 block until after we've traversed its children, that's hard
9668 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9670 local_symbols = new->locals;
9671 using_directives = new->using_directives;
9674 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9677 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9679 struct objfile *objfile = cu->objfile;
9680 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9681 CORE_ADDR pc, baseaddr;
9682 struct attribute *attr;
9683 struct call_site *call_site, call_site_local;
9686 struct die_info *child_die;
9688 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9690 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9693 complaint (&symfile_complaints,
9694 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9695 "DIE 0x%x [in module %s]"),
9696 die->offset.sect_off, objfile->name);
9699 pc = DW_ADDR (attr) + baseaddr;
9701 if (cu->call_site_htab == NULL)
9702 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9703 NULL, &objfile->objfile_obstack,
9704 hashtab_obstack_allocate, NULL);
9705 call_site_local.pc = pc;
9706 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9709 complaint (&symfile_complaints,
9710 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9711 "DIE 0x%x [in module %s]"),
9712 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9716 /* Count parameters at the caller. */
9719 for (child_die = die->child; child_die && child_die->tag;
9720 child_die = sibling_die (child_die))
9722 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9724 complaint (&symfile_complaints,
9725 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9726 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9727 child_die->tag, child_die->offset.sect_off, objfile->name);
9734 call_site = obstack_alloc (&objfile->objfile_obstack,
9735 (sizeof (*call_site)
9736 + (sizeof (*call_site->parameter)
9739 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9742 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9744 struct die_info *func_die;
9746 /* Skip also over DW_TAG_inlined_subroutine. */
9747 for (func_die = die->parent;
9748 func_die && func_die->tag != DW_TAG_subprogram
9749 && func_die->tag != DW_TAG_subroutine_type;
9750 func_die = func_die->parent);
9752 /* DW_AT_GNU_all_call_sites is a superset
9753 of DW_AT_GNU_all_tail_call_sites. */
9755 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9756 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9758 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9759 not complete. But keep CALL_SITE for look ups via call_site_htab,
9760 both the initial caller containing the real return address PC and
9761 the final callee containing the current PC of a chain of tail
9762 calls do not need to have the tail call list complete. But any
9763 function candidate for a virtual tail call frame searched via
9764 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9765 determined unambiguously. */
9769 struct type *func_type = NULL;
9772 func_type = get_die_type (func_die, cu);
9773 if (func_type != NULL)
9775 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9777 /* Enlist this call site to the function. */
9778 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9779 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9782 complaint (&symfile_complaints,
9783 _("Cannot find function owning DW_TAG_GNU_call_site "
9784 "DIE 0x%x [in module %s]"),
9785 die->offset.sect_off, objfile->name);
9789 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9791 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9792 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9793 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9794 /* Keep NULL DWARF_BLOCK. */;
9795 else if (attr_form_is_block (attr))
9797 struct dwarf2_locexpr_baton *dlbaton;
9799 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9800 dlbaton->data = DW_BLOCK (attr)->data;
9801 dlbaton->size = DW_BLOCK (attr)->size;
9802 dlbaton->per_cu = cu->per_cu;
9804 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9806 else if (is_ref_attr (attr))
9808 struct dwarf2_cu *target_cu = cu;
9809 struct die_info *target_die;
9811 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9812 gdb_assert (target_cu->objfile == objfile);
9813 if (die_is_declaration (target_die, target_cu))
9815 const char *target_physname;
9817 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9818 if (target_physname == NULL)
9819 complaint (&symfile_complaints,
9820 _("DW_AT_GNU_call_site_target target DIE has invalid "
9821 "physname, for referencing DIE 0x%x [in module %s]"),
9822 die->offset.sect_off, objfile->name);
9824 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9830 /* DW_AT_entry_pc should be preferred. */
9831 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9832 complaint (&symfile_complaints,
9833 _("DW_AT_GNU_call_site_target target DIE has invalid "
9834 "low pc, for referencing DIE 0x%x [in module %s]"),
9835 die->offset.sect_off, objfile->name);
9837 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9841 complaint (&symfile_complaints,
9842 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9843 "block nor reference, for DIE 0x%x [in module %s]"),
9844 die->offset.sect_off, objfile->name);
9846 call_site->per_cu = cu->per_cu;
9848 for (child_die = die->child;
9849 child_die && child_die->tag;
9850 child_die = sibling_die (child_die))
9852 struct call_site_parameter *parameter;
9853 struct attribute *loc, *origin;
9855 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9857 /* Already printed the complaint above. */
9861 gdb_assert (call_site->parameter_count < nparams);
9862 parameter = &call_site->parameter[call_site->parameter_count];
9864 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9865 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9866 register is contained in DW_AT_GNU_call_site_value. */
9868 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9869 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9870 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9874 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9875 offset = dwarf2_get_ref_die_offset (origin);
9876 if (!offset_in_cu_p (&cu->header, offset))
9878 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9879 binding can be done only inside one CU. Such referenced DIE
9880 therefore cannot be even moved to DW_TAG_partial_unit. */
9881 complaint (&symfile_complaints,
9882 _("DW_AT_abstract_origin offset is not in CU for "
9883 "DW_TAG_GNU_call_site child DIE 0x%x "
9885 child_die->offset.sect_off, objfile->name);
9888 parameter->u.param_offset.cu_off = (offset.sect_off
9889 - cu->header.offset.sect_off);
9891 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9893 complaint (&symfile_complaints,
9894 _("No DW_FORM_block* DW_AT_location for "
9895 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9896 child_die->offset.sect_off, objfile->name);
9901 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9902 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9903 if (parameter->u.dwarf_reg != -1)
9904 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9905 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9906 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9907 ¶meter->u.fb_offset))
9908 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9911 complaint (&symfile_complaints,
9912 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9913 "for DW_FORM_block* DW_AT_location is supported for "
9914 "DW_TAG_GNU_call_site child DIE 0x%x "
9916 child_die->offset.sect_off, objfile->name);
9921 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9922 if (!attr_form_is_block (attr))
9924 complaint (&symfile_complaints,
9925 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9926 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9927 child_die->offset.sect_off, objfile->name);
9930 parameter->value = DW_BLOCK (attr)->data;
9931 parameter->value_size = DW_BLOCK (attr)->size;
9933 /* Parameters are not pre-cleared by memset above. */
9934 parameter->data_value = NULL;
9935 parameter->data_value_size = 0;
9936 call_site->parameter_count++;
9938 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9941 if (!attr_form_is_block (attr))
9942 complaint (&symfile_complaints,
9943 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9944 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9945 child_die->offset.sect_off, objfile->name);
9948 parameter->data_value = DW_BLOCK (attr)->data;
9949 parameter->data_value_size = DW_BLOCK (attr)->size;
9955 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9956 Return 1 if the attributes are present and valid, otherwise, return 0.
9957 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9960 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9961 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9962 struct partial_symtab *ranges_pst)
9964 struct objfile *objfile = cu->objfile;
9965 struct comp_unit_head *cu_header = &cu->header;
9966 bfd *obfd = objfile->obfd;
9967 unsigned int addr_size = cu_header->addr_size;
9968 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9969 /* Base address selection entry. */
9980 found_base = cu->base_known;
9981 base = cu->base_address;
9983 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9984 if (offset >= dwarf2_per_objfile->ranges.size)
9986 complaint (&symfile_complaints,
9987 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9991 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9993 /* Read in the largest possible address. */
9994 marker = read_address (obfd, buffer, cu, &dummy);
9995 if ((marker & mask) == mask)
9997 /* If we found the largest possible address, then
9998 read the base address. */
9999 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10000 buffer += 2 * addr_size;
10001 offset += 2 * addr_size;
10007 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10011 CORE_ADDR range_beginning, range_end;
10013 range_beginning = read_address (obfd, buffer, cu, &dummy);
10014 buffer += addr_size;
10015 range_end = read_address (obfd, buffer, cu, &dummy);
10016 buffer += addr_size;
10017 offset += 2 * addr_size;
10019 /* An end of list marker is a pair of zero addresses. */
10020 if (range_beginning == 0 && range_end == 0)
10021 /* Found the end of list entry. */
10024 /* Each base address selection entry is a pair of 2 values.
10025 The first is the largest possible address, the second is
10026 the base address. Check for a base address here. */
10027 if ((range_beginning & mask) == mask)
10029 /* If we found the largest possible address, then
10030 read the base address. */
10031 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10038 /* We have no valid base address for the ranges
10040 complaint (&symfile_complaints,
10041 _("Invalid .debug_ranges data (no base address)"));
10045 if (range_beginning > range_end)
10047 /* Inverted range entries are invalid. */
10048 complaint (&symfile_complaints,
10049 _("Invalid .debug_ranges data (inverted range)"));
10053 /* Empty range entries have no effect. */
10054 if (range_beginning == range_end)
10057 range_beginning += base;
10060 /* A not-uncommon case of bad debug info.
10061 Don't pollute the addrmap with bad data. */
10062 if (range_beginning + baseaddr == 0
10063 && !dwarf2_per_objfile->has_section_at_zero)
10065 complaint (&symfile_complaints,
10066 _(".debug_ranges entry has start address of zero"
10067 " [in module %s]"), objfile->name);
10071 if (ranges_pst != NULL)
10072 addrmap_set_empty (objfile->psymtabs_addrmap,
10073 range_beginning + baseaddr,
10074 range_end - 1 + baseaddr,
10077 /* FIXME: This is recording everything as a low-high
10078 segment of consecutive addresses. We should have a
10079 data structure for discontiguous block ranges
10083 low = range_beginning;
10089 if (range_beginning < low)
10090 low = range_beginning;
10091 if (range_end > high)
10097 /* If the first entry is an end-of-list marker, the range
10098 describes an empty scope, i.e. no instructions. */
10104 *high_return = high;
10108 /* Get low and high pc attributes from a die. Return 1 if the attributes
10109 are present and valid, otherwise, return 0. Return -1 if the range is
10110 discontinuous, i.e. derived from DW_AT_ranges information. */
10113 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10114 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10115 struct partial_symtab *pst)
10117 struct attribute *attr;
10118 struct attribute *attr_high;
10120 CORE_ADDR high = 0;
10123 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10126 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10129 low = DW_ADDR (attr);
10130 if (attr_high->form == DW_FORM_addr
10131 || attr_high->form == DW_FORM_GNU_addr_index)
10132 high = DW_ADDR (attr_high);
10134 high = low + DW_UNSND (attr_high);
10137 /* Found high w/o low attribute. */
10140 /* Found consecutive range of addresses. */
10145 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10148 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10149 We take advantage of the fact that DW_AT_ranges does not appear
10150 in DW_TAG_compile_unit of DWO files. */
10151 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10152 unsigned int ranges_offset = (DW_UNSND (attr)
10153 + (need_ranges_base
10157 /* Value of the DW_AT_ranges attribute is the offset in the
10158 .debug_ranges section. */
10159 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10161 /* Found discontinuous range of addresses. */
10166 /* read_partial_die has also the strict LOW < HIGH requirement. */
10170 /* When using the GNU linker, .gnu.linkonce. sections are used to
10171 eliminate duplicate copies of functions and vtables and such.
10172 The linker will arbitrarily choose one and discard the others.
10173 The AT_*_pc values for such functions refer to local labels in
10174 these sections. If the section from that file was discarded, the
10175 labels are not in the output, so the relocs get a value of 0.
10176 If this is a discarded function, mark the pc bounds as invalid,
10177 so that GDB will ignore it. */
10178 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10187 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10188 its low and high PC addresses. Do nothing if these addresses could not
10189 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10190 and HIGHPC to the high address if greater than HIGHPC. */
10193 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10194 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10195 struct dwarf2_cu *cu)
10197 CORE_ADDR low, high;
10198 struct die_info *child = die->child;
10200 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10202 *lowpc = min (*lowpc, low);
10203 *highpc = max (*highpc, high);
10206 /* If the language does not allow nested subprograms (either inside
10207 subprograms or lexical blocks), we're done. */
10208 if (cu->language != language_ada)
10211 /* Check all the children of the given DIE. If it contains nested
10212 subprograms, then check their pc bounds. Likewise, we need to
10213 check lexical blocks as well, as they may also contain subprogram
10215 while (child && child->tag)
10217 if (child->tag == DW_TAG_subprogram
10218 || child->tag == DW_TAG_lexical_block)
10219 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10220 child = sibling_die (child);
10224 /* Get the low and high pc's represented by the scope DIE, and store
10225 them in *LOWPC and *HIGHPC. If the correct values can't be
10226 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10229 get_scope_pc_bounds (struct die_info *die,
10230 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10231 struct dwarf2_cu *cu)
10233 CORE_ADDR best_low = (CORE_ADDR) -1;
10234 CORE_ADDR best_high = (CORE_ADDR) 0;
10235 CORE_ADDR current_low, current_high;
10237 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
10239 best_low = current_low;
10240 best_high = current_high;
10244 struct die_info *child = die->child;
10246 while (child && child->tag)
10248 switch (child->tag) {
10249 case DW_TAG_subprogram:
10250 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10252 case DW_TAG_namespace:
10253 case DW_TAG_module:
10254 /* FIXME: carlton/2004-01-16: Should we do this for
10255 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10256 that current GCC's always emit the DIEs corresponding
10257 to definitions of methods of classes as children of a
10258 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10259 the DIEs giving the declarations, which could be
10260 anywhere). But I don't see any reason why the
10261 standards says that they have to be there. */
10262 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
10264 if (current_low != ((CORE_ADDR) -1))
10266 best_low = min (best_low, current_low);
10267 best_high = max (best_high, current_high);
10275 child = sibling_die (child);
10280 *highpc = best_high;
10283 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10287 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10288 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10290 struct objfile *objfile = cu->objfile;
10291 struct attribute *attr;
10292 struct attribute *attr_high;
10294 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10297 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10300 CORE_ADDR low = DW_ADDR (attr);
10302 if (attr_high->form == DW_FORM_addr
10303 || attr_high->form == DW_FORM_GNU_addr_index)
10304 high = DW_ADDR (attr_high);
10306 high = low + DW_UNSND (attr_high);
10308 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10312 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10315 bfd *obfd = objfile->obfd;
10316 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10317 We take advantage of the fact that DW_AT_ranges does not appear
10318 in DW_TAG_compile_unit of DWO files. */
10319 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10321 /* The value of the DW_AT_ranges attribute is the offset of the
10322 address range list in the .debug_ranges section. */
10323 unsigned long offset = (DW_UNSND (attr)
10324 + (need_ranges_base ? cu->ranges_base : 0));
10325 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10327 /* For some target architectures, but not others, the
10328 read_address function sign-extends the addresses it returns.
10329 To recognize base address selection entries, we need a
10331 unsigned int addr_size = cu->header.addr_size;
10332 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10334 /* The base address, to which the next pair is relative. Note
10335 that this 'base' is a DWARF concept: most entries in a range
10336 list are relative, to reduce the number of relocs against the
10337 debugging information. This is separate from this function's
10338 'baseaddr' argument, which GDB uses to relocate debugging
10339 information from a shared library based on the address at
10340 which the library was loaded. */
10341 CORE_ADDR base = cu->base_address;
10342 int base_known = cu->base_known;
10344 gdb_assert (dwarf2_per_objfile->ranges.readin);
10345 if (offset >= dwarf2_per_objfile->ranges.size)
10347 complaint (&symfile_complaints,
10348 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10355 unsigned int bytes_read;
10356 CORE_ADDR start, end;
10358 start = read_address (obfd, buffer, cu, &bytes_read);
10359 buffer += bytes_read;
10360 end = read_address (obfd, buffer, cu, &bytes_read);
10361 buffer += bytes_read;
10363 /* Did we find the end of the range list? */
10364 if (start == 0 && end == 0)
10367 /* Did we find a base address selection entry? */
10368 else if ((start & base_select_mask) == base_select_mask)
10374 /* We found an ordinary address range. */
10379 complaint (&symfile_complaints,
10380 _("Invalid .debug_ranges data "
10381 "(no base address)"));
10387 /* Inverted range entries are invalid. */
10388 complaint (&symfile_complaints,
10389 _("Invalid .debug_ranges data "
10390 "(inverted range)"));
10394 /* Empty range entries have no effect. */
10398 start += base + baseaddr;
10399 end += base + baseaddr;
10401 /* A not-uncommon case of bad debug info.
10402 Don't pollute the addrmap with bad data. */
10403 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10405 complaint (&symfile_complaints,
10406 _(".debug_ranges entry has start address of zero"
10407 " [in module %s]"), objfile->name);
10411 record_block_range (block, start, end - 1);
10417 /* Check whether the producer field indicates either of GCC < 4.6, or the
10418 Intel C/C++ compiler, and cache the result in CU. */
10421 check_producer (struct dwarf2_cu *cu)
10424 int major, minor, release;
10426 if (cu->producer == NULL)
10428 /* For unknown compilers expect their behavior is DWARF version
10431 GCC started to support .debug_types sections by -gdwarf-4 since
10432 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10433 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10434 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10435 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10437 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10439 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10441 cs = &cu->producer[strlen ("GNU ")];
10442 while (*cs && !isdigit (*cs))
10444 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10446 /* Not recognized as GCC. */
10450 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10451 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10454 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10455 cu->producer_is_icc = 1;
10458 /* For other non-GCC compilers, expect their behavior is DWARF version
10462 cu->checked_producer = 1;
10465 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10466 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10467 during 4.6.0 experimental. */
10470 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10472 if (!cu->checked_producer)
10473 check_producer (cu);
10475 return cu->producer_is_gxx_lt_4_6;
10478 /* Return the default accessibility type if it is not overriden by
10479 DW_AT_accessibility. */
10481 static enum dwarf_access_attribute
10482 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10484 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10486 /* The default DWARF 2 accessibility for members is public, the default
10487 accessibility for inheritance is private. */
10489 if (die->tag != DW_TAG_inheritance)
10490 return DW_ACCESS_public;
10492 return DW_ACCESS_private;
10496 /* DWARF 3+ defines the default accessibility a different way. The same
10497 rules apply now for DW_TAG_inheritance as for the members and it only
10498 depends on the container kind. */
10500 if (die->parent->tag == DW_TAG_class_type)
10501 return DW_ACCESS_private;
10503 return DW_ACCESS_public;
10507 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10508 offset. If the attribute was not found return 0, otherwise return
10509 1. If it was found but could not properly be handled, set *OFFSET
10513 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10516 struct attribute *attr;
10518 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10523 /* Note that we do not check for a section offset first here.
10524 This is because DW_AT_data_member_location is new in DWARF 4,
10525 so if we see it, we can assume that a constant form is really
10526 a constant and not a section offset. */
10527 if (attr_form_is_constant (attr))
10528 *offset = dwarf2_get_attr_constant_value (attr, 0);
10529 else if (attr_form_is_section_offset (attr))
10530 dwarf2_complex_location_expr_complaint ();
10531 else if (attr_form_is_block (attr))
10532 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10534 dwarf2_complex_location_expr_complaint ();
10542 /* Add an aggregate field to the field list. */
10545 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10546 struct dwarf2_cu *cu)
10548 struct objfile *objfile = cu->objfile;
10549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10550 struct nextfield *new_field;
10551 struct attribute *attr;
10553 const char *fieldname = "";
10555 /* Allocate a new field list entry and link it in. */
10556 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10557 make_cleanup (xfree, new_field);
10558 memset (new_field, 0, sizeof (struct nextfield));
10560 if (die->tag == DW_TAG_inheritance)
10562 new_field->next = fip->baseclasses;
10563 fip->baseclasses = new_field;
10567 new_field->next = fip->fields;
10568 fip->fields = new_field;
10572 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10574 new_field->accessibility = DW_UNSND (attr);
10576 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10577 if (new_field->accessibility != DW_ACCESS_public)
10578 fip->non_public_fields = 1;
10580 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10582 new_field->virtuality = DW_UNSND (attr);
10584 new_field->virtuality = DW_VIRTUALITY_none;
10586 fp = &new_field->field;
10588 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10592 /* Data member other than a C++ static data member. */
10594 /* Get type of field. */
10595 fp->type = die_type (die, cu);
10597 SET_FIELD_BITPOS (*fp, 0);
10599 /* Get bit size of field (zero if none). */
10600 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10603 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10607 FIELD_BITSIZE (*fp) = 0;
10610 /* Get bit offset of field. */
10611 if (handle_data_member_location (die, cu, &offset))
10612 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10613 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10616 if (gdbarch_bits_big_endian (gdbarch))
10618 /* For big endian bits, the DW_AT_bit_offset gives the
10619 additional bit offset from the MSB of the containing
10620 anonymous object to the MSB of the field. We don't
10621 have to do anything special since we don't need to
10622 know the size of the anonymous object. */
10623 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10627 /* For little endian bits, compute the bit offset to the
10628 MSB of the anonymous object, subtract off the number of
10629 bits from the MSB of the field to the MSB of the
10630 object, and then subtract off the number of bits of
10631 the field itself. The result is the bit offset of
10632 the LSB of the field. */
10633 int anonymous_size;
10634 int bit_offset = DW_UNSND (attr);
10636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10639 /* The size of the anonymous object containing
10640 the bit field is explicit, so use the
10641 indicated size (in bytes). */
10642 anonymous_size = DW_UNSND (attr);
10646 /* The size of the anonymous object containing
10647 the bit field must be inferred from the type
10648 attribute of the data member containing the
10650 anonymous_size = TYPE_LENGTH (fp->type);
10652 SET_FIELD_BITPOS (*fp,
10653 (FIELD_BITPOS (*fp)
10654 + anonymous_size * bits_per_byte
10655 - bit_offset - FIELD_BITSIZE (*fp)));
10659 /* Get name of field. */
10660 fieldname = dwarf2_name (die, cu);
10661 if (fieldname == NULL)
10664 /* The name is already allocated along with this objfile, so we don't
10665 need to duplicate it for the type. */
10666 fp->name = fieldname;
10668 /* Change accessibility for artificial fields (e.g. virtual table
10669 pointer or virtual base class pointer) to private. */
10670 if (dwarf2_attr (die, DW_AT_artificial, cu))
10672 FIELD_ARTIFICIAL (*fp) = 1;
10673 new_field->accessibility = DW_ACCESS_private;
10674 fip->non_public_fields = 1;
10677 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10679 /* C++ static member. */
10681 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10682 is a declaration, but all versions of G++ as of this writing
10683 (so through at least 3.2.1) incorrectly generate
10684 DW_TAG_variable tags. */
10686 const char *physname;
10688 /* Get name of field. */
10689 fieldname = dwarf2_name (die, cu);
10690 if (fieldname == NULL)
10693 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10695 /* Only create a symbol if this is an external value.
10696 new_symbol checks this and puts the value in the global symbol
10697 table, which we want. If it is not external, new_symbol
10698 will try to put the value in cu->list_in_scope which is wrong. */
10699 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10701 /* A static const member, not much different than an enum as far as
10702 we're concerned, except that we can support more types. */
10703 new_symbol (die, NULL, cu);
10706 /* Get physical name. */
10707 physname = dwarf2_physname (fieldname, die, cu);
10709 /* The name is already allocated along with this objfile, so we don't
10710 need to duplicate it for the type. */
10711 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10712 FIELD_TYPE (*fp) = die_type (die, cu);
10713 FIELD_NAME (*fp) = fieldname;
10715 else if (die->tag == DW_TAG_inheritance)
10719 /* C++ base class field. */
10720 if (handle_data_member_location (die, cu, &offset))
10721 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10722 FIELD_BITSIZE (*fp) = 0;
10723 FIELD_TYPE (*fp) = die_type (die, cu);
10724 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10725 fip->nbaseclasses++;
10729 /* Add a typedef defined in the scope of the FIP's class. */
10732 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10733 struct dwarf2_cu *cu)
10735 struct objfile *objfile = cu->objfile;
10736 struct typedef_field_list *new_field;
10737 struct attribute *attr;
10738 struct typedef_field *fp;
10739 char *fieldname = "";
10741 /* Allocate a new field list entry and link it in. */
10742 new_field = xzalloc (sizeof (*new_field));
10743 make_cleanup (xfree, new_field);
10745 gdb_assert (die->tag == DW_TAG_typedef);
10747 fp = &new_field->field;
10749 /* Get name of field. */
10750 fp->name = dwarf2_name (die, cu);
10751 if (fp->name == NULL)
10754 fp->type = read_type_die (die, cu);
10756 new_field->next = fip->typedef_field_list;
10757 fip->typedef_field_list = new_field;
10758 fip->typedef_field_list_count++;
10761 /* Create the vector of fields, and attach it to the type. */
10764 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10765 struct dwarf2_cu *cu)
10767 int nfields = fip->nfields;
10769 /* Record the field count, allocate space for the array of fields,
10770 and create blank accessibility bitfields if necessary. */
10771 TYPE_NFIELDS (type) = nfields;
10772 TYPE_FIELDS (type) = (struct field *)
10773 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10774 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10776 if (fip->non_public_fields && cu->language != language_ada)
10778 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10780 TYPE_FIELD_PRIVATE_BITS (type) =
10781 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10782 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10784 TYPE_FIELD_PROTECTED_BITS (type) =
10785 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10786 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10788 TYPE_FIELD_IGNORE_BITS (type) =
10789 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10790 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10793 /* If the type has baseclasses, allocate and clear a bit vector for
10794 TYPE_FIELD_VIRTUAL_BITS. */
10795 if (fip->nbaseclasses && cu->language != language_ada)
10797 int num_bytes = B_BYTES (fip->nbaseclasses);
10798 unsigned char *pointer;
10800 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10801 pointer = TYPE_ALLOC (type, num_bytes);
10802 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10803 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10804 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10807 /* Copy the saved-up fields into the field vector. Start from the head of
10808 the list, adding to the tail of the field array, so that they end up in
10809 the same order in the array in which they were added to the list. */
10810 while (nfields-- > 0)
10812 struct nextfield *fieldp;
10816 fieldp = fip->fields;
10817 fip->fields = fieldp->next;
10821 fieldp = fip->baseclasses;
10822 fip->baseclasses = fieldp->next;
10825 TYPE_FIELD (type, nfields) = fieldp->field;
10826 switch (fieldp->accessibility)
10828 case DW_ACCESS_private:
10829 if (cu->language != language_ada)
10830 SET_TYPE_FIELD_PRIVATE (type, nfields);
10833 case DW_ACCESS_protected:
10834 if (cu->language != language_ada)
10835 SET_TYPE_FIELD_PROTECTED (type, nfields);
10838 case DW_ACCESS_public:
10842 /* Unknown accessibility. Complain and treat it as public. */
10844 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10845 fieldp->accessibility);
10849 if (nfields < fip->nbaseclasses)
10851 switch (fieldp->virtuality)
10853 case DW_VIRTUALITY_virtual:
10854 case DW_VIRTUALITY_pure_virtual:
10855 if (cu->language == language_ada)
10856 error (_("unexpected virtuality in component of Ada type"));
10857 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10864 /* Return true if this member function is a constructor, false
10868 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10870 const char *fieldname;
10871 const char *typename;
10874 if (die->parent == NULL)
10877 if (die->parent->tag != DW_TAG_structure_type
10878 && die->parent->tag != DW_TAG_union_type
10879 && die->parent->tag != DW_TAG_class_type)
10882 fieldname = dwarf2_name (die, cu);
10883 typename = dwarf2_name (die->parent, cu);
10884 if (fieldname == NULL || typename == NULL)
10887 len = strlen (fieldname);
10888 return (strncmp (fieldname, typename, len) == 0
10889 && (typename[len] == '\0' || typename[len] == '<'));
10892 /* Add a member function to the proper fieldlist. */
10895 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10896 struct type *type, struct dwarf2_cu *cu)
10898 struct objfile *objfile = cu->objfile;
10899 struct attribute *attr;
10900 struct fnfieldlist *flp;
10902 struct fn_field *fnp;
10903 const char *fieldname;
10904 struct nextfnfield *new_fnfield;
10905 struct type *this_type;
10906 enum dwarf_access_attribute accessibility;
10908 if (cu->language == language_ada)
10909 error (_("unexpected member function in Ada type"));
10911 /* Get name of member function. */
10912 fieldname = dwarf2_name (die, cu);
10913 if (fieldname == NULL)
10916 /* Look up member function name in fieldlist. */
10917 for (i = 0; i < fip->nfnfields; i++)
10919 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10923 /* Create new list element if necessary. */
10924 if (i < fip->nfnfields)
10925 flp = &fip->fnfieldlists[i];
10928 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10930 fip->fnfieldlists = (struct fnfieldlist *)
10931 xrealloc (fip->fnfieldlists,
10932 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10933 * sizeof (struct fnfieldlist));
10934 if (fip->nfnfields == 0)
10935 make_cleanup (free_current_contents, &fip->fnfieldlists);
10937 flp = &fip->fnfieldlists[fip->nfnfields];
10938 flp->name = fieldname;
10941 i = fip->nfnfields++;
10944 /* Create a new member function field and chain it to the field list
10946 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10947 make_cleanup (xfree, new_fnfield);
10948 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10949 new_fnfield->next = flp->head;
10950 flp->head = new_fnfield;
10953 /* Fill in the member function field info. */
10954 fnp = &new_fnfield->fnfield;
10956 /* Delay processing of the physname until later. */
10957 if (cu->language == language_cplus || cu->language == language_java)
10959 add_to_method_list (type, i, flp->length - 1, fieldname,
10964 const char *physname = dwarf2_physname (fieldname, die, cu);
10965 fnp->physname = physname ? physname : "";
10968 fnp->type = alloc_type (objfile);
10969 this_type = read_type_die (die, cu);
10970 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10972 int nparams = TYPE_NFIELDS (this_type);
10974 /* TYPE is the domain of this method, and THIS_TYPE is the type
10975 of the method itself (TYPE_CODE_METHOD). */
10976 smash_to_method_type (fnp->type, type,
10977 TYPE_TARGET_TYPE (this_type),
10978 TYPE_FIELDS (this_type),
10979 TYPE_NFIELDS (this_type),
10980 TYPE_VARARGS (this_type));
10982 /* Handle static member functions.
10983 Dwarf2 has no clean way to discern C++ static and non-static
10984 member functions. G++ helps GDB by marking the first
10985 parameter for non-static member functions (which is the this
10986 pointer) as artificial. We obtain this information from
10987 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10988 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10989 fnp->voffset = VOFFSET_STATIC;
10992 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10993 dwarf2_full_name (fieldname, die, cu));
10995 /* Get fcontext from DW_AT_containing_type if present. */
10996 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10997 fnp->fcontext = die_containing_type (die, cu);
10999 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11000 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11002 /* Get accessibility. */
11003 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11005 accessibility = DW_UNSND (attr);
11007 accessibility = dwarf2_default_access_attribute (die, cu);
11008 switch (accessibility)
11010 case DW_ACCESS_private:
11011 fnp->is_private = 1;
11013 case DW_ACCESS_protected:
11014 fnp->is_protected = 1;
11018 /* Check for artificial methods. */
11019 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11020 if (attr && DW_UNSND (attr) != 0)
11021 fnp->is_artificial = 1;
11023 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11025 /* Get index in virtual function table if it is a virtual member
11026 function. For older versions of GCC, this is an offset in the
11027 appropriate virtual table, as specified by DW_AT_containing_type.
11028 For everyone else, it is an expression to be evaluated relative
11029 to the object address. */
11031 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11034 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11036 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11038 /* Old-style GCC. */
11039 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11041 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11042 || (DW_BLOCK (attr)->size > 1
11043 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11044 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11046 struct dwarf_block blk;
11049 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11051 blk.size = DW_BLOCK (attr)->size - offset;
11052 blk.data = DW_BLOCK (attr)->data + offset;
11053 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11054 if ((fnp->voffset % cu->header.addr_size) != 0)
11055 dwarf2_complex_location_expr_complaint ();
11057 fnp->voffset /= cu->header.addr_size;
11061 dwarf2_complex_location_expr_complaint ();
11063 if (!fnp->fcontext)
11064 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11066 else if (attr_form_is_section_offset (attr))
11068 dwarf2_complex_location_expr_complaint ();
11072 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11078 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11079 if (attr && DW_UNSND (attr))
11081 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11082 complaint (&symfile_complaints,
11083 _("Member function \"%s\" (offset %d) is virtual "
11084 "but the vtable offset is not specified"),
11085 fieldname, die->offset.sect_off);
11086 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11087 TYPE_CPLUS_DYNAMIC (type) = 1;
11092 /* Create the vector of member function fields, and attach it to the type. */
11095 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11096 struct dwarf2_cu *cu)
11098 struct fnfieldlist *flp;
11101 if (cu->language == language_ada)
11102 error (_("unexpected member functions in Ada type"));
11104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11105 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11106 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11108 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11110 struct nextfnfield *nfp = flp->head;
11111 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11114 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11115 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11116 fn_flp->fn_fields = (struct fn_field *)
11117 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11118 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11119 fn_flp->fn_fields[k] = nfp->fnfield;
11122 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11125 /* Returns non-zero if NAME is the name of a vtable member in CU's
11126 language, zero otherwise. */
11128 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11130 static const char vptr[] = "_vptr";
11131 static const char vtable[] = "vtable";
11133 /* Look for the C++ and Java forms of the vtable. */
11134 if ((cu->language == language_java
11135 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11136 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11137 && is_cplus_marker (name[sizeof (vptr) - 1])))
11143 /* GCC outputs unnamed structures that are really pointers to member
11144 functions, with the ABI-specified layout. If TYPE describes
11145 such a structure, smash it into a member function type.
11147 GCC shouldn't do this; it should just output pointer to member DIEs.
11148 This is GCC PR debug/28767. */
11151 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11153 struct type *pfn_type, *domain_type, *new_type;
11155 /* Check for a structure with no name and two children. */
11156 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11159 /* Check for __pfn and __delta members. */
11160 if (TYPE_FIELD_NAME (type, 0) == NULL
11161 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11162 || TYPE_FIELD_NAME (type, 1) == NULL
11163 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11166 /* Find the type of the method. */
11167 pfn_type = TYPE_FIELD_TYPE (type, 0);
11168 if (pfn_type == NULL
11169 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11170 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11173 /* Look for the "this" argument. */
11174 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11175 if (TYPE_NFIELDS (pfn_type) == 0
11176 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11177 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11180 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11181 new_type = alloc_type (objfile);
11182 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11183 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11184 TYPE_VARARGS (pfn_type));
11185 smash_to_methodptr_type (type, new_type);
11188 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11192 producer_is_icc (struct dwarf2_cu *cu)
11194 if (!cu->checked_producer)
11195 check_producer (cu);
11197 return cu->producer_is_icc;
11200 /* Called when we find the DIE that starts a structure or union scope
11201 (definition) to create a type for the structure or union. Fill in
11202 the type's name and general properties; the members will not be
11203 processed until process_structure_type.
11205 NOTE: we need to call these functions regardless of whether or not the
11206 DIE has a DW_AT_name attribute, since it might be an anonymous
11207 structure or union. This gets the type entered into our set of
11208 user defined types.
11210 However, if the structure is incomplete (an opaque struct/union)
11211 then suppress creating a symbol table entry for it since gdb only
11212 wants to find the one with the complete definition. Note that if
11213 it is complete, we just call new_symbol, which does it's own
11214 checking about whether the struct/union is anonymous or not (and
11215 suppresses creating a symbol table entry itself). */
11217 static struct type *
11218 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11220 struct objfile *objfile = cu->objfile;
11222 struct attribute *attr;
11225 /* If the definition of this type lives in .debug_types, read that type.
11226 Don't follow DW_AT_specification though, that will take us back up
11227 the chain and we want to go down. */
11228 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11231 struct dwarf2_cu *type_cu = cu;
11232 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11234 /* We could just recurse on read_structure_type, but we need to call
11235 get_die_type to ensure only one type for this DIE is created.
11236 This is important, for example, because for c++ classes we need
11237 TYPE_NAME set which is only done by new_symbol. Blech. */
11238 type = read_type_die (type_die, type_cu);
11240 /* TYPE_CU may not be the same as CU.
11241 Ensure TYPE is recorded in CU's type_hash table. */
11242 return set_die_type (die, type, cu);
11245 type = alloc_type (objfile);
11246 INIT_CPLUS_SPECIFIC (type);
11248 name = dwarf2_name (die, cu);
11251 if (cu->language == language_cplus
11252 || cu->language == language_java)
11254 const char *full_name = dwarf2_full_name (name, die, cu);
11256 /* dwarf2_full_name might have already finished building the DIE's
11257 type. If so, there is no need to continue. */
11258 if (get_die_type (die, cu) != NULL)
11259 return get_die_type (die, cu);
11261 TYPE_TAG_NAME (type) = full_name;
11262 if (die->tag == DW_TAG_structure_type
11263 || die->tag == DW_TAG_class_type)
11264 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11268 /* The name is already allocated along with this objfile, so
11269 we don't need to duplicate it for the type. */
11270 TYPE_TAG_NAME (type) = name;
11271 if (die->tag == DW_TAG_class_type)
11272 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11276 if (die->tag == DW_TAG_structure_type)
11278 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11280 else if (die->tag == DW_TAG_union_type)
11282 TYPE_CODE (type) = TYPE_CODE_UNION;
11286 TYPE_CODE (type) = TYPE_CODE_CLASS;
11289 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11290 TYPE_DECLARED_CLASS (type) = 1;
11292 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11295 TYPE_LENGTH (type) = DW_UNSND (attr);
11299 TYPE_LENGTH (type) = 0;
11302 if (producer_is_icc (cu))
11304 /* ICC does not output the required DW_AT_declaration
11305 on incomplete types, but gives them a size of zero. */
11308 TYPE_STUB_SUPPORTED (type) = 1;
11310 if (die_is_declaration (die, cu))
11311 TYPE_STUB (type) = 1;
11312 else if (attr == NULL && die->child == NULL
11313 && producer_is_realview (cu->producer))
11314 /* RealView does not output the required DW_AT_declaration
11315 on incomplete types. */
11316 TYPE_STUB (type) = 1;
11318 /* We need to add the type field to the die immediately so we don't
11319 infinitely recurse when dealing with pointers to the structure
11320 type within the structure itself. */
11321 set_die_type (die, type, cu);
11323 /* set_die_type should be already done. */
11324 set_descriptive_type (type, die, cu);
11329 /* Finish creating a structure or union type, including filling in
11330 its members and creating a symbol for it. */
11333 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11335 struct objfile *objfile = cu->objfile;
11336 struct die_info *child_die = die->child;
11339 type = get_die_type (die, cu);
11341 type = read_structure_type (die, cu);
11343 if (die->child != NULL && ! die_is_declaration (die, cu))
11345 struct field_info fi;
11346 struct die_info *child_die;
11347 VEC (symbolp) *template_args = NULL;
11348 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11350 memset (&fi, 0, sizeof (struct field_info));
11352 child_die = die->child;
11354 while (child_die && child_die->tag)
11356 if (child_die->tag == DW_TAG_member
11357 || child_die->tag == DW_TAG_variable)
11359 /* NOTE: carlton/2002-11-05: A C++ static data member
11360 should be a DW_TAG_member that is a declaration, but
11361 all versions of G++ as of this writing (so through at
11362 least 3.2.1) incorrectly generate DW_TAG_variable
11363 tags for them instead. */
11364 dwarf2_add_field (&fi, child_die, cu);
11366 else if (child_die->tag == DW_TAG_subprogram)
11368 /* C++ member function. */
11369 dwarf2_add_member_fn (&fi, child_die, type, cu);
11371 else if (child_die->tag == DW_TAG_inheritance)
11373 /* C++ base class field. */
11374 dwarf2_add_field (&fi, child_die, cu);
11376 else if (child_die->tag == DW_TAG_typedef)
11377 dwarf2_add_typedef (&fi, child_die, cu);
11378 else if (child_die->tag == DW_TAG_template_type_param
11379 || child_die->tag == DW_TAG_template_value_param)
11381 struct symbol *arg = new_symbol (child_die, NULL, cu);
11384 VEC_safe_push (symbolp, template_args, arg);
11387 child_die = sibling_die (child_die);
11390 /* Attach template arguments to type. */
11391 if (! VEC_empty (symbolp, template_args))
11393 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11394 TYPE_N_TEMPLATE_ARGUMENTS (type)
11395 = VEC_length (symbolp, template_args);
11396 TYPE_TEMPLATE_ARGUMENTS (type)
11397 = obstack_alloc (&objfile->objfile_obstack,
11398 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11399 * sizeof (struct symbol *)));
11400 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11401 VEC_address (symbolp, template_args),
11402 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11403 * sizeof (struct symbol *)));
11404 VEC_free (symbolp, template_args);
11407 /* Attach fields and member functions to the type. */
11409 dwarf2_attach_fields_to_type (&fi, type, cu);
11412 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11414 /* Get the type which refers to the base class (possibly this
11415 class itself) which contains the vtable pointer for the current
11416 class from the DW_AT_containing_type attribute. This use of
11417 DW_AT_containing_type is a GNU extension. */
11419 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11421 struct type *t = die_containing_type (die, cu);
11423 TYPE_VPTR_BASETYPE (type) = t;
11428 /* Our own class provides vtbl ptr. */
11429 for (i = TYPE_NFIELDS (t) - 1;
11430 i >= TYPE_N_BASECLASSES (t);
11433 const char *fieldname = TYPE_FIELD_NAME (t, i);
11435 if (is_vtable_name (fieldname, cu))
11437 TYPE_VPTR_FIELDNO (type) = i;
11442 /* Complain if virtual function table field not found. */
11443 if (i < TYPE_N_BASECLASSES (t))
11444 complaint (&symfile_complaints,
11445 _("virtual function table pointer "
11446 "not found when defining class '%s'"),
11447 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11452 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11455 else if (cu->producer
11456 && strncmp (cu->producer,
11457 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11459 /* The IBM XLC compiler does not provide direct indication
11460 of the containing type, but the vtable pointer is
11461 always named __vfp. */
11465 for (i = TYPE_NFIELDS (type) - 1;
11466 i >= TYPE_N_BASECLASSES (type);
11469 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11471 TYPE_VPTR_FIELDNO (type) = i;
11472 TYPE_VPTR_BASETYPE (type) = type;
11479 /* Copy fi.typedef_field_list linked list elements content into the
11480 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11481 if (fi.typedef_field_list)
11483 int i = fi.typedef_field_list_count;
11485 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11486 TYPE_TYPEDEF_FIELD_ARRAY (type)
11487 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11488 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11490 /* Reverse the list order to keep the debug info elements order. */
11493 struct typedef_field *dest, *src;
11495 dest = &TYPE_TYPEDEF_FIELD (type, i);
11496 src = &fi.typedef_field_list->field;
11497 fi.typedef_field_list = fi.typedef_field_list->next;
11502 do_cleanups (back_to);
11504 if (HAVE_CPLUS_STRUCT (type))
11505 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11508 quirk_gcc_member_function_pointer (type, objfile);
11510 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11511 snapshots) has been known to create a die giving a declaration
11512 for a class that has, as a child, a die giving a definition for a
11513 nested class. So we have to process our children even if the
11514 current die is a declaration. Normally, of course, a declaration
11515 won't have any children at all. */
11517 while (child_die != NULL && child_die->tag)
11519 if (child_die->tag == DW_TAG_member
11520 || child_die->tag == DW_TAG_variable
11521 || child_die->tag == DW_TAG_inheritance
11522 || child_die->tag == DW_TAG_template_value_param
11523 || child_die->tag == DW_TAG_template_type_param)
11528 process_die (child_die, cu);
11530 child_die = sibling_die (child_die);
11533 /* Do not consider external references. According to the DWARF standard,
11534 these DIEs are identified by the fact that they have no byte_size
11535 attribute, and a declaration attribute. */
11536 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11537 || !die_is_declaration (die, cu))
11538 new_symbol (die, type, cu);
11541 /* Given a DW_AT_enumeration_type die, set its type. We do not
11542 complete the type's fields yet, or create any symbols. */
11544 static struct type *
11545 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11547 struct objfile *objfile = cu->objfile;
11549 struct attribute *attr;
11552 /* If the definition of this type lives in .debug_types, read that type.
11553 Don't follow DW_AT_specification though, that will take us back up
11554 the chain and we want to go down. */
11555 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11558 struct dwarf2_cu *type_cu = cu;
11559 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11561 type = read_type_die (type_die, type_cu);
11563 /* TYPE_CU may not be the same as CU.
11564 Ensure TYPE is recorded in CU's type_hash table. */
11565 return set_die_type (die, type, cu);
11568 type = alloc_type (objfile);
11570 TYPE_CODE (type) = TYPE_CODE_ENUM;
11571 name = dwarf2_full_name (NULL, die, cu);
11573 TYPE_TAG_NAME (type) = name;
11575 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11578 TYPE_LENGTH (type) = DW_UNSND (attr);
11582 TYPE_LENGTH (type) = 0;
11585 /* The enumeration DIE can be incomplete. In Ada, any type can be
11586 declared as private in the package spec, and then defined only
11587 inside the package body. Such types are known as Taft Amendment
11588 Types. When another package uses such a type, an incomplete DIE
11589 may be generated by the compiler. */
11590 if (die_is_declaration (die, cu))
11591 TYPE_STUB (type) = 1;
11593 return set_die_type (die, type, cu);
11596 /* Given a pointer to a die which begins an enumeration, process all
11597 the dies that define the members of the enumeration, and create the
11598 symbol for the enumeration type.
11600 NOTE: We reverse the order of the element list. */
11603 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11605 struct type *this_type;
11607 this_type = get_die_type (die, cu);
11608 if (this_type == NULL)
11609 this_type = read_enumeration_type (die, cu);
11611 if (die->child != NULL)
11613 struct die_info *child_die;
11614 struct symbol *sym;
11615 struct field *fields = NULL;
11616 int num_fields = 0;
11617 int unsigned_enum = 1;
11622 child_die = die->child;
11623 while (child_die && child_die->tag)
11625 if (child_die->tag != DW_TAG_enumerator)
11627 process_die (child_die, cu);
11631 name = dwarf2_name (child_die, cu);
11634 sym = new_symbol (child_die, this_type, cu);
11635 if (SYMBOL_VALUE (sym) < 0)
11640 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11643 mask |= SYMBOL_VALUE (sym);
11645 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11647 fields = (struct field *)
11649 (num_fields + DW_FIELD_ALLOC_CHUNK)
11650 * sizeof (struct field));
11653 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11654 FIELD_TYPE (fields[num_fields]) = NULL;
11655 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11656 FIELD_BITSIZE (fields[num_fields]) = 0;
11662 child_die = sibling_die (child_die);
11667 TYPE_NFIELDS (this_type) = num_fields;
11668 TYPE_FIELDS (this_type) = (struct field *)
11669 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11670 memcpy (TYPE_FIELDS (this_type), fields,
11671 sizeof (struct field) * num_fields);
11675 TYPE_UNSIGNED (this_type) = 1;
11677 TYPE_FLAG_ENUM (this_type) = 1;
11680 /* If we are reading an enum from a .debug_types unit, and the enum
11681 is a declaration, and the enum is not the signatured type in the
11682 unit, then we do not want to add a symbol for it. Adding a
11683 symbol would in some cases obscure the true definition of the
11684 enum, giving users an incomplete type when the definition is
11685 actually available. Note that we do not want to do this for all
11686 enums which are just declarations, because C++0x allows forward
11687 enum declarations. */
11688 if (cu->per_cu->is_debug_types
11689 && die_is_declaration (die, cu))
11691 struct signatured_type *sig_type;
11694 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11695 cu->per_cu->info_or_types_section,
11696 cu->per_cu->offset);
11697 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11698 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11702 new_symbol (die, this_type, cu);
11705 /* Extract all information from a DW_TAG_array_type DIE and put it in
11706 the DIE's type field. For now, this only handles one dimensional
11709 static struct type *
11710 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11712 struct objfile *objfile = cu->objfile;
11713 struct die_info *child_die;
11715 struct type *element_type, *range_type, *index_type;
11716 struct type **range_types = NULL;
11717 struct attribute *attr;
11719 struct cleanup *back_to;
11722 element_type = die_type (die, cu);
11724 /* The die_type call above may have already set the type for this DIE. */
11725 type = get_die_type (die, cu);
11729 /* Irix 6.2 native cc creates array types without children for
11730 arrays with unspecified length. */
11731 if (die->child == NULL)
11733 index_type = objfile_type (objfile)->builtin_int;
11734 range_type = create_range_type (NULL, index_type, 0, -1);
11735 type = create_array_type (NULL, element_type, range_type);
11736 return set_die_type (die, type, cu);
11739 back_to = make_cleanup (null_cleanup, NULL);
11740 child_die = die->child;
11741 while (child_die && child_die->tag)
11743 if (child_die->tag == DW_TAG_subrange_type)
11745 struct type *child_type = read_type_die (child_die, cu);
11747 if (child_type != NULL)
11749 /* The range type was succesfully read. Save it for the
11750 array type creation. */
11751 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11753 range_types = (struct type **)
11754 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11755 * sizeof (struct type *));
11757 make_cleanup (free_current_contents, &range_types);
11759 range_types[ndim++] = child_type;
11762 child_die = sibling_die (child_die);
11765 /* Dwarf2 dimensions are output from left to right, create the
11766 necessary array types in backwards order. */
11768 type = element_type;
11770 if (read_array_order (die, cu) == DW_ORD_col_major)
11775 type = create_array_type (NULL, type, range_types[i++]);
11780 type = create_array_type (NULL, type, range_types[ndim]);
11783 /* Understand Dwarf2 support for vector types (like they occur on
11784 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11785 array type. This is not part of the Dwarf2/3 standard yet, but a
11786 custom vendor extension. The main difference between a regular
11787 array and the vector variant is that vectors are passed by value
11789 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11791 make_vector_type (type);
11793 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11794 implementation may choose to implement triple vectors using this
11796 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11799 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11800 TYPE_LENGTH (type) = DW_UNSND (attr);
11802 complaint (&symfile_complaints,
11803 _("DW_AT_byte_size for array type smaller "
11804 "than the total size of elements"));
11807 name = dwarf2_name (die, cu);
11809 TYPE_NAME (type) = name;
11811 /* Install the type in the die. */
11812 set_die_type (die, type, cu);
11814 /* set_die_type should be already done. */
11815 set_descriptive_type (type, die, cu);
11817 do_cleanups (back_to);
11822 static enum dwarf_array_dim_ordering
11823 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11825 struct attribute *attr;
11827 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11829 if (attr) return DW_SND (attr);
11831 /* GNU F77 is a special case, as at 08/2004 array type info is the
11832 opposite order to the dwarf2 specification, but data is still
11833 laid out as per normal fortran.
11835 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11836 version checking. */
11838 if (cu->language == language_fortran
11839 && cu->producer && strstr (cu->producer, "GNU F77"))
11841 return DW_ORD_row_major;
11844 switch (cu->language_defn->la_array_ordering)
11846 case array_column_major:
11847 return DW_ORD_col_major;
11848 case array_row_major:
11850 return DW_ORD_row_major;
11854 /* Extract all information from a DW_TAG_set_type DIE and put it in
11855 the DIE's type field. */
11857 static struct type *
11858 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11860 struct type *domain_type, *set_type;
11861 struct attribute *attr;
11863 domain_type = die_type (die, cu);
11865 /* The die_type call above may have already set the type for this DIE. */
11866 set_type = get_die_type (die, cu);
11870 set_type = create_set_type (NULL, domain_type);
11872 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11874 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11876 return set_die_type (die, set_type, cu);
11879 /* A helper for read_common_block that creates a locexpr baton.
11880 SYM is the symbol which we are marking as computed.
11881 COMMON_DIE is the DIE for the common block.
11882 COMMON_LOC is the location expression attribute for the common
11884 MEMBER_LOC is the location expression attribute for the particular
11885 member of the common block that we are processing.
11886 CU is the CU from which the above come. */
11889 mark_common_block_symbol_computed (struct symbol *sym,
11890 struct die_info *common_die,
11891 struct attribute *common_loc,
11892 struct attribute *member_loc,
11893 struct dwarf2_cu *cu)
11895 struct objfile *objfile = dwarf2_per_objfile->objfile;
11896 struct dwarf2_locexpr_baton *baton;
11898 unsigned int cu_off;
11899 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11900 LONGEST offset = 0;
11902 gdb_assert (common_loc && member_loc);
11903 gdb_assert (attr_form_is_block (common_loc));
11904 gdb_assert (attr_form_is_block (member_loc)
11905 || attr_form_is_constant (member_loc));
11907 baton = obstack_alloc (&objfile->objfile_obstack,
11908 sizeof (struct dwarf2_locexpr_baton));
11909 baton->per_cu = cu->per_cu;
11910 gdb_assert (baton->per_cu);
11912 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11914 if (attr_form_is_constant (member_loc))
11916 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11917 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11920 baton->size += DW_BLOCK (member_loc)->size;
11922 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11925 *ptr++ = DW_OP_call4;
11926 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11927 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11930 if (attr_form_is_constant (member_loc))
11932 *ptr++ = DW_OP_addr;
11933 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11934 ptr += cu->header.addr_size;
11938 /* We have to copy the data here, because DW_OP_call4 will only
11939 use a DW_AT_location attribute. */
11940 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11941 ptr += DW_BLOCK (member_loc)->size;
11944 *ptr++ = DW_OP_plus;
11945 gdb_assert (ptr - baton->data == baton->size);
11947 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11948 SYMBOL_LOCATION_BATON (sym) = baton;
11949 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11952 /* Create appropriate locally-scoped variables for all the
11953 DW_TAG_common_block entries. Also create a struct common_block
11954 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11955 is used to sepate the common blocks name namespace from regular
11959 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11961 struct attribute *attr;
11963 attr = dwarf2_attr (die, DW_AT_location, cu);
11966 /* Support the .debug_loc offsets. */
11967 if (attr_form_is_block (attr))
11971 else if (attr_form_is_section_offset (attr))
11973 dwarf2_complex_location_expr_complaint ();
11978 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11979 "common block member");
11984 if (die->child != NULL)
11986 struct objfile *objfile = cu->objfile;
11987 struct die_info *child_die;
11988 size_t n_entries = 0, size;
11989 struct common_block *common_block;
11990 struct symbol *sym;
11992 for (child_die = die->child;
11993 child_die && child_die->tag;
11994 child_die = sibling_die (child_die))
11997 size = (sizeof (struct common_block)
11998 + (n_entries - 1) * sizeof (struct symbol *));
11999 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12000 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12001 common_block->n_entries = 0;
12003 for (child_die = die->child;
12004 child_die && child_die->tag;
12005 child_die = sibling_die (child_die))
12007 /* Create the symbol in the DW_TAG_common_block block in the current
12009 sym = new_symbol (child_die, NULL, cu);
12012 struct attribute *member_loc;
12014 common_block->contents[common_block->n_entries++] = sym;
12016 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12020 /* GDB has handled this for a long time, but it is
12021 not specified by DWARF. It seems to have been
12022 emitted by gfortran at least as recently as:
12023 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12024 complaint (&symfile_complaints,
12025 _("Variable in common block has "
12026 "DW_AT_data_member_location "
12027 "- DIE at 0x%x [in module %s]"),
12028 child_die->offset.sect_off, cu->objfile->name);
12030 if (attr_form_is_section_offset (member_loc))
12031 dwarf2_complex_location_expr_complaint ();
12032 else if (attr_form_is_constant (member_loc)
12033 || attr_form_is_block (member_loc))
12036 mark_common_block_symbol_computed (sym, die, attr,
12040 dwarf2_complex_location_expr_complaint ();
12045 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12046 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12050 /* Create a type for a C++ namespace. */
12052 static struct type *
12053 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12055 struct objfile *objfile = cu->objfile;
12056 const char *previous_prefix, *name;
12060 /* For extensions, reuse the type of the original namespace. */
12061 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12063 struct die_info *ext_die;
12064 struct dwarf2_cu *ext_cu = cu;
12066 ext_die = dwarf2_extension (die, &ext_cu);
12067 type = read_type_die (ext_die, ext_cu);
12069 /* EXT_CU may not be the same as CU.
12070 Ensure TYPE is recorded in CU's type_hash table. */
12071 return set_die_type (die, type, cu);
12074 name = namespace_name (die, &is_anonymous, cu);
12076 /* Now build the name of the current namespace. */
12078 previous_prefix = determine_prefix (die, cu);
12079 if (previous_prefix[0] != '\0')
12080 name = typename_concat (&objfile->objfile_obstack,
12081 previous_prefix, name, 0, cu);
12083 /* Create the type. */
12084 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12086 TYPE_NAME (type) = name;
12087 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12089 return set_die_type (die, type, cu);
12092 /* Read a C++ namespace. */
12095 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12097 struct objfile *objfile = cu->objfile;
12100 /* Add a symbol associated to this if we haven't seen the namespace
12101 before. Also, add a using directive if it's an anonymous
12104 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12108 type = read_type_die (die, cu);
12109 new_symbol (die, type, cu);
12111 namespace_name (die, &is_anonymous, cu);
12114 const char *previous_prefix = determine_prefix (die, cu);
12116 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12117 NULL, NULL, 0, &objfile->objfile_obstack);
12121 if (die->child != NULL)
12123 struct die_info *child_die = die->child;
12125 while (child_die && child_die->tag)
12127 process_die (child_die, cu);
12128 child_die = sibling_die (child_die);
12133 /* Read a Fortran module as type. This DIE can be only a declaration used for
12134 imported module. Still we need that type as local Fortran "use ... only"
12135 declaration imports depend on the created type in determine_prefix. */
12137 static struct type *
12138 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12140 struct objfile *objfile = cu->objfile;
12141 const char *module_name;
12144 module_name = dwarf2_name (die, cu);
12146 complaint (&symfile_complaints,
12147 _("DW_TAG_module has no name, offset 0x%x"),
12148 die->offset.sect_off);
12149 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12151 /* determine_prefix uses TYPE_TAG_NAME. */
12152 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12154 return set_die_type (die, type, cu);
12157 /* Read a Fortran module. */
12160 read_module (struct die_info *die, struct dwarf2_cu *cu)
12162 struct die_info *child_die = die->child;
12164 while (child_die && child_die->tag)
12166 process_die (child_die, cu);
12167 child_die = sibling_die (child_die);
12171 /* Return the name of the namespace represented by DIE. Set
12172 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12175 static const char *
12176 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12178 struct die_info *current_die;
12179 const char *name = NULL;
12181 /* Loop through the extensions until we find a name. */
12183 for (current_die = die;
12184 current_die != NULL;
12185 current_die = dwarf2_extension (die, &cu))
12187 name = dwarf2_name (current_die, cu);
12192 /* Is it an anonymous namespace? */
12194 *is_anonymous = (name == NULL);
12196 name = CP_ANONYMOUS_NAMESPACE_STR;
12201 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12202 the user defined type vector. */
12204 static struct type *
12205 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12207 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12208 struct comp_unit_head *cu_header = &cu->header;
12210 struct attribute *attr_byte_size;
12211 struct attribute *attr_address_class;
12212 int byte_size, addr_class;
12213 struct type *target_type;
12215 target_type = die_type (die, cu);
12217 /* The die_type call above may have already set the type for this DIE. */
12218 type = get_die_type (die, cu);
12222 type = lookup_pointer_type (target_type);
12224 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12225 if (attr_byte_size)
12226 byte_size = DW_UNSND (attr_byte_size);
12228 byte_size = cu_header->addr_size;
12230 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12231 if (attr_address_class)
12232 addr_class = DW_UNSND (attr_address_class);
12234 addr_class = DW_ADDR_none;
12236 /* If the pointer size or address class is different than the
12237 default, create a type variant marked as such and set the
12238 length accordingly. */
12239 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12241 if (gdbarch_address_class_type_flags_p (gdbarch))
12245 type_flags = gdbarch_address_class_type_flags
12246 (gdbarch, byte_size, addr_class);
12247 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12249 type = make_type_with_address_space (type, type_flags);
12251 else if (TYPE_LENGTH (type) != byte_size)
12253 complaint (&symfile_complaints,
12254 _("invalid pointer size %d"), byte_size);
12258 /* Should we also complain about unhandled address classes? */
12262 TYPE_LENGTH (type) = byte_size;
12263 return set_die_type (die, type, cu);
12266 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12267 the user defined type vector. */
12269 static struct type *
12270 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12273 struct type *to_type;
12274 struct type *domain;
12276 to_type = die_type (die, cu);
12277 domain = die_containing_type (die, cu);
12279 /* The calls above may have already set the type for this DIE. */
12280 type = get_die_type (die, cu);
12284 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12285 type = lookup_methodptr_type (to_type);
12286 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12288 struct type *new_type = alloc_type (cu->objfile);
12290 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12291 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12292 TYPE_VARARGS (to_type));
12293 type = lookup_methodptr_type (new_type);
12296 type = lookup_memberptr_type (to_type, domain);
12298 return set_die_type (die, type, cu);
12301 /* Extract all information from a DW_TAG_reference_type DIE and add to
12302 the user defined type vector. */
12304 static struct type *
12305 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12307 struct comp_unit_head *cu_header = &cu->header;
12308 struct type *type, *target_type;
12309 struct attribute *attr;
12311 target_type = die_type (die, cu);
12313 /* The die_type call above may have already set the type for this DIE. */
12314 type = get_die_type (die, cu);
12318 type = lookup_reference_type (target_type);
12319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12322 TYPE_LENGTH (type) = DW_UNSND (attr);
12326 TYPE_LENGTH (type) = cu_header->addr_size;
12328 return set_die_type (die, type, cu);
12331 static struct type *
12332 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12334 struct type *base_type, *cv_type;
12336 base_type = die_type (die, cu);
12338 /* The die_type call above may have already set the type for this DIE. */
12339 cv_type = get_die_type (die, cu);
12343 /* In case the const qualifier is applied to an array type, the element type
12344 is so qualified, not the array type (section 6.7.3 of C99). */
12345 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12347 struct type *el_type, *inner_array;
12349 base_type = copy_type (base_type);
12350 inner_array = base_type;
12352 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12354 TYPE_TARGET_TYPE (inner_array) =
12355 copy_type (TYPE_TARGET_TYPE (inner_array));
12356 inner_array = TYPE_TARGET_TYPE (inner_array);
12359 el_type = TYPE_TARGET_TYPE (inner_array);
12360 TYPE_TARGET_TYPE (inner_array) =
12361 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12363 return set_die_type (die, base_type, cu);
12366 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12367 return set_die_type (die, cv_type, cu);
12370 static struct type *
12371 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12373 struct type *base_type, *cv_type;
12375 base_type = die_type (die, cu);
12377 /* The die_type call above may have already set the type for this DIE. */
12378 cv_type = get_die_type (die, cu);
12382 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12383 return set_die_type (die, cv_type, cu);
12386 /* Handle DW_TAG_restrict_type. */
12388 static struct type *
12389 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12391 struct type *base_type, *cv_type;
12393 base_type = die_type (die, cu);
12395 /* The die_type call above may have already set the type for this DIE. */
12396 cv_type = get_die_type (die, cu);
12400 cv_type = make_restrict_type (base_type);
12401 return set_die_type (die, cv_type, cu);
12404 /* Extract all information from a DW_TAG_string_type DIE and add to
12405 the user defined type vector. It isn't really a user defined type,
12406 but it behaves like one, with other DIE's using an AT_user_def_type
12407 attribute to reference it. */
12409 static struct type *
12410 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12412 struct objfile *objfile = cu->objfile;
12413 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12414 struct type *type, *range_type, *index_type, *char_type;
12415 struct attribute *attr;
12416 unsigned int length;
12418 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12421 length = DW_UNSND (attr);
12425 /* Check for the DW_AT_byte_size attribute. */
12426 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12429 length = DW_UNSND (attr);
12437 index_type = objfile_type (objfile)->builtin_int;
12438 range_type = create_range_type (NULL, index_type, 1, length);
12439 char_type = language_string_char_type (cu->language_defn, gdbarch);
12440 type = create_string_type (NULL, char_type, range_type);
12442 return set_die_type (die, type, cu);
12445 /* Handle DIES due to C code like:
12449 int (*funcp)(int a, long l);
12453 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12455 static struct type *
12456 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12458 struct objfile *objfile = cu->objfile;
12459 struct type *type; /* Type that this function returns. */
12460 struct type *ftype; /* Function that returns above type. */
12461 struct attribute *attr;
12463 type = die_type (die, cu);
12465 /* The die_type call above may have already set the type for this DIE. */
12466 ftype = get_die_type (die, cu);
12470 ftype = lookup_function_type (type);
12472 /* All functions in C++, Pascal and Java have prototypes. */
12473 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12474 if ((attr && (DW_UNSND (attr) != 0))
12475 || cu->language == language_cplus
12476 || cu->language == language_java
12477 || cu->language == language_pascal)
12478 TYPE_PROTOTYPED (ftype) = 1;
12479 else if (producer_is_realview (cu->producer))
12480 /* RealView does not emit DW_AT_prototyped. We can not
12481 distinguish prototyped and unprototyped functions; default to
12482 prototyped, since that is more common in modern code (and
12483 RealView warns about unprototyped functions). */
12484 TYPE_PROTOTYPED (ftype) = 1;
12486 /* Store the calling convention in the type if it's available in
12487 the subroutine die. Otherwise set the calling convention to
12488 the default value DW_CC_normal. */
12489 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12491 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12492 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12493 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12495 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12497 /* We need to add the subroutine type to the die immediately so
12498 we don't infinitely recurse when dealing with parameters
12499 declared as the same subroutine type. */
12500 set_die_type (die, ftype, cu);
12502 if (die->child != NULL)
12504 struct type *void_type = objfile_type (objfile)->builtin_void;
12505 struct die_info *child_die;
12506 int nparams, iparams;
12508 /* Count the number of parameters.
12509 FIXME: GDB currently ignores vararg functions, but knows about
12510 vararg member functions. */
12512 child_die = die->child;
12513 while (child_die && child_die->tag)
12515 if (child_die->tag == DW_TAG_formal_parameter)
12517 else if (child_die->tag == DW_TAG_unspecified_parameters)
12518 TYPE_VARARGS (ftype) = 1;
12519 child_die = sibling_die (child_die);
12522 /* Allocate storage for parameters and fill them in. */
12523 TYPE_NFIELDS (ftype) = nparams;
12524 TYPE_FIELDS (ftype) = (struct field *)
12525 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12527 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12528 even if we error out during the parameters reading below. */
12529 for (iparams = 0; iparams < nparams; iparams++)
12530 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12533 child_die = die->child;
12534 while (child_die && child_die->tag)
12536 if (child_die->tag == DW_TAG_formal_parameter)
12538 struct type *arg_type;
12540 /* DWARF version 2 has no clean way to discern C++
12541 static and non-static member functions. G++ helps
12542 GDB by marking the first parameter for non-static
12543 member functions (which is the this pointer) as
12544 artificial. We pass this information to
12545 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12547 DWARF version 3 added DW_AT_object_pointer, which GCC
12548 4.5 does not yet generate. */
12549 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12551 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12554 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12556 /* GCC/43521: In java, the formal parameter
12557 "this" is sometimes not marked with DW_AT_artificial. */
12558 if (cu->language == language_java)
12560 const char *name = dwarf2_name (child_die, cu);
12562 if (name && !strcmp (name, "this"))
12563 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12566 arg_type = die_type (child_die, cu);
12568 /* RealView does not mark THIS as const, which the testsuite
12569 expects. GCC marks THIS as const in method definitions,
12570 but not in the class specifications (GCC PR 43053). */
12571 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12572 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12575 struct dwarf2_cu *arg_cu = cu;
12576 const char *name = dwarf2_name (child_die, cu);
12578 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12581 /* If the compiler emits this, use it. */
12582 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12585 else if (name && strcmp (name, "this") == 0)
12586 /* Function definitions will have the argument names. */
12588 else if (name == NULL && iparams == 0)
12589 /* Declarations may not have the names, so like
12590 elsewhere in GDB, assume an artificial first
12591 argument is "this". */
12595 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12599 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12602 child_die = sibling_die (child_die);
12609 static struct type *
12610 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12612 struct objfile *objfile = cu->objfile;
12613 const char *name = NULL;
12614 struct type *this_type, *target_type;
12616 name = dwarf2_full_name (NULL, die, cu);
12617 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12618 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12619 TYPE_NAME (this_type) = name;
12620 set_die_type (die, this_type, cu);
12621 target_type = die_type (die, cu);
12622 if (target_type != this_type)
12623 TYPE_TARGET_TYPE (this_type) = target_type;
12626 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12627 spec and cause infinite loops in GDB. */
12628 complaint (&symfile_complaints,
12629 _("Self-referential DW_TAG_typedef "
12630 "- DIE at 0x%x [in module %s]"),
12631 die->offset.sect_off, objfile->name);
12632 TYPE_TARGET_TYPE (this_type) = NULL;
12637 /* Find a representation of a given base type and install
12638 it in the TYPE field of the die. */
12640 static struct type *
12641 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12643 struct objfile *objfile = cu->objfile;
12645 struct attribute *attr;
12646 int encoding = 0, size = 0;
12648 enum type_code code = TYPE_CODE_INT;
12649 int type_flags = 0;
12650 struct type *target_type = NULL;
12652 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12655 encoding = DW_UNSND (attr);
12657 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12660 size = DW_UNSND (attr);
12662 name = dwarf2_name (die, cu);
12665 complaint (&symfile_complaints,
12666 _("DW_AT_name missing from DW_TAG_base_type"));
12671 case DW_ATE_address:
12672 /* Turn DW_ATE_address into a void * pointer. */
12673 code = TYPE_CODE_PTR;
12674 type_flags |= TYPE_FLAG_UNSIGNED;
12675 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12677 case DW_ATE_boolean:
12678 code = TYPE_CODE_BOOL;
12679 type_flags |= TYPE_FLAG_UNSIGNED;
12681 case DW_ATE_complex_float:
12682 code = TYPE_CODE_COMPLEX;
12683 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12685 case DW_ATE_decimal_float:
12686 code = TYPE_CODE_DECFLOAT;
12689 code = TYPE_CODE_FLT;
12691 case DW_ATE_signed:
12693 case DW_ATE_unsigned:
12694 type_flags |= TYPE_FLAG_UNSIGNED;
12695 if (cu->language == language_fortran
12697 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12698 code = TYPE_CODE_CHAR;
12700 case DW_ATE_signed_char:
12701 if (cu->language == language_ada || cu->language == language_m2
12702 || cu->language == language_pascal
12703 || cu->language == language_fortran)
12704 code = TYPE_CODE_CHAR;
12706 case DW_ATE_unsigned_char:
12707 if (cu->language == language_ada || cu->language == language_m2
12708 || cu->language == language_pascal
12709 || cu->language == language_fortran)
12710 code = TYPE_CODE_CHAR;
12711 type_flags |= TYPE_FLAG_UNSIGNED;
12714 /* We just treat this as an integer and then recognize the
12715 type by name elsewhere. */
12719 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12720 dwarf_type_encoding_name (encoding));
12724 type = init_type (code, size, type_flags, NULL, objfile);
12725 TYPE_NAME (type) = name;
12726 TYPE_TARGET_TYPE (type) = target_type;
12728 if (name && strcmp (name, "char") == 0)
12729 TYPE_NOSIGN (type) = 1;
12731 return set_die_type (die, type, cu);
12734 /* Read the given DW_AT_subrange DIE. */
12736 static struct type *
12737 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12739 struct type *base_type, *orig_base_type;
12740 struct type *range_type;
12741 struct attribute *attr;
12743 int low_default_is_valid;
12745 LONGEST negative_mask;
12747 orig_base_type = die_type (die, cu);
12748 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12749 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12750 creating the range type, but we use the result of check_typedef
12751 when examining properties of the type. */
12752 base_type = check_typedef (orig_base_type);
12754 /* The die_type call above may have already set the type for this DIE. */
12755 range_type = get_die_type (die, cu);
12759 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12760 omitting DW_AT_lower_bound. */
12761 switch (cu->language)
12764 case language_cplus:
12766 low_default_is_valid = 1;
12768 case language_fortran:
12770 low_default_is_valid = 1;
12773 case language_java:
12774 case language_objc:
12776 low_default_is_valid = (cu->header.version >= 4);
12780 case language_pascal:
12782 low_default_is_valid = (cu->header.version >= 4);
12786 low_default_is_valid = 0;
12790 /* FIXME: For variable sized arrays either of these could be
12791 a variable rather than a constant value. We'll allow it,
12792 but we don't know how to handle it. */
12793 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12795 low = dwarf2_get_attr_constant_value (attr, low);
12796 else if (!low_default_is_valid)
12797 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12798 "- DIE at 0x%x [in module %s]"),
12799 die->offset.sect_off, cu->objfile->name);
12801 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12804 if (attr_form_is_block (attr) || is_ref_attr (attr))
12806 /* GCC encodes arrays with unspecified or dynamic length
12807 with a DW_FORM_block1 attribute or a reference attribute.
12808 FIXME: GDB does not yet know how to handle dynamic
12809 arrays properly, treat them as arrays with unspecified
12812 FIXME: jimb/2003-09-22: GDB does not really know
12813 how to handle arrays of unspecified length
12814 either; we just represent them as zero-length
12815 arrays. Choose an appropriate upper bound given
12816 the lower bound we've computed above. */
12820 high = dwarf2_get_attr_constant_value (attr, 1);
12824 attr = dwarf2_attr (die, DW_AT_count, cu);
12827 int count = dwarf2_get_attr_constant_value (attr, 1);
12828 high = low + count - 1;
12832 /* Unspecified array length. */
12837 /* Dwarf-2 specifications explicitly allows to create subrange types
12838 without specifying a base type.
12839 In that case, the base type must be set to the type of
12840 the lower bound, upper bound or count, in that order, if any of these
12841 three attributes references an object that has a type.
12842 If no base type is found, the Dwarf-2 specifications say that
12843 a signed integer type of size equal to the size of an address should
12845 For the following C code: `extern char gdb_int [];'
12846 GCC produces an empty range DIE.
12847 FIXME: muller/2010-05-28: Possible references to object for low bound,
12848 high bound or count are not yet handled by this code. */
12849 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12851 struct objfile *objfile = cu->objfile;
12852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12853 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12854 struct type *int_type = objfile_type (objfile)->builtin_int;
12856 /* Test "int", "long int", and "long long int" objfile types,
12857 and select the first one having a size above or equal to the
12858 architecture address size. */
12859 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12860 base_type = int_type;
12863 int_type = objfile_type (objfile)->builtin_long;
12864 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12865 base_type = int_type;
12868 int_type = objfile_type (objfile)->builtin_long_long;
12869 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12870 base_type = int_type;
12876 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12877 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12878 low |= negative_mask;
12879 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12880 high |= negative_mask;
12882 range_type = create_range_type (NULL, orig_base_type, low, high);
12884 /* Mark arrays with dynamic length at least as an array of unspecified
12885 length. GDB could check the boundary but before it gets implemented at
12886 least allow accessing the array elements. */
12887 if (attr && attr_form_is_block (attr))
12888 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12890 /* Ada expects an empty array on no boundary attributes. */
12891 if (attr == NULL && cu->language != language_ada)
12892 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12894 name = dwarf2_name (die, cu);
12896 TYPE_NAME (range_type) = name;
12898 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12900 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12902 set_die_type (die, range_type, cu);
12904 /* set_die_type should be already done. */
12905 set_descriptive_type (range_type, die, cu);
12910 static struct type *
12911 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12915 /* For now, we only support the C meaning of an unspecified type: void. */
12917 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12918 TYPE_NAME (type) = dwarf2_name (die, cu);
12920 return set_die_type (die, type, cu);
12923 /* Read a single die and all its descendents. Set the die's sibling
12924 field to NULL; set other fields in the die correctly, and set all
12925 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12926 location of the info_ptr after reading all of those dies. PARENT
12927 is the parent of the die in question. */
12929 static struct die_info *
12930 read_die_and_children (const struct die_reader_specs *reader,
12931 gdb_byte *info_ptr,
12932 gdb_byte **new_info_ptr,
12933 struct die_info *parent)
12935 struct die_info *die;
12939 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12942 *new_info_ptr = cur_ptr;
12945 store_in_ref_table (die, reader->cu);
12948 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12952 *new_info_ptr = cur_ptr;
12955 die->sibling = NULL;
12956 die->parent = parent;
12960 /* Read a die, all of its descendents, and all of its siblings; set
12961 all of the fields of all of the dies correctly. Arguments are as
12962 in read_die_and_children. */
12964 static struct die_info *
12965 read_die_and_siblings (const struct die_reader_specs *reader,
12966 gdb_byte *info_ptr,
12967 gdb_byte **new_info_ptr,
12968 struct die_info *parent)
12970 struct die_info *first_die, *last_sibling;
12973 cur_ptr = info_ptr;
12974 first_die = last_sibling = NULL;
12978 struct die_info *die
12979 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12983 *new_info_ptr = cur_ptr;
12990 last_sibling->sibling = die;
12992 last_sibling = die;
12996 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12998 The caller is responsible for filling in the extra attributes
12999 and updating (*DIEP)->num_attrs.
13000 Set DIEP to point to a newly allocated die with its information,
13001 except for its child, sibling, and parent fields.
13002 Set HAS_CHILDREN to tell whether the die has children or not. */
13005 read_full_die_1 (const struct die_reader_specs *reader,
13006 struct die_info **diep, gdb_byte *info_ptr,
13007 int *has_children, int num_extra_attrs)
13009 unsigned int abbrev_number, bytes_read, i;
13010 sect_offset offset;
13011 struct abbrev_info *abbrev;
13012 struct die_info *die;
13013 struct dwarf2_cu *cu = reader->cu;
13014 bfd *abfd = reader->abfd;
13016 offset.sect_off = info_ptr - reader->buffer;
13017 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13018 info_ptr += bytes_read;
13019 if (!abbrev_number)
13026 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13028 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13030 bfd_get_filename (abfd));
13032 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13033 die->offset = offset;
13034 die->tag = abbrev->tag;
13035 die->abbrev = abbrev_number;
13037 /* Make the result usable.
13038 The caller needs to update num_attrs after adding the extra
13040 die->num_attrs = abbrev->num_attrs;
13042 for (i = 0; i < abbrev->num_attrs; ++i)
13043 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13047 *has_children = abbrev->has_children;
13051 /* Read a die and all its attributes.
13052 Set DIEP to point to a newly allocated die with its information,
13053 except for its child, sibling, and parent fields.
13054 Set HAS_CHILDREN to tell whether the die has children or not. */
13057 read_full_die (const struct die_reader_specs *reader,
13058 struct die_info **diep, gdb_byte *info_ptr,
13061 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13064 /* Abbreviation tables.
13066 In DWARF version 2, the description of the debugging information is
13067 stored in a separate .debug_abbrev section. Before we read any
13068 dies from a section we read in all abbreviations and install them
13069 in a hash table. */
13071 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13073 static struct abbrev_info *
13074 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13076 struct abbrev_info *abbrev;
13078 abbrev = (struct abbrev_info *)
13079 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13080 memset (abbrev, 0, sizeof (struct abbrev_info));
13084 /* Add an abbreviation to the table. */
13087 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13088 unsigned int abbrev_number,
13089 struct abbrev_info *abbrev)
13091 unsigned int hash_number;
13093 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13094 abbrev->next = abbrev_table->abbrevs[hash_number];
13095 abbrev_table->abbrevs[hash_number] = abbrev;
13098 /* Look up an abbrev in the table.
13099 Returns NULL if the abbrev is not found. */
13101 static struct abbrev_info *
13102 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13103 unsigned int abbrev_number)
13105 unsigned int hash_number;
13106 struct abbrev_info *abbrev;
13108 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13109 abbrev = abbrev_table->abbrevs[hash_number];
13113 if (abbrev->number == abbrev_number)
13115 abbrev = abbrev->next;
13120 /* Read in an abbrev table. */
13122 static struct abbrev_table *
13123 abbrev_table_read_table (struct dwarf2_section_info *section,
13124 sect_offset offset)
13126 struct objfile *objfile = dwarf2_per_objfile->objfile;
13127 bfd *abfd = section->asection->owner;
13128 struct abbrev_table *abbrev_table;
13129 gdb_byte *abbrev_ptr;
13130 struct abbrev_info *cur_abbrev;
13131 unsigned int abbrev_number, bytes_read, abbrev_name;
13132 unsigned int abbrev_form;
13133 struct attr_abbrev *cur_attrs;
13134 unsigned int allocated_attrs;
13136 abbrev_table = XMALLOC (struct abbrev_table);
13137 abbrev_table->offset = offset;
13138 obstack_init (&abbrev_table->abbrev_obstack);
13139 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13141 * sizeof (struct abbrev_info *)));
13142 memset (abbrev_table->abbrevs, 0,
13143 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13145 dwarf2_read_section (objfile, section);
13146 abbrev_ptr = section->buffer + offset.sect_off;
13147 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13148 abbrev_ptr += bytes_read;
13150 allocated_attrs = ATTR_ALLOC_CHUNK;
13151 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13153 /* Loop until we reach an abbrev number of 0. */
13154 while (abbrev_number)
13156 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13158 /* read in abbrev header */
13159 cur_abbrev->number = abbrev_number;
13160 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13161 abbrev_ptr += bytes_read;
13162 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13165 /* now read in declarations */
13166 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13167 abbrev_ptr += bytes_read;
13168 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13169 abbrev_ptr += bytes_read;
13170 while (abbrev_name)
13172 if (cur_abbrev->num_attrs == allocated_attrs)
13174 allocated_attrs += ATTR_ALLOC_CHUNK;
13176 = xrealloc (cur_attrs, (allocated_attrs
13177 * sizeof (struct attr_abbrev)));
13180 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13181 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13182 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13183 abbrev_ptr += bytes_read;
13184 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13185 abbrev_ptr += bytes_read;
13188 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13189 (cur_abbrev->num_attrs
13190 * sizeof (struct attr_abbrev)));
13191 memcpy (cur_abbrev->attrs, cur_attrs,
13192 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13194 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13196 /* Get next abbreviation.
13197 Under Irix6 the abbreviations for a compilation unit are not
13198 always properly terminated with an abbrev number of 0.
13199 Exit loop if we encounter an abbreviation which we have
13200 already read (which means we are about to read the abbreviations
13201 for the next compile unit) or if the end of the abbreviation
13202 table is reached. */
13203 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13205 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13206 abbrev_ptr += bytes_read;
13207 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13212 return abbrev_table;
13215 /* Free the resources held by ABBREV_TABLE. */
13218 abbrev_table_free (struct abbrev_table *abbrev_table)
13220 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13221 xfree (abbrev_table);
13224 /* Same as abbrev_table_free but as a cleanup.
13225 We pass in a pointer to the pointer to the table so that we can
13226 set the pointer to NULL when we're done. It also simplifies
13227 build_type_unit_groups. */
13230 abbrev_table_free_cleanup (void *table_ptr)
13232 struct abbrev_table **abbrev_table_ptr = table_ptr;
13234 if (*abbrev_table_ptr != NULL)
13235 abbrev_table_free (*abbrev_table_ptr);
13236 *abbrev_table_ptr = NULL;
13239 /* Read the abbrev table for CU from ABBREV_SECTION. */
13242 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13243 struct dwarf2_section_info *abbrev_section)
13246 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13249 /* Release the memory used by the abbrev table for a compilation unit. */
13252 dwarf2_free_abbrev_table (void *ptr_to_cu)
13254 struct dwarf2_cu *cu = ptr_to_cu;
13256 abbrev_table_free (cu->abbrev_table);
13257 /* Set this to NULL so that we SEGV if we try to read it later,
13258 and also because free_comp_unit verifies this is NULL. */
13259 cu->abbrev_table = NULL;
13262 /* Returns nonzero if TAG represents a type that we might generate a partial
13266 is_type_tag_for_partial (int tag)
13271 /* Some types that would be reasonable to generate partial symbols for,
13272 that we don't at present. */
13273 case DW_TAG_array_type:
13274 case DW_TAG_file_type:
13275 case DW_TAG_ptr_to_member_type:
13276 case DW_TAG_set_type:
13277 case DW_TAG_string_type:
13278 case DW_TAG_subroutine_type:
13280 case DW_TAG_base_type:
13281 case DW_TAG_class_type:
13282 case DW_TAG_interface_type:
13283 case DW_TAG_enumeration_type:
13284 case DW_TAG_structure_type:
13285 case DW_TAG_subrange_type:
13286 case DW_TAG_typedef:
13287 case DW_TAG_union_type:
13294 /* Load all DIEs that are interesting for partial symbols into memory. */
13296 static struct partial_die_info *
13297 load_partial_dies (const struct die_reader_specs *reader,
13298 gdb_byte *info_ptr, int building_psymtab)
13300 struct dwarf2_cu *cu = reader->cu;
13301 struct objfile *objfile = cu->objfile;
13302 struct partial_die_info *part_die;
13303 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13304 struct abbrev_info *abbrev;
13305 unsigned int bytes_read;
13306 unsigned int load_all = 0;
13307 int nesting_level = 1;
13312 gdb_assert (cu->per_cu != NULL);
13313 if (cu->per_cu->load_all_dies)
13317 = htab_create_alloc_ex (cu->header.length / 12,
13321 &cu->comp_unit_obstack,
13322 hashtab_obstack_allocate,
13323 dummy_obstack_deallocate);
13325 part_die = obstack_alloc (&cu->comp_unit_obstack,
13326 sizeof (struct partial_die_info));
13330 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13332 /* A NULL abbrev means the end of a series of children. */
13333 if (abbrev == NULL)
13335 if (--nesting_level == 0)
13337 /* PART_DIE was probably the last thing allocated on the
13338 comp_unit_obstack, so we could call obstack_free
13339 here. We don't do that because the waste is small,
13340 and will be cleaned up when we're done with this
13341 compilation unit. This way, we're also more robust
13342 against other users of the comp_unit_obstack. */
13345 info_ptr += bytes_read;
13346 last_die = parent_die;
13347 parent_die = parent_die->die_parent;
13351 /* Check for template arguments. We never save these; if
13352 they're seen, we just mark the parent, and go on our way. */
13353 if (parent_die != NULL
13354 && cu->language == language_cplus
13355 && (abbrev->tag == DW_TAG_template_type_param
13356 || abbrev->tag == DW_TAG_template_value_param))
13358 parent_die->has_template_arguments = 1;
13362 /* We don't need a partial DIE for the template argument. */
13363 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13368 /* We only recurse into c++ subprograms looking for template arguments.
13369 Skip their other children. */
13371 && cu->language == language_cplus
13372 && parent_die != NULL
13373 && parent_die->tag == DW_TAG_subprogram)
13375 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13379 /* Check whether this DIE is interesting enough to save. Normally
13380 we would not be interested in members here, but there may be
13381 later variables referencing them via DW_AT_specification (for
13382 static members). */
13384 && !is_type_tag_for_partial (abbrev->tag)
13385 && abbrev->tag != DW_TAG_constant
13386 && abbrev->tag != DW_TAG_enumerator
13387 && abbrev->tag != DW_TAG_subprogram
13388 && abbrev->tag != DW_TAG_lexical_block
13389 && abbrev->tag != DW_TAG_variable
13390 && abbrev->tag != DW_TAG_namespace
13391 && abbrev->tag != DW_TAG_module
13392 && abbrev->tag != DW_TAG_member
13393 && abbrev->tag != DW_TAG_imported_unit)
13395 /* Otherwise we skip to the next sibling, if any. */
13396 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13400 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13403 /* This two-pass algorithm for processing partial symbols has a
13404 high cost in cache pressure. Thus, handle some simple cases
13405 here which cover the majority of C partial symbols. DIEs
13406 which neither have specification tags in them, nor could have
13407 specification tags elsewhere pointing at them, can simply be
13408 processed and discarded.
13410 This segment is also optional; scan_partial_symbols and
13411 add_partial_symbol will handle these DIEs if we chain
13412 them in normally. When compilers which do not emit large
13413 quantities of duplicate debug information are more common,
13414 this code can probably be removed. */
13416 /* Any complete simple types at the top level (pretty much all
13417 of them, for a language without namespaces), can be processed
13419 if (parent_die == NULL
13420 && part_die->has_specification == 0
13421 && part_die->is_declaration == 0
13422 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13423 || part_die->tag == DW_TAG_base_type
13424 || part_die->tag == DW_TAG_subrange_type))
13426 if (building_psymtab && part_die->name != NULL)
13427 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13428 VAR_DOMAIN, LOC_TYPEDEF,
13429 &objfile->static_psymbols,
13430 0, (CORE_ADDR) 0, cu->language, objfile);
13431 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13435 /* The exception for DW_TAG_typedef with has_children above is
13436 a workaround of GCC PR debug/47510. In the case of this complaint
13437 type_name_no_tag_or_error will error on such types later.
13439 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13440 it could not find the child DIEs referenced later, this is checked
13441 above. In correct DWARF DW_TAG_typedef should have no children. */
13443 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13444 complaint (&symfile_complaints,
13445 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13446 "- DIE at 0x%x [in module %s]"),
13447 part_die->offset.sect_off, objfile->name);
13449 /* If we're at the second level, and we're an enumerator, and
13450 our parent has no specification (meaning possibly lives in a
13451 namespace elsewhere), then we can add the partial symbol now
13452 instead of queueing it. */
13453 if (part_die->tag == DW_TAG_enumerator
13454 && parent_die != NULL
13455 && parent_die->die_parent == NULL
13456 && parent_die->tag == DW_TAG_enumeration_type
13457 && parent_die->has_specification == 0)
13459 if (part_die->name == NULL)
13460 complaint (&symfile_complaints,
13461 _("malformed enumerator DIE ignored"));
13462 else if (building_psymtab)
13463 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13464 VAR_DOMAIN, LOC_CONST,
13465 (cu->language == language_cplus
13466 || cu->language == language_java)
13467 ? &objfile->global_psymbols
13468 : &objfile->static_psymbols,
13469 0, (CORE_ADDR) 0, cu->language, objfile);
13471 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13475 /* We'll save this DIE so link it in. */
13476 part_die->die_parent = parent_die;
13477 part_die->die_sibling = NULL;
13478 part_die->die_child = NULL;
13480 if (last_die && last_die == parent_die)
13481 last_die->die_child = part_die;
13483 last_die->die_sibling = part_die;
13485 last_die = part_die;
13487 if (first_die == NULL)
13488 first_die = part_die;
13490 /* Maybe add the DIE to the hash table. Not all DIEs that we
13491 find interesting need to be in the hash table, because we
13492 also have the parent/sibling/child chains; only those that we
13493 might refer to by offset later during partial symbol reading.
13495 For now this means things that might have be the target of a
13496 DW_AT_specification, DW_AT_abstract_origin, or
13497 DW_AT_extension. DW_AT_extension will refer only to
13498 namespaces; DW_AT_abstract_origin refers to functions (and
13499 many things under the function DIE, but we do not recurse
13500 into function DIEs during partial symbol reading) and
13501 possibly variables as well; DW_AT_specification refers to
13502 declarations. Declarations ought to have the DW_AT_declaration
13503 flag. It happens that GCC forgets to put it in sometimes, but
13504 only for functions, not for types.
13506 Adding more things than necessary to the hash table is harmless
13507 except for the performance cost. Adding too few will result in
13508 wasted time in find_partial_die, when we reread the compilation
13509 unit with load_all_dies set. */
13512 || abbrev->tag == DW_TAG_constant
13513 || abbrev->tag == DW_TAG_subprogram
13514 || abbrev->tag == DW_TAG_variable
13515 || abbrev->tag == DW_TAG_namespace
13516 || part_die->is_declaration)
13520 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13521 part_die->offset.sect_off, INSERT);
13525 part_die = obstack_alloc (&cu->comp_unit_obstack,
13526 sizeof (struct partial_die_info));
13528 /* For some DIEs we want to follow their children (if any). For C
13529 we have no reason to follow the children of structures; for other
13530 languages we have to, so that we can get at method physnames
13531 to infer fully qualified class names, for DW_AT_specification,
13532 and for C++ template arguments. For C++, we also look one level
13533 inside functions to find template arguments (if the name of the
13534 function does not already contain the template arguments).
13536 For Ada, we need to scan the children of subprograms and lexical
13537 blocks as well because Ada allows the definition of nested
13538 entities that could be interesting for the debugger, such as
13539 nested subprograms for instance. */
13540 if (last_die->has_children
13542 || last_die->tag == DW_TAG_namespace
13543 || last_die->tag == DW_TAG_module
13544 || last_die->tag == DW_TAG_enumeration_type
13545 || (cu->language == language_cplus
13546 && last_die->tag == DW_TAG_subprogram
13547 && (last_die->name == NULL
13548 || strchr (last_die->name, '<') == NULL))
13549 || (cu->language != language_c
13550 && (last_die->tag == DW_TAG_class_type
13551 || last_die->tag == DW_TAG_interface_type
13552 || last_die->tag == DW_TAG_structure_type
13553 || last_die->tag == DW_TAG_union_type))
13554 || (cu->language == language_ada
13555 && (last_die->tag == DW_TAG_subprogram
13556 || last_die->tag == DW_TAG_lexical_block))))
13559 parent_die = last_die;
13563 /* Otherwise we skip to the next sibling, if any. */
13564 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13566 /* Back to the top, do it again. */
13570 /* Read a minimal amount of information into the minimal die structure. */
13573 read_partial_die (const struct die_reader_specs *reader,
13574 struct partial_die_info *part_die,
13575 struct abbrev_info *abbrev, unsigned int abbrev_len,
13576 gdb_byte *info_ptr)
13578 struct dwarf2_cu *cu = reader->cu;
13579 struct objfile *objfile = cu->objfile;
13580 gdb_byte *buffer = reader->buffer;
13582 struct attribute attr;
13583 int has_low_pc_attr = 0;
13584 int has_high_pc_attr = 0;
13585 int high_pc_relative = 0;
13587 memset (part_die, 0, sizeof (struct partial_die_info));
13589 part_die->offset.sect_off = info_ptr - buffer;
13591 info_ptr += abbrev_len;
13593 if (abbrev == NULL)
13596 part_die->tag = abbrev->tag;
13597 part_die->has_children = abbrev->has_children;
13599 for (i = 0; i < abbrev->num_attrs; ++i)
13601 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13603 /* Store the data if it is of an attribute we want to keep in a
13604 partial symbol table. */
13608 switch (part_die->tag)
13610 case DW_TAG_compile_unit:
13611 case DW_TAG_partial_unit:
13612 case DW_TAG_type_unit:
13613 /* Compilation units have a DW_AT_name that is a filename, not
13614 a source language identifier. */
13615 case DW_TAG_enumeration_type:
13616 case DW_TAG_enumerator:
13617 /* These tags always have simple identifiers already; no need
13618 to canonicalize them. */
13619 part_die->name = DW_STRING (&attr);
13623 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13624 &objfile->objfile_obstack);
13628 case DW_AT_linkage_name:
13629 case DW_AT_MIPS_linkage_name:
13630 /* Note that both forms of linkage name might appear. We
13631 assume they will be the same, and we only store the last
13633 if (cu->language == language_ada)
13634 part_die->name = DW_STRING (&attr);
13635 part_die->linkage_name = DW_STRING (&attr);
13638 has_low_pc_attr = 1;
13639 part_die->lowpc = DW_ADDR (&attr);
13641 case DW_AT_high_pc:
13642 has_high_pc_attr = 1;
13643 if (attr.form == DW_FORM_addr
13644 || attr.form == DW_FORM_GNU_addr_index)
13645 part_die->highpc = DW_ADDR (&attr);
13648 high_pc_relative = 1;
13649 part_die->highpc = DW_UNSND (&attr);
13652 case DW_AT_location:
13653 /* Support the .debug_loc offsets. */
13654 if (attr_form_is_block (&attr))
13656 part_die->d.locdesc = DW_BLOCK (&attr);
13658 else if (attr_form_is_section_offset (&attr))
13660 dwarf2_complex_location_expr_complaint ();
13664 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13665 "partial symbol information");
13668 case DW_AT_external:
13669 part_die->is_external = DW_UNSND (&attr);
13671 case DW_AT_declaration:
13672 part_die->is_declaration = DW_UNSND (&attr);
13675 part_die->has_type = 1;
13677 case DW_AT_abstract_origin:
13678 case DW_AT_specification:
13679 case DW_AT_extension:
13680 part_die->has_specification = 1;
13681 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13682 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13683 || cu->per_cu->is_dwz);
13685 case DW_AT_sibling:
13686 /* Ignore absolute siblings, they might point outside of
13687 the current compile unit. */
13688 if (attr.form == DW_FORM_ref_addr)
13689 complaint (&symfile_complaints,
13690 _("ignoring absolute DW_AT_sibling"));
13692 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13694 case DW_AT_byte_size:
13695 part_die->has_byte_size = 1;
13697 case DW_AT_calling_convention:
13698 /* DWARF doesn't provide a way to identify a program's source-level
13699 entry point. DW_AT_calling_convention attributes are only meant
13700 to describe functions' calling conventions.
13702 However, because it's a necessary piece of information in
13703 Fortran, and because DW_CC_program is the only piece of debugging
13704 information whose definition refers to a 'main program' at all,
13705 several compilers have begun marking Fortran main programs with
13706 DW_CC_program --- even when those functions use the standard
13707 calling conventions.
13709 So until DWARF specifies a way to provide this information and
13710 compilers pick up the new representation, we'll support this
13712 if (DW_UNSND (&attr) == DW_CC_program
13713 && cu->language == language_fortran)
13715 set_main_name (part_die->name);
13717 /* As this DIE has a static linkage the name would be difficult
13718 to look up later. */
13719 language_of_main = language_fortran;
13723 if (DW_UNSND (&attr) == DW_INL_inlined
13724 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13725 part_die->may_be_inlined = 1;
13729 if (part_die->tag == DW_TAG_imported_unit)
13731 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13732 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13733 || cu->per_cu->is_dwz);
13742 if (high_pc_relative)
13743 part_die->highpc += part_die->lowpc;
13745 if (has_low_pc_attr && has_high_pc_attr)
13747 /* When using the GNU linker, .gnu.linkonce. sections are used to
13748 eliminate duplicate copies of functions and vtables and such.
13749 The linker will arbitrarily choose one and discard the others.
13750 The AT_*_pc values for such functions refer to local labels in
13751 these sections. If the section from that file was discarded, the
13752 labels are not in the output, so the relocs get a value of 0.
13753 If this is a discarded function, mark the pc bounds as invalid,
13754 so that GDB will ignore it. */
13755 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13757 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13759 complaint (&symfile_complaints,
13760 _("DW_AT_low_pc %s is zero "
13761 "for DIE at 0x%x [in module %s]"),
13762 paddress (gdbarch, part_die->lowpc),
13763 part_die->offset.sect_off, objfile->name);
13765 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13766 else if (part_die->lowpc >= part_die->highpc)
13768 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13770 complaint (&symfile_complaints,
13771 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13772 "for DIE at 0x%x [in module %s]"),
13773 paddress (gdbarch, part_die->lowpc),
13774 paddress (gdbarch, part_die->highpc),
13775 part_die->offset.sect_off, objfile->name);
13778 part_die->has_pc_info = 1;
13784 /* Find a cached partial DIE at OFFSET in CU. */
13786 static struct partial_die_info *
13787 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13789 struct partial_die_info *lookup_die = NULL;
13790 struct partial_die_info part_die;
13792 part_die.offset = offset;
13793 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13799 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13800 except in the case of .debug_types DIEs which do not reference
13801 outside their CU (they do however referencing other types via
13802 DW_FORM_ref_sig8). */
13804 static struct partial_die_info *
13805 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13807 struct objfile *objfile = cu->objfile;
13808 struct dwarf2_per_cu_data *per_cu = NULL;
13809 struct partial_die_info *pd = NULL;
13811 if (offset_in_dwz == cu->per_cu->is_dwz
13812 && offset_in_cu_p (&cu->header, offset))
13814 pd = find_partial_die_in_comp_unit (offset, cu);
13817 /* We missed recording what we needed.
13818 Load all dies and try again. */
13819 per_cu = cu->per_cu;
13823 /* TUs don't reference other CUs/TUs (except via type signatures). */
13824 if (cu->per_cu->is_debug_types)
13826 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13827 " external reference to offset 0x%lx [in module %s].\n"),
13828 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13829 bfd_get_filename (objfile->obfd));
13831 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13834 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13835 load_partial_comp_unit (per_cu);
13837 per_cu->cu->last_used = 0;
13838 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13841 /* If we didn't find it, and not all dies have been loaded,
13842 load them all and try again. */
13844 if (pd == NULL && per_cu->load_all_dies == 0)
13846 per_cu->load_all_dies = 1;
13848 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13849 THIS_CU->cu may already be in use. So we can't just free it and
13850 replace its DIEs with the ones we read in. Instead, we leave those
13851 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13852 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13854 load_partial_comp_unit (per_cu);
13856 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13860 internal_error (__FILE__, __LINE__,
13861 _("could not find partial DIE 0x%x "
13862 "in cache [from module %s]\n"),
13863 offset.sect_off, bfd_get_filename (objfile->obfd));
13867 /* See if we can figure out if the class lives in a namespace. We do
13868 this by looking for a member function; its demangled name will
13869 contain namespace info, if there is any. */
13872 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13873 struct dwarf2_cu *cu)
13875 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13876 what template types look like, because the demangler
13877 frequently doesn't give the same name as the debug info. We
13878 could fix this by only using the demangled name to get the
13879 prefix (but see comment in read_structure_type). */
13881 struct partial_die_info *real_pdi;
13882 struct partial_die_info *child_pdi;
13884 /* If this DIE (this DIE's specification, if any) has a parent, then
13885 we should not do this. We'll prepend the parent's fully qualified
13886 name when we create the partial symbol. */
13888 real_pdi = struct_pdi;
13889 while (real_pdi->has_specification)
13890 real_pdi = find_partial_die (real_pdi->spec_offset,
13891 real_pdi->spec_is_dwz, cu);
13893 if (real_pdi->die_parent != NULL)
13896 for (child_pdi = struct_pdi->die_child;
13898 child_pdi = child_pdi->die_sibling)
13900 if (child_pdi->tag == DW_TAG_subprogram
13901 && child_pdi->linkage_name != NULL)
13903 char *actual_class_name
13904 = language_class_name_from_physname (cu->language_defn,
13905 child_pdi->linkage_name);
13906 if (actual_class_name != NULL)
13909 = obstack_copy0 (&cu->objfile->objfile_obstack,
13911 strlen (actual_class_name));
13912 xfree (actual_class_name);
13919 /* Adjust PART_DIE before generating a symbol for it. This function
13920 may set the is_external flag or change the DIE's name. */
13923 fixup_partial_die (struct partial_die_info *part_die,
13924 struct dwarf2_cu *cu)
13926 /* Once we've fixed up a die, there's no point in doing so again.
13927 This also avoids a memory leak if we were to call
13928 guess_partial_die_structure_name multiple times. */
13929 if (part_die->fixup_called)
13932 /* If we found a reference attribute and the DIE has no name, try
13933 to find a name in the referred to DIE. */
13935 if (part_die->name == NULL && part_die->has_specification)
13937 struct partial_die_info *spec_die;
13939 spec_die = find_partial_die (part_die->spec_offset,
13940 part_die->spec_is_dwz, cu);
13942 fixup_partial_die (spec_die, cu);
13944 if (spec_die->name)
13946 part_die->name = spec_die->name;
13948 /* Copy DW_AT_external attribute if it is set. */
13949 if (spec_die->is_external)
13950 part_die->is_external = spec_die->is_external;
13954 /* Set default names for some unnamed DIEs. */
13956 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13957 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13959 /* If there is no parent die to provide a namespace, and there are
13960 children, see if we can determine the namespace from their linkage
13962 if (cu->language == language_cplus
13963 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13964 && part_die->die_parent == NULL
13965 && part_die->has_children
13966 && (part_die->tag == DW_TAG_class_type
13967 || part_die->tag == DW_TAG_structure_type
13968 || part_die->tag == DW_TAG_union_type))
13969 guess_partial_die_structure_name (part_die, cu);
13971 /* GCC might emit a nameless struct or union that has a linkage
13972 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13973 if (part_die->name == NULL
13974 && (part_die->tag == DW_TAG_class_type
13975 || part_die->tag == DW_TAG_interface_type
13976 || part_die->tag == DW_TAG_structure_type
13977 || part_die->tag == DW_TAG_union_type)
13978 && part_die->linkage_name != NULL)
13982 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13987 /* Strip any leading namespaces/classes, keep only the base name.
13988 DW_AT_name for named DIEs does not contain the prefixes. */
13989 base = strrchr (demangled, ':');
13990 if (base && base > demangled && base[-1] == ':')
13995 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
13996 base, strlen (base));
14001 part_die->fixup_called = 1;
14004 /* Read an attribute value described by an attribute form. */
14007 read_attribute_value (const struct die_reader_specs *reader,
14008 struct attribute *attr, unsigned form,
14009 gdb_byte *info_ptr)
14011 struct dwarf2_cu *cu = reader->cu;
14012 bfd *abfd = reader->abfd;
14013 struct comp_unit_head *cu_header = &cu->header;
14014 unsigned int bytes_read;
14015 struct dwarf_block *blk;
14020 case DW_FORM_ref_addr:
14021 if (cu->header.version == 2)
14022 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14024 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14025 &cu->header, &bytes_read);
14026 info_ptr += bytes_read;
14028 case DW_FORM_GNU_ref_alt:
14029 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14030 info_ptr += bytes_read;
14033 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14034 info_ptr += bytes_read;
14036 case DW_FORM_block2:
14037 blk = dwarf_alloc_block (cu);
14038 blk->size = read_2_bytes (abfd, info_ptr);
14040 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14041 info_ptr += blk->size;
14042 DW_BLOCK (attr) = blk;
14044 case DW_FORM_block4:
14045 blk = dwarf_alloc_block (cu);
14046 blk->size = read_4_bytes (abfd, info_ptr);
14048 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14049 info_ptr += blk->size;
14050 DW_BLOCK (attr) = blk;
14052 case DW_FORM_data2:
14053 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14056 case DW_FORM_data4:
14057 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14060 case DW_FORM_data8:
14061 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14064 case DW_FORM_sec_offset:
14065 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14066 info_ptr += bytes_read;
14068 case DW_FORM_string:
14069 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14070 DW_STRING_IS_CANONICAL (attr) = 0;
14071 info_ptr += bytes_read;
14074 if (!cu->per_cu->is_dwz)
14076 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14078 DW_STRING_IS_CANONICAL (attr) = 0;
14079 info_ptr += bytes_read;
14083 case DW_FORM_GNU_strp_alt:
14085 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14086 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14089 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14090 DW_STRING_IS_CANONICAL (attr) = 0;
14091 info_ptr += bytes_read;
14094 case DW_FORM_exprloc:
14095 case DW_FORM_block:
14096 blk = dwarf_alloc_block (cu);
14097 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14098 info_ptr += bytes_read;
14099 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14100 info_ptr += blk->size;
14101 DW_BLOCK (attr) = blk;
14103 case DW_FORM_block1:
14104 blk = dwarf_alloc_block (cu);
14105 blk->size = read_1_byte (abfd, info_ptr);
14107 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14108 info_ptr += blk->size;
14109 DW_BLOCK (attr) = blk;
14111 case DW_FORM_data1:
14112 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14116 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14119 case DW_FORM_flag_present:
14120 DW_UNSND (attr) = 1;
14122 case DW_FORM_sdata:
14123 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14124 info_ptr += bytes_read;
14126 case DW_FORM_udata:
14127 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14128 info_ptr += bytes_read;
14131 DW_UNSND (attr) = (cu->header.offset.sect_off
14132 + read_1_byte (abfd, info_ptr));
14136 DW_UNSND (attr) = (cu->header.offset.sect_off
14137 + read_2_bytes (abfd, info_ptr));
14141 DW_UNSND (attr) = (cu->header.offset.sect_off
14142 + read_4_bytes (abfd, info_ptr));
14146 DW_UNSND (attr) = (cu->header.offset.sect_off
14147 + read_8_bytes (abfd, info_ptr));
14150 case DW_FORM_ref_sig8:
14151 /* Convert the signature to something we can record in DW_UNSND
14153 NOTE: This is NULL if the type wasn't found. */
14154 DW_SIGNATURED_TYPE (attr) =
14155 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14158 case DW_FORM_ref_udata:
14159 DW_UNSND (attr) = (cu->header.offset.sect_off
14160 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14161 info_ptr += bytes_read;
14163 case DW_FORM_indirect:
14164 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14165 info_ptr += bytes_read;
14166 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14168 case DW_FORM_GNU_addr_index:
14169 if (reader->dwo_file == NULL)
14171 /* For now flag a hard error.
14172 Later we can turn this into a complaint. */
14173 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14174 dwarf_form_name (form),
14175 bfd_get_filename (abfd));
14177 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14178 info_ptr += bytes_read;
14180 case DW_FORM_GNU_str_index:
14181 if (reader->dwo_file == NULL)
14183 /* For now flag a hard error.
14184 Later we can turn this into a complaint if warranted. */
14185 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14186 dwarf_form_name (form),
14187 bfd_get_filename (abfd));
14190 ULONGEST str_index =
14191 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14193 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14194 DW_STRING_IS_CANONICAL (attr) = 0;
14195 info_ptr += bytes_read;
14199 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14200 dwarf_form_name (form),
14201 bfd_get_filename (abfd));
14205 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14206 attr->form = DW_FORM_GNU_ref_alt;
14208 /* We have seen instances where the compiler tried to emit a byte
14209 size attribute of -1 which ended up being encoded as an unsigned
14210 0xffffffff. Although 0xffffffff is technically a valid size value,
14211 an object of this size seems pretty unlikely so we can relatively
14212 safely treat these cases as if the size attribute was invalid and
14213 treat them as zero by default. */
14214 if (attr->name == DW_AT_byte_size
14215 && form == DW_FORM_data4
14216 && DW_UNSND (attr) >= 0xffffffff)
14219 (&symfile_complaints,
14220 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14221 hex_string (DW_UNSND (attr)));
14222 DW_UNSND (attr) = 0;
14228 /* Read an attribute described by an abbreviated attribute. */
14231 read_attribute (const struct die_reader_specs *reader,
14232 struct attribute *attr, struct attr_abbrev *abbrev,
14233 gdb_byte *info_ptr)
14235 attr->name = abbrev->name;
14236 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14239 /* Read dwarf information from a buffer. */
14241 static unsigned int
14242 read_1_byte (bfd *abfd, const gdb_byte *buf)
14244 return bfd_get_8 (abfd, buf);
14248 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14250 return bfd_get_signed_8 (abfd, buf);
14253 static unsigned int
14254 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14256 return bfd_get_16 (abfd, buf);
14260 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14262 return bfd_get_signed_16 (abfd, buf);
14265 static unsigned int
14266 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14268 return bfd_get_32 (abfd, buf);
14272 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14274 return bfd_get_signed_32 (abfd, buf);
14278 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14280 return bfd_get_64 (abfd, buf);
14284 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14285 unsigned int *bytes_read)
14287 struct comp_unit_head *cu_header = &cu->header;
14288 CORE_ADDR retval = 0;
14290 if (cu_header->signed_addr_p)
14292 switch (cu_header->addr_size)
14295 retval = bfd_get_signed_16 (abfd, buf);
14298 retval = bfd_get_signed_32 (abfd, buf);
14301 retval = bfd_get_signed_64 (abfd, buf);
14304 internal_error (__FILE__, __LINE__,
14305 _("read_address: bad switch, signed [in module %s]"),
14306 bfd_get_filename (abfd));
14311 switch (cu_header->addr_size)
14314 retval = bfd_get_16 (abfd, buf);
14317 retval = bfd_get_32 (abfd, buf);
14320 retval = bfd_get_64 (abfd, buf);
14323 internal_error (__FILE__, __LINE__,
14324 _("read_address: bad switch, "
14325 "unsigned [in module %s]"),
14326 bfd_get_filename (abfd));
14330 *bytes_read = cu_header->addr_size;
14334 /* Read the initial length from a section. The (draft) DWARF 3
14335 specification allows the initial length to take up either 4 bytes
14336 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14337 bytes describe the length and all offsets will be 8 bytes in length
14340 An older, non-standard 64-bit format is also handled by this
14341 function. The older format in question stores the initial length
14342 as an 8-byte quantity without an escape value. Lengths greater
14343 than 2^32 aren't very common which means that the initial 4 bytes
14344 is almost always zero. Since a length value of zero doesn't make
14345 sense for the 32-bit format, this initial zero can be considered to
14346 be an escape value which indicates the presence of the older 64-bit
14347 format. As written, the code can't detect (old format) lengths
14348 greater than 4GB. If it becomes necessary to handle lengths
14349 somewhat larger than 4GB, we could allow other small values (such
14350 as the non-sensical values of 1, 2, and 3) to also be used as
14351 escape values indicating the presence of the old format.
14353 The value returned via bytes_read should be used to increment the
14354 relevant pointer after calling read_initial_length().
14356 [ Note: read_initial_length() and read_offset() are based on the
14357 document entitled "DWARF Debugging Information Format", revision
14358 3, draft 8, dated November 19, 2001. This document was obtained
14361 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14363 This document is only a draft and is subject to change. (So beware.)
14365 Details regarding the older, non-standard 64-bit format were
14366 determined empirically by examining 64-bit ELF files produced by
14367 the SGI toolchain on an IRIX 6.5 machine.
14369 - Kevin, July 16, 2002
14373 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14375 LONGEST length = bfd_get_32 (abfd, buf);
14377 if (length == 0xffffffff)
14379 length = bfd_get_64 (abfd, buf + 4);
14382 else if (length == 0)
14384 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14385 length = bfd_get_64 (abfd, buf);
14396 /* Cover function for read_initial_length.
14397 Returns the length of the object at BUF, and stores the size of the
14398 initial length in *BYTES_READ and stores the size that offsets will be in
14400 If the initial length size is not equivalent to that specified in
14401 CU_HEADER then issue a complaint.
14402 This is useful when reading non-comp-unit headers. */
14405 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14406 const struct comp_unit_head *cu_header,
14407 unsigned int *bytes_read,
14408 unsigned int *offset_size)
14410 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14412 gdb_assert (cu_header->initial_length_size == 4
14413 || cu_header->initial_length_size == 8
14414 || cu_header->initial_length_size == 12);
14416 if (cu_header->initial_length_size != *bytes_read)
14417 complaint (&symfile_complaints,
14418 _("intermixed 32-bit and 64-bit DWARF sections"));
14420 *offset_size = (*bytes_read == 4) ? 4 : 8;
14424 /* Read an offset from the data stream. The size of the offset is
14425 given by cu_header->offset_size. */
14428 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14429 unsigned int *bytes_read)
14431 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14433 *bytes_read = cu_header->offset_size;
14437 /* Read an offset from the data stream. */
14440 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14442 LONGEST retval = 0;
14444 switch (offset_size)
14447 retval = bfd_get_32 (abfd, buf);
14450 retval = bfd_get_64 (abfd, buf);
14453 internal_error (__FILE__, __LINE__,
14454 _("read_offset_1: bad switch [in module %s]"),
14455 bfd_get_filename (abfd));
14462 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14464 /* If the size of a host char is 8 bits, we can return a pointer
14465 to the buffer, otherwise we have to copy the data to a buffer
14466 allocated on the temporary obstack. */
14467 gdb_assert (HOST_CHAR_BIT == 8);
14472 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14474 /* If the size of a host char is 8 bits, we can return a pointer
14475 to the string, otherwise we have to copy the string to a buffer
14476 allocated on the temporary obstack. */
14477 gdb_assert (HOST_CHAR_BIT == 8);
14480 *bytes_read_ptr = 1;
14483 *bytes_read_ptr = strlen ((char *) buf) + 1;
14484 return (char *) buf;
14488 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14490 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14491 if (dwarf2_per_objfile->str.buffer == NULL)
14492 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14493 bfd_get_filename (abfd));
14494 if (str_offset >= dwarf2_per_objfile->str.size)
14495 error (_("DW_FORM_strp pointing outside of "
14496 ".debug_str section [in module %s]"),
14497 bfd_get_filename (abfd));
14498 gdb_assert (HOST_CHAR_BIT == 8);
14499 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14501 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14504 /* Read a string at offset STR_OFFSET in the .debug_str section from
14505 the .dwz file DWZ. Throw an error if the offset is too large. If
14506 the string consists of a single NUL byte, return NULL; otherwise
14507 return a pointer to the string. */
14510 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14512 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14514 if (dwz->str.buffer == NULL)
14515 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14516 "section [in module %s]"),
14517 bfd_get_filename (dwz->dwz_bfd));
14518 if (str_offset >= dwz->str.size)
14519 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14520 ".debug_str section [in module %s]"),
14521 bfd_get_filename (dwz->dwz_bfd));
14522 gdb_assert (HOST_CHAR_BIT == 8);
14523 if (dwz->str.buffer[str_offset] == '\0')
14525 return (char *) (dwz->str.buffer + str_offset);
14529 read_indirect_string (bfd *abfd, gdb_byte *buf,
14530 const struct comp_unit_head *cu_header,
14531 unsigned int *bytes_read_ptr)
14533 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14535 return read_indirect_string_at_offset (abfd, str_offset);
14539 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14542 unsigned int num_read;
14544 unsigned char byte;
14552 byte = bfd_get_8 (abfd, buf);
14555 result |= ((ULONGEST) (byte & 127) << shift);
14556 if ((byte & 128) == 0)
14562 *bytes_read_ptr = num_read;
14567 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14570 int i, shift, num_read;
14571 unsigned char byte;
14579 byte = bfd_get_8 (abfd, buf);
14582 result |= ((LONGEST) (byte & 127) << shift);
14584 if ((byte & 128) == 0)
14589 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14590 result |= -(((LONGEST) 1) << shift);
14591 *bytes_read_ptr = num_read;
14595 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14596 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14597 ADDR_SIZE is the size of addresses from the CU header. */
14600 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14602 struct objfile *objfile = dwarf2_per_objfile->objfile;
14603 bfd *abfd = objfile->obfd;
14604 const gdb_byte *info_ptr;
14606 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14607 if (dwarf2_per_objfile->addr.buffer == NULL)
14608 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14610 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14611 error (_("DW_FORM_addr_index pointing outside of "
14612 ".debug_addr section [in module %s]"),
14614 info_ptr = (dwarf2_per_objfile->addr.buffer
14615 + addr_base + addr_index * addr_size);
14616 if (addr_size == 4)
14617 return bfd_get_32 (abfd, info_ptr);
14619 return bfd_get_64 (abfd, info_ptr);
14622 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14625 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14627 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14630 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14633 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14634 unsigned int *bytes_read)
14636 bfd *abfd = cu->objfile->obfd;
14637 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14639 return read_addr_index (cu, addr_index);
14642 /* Data structure to pass results from dwarf2_read_addr_index_reader
14643 back to dwarf2_read_addr_index. */
14645 struct dwarf2_read_addr_index_data
14647 ULONGEST addr_base;
14651 /* die_reader_func for dwarf2_read_addr_index. */
14654 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14655 gdb_byte *info_ptr,
14656 struct die_info *comp_unit_die,
14660 struct dwarf2_cu *cu = reader->cu;
14661 struct dwarf2_read_addr_index_data *aidata =
14662 (struct dwarf2_read_addr_index_data *) data;
14664 aidata->addr_base = cu->addr_base;
14665 aidata->addr_size = cu->header.addr_size;
14668 /* Given an index in .debug_addr, fetch the value.
14669 NOTE: This can be called during dwarf expression evaluation,
14670 long after the debug information has been read, and thus per_cu->cu
14671 may no longer exist. */
14674 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14675 unsigned int addr_index)
14677 struct objfile *objfile = per_cu->objfile;
14678 struct dwarf2_cu *cu = per_cu->cu;
14679 ULONGEST addr_base;
14682 /* This is intended to be called from outside this file. */
14683 dw2_setup (objfile);
14685 /* We need addr_base and addr_size.
14686 If we don't have PER_CU->cu, we have to get it.
14687 Nasty, but the alternative is storing the needed info in PER_CU,
14688 which at this point doesn't seem justified: it's not clear how frequently
14689 it would get used and it would increase the size of every PER_CU.
14690 Entry points like dwarf2_per_cu_addr_size do a similar thing
14691 so we're not in uncharted territory here.
14692 Alas we need to be a bit more complicated as addr_base is contained
14695 We don't need to read the entire CU(/TU).
14696 We just need the header and top level die.
14698 IWBN to use the aging mechanism to let us lazily later discard the CU.
14699 For now we skip this optimization. */
14703 addr_base = cu->addr_base;
14704 addr_size = cu->header.addr_size;
14708 struct dwarf2_read_addr_index_data aidata;
14710 /* Note: We can't use init_cutu_and_read_dies_simple here,
14711 we need addr_base. */
14712 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14713 dwarf2_read_addr_index_reader, &aidata);
14714 addr_base = aidata.addr_base;
14715 addr_size = aidata.addr_size;
14718 return read_addr_index_1 (addr_index, addr_base, addr_size);
14721 /* Given a DW_AT_str_index, fetch the string. */
14724 read_str_index (const struct die_reader_specs *reader,
14725 struct dwarf2_cu *cu, ULONGEST str_index)
14727 struct objfile *objfile = dwarf2_per_objfile->objfile;
14728 const char *dwo_name = objfile->name;
14729 bfd *abfd = objfile->obfd;
14730 struct dwo_sections *sections = &reader->dwo_file->sections;
14731 gdb_byte *info_ptr;
14732 ULONGEST str_offset;
14734 dwarf2_read_section (objfile, §ions->str);
14735 dwarf2_read_section (objfile, §ions->str_offsets);
14736 if (sections->str.buffer == NULL)
14737 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14738 " in CU at offset 0x%lx [in module %s]"),
14739 (long) cu->header.offset.sect_off, dwo_name);
14740 if (sections->str_offsets.buffer == NULL)
14741 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14742 " in CU at offset 0x%lx [in module %s]"),
14743 (long) cu->header.offset.sect_off, dwo_name);
14744 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14745 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14746 " section in CU at offset 0x%lx [in module %s]"),
14747 (long) cu->header.offset.sect_off, dwo_name);
14748 info_ptr = (sections->str_offsets.buffer
14749 + str_index * cu->header.offset_size);
14750 if (cu->header.offset_size == 4)
14751 str_offset = bfd_get_32 (abfd, info_ptr);
14753 str_offset = bfd_get_64 (abfd, info_ptr);
14754 if (str_offset >= sections->str.size)
14755 error (_("Offset from DW_FORM_str_index pointing outside of"
14756 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14757 (long) cu->header.offset.sect_off, dwo_name);
14758 return (char *) (sections->str.buffer + str_offset);
14761 /* Return the length of an LEB128 number in BUF. */
14764 leb128_size (const gdb_byte *buf)
14766 const gdb_byte *begin = buf;
14772 if ((byte & 128) == 0)
14773 return buf - begin;
14778 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14785 cu->language = language_c;
14787 case DW_LANG_C_plus_plus:
14788 cu->language = language_cplus;
14791 cu->language = language_d;
14793 case DW_LANG_Fortran77:
14794 case DW_LANG_Fortran90:
14795 case DW_LANG_Fortran95:
14796 cu->language = language_fortran;
14799 cu->language = language_go;
14801 case DW_LANG_Mips_Assembler:
14802 cu->language = language_asm;
14805 cu->language = language_java;
14807 case DW_LANG_Ada83:
14808 case DW_LANG_Ada95:
14809 cu->language = language_ada;
14811 case DW_LANG_Modula2:
14812 cu->language = language_m2;
14814 case DW_LANG_Pascal83:
14815 cu->language = language_pascal;
14818 cu->language = language_objc;
14820 case DW_LANG_Cobol74:
14821 case DW_LANG_Cobol85:
14823 cu->language = language_minimal;
14826 cu->language_defn = language_def (cu->language);
14829 /* Return the named attribute or NULL if not there. */
14831 static struct attribute *
14832 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14837 struct attribute *spec = NULL;
14839 for (i = 0; i < die->num_attrs; ++i)
14841 if (die->attrs[i].name == name)
14842 return &die->attrs[i];
14843 if (die->attrs[i].name == DW_AT_specification
14844 || die->attrs[i].name == DW_AT_abstract_origin)
14845 spec = &die->attrs[i];
14851 die = follow_die_ref (die, spec, &cu);
14857 /* Return the named attribute or NULL if not there,
14858 but do not follow DW_AT_specification, etc.
14859 This is for use in contexts where we're reading .debug_types dies.
14860 Following DW_AT_specification, DW_AT_abstract_origin will take us
14861 back up the chain, and we want to go down. */
14863 static struct attribute *
14864 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14868 for (i = 0; i < die->num_attrs; ++i)
14869 if (die->attrs[i].name == name)
14870 return &die->attrs[i];
14875 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14876 and holds a non-zero value. This function should only be used for
14877 DW_FORM_flag or DW_FORM_flag_present attributes. */
14880 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14882 struct attribute *attr = dwarf2_attr (die, name, cu);
14884 return (attr && DW_UNSND (attr));
14888 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14890 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14891 which value is non-zero. However, we have to be careful with
14892 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14893 (via dwarf2_flag_true_p) follows this attribute. So we may
14894 end up accidently finding a declaration attribute that belongs
14895 to a different DIE referenced by the specification attribute,
14896 even though the given DIE does not have a declaration attribute. */
14897 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14898 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14901 /* Return the die giving the specification for DIE, if there is
14902 one. *SPEC_CU is the CU containing DIE on input, and the CU
14903 containing the return value on output. If there is no
14904 specification, but there is an abstract origin, that is
14907 static struct die_info *
14908 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14910 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14913 if (spec_attr == NULL)
14914 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14916 if (spec_attr == NULL)
14919 return follow_die_ref (die, spec_attr, spec_cu);
14922 /* Free the line_header structure *LH, and any arrays and strings it
14924 NOTE: This is also used as a "cleanup" function. */
14927 free_line_header (struct line_header *lh)
14929 if (lh->standard_opcode_lengths)
14930 xfree (lh->standard_opcode_lengths);
14932 /* Remember that all the lh->file_names[i].name pointers are
14933 pointers into debug_line_buffer, and don't need to be freed. */
14934 if (lh->file_names)
14935 xfree (lh->file_names);
14937 /* Similarly for the include directory names. */
14938 if (lh->include_dirs)
14939 xfree (lh->include_dirs);
14944 /* Add an entry to LH's include directory table. */
14947 add_include_dir (struct line_header *lh, char *include_dir)
14949 /* Grow the array if necessary. */
14950 if (lh->include_dirs_size == 0)
14952 lh->include_dirs_size = 1; /* for testing */
14953 lh->include_dirs = xmalloc (lh->include_dirs_size
14954 * sizeof (*lh->include_dirs));
14956 else if (lh->num_include_dirs >= lh->include_dirs_size)
14958 lh->include_dirs_size *= 2;
14959 lh->include_dirs = xrealloc (lh->include_dirs,
14960 (lh->include_dirs_size
14961 * sizeof (*lh->include_dirs)));
14964 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14967 /* Add an entry to LH's file name table. */
14970 add_file_name (struct line_header *lh,
14972 unsigned int dir_index,
14973 unsigned int mod_time,
14974 unsigned int length)
14976 struct file_entry *fe;
14978 /* Grow the array if necessary. */
14979 if (lh->file_names_size == 0)
14981 lh->file_names_size = 1; /* for testing */
14982 lh->file_names = xmalloc (lh->file_names_size
14983 * sizeof (*lh->file_names));
14985 else if (lh->num_file_names >= lh->file_names_size)
14987 lh->file_names_size *= 2;
14988 lh->file_names = xrealloc (lh->file_names,
14989 (lh->file_names_size
14990 * sizeof (*lh->file_names)));
14993 fe = &lh->file_names[lh->num_file_names++];
14995 fe->dir_index = dir_index;
14996 fe->mod_time = mod_time;
14997 fe->length = length;
14998 fe->included_p = 0;
15002 /* A convenience function to find the proper .debug_line section for a
15005 static struct dwarf2_section_info *
15006 get_debug_line_section (struct dwarf2_cu *cu)
15008 struct dwarf2_section_info *section;
15010 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15012 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15013 section = &cu->dwo_unit->dwo_file->sections.line;
15014 else if (cu->per_cu->is_dwz)
15016 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15018 section = &dwz->line;
15021 section = &dwarf2_per_objfile->line;
15026 /* Read the statement program header starting at OFFSET in
15027 .debug_line, or .debug_line.dwo. Return a pointer
15028 to a struct line_header, allocated using xmalloc.
15030 NOTE: the strings in the include directory and file name tables of
15031 the returned object point into the dwarf line section buffer,
15032 and must not be freed. */
15034 static struct line_header *
15035 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15037 struct cleanup *back_to;
15038 struct line_header *lh;
15039 gdb_byte *line_ptr;
15040 unsigned int bytes_read, offset_size;
15042 char *cur_dir, *cur_file;
15043 struct dwarf2_section_info *section;
15046 section = get_debug_line_section (cu);
15047 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15048 if (section->buffer == NULL)
15050 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15051 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15053 complaint (&symfile_complaints, _("missing .debug_line section"));
15057 /* We can't do this until we know the section is non-empty.
15058 Only then do we know we have such a section. */
15059 abfd = section->asection->owner;
15061 /* Make sure that at least there's room for the total_length field.
15062 That could be 12 bytes long, but we're just going to fudge that. */
15063 if (offset + 4 >= section->size)
15065 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15069 lh = xmalloc (sizeof (*lh));
15070 memset (lh, 0, sizeof (*lh));
15071 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15074 line_ptr = section->buffer + offset;
15076 /* Read in the header. */
15078 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15079 &bytes_read, &offset_size);
15080 line_ptr += bytes_read;
15081 if (line_ptr + lh->total_length > (section->buffer + section->size))
15083 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15086 lh->statement_program_end = line_ptr + lh->total_length;
15087 lh->version = read_2_bytes (abfd, line_ptr);
15089 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15090 line_ptr += offset_size;
15091 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15093 if (lh->version >= 4)
15095 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15099 lh->maximum_ops_per_instruction = 1;
15101 if (lh->maximum_ops_per_instruction == 0)
15103 lh->maximum_ops_per_instruction = 1;
15104 complaint (&symfile_complaints,
15105 _("invalid maximum_ops_per_instruction "
15106 "in `.debug_line' section"));
15109 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15111 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15113 lh->line_range = read_1_byte (abfd, line_ptr);
15115 lh->opcode_base = read_1_byte (abfd, line_ptr);
15117 lh->standard_opcode_lengths
15118 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15120 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15121 for (i = 1; i < lh->opcode_base; ++i)
15123 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15127 /* Read directory table. */
15128 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15130 line_ptr += bytes_read;
15131 add_include_dir (lh, cur_dir);
15133 line_ptr += bytes_read;
15135 /* Read file name table. */
15136 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15138 unsigned int dir_index, mod_time, length;
15140 line_ptr += bytes_read;
15141 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15142 line_ptr += bytes_read;
15143 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15144 line_ptr += bytes_read;
15145 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15146 line_ptr += bytes_read;
15148 add_file_name (lh, cur_file, dir_index, mod_time, length);
15150 line_ptr += bytes_read;
15151 lh->statement_program_start = line_ptr;
15153 if (line_ptr > (section->buffer + section->size))
15154 complaint (&symfile_complaints,
15155 _("line number info header doesn't "
15156 "fit in `.debug_line' section"));
15158 discard_cleanups (back_to);
15162 /* Subroutine of dwarf_decode_lines to simplify it.
15163 Return the file name of the psymtab for included file FILE_INDEX
15164 in line header LH of PST.
15165 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15166 If space for the result is malloc'd, it will be freed by a cleanup.
15167 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15169 The function creates dangling cleanup registration. */
15172 psymtab_include_file_name (const struct line_header *lh, int file_index,
15173 const struct partial_symtab *pst,
15174 const char *comp_dir)
15176 const struct file_entry fe = lh->file_names [file_index];
15177 char *include_name = fe.name;
15178 char *include_name_to_compare = include_name;
15179 char *dir_name = NULL;
15180 const char *pst_filename;
15181 char *copied_name = NULL;
15185 dir_name = lh->include_dirs[fe.dir_index - 1];
15187 if (!IS_ABSOLUTE_PATH (include_name)
15188 && (dir_name != NULL || comp_dir != NULL))
15190 /* Avoid creating a duplicate psymtab for PST.
15191 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15192 Before we do the comparison, however, we need to account
15193 for DIR_NAME and COMP_DIR.
15194 First prepend dir_name (if non-NULL). If we still don't
15195 have an absolute path prepend comp_dir (if non-NULL).
15196 However, the directory we record in the include-file's
15197 psymtab does not contain COMP_DIR (to match the
15198 corresponding symtab(s)).
15203 bash$ gcc -g ./hello.c
15204 include_name = "hello.c"
15206 DW_AT_comp_dir = comp_dir = "/tmp"
15207 DW_AT_name = "./hello.c" */
15209 if (dir_name != NULL)
15211 include_name = concat (dir_name, SLASH_STRING,
15212 include_name, (char *)NULL);
15213 include_name_to_compare = include_name;
15214 make_cleanup (xfree, include_name);
15216 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15218 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15219 include_name, (char *)NULL);
15223 pst_filename = pst->filename;
15224 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15226 copied_name = concat (pst->dirname, SLASH_STRING,
15227 pst_filename, (char *)NULL);
15228 pst_filename = copied_name;
15231 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15233 if (include_name_to_compare != include_name)
15234 xfree (include_name_to_compare);
15235 if (copied_name != NULL)
15236 xfree (copied_name);
15240 return include_name;
15243 /* Ignore this record_line request. */
15246 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15251 /* Subroutine of dwarf_decode_lines to simplify it.
15252 Process the line number information in LH. */
15255 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15256 struct dwarf2_cu *cu, struct partial_symtab *pst)
15258 gdb_byte *line_ptr, *extended_end;
15259 gdb_byte *line_end;
15260 unsigned int bytes_read, extended_len;
15261 unsigned char op_code, extended_op, adj_opcode;
15262 CORE_ADDR baseaddr;
15263 struct objfile *objfile = cu->objfile;
15264 bfd *abfd = objfile->obfd;
15265 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15266 const int decode_for_pst_p = (pst != NULL);
15267 struct subfile *last_subfile = NULL;
15268 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15271 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15273 line_ptr = lh->statement_program_start;
15274 line_end = lh->statement_program_end;
15276 /* Read the statement sequences until there's nothing left. */
15277 while (line_ptr < line_end)
15279 /* state machine registers */
15280 CORE_ADDR address = 0;
15281 unsigned int file = 1;
15282 unsigned int line = 1;
15283 unsigned int column = 0;
15284 int is_stmt = lh->default_is_stmt;
15285 int basic_block = 0;
15286 int end_sequence = 0;
15288 unsigned char op_index = 0;
15290 if (!decode_for_pst_p && lh->num_file_names >= file)
15292 /* Start a subfile for the current file of the state machine. */
15293 /* lh->include_dirs and lh->file_names are 0-based, but the
15294 directory and file name numbers in the statement program
15296 struct file_entry *fe = &lh->file_names[file - 1];
15300 dir = lh->include_dirs[fe->dir_index - 1];
15302 dwarf2_start_subfile (fe->name, dir, comp_dir);
15305 /* Decode the table. */
15306 while (!end_sequence)
15308 op_code = read_1_byte (abfd, line_ptr);
15310 if (line_ptr > line_end)
15312 dwarf2_debug_line_missing_end_sequence_complaint ();
15316 if (op_code >= lh->opcode_base)
15318 /* Special operand. */
15319 adj_opcode = op_code - lh->opcode_base;
15320 address += (((op_index + (adj_opcode / lh->line_range))
15321 / lh->maximum_ops_per_instruction)
15322 * lh->minimum_instruction_length);
15323 op_index = ((op_index + (adj_opcode / lh->line_range))
15324 % lh->maximum_ops_per_instruction);
15325 line += lh->line_base + (adj_opcode % lh->line_range);
15326 if (lh->num_file_names < file || file == 0)
15327 dwarf2_debug_line_missing_file_complaint ();
15328 /* For now we ignore lines not starting on an
15329 instruction boundary. */
15330 else if (op_index == 0)
15332 lh->file_names[file - 1].included_p = 1;
15333 if (!decode_for_pst_p && is_stmt)
15335 if (last_subfile != current_subfile)
15337 addr = gdbarch_addr_bits_remove (gdbarch, address);
15339 (*p_record_line) (last_subfile, 0, addr);
15340 last_subfile = current_subfile;
15342 /* Append row to matrix using current values. */
15343 addr = gdbarch_addr_bits_remove (gdbarch, address);
15344 (*p_record_line) (current_subfile, line, addr);
15349 else switch (op_code)
15351 case DW_LNS_extended_op:
15352 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15354 line_ptr += bytes_read;
15355 extended_end = line_ptr + extended_len;
15356 extended_op = read_1_byte (abfd, line_ptr);
15358 switch (extended_op)
15360 case DW_LNE_end_sequence:
15361 p_record_line = record_line;
15364 case DW_LNE_set_address:
15365 address = read_address (abfd, line_ptr, cu, &bytes_read);
15367 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15369 /* This line table is for a function which has been
15370 GCd by the linker. Ignore it. PR gdb/12528 */
15373 = line_ptr - get_debug_line_section (cu)->buffer;
15375 complaint (&symfile_complaints,
15376 _(".debug_line address at offset 0x%lx is 0 "
15378 line_offset, objfile->name);
15379 p_record_line = noop_record_line;
15383 line_ptr += bytes_read;
15384 address += baseaddr;
15386 case DW_LNE_define_file:
15389 unsigned int dir_index, mod_time, length;
15391 cur_file = read_direct_string (abfd, line_ptr,
15393 line_ptr += bytes_read;
15395 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15396 line_ptr += bytes_read;
15398 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15399 line_ptr += bytes_read;
15401 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15402 line_ptr += bytes_read;
15403 add_file_name (lh, cur_file, dir_index, mod_time, length);
15406 case DW_LNE_set_discriminator:
15407 /* The discriminator is not interesting to the debugger;
15409 line_ptr = extended_end;
15412 complaint (&symfile_complaints,
15413 _("mangled .debug_line section"));
15416 /* Make sure that we parsed the extended op correctly. If e.g.
15417 we expected a different address size than the producer used,
15418 we may have read the wrong number of bytes. */
15419 if (line_ptr != extended_end)
15421 complaint (&symfile_complaints,
15422 _("mangled .debug_line section"));
15427 if (lh->num_file_names < file || file == 0)
15428 dwarf2_debug_line_missing_file_complaint ();
15431 lh->file_names[file - 1].included_p = 1;
15432 if (!decode_for_pst_p && is_stmt)
15434 if (last_subfile != current_subfile)
15436 addr = gdbarch_addr_bits_remove (gdbarch, address);
15438 (*p_record_line) (last_subfile, 0, addr);
15439 last_subfile = current_subfile;
15441 addr = gdbarch_addr_bits_remove (gdbarch, address);
15442 (*p_record_line) (current_subfile, line, addr);
15447 case DW_LNS_advance_pc:
15450 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15452 address += (((op_index + adjust)
15453 / lh->maximum_ops_per_instruction)
15454 * lh->minimum_instruction_length);
15455 op_index = ((op_index + adjust)
15456 % lh->maximum_ops_per_instruction);
15457 line_ptr += bytes_read;
15460 case DW_LNS_advance_line:
15461 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15462 line_ptr += bytes_read;
15464 case DW_LNS_set_file:
15466 /* The arrays lh->include_dirs and lh->file_names are
15467 0-based, but the directory and file name numbers in
15468 the statement program are 1-based. */
15469 struct file_entry *fe;
15472 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15473 line_ptr += bytes_read;
15474 if (lh->num_file_names < file || file == 0)
15475 dwarf2_debug_line_missing_file_complaint ();
15478 fe = &lh->file_names[file - 1];
15480 dir = lh->include_dirs[fe->dir_index - 1];
15481 if (!decode_for_pst_p)
15483 last_subfile = current_subfile;
15484 dwarf2_start_subfile (fe->name, dir, comp_dir);
15489 case DW_LNS_set_column:
15490 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15491 line_ptr += bytes_read;
15493 case DW_LNS_negate_stmt:
15494 is_stmt = (!is_stmt);
15496 case DW_LNS_set_basic_block:
15499 /* Add to the address register of the state machine the
15500 address increment value corresponding to special opcode
15501 255. I.e., this value is scaled by the minimum
15502 instruction length since special opcode 255 would have
15503 scaled the increment. */
15504 case DW_LNS_const_add_pc:
15506 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15508 address += (((op_index + adjust)
15509 / lh->maximum_ops_per_instruction)
15510 * lh->minimum_instruction_length);
15511 op_index = ((op_index + adjust)
15512 % lh->maximum_ops_per_instruction);
15515 case DW_LNS_fixed_advance_pc:
15516 address += read_2_bytes (abfd, line_ptr);
15522 /* Unknown standard opcode, ignore it. */
15525 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15527 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15528 line_ptr += bytes_read;
15533 if (lh->num_file_names < file || file == 0)
15534 dwarf2_debug_line_missing_file_complaint ();
15537 lh->file_names[file - 1].included_p = 1;
15538 if (!decode_for_pst_p)
15540 addr = gdbarch_addr_bits_remove (gdbarch, address);
15541 (*p_record_line) (current_subfile, 0, addr);
15547 /* Decode the Line Number Program (LNP) for the given line_header
15548 structure and CU. The actual information extracted and the type
15549 of structures created from the LNP depends on the value of PST.
15551 1. If PST is NULL, then this procedure uses the data from the program
15552 to create all necessary symbol tables, and their linetables.
15554 2. If PST is not NULL, this procedure reads the program to determine
15555 the list of files included by the unit represented by PST, and
15556 builds all the associated partial symbol tables.
15558 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15559 It is used for relative paths in the line table.
15560 NOTE: When processing partial symtabs (pst != NULL),
15561 comp_dir == pst->dirname.
15563 NOTE: It is important that psymtabs have the same file name (via strcmp)
15564 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15565 symtab we don't use it in the name of the psymtabs we create.
15566 E.g. expand_line_sal requires this when finding psymtabs to expand.
15567 A good testcase for this is mb-inline.exp. */
15570 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15571 struct dwarf2_cu *cu, struct partial_symtab *pst,
15572 int want_line_info)
15574 struct objfile *objfile = cu->objfile;
15575 const int decode_for_pst_p = (pst != NULL);
15576 struct subfile *first_subfile = current_subfile;
15578 if (want_line_info)
15579 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15581 if (decode_for_pst_p)
15585 /* Now that we're done scanning the Line Header Program, we can
15586 create the psymtab of each included file. */
15587 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15588 if (lh->file_names[file_index].included_p == 1)
15590 char *include_name =
15591 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15592 if (include_name != NULL)
15593 dwarf2_create_include_psymtab (include_name, pst, objfile);
15598 /* Make sure a symtab is created for every file, even files
15599 which contain only variables (i.e. no code with associated
15603 for (i = 0; i < lh->num_file_names; i++)
15606 struct file_entry *fe;
15608 fe = &lh->file_names[i];
15610 dir = lh->include_dirs[fe->dir_index - 1];
15611 dwarf2_start_subfile (fe->name, dir, comp_dir);
15613 /* Skip the main file; we don't need it, and it must be
15614 allocated last, so that it will show up before the
15615 non-primary symtabs in the objfile's symtab list. */
15616 if (current_subfile == first_subfile)
15619 if (current_subfile->symtab == NULL)
15620 current_subfile->symtab = allocate_symtab (current_subfile->name,
15622 fe->symtab = current_subfile->symtab;
15627 /* Start a subfile for DWARF. FILENAME is the name of the file and
15628 DIRNAME the name of the source directory which contains FILENAME
15629 or NULL if not known. COMP_DIR is the compilation directory for the
15630 linetable's compilation unit or NULL if not known.
15631 This routine tries to keep line numbers from identical absolute and
15632 relative file names in a common subfile.
15634 Using the `list' example from the GDB testsuite, which resides in
15635 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15636 of /srcdir/list0.c yields the following debugging information for list0.c:
15638 DW_AT_name: /srcdir/list0.c
15639 DW_AT_comp_dir: /compdir
15640 files.files[0].name: list0.h
15641 files.files[0].dir: /srcdir
15642 files.files[1].name: list0.c
15643 files.files[1].dir: /srcdir
15645 The line number information for list0.c has to end up in a single
15646 subfile, so that `break /srcdir/list0.c:1' works as expected.
15647 start_subfile will ensure that this happens provided that we pass the
15648 concatenation of files.files[1].dir and files.files[1].name as the
15652 dwarf2_start_subfile (char *filename, const char *dirname,
15653 const char *comp_dir)
15657 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15658 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15659 second argument to start_subfile. To be consistent, we do the
15660 same here. In order not to lose the line information directory,
15661 we concatenate it to the filename when it makes sense.
15662 Note that the Dwarf3 standard says (speaking of filenames in line
15663 information): ``The directory index is ignored for file names
15664 that represent full path names''. Thus ignoring dirname in the
15665 `else' branch below isn't an issue. */
15667 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15668 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15670 fullname = filename;
15672 start_subfile (fullname, comp_dir);
15674 if (fullname != filename)
15678 /* Start a symtab for DWARF.
15679 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15682 dwarf2_start_symtab (struct dwarf2_cu *cu,
15683 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15685 start_symtab (name, comp_dir, low_pc);
15686 record_debugformat ("DWARF 2");
15687 record_producer (cu->producer);
15689 /* We assume that we're processing GCC output. */
15690 processing_gcc_compilation = 2;
15692 cu->processing_has_namespace_info = 0;
15696 var_decode_location (struct attribute *attr, struct symbol *sym,
15697 struct dwarf2_cu *cu)
15699 struct objfile *objfile = cu->objfile;
15700 struct comp_unit_head *cu_header = &cu->header;
15702 /* NOTE drow/2003-01-30: There used to be a comment and some special
15703 code here to turn a symbol with DW_AT_external and a
15704 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15705 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15706 with some versions of binutils) where shared libraries could have
15707 relocations against symbols in their debug information - the
15708 minimal symbol would have the right address, but the debug info
15709 would not. It's no longer necessary, because we will explicitly
15710 apply relocations when we read in the debug information now. */
15712 /* A DW_AT_location attribute with no contents indicates that a
15713 variable has been optimized away. */
15714 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15716 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15720 /* Handle one degenerate form of location expression specially, to
15721 preserve GDB's previous behavior when section offsets are
15722 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15723 then mark this symbol as LOC_STATIC. */
15725 if (attr_form_is_block (attr)
15726 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15727 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15728 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15729 && (DW_BLOCK (attr)->size
15730 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15732 unsigned int dummy;
15734 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15735 SYMBOL_VALUE_ADDRESS (sym) =
15736 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15738 SYMBOL_VALUE_ADDRESS (sym) =
15739 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15740 SYMBOL_CLASS (sym) = LOC_STATIC;
15741 fixup_symbol_section (sym, objfile);
15742 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15743 SYMBOL_SECTION (sym));
15747 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15748 expression evaluator, and use LOC_COMPUTED only when necessary
15749 (i.e. when the value of a register or memory location is
15750 referenced, or a thread-local block, etc.). Then again, it might
15751 not be worthwhile. I'm assuming that it isn't unless performance
15752 or memory numbers show me otherwise. */
15754 dwarf2_symbol_mark_computed (attr, sym, cu);
15755 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15757 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15758 cu->has_loclist = 1;
15761 /* Given a pointer to a DWARF information entry, figure out if we need
15762 to make a symbol table entry for it, and if so, create a new entry
15763 and return a pointer to it.
15764 If TYPE is NULL, determine symbol type from the die, otherwise
15765 used the passed type.
15766 If SPACE is not NULL, use it to hold the new symbol. If it is
15767 NULL, allocate a new symbol on the objfile's obstack. */
15769 static struct symbol *
15770 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15771 struct symbol *space)
15773 struct objfile *objfile = cu->objfile;
15774 struct symbol *sym = NULL;
15776 struct attribute *attr = NULL;
15777 struct attribute *attr2 = NULL;
15778 CORE_ADDR baseaddr;
15779 struct pending **list_to_add = NULL;
15781 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15783 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15785 name = dwarf2_name (die, cu);
15788 const char *linkagename;
15789 int suppress_add = 0;
15794 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15795 OBJSTAT (objfile, n_syms++);
15797 /* Cache this symbol's name and the name's demangled form (if any). */
15798 SYMBOL_SET_LANGUAGE (sym, cu->language);
15799 linkagename = dwarf2_physname (name, die, cu);
15800 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15802 /* Fortran does not have mangling standard and the mangling does differ
15803 between gfortran, iFort etc. */
15804 if (cu->language == language_fortran
15805 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15806 symbol_set_demangled_name (&(sym->ginfo),
15807 dwarf2_full_name (name, die, cu),
15810 /* Default assumptions.
15811 Use the passed type or decode it from the die. */
15812 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15813 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15815 SYMBOL_TYPE (sym) = type;
15817 SYMBOL_TYPE (sym) = die_type (die, cu);
15818 attr = dwarf2_attr (die,
15819 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15823 SYMBOL_LINE (sym) = DW_UNSND (attr);
15826 attr = dwarf2_attr (die,
15827 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15831 int file_index = DW_UNSND (attr);
15833 if (cu->line_header == NULL
15834 || file_index > cu->line_header->num_file_names)
15835 complaint (&symfile_complaints,
15836 _("file index out of range"));
15837 else if (file_index > 0)
15839 struct file_entry *fe;
15841 fe = &cu->line_header->file_names[file_index - 1];
15842 SYMBOL_SYMTAB (sym) = fe->symtab;
15849 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15852 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15854 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15855 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15856 SYMBOL_CLASS (sym) = LOC_LABEL;
15857 add_symbol_to_list (sym, cu->list_in_scope);
15859 case DW_TAG_subprogram:
15860 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15862 SYMBOL_CLASS (sym) = LOC_BLOCK;
15863 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15864 if ((attr2 && (DW_UNSND (attr2) != 0))
15865 || cu->language == language_ada)
15867 /* Subprograms marked external are stored as a global symbol.
15868 Ada subprograms, whether marked external or not, are always
15869 stored as a global symbol, because we want to be able to
15870 access them globally. For instance, we want to be able
15871 to break on a nested subprogram without having to
15872 specify the context. */
15873 list_to_add = &global_symbols;
15877 list_to_add = cu->list_in_scope;
15880 case DW_TAG_inlined_subroutine:
15881 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15883 SYMBOL_CLASS (sym) = LOC_BLOCK;
15884 SYMBOL_INLINED (sym) = 1;
15885 list_to_add = cu->list_in_scope;
15887 case DW_TAG_template_value_param:
15889 /* Fall through. */
15890 case DW_TAG_constant:
15891 case DW_TAG_variable:
15892 case DW_TAG_member:
15893 /* Compilation with minimal debug info may result in
15894 variables with missing type entries. Change the
15895 misleading `void' type to something sensible. */
15896 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15898 = objfile_type (objfile)->nodebug_data_symbol;
15900 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15901 /* In the case of DW_TAG_member, we should only be called for
15902 static const members. */
15903 if (die->tag == DW_TAG_member)
15905 /* dwarf2_add_field uses die_is_declaration,
15906 so we do the same. */
15907 gdb_assert (die_is_declaration (die, cu));
15912 dwarf2_const_value (attr, sym, cu);
15913 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15916 if (attr2 && (DW_UNSND (attr2) != 0))
15917 list_to_add = &global_symbols;
15919 list_to_add = cu->list_in_scope;
15923 attr = dwarf2_attr (die, DW_AT_location, cu);
15926 var_decode_location (attr, sym, cu);
15927 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15929 /* Fortran explicitly imports any global symbols to the local
15930 scope by DW_TAG_common_block. */
15931 if (cu->language == language_fortran && die->parent
15932 && die->parent->tag == DW_TAG_common_block)
15935 if (SYMBOL_CLASS (sym) == LOC_STATIC
15936 && SYMBOL_VALUE_ADDRESS (sym) == 0
15937 && !dwarf2_per_objfile->has_section_at_zero)
15939 /* When a static variable is eliminated by the linker,
15940 the corresponding debug information is not stripped
15941 out, but the variable address is set to null;
15942 do not add such variables into symbol table. */
15944 else if (attr2 && (DW_UNSND (attr2) != 0))
15946 /* Workaround gfortran PR debug/40040 - it uses
15947 DW_AT_location for variables in -fPIC libraries which may
15948 get overriden by other libraries/executable and get
15949 a different address. Resolve it by the minimal symbol
15950 which may come from inferior's executable using copy
15951 relocation. Make this workaround only for gfortran as for
15952 other compilers GDB cannot guess the minimal symbol
15953 Fortran mangling kind. */
15954 if (cu->language == language_fortran && die->parent
15955 && die->parent->tag == DW_TAG_module
15957 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15958 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15960 /* A variable with DW_AT_external is never static,
15961 but it may be block-scoped. */
15962 list_to_add = (cu->list_in_scope == &file_symbols
15963 ? &global_symbols : cu->list_in_scope);
15966 list_to_add = cu->list_in_scope;
15970 /* We do not know the address of this symbol.
15971 If it is an external symbol and we have type information
15972 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15973 The address of the variable will then be determined from
15974 the minimal symbol table whenever the variable is
15976 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15978 /* Fortran explicitly imports any global symbols to the local
15979 scope by DW_TAG_common_block. */
15980 if (cu->language == language_fortran && die->parent
15981 && die->parent->tag == DW_TAG_common_block)
15983 /* SYMBOL_CLASS doesn't matter here because
15984 read_common_block is going to reset it. */
15986 list_to_add = cu->list_in_scope;
15988 else if (attr2 && (DW_UNSND (attr2) != 0)
15989 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15991 /* A variable with DW_AT_external is never static, but it
15992 may be block-scoped. */
15993 list_to_add = (cu->list_in_scope == &file_symbols
15994 ? &global_symbols : cu->list_in_scope);
15996 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15998 else if (!die_is_declaration (die, cu))
16000 /* Use the default LOC_OPTIMIZED_OUT class. */
16001 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16003 list_to_add = cu->list_in_scope;
16007 case DW_TAG_formal_parameter:
16008 /* If we are inside a function, mark this as an argument. If
16009 not, we might be looking at an argument to an inlined function
16010 when we do not have enough information to show inlined frames;
16011 pretend it's a local variable in that case so that the user can
16013 if (context_stack_depth > 0
16014 && context_stack[context_stack_depth - 1].name != NULL)
16015 SYMBOL_IS_ARGUMENT (sym) = 1;
16016 attr = dwarf2_attr (die, DW_AT_location, cu);
16019 var_decode_location (attr, sym, cu);
16021 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16024 dwarf2_const_value (attr, sym, cu);
16027 list_to_add = cu->list_in_scope;
16029 case DW_TAG_unspecified_parameters:
16030 /* From varargs functions; gdb doesn't seem to have any
16031 interest in this information, so just ignore it for now.
16034 case DW_TAG_template_type_param:
16036 /* Fall through. */
16037 case DW_TAG_class_type:
16038 case DW_TAG_interface_type:
16039 case DW_TAG_structure_type:
16040 case DW_TAG_union_type:
16041 case DW_TAG_set_type:
16042 case DW_TAG_enumeration_type:
16043 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16044 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16047 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16048 really ever be static objects: otherwise, if you try
16049 to, say, break of a class's method and you're in a file
16050 which doesn't mention that class, it won't work unless
16051 the check for all static symbols in lookup_symbol_aux
16052 saves you. See the OtherFileClass tests in
16053 gdb.c++/namespace.exp. */
16057 list_to_add = (cu->list_in_scope == &file_symbols
16058 && (cu->language == language_cplus
16059 || cu->language == language_java)
16060 ? &global_symbols : cu->list_in_scope);
16062 /* The semantics of C++ state that "struct foo {
16063 ... }" also defines a typedef for "foo". A Java
16064 class declaration also defines a typedef for the
16066 if (cu->language == language_cplus
16067 || cu->language == language_java
16068 || cu->language == language_ada)
16070 /* The symbol's name is already allocated along
16071 with this objfile, so we don't need to
16072 duplicate it for the type. */
16073 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16074 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16079 case DW_TAG_typedef:
16080 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16081 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16082 list_to_add = cu->list_in_scope;
16084 case DW_TAG_base_type:
16085 case DW_TAG_subrange_type:
16086 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16087 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16088 list_to_add = cu->list_in_scope;
16090 case DW_TAG_enumerator:
16091 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16094 dwarf2_const_value (attr, sym, cu);
16097 /* NOTE: carlton/2003-11-10: See comment above in the
16098 DW_TAG_class_type, etc. block. */
16100 list_to_add = (cu->list_in_scope == &file_symbols
16101 && (cu->language == language_cplus
16102 || cu->language == language_java)
16103 ? &global_symbols : cu->list_in_scope);
16106 case DW_TAG_namespace:
16107 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16108 list_to_add = &global_symbols;
16110 case DW_TAG_common_block:
16111 SYMBOL_CLASS (sym) = LOC_COMMON_BLOCK;
16112 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16113 add_symbol_to_list (sym, cu->list_in_scope);
16116 /* Not a tag we recognize. Hopefully we aren't processing
16117 trash data, but since we must specifically ignore things
16118 we don't recognize, there is nothing else we should do at
16120 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16121 dwarf_tag_name (die->tag));
16127 sym->hash_next = objfile->template_symbols;
16128 objfile->template_symbols = sym;
16129 list_to_add = NULL;
16132 if (list_to_add != NULL)
16133 add_symbol_to_list (sym, list_to_add);
16135 /* For the benefit of old versions of GCC, check for anonymous
16136 namespaces based on the demangled name. */
16137 if (!cu->processing_has_namespace_info
16138 && cu->language == language_cplus)
16139 cp_scan_for_anonymous_namespaces (sym, objfile);
16144 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16146 static struct symbol *
16147 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16149 return new_symbol_full (die, type, cu, NULL);
16152 /* Given an attr with a DW_FORM_dataN value in host byte order,
16153 zero-extend it as appropriate for the symbol's type. The DWARF
16154 standard (v4) is not entirely clear about the meaning of using
16155 DW_FORM_dataN for a constant with a signed type, where the type is
16156 wider than the data. The conclusion of a discussion on the DWARF
16157 list was that this is unspecified. We choose to always zero-extend
16158 because that is the interpretation long in use by GCC. */
16161 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16162 const char *name, struct obstack *obstack,
16163 struct dwarf2_cu *cu, LONGEST *value, int bits)
16165 struct objfile *objfile = cu->objfile;
16166 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16167 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16168 LONGEST l = DW_UNSND (attr);
16170 if (bits < sizeof (*value) * 8)
16172 l &= ((LONGEST) 1 << bits) - 1;
16175 else if (bits == sizeof (*value) * 8)
16179 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16180 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16187 /* Read a constant value from an attribute. Either set *VALUE, or if
16188 the value does not fit in *VALUE, set *BYTES - either already
16189 allocated on the objfile obstack, or newly allocated on OBSTACK,
16190 or, set *BATON, if we translated the constant to a location
16194 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16195 const char *name, struct obstack *obstack,
16196 struct dwarf2_cu *cu,
16197 LONGEST *value, gdb_byte **bytes,
16198 struct dwarf2_locexpr_baton **baton)
16200 struct objfile *objfile = cu->objfile;
16201 struct comp_unit_head *cu_header = &cu->header;
16202 struct dwarf_block *blk;
16203 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16204 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16210 switch (attr->form)
16213 case DW_FORM_GNU_addr_index:
16217 if (TYPE_LENGTH (type) != cu_header->addr_size)
16218 dwarf2_const_value_length_mismatch_complaint (name,
16219 cu_header->addr_size,
16220 TYPE_LENGTH (type));
16221 /* Symbols of this form are reasonably rare, so we just
16222 piggyback on the existing location code rather than writing
16223 a new implementation of symbol_computed_ops. */
16224 *baton = obstack_alloc (&objfile->objfile_obstack,
16225 sizeof (struct dwarf2_locexpr_baton));
16226 (*baton)->per_cu = cu->per_cu;
16227 gdb_assert ((*baton)->per_cu);
16229 (*baton)->size = 2 + cu_header->addr_size;
16230 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16231 (*baton)->data = data;
16233 data[0] = DW_OP_addr;
16234 store_unsigned_integer (&data[1], cu_header->addr_size,
16235 byte_order, DW_ADDR (attr));
16236 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16239 case DW_FORM_string:
16241 case DW_FORM_GNU_str_index:
16242 case DW_FORM_GNU_strp_alt:
16243 /* DW_STRING is already allocated on the objfile obstack, point
16245 *bytes = (gdb_byte *) DW_STRING (attr);
16247 case DW_FORM_block1:
16248 case DW_FORM_block2:
16249 case DW_FORM_block4:
16250 case DW_FORM_block:
16251 case DW_FORM_exprloc:
16252 blk = DW_BLOCK (attr);
16253 if (TYPE_LENGTH (type) != blk->size)
16254 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16255 TYPE_LENGTH (type));
16256 *bytes = blk->data;
16259 /* The DW_AT_const_value attributes are supposed to carry the
16260 symbol's value "represented as it would be on the target
16261 architecture." By the time we get here, it's already been
16262 converted to host endianness, so we just need to sign- or
16263 zero-extend it as appropriate. */
16264 case DW_FORM_data1:
16265 *bytes = dwarf2_const_value_data (attr, type, name,
16266 obstack, cu, value, 8);
16268 case DW_FORM_data2:
16269 *bytes = dwarf2_const_value_data (attr, type, name,
16270 obstack, cu, value, 16);
16272 case DW_FORM_data4:
16273 *bytes = dwarf2_const_value_data (attr, type, name,
16274 obstack, cu, value, 32);
16276 case DW_FORM_data8:
16277 *bytes = dwarf2_const_value_data (attr, type, name,
16278 obstack, cu, value, 64);
16281 case DW_FORM_sdata:
16282 *value = DW_SND (attr);
16285 case DW_FORM_udata:
16286 *value = DW_UNSND (attr);
16290 complaint (&symfile_complaints,
16291 _("unsupported const value attribute form: '%s'"),
16292 dwarf_form_name (attr->form));
16299 /* Copy constant value from an attribute to a symbol. */
16302 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16303 struct dwarf2_cu *cu)
16305 struct objfile *objfile = cu->objfile;
16306 struct comp_unit_head *cu_header = &cu->header;
16309 struct dwarf2_locexpr_baton *baton;
16311 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16312 SYMBOL_PRINT_NAME (sym),
16313 &objfile->objfile_obstack, cu,
16314 &value, &bytes, &baton);
16318 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16319 SYMBOL_LOCATION_BATON (sym) = baton;
16320 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16322 else if (bytes != NULL)
16324 SYMBOL_VALUE_BYTES (sym) = bytes;
16325 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16329 SYMBOL_VALUE (sym) = value;
16330 SYMBOL_CLASS (sym) = LOC_CONST;
16334 /* Return the type of the die in question using its DW_AT_type attribute. */
16336 static struct type *
16337 die_type (struct die_info *die, struct dwarf2_cu *cu)
16339 struct attribute *type_attr;
16341 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16344 /* A missing DW_AT_type represents a void type. */
16345 return objfile_type (cu->objfile)->builtin_void;
16348 return lookup_die_type (die, type_attr, cu);
16351 /* True iff CU's producer generates GNAT Ada auxiliary information
16352 that allows to find parallel types through that information instead
16353 of having to do expensive parallel lookups by type name. */
16356 need_gnat_info (struct dwarf2_cu *cu)
16358 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16359 of GNAT produces this auxiliary information, without any indication
16360 that it is produced. Part of enhancing the FSF version of GNAT
16361 to produce that information will be to put in place an indicator
16362 that we can use in order to determine whether the descriptive type
16363 info is available or not. One suggestion that has been made is
16364 to use a new attribute, attached to the CU die. For now, assume
16365 that the descriptive type info is not available. */
16369 /* Return the auxiliary type of the die in question using its
16370 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16371 attribute is not present. */
16373 static struct type *
16374 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16376 struct attribute *type_attr;
16378 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16382 return lookup_die_type (die, type_attr, cu);
16385 /* If DIE has a descriptive_type attribute, then set the TYPE's
16386 descriptive type accordingly. */
16389 set_descriptive_type (struct type *type, struct die_info *die,
16390 struct dwarf2_cu *cu)
16392 struct type *descriptive_type = die_descriptive_type (die, cu);
16394 if (descriptive_type)
16396 ALLOCATE_GNAT_AUX_TYPE (type);
16397 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16401 /* Return the containing type of the die in question using its
16402 DW_AT_containing_type attribute. */
16404 static struct type *
16405 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16407 struct attribute *type_attr;
16409 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16411 error (_("Dwarf Error: Problem turning containing type into gdb type "
16412 "[in module %s]"), cu->objfile->name);
16414 return lookup_die_type (die, type_attr, cu);
16417 /* Look up the type of DIE in CU using its type attribute ATTR.
16418 If there is no type substitute an error marker. */
16420 static struct type *
16421 lookup_die_type (struct die_info *die, struct attribute *attr,
16422 struct dwarf2_cu *cu)
16424 struct objfile *objfile = cu->objfile;
16425 struct type *this_type;
16427 /* First see if we have it cached. */
16429 if (attr->form == DW_FORM_GNU_ref_alt)
16431 struct dwarf2_per_cu_data *per_cu;
16432 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16434 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16435 this_type = get_die_type_at_offset (offset, per_cu);
16437 else if (is_ref_attr (attr))
16439 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16441 this_type = get_die_type_at_offset (offset, cu->per_cu);
16443 else if (attr->form == DW_FORM_ref_sig8)
16445 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16447 /* sig_type will be NULL if the signatured type is missing from
16449 if (sig_type == NULL)
16450 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16451 "at 0x%x [in module %s]"),
16452 die->offset.sect_off, objfile->name);
16454 gdb_assert (sig_type->per_cu.is_debug_types);
16455 /* If we haven't filled in type_offset_in_section yet, then we
16456 haven't read the type in yet. */
16458 if (sig_type->type_offset_in_section.sect_off != 0)
16461 get_die_type_at_offset (sig_type->type_offset_in_section,
16462 &sig_type->per_cu);
16467 dump_die_for_error (die);
16468 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16469 dwarf_attr_name (attr->name), objfile->name);
16472 /* If not cached we need to read it in. */
16474 if (this_type == NULL)
16476 struct die_info *type_die;
16477 struct dwarf2_cu *type_cu = cu;
16479 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16480 /* If we found the type now, it's probably because the type came
16481 from an inter-CU reference and the type's CU got expanded before
16483 this_type = get_die_type (type_die, type_cu);
16484 if (this_type == NULL)
16485 this_type = read_type_die_1 (type_die, type_cu);
16488 /* If we still don't have a type use an error marker. */
16490 if (this_type == NULL)
16492 char *message, *saved;
16494 /* read_type_die already issued a complaint. */
16495 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16497 cu->header.offset.sect_off,
16498 die->offset.sect_off);
16499 saved = obstack_copy0 (&objfile->objfile_obstack,
16500 message, strlen (message));
16503 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16509 /* Return the type in DIE, CU.
16510 Returns NULL for invalid types.
16512 This first does a lookup in the appropriate type_hash table,
16513 and only reads the die in if necessary.
16515 NOTE: This can be called when reading in partial or full symbols. */
16517 static struct type *
16518 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16520 struct type *this_type;
16522 this_type = get_die_type (die, cu);
16526 return read_type_die_1 (die, cu);
16529 /* Read the type in DIE, CU.
16530 Returns NULL for invalid types. */
16532 static struct type *
16533 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16535 struct type *this_type = NULL;
16539 case DW_TAG_class_type:
16540 case DW_TAG_interface_type:
16541 case DW_TAG_structure_type:
16542 case DW_TAG_union_type:
16543 this_type = read_structure_type (die, cu);
16545 case DW_TAG_enumeration_type:
16546 this_type = read_enumeration_type (die, cu);
16548 case DW_TAG_subprogram:
16549 case DW_TAG_subroutine_type:
16550 case DW_TAG_inlined_subroutine:
16551 this_type = read_subroutine_type (die, cu);
16553 case DW_TAG_array_type:
16554 this_type = read_array_type (die, cu);
16556 case DW_TAG_set_type:
16557 this_type = read_set_type (die, cu);
16559 case DW_TAG_pointer_type:
16560 this_type = read_tag_pointer_type (die, cu);
16562 case DW_TAG_ptr_to_member_type:
16563 this_type = read_tag_ptr_to_member_type (die, cu);
16565 case DW_TAG_reference_type:
16566 this_type = read_tag_reference_type (die, cu);
16568 case DW_TAG_const_type:
16569 this_type = read_tag_const_type (die, cu);
16571 case DW_TAG_volatile_type:
16572 this_type = read_tag_volatile_type (die, cu);
16574 case DW_TAG_restrict_type:
16575 this_type = read_tag_restrict_type (die, cu);
16577 case DW_TAG_string_type:
16578 this_type = read_tag_string_type (die, cu);
16580 case DW_TAG_typedef:
16581 this_type = read_typedef (die, cu);
16583 case DW_TAG_subrange_type:
16584 this_type = read_subrange_type (die, cu);
16586 case DW_TAG_base_type:
16587 this_type = read_base_type (die, cu);
16589 case DW_TAG_unspecified_type:
16590 this_type = read_unspecified_type (die, cu);
16592 case DW_TAG_namespace:
16593 this_type = read_namespace_type (die, cu);
16595 case DW_TAG_module:
16596 this_type = read_module_type (die, cu);
16599 complaint (&symfile_complaints,
16600 _("unexpected tag in read_type_die: '%s'"),
16601 dwarf_tag_name (die->tag));
16608 /* See if we can figure out if the class lives in a namespace. We do
16609 this by looking for a member function; its demangled name will
16610 contain namespace info, if there is any.
16611 Return the computed name or NULL.
16612 Space for the result is allocated on the objfile's obstack.
16613 This is the full-die version of guess_partial_die_structure_name.
16614 In this case we know DIE has no useful parent. */
16617 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16619 struct die_info *spec_die;
16620 struct dwarf2_cu *spec_cu;
16621 struct die_info *child;
16624 spec_die = die_specification (die, &spec_cu);
16625 if (spec_die != NULL)
16631 for (child = die->child;
16633 child = child->sibling)
16635 if (child->tag == DW_TAG_subprogram)
16637 struct attribute *attr;
16639 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16641 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16645 = language_class_name_from_physname (cu->language_defn,
16649 if (actual_name != NULL)
16651 const char *die_name = dwarf2_name (die, cu);
16653 if (die_name != NULL
16654 && strcmp (die_name, actual_name) != 0)
16656 /* Strip off the class name from the full name.
16657 We want the prefix. */
16658 int die_name_len = strlen (die_name);
16659 int actual_name_len = strlen (actual_name);
16661 /* Test for '::' as a sanity check. */
16662 if (actual_name_len > die_name_len + 2
16663 && actual_name[actual_name_len
16664 - die_name_len - 1] == ':')
16666 obstack_copy0 (&cu->objfile->objfile_obstack,
16668 actual_name_len - die_name_len - 2);
16671 xfree (actual_name);
16680 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16681 prefix part in such case. See
16682 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16685 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16687 struct attribute *attr;
16690 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16691 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16694 attr = dwarf2_attr (die, DW_AT_name, cu);
16695 if (attr != NULL && DW_STRING (attr) != NULL)
16698 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16700 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16701 if (attr == NULL || DW_STRING (attr) == NULL)
16704 /* dwarf2_name had to be already called. */
16705 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16707 /* Strip the base name, keep any leading namespaces/classes. */
16708 base = strrchr (DW_STRING (attr), ':');
16709 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16712 return obstack_copy0 (&cu->objfile->objfile_obstack,
16713 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16716 /* Return the name of the namespace/class that DIE is defined within,
16717 or "" if we can't tell. The caller should not xfree the result.
16719 For example, if we're within the method foo() in the following
16729 then determine_prefix on foo's die will return "N::C". */
16731 static const char *
16732 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16734 struct die_info *parent, *spec_die;
16735 struct dwarf2_cu *spec_cu;
16736 struct type *parent_type;
16739 if (cu->language != language_cplus && cu->language != language_java
16740 && cu->language != language_fortran)
16743 retval = anonymous_struct_prefix (die, cu);
16747 /* We have to be careful in the presence of DW_AT_specification.
16748 For example, with GCC 3.4, given the code
16752 // Definition of N::foo.
16756 then we'll have a tree of DIEs like this:
16758 1: DW_TAG_compile_unit
16759 2: DW_TAG_namespace // N
16760 3: DW_TAG_subprogram // declaration of N::foo
16761 4: DW_TAG_subprogram // definition of N::foo
16762 DW_AT_specification // refers to die #3
16764 Thus, when processing die #4, we have to pretend that we're in
16765 the context of its DW_AT_specification, namely the contex of die
16768 spec_die = die_specification (die, &spec_cu);
16769 if (spec_die == NULL)
16770 parent = die->parent;
16773 parent = spec_die->parent;
16777 if (parent == NULL)
16779 else if (parent->building_fullname)
16782 const char *parent_name;
16784 /* It has been seen on RealView 2.2 built binaries,
16785 DW_TAG_template_type_param types actually _defined_ as
16786 children of the parent class:
16789 template class <class Enum> Class{};
16790 Class<enum E> class_e;
16792 1: DW_TAG_class_type (Class)
16793 2: DW_TAG_enumeration_type (E)
16794 3: DW_TAG_enumerator (enum1:0)
16795 3: DW_TAG_enumerator (enum2:1)
16797 2: DW_TAG_template_type_param
16798 DW_AT_type DW_FORM_ref_udata (E)
16800 Besides being broken debug info, it can put GDB into an
16801 infinite loop. Consider:
16803 When we're building the full name for Class<E>, we'll start
16804 at Class, and go look over its template type parameters,
16805 finding E. We'll then try to build the full name of E, and
16806 reach here. We're now trying to build the full name of E,
16807 and look over the parent DIE for containing scope. In the
16808 broken case, if we followed the parent DIE of E, we'd again
16809 find Class, and once again go look at its template type
16810 arguments, etc., etc. Simply don't consider such parent die
16811 as source-level parent of this die (it can't be, the language
16812 doesn't allow it), and break the loop here. */
16813 name = dwarf2_name (die, cu);
16814 parent_name = dwarf2_name (parent, cu);
16815 complaint (&symfile_complaints,
16816 _("template param type '%s' defined within parent '%s'"),
16817 name ? name : "<unknown>",
16818 parent_name ? parent_name : "<unknown>");
16822 switch (parent->tag)
16824 case DW_TAG_namespace:
16825 parent_type = read_type_die (parent, cu);
16826 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16827 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16828 Work around this problem here. */
16829 if (cu->language == language_cplus
16830 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16832 /* We give a name to even anonymous namespaces. */
16833 return TYPE_TAG_NAME (parent_type);
16834 case DW_TAG_class_type:
16835 case DW_TAG_interface_type:
16836 case DW_TAG_structure_type:
16837 case DW_TAG_union_type:
16838 case DW_TAG_module:
16839 parent_type = read_type_die (parent, cu);
16840 if (TYPE_TAG_NAME (parent_type) != NULL)
16841 return TYPE_TAG_NAME (parent_type);
16843 /* An anonymous structure is only allowed non-static data
16844 members; no typedefs, no member functions, et cetera.
16845 So it does not need a prefix. */
16847 case DW_TAG_compile_unit:
16848 case DW_TAG_partial_unit:
16849 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16850 if (cu->language == language_cplus
16851 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16852 && die->child != NULL
16853 && (die->tag == DW_TAG_class_type
16854 || die->tag == DW_TAG_structure_type
16855 || die->tag == DW_TAG_union_type))
16857 char *name = guess_full_die_structure_name (die, cu);
16863 return determine_prefix (parent, cu);
16867 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16868 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16869 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16870 an obconcat, otherwise allocate storage for the result. The CU argument is
16871 used to determine the language and hence, the appropriate separator. */
16873 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16876 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16877 int physname, struct dwarf2_cu *cu)
16879 const char *lead = "";
16882 if (suffix == NULL || suffix[0] == '\0'
16883 || prefix == NULL || prefix[0] == '\0')
16885 else if (cu->language == language_java)
16887 else if (cu->language == language_fortran && physname)
16889 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16890 DW_AT_MIPS_linkage_name is preferred and used instead. */
16898 if (prefix == NULL)
16900 if (suffix == NULL)
16906 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16908 strcpy (retval, lead);
16909 strcat (retval, prefix);
16910 strcat (retval, sep);
16911 strcat (retval, suffix);
16916 /* We have an obstack. */
16917 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16921 /* Return sibling of die, NULL if no sibling. */
16923 static struct die_info *
16924 sibling_die (struct die_info *die)
16926 return die->sibling;
16929 /* Get name of a die, return NULL if not found. */
16931 static const char *
16932 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16933 struct obstack *obstack)
16935 if (name && cu->language == language_cplus)
16937 char *canon_name = cp_canonicalize_string (name);
16939 if (canon_name != NULL)
16941 if (strcmp (canon_name, name) != 0)
16942 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16943 xfree (canon_name);
16950 /* Get name of a die, return NULL if not found. */
16952 static const char *
16953 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16955 struct attribute *attr;
16957 attr = dwarf2_attr (die, DW_AT_name, cu);
16958 if ((!attr || !DW_STRING (attr))
16959 && die->tag != DW_TAG_class_type
16960 && die->tag != DW_TAG_interface_type
16961 && die->tag != DW_TAG_structure_type
16962 && die->tag != DW_TAG_union_type)
16967 case DW_TAG_compile_unit:
16968 case DW_TAG_partial_unit:
16969 /* Compilation units have a DW_AT_name that is a filename, not
16970 a source language identifier. */
16971 case DW_TAG_enumeration_type:
16972 case DW_TAG_enumerator:
16973 /* These tags always have simple identifiers already; no need
16974 to canonicalize them. */
16975 return DW_STRING (attr);
16977 case DW_TAG_subprogram:
16978 /* Java constructors will all be named "<init>", so return
16979 the class name when we see this special case. */
16980 if (cu->language == language_java
16981 && DW_STRING (attr) != NULL
16982 && strcmp (DW_STRING (attr), "<init>") == 0)
16984 struct dwarf2_cu *spec_cu = cu;
16985 struct die_info *spec_die;
16987 /* GCJ will output '<init>' for Java constructor names.
16988 For this special case, return the name of the parent class. */
16990 /* GCJ may output suprogram DIEs with AT_specification set.
16991 If so, use the name of the specified DIE. */
16992 spec_die = die_specification (die, &spec_cu);
16993 if (spec_die != NULL)
16994 return dwarf2_name (spec_die, spec_cu);
16999 if (die->tag == DW_TAG_class_type)
17000 return dwarf2_name (die, cu);
17002 while (die->tag != DW_TAG_compile_unit
17003 && die->tag != DW_TAG_partial_unit);
17007 case DW_TAG_class_type:
17008 case DW_TAG_interface_type:
17009 case DW_TAG_structure_type:
17010 case DW_TAG_union_type:
17011 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17012 structures or unions. These were of the form "._%d" in GCC 4.1,
17013 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17014 and GCC 4.4. We work around this problem by ignoring these. */
17015 if (attr && DW_STRING (attr)
17016 && (strncmp (DW_STRING (attr), "._", 2) == 0
17017 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17020 /* GCC might emit a nameless typedef that has a linkage name. See
17021 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17022 if (!attr || DW_STRING (attr) == NULL)
17024 char *demangled = NULL;
17026 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17028 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17030 if (attr == NULL || DW_STRING (attr) == NULL)
17033 /* Avoid demangling DW_STRING (attr) the second time on a second
17034 call for the same DIE. */
17035 if (!DW_STRING_IS_CANONICAL (attr))
17036 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17042 /* FIXME: we already did this for the partial symbol... */
17043 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17044 demangled, strlen (demangled));
17045 DW_STRING_IS_CANONICAL (attr) = 1;
17048 /* Strip any leading namespaces/classes, keep only the base name.
17049 DW_AT_name for named DIEs does not contain the prefixes. */
17050 base = strrchr (DW_STRING (attr), ':');
17051 if (base && base > DW_STRING (attr) && base[-1] == ':')
17054 return DW_STRING (attr);
17063 if (!DW_STRING_IS_CANONICAL (attr))
17066 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17067 &cu->objfile->objfile_obstack);
17068 DW_STRING_IS_CANONICAL (attr) = 1;
17070 return DW_STRING (attr);
17073 /* Return the die that this die in an extension of, or NULL if there
17074 is none. *EXT_CU is the CU containing DIE on input, and the CU
17075 containing the return value on output. */
17077 static struct die_info *
17078 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17080 struct attribute *attr;
17082 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17086 return follow_die_ref (die, attr, ext_cu);
17089 /* Convert a DIE tag into its string name. */
17091 static const char *
17092 dwarf_tag_name (unsigned tag)
17094 const char *name = get_DW_TAG_name (tag);
17097 return "DW_TAG_<unknown>";
17102 /* Convert a DWARF attribute code into its string name. */
17104 static const char *
17105 dwarf_attr_name (unsigned attr)
17109 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17110 if (attr == DW_AT_MIPS_fde)
17111 return "DW_AT_MIPS_fde";
17113 if (attr == DW_AT_HP_block_index)
17114 return "DW_AT_HP_block_index";
17117 name = get_DW_AT_name (attr);
17120 return "DW_AT_<unknown>";
17125 /* Convert a DWARF value form code into its string name. */
17127 static const char *
17128 dwarf_form_name (unsigned form)
17130 const char *name = get_DW_FORM_name (form);
17133 return "DW_FORM_<unknown>";
17139 dwarf_bool_name (unsigned mybool)
17147 /* Convert a DWARF type code into its string name. */
17149 static const char *
17150 dwarf_type_encoding_name (unsigned enc)
17152 const char *name = get_DW_ATE_name (enc);
17155 return "DW_ATE_<unknown>";
17161 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17165 print_spaces (indent, f);
17166 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17167 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17169 if (die->parent != NULL)
17171 print_spaces (indent, f);
17172 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17173 die->parent->offset.sect_off);
17176 print_spaces (indent, f);
17177 fprintf_unfiltered (f, " has children: %s\n",
17178 dwarf_bool_name (die->child != NULL));
17180 print_spaces (indent, f);
17181 fprintf_unfiltered (f, " attributes:\n");
17183 for (i = 0; i < die->num_attrs; ++i)
17185 print_spaces (indent, f);
17186 fprintf_unfiltered (f, " %s (%s) ",
17187 dwarf_attr_name (die->attrs[i].name),
17188 dwarf_form_name (die->attrs[i].form));
17190 switch (die->attrs[i].form)
17193 case DW_FORM_GNU_addr_index:
17194 fprintf_unfiltered (f, "address: ");
17195 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17197 case DW_FORM_block2:
17198 case DW_FORM_block4:
17199 case DW_FORM_block:
17200 case DW_FORM_block1:
17201 fprintf_unfiltered (f, "block: size %s",
17202 pulongest (DW_BLOCK (&die->attrs[i])->size));
17204 case DW_FORM_exprloc:
17205 fprintf_unfiltered (f, "expression: size %s",
17206 pulongest (DW_BLOCK (&die->attrs[i])->size));
17208 case DW_FORM_ref_addr:
17209 fprintf_unfiltered (f, "ref address: ");
17210 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17212 case DW_FORM_GNU_ref_alt:
17213 fprintf_unfiltered (f, "alt ref address: ");
17214 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17220 case DW_FORM_ref_udata:
17221 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17222 (long) (DW_UNSND (&die->attrs[i])));
17224 case DW_FORM_data1:
17225 case DW_FORM_data2:
17226 case DW_FORM_data4:
17227 case DW_FORM_data8:
17228 case DW_FORM_udata:
17229 case DW_FORM_sdata:
17230 fprintf_unfiltered (f, "constant: %s",
17231 pulongest (DW_UNSND (&die->attrs[i])));
17233 case DW_FORM_sec_offset:
17234 fprintf_unfiltered (f, "section offset: %s",
17235 pulongest (DW_UNSND (&die->attrs[i])));
17237 case DW_FORM_ref_sig8:
17238 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17239 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17240 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17242 fprintf_unfiltered (f, "signatured type, offset: unknown");
17244 case DW_FORM_string:
17246 case DW_FORM_GNU_str_index:
17247 case DW_FORM_GNU_strp_alt:
17248 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17249 DW_STRING (&die->attrs[i])
17250 ? DW_STRING (&die->attrs[i]) : "",
17251 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17254 if (DW_UNSND (&die->attrs[i]))
17255 fprintf_unfiltered (f, "flag: TRUE");
17257 fprintf_unfiltered (f, "flag: FALSE");
17259 case DW_FORM_flag_present:
17260 fprintf_unfiltered (f, "flag: TRUE");
17262 case DW_FORM_indirect:
17263 /* The reader will have reduced the indirect form to
17264 the "base form" so this form should not occur. */
17265 fprintf_unfiltered (f,
17266 "unexpected attribute form: DW_FORM_indirect");
17269 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17270 die->attrs[i].form);
17273 fprintf_unfiltered (f, "\n");
17278 dump_die_for_error (struct die_info *die)
17280 dump_die_shallow (gdb_stderr, 0, die);
17284 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17286 int indent = level * 4;
17288 gdb_assert (die != NULL);
17290 if (level >= max_level)
17293 dump_die_shallow (f, indent, die);
17295 if (die->child != NULL)
17297 print_spaces (indent, f);
17298 fprintf_unfiltered (f, " Children:");
17299 if (level + 1 < max_level)
17301 fprintf_unfiltered (f, "\n");
17302 dump_die_1 (f, level + 1, max_level, die->child);
17306 fprintf_unfiltered (f,
17307 " [not printed, max nesting level reached]\n");
17311 if (die->sibling != NULL && level > 0)
17313 dump_die_1 (f, level, max_level, die->sibling);
17317 /* This is called from the pdie macro in gdbinit.in.
17318 It's not static so gcc will keep a copy callable from gdb. */
17321 dump_die (struct die_info *die, int max_level)
17323 dump_die_1 (gdb_stdlog, 0, max_level, die);
17327 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17331 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17337 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17338 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17341 is_ref_attr (struct attribute *attr)
17343 switch (attr->form)
17345 case DW_FORM_ref_addr:
17350 case DW_FORM_ref_udata:
17351 case DW_FORM_GNU_ref_alt:
17358 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17362 dwarf2_get_ref_die_offset (struct attribute *attr)
17364 sect_offset retval = { DW_UNSND (attr) };
17366 if (is_ref_attr (attr))
17369 retval.sect_off = 0;
17370 complaint (&symfile_complaints,
17371 _("unsupported die ref attribute form: '%s'"),
17372 dwarf_form_name (attr->form));
17376 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17377 * the value held by the attribute is not constant. */
17380 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17382 if (attr->form == DW_FORM_sdata)
17383 return DW_SND (attr);
17384 else if (attr->form == DW_FORM_udata
17385 || attr->form == DW_FORM_data1
17386 || attr->form == DW_FORM_data2
17387 || attr->form == DW_FORM_data4
17388 || attr->form == DW_FORM_data8)
17389 return DW_UNSND (attr);
17392 complaint (&symfile_complaints,
17393 _("Attribute value is not a constant (%s)"),
17394 dwarf_form_name (attr->form));
17395 return default_value;
17399 /* Follow reference or signature attribute ATTR of SRC_DIE.
17400 On entry *REF_CU is the CU of SRC_DIE.
17401 On exit *REF_CU is the CU of the result. */
17403 static struct die_info *
17404 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17405 struct dwarf2_cu **ref_cu)
17407 struct die_info *die;
17409 if (is_ref_attr (attr))
17410 die = follow_die_ref (src_die, attr, ref_cu);
17411 else if (attr->form == DW_FORM_ref_sig8)
17412 die = follow_die_sig (src_die, attr, ref_cu);
17415 dump_die_for_error (src_die);
17416 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17417 (*ref_cu)->objfile->name);
17423 /* Follow reference OFFSET.
17424 On entry *REF_CU is the CU of the source die referencing OFFSET.
17425 On exit *REF_CU is the CU of the result.
17426 Returns NULL if OFFSET is invalid. */
17428 static struct die_info *
17429 follow_die_offset (sect_offset offset, int offset_in_dwz,
17430 struct dwarf2_cu **ref_cu)
17432 struct die_info temp_die;
17433 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17435 gdb_assert (cu->per_cu != NULL);
17439 if (cu->per_cu->is_debug_types)
17441 /* .debug_types CUs cannot reference anything outside their CU.
17442 If they need to, they have to reference a signatured type via
17443 DW_FORM_ref_sig8. */
17444 if (! offset_in_cu_p (&cu->header, offset))
17447 else if (offset_in_dwz != cu->per_cu->is_dwz
17448 || ! offset_in_cu_p (&cu->header, offset))
17450 struct dwarf2_per_cu_data *per_cu;
17452 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17455 /* If necessary, add it to the queue and load its DIEs. */
17456 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17457 load_full_comp_unit (per_cu, cu->language);
17459 target_cu = per_cu->cu;
17461 else if (cu->dies == NULL)
17463 /* We're loading full DIEs during partial symbol reading. */
17464 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17465 load_full_comp_unit (cu->per_cu, language_minimal);
17468 *ref_cu = target_cu;
17469 temp_die.offset = offset;
17470 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17473 /* Follow reference attribute ATTR of SRC_DIE.
17474 On entry *REF_CU is the CU of SRC_DIE.
17475 On exit *REF_CU is the CU of the result. */
17477 static struct die_info *
17478 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17479 struct dwarf2_cu **ref_cu)
17481 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17482 struct dwarf2_cu *cu = *ref_cu;
17483 struct die_info *die;
17485 die = follow_die_offset (offset,
17486 (attr->form == DW_FORM_GNU_ref_alt
17487 || cu->per_cu->is_dwz),
17490 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17491 "at 0x%x [in module %s]"),
17492 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17497 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17498 Returned value is intended for DW_OP_call*. Returned
17499 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17501 struct dwarf2_locexpr_baton
17502 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17503 struct dwarf2_per_cu_data *per_cu,
17504 CORE_ADDR (*get_frame_pc) (void *baton),
17507 struct dwarf2_cu *cu;
17508 struct die_info *die;
17509 struct attribute *attr;
17510 struct dwarf2_locexpr_baton retval;
17512 dw2_setup (per_cu->objfile);
17514 if (per_cu->cu == NULL)
17518 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17520 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17521 offset.sect_off, per_cu->objfile->name);
17523 attr = dwarf2_attr (die, DW_AT_location, cu);
17526 /* DWARF: "If there is no such attribute, then there is no effect.".
17527 DATA is ignored if SIZE is 0. */
17529 retval.data = NULL;
17532 else if (attr_form_is_section_offset (attr))
17534 struct dwarf2_loclist_baton loclist_baton;
17535 CORE_ADDR pc = (*get_frame_pc) (baton);
17538 fill_in_loclist_baton (cu, &loclist_baton, attr);
17540 retval.data = dwarf2_find_location_expression (&loclist_baton,
17542 retval.size = size;
17546 if (!attr_form_is_block (attr))
17547 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17548 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17549 offset.sect_off, per_cu->objfile->name);
17551 retval.data = DW_BLOCK (attr)->data;
17552 retval.size = DW_BLOCK (attr)->size;
17554 retval.per_cu = cu->per_cu;
17556 age_cached_comp_units ();
17561 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17564 struct dwarf2_locexpr_baton
17565 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17566 struct dwarf2_per_cu_data *per_cu,
17567 CORE_ADDR (*get_frame_pc) (void *baton),
17570 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17572 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17575 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17579 dwarf2_get_die_type (cu_offset die_offset,
17580 struct dwarf2_per_cu_data *per_cu)
17582 sect_offset die_offset_sect;
17584 dw2_setup (per_cu->objfile);
17586 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17587 return get_die_type_at_offset (die_offset_sect, per_cu);
17590 /* Follow the signature attribute ATTR in SRC_DIE.
17591 On entry *REF_CU is the CU of SRC_DIE.
17592 On exit *REF_CU is the CU of the result. */
17594 static struct die_info *
17595 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17596 struct dwarf2_cu **ref_cu)
17598 struct objfile *objfile = (*ref_cu)->objfile;
17599 struct die_info temp_die;
17600 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17601 struct dwarf2_cu *sig_cu;
17602 struct die_info *die;
17604 /* sig_type will be NULL if the signatured type is missing from
17606 if (sig_type == NULL)
17607 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17608 "at 0x%x [in module %s]"),
17609 src_die->offset.sect_off, objfile->name);
17611 /* If necessary, add it to the queue and load its DIEs. */
17613 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17614 read_signatured_type (sig_type);
17616 gdb_assert (sig_type->per_cu.cu != NULL);
17618 sig_cu = sig_type->per_cu.cu;
17619 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17620 temp_die.offset = sig_type->type_offset_in_section;
17621 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17622 temp_die.offset.sect_off);
17625 /* For .gdb_index version 7 keep track of included TUs.
17626 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17627 if (dwarf2_per_objfile->index_table != NULL
17628 && dwarf2_per_objfile->index_table->version <= 7)
17630 VEC_safe_push (dwarf2_per_cu_ptr,
17631 (*ref_cu)->per_cu->imported_symtabs,
17639 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17640 "from DIE at 0x%x [in module %s]"),
17641 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17644 /* Given an offset of a signatured type, return its signatured_type. */
17646 static struct signatured_type *
17647 lookup_signatured_type_at_offset (struct objfile *objfile,
17648 struct dwarf2_section_info *section,
17649 sect_offset offset)
17651 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17652 unsigned int length, initial_length_size;
17653 unsigned int sig_offset;
17654 struct signatured_type find_entry, *sig_type;
17656 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17657 sig_offset = (initial_length_size
17659 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17660 + 1 /*address_size*/);
17661 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17662 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17664 /* This is only used to lookup previously recorded types.
17665 If we didn't find it, it's our bug. */
17666 gdb_assert (sig_type != NULL);
17667 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17672 /* Load the DIEs associated with type unit PER_CU into memory. */
17675 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17677 struct signatured_type *sig_type;
17679 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17680 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17682 /* We have the per_cu, but we need the signatured_type.
17683 Fortunately this is an easy translation. */
17684 gdb_assert (per_cu->is_debug_types);
17685 sig_type = (struct signatured_type *) per_cu;
17687 gdb_assert (per_cu->cu == NULL);
17689 read_signatured_type (sig_type);
17691 gdb_assert (per_cu->cu != NULL);
17694 /* die_reader_func for read_signatured_type.
17695 This is identical to load_full_comp_unit_reader,
17696 but is kept separate for now. */
17699 read_signatured_type_reader (const struct die_reader_specs *reader,
17700 gdb_byte *info_ptr,
17701 struct die_info *comp_unit_die,
17705 struct dwarf2_cu *cu = reader->cu;
17707 gdb_assert (cu->die_hash == NULL);
17709 htab_create_alloc_ex (cu->header.length / 12,
17713 &cu->comp_unit_obstack,
17714 hashtab_obstack_allocate,
17715 dummy_obstack_deallocate);
17718 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17719 &info_ptr, comp_unit_die);
17720 cu->dies = comp_unit_die;
17721 /* comp_unit_die is not stored in die_hash, no need. */
17723 /* We try not to read any attributes in this function, because not
17724 all CUs needed for references have been loaded yet, and symbol
17725 table processing isn't initialized. But we have to set the CU language,
17726 or we won't be able to build types correctly.
17727 Similarly, if we do not read the producer, we can not apply
17728 producer-specific interpretation. */
17729 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17732 /* Read in a signatured type and build its CU and DIEs.
17733 If the type is a stub for the real type in a DWO file,
17734 read in the real type from the DWO file as well. */
17737 read_signatured_type (struct signatured_type *sig_type)
17739 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17741 gdb_assert (per_cu->is_debug_types);
17742 gdb_assert (per_cu->cu == NULL);
17744 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17745 read_signatured_type_reader, NULL);
17748 /* Decode simple location descriptions.
17749 Given a pointer to a dwarf block that defines a location, compute
17750 the location and return the value.
17752 NOTE drow/2003-11-18: This function is called in two situations
17753 now: for the address of static or global variables (partial symbols
17754 only) and for offsets into structures which are expected to be
17755 (more or less) constant. The partial symbol case should go away,
17756 and only the constant case should remain. That will let this
17757 function complain more accurately. A few special modes are allowed
17758 without complaint for global variables (for instance, global
17759 register values and thread-local values).
17761 A location description containing no operations indicates that the
17762 object is optimized out. The return value is 0 for that case.
17763 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17764 callers will only want a very basic result and this can become a
17767 Note that stack[0] is unused except as a default error return. */
17770 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17772 struct objfile *objfile = cu->objfile;
17774 size_t size = blk->size;
17775 gdb_byte *data = blk->data;
17776 CORE_ADDR stack[64];
17778 unsigned int bytes_read, unsnd;
17784 stack[++stacki] = 0;
17823 stack[++stacki] = op - DW_OP_lit0;
17858 stack[++stacki] = op - DW_OP_reg0;
17860 dwarf2_complex_location_expr_complaint ();
17864 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17866 stack[++stacki] = unsnd;
17868 dwarf2_complex_location_expr_complaint ();
17872 stack[++stacki] = read_address (objfile->obfd, &data[i],
17877 case DW_OP_const1u:
17878 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17882 case DW_OP_const1s:
17883 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17887 case DW_OP_const2u:
17888 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17892 case DW_OP_const2s:
17893 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17897 case DW_OP_const4u:
17898 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17902 case DW_OP_const4s:
17903 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17907 case DW_OP_const8u:
17908 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17913 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17919 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17924 stack[stacki + 1] = stack[stacki];
17929 stack[stacki - 1] += stack[stacki];
17933 case DW_OP_plus_uconst:
17934 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17940 stack[stacki - 1] -= stack[stacki];
17945 /* If we're not the last op, then we definitely can't encode
17946 this using GDB's address_class enum. This is valid for partial
17947 global symbols, although the variable's address will be bogus
17950 dwarf2_complex_location_expr_complaint ();
17953 case DW_OP_GNU_push_tls_address:
17954 /* The top of the stack has the offset from the beginning
17955 of the thread control block at which the variable is located. */
17956 /* Nothing should follow this operator, so the top of stack would
17958 /* This is valid for partial global symbols, but the variable's
17959 address will be bogus in the psymtab. Make it always at least
17960 non-zero to not look as a variable garbage collected by linker
17961 which have DW_OP_addr 0. */
17963 dwarf2_complex_location_expr_complaint ();
17967 case DW_OP_GNU_uninit:
17970 case DW_OP_GNU_addr_index:
17971 case DW_OP_GNU_const_index:
17972 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17979 const char *name = get_DW_OP_name (op);
17982 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17985 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17989 return (stack[stacki]);
17992 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17993 outside of the allocated space. Also enforce minimum>0. */
17994 if (stacki >= ARRAY_SIZE (stack) - 1)
17996 complaint (&symfile_complaints,
17997 _("location description stack overflow"));
18003 complaint (&symfile_complaints,
18004 _("location description stack underflow"));
18008 return (stack[stacki]);
18011 /* memory allocation interface */
18013 static struct dwarf_block *
18014 dwarf_alloc_block (struct dwarf2_cu *cu)
18016 struct dwarf_block *blk;
18018 blk = (struct dwarf_block *)
18019 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18023 static struct die_info *
18024 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18026 struct die_info *die;
18027 size_t size = sizeof (struct die_info);
18030 size += (num_attrs - 1) * sizeof (struct attribute);
18032 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18033 memset (die, 0, sizeof (struct die_info));
18038 /* Macro support. */
18040 /* Return file name relative to the compilation directory of file number I in
18041 *LH's file name table. The result is allocated using xmalloc; the caller is
18042 responsible for freeing it. */
18045 file_file_name (int file, struct line_header *lh)
18047 /* Is the file number a valid index into the line header's file name
18048 table? Remember that file numbers start with one, not zero. */
18049 if (1 <= file && file <= lh->num_file_names)
18051 struct file_entry *fe = &lh->file_names[file - 1];
18053 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18054 return xstrdup (fe->name);
18055 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18060 /* The compiler produced a bogus file number. We can at least
18061 record the macro definitions made in the file, even if we
18062 won't be able to find the file by name. */
18063 char fake_name[80];
18065 xsnprintf (fake_name, sizeof (fake_name),
18066 "<bad macro file number %d>", file);
18068 complaint (&symfile_complaints,
18069 _("bad file number in macro information (%d)"),
18072 return xstrdup (fake_name);
18076 /* Return the full name of file number I in *LH's file name table.
18077 Use COMP_DIR as the name of the current directory of the
18078 compilation. The result is allocated using xmalloc; the caller is
18079 responsible for freeing it. */
18081 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18083 /* Is the file number a valid index into the line header's file name
18084 table? Remember that file numbers start with one, not zero. */
18085 if (1 <= file && file <= lh->num_file_names)
18087 char *relative = file_file_name (file, lh);
18089 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18091 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18094 return file_file_name (file, lh);
18098 static struct macro_source_file *
18099 macro_start_file (int file, int line,
18100 struct macro_source_file *current_file,
18101 const char *comp_dir,
18102 struct line_header *lh, struct objfile *objfile)
18104 /* File name relative to the compilation directory of this source file. */
18105 char *file_name = file_file_name (file, lh);
18107 /* We don't create a macro table for this compilation unit
18108 at all until we actually get a filename. */
18109 if (! pending_macros)
18110 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18111 objfile->per_bfd->macro_cache,
18114 if (! current_file)
18116 /* If we have no current file, then this must be the start_file
18117 directive for the compilation unit's main source file. */
18118 current_file = macro_set_main (pending_macros, file_name);
18119 macro_define_special (pending_macros);
18122 current_file = macro_include (current_file, line, file_name);
18126 return current_file;
18130 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18131 followed by a null byte. */
18133 copy_string (const char *buf, int len)
18135 char *s = xmalloc (len + 1);
18137 memcpy (s, buf, len);
18143 static const char *
18144 consume_improper_spaces (const char *p, const char *body)
18148 complaint (&symfile_complaints,
18149 _("macro definition contains spaces "
18150 "in formal argument list:\n`%s'"),
18162 parse_macro_definition (struct macro_source_file *file, int line,
18167 /* The body string takes one of two forms. For object-like macro
18168 definitions, it should be:
18170 <macro name> " " <definition>
18172 For function-like macro definitions, it should be:
18174 <macro name> "() " <definition>
18176 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18178 Spaces may appear only where explicitly indicated, and in the
18181 The Dwarf 2 spec says that an object-like macro's name is always
18182 followed by a space, but versions of GCC around March 2002 omit
18183 the space when the macro's definition is the empty string.
18185 The Dwarf 2 spec says that there should be no spaces between the
18186 formal arguments in a function-like macro's formal argument list,
18187 but versions of GCC around March 2002 include spaces after the
18191 /* Find the extent of the macro name. The macro name is terminated
18192 by either a space or null character (for an object-like macro) or
18193 an opening paren (for a function-like macro). */
18194 for (p = body; *p; p++)
18195 if (*p == ' ' || *p == '(')
18198 if (*p == ' ' || *p == '\0')
18200 /* It's an object-like macro. */
18201 int name_len = p - body;
18202 char *name = copy_string (body, name_len);
18203 const char *replacement;
18206 replacement = body + name_len + 1;
18209 dwarf2_macro_malformed_definition_complaint (body);
18210 replacement = body + name_len;
18213 macro_define_object (file, line, name, replacement);
18217 else if (*p == '(')
18219 /* It's a function-like macro. */
18220 char *name = copy_string (body, p - body);
18223 char **argv = xmalloc (argv_size * sizeof (*argv));
18227 p = consume_improper_spaces (p, body);
18229 /* Parse the formal argument list. */
18230 while (*p && *p != ')')
18232 /* Find the extent of the current argument name. */
18233 const char *arg_start = p;
18235 while (*p && *p != ',' && *p != ')' && *p != ' ')
18238 if (! *p || p == arg_start)
18239 dwarf2_macro_malformed_definition_complaint (body);
18242 /* Make sure argv has room for the new argument. */
18243 if (argc >= argv_size)
18246 argv = xrealloc (argv, argv_size * sizeof (*argv));
18249 argv[argc++] = copy_string (arg_start, p - arg_start);
18252 p = consume_improper_spaces (p, body);
18254 /* Consume the comma, if present. */
18259 p = consume_improper_spaces (p, body);
18268 /* Perfectly formed definition, no complaints. */
18269 macro_define_function (file, line, name,
18270 argc, (const char **) argv,
18272 else if (*p == '\0')
18274 /* Complain, but do define it. */
18275 dwarf2_macro_malformed_definition_complaint (body);
18276 macro_define_function (file, line, name,
18277 argc, (const char **) argv,
18281 /* Just complain. */
18282 dwarf2_macro_malformed_definition_complaint (body);
18285 /* Just complain. */
18286 dwarf2_macro_malformed_definition_complaint (body);
18292 for (i = 0; i < argc; i++)
18298 dwarf2_macro_malformed_definition_complaint (body);
18301 /* Skip some bytes from BYTES according to the form given in FORM.
18302 Returns the new pointer. */
18305 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18306 enum dwarf_form form,
18307 unsigned int offset_size,
18308 struct dwarf2_section_info *section)
18310 unsigned int bytes_read;
18314 case DW_FORM_data1:
18319 case DW_FORM_data2:
18323 case DW_FORM_data4:
18327 case DW_FORM_data8:
18331 case DW_FORM_string:
18332 read_direct_string (abfd, bytes, &bytes_read);
18333 bytes += bytes_read;
18336 case DW_FORM_sec_offset:
18338 case DW_FORM_GNU_strp_alt:
18339 bytes += offset_size;
18342 case DW_FORM_block:
18343 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18344 bytes += bytes_read;
18347 case DW_FORM_block1:
18348 bytes += 1 + read_1_byte (abfd, bytes);
18350 case DW_FORM_block2:
18351 bytes += 2 + read_2_bytes (abfd, bytes);
18353 case DW_FORM_block4:
18354 bytes += 4 + read_4_bytes (abfd, bytes);
18357 case DW_FORM_sdata:
18358 case DW_FORM_udata:
18359 case DW_FORM_GNU_addr_index:
18360 case DW_FORM_GNU_str_index:
18361 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18364 dwarf2_section_buffer_overflow_complaint (section);
18372 complaint (&symfile_complaints,
18373 _("invalid form 0x%x in `%s'"),
18375 section->asection->name);
18383 /* A helper for dwarf_decode_macros that handles skipping an unknown
18384 opcode. Returns an updated pointer to the macro data buffer; or,
18385 on error, issues a complaint and returns NULL. */
18388 skip_unknown_opcode (unsigned int opcode,
18389 gdb_byte **opcode_definitions,
18390 gdb_byte *mac_ptr, gdb_byte *mac_end,
18392 unsigned int offset_size,
18393 struct dwarf2_section_info *section)
18395 unsigned int bytes_read, i;
18399 if (opcode_definitions[opcode] == NULL)
18401 complaint (&symfile_complaints,
18402 _("unrecognized DW_MACFINO opcode 0x%x"),
18407 defn = opcode_definitions[opcode];
18408 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18409 defn += bytes_read;
18411 for (i = 0; i < arg; ++i)
18413 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18415 if (mac_ptr == NULL)
18417 /* skip_form_bytes already issued the complaint. */
18425 /* A helper function which parses the header of a macro section.
18426 If the macro section is the extended (for now called "GNU") type,
18427 then this updates *OFFSET_SIZE. Returns a pointer to just after
18428 the header, or issues a complaint and returns NULL on error. */
18431 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18434 unsigned int *offset_size,
18435 int section_is_gnu)
18437 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18439 if (section_is_gnu)
18441 unsigned int version, flags;
18443 version = read_2_bytes (abfd, mac_ptr);
18446 complaint (&symfile_complaints,
18447 _("unrecognized version `%d' in .debug_macro section"),
18453 flags = read_1_byte (abfd, mac_ptr);
18455 *offset_size = (flags & 1) ? 8 : 4;
18457 if ((flags & 2) != 0)
18458 /* We don't need the line table offset. */
18459 mac_ptr += *offset_size;
18461 /* Vendor opcode descriptions. */
18462 if ((flags & 4) != 0)
18464 unsigned int i, count;
18466 count = read_1_byte (abfd, mac_ptr);
18468 for (i = 0; i < count; ++i)
18470 unsigned int opcode, bytes_read;
18473 opcode = read_1_byte (abfd, mac_ptr);
18475 opcode_definitions[opcode] = mac_ptr;
18476 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18477 mac_ptr += bytes_read;
18486 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18487 including DW_MACRO_GNU_transparent_include. */
18490 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18491 struct macro_source_file *current_file,
18492 struct line_header *lh, const char *comp_dir,
18493 struct dwarf2_section_info *section,
18494 int section_is_gnu, int section_is_dwz,
18495 unsigned int offset_size,
18496 struct objfile *objfile,
18497 htab_t include_hash)
18499 enum dwarf_macro_record_type macinfo_type;
18500 int at_commandline;
18501 gdb_byte *opcode_definitions[256];
18503 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18504 &offset_size, section_is_gnu);
18505 if (mac_ptr == NULL)
18507 /* We already issued a complaint. */
18511 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18512 GDB is still reading the definitions from command line. First
18513 DW_MACINFO_start_file will need to be ignored as it was already executed
18514 to create CURRENT_FILE for the main source holding also the command line
18515 definitions. On first met DW_MACINFO_start_file this flag is reset to
18516 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18518 at_commandline = 1;
18522 /* Do we at least have room for a macinfo type byte? */
18523 if (mac_ptr >= mac_end)
18525 dwarf2_section_buffer_overflow_complaint (section);
18529 macinfo_type = read_1_byte (abfd, mac_ptr);
18532 /* Note that we rely on the fact that the corresponding GNU and
18533 DWARF constants are the same. */
18534 switch (macinfo_type)
18536 /* A zero macinfo type indicates the end of the macro
18541 case DW_MACRO_GNU_define:
18542 case DW_MACRO_GNU_undef:
18543 case DW_MACRO_GNU_define_indirect:
18544 case DW_MACRO_GNU_undef_indirect:
18545 case DW_MACRO_GNU_define_indirect_alt:
18546 case DW_MACRO_GNU_undef_indirect_alt:
18548 unsigned int bytes_read;
18553 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18554 mac_ptr += bytes_read;
18556 if (macinfo_type == DW_MACRO_GNU_define
18557 || macinfo_type == DW_MACRO_GNU_undef)
18559 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18560 mac_ptr += bytes_read;
18564 LONGEST str_offset;
18566 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18567 mac_ptr += offset_size;
18569 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18570 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18573 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18575 body = read_indirect_string_from_dwz (dwz, str_offset);
18578 body = read_indirect_string_at_offset (abfd, str_offset);
18581 is_define = (macinfo_type == DW_MACRO_GNU_define
18582 || macinfo_type == DW_MACRO_GNU_define_indirect
18583 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18584 if (! current_file)
18586 /* DWARF violation as no main source is present. */
18587 complaint (&symfile_complaints,
18588 _("debug info with no main source gives macro %s "
18590 is_define ? _("definition") : _("undefinition"),
18594 if ((line == 0 && !at_commandline)
18595 || (line != 0 && at_commandline))
18596 complaint (&symfile_complaints,
18597 _("debug info gives %s macro %s with %s line %d: %s"),
18598 at_commandline ? _("command-line") : _("in-file"),
18599 is_define ? _("definition") : _("undefinition"),
18600 line == 0 ? _("zero") : _("non-zero"), line, body);
18603 parse_macro_definition (current_file, line, body);
18606 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18607 || macinfo_type == DW_MACRO_GNU_undef_indirect
18608 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18609 macro_undef (current_file, line, body);
18614 case DW_MACRO_GNU_start_file:
18616 unsigned int bytes_read;
18619 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18620 mac_ptr += bytes_read;
18621 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18622 mac_ptr += bytes_read;
18624 if ((line == 0 && !at_commandline)
18625 || (line != 0 && at_commandline))
18626 complaint (&symfile_complaints,
18627 _("debug info gives source %d included "
18628 "from %s at %s line %d"),
18629 file, at_commandline ? _("command-line") : _("file"),
18630 line == 0 ? _("zero") : _("non-zero"), line);
18632 if (at_commandline)
18634 /* This DW_MACRO_GNU_start_file was executed in the
18636 at_commandline = 0;
18639 current_file = macro_start_file (file, line,
18640 current_file, comp_dir,
18645 case DW_MACRO_GNU_end_file:
18646 if (! current_file)
18647 complaint (&symfile_complaints,
18648 _("macro debug info has an unmatched "
18649 "`close_file' directive"));
18652 current_file = current_file->included_by;
18653 if (! current_file)
18655 enum dwarf_macro_record_type next_type;
18657 /* GCC circa March 2002 doesn't produce the zero
18658 type byte marking the end of the compilation
18659 unit. Complain if it's not there, but exit no
18662 /* Do we at least have room for a macinfo type byte? */
18663 if (mac_ptr >= mac_end)
18665 dwarf2_section_buffer_overflow_complaint (section);
18669 /* We don't increment mac_ptr here, so this is just
18671 next_type = read_1_byte (abfd, mac_ptr);
18672 if (next_type != 0)
18673 complaint (&symfile_complaints,
18674 _("no terminating 0-type entry for "
18675 "macros in `.debug_macinfo' section"));
18682 case DW_MACRO_GNU_transparent_include:
18683 case DW_MACRO_GNU_transparent_include_alt:
18687 bfd *include_bfd = abfd;
18688 struct dwarf2_section_info *include_section = section;
18689 struct dwarf2_section_info alt_section;
18690 gdb_byte *include_mac_end = mac_end;
18691 int is_dwz = section_is_dwz;
18692 gdb_byte *new_mac_ptr;
18694 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18695 mac_ptr += offset_size;
18697 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18699 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18701 dwarf2_read_section (dwarf2_per_objfile->objfile,
18704 include_bfd = dwz->macro.asection->owner;
18705 include_section = &dwz->macro;
18706 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18710 new_mac_ptr = include_section->buffer + offset;
18711 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18715 /* This has actually happened; see
18716 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18717 complaint (&symfile_complaints,
18718 _("recursive DW_MACRO_GNU_transparent_include in "
18719 ".debug_macro section"));
18723 *slot = new_mac_ptr;
18725 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18726 include_mac_end, current_file,
18728 section, section_is_gnu, is_dwz,
18729 offset_size, objfile, include_hash);
18731 htab_remove_elt (include_hash, new_mac_ptr);
18736 case DW_MACINFO_vendor_ext:
18737 if (!section_is_gnu)
18739 unsigned int bytes_read;
18742 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18743 mac_ptr += bytes_read;
18744 read_direct_string (abfd, mac_ptr, &bytes_read);
18745 mac_ptr += bytes_read;
18747 /* We don't recognize any vendor extensions. */
18753 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18754 mac_ptr, mac_end, abfd, offset_size,
18756 if (mac_ptr == NULL)
18760 } while (macinfo_type != 0);
18764 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18765 const char *comp_dir, int section_is_gnu)
18767 struct objfile *objfile = dwarf2_per_objfile->objfile;
18768 struct line_header *lh = cu->line_header;
18770 gdb_byte *mac_ptr, *mac_end;
18771 struct macro_source_file *current_file = 0;
18772 enum dwarf_macro_record_type macinfo_type;
18773 unsigned int offset_size = cu->header.offset_size;
18774 gdb_byte *opcode_definitions[256];
18775 struct cleanup *cleanup;
18776 htab_t include_hash;
18778 struct dwarf2_section_info *section;
18779 const char *section_name;
18781 if (cu->dwo_unit != NULL)
18783 if (section_is_gnu)
18785 section = &cu->dwo_unit->dwo_file->sections.macro;
18786 section_name = ".debug_macro.dwo";
18790 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18791 section_name = ".debug_macinfo.dwo";
18796 if (section_is_gnu)
18798 section = &dwarf2_per_objfile->macro;
18799 section_name = ".debug_macro";
18803 section = &dwarf2_per_objfile->macinfo;
18804 section_name = ".debug_macinfo";
18808 dwarf2_read_section (objfile, section);
18809 if (section->buffer == NULL)
18811 complaint (&symfile_complaints, _("missing %s section"), section_name);
18814 abfd = section->asection->owner;
18816 /* First pass: Find the name of the base filename.
18817 This filename is needed in order to process all macros whose definition
18818 (or undefinition) comes from the command line. These macros are defined
18819 before the first DW_MACINFO_start_file entry, and yet still need to be
18820 associated to the base file.
18822 To determine the base file name, we scan the macro definitions until we
18823 reach the first DW_MACINFO_start_file entry. We then initialize
18824 CURRENT_FILE accordingly so that any macro definition found before the
18825 first DW_MACINFO_start_file can still be associated to the base file. */
18827 mac_ptr = section->buffer + offset;
18828 mac_end = section->buffer + section->size;
18830 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18831 &offset_size, section_is_gnu);
18832 if (mac_ptr == NULL)
18834 /* We already issued a complaint. */
18840 /* Do we at least have room for a macinfo type byte? */
18841 if (mac_ptr >= mac_end)
18843 /* Complaint is printed during the second pass as GDB will probably
18844 stop the first pass earlier upon finding
18845 DW_MACINFO_start_file. */
18849 macinfo_type = read_1_byte (abfd, mac_ptr);
18852 /* Note that we rely on the fact that the corresponding GNU and
18853 DWARF constants are the same. */
18854 switch (macinfo_type)
18856 /* A zero macinfo type indicates the end of the macro
18861 case DW_MACRO_GNU_define:
18862 case DW_MACRO_GNU_undef:
18863 /* Only skip the data by MAC_PTR. */
18865 unsigned int bytes_read;
18867 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18868 mac_ptr += bytes_read;
18869 read_direct_string (abfd, mac_ptr, &bytes_read);
18870 mac_ptr += bytes_read;
18874 case DW_MACRO_GNU_start_file:
18876 unsigned int bytes_read;
18879 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18880 mac_ptr += bytes_read;
18881 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18882 mac_ptr += bytes_read;
18884 current_file = macro_start_file (file, line, current_file,
18885 comp_dir, lh, objfile);
18889 case DW_MACRO_GNU_end_file:
18890 /* No data to skip by MAC_PTR. */
18893 case DW_MACRO_GNU_define_indirect:
18894 case DW_MACRO_GNU_undef_indirect:
18895 case DW_MACRO_GNU_define_indirect_alt:
18896 case DW_MACRO_GNU_undef_indirect_alt:
18898 unsigned int bytes_read;
18900 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18901 mac_ptr += bytes_read;
18902 mac_ptr += offset_size;
18906 case DW_MACRO_GNU_transparent_include:
18907 case DW_MACRO_GNU_transparent_include_alt:
18908 /* Note that, according to the spec, a transparent include
18909 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18910 skip this opcode. */
18911 mac_ptr += offset_size;
18914 case DW_MACINFO_vendor_ext:
18915 /* Only skip the data by MAC_PTR. */
18916 if (!section_is_gnu)
18918 unsigned int bytes_read;
18920 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18921 mac_ptr += bytes_read;
18922 read_direct_string (abfd, mac_ptr, &bytes_read);
18923 mac_ptr += bytes_read;
18928 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18929 mac_ptr, mac_end, abfd, offset_size,
18931 if (mac_ptr == NULL)
18935 } while (macinfo_type != 0 && current_file == NULL);
18937 /* Second pass: Process all entries.
18939 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18940 command-line macro definitions/undefinitions. This flag is unset when we
18941 reach the first DW_MACINFO_start_file entry. */
18943 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18944 NULL, xcalloc, xfree);
18945 cleanup = make_cleanup_htab_delete (include_hash);
18946 mac_ptr = section->buffer + offset;
18947 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18949 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18950 current_file, lh, comp_dir, section,
18952 offset_size, objfile, include_hash);
18953 do_cleanups (cleanup);
18956 /* Check if the attribute's form is a DW_FORM_block*
18957 if so return true else false. */
18960 attr_form_is_block (struct attribute *attr)
18962 return (attr == NULL ? 0 :
18963 attr->form == DW_FORM_block1
18964 || attr->form == DW_FORM_block2
18965 || attr->form == DW_FORM_block4
18966 || attr->form == DW_FORM_block
18967 || attr->form == DW_FORM_exprloc);
18970 /* Return non-zero if ATTR's value is a section offset --- classes
18971 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18972 You may use DW_UNSND (attr) to retrieve such offsets.
18974 Section 7.5.4, "Attribute Encodings", explains that no attribute
18975 may have a value that belongs to more than one of these classes; it
18976 would be ambiguous if we did, because we use the same forms for all
18980 attr_form_is_section_offset (struct attribute *attr)
18982 return (attr->form == DW_FORM_data4
18983 || attr->form == DW_FORM_data8
18984 || attr->form == DW_FORM_sec_offset);
18987 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18988 zero otherwise. When this function returns true, you can apply
18989 dwarf2_get_attr_constant_value to it.
18991 However, note that for some attributes you must check
18992 attr_form_is_section_offset before using this test. DW_FORM_data4
18993 and DW_FORM_data8 are members of both the constant class, and of
18994 the classes that contain offsets into other debug sections
18995 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18996 that, if an attribute's can be either a constant or one of the
18997 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18998 taken as section offsets, not constants. */
19001 attr_form_is_constant (struct attribute *attr)
19003 switch (attr->form)
19005 case DW_FORM_sdata:
19006 case DW_FORM_udata:
19007 case DW_FORM_data1:
19008 case DW_FORM_data2:
19009 case DW_FORM_data4:
19010 case DW_FORM_data8:
19017 /* Return the .debug_loc section to use for CU.
19018 For DWO files use .debug_loc.dwo. */
19020 static struct dwarf2_section_info *
19021 cu_debug_loc_section (struct dwarf2_cu *cu)
19024 return &cu->dwo_unit->dwo_file->sections.loc;
19025 return &dwarf2_per_objfile->loc;
19028 /* A helper function that fills in a dwarf2_loclist_baton. */
19031 fill_in_loclist_baton (struct dwarf2_cu *cu,
19032 struct dwarf2_loclist_baton *baton,
19033 struct attribute *attr)
19035 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19037 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19039 baton->per_cu = cu->per_cu;
19040 gdb_assert (baton->per_cu);
19041 /* We don't know how long the location list is, but make sure we
19042 don't run off the edge of the section. */
19043 baton->size = section->size - DW_UNSND (attr);
19044 baton->data = section->buffer + DW_UNSND (attr);
19045 baton->base_address = cu->base_address;
19046 baton->from_dwo = cu->dwo_unit != NULL;
19050 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19051 struct dwarf2_cu *cu)
19053 struct objfile *objfile = dwarf2_per_objfile->objfile;
19054 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19056 if (attr_form_is_section_offset (attr)
19057 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19058 the section. If so, fall through to the complaint in the
19060 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19062 struct dwarf2_loclist_baton *baton;
19064 baton = obstack_alloc (&objfile->objfile_obstack,
19065 sizeof (struct dwarf2_loclist_baton));
19067 fill_in_loclist_baton (cu, baton, attr);
19069 if (cu->base_known == 0)
19070 complaint (&symfile_complaints,
19071 _("Location list used without "
19072 "specifying the CU base address."));
19074 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
19075 SYMBOL_LOCATION_BATON (sym) = baton;
19079 struct dwarf2_locexpr_baton *baton;
19081 baton = obstack_alloc (&objfile->objfile_obstack,
19082 sizeof (struct dwarf2_locexpr_baton));
19083 baton->per_cu = cu->per_cu;
19084 gdb_assert (baton->per_cu);
19086 if (attr_form_is_block (attr))
19088 /* Note that we're just copying the block's data pointer
19089 here, not the actual data. We're still pointing into the
19090 info_buffer for SYM's objfile; right now we never release
19091 that buffer, but when we do clean up properly this may
19093 baton->size = DW_BLOCK (attr)->size;
19094 baton->data = DW_BLOCK (attr)->data;
19098 dwarf2_invalid_attrib_class_complaint ("location description",
19099 SYMBOL_NATURAL_NAME (sym));
19103 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
19104 SYMBOL_LOCATION_BATON (sym) = baton;
19108 /* Return the OBJFILE associated with the compilation unit CU. If CU
19109 came from a separate debuginfo file, then the master objfile is
19113 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19115 struct objfile *objfile = per_cu->objfile;
19117 /* Return the master objfile, so that we can report and look up the
19118 correct file containing this variable. */
19119 if (objfile->separate_debug_objfile_backlink)
19120 objfile = objfile->separate_debug_objfile_backlink;
19125 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19126 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19127 CU_HEADERP first. */
19129 static const struct comp_unit_head *
19130 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19131 struct dwarf2_per_cu_data *per_cu)
19133 gdb_byte *info_ptr;
19136 return &per_cu->cu->header;
19138 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19140 memset (cu_headerp, 0, sizeof (*cu_headerp));
19141 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19146 /* Return the address size given in the compilation unit header for CU. */
19149 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19151 struct comp_unit_head cu_header_local;
19152 const struct comp_unit_head *cu_headerp;
19154 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19156 return cu_headerp->addr_size;
19159 /* Return the offset size given in the compilation unit header for CU. */
19162 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19164 struct comp_unit_head cu_header_local;
19165 const struct comp_unit_head *cu_headerp;
19167 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19169 return cu_headerp->offset_size;
19172 /* See its dwarf2loc.h declaration. */
19175 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19177 struct comp_unit_head cu_header_local;
19178 const struct comp_unit_head *cu_headerp;
19180 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19182 if (cu_headerp->version == 2)
19183 return cu_headerp->addr_size;
19185 return cu_headerp->offset_size;
19188 /* Return the text offset of the CU. The returned offset comes from
19189 this CU's objfile. If this objfile came from a separate debuginfo
19190 file, then the offset may be different from the corresponding
19191 offset in the parent objfile. */
19194 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19196 struct objfile *objfile = per_cu->objfile;
19198 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19201 /* Locate the .debug_info compilation unit from CU's objfile which contains
19202 the DIE at OFFSET. Raises an error on failure. */
19204 static struct dwarf2_per_cu_data *
19205 dwarf2_find_containing_comp_unit (sect_offset offset,
19206 unsigned int offset_in_dwz,
19207 struct objfile *objfile)
19209 struct dwarf2_per_cu_data *this_cu;
19211 const sect_offset *cu_off;
19214 high = dwarf2_per_objfile->n_comp_units - 1;
19217 struct dwarf2_per_cu_data *mid_cu;
19218 int mid = low + (high - low) / 2;
19220 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19221 cu_off = &mid_cu->offset;
19222 if (mid_cu->is_dwz > offset_in_dwz
19223 || (mid_cu->is_dwz == offset_in_dwz
19224 && cu_off->sect_off >= offset.sect_off))
19229 gdb_assert (low == high);
19230 this_cu = dwarf2_per_objfile->all_comp_units[low];
19231 cu_off = &this_cu->offset;
19232 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19234 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19235 error (_("Dwarf Error: could not find partial DIE containing "
19236 "offset 0x%lx [in module %s]"),
19237 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19239 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19240 <= offset.sect_off);
19241 return dwarf2_per_objfile->all_comp_units[low-1];
19245 this_cu = dwarf2_per_objfile->all_comp_units[low];
19246 if (low == dwarf2_per_objfile->n_comp_units - 1
19247 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19248 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19249 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19254 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19257 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19259 memset (cu, 0, sizeof (*cu));
19261 cu->per_cu = per_cu;
19262 cu->objfile = per_cu->objfile;
19263 obstack_init (&cu->comp_unit_obstack);
19266 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19269 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19270 enum language pretend_language)
19272 struct attribute *attr;
19274 /* Set the language we're debugging. */
19275 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19277 set_cu_language (DW_UNSND (attr), cu);
19280 cu->language = pretend_language;
19281 cu->language_defn = language_def (cu->language);
19284 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19286 cu->producer = DW_STRING (attr);
19289 /* Release one cached compilation unit, CU. We unlink it from the tree
19290 of compilation units, but we don't remove it from the read_in_chain;
19291 the caller is responsible for that.
19292 NOTE: DATA is a void * because this function is also used as a
19293 cleanup routine. */
19296 free_heap_comp_unit (void *data)
19298 struct dwarf2_cu *cu = data;
19300 gdb_assert (cu->per_cu != NULL);
19301 cu->per_cu->cu = NULL;
19304 obstack_free (&cu->comp_unit_obstack, NULL);
19309 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19310 when we're finished with it. We can't free the pointer itself, but be
19311 sure to unlink it from the cache. Also release any associated storage. */
19314 free_stack_comp_unit (void *data)
19316 struct dwarf2_cu *cu = data;
19318 gdb_assert (cu->per_cu != NULL);
19319 cu->per_cu->cu = NULL;
19322 obstack_free (&cu->comp_unit_obstack, NULL);
19323 cu->partial_dies = NULL;
19326 /* Free all cached compilation units. */
19329 free_cached_comp_units (void *data)
19331 struct dwarf2_per_cu_data *per_cu, **last_chain;
19333 per_cu = dwarf2_per_objfile->read_in_chain;
19334 last_chain = &dwarf2_per_objfile->read_in_chain;
19335 while (per_cu != NULL)
19337 struct dwarf2_per_cu_data *next_cu;
19339 next_cu = per_cu->cu->read_in_chain;
19341 free_heap_comp_unit (per_cu->cu);
19342 *last_chain = next_cu;
19348 /* Increase the age counter on each cached compilation unit, and free
19349 any that are too old. */
19352 age_cached_comp_units (void)
19354 struct dwarf2_per_cu_data *per_cu, **last_chain;
19356 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19357 per_cu = dwarf2_per_objfile->read_in_chain;
19358 while (per_cu != NULL)
19360 per_cu->cu->last_used ++;
19361 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19362 dwarf2_mark (per_cu->cu);
19363 per_cu = per_cu->cu->read_in_chain;
19366 per_cu = dwarf2_per_objfile->read_in_chain;
19367 last_chain = &dwarf2_per_objfile->read_in_chain;
19368 while (per_cu != NULL)
19370 struct dwarf2_per_cu_data *next_cu;
19372 next_cu = per_cu->cu->read_in_chain;
19374 if (!per_cu->cu->mark)
19376 free_heap_comp_unit (per_cu->cu);
19377 *last_chain = next_cu;
19380 last_chain = &per_cu->cu->read_in_chain;
19386 /* Remove a single compilation unit from the cache. */
19389 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19391 struct dwarf2_per_cu_data *per_cu, **last_chain;
19393 per_cu = dwarf2_per_objfile->read_in_chain;
19394 last_chain = &dwarf2_per_objfile->read_in_chain;
19395 while (per_cu != NULL)
19397 struct dwarf2_per_cu_data *next_cu;
19399 next_cu = per_cu->cu->read_in_chain;
19401 if (per_cu == target_per_cu)
19403 free_heap_comp_unit (per_cu->cu);
19405 *last_chain = next_cu;
19409 last_chain = &per_cu->cu->read_in_chain;
19415 /* Release all extra memory associated with OBJFILE. */
19418 dwarf2_free_objfile (struct objfile *objfile)
19420 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19422 if (dwarf2_per_objfile == NULL)
19425 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19426 free_cached_comp_units (NULL);
19428 if (dwarf2_per_objfile->quick_file_names_table)
19429 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19431 /* Everything else should be on the objfile obstack. */
19434 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19435 We store these in a hash table separate from the DIEs, and preserve them
19436 when the DIEs are flushed out of cache.
19438 The CU "per_cu" pointer is needed because offset alone is not enough to
19439 uniquely identify the type. A file may have multiple .debug_types sections,
19440 or the type may come from a DWO file. We have to use something in
19441 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19442 routine, get_die_type_at_offset, from outside this file, and thus won't
19443 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19446 struct dwarf2_per_cu_offset_and_type
19448 const struct dwarf2_per_cu_data *per_cu;
19449 sect_offset offset;
19453 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19456 per_cu_offset_and_type_hash (const void *item)
19458 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19460 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19463 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19466 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19468 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19469 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19471 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19472 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19475 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19476 table if necessary. For convenience, return TYPE.
19478 The DIEs reading must have careful ordering to:
19479 * Not cause infite loops trying to read in DIEs as a prerequisite for
19480 reading current DIE.
19481 * Not trying to dereference contents of still incompletely read in types
19482 while reading in other DIEs.
19483 * Enable referencing still incompletely read in types just by a pointer to
19484 the type without accessing its fields.
19486 Therefore caller should follow these rules:
19487 * Try to fetch any prerequisite types we may need to build this DIE type
19488 before building the type and calling set_die_type.
19489 * After building type call set_die_type for current DIE as soon as
19490 possible before fetching more types to complete the current type.
19491 * Make the type as complete as possible before fetching more types. */
19493 static struct type *
19494 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19496 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19497 struct objfile *objfile = cu->objfile;
19499 /* For Ada types, make sure that the gnat-specific data is always
19500 initialized (if not already set). There are a few types where
19501 we should not be doing so, because the type-specific area is
19502 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19503 where the type-specific area is used to store the floatformat).
19504 But this is not a problem, because the gnat-specific information
19505 is actually not needed for these types. */
19506 if (need_gnat_info (cu)
19507 && TYPE_CODE (type) != TYPE_CODE_FUNC
19508 && TYPE_CODE (type) != TYPE_CODE_FLT
19509 && !HAVE_GNAT_AUX_INFO (type))
19510 INIT_GNAT_SPECIFIC (type);
19512 if (dwarf2_per_objfile->die_type_hash == NULL)
19514 dwarf2_per_objfile->die_type_hash =
19515 htab_create_alloc_ex (127,
19516 per_cu_offset_and_type_hash,
19517 per_cu_offset_and_type_eq,
19519 &objfile->objfile_obstack,
19520 hashtab_obstack_allocate,
19521 dummy_obstack_deallocate);
19524 ofs.per_cu = cu->per_cu;
19525 ofs.offset = die->offset;
19527 slot = (struct dwarf2_per_cu_offset_and_type **)
19528 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19530 complaint (&symfile_complaints,
19531 _("A problem internal to GDB: DIE 0x%x has type already set"),
19532 die->offset.sect_off);
19533 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19538 /* Look up the type for the die at OFFSET in the appropriate type_hash
19539 table, or return NULL if the die does not have a saved type. */
19541 static struct type *
19542 get_die_type_at_offset (sect_offset offset,
19543 struct dwarf2_per_cu_data *per_cu)
19545 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19547 if (dwarf2_per_objfile->die_type_hash == NULL)
19550 ofs.per_cu = per_cu;
19551 ofs.offset = offset;
19552 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19559 /* Look up the type for DIE in the appropriate type_hash table,
19560 or return NULL if DIE does not have a saved type. */
19562 static struct type *
19563 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19565 return get_die_type_at_offset (die->offset, cu->per_cu);
19568 /* Add a dependence relationship from CU to REF_PER_CU. */
19571 dwarf2_add_dependence (struct dwarf2_cu *cu,
19572 struct dwarf2_per_cu_data *ref_per_cu)
19576 if (cu->dependencies == NULL)
19578 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19579 NULL, &cu->comp_unit_obstack,
19580 hashtab_obstack_allocate,
19581 dummy_obstack_deallocate);
19583 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19585 *slot = ref_per_cu;
19588 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19589 Set the mark field in every compilation unit in the
19590 cache that we must keep because we are keeping CU. */
19593 dwarf2_mark_helper (void **slot, void *data)
19595 struct dwarf2_per_cu_data *per_cu;
19597 per_cu = (struct dwarf2_per_cu_data *) *slot;
19599 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19600 reading of the chain. As such dependencies remain valid it is not much
19601 useful to track and undo them during QUIT cleanups. */
19602 if (per_cu->cu == NULL)
19605 if (per_cu->cu->mark)
19607 per_cu->cu->mark = 1;
19609 if (per_cu->cu->dependencies != NULL)
19610 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19615 /* Set the mark field in CU and in every other compilation unit in the
19616 cache that we must keep because we are keeping CU. */
19619 dwarf2_mark (struct dwarf2_cu *cu)
19624 if (cu->dependencies != NULL)
19625 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19629 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19633 per_cu->cu->mark = 0;
19634 per_cu = per_cu->cu->read_in_chain;
19638 /* Trivial hash function for partial_die_info: the hash value of a DIE
19639 is its offset in .debug_info for this objfile. */
19642 partial_die_hash (const void *item)
19644 const struct partial_die_info *part_die = item;
19646 return part_die->offset.sect_off;
19649 /* Trivial comparison function for partial_die_info structures: two DIEs
19650 are equal if they have the same offset. */
19653 partial_die_eq (const void *item_lhs, const void *item_rhs)
19655 const struct partial_die_info *part_die_lhs = item_lhs;
19656 const struct partial_die_info *part_die_rhs = item_rhs;
19658 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19661 static struct cmd_list_element *set_dwarf2_cmdlist;
19662 static struct cmd_list_element *show_dwarf2_cmdlist;
19665 set_dwarf2_cmd (char *args, int from_tty)
19667 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19671 show_dwarf2_cmd (char *args, int from_tty)
19673 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19676 /* Free data associated with OBJFILE, if necessary. */
19679 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19681 struct dwarf2_per_objfile *data = d;
19684 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19685 VEC_free (dwarf2_per_cu_ptr,
19686 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19688 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19689 VEC_free (dwarf2_per_cu_ptr,
19690 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19692 VEC_free (dwarf2_section_info_def, data->types);
19694 if (data->dwo_files)
19695 free_dwo_files (data->dwo_files, objfile);
19697 if (data->dwz_file && data->dwz_file->dwz_bfd)
19698 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19702 /* The "save gdb-index" command. */
19704 /* The contents of the hash table we create when building the string
19706 struct strtab_entry
19708 offset_type offset;
19712 /* Hash function for a strtab_entry.
19714 Function is used only during write_hash_table so no index format backward
19715 compatibility is needed. */
19718 hash_strtab_entry (const void *e)
19720 const struct strtab_entry *entry = e;
19721 return mapped_index_string_hash (INT_MAX, entry->str);
19724 /* Equality function for a strtab_entry. */
19727 eq_strtab_entry (const void *a, const void *b)
19729 const struct strtab_entry *ea = a;
19730 const struct strtab_entry *eb = b;
19731 return !strcmp (ea->str, eb->str);
19734 /* Create a strtab_entry hash table. */
19737 create_strtab (void)
19739 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19740 xfree, xcalloc, xfree);
19743 /* Add a string to the constant pool. Return the string's offset in
19747 add_string (htab_t table, struct obstack *cpool, const char *str)
19750 struct strtab_entry entry;
19751 struct strtab_entry *result;
19754 slot = htab_find_slot (table, &entry, INSERT);
19759 result = XNEW (struct strtab_entry);
19760 result->offset = obstack_object_size (cpool);
19762 obstack_grow_str0 (cpool, str);
19765 return result->offset;
19768 /* An entry in the symbol table. */
19769 struct symtab_index_entry
19771 /* The name of the symbol. */
19773 /* The offset of the name in the constant pool. */
19774 offset_type index_offset;
19775 /* A sorted vector of the indices of all the CUs that hold an object
19777 VEC (offset_type) *cu_indices;
19780 /* The symbol table. This is a power-of-2-sized hash table. */
19781 struct mapped_symtab
19783 offset_type n_elements;
19785 struct symtab_index_entry **data;
19788 /* Hash function for a symtab_index_entry. */
19791 hash_symtab_entry (const void *e)
19793 const struct symtab_index_entry *entry = e;
19794 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19795 sizeof (offset_type) * VEC_length (offset_type,
19796 entry->cu_indices),
19800 /* Equality function for a symtab_index_entry. */
19803 eq_symtab_entry (const void *a, const void *b)
19805 const struct symtab_index_entry *ea = a;
19806 const struct symtab_index_entry *eb = b;
19807 int len = VEC_length (offset_type, ea->cu_indices);
19808 if (len != VEC_length (offset_type, eb->cu_indices))
19810 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19811 VEC_address (offset_type, eb->cu_indices),
19812 sizeof (offset_type) * len);
19815 /* Destroy a symtab_index_entry. */
19818 delete_symtab_entry (void *p)
19820 struct symtab_index_entry *entry = p;
19821 VEC_free (offset_type, entry->cu_indices);
19825 /* Create a hash table holding symtab_index_entry objects. */
19828 create_symbol_hash_table (void)
19830 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19831 delete_symtab_entry, xcalloc, xfree);
19834 /* Create a new mapped symtab object. */
19836 static struct mapped_symtab *
19837 create_mapped_symtab (void)
19839 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19840 symtab->n_elements = 0;
19841 symtab->size = 1024;
19842 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19846 /* Destroy a mapped_symtab. */
19849 cleanup_mapped_symtab (void *p)
19851 struct mapped_symtab *symtab = p;
19852 /* The contents of the array are freed when the other hash table is
19854 xfree (symtab->data);
19858 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19861 Function is used only during write_hash_table so no index format backward
19862 compatibility is needed. */
19864 static struct symtab_index_entry **
19865 find_slot (struct mapped_symtab *symtab, const char *name)
19867 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19869 index = hash & (symtab->size - 1);
19870 step = ((hash * 17) & (symtab->size - 1)) | 1;
19874 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19875 return &symtab->data[index];
19876 index = (index + step) & (symtab->size - 1);
19880 /* Expand SYMTAB's hash table. */
19883 hash_expand (struct mapped_symtab *symtab)
19885 offset_type old_size = symtab->size;
19887 struct symtab_index_entry **old_entries = symtab->data;
19890 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19892 for (i = 0; i < old_size; ++i)
19894 if (old_entries[i])
19896 struct symtab_index_entry **slot = find_slot (symtab,
19897 old_entries[i]->name);
19898 *slot = old_entries[i];
19902 xfree (old_entries);
19905 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19906 CU_INDEX is the index of the CU in which the symbol appears.
19907 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19910 add_index_entry (struct mapped_symtab *symtab, const char *name,
19911 int is_static, gdb_index_symbol_kind kind,
19912 offset_type cu_index)
19914 struct symtab_index_entry **slot;
19915 offset_type cu_index_and_attrs;
19917 ++symtab->n_elements;
19918 if (4 * symtab->n_elements / 3 >= symtab->size)
19919 hash_expand (symtab);
19921 slot = find_slot (symtab, name);
19924 *slot = XNEW (struct symtab_index_entry);
19925 (*slot)->name = name;
19926 /* index_offset is set later. */
19927 (*slot)->cu_indices = NULL;
19930 cu_index_and_attrs = 0;
19931 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19932 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19933 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19935 /* We don't want to record an index value twice as we want to avoid the
19937 We process all global symbols and then all static symbols
19938 (which would allow us to avoid the duplication by only having to check
19939 the last entry pushed), but a symbol could have multiple kinds in one CU.
19940 To keep things simple we don't worry about the duplication here and
19941 sort and uniqufy the list after we've processed all symbols. */
19942 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19945 /* qsort helper routine for uniquify_cu_indices. */
19948 offset_type_compare (const void *ap, const void *bp)
19950 offset_type a = *(offset_type *) ap;
19951 offset_type b = *(offset_type *) bp;
19953 return (a > b) - (b > a);
19956 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19959 uniquify_cu_indices (struct mapped_symtab *symtab)
19963 for (i = 0; i < symtab->size; ++i)
19965 struct symtab_index_entry *entry = symtab->data[i];
19968 && entry->cu_indices != NULL)
19970 unsigned int next_to_insert, next_to_check;
19971 offset_type last_value;
19973 qsort (VEC_address (offset_type, entry->cu_indices),
19974 VEC_length (offset_type, entry->cu_indices),
19975 sizeof (offset_type), offset_type_compare);
19977 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19978 next_to_insert = 1;
19979 for (next_to_check = 1;
19980 next_to_check < VEC_length (offset_type, entry->cu_indices);
19983 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19986 last_value = VEC_index (offset_type, entry->cu_indices,
19988 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19993 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19998 /* Add a vector of indices to the constant pool. */
20001 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20002 struct symtab_index_entry *entry)
20006 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20009 offset_type len = VEC_length (offset_type, entry->cu_indices);
20010 offset_type val = MAYBE_SWAP (len);
20015 entry->index_offset = obstack_object_size (cpool);
20017 obstack_grow (cpool, &val, sizeof (val));
20019 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20022 val = MAYBE_SWAP (iter);
20023 obstack_grow (cpool, &val, sizeof (val));
20028 struct symtab_index_entry *old_entry = *slot;
20029 entry->index_offset = old_entry->index_offset;
20032 return entry->index_offset;
20035 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20036 constant pool entries going into the obstack CPOOL. */
20039 write_hash_table (struct mapped_symtab *symtab,
20040 struct obstack *output, struct obstack *cpool)
20043 htab_t symbol_hash_table;
20046 symbol_hash_table = create_symbol_hash_table ();
20047 str_table = create_strtab ();
20049 /* We add all the index vectors to the constant pool first, to
20050 ensure alignment is ok. */
20051 for (i = 0; i < symtab->size; ++i)
20053 if (symtab->data[i])
20054 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20057 /* Now write out the hash table. */
20058 for (i = 0; i < symtab->size; ++i)
20060 offset_type str_off, vec_off;
20062 if (symtab->data[i])
20064 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20065 vec_off = symtab->data[i]->index_offset;
20069 /* While 0 is a valid constant pool index, it is not valid
20070 to have 0 for both offsets. */
20075 str_off = MAYBE_SWAP (str_off);
20076 vec_off = MAYBE_SWAP (vec_off);
20078 obstack_grow (output, &str_off, sizeof (str_off));
20079 obstack_grow (output, &vec_off, sizeof (vec_off));
20082 htab_delete (str_table);
20083 htab_delete (symbol_hash_table);
20086 /* Struct to map psymtab to CU index in the index file. */
20087 struct psymtab_cu_index_map
20089 struct partial_symtab *psymtab;
20090 unsigned int cu_index;
20094 hash_psymtab_cu_index (const void *item)
20096 const struct psymtab_cu_index_map *map = item;
20098 return htab_hash_pointer (map->psymtab);
20102 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20104 const struct psymtab_cu_index_map *lhs = item_lhs;
20105 const struct psymtab_cu_index_map *rhs = item_rhs;
20107 return lhs->psymtab == rhs->psymtab;
20110 /* Helper struct for building the address table. */
20111 struct addrmap_index_data
20113 struct objfile *objfile;
20114 struct obstack *addr_obstack;
20115 htab_t cu_index_htab;
20117 /* Non-zero if the previous_* fields are valid.
20118 We can't write an entry until we see the next entry (since it is only then
20119 that we know the end of the entry). */
20120 int previous_valid;
20121 /* Index of the CU in the table of all CUs in the index file. */
20122 unsigned int previous_cu_index;
20123 /* Start address of the CU. */
20124 CORE_ADDR previous_cu_start;
20127 /* Write an address entry to OBSTACK. */
20130 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20131 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20133 offset_type cu_index_to_write;
20135 CORE_ADDR baseaddr;
20137 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20139 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20140 obstack_grow (obstack, addr, 8);
20141 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20142 obstack_grow (obstack, addr, 8);
20143 cu_index_to_write = MAYBE_SWAP (cu_index);
20144 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20147 /* Worker function for traversing an addrmap to build the address table. */
20150 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20152 struct addrmap_index_data *data = datap;
20153 struct partial_symtab *pst = obj;
20155 if (data->previous_valid)
20156 add_address_entry (data->objfile, data->addr_obstack,
20157 data->previous_cu_start, start_addr,
20158 data->previous_cu_index);
20160 data->previous_cu_start = start_addr;
20163 struct psymtab_cu_index_map find_map, *map;
20164 find_map.psymtab = pst;
20165 map = htab_find (data->cu_index_htab, &find_map);
20166 gdb_assert (map != NULL);
20167 data->previous_cu_index = map->cu_index;
20168 data->previous_valid = 1;
20171 data->previous_valid = 0;
20176 /* Write OBJFILE's address map to OBSTACK.
20177 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20178 in the index file. */
20181 write_address_map (struct objfile *objfile, struct obstack *obstack,
20182 htab_t cu_index_htab)
20184 struct addrmap_index_data addrmap_index_data;
20186 /* When writing the address table, we have to cope with the fact that
20187 the addrmap iterator only provides the start of a region; we have to
20188 wait until the next invocation to get the start of the next region. */
20190 addrmap_index_data.objfile = objfile;
20191 addrmap_index_data.addr_obstack = obstack;
20192 addrmap_index_data.cu_index_htab = cu_index_htab;
20193 addrmap_index_data.previous_valid = 0;
20195 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20196 &addrmap_index_data);
20198 /* It's highly unlikely the last entry (end address = 0xff...ff)
20199 is valid, but we should still handle it.
20200 The end address is recorded as the start of the next region, but that
20201 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20203 if (addrmap_index_data.previous_valid)
20204 add_address_entry (objfile, obstack,
20205 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20206 addrmap_index_data.previous_cu_index);
20209 /* Return the symbol kind of PSYM. */
20211 static gdb_index_symbol_kind
20212 symbol_kind (struct partial_symbol *psym)
20214 domain_enum domain = PSYMBOL_DOMAIN (psym);
20215 enum address_class aclass = PSYMBOL_CLASS (psym);
20223 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20225 return GDB_INDEX_SYMBOL_KIND_TYPE;
20227 case LOC_CONST_BYTES:
20228 case LOC_OPTIMIZED_OUT:
20230 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20232 /* Note: It's currently impossible to recognize psyms as enum values
20233 short of reading the type info. For now punt. */
20234 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20236 /* There are other LOC_FOO values that one might want to classify
20237 as variables, but dwarf2read.c doesn't currently use them. */
20238 return GDB_INDEX_SYMBOL_KIND_OTHER;
20240 case STRUCT_DOMAIN:
20241 return GDB_INDEX_SYMBOL_KIND_TYPE;
20243 return GDB_INDEX_SYMBOL_KIND_OTHER;
20247 /* Add a list of partial symbols to SYMTAB. */
20250 write_psymbols (struct mapped_symtab *symtab,
20252 struct partial_symbol **psymp,
20254 offset_type cu_index,
20257 for (; count-- > 0; ++psymp)
20259 struct partial_symbol *psym = *psymp;
20262 if (SYMBOL_LANGUAGE (psym) == language_ada)
20263 error (_("Ada is not currently supported by the index"));
20265 /* Only add a given psymbol once. */
20266 slot = htab_find_slot (psyms_seen, psym, INSERT);
20269 gdb_index_symbol_kind kind = symbol_kind (psym);
20272 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20273 is_static, kind, cu_index);
20278 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20279 exception if there is an error. */
20282 write_obstack (FILE *file, struct obstack *obstack)
20284 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20286 != obstack_object_size (obstack))
20287 error (_("couldn't data write to file"));
20290 /* Unlink a file if the argument is not NULL. */
20293 unlink_if_set (void *p)
20295 char **filename = p;
20297 unlink (*filename);
20300 /* A helper struct used when iterating over debug_types. */
20301 struct signatured_type_index_data
20303 struct objfile *objfile;
20304 struct mapped_symtab *symtab;
20305 struct obstack *types_list;
20310 /* A helper function that writes a single signatured_type to an
20314 write_one_signatured_type (void **slot, void *d)
20316 struct signatured_type_index_data *info = d;
20317 struct signatured_type *entry = (struct signatured_type *) *slot;
20318 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20319 struct partial_symtab *psymtab = per_cu->v.psymtab;
20322 write_psymbols (info->symtab,
20324 info->objfile->global_psymbols.list
20325 + psymtab->globals_offset,
20326 psymtab->n_global_syms, info->cu_index,
20328 write_psymbols (info->symtab,
20330 info->objfile->static_psymbols.list
20331 + psymtab->statics_offset,
20332 psymtab->n_static_syms, info->cu_index,
20335 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20336 entry->per_cu.offset.sect_off);
20337 obstack_grow (info->types_list, val, 8);
20338 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20339 entry->type_offset_in_tu.cu_off);
20340 obstack_grow (info->types_list, val, 8);
20341 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20342 obstack_grow (info->types_list, val, 8);
20349 /* Recurse into all "included" dependencies and write their symbols as
20350 if they appeared in this psymtab. */
20353 recursively_write_psymbols (struct objfile *objfile,
20354 struct partial_symtab *psymtab,
20355 struct mapped_symtab *symtab,
20357 offset_type cu_index)
20361 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20362 if (psymtab->dependencies[i]->user != NULL)
20363 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20364 symtab, psyms_seen, cu_index);
20366 write_psymbols (symtab,
20368 objfile->global_psymbols.list + psymtab->globals_offset,
20369 psymtab->n_global_syms, cu_index,
20371 write_psymbols (symtab,
20373 objfile->static_psymbols.list + psymtab->statics_offset,
20374 psymtab->n_static_syms, cu_index,
20378 /* Create an index file for OBJFILE in the directory DIR. */
20381 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20383 struct cleanup *cleanup;
20384 char *filename, *cleanup_filename;
20385 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20386 struct obstack cu_list, types_cu_list;
20389 struct mapped_symtab *symtab;
20390 offset_type val, size_of_contents, total_len;
20393 htab_t cu_index_htab;
20394 struct psymtab_cu_index_map *psymtab_cu_index_map;
20396 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20399 if (dwarf2_per_objfile->using_index)
20400 error (_("Cannot use an index to create the index"));
20402 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20403 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20405 if (stat (objfile->name, &st) < 0)
20406 perror_with_name (objfile->name);
20408 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20409 INDEX_SUFFIX, (char *) NULL);
20410 cleanup = make_cleanup (xfree, filename);
20412 out_file = fopen (filename, "wb");
20414 error (_("Can't open `%s' for writing"), filename);
20416 cleanup_filename = filename;
20417 make_cleanup (unlink_if_set, &cleanup_filename);
20419 symtab = create_mapped_symtab ();
20420 make_cleanup (cleanup_mapped_symtab, symtab);
20422 obstack_init (&addr_obstack);
20423 make_cleanup_obstack_free (&addr_obstack);
20425 obstack_init (&cu_list);
20426 make_cleanup_obstack_free (&cu_list);
20428 obstack_init (&types_cu_list);
20429 make_cleanup_obstack_free (&types_cu_list);
20431 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20432 NULL, xcalloc, xfree);
20433 make_cleanup_htab_delete (psyms_seen);
20435 /* While we're scanning CU's create a table that maps a psymtab pointer
20436 (which is what addrmap records) to its index (which is what is recorded
20437 in the index file). This will later be needed to write the address
20439 cu_index_htab = htab_create_alloc (100,
20440 hash_psymtab_cu_index,
20441 eq_psymtab_cu_index,
20442 NULL, xcalloc, xfree);
20443 make_cleanup_htab_delete (cu_index_htab);
20444 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20445 xmalloc (sizeof (struct psymtab_cu_index_map)
20446 * dwarf2_per_objfile->n_comp_units);
20447 make_cleanup (xfree, psymtab_cu_index_map);
20449 /* The CU list is already sorted, so we don't need to do additional
20450 work here. Also, the debug_types entries do not appear in
20451 all_comp_units, but only in their own hash table. */
20452 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20454 struct dwarf2_per_cu_data *per_cu
20455 = dwarf2_per_objfile->all_comp_units[i];
20456 struct partial_symtab *psymtab = per_cu->v.psymtab;
20458 struct psymtab_cu_index_map *map;
20461 if (psymtab->user == NULL)
20462 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20464 map = &psymtab_cu_index_map[i];
20465 map->psymtab = psymtab;
20467 slot = htab_find_slot (cu_index_htab, map, INSERT);
20468 gdb_assert (slot != NULL);
20469 gdb_assert (*slot == NULL);
20472 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20473 per_cu->offset.sect_off);
20474 obstack_grow (&cu_list, val, 8);
20475 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20476 obstack_grow (&cu_list, val, 8);
20479 /* Dump the address map. */
20480 write_address_map (objfile, &addr_obstack, cu_index_htab);
20482 /* Write out the .debug_type entries, if any. */
20483 if (dwarf2_per_objfile->signatured_types)
20485 struct signatured_type_index_data sig_data;
20487 sig_data.objfile = objfile;
20488 sig_data.symtab = symtab;
20489 sig_data.types_list = &types_cu_list;
20490 sig_data.psyms_seen = psyms_seen;
20491 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20492 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20493 write_one_signatured_type, &sig_data);
20496 /* Now that we've processed all symbols we can shrink their cu_indices
20498 uniquify_cu_indices (symtab);
20500 obstack_init (&constant_pool);
20501 make_cleanup_obstack_free (&constant_pool);
20502 obstack_init (&symtab_obstack);
20503 make_cleanup_obstack_free (&symtab_obstack);
20504 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20506 obstack_init (&contents);
20507 make_cleanup_obstack_free (&contents);
20508 size_of_contents = 6 * sizeof (offset_type);
20509 total_len = size_of_contents;
20511 /* The version number. */
20512 val = MAYBE_SWAP (8);
20513 obstack_grow (&contents, &val, sizeof (val));
20515 /* The offset of the CU list from the start of the file. */
20516 val = MAYBE_SWAP (total_len);
20517 obstack_grow (&contents, &val, sizeof (val));
20518 total_len += obstack_object_size (&cu_list);
20520 /* The offset of the types CU list from the start of the file. */
20521 val = MAYBE_SWAP (total_len);
20522 obstack_grow (&contents, &val, sizeof (val));
20523 total_len += obstack_object_size (&types_cu_list);
20525 /* The offset of the address table from the start of the file. */
20526 val = MAYBE_SWAP (total_len);
20527 obstack_grow (&contents, &val, sizeof (val));
20528 total_len += obstack_object_size (&addr_obstack);
20530 /* The offset of the symbol table from the start of the file. */
20531 val = MAYBE_SWAP (total_len);
20532 obstack_grow (&contents, &val, sizeof (val));
20533 total_len += obstack_object_size (&symtab_obstack);
20535 /* The offset of the constant pool from the start of the file. */
20536 val = MAYBE_SWAP (total_len);
20537 obstack_grow (&contents, &val, sizeof (val));
20538 total_len += obstack_object_size (&constant_pool);
20540 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20542 write_obstack (out_file, &contents);
20543 write_obstack (out_file, &cu_list);
20544 write_obstack (out_file, &types_cu_list);
20545 write_obstack (out_file, &addr_obstack);
20546 write_obstack (out_file, &symtab_obstack);
20547 write_obstack (out_file, &constant_pool);
20551 /* We want to keep the file, so we set cleanup_filename to NULL
20552 here. See unlink_if_set. */
20553 cleanup_filename = NULL;
20555 do_cleanups (cleanup);
20558 /* Implementation of the `save gdb-index' command.
20560 Note that the file format used by this command is documented in the
20561 GDB manual. Any changes here must be documented there. */
20564 save_gdb_index_command (char *arg, int from_tty)
20566 struct objfile *objfile;
20569 error (_("usage: save gdb-index DIRECTORY"));
20571 ALL_OBJFILES (objfile)
20575 /* If the objfile does not correspond to an actual file, skip it. */
20576 if (stat (objfile->name, &st) < 0)
20579 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20580 if (dwarf2_per_objfile)
20582 volatile struct gdb_exception except;
20584 TRY_CATCH (except, RETURN_MASK_ERROR)
20586 write_psymtabs_to_index (objfile, arg);
20588 if (except.reason < 0)
20589 exception_fprintf (gdb_stderr, except,
20590 _("Error while writing index for `%s': "),
20598 int dwarf2_always_disassemble;
20601 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20602 struct cmd_list_element *c, const char *value)
20604 fprintf_filtered (file,
20605 _("Whether to always disassemble "
20606 "DWARF expressions is %s.\n"),
20611 show_check_physname (struct ui_file *file, int from_tty,
20612 struct cmd_list_element *c, const char *value)
20614 fprintf_filtered (file,
20615 _("Whether to check \"physname\" is %s.\n"),
20619 void _initialize_dwarf2_read (void);
20622 _initialize_dwarf2_read (void)
20624 struct cmd_list_element *c;
20626 dwarf2_objfile_data_key
20627 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20629 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20630 Set DWARF 2 specific variables.\n\
20631 Configure DWARF 2 variables such as the cache size"),
20632 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20633 0/*allow-unknown*/, &maintenance_set_cmdlist);
20635 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20636 Show DWARF 2 specific variables\n\
20637 Show DWARF 2 variables such as the cache size"),
20638 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20639 0/*allow-unknown*/, &maintenance_show_cmdlist);
20641 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20642 &dwarf2_max_cache_age, _("\
20643 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20644 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20645 A higher limit means that cached compilation units will be stored\n\
20646 in memory longer, and more total memory will be used. Zero disables\n\
20647 caching, which can slow down startup."),
20649 show_dwarf2_max_cache_age,
20650 &set_dwarf2_cmdlist,
20651 &show_dwarf2_cmdlist);
20653 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20654 &dwarf2_always_disassemble, _("\
20655 Set whether `info address' always disassembles DWARF expressions."), _("\
20656 Show whether `info address' always disassembles DWARF expressions."), _("\
20657 When enabled, DWARF expressions are always printed in an assembly-like\n\
20658 syntax. When disabled, expressions will be printed in a more\n\
20659 conversational style, when possible."),
20661 show_dwarf2_always_disassemble,
20662 &set_dwarf2_cmdlist,
20663 &show_dwarf2_cmdlist);
20665 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20666 Set debugging of the dwarf2 reader."), _("\
20667 Show debugging of the dwarf2 reader."), _("\
20668 When enabled, debugging messages are printed during dwarf2 reading\n\
20669 and symtab expansion."),
20672 &setdebuglist, &showdebuglist);
20674 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20675 Set debugging of the dwarf2 DIE reader."), _("\
20676 Show debugging of the dwarf2 DIE reader."), _("\
20677 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20678 The value is the maximum depth to print."),
20681 &setdebuglist, &showdebuglist);
20683 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20684 Set cross-checking of \"physname\" code against demangler."), _("\
20685 Show cross-checking of \"physname\" code against demangler."), _("\
20686 When enabled, GDB's internal \"physname\" code is checked against\n\
20688 NULL, show_check_physname,
20689 &setdebuglist, &showdebuglist);
20691 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20692 no_class, &use_deprecated_index_sections, _("\
20693 Set whether to use deprecated gdb_index sections."), _("\
20694 Show whether to use deprecated gdb_index sections."), _("\
20695 When enabled, deprecated .gdb_index sections are used anyway.\n\
20696 Normally they are ignored either because of a missing feature or\n\
20697 performance issue.\n\
20698 Warning: This option must be enabled before gdb reads the file."),
20701 &setlist, &showlist);
20703 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20705 Save a gdb-index file.\n\
20706 Usage: save gdb-index DIRECTORY"),
20708 set_cmd_completer (c, filename_completer);