1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
57 #include "typeprint.h"
60 #include "completer.h"
61 #include "common/vec.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "common/filestuff.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
83 #include <sys/types.h>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
111 static const struct objfile_data *dwarf2_objfile_data_key;
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
133 struct name_component
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
140 /* The symbol's index in the symbol and constant pool tables of a
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
148 struct mapped_index_base
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
166 /* Return whether the name at IDX in the symbol table should be
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
173 /* Build the symbol name component sorted vector, if we haven't
175 void build_name_components ();
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184 /* Prevent deleting/destroying via a base class pointer. */
186 ~mapped_index_base() = default;
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
196 const offset_type name;
197 const offset_type vec;
200 /* Index data format version. */
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
212 bool symbol_name_slot_invalid (offset_type idx) const override
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
218 /* Convenience method to get at the name of the symbol at IDX in the
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
253 /* Attribute name DW_IDX_*. */
256 /* Attribute form DW_FORM_*. */
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
262 std::vector<attr> attr_vec;
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
267 const char *namei_to_name (uint32_t namei) const;
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
275 size_t symbol_name_count () const override
276 { return this->name_count; }
279 /* See dwarf2read.h. */
282 get_dwarf2_per_objfile (struct objfile *objfile)
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
298 /* Default names of the debugging sections. */
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
326 /* List of DWO/DWP sections. */
328 static const struct dwop_section_names
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
359 /* local data types */
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
377 enum dwarf_unit_type unit_type;
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
399 /* The type to which the method is attached, i.e., its parent class. */
402 /* The index of the method in the type's function fieldlists. */
405 /* The index of the method in the fieldlist. */
408 /* The name of the DIE. */
411 /* The DIE associated with this method. */
412 struct die_info *die;
415 /* Internal state when decoding a particular compilation unit. */
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
424 Create the set of symtabs used by this TU, or if this TU is sharing
425 symtabs with another TU and the symtabs have already been created
426 then restore those symtabs in the line header.
427 We don't need the pc/line-number mapping for type units. */
428 void setup_type_unit_groups (struct die_info *die);
430 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
431 buildsym_compunit constructor. */
432 struct compunit_symtab *start_symtab (const char *name,
433 const char *comp_dir,
436 /* Reset the builder. */
437 void reset_builder () { m_builder.reset (); }
439 /* The header of the compilation unit. */
440 struct comp_unit_head header {};
442 /* Base address of this compilation unit. */
443 CORE_ADDR base_address = 0;
445 /* Non-zero if base_address has been set. */
448 /* The language we are debugging. */
449 enum language language = language_unknown;
450 const struct language_defn *language_defn = nullptr;
452 const char *producer = nullptr;
455 /* The symtab builder for this CU. This is only non-NULL when full
456 symbols are being read. */
457 std::unique_ptr<buildsym_compunit> m_builder;
460 /* The generic symbol table building routines have separate lists for
461 file scope symbols and all all other scopes (local scopes). So
462 we need to select the right one to pass to add_symbol_to_list().
463 We do it by keeping a pointer to the correct list in list_in_scope.
465 FIXME: The original dwarf code just treated the file scope as the
466 first local scope, and all other local scopes as nested local
467 scopes, and worked fine. Check to see if we really need to
468 distinguish these in buildsym.c. */
469 struct pending **list_in_scope = nullptr;
471 /* Hash table holding all the loaded partial DIEs
472 with partial_die->offset.SECT_OFF as hash. */
473 htab_t partial_dies = nullptr;
475 /* Storage for things with the same lifetime as this read-in compilation
476 unit, including partial DIEs. */
477 auto_obstack comp_unit_obstack;
479 /* When multiple dwarf2_cu structures are living in memory, this field
480 chains them all together, so that they can be released efficiently.
481 We will probably also want a generation counter so that most-recently-used
482 compilation units are cached... */
483 struct dwarf2_per_cu_data *read_in_chain = nullptr;
485 /* Backlink to our per_cu entry. */
486 struct dwarf2_per_cu_data *per_cu;
488 /* How many compilation units ago was this CU last referenced? */
491 /* A hash table of DIE cu_offset for following references with
492 die_info->offset.sect_off as hash. */
493 htab_t die_hash = nullptr;
495 /* Full DIEs if read in. */
496 struct die_info *dies = nullptr;
498 /* A set of pointers to dwarf2_per_cu_data objects for compilation
499 units referenced by this one. Only set during full symbol processing;
500 partial symbol tables do not have dependencies. */
501 htab_t dependencies = nullptr;
503 /* Header data from the line table, during full symbol processing. */
504 struct line_header *line_header = nullptr;
505 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
506 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
507 this is the DW_TAG_compile_unit die for this CU. We'll hold on
508 to the line header as long as this DIE is being processed. See
509 process_die_scope. */
510 die_info *line_header_die_owner = nullptr;
512 /* A list of methods which need to have physnames computed
513 after all type information has been read. */
514 std::vector<delayed_method_info> method_list;
516 /* To be copied to symtab->call_site_htab. */
517 htab_t call_site_htab = nullptr;
519 /* Non-NULL if this CU came from a DWO file.
520 There is an invariant here that is important to remember:
521 Except for attributes copied from the top level DIE in the "main"
522 (or "stub") file in preparation for reading the DWO file
523 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
524 Either there isn't a DWO file (in which case this is NULL and the point
525 is moot), or there is and either we're not going to read it (in which
526 case this is NULL) or there is and we are reading it (in which case this
528 struct dwo_unit *dwo_unit = nullptr;
530 /* The DW_AT_addr_base attribute if present, zero otherwise
531 (zero is a valid value though).
532 Note this value comes from the Fission stub CU/TU's DIE. */
533 ULONGEST addr_base = 0;
535 /* The DW_AT_ranges_base attribute if present, zero otherwise
536 (zero is a valid value though).
537 Note this value comes from the Fission stub CU/TU's DIE.
538 Also note that the value is zero in the non-DWO case so this value can
539 be used without needing to know whether DWO files are in use or not.
540 N.B. This does not apply to DW_AT_ranges appearing in
541 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
542 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
543 DW_AT_ranges_base *would* have to be applied, and we'd have to care
544 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
545 ULONGEST ranges_base = 0;
547 /* When reading debug info generated by older versions of rustc, we
548 have to rewrite some union types to be struct types with a
549 variant part. This rewriting must be done after the CU is fully
550 read in, because otherwise at the point of rewriting some struct
551 type might not have been fully processed. So, we keep a list of
552 all such types here and process them after expansion. */
553 std::vector<struct type *> rust_unions;
555 /* Mark used when releasing cached dies. */
558 /* This CU references .debug_loc. See the symtab->locations_valid field.
559 This test is imperfect as there may exist optimized debug code not using
560 any location list and still facing inlining issues if handled as
561 unoptimized code. For a future better test see GCC PR other/32998. */
562 bool has_loclist : 1;
564 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
565 if all the producer_is_* fields are valid. This information is cached
566 because profiling CU expansion showed excessive time spent in
567 producer_is_gxx_lt_4_6. */
568 bool checked_producer : 1;
569 bool producer_is_gxx_lt_4_6 : 1;
570 bool producer_is_gcc_lt_4_3 : 1;
571 bool producer_is_icc : 1;
572 bool producer_is_icc_lt_14 : 1;
573 bool producer_is_codewarrior : 1;
575 /* When true, the file that we're processing is known to have
576 debugging info for C++ namespaces. GCC 3.3.x did not produce
577 this information, but later versions do. */
579 bool processing_has_namespace_info : 1;
581 struct partial_die_info *find_partial_die (sect_offset sect_off);
583 /* If this CU was inherited by another CU (via specification,
584 abstract_origin, etc), this is the ancestor CU. */
587 /* Get the buildsym_compunit for this CU. */
588 buildsym_compunit *get_builder ()
590 /* If this CU has a builder associated with it, use that. */
591 if (m_builder != nullptr)
592 return m_builder.get ();
594 /* Otherwise, search ancestors for a valid builder. */
595 if (ancestor != nullptr)
596 return ancestor->get_builder ();
602 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
603 This includes type_unit_group and quick_file_names. */
605 struct stmt_list_hash
607 /* The DWO unit this table is from or NULL if there is none. */
608 struct dwo_unit *dwo_unit;
610 /* Offset in .debug_line or .debug_line.dwo. */
611 sect_offset line_sect_off;
614 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
615 an object of this type. */
617 struct type_unit_group
619 /* dwarf2read.c's main "handle" on a TU symtab.
620 To simplify things we create an artificial CU that "includes" all the
621 type units using this stmt_list so that the rest of the code still has
622 a "per_cu" handle on the symtab.
623 This PER_CU is recognized by having no section. */
624 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
625 struct dwarf2_per_cu_data per_cu;
627 /* The TUs that share this DW_AT_stmt_list entry.
628 This is added to while parsing type units to build partial symtabs,
629 and is deleted afterwards and not used again. */
630 VEC (sig_type_ptr) *tus;
632 /* The compunit symtab.
633 Type units in a group needn't all be defined in the same source file,
634 so we create an essentially anonymous symtab as the compunit symtab. */
635 struct compunit_symtab *compunit_symtab;
637 /* The data used to construct the hash key. */
638 struct stmt_list_hash hash;
640 /* The number of symtabs from the line header.
641 The value here must match line_header.num_file_names. */
642 unsigned int num_symtabs;
644 /* The symbol tables for this TU (obtained from the files listed in
646 WARNING: The order of entries here must match the order of entries
647 in the line header. After the first TU using this type_unit_group, the
648 line header for the subsequent TUs is recreated from this. This is done
649 because we need to use the same symtabs for each TU using the same
650 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
651 there's no guarantee the line header doesn't have duplicate entries. */
652 struct symtab **symtabs;
655 /* These sections are what may appear in a (real or virtual) DWO file. */
659 struct dwarf2_section_info abbrev;
660 struct dwarf2_section_info line;
661 struct dwarf2_section_info loc;
662 struct dwarf2_section_info loclists;
663 struct dwarf2_section_info macinfo;
664 struct dwarf2_section_info macro;
665 struct dwarf2_section_info str;
666 struct dwarf2_section_info str_offsets;
667 /* In the case of a virtual DWO file, these two are unused. */
668 struct dwarf2_section_info info;
669 VEC (dwarf2_section_info_def) *types;
672 /* CUs/TUs in DWP/DWO files. */
676 /* Backlink to the containing struct dwo_file. */
677 struct dwo_file *dwo_file;
679 /* The "id" that distinguishes this CU/TU.
680 .debug_info calls this "dwo_id", .debug_types calls this "signature".
681 Since signatures came first, we stick with it for consistency. */
684 /* The section this CU/TU lives in, in the DWO file. */
685 struct dwarf2_section_info *section;
687 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
688 sect_offset sect_off;
691 /* For types, offset in the type's DIE of the type defined by this TU. */
692 cu_offset type_offset_in_tu;
695 /* include/dwarf2.h defines the DWP section codes.
696 It defines a max value but it doesn't define a min value, which we
697 use for error checking, so provide one. */
699 enum dwp_v2_section_ids
704 /* Data for one DWO file.
706 This includes virtual DWO files (a virtual DWO file is a DWO file as it
707 appears in a DWP file). DWP files don't really have DWO files per se -
708 comdat folding of types "loses" the DWO file they came from, and from
709 a high level view DWP files appear to contain a mass of random types.
710 However, to maintain consistency with the non-DWP case we pretend DWP
711 files contain virtual DWO files, and we assign each TU with one virtual
712 DWO file (generally based on the line and abbrev section offsets -
713 a heuristic that seems to work in practice). */
717 /* The DW_AT_GNU_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name;
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir;
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections;
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
746 /* These sections are what may appear in a DWP file. */
750 /* These are used by both DWP version 1 and 2. */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
755 /* These are only used by DWP version 2 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 there is at most one copy of all these sections, each
759 section being (effectively) comprised of the concatenation of all of the
760 individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info macinfo;
768 struct dwarf2_section_info macro;
769 struct dwarf2_section_info str_offsets;
770 struct dwarf2_section_info types;
773 /* These sections are what may appear in a virtual DWO file in DWP version 1.
774 A virtual DWO file is a DWO file as it appears in a DWP file. */
776 struct virtual_v1_dwo_sections
778 struct dwarf2_section_info abbrev;
779 struct dwarf2_section_info line;
780 struct dwarf2_section_info loc;
781 struct dwarf2_section_info macinfo;
782 struct dwarf2_section_info macro;
783 struct dwarf2_section_info str_offsets;
784 /* Each DWP hash table entry records one CU or one TU.
785 That is recorded here, and copied to dwo_unit.section. */
786 struct dwarf2_section_info info_or_types;
789 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
790 In version 2, the sections of the DWO files are concatenated together
791 and stored in one section of that name. Thus each ELF section contains
792 several "virtual" sections. */
794 struct virtual_v2_dwo_sections
796 bfd_size_type abbrev_offset;
797 bfd_size_type abbrev_size;
799 bfd_size_type line_offset;
800 bfd_size_type line_size;
802 bfd_size_type loc_offset;
803 bfd_size_type loc_size;
805 bfd_size_type macinfo_offset;
806 bfd_size_type macinfo_size;
808 bfd_size_type macro_offset;
809 bfd_size_type macro_size;
811 bfd_size_type str_offsets_offset;
812 bfd_size_type str_offsets_size;
814 /* Each DWP hash table entry records one CU or one TU.
815 That is recorded here, and copied to dwo_unit.section. */
816 bfd_size_type info_or_types_offset;
817 bfd_size_type info_or_types_size;
820 /* Contents of DWP hash tables. */
822 struct dwp_hash_table
824 uint32_t version, nr_columns;
825 uint32_t nr_units, nr_slots;
826 const gdb_byte *hash_table, *unit_table;
831 const gdb_byte *indices;
835 /* This is indexed by column number and gives the id of the section
837 #define MAX_NR_V2_DWO_SECTIONS \
838 (1 /* .debug_info or .debug_types */ \
839 + 1 /* .debug_abbrev */ \
840 + 1 /* .debug_line */ \
841 + 1 /* .debug_loc */ \
842 + 1 /* .debug_str_offsets */ \
843 + 1 /* .debug_macro or .debug_macinfo */)
844 int section_ids[MAX_NR_V2_DWO_SECTIONS];
845 const gdb_byte *offsets;
846 const gdb_byte *sizes;
851 /* Data for one DWP file. */
855 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
857 dbfd (std::move (abfd))
861 /* Name of the file. */
864 /* File format version. */
868 gdb_bfd_ref_ptr dbfd;
870 /* Section info for this file. */
871 struct dwp_sections sections {};
873 /* Table of CUs in the file. */
874 const struct dwp_hash_table *cus = nullptr;
876 /* Table of TUs in the file. */
877 const struct dwp_hash_table *tus = nullptr;
879 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
880 htab_t loaded_cus {};
881 htab_t loaded_tus {};
883 /* Table to map ELF section numbers to their sections.
884 This is only needed for the DWP V1 file format. */
885 unsigned int num_sections = 0;
886 asection **elf_sections = nullptr;
889 /* This represents a '.dwz' file. */
893 dwz_file (gdb_bfd_ref_ptr &&bfd)
894 : dwz_bfd (std::move (bfd))
898 /* A dwz file can only contain a few sections. */
899 struct dwarf2_section_info abbrev {};
900 struct dwarf2_section_info info {};
901 struct dwarf2_section_info str {};
902 struct dwarf2_section_info line {};
903 struct dwarf2_section_info macro {};
904 struct dwarf2_section_info gdb_index {};
905 struct dwarf2_section_info debug_names {};
908 gdb_bfd_ref_ptr dwz_bfd;
910 /* If we loaded the index from an external file, this contains the
911 resources associated to the open file, memory mapping, etc. */
912 std::unique_ptr<index_cache_resource> index_cache_res;
915 /* Struct used to pass misc. parameters to read_die_and_children, et
916 al. which are used for both .debug_info and .debug_types dies.
917 All parameters here are unchanging for the life of the call. This
918 struct exists to abstract away the constant parameters of die reading. */
920 struct die_reader_specs
922 /* The bfd of die_section. */
925 /* The CU of the DIE we are parsing. */
926 struct dwarf2_cu *cu;
928 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
929 struct dwo_file *dwo_file;
931 /* The section the die comes from.
932 This is either .debug_info or .debug_types, or the .dwo variants. */
933 struct dwarf2_section_info *die_section;
935 /* die_section->buffer. */
936 const gdb_byte *buffer;
938 /* The end of the buffer. */
939 const gdb_byte *buffer_end;
941 /* The value of the DW_AT_comp_dir attribute. */
942 const char *comp_dir;
944 /* The abbreviation table to use when reading the DIEs. */
945 struct abbrev_table *abbrev_table;
948 /* Type of function passed to init_cutu_and_read_dies, et.al. */
949 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
950 const gdb_byte *info_ptr,
951 struct die_info *comp_unit_die,
955 /* A 1-based directory index. This is a strong typedef to prevent
956 accidentally using a directory index as a 0-based index into an
958 enum class dir_index : unsigned int {};
960 /* Likewise, a 1-based file name index. */
961 enum class file_name_index : unsigned int {};
965 file_entry () = default;
967 file_entry (const char *name_, dir_index d_index_,
968 unsigned int mod_time_, unsigned int length_)
971 mod_time (mod_time_),
975 /* Return the include directory at D_INDEX stored in LH. Returns
976 NULL if D_INDEX is out of bounds. */
977 const char *include_dir (const line_header *lh) const;
979 /* The file name. Note this is an observing pointer. The memory is
980 owned by debug_line_buffer. */
983 /* The directory index (1-based). */
984 dir_index d_index {};
986 unsigned int mod_time {};
988 unsigned int length {};
990 /* True if referenced by the Line Number Program. */
993 /* The associated symbol table, if any. */
994 struct symtab *symtab {};
997 /* The line number information for a compilation unit (found in the
998 .debug_line section) begins with a "statement program header",
999 which contains the following information. */
1006 /* Add an entry to the include directory table. */
1007 void add_include_dir (const char *include_dir);
1009 /* Add an entry to the file name table. */
1010 void add_file_name (const char *name, dir_index d_index,
1011 unsigned int mod_time, unsigned int length);
1013 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1014 is out of bounds. */
1015 const char *include_dir_at (dir_index index) const
1017 /* Convert directory index number (1-based) to vector index
1019 size_t vec_index = to_underlying (index) - 1;
1021 if (vec_index >= include_dirs.size ())
1023 return include_dirs[vec_index];
1026 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1027 is out of bounds. */
1028 file_entry *file_name_at (file_name_index index)
1030 /* Convert file name index number (1-based) to vector index
1032 size_t vec_index = to_underlying (index) - 1;
1034 if (vec_index >= file_names.size ())
1036 return &file_names[vec_index];
1039 /* Const version of the above. */
1040 const file_entry *file_name_at (unsigned int index) const
1042 if (index >= file_names.size ())
1044 return &file_names[index];
1047 /* Offset of line number information in .debug_line section. */
1048 sect_offset sect_off {};
1050 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1051 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1053 unsigned int total_length {};
1054 unsigned short version {};
1055 unsigned int header_length {};
1056 unsigned char minimum_instruction_length {};
1057 unsigned char maximum_ops_per_instruction {};
1058 unsigned char default_is_stmt {};
1060 unsigned char line_range {};
1061 unsigned char opcode_base {};
1063 /* standard_opcode_lengths[i] is the number of operands for the
1064 standard opcode whose value is i. This means that
1065 standard_opcode_lengths[0] is unused, and the last meaningful
1066 element is standard_opcode_lengths[opcode_base - 1]. */
1067 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1069 /* The include_directories table. Note these are observing
1070 pointers. The memory is owned by debug_line_buffer. */
1071 std::vector<const char *> include_dirs;
1073 /* The file_names table. */
1074 std::vector<file_entry> file_names;
1076 /* The start and end of the statement program following this
1077 header. These point into dwarf2_per_objfile->line_buffer. */
1078 const gdb_byte *statement_program_start {}, *statement_program_end {};
1081 typedef std::unique_ptr<line_header> line_header_up;
1084 file_entry::include_dir (const line_header *lh) const
1086 return lh->include_dir_at (d_index);
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info : public allocate_on_obstack
1093 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1095 /* Disable assign but still keep copy ctor, which is needed
1096 load_partial_dies. */
1097 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1099 /* Adjust the partial die before generating a symbol for it. This
1100 function may set the is_external flag or change the DIE's
1102 void fixup (struct dwarf2_cu *cu);
1104 /* Read a minimal amount of information into the minimal die
1106 const gdb_byte *read (const struct die_reader_specs *reader,
1107 const struct abbrev_info &abbrev,
1108 const gdb_byte *info_ptr);
1110 /* Offset of this DIE. */
1111 const sect_offset sect_off;
1113 /* DWARF-2 tag for this DIE. */
1114 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1116 /* Assorted flags describing the data found in this DIE. */
1117 const unsigned int has_children : 1;
1119 unsigned int is_external : 1;
1120 unsigned int is_declaration : 1;
1121 unsigned int has_type : 1;
1122 unsigned int has_specification : 1;
1123 unsigned int has_pc_info : 1;
1124 unsigned int may_be_inlined : 1;
1126 /* This DIE has been marked DW_AT_main_subprogram. */
1127 unsigned int main_subprogram : 1;
1129 /* Flag set if the SCOPE field of this structure has been
1131 unsigned int scope_set : 1;
1133 /* Flag set if the DIE has a byte_size attribute. */
1134 unsigned int has_byte_size : 1;
1136 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1137 unsigned int has_const_value : 1;
1139 /* Flag set if any of the DIE's children are template arguments. */
1140 unsigned int has_template_arguments : 1;
1142 /* Flag set if fixup has been called on this die. */
1143 unsigned int fixup_called : 1;
1145 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1146 unsigned int is_dwz : 1;
1148 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1149 unsigned int spec_is_dwz : 1;
1151 /* The name of this DIE. Normally the value of DW_AT_name, but
1152 sometimes a default name for unnamed DIEs. */
1153 const char *name = nullptr;
1155 /* The linkage name, if present. */
1156 const char *linkage_name = nullptr;
1158 /* The scope to prepend to our children. This is generally
1159 allocated on the comp_unit_obstack, so will disappear
1160 when this compilation unit leaves the cache. */
1161 const char *scope = nullptr;
1163 /* Some data associated with the partial DIE. The tag determines
1164 which field is live. */
1167 /* The location description associated with this DIE, if any. */
1168 struct dwarf_block *locdesc;
1169 /* The offset of an import, for DW_TAG_imported_unit. */
1170 sect_offset sect_off;
1173 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1174 CORE_ADDR lowpc = 0;
1175 CORE_ADDR highpc = 0;
1177 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1178 DW_AT_sibling, if any. */
1179 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1180 could return DW_AT_sibling values to its caller load_partial_dies. */
1181 const gdb_byte *sibling = nullptr;
1183 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1184 DW_AT_specification (or DW_AT_abstract_origin or
1185 DW_AT_extension). */
1186 sect_offset spec_offset {};
1188 /* Pointers to this DIE's parent, first child, and next sibling,
1190 struct partial_die_info *die_parent = nullptr;
1191 struct partial_die_info *die_child = nullptr;
1192 struct partial_die_info *die_sibling = nullptr;
1194 friend struct partial_die_info *
1195 dwarf2_cu::find_partial_die (sect_offset sect_off);
1198 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1199 partial_die_info (sect_offset sect_off)
1200 : partial_die_info (sect_off, DW_TAG_padding, 0)
1204 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1206 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1211 has_specification = 0;
1214 main_subprogram = 0;
1217 has_const_value = 0;
1218 has_template_arguments = 0;
1225 /* This data structure holds the information of an abbrev. */
1228 unsigned int number; /* number identifying abbrev */
1229 enum dwarf_tag tag; /* dwarf tag */
1230 unsigned short has_children; /* boolean */
1231 unsigned short num_attrs; /* number of attributes */
1232 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1233 struct abbrev_info *next; /* next in chain */
1238 ENUM_BITFIELD(dwarf_attribute) name : 16;
1239 ENUM_BITFIELD(dwarf_form) form : 16;
1241 /* It is valid only if FORM is DW_FORM_implicit_const. */
1242 LONGEST implicit_const;
1245 /* Size of abbrev_table.abbrev_hash_table. */
1246 #define ABBREV_HASH_SIZE 121
1248 /* Top level data structure to contain an abbreviation table. */
1252 explicit abbrev_table (sect_offset off)
1256 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1257 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1260 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1262 /* Allocate space for a struct abbrev_info object in
1264 struct abbrev_info *alloc_abbrev ();
1266 /* Add an abbreviation to the table. */
1267 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1269 /* Look up an abbrev in the table.
1270 Returns NULL if the abbrev is not found. */
1272 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1275 /* Where the abbrev table came from.
1276 This is used as a sanity check when the table is used. */
1277 const sect_offset sect_off;
1279 /* Storage for the abbrev table. */
1280 auto_obstack abbrev_obstack;
1284 /* Hash table of abbrevs.
1285 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1286 It could be statically allocated, but the previous code didn't so we
1288 struct abbrev_info **m_abbrevs;
1291 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1293 /* Attributes have a name and a value. */
1296 ENUM_BITFIELD(dwarf_attribute) name : 16;
1297 ENUM_BITFIELD(dwarf_form) form : 15;
1299 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1300 field should be in u.str (existing only for DW_STRING) but it is kept
1301 here for better struct attribute alignment. */
1302 unsigned int string_is_canonical : 1;
1307 struct dwarf_block *blk;
1316 /* This data structure holds a complete die structure. */
1319 /* DWARF-2 tag for this DIE. */
1320 ENUM_BITFIELD(dwarf_tag) tag : 16;
1322 /* Number of attributes */
1323 unsigned char num_attrs;
1325 /* True if we're presently building the full type name for the
1326 type derived from this DIE. */
1327 unsigned char building_fullname : 1;
1329 /* True if this die is in process. PR 16581. */
1330 unsigned char in_process : 1;
1333 unsigned int abbrev;
1335 /* Offset in .debug_info or .debug_types section. */
1336 sect_offset sect_off;
1338 /* The dies in a compilation unit form an n-ary tree. PARENT
1339 points to this die's parent; CHILD points to the first child of
1340 this node; and all the children of a given node are chained
1341 together via their SIBLING fields. */
1342 struct die_info *child; /* Its first child, if any. */
1343 struct die_info *sibling; /* Its next sibling, if any. */
1344 struct die_info *parent; /* Its parent, if any. */
1346 /* An array of attributes, with NUM_ATTRS elements. There may be
1347 zero, but it's not common and zero-sized arrays are not
1348 sufficiently portable C. */
1349 struct attribute attrs[1];
1352 /* Get at parts of an attribute structure. */
1354 #define DW_STRING(attr) ((attr)->u.str)
1355 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1356 #define DW_UNSND(attr) ((attr)->u.unsnd)
1357 #define DW_BLOCK(attr) ((attr)->u.blk)
1358 #define DW_SND(attr) ((attr)->u.snd)
1359 #define DW_ADDR(attr) ((attr)->u.addr)
1360 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1362 /* Blocks are a bunch of untyped bytes. */
1367 /* Valid only if SIZE is not zero. */
1368 const gdb_byte *data;
1371 #ifndef ATTR_ALLOC_CHUNK
1372 #define ATTR_ALLOC_CHUNK 4
1375 /* Allocate fields for structs, unions and enums in this size. */
1376 #ifndef DW_FIELD_ALLOC_CHUNK
1377 #define DW_FIELD_ALLOC_CHUNK 4
1380 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1381 but this would require a corresponding change in unpack_field_as_long
1383 static int bits_per_byte = 8;
1385 /* When reading a variant or variant part, we track a bit more
1386 information about the field, and store it in an object of this
1389 struct variant_field
1391 /* If we see a DW_TAG_variant, then this will be the discriminant
1393 ULONGEST discriminant_value;
1394 /* If we see a DW_TAG_variant, then this will be set if this is the
1396 bool default_branch;
1397 /* While reading a DW_TAG_variant_part, this will be set if this
1398 field is the discriminant. */
1399 bool is_discriminant;
1404 int accessibility = 0;
1406 /* Extra information to describe a variant or variant part. */
1407 struct variant_field variant {};
1408 struct field field {};
1413 const char *name = nullptr;
1414 std::vector<struct fn_field> fnfields;
1417 /* The routines that read and process dies for a C struct or C++ class
1418 pass lists of data member fields and lists of member function fields
1419 in an instance of a field_info structure, as defined below. */
1422 /* List of data member and baseclasses fields. */
1423 std::vector<struct nextfield> fields;
1424 std::vector<struct nextfield> baseclasses;
1426 /* Number of fields (including baseclasses). */
1429 /* Set if the accesibility of one of the fields is not public. */
1430 int non_public_fields = 0;
1432 /* Member function fieldlist array, contains name of possibly overloaded
1433 member function, number of overloaded member functions and a pointer
1434 to the head of the member function field chain. */
1435 std::vector<struct fnfieldlist> fnfieldlists;
1437 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1438 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1439 std::vector<struct decl_field> typedef_field_list;
1441 /* Nested types defined by this class and the number of elements in this
1443 std::vector<struct decl_field> nested_types_list;
1446 /* One item on the queue of compilation units to read in full symbols
1448 struct dwarf2_queue_item
1450 struct dwarf2_per_cu_data *per_cu;
1451 enum language pretend_language;
1452 struct dwarf2_queue_item *next;
1455 /* The current queue. */
1456 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1458 /* Loaded secondary compilation units are kept in memory until they
1459 have not been referenced for the processing of this many
1460 compilation units. Set this to zero to disable caching. Cache
1461 sizes of up to at least twenty will improve startup time for
1462 typical inter-CU-reference binaries, at an obvious memory cost. */
1463 static int dwarf_max_cache_age = 5;
1465 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1466 struct cmd_list_element *c, const char *value)
1468 fprintf_filtered (file, _("The upper bound on the age of cached "
1469 "DWARF compilation units is %s.\n"),
1473 /* local function prototypes */
1475 static const char *get_section_name (const struct dwarf2_section_info *);
1477 static const char *get_section_file_name (const struct dwarf2_section_info *);
1479 static void dwarf2_find_base_address (struct die_info *die,
1480 struct dwarf2_cu *cu);
1482 static struct partial_symtab *create_partial_symtab
1483 (struct dwarf2_per_cu_data *per_cu, const char *name);
1485 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1486 const gdb_byte *info_ptr,
1487 struct die_info *type_unit_die,
1488 int has_children, void *data);
1490 static void dwarf2_build_psymtabs_hard
1491 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1493 static void scan_partial_symbols (struct partial_die_info *,
1494 CORE_ADDR *, CORE_ADDR *,
1495 int, struct dwarf2_cu *);
1497 static void add_partial_symbol (struct partial_die_info *,
1498 struct dwarf2_cu *);
1500 static void add_partial_namespace (struct partial_die_info *pdi,
1501 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1502 int set_addrmap, struct dwarf2_cu *cu);
1504 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1505 CORE_ADDR *highpc, int set_addrmap,
1506 struct dwarf2_cu *cu);
1508 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1509 struct dwarf2_cu *cu);
1511 static void add_partial_subprogram (struct partial_die_info *pdi,
1512 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1513 int need_pc, struct dwarf2_cu *cu);
1515 static void dwarf2_read_symtab (struct partial_symtab *,
1518 static void psymtab_to_symtab_1 (struct partial_symtab *);
1520 static abbrev_table_up abbrev_table_read_table
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1524 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1526 static struct partial_die_info *load_partial_dies
1527 (const struct die_reader_specs *, const gdb_byte *, int);
1529 static struct partial_die_info *find_partial_die (sect_offset, int,
1530 struct dwarf2_cu *);
1532 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1533 struct attribute *, struct attr_abbrev *,
1536 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1538 static int read_1_signed_byte (bfd *, const gdb_byte *);
1540 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1542 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1544 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1546 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1549 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1551 static LONGEST read_checked_initial_length_and_offset
1552 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1553 unsigned int *, unsigned int *);
1555 static LONGEST read_offset (bfd *, const gdb_byte *,
1556 const struct comp_unit_head *,
1559 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1561 static sect_offset read_abbrev_offset
1562 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1563 struct dwarf2_section_info *, sect_offset);
1565 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1567 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1569 static const char *read_indirect_string
1570 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1571 const struct comp_unit_head *, unsigned int *);
1573 static const char *read_indirect_line_string
1574 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1575 const struct comp_unit_head *, unsigned int *);
1577 static const char *read_indirect_string_at_offset
1578 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1579 LONGEST str_offset);
1581 static const char *read_indirect_string_from_dwz
1582 (struct objfile *objfile, struct dwz_file *, LONGEST);
1584 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1586 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1590 static const char *read_str_index (const struct die_reader_specs *reader,
1591 ULONGEST str_index);
1593 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1595 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1596 struct dwarf2_cu *);
1598 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1601 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1602 struct dwarf2_cu *cu);
1604 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1605 struct dwarf2_cu *cu);
1607 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1609 static struct die_info *die_specification (struct die_info *die,
1610 struct dwarf2_cu **);
1612 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1613 struct dwarf2_cu *cu);
1615 static void dwarf_decode_lines (struct line_header *, const char *,
1616 struct dwarf2_cu *, struct partial_symtab *,
1617 CORE_ADDR, int decode_mapping);
1619 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1622 static struct symbol *new_symbol (struct die_info *, struct type *,
1623 struct dwarf2_cu *, struct symbol * = NULL);
1625 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1626 struct dwarf2_cu *);
1628 static void dwarf2_const_value_attr (const struct attribute *attr,
1631 struct obstack *obstack,
1632 struct dwarf2_cu *cu, LONGEST *value,
1633 const gdb_byte **bytes,
1634 struct dwarf2_locexpr_baton **baton);
1636 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1638 static int need_gnat_info (struct dwarf2_cu *);
1640 static struct type *die_descriptive_type (struct die_info *,
1641 struct dwarf2_cu *);
1643 static void set_descriptive_type (struct type *, struct die_info *,
1644 struct dwarf2_cu *);
1646 static struct type *die_containing_type (struct die_info *,
1647 struct dwarf2_cu *);
1649 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1650 struct dwarf2_cu *);
1652 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1654 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1656 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1658 static char *typename_concat (struct obstack *obs, const char *prefix,
1659 const char *suffix, int physname,
1660 struct dwarf2_cu *cu);
1662 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1664 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1666 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1668 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1670 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1672 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1674 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *, struct partial_symtab *);
1677 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1678 values. Keep the items ordered with increasing constraints compliance. */
1681 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1682 PC_BOUNDS_NOT_PRESENT,
1684 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1685 were present but they do not form a valid range of PC addresses. */
1688 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1691 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1695 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1696 CORE_ADDR *, CORE_ADDR *,
1698 struct partial_symtab *);
1700 static void get_scope_pc_bounds (struct die_info *,
1701 CORE_ADDR *, CORE_ADDR *,
1702 struct dwarf2_cu *);
1704 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1705 CORE_ADDR, struct dwarf2_cu *);
1707 static void dwarf2_add_field (struct field_info *, struct die_info *,
1708 struct dwarf2_cu *);
1710 static void dwarf2_attach_fields_to_type (struct field_info *,
1711 struct type *, struct dwarf2_cu *);
1713 static void dwarf2_add_member_fn (struct field_info *,
1714 struct die_info *, struct type *,
1715 struct dwarf2_cu *);
1717 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1719 struct dwarf2_cu *);
1721 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1723 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1725 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1727 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1729 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1731 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1733 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1735 static struct type *read_module_type (struct die_info *die,
1736 struct dwarf2_cu *cu);
1738 static const char *namespace_name (struct die_info *die,
1739 int *is_anonymous, struct dwarf2_cu *);
1741 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1743 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1745 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1746 struct dwarf2_cu *);
1748 static struct die_info *read_die_and_siblings_1
1749 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1752 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1753 const gdb_byte *info_ptr,
1754 const gdb_byte **new_info_ptr,
1755 struct die_info *parent);
1757 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1758 struct die_info **, const gdb_byte *,
1761 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1762 struct die_info **, const gdb_byte *,
1765 static void process_die (struct die_info *, struct dwarf2_cu *);
1767 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1770 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1772 static const char *dwarf2_full_name (const char *name,
1773 struct die_info *die,
1774 struct dwarf2_cu *cu);
1776 static const char *dwarf2_physname (const char *name, struct die_info *die,
1777 struct dwarf2_cu *cu);
1779 static struct die_info *dwarf2_extension (struct die_info *die,
1780 struct dwarf2_cu **);
1782 static const char *dwarf_tag_name (unsigned int);
1784 static const char *dwarf_attr_name (unsigned int);
1786 static const char *dwarf_form_name (unsigned int);
1788 static const char *dwarf_bool_name (unsigned int);
1790 static const char *dwarf_type_encoding_name (unsigned int);
1792 static struct die_info *sibling_die (struct die_info *);
1794 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1796 static void dump_die_for_error (struct die_info *);
1798 static void dump_die_1 (struct ui_file *, int level, int max_level,
1801 /*static*/ void dump_die (struct die_info *, int max_level);
1803 static void store_in_ref_table (struct die_info *,
1804 struct dwarf2_cu *);
1806 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1808 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1810 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1811 const struct attribute *,
1812 struct dwarf2_cu **);
1814 static struct die_info *follow_die_ref (struct die_info *,
1815 const struct attribute *,
1816 struct dwarf2_cu **);
1818 static struct die_info *follow_die_sig (struct die_info *,
1819 const struct attribute *,
1820 struct dwarf2_cu **);
1822 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1823 struct dwarf2_cu *);
1825 static struct type *get_DW_AT_signature_type (struct die_info *,
1826 const struct attribute *,
1827 struct dwarf2_cu *);
1829 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1831 static void read_signatured_type (struct signatured_type *);
1833 static int attr_to_dynamic_prop (const struct attribute *attr,
1834 struct die_info *die, struct dwarf2_cu *cu,
1835 struct dynamic_prop *prop);
1837 /* memory allocation interface */
1839 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1841 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1843 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1845 static int attr_form_is_block (const struct attribute *);
1847 static int attr_form_is_section_offset (const struct attribute *);
1849 static int attr_form_is_constant (const struct attribute *);
1851 static int attr_form_is_ref (const struct attribute *);
1853 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1854 struct dwarf2_loclist_baton *baton,
1855 const struct attribute *attr);
1857 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1859 struct dwarf2_cu *cu,
1862 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1863 const gdb_byte *info_ptr,
1864 struct abbrev_info *abbrev);
1866 static hashval_t partial_die_hash (const void *item);
1868 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1870 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1871 (sect_offset sect_off, unsigned int offset_in_dwz,
1872 struct dwarf2_per_objfile *dwarf2_per_objfile);
1874 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1875 struct die_info *comp_unit_die,
1876 enum language pretend_language);
1878 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1880 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1882 static struct type *set_die_type (struct die_info *, struct type *,
1883 struct dwarf2_cu *);
1885 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1887 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1889 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1892 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1895 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1898 static void dwarf2_add_dependence (struct dwarf2_cu *,
1899 struct dwarf2_per_cu_data *);
1901 static void dwarf2_mark (struct dwarf2_cu *);
1903 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1905 static struct type *get_die_type_at_offset (sect_offset,
1906 struct dwarf2_per_cu_data *);
1908 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1910 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1911 enum language pretend_language);
1913 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1915 /* Class, the destructor of which frees all allocated queue entries. This
1916 will only have work to do if an error was thrown while processing the
1917 dwarf. If no error was thrown then the queue entries should have all
1918 been processed, and freed, as we went along. */
1920 class dwarf2_queue_guard
1923 dwarf2_queue_guard () = default;
1925 /* Free any entries remaining on the queue. There should only be
1926 entries left if we hit an error while processing the dwarf. */
1927 ~dwarf2_queue_guard ()
1929 struct dwarf2_queue_item *item, *last;
1931 item = dwarf2_queue;
1934 /* Anything still marked queued is likely to be in an
1935 inconsistent state, so discard it. */
1936 if (item->per_cu->queued)
1938 if (item->per_cu->cu != NULL)
1939 free_one_cached_comp_unit (item->per_cu);
1940 item->per_cu->queued = 0;
1948 dwarf2_queue = dwarf2_queue_tail = NULL;
1952 /* The return type of find_file_and_directory. Note, the enclosed
1953 string pointers are only valid while this object is valid. */
1955 struct file_and_directory
1957 /* The filename. This is never NULL. */
1960 /* The compilation directory. NULL if not known. If we needed to
1961 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1962 points directly to the DW_AT_comp_dir string attribute owned by
1963 the obstack that owns the DIE. */
1964 const char *comp_dir;
1966 /* If we needed to build a new string for comp_dir, this is what
1967 owns the storage. */
1968 std::string comp_dir_storage;
1971 static file_and_directory find_file_and_directory (struct die_info *die,
1972 struct dwarf2_cu *cu);
1974 static char *file_full_name (int file, struct line_header *lh,
1975 const char *comp_dir);
1977 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1978 enum class rcuh_kind { COMPILE, TYPE };
1980 static const gdb_byte *read_and_check_comp_unit_head
1981 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1982 struct comp_unit_head *header,
1983 struct dwarf2_section_info *section,
1984 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1985 rcuh_kind section_kind);
1987 static void init_cutu_and_read_dies
1988 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1989 int use_existing_cu, int keep, bool skip_partial,
1990 die_reader_func_ftype *die_reader_func, void *data);
1992 static void init_cutu_and_read_dies_simple
1993 (struct dwarf2_per_cu_data *this_cu,
1994 die_reader_func_ftype *die_reader_func, void *data);
1996 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1998 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2000 static struct dwo_unit *lookup_dwo_unit_in_dwp
2001 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2002 struct dwp_file *dwp_file, const char *comp_dir,
2003 ULONGEST signature, int is_debug_types);
2005 static struct dwp_file *get_dwp_file
2006 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2008 static struct dwo_unit *lookup_dwo_comp_unit
2009 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2011 static struct dwo_unit *lookup_dwo_type_unit
2012 (struct signatured_type *, const char *, const char *);
2014 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2016 static void free_dwo_file (struct dwo_file *);
2018 /* A unique_ptr helper to free a dwo_file. */
2020 struct dwo_file_deleter
2022 void operator() (struct dwo_file *df) const
2028 /* A unique pointer to a dwo_file. */
2030 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2032 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2034 static void check_producer (struct dwarf2_cu *cu);
2036 static void free_line_header_voidp (void *arg);
2038 /* Various complaints about symbol reading that don't abort the process. */
2041 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2043 complaint (_("statement list doesn't fit in .debug_line section"));
2047 dwarf2_debug_line_missing_file_complaint (void)
2049 complaint (_(".debug_line section has line data without a file"));
2053 dwarf2_debug_line_missing_end_sequence_complaint (void)
2055 complaint (_(".debug_line section has line "
2056 "program sequence without an end"));
2060 dwarf2_complex_location_expr_complaint (void)
2062 complaint (_("location expression too complex"));
2066 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2069 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2074 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2076 complaint (_("debug info runs off end of %s section"
2078 get_section_name (section),
2079 get_section_file_name (section));
2083 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2085 complaint (_("macro debug info contains a "
2086 "malformed macro definition:\n`%s'"),
2091 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2093 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2097 /* Hash function for line_header_hash. */
2100 line_header_hash (const struct line_header *ofs)
2102 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2105 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2108 line_header_hash_voidp (const void *item)
2110 const struct line_header *ofs = (const struct line_header *) item;
2112 return line_header_hash (ofs);
2115 /* Equality function for line_header_hash. */
2118 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2120 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2121 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2123 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2124 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2129 /* Read the given attribute value as an address, taking the attribute's
2130 form into account. */
2133 attr_value_as_address (struct attribute *attr)
2137 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2138 && attr->form != DW_FORM_GNU_addr_index)
2140 /* Aside from a few clearly defined exceptions, attributes that
2141 contain an address must always be in DW_FORM_addr form.
2142 Unfortunately, some compilers happen to be violating this
2143 requirement by encoding addresses using other forms, such
2144 as DW_FORM_data4 for example. For those broken compilers,
2145 we try to do our best, without any guarantee of success,
2146 to interpret the address correctly. It would also be nice
2147 to generate a complaint, but that would require us to maintain
2148 a list of legitimate cases where a non-address form is allowed,
2149 as well as update callers to pass in at least the CU's DWARF
2150 version. This is more overhead than what we're willing to
2151 expand for a pretty rare case. */
2152 addr = DW_UNSND (attr);
2155 addr = DW_ADDR (attr);
2160 /* See declaration. */
2162 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2163 const dwarf2_debug_sections *names)
2164 : objfile (objfile_)
2167 names = &dwarf2_elf_names;
2169 bfd *obfd = objfile->obfd;
2171 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2172 locate_sections (obfd, sec, *names);
2175 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2177 dwarf2_per_objfile::~dwarf2_per_objfile ()
2179 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2180 free_cached_comp_units ();
2182 if (quick_file_names_table)
2183 htab_delete (quick_file_names_table);
2185 if (line_header_hash)
2186 htab_delete (line_header_hash);
2188 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2189 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2191 for (signatured_type *sig_type : all_type_units)
2192 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2194 VEC_free (dwarf2_section_info_def, types);
2196 if (dwo_files != NULL)
2197 free_dwo_files (dwo_files, objfile);
2199 /* Everything else should be on the objfile obstack. */
2202 /* See declaration. */
2205 dwarf2_per_objfile::free_cached_comp_units ()
2207 dwarf2_per_cu_data *per_cu = read_in_chain;
2208 dwarf2_per_cu_data **last_chain = &read_in_chain;
2209 while (per_cu != NULL)
2211 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2214 *last_chain = next_cu;
2219 /* A helper class that calls free_cached_comp_units on
2222 class free_cached_comp_units
2226 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2227 : m_per_objfile (per_objfile)
2231 ~free_cached_comp_units ()
2233 m_per_objfile->free_cached_comp_units ();
2236 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2240 dwarf2_per_objfile *m_per_objfile;
2243 /* Try to locate the sections we need for DWARF 2 debugging
2244 information and return true if we have enough to do something.
2245 NAMES points to the dwarf2 section names, or is NULL if the standard
2246 ELF names are used. */
2249 dwarf2_has_info (struct objfile *objfile,
2250 const struct dwarf2_debug_sections *names)
2252 if (objfile->flags & OBJF_READNEVER)
2255 struct dwarf2_per_objfile *dwarf2_per_objfile
2256 = get_dwarf2_per_objfile (objfile);
2258 if (dwarf2_per_objfile == NULL)
2260 /* Initialize per-objfile state. */
2262 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2264 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2266 return (!dwarf2_per_objfile->info.is_virtual
2267 && dwarf2_per_objfile->info.s.section != NULL
2268 && !dwarf2_per_objfile->abbrev.is_virtual
2269 && dwarf2_per_objfile->abbrev.s.section != NULL);
2272 /* Return the containing section of virtual section SECTION. */
2274 static struct dwarf2_section_info *
2275 get_containing_section (const struct dwarf2_section_info *section)
2277 gdb_assert (section->is_virtual);
2278 return section->s.containing_section;
2281 /* Return the bfd owner of SECTION. */
2284 get_section_bfd_owner (const struct dwarf2_section_info *section)
2286 if (section->is_virtual)
2288 section = get_containing_section (section);
2289 gdb_assert (!section->is_virtual);
2291 return section->s.section->owner;
2294 /* Return the bfd section of SECTION.
2295 Returns NULL if the section is not present. */
2298 get_section_bfd_section (const struct dwarf2_section_info *section)
2300 if (section->is_virtual)
2302 section = get_containing_section (section);
2303 gdb_assert (!section->is_virtual);
2305 return section->s.section;
2308 /* Return the name of SECTION. */
2311 get_section_name (const struct dwarf2_section_info *section)
2313 asection *sectp = get_section_bfd_section (section);
2315 gdb_assert (sectp != NULL);
2316 return bfd_section_name (get_section_bfd_owner (section), sectp);
2319 /* Return the name of the file SECTION is in. */
2322 get_section_file_name (const struct dwarf2_section_info *section)
2324 bfd *abfd = get_section_bfd_owner (section);
2326 return bfd_get_filename (abfd);
2329 /* Return the id of SECTION.
2330 Returns 0 if SECTION doesn't exist. */
2333 get_section_id (const struct dwarf2_section_info *section)
2335 asection *sectp = get_section_bfd_section (section);
2342 /* Return the flags of SECTION.
2343 SECTION (or containing section if this is a virtual section) must exist. */
2346 get_section_flags (const struct dwarf2_section_info *section)
2348 asection *sectp = get_section_bfd_section (section);
2350 gdb_assert (sectp != NULL);
2351 return bfd_get_section_flags (sectp->owner, sectp);
2354 /* When loading sections, we look either for uncompressed section or for
2355 compressed section names. */
2358 section_is_p (const char *section_name,
2359 const struct dwarf2_section_names *names)
2361 if (names->normal != NULL
2362 && strcmp (section_name, names->normal) == 0)
2364 if (names->compressed != NULL
2365 && strcmp (section_name, names->compressed) == 0)
2370 /* See declaration. */
2373 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2374 const dwarf2_debug_sections &names)
2376 flagword aflag = bfd_get_section_flags (abfd, sectp);
2378 if ((aflag & SEC_HAS_CONTENTS) == 0)
2381 else if (section_is_p (sectp->name, &names.info))
2383 this->info.s.section = sectp;
2384 this->info.size = bfd_get_section_size (sectp);
2386 else if (section_is_p (sectp->name, &names.abbrev))
2388 this->abbrev.s.section = sectp;
2389 this->abbrev.size = bfd_get_section_size (sectp);
2391 else if (section_is_p (sectp->name, &names.line))
2393 this->line.s.section = sectp;
2394 this->line.size = bfd_get_section_size (sectp);
2396 else if (section_is_p (sectp->name, &names.loc))
2398 this->loc.s.section = sectp;
2399 this->loc.size = bfd_get_section_size (sectp);
2401 else if (section_is_p (sectp->name, &names.loclists))
2403 this->loclists.s.section = sectp;
2404 this->loclists.size = bfd_get_section_size (sectp);
2406 else if (section_is_p (sectp->name, &names.macinfo))
2408 this->macinfo.s.section = sectp;
2409 this->macinfo.size = bfd_get_section_size (sectp);
2411 else if (section_is_p (sectp->name, &names.macro))
2413 this->macro.s.section = sectp;
2414 this->macro.size = bfd_get_section_size (sectp);
2416 else if (section_is_p (sectp->name, &names.str))
2418 this->str.s.section = sectp;
2419 this->str.size = bfd_get_section_size (sectp);
2421 else if (section_is_p (sectp->name, &names.line_str))
2423 this->line_str.s.section = sectp;
2424 this->line_str.size = bfd_get_section_size (sectp);
2426 else if (section_is_p (sectp->name, &names.addr))
2428 this->addr.s.section = sectp;
2429 this->addr.size = bfd_get_section_size (sectp);
2431 else if (section_is_p (sectp->name, &names.frame))
2433 this->frame.s.section = sectp;
2434 this->frame.size = bfd_get_section_size (sectp);
2436 else if (section_is_p (sectp->name, &names.eh_frame))
2438 this->eh_frame.s.section = sectp;
2439 this->eh_frame.size = bfd_get_section_size (sectp);
2441 else if (section_is_p (sectp->name, &names.ranges))
2443 this->ranges.s.section = sectp;
2444 this->ranges.size = bfd_get_section_size (sectp);
2446 else if (section_is_p (sectp->name, &names.rnglists))
2448 this->rnglists.s.section = sectp;
2449 this->rnglists.size = bfd_get_section_size (sectp);
2451 else if (section_is_p (sectp->name, &names.types))
2453 struct dwarf2_section_info type_section;
2455 memset (&type_section, 0, sizeof (type_section));
2456 type_section.s.section = sectp;
2457 type_section.size = bfd_get_section_size (sectp);
2459 VEC_safe_push (dwarf2_section_info_def, this->types,
2462 else if (section_is_p (sectp->name, &names.gdb_index))
2464 this->gdb_index.s.section = sectp;
2465 this->gdb_index.size = bfd_get_section_size (sectp);
2467 else if (section_is_p (sectp->name, &names.debug_names))
2469 this->debug_names.s.section = sectp;
2470 this->debug_names.size = bfd_get_section_size (sectp);
2472 else if (section_is_p (sectp->name, &names.debug_aranges))
2474 this->debug_aranges.s.section = sectp;
2475 this->debug_aranges.size = bfd_get_section_size (sectp);
2478 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2479 && bfd_section_vma (abfd, sectp) == 0)
2480 this->has_section_at_zero = true;
2483 /* A helper function that decides whether a section is empty,
2487 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2489 if (section->is_virtual)
2490 return section->size == 0;
2491 return section->s.section == NULL || section->size == 0;
2494 /* See dwarf2read.h. */
2497 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2501 gdb_byte *buf, *retbuf;
2505 info->buffer = NULL;
2508 if (dwarf2_section_empty_p (info))
2511 sectp = get_section_bfd_section (info);
2513 /* If this is a virtual section we need to read in the real one first. */
2514 if (info->is_virtual)
2516 struct dwarf2_section_info *containing_section =
2517 get_containing_section (info);
2519 gdb_assert (sectp != NULL);
2520 if ((sectp->flags & SEC_RELOC) != 0)
2522 error (_("Dwarf Error: DWP format V2 with relocations is not"
2523 " supported in section %s [in module %s]"),
2524 get_section_name (info), get_section_file_name (info));
2526 dwarf2_read_section (objfile, containing_section);
2527 /* Other code should have already caught virtual sections that don't
2529 gdb_assert (info->virtual_offset + info->size
2530 <= containing_section->size);
2531 /* If the real section is empty or there was a problem reading the
2532 section we shouldn't get here. */
2533 gdb_assert (containing_section->buffer != NULL);
2534 info->buffer = containing_section->buffer + info->virtual_offset;
2538 /* If the section has relocations, we must read it ourselves.
2539 Otherwise we attach it to the BFD. */
2540 if ((sectp->flags & SEC_RELOC) == 0)
2542 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2546 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2549 /* When debugging .o files, we may need to apply relocations; see
2550 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2551 We never compress sections in .o files, so we only need to
2552 try this when the section is not compressed. */
2553 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2556 info->buffer = retbuf;
2560 abfd = get_section_bfd_owner (info);
2561 gdb_assert (abfd != NULL);
2563 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2564 || bfd_bread (buf, info->size, abfd) != info->size)
2566 error (_("Dwarf Error: Can't read DWARF data"
2567 " in section %s [in module %s]"),
2568 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2572 /* A helper function that returns the size of a section in a safe way.
2573 If you are positive that the section has been read before using the
2574 size, then it is safe to refer to the dwarf2_section_info object's
2575 "size" field directly. In other cases, you must call this
2576 function, because for compressed sections the size field is not set
2577 correctly until the section has been read. */
2579 static bfd_size_type
2580 dwarf2_section_size (struct objfile *objfile,
2581 struct dwarf2_section_info *info)
2584 dwarf2_read_section (objfile, info);
2588 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2592 dwarf2_get_section_info (struct objfile *objfile,
2593 enum dwarf2_section_enum sect,
2594 asection **sectp, const gdb_byte **bufp,
2595 bfd_size_type *sizep)
2597 struct dwarf2_per_objfile *data
2598 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2599 dwarf2_objfile_data_key);
2600 struct dwarf2_section_info *info;
2602 /* We may see an objfile without any DWARF, in which case we just
2613 case DWARF2_DEBUG_FRAME:
2614 info = &data->frame;
2616 case DWARF2_EH_FRAME:
2617 info = &data->eh_frame;
2620 gdb_assert_not_reached ("unexpected section");
2623 dwarf2_read_section (objfile, info);
2625 *sectp = get_section_bfd_section (info);
2626 *bufp = info->buffer;
2627 *sizep = info->size;
2630 /* A helper function to find the sections for a .dwz file. */
2633 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2635 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2637 /* Note that we only support the standard ELF names, because .dwz
2638 is ELF-only (at the time of writing). */
2639 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2641 dwz_file->abbrev.s.section = sectp;
2642 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2646 dwz_file->info.s.section = sectp;
2647 dwz_file->info.size = bfd_get_section_size (sectp);
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2651 dwz_file->str.s.section = sectp;
2652 dwz_file->str.size = bfd_get_section_size (sectp);
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2656 dwz_file->line.s.section = sectp;
2657 dwz_file->line.size = bfd_get_section_size (sectp);
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2661 dwz_file->macro.s.section = sectp;
2662 dwz_file->macro.size = bfd_get_section_size (sectp);
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2666 dwz_file->gdb_index.s.section = sectp;
2667 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2671 dwz_file->debug_names.s.section = sectp;
2672 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2676 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
2680 static struct dwz_file *
2681 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2683 const char *filename;
2684 bfd_size_type buildid_len_arg;
2688 if (dwarf2_per_objfile->dwz_file != NULL)
2689 return dwarf2_per_objfile->dwz_file.get ();
2691 bfd_set_error (bfd_error_no_error);
2692 gdb::unique_xmalloc_ptr<char> data
2693 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2694 &buildid_len_arg, &buildid));
2697 if (bfd_get_error () == bfd_error_no_error)
2699 error (_("could not read '.gnu_debugaltlink' section: %s"),
2700 bfd_errmsg (bfd_get_error ()));
2703 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2705 buildid_len = (size_t) buildid_len_arg;
2707 filename = data.get ();
2709 std::string abs_storage;
2710 if (!IS_ABSOLUTE_PATH (filename))
2712 gdb::unique_xmalloc_ptr<char> abs
2713 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2715 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2716 filename = abs_storage.c_str ();
2719 /* First try the file name given in the section. If that doesn't
2720 work, try to use the build-id instead. */
2721 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2722 if (dwz_bfd != NULL)
2724 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2725 dwz_bfd.reset (nullptr);
2728 if (dwz_bfd == NULL)
2729 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2731 if (dwz_bfd == NULL)
2732 error (_("could not find '.gnu_debugaltlink' file for %s"),
2733 objfile_name (dwarf2_per_objfile->objfile));
2735 std::unique_ptr<struct dwz_file> result
2736 (new struct dwz_file (std::move (dwz_bfd)));
2738 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2741 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2742 result->dwz_bfd.get ());
2743 dwarf2_per_objfile->dwz_file = std::move (result);
2744 return dwarf2_per_objfile->dwz_file.get ();
2747 /* DWARF quick_symbols_functions support. */
2749 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2750 unique line tables, so we maintain a separate table of all .debug_line
2751 derived entries to support the sharing.
2752 All the quick functions need is the list of file names. We discard the
2753 line_header when we're done and don't need to record it here. */
2754 struct quick_file_names
2756 /* The data used to construct the hash key. */
2757 struct stmt_list_hash hash;
2759 /* The number of entries in file_names, real_names. */
2760 unsigned int num_file_names;
2762 /* The file names from the line table, after being run through
2764 const char **file_names;
2766 /* The file names from the line table after being run through
2767 gdb_realpath. These are computed lazily. */
2768 const char **real_names;
2771 /* When using the index (and thus not using psymtabs), each CU has an
2772 object of this type. This is used to hold information needed by
2773 the various "quick" methods. */
2774 struct dwarf2_per_cu_quick_data
2776 /* The file table. This can be NULL if there was no file table
2777 or it's currently not read in.
2778 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2779 struct quick_file_names *file_names;
2781 /* The corresponding symbol table. This is NULL if symbols for this
2782 CU have not yet been read. */
2783 struct compunit_symtab *compunit_symtab;
2785 /* A temporary mark bit used when iterating over all CUs in
2786 expand_symtabs_matching. */
2787 unsigned int mark : 1;
2789 /* True if we've tried to read the file table and found there isn't one.
2790 There will be no point in trying to read it again next time. */
2791 unsigned int no_file_data : 1;
2794 /* Utility hash function for a stmt_list_hash. */
2797 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2801 if (stmt_list_hash->dwo_unit != NULL)
2802 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2803 v += to_underlying (stmt_list_hash->line_sect_off);
2807 /* Utility equality function for a stmt_list_hash. */
2810 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2811 const struct stmt_list_hash *rhs)
2813 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2815 if (lhs->dwo_unit != NULL
2816 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2819 return lhs->line_sect_off == rhs->line_sect_off;
2822 /* Hash function for a quick_file_names. */
2825 hash_file_name_entry (const void *e)
2827 const struct quick_file_names *file_data
2828 = (const struct quick_file_names *) e;
2830 return hash_stmt_list_entry (&file_data->hash);
2833 /* Equality function for a quick_file_names. */
2836 eq_file_name_entry (const void *a, const void *b)
2838 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2839 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2841 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2844 /* Delete function for a quick_file_names. */
2847 delete_file_name_entry (void *e)
2849 struct quick_file_names *file_data = (struct quick_file_names *) e;
2852 for (i = 0; i < file_data->num_file_names; ++i)
2854 xfree ((void*) file_data->file_names[i]);
2855 if (file_data->real_names)
2856 xfree ((void*) file_data->real_names[i]);
2859 /* The space for the struct itself lives on objfile_obstack,
2860 so we don't free it here. */
2863 /* Create a quick_file_names hash table. */
2866 create_quick_file_names_table (unsigned int nr_initial_entries)
2868 return htab_create_alloc (nr_initial_entries,
2869 hash_file_name_entry, eq_file_name_entry,
2870 delete_file_name_entry, xcalloc, xfree);
2873 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2874 have to be created afterwards. You should call age_cached_comp_units after
2875 processing PER_CU->CU. dw2_setup must have been already called. */
2878 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2880 if (per_cu->is_debug_types)
2881 load_full_type_unit (per_cu);
2883 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2885 if (per_cu->cu == NULL)
2886 return; /* Dummy CU. */
2888 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2891 /* Read in the symbols for PER_CU. */
2894 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2898 /* Skip type_unit_groups, reading the type units they contain
2899 is handled elsewhere. */
2900 if (IS_TYPE_UNIT_GROUP (per_cu))
2903 /* The destructor of dwarf2_queue_guard frees any entries left on
2904 the queue. After this point we're guaranteed to leave this function
2905 with the dwarf queue empty. */
2906 dwarf2_queue_guard q_guard;
2908 if (dwarf2_per_objfile->using_index
2909 ? per_cu->v.quick->compunit_symtab == NULL
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu, skip_partial);
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
2919 && per_cu->cu != NULL
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file (dwarf2_per_objfile) == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
2928 process_queue (dwarf2_per_objfile);
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units (dwarf2_per_objfile);
2935 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2936 the objfile from which this CU came. Returns the resulting symbol
2939 static struct compunit_symtab *
2940 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2942 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2944 gdb_assert (dwarf2_per_objfile->using_index);
2945 if (!per_cu->v.quick->compunit_symtab)
2947 free_cached_comp_units freer (dwarf2_per_objfile);
2948 scoped_restore decrementer = increment_reading_symtab ();
2949 dw2_do_instantiate_symtab (per_cu, skip_partial);
2950 process_cu_includes (dwarf2_per_objfile);
2953 return per_cu->v.quick->compunit_symtab;
2956 /* See declaration. */
2958 dwarf2_per_cu_data *
2959 dwarf2_per_objfile::get_cutu (int index)
2961 if (index >= this->all_comp_units.size ())
2963 index -= this->all_comp_units.size ();
2964 gdb_assert (index < this->all_type_units.size ());
2965 return &this->all_type_units[index]->per_cu;
2968 return this->all_comp_units[index];
2971 /* See declaration. */
2973 dwarf2_per_cu_data *
2974 dwarf2_per_objfile::get_cu (int index)
2976 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2978 return this->all_comp_units[index];
2981 /* See declaration. */
2984 dwarf2_per_objfile::get_tu (int index)
2986 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2988 return this->all_type_units[index];
2991 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2992 objfile_obstack, and constructed with the specified field
2995 static dwarf2_per_cu_data *
2996 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2997 struct dwarf2_section_info *section,
2999 sect_offset sect_off, ULONGEST length)
3001 struct objfile *objfile = dwarf2_per_objfile->objfile;
3002 dwarf2_per_cu_data *the_cu
3003 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3004 struct dwarf2_per_cu_data);
3005 the_cu->sect_off = sect_off;
3006 the_cu->length = length;
3007 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3008 the_cu->section = section;
3009 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3010 struct dwarf2_per_cu_quick_data);
3011 the_cu->is_dwz = is_dwz;
3015 /* A helper for create_cus_from_index that handles a given list of
3019 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3020 const gdb_byte *cu_list, offset_type n_elements,
3021 struct dwarf2_section_info *section,
3024 for (offset_type i = 0; i < n_elements; i += 2)
3026 gdb_static_assert (sizeof (ULONGEST) >= 8);
3028 sect_offset sect_off
3029 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3030 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3033 dwarf2_per_cu_data *per_cu
3034 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3036 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3040 /* Read the CU list from the mapped index, and use it to create all
3041 the CU objects for this objfile. */
3044 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3045 const gdb_byte *cu_list, offset_type cu_list_elements,
3046 const gdb_byte *dwz_list, offset_type dwz_elements)
3048 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3049 dwarf2_per_objfile->all_comp_units.reserve
3050 ((cu_list_elements + dwz_elements) / 2);
3052 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3053 &dwarf2_per_objfile->info, 0);
3055 if (dwz_elements == 0)
3058 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3059 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3063 /* Create the signatured type hash table from the index. */
3066 create_signatured_type_table_from_index
3067 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3068 struct dwarf2_section_info *section,
3069 const gdb_byte *bytes,
3070 offset_type elements)
3072 struct objfile *objfile = dwarf2_per_objfile->objfile;
3074 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3075 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3077 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3079 for (offset_type i = 0; i < elements; i += 3)
3081 struct signatured_type *sig_type;
3084 cu_offset type_offset_in_tu;
3086 gdb_static_assert (sizeof (ULONGEST) >= 8);
3087 sect_offset sect_off
3088 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3090 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3092 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3095 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3096 struct signatured_type);
3097 sig_type->signature = signature;
3098 sig_type->type_offset_in_tu = type_offset_in_tu;
3099 sig_type->per_cu.is_debug_types = 1;
3100 sig_type->per_cu.section = section;
3101 sig_type->per_cu.sect_off = sect_off;
3102 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3103 sig_type->per_cu.v.quick
3104 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3105 struct dwarf2_per_cu_quick_data);
3107 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3110 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3113 dwarf2_per_objfile->signatured_types = sig_types_hash;
3116 /* Create the signatured type hash table from .debug_names. */
3119 create_signatured_type_table_from_debug_names
3120 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3121 const mapped_debug_names &map,
3122 struct dwarf2_section_info *section,
3123 struct dwarf2_section_info *abbrev_section)
3125 struct objfile *objfile = dwarf2_per_objfile->objfile;
3127 dwarf2_read_section (objfile, section);
3128 dwarf2_read_section (objfile, abbrev_section);
3130 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3131 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3133 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3135 for (uint32_t i = 0; i < map.tu_count; ++i)
3137 struct signatured_type *sig_type;
3140 sect_offset sect_off
3141 = (sect_offset) (extract_unsigned_integer
3142 (map.tu_table_reordered + i * map.offset_size,
3144 map.dwarf5_byte_order));
3146 comp_unit_head cu_header;
3147 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3149 section->buffer + to_underlying (sect_off),
3152 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3153 struct signatured_type);
3154 sig_type->signature = cu_header.signature;
3155 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3156 sig_type->per_cu.is_debug_types = 1;
3157 sig_type->per_cu.section = section;
3158 sig_type->per_cu.sect_off = sect_off;
3159 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3160 sig_type->per_cu.v.quick
3161 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3162 struct dwarf2_per_cu_quick_data);
3164 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3167 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3170 dwarf2_per_objfile->signatured_types = sig_types_hash;
3173 /* Read the address map data from the mapped index, and use it to
3174 populate the objfile's psymtabs_addrmap. */
3177 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3178 struct mapped_index *index)
3180 struct objfile *objfile = dwarf2_per_objfile->objfile;
3181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3182 const gdb_byte *iter, *end;
3183 struct addrmap *mutable_map;
3186 auto_obstack temp_obstack;
3188 mutable_map = addrmap_create_mutable (&temp_obstack);
3190 iter = index->address_table.data ();
3191 end = iter + index->address_table.size ();
3193 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3197 ULONGEST hi, lo, cu_index;
3198 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3200 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3202 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3207 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3208 hex_string (lo), hex_string (hi));
3212 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3214 complaint (_(".gdb_index address table has invalid CU number %u"),
3215 (unsigned) cu_index);
3219 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3220 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3221 addrmap_set_empty (mutable_map, lo, hi - 1,
3222 dwarf2_per_objfile->get_cu (cu_index));
3225 objfile->partial_symtabs->psymtabs_addrmap
3226 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3229 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3230 populate the objfile's psymtabs_addrmap. */
3233 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3234 struct dwarf2_section_info *section)
3236 struct objfile *objfile = dwarf2_per_objfile->objfile;
3237 bfd *abfd = objfile->obfd;
3238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3239 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3240 SECT_OFF_TEXT (objfile));
3242 auto_obstack temp_obstack;
3243 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3245 std::unordered_map<sect_offset,
3246 dwarf2_per_cu_data *,
3247 gdb::hash_enum<sect_offset>>
3248 debug_info_offset_to_per_cu;
3249 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3251 const auto insertpair
3252 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3253 if (!insertpair.second)
3255 warning (_("Section .debug_aranges in %s has duplicate "
3256 "debug_info_offset %s, ignoring .debug_aranges."),
3257 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3262 dwarf2_read_section (objfile, section);
3264 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3266 const gdb_byte *addr = section->buffer;
3268 while (addr < section->buffer + section->size)
3270 const gdb_byte *const entry_addr = addr;
3271 unsigned int bytes_read;
3273 const LONGEST entry_length = read_initial_length (abfd, addr,
3277 const gdb_byte *const entry_end = addr + entry_length;
3278 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3279 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3280 if (addr + entry_length > section->buffer + section->size)
3282 warning (_("Section .debug_aranges in %s entry at offset %zu "
3283 "length %s exceeds section length %s, "
3284 "ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 plongest (bytes_read + entry_length),
3287 pulongest (section->size));
3291 /* The version number. */
3292 const uint16_t version = read_2_bytes (abfd, addr);
3296 warning (_("Section .debug_aranges in %s entry at offset %zu "
3297 "has unsupported version %d, ignoring .debug_aranges."),
3298 objfile_name (objfile), entry_addr - section->buffer,
3303 const uint64_t debug_info_offset
3304 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3305 addr += offset_size;
3306 const auto per_cu_it
3307 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3308 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "debug_info_offset %s does not exists, "
3312 "ignoring .debug_aranges."),
3313 objfile_name (objfile), entry_addr - section->buffer,
3314 pulongest (debug_info_offset));
3317 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3319 const uint8_t address_size = *addr++;
3320 if (address_size < 1 || address_size > 8)
3322 warning (_("Section .debug_aranges in %s entry at offset %zu "
3323 "address_size %u is invalid, ignoring .debug_aranges."),
3324 objfile_name (objfile), entry_addr - section->buffer,
3329 const uint8_t segment_selector_size = *addr++;
3330 if (segment_selector_size != 0)
3332 warning (_("Section .debug_aranges in %s entry at offset %zu "
3333 "segment_selector_size %u is not supported, "
3334 "ignoring .debug_aranges."),
3335 objfile_name (objfile), entry_addr - section->buffer,
3336 segment_selector_size);
3340 /* Must pad to an alignment boundary that is twice the address
3341 size. It is undocumented by the DWARF standard but GCC does
3343 for (size_t padding = ((-(addr - section->buffer))
3344 & (2 * address_size - 1));
3345 padding > 0; padding--)
3348 warning (_("Section .debug_aranges in %s entry at offset %zu "
3349 "padding is not zero, ignoring .debug_aranges."),
3350 objfile_name (objfile), entry_addr - section->buffer);
3356 if (addr + 2 * address_size > entry_end)
3358 warning (_("Section .debug_aranges in %s entry at offset %zu "
3359 "address list is not properly terminated, "
3360 "ignoring .debug_aranges."),
3361 objfile_name (objfile), entry_addr - section->buffer);
3364 ULONGEST start = extract_unsigned_integer (addr, address_size,
3366 addr += address_size;
3367 ULONGEST length = extract_unsigned_integer (addr, address_size,
3369 addr += address_size;
3370 if (start == 0 && length == 0)
3372 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3374 /* Symbol was eliminated due to a COMDAT group. */
3377 ULONGEST end = start + length;
3378 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3380 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3382 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3386 objfile->partial_symtabs->psymtabs_addrmap
3387 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3390 /* Find a slot in the mapped index INDEX for the object named NAME.
3391 If NAME is found, set *VEC_OUT to point to the CU vector in the
3392 constant pool and return true. If NAME cannot be found, return
3396 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3397 offset_type **vec_out)
3400 offset_type slot, step;
3401 int (*cmp) (const char *, const char *);
3403 gdb::unique_xmalloc_ptr<char> without_params;
3404 if (current_language->la_language == language_cplus
3405 || current_language->la_language == language_fortran
3406 || current_language->la_language == language_d)
3408 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3411 if (strchr (name, '(') != NULL)
3413 without_params = cp_remove_params (name);
3415 if (without_params != NULL)
3416 name = without_params.get ();
3420 /* Index version 4 did not support case insensitive searches. But the
3421 indices for case insensitive languages are built in lowercase, therefore
3422 simulate our NAME being searched is also lowercased. */
3423 hash = mapped_index_string_hash ((index->version == 4
3424 && case_sensitivity == case_sensitive_off
3425 ? 5 : index->version),
3428 slot = hash & (index->symbol_table.size () - 1);
3429 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3430 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3436 const auto &bucket = index->symbol_table[slot];
3437 if (bucket.name == 0 && bucket.vec == 0)
3440 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3441 if (!cmp (name, str))
3443 *vec_out = (offset_type *) (index->constant_pool
3444 + MAYBE_SWAP (bucket.vec));
3448 slot = (slot + step) & (index->symbol_table.size () - 1);
3452 /* A helper function that reads the .gdb_index from BUFFER and fills
3453 in MAP. FILENAME is the name of the file containing the data;
3454 it is used for error reporting. DEPRECATED_OK is true if it is
3455 ok to use deprecated sections.
3457 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3458 out parameters that are filled in with information about the CU and
3459 TU lists in the section.
3461 Returns true if all went well, false otherwise. */
3464 read_gdb_index_from_buffer (struct objfile *objfile,
3465 const char *filename,
3467 gdb::array_view<const gdb_byte> buffer,
3468 struct mapped_index *map,
3469 const gdb_byte **cu_list,
3470 offset_type *cu_list_elements,
3471 const gdb_byte **types_list,
3472 offset_type *types_list_elements)
3474 const gdb_byte *addr = &buffer[0];
3476 /* Version check. */
3477 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3478 /* Versions earlier than 3 emitted every copy of a psymbol. This
3479 causes the index to behave very poorly for certain requests. Version 3
3480 contained incomplete addrmap. So, it seems better to just ignore such
3484 static int warning_printed = 0;
3485 if (!warning_printed)
3487 warning (_("Skipping obsolete .gdb_index section in %s."),
3489 warning_printed = 1;
3493 /* Index version 4 uses a different hash function than index version
3496 Versions earlier than 6 did not emit psymbols for inlined
3497 functions. Using these files will cause GDB not to be able to
3498 set breakpoints on inlined functions by name, so we ignore these
3499 indices unless the user has done
3500 "set use-deprecated-index-sections on". */
3501 if (version < 6 && !deprecated_ok)
3503 static int warning_printed = 0;
3504 if (!warning_printed)
3507 Skipping deprecated .gdb_index section in %s.\n\
3508 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3509 to use the section anyway."),
3511 warning_printed = 1;
3515 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3516 of the TU (for symbols coming from TUs),
3517 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3518 Plus gold-generated indices can have duplicate entries for global symbols,
3519 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3520 These are just performance bugs, and we can't distinguish gdb-generated
3521 indices from gold-generated ones, so issue no warning here. */
3523 /* Indexes with higher version than the one supported by GDB may be no
3524 longer backward compatible. */
3528 map->version = version;
3530 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3533 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3534 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3538 *types_list = addr + MAYBE_SWAP (metadata[i]);
3539 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3540 - MAYBE_SWAP (metadata[i]))
3544 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3545 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3550 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3551 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3553 = gdb::array_view<mapped_index::symbol_table_slot>
3554 ((mapped_index::symbol_table_slot *) symbol_table,
3555 (mapped_index::symbol_table_slot *) symbol_table_end);
3558 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3563 /* Callback types for dwarf2_read_gdb_index. */
3565 typedef gdb::function_view
3566 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3567 get_gdb_index_contents_ftype;
3568 typedef gdb::function_view
3569 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3570 get_gdb_index_contents_dwz_ftype;
3572 /* Read .gdb_index. If everything went ok, initialize the "quick"
3573 elements of all the CUs and return 1. Otherwise, return 0. */
3576 dwarf2_read_gdb_index
3577 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3578 get_gdb_index_contents_ftype get_gdb_index_contents,
3579 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3581 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3582 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3583 struct dwz_file *dwz;
3584 struct objfile *objfile = dwarf2_per_objfile->objfile;
3586 gdb::array_view<const gdb_byte> main_index_contents
3587 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3589 if (main_index_contents.empty ())
3592 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3593 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3594 use_deprecated_index_sections,
3595 main_index_contents, map.get (), &cu_list,
3596 &cu_list_elements, &types_list,
3597 &types_list_elements))
3600 /* Don't use the index if it's empty. */
3601 if (map->symbol_table.empty ())
3604 /* If there is a .dwz file, read it so we can get its CU list as
3606 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3609 struct mapped_index dwz_map;
3610 const gdb_byte *dwz_types_ignore;
3611 offset_type dwz_types_elements_ignore;
3613 gdb::array_view<const gdb_byte> dwz_index_content
3614 = get_gdb_index_contents_dwz (objfile, dwz);
3616 if (dwz_index_content.empty ())
3619 if (!read_gdb_index_from_buffer (objfile,
3620 bfd_get_filename (dwz->dwz_bfd), 1,
3621 dwz_index_content, &dwz_map,
3622 &dwz_list, &dwz_list_elements,
3624 &dwz_types_elements_ignore))
3626 warning (_("could not read '.gdb_index' section from %s; skipping"),
3627 bfd_get_filename (dwz->dwz_bfd));
3632 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3633 dwz_list, dwz_list_elements);
3635 if (types_list_elements)
3637 struct dwarf2_section_info *section;
3639 /* We can only handle a single .debug_types when we have an
3641 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3644 section = VEC_index (dwarf2_section_info_def,
3645 dwarf2_per_objfile->types, 0);
3647 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3648 types_list, types_list_elements);
3651 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3653 dwarf2_per_objfile->index_table = std::move (map);
3654 dwarf2_per_objfile->using_index = 1;
3655 dwarf2_per_objfile->quick_file_names_table =
3656 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3661 /* die_reader_func for dw2_get_file_names. */
3664 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3665 const gdb_byte *info_ptr,
3666 struct die_info *comp_unit_die,
3670 struct dwarf2_cu *cu = reader->cu;
3671 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3672 struct dwarf2_per_objfile *dwarf2_per_objfile
3673 = cu->per_cu->dwarf2_per_objfile;
3674 struct objfile *objfile = dwarf2_per_objfile->objfile;
3675 struct dwarf2_per_cu_data *lh_cu;
3676 struct attribute *attr;
3679 struct quick_file_names *qfn;
3681 gdb_assert (! this_cu->is_debug_types);
3683 /* Our callers never want to match partial units -- instead they
3684 will match the enclosing full CU. */
3685 if (comp_unit_die->tag == DW_TAG_partial_unit)
3687 this_cu->v.quick->no_file_data = 1;
3695 sect_offset line_offset {};
3697 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3700 struct quick_file_names find_entry;
3702 line_offset = (sect_offset) DW_UNSND (attr);
3704 /* We may have already read in this line header (TU line header sharing).
3705 If we have we're done. */
3706 find_entry.hash.dwo_unit = cu->dwo_unit;
3707 find_entry.hash.line_sect_off = line_offset;
3708 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3709 &find_entry, INSERT);
3712 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3716 lh = dwarf_decode_line_header (line_offset, cu);
3720 lh_cu->v.quick->no_file_data = 1;
3724 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3725 qfn->hash.dwo_unit = cu->dwo_unit;
3726 qfn->hash.line_sect_off = line_offset;
3727 gdb_assert (slot != NULL);
3730 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3732 qfn->num_file_names = lh->file_names.size ();
3734 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3735 for (i = 0; i < lh->file_names.size (); ++i)
3736 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3737 qfn->real_names = NULL;
3739 lh_cu->v.quick->file_names = qfn;
3742 /* A helper for the "quick" functions which attempts to read the line
3743 table for THIS_CU. */
3745 static struct quick_file_names *
3746 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3748 /* This should never be called for TUs. */
3749 gdb_assert (! this_cu->is_debug_types);
3750 /* Nor type unit groups. */
3751 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3753 if (this_cu->v.quick->file_names != NULL)
3754 return this_cu->v.quick->file_names;
3755 /* If we know there is no line data, no point in looking again. */
3756 if (this_cu->v.quick->no_file_data)
3759 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3761 if (this_cu->v.quick->no_file_data)
3763 return this_cu->v.quick->file_names;
3766 /* A helper for the "quick" functions which computes and caches the
3767 real path for a given file name from the line table. */
3770 dw2_get_real_path (struct objfile *objfile,
3771 struct quick_file_names *qfn, int index)
3773 if (qfn->real_names == NULL)
3774 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3775 qfn->num_file_names, const char *);
3777 if (qfn->real_names[index] == NULL)
3778 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3780 return qfn->real_names[index];
3783 static struct symtab *
3784 dw2_find_last_source_symtab (struct objfile *objfile)
3786 struct dwarf2_per_objfile *dwarf2_per_objfile
3787 = get_dwarf2_per_objfile (objfile);
3788 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3789 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3794 return compunit_primary_filetab (cust);
3797 /* Traversal function for dw2_forget_cached_source_info. */
3800 dw2_free_cached_file_names (void **slot, void *info)
3802 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3804 if (file_data->real_names)
3808 for (i = 0; i < file_data->num_file_names; ++i)
3810 xfree ((void*) file_data->real_names[i]);
3811 file_data->real_names[i] = NULL;
3819 dw2_forget_cached_source_info (struct objfile *objfile)
3821 struct dwarf2_per_objfile *dwarf2_per_objfile
3822 = get_dwarf2_per_objfile (objfile);
3824 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3825 dw2_free_cached_file_names, NULL);
3828 /* Helper function for dw2_map_symtabs_matching_filename that expands
3829 the symtabs and calls the iterator. */
3832 dw2_map_expand_apply (struct objfile *objfile,
3833 struct dwarf2_per_cu_data *per_cu,
3834 const char *name, const char *real_path,
3835 gdb::function_view<bool (symtab *)> callback)
3837 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3839 /* Don't visit already-expanded CUs. */
3840 if (per_cu->v.quick->compunit_symtab)
3843 /* This may expand more than one symtab, and we want to iterate over
3845 dw2_instantiate_symtab (per_cu, false);
3847 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3848 last_made, callback);
3851 /* Implementation of the map_symtabs_matching_filename method. */
3854 dw2_map_symtabs_matching_filename
3855 (struct objfile *objfile, const char *name, const char *real_path,
3856 gdb::function_view<bool (symtab *)> callback)
3858 const char *name_basename = lbasename (name);
3859 struct dwarf2_per_objfile *dwarf2_per_objfile
3860 = get_dwarf2_per_objfile (objfile);
3862 /* The rule is CUs specify all the files, including those used by
3863 any TU, so there's no need to scan TUs here. */
3865 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3867 /* We only need to look at symtabs not already expanded. */
3868 if (per_cu->v.quick->compunit_symtab)
3871 quick_file_names *file_data = dw2_get_file_names (per_cu);
3872 if (file_data == NULL)
3875 for (int j = 0; j < file_data->num_file_names; ++j)
3877 const char *this_name = file_data->file_names[j];
3878 const char *this_real_name;
3880 if (compare_filenames_for_search (this_name, name))
3882 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3888 /* Before we invoke realpath, which can get expensive when many
3889 files are involved, do a quick comparison of the basenames. */
3890 if (! basenames_may_differ
3891 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3894 this_real_name = dw2_get_real_path (objfile, file_data, j);
3895 if (compare_filenames_for_search (this_real_name, name))
3897 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3903 if (real_path != NULL)
3905 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3906 gdb_assert (IS_ABSOLUTE_PATH (name));
3907 if (this_real_name != NULL
3908 && FILENAME_CMP (real_path, this_real_name) == 0)
3910 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3922 /* Struct used to manage iterating over all CUs looking for a symbol. */
3924 struct dw2_symtab_iterator
3926 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3927 struct dwarf2_per_objfile *dwarf2_per_objfile;
3928 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3929 int want_specific_block;
3930 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3931 Unused if !WANT_SPECIFIC_BLOCK. */
3933 /* The kind of symbol we're looking for. */
3935 /* The list of CUs from the index entry of the symbol,
3936 or NULL if not found. */
3938 /* The next element in VEC to look at. */
3940 /* The number of elements in VEC, or zero if there is no match. */
3942 /* Have we seen a global version of the symbol?
3943 If so we can ignore all further global instances.
3944 This is to work around gold/15646, inefficient gold-generated
3949 /* Initialize the index symtab iterator ITER.
3950 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3951 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3954 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3955 struct dwarf2_per_objfile *dwarf2_per_objfile,
3956 int want_specific_block,
3961 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3962 iter->want_specific_block = want_specific_block;
3963 iter->block_index = block_index;
3964 iter->domain = domain;
3966 iter->global_seen = 0;
3968 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3970 /* index is NULL if OBJF_READNOW. */
3971 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3972 iter->length = MAYBE_SWAP (*iter->vec);
3980 /* Return the next matching CU or NULL if there are no more. */
3982 static struct dwarf2_per_cu_data *
3983 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3985 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3987 for ( ; iter->next < iter->length; ++iter->next)
3989 offset_type cu_index_and_attrs =
3990 MAYBE_SWAP (iter->vec[iter->next + 1]);
3991 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3992 int want_static = iter->block_index != GLOBAL_BLOCK;
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 /* Only check the symbol attributes if they're present.
3998 Indices prior to version 7 don't record them,
3999 and indices >= 7 may elide them for certain symbols
4000 (gold does this). */
4002 (dwarf2_per_objfile->index_table->version >= 7
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4007 + dwarf2_per_objfile->all_type_units.size ()))
4009 complaint (_(".gdb_index entry has bad CU index"
4011 objfile_name (dwarf2_per_objfile->objfile));
4015 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4017 /* Skip if already read in. */
4018 if (per_cu->v.quick->compunit_symtab)
4021 /* Check static vs global. */
4024 if (iter->want_specific_block
4025 && want_static != is_static)
4027 /* Work around gold/15646. */
4028 if (!is_static && iter->global_seen)
4031 iter->global_seen = 1;
4034 /* Only check the symbol's kind if it has one. */
4037 switch (iter->domain)
4040 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4041 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4042 /* Some types are also in VAR_DOMAIN. */
4043 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4047 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4051 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4066 static struct compunit_symtab *
4067 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4068 const char *name, domain_enum domain)
4070 struct compunit_symtab *stab_best = NULL;
4071 struct dwarf2_per_objfile *dwarf2_per_objfile
4072 = get_dwarf2_per_objfile (objfile);
4074 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4076 struct dw2_symtab_iterator iter;
4077 struct dwarf2_per_cu_data *per_cu;
4079 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4081 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4083 struct symbol *sym, *with_opaque = NULL;
4084 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4085 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4086 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4088 sym = block_find_symbol (block, name, domain,
4089 block_find_non_opaque_type_preferred,
4092 /* Some caution must be observed with overloaded functions
4093 and methods, since the index will not contain any overload
4094 information (but NAME might contain it). */
4097 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4099 if (with_opaque != NULL
4100 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4103 /* Keep looking through other CUs. */
4110 dw2_print_stats (struct objfile *objfile)
4112 struct dwarf2_per_objfile *dwarf2_per_objfile
4113 = get_dwarf2_per_objfile (objfile);
4114 int total = (dwarf2_per_objfile->all_comp_units.size ()
4115 + dwarf2_per_objfile->all_type_units.size ());
4118 for (int i = 0; i < total; ++i)
4120 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4122 if (!per_cu->v.quick->compunit_symtab)
4125 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4126 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4129 /* This dumps minimal information about the index.
4130 It is called via "mt print objfiles".
4131 One use is to verify .gdb_index has been loaded by the
4132 gdb.dwarf2/gdb-index.exp testcase. */
4135 dw2_dump (struct objfile *objfile)
4137 struct dwarf2_per_objfile *dwarf2_per_objfile
4138 = get_dwarf2_per_objfile (objfile);
4140 gdb_assert (dwarf2_per_objfile->using_index);
4141 printf_filtered (".gdb_index:");
4142 if (dwarf2_per_objfile->index_table != NULL)
4144 printf_filtered (" version %d\n",
4145 dwarf2_per_objfile->index_table->version);
4148 printf_filtered (" faked for \"readnow\"\n");
4149 printf_filtered ("\n");
4153 dw2_expand_symtabs_for_function (struct objfile *objfile,
4154 const char *func_name)
4156 struct dwarf2_per_objfile *dwarf2_per_objfile
4157 = get_dwarf2_per_objfile (objfile);
4159 struct dw2_symtab_iterator iter;
4160 struct dwarf2_per_cu_data *per_cu;
4162 /* Note: It doesn't matter what we pass for block_index here. */
4163 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4166 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4167 dw2_instantiate_symtab (per_cu, false);
4172 dw2_expand_all_symtabs (struct objfile *objfile)
4174 struct dwarf2_per_objfile *dwarf2_per_objfile
4175 = get_dwarf2_per_objfile (objfile);
4176 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4177 + dwarf2_per_objfile->all_type_units.size ());
4179 for (int i = 0; i < total_units; ++i)
4181 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4183 /* We don't want to directly expand a partial CU, because if we
4184 read it with the wrong language, then assertion failures can
4185 be triggered later on. See PR symtab/23010. So, tell
4186 dw2_instantiate_symtab to skip partial CUs -- any important
4187 partial CU will be read via DW_TAG_imported_unit anyway. */
4188 dw2_instantiate_symtab (per_cu, true);
4193 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4194 const char *fullname)
4196 struct dwarf2_per_objfile *dwarf2_per_objfile
4197 = get_dwarf2_per_objfile (objfile);
4199 /* We don't need to consider type units here.
4200 This is only called for examining code, e.g. expand_line_sal.
4201 There can be an order of magnitude (or more) more type units
4202 than comp units, and we avoid them if we can. */
4204 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4206 /* We only need to look at symtabs not already expanded. */
4207 if (per_cu->v.quick->compunit_symtab)
4210 quick_file_names *file_data = dw2_get_file_names (per_cu);
4211 if (file_data == NULL)
4214 for (int j = 0; j < file_data->num_file_names; ++j)
4216 const char *this_fullname = file_data->file_names[j];
4218 if (filename_cmp (this_fullname, fullname) == 0)
4220 dw2_instantiate_symtab (per_cu, false);
4228 dw2_map_matching_symbols (struct objfile *objfile,
4229 const char * name, domain_enum domain,
4231 int (*callback) (const struct block *,
4232 struct symbol *, void *),
4233 void *data, symbol_name_match_type match,
4234 symbol_compare_ftype *ordered_compare)
4236 /* Currently unimplemented; used for Ada. The function can be called if the
4237 current language is Ada for a non-Ada objfile using GNU index. As Ada
4238 does not look for non-Ada symbols this function should just return. */
4241 /* Symbol name matcher for .gdb_index names.
4243 Symbol names in .gdb_index have a few particularities:
4245 - There's no indication of which is the language of each symbol.
4247 Since each language has its own symbol name matching algorithm,
4248 and we don't know which language is the right one, we must match
4249 each symbol against all languages. This would be a potential
4250 performance problem if it were not mitigated by the
4251 mapped_index::name_components lookup table, which significantly
4252 reduces the number of times we need to call into this matcher,
4253 making it a non-issue.
4255 - Symbol names in the index have no overload (parameter)
4256 information. I.e., in C++, "foo(int)" and "foo(long)" both
4257 appear as "foo" in the index, for example.
4259 This means that the lookup names passed to the symbol name
4260 matcher functions must have no parameter information either
4261 because (e.g.) symbol search name "foo" does not match
4262 lookup-name "foo(int)" [while swapping search name for lookup
4265 class gdb_index_symbol_name_matcher
4268 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4269 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4271 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4272 Returns true if any matcher matches. */
4273 bool matches (const char *symbol_name);
4276 /* A reference to the lookup name we're matching against. */
4277 const lookup_name_info &m_lookup_name;
4279 /* A vector holding all the different symbol name matchers, for all
4281 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4284 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4285 (const lookup_name_info &lookup_name)
4286 : m_lookup_name (lookup_name)
4288 /* Prepare the vector of comparison functions upfront, to avoid
4289 doing the same work for each symbol. Care is taken to avoid
4290 matching with the same matcher more than once if/when multiple
4291 languages use the same matcher function. */
4292 auto &matchers = m_symbol_name_matcher_funcs;
4293 matchers.reserve (nr_languages);
4295 matchers.push_back (default_symbol_name_matcher);
4297 for (int i = 0; i < nr_languages; i++)
4299 const language_defn *lang = language_def ((enum language) i);
4300 symbol_name_matcher_ftype *name_matcher
4301 = get_symbol_name_matcher (lang, m_lookup_name);
4303 /* Don't insert the same comparison routine more than once.
4304 Note that we do this linear walk instead of a seemingly
4305 cheaper sorted insert, or use a std::set or something like
4306 that, because relative order of function addresses is not
4307 stable. This is not a problem in practice because the number
4308 of supported languages is low, and the cost here is tiny
4309 compared to the number of searches we'll do afterwards using
4311 if (name_matcher != default_symbol_name_matcher
4312 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4313 == matchers.end ()))
4314 matchers.push_back (name_matcher);
4319 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4321 for (auto matches_name : m_symbol_name_matcher_funcs)
4322 if (matches_name (symbol_name, m_lookup_name, NULL))
4328 /* Starting from a search name, return the string that finds the upper
4329 bound of all strings that start with SEARCH_NAME in a sorted name
4330 list. Returns the empty string to indicate that the upper bound is
4331 the end of the list. */
4334 make_sort_after_prefix_name (const char *search_name)
4336 /* When looking to complete "func", we find the upper bound of all
4337 symbols that start with "func" by looking for where we'd insert
4338 the closest string that would follow "func" in lexicographical
4339 order. Usually, that's "func"-with-last-character-incremented,
4340 i.e. "fund". Mind non-ASCII characters, though. Usually those
4341 will be UTF-8 multi-byte sequences, but we can't be certain.
4342 Especially mind the 0xff character, which is a valid character in
4343 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4344 rule out compilers allowing it in identifiers. Note that
4345 conveniently, strcmp/strcasecmp are specified to compare
4346 characters interpreted as unsigned char. So what we do is treat
4347 the whole string as a base 256 number composed of a sequence of
4348 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4349 to 0, and carries 1 to the following more-significant position.
4350 If the very first character in SEARCH_NAME ends up incremented
4351 and carries/overflows, then the upper bound is the end of the
4352 list. The string after the empty string is also the empty
4355 Some examples of this operation:
4357 SEARCH_NAME => "+1" RESULT
4361 "\xff" "a" "\xff" => "\xff" "b"
4366 Then, with these symbols for example:
4372 completing "func" looks for symbols between "func" and
4373 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4374 which finds "func" and "func1", but not "fund".
4378 funcÿ (Latin1 'ÿ' [0xff])
4382 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4383 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4387 ÿÿ (Latin1 'ÿ' [0xff])
4390 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4391 the end of the list.
4393 std::string after = search_name;
4394 while (!after.empty () && (unsigned char) after.back () == 0xff)
4396 if (!after.empty ())
4397 after.back () = (unsigned char) after.back () + 1;
4401 /* See declaration. */
4403 std::pair<std::vector<name_component>::const_iterator,
4404 std::vector<name_component>::const_iterator>
4405 mapped_index_base::find_name_components_bounds
4406 (const lookup_name_info &lookup_name_without_params) const
4409 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4412 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4414 /* Comparison function object for lower_bound that matches against a
4415 given symbol name. */
4416 auto lookup_compare_lower = [&] (const name_component &elem,
4419 const char *elem_qualified = this->symbol_name_at (elem.idx);
4420 const char *elem_name = elem_qualified + elem.name_offset;
4421 return name_cmp (elem_name, name) < 0;
4424 /* Comparison function object for upper_bound that matches against a
4425 given symbol name. */
4426 auto lookup_compare_upper = [&] (const char *name,
4427 const name_component &elem)
4429 const char *elem_qualified = this->symbol_name_at (elem.idx);
4430 const char *elem_name = elem_qualified + elem.name_offset;
4431 return name_cmp (name, elem_name) < 0;
4434 auto begin = this->name_components.begin ();
4435 auto end = this->name_components.end ();
4437 /* Find the lower bound. */
4440 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4443 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4446 /* Find the upper bound. */
4449 if (lookup_name_without_params.completion_mode ())
4451 /* In completion mode, we want UPPER to point past all
4452 symbols names that have the same prefix. I.e., with
4453 these symbols, and completing "func":
4455 function << lower bound
4457 other_function << upper bound
4459 We find the upper bound by looking for the insertion
4460 point of "func"-with-last-character-incremented,
4462 std::string after = make_sort_after_prefix_name (cplus);
4465 return std::lower_bound (lower, end, after.c_str (),
4466 lookup_compare_lower);
4469 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4472 return {lower, upper};
4475 /* See declaration. */
4478 mapped_index_base::build_name_components ()
4480 if (!this->name_components.empty ())
4483 this->name_components_casing = case_sensitivity;
4485 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4487 /* The code below only knows how to break apart components of C++
4488 symbol names (and other languages that use '::' as
4489 namespace/module separator). If we add support for wild matching
4490 to some language that uses some other operator (E.g., Ada, Go and
4491 D use '.'), then we'll need to try splitting the symbol name
4492 according to that language too. Note that Ada does support wild
4493 matching, but doesn't currently support .gdb_index. */
4494 auto count = this->symbol_name_count ();
4495 for (offset_type idx = 0; idx < count; idx++)
4497 if (this->symbol_name_slot_invalid (idx))
4500 const char *name = this->symbol_name_at (idx);
4502 /* Add each name component to the name component table. */
4503 unsigned int previous_len = 0;
4504 for (unsigned int current_len = cp_find_first_component (name);
4505 name[current_len] != '\0';
4506 current_len += cp_find_first_component (name + current_len))
4508 gdb_assert (name[current_len] == ':');
4509 this->name_components.push_back ({previous_len, idx});
4510 /* Skip the '::'. */
4512 previous_len = current_len;
4514 this->name_components.push_back ({previous_len, idx});
4517 /* Sort name_components elements by name. */
4518 auto name_comp_compare = [&] (const name_component &left,
4519 const name_component &right)
4521 const char *left_qualified = this->symbol_name_at (left.idx);
4522 const char *right_qualified = this->symbol_name_at (right.idx);
4524 const char *left_name = left_qualified + left.name_offset;
4525 const char *right_name = right_qualified + right.name_offset;
4527 return name_cmp (left_name, right_name) < 0;
4530 std::sort (this->name_components.begin (),
4531 this->name_components.end (),
4535 /* Helper for dw2_expand_symtabs_matching that works with a
4536 mapped_index_base instead of the containing objfile. This is split
4537 to a separate function in order to be able to unit test the
4538 name_components matching using a mock mapped_index_base. For each
4539 symbol name that matches, calls MATCH_CALLBACK, passing it the
4540 symbol's index in the mapped_index_base symbol table. */
4543 dw2_expand_symtabs_matching_symbol
4544 (mapped_index_base &index,
4545 const lookup_name_info &lookup_name_in,
4546 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4547 enum search_domain kind,
4548 gdb::function_view<void (offset_type)> match_callback)
4550 lookup_name_info lookup_name_without_params
4551 = lookup_name_in.make_ignore_params ();
4552 gdb_index_symbol_name_matcher lookup_name_matcher
4553 (lookup_name_without_params);
4555 /* Build the symbol name component sorted vector, if we haven't
4557 index.build_name_components ();
4559 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4561 /* Now for each symbol name in range, check to see if we have a name
4562 match, and if so, call the MATCH_CALLBACK callback. */
4564 /* The same symbol may appear more than once in the range though.
4565 E.g., if we're looking for symbols that complete "w", and we have
4566 a symbol named "w1::w2", we'll find the two name components for
4567 that same symbol in the range. To be sure we only call the
4568 callback once per symbol, we first collect the symbol name
4569 indexes that matched in a temporary vector and ignore
4571 std::vector<offset_type> matches;
4572 matches.reserve (std::distance (bounds.first, bounds.second));
4574 for (; bounds.first != bounds.second; ++bounds.first)
4576 const char *qualified = index.symbol_name_at (bounds.first->idx);
4578 if (!lookup_name_matcher.matches (qualified)
4579 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4582 matches.push_back (bounds.first->idx);
4585 std::sort (matches.begin (), matches.end ());
4587 /* Finally call the callback, once per match. */
4589 for (offset_type idx : matches)
4593 match_callback (idx);
4598 /* Above we use a type wider than idx's for 'prev', since 0 and
4599 (offset_type)-1 are both possible values. */
4600 static_assert (sizeof (prev) > sizeof (offset_type), "");
4605 namespace selftests { namespace dw2_expand_symtabs_matching {
4607 /* A mock .gdb_index/.debug_names-like name index table, enough to
4608 exercise dw2_expand_symtabs_matching_symbol, which works with the
4609 mapped_index_base interface. Builds an index from the symbol list
4610 passed as parameter to the constructor. */
4611 class mock_mapped_index : public mapped_index_base
4614 mock_mapped_index (gdb::array_view<const char *> symbols)
4615 : m_symbol_table (symbols)
4618 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4620 /* Return the number of names in the symbol table. */
4621 size_t symbol_name_count () const override
4623 return m_symbol_table.size ();
4626 /* Get the name of the symbol at IDX in the symbol table. */
4627 const char *symbol_name_at (offset_type idx) const override
4629 return m_symbol_table[idx];
4633 gdb::array_view<const char *> m_symbol_table;
4636 /* Convenience function that converts a NULL pointer to a "<null>"
4637 string, to pass to print routines. */
4640 string_or_null (const char *str)
4642 return str != NULL ? str : "<null>";
4645 /* Check if a lookup_name_info built from
4646 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4647 index. EXPECTED_LIST is the list of expected matches, in expected
4648 matching order. If no match expected, then an empty list is
4649 specified. Returns true on success. On failure prints a warning
4650 indicating the file:line that failed, and returns false. */
4653 check_match (const char *file, int line,
4654 mock_mapped_index &mock_index,
4655 const char *name, symbol_name_match_type match_type,
4656 bool completion_mode,
4657 std::initializer_list<const char *> expected_list)
4659 lookup_name_info lookup_name (name, match_type, completion_mode);
4661 bool matched = true;
4663 auto mismatch = [&] (const char *expected_str,
4666 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4667 "expected=\"%s\", got=\"%s\"\n"),
4669 (match_type == symbol_name_match_type::FULL
4671 name, string_or_null (expected_str), string_or_null (got));
4675 auto expected_it = expected_list.begin ();
4676 auto expected_end = expected_list.end ();
4678 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4680 [&] (offset_type idx)
4682 const char *matched_name = mock_index.symbol_name_at (idx);
4683 const char *expected_str
4684 = expected_it == expected_end ? NULL : *expected_it++;
4686 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4687 mismatch (expected_str, matched_name);
4690 const char *expected_str
4691 = expected_it == expected_end ? NULL : *expected_it++;
4692 if (expected_str != NULL)
4693 mismatch (expected_str, NULL);
4698 /* The symbols added to the mock mapped_index for testing (in
4700 static const char *test_symbols[] = {
4709 "ns2::tmpl<int>::foo2",
4710 "(anonymous namespace)::A::B::C",
4712 /* These are used to check that the increment-last-char in the
4713 matching algorithm for completion doesn't match "t1_fund" when
4714 completing "t1_func". */
4720 /* A UTF-8 name with multi-byte sequences to make sure that
4721 cp-name-parser understands this as a single identifier ("função"
4722 is "function" in PT). */
4725 /* \377 (0xff) is Latin1 'ÿ'. */
4728 /* \377 (0xff) is Latin1 'ÿ'. */
4732 /* A name with all sorts of complications. Starts with "z" to make
4733 it easier for the completion tests below. */
4734 #define Z_SYM_NAME \
4735 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4736 "::tuple<(anonymous namespace)::ui*, " \
4737 "std::default_delete<(anonymous namespace)::ui>, void>"
4742 /* Returns true if the mapped_index_base::find_name_component_bounds
4743 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4744 in completion mode. */
4747 check_find_bounds_finds (mapped_index_base &index,
4748 const char *search_name,
4749 gdb::array_view<const char *> expected_syms)
4751 lookup_name_info lookup_name (search_name,
4752 symbol_name_match_type::FULL, true);
4754 auto bounds = index.find_name_components_bounds (lookup_name);
4756 size_t distance = std::distance (bounds.first, bounds.second);
4757 if (distance != expected_syms.size ())
4760 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4762 auto nc_elem = bounds.first + exp_elem;
4763 const char *qualified = index.symbol_name_at (nc_elem->idx);
4764 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4771 /* Test the lower-level mapped_index::find_name_component_bounds
4775 test_mapped_index_find_name_component_bounds ()
4777 mock_mapped_index mock_index (test_symbols);
4779 mock_index.build_name_components ();
4781 /* Test the lower-level mapped_index::find_name_component_bounds
4782 method in completion mode. */
4784 static const char *expected_syms[] = {
4789 SELF_CHECK (check_find_bounds_finds (mock_index,
4790 "t1_func", expected_syms));
4793 /* Check that the increment-last-char in the name matching algorithm
4794 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4796 static const char *expected_syms1[] = {
4800 SELF_CHECK (check_find_bounds_finds (mock_index,
4801 "\377", expected_syms1));
4803 static const char *expected_syms2[] = {
4806 SELF_CHECK (check_find_bounds_finds (mock_index,
4807 "\377\377", expected_syms2));
4811 /* Test dw2_expand_symtabs_matching_symbol. */
4814 test_dw2_expand_symtabs_matching_symbol ()
4816 mock_mapped_index mock_index (test_symbols);
4818 /* We let all tests run until the end even if some fails, for debug
4820 bool any_mismatch = false;
4822 /* Create the expected symbols list (an initializer_list). Needed
4823 because lists have commas, and we need to pass them to CHECK,
4824 which is a macro. */
4825 #define EXPECT(...) { __VA_ARGS__ }
4827 /* Wrapper for check_match that passes down the current
4828 __FILE__/__LINE__. */
4829 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4830 any_mismatch |= !check_match (__FILE__, __LINE__, \
4832 NAME, MATCH_TYPE, COMPLETION_MODE, \
4835 /* Identity checks. */
4836 for (const char *sym : test_symbols)
4838 /* Should be able to match all existing symbols. */
4839 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4842 /* Should be able to match all existing symbols with
4844 std::string with_params = std::string (sym) + "(int)";
4845 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4848 /* Should be able to match all existing symbols with
4849 parameters and qualifiers. */
4850 with_params = std::string (sym) + " ( int ) const";
4851 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4854 /* This should really find sym, but cp-name-parser.y doesn't
4855 know about lvalue/rvalue qualifiers yet. */
4856 with_params = std::string (sym) + " ( int ) &&";
4857 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4861 /* Check that the name matching algorithm for completion doesn't get
4862 confused with Latin1 'ÿ' / 0xff. */
4864 static const char str[] = "\377";
4865 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4866 EXPECT ("\377", "\377\377123"));
4869 /* Check that the increment-last-char in the matching algorithm for
4870 completion doesn't match "t1_fund" when completing "t1_func". */
4872 static const char str[] = "t1_func";
4873 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4874 EXPECT ("t1_func", "t1_func1"));
4877 /* Check that completion mode works at each prefix of the expected
4880 static const char str[] = "function(int)";
4881 size_t len = strlen (str);
4884 for (size_t i = 1; i < len; i++)
4886 lookup.assign (str, i);
4887 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4888 EXPECT ("function"));
4892 /* While "w" is a prefix of both components, the match function
4893 should still only be called once. */
4895 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4897 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4901 /* Same, with a "complicated" symbol. */
4903 static const char str[] = Z_SYM_NAME;
4904 size_t len = strlen (str);
4907 for (size_t i = 1; i < len; i++)
4909 lookup.assign (str, i);
4910 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4911 EXPECT (Z_SYM_NAME));
4915 /* In FULL mode, an incomplete symbol doesn't match. */
4917 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4921 /* A complete symbol with parameters matches any overload, since the
4922 index has no overload info. */
4924 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4925 EXPECT ("std::zfunction", "std::zfunction2"));
4926 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4927 EXPECT ("std::zfunction", "std::zfunction2"));
4928 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4929 EXPECT ("std::zfunction", "std::zfunction2"));
4932 /* Check that whitespace is ignored appropriately. A symbol with a
4933 template argument list. */
4935 static const char expected[] = "ns::foo<int>";
4936 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4938 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4942 /* Check that whitespace is ignored appropriately. A symbol with a
4943 template argument list that includes a pointer. */
4945 static const char expected[] = "ns::foo<char*>";
4946 /* Try both completion and non-completion modes. */
4947 static const bool completion_mode[2] = {false, true};
4948 for (size_t i = 0; i < 2; i++)
4950 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4955 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4956 completion_mode[i], EXPECT (expected));
4957 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4958 completion_mode[i], EXPECT (expected));
4963 /* Check method qualifiers are ignored. */
4964 static const char expected[] = "ns::foo<char*>";
4965 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4966 symbol_name_match_type::FULL, true, EXPECT (expected));
4967 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4968 symbol_name_match_type::FULL, true, EXPECT (expected));
4969 CHECK_MATCH ("foo < char * > ( int ) const",
4970 symbol_name_match_type::WILD, true, EXPECT (expected));
4971 CHECK_MATCH ("foo < char * > ( int ) &&",
4972 symbol_name_match_type::WILD, true, EXPECT (expected));
4975 /* Test lookup names that don't match anything. */
4977 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4980 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4984 /* Some wild matching tests, exercising "(anonymous namespace)",
4985 which should not be confused with a parameter list. */
4987 static const char *syms[] = {
4991 "A :: B :: C ( int )",
4996 for (const char *s : syms)
4998 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4999 EXPECT ("(anonymous namespace)::A::B::C"));
5004 static const char expected[] = "ns2::tmpl<int>::foo2";
5005 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5007 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5011 SELF_CHECK (!any_mismatch);
5020 test_mapped_index_find_name_component_bounds ();
5021 test_dw2_expand_symtabs_matching_symbol ();
5024 }} // namespace selftests::dw2_expand_symtabs_matching
5026 #endif /* GDB_SELF_TEST */
5028 /* If FILE_MATCHER is NULL or if PER_CU has
5029 dwarf2_per_cu_quick_data::MARK set (see
5030 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5031 EXPANSION_NOTIFY on it. */
5034 dw2_expand_symtabs_matching_one
5035 (struct dwarf2_per_cu_data *per_cu,
5036 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5037 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5039 if (file_matcher == NULL || per_cu->v.quick->mark)
5041 bool symtab_was_null
5042 = (per_cu->v.quick->compunit_symtab == NULL);
5044 dw2_instantiate_symtab (per_cu, false);
5046 if (expansion_notify != NULL
5048 && per_cu->v.quick->compunit_symtab != NULL)
5049 expansion_notify (per_cu->v.quick->compunit_symtab);
5053 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5054 matched, to expand corresponding CUs that were marked. IDX is the
5055 index of the symbol name that matched. */
5058 dw2_expand_marked_cus
5059 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5060 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5061 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5064 offset_type *vec, vec_len, vec_idx;
5065 bool global_seen = false;
5066 mapped_index &index = *dwarf2_per_objfile->index_table;
5068 vec = (offset_type *) (index.constant_pool
5069 + MAYBE_SWAP (index.symbol_table[idx].vec));
5070 vec_len = MAYBE_SWAP (vec[0]);
5071 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5073 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5074 /* This value is only valid for index versions >= 7. */
5075 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5076 gdb_index_symbol_kind symbol_kind =
5077 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5078 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5079 /* Only check the symbol attributes if they're present.
5080 Indices prior to version 7 don't record them,
5081 and indices >= 7 may elide them for certain symbols
5082 (gold does this). */
5085 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5087 /* Work around gold/15646. */
5090 if (!is_static && global_seen)
5096 /* Only check the symbol's kind if it has one. */
5101 case VARIABLES_DOMAIN:
5102 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5105 case FUNCTIONS_DOMAIN:
5106 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5110 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5118 /* Don't crash on bad data. */
5119 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5120 + dwarf2_per_objfile->all_type_units.size ()))
5122 complaint (_(".gdb_index entry has bad CU index"
5124 objfile_name (dwarf2_per_objfile->objfile));
5128 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5129 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5134 /* If FILE_MATCHER is non-NULL, set all the
5135 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5136 that match FILE_MATCHER. */
5139 dw_expand_symtabs_matching_file_matcher
5140 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5141 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5143 if (file_matcher == NULL)
5146 objfile *const objfile = dwarf2_per_objfile->objfile;
5148 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5150 NULL, xcalloc, xfree));
5151 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5153 NULL, xcalloc, xfree));
5155 /* The rule is CUs specify all the files, including those used by
5156 any TU, so there's no need to scan TUs here. */
5158 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5162 per_cu->v.quick->mark = 0;
5164 /* We only need to look at symtabs not already expanded. */
5165 if (per_cu->v.quick->compunit_symtab)
5168 quick_file_names *file_data = dw2_get_file_names (per_cu);
5169 if (file_data == NULL)
5172 if (htab_find (visited_not_found.get (), file_data) != NULL)
5174 else if (htab_find (visited_found.get (), file_data) != NULL)
5176 per_cu->v.quick->mark = 1;
5180 for (int j = 0; j < file_data->num_file_names; ++j)
5182 const char *this_real_name;
5184 if (file_matcher (file_data->file_names[j], false))
5186 per_cu->v.quick->mark = 1;
5190 /* Before we invoke realpath, which can get expensive when many
5191 files are involved, do a quick comparison of the basenames. */
5192 if (!basenames_may_differ
5193 && !file_matcher (lbasename (file_data->file_names[j]),
5197 this_real_name = dw2_get_real_path (objfile, file_data, j);
5198 if (file_matcher (this_real_name, false))
5200 per_cu->v.quick->mark = 1;
5205 void **slot = htab_find_slot (per_cu->v.quick->mark
5206 ? visited_found.get ()
5207 : visited_not_found.get (),
5214 dw2_expand_symtabs_matching
5215 (struct objfile *objfile,
5216 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5217 const lookup_name_info &lookup_name,
5218 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5219 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5220 enum search_domain kind)
5222 struct dwarf2_per_objfile *dwarf2_per_objfile
5223 = get_dwarf2_per_objfile (objfile);
5225 /* index_table is NULL if OBJF_READNOW. */
5226 if (!dwarf2_per_objfile->index_table)
5229 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5231 mapped_index &index = *dwarf2_per_objfile->index_table;
5233 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5235 kind, [&] (offset_type idx)
5237 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5238 expansion_notify, kind);
5242 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5245 static struct compunit_symtab *
5246 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5251 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5252 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5255 if (cust->includes == NULL)
5258 for (i = 0; cust->includes[i]; ++i)
5260 struct compunit_symtab *s = cust->includes[i];
5262 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5270 static struct compunit_symtab *
5271 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5272 struct bound_minimal_symbol msymbol,
5274 struct obj_section *section,
5277 struct dwarf2_per_cu_data *data;
5278 struct compunit_symtab *result;
5280 if (!objfile->partial_symtabs->psymtabs_addrmap)
5283 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5284 SECT_OFF_TEXT (objfile));
5285 data = (struct dwarf2_per_cu_data *) addrmap_find
5286 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5290 if (warn_if_readin && data->v.quick->compunit_symtab)
5291 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5292 paddress (get_objfile_arch (objfile), pc));
5295 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5298 gdb_assert (result != NULL);
5303 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5304 void *data, int need_fullname)
5306 struct dwarf2_per_objfile *dwarf2_per_objfile
5307 = get_dwarf2_per_objfile (objfile);
5309 if (!dwarf2_per_objfile->filenames_cache)
5311 dwarf2_per_objfile->filenames_cache.emplace ();
5313 htab_up visited (htab_create_alloc (10,
5314 htab_hash_pointer, htab_eq_pointer,
5315 NULL, xcalloc, xfree));
5317 /* The rule is CUs specify all the files, including those used
5318 by any TU, so there's no need to scan TUs here. We can
5319 ignore file names coming from already-expanded CUs. */
5321 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5323 if (per_cu->v.quick->compunit_symtab)
5325 void **slot = htab_find_slot (visited.get (),
5326 per_cu->v.quick->file_names,
5329 *slot = per_cu->v.quick->file_names;
5333 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5335 /* We only need to look at symtabs not already expanded. */
5336 if (per_cu->v.quick->compunit_symtab)
5339 quick_file_names *file_data = dw2_get_file_names (per_cu);
5340 if (file_data == NULL)
5343 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5346 /* Already visited. */
5351 for (int j = 0; j < file_data->num_file_names; ++j)
5353 const char *filename = file_data->file_names[j];
5354 dwarf2_per_objfile->filenames_cache->seen (filename);
5359 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5361 gdb::unique_xmalloc_ptr<char> this_real_name;
5364 this_real_name = gdb_realpath (filename);
5365 (*fun) (filename, this_real_name.get (), data);
5370 dw2_has_symbols (struct objfile *objfile)
5375 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5378 dw2_find_last_source_symtab,
5379 dw2_forget_cached_source_info,
5380 dw2_map_symtabs_matching_filename,
5384 dw2_expand_symtabs_for_function,
5385 dw2_expand_all_symtabs,
5386 dw2_expand_symtabs_with_fullname,
5387 dw2_map_matching_symbols,
5388 dw2_expand_symtabs_matching,
5389 dw2_find_pc_sect_compunit_symtab,
5391 dw2_map_symbol_filenames
5394 /* DWARF-5 debug_names reader. */
5396 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5397 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5399 /* A helper function that reads the .debug_names section in SECTION
5400 and fills in MAP. FILENAME is the name of the file containing the
5401 section; it is used for error reporting.
5403 Returns true if all went well, false otherwise. */
5406 read_debug_names_from_section (struct objfile *objfile,
5407 const char *filename,
5408 struct dwarf2_section_info *section,
5409 mapped_debug_names &map)
5411 if (dwarf2_section_empty_p (section))
5414 /* Older elfutils strip versions could keep the section in the main
5415 executable while splitting it for the separate debug info file. */
5416 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5419 dwarf2_read_section (objfile, section);
5421 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5423 const gdb_byte *addr = section->buffer;
5425 bfd *const abfd = get_section_bfd_owner (section);
5427 unsigned int bytes_read;
5428 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5431 map.dwarf5_is_dwarf64 = bytes_read != 4;
5432 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5433 if (bytes_read + length != section->size)
5435 /* There may be multiple per-CU indices. */
5436 warning (_("Section .debug_names in %s length %s does not match "
5437 "section length %s, ignoring .debug_names."),
5438 filename, plongest (bytes_read + length),
5439 pulongest (section->size));
5443 /* The version number. */
5444 uint16_t version = read_2_bytes (abfd, addr);
5448 warning (_("Section .debug_names in %s has unsupported version %d, "
5449 "ignoring .debug_names."),
5455 uint16_t padding = read_2_bytes (abfd, addr);
5459 warning (_("Section .debug_names in %s has unsupported padding %d, "
5460 "ignoring .debug_names."),
5465 /* comp_unit_count - The number of CUs in the CU list. */
5466 map.cu_count = read_4_bytes (abfd, addr);
5469 /* local_type_unit_count - The number of TUs in the local TU
5471 map.tu_count = read_4_bytes (abfd, addr);
5474 /* foreign_type_unit_count - The number of TUs in the foreign TU
5476 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5478 if (foreign_tu_count != 0)
5480 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5481 "ignoring .debug_names."),
5482 filename, static_cast<unsigned long> (foreign_tu_count));
5486 /* bucket_count - The number of hash buckets in the hash lookup
5488 map.bucket_count = read_4_bytes (abfd, addr);
5491 /* name_count - The number of unique names in the index. */
5492 map.name_count = read_4_bytes (abfd, addr);
5495 /* abbrev_table_size - The size in bytes of the abbreviations
5497 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5500 /* augmentation_string_size - The size in bytes of the augmentation
5501 string. This value is rounded up to a multiple of 4. */
5502 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5504 map.augmentation_is_gdb = ((augmentation_string_size
5505 == sizeof (dwarf5_augmentation))
5506 && memcmp (addr, dwarf5_augmentation,
5507 sizeof (dwarf5_augmentation)) == 0);
5508 augmentation_string_size += (-augmentation_string_size) & 3;
5509 addr += augmentation_string_size;
5512 map.cu_table_reordered = addr;
5513 addr += map.cu_count * map.offset_size;
5515 /* List of Local TUs */
5516 map.tu_table_reordered = addr;
5517 addr += map.tu_count * map.offset_size;
5519 /* Hash Lookup Table */
5520 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5521 addr += map.bucket_count * 4;
5522 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5523 addr += map.name_count * 4;
5526 map.name_table_string_offs_reordered = addr;
5527 addr += map.name_count * map.offset_size;
5528 map.name_table_entry_offs_reordered = addr;
5529 addr += map.name_count * map.offset_size;
5531 const gdb_byte *abbrev_table_start = addr;
5534 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5539 const auto insertpair
5540 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5541 if (!insertpair.second)
5543 warning (_("Section .debug_names in %s has duplicate index %s, "
5544 "ignoring .debug_names."),
5545 filename, pulongest (index_num));
5548 mapped_debug_names::index_val &indexval = insertpair.first->second;
5549 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5554 mapped_debug_names::index_val::attr attr;
5555 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5557 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5559 if (attr.form == DW_FORM_implicit_const)
5561 attr.implicit_const = read_signed_leb128 (abfd, addr,
5565 if (attr.dw_idx == 0 && attr.form == 0)
5567 indexval.attr_vec.push_back (std::move (attr));
5570 if (addr != abbrev_table_start + abbrev_table_size)
5572 warning (_("Section .debug_names in %s has abbreviation_table "
5573 "of size %zu vs. written as %u, ignoring .debug_names."),
5574 filename, addr - abbrev_table_start, abbrev_table_size);
5577 map.entry_pool = addr;
5582 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5586 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5587 const mapped_debug_names &map,
5588 dwarf2_section_info §ion,
5591 sect_offset sect_off_prev;
5592 for (uint32_t i = 0; i <= map.cu_count; ++i)
5594 sect_offset sect_off_next;
5595 if (i < map.cu_count)
5598 = (sect_offset) (extract_unsigned_integer
5599 (map.cu_table_reordered + i * map.offset_size,
5601 map.dwarf5_byte_order));
5604 sect_off_next = (sect_offset) section.size;
5607 const ULONGEST length = sect_off_next - sect_off_prev;
5608 dwarf2_per_cu_data *per_cu
5609 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5610 sect_off_prev, length);
5611 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5613 sect_off_prev = sect_off_next;
5617 /* Read the CU list from the mapped index, and use it to create all
5618 the CU objects for this dwarf2_per_objfile. */
5621 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5622 const mapped_debug_names &map,
5623 const mapped_debug_names &dwz_map)
5625 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5626 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5628 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5629 dwarf2_per_objfile->info,
5630 false /* is_dwz */);
5632 if (dwz_map.cu_count == 0)
5635 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5636 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5640 /* Read .debug_names. If everything went ok, initialize the "quick"
5641 elements of all the CUs and return true. Otherwise, return false. */
5644 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5646 std::unique_ptr<mapped_debug_names> map
5647 (new mapped_debug_names (dwarf2_per_objfile));
5648 mapped_debug_names dwz_map (dwarf2_per_objfile);
5649 struct objfile *objfile = dwarf2_per_objfile->objfile;
5651 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5652 &dwarf2_per_objfile->debug_names,
5656 /* Don't use the index if it's empty. */
5657 if (map->name_count == 0)
5660 /* If there is a .dwz file, read it so we can get its CU list as
5662 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5665 if (!read_debug_names_from_section (objfile,
5666 bfd_get_filename (dwz->dwz_bfd),
5667 &dwz->debug_names, dwz_map))
5669 warning (_("could not read '.debug_names' section from %s; skipping"),
5670 bfd_get_filename (dwz->dwz_bfd));
5675 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5677 if (map->tu_count != 0)
5679 /* We can only handle a single .debug_types when we have an
5681 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5684 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5685 dwarf2_per_objfile->types, 0);
5687 create_signatured_type_table_from_debug_names
5688 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5691 create_addrmap_from_aranges (dwarf2_per_objfile,
5692 &dwarf2_per_objfile->debug_aranges);
5694 dwarf2_per_objfile->debug_names_table = std::move (map);
5695 dwarf2_per_objfile->using_index = 1;
5696 dwarf2_per_objfile->quick_file_names_table =
5697 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5702 /* Type used to manage iterating over all CUs looking for a symbol for
5705 class dw2_debug_names_iterator
5708 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5709 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5710 dw2_debug_names_iterator (const mapped_debug_names &map,
5711 bool want_specific_block,
5712 block_enum block_index, domain_enum domain,
5714 : m_map (map), m_want_specific_block (want_specific_block),
5715 m_block_index (block_index), m_domain (domain),
5716 m_addr (find_vec_in_debug_names (map, name))
5719 dw2_debug_names_iterator (const mapped_debug_names &map,
5720 search_domain search, uint32_t namei)
5723 m_addr (find_vec_in_debug_names (map, namei))
5726 /* Return the next matching CU or NULL if there are no more. */
5727 dwarf2_per_cu_data *next ();
5730 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5732 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5735 /* The internalized form of .debug_names. */
5736 const mapped_debug_names &m_map;
5738 /* If true, only look for symbols that match BLOCK_INDEX. */
5739 const bool m_want_specific_block = false;
5741 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5742 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5744 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5746 /* The kind of symbol we're looking for. */
5747 const domain_enum m_domain = UNDEF_DOMAIN;
5748 const search_domain m_search = ALL_DOMAIN;
5750 /* The list of CUs from the index entry of the symbol, or NULL if
5752 const gdb_byte *m_addr;
5756 mapped_debug_names::namei_to_name (uint32_t namei) const
5758 const ULONGEST namei_string_offs
5759 = extract_unsigned_integer ((name_table_string_offs_reordered
5760 + namei * offset_size),
5763 return read_indirect_string_at_offset
5764 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5767 /* Find a slot in .debug_names for the object named NAME. If NAME is
5768 found, return pointer to its pool data. If NAME cannot be found,
5772 dw2_debug_names_iterator::find_vec_in_debug_names
5773 (const mapped_debug_names &map, const char *name)
5775 int (*cmp) (const char *, const char *);
5777 if (current_language->la_language == language_cplus
5778 || current_language->la_language == language_fortran
5779 || current_language->la_language == language_d)
5781 /* NAME is already canonical. Drop any qualifiers as
5782 .debug_names does not contain any. */
5784 if (strchr (name, '(') != NULL)
5786 gdb::unique_xmalloc_ptr<char> without_params
5787 = cp_remove_params (name);
5789 if (without_params != NULL)
5791 name = without_params.get();
5796 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5798 const uint32_t full_hash = dwarf5_djb_hash (name);
5800 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5801 (map.bucket_table_reordered
5802 + (full_hash % map.bucket_count)), 4,
5803 map.dwarf5_byte_order);
5807 if (namei >= map.name_count)
5809 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5811 namei, map.name_count,
5812 objfile_name (map.dwarf2_per_objfile->objfile));
5818 const uint32_t namei_full_hash
5819 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5820 (map.hash_table_reordered + namei), 4,
5821 map.dwarf5_byte_order);
5822 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5825 if (full_hash == namei_full_hash)
5827 const char *const namei_string = map.namei_to_name (namei);
5829 #if 0 /* An expensive sanity check. */
5830 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5832 complaint (_("Wrong .debug_names hash for string at index %u "
5834 namei, objfile_name (dwarf2_per_objfile->objfile));
5839 if (cmp (namei_string, name) == 0)
5841 const ULONGEST namei_entry_offs
5842 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5843 + namei * map.offset_size),
5844 map.offset_size, map.dwarf5_byte_order);
5845 return map.entry_pool + namei_entry_offs;
5850 if (namei >= map.name_count)
5856 dw2_debug_names_iterator::find_vec_in_debug_names
5857 (const mapped_debug_names &map, uint32_t namei)
5859 if (namei >= map.name_count)
5861 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5863 namei, map.name_count,
5864 objfile_name (map.dwarf2_per_objfile->objfile));
5868 const ULONGEST namei_entry_offs
5869 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5870 + namei * map.offset_size),
5871 map.offset_size, map.dwarf5_byte_order);
5872 return map.entry_pool + namei_entry_offs;
5875 /* See dw2_debug_names_iterator. */
5877 dwarf2_per_cu_data *
5878 dw2_debug_names_iterator::next ()
5883 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5884 struct objfile *objfile = dwarf2_per_objfile->objfile;
5885 bfd *const abfd = objfile->obfd;
5889 unsigned int bytes_read;
5890 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5891 m_addr += bytes_read;
5895 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5896 if (indexval_it == m_map.abbrev_map.cend ())
5898 complaint (_("Wrong .debug_names undefined abbrev code %s "
5900 pulongest (abbrev), objfile_name (objfile));
5903 const mapped_debug_names::index_val &indexval = indexval_it->second;
5904 bool have_is_static = false;
5906 dwarf2_per_cu_data *per_cu = NULL;
5907 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5912 case DW_FORM_implicit_const:
5913 ull = attr.implicit_const;
5915 case DW_FORM_flag_present:
5919 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5920 m_addr += bytes_read;
5923 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5924 dwarf_form_name (attr.form),
5925 objfile_name (objfile));
5928 switch (attr.dw_idx)
5930 case DW_IDX_compile_unit:
5931 /* Don't crash on bad data. */
5932 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5934 complaint (_(".debug_names entry has bad CU index %s"
5937 objfile_name (dwarf2_per_objfile->objfile));
5940 per_cu = dwarf2_per_objfile->get_cutu (ull);
5942 case DW_IDX_type_unit:
5943 /* Don't crash on bad data. */
5944 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5946 complaint (_(".debug_names entry has bad TU index %s"
5949 objfile_name (dwarf2_per_objfile->objfile));
5952 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5954 case DW_IDX_GNU_internal:
5955 if (!m_map.augmentation_is_gdb)
5957 have_is_static = true;
5960 case DW_IDX_GNU_external:
5961 if (!m_map.augmentation_is_gdb)
5963 have_is_static = true;
5969 /* Skip if already read in. */
5970 if (per_cu->v.quick->compunit_symtab)
5973 /* Check static vs global. */
5976 const bool want_static = m_block_index != GLOBAL_BLOCK;
5977 if (m_want_specific_block && want_static != is_static)
5981 /* Match dw2_symtab_iter_next, symbol_kind
5982 and debug_names::psymbol_tag. */
5986 switch (indexval.dwarf_tag)
5988 case DW_TAG_variable:
5989 case DW_TAG_subprogram:
5990 /* Some types are also in VAR_DOMAIN. */
5991 case DW_TAG_typedef:
5992 case DW_TAG_structure_type:
5999 switch (indexval.dwarf_tag)
6001 case DW_TAG_typedef:
6002 case DW_TAG_structure_type:
6009 switch (indexval.dwarf_tag)
6012 case DW_TAG_variable:
6022 /* Match dw2_expand_symtabs_matching, symbol_kind and
6023 debug_names::psymbol_tag. */
6026 case VARIABLES_DOMAIN:
6027 switch (indexval.dwarf_tag)
6029 case DW_TAG_variable:
6035 case FUNCTIONS_DOMAIN:
6036 switch (indexval.dwarf_tag)
6038 case DW_TAG_subprogram:
6045 switch (indexval.dwarf_tag)
6047 case DW_TAG_typedef:
6048 case DW_TAG_structure_type:
6061 static struct compunit_symtab *
6062 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6063 const char *name, domain_enum domain)
6065 const block_enum block_index = static_cast<block_enum> (block_index_int);
6066 struct dwarf2_per_objfile *dwarf2_per_objfile
6067 = get_dwarf2_per_objfile (objfile);
6069 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6072 /* index is NULL if OBJF_READNOW. */
6075 const auto &map = *mapp;
6077 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6078 block_index, domain, name);
6080 struct compunit_symtab *stab_best = NULL;
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6084 struct symbol *sym, *with_opaque = NULL;
6085 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6086 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6087 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6089 sym = block_find_symbol (block, name, domain,
6090 block_find_non_opaque_type_preferred,
6093 /* Some caution must be observed with overloaded functions and
6094 methods, since the index will not contain any overload
6095 information (but NAME might contain it). */
6098 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6100 if (with_opaque != NULL
6101 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6104 /* Keep looking through other CUs. */
6110 /* This dumps minimal information about .debug_names. It is called
6111 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6112 uses this to verify that .debug_names has been loaded. */
6115 dw2_debug_names_dump (struct objfile *objfile)
6117 struct dwarf2_per_objfile *dwarf2_per_objfile
6118 = get_dwarf2_per_objfile (objfile);
6120 gdb_assert (dwarf2_per_objfile->using_index);
6121 printf_filtered (".debug_names:");
6122 if (dwarf2_per_objfile->debug_names_table)
6123 printf_filtered (" exists\n");
6125 printf_filtered (" faked for \"readnow\"\n");
6126 printf_filtered ("\n");
6130 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6131 const char *func_name)
6133 struct dwarf2_per_objfile *dwarf2_per_objfile
6134 = get_dwarf2_per_objfile (objfile);
6136 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6137 if (dwarf2_per_objfile->debug_names_table)
6139 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6141 /* Note: It doesn't matter what we pass for block_index here. */
6142 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6143 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6145 struct dwarf2_per_cu_data *per_cu;
6146 while ((per_cu = iter.next ()) != NULL)
6147 dw2_instantiate_symtab (per_cu, false);
6152 dw2_debug_names_expand_symtabs_matching
6153 (struct objfile *objfile,
6154 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6155 const lookup_name_info &lookup_name,
6156 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6157 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6158 enum search_domain kind)
6160 struct dwarf2_per_objfile *dwarf2_per_objfile
6161 = get_dwarf2_per_objfile (objfile);
6163 /* debug_names_table is NULL if OBJF_READNOW. */
6164 if (!dwarf2_per_objfile->debug_names_table)
6167 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6169 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6171 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6173 kind, [&] (offset_type namei)
6175 /* The name was matched, now expand corresponding CUs that were
6177 dw2_debug_names_iterator iter (map, kind, namei);
6179 struct dwarf2_per_cu_data *per_cu;
6180 while ((per_cu = iter.next ()) != NULL)
6181 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6186 const struct quick_symbol_functions dwarf2_debug_names_functions =
6189 dw2_find_last_source_symtab,
6190 dw2_forget_cached_source_info,
6191 dw2_map_symtabs_matching_filename,
6192 dw2_debug_names_lookup_symbol,
6194 dw2_debug_names_dump,
6195 dw2_debug_names_expand_symtabs_for_function,
6196 dw2_expand_all_symtabs,
6197 dw2_expand_symtabs_with_fullname,
6198 dw2_map_matching_symbols,
6199 dw2_debug_names_expand_symtabs_matching,
6200 dw2_find_pc_sect_compunit_symtab,
6202 dw2_map_symbol_filenames
6205 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6206 to either a dwarf2_per_objfile or dwz_file object. */
6208 template <typename T>
6209 static gdb::array_view<const gdb_byte>
6210 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6212 dwarf2_section_info *section = §ion_owner->gdb_index;
6214 if (dwarf2_section_empty_p (section))
6217 /* Older elfutils strip versions could keep the section in the main
6218 executable while splitting it for the separate debug info file. */
6219 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6222 dwarf2_read_section (obj, section);
6224 /* dwarf2_section_info::size is a bfd_size_type, while
6225 gdb::array_view works with size_t. On 32-bit hosts, with
6226 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6227 is 32-bit. So we need an explicit narrowing conversion here.
6228 This is fine, because it's impossible to allocate or mmap an
6229 array/buffer larger than what size_t can represent. */
6230 return gdb::make_array_view (section->buffer, section->size);
6233 /* Lookup the index cache for the contents of the index associated to
6236 static gdb::array_view<const gdb_byte>
6237 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6239 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6240 if (build_id == nullptr)
6243 return global_index_cache.lookup_gdb_index (build_id,
6244 &dwarf2_obj->index_cache_res);
6247 /* Same as the above, but for DWZ. */
6249 static gdb::array_view<const gdb_byte>
6250 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6252 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6253 if (build_id == nullptr)
6256 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6259 /* See symfile.h. */
6262 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6264 struct dwarf2_per_objfile *dwarf2_per_objfile
6265 = get_dwarf2_per_objfile (objfile);
6267 /* If we're about to read full symbols, don't bother with the
6268 indices. In this case we also don't care if some other debug
6269 format is making psymtabs, because they are all about to be
6271 if ((objfile->flags & OBJF_READNOW))
6273 dwarf2_per_objfile->using_index = 1;
6274 create_all_comp_units (dwarf2_per_objfile);
6275 create_all_type_units (dwarf2_per_objfile);
6276 dwarf2_per_objfile->quick_file_names_table
6277 = create_quick_file_names_table
6278 (dwarf2_per_objfile->all_comp_units.size ());
6280 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6281 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6283 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6285 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6286 struct dwarf2_per_cu_quick_data);
6289 /* Return 1 so that gdb sees the "quick" functions. However,
6290 these functions will be no-ops because we will have expanded
6292 *index_kind = dw_index_kind::GDB_INDEX;
6296 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6298 *index_kind = dw_index_kind::DEBUG_NAMES;
6302 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6303 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6304 get_gdb_index_contents_from_section<dwz_file>))
6306 *index_kind = dw_index_kind::GDB_INDEX;
6310 /* ... otherwise, try to find the index in the index cache. */
6311 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6312 get_gdb_index_contents_from_cache,
6313 get_gdb_index_contents_from_cache_dwz))
6315 global_index_cache.hit ();
6316 *index_kind = dw_index_kind::GDB_INDEX;
6320 global_index_cache.miss ();
6326 /* Build a partial symbol table. */
6329 dwarf2_build_psymtabs (struct objfile *objfile)
6331 struct dwarf2_per_objfile *dwarf2_per_objfile
6332 = get_dwarf2_per_objfile (objfile);
6334 init_psymbol_list (objfile, 1024);
6338 /* This isn't really ideal: all the data we allocate on the
6339 objfile's obstack is still uselessly kept around. However,
6340 freeing it seems unsafe. */
6341 psymtab_discarder psymtabs (objfile);
6342 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6345 /* (maybe) store an index in the cache. */
6346 global_index_cache.store (dwarf2_per_objfile);
6348 catch (const gdb_exception_error &except)
6350 exception_print (gdb_stderr, except);
6354 /* Return the total length of the CU described by HEADER. */
6357 get_cu_length (const struct comp_unit_head *header)
6359 return header->initial_length_size + header->length;
6362 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6365 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6367 sect_offset bottom = cu_header->sect_off;
6368 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6370 return sect_off >= bottom && sect_off < top;
6373 /* Find the base address of the compilation unit for range lists and
6374 location lists. It will normally be specified by DW_AT_low_pc.
6375 In DWARF-3 draft 4, the base address could be overridden by
6376 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6377 compilation units with discontinuous ranges. */
6380 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6382 struct attribute *attr;
6385 cu->base_address = 0;
6387 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6390 cu->base_address = attr_value_as_address (attr);
6395 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6398 cu->base_address = attr_value_as_address (attr);
6404 /* Read in the comp unit header information from the debug_info at info_ptr.
6405 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6406 NOTE: This leaves members offset, first_die_offset to be filled in
6409 static const gdb_byte *
6410 read_comp_unit_head (struct comp_unit_head *cu_header,
6411 const gdb_byte *info_ptr,
6412 struct dwarf2_section_info *section,
6413 rcuh_kind section_kind)
6416 unsigned int bytes_read;
6417 const char *filename = get_section_file_name (section);
6418 bfd *abfd = get_section_bfd_owner (section);
6420 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6421 cu_header->initial_length_size = bytes_read;
6422 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6423 info_ptr += bytes_read;
6424 cu_header->version = read_2_bytes (abfd, info_ptr);
6425 if (cu_header->version < 2 || cu_header->version > 5)
6426 error (_("Dwarf Error: wrong version in compilation unit header "
6427 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6428 cu_header->version, filename);
6430 if (cu_header->version < 5)
6431 switch (section_kind)
6433 case rcuh_kind::COMPILE:
6434 cu_header->unit_type = DW_UT_compile;
6436 case rcuh_kind::TYPE:
6437 cu_header->unit_type = DW_UT_type;
6440 internal_error (__FILE__, __LINE__,
6441 _("read_comp_unit_head: invalid section_kind"));
6445 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6446 (read_1_byte (abfd, info_ptr));
6448 switch (cu_header->unit_type)
6451 if (section_kind != rcuh_kind::COMPILE)
6452 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6453 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6457 section_kind = rcuh_kind::TYPE;
6460 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6461 "(is %d, should be %d or %d) [in module %s]"),
6462 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6465 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6468 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6471 info_ptr += bytes_read;
6472 if (cu_header->version < 5)
6474 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6477 signed_addr = bfd_get_sign_extend_vma (abfd);
6478 if (signed_addr < 0)
6479 internal_error (__FILE__, __LINE__,
6480 _("read_comp_unit_head: dwarf from non elf file"));
6481 cu_header->signed_addr_p = signed_addr;
6483 if (section_kind == rcuh_kind::TYPE)
6485 LONGEST type_offset;
6487 cu_header->signature = read_8_bytes (abfd, info_ptr);
6490 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6491 info_ptr += bytes_read;
6492 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6493 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6494 error (_("Dwarf Error: Too big type_offset in compilation unit "
6495 "header (is %s) [in module %s]"), plongest (type_offset),
6502 /* Helper function that returns the proper abbrev section for
6505 static struct dwarf2_section_info *
6506 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6508 struct dwarf2_section_info *abbrev;
6509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6511 if (this_cu->is_dwz)
6512 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6514 abbrev = &dwarf2_per_objfile->abbrev;
6519 /* Subroutine of read_and_check_comp_unit_head and
6520 read_and_check_type_unit_head to simplify them.
6521 Perform various error checking on the header. */
6524 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6525 struct comp_unit_head *header,
6526 struct dwarf2_section_info *section,
6527 struct dwarf2_section_info *abbrev_section)
6529 const char *filename = get_section_file_name (section);
6531 if (to_underlying (header->abbrev_sect_off)
6532 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6533 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6534 "(offset %s + 6) [in module %s]"),
6535 sect_offset_str (header->abbrev_sect_off),
6536 sect_offset_str (header->sect_off),
6539 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6540 avoid potential 32-bit overflow. */
6541 if (((ULONGEST) header->sect_off + get_cu_length (header))
6543 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6544 "(offset %s + 0) [in module %s]"),
6545 header->length, sect_offset_str (header->sect_off),
6549 /* Read in a CU/TU header and perform some basic error checking.
6550 The contents of the header are stored in HEADER.
6551 The result is a pointer to the start of the first DIE. */
6553 static const gdb_byte *
6554 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6555 struct comp_unit_head *header,
6556 struct dwarf2_section_info *section,
6557 struct dwarf2_section_info *abbrev_section,
6558 const gdb_byte *info_ptr,
6559 rcuh_kind section_kind)
6561 const gdb_byte *beg_of_comp_unit = info_ptr;
6563 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6565 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6567 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6569 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6575 /* Fetch the abbreviation table offset from a comp or type unit header. */
6578 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6579 struct dwarf2_section_info *section,
6580 sect_offset sect_off)
6582 bfd *abfd = get_section_bfd_owner (section);
6583 const gdb_byte *info_ptr;
6584 unsigned int initial_length_size, offset_size;
6587 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6588 info_ptr = section->buffer + to_underlying (sect_off);
6589 read_initial_length (abfd, info_ptr, &initial_length_size);
6590 offset_size = initial_length_size == 4 ? 4 : 8;
6591 info_ptr += initial_length_size;
6593 version = read_2_bytes (abfd, info_ptr);
6597 /* Skip unit type and address size. */
6601 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6604 /* Allocate a new partial symtab for file named NAME and mark this new
6605 partial symtab as being an include of PST. */
6608 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6609 struct objfile *objfile)
6611 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6613 if (!IS_ABSOLUTE_PATH (subpst->filename))
6615 /* It shares objfile->objfile_obstack. */
6616 subpst->dirname = pst->dirname;
6619 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6620 subpst->dependencies[0] = pst;
6621 subpst->number_of_dependencies = 1;
6623 subpst->read_symtab = pst->read_symtab;
6625 /* No private part is necessary for include psymtabs. This property
6626 can be used to differentiate between such include psymtabs and
6627 the regular ones. */
6628 subpst->read_symtab_private = NULL;
6631 /* Read the Line Number Program data and extract the list of files
6632 included by the source file represented by PST. Build an include
6633 partial symtab for each of these included files. */
6636 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6637 struct die_info *die,
6638 struct partial_symtab *pst)
6641 struct attribute *attr;
6643 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6645 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6647 return; /* No linetable, so no includes. */
6649 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6650 that we pass in the raw text_low here; that is ok because we're
6651 only decoding the line table to make include partial symtabs, and
6652 so the addresses aren't really used. */
6653 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6654 pst->raw_text_low (), 1);
6658 hash_signatured_type (const void *item)
6660 const struct signatured_type *sig_type
6661 = (const struct signatured_type *) item;
6663 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6664 return sig_type->signature;
6668 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6670 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6671 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6673 return lhs->signature == rhs->signature;
6676 /* Allocate a hash table for signatured types. */
6679 allocate_signatured_type_table (struct objfile *objfile)
6681 return htab_create_alloc_ex (41,
6682 hash_signatured_type,
6685 &objfile->objfile_obstack,
6686 hashtab_obstack_allocate,
6687 dummy_obstack_deallocate);
6690 /* A helper function to add a signatured type CU to a table. */
6693 add_signatured_type_cu_to_table (void **slot, void *datum)
6695 struct signatured_type *sigt = (struct signatured_type *) *slot;
6696 std::vector<signatured_type *> *all_type_units
6697 = (std::vector<signatured_type *> *) datum;
6699 all_type_units->push_back (sigt);
6704 /* A helper for create_debug_types_hash_table. Read types from SECTION
6705 and fill them into TYPES_HTAB. It will process only type units,
6706 therefore DW_UT_type. */
6709 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6710 struct dwo_file *dwo_file,
6711 dwarf2_section_info *section, htab_t &types_htab,
6712 rcuh_kind section_kind)
6714 struct objfile *objfile = dwarf2_per_objfile->objfile;
6715 struct dwarf2_section_info *abbrev_section;
6717 const gdb_byte *info_ptr, *end_ptr;
6719 abbrev_section = (dwo_file != NULL
6720 ? &dwo_file->sections.abbrev
6721 : &dwarf2_per_objfile->abbrev);
6723 if (dwarf_read_debug)
6724 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6725 get_section_name (section),
6726 get_section_file_name (abbrev_section));
6728 dwarf2_read_section (objfile, section);
6729 info_ptr = section->buffer;
6731 if (info_ptr == NULL)
6734 /* We can't set abfd until now because the section may be empty or
6735 not present, in which case the bfd is unknown. */
6736 abfd = get_section_bfd_owner (section);
6738 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6739 because we don't need to read any dies: the signature is in the
6742 end_ptr = info_ptr + section->size;
6743 while (info_ptr < end_ptr)
6745 struct signatured_type *sig_type;
6746 struct dwo_unit *dwo_tu;
6748 const gdb_byte *ptr = info_ptr;
6749 struct comp_unit_head header;
6750 unsigned int length;
6752 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6754 /* Initialize it due to a false compiler warning. */
6755 header.signature = -1;
6756 header.type_cu_offset_in_tu = (cu_offset) -1;
6758 /* We need to read the type's signature in order to build the hash
6759 table, but we don't need anything else just yet. */
6761 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6762 abbrev_section, ptr, section_kind);
6764 length = get_cu_length (&header);
6766 /* Skip dummy type units. */
6767 if (ptr >= info_ptr + length
6768 || peek_abbrev_code (abfd, ptr) == 0
6769 || header.unit_type != DW_UT_type)
6775 if (types_htab == NULL)
6778 types_htab = allocate_dwo_unit_table (objfile);
6780 types_htab = allocate_signatured_type_table (objfile);
6786 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6788 dwo_tu->dwo_file = dwo_file;
6789 dwo_tu->signature = header.signature;
6790 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6791 dwo_tu->section = section;
6792 dwo_tu->sect_off = sect_off;
6793 dwo_tu->length = length;
6797 /* N.B.: type_offset is not usable if this type uses a DWO file.
6798 The real type_offset is in the DWO file. */
6800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6801 struct signatured_type);
6802 sig_type->signature = header.signature;
6803 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6804 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6805 sig_type->per_cu.is_debug_types = 1;
6806 sig_type->per_cu.section = section;
6807 sig_type->per_cu.sect_off = sect_off;
6808 sig_type->per_cu.length = length;
6811 slot = htab_find_slot (types_htab,
6812 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6814 gdb_assert (slot != NULL);
6817 sect_offset dup_sect_off;
6821 const struct dwo_unit *dup_tu
6822 = (const struct dwo_unit *) *slot;
6824 dup_sect_off = dup_tu->sect_off;
6828 const struct signatured_type *dup_tu
6829 = (const struct signatured_type *) *slot;
6831 dup_sect_off = dup_tu->per_cu.sect_off;
6834 complaint (_("debug type entry at offset %s is duplicate to"
6835 " the entry at offset %s, signature %s"),
6836 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6837 hex_string (header.signature));
6839 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6841 if (dwarf_read_debug > 1)
6842 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6843 sect_offset_str (sect_off),
6844 hex_string (header.signature));
6850 /* Create the hash table of all entries in the .debug_types
6851 (or .debug_types.dwo) section(s).
6852 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6853 otherwise it is NULL.
6855 The result is a pointer to the hash table or NULL if there are no types.
6857 Note: This function processes DWO files only, not DWP files. */
6860 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6861 struct dwo_file *dwo_file,
6862 VEC (dwarf2_section_info_def) *types,
6866 struct dwarf2_section_info *section;
6868 if (VEC_empty (dwarf2_section_info_def, types))
6872 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6874 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6875 types_htab, rcuh_kind::TYPE);
6878 /* Create the hash table of all entries in the .debug_types section,
6879 and initialize all_type_units.
6880 The result is zero if there is an error (e.g. missing .debug_types section),
6881 otherwise non-zero. */
6884 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6886 htab_t types_htab = NULL;
6888 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6889 &dwarf2_per_objfile->info, types_htab,
6890 rcuh_kind::COMPILE);
6891 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6892 dwarf2_per_objfile->types, types_htab);
6893 if (types_htab == NULL)
6895 dwarf2_per_objfile->signatured_types = NULL;
6899 dwarf2_per_objfile->signatured_types = types_htab;
6901 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6902 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6904 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6905 &dwarf2_per_objfile->all_type_units);
6910 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6911 If SLOT is non-NULL, it is the entry to use in the hash table.
6912 Otherwise we find one. */
6914 static struct signatured_type *
6915 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6918 struct objfile *objfile = dwarf2_per_objfile->objfile;
6920 if (dwarf2_per_objfile->all_type_units.size ()
6921 == dwarf2_per_objfile->all_type_units.capacity ())
6922 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6924 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6925 struct signatured_type);
6927 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6928 sig_type->signature = sig;
6929 sig_type->per_cu.is_debug_types = 1;
6930 if (dwarf2_per_objfile->using_index)
6932 sig_type->per_cu.v.quick =
6933 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6934 struct dwarf2_per_cu_quick_data);
6939 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6942 gdb_assert (*slot == NULL);
6944 /* The rest of sig_type must be filled in by the caller. */
6948 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6949 Fill in SIG_ENTRY with DWO_ENTRY. */
6952 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6953 struct signatured_type *sig_entry,
6954 struct dwo_unit *dwo_entry)
6956 /* Make sure we're not clobbering something we don't expect to. */
6957 gdb_assert (! sig_entry->per_cu.queued);
6958 gdb_assert (sig_entry->per_cu.cu == NULL);
6959 if (dwarf2_per_objfile->using_index)
6961 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6962 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6965 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6966 gdb_assert (sig_entry->signature == dwo_entry->signature);
6967 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6968 gdb_assert (sig_entry->type_unit_group == NULL);
6969 gdb_assert (sig_entry->dwo_unit == NULL);
6971 sig_entry->per_cu.section = dwo_entry->section;
6972 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6973 sig_entry->per_cu.length = dwo_entry->length;
6974 sig_entry->per_cu.reading_dwo_directly = 1;
6975 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6976 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6977 sig_entry->dwo_unit = dwo_entry;
6980 /* Subroutine of lookup_signatured_type.
6981 If we haven't read the TU yet, create the signatured_type data structure
6982 for a TU to be read in directly from a DWO file, bypassing the stub.
6983 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6984 using .gdb_index, then when reading a CU we want to stay in the DWO file
6985 containing that CU. Otherwise we could end up reading several other DWO
6986 files (due to comdat folding) to process the transitive closure of all the
6987 mentioned TUs, and that can be slow. The current DWO file will have every
6988 type signature that it needs.
6989 We only do this for .gdb_index because in the psymtab case we already have
6990 to read all the DWOs to build the type unit groups. */
6992 static struct signatured_type *
6993 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6995 struct dwarf2_per_objfile *dwarf2_per_objfile
6996 = cu->per_cu->dwarf2_per_objfile;
6997 struct objfile *objfile = dwarf2_per_objfile->objfile;
6998 struct dwo_file *dwo_file;
6999 struct dwo_unit find_dwo_entry, *dwo_entry;
7000 struct signatured_type find_sig_entry, *sig_entry;
7003 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7005 /* If TU skeletons have been removed then we may not have read in any
7007 if (dwarf2_per_objfile->signatured_types == NULL)
7009 dwarf2_per_objfile->signatured_types
7010 = allocate_signatured_type_table (objfile);
7013 /* We only ever need to read in one copy of a signatured type.
7014 Use the global signatured_types array to do our own comdat-folding
7015 of types. If this is the first time we're reading this TU, and
7016 the TU has an entry in .gdb_index, replace the recorded data from
7017 .gdb_index with this TU. */
7019 find_sig_entry.signature = sig;
7020 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7021 &find_sig_entry, INSERT);
7022 sig_entry = (struct signatured_type *) *slot;
7024 /* We can get here with the TU already read, *or* in the process of being
7025 read. Don't reassign the global entry to point to this DWO if that's
7026 the case. Also note that if the TU is already being read, it may not
7027 have come from a DWO, the program may be a mix of Fission-compiled
7028 code and non-Fission-compiled code. */
7030 /* Have we already tried to read this TU?
7031 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7032 needn't exist in the global table yet). */
7033 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7036 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7037 dwo_unit of the TU itself. */
7038 dwo_file = cu->dwo_unit->dwo_file;
7040 /* Ok, this is the first time we're reading this TU. */
7041 if (dwo_file->tus == NULL)
7043 find_dwo_entry.signature = sig;
7044 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7045 if (dwo_entry == NULL)
7048 /* If the global table doesn't have an entry for this TU, add one. */
7049 if (sig_entry == NULL)
7050 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7052 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7053 sig_entry->per_cu.tu_read = 1;
7057 /* Subroutine of lookup_signatured_type.
7058 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7059 then try the DWP file. If the TU stub (skeleton) has been removed then
7060 it won't be in .gdb_index. */
7062 static struct signatured_type *
7063 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7065 struct dwarf2_per_objfile *dwarf2_per_objfile
7066 = cu->per_cu->dwarf2_per_objfile;
7067 struct objfile *objfile = dwarf2_per_objfile->objfile;
7068 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7069 struct dwo_unit *dwo_entry;
7070 struct signatured_type find_sig_entry, *sig_entry;
7073 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7074 gdb_assert (dwp_file != NULL);
7076 /* If TU skeletons have been removed then we may not have read in any
7078 if (dwarf2_per_objfile->signatured_types == NULL)
7080 dwarf2_per_objfile->signatured_types
7081 = allocate_signatured_type_table (objfile);
7084 find_sig_entry.signature = sig;
7085 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7086 &find_sig_entry, INSERT);
7087 sig_entry = (struct signatured_type *) *slot;
7089 /* Have we already tried to read this TU?
7090 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7091 needn't exist in the global table yet). */
7092 if (sig_entry != NULL)
7095 if (dwp_file->tus == NULL)
7097 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7098 sig, 1 /* is_debug_types */);
7099 if (dwo_entry == NULL)
7102 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7103 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7108 /* Lookup a signature based type for DW_FORM_ref_sig8.
7109 Returns NULL if signature SIG is not present in the table.
7110 It is up to the caller to complain about this. */
7112 static struct signatured_type *
7113 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7115 struct dwarf2_per_objfile *dwarf2_per_objfile
7116 = cu->per_cu->dwarf2_per_objfile;
7119 && dwarf2_per_objfile->using_index)
7121 /* We're in a DWO/DWP file, and we're using .gdb_index.
7122 These cases require special processing. */
7123 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7124 return lookup_dwo_signatured_type (cu, sig);
7126 return lookup_dwp_signatured_type (cu, sig);
7130 struct signatured_type find_entry, *entry;
7132 if (dwarf2_per_objfile->signatured_types == NULL)
7134 find_entry.signature = sig;
7135 entry = ((struct signatured_type *)
7136 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7141 /* Low level DIE reading support. */
7143 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7146 init_cu_die_reader (struct die_reader_specs *reader,
7147 struct dwarf2_cu *cu,
7148 struct dwarf2_section_info *section,
7149 struct dwo_file *dwo_file,
7150 struct abbrev_table *abbrev_table)
7152 gdb_assert (section->readin && section->buffer != NULL);
7153 reader->abfd = get_section_bfd_owner (section);
7155 reader->dwo_file = dwo_file;
7156 reader->die_section = section;
7157 reader->buffer = section->buffer;
7158 reader->buffer_end = section->buffer + section->size;
7159 reader->comp_dir = NULL;
7160 reader->abbrev_table = abbrev_table;
7163 /* Subroutine of init_cutu_and_read_dies to simplify it.
7164 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7165 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7168 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7169 from it to the DIE in the DWO. If NULL we are skipping the stub.
7170 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7171 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7172 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7173 STUB_COMP_DIR may be non-NULL.
7174 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7175 are filled in with the info of the DIE from the DWO file.
7176 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7177 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7178 kept around for at least as long as *RESULT_READER.
7180 The result is non-zero if a valid (non-dummy) DIE was found. */
7183 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7184 struct dwo_unit *dwo_unit,
7185 struct die_info *stub_comp_unit_die,
7186 const char *stub_comp_dir,
7187 struct die_reader_specs *result_reader,
7188 const gdb_byte **result_info_ptr,
7189 struct die_info **result_comp_unit_die,
7190 int *result_has_children,
7191 abbrev_table_up *result_dwo_abbrev_table)
7193 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7194 struct objfile *objfile = dwarf2_per_objfile->objfile;
7195 struct dwarf2_cu *cu = this_cu->cu;
7197 const gdb_byte *begin_info_ptr, *info_ptr;
7198 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7199 int i,num_extra_attrs;
7200 struct dwarf2_section_info *dwo_abbrev_section;
7201 struct attribute *attr;
7202 struct die_info *comp_unit_die;
7204 /* At most one of these may be provided. */
7205 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7207 /* These attributes aren't processed until later:
7208 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7209 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7210 referenced later. However, these attributes are found in the stub
7211 which we won't have later. In order to not impose this complication
7212 on the rest of the code, we read them here and copy them to the
7221 if (stub_comp_unit_die != NULL)
7223 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7225 if (! this_cu->is_debug_types)
7226 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7227 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7228 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7229 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7230 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7232 /* There should be a DW_AT_addr_base attribute here (if needed).
7233 We need the value before we can process DW_FORM_GNU_addr_index
7234 or DW_FORM_addrx. */
7236 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7238 cu->addr_base = DW_UNSND (attr);
7240 /* There should be a DW_AT_ranges_base attribute here (if needed).
7241 We need the value before we can process DW_AT_ranges. */
7242 cu->ranges_base = 0;
7243 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7245 cu->ranges_base = DW_UNSND (attr);
7247 else if (stub_comp_dir != NULL)
7249 /* Reconstruct the comp_dir attribute to simplify the code below. */
7250 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7251 comp_dir->name = DW_AT_comp_dir;
7252 comp_dir->form = DW_FORM_string;
7253 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7254 DW_STRING (comp_dir) = stub_comp_dir;
7257 /* Set up for reading the DWO CU/TU. */
7258 cu->dwo_unit = dwo_unit;
7259 dwarf2_section_info *section = dwo_unit->section;
7260 dwarf2_read_section (objfile, section);
7261 abfd = get_section_bfd_owner (section);
7262 begin_info_ptr = info_ptr = (section->buffer
7263 + to_underlying (dwo_unit->sect_off));
7264 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7266 if (this_cu->is_debug_types)
7268 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7270 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7271 &cu->header, section,
7273 info_ptr, rcuh_kind::TYPE);
7274 /* This is not an assert because it can be caused by bad debug info. */
7275 if (sig_type->signature != cu->header.signature)
7277 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7278 " TU at offset %s [in module %s]"),
7279 hex_string (sig_type->signature),
7280 hex_string (cu->header.signature),
7281 sect_offset_str (dwo_unit->sect_off),
7282 bfd_get_filename (abfd));
7284 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7285 /* For DWOs coming from DWP files, we don't know the CU length
7286 nor the type's offset in the TU until now. */
7287 dwo_unit->length = get_cu_length (&cu->header);
7288 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7290 /* Establish the type offset that can be used to lookup the type.
7291 For DWO files, we don't know it until now. */
7292 sig_type->type_offset_in_section
7293 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7297 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7298 &cu->header, section,
7300 info_ptr, rcuh_kind::COMPILE);
7301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7302 /* For DWOs coming from DWP files, we don't know the CU length
7304 dwo_unit->length = get_cu_length (&cu->header);
7307 *result_dwo_abbrev_table
7308 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7309 cu->header.abbrev_sect_off);
7310 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7311 result_dwo_abbrev_table->get ());
7313 /* Read in the die, but leave space to copy over the attributes
7314 from the stub. This has the benefit of simplifying the rest of
7315 the code - all the work to maintain the illusion of a single
7316 DW_TAG_{compile,type}_unit DIE is done here. */
7317 num_extra_attrs = ((stmt_list != NULL)
7321 + (comp_dir != NULL));
7322 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7323 result_has_children, num_extra_attrs);
7325 /* Copy over the attributes from the stub to the DIE we just read in. */
7326 comp_unit_die = *result_comp_unit_die;
7327 i = comp_unit_die->num_attrs;
7328 if (stmt_list != NULL)
7329 comp_unit_die->attrs[i++] = *stmt_list;
7331 comp_unit_die->attrs[i++] = *low_pc;
7332 if (high_pc != NULL)
7333 comp_unit_die->attrs[i++] = *high_pc;
7335 comp_unit_die->attrs[i++] = *ranges;
7336 if (comp_dir != NULL)
7337 comp_unit_die->attrs[i++] = *comp_dir;
7338 comp_unit_die->num_attrs += num_extra_attrs;
7340 if (dwarf_die_debug)
7342 fprintf_unfiltered (gdb_stdlog,
7343 "Read die from %s@0x%x of %s:\n",
7344 get_section_name (section),
7345 (unsigned) (begin_info_ptr - section->buffer),
7346 bfd_get_filename (abfd));
7347 dump_die (comp_unit_die, dwarf_die_debug);
7350 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7351 TUs by skipping the stub and going directly to the entry in the DWO file.
7352 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7353 to get it via circuitous means. Blech. */
7354 if (comp_dir != NULL)
7355 result_reader->comp_dir = DW_STRING (comp_dir);
7357 /* Skip dummy compilation units. */
7358 if (info_ptr >= begin_info_ptr + dwo_unit->length
7359 || peek_abbrev_code (abfd, info_ptr) == 0)
7362 *result_info_ptr = info_ptr;
7366 /* Subroutine of init_cutu_and_read_dies to simplify it.
7367 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7368 Returns NULL if the specified DWO unit cannot be found. */
7370 static struct dwo_unit *
7371 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7372 struct die_info *comp_unit_die)
7374 struct dwarf2_cu *cu = this_cu->cu;
7376 struct dwo_unit *dwo_unit;
7377 const char *comp_dir, *dwo_name;
7379 gdb_assert (cu != NULL);
7381 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7382 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7383 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7385 if (this_cu->is_debug_types)
7387 struct signatured_type *sig_type;
7389 /* Since this_cu is the first member of struct signatured_type,
7390 we can go from a pointer to one to a pointer to the other. */
7391 sig_type = (struct signatured_type *) this_cu;
7392 signature = sig_type->signature;
7393 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7397 struct attribute *attr;
7399 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7401 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7403 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7404 signature = DW_UNSND (attr);
7405 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7412 /* Subroutine of init_cutu_and_read_dies to simplify it.
7413 See it for a description of the parameters.
7414 Read a TU directly from a DWO file, bypassing the stub. */
7417 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7418 int use_existing_cu, int keep,
7419 die_reader_func_ftype *die_reader_func,
7422 std::unique_ptr<dwarf2_cu> new_cu;
7423 struct signatured_type *sig_type;
7424 struct die_reader_specs reader;
7425 const gdb_byte *info_ptr;
7426 struct die_info *comp_unit_die;
7428 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7430 /* Verify we can do the following downcast, and that we have the
7432 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7433 sig_type = (struct signatured_type *) this_cu;
7434 gdb_assert (sig_type->dwo_unit != NULL);
7436 if (use_existing_cu && this_cu->cu != NULL)
7438 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7439 /* There's no need to do the rereading_dwo_cu handling that
7440 init_cutu_and_read_dies does since we don't read the stub. */
7444 /* If !use_existing_cu, this_cu->cu must be NULL. */
7445 gdb_assert (this_cu->cu == NULL);
7446 new_cu.reset (new dwarf2_cu (this_cu));
7449 /* A future optimization, if needed, would be to use an existing
7450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7451 could share abbrev tables. */
7453 /* The abbreviation table used by READER, this must live at least as long as
7455 abbrev_table_up dwo_abbrev_table;
7457 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7458 NULL /* stub_comp_unit_die */,
7459 sig_type->dwo_unit->dwo_file->comp_dir,
7461 &comp_unit_die, &has_children,
7462 &dwo_abbrev_table) == 0)
7468 /* All the "real" work is done here. */
7469 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7471 /* This duplicates the code in init_cutu_and_read_dies,
7472 but the alternative is making the latter more complex.
7473 This function is only for the special case of using DWO files directly:
7474 no point in overly complicating the general case just to handle this. */
7475 if (new_cu != NULL && keep)
7477 /* Link this CU into read_in_chain. */
7478 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7479 dwarf2_per_objfile->read_in_chain = this_cu;
7480 /* The chain owns it now. */
7485 /* Initialize a CU (or TU) and read its DIEs.
7486 If the CU defers to a DWO file, read the DWO file as well.
7488 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7489 Otherwise the table specified in the comp unit header is read in and used.
7490 This is an optimization for when we already have the abbrev table.
7492 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7493 Otherwise, a new CU is allocated with xmalloc.
7495 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7496 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7498 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7499 linker) then DIE_READER_FUNC will not get called. */
7502 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7503 struct abbrev_table *abbrev_table,
7504 int use_existing_cu, int keep,
7506 die_reader_func_ftype *die_reader_func,
7509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7510 struct objfile *objfile = dwarf2_per_objfile->objfile;
7511 struct dwarf2_section_info *section = this_cu->section;
7512 bfd *abfd = get_section_bfd_owner (section);
7513 struct dwarf2_cu *cu;
7514 const gdb_byte *begin_info_ptr, *info_ptr;
7515 struct die_reader_specs reader;
7516 struct die_info *comp_unit_die;
7518 struct attribute *attr;
7519 struct signatured_type *sig_type = NULL;
7520 struct dwarf2_section_info *abbrev_section;
7521 /* Non-zero if CU currently points to a DWO file and we need to
7522 reread it. When this happens we need to reread the skeleton die
7523 before we can reread the DWO file (this only applies to CUs, not TUs). */
7524 int rereading_dwo_cu = 0;
7526 if (dwarf_die_debug)
7527 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7528 this_cu->is_debug_types ? "type" : "comp",
7529 sect_offset_str (this_cu->sect_off));
7531 if (use_existing_cu)
7534 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7535 file (instead of going through the stub), short-circuit all of this. */
7536 if (this_cu->reading_dwo_directly)
7538 /* Narrow down the scope of possibilities to have to understand. */
7539 gdb_assert (this_cu->is_debug_types);
7540 gdb_assert (abbrev_table == NULL);
7541 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7542 die_reader_func, data);
7546 /* This is cheap if the section is already read in. */
7547 dwarf2_read_section (objfile, section);
7549 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7551 abbrev_section = get_abbrev_section_for_cu (this_cu);
7553 std::unique_ptr<dwarf2_cu> new_cu;
7554 if (use_existing_cu && this_cu->cu != NULL)
7557 /* If this CU is from a DWO file we need to start over, we need to
7558 refetch the attributes from the skeleton CU.
7559 This could be optimized by retrieving those attributes from when we
7560 were here the first time: the previous comp_unit_die was stored in
7561 comp_unit_obstack. But there's no data yet that we need this
7563 if (cu->dwo_unit != NULL)
7564 rereading_dwo_cu = 1;
7568 /* If !use_existing_cu, this_cu->cu must be NULL. */
7569 gdb_assert (this_cu->cu == NULL);
7570 new_cu.reset (new dwarf2_cu (this_cu));
7574 /* Get the header. */
7575 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7577 /* We already have the header, there's no need to read it in again. */
7578 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7582 if (this_cu->is_debug_types)
7584 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7585 &cu->header, section,
7586 abbrev_section, info_ptr,
7589 /* Since per_cu is the first member of struct signatured_type,
7590 we can go from a pointer to one to a pointer to the other. */
7591 sig_type = (struct signatured_type *) this_cu;
7592 gdb_assert (sig_type->signature == cu->header.signature);
7593 gdb_assert (sig_type->type_offset_in_tu
7594 == cu->header.type_cu_offset_in_tu);
7595 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7597 /* LENGTH has not been set yet for type units if we're
7598 using .gdb_index. */
7599 this_cu->length = get_cu_length (&cu->header);
7601 /* Establish the type offset that can be used to lookup the type. */
7602 sig_type->type_offset_in_section =
7603 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7605 this_cu->dwarf_version = cu->header.version;
7609 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7610 &cu->header, section,
7613 rcuh_kind::COMPILE);
7615 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7616 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7617 this_cu->dwarf_version = cu->header.version;
7621 /* Skip dummy compilation units. */
7622 if (info_ptr >= begin_info_ptr + this_cu->length
7623 || peek_abbrev_code (abfd, info_ptr) == 0)
7626 /* If we don't have them yet, read the abbrevs for this compilation unit.
7627 And if we need to read them now, make sure they're freed when we're
7628 done (own the table through ABBREV_TABLE_HOLDER). */
7629 abbrev_table_up abbrev_table_holder;
7630 if (abbrev_table != NULL)
7631 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7635 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7636 cu->header.abbrev_sect_off);
7637 abbrev_table = abbrev_table_holder.get ();
7640 /* Read the top level CU/TU die. */
7641 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7642 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7644 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7647 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7648 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7649 table from the DWO file and pass the ownership over to us. It will be
7650 referenced from READER, so we must make sure to free it after we're done
7653 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7654 DWO CU, that this test will fail (the attribute will not be present). */
7655 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7656 abbrev_table_up dwo_abbrev_table;
7659 struct dwo_unit *dwo_unit;
7660 struct die_info *dwo_comp_unit_die;
7664 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7665 " has children (offset %s) [in module %s]"),
7666 sect_offset_str (this_cu->sect_off),
7667 bfd_get_filename (abfd));
7669 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7670 if (dwo_unit != NULL)
7672 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7673 comp_unit_die, NULL,
7675 &dwo_comp_unit_die, &has_children,
7676 &dwo_abbrev_table) == 0)
7681 comp_unit_die = dwo_comp_unit_die;
7685 /* Yikes, we couldn't find the rest of the DIE, we only have
7686 the stub. A complaint has already been logged. There's
7687 not much more we can do except pass on the stub DIE to
7688 die_reader_func. We don't want to throw an error on bad
7693 /* All of the above is setup for this call. Yikes. */
7694 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7696 /* Done, clean up. */
7697 if (new_cu != NULL && keep)
7699 /* Link this CU into read_in_chain. */
7700 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7701 dwarf2_per_objfile->read_in_chain = this_cu;
7702 /* The chain owns it now. */
7707 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7708 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7709 to have already done the lookup to find the DWO file).
7711 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7712 THIS_CU->is_debug_types, but nothing else.
7714 We fill in THIS_CU->length.
7716 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7717 linker) then DIE_READER_FUNC will not get called.
7719 THIS_CU->cu is always freed when done.
7720 This is done in order to not leave THIS_CU->cu in a state where we have
7721 to care whether it refers to the "main" CU or the DWO CU. */
7724 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7725 struct dwo_file *dwo_file,
7726 die_reader_func_ftype *die_reader_func,
7729 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7730 struct objfile *objfile = dwarf2_per_objfile->objfile;
7731 struct dwarf2_section_info *section = this_cu->section;
7732 bfd *abfd = get_section_bfd_owner (section);
7733 struct dwarf2_section_info *abbrev_section;
7734 const gdb_byte *begin_info_ptr, *info_ptr;
7735 struct die_reader_specs reader;
7736 struct die_info *comp_unit_die;
7739 if (dwarf_die_debug)
7740 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7741 this_cu->is_debug_types ? "type" : "comp",
7742 sect_offset_str (this_cu->sect_off));
7744 gdb_assert (this_cu->cu == NULL);
7746 abbrev_section = (dwo_file != NULL
7747 ? &dwo_file->sections.abbrev
7748 : get_abbrev_section_for_cu (this_cu));
7750 /* This is cheap if the section is already read in. */
7751 dwarf2_read_section (objfile, section);
7753 struct dwarf2_cu cu (this_cu);
7755 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7756 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7757 &cu.header, section,
7758 abbrev_section, info_ptr,
7759 (this_cu->is_debug_types
7761 : rcuh_kind::COMPILE));
7763 this_cu->length = get_cu_length (&cu.header);
7765 /* Skip dummy compilation units. */
7766 if (info_ptr >= begin_info_ptr + this_cu->length
7767 || peek_abbrev_code (abfd, info_ptr) == 0)
7770 abbrev_table_up abbrev_table
7771 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7772 cu.header.abbrev_sect_off);
7774 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7775 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7777 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7780 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7781 does not lookup the specified DWO file.
7782 This cannot be used to read DWO files.
7784 THIS_CU->cu is always freed when done.
7785 This is done in order to not leave THIS_CU->cu in a state where we have
7786 to care whether it refers to the "main" CU or the DWO CU.
7787 We can revisit this if the data shows there's a performance issue. */
7790 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7791 die_reader_func_ftype *die_reader_func,
7794 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7797 /* Type Unit Groups.
7799 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7800 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7801 so that all types coming from the same compilation (.o file) are grouped
7802 together. A future step could be to put the types in the same symtab as
7803 the CU the types ultimately came from. */
7806 hash_type_unit_group (const void *item)
7808 const struct type_unit_group *tu_group
7809 = (const struct type_unit_group *) item;
7811 return hash_stmt_list_entry (&tu_group->hash);
7815 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7817 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7818 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7820 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7823 /* Allocate a hash table for type unit groups. */
7826 allocate_type_unit_groups_table (struct objfile *objfile)
7828 return htab_create_alloc_ex (3,
7829 hash_type_unit_group,
7832 &objfile->objfile_obstack,
7833 hashtab_obstack_allocate,
7834 dummy_obstack_deallocate);
7837 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7838 partial symtabs. We combine several TUs per psymtab to not let the size
7839 of any one psymtab grow too big. */
7840 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7841 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7843 /* Helper routine for get_type_unit_group.
7844 Create the type_unit_group object used to hold one or more TUs. */
7846 static struct type_unit_group *
7847 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7849 struct dwarf2_per_objfile *dwarf2_per_objfile
7850 = cu->per_cu->dwarf2_per_objfile;
7851 struct objfile *objfile = dwarf2_per_objfile->objfile;
7852 struct dwarf2_per_cu_data *per_cu;
7853 struct type_unit_group *tu_group;
7855 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7856 struct type_unit_group);
7857 per_cu = &tu_group->per_cu;
7858 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7860 if (dwarf2_per_objfile->using_index)
7862 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7863 struct dwarf2_per_cu_quick_data);
7867 unsigned int line_offset = to_underlying (line_offset_struct);
7868 struct partial_symtab *pst;
7871 /* Give the symtab a useful name for debug purposes. */
7872 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7873 name = string_printf ("<type_units_%d>",
7874 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7876 name = string_printf ("<type_units_at_0x%x>", line_offset);
7878 pst = create_partial_symtab (per_cu, name.c_str ());
7882 tu_group->hash.dwo_unit = cu->dwo_unit;
7883 tu_group->hash.line_sect_off = line_offset_struct;
7888 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7889 STMT_LIST is a DW_AT_stmt_list attribute. */
7891 static struct type_unit_group *
7892 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7894 struct dwarf2_per_objfile *dwarf2_per_objfile
7895 = cu->per_cu->dwarf2_per_objfile;
7896 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7897 struct type_unit_group *tu_group;
7899 unsigned int line_offset;
7900 struct type_unit_group type_unit_group_for_lookup;
7902 if (dwarf2_per_objfile->type_unit_groups == NULL)
7904 dwarf2_per_objfile->type_unit_groups =
7905 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7908 /* Do we need to create a new group, or can we use an existing one? */
7912 line_offset = DW_UNSND (stmt_list);
7913 ++tu_stats->nr_symtab_sharers;
7917 /* Ugh, no stmt_list. Rare, but we have to handle it.
7918 We can do various things here like create one group per TU or
7919 spread them over multiple groups to split up the expansion work.
7920 To avoid worst case scenarios (too many groups or too large groups)
7921 we, umm, group them in bunches. */
7922 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7923 | (tu_stats->nr_stmt_less_type_units
7924 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7925 ++tu_stats->nr_stmt_less_type_units;
7928 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7929 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7930 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7931 &type_unit_group_for_lookup, INSERT);
7934 tu_group = (struct type_unit_group *) *slot;
7935 gdb_assert (tu_group != NULL);
7939 sect_offset line_offset_struct = (sect_offset) line_offset;
7940 tu_group = create_type_unit_group (cu, line_offset_struct);
7942 ++tu_stats->nr_symtabs;
7948 /* Partial symbol tables. */
7950 /* Create a psymtab named NAME and assign it to PER_CU.
7952 The caller must fill in the following details:
7953 dirname, textlow, texthigh. */
7955 static struct partial_symtab *
7956 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7958 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7959 struct partial_symtab *pst;
7961 pst = start_psymtab_common (objfile, name, 0);
7963 pst->psymtabs_addrmap_supported = 1;
7965 /* This is the glue that links PST into GDB's symbol API. */
7966 pst->read_symtab_private = per_cu;
7967 pst->read_symtab = dwarf2_read_symtab;
7968 per_cu->v.psymtab = pst;
7973 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7976 struct process_psymtab_comp_unit_data
7978 /* True if we are reading a DW_TAG_partial_unit. */
7980 int want_partial_unit;
7982 /* The "pretend" language that is used if the CU doesn't declare a
7985 enum language pretend_language;
7988 /* die_reader_func for process_psymtab_comp_unit. */
7991 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7992 const gdb_byte *info_ptr,
7993 struct die_info *comp_unit_die,
7997 struct dwarf2_cu *cu = reader->cu;
7998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8000 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8002 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8003 struct partial_symtab *pst;
8004 enum pc_bounds_kind cu_bounds_kind;
8005 const char *filename;
8006 struct process_psymtab_comp_unit_data *info
8007 = (struct process_psymtab_comp_unit_data *) data;
8009 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8012 gdb_assert (! per_cu->is_debug_types);
8014 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8016 /* Allocate a new partial symbol table structure. */
8017 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8018 if (filename == NULL)
8021 pst = create_partial_symtab (per_cu, filename);
8023 /* This must be done before calling dwarf2_build_include_psymtabs. */
8024 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8028 dwarf2_find_base_address (comp_unit_die, cu);
8030 /* Possibly set the default values of LOWPC and HIGHPC from
8032 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8033 &best_highpc, cu, pst);
8034 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8037 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8040 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8042 /* Store the contiguous range if it is not empty; it can be
8043 empty for CUs with no code. */
8044 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8048 /* Check if comp unit has_children.
8049 If so, read the rest of the partial symbols from this comp unit.
8050 If not, there's no more debug_info for this comp unit. */
8053 struct partial_die_info *first_die;
8054 CORE_ADDR lowpc, highpc;
8056 lowpc = ((CORE_ADDR) -1);
8057 highpc = ((CORE_ADDR) 0);
8059 first_die = load_partial_dies (reader, info_ptr, 1);
8061 scan_partial_symbols (first_die, &lowpc, &highpc,
8062 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8064 /* If we didn't find a lowpc, set it to highpc to avoid
8065 complaints from `maint check'. */
8066 if (lowpc == ((CORE_ADDR) -1))
8069 /* If the compilation unit didn't have an explicit address range,
8070 then use the information extracted from its child dies. */
8071 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8074 best_highpc = highpc;
8077 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8078 best_lowpc + baseaddr)
8080 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8081 best_highpc + baseaddr)
8084 end_psymtab_common (objfile, pst);
8086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8090 struct dwarf2_per_cu_data *iter;
8092 /* Fill in 'dependencies' here; we fill in 'users' in a
8094 pst->number_of_dependencies = len;
8096 = objfile->partial_symtabs->allocate_dependencies (len);
8098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8101 pst->dependencies[i] = iter->v.psymtab;
8103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8106 /* Get the list of files included in the current compilation unit,
8107 and build a psymtab for each of them. */
8108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8110 if (dwarf_read_debug)
8111 fprintf_unfiltered (gdb_stdlog,
8112 "Psymtab for %s unit @%s: %s - %s"
8113 ", %d global, %d static syms\n",
8114 per_cu->is_debug_types ? "type" : "comp",
8115 sect_offset_str (per_cu->sect_off),
8116 paddress (gdbarch, pst->text_low (objfile)),
8117 paddress (gdbarch, pst->text_high (objfile)),
8118 pst->n_global_syms, pst->n_static_syms);
8121 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8122 Process compilation unit THIS_CU for a psymtab. */
8125 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8126 int want_partial_unit,
8127 enum language pretend_language)
8129 /* If this compilation unit was already read in, free the
8130 cached copy in order to read it in again. This is
8131 necessary because we skipped some symbols when we first
8132 read in the compilation unit (see load_partial_dies).
8133 This problem could be avoided, but the benefit is unclear. */
8134 if (this_cu->cu != NULL)
8135 free_one_cached_comp_unit (this_cu);
8137 if (this_cu->is_debug_types)
8138 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8139 build_type_psymtabs_reader, NULL);
8142 process_psymtab_comp_unit_data info;
8143 info.want_partial_unit = want_partial_unit;
8144 info.pretend_language = pretend_language;
8145 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8146 process_psymtab_comp_unit_reader, &info);
8149 /* Age out any secondary CUs. */
8150 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8153 /* Reader function for build_type_psymtabs. */
8156 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8157 const gdb_byte *info_ptr,
8158 struct die_info *type_unit_die,
8162 struct dwarf2_per_objfile *dwarf2_per_objfile
8163 = reader->cu->per_cu->dwarf2_per_objfile;
8164 struct objfile *objfile = dwarf2_per_objfile->objfile;
8165 struct dwarf2_cu *cu = reader->cu;
8166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8167 struct signatured_type *sig_type;
8168 struct type_unit_group *tu_group;
8169 struct attribute *attr;
8170 struct partial_die_info *first_die;
8171 CORE_ADDR lowpc, highpc;
8172 struct partial_symtab *pst;
8174 gdb_assert (data == NULL);
8175 gdb_assert (per_cu->is_debug_types);
8176 sig_type = (struct signatured_type *) per_cu;
8181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8182 tu_group = get_type_unit_group (cu, attr);
8184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8187 pst = create_partial_symtab (per_cu, "");
8190 first_die = load_partial_dies (reader, info_ptr, 1);
8192 lowpc = (CORE_ADDR) -1;
8193 highpc = (CORE_ADDR) 0;
8194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8196 end_psymtab_common (objfile, pst);
8199 /* Struct used to sort TUs by their abbreviation table offset. */
8201 struct tu_abbrev_offset
8203 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8204 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8207 signatured_type *sig_type;
8208 sect_offset abbrev_offset;
8211 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8214 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8215 const struct tu_abbrev_offset &b)
8217 return a.abbrev_offset < b.abbrev_offset;
8220 /* Efficiently read all the type units.
8221 This does the bulk of the work for build_type_psymtabs.
8223 The efficiency is because we sort TUs by the abbrev table they use and
8224 only read each abbrev table once. In one program there are 200K TUs
8225 sharing 8K abbrev tables.
8227 The main purpose of this function is to support building the
8228 dwarf2_per_objfile->type_unit_groups table.
8229 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8230 can collapse the search space by grouping them by stmt_list.
8231 The savings can be significant, in the same program from above the 200K TUs
8232 share 8K stmt_list tables.
8234 FUNC is expected to call get_type_unit_group, which will create the
8235 struct type_unit_group if necessary and add it to
8236 dwarf2_per_objfile->type_unit_groups. */
8239 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242 abbrev_table_up abbrev_table;
8243 sect_offset abbrev_offset;
8245 /* It's up to the caller to not call us multiple times. */
8246 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8248 if (dwarf2_per_objfile->all_type_units.empty ())
8251 /* TUs typically share abbrev tables, and there can be way more TUs than
8252 abbrev tables. Sort by abbrev table to reduce the number of times we
8253 read each abbrev table in.
8254 Alternatives are to punt or to maintain a cache of abbrev tables.
8255 This is simpler and efficient enough for now.
8257 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8258 symtab to use). Typically TUs with the same abbrev offset have the same
8259 stmt_list value too so in practice this should work well.
8261 The basic algorithm here is:
8263 sort TUs by abbrev table
8264 for each TU with same abbrev table:
8265 read abbrev table if first user
8266 read TU top level DIE
8267 [IWBN if DWO skeletons had DW_AT_stmt_list]
8270 if (dwarf_read_debug)
8271 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8273 /* Sort in a separate table to maintain the order of all_type_units
8274 for .gdb_index: TU indices directly index all_type_units. */
8275 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8276 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8278 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8279 sorted_by_abbrev.emplace_back
8280 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8281 sig_type->per_cu.section,
8282 sig_type->per_cu.sect_off));
8284 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8285 sort_tu_by_abbrev_offset);
8287 abbrev_offset = (sect_offset) ~(unsigned) 0;
8289 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8291 /* Switch to the next abbrev table if necessary. */
8292 if (abbrev_table == NULL
8293 || tu.abbrev_offset != abbrev_offset)
8295 abbrev_offset = tu.abbrev_offset;
8297 abbrev_table_read_table (dwarf2_per_objfile,
8298 &dwarf2_per_objfile->abbrev,
8300 ++tu_stats->nr_uniq_abbrev_tables;
8303 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8304 0, 0, false, build_type_psymtabs_reader, NULL);
8308 /* Print collected type unit statistics. */
8311 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8313 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8315 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8316 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8317 dwarf2_per_objfile->all_type_units.size ());
8318 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8319 tu_stats->nr_uniq_abbrev_tables);
8320 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8321 tu_stats->nr_symtabs);
8322 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8323 tu_stats->nr_symtab_sharers);
8324 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8325 tu_stats->nr_stmt_less_type_units);
8326 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8327 tu_stats->nr_all_type_units_reallocs);
8330 /* Traversal function for build_type_psymtabs. */
8333 build_type_psymtab_dependencies (void **slot, void *info)
8335 struct dwarf2_per_objfile *dwarf2_per_objfile
8336 = (struct dwarf2_per_objfile *) info;
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8339 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8340 struct partial_symtab *pst = per_cu->v.psymtab;
8341 int len = VEC_length (sig_type_ptr, tu_group->tus);
8342 struct signatured_type *iter;
8345 gdb_assert (len > 0);
8346 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8348 pst->number_of_dependencies = len;
8349 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8351 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8354 gdb_assert (iter->per_cu.is_debug_types);
8355 pst->dependencies[i] = iter->per_cu.v.psymtab;
8356 iter->type_unit_group = tu_group;
8359 VEC_free (sig_type_ptr, tu_group->tus);
8364 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8365 Build partial symbol tables for the .debug_types comp-units. */
8368 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8370 if (! create_all_type_units (dwarf2_per_objfile))
8373 build_type_psymtabs_1 (dwarf2_per_objfile);
8376 /* Traversal function for process_skeletonless_type_unit.
8377 Read a TU in a DWO file and build partial symbols for it. */
8380 process_skeletonless_type_unit (void **slot, void *info)
8382 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8383 struct dwarf2_per_objfile *dwarf2_per_objfile
8384 = (struct dwarf2_per_objfile *) info;
8385 struct signatured_type find_entry, *entry;
8387 /* If this TU doesn't exist in the global table, add it and read it in. */
8389 if (dwarf2_per_objfile->signatured_types == NULL)
8391 dwarf2_per_objfile->signatured_types
8392 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8395 find_entry.signature = dwo_unit->signature;
8396 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8398 /* If we've already seen this type there's nothing to do. What's happening
8399 is we're doing our own version of comdat-folding here. */
8403 /* This does the job that create_all_type_units would have done for
8405 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8406 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8409 /* This does the job that build_type_psymtabs_1 would have done. */
8410 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8411 build_type_psymtabs_reader, NULL);
8416 /* Traversal function for process_skeletonless_type_units. */
8419 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8421 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8423 if (dwo_file->tus != NULL)
8425 htab_traverse_noresize (dwo_file->tus,
8426 process_skeletonless_type_unit, info);
8432 /* Scan all TUs of DWO files, verifying we've processed them.
8433 This is needed in case a TU was emitted without its skeleton.
8434 Note: This can't be done until we know what all the DWO files are. */
8437 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8439 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8440 if (get_dwp_file (dwarf2_per_objfile) == NULL
8441 && dwarf2_per_objfile->dwo_files != NULL)
8443 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8444 process_dwo_file_for_skeletonless_type_units,
8445 dwarf2_per_objfile);
8449 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8452 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8454 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8456 struct partial_symtab *pst = per_cu->v.psymtab;
8461 for (int j = 0; j < pst->number_of_dependencies; ++j)
8463 /* Set the 'user' field only if it is not already set. */
8464 if (pst->dependencies[j]->user == NULL)
8465 pst->dependencies[j]->user = pst;
8470 /* Build the partial symbol table by doing a quick pass through the
8471 .debug_info and .debug_abbrev sections. */
8474 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8476 struct objfile *objfile = dwarf2_per_objfile->objfile;
8478 if (dwarf_read_debug)
8480 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8481 objfile_name (objfile));
8484 dwarf2_per_objfile->reading_partial_symbols = 1;
8486 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8488 /* Any cached compilation units will be linked by the per-objfile
8489 read_in_chain. Make sure to free them when we're done. */
8490 free_cached_comp_units freer (dwarf2_per_objfile);
8492 build_type_psymtabs (dwarf2_per_objfile);
8494 create_all_comp_units (dwarf2_per_objfile);
8496 /* Create a temporary address map on a temporary obstack. We later
8497 copy this to the final obstack. */
8498 auto_obstack temp_obstack;
8500 scoped_restore save_psymtabs_addrmap
8501 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8502 addrmap_create_mutable (&temp_obstack));
8504 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8505 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8507 /* This has to wait until we read the CUs, we need the list of DWOs. */
8508 process_skeletonless_type_units (dwarf2_per_objfile);
8510 /* Now that all TUs have been processed we can fill in the dependencies. */
8511 if (dwarf2_per_objfile->type_unit_groups != NULL)
8513 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8514 build_type_psymtab_dependencies, dwarf2_per_objfile);
8517 if (dwarf_read_debug)
8518 print_tu_stats (dwarf2_per_objfile);
8520 set_partial_user (dwarf2_per_objfile);
8522 objfile->partial_symtabs->psymtabs_addrmap
8523 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8524 objfile->partial_symtabs->obstack ());
8525 /* At this point we want to keep the address map. */
8526 save_psymtabs_addrmap.release ();
8528 if (dwarf_read_debug)
8529 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8530 objfile_name (objfile));
8533 /* die_reader_func for load_partial_comp_unit. */
8536 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8537 const gdb_byte *info_ptr,
8538 struct die_info *comp_unit_die,
8542 struct dwarf2_cu *cu = reader->cu;
8544 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8546 /* Check if comp unit has_children.
8547 If so, read the rest of the partial symbols from this comp unit.
8548 If not, there's no more debug_info for this comp unit. */
8550 load_partial_dies (reader, info_ptr, 0);
8553 /* Load the partial DIEs for a secondary CU into memory.
8554 This is also used when rereading a primary CU with load_all_dies. */
8557 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8559 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8560 load_partial_comp_unit_reader, NULL);
8564 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8565 struct dwarf2_section_info *section,
8566 struct dwarf2_section_info *abbrev_section,
8567 unsigned int is_dwz)
8569 const gdb_byte *info_ptr;
8570 struct objfile *objfile = dwarf2_per_objfile->objfile;
8572 if (dwarf_read_debug)
8573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8574 get_section_name (section),
8575 get_section_file_name (section));
8577 dwarf2_read_section (objfile, section);
8579 info_ptr = section->buffer;
8581 while (info_ptr < section->buffer + section->size)
8583 struct dwarf2_per_cu_data *this_cu;
8585 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8587 comp_unit_head cu_header;
8588 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8589 abbrev_section, info_ptr,
8590 rcuh_kind::COMPILE);
8592 /* Save the compilation unit for later lookup. */
8593 if (cu_header.unit_type != DW_UT_type)
8595 this_cu = XOBNEW (&objfile->objfile_obstack,
8596 struct dwarf2_per_cu_data);
8597 memset (this_cu, 0, sizeof (*this_cu));
8601 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8602 struct signatured_type);
8603 memset (sig_type, 0, sizeof (*sig_type));
8604 sig_type->signature = cu_header.signature;
8605 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8606 this_cu = &sig_type->per_cu;
8608 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8609 this_cu->sect_off = sect_off;
8610 this_cu->length = cu_header.length + cu_header.initial_length_size;
8611 this_cu->is_dwz = is_dwz;
8612 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8613 this_cu->section = section;
8615 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8617 info_ptr = info_ptr + this_cu->length;
8621 /* Create a list of all compilation units in OBJFILE.
8622 This is only done for -readnow and building partial symtabs. */
8625 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8627 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8629 &dwarf2_per_objfile->abbrev, 0);
8631 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8633 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8637 /* Process all loaded DIEs for compilation unit CU, starting at
8638 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8639 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8640 DW_AT_ranges). See the comments of add_partial_subprogram on how
8641 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8644 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8645 CORE_ADDR *highpc, int set_addrmap,
8646 struct dwarf2_cu *cu)
8648 struct partial_die_info *pdi;
8650 /* Now, march along the PDI's, descending into ones which have
8651 interesting children but skipping the children of the other ones,
8652 until we reach the end of the compilation unit. */
8660 /* Anonymous namespaces or modules have no name but have interesting
8661 children, so we need to look at them. Ditto for anonymous
8664 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8665 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8666 || pdi->tag == DW_TAG_imported_unit
8667 || pdi->tag == DW_TAG_inlined_subroutine)
8671 case DW_TAG_subprogram:
8672 case DW_TAG_inlined_subroutine:
8673 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8675 case DW_TAG_constant:
8676 case DW_TAG_variable:
8677 case DW_TAG_typedef:
8678 case DW_TAG_union_type:
8679 if (!pdi->is_declaration)
8681 add_partial_symbol (pdi, cu);
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 if (!pdi->is_declaration)
8689 add_partial_symbol (pdi, cu);
8691 if ((cu->language == language_rust
8692 || cu->language == language_cplus) && pdi->has_children)
8693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8696 case DW_TAG_enumeration_type:
8697 if (!pdi->is_declaration)
8698 add_partial_enumeration (pdi, cu);
8700 case DW_TAG_base_type:
8701 case DW_TAG_subrange_type:
8702 /* File scope base type definitions are added to the partial
8704 add_partial_symbol (pdi, cu);
8706 case DW_TAG_namespace:
8707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8712 case DW_TAG_imported_unit:
8714 struct dwarf2_per_cu_data *per_cu;
8716 /* For now we don't handle imported units in type units. */
8717 if (cu->per_cu->is_debug_types)
8719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8720 " supported in type units [in module %s]"),
8721 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8724 per_cu = dwarf2_find_containing_comp_unit
8725 (pdi->d.sect_off, pdi->is_dwz,
8726 cu->per_cu->dwarf2_per_objfile);
8728 /* Go read the partial unit, if needed. */
8729 if (per_cu->v.psymtab == NULL)
8730 process_psymtab_comp_unit (per_cu, 1, cu->language);
8732 VEC_safe_push (dwarf2_per_cu_ptr,
8733 cu->per_cu->imported_symtabs, per_cu);
8736 case DW_TAG_imported_declaration:
8737 add_partial_symbol (pdi, cu);
8744 /* If the die has a sibling, skip to the sibling. */
8746 pdi = pdi->die_sibling;
8750 /* Functions used to compute the fully scoped name of a partial DIE.
8752 Normally, this is simple. For C++, the parent DIE's fully scoped
8753 name is concatenated with "::" and the partial DIE's name.
8754 Enumerators are an exception; they use the scope of their parent
8755 enumeration type, i.e. the name of the enumeration type is not
8756 prepended to the enumerator.
8758 There are two complexities. One is DW_AT_specification; in this
8759 case "parent" means the parent of the target of the specification,
8760 instead of the direct parent of the DIE. The other is compilers
8761 which do not emit DW_TAG_namespace; in this case we try to guess
8762 the fully qualified name of structure types from their members'
8763 linkage names. This must be done using the DIE's children rather
8764 than the children of any DW_AT_specification target. We only need
8765 to do this for structures at the top level, i.e. if the target of
8766 any DW_AT_specification (if any; otherwise the DIE itself) does not
8769 /* Compute the scope prefix associated with PDI's parent, in
8770 compilation unit CU. The result will be allocated on CU's
8771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8772 field. NULL is returned if no prefix is necessary. */
8774 partial_die_parent_scope (struct partial_die_info *pdi,
8775 struct dwarf2_cu *cu)
8777 const char *grandparent_scope;
8778 struct partial_die_info *parent, *real_pdi;
8780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8781 then this means the parent of the specification DIE. */
8784 while (real_pdi->has_specification)
8785 real_pdi = find_partial_die (real_pdi->spec_offset,
8786 real_pdi->spec_is_dwz, cu);
8788 parent = real_pdi->die_parent;
8792 if (parent->scope_set)
8793 return parent->scope;
8797 grandparent_scope = partial_die_parent_scope (parent, cu);
8799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8801 Work around this problem here. */
8802 if (cu->language == language_cplus
8803 && parent->tag == DW_TAG_namespace
8804 && strcmp (parent->name, "::") == 0
8805 && grandparent_scope == NULL)
8807 parent->scope = NULL;
8808 parent->scope_set = 1;
8812 if (pdi->tag == DW_TAG_enumerator)
8813 /* Enumerators should not get the name of the enumeration as a prefix. */
8814 parent->scope = grandparent_scope;
8815 else if (parent->tag == DW_TAG_namespace
8816 || parent->tag == DW_TAG_module
8817 || parent->tag == DW_TAG_structure_type
8818 || parent->tag == DW_TAG_class_type
8819 || parent->tag == DW_TAG_interface_type
8820 || parent->tag == DW_TAG_union_type
8821 || parent->tag == DW_TAG_enumeration_type)
8823 if (grandparent_scope == NULL)
8824 parent->scope = parent->name;
8826 parent->scope = typename_concat (&cu->comp_unit_obstack,
8828 parent->name, 0, cu);
8832 /* FIXME drow/2004-04-01: What should we be doing with
8833 function-local names? For partial symbols, we should probably be
8835 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8836 parent->tag, sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8840 parent->scope_set = 1;
8841 return parent->scope;
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8851 const char *parent_scope;
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8892 const char *actual_name = NULL;
8894 char *built_actual_name;
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8911 if (pdi->is_external || cu->language == language_ada)
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8923 cu->language, objfile);
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8946 case DW_TAG_variable:
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8952 && !dwarf2_per_objfile->has_section_at_zero)
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8959 else if (pdi->is_external)
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8984 int has_loc = pdi->d.locdesc != NULL;
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8990 xfree (built_actual_name);
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
9000 cu->language, objfile);
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9024 psymbol_placement::GLOBAL,
9025 0, cu->language, objfile);
9027 case DW_TAG_class_type:
9028 case DW_TAG_interface_type:
9029 case DW_TAG_structure_type:
9030 case DW_TAG_union_type:
9031 case DW_TAG_enumeration_type:
9032 /* Skip external references. The DWARF standard says in the section
9033 about "Structure, Union, and Class Type Entries": "An incomplete
9034 structure, union or class type is represented by a structure,
9035 union or class entry that does not have a byte size attribute
9036 and that has a DW_AT_declaration attribute." */
9037 if (!pdi->has_byte_size && pdi->is_declaration)
9039 xfree (built_actual_name);
9043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9044 static vs. global. */
9045 add_psymbol_to_list (actual_name, strlen (actual_name),
9046 built_actual_name != NULL,
9047 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9048 cu->language == language_cplus
9049 ? psymbol_placement::GLOBAL
9050 : psymbol_placement::STATIC,
9051 0, cu->language, objfile);
9054 case DW_TAG_enumerator:
9055 add_psymbol_to_list (actual_name, strlen (actual_name),
9056 built_actual_name != NULL,
9057 VAR_DOMAIN, LOC_CONST, -1,
9058 cu->language == language_cplus
9059 ? psymbol_placement::GLOBAL
9060 : psymbol_placement::STATIC,
9061 0, cu->language, objfile);
9067 xfree (built_actual_name);
9070 /* Read a partial die corresponding to a namespace; also, add a symbol
9071 corresponding to that namespace to the symbol table. NAMESPACE is
9072 the name of the enclosing namespace. */
9075 add_partial_namespace (struct partial_die_info *pdi,
9076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9077 int set_addrmap, struct dwarf2_cu *cu)
9079 /* Add a symbol for the namespace. */
9081 add_partial_symbol (pdi, cu);
9083 /* Now scan partial symbols in that namespace. */
9085 if (pdi->has_children)
9086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9089 /* Read a partial die corresponding to a Fortran module. */
9092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9095 /* Add a symbol for the namespace. */
9097 add_partial_symbol (pdi, cu);
9099 /* Now scan partial symbols in that module. */
9101 if (pdi->has_children)
9102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9105 /* Read a partial die corresponding to a subprogram or an inlined
9106 subprogram and create a partial symbol for that subprogram.
9107 When the CU language allows it, this routine also defines a partial
9108 symbol for each nested subprogram that this subprogram contains.
9109 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9110 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9112 PDI may also be a lexical block, in which case we simply search
9113 recursively for subprograms defined inside that lexical block.
9114 Again, this is only performed when the CU language allows this
9115 type of definitions. */
9118 add_partial_subprogram (struct partial_die_info *pdi,
9119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9120 int set_addrmap, struct dwarf2_cu *cu)
9122 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9124 if (pdi->has_pc_info)
9126 if (pdi->lowpc < *lowpc)
9127 *lowpc = pdi->lowpc;
9128 if (pdi->highpc > *highpc)
9129 *highpc = pdi->highpc;
9132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9135 CORE_ADDR this_highpc;
9136 CORE_ADDR this_lowpc;
9138 baseaddr = ANOFFSET (objfile->section_offsets,
9139 SECT_OFF_TEXT (objfile));
9141 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9142 pdi->lowpc + baseaddr)
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->highpc + baseaddr)
9148 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9149 this_lowpc, this_highpc - 1,
9150 cu->per_cu->v.psymtab);
9154 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9156 if (!pdi->is_declaration)
9157 /* Ignore subprogram DIEs that do not have a name, they are
9158 illegal. Do not emit a complaint at this point, we will
9159 do so when we convert this psymtab into a symtab. */
9161 add_partial_symbol (pdi, cu);
9165 if (! pdi->has_children)
9168 if (cu->language == language_ada)
9170 pdi = pdi->die_child;
9174 if (pdi->tag == DW_TAG_subprogram
9175 || pdi->tag == DW_TAG_inlined_subroutine
9176 || pdi->tag == DW_TAG_lexical_block)
9177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9178 pdi = pdi->die_sibling;
9183 /* Read a partial die corresponding to an enumeration type. */
9186 add_partial_enumeration (struct partial_die_info *enum_pdi,
9187 struct dwarf2_cu *cu)
9189 struct partial_die_info *pdi;
9191 if (enum_pdi->name != NULL)
9192 add_partial_symbol (enum_pdi, cu);
9194 pdi = enum_pdi->die_child;
9197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9198 complaint (_("malformed enumerator DIE ignored"));
9200 add_partial_symbol (pdi, cu);
9201 pdi = pdi->die_sibling;
9205 /* Return the initial uleb128 in the die at INFO_PTR. */
9208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9210 unsigned int bytes_read;
9212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9216 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9218 Return the corresponding abbrev, or NULL if the number is zero (indicating
9219 an empty DIE). In either case *BYTES_READ will be set to the length of
9220 the initial number. */
9222 static struct abbrev_info *
9223 peek_die_abbrev (const die_reader_specs &reader,
9224 const gdb_byte *info_ptr, unsigned int *bytes_read)
9226 dwarf2_cu *cu = reader.cu;
9227 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9228 unsigned int abbrev_number
9229 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9231 if (abbrev_number == 0)
9234 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9237 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9238 " at offset %s [in module %s]"),
9239 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9240 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9247 Returns a pointer to the end of a series of DIEs, terminated by an empty
9248 DIE. Any children of the skipped DIEs will also be skipped. */
9250 static const gdb_byte *
9251 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9255 unsigned int bytes_read;
9256 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9259 return info_ptr + bytes_read;
9261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9265 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9267 abbrev corresponding to that skipped uleb128 should be passed in
9268 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9271 static const gdb_byte *
9272 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9273 struct abbrev_info *abbrev)
9275 unsigned int bytes_read;
9276 struct attribute attr;
9277 bfd *abfd = reader->abfd;
9278 struct dwarf2_cu *cu = reader->cu;
9279 const gdb_byte *buffer = reader->buffer;
9280 const gdb_byte *buffer_end = reader->buffer_end;
9281 unsigned int form, i;
9283 for (i = 0; i < abbrev->num_attrs; i++)
9285 /* The only abbrev we care about is DW_AT_sibling. */
9286 if (abbrev->attrs[i].name == DW_AT_sibling)
9288 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9289 if (attr.form == DW_FORM_ref_addr)
9290 complaint (_("ignoring absolute DW_AT_sibling"));
9293 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9294 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9296 if (sibling_ptr < info_ptr)
9297 complaint (_("DW_AT_sibling points backwards"));
9298 else if (sibling_ptr > reader->buffer_end)
9299 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9305 /* If it isn't DW_AT_sibling, skip this attribute. */
9306 form = abbrev->attrs[i].form;
9310 case DW_FORM_ref_addr:
9311 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9312 and later it is offset sized. */
9313 if (cu->header.version == 2)
9314 info_ptr += cu->header.addr_size;
9316 info_ptr += cu->header.offset_size;
9318 case DW_FORM_GNU_ref_alt:
9319 info_ptr += cu->header.offset_size;
9322 info_ptr += cu->header.addr_size;
9329 case DW_FORM_flag_present:
9330 case DW_FORM_implicit_const:
9342 case DW_FORM_ref_sig8:
9345 case DW_FORM_data16:
9348 case DW_FORM_string:
9349 read_direct_string (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9352 case DW_FORM_sec_offset:
9354 case DW_FORM_GNU_strp_alt:
9355 info_ptr += cu->header.offset_size;
9357 case DW_FORM_exprloc:
9359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9362 case DW_FORM_block1:
9363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9365 case DW_FORM_block2:
9366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9368 case DW_FORM_block4:
9369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9374 case DW_FORM_ref_udata:
9375 case DW_FORM_GNU_addr_index:
9376 case DW_FORM_GNU_str_index:
9377 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9379 case DW_FORM_indirect:
9380 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9381 info_ptr += bytes_read;
9382 /* We need to continue parsing from here, so just go back to
9384 goto skip_attribute;
9387 error (_("Dwarf Error: Cannot handle %s "
9388 "in DWARF reader [in module %s]"),
9389 dwarf_form_name (form),
9390 bfd_get_filename (abfd));
9394 if (abbrev->has_children)
9395 return skip_children (reader, info_ptr);
9400 /* Locate ORIG_PDI's sibling.
9401 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9403 static const gdb_byte *
9404 locate_pdi_sibling (const struct die_reader_specs *reader,
9405 struct partial_die_info *orig_pdi,
9406 const gdb_byte *info_ptr)
9408 /* Do we know the sibling already? */
9410 if (orig_pdi->sibling)
9411 return orig_pdi->sibling;
9413 /* Are there any children to deal with? */
9415 if (!orig_pdi->has_children)
9418 /* Skip the children the long way. */
9420 return skip_children (reader, info_ptr);
9423 /* Expand this partial symbol table into a full symbol table. SELF is
9427 dwarf2_read_symtab (struct partial_symtab *self,
9428 struct objfile *objfile)
9430 struct dwarf2_per_objfile *dwarf2_per_objfile
9431 = get_dwarf2_per_objfile (objfile);
9435 warning (_("bug: psymtab for %s is already read in."),
9442 printf_filtered (_("Reading in symbols for %s..."),
9444 gdb_flush (gdb_stdout);
9447 /* If this psymtab is constructed from a debug-only objfile, the
9448 has_section_at_zero flag will not necessarily be correct. We
9449 can get the correct value for this flag by looking at the data
9450 associated with the (presumably stripped) associated objfile. */
9451 if (objfile->separate_debug_objfile_backlink)
9453 struct dwarf2_per_objfile *dpo_backlink
9454 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9456 dwarf2_per_objfile->has_section_at_zero
9457 = dpo_backlink->has_section_at_zero;
9460 dwarf2_per_objfile->reading_partial_symbols = 0;
9462 psymtab_to_symtab_1 (self);
9464 /* Finish up the debug error message. */
9466 printf_filtered (_("done.\n"));
9469 process_cu_includes (dwarf2_per_objfile);
9472 /* Reading in full CUs. */
9474 /* Add PER_CU to the queue. */
9477 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9478 enum language pretend_language)
9480 struct dwarf2_queue_item *item;
9483 item = XNEW (struct dwarf2_queue_item);
9484 item->per_cu = per_cu;
9485 item->pretend_language = pretend_language;
9488 if (dwarf2_queue == NULL)
9489 dwarf2_queue = item;
9491 dwarf2_queue_tail->next = item;
9493 dwarf2_queue_tail = item;
9496 /* If PER_CU is not yet queued, add it to the queue.
9497 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9499 The result is non-zero if PER_CU was queued, otherwise the result is zero
9500 meaning either PER_CU is already queued or it is already loaded.
9502 N.B. There is an invariant here that if a CU is queued then it is loaded.
9503 The caller is required to load PER_CU if we return non-zero. */
9506 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9507 struct dwarf2_per_cu_data *per_cu,
9508 enum language pretend_language)
9510 /* We may arrive here during partial symbol reading, if we need full
9511 DIEs to process an unusual case (e.g. template arguments). Do
9512 not queue PER_CU, just tell our caller to load its DIEs. */
9513 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9515 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9520 /* Mark the dependence relation so that we don't flush PER_CU
9522 if (dependent_cu != NULL)
9523 dwarf2_add_dependence (dependent_cu, per_cu);
9525 /* If it's already on the queue, we have nothing to do. */
9529 /* If the compilation unit is already loaded, just mark it as
9531 if (per_cu->cu != NULL)
9533 per_cu->cu->last_used = 0;
9537 /* Add it to the queue. */
9538 queue_comp_unit (per_cu, pretend_language);
9543 /* Process the queue. */
9546 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9548 struct dwarf2_queue_item *item, *next_item;
9550 if (dwarf_read_debug)
9552 fprintf_unfiltered (gdb_stdlog,
9553 "Expanding one or more symtabs of objfile %s ...\n",
9554 objfile_name (dwarf2_per_objfile->objfile));
9557 /* The queue starts out with one item, but following a DIE reference
9558 may load a new CU, adding it to the end of the queue. */
9559 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9561 if ((dwarf2_per_objfile->using_index
9562 ? !item->per_cu->v.quick->compunit_symtab
9563 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9564 /* Skip dummy CUs. */
9565 && item->per_cu->cu != NULL)
9567 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9568 unsigned int debug_print_threshold;
9571 if (per_cu->is_debug_types)
9573 struct signatured_type *sig_type =
9574 (struct signatured_type *) per_cu;
9576 sprintf (buf, "TU %s at offset %s",
9577 hex_string (sig_type->signature),
9578 sect_offset_str (per_cu->sect_off));
9579 /* There can be 100s of TUs.
9580 Only print them in verbose mode. */
9581 debug_print_threshold = 2;
9585 sprintf (buf, "CU at offset %s",
9586 sect_offset_str (per_cu->sect_off));
9587 debug_print_threshold = 1;
9590 if (dwarf_read_debug >= debug_print_threshold)
9591 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9593 if (per_cu->is_debug_types)
9594 process_full_type_unit (per_cu, item->pretend_language);
9596 process_full_comp_unit (per_cu, item->pretend_language);
9598 if (dwarf_read_debug >= debug_print_threshold)
9599 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9602 item->per_cu->queued = 0;
9603 next_item = item->next;
9607 dwarf2_queue_tail = NULL;
9609 if (dwarf_read_debug)
9611 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9612 objfile_name (dwarf2_per_objfile->objfile));
9616 /* Read in full symbols for PST, and anything it depends on. */
9619 psymtab_to_symtab_1 (struct partial_symtab *pst)
9621 struct dwarf2_per_cu_data *per_cu;
9627 for (i = 0; i < pst->number_of_dependencies; i++)
9628 if (!pst->dependencies[i]->readin
9629 && pst->dependencies[i]->user == NULL)
9631 /* Inform about additional files that need to be read in. */
9634 /* FIXME: i18n: Need to make this a single string. */
9635 fputs_filtered (" ", gdb_stdout);
9637 fputs_filtered ("and ", gdb_stdout);
9639 printf_filtered ("%s...", pst->dependencies[i]->filename);
9640 wrap_here (""); /* Flush output. */
9641 gdb_flush (gdb_stdout);
9643 psymtab_to_symtab_1 (pst->dependencies[i]);
9646 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9650 /* It's an include file, no symbols to read for it.
9651 Everything is in the parent symtab. */
9656 dw2_do_instantiate_symtab (per_cu, false);
9659 /* Trivial hash function for die_info: the hash value of a DIE
9660 is its offset in .debug_info for this objfile. */
9663 die_hash (const void *item)
9665 const struct die_info *die = (const struct die_info *) item;
9667 return to_underlying (die->sect_off);
9670 /* Trivial comparison function for die_info structures: two DIEs
9671 are equal if they have the same offset. */
9674 die_eq (const void *item_lhs, const void *item_rhs)
9676 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9677 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9679 return die_lhs->sect_off == die_rhs->sect_off;
9682 /* die_reader_func for load_full_comp_unit.
9683 This is identical to read_signatured_type_reader,
9684 but is kept separate for now. */
9687 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9688 const gdb_byte *info_ptr,
9689 struct die_info *comp_unit_die,
9693 struct dwarf2_cu *cu = reader->cu;
9694 enum language *language_ptr = (enum language *) data;
9696 gdb_assert (cu->die_hash == NULL);
9698 htab_create_alloc_ex (cu->header.length / 12,
9702 &cu->comp_unit_obstack,
9703 hashtab_obstack_allocate,
9704 dummy_obstack_deallocate);
9707 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9708 &info_ptr, comp_unit_die);
9709 cu->dies = comp_unit_die;
9710 /* comp_unit_die is not stored in die_hash, no need. */
9712 /* We try not to read any attributes in this function, because not
9713 all CUs needed for references have been loaded yet, and symbol
9714 table processing isn't initialized. But we have to set the CU language,
9715 or we won't be able to build types correctly.
9716 Similarly, if we do not read the producer, we can not apply
9717 producer-specific interpretation. */
9718 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9721 /* Load the DIEs associated with PER_CU into memory. */
9724 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9726 enum language pretend_language)
9728 gdb_assert (! this_cu->is_debug_types);
9730 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9731 load_full_comp_unit_reader, &pretend_language);
9734 /* Add a DIE to the delayed physname list. */
9737 add_to_method_list (struct type *type, int fnfield_index, int index,
9738 const char *name, struct die_info *die,
9739 struct dwarf2_cu *cu)
9741 struct delayed_method_info mi;
9743 mi.fnfield_index = fnfield_index;
9747 cu->method_list.push_back (mi);
9750 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9751 "const" / "volatile". If so, decrements LEN by the length of the
9752 modifier and return true. Otherwise return false. */
9756 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9758 size_t mod_len = sizeof (mod) - 1;
9759 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9767 /* Compute the physnames of any methods on the CU's method list.
9769 The computation of method physnames is delayed in order to avoid the
9770 (bad) condition that one of the method's formal parameters is of an as yet
9774 compute_delayed_physnames (struct dwarf2_cu *cu)
9776 /* Only C++ delays computing physnames. */
9777 if (cu->method_list.empty ())
9779 gdb_assert (cu->language == language_cplus);
9781 for (const delayed_method_info &mi : cu->method_list)
9783 const char *physname;
9784 struct fn_fieldlist *fn_flp
9785 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9786 physname = dwarf2_physname (mi.name, mi.die, cu);
9787 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9788 = physname ? physname : "";
9790 /* Since there's no tag to indicate whether a method is a
9791 const/volatile overload, extract that information out of the
9793 if (physname != NULL)
9795 size_t len = strlen (physname);
9799 if (physname[len] == ')') /* shortcut */
9801 else if (check_modifier (physname, len, " const"))
9802 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9803 else if (check_modifier (physname, len, " volatile"))
9804 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9811 /* The list is no longer needed. */
9812 cu->method_list.clear ();
9815 /* Go objects should be embedded in a DW_TAG_module DIE,
9816 and it's not clear if/how imported objects will appear.
9817 To keep Go support simple until that's worked out,
9818 go back through what we've read and create something usable.
9819 We could do this while processing each DIE, and feels kinda cleaner,
9820 but that way is more invasive.
9821 This is to, for example, allow the user to type "p var" or "b main"
9822 without having to specify the package name, and allow lookups
9823 of module.object to work in contexts that use the expression
9827 fixup_go_packaging (struct dwarf2_cu *cu)
9829 char *package_name = NULL;
9830 struct pending *list;
9833 for (list = *cu->get_builder ()->get_global_symbols ();
9837 for (i = 0; i < list->nsyms; ++i)
9839 struct symbol *sym = list->symbol[i];
9841 if (SYMBOL_LANGUAGE (sym) == language_go
9842 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9844 char *this_package_name = go_symbol_package_name (sym);
9846 if (this_package_name == NULL)
9848 if (package_name == NULL)
9849 package_name = this_package_name;
9852 struct objfile *objfile
9853 = cu->per_cu->dwarf2_per_objfile->objfile;
9854 if (strcmp (package_name, this_package_name) != 0)
9855 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9856 (symbol_symtab (sym) != NULL
9857 ? symtab_to_filename_for_display
9858 (symbol_symtab (sym))
9859 : objfile_name (objfile)),
9860 this_package_name, package_name);
9861 xfree (this_package_name);
9867 if (package_name != NULL)
9869 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9870 const char *saved_package_name
9871 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9873 strlen (package_name));
9874 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9875 saved_package_name);
9878 sym = allocate_symbol (objfile);
9879 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9880 SYMBOL_SET_NAMES (sym, saved_package_name,
9881 strlen (saved_package_name), 0, objfile);
9882 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9883 e.g., "main" finds the "main" module and not C's main(). */
9884 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9885 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9886 SYMBOL_TYPE (sym) = type;
9888 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9890 xfree (package_name);
9894 /* Allocate a fully-qualified name consisting of the two parts on the
9898 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9900 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9903 /* A helper that allocates a struct discriminant_info to attach to a
9906 static struct discriminant_info *
9907 alloc_discriminant_info (struct type *type, int discriminant_index,
9910 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9911 gdb_assert (discriminant_index == -1
9912 || (discriminant_index >= 0
9913 && discriminant_index < TYPE_NFIELDS (type)));
9914 gdb_assert (default_index == -1
9915 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9917 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9919 struct discriminant_info *disc
9920 = ((struct discriminant_info *)
9922 offsetof (struct discriminant_info, discriminants)
9923 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9924 disc->default_index = default_index;
9925 disc->discriminant_index = discriminant_index;
9927 struct dynamic_prop prop;
9928 prop.kind = PROP_UNDEFINED;
9929 prop.data.baton = disc;
9931 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9936 /* Some versions of rustc emitted enums in an unusual way.
9938 Ordinary enums were emitted as unions. The first element of each
9939 structure in the union was named "RUST$ENUM$DISR". This element
9940 held the discriminant.
9942 These versions of Rust also implemented the "non-zero"
9943 optimization. When the enum had two values, and one is empty and
9944 the other holds a pointer that cannot be zero, the pointer is used
9945 as the discriminant, with a zero value meaning the empty variant.
9946 Here, the union's first member is of the form
9947 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9948 where the fieldnos are the indices of the fields that should be
9949 traversed in order to find the field (which may be several fields deep)
9950 and the variantname is the name of the variant of the case when the
9953 This function recognizes whether TYPE is of one of these forms,
9954 and, if so, smashes it to be a variant type. */
9957 quirk_rust_enum (struct type *type, struct objfile *objfile)
9959 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9961 /* We don't need to deal with empty enums. */
9962 if (TYPE_NFIELDS (type) == 0)
9965 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9966 if (TYPE_NFIELDS (type) == 1
9967 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9969 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9971 /* Decode the field name to find the offset of the
9973 ULONGEST bit_offset = 0;
9974 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9975 while (name[0] >= '0' && name[0] <= '9')
9978 unsigned long index = strtoul (name, &tail, 10);
9981 || index >= TYPE_NFIELDS (field_type)
9982 || (TYPE_FIELD_LOC_KIND (field_type, index)
9983 != FIELD_LOC_KIND_BITPOS))
9985 complaint (_("Could not parse Rust enum encoding string \"%s\""
9987 TYPE_FIELD_NAME (type, 0),
9988 objfile_name (objfile));
9993 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9994 field_type = TYPE_FIELD_TYPE (field_type, index);
9997 /* Make a union to hold the variants. */
9998 struct type *union_type = alloc_type (objfile);
9999 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10000 TYPE_NFIELDS (union_type) = 3;
10001 TYPE_FIELDS (union_type)
10002 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10003 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10004 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10006 /* Put the discriminant must at index 0. */
10007 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10008 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10009 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10010 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10012 /* The order of fields doesn't really matter, so put the real
10013 field at index 1 and the data-less field at index 2. */
10014 struct discriminant_info *disc
10015 = alloc_discriminant_info (union_type, 0, 1);
10016 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10017 TYPE_FIELD_NAME (union_type, 1)
10018 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10019 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10020 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10021 TYPE_FIELD_NAME (union_type, 1));
10023 const char *dataless_name
10024 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10026 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10028 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10029 /* NAME points into the original discriminant name, which
10030 already has the correct lifetime. */
10031 TYPE_FIELD_NAME (union_type, 2) = name;
10032 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10033 disc->discriminants[2] = 0;
10035 /* Smash this type to be a structure type. We have to do this
10036 because the type has already been recorded. */
10037 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10038 TYPE_NFIELDS (type) = 1;
10040 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10042 /* Install the variant part. */
10043 TYPE_FIELD_TYPE (type, 0) = union_type;
10044 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10045 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10047 else if (TYPE_NFIELDS (type) == 1)
10049 /* We assume that a union with a single field is a univariant
10051 /* Smash this type to be a structure type. We have to do this
10052 because the type has already been recorded. */
10053 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10055 /* Make a union to hold the variants. */
10056 struct type *union_type = alloc_type (objfile);
10057 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10058 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10059 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10060 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10061 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10063 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10064 const char *variant_name
10065 = rust_last_path_segment (TYPE_NAME (field_type));
10066 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10067 TYPE_NAME (field_type)
10068 = rust_fully_qualify (&objfile->objfile_obstack,
10069 TYPE_NAME (type), variant_name);
10071 /* Install the union in the outer struct type. */
10072 TYPE_NFIELDS (type) = 1;
10074 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10075 TYPE_FIELD_TYPE (type, 0) = union_type;
10076 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10077 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10079 alloc_discriminant_info (union_type, -1, 0);
10083 struct type *disr_type = nullptr;
10084 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10086 disr_type = TYPE_FIELD_TYPE (type, i);
10088 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10090 /* All fields of a true enum will be structs. */
10093 else if (TYPE_NFIELDS (disr_type) == 0)
10095 /* Could be data-less variant, so keep going. */
10096 disr_type = nullptr;
10098 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10099 "RUST$ENUM$DISR") != 0)
10101 /* Not a Rust enum. */
10111 /* If we got here without a discriminant, then it's probably
10113 if (disr_type == nullptr)
10116 /* Smash this type to be a structure type. We have to do this
10117 because the type has already been recorded. */
10118 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10120 /* Make a union to hold the variants. */
10121 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10122 struct type *union_type = alloc_type (objfile);
10123 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10124 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10125 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10126 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10127 TYPE_FIELDS (union_type)
10128 = (struct field *) TYPE_ZALLOC (union_type,
10129 (TYPE_NFIELDS (union_type)
10130 * sizeof (struct field)));
10132 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10133 TYPE_NFIELDS (type) * sizeof (struct field));
10135 /* Install the discriminant at index 0 in the union. */
10136 TYPE_FIELD (union_type, 0) = *disr_field;
10137 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10138 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10140 /* Install the union in the outer struct type. */
10141 TYPE_FIELD_TYPE (type, 0) = union_type;
10142 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10143 TYPE_NFIELDS (type) = 1;
10145 /* Set the size and offset of the union type. */
10146 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10148 /* We need a way to find the correct discriminant given a
10149 variant name. For convenience we build a map here. */
10150 struct type *enum_type = FIELD_TYPE (*disr_field);
10151 std::unordered_map<std::string, ULONGEST> discriminant_map;
10152 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10154 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10157 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10158 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10162 int n_fields = TYPE_NFIELDS (union_type);
10163 struct discriminant_info *disc
10164 = alloc_discriminant_info (union_type, 0, -1);
10165 /* Skip the discriminant here. */
10166 for (int i = 1; i < n_fields; ++i)
10168 /* Find the final word in the name of this variant's type.
10169 That name can be used to look up the correct
10171 const char *variant_name
10172 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10175 auto iter = discriminant_map.find (variant_name);
10176 if (iter != discriminant_map.end ())
10177 disc->discriminants[i] = iter->second;
10179 /* Remove the discriminant field, if it exists. */
10180 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10181 if (TYPE_NFIELDS (sub_type) > 0)
10183 --TYPE_NFIELDS (sub_type);
10184 ++TYPE_FIELDS (sub_type);
10186 TYPE_FIELD_NAME (union_type, i) = variant_name;
10187 TYPE_NAME (sub_type)
10188 = rust_fully_qualify (&objfile->objfile_obstack,
10189 TYPE_NAME (type), variant_name);
10194 /* Rewrite some Rust unions to be structures with variants parts. */
10197 rust_union_quirks (struct dwarf2_cu *cu)
10199 gdb_assert (cu->language == language_rust);
10200 for (type *type_ : cu->rust_unions)
10201 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10202 /* We don't need this any more. */
10203 cu->rust_unions.clear ();
10206 /* Return the symtab for PER_CU. This works properly regardless of
10207 whether we're using the index or psymtabs. */
10209 static struct compunit_symtab *
10210 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10212 return (per_cu->dwarf2_per_objfile->using_index
10213 ? per_cu->v.quick->compunit_symtab
10214 : per_cu->v.psymtab->compunit_symtab);
10217 /* A helper function for computing the list of all symbol tables
10218 included by PER_CU. */
10221 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10222 htab_t all_children, htab_t all_type_symtabs,
10223 struct dwarf2_per_cu_data *per_cu,
10224 struct compunit_symtab *immediate_parent)
10228 struct compunit_symtab *cust;
10229 struct dwarf2_per_cu_data *iter;
10231 slot = htab_find_slot (all_children, per_cu, INSERT);
10234 /* This inclusion and its children have been processed. */
10239 /* Only add a CU if it has a symbol table. */
10240 cust = get_compunit_symtab (per_cu);
10243 /* If this is a type unit only add its symbol table if we haven't
10244 seen it yet (type unit per_cu's can share symtabs). */
10245 if (per_cu->is_debug_types)
10247 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10251 result->push_back (cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
10258 result->push_back (cust);
10259 if (cust->user == NULL)
10260 cust->user = immediate_parent;
10265 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10268 recursively_compute_inclusions (result, all_children,
10269 all_type_symtabs, iter, cust);
10273 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10277 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10279 gdb_assert (! per_cu->is_debug_types);
10281 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10284 struct dwarf2_per_cu_data *per_cu_iter;
10285 std::vector<compunit_symtab *> result_symtabs;
10286 htab_t all_children, all_type_symtabs;
10287 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10289 /* If we don't have a symtab, we can just skip this case. */
10293 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10294 NULL, xcalloc, xfree);
10295 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10296 NULL, xcalloc, xfree);
10299 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10303 recursively_compute_inclusions (&result_symtabs, all_children,
10304 all_type_symtabs, per_cu_iter,
10308 /* Now we have a transitive closure of all the included symtabs. */
10309 len = result_symtabs.size ();
10311 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10312 struct compunit_symtab *, len + 1);
10313 memcpy (cust->includes, result_symtabs.data (),
10314 len * sizeof (compunit_symtab *));
10315 cust->includes[len] = NULL;
10317 htab_delete (all_children);
10318 htab_delete (all_type_symtabs);
10322 /* Compute the 'includes' field for the symtabs of all the CUs we just
10326 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10328 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10330 if (! iter->is_debug_types)
10331 compute_compunit_symtab_includes (iter);
10334 dwarf2_per_objfile->just_read_cus.clear ();
10337 /* Generate full symbol information for PER_CU, whose DIEs have
10338 already been loaded into memory. */
10341 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10342 enum language pretend_language)
10344 struct dwarf2_cu *cu = per_cu->cu;
10345 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10346 struct objfile *objfile = dwarf2_per_objfile->objfile;
10347 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10348 CORE_ADDR lowpc, highpc;
10349 struct compunit_symtab *cust;
10350 CORE_ADDR baseaddr;
10351 struct block *static_block;
10354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10356 /* Clear the list here in case something was left over. */
10357 cu->method_list.clear ();
10359 cu->language = pretend_language;
10360 cu->language_defn = language_def (cu->language);
10362 /* Do line number decoding in read_file_scope () */
10363 process_die (cu->dies, cu);
10365 /* For now fudge the Go package. */
10366 if (cu->language == language_go)
10367 fixup_go_packaging (cu);
10369 /* Now that we have processed all the DIEs in the CU, all the types
10370 should be complete, and it should now be safe to compute all of the
10372 compute_delayed_physnames (cu);
10374 if (cu->language == language_rust)
10375 rust_union_quirks (cu);
10377 /* Some compilers don't define a DW_AT_high_pc attribute for the
10378 compilation unit. If the DW_AT_high_pc is missing, synthesize
10379 it, by scanning the DIE's below the compilation unit. */
10380 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10382 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10383 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10385 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10386 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10387 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10388 addrmap to help ensure it has an accurate map of pc values belonging to
10390 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10392 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10393 SECT_OFF_TEXT (objfile),
10398 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10400 /* Set symtab language to language from DW_AT_language. If the
10401 compilation is from a C file generated by language preprocessors, do
10402 not set the language if it was already deduced by start_subfile. */
10403 if (!(cu->language == language_c
10404 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10405 COMPUNIT_FILETABS (cust)->language = cu->language;
10407 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10408 produce DW_AT_location with location lists but it can be possibly
10409 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10410 there were bugs in prologue debug info, fixed later in GCC-4.5
10411 by "unwind info for epilogues" patch (which is not directly related).
10413 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10414 needed, it would be wrong due to missing DW_AT_producer there.
10416 Still one can confuse GDB by using non-standard GCC compilation
10417 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10419 if (cu->has_loclist && gcc_4_minor >= 5)
10420 cust->locations_valid = 1;
10422 if (gcc_4_minor >= 5)
10423 cust->epilogue_unwind_valid = 1;
10425 cust->call_site_htab = cu->call_site_htab;
10428 if (dwarf2_per_objfile->using_index)
10429 per_cu->v.quick->compunit_symtab = cust;
10432 struct partial_symtab *pst = per_cu->v.psymtab;
10433 pst->compunit_symtab = cust;
10437 /* Push it for inclusion processing later. */
10438 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10440 /* Not needed any more. */
10441 cu->reset_builder ();
10444 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10445 already been loaded into memory. */
10448 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10449 enum language pretend_language)
10451 struct dwarf2_cu *cu = per_cu->cu;
10452 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10453 struct objfile *objfile = dwarf2_per_objfile->objfile;
10454 struct compunit_symtab *cust;
10455 struct signatured_type *sig_type;
10457 gdb_assert (per_cu->is_debug_types);
10458 sig_type = (struct signatured_type *) per_cu;
10460 /* Clear the list here in case something was left over. */
10461 cu->method_list.clear ();
10463 cu->language = pretend_language;
10464 cu->language_defn = language_def (cu->language);
10466 /* The symbol tables are set up in read_type_unit_scope. */
10467 process_die (cu->dies, cu);
10469 /* For now fudge the Go package. */
10470 if (cu->language == language_go)
10471 fixup_go_packaging (cu);
10473 /* Now that we have processed all the DIEs in the CU, all the types
10474 should be complete, and it should now be safe to compute all of the
10476 compute_delayed_physnames (cu);
10478 if (cu->language == language_rust)
10479 rust_union_quirks (cu);
10481 /* TUs share symbol tables.
10482 If this is the first TU to use this symtab, complete the construction
10483 of it with end_expandable_symtab. Otherwise, complete the addition of
10484 this TU's symbols to the existing symtab. */
10485 if (sig_type->type_unit_group->compunit_symtab == NULL)
10487 buildsym_compunit *builder = cu->get_builder ();
10488 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10489 sig_type->type_unit_group->compunit_symtab = cust;
10493 /* Set symtab language to language from DW_AT_language. If the
10494 compilation is from a C file generated by language preprocessors,
10495 do not set the language if it was already deduced by
10497 if (!(cu->language == language_c
10498 && COMPUNIT_FILETABS (cust)->language != language_c))
10499 COMPUNIT_FILETABS (cust)->language = cu->language;
10504 cu->get_builder ()->augment_type_symtab ();
10505 cust = sig_type->type_unit_group->compunit_symtab;
10508 if (dwarf2_per_objfile->using_index)
10509 per_cu->v.quick->compunit_symtab = cust;
10512 struct partial_symtab *pst = per_cu->v.psymtab;
10513 pst->compunit_symtab = cust;
10517 /* Not needed any more. */
10518 cu->reset_builder ();
10521 /* Process an imported unit DIE. */
10524 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10526 struct attribute *attr;
10528 /* For now we don't handle imported units in type units. */
10529 if (cu->per_cu->is_debug_types)
10531 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10532 " supported in type units [in module %s]"),
10533 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10536 attr = dwarf2_attr (die, DW_AT_import, cu);
10539 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10540 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10541 dwarf2_per_cu_data *per_cu
10542 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10543 cu->per_cu->dwarf2_per_objfile);
10545 /* If necessary, add it to the queue and load its DIEs. */
10546 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10547 load_full_comp_unit (per_cu, false, cu->language);
10549 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10554 /* RAII object that represents a process_die scope: i.e.,
10555 starts/finishes processing a DIE. */
10556 class process_die_scope
10559 process_die_scope (die_info *die, dwarf2_cu *cu)
10560 : m_die (die), m_cu (cu)
10562 /* We should only be processing DIEs not already in process. */
10563 gdb_assert (!m_die->in_process);
10564 m_die->in_process = true;
10567 ~process_die_scope ()
10569 m_die->in_process = false;
10571 /* If we're done processing the DIE for the CU that owns the line
10572 header, we don't need the line header anymore. */
10573 if (m_cu->line_header_die_owner == m_die)
10575 delete m_cu->line_header;
10576 m_cu->line_header = NULL;
10577 m_cu->line_header_die_owner = NULL;
10586 /* Process a die and its children. */
10589 process_die (struct die_info *die, struct dwarf2_cu *cu)
10591 process_die_scope scope (die, cu);
10595 case DW_TAG_padding:
10597 case DW_TAG_compile_unit:
10598 case DW_TAG_partial_unit:
10599 read_file_scope (die, cu);
10601 case DW_TAG_type_unit:
10602 read_type_unit_scope (die, cu);
10604 case DW_TAG_subprogram:
10605 case DW_TAG_inlined_subroutine:
10606 read_func_scope (die, cu);
10608 case DW_TAG_lexical_block:
10609 case DW_TAG_try_block:
10610 case DW_TAG_catch_block:
10611 read_lexical_block_scope (die, cu);
10613 case DW_TAG_call_site:
10614 case DW_TAG_GNU_call_site:
10615 read_call_site_scope (die, cu);
10617 case DW_TAG_class_type:
10618 case DW_TAG_interface_type:
10619 case DW_TAG_structure_type:
10620 case DW_TAG_union_type:
10621 process_structure_scope (die, cu);
10623 case DW_TAG_enumeration_type:
10624 process_enumeration_scope (die, cu);
10627 /* These dies have a type, but processing them does not create
10628 a symbol or recurse to process the children. Therefore we can
10629 read them on-demand through read_type_die. */
10630 case DW_TAG_subroutine_type:
10631 case DW_TAG_set_type:
10632 case DW_TAG_array_type:
10633 case DW_TAG_pointer_type:
10634 case DW_TAG_ptr_to_member_type:
10635 case DW_TAG_reference_type:
10636 case DW_TAG_rvalue_reference_type:
10637 case DW_TAG_string_type:
10640 case DW_TAG_base_type:
10641 case DW_TAG_subrange_type:
10642 case DW_TAG_typedef:
10643 /* Add a typedef symbol for the type definition, if it has a
10645 new_symbol (die, read_type_die (die, cu), cu);
10647 case DW_TAG_common_block:
10648 read_common_block (die, cu);
10650 case DW_TAG_common_inclusion:
10652 case DW_TAG_namespace:
10653 cu->processing_has_namespace_info = true;
10654 read_namespace (die, cu);
10656 case DW_TAG_module:
10657 cu->processing_has_namespace_info = true;
10658 read_module (die, cu);
10660 case DW_TAG_imported_declaration:
10661 cu->processing_has_namespace_info = true;
10662 if (read_namespace_alias (die, cu))
10664 /* The declaration is not a global namespace alias. */
10665 /* Fall through. */
10666 case DW_TAG_imported_module:
10667 cu->processing_has_namespace_info = true;
10668 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10669 || cu->language != language_fortran))
10670 complaint (_("Tag '%s' has unexpected children"),
10671 dwarf_tag_name (die->tag));
10672 read_import_statement (die, cu);
10675 case DW_TAG_imported_unit:
10676 process_imported_unit_die (die, cu);
10679 case DW_TAG_variable:
10680 read_variable (die, cu);
10684 new_symbol (die, NULL, cu);
10689 /* DWARF name computation. */
10691 /* A helper function for dwarf2_compute_name which determines whether DIE
10692 needs to have the name of the scope prepended to the name listed in the
10696 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10698 struct attribute *attr;
10702 case DW_TAG_namespace:
10703 case DW_TAG_typedef:
10704 case DW_TAG_class_type:
10705 case DW_TAG_interface_type:
10706 case DW_TAG_structure_type:
10707 case DW_TAG_union_type:
10708 case DW_TAG_enumeration_type:
10709 case DW_TAG_enumerator:
10710 case DW_TAG_subprogram:
10711 case DW_TAG_inlined_subroutine:
10712 case DW_TAG_member:
10713 case DW_TAG_imported_declaration:
10716 case DW_TAG_variable:
10717 case DW_TAG_constant:
10718 /* We only need to prefix "globally" visible variables. These include
10719 any variable marked with DW_AT_external or any variable that
10720 lives in a namespace. [Variables in anonymous namespaces
10721 require prefixing, but they are not DW_AT_external.] */
10723 if (dwarf2_attr (die, DW_AT_specification, cu))
10725 struct dwarf2_cu *spec_cu = cu;
10727 return die_needs_namespace (die_specification (die, &spec_cu),
10731 attr = dwarf2_attr (die, DW_AT_external, cu);
10732 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10733 && die->parent->tag != DW_TAG_module)
10735 /* A variable in a lexical block of some kind does not need a
10736 namespace, even though in C++ such variables may be external
10737 and have a mangled name. */
10738 if (die->parent->tag == DW_TAG_lexical_block
10739 || die->parent->tag == DW_TAG_try_block
10740 || die->parent->tag == DW_TAG_catch_block
10741 || die->parent->tag == DW_TAG_subprogram)
10750 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10751 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10752 defined for the given DIE. */
10754 static struct attribute *
10755 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10757 struct attribute *attr;
10759 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10761 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10766 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10767 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10768 defined for the given DIE. */
10770 static const char *
10771 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10773 const char *linkage_name;
10775 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10776 if (linkage_name == NULL)
10777 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10779 return linkage_name;
10782 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10783 compute the physname for the object, which include a method's:
10784 - formal parameters (C++),
10785 - receiver type (Go),
10787 The term "physname" is a bit confusing.
10788 For C++, for example, it is the demangled name.
10789 For Go, for example, it's the mangled name.
10791 For Ada, return the DIE's linkage name rather than the fully qualified
10792 name. PHYSNAME is ignored..
10794 The result is allocated on the objfile_obstack and canonicalized. */
10796 static const char *
10797 dwarf2_compute_name (const char *name,
10798 struct die_info *die, struct dwarf2_cu *cu,
10801 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10804 name = dwarf2_name (die, cu);
10806 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10807 but otherwise compute it by typename_concat inside GDB.
10808 FIXME: Actually this is not really true, or at least not always true.
10809 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10810 Fortran names because there is no mangling standard. So new_symbol
10811 will set the demangled name to the result of dwarf2_full_name, and it is
10812 the demangled name that GDB uses if it exists. */
10813 if (cu->language == language_ada
10814 || (cu->language == language_fortran && physname))
10816 /* For Ada unit, we prefer the linkage name over the name, as
10817 the former contains the exported name, which the user expects
10818 to be able to reference. Ideally, we want the user to be able
10819 to reference this entity using either natural or linkage name,
10820 but we haven't started looking at this enhancement yet. */
10821 const char *linkage_name = dw2_linkage_name (die, cu);
10823 if (linkage_name != NULL)
10824 return linkage_name;
10827 /* These are the only languages we know how to qualify names in. */
10829 && (cu->language == language_cplus
10830 || cu->language == language_fortran || cu->language == language_d
10831 || cu->language == language_rust))
10833 if (die_needs_namespace (die, cu))
10835 const char *prefix;
10836 const char *canonical_name = NULL;
10840 prefix = determine_prefix (die, cu);
10841 if (*prefix != '\0')
10843 char *prefixed_name = typename_concat (NULL, prefix, name,
10846 buf.puts (prefixed_name);
10847 xfree (prefixed_name);
10852 /* Template parameters may be specified in the DIE's DW_AT_name, or
10853 as children with DW_TAG_template_type_param or
10854 DW_TAG_value_type_param. If the latter, add them to the name
10855 here. If the name already has template parameters, then
10856 skip this step; some versions of GCC emit both, and
10857 it is more efficient to use the pre-computed name.
10859 Something to keep in mind about this process: it is very
10860 unlikely, or in some cases downright impossible, to produce
10861 something that will match the mangled name of a function.
10862 If the definition of the function has the same debug info,
10863 we should be able to match up with it anyway. But fallbacks
10864 using the minimal symbol, for instance to find a method
10865 implemented in a stripped copy of libstdc++, will not work.
10866 If we do not have debug info for the definition, we will have to
10867 match them up some other way.
10869 When we do name matching there is a related problem with function
10870 templates; two instantiated function templates are allowed to
10871 differ only by their return types, which we do not add here. */
10873 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10875 struct attribute *attr;
10876 struct die_info *child;
10879 die->building_fullname = 1;
10881 for (child = die->child; child != NULL; child = child->sibling)
10885 const gdb_byte *bytes;
10886 struct dwarf2_locexpr_baton *baton;
10889 if (child->tag != DW_TAG_template_type_param
10890 && child->tag != DW_TAG_template_value_param)
10901 attr = dwarf2_attr (child, DW_AT_type, cu);
10904 complaint (_("template parameter missing DW_AT_type"));
10905 buf.puts ("UNKNOWN_TYPE");
10908 type = die_type (child, cu);
10910 if (child->tag == DW_TAG_template_type_param)
10912 c_print_type (type, "", &buf, -1, 0, cu->language,
10913 &type_print_raw_options);
10917 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10920 complaint (_("template parameter missing "
10921 "DW_AT_const_value"));
10922 buf.puts ("UNKNOWN_VALUE");
10926 dwarf2_const_value_attr (attr, type, name,
10927 &cu->comp_unit_obstack, cu,
10928 &value, &bytes, &baton);
10930 if (TYPE_NOSIGN (type))
10931 /* GDB prints characters as NUMBER 'CHAR'. If that's
10932 changed, this can use value_print instead. */
10933 c_printchar (value, type, &buf);
10936 struct value_print_options opts;
10939 v = dwarf2_evaluate_loc_desc (type, NULL,
10943 else if (bytes != NULL)
10945 v = allocate_value (type);
10946 memcpy (value_contents_writeable (v), bytes,
10947 TYPE_LENGTH (type));
10950 v = value_from_longest (type, value);
10952 /* Specify decimal so that we do not depend on
10954 get_formatted_print_options (&opts, 'd');
10956 value_print (v, &buf, &opts);
10961 die->building_fullname = 0;
10965 /* Close the argument list, with a space if necessary
10966 (nested templates). */
10967 if (!buf.empty () && buf.string ().back () == '>')
10974 /* For C++ methods, append formal parameter type
10975 information, if PHYSNAME. */
10977 if (physname && die->tag == DW_TAG_subprogram
10978 && cu->language == language_cplus)
10980 struct type *type = read_type_die (die, cu);
10982 c_type_print_args (type, &buf, 1, cu->language,
10983 &type_print_raw_options);
10985 if (cu->language == language_cplus)
10987 /* Assume that an artificial first parameter is
10988 "this", but do not crash if it is not. RealView
10989 marks unnamed (and thus unused) parameters as
10990 artificial; there is no way to differentiate
10992 if (TYPE_NFIELDS (type) > 0
10993 && TYPE_FIELD_ARTIFICIAL (type, 0)
10994 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10995 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10997 buf.puts (" const");
11001 const std::string &intermediate_name = buf.string ();
11003 if (cu->language == language_cplus)
11005 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11006 &objfile->per_bfd->storage_obstack);
11008 /* If we only computed INTERMEDIATE_NAME, or if
11009 INTERMEDIATE_NAME is already canonical, then we need to
11010 copy it to the appropriate obstack. */
11011 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11012 name = ((const char *)
11013 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11014 intermediate_name.c_str (),
11015 intermediate_name.length ()));
11017 name = canonical_name;
11024 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11025 If scope qualifiers are appropriate they will be added. The result
11026 will be allocated on the storage_obstack, or NULL if the DIE does
11027 not have a name. NAME may either be from a previous call to
11028 dwarf2_name or NULL.
11030 The output string will be canonicalized (if C++). */
11032 static const char *
11033 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11035 return dwarf2_compute_name (name, die, cu, 0);
11038 /* Construct a physname for the given DIE in CU. NAME may either be
11039 from a previous call to dwarf2_name or NULL. The result will be
11040 allocated on the objfile_objstack or NULL if the DIE does not have a
11043 The output string will be canonicalized (if C++). */
11045 static const char *
11046 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11048 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11049 const char *retval, *mangled = NULL, *canon = NULL;
11052 /* In this case dwarf2_compute_name is just a shortcut not building anything
11054 if (!die_needs_namespace (die, cu))
11055 return dwarf2_compute_name (name, die, cu, 1);
11057 mangled = dw2_linkage_name (die, cu);
11059 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11060 See https://github.com/rust-lang/rust/issues/32925. */
11061 if (cu->language == language_rust && mangled != NULL
11062 && strchr (mangled, '{') != NULL)
11065 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11067 gdb::unique_xmalloc_ptr<char> demangled;
11068 if (mangled != NULL)
11071 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11073 /* Do nothing (do not demangle the symbol name). */
11075 else if (cu->language == language_go)
11077 /* This is a lie, but we already lie to the caller new_symbol.
11078 new_symbol assumes we return the mangled name.
11079 This just undoes that lie until things are cleaned up. */
11083 /* Use DMGL_RET_DROP for C++ template functions to suppress
11084 their return type. It is easier for GDB users to search
11085 for such functions as `name(params)' than `long name(params)'.
11086 In such case the minimal symbol names do not match the full
11087 symbol names but for template functions there is never a need
11088 to look up their definition from their declaration so
11089 the only disadvantage remains the minimal symbol variant
11090 `long name(params)' does not have the proper inferior type. */
11091 demangled.reset (gdb_demangle (mangled,
11092 (DMGL_PARAMS | DMGL_ANSI
11093 | DMGL_RET_DROP)));
11096 canon = demangled.get ();
11104 if (canon == NULL || check_physname)
11106 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11108 if (canon != NULL && strcmp (physname, canon) != 0)
11110 /* It may not mean a bug in GDB. The compiler could also
11111 compute DW_AT_linkage_name incorrectly. But in such case
11112 GDB would need to be bug-to-bug compatible. */
11114 complaint (_("Computed physname <%s> does not match demangled <%s> "
11115 "(from linkage <%s>) - DIE at %s [in module %s]"),
11116 physname, canon, mangled, sect_offset_str (die->sect_off),
11117 objfile_name (objfile));
11119 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11120 is available here - over computed PHYSNAME. It is safer
11121 against both buggy GDB and buggy compilers. */
11135 retval = ((const char *)
11136 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11137 retval, strlen (retval)));
11142 /* Inspect DIE in CU for a namespace alias. If one exists, record
11143 a new symbol for it.
11145 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11148 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11150 struct attribute *attr;
11152 /* If the die does not have a name, this is not a namespace
11154 attr = dwarf2_attr (die, DW_AT_name, cu);
11158 struct die_info *d = die;
11159 struct dwarf2_cu *imported_cu = cu;
11161 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11162 keep inspecting DIEs until we hit the underlying import. */
11163 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11164 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11166 attr = dwarf2_attr (d, DW_AT_import, cu);
11170 d = follow_die_ref (d, attr, &imported_cu);
11171 if (d->tag != DW_TAG_imported_declaration)
11175 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11177 complaint (_("DIE at %s has too many recursively imported "
11178 "declarations"), sect_offset_str (d->sect_off));
11185 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11187 type = get_die_type_at_offset (sect_off, cu->per_cu);
11188 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11190 /* This declaration is a global namespace alias. Add
11191 a symbol for it whose type is the aliased namespace. */
11192 new_symbol (die, type, cu);
11201 /* Return the using directives repository (global or local?) to use in the
11202 current context for CU.
11204 For Ada, imported declarations can materialize renamings, which *may* be
11205 global. However it is impossible (for now?) in DWARF to distinguish
11206 "external" imported declarations and "static" ones. As all imported
11207 declarations seem to be static in all other languages, make them all CU-wide
11208 global only in Ada. */
11210 static struct using_direct **
11211 using_directives (struct dwarf2_cu *cu)
11213 if (cu->language == language_ada
11214 && cu->get_builder ()->outermost_context_p ())
11215 return cu->get_builder ()->get_global_using_directives ();
11217 return cu->get_builder ()->get_local_using_directives ();
11220 /* Read the import statement specified by the given die and record it. */
11223 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11225 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11226 struct attribute *import_attr;
11227 struct die_info *imported_die, *child_die;
11228 struct dwarf2_cu *imported_cu;
11229 const char *imported_name;
11230 const char *imported_name_prefix;
11231 const char *canonical_name;
11232 const char *import_alias;
11233 const char *imported_declaration = NULL;
11234 const char *import_prefix;
11235 std::vector<const char *> excludes;
11237 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11238 if (import_attr == NULL)
11240 complaint (_("Tag '%s' has no DW_AT_import"),
11241 dwarf_tag_name (die->tag));
11246 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11247 imported_name = dwarf2_name (imported_die, imported_cu);
11248 if (imported_name == NULL)
11250 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11252 The import in the following code:
11266 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11267 <52> DW_AT_decl_file : 1
11268 <53> DW_AT_decl_line : 6
11269 <54> DW_AT_import : <0x75>
11270 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11271 <59> DW_AT_name : B
11272 <5b> DW_AT_decl_file : 1
11273 <5c> DW_AT_decl_line : 2
11274 <5d> DW_AT_type : <0x6e>
11276 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11277 <76> DW_AT_byte_size : 4
11278 <77> DW_AT_encoding : 5 (signed)
11280 imports the wrong die ( 0x75 instead of 0x58 ).
11281 This case will be ignored until the gcc bug is fixed. */
11285 /* Figure out the local name after import. */
11286 import_alias = dwarf2_name (die, cu);
11288 /* Figure out where the statement is being imported to. */
11289 import_prefix = determine_prefix (die, cu);
11291 /* Figure out what the scope of the imported die is and prepend it
11292 to the name of the imported die. */
11293 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11295 if (imported_die->tag != DW_TAG_namespace
11296 && imported_die->tag != DW_TAG_module)
11298 imported_declaration = imported_name;
11299 canonical_name = imported_name_prefix;
11301 else if (strlen (imported_name_prefix) > 0)
11302 canonical_name = obconcat (&objfile->objfile_obstack,
11303 imported_name_prefix,
11304 (cu->language == language_d ? "." : "::"),
11305 imported_name, (char *) NULL);
11307 canonical_name = imported_name;
11309 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11310 for (child_die = die->child; child_die && child_die->tag;
11311 child_die = sibling_die (child_die))
11313 /* DWARF-4: A Fortran use statement with a “rename list” may be
11314 represented by an imported module entry with an import attribute
11315 referring to the module and owned entries corresponding to those
11316 entities that are renamed as part of being imported. */
11318 if (child_die->tag != DW_TAG_imported_declaration)
11320 complaint (_("child DW_TAG_imported_declaration expected "
11321 "- DIE at %s [in module %s]"),
11322 sect_offset_str (child_die->sect_off),
11323 objfile_name (objfile));
11327 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11328 if (import_attr == NULL)
11330 complaint (_("Tag '%s' has no DW_AT_import"),
11331 dwarf_tag_name (child_die->tag));
11336 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11338 imported_name = dwarf2_name (imported_die, imported_cu);
11339 if (imported_name == NULL)
11341 complaint (_("child DW_TAG_imported_declaration has unknown "
11342 "imported name - DIE at %s [in module %s]"),
11343 sect_offset_str (child_die->sect_off),
11344 objfile_name (objfile));
11348 excludes.push_back (imported_name);
11350 process_die (child_die, cu);
11353 add_using_directive (using_directives (cu),
11357 imported_declaration,
11360 &objfile->objfile_obstack);
11363 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11364 types, but gives them a size of zero. Starting with version 14,
11365 ICC is compatible with GCC. */
11368 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11370 if (!cu->checked_producer)
11371 check_producer (cu);
11373 return cu->producer_is_icc_lt_14;
11376 /* ICC generates a DW_AT_type for C void functions. This was observed on
11377 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11378 which says that void functions should not have a DW_AT_type. */
11381 producer_is_icc (struct dwarf2_cu *cu)
11383 if (!cu->checked_producer)
11384 check_producer (cu);
11386 return cu->producer_is_icc;
11389 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11390 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11391 this, it was first present in GCC release 4.3.0. */
11394 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11396 if (!cu->checked_producer)
11397 check_producer (cu);
11399 return cu->producer_is_gcc_lt_4_3;
11402 static file_and_directory
11403 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11405 file_and_directory res;
11407 /* Find the filename. Do not use dwarf2_name here, since the filename
11408 is not a source language identifier. */
11409 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11410 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11412 if (res.comp_dir == NULL
11413 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11414 && IS_ABSOLUTE_PATH (res.name))
11416 res.comp_dir_storage = ldirname (res.name);
11417 if (!res.comp_dir_storage.empty ())
11418 res.comp_dir = res.comp_dir_storage.c_str ();
11420 if (res.comp_dir != NULL)
11422 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11423 directory, get rid of it. */
11424 const char *cp = strchr (res.comp_dir, ':');
11426 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11427 res.comp_dir = cp + 1;
11430 if (res.name == NULL)
11431 res.name = "<unknown>";
11436 /* Handle DW_AT_stmt_list for a compilation unit.
11437 DIE is the DW_TAG_compile_unit die for CU.
11438 COMP_DIR is the compilation directory. LOWPC is passed to
11439 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11442 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11443 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11445 struct dwarf2_per_objfile *dwarf2_per_objfile
11446 = cu->per_cu->dwarf2_per_objfile;
11447 struct objfile *objfile = dwarf2_per_objfile->objfile;
11448 struct attribute *attr;
11449 struct line_header line_header_local;
11450 hashval_t line_header_local_hash;
11452 int decode_mapping;
11454 gdb_assert (! cu->per_cu->is_debug_types);
11456 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11460 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11462 /* The line header hash table is only created if needed (it exists to
11463 prevent redundant reading of the line table for partial_units).
11464 If we're given a partial_unit, we'll need it. If we're given a
11465 compile_unit, then use the line header hash table if it's already
11466 created, but don't create one just yet. */
11468 if (dwarf2_per_objfile->line_header_hash == NULL
11469 && die->tag == DW_TAG_partial_unit)
11471 dwarf2_per_objfile->line_header_hash
11472 = htab_create_alloc_ex (127, line_header_hash_voidp,
11473 line_header_eq_voidp,
11474 free_line_header_voidp,
11475 &objfile->objfile_obstack,
11476 hashtab_obstack_allocate,
11477 dummy_obstack_deallocate);
11480 line_header_local.sect_off = line_offset;
11481 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11482 line_header_local_hash = line_header_hash (&line_header_local);
11483 if (dwarf2_per_objfile->line_header_hash != NULL)
11485 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11486 &line_header_local,
11487 line_header_local_hash, NO_INSERT);
11489 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11490 is not present in *SLOT (since if there is something in *SLOT then
11491 it will be for a partial_unit). */
11492 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11494 gdb_assert (*slot != NULL);
11495 cu->line_header = (struct line_header *) *slot;
11500 /* dwarf_decode_line_header does not yet provide sufficient information.
11501 We always have to call also dwarf_decode_lines for it. */
11502 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11506 cu->line_header = lh.release ();
11507 cu->line_header_die_owner = die;
11509 if (dwarf2_per_objfile->line_header_hash == NULL)
11513 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11514 &line_header_local,
11515 line_header_local_hash, INSERT);
11516 gdb_assert (slot != NULL);
11518 if (slot != NULL && *slot == NULL)
11520 /* This newly decoded line number information unit will be owned
11521 by line_header_hash hash table. */
11522 *slot = cu->line_header;
11523 cu->line_header_die_owner = NULL;
11527 /* We cannot free any current entry in (*slot) as that struct line_header
11528 may be already used by multiple CUs. Create only temporary decoded
11529 line_header for this CU - it may happen at most once for each line
11530 number information unit. And if we're not using line_header_hash
11531 then this is what we want as well. */
11532 gdb_assert (die->tag != DW_TAG_partial_unit);
11534 decode_mapping = (die->tag != DW_TAG_partial_unit);
11535 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11540 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11543 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11545 struct dwarf2_per_objfile *dwarf2_per_objfile
11546 = cu->per_cu->dwarf2_per_objfile;
11547 struct objfile *objfile = dwarf2_per_objfile->objfile;
11548 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11549 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11550 CORE_ADDR highpc = ((CORE_ADDR) 0);
11551 struct attribute *attr;
11552 struct die_info *child_die;
11553 CORE_ADDR baseaddr;
11555 prepare_one_comp_unit (cu, die, cu->language);
11556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11558 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11560 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11561 from finish_block. */
11562 if (lowpc == ((CORE_ADDR) -1))
11564 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11566 file_and_directory fnd = find_file_and_directory (die, cu);
11568 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11569 standardised yet. As a workaround for the language detection we fall
11570 back to the DW_AT_producer string. */
11571 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11572 cu->language = language_opencl;
11574 /* Similar hack for Go. */
11575 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11576 set_cu_language (DW_LANG_Go, cu);
11578 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11580 /* Decode line number information if present. We do this before
11581 processing child DIEs, so that the line header table is available
11582 for DW_AT_decl_file. */
11583 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11585 /* Process all dies in compilation unit. */
11586 if (die->child != NULL)
11588 child_die = die->child;
11589 while (child_die && child_die->tag)
11591 process_die (child_die, cu);
11592 child_die = sibling_die (child_die);
11596 /* Decode macro information, if present. Dwarf 2 macro information
11597 refers to information in the line number info statement program
11598 header, so we can only read it if we've read the header
11600 attr = dwarf2_attr (die, DW_AT_macros, cu);
11602 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11603 if (attr && cu->line_header)
11605 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11606 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11608 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11612 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11613 if (attr && cu->line_header)
11615 unsigned int macro_offset = DW_UNSND (attr);
11617 dwarf_decode_macros (cu, macro_offset, 0);
11623 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11625 struct type_unit_group *tu_group;
11627 struct attribute *attr;
11629 struct signatured_type *sig_type;
11631 gdb_assert (per_cu->is_debug_types);
11632 sig_type = (struct signatured_type *) per_cu;
11634 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11636 /* If we're using .gdb_index (includes -readnow) then
11637 per_cu->type_unit_group may not have been set up yet. */
11638 if (sig_type->type_unit_group == NULL)
11639 sig_type->type_unit_group = get_type_unit_group (this, attr);
11640 tu_group = sig_type->type_unit_group;
11642 /* If we've already processed this stmt_list there's no real need to
11643 do it again, we could fake it and just recreate the part we need
11644 (file name,index -> symtab mapping). If data shows this optimization
11645 is useful we can do it then. */
11646 first_time = tu_group->compunit_symtab == NULL;
11648 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11653 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11654 lh = dwarf_decode_line_header (line_offset, this);
11659 start_symtab ("", NULL, 0);
11662 gdb_assert (tu_group->symtabs == NULL);
11663 gdb_assert (m_builder == nullptr);
11664 struct compunit_symtab *cust = tu_group->compunit_symtab;
11665 m_builder.reset (new struct buildsym_compunit
11666 (COMPUNIT_OBJFILE (cust), "",
11667 COMPUNIT_DIRNAME (cust),
11668 compunit_language (cust),
11674 line_header = lh.release ();
11675 line_header_die_owner = die;
11679 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11681 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11682 still initializing it, and our caller (a few levels up)
11683 process_full_type_unit still needs to know if this is the first
11686 tu_group->num_symtabs = line_header->file_names.size ();
11687 tu_group->symtabs = XNEWVEC (struct symtab *,
11688 line_header->file_names.size ());
11690 for (i = 0; i < line_header->file_names.size (); ++i)
11692 file_entry &fe = line_header->file_names[i];
11694 dwarf2_start_subfile (this, fe.name,
11695 fe.include_dir (line_header));
11696 buildsym_compunit *b = get_builder ();
11697 if (b->get_current_subfile ()->symtab == NULL)
11699 /* NOTE: start_subfile will recognize when it's been
11700 passed a file it has already seen. So we can't
11701 assume there's a simple mapping from
11702 cu->line_header->file_names to subfiles, plus
11703 cu->line_header->file_names may contain dups. */
11704 b->get_current_subfile ()->symtab
11705 = allocate_symtab (cust, b->get_current_subfile ()->name);
11708 fe.symtab = b->get_current_subfile ()->symtab;
11709 tu_group->symtabs[i] = fe.symtab;
11714 gdb_assert (m_builder == nullptr);
11715 struct compunit_symtab *cust = tu_group->compunit_symtab;
11716 m_builder.reset (new struct buildsym_compunit
11717 (COMPUNIT_OBJFILE (cust), "",
11718 COMPUNIT_DIRNAME (cust),
11719 compunit_language (cust),
11722 for (i = 0; i < line_header->file_names.size (); ++i)
11724 file_entry &fe = line_header->file_names[i];
11726 fe.symtab = tu_group->symtabs[i];
11730 /* The main symtab is allocated last. Type units don't have DW_AT_name
11731 so they don't have a "real" (so to speak) symtab anyway.
11732 There is later code that will assign the main symtab to all symbols
11733 that don't have one. We need to handle the case of a symbol with a
11734 missing symtab (DW_AT_decl_file) anyway. */
11737 /* Process DW_TAG_type_unit.
11738 For TUs we want to skip the first top level sibling if it's not the
11739 actual type being defined by this TU. In this case the first top
11740 level sibling is there to provide context only. */
11743 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11745 struct die_info *child_die;
11747 prepare_one_comp_unit (cu, die, language_minimal);
11749 /* Initialize (or reinitialize) the machinery for building symtabs.
11750 We do this before processing child DIEs, so that the line header table
11751 is available for DW_AT_decl_file. */
11752 cu->setup_type_unit_groups (die);
11754 if (die->child != NULL)
11756 child_die = die->child;
11757 while (child_die && child_die->tag)
11759 process_die (child_die, cu);
11760 child_die = sibling_die (child_die);
11767 http://gcc.gnu.org/wiki/DebugFission
11768 http://gcc.gnu.org/wiki/DebugFissionDWP
11770 To simplify handling of both DWO files ("object" files with the DWARF info)
11771 and DWP files (a file with the DWOs packaged up into one file), we treat
11772 DWP files as having a collection of virtual DWO files. */
11775 hash_dwo_file (const void *item)
11777 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11780 hash = htab_hash_string (dwo_file->dwo_name);
11781 if (dwo_file->comp_dir != NULL)
11782 hash += htab_hash_string (dwo_file->comp_dir);
11787 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11789 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11790 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11792 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11794 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11795 return lhs->comp_dir == rhs->comp_dir;
11796 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11799 /* Allocate a hash table for DWO files. */
11802 allocate_dwo_file_hash_table (struct objfile *objfile)
11804 return htab_create_alloc_ex (41,
11808 &objfile->objfile_obstack,
11809 hashtab_obstack_allocate,
11810 dummy_obstack_deallocate);
11813 /* Lookup DWO file DWO_NAME. */
11816 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11817 const char *dwo_name,
11818 const char *comp_dir)
11820 struct dwo_file find_entry;
11823 if (dwarf2_per_objfile->dwo_files == NULL)
11824 dwarf2_per_objfile->dwo_files
11825 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11827 memset (&find_entry, 0, sizeof (find_entry));
11828 find_entry.dwo_name = dwo_name;
11829 find_entry.comp_dir = comp_dir;
11830 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11836 hash_dwo_unit (const void *item)
11838 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11840 /* This drops the top 32 bits of the id, but is ok for a hash. */
11841 return dwo_unit->signature;
11845 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11847 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11848 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11850 /* The signature is assumed to be unique within the DWO file.
11851 So while object file CU dwo_id's always have the value zero,
11852 that's OK, assuming each object file DWO file has only one CU,
11853 and that's the rule for now. */
11854 return lhs->signature == rhs->signature;
11857 /* Allocate a hash table for DWO CUs,TUs.
11858 There is one of these tables for each of CUs,TUs for each DWO file. */
11861 allocate_dwo_unit_table (struct objfile *objfile)
11863 /* Start out with a pretty small number.
11864 Generally DWO files contain only one CU and maybe some TUs. */
11865 return htab_create_alloc_ex (3,
11869 &objfile->objfile_obstack,
11870 hashtab_obstack_allocate,
11871 dummy_obstack_deallocate);
11874 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11876 struct create_dwo_cu_data
11878 struct dwo_file *dwo_file;
11879 struct dwo_unit dwo_unit;
11882 /* die_reader_func for create_dwo_cu. */
11885 create_dwo_cu_reader (const struct die_reader_specs *reader,
11886 const gdb_byte *info_ptr,
11887 struct die_info *comp_unit_die,
11891 struct dwarf2_cu *cu = reader->cu;
11892 sect_offset sect_off = cu->per_cu->sect_off;
11893 struct dwarf2_section_info *section = cu->per_cu->section;
11894 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11895 struct dwo_file *dwo_file = data->dwo_file;
11896 struct dwo_unit *dwo_unit = &data->dwo_unit;
11897 struct attribute *attr;
11899 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11902 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11903 " its dwo_id [in module %s]"),
11904 sect_offset_str (sect_off), dwo_file->dwo_name);
11908 dwo_unit->dwo_file = dwo_file;
11909 dwo_unit->signature = DW_UNSND (attr);
11910 dwo_unit->section = section;
11911 dwo_unit->sect_off = sect_off;
11912 dwo_unit->length = cu->per_cu->length;
11914 if (dwarf_read_debug)
11915 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11916 sect_offset_str (sect_off),
11917 hex_string (dwo_unit->signature));
11920 /* Create the dwo_units for the CUs in a DWO_FILE.
11921 Note: This function processes DWO files only, not DWP files. */
11924 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11925 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11928 struct objfile *objfile = dwarf2_per_objfile->objfile;
11929 const gdb_byte *info_ptr, *end_ptr;
11931 dwarf2_read_section (objfile, §ion);
11932 info_ptr = section.buffer;
11934 if (info_ptr == NULL)
11937 if (dwarf_read_debug)
11939 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11940 get_section_name (§ion),
11941 get_section_file_name (§ion));
11944 end_ptr = info_ptr + section.size;
11945 while (info_ptr < end_ptr)
11947 struct dwarf2_per_cu_data per_cu;
11948 struct create_dwo_cu_data create_dwo_cu_data;
11949 struct dwo_unit *dwo_unit;
11951 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11953 memset (&create_dwo_cu_data.dwo_unit, 0,
11954 sizeof (create_dwo_cu_data.dwo_unit));
11955 memset (&per_cu, 0, sizeof (per_cu));
11956 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11957 per_cu.is_debug_types = 0;
11958 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11959 per_cu.section = §ion;
11960 create_dwo_cu_data.dwo_file = &dwo_file;
11962 init_cutu_and_read_dies_no_follow (
11963 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11964 info_ptr += per_cu.length;
11966 // If the unit could not be parsed, skip it.
11967 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11970 if (cus_htab == NULL)
11971 cus_htab = allocate_dwo_unit_table (objfile);
11973 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11974 *dwo_unit = create_dwo_cu_data.dwo_unit;
11975 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11976 gdb_assert (slot != NULL);
11979 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11980 sect_offset dup_sect_off = dup_cu->sect_off;
11982 complaint (_("debug cu entry at offset %s is duplicate to"
11983 " the entry at offset %s, signature %s"),
11984 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11985 hex_string (dwo_unit->signature));
11987 *slot = (void *)dwo_unit;
11991 /* DWP file .debug_{cu,tu}_index section format:
11992 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11996 Both index sections have the same format, and serve to map a 64-bit
11997 signature to a set of section numbers. Each section begins with a header,
11998 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11999 indexes, and a pool of 32-bit section numbers. The index sections will be
12000 aligned at 8-byte boundaries in the file.
12002 The index section header consists of:
12004 V, 32 bit version number
12006 N, 32 bit number of compilation units or type units in the index
12007 M, 32 bit number of slots in the hash table
12009 Numbers are recorded using the byte order of the application binary.
12011 The hash table begins at offset 16 in the section, and consists of an array
12012 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12013 order of the application binary). Unused slots in the hash table are 0.
12014 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12016 The parallel table begins immediately after the hash table
12017 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12018 array of 32-bit indexes (using the byte order of the application binary),
12019 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12020 table contains a 32-bit index into the pool of section numbers. For unused
12021 hash table slots, the corresponding entry in the parallel table will be 0.
12023 The pool of section numbers begins immediately following the hash table
12024 (at offset 16 + 12 * M from the beginning of the section). The pool of
12025 section numbers consists of an array of 32-bit words (using the byte order
12026 of the application binary). Each item in the array is indexed starting
12027 from 0. The hash table entry provides the index of the first section
12028 number in the set. Additional section numbers in the set follow, and the
12029 set is terminated by a 0 entry (section number 0 is not used in ELF).
12031 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12032 section must be the first entry in the set, and the .debug_abbrev.dwo must
12033 be the second entry. Other members of the set may follow in any order.
12039 DWP Version 2 combines all the .debug_info, etc. sections into one,
12040 and the entries in the index tables are now offsets into these sections.
12041 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12044 Index Section Contents:
12046 Hash Table of Signatures dwp_hash_table.hash_table
12047 Parallel Table of Indices dwp_hash_table.unit_table
12048 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12049 Table of Section Sizes dwp_hash_table.v2.sizes
12051 The index section header consists of:
12053 V, 32 bit version number
12054 L, 32 bit number of columns in the table of section offsets
12055 N, 32 bit number of compilation units or type units in the index
12056 M, 32 bit number of slots in the hash table
12058 Numbers are recorded using the byte order of the application binary.
12060 The hash table has the same format as version 1.
12061 The parallel table of indices has the same format as version 1,
12062 except that the entries are origin-1 indices into the table of sections
12063 offsets and the table of section sizes.
12065 The table of offsets begins immediately following the parallel table
12066 (at offset 16 + 12 * M from the beginning of the section). The table is
12067 a two-dimensional array of 32-bit words (using the byte order of the
12068 application binary), with L columns and N+1 rows, in row-major order.
12069 Each row in the array is indexed starting from 0. The first row provides
12070 a key to the remaining rows: each column in this row provides an identifier
12071 for a debug section, and the offsets in the same column of subsequent rows
12072 refer to that section. The section identifiers are:
12074 DW_SECT_INFO 1 .debug_info.dwo
12075 DW_SECT_TYPES 2 .debug_types.dwo
12076 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12077 DW_SECT_LINE 4 .debug_line.dwo
12078 DW_SECT_LOC 5 .debug_loc.dwo
12079 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12080 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12081 DW_SECT_MACRO 8 .debug_macro.dwo
12083 The offsets provided by the CU and TU index sections are the base offsets
12084 for the contributions made by each CU or TU to the corresponding section
12085 in the package file. Each CU and TU header contains an abbrev_offset
12086 field, used to find the abbreviations table for that CU or TU within the
12087 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12088 be interpreted as relative to the base offset given in the index section.
12089 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12090 should be interpreted as relative to the base offset for .debug_line.dwo,
12091 and offsets into other debug sections obtained from DWARF attributes should
12092 also be interpreted as relative to the corresponding base offset.
12094 The table of sizes begins immediately following the table of offsets.
12095 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12096 with L columns and N rows, in row-major order. Each row in the array is
12097 indexed starting from 1 (row 0 is shared by the two tables).
12101 Hash table lookup is handled the same in version 1 and 2:
12103 We assume that N and M will not exceed 2^32 - 1.
12104 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12106 Given a 64-bit compilation unit signature or a type signature S, an entry
12107 in the hash table is located as follows:
12109 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12110 the low-order k bits all set to 1.
12112 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12114 3) If the hash table entry at index H matches the signature, use that
12115 entry. If the hash table entry at index H is unused (all zeroes),
12116 terminate the search: the signature is not present in the table.
12118 4) Let H = (H + H') modulo M. Repeat at Step 3.
12120 Because M > N and H' and M are relatively prime, the search is guaranteed
12121 to stop at an unused slot or find the match. */
12123 /* Create a hash table to map DWO IDs to their CU/TU entry in
12124 .debug_{info,types}.dwo in DWP_FILE.
12125 Returns NULL if there isn't one.
12126 Note: This function processes DWP files only, not DWO files. */
12128 static struct dwp_hash_table *
12129 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12130 struct dwp_file *dwp_file, int is_debug_types)
12132 struct objfile *objfile = dwarf2_per_objfile->objfile;
12133 bfd *dbfd = dwp_file->dbfd.get ();
12134 const gdb_byte *index_ptr, *index_end;
12135 struct dwarf2_section_info *index;
12136 uint32_t version, nr_columns, nr_units, nr_slots;
12137 struct dwp_hash_table *htab;
12139 if (is_debug_types)
12140 index = &dwp_file->sections.tu_index;
12142 index = &dwp_file->sections.cu_index;
12144 if (dwarf2_section_empty_p (index))
12146 dwarf2_read_section (objfile, index);
12148 index_ptr = index->buffer;
12149 index_end = index_ptr + index->size;
12151 version = read_4_bytes (dbfd, index_ptr);
12154 nr_columns = read_4_bytes (dbfd, index_ptr);
12158 nr_units = read_4_bytes (dbfd, index_ptr);
12160 nr_slots = read_4_bytes (dbfd, index_ptr);
12163 if (version != 1 && version != 2)
12165 error (_("Dwarf Error: unsupported DWP file version (%s)"
12166 " [in module %s]"),
12167 pulongest (version), dwp_file->name);
12169 if (nr_slots != (nr_slots & -nr_slots))
12171 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12172 " is not power of 2 [in module %s]"),
12173 pulongest (nr_slots), dwp_file->name);
12176 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12177 htab->version = version;
12178 htab->nr_columns = nr_columns;
12179 htab->nr_units = nr_units;
12180 htab->nr_slots = nr_slots;
12181 htab->hash_table = index_ptr;
12182 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12184 /* Exit early if the table is empty. */
12185 if (nr_slots == 0 || nr_units == 0
12186 || (version == 2 && nr_columns == 0))
12188 /* All must be zero. */
12189 if (nr_slots != 0 || nr_units != 0
12190 || (version == 2 && nr_columns != 0))
12192 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12193 " all zero [in modules %s]"),
12201 htab->section_pool.v1.indices =
12202 htab->unit_table + sizeof (uint32_t) * nr_slots;
12203 /* It's harder to decide whether the section is too small in v1.
12204 V1 is deprecated anyway so we punt. */
12208 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12209 int *ids = htab->section_pool.v2.section_ids;
12210 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12211 /* Reverse map for error checking. */
12212 int ids_seen[DW_SECT_MAX + 1];
12215 if (nr_columns < 2)
12217 error (_("Dwarf Error: bad DWP hash table, too few columns"
12218 " in section table [in module %s]"),
12221 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12223 error (_("Dwarf Error: bad DWP hash table, too many columns"
12224 " in section table [in module %s]"),
12227 memset (ids, 255, sizeof_ids);
12228 memset (ids_seen, 255, sizeof (ids_seen));
12229 for (i = 0; i < nr_columns; ++i)
12231 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12233 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12235 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12236 " in section table [in module %s]"),
12237 id, dwp_file->name);
12239 if (ids_seen[id] != -1)
12241 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12242 " id %d in section table [in module %s]"),
12243 id, dwp_file->name);
12248 /* Must have exactly one info or types section. */
12249 if (((ids_seen[DW_SECT_INFO] != -1)
12250 + (ids_seen[DW_SECT_TYPES] != -1))
12253 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12254 " DWO info/types section [in module %s]"),
12257 /* Must have an abbrev section. */
12258 if (ids_seen[DW_SECT_ABBREV] == -1)
12260 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12261 " section [in module %s]"),
12264 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12265 htab->section_pool.v2.sizes =
12266 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12267 * nr_units * nr_columns);
12268 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12269 * nr_units * nr_columns))
12272 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12273 " [in module %s]"),
12281 /* Update SECTIONS with the data from SECTP.
12283 This function is like the other "locate" section routines that are
12284 passed to bfd_map_over_sections, but in this context the sections to
12285 read comes from the DWP V1 hash table, not the full ELF section table.
12287 The result is non-zero for success, or zero if an error was found. */
12290 locate_v1_virtual_dwo_sections (asection *sectp,
12291 struct virtual_v1_dwo_sections *sections)
12293 const struct dwop_section_names *names = &dwop_section_names;
12295 if (section_is_p (sectp->name, &names->abbrev_dwo))
12297 /* There can be only one. */
12298 if (sections->abbrev.s.section != NULL)
12300 sections->abbrev.s.section = sectp;
12301 sections->abbrev.size = bfd_get_section_size (sectp);
12303 else if (section_is_p (sectp->name, &names->info_dwo)
12304 || section_is_p (sectp->name, &names->types_dwo))
12306 /* There can be only one. */
12307 if (sections->info_or_types.s.section != NULL)
12309 sections->info_or_types.s.section = sectp;
12310 sections->info_or_types.size = bfd_get_section_size (sectp);
12312 else if (section_is_p (sectp->name, &names->line_dwo))
12314 /* There can be only one. */
12315 if (sections->line.s.section != NULL)
12317 sections->line.s.section = sectp;
12318 sections->line.size = bfd_get_section_size (sectp);
12320 else if (section_is_p (sectp->name, &names->loc_dwo))
12322 /* There can be only one. */
12323 if (sections->loc.s.section != NULL)
12325 sections->loc.s.section = sectp;
12326 sections->loc.size = bfd_get_section_size (sectp);
12328 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12330 /* There can be only one. */
12331 if (sections->macinfo.s.section != NULL)
12333 sections->macinfo.s.section = sectp;
12334 sections->macinfo.size = bfd_get_section_size (sectp);
12336 else if (section_is_p (sectp->name, &names->macro_dwo))
12338 /* There can be only one. */
12339 if (sections->macro.s.section != NULL)
12341 sections->macro.s.section = sectp;
12342 sections->macro.size = bfd_get_section_size (sectp);
12344 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12346 /* There can be only one. */
12347 if (sections->str_offsets.s.section != NULL)
12349 sections->str_offsets.s.section = sectp;
12350 sections->str_offsets.size = bfd_get_section_size (sectp);
12354 /* No other kind of section is valid. */
12361 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12362 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12363 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12364 This is for DWP version 1 files. */
12366 static struct dwo_unit *
12367 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12368 struct dwp_file *dwp_file,
12369 uint32_t unit_index,
12370 const char *comp_dir,
12371 ULONGEST signature, int is_debug_types)
12373 struct objfile *objfile = dwarf2_per_objfile->objfile;
12374 const struct dwp_hash_table *dwp_htab =
12375 is_debug_types ? dwp_file->tus : dwp_file->cus;
12376 bfd *dbfd = dwp_file->dbfd.get ();
12377 const char *kind = is_debug_types ? "TU" : "CU";
12378 struct dwo_file *dwo_file;
12379 struct dwo_unit *dwo_unit;
12380 struct virtual_v1_dwo_sections sections;
12381 void **dwo_file_slot;
12384 gdb_assert (dwp_file->version == 1);
12386 if (dwarf_read_debug)
12388 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12390 pulongest (unit_index), hex_string (signature),
12394 /* Fetch the sections of this DWO unit.
12395 Put a limit on the number of sections we look for so that bad data
12396 doesn't cause us to loop forever. */
12398 #define MAX_NR_V1_DWO_SECTIONS \
12399 (1 /* .debug_info or .debug_types */ \
12400 + 1 /* .debug_abbrev */ \
12401 + 1 /* .debug_line */ \
12402 + 1 /* .debug_loc */ \
12403 + 1 /* .debug_str_offsets */ \
12404 + 1 /* .debug_macro or .debug_macinfo */ \
12405 + 1 /* trailing zero */)
12407 memset (§ions, 0, sizeof (sections));
12409 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12412 uint32_t section_nr =
12413 read_4_bytes (dbfd,
12414 dwp_htab->section_pool.v1.indices
12415 + (unit_index + i) * sizeof (uint32_t));
12417 if (section_nr == 0)
12419 if (section_nr >= dwp_file->num_sections)
12421 error (_("Dwarf Error: bad DWP hash table, section number too large"
12422 " [in module %s]"),
12426 sectp = dwp_file->elf_sections[section_nr];
12427 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12429 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12430 " [in module %s]"),
12436 || dwarf2_section_empty_p (§ions.info_or_types)
12437 || dwarf2_section_empty_p (§ions.abbrev))
12439 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12440 " [in module %s]"),
12443 if (i == MAX_NR_V1_DWO_SECTIONS)
12445 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12446 " [in module %s]"),
12450 /* It's easier for the rest of the code if we fake a struct dwo_file and
12451 have dwo_unit "live" in that. At least for now.
12453 The DWP file can be made up of a random collection of CUs and TUs.
12454 However, for each CU + set of TUs that came from the same original DWO
12455 file, we can combine them back into a virtual DWO file to save space
12456 (fewer struct dwo_file objects to allocate). Remember that for really
12457 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12459 std::string virtual_dwo_name =
12460 string_printf ("virtual-dwo/%d-%d-%d-%d",
12461 get_section_id (§ions.abbrev),
12462 get_section_id (§ions.line),
12463 get_section_id (§ions.loc),
12464 get_section_id (§ions.str_offsets));
12465 /* Can we use an existing virtual DWO file? */
12466 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12467 virtual_dwo_name.c_str (),
12469 /* Create one if necessary. */
12470 if (*dwo_file_slot == NULL)
12472 if (dwarf_read_debug)
12474 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12475 virtual_dwo_name.c_str ());
12477 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12479 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12480 virtual_dwo_name.c_str (),
12481 virtual_dwo_name.size ());
12482 dwo_file->comp_dir = comp_dir;
12483 dwo_file->sections.abbrev = sections.abbrev;
12484 dwo_file->sections.line = sections.line;
12485 dwo_file->sections.loc = sections.loc;
12486 dwo_file->sections.macinfo = sections.macinfo;
12487 dwo_file->sections.macro = sections.macro;
12488 dwo_file->sections.str_offsets = sections.str_offsets;
12489 /* The "str" section is global to the entire DWP file. */
12490 dwo_file->sections.str = dwp_file->sections.str;
12491 /* The info or types section is assigned below to dwo_unit,
12492 there's no need to record it in dwo_file.
12493 Also, we can't simply record type sections in dwo_file because
12494 we record a pointer into the vector in dwo_unit. As we collect more
12495 types we'll grow the vector and eventually have to reallocate space
12496 for it, invalidating all copies of pointers into the previous
12498 *dwo_file_slot = dwo_file;
12502 if (dwarf_read_debug)
12504 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12505 virtual_dwo_name.c_str ());
12507 dwo_file = (struct dwo_file *) *dwo_file_slot;
12510 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12511 dwo_unit->dwo_file = dwo_file;
12512 dwo_unit->signature = signature;
12513 dwo_unit->section =
12514 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12515 *dwo_unit->section = sections.info_or_types;
12516 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12521 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12522 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12523 piece within that section used by a TU/CU, return a virtual section
12524 of just that piece. */
12526 static struct dwarf2_section_info
12527 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12528 struct dwarf2_section_info *section,
12529 bfd_size_type offset, bfd_size_type size)
12531 struct dwarf2_section_info result;
12534 gdb_assert (section != NULL);
12535 gdb_assert (!section->is_virtual);
12537 memset (&result, 0, sizeof (result));
12538 result.s.containing_section = section;
12539 result.is_virtual = 1;
12544 sectp = get_section_bfd_section (section);
12546 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12547 bounds of the real section. This is a pretty-rare event, so just
12548 flag an error (easier) instead of a warning and trying to cope. */
12550 || offset + size > bfd_get_section_size (sectp))
12552 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12553 " in section %s [in module %s]"),
12554 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12555 objfile_name (dwarf2_per_objfile->objfile));
12558 result.virtual_offset = offset;
12559 result.size = size;
12563 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12564 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12565 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12566 This is for DWP version 2 files. */
12568 static struct dwo_unit *
12569 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12570 struct dwp_file *dwp_file,
12571 uint32_t unit_index,
12572 const char *comp_dir,
12573 ULONGEST signature, int is_debug_types)
12575 struct objfile *objfile = dwarf2_per_objfile->objfile;
12576 const struct dwp_hash_table *dwp_htab =
12577 is_debug_types ? dwp_file->tus : dwp_file->cus;
12578 bfd *dbfd = dwp_file->dbfd.get ();
12579 const char *kind = is_debug_types ? "TU" : "CU";
12580 struct dwo_file *dwo_file;
12581 struct dwo_unit *dwo_unit;
12582 struct virtual_v2_dwo_sections sections;
12583 void **dwo_file_slot;
12586 gdb_assert (dwp_file->version == 2);
12588 if (dwarf_read_debug)
12590 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12592 pulongest (unit_index), hex_string (signature),
12596 /* Fetch the section offsets of this DWO unit. */
12598 memset (§ions, 0, sizeof (sections));
12600 for (i = 0; i < dwp_htab->nr_columns; ++i)
12602 uint32_t offset = read_4_bytes (dbfd,
12603 dwp_htab->section_pool.v2.offsets
12604 + (((unit_index - 1) * dwp_htab->nr_columns
12606 * sizeof (uint32_t)));
12607 uint32_t size = read_4_bytes (dbfd,
12608 dwp_htab->section_pool.v2.sizes
12609 + (((unit_index - 1) * dwp_htab->nr_columns
12611 * sizeof (uint32_t)));
12613 switch (dwp_htab->section_pool.v2.section_ids[i])
12616 case DW_SECT_TYPES:
12617 sections.info_or_types_offset = offset;
12618 sections.info_or_types_size = size;
12620 case DW_SECT_ABBREV:
12621 sections.abbrev_offset = offset;
12622 sections.abbrev_size = size;
12625 sections.line_offset = offset;
12626 sections.line_size = size;
12629 sections.loc_offset = offset;
12630 sections.loc_size = size;
12632 case DW_SECT_STR_OFFSETS:
12633 sections.str_offsets_offset = offset;
12634 sections.str_offsets_size = size;
12636 case DW_SECT_MACINFO:
12637 sections.macinfo_offset = offset;
12638 sections.macinfo_size = size;
12640 case DW_SECT_MACRO:
12641 sections.macro_offset = offset;
12642 sections.macro_size = size;
12647 /* It's easier for the rest of the code if we fake a struct dwo_file and
12648 have dwo_unit "live" in that. At least for now.
12650 The DWP file can be made up of a random collection of CUs and TUs.
12651 However, for each CU + set of TUs that came from the same original DWO
12652 file, we can combine them back into a virtual DWO file to save space
12653 (fewer struct dwo_file objects to allocate). Remember that for really
12654 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12656 std::string virtual_dwo_name =
12657 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12658 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12659 (long) (sections.line_size ? sections.line_offset : 0),
12660 (long) (sections.loc_size ? sections.loc_offset : 0),
12661 (long) (sections.str_offsets_size
12662 ? sections.str_offsets_offset : 0));
12663 /* Can we use an existing virtual DWO file? */
12664 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12665 virtual_dwo_name.c_str (),
12667 /* Create one if necessary. */
12668 if (*dwo_file_slot == NULL)
12670 if (dwarf_read_debug)
12672 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12673 virtual_dwo_name.c_str ());
12675 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12677 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12678 virtual_dwo_name.c_str (),
12679 virtual_dwo_name.size ());
12680 dwo_file->comp_dir = comp_dir;
12681 dwo_file->sections.abbrev =
12682 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12683 sections.abbrev_offset, sections.abbrev_size);
12684 dwo_file->sections.line =
12685 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12686 sections.line_offset, sections.line_size);
12687 dwo_file->sections.loc =
12688 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12689 sections.loc_offset, sections.loc_size);
12690 dwo_file->sections.macinfo =
12691 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12692 sections.macinfo_offset, sections.macinfo_size);
12693 dwo_file->sections.macro =
12694 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12695 sections.macro_offset, sections.macro_size);
12696 dwo_file->sections.str_offsets =
12697 create_dwp_v2_section (dwarf2_per_objfile,
12698 &dwp_file->sections.str_offsets,
12699 sections.str_offsets_offset,
12700 sections.str_offsets_size);
12701 /* The "str" section is global to the entire DWP file. */
12702 dwo_file->sections.str = dwp_file->sections.str;
12703 /* The info or types section is assigned below to dwo_unit,
12704 there's no need to record it in dwo_file.
12705 Also, we can't simply record type sections in dwo_file because
12706 we record a pointer into the vector in dwo_unit. As we collect more
12707 types we'll grow the vector and eventually have to reallocate space
12708 for it, invalidating all copies of pointers into the previous
12710 *dwo_file_slot = dwo_file;
12714 if (dwarf_read_debug)
12716 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12717 virtual_dwo_name.c_str ());
12719 dwo_file = (struct dwo_file *) *dwo_file_slot;
12722 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12723 dwo_unit->dwo_file = dwo_file;
12724 dwo_unit->signature = signature;
12725 dwo_unit->section =
12726 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12727 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12729 ? &dwp_file->sections.types
12730 : &dwp_file->sections.info,
12731 sections.info_or_types_offset,
12732 sections.info_or_types_size);
12733 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12738 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12739 Returns NULL if the signature isn't found. */
12741 static struct dwo_unit *
12742 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12743 struct dwp_file *dwp_file, const char *comp_dir,
12744 ULONGEST signature, int is_debug_types)
12746 const struct dwp_hash_table *dwp_htab =
12747 is_debug_types ? dwp_file->tus : dwp_file->cus;
12748 bfd *dbfd = dwp_file->dbfd.get ();
12749 uint32_t mask = dwp_htab->nr_slots - 1;
12750 uint32_t hash = signature & mask;
12751 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12754 struct dwo_unit find_dwo_cu;
12756 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12757 find_dwo_cu.signature = signature;
12758 slot = htab_find_slot (is_debug_types
12759 ? dwp_file->loaded_tus
12760 : dwp_file->loaded_cus,
12761 &find_dwo_cu, INSERT);
12764 return (struct dwo_unit *) *slot;
12766 /* Use a for loop so that we don't loop forever on bad debug info. */
12767 for (i = 0; i < dwp_htab->nr_slots; ++i)
12769 ULONGEST signature_in_table;
12771 signature_in_table =
12772 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12773 if (signature_in_table == signature)
12775 uint32_t unit_index =
12776 read_4_bytes (dbfd,
12777 dwp_htab->unit_table + hash * sizeof (uint32_t));
12779 if (dwp_file->version == 1)
12781 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12782 dwp_file, unit_index,
12783 comp_dir, signature,
12788 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12789 dwp_file, unit_index,
12790 comp_dir, signature,
12793 return (struct dwo_unit *) *slot;
12795 if (signature_in_table == 0)
12797 hash = (hash + hash2) & mask;
12800 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12801 " [in module %s]"),
12805 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12806 Open the file specified by FILE_NAME and hand it off to BFD for
12807 preliminary analysis. Return a newly initialized bfd *, which
12808 includes a canonicalized copy of FILE_NAME.
12809 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12810 SEARCH_CWD is true if the current directory is to be searched.
12811 It will be searched before debug-file-directory.
12812 If successful, the file is added to the bfd include table of the
12813 objfile's bfd (see gdb_bfd_record_inclusion).
12814 If unable to find/open the file, return NULL.
12815 NOTE: This function is derived from symfile_bfd_open. */
12817 static gdb_bfd_ref_ptr
12818 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12819 const char *file_name, int is_dwp, int search_cwd)
12822 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12823 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12824 to debug_file_directory. */
12825 const char *search_path;
12826 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12828 gdb::unique_xmalloc_ptr<char> search_path_holder;
12831 if (*debug_file_directory != '\0')
12833 search_path_holder.reset (concat (".", dirname_separator_string,
12834 debug_file_directory,
12836 search_path = search_path_holder.get ();
12842 search_path = debug_file_directory;
12844 openp_flags flags = OPF_RETURN_REALPATH;
12846 flags |= OPF_SEARCH_IN_PATH;
12848 gdb::unique_xmalloc_ptr<char> absolute_name;
12849 desc = openp (search_path, flags, file_name,
12850 O_RDONLY | O_BINARY, &absolute_name);
12854 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12856 if (sym_bfd == NULL)
12858 bfd_set_cacheable (sym_bfd.get (), 1);
12860 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12863 /* Success. Record the bfd as having been included by the objfile's bfd.
12864 This is important because things like demangled_names_hash lives in the
12865 objfile's per_bfd space and may have references to things like symbol
12866 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12867 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12872 /* Try to open DWO file FILE_NAME.
12873 COMP_DIR is the DW_AT_comp_dir attribute.
12874 The result is the bfd handle of the file.
12875 If there is a problem finding or opening the file, return NULL.
12876 Upon success, the canonicalized path of the file is stored in the bfd,
12877 same as symfile_bfd_open. */
12879 static gdb_bfd_ref_ptr
12880 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12881 const char *file_name, const char *comp_dir)
12883 if (IS_ABSOLUTE_PATH (file_name))
12884 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12885 0 /*is_dwp*/, 0 /*search_cwd*/);
12887 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12889 if (comp_dir != NULL)
12891 char *path_to_try = concat (comp_dir, SLASH_STRING,
12892 file_name, (char *) NULL);
12894 /* NOTE: If comp_dir is a relative path, this will also try the
12895 search path, which seems useful. */
12896 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12899 1 /*search_cwd*/));
12900 xfree (path_to_try);
12905 /* That didn't work, try debug-file-directory, which, despite its name,
12906 is a list of paths. */
12908 if (*debug_file_directory == '\0')
12911 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12912 0 /*is_dwp*/, 1 /*search_cwd*/);
12915 /* This function is mapped across the sections and remembers the offset and
12916 size of each of the DWO debugging sections we are interested in. */
12919 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12921 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12922 const struct dwop_section_names *names = &dwop_section_names;
12924 if (section_is_p (sectp->name, &names->abbrev_dwo))
12926 dwo_sections->abbrev.s.section = sectp;
12927 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12929 else if (section_is_p (sectp->name, &names->info_dwo))
12931 dwo_sections->info.s.section = sectp;
12932 dwo_sections->info.size = bfd_get_section_size (sectp);
12934 else if (section_is_p (sectp->name, &names->line_dwo))
12936 dwo_sections->line.s.section = sectp;
12937 dwo_sections->line.size = bfd_get_section_size (sectp);
12939 else if (section_is_p (sectp->name, &names->loc_dwo))
12941 dwo_sections->loc.s.section = sectp;
12942 dwo_sections->loc.size = bfd_get_section_size (sectp);
12944 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12946 dwo_sections->macinfo.s.section = sectp;
12947 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12949 else if (section_is_p (sectp->name, &names->macro_dwo))
12951 dwo_sections->macro.s.section = sectp;
12952 dwo_sections->macro.size = bfd_get_section_size (sectp);
12954 else if (section_is_p (sectp->name, &names->str_dwo))
12956 dwo_sections->str.s.section = sectp;
12957 dwo_sections->str.size = bfd_get_section_size (sectp);
12959 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12961 dwo_sections->str_offsets.s.section = sectp;
12962 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12964 else if (section_is_p (sectp->name, &names->types_dwo))
12966 struct dwarf2_section_info type_section;
12968 memset (&type_section, 0, sizeof (type_section));
12969 type_section.s.section = sectp;
12970 type_section.size = bfd_get_section_size (sectp);
12971 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12976 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12977 by PER_CU. This is for the non-DWP case.
12978 The result is NULL if DWO_NAME can't be found. */
12980 static struct dwo_file *
12981 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12982 const char *dwo_name, const char *comp_dir)
12984 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12985 struct objfile *objfile = dwarf2_per_objfile->objfile;
12987 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12990 if (dwarf_read_debug)
12991 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12995 /* We use a unique pointer here, despite the obstack allocation,
12996 because a dwo_file needs some cleanup if it is abandoned. */
12997 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12999 dwo_file->dwo_name = dwo_name;
13000 dwo_file->comp_dir = comp_dir;
13001 dwo_file->dbfd = dbfd.release ();
13003 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13004 &dwo_file->sections);
13006 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13009 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13010 dwo_file->sections.types, dwo_file->tus);
13012 if (dwarf_read_debug)
13013 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13015 return dwo_file.release ();
13018 /* This function is mapped across the sections and remembers the offset and
13019 size of each of the DWP debugging sections common to version 1 and 2 that
13020 we are interested in. */
13023 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13024 void *dwp_file_ptr)
13026 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13027 const struct dwop_section_names *names = &dwop_section_names;
13028 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13030 /* Record the ELF section number for later lookup: this is what the
13031 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13032 gdb_assert (elf_section_nr < dwp_file->num_sections);
13033 dwp_file->elf_sections[elf_section_nr] = sectp;
13035 /* Look for specific sections that we need. */
13036 if (section_is_p (sectp->name, &names->str_dwo))
13038 dwp_file->sections.str.s.section = sectp;
13039 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13041 else if (section_is_p (sectp->name, &names->cu_index))
13043 dwp_file->sections.cu_index.s.section = sectp;
13044 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13046 else if (section_is_p (sectp->name, &names->tu_index))
13048 dwp_file->sections.tu_index.s.section = sectp;
13049 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13053 /* This function is mapped across the sections and remembers the offset and
13054 size of each of the DWP version 2 debugging sections that we are interested
13055 in. This is split into a separate function because we don't know if we
13056 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13059 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13061 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13062 const struct dwop_section_names *names = &dwop_section_names;
13063 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13065 /* Record the ELF section number for later lookup: this is what the
13066 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13067 gdb_assert (elf_section_nr < dwp_file->num_sections);
13068 dwp_file->elf_sections[elf_section_nr] = sectp;
13070 /* Look for specific sections that we need. */
13071 if (section_is_p (sectp->name, &names->abbrev_dwo))
13073 dwp_file->sections.abbrev.s.section = sectp;
13074 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13076 else if (section_is_p (sectp->name, &names->info_dwo))
13078 dwp_file->sections.info.s.section = sectp;
13079 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13081 else if (section_is_p (sectp->name, &names->line_dwo))
13083 dwp_file->sections.line.s.section = sectp;
13084 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13086 else if (section_is_p (sectp->name, &names->loc_dwo))
13088 dwp_file->sections.loc.s.section = sectp;
13089 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13091 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13093 dwp_file->sections.macinfo.s.section = sectp;
13094 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13096 else if (section_is_p (sectp->name, &names->macro_dwo))
13098 dwp_file->sections.macro.s.section = sectp;
13099 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13101 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13103 dwp_file->sections.str_offsets.s.section = sectp;
13104 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13106 else if (section_is_p (sectp->name, &names->types_dwo))
13108 dwp_file->sections.types.s.section = sectp;
13109 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13113 /* Hash function for dwp_file loaded CUs/TUs. */
13116 hash_dwp_loaded_cutus (const void *item)
13118 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13120 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13121 return dwo_unit->signature;
13124 /* Equality function for dwp_file loaded CUs/TUs. */
13127 eq_dwp_loaded_cutus (const void *a, const void *b)
13129 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13130 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13132 return dua->signature == dub->signature;
13135 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13138 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13140 return htab_create_alloc_ex (3,
13141 hash_dwp_loaded_cutus,
13142 eq_dwp_loaded_cutus,
13144 &objfile->objfile_obstack,
13145 hashtab_obstack_allocate,
13146 dummy_obstack_deallocate);
13149 /* Try to open DWP file FILE_NAME.
13150 The result is the bfd handle of the file.
13151 If there is a problem finding or opening the file, return NULL.
13152 Upon success, the canonicalized path of the file is stored in the bfd,
13153 same as symfile_bfd_open. */
13155 static gdb_bfd_ref_ptr
13156 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13157 const char *file_name)
13159 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13161 1 /*search_cwd*/));
13165 /* Work around upstream bug 15652.
13166 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13167 [Whether that's a "bug" is debatable, but it is getting in our way.]
13168 We have no real idea where the dwp file is, because gdb's realpath-ing
13169 of the executable's path may have discarded the needed info.
13170 [IWBN if the dwp file name was recorded in the executable, akin to
13171 .gnu_debuglink, but that doesn't exist yet.]
13172 Strip the directory from FILE_NAME and search again. */
13173 if (*debug_file_directory != '\0')
13175 /* Don't implicitly search the current directory here.
13176 If the user wants to search "." to handle this case,
13177 it must be added to debug-file-directory. */
13178 return try_open_dwop_file (dwarf2_per_objfile,
13179 lbasename (file_name), 1 /*is_dwp*/,
13186 /* Initialize the use of the DWP file for the current objfile.
13187 By convention the name of the DWP file is ${objfile}.dwp.
13188 The result is NULL if it can't be found. */
13190 static std::unique_ptr<struct dwp_file>
13191 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13193 struct objfile *objfile = dwarf2_per_objfile->objfile;
13195 /* Try to find first .dwp for the binary file before any symbolic links
13198 /* If the objfile is a debug file, find the name of the real binary
13199 file and get the name of dwp file from there. */
13200 std::string dwp_name;
13201 if (objfile->separate_debug_objfile_backlink != NULL)
13203 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13204 const char *backlink_basename = lbasename (backlink->original_name);
13206 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13209 dwp_name = objfile->original_name;
13211 dwp_name += ".dwp";
13213 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13215 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13217 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13218 dwp_name = objfile_name (objfile);
13219 dwp_name += ".dwp";
13220 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13225 if (dwarf_read_debug)
13226 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13227 return std::unique_ptr<dwp_file> ();
13230 const char *name = bfd_get_filename (dbfd.get ());
13231 std::unique_ptr<struct dwp_file> dwp_file
13232 (new struct dwp_file (name, std::move (dbfd)));
13234 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13235 dwp_file->elf_sections =
13236 OBSTACK_CALLOC (&objfile->objfile_obstack,
13237 dwp_file->num_sections, asection *);
13239 bfd_map_over_sections (dwp_file->dbfd.get (),
13240 dwarf2_locate_common_dwp_sections,
13243 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13246 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13249 /* The DWP file version is stored in the hash table. Oh well. */
13250 if (dwp_file->cus && dwp_file->tus
13251 && dwp_file->cus->version != dwp_file->tus->version)
13253 /* Technically speaking, we should try to limp along, but this is
13254 pretty bizarre. We use pulongest here because that's the established
13255 portability solution (e.g, we cannot use %u for uint32_t). */
13256 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13257 " TU version %s [in DWP file %s]"),
13258 pulongest (dwp_file->cus->version),
13259 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13263 dwp_file->version = dwp_file->cus->version;
13264 else if (dwp_file->tus)
13265 dwp_file->version = dwp_file->tus->version;
13267 dwp_file->version = 2;
13269 if (dwp_file->version == 2)
13270 bfd_map_over_sections (dwp_file->dbfd.get (),
13271 dwarf2_locate_v2_dwp_sections,
13274 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13275 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13277 if (dwarf_read_debug)
13279 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13280 fprintf_unfiltered (gdb_stdlog,
13281 " %s CUs, %s TUs\n",
13282 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13283 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13289 /* Wrapper around open_and_init_dwp_file, only open it once. */
13291 static struct dwp_file *
13292 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13294 if (! dwarf2_per_objfile->dwp_checked)
13296 dwarf2_per_objfile->dwp_file
13297 = open_and_init_dwp_file (dwarf2_per_objfile);
13298 dwarf2_per_objfile->dwp_checked = 1;
13300 return dwarf2_per_objfile->dwp_file.get ();
13303 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13304 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13305 or in the DWP file for the objfile, referenced by THIS_UNIT.
13306 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13307 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13309 This is called, for example, when wanting to read a variable with a
13310 complex location. Therefore we don't want to do file i/o for every call.
13311 Therefore we don't want to look for a DWO file on every call.
13312 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13313 then we check if we've already seen DWO_NAME, and only THEN do we check
13316 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13317 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13319 static struct dwo_unit *
13320 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13321 const char *dwo_name, const char *comp_dir,
13322 ULONGEST signature, int is_debug_types)
13324 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13325 struct objfile *objfile = dwarf2_per_objfile->objfile;
13326 const char *kind = is_debug_types ? "TU" : "CU";
13327 void **dwo_file_slot;
13328 struct dwo_file *dwo_file;
13329 struct dwp_file *dwp_file;
13331 /* First see if there's a DWP file.
13332 If we have a DWP file but didn't find the DWO inside it, don't
13333 look for the original DWO file. It makes gdb behave differently
13334 depending on whether one is debugging in the build tree. */
13336 dwp_file = get_dwp_file (dwarf2_per_objfile);
13337 if (dwp_file != NULL)
13339 const struct dwp_hash_table *dwp_htab =
13340 is_debug_types ? dwp_file->tus : dwp_file->cus;
13342 if (dwp_htab != NULL)
13344 struct dwo_unit *dwo_cutu =
13345 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13346 signature, is_debug_types);
13348 if (dwo_cutu != NULL)
13350 if (dwarf_read_debug)
13352 fprintf_unfiltered (gdb_stdlog,
13353 "Virtual DWO %s %s found: @%s\n",
13354 kind, hex_string (signature),
13355 host_address_to_string (dwo_cutu));
13363 /* No DWP file, look for the DWO file. */
13365 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13366 dwo_name, comp_dir);
13367 if (*dwo_file_slot == NULL)
13369 /* Read in the file and build a table of the CUs/TUs it contains. */
13370 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13372 /* NOTE: This will be NULL if unable to open the file. */
13373 dwo_file = (struct dwo_file *) *dwo_file_slot;
13375 if (dwo_file != NULL)
13377 struct dwo_unit *dwo_cutu = NULL;
13379 if (is_debug_types && dwo_file->tus)
13381 struct dwo_unit find_dwo_cutu;
13383 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13384 find_dwo_cutu.signature = signature;
13386 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13388 else if (!is_debug_types && dwo_file->cus)
13390 struct dwo_unit find_dwo_cutu;
13392 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13393 find_dwo_cutu.signature = signature;
13394 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13398 if (dwo_cutu != NULL)
13400 if (dwarf_read_debug)
13402 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13403 kind, dwo_name, hex_string (signature),
13404 host_address_to_string (dwo_cutu));
13411 /* We didn't find it. This could mean a dwo_id mismatch, or
13412 someone deleted the DWO/DWP file, or the search path isn't set up
13413 correctly to find the file. */
13415 if (dwarf_read_debug)
13417 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13418 kind, dwo_name, hex_string (signature));
13421 /* This is a warning and not a complaint because it can be caused by
13422 pilot error (e.g., user accidentally deleting the DWO). */
13424 /* Print the name of the DWP file if we looked there, helps the user
13425 better diagnose the problem. */
13426 std::string dwp_text;
13428 if (dwp_file != NULL)
13429 dwp_text = string_printf (" [in DWP file %s]",
13430 lbasename (dwp_file->name));
13432 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13433 " [in module %s]"),
13434 kind, dwo_name, hex_string (signature),
13436 this_unit->is_debug_types ? "TU" : "CU",
13437 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13442 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13443 See lookup_dwo_cutu_unit for details. */
13445 static struct dwo_unit *
13446 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13447 const char *dwo_name, const char *comp_dir,
13448 ULONGEST signature)
13450 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13453 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13454 See lookup_dwo_cutu_unit for details. */
13456 static struct dwo_unit *
13457 lookup_dwo_type_unit (struct signatured_type *this_tu,
13458 const char *dwo_name, const char *comp_dir)
13460 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13463 /* Traversal function for queue_and_load_all_dwo_tus. */
13466 queue_and_load_dwo_tu (void **slot, void *info)
13468 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13469 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13470 ULONGEST signature = dwo_unit->signature;
13471 struct signatured_type *sig_type =
13472 lookup_dwo_signatured_type (per_cu->cu, signature);
13474 if (sig_type != NULL)
13476 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13478 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13479 a real dependency of PER_CU on SIG_TYPE. That is detected later
13480 while processing PER_CU. */
13481 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13482 load_full_type_unit (sig_cu);
13483 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13489 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13490 The DWO may have the only definition of the type, though it may not be
13491 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13492 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13495 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13497 struct dwo_unit *dwo_unit;
13498 struct dwo_file *dwo_file;
13500 gdb_assert (!per_cu->is_debug_types);
13501 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13502 gdb_assert (per_cu->cu != NULL);
13504 dwo_unit = per_cu->cu->dwo_unit;
13505 gdb_assert (dwo_unit != NULL);
13507 dwo_file = dwo_unit->dwo_file;
13508 if (dwo_file->tus != NULL)
13509 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13512 /* Free all resources associated with DWO_FILE.
13513 Close the DWO file and munmap the sections. */
13516 free_dwo_file (struct dwo_file *dwo_file)
13518 /* Note: dbfd is NULL for virtual DWO files. */
13519 gdb_bfd_unref (dwo_file->dbfd);
13521 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13524 /* Traversal function for free_dwo_files. */
13527 free_dwo_file_from_slot (void **slot, void *info)
13529 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13531 free_dwo_file (dwo_file);
13536 /* Free all resources associated with DWO_FILES. */
13539 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13541 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13544 /* Read in various DIEs. */
13546 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13547 Inherit only the children of the DW_AT_abstract_origin DIE not being
13548 already referenced by DW_AT_abstract_origin from the children of the
13552 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13554 struct die_info *child_die;
13555 sect_offset *offsetp;
13556 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13557 struct die_info *origin_die;
13558 /* Iterator of the ORIGIN_DIE children. */
13559 struct die_info *origin_child_die;
13560 struct attribute *attr;
13561 struct dwarf2_cu *origin_cu;
13562 struct pending **origin_previous_list_in_scope;
13564 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13568 /* Note that following die references may follow to a die in a
13572 origin_die = follow_die_ref (die, attr, &origin_cu);
13574 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13576 origin_previous_list_in_scope = origin_cu->list_in_scope;
13577 origin_cu->list_in_scope = cu->list_in_scope;
13579 if (die->tag != origin_die->tag
13580 && !(die->tag == DW_TAG_inlined_subroutine
13581 && origin_die->tag == DW_TAG_subprogram))
13582 complaint (_("DIE %s and its abstract origin %s have different tags"),
13583 sect_offset_str (die->sect_off),
13584 sect_offset_str (origin_die->sect_off));
13586 std::vector<sect_offset> offsets;
13588 for (child_die = die->child;
13589 child_die && child_die->tag;
13590 child_die = sibling_die (child_die))
13592 struct die_info *child_origin_die;
13593 struct dwarf2_cu *child_origin_cu;
13595 /* We are trying to process concrete instance entries:
13596 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13597 it's not relevant to our analysis here. i.e. detecting DIEs that are
13598 present in the abstract instance but not referenced in the concrete
13600 if (child_die->tag == DW_TAG_call_site
13601 || child_die->tag == DW_TAG_GNU_call_site)
13604 /* For each CHILD_DIE, find the corresponding child of
13605 ORIGIN_DIE. If there is more than one layer of
13606 DW_AT_abstract_origin, follow them all; there shouldn't be,
13607 but GCC versions at least through 4.4 generate this (GCC PR
13609 child_origin_die = child_die;
13610 child_origin_cu = cu;
13613 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13617 child_origin_die = follow_die_ref (child_origin_die, attr,
13621 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13622 counterpart may exist. */
13623 if (child_origin_die != child_die)
13625 if (child_die->tag != child_origin_die->tag
13626 && !(child_die->tag == DW_TAG_inlined_subroutine
13627 && child_origin_die->tag == DW_TAG_subprogram))
13628 complaint (_("Child DIE %s and its abstract origin %s have "
13630 sect_offset_str (child_die->sect_off),
13631 sect_offset_str (child_origin_die->sect_off));
13632 if (child_origin_die->parent != origin_die)
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13634 "different parents"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13638 offsets.push_back (child_origin_die->sect_off);
13641 std::sort (offsets.begin (), offsets.end ());
13642 sect_offset *offsets_end = offsets.data () + offsets.size ();
13643 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13644 if (offsetp[-1] == *offsetp)
13645 complaint (_("Multiple children of DIE %s refer "
13646 "to DIE %s as their abstract origin"),
13647 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13649 offsetp = offsets.data ();
13650 origin_child_die = origin_die->child;
13651 while (origin_child_die && origin_child_die->tag)
13653 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13654 while (offsetp < offsets_end
13655 && *offsetp < origin_child_die->sect_off)
13657 if (offsetp >= offsets_end
13658 || *offsetp > origin_child_die->sect_off)
13660 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13661 Check whether we're already processing ORIGIN_CHILD_DIE.
13662 This can happen with mutually referenced abstract_origins.
13664 if (!origin_child_die->in_process)
13665 process_die (origin_child_die, origin_cu);
13667 origin_child_die = sibling_die (origin_child_die);
13669 origin_cu->list_in_scope = origin_previous_list_in_scope;
13673 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13676 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13677 struct context_stack *newobj;
13680 struct die_info *child_die;
13681 struct attribute *attr, *call_line, *call_file;
13683 CORE_ADDR baseaddr;
13684 struct block *block;
13685 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13686 std::vector<struct symbol *> template_args;
13687 struct template_symbol *templ_func = NULL;
13691 /* If we do not have call site information, we can't show the
13692 caller of this inlined function. That's too confusing, so
13693 only use the scope for local variables. */
13694 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13695 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13696 if (call_line == NULL || call_file == NULL)
13698 read_lexical_block_scope (die, cu);
13703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13705 name = dwarf2_name (die, cu);
13707 /* Ignore functions with missing or empty names. These are actually
13708 illegal according to the DWARF standard. */
13711 complaint (_("missing name for subprogram DIE at %s"),
13712 sect_offset_str (die->sect_off));
13716 /* Ignore functions with missing or invalid low and high pc attributes. */
13717 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13718 <= PC_BOUNDS_INVALID)
13720 attr = dwarf2_attr (die, DW_AT_external, cu);
13721 if (!attr || !DW_UNSND (attr))
13722 complaint (_("cannot get low and high bounds "
13723 "for subprogram DIE at %s"),
13724 sect_offset_str (die->sect_off));
13728 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13729 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13731 /* If we have any template arguments, then we must allocate a
13732 different sort of symbol. */
13733 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13735 if (child_die->tag == DW_TAG_template_type_param
13736 || child_die->tag == DW_TAG_template_value_param)
13738 templ_func = allocate_template_symbol (objfile);
13739 templ_func->subclass = SYMBOL_TEMPLATE;
13744 newobj = cu->get_builder ()->push_context (0, lowpc);
13745 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13746 (struct symbol *) templ_func);
13748 /* If there is a location expression for DW_AT_frame_base, record
13750 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13752 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13754 /* If there is a location for the static link, record it. */
13755 newobj->static_link = NULL;
13756 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13759 newobj->static_link
13760 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13761 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13764 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13766 if (die->child != NULL)
13768 child_die = die->child;
13769 while (child_die && child_die->tag)
13771 if (child_die->tag == DW_TAG_template_type_param
13772 || child_die->tag == DW_TAG_template_value_param)
13774 struct symbol *arg = new_symbol (child_die, NULL, cu);
13777 template_args.push_back (arg);
13780 process_die (child_die, cu);
13781 child_die = sibling_die (child_die);
13785 inherit_abstract_dies (die, cu);
13787 /* If we have a DW_AT_specification, we might need to import using
13788 directives from the context of the specification DIE. See the
13789 comment in determine_prefix. */
13790 if (cu->language == language_cplus
13791 && dwarf2_attr (die, DW_AT_specification, cu))
13793 struct dwarf2_cu *spec_cu = cu;
13794 struct die_info *spec_die = die_specification (die, &spec_cu);
13798 child_die = spec_die->child;
13799 while (child_die && child_die->tag)
13801 if (child_die->tag == DW_TAG_imported_module)
13802 process_die (child_die, spec_cu);
13803 child_die = sibling_die (child_die);
13806 /* In some cases, GCC generates specification DIEs that
13807 themselves contain DW_AT_specification attributes. */
13808 spec_die = die_specification (spec_die, &spec_cu);
13812 struct context_stack cstk = cu->get_builder ()->pop_context ();
13813 /* Make a block for the local symbols within. */
13814 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13815 cstk.static_link, lowpc, highpc);
13817 /* For C++, set the block's scope. */
13818 if ((cu->language == language_cplus
13819 || cu->language == language_fortran
13820 || cu->language == language_d
13821 || cu->language == language_rust)
13822 && cu->processing_has_namespace_info)
13823 block_set_scope (block, determine_prefix (die, cu),
13824 &objfile->objfile_obstack);
13826 /* If we have address ranges, record them. */
13827 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13829 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13831 /* Attach template arguments to function. */
13832 if (!template_args.empty ())
13834 gdb_assert (templ_func != NULL);
13836 templ_func->n_template_arguments = template_args.size ();
13837 templ_func->template_arguments
13838 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13839 templ_func->n_template_arguments);
13840 memcpy (templ_func->template_arguments,
13841 template_args.data (),
13842 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13844 /* Make sure that the symtab is set on the new symbols. Even
13845 though they don't appear in this symtab directly, other parts
13846 of gdb assume that symbols do, and this is reasonably
13848 for (symbol *sym : template_args)
13849 symbol_set_symtab (sym, symbol_symtab (templ_func));
13852 /* In C++, we can have functions nested inside functions (e.g., when
13853 a function declares a class that has methods). This means that
13854 when we finish processing a function scope, we may need to go
13855 back to building a containing block's symbol lists. */
13856 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13857 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13859 /* If we've finished processing a top-level function, subsequent
13860 symbols go in the file symbol list. */
13861 if (cu->get_builder ()->outermost_context_p ())
13862 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13865 /* Process all the DIES contained within a lexical block scope. Start
13866 a new scope, process the dies, and then close the scope. */
13869 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13871 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13872 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13873 CORE_ADDR lowpc, highpc;
13874 struct die_info *child_die;
13875 CORE_ADDR baseaddr;
13877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13879 /* Ignore blocks with missing or invalid low and high pc attributes. */
13880 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13881 as multiple lexical blocks? Handling children in a sane way would
13882 be nasty. Might be easier to properly extend generic blocks to
13883 describe ranges. */
13884 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13886 case PC_BOUNDS_NOT_PRESENT:
13887 /* DW_TAG_lexical_block has no attributes, process its children as if
13888 there was no wrapping by that DW_TAG_lexical_block.
13889 GCC does no longer produces such DWARF since GCC r224161. */
13890 for (child_die = die->child;
13891 child_die != NULL && child_die->tag;
13892 child_die = sibling_die (child_die))
13893 process_die (child_die, cu);
13895 case PC_BOUNDS_INVALID:
13898 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13899 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13901 cu->get_builder ()->push_context (0, lowpc);
13902 if (die->child != NULL)
13904 child_die = die->child;
13905 while (child_die && child_die->tag)
13907 process_die (child_die, cu);
13908 child_die = sibling_die (child_die);
13911 inherit_abstract_dies (die, cu);
13912 struct context_stack cstk = cu->get_builder ()->pop_context ();
13914 if (*cu->get_builder ()->get_local_symbols () != NULL
13915 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13917 struct block *block
13918 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13919 cstk.start_addr, highpc);
13921 /* Note that recording ranges after traversing children, as we
13922 do here, means that recording a parent's ranges entails
13923 walking across all its children's ranges as they appear in
13924 the address map, which is quadratic behavior.
13926 It would be nicer to record the parent's ranges before
13927 traversing its children, simply overriding whatever you find
13928 there. But since we don't even decide whether to create a
13929 block until after we've traversed its children, that's hard
13931 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13933 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13934 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13937 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13940 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13944 CORE_ADDR pc, baseaddr;
13945 struct attribute *attr;
13946 struct call_site *call_site, call_site_local;
13949 struct die_info *child_die;
13951 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13953 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13956 /* This was a pre-DWARF-5 GNU extension alias
13957 for DW_AT_call_return_pc. */
13958 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13962 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13963 "DIE %s [in module %s]"),
13964 sect_offset_str (die->sect_off), objfile_name (objfile));
13967 pc = attr_value_as_address (attr) + baseaddr;
13968 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13970 if (cu->call_site_htab == NULL)
13971 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13972 NULL, &objfile->objfile_obstack,
13973 hashtab_obstack_allocate, NULL);
13974 call_site_local.pc = pc;
13975 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13978 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13979 "DIE %s [in module %s]"),
13980 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13981 objfile_name (objfile));
13985 /* Count parameters at the caller. */
13988 for (child_die = die->child; child_die && child_die->tag;
13989 child_die = sibling_die (child_die))
13991 if (child_die->tag != DW_TAG_call_site_parameter
13992 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13994 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13995 "DW_TAG_call_site child DIE %s [in module %s]"),
13996 child_die->tag, sect_offset_str (child_die->sect_off),
13997 objfile_name (objfile));
14005 = ((struct call_site *)
14006 obstack_alloc (&objfile->objfile_obstack,
14007 sizeof (*call_site)
14008 + (sizeof (*call_site->parameter) * (nparams - 1))));
14010 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14011 call_site->pc = pc;
14013 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14014 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14016 struct die_info *func_die;
14018 /* Skip also over DW_TAG_inlined_subroutine. */
14019 for (func_die = die->parent;
14020 func_die && func_die->tag != DW_TAG_subprogram
14021 && func_die->tag != DW_TAG_subroutine_type;
14022 func_die = func_die->parent);
14024 /* DW_AT_call_all_calls is a superset
14025 of DW_AT_call_all_tail_calls. */
14027 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14030 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14032 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14033 not complete. But keep CALL_SITE for look ups via call_site_htab,
14034 both the initial caller containing the real return address PC and
14035 the final callee containing the current PC of a chain of tail
14036 calls do not need to have the tail call list complete. But any
14037 function candidate for a virtual tail call frame searched via
14038 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14039 determined unambiguously. */
14043 struct type *func_type = NULL;
14046 func_type = get_die_type (func_die, cu);
14047 if (func_type != NULL)
14049 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14051 /* Enlist this call site to the function. */
14052 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14053 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14056 complaint (_("Cannot find function owning DW_TAG_call_site "
14057 "DIE %s [in module %s]"),
14058 sect_offset_str (die->sect_off), objfile_name (objfile));
14062 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14064 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14066 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14069 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14070 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14072 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14073 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14074 /* Keep NULL DWARF_BLOCK. */;
14075 else if (attr_form_is_block (attr))
14077 struct dwarf2_locexpr_baton *dlbaton;
14079 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14080 dlbaton->data = DW_BLOCK (attr)->data;
14081 dlbaton->size = DW_BLOCK (attr)->size;
14082 dlbaton->per_cu = cu->per_cu;
14084 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14086 else if (attr_form_is_ref (attr))
14088 struct dwarf2_cu *target_cu = cu;
14089 struct die_info *target_die;
14091 target_die = follow_die_ref (die, attr, &target_cu);
14092 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14093 if (die_is_declaration (target_die, target_cu))
14095 const char *target_physname;
14097 /* Prefer the mangled name; otherwise compute the demangled one. */
14098 target_physname = dw2_linkage_name (target_die, target_cu);
14099 if (target_physname == NULL)
14100 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14101 if (target_physname == NULL)
14102 complaint (_("DW_AT_call_target target DIE has invalid "
14103 "physname, for referencing DIE %s [in module %s]"),
14104 sect_offset_str (die->sect_off), objfile_name (objfile));
14106 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14112 /* DW_AT_entry_pc should be preferred. */
14113 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14114 <= PC_BOUNDS_INVALID)
14115 complaint (_("DW_AT_call_target target DIE has invalid "
14116 "low pc, for referencing DIE %s [in module %s]"),
14117 sect_offset_str (die->sect_off), objfile_name (objfile));
14120 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14121 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14126 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14127 "block nor reference, for DIE %s [in module %s]"),
14128 sect_offset_str (die->sect_off), objfile_name (objfile));
14130 call_site->per_cu = cu->per_cu;
14132 for (child_die = die->child;
14133 child_die && child_die->tag;
14134 child_die = sibling_die (child_die))
14136 struct call_site_parameter *parameter;
14137 struct attribute *loc, *origin;
14139 if (child_die->tag != DW_TAG_call_site_parameter
14140 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14142 /* Already printed the complaint above. */
14146 gdb_assert (call_site->parameter_count < nparams);
14147 parameter = &call_site->parameter[call_site->parameter_count];
14149 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14150 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14151 register is contained in DW_AT_call_value. */
14153 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14154 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14155 if (origin == NULL)
14157 /* This was a pre-DWARF-5 GNU extension alias
14158 for DW_AT_call_parameter. */
14159 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14161 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14163 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14165 sect_offset sect_off
14166 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14167 if (!offset_in_cu_p (&cu->header, sect_off))
14169 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14170 binding can be done only inside one CU. Such referenced DIE
14171 therefore cannot be even moved to DW_TAG_partial_unit. */
14172 complaint (_("DW_AT_call_parameter offset is not in CU for "
14173 "DW_TAG_call_site child DIE %s [in module %s]"),
14174 sect_offset_str (child_die->sect_off),
14175 objfile_name (objfile));
14178 parameter->u.param_cu_off
14179 = (cu_offset) (sect_off - cu->header.sect_off);
14181 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14183 complaint (_("No DW_FORM_block* DW_AT_location for "
14184 "DW_TAG_call_site child DIE %s [in module %s]"),
14185 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14190 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14191 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14192 if (parameter->u.dwarf_reg != -1)
14193 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14194 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14195 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14196 ¶meter->u.fb_offset))
14197 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14200 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14201 "for DW_FORM_block* DW_AT_location is supported for "
14202 "DW_TAG_call_site child DIE %s "
14204 sect_offset_str (child_die->sect_off),
14205 objfile_name (objfile));
14210 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14212 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14213 if (!attr_form_is_block (attr))
14215 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14216 "DW_TAG_call_site child DIE %s [in module %s]"),
14217 sect_offset_str (child_die->sect_off),
14218 objfile_name (objfile));
14221 parameter->value = DW_BLOCK (attr)->data;
14222 parameter->value_size = DW_BLOCK (attr)->size;
14224 /* Parameters are not pre-cleared by memset above. */
14225 parameter->data_value = NULL;
14226 parameter->data_value_size = 0;
14227 call_site->parameter_count++;
14229 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14231 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14234 if (!attr_form_is_block (attr))
14235 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14236 "DW_TAG_call_site child DIE %s [in module %s]"),
14237 sect_offset_str (child_die->sect_off),
14238 objfile_name (objfile));
14241 parameter->data_value = DW_BLOCK (attr)->data;
14242 parameter->data_value_size = DW_BLOCK (attr)->size;
14248 /* Helper function for read_variable. If DIE represents a virtual
14249 table, then return the type of the concrete object that is
14250 associated with the virtual table. Otherwise, return NULL. */
14252 static struct type *
14253 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14255 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14259 /* Find the type DIE. */
14260 struct die_info *type_die = NULL;
14261 struct dwarf2_cu *type_cu = cu;
14263 if (attr_form_is_ref (attr))
14264 type_die = follow_die_ref (die, attr, &type_cu);
14265 if (type_die == NULL)
14268 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14270 return die_containing_type (type_die, type_cu);
14273 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14276 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14278 struct rust_vtable_symbol *storage = NULL;
14280 if (cu->language == language_rust)
14282 struct type *containing_type = rust_containing_type (die, cu);
14284 if (containing_type != NULL)
14286 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14288 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14289 struct rust_vtable_symbol);
14290 initialize_objfile_symbol (storage);
14291 storage->concrete_type = containing_type;
14292 storage->subclass = SYMBOL_RUST_VTABLE;
14296 struct symbol *res = new_symbol (die, NULL, cu, storage);
14297 struct attribute *abstract_origin
14298 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14299 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14300 if (res == NULL && loc && abstract_origin)
14302 /* We have a variable without a name, but with a location and an abstract
14303 origin. This may be a concrete instance of an abstract variable
14304 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14306 struct dwarf2_cu *origin_cu = cu;
14307 struct die_info *origin_die
14308 = follow_die_ref (die, abstract_origin, &origin_cu);
14309 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14310 dpo->abstract_to_concrete[origin_die].push_back (die);
14314 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14315 reading .debug_rnglists.
14316 Callback's type should be:
14317 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14318 Return true if the attributes are present and valid, otherwise,
14321 template <typename Callback>
14323 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14324 Callback &&callback)
14326 struct dwarf2_per_objfile *dwarf2_per_objfile
14327 = cu->per_cu->dwarf2_per_objfile;
14328 struct objfile *objfile = dwarf2_per_objfile->objfile;
14329 bfd *obfd = objfile->obfd;
14330 /* Base address selection entry. */
14333 const gdb_byte *buffer;
14334 CORE_ADDR baseaddr;
14335 bool overflow = false;
14337 found_base = cu->base_known;
14338 base = cu->base_address;
14340 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14341 if (offset >= dwarf2_per_objfile->rnglists.size)
14343 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14347 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14349 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14353 /* Initialize it due to a false compiler warning. */
14354 CORE_ADDR range_beginning = 0, range_end = 0;
14355 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14356 + dwarf2_per_objfile->rnglists.size);
14357 unsigned int bytes_read;
14359 if (buffer == buf_end)
14364 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14367 case DW_RLE_end_of_list:
14369 case DW_RLE_base_address:
14370 if (buffer + cu->header.addr_size > buf_end)
14375 base = read_address (obfd, buffer, cu, &bytes_read);
14377 buffer += bytes_read;
14379 case DW_RLE_start_length:
14380 if (buffer + cu->header.addr_size > buf_end)
14385 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14386 buffer += bytes_read;
14387 range_end = (range_beginning
14388 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14389 buffer += bytes_read;
14390 if (buffer > buf_end)
14396 case DW_RLE_offset_pair:
14397 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14398 buffer += bytes_read;
14399 if (buffer > buf_end)
14404 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14405 buffer += bytes_read;
14406 if (buffer > buf_end)
14412 case DW_RLE_start_end:
14413 if (buffer + 2 * cu->header.addr_size > buf_end)
14418 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14419 buffer += bytes_read;
14420 range_end = read_address (obfd, buffer, cu, &bytes_read);
14421 buffer += bytes_read;
14424 complaint (_("Invalid .debug_rnglists data (no base address)"));
14427 if (rlet == DW_RLE_end_of_list || overflow)
14429 if (rlet == DW_RLE_base_address)
14434 /* We have no valid base address for the ranges
14436 complaint (_("Invalid .debug_rnglists data (no base address)"));
14440 if (range_beginning > range_end)
14442 /* Inverted range entries are invalid. */
14443 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14447 /* Empty range entries have no effect. */
14448 if (range_beginning == range_end)
14451 range_beginning += base;
14454 /* A not-uncommon case of bad debug info.
14455 Don't pollute the addrmap with bad data. */
14456 if (range_beginning + baseaddr == 0
14457 && !dwarf2_per_objfile->has_section_at_zero)
14459 complaint (_(".debug_rnglists entry has start address of zero"
14460 " [in module %s]"), objfile_name (objfile));
14464 callback (range_beginning, range_end);
14469 complaint (_("Offset %d is not terminated "
14470 "for DW_AT_ranges attribute"),
14478 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14479 Callback's type should be:
14480 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14481 Return 1 if the attributes are present and valid, otherwise, return 0. */
14483 template <typename Callback>
14485 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14486 Callback &&callback)
14488 struct dwarf2_per_objfile *dwarf2_per_objfile
14489 = cu->per_cu->dwarf2_per_objfile;
14490 struct objfile *objfile = dwarf2_per_objfile->objfile;
14491 struct comp_unit_head *cu_header = &cu->header;
14492 bfd *obfd = objfile->obfd;
14493 unsigned int addr_size = cu_header->addr_size;
14494 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14495 /* Base address selection entry. */
14498 unsigned int dummy;
14499 const gdb_byte *buffer;
14500 CORE_ADDR baseaddr;
14502 if (cu_header->version >= 5)
14503 return dwarf2_rnglists_process (offset, cu, callback);
14505 found_base = cu->base_known;
14506 base = cu->base_address;
14508 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14509 if (offset >= dwarf2_per_objfile->ranges.size)
14511 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14515 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14517 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14521 CORE_ADDR range_beginning, range_end;
14523 range_beginning = read_address (obfd, buffer, cu, &dummy);
14524 buffer += addr_size;
14525 range_end = read_address (obfd, buffer, cu, &dummy);
14526 buffer += addr_size;
14527 offset += 2 * addr_size;
14529 /* An end of list marker is a pair of zero addresses. */
14530 if (range_beginning == 0 && range_end == 0)
14531 /* Found the end of list entry. */
14534 /* Each base address selection entry is a pair of 2 values.
14535 The first is the largest possible address, the second is
14536 the base address. Check for a base address here. */
14537 if ((range_beginning & mask) == mask)
14539 /* If we found the largest possible address, then we already
14540 have the base address in range_end. */
14548 /* We have no valid base address for the ranges
14550 complaint (_("Invalid .debug_ranges data (no base address)"));
14554 if (range_beginning > range_end)
14556 /* Inverted range entries are invalid. */
14557 complaint (_("Invalid .debug_ranges data (inverted range)"));
14561 /* Empty range entries have no effect. */
14562 if (range_beginning == range_end)
14565 range_beginning += base;
14568 /* A not-uncommon case of bad debug info.
14569 Don't pollute the addrmap with bad data. */
14570 if (range_beginning + baseaddr == 0
14571 && !dwarf2_per_objfile->has_section_at_zero)
14573 complaint (_(".debug_ranges entry has start address of zero"
14574 " [in module %s]"), objfile_name (objfile));
14578 callback (range_beginning, range_end);
14584 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14585 Return 1 if the attributes are present and valid, otherwise, return 0.
14586 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14589 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14590 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14591 struct partial_symtab *ranges_pst)
14593 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14595 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14596 SECT_OFF_TEXT (objfile));
14599 CORE_ADDR high = 0;
14602 retval = dwarf2_ranges_process (offset, cu,
14603 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14605 if (ranges_pst != NULL)
14610 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14611 range_beginning + baseaddr)
14613 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14614 range_end + baseaddr)
14616 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14617 lowpc, highpc - 1, ranges_pst);
14620 /* FIXME: This is recording everything as a low-high
14621 segment of consecutive addresses. We should have a
14622 data structure for discontiguous block ranges
14626 low = range_beginning;
14632 if (range_beginning < low)
14633 low = range_beginning;
14634 if (range_end > high)
14642 /* If the first entry is an end-of-list marker, the range
14643 describes an empty scope, i.e. no instructions. */
14649 *high_return = high;
14653 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14654 definition for the return value. *LOWPC and *HIGHPC are set iff
14655 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14657 static enum pc_bounds_kind
14658 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14659 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14660 struct partial_symtab *pst)
14662 struct dwarf2_per_objfile *dwarf2_per_objfile
14663 = cu->per_cu->dwarf2_per_objfile;
14664 struct attribute *attr;
14665 struct attribute *attr_high;
14667 CORE_ADDR high = 0;
14668 enum pc_bounds_kind ret;
14670 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14673 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14676 low = attr_value_as_address (attr);
14677 high = attr_value_as_address (attr_high);
14678 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14682 /* Found high w/o low attribute. */
14683 return PC_BOUNDS_INVALID;
14685 /* Found consecutive range of addresses. */
14686 ret = PC_BOUNDS_HIGH_LOW;
14690 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14693 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14694 We take advantage of the fact that DW_AT_ranges does not appear
14695 in DW_TAG_compile_unit of DWO files. */
14696 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14697 unsigned int ranges_offset = (DW_UNSND (attr)
14698 + (need_ranges_base
14702 /* Value of the DW_AT_ranges attribute is the offset in the
14703 .debug_ranges section. */
14704 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14705 return PC_BOUNDS_INVALID;
14706 /* Found discontinuous range of addresses. */
14707 ret = PC_BOUNDS_RANGES;
14710 return PC_BOUNDS_NOT_PRESENT;
14713 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14715 return PC_BOUNDS_INVALID;
14717 /* When using the GNU linker, .gnu.linkonce. sections are used to
14718 eliminate duplicate copies of functions and vtables and such.
14719 The linker will arbitrarily choose one and discard the others.
14720 The AT_*_pc values for such functions refer to local labels in
14721 these sections. If the section from that file was discarded, the
14722 labels are not in the output, so the relocs get a value of 0.
14723 If this is a discarded function, mark the pc bounds as invalid,
14724 so that GDB will ignore it. */
14725 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14726 return PC_BOUNDS_INVALID;
14734 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14735 its low and high PC addresses. Do nothing if these addresses could not
14736 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14737 and HIGHPC to the high address if greater than HIGHPC. */
14740 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14741 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14742 struct dwarf2_cu *cu)
14744 CORE_ADDR low, high;
14745 struct die_info *child = die->child;
14747 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14749 *lowpc = std::min (*lowpc, low);
14750 *highpc = std::max (*highpc, high);
14753 /* If the language does not allow nested subprograms (either inside
14754 subprograms or lexical blocks), we're done. */
14755 if (cu->language != language_ada)
14758 /* Check all the children of the given DIE. If it contains nested
14759 subprograms, then check their pc bounds. Likewise, we need to
14760 check lexical blocks as well, as they may also contain subprogram
14762 while (child && child->tag)
14764 if (child->tag == DW_TAG_subprogram
14765 || child->tag == DW_TAG_lexical_block)
14766 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14767 child = sibling_die (child);
14771 /* Get the low and high pc's represented by the scope DIE, and store
14772 them in *LOWPC and *HIGHPC. If the correct values can't be
14773 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14776 get_scope_pc_bounds (struct die_info *die,
14777 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14778 struct dwarf2_cu *cu)
14780 CORE_ADDR best_low = (CORE_ADDR) -1;
14781 CORE_ADDR best_high = (CORE_ADDR) 0;
14782 CORE_ADDR current_low, current_high;
14784 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14785 >= PC_BOUNDS_RANGES)
14787 best_low = current_low;
14788 best_high = current_high;
14792 struct die_info *child = die->child;
14794 while (child && child->tag)
14796 switch (child->tag) {
14797 case DW_TAG_subprogram:
14798 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14800 case DW_TAG_namespace:
14801 case DW_TAG_module:
14802 /* FIXME: carlton/2004-01-16: Should we do this for
14803 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14804 that current GCC's always emit the DIEs corresponding
14805 to definitions of methods of classes as children of a
14806 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14807 the DIEs giving the declarations, which could be
14808 anywhere). But I don't see any reason why the
14809 standards says that they have to be there. */
14810 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14812 if (current_low != ((CORE_ADDR) -1))
14814 best_low = std::min (best_low, current_low);
14815 best_high = std::max (best_high, current_high);
14823 child = sibling_die (child);
14828 *highpc = best_high;
14831 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14835 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14836 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14838 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14839 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14840 struct attribute *attr;
14841 struct attribute *attr_high;
14843 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14846 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14849 CORE_ADDR low = attr_value_as_address (attr);
14850 CORE_ADDR high = attr_value_as_address (attr_high);
14852 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14855 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14856 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14857 cu->get_builder ()->record_block_range (block, low, high - 1);
14861 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14864 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14865 We take advantage of the fact that DW_AT_ranges does not appear
14866 in DW_TAG_compile_unit of DWO files. */
14867 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14869 /* The value of the DW_AT_ranges attribute is the offset of the
14870 address range list in the .debug_ranges section. */
14871 unsigned long offset = (DW_UNSND (attr)
14872 + (need_ranges_base ? cu->ranges_base : 0));
14874 std::vector<blockrange> blockvec;
14875 dwarf2_ranges_process (offset, cu,
14876 [&] (CORE_ADDR start, CORE_ADDR end)
14880 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14881 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14882 cu->get_builder ()->record_block_range (block, start, end - 1);
14883 blockvec.emplace_back (start, end);
14886 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14890 /* Check whether the producer field indicates either of GCC < 4.6, or the
14891 Intel C/C++ compiler, and cache the result in CU. */
14894 check_producer (struct dwarf2_cu *cu)
14898 if (cu->producer == NULL)
14900 /* For unknown compilers expect their behavior is DWARF version
14903 GCC started to support .debug_types sections by -gdwarf-4 since
14904 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14905 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14906 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14907 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14909 else if (producer_is_gcc (cu->producer, &major, &minor))
14911 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14912 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14914 else if (producer_is_icc (cu->producer, &major, &minor))
14916 cu->producer_is_icc = true;
14917 cu->producer_is_icc_lt_14 = major < 14;
14919 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14920 cu->producer_is_codewarrior = true;
14923 /* For other non-GCC compilers, expect their behavior is DWARF version
14927 cu->checked_producer = true;
14930 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14931 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14932 during 4.6.0 experimental. */
14935 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14937 if (!cu->checked_producer)
14938 check_producer (cu);
14940 return cu->producer_is_gxx_lt_4_6;
14944 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14945 with incorrect is_stmt attributes. */
14948 producer_is_codewarrior (struct dwarf2_cu *cu)
14950 if (!cu->checked_producer)
14951 check_producer (cu);
14953 return cu->producer_is_codewarrior;
14956 /* Return the default accessibility type if it is not overriden by
14957 DW_AT_accessibility. */
14959 static enum dwarf_access_attribute
14960 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14962 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14964 /* The default DWARF 2 accessibility for members is public, the default
14965 accessibility for inheritance is private. */
14967 if (die->tag != DW_TAG_inheritance)
14968 return DW_ACCESS_public;
14970 return DW_ACCESS_private;
14974 /* DWARF 3+ defines the default accessibility a different way. The same
14975 rules apply now for DW_TAG_inheritance as for the members and it only
14976 depends on the container kind. */
14978 if (die->parent->tag == DW_TAG_class_type)
14979 return DW_ACCESS_private;
14981 return DW_ACCESS_public;
14985 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14986 offset. If the attribute was not found return 0, otherwise return
14987 1. If it was found but could not properly be handled, set *OFFSET
14991 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14994 struct attribute *attr;
14996 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15001 /* Note that we do not check for a section offset first here.
15002 This is because DW_AT_data_member_location is new in DWARF 4,
15003 so if we see it, we can assume that a constant form is really
15004 a constant and not a section offset. */
15005 if (attr_form_is_constant (attr))
15006 *offset = dwarf2_get_attr_constant_value (attr, 0);
15007 else if (attr_form_is_section_offset (attr))
15008 dwarf2_complex_location_expr_complaint ();
15009 else if (attr_form_is_block (attr))
15010 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15012 dwarf2_complex_location_expr_complaint ();
15020 /* Add an aggregate field to the field list. */
15023 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15024 struct dwarf2_cu *cu)
15026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15028 struct nextfield *new_field;
15029 struct attribute *attr;
15031 const char *fieldname = "";
15033 if (die->tag == DW_TAG_inheritance)
15035 fip->baseclasses.emplace_back ();
15036 new_field = &fip->baseclasses.back ();
15040 fip->fields.emplace_back ();
15041 new_field = &fip->fields.back ();
15046 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15048 new_field->accessibility = DW_UNSND (attr);
15050 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15051 if (new_field->accessibility != DW_ACCESS_public)
15052 fip->non_public_fields = 1;
15054 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15056 new_field->virtuality = DW_UNSND (attr);
15058 new_field->virtuality = DW_VIRTUALITY_none;
15060 fp = &new_field->field;
15062 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15066 /* Data member other than a C++ static data member. */
15068 /* Get type of field. */
15069 fp->type = die_type (die, cu);
15071 SET_FIELD_BITPOS (*fp, 0);
15073 /* Get bit size of field (zero if none). */
15074 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15077 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15081 FIELD_BITSIZE (*fp) = 0;
15084 /* Get bit offset of field. */
15085 if (handle_data_member_location (die, cu, &offset))
15086 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15087 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15090 if (gdbarch_bits_big_endian (gdbarch))
15092 /* For big endian bits, the DW_AT_bit_offset gives the
15093 additional bit offset from the MSB of the containing
15094 anonymous object to the MSB of the field. We don't
15095 have to do anything special since we don't need to
15096 know the size of the anonymous object. */
15097 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15101 /* For little endian bits, compute the bit offset to the
15102 MSB of the anonymous object, subtract off the number of
15103 bits from the MSB of the field to the MSB of the
15104 object, and then subtract off the number of bits of
15105 the field itself. The result is the bit offset of
15106 the LSB of the field. */
15107 int anonymous_size;
15108 int bit_offset = DW_UNSND (attr);
15110 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15113 /* The size of the anonymous object containing
15114 the bit field is explicit, so use the
15115 indicated size (in bytes). */
15116 anonymous_size = DW_UNSND (attr);
15120 /* The size of the anonymous object containing
15121 the bit field must be inferred from the type
15122 attribute of the data member containing the
15124 anonymous_size = TYPE_LENGTH (fp->type);
15126 SET_FIELD_BITPOS (*fp,
15127 (FIELD_BITPOS (*fp)
15128 + anonymous_size * bits_per_byte
15129 - bit_offset - FIELD_BITSIZE (*fp)));
15132 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15134 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15135 + dwarf2_get_attr_constant_value (attr, 0)));
15137 /* Get name of field. */
15138 fieldname = dwarf2_name (die, cu);
15139 if (fieldname == NULL)
15142 /* The name is already allocated along with this objfile, so we don't
15143 need to duplicate it for the type. */
15144 fp->name = fieldname;
15146 /* Change accessibility for artificial fields (e.g. virtual table
15147 pointer or virtual base class pointer) to private. */
15148 if (dwarf2_attr (die, DW_AT_artificial, cu))
15150 FIELD_ARTIFICIAL (*fp) = 1;
15151 new_field->accessibility = DW_ACCESS_private;
15152 fip->non_public_fields = 1;
15155 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15157 /* C++ static member. */
15159 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15160 is a declaration, but all versions of G++ as of this writing
15161 (so through at least 3.2.1) incorrectly generate
15162 DW_TAG_variable tags. */
15164 const char *physname;
15166 /* Get name of field. */
15167 fieldname = dwarf2_name (die, cu);
15168 if (fieldname == NULL)
15171 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15173 /* Only create a symbol if this is an external value.
15174 new_symbol checks this and puts the value in the global symbol
15175 table, which we want. If it is not external, new_symbol
15176 will try to put the value in cu->list_in_scope which is wrong. */
15177 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15179 /* A static const member, not much different than an enum as far as
15180 we're concerned, except that we can support more types. */
15181 new_symbol (die, NULL, cu);
15184 /* Get physical name. */
15185 physname = dwarf2_physname (fieldname, die, cu);
15187 /* The name is already allocated along with this objfile, so we don't
15188 need to duplicate it for the type. */
15189 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15190 FIELD_TYPE (*fp) = die_type (die, cu);
15191 FIELD_NAME (*fp) = fieldname;
15193 else if (die->tag == DW_TAG_inheritance)
15197 /* C++ base class field. */
15198 if (handle_data_member_location (die, cu, &offset))
15199 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15200 FIELD_BITSIZE (*fp) = 0;
15201 FIELD_TYPE (*fp) = die_type (die, cu);
15202 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15204 else if (die->tag == DW_TAG_variant_part)
15206 /* process_structure_scope will treat this DIE as a union. */
15207 process_structure_scope (die, cu);
15209 /* The variant part is relative to the start of the enclosing
15211 SET_FIELD_BITPOS (*fp, 0);
15212 fp->type = get_die_type (die, cu);
15213 fp->artificial = 1;
15214 fp->name = "<<variant>>";
15216 /* Normally a DW_TAG_variant_part won't have a size, but our
15217 representation requires one, so set it to the maximum of the
15219 if (TYPE_LENGTH (fp->type) == 0)
15222 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15223 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15224 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15225 TYPE_LENGTH (fp->type) = max;
15229 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15232 /* Can the type given by DIE define another type? */
15235 type_can_define_types (const struct die_info *die)
15239 case DW_TAG_typedef:
15240 case DW_TAG_class_type:
15241 case DW_TAG_structure_type:
15242 case DW_TAG_union_type:
15243 case DW_TAG_enumeration_type:
15251 /* Add a type definition defined in the scope of the FIP's class. */
15254 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15255 struct dwarf2_cu *cu)
15257 struct decl_field fp;
15258 memset (&fp, 0, sizeof (fp));
15260 gdb_assert (type_can_define_types (die));
15262 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15263 fp.name = dwarf2_name (die, cu);
15264 fp.type = read_type_die (die, cu);
15266 /* Save accessibility. */
15267 enum dwarf_access_attribute accessibility;
15268 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15270 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15272 accessibility = dwarf2_default_access_attribute (die, cu);
15273 switch (accessibility)
15275 case DW_ACCESS_public:
15276 /* The assumed value if neither private nor protected. */
15278 case DW_ACCESS_private:
15281 case DW_ACCESS_protected:
15282 fp.is_protected = 1;
15285 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15288 if (die->tag == DW_TAG_typedef)
15289 fip->typedef_field_list.push_back (fp);
15291 fip->nested_types_list.push_back (fp);
15294 /* Create the vector of fields, and attach it to the type. */
15297 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15298 struct dwarf2_cu *cu)
15300 int nfields = fip->nfields;
15302 /* Record the field count, allocate space for the array of fields,
15303 and create blank accessibility bitfields if necessary. */
15304 TYPE_NFIELDS (type) = nfields;
15305 TYPE_FIELDS (type) = (struct field *)
15306 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15308 if (fip->non_public_fields && cu->language != language_ada)
15310 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15312 TYPE_FIELD_PRIVATE_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15316 TYPE_FIELD_PROTECTED_BITS (type) =
15317 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15318 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15320 TYPE_FIELD_IGNORE_BITS (type) =
15321 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15322 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15325 /* If the type has baseclasses, allocate and clear a bit vector for
15326 TYPE_FIELD_VIRTUAL_BITS. */
15327 if (!fip->baseclasses.empty () && cu->language != language_ada)
15329 int num_bytes = B_BYTES (fip->baseclasses.size ());
15330 unsigned char *pointer;
15332 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15333 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15334 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15335 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15336 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15339 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15341 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15343 for (int index = 0; index < nfields; ++index)
15345 struct nextfield &field = fip->fields[index];
15347 if (field.variant.is_discriminant)
15348 di->discriminant_index = index;
15349 else if (field.variant.default_branch)
15350 di->default_index = index;
15352 di->discriminants[index] = field.variant.discriminant_value;
15356 /* Copy the saved-up fields into the field vector. */
15357 for (int i = 0; i < nfields; ++i)
15359 struct nextfield &field
15360 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15361 : fip->fields[i - fip->baseclasses.size ()]);
15363 TYPE_FIELD (type, i) = field.field;
15364 switch (field.accessibility)
15366 case DW_ACCESS_private:
15367 if (cu->language != language_ada)
15368 SET_TYPE_FIELD_PRIVATE (type, i);
15371 case DW_ACCESS_protected:
15372 if (cu->language != language_ada)
15373 SET_TYPE_FIELD_PROTECTED (type, i);
15376 case DW_ACCESS_public:
15380 /* Unknown accessibility. Complain and treat it as public. */
15382 complaint (_("unsupported accessibility %d"),
15383 field.accessibility);
15387 if (i < fip->baseclasses.size ())
15389 switch (field.virtuality)
15391 case DW_VIRTUALITY_virtual:
15392 case DW_VIRTUALITY_pure_virtual:
15393 if (cu->language == language_ada)
15394 error (_("unexpected virtuality in component of Ada type"));
15395 SET_TYPE_FIELD_VIRTUAL (type, i);
15402 /* Return true if this member function is a constructor, false
15406 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15408 const char *fieldname;
15409 const char *type_name;
15412 if (die->parent == NULL)
15415 if (die->parent->tag != DW_TAG_structure_type
15416 && die->parent->tag != DW_TAG_union_type
15417 && die->parent->tag != DW_TAG_class_type)
15420 fieldname = dwarf2_name (die, cu);
15421 type_name = dwarf2_name (die->parent, cu);
15422 if (fieldname == NULL || type_name == NULL)
15425 len = strlen (fieldname);
15426 return (strncmp (fieldname, type_name, len) == 0
15427 && (type_name[len] == '\0' || type_name[len] == '<'));
15430 /* Add a member function to the proper fieldlist. */
15433 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15434 struct type *type, struct dwarf2_cu *cu)
15436 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15437 struct attribute *attr;
15439 struct fnfieldlist *flp = nullptr;
15440 struct fn_field *fnp;
15441 const char *fieldname;
15442 struct type *this_type;
15443 enum dwarf_access_attribute accessibility;
15445 if (cu->language == language_ada)
15446 error (_("unexpected member function in Ada type"));
15448 /* Get name of member function. */
15449 fieldname = dwarf2_name (die, cu);
15450 if (fieldname == NULL)
15453 /* Look up member function name in fieldlist. */
15454 for (i = 0; i < fip->fnfieldlists.size (); i++)
15456 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15458 flp = &fip->fnfieldlists[i];
15463 /* Create a new fnfieldlist if necessary. */
15464 if (flp == nullptr)
15466 fip->fnfieldlists.emplace_back ();
15467 flp = &fip->fnfieldlists.back ();
15468 flp->name = fieldname;
15469 i = fip->fnfieldlists.size () - 1;
15472 /* Create a new member function field and add it to the vector of
15474 flp->fnfields.emplace_back ();
15475 fnp = &flp->fnfields.back ();
15477 /* Delay processing of the physname until later. */
15478 if (cu->language == language_cplus)
15479 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15483 const char *physname = dwarf2_physname (fieldname, die, cu);
15484 fnp->physname = physname ? physname : "";
15487 fnp->type = alloc_type (objfile);
15488 this_type = read_type_die (die, cu);
15489 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15491 int nparams = TYPE_NFIELDS (this_type);
15493 /* TYPE is the domain of this method, and THIS_TYPE is the type
15494 of the method itself (TYPE_CODE_METHOD). */
15495 smash_to_method_type (fnp->type, type,
15496 TYPE_TARGET_TYPE (this_type),
15497 TYPE_FIELDS (this_type),
15498 TYPE_NFIELDS (this_type),
15499 TYPE_VARARGS (this_type));
15501 /* Handle static member functions.
15502 Dwarf2 has no clean way to discern C++ static and non-static
15503 member functions. G++ helps GDB by marking the first
15504 parameter for non-static member functions (which is the this
15505 pointer) as artificial. We obtain this information from
15506 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15507 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15508 fnp->voffset = VOFFSET_STATIC;
15511 complaint (_("member function type missing for '%s'"),
15512 dwarf2_full_name (fieldname, die, cu));
15514 /* Get fcontext from DW_AT_containing_type if present. */
15515 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15516 fnp->fcontext = die_containing_type (die, cu);
15518 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15519 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15521 /* Get accessibility. */
15522 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15524 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15526 accessibility = dwarf2_default_access_attribute (die, cu);
15527 switch (accessibility)
15529 case DW_ACCESS_private:
15530 fnp->is_private = 1;
15532 case DW_ACCESS_protected:
15533 fnp->is_protected = 1;
15537 /* Check for artificial methods. */
15538 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15539 if (attr && DW_UNSND (attr) != 0)
15540 fnp->is_artificial = 1;
15542 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15544 /* Get index in virtual function table if it is a virtual member
15545 function. For older versions of GCC, this is an offset in the
15546 appropriate virtual table, as specified by DW_AT_containing_type.
15547 For everyone else, it is an expression to be evaluated relative
15548 to the object address. */
15550 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15553 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15555 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15557 /* Old-style GCC. */
15558 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15560 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15561 || (DW_BLOCK (attr)->size > 1
15562 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15563 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15565 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15566 if ((fnp->voffset % cu->header.addr_size) != 0)
15567 dwarf2_complex_location_expr_complaint ();
15569 fnp->voffset /= cu->header.addr_size;
15573 dwarf2_complex_location_expr_complaint ();
15575 if (!fnp->fcontext)
15577 /* If there is no `this' field and no DW_AT_containing_type,
15578 we cannot actually find a base class context for the
15580 if (TYPE_NFIELDS (this_type) == 0
15581 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15583 complaint (_("cannot determine context for virtual member "
15584 "function \"%s\" (offset %s)"),
15585 fieldname, sect_offset_str (die->sect_off));
15590 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15594 else if (attr_form_is_section_offset (attr))
15596 dwarf2_complex_location_expr_complaint ();
15600 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15606 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15607 if (attr && DW_UNSND (attr))
15609 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15610 complaint (_("Member function \"%s\" (offset %s) is virtual "
15611 "but the vtable offset is not specified"),
15612 fieldname, sect_offset_str (die->sect_off));
15613 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15614 TYPE_CPLUS_DYNAMIC (type) = 1;
15619 /* Create the vector of member function fields, and attach it to the type. */
15622 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15623 struct dwarf2_cu *cu)
15625 if (cu->language == language_ada)
15626 error (_("unexpected member functions in Ada type"));
15628 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15629 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15631 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15633 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15635 struct fnfieldlist &nf = fip->fnfieldlists[i];
15636 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15638 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15639 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15640 fn_flp->fn_fields = (struct fn_field *)
15641 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15643 for (int k = 0; k < nf.fnfields.size (); ++k)
15644 fn_flp->fn_fields[k] = nf.fnfields[k];
15647 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15650 /* Returns non-zero if NAME is the name of a vtable member in CU's
15651 language, zero otherwise. */
15653 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15655 static const char vptr[] = "_vptr";
15657 /* Look for the C++ form of the vtable. */
15658 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15664 /* GCC outputs unnamed structures that are really pointers to member
15665 functions, with the ABI-specified layout. If TYPE describes
15666 such a structure, smash it into a member function type.
15668 GCC shouldn't do this; it should just output pointer to member DIEs.
15669 This is GCC PR debug/28767. */
15672 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15674 struct type *pfn_type, *self_type, *new_type;
15676 /* Check for a structure with no name and two children. */
15677 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15680 /* Check for __pfn and __delta members. */
15681 if (TYPE_FIELD_NAME (type, 0) == NULL
15682 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15683 || TYPE_FIELD_NAME (type, 1) == NULL
15684 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15687 /* Find the type of the method. */
15688 pfn_type = TYPE_FIELD_TYPE (type, 0);
15689 if (pfn_type == NULL
15690 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15691 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15694 /* Look for the "this" argument. */
15695 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15696 if (TYPE_NFIELDS (pfn_type) == 0
15697 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15698 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15701 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15702 new_type = alloc_type (objfile);
15703 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15704 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15705 TYPE_VARARGS (pfn_type));
15706 smash_to_methodptr_type (type, new_type);
15709 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15710 appropriate error checking and issuing complaints if there is a
15714 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15716 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15718 if (attr == nullptr)
15721 if (!attr_form_is_constant (attr))
15723 complaint (_("DW_AT_alignment must have constant form"
15724 " - DIE at %s [in module %s]"),
15725 sect_offset_str (die->sect_off),
15726 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15731 if (attr->form == DW_FORM_sdata)
15733 LONGEST val = DW_SND (attr);
15736 complaint (_("DW_AT_alignment value must not be negative"
15737 " - DIE at %s [in module %s]"),
15738 sect_offset_str (die->sect_off),
15739 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15745 align = DW_UNSND (attr);
15749 complaint (_("DW_AT_alignment value must not be zero"
15750 " - DIE at %s [in module %s]"),
15751 sect_offset_str (die->sect_off),
15752 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15755 if ((align & (align - 1)) != 0)
15757 complaint (_("DW_AT_alignment value must be a power of 2"
15758 " - DIE at %s [in module %s]"),
15759 sect_offset_str (die->sect_off),
15760 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15767 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15768 the alignment for TYPE. */
15771 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15774 if (!set_type_align (type, get_alignment (cu, die)))
15775 complaint (_("DW_AT_alignment value too large"
15776 " - DIE at %s [in module %s]"),
15777 sect_offset_str (die->sect_off),
15778 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15781 /* Called when we find the DIE that starts a structure or union scope
15782 (definition) to create a type for the structure or union. Fill in
15783 the type's name and general properties; the members will not be
15784 processed until process_structure_scope. A symbol table entry for
15785 the type will also not be done until process_structure_scope (assuming
15786 the type has a name).
15788 NOTE: we need to call these functions regardless of whether or not the
15789 DIE has a DW_AT_name attribute, since it might be an anonymous
15790 structure or union. This gets the type entered into our set of
15791 user defined types. */
15793 static struct type *
15794 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15798 struct attribute *attr;
15801 /* If the definition of this type lives in .debug_types, read that type.
15802 Don't follow DW_AT_specification though, that will take us back up
15803 the chain and we want to go down. */
15804 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15807 type = get_DW_AT_signature_type (die, attr, cu);
15809 /* The type's CU may not be the same as CU.
15810 Ensure TYPE is recorded with CU in die_type_hash. */
15811 return set_die_type (die, type, cu);
15814 type = alloc_type (objfile);
15815 INIT_CPLUS_SPECIFIC (type);
15817 name = dwarf2_name (die, cu);
15820 if (cu->language == language_cplus
15821 || cu->language == language_d
15822 || cu->language == language_rust)
15824 const char *full_name = dwarf2_full_name (name, die, cu);
15826 /* dwarf2_full_name might have already finished building the DIE's
15827 type. If so, there is no need to continue. */
15828 if (get_die_type (die, cu) != NULL)
15829 return get_die_type (die, cu);
15831 TYPE_NAME (type) = full_name;
15835 /* The name is already allocated along with this objfile, so
15836 we don't need to duplicate it for the type. */
15837 TYPE_NAME (type) = name;
15841 if (die->tag == DW_TAG_structure_type)
15843 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15845 else if (die->tag == DW_TAG_union_type)
15847 TYPE_CODE (type) = TYPE_CODE_UNION;
15849 else if (die->tag == DW_TAG_variant_part)
15851 TYPE_CODE (type) = TYPE_CODE_UNION;
15852 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15856 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15859 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15860 TYPE_DECLARED_CLASS (type) = 1;
15862 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15865 if (attr_form_is_constant (attr))
15866 TYPE_LENGTH (type) = DW_UNSND (attr);
15869 /* For the moment, dynamic type sizes are not supported
15870 by GDB's struct type. The actual size is determined
15871 on-demand when resolving the type of a given object,
15872 so set the type's length to zero for now. Otherwise,
15873 we record an expression as the length, and that expression
15874 could lead to a very large value, which could eventually
15875 lead to us trying to allocate that much memory when creating
15876 a value of that type. */
15877 TYPE_LENGTH (type) = 0;
15882 TYPE_LENGTH (type) = 0;
15885 maybe_set_alignment (cu, die, type);
15887 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15889 /* ICC<14 does not output the required DW_AT_declaration on
15890 incomplete types, but gives them a size of zero. */
15891 TYPE_STUB (type) = 1;
15894 TYPE_STUB_SUPPORTED (type) = 1;
15896 if (die_is_declaration (die, cu))
15897 TYPE_STUB (type) = 1;
15898 else if (attr == NULL && die->child == NULL
15899 && producer_is_realview (cu->producer))
15900 /* RealView does not output the required DW_AT_declaration
15901 on incomplete types. */
15902 TYPE_STUB (type) = 1;
15904 /* We need to add the type field to the die immediately so we don't
15905 infinitely recurse when dealing with pointers to the structure
15906 type within the structure itself. */
15907 set_die_type (die, type, cu);
15909 /* set_die_type should be already done. */
15910 set_descriptive_type (type, die, cu);
15915 /* A helper for process_structure_scope that handles a single member
15919 handle_struct_member_die (struct die_info *child_die, struct type *type,
15920 struct field_info *fi,
15921 std::vector<struct symbol *> *template_args,
15922 struct dwarf2_cu *cu)
15924 if (child_die->tag == DW_TAG_member
15925 || child_die->tag == DW_TAG_variable
15926 || child_die->tag == DW_TAG_variant_part)
15928 /* NOTE: carlton/2002-11-05: A C++ static data member
15929 should be a DW_TAG_member that is a declaration, but
15930 all versions of G++ as of this writing (so through at
15931 least 3.2.1) incorrectly generate DW_TAG_variable
15932 tags for them instead. */
15933 dwarf2_add_field (fi, child_die, cu);
15935 else if (child_die->tag == DW_TAG_subprogram)
15937 /* Rust doesn't have member functions in the C++ sense.
15938 However, it does emit ordinary functions as children
15939 of a struct DIE. */
15940 if (cu->language == language_rust)
15941 read_func_scope (child_die, cu);
15944 /* C++ member function. */
15945 dwarf2_add_member_fn (fi, child_die, type, cu);
15948 else if (child_die->tag == DW_TAG_inheritance)
15950 /* C++ base class field. */
15951 dwarf2_add_field (fi, child_die, cu);
15953 else if (type_can_define_types (child_die))
15954 dwarf2_add_type_defn (fi, child_die, cu);
15955 else if (child_die->tag == DW_TAG_template_type_param
15956 || child_die->tag == DW_TAG_template_value_param)
15958 struct symbol *arg = new_symbol (child_die, NULL, cu);
15961 template_args->push_back (arg);
15963 else if (child_die->tag == DW_TAG_variant)
15965 /* In a variant we want to get the discriminant and also add a
15966 field for our sole member child. */
15967 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15969 for (struct die_info *variant_child = child_die->child;
15970 variant_child != NULL;
15971 variant_child = sibling_die (variant_child))
15973 if (variant_child->tag == DW_TAG_member)
15975 handle_struct_member_die (variant_child, type, fi,
15976 template_args, cu);
15977 /* Only handle the one. */
15982 /* We don't handle this but we might as well report it if we see
15984 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15985 complaint (_("DW_AT_discr_list is not supported yet"
15986 " - DIE at %s [in module %s]"),
15987 sect_offset_str (child_die->sect_off),
15988 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15990 /* The first field was just added, so we can stash the
15991 discriminant there. */
15992 gdb_assert (!fi->fields.empty ());
15994 fi->fields.back ().variant.default_branch = true;
15996 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16000 /* Finish creating a structure or union type, including filling in
16001 its members and creating a symbol for it. */
16004 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16006 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16007 struct die_info *child_die;
16010 type = get_die_type (die, cu);
16012 type = read_structure_type (die, cu);
16014 /* When reading a DW_TAG_variant_part, we need to notice when we
16015 read the discriminant member, so we can record it later in the
16016 discriminant_info. */
16017 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16018 sect_offset discr_offset;
16019 bool has_template_parameters = false;
16021 if (is_variant_part)
16023 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16026 /* Maybe it's a univariant form, an extension we support.
16027 In this case arrange not to check the offset. */
16028 is_variant_part = false;
16030 else if (attr_form_is_ref (discr))
16032 struct dwarf2_cu *target_cu = cu;
16033 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16035 discr_offset = target_die->sect_off;
16039 complaint (_("DW_AT_discr does not have DIE reference form"
16040 " - DIE at %s [in module %s]"),
16041 sect_offset_str (die->sect_off),
16042 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16043 is_variant_part = false;
16047 if (die->child != NULL && ! die_is_declaration (die, cu))
16049 struct field_info fi;
16050 std::vector<struct symbol *> template_args;
16052 child_die = die->child;
16054 while (child_die && child_die->tag)
16056 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16058 if (is_variant_part && discr_offset == child_die->sect_off)
16059 fi.fields.back ().variant.is_discriminant = true;
16061 child_die = sibling_die (child_die);
16064 /* Attach template arguments to type. */
16065 if (!template_args.empty ())
16067 has_template_parameters = true;
16068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16069 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16070 TYPE_TEMPLATE_ARGUMENTS (type)
16071 = XOBNEWVEC (&objfile->objfile_obstack,
16073 TYPE_N_TEMPLATE_ARGUMENTS (type));
16074 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16075 template_args.data (),
16076 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16077 * sizeof (struct symbol *)));
16080 /* Attach fields and member functions to the type. */
16082 dwarf2_attach_fields_to_type (&fi, type, cu);
16083 if (!fi.fnfieldlists.empty ())
16085 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16087 /* Get the type which refers to the base class (possibly this
16088 class itself) which contains the vtable pointer for the current
16089 class from the DW_AT_containing_type attribute. This use of
16090 DW_AT_containing_type is a GNU extension. */
16092 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16094 struct type *t = die_containing_type (die, cu);
16096 set_type_vptr_basetype (type, t);
16101 /* Our own class provides vtbl ptr. */
16102 for (i = TYPE_NFIELDS (t) - 1;
16103 i >= TYPE_N_BASECLASSES (t);
16106 const char *fieldname = TYPE_FIELD_NAME (t, i);
16108 if (is_vtable_name (fieldname, cu))
16110 set_type_vptr_fieldno (type, i);
16115 /* Complain if virtual function table field not found. */
16116 if (i < TYPE_N_BASECLASSES (t))
16117 complaint (_("virtual function table pointer "
16118 "not found when defining class '%s'"),
16119 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16123 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16126 else if (cu->producer
16127 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16129 /* The IBM XLC compiler does not provide direct indication
16130 of the containing type, but the vtable pointer is
16131 always named __vfp. */
16135 for (i = TYPE_NFIELDS (type) - 1;
16136 i >= TYPE_N_BASECLASSES (type);
16139 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16141 set_type_vptr_fieldno (type, i);
16142 set_type_vptr_basetype (type, type);
16149 /* Copy fi.typedef_field_list linked list elements content into the
16150 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16151 if (!fi.typedef_field_list.empty ())
16153 int count = fi.typedef_field_list.size ();
16155 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16156 TYPE_TYPEDEF_FIELD_ARRAY (type)
16157 = ((struct decl_field *)
16159 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16160 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16162 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16163 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16166 /* Copy fi.nested_types_list linked list elements content into the
16167 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16168 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16170 int count = fi.nested_types_list.size ();
16172 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16173 TYPE_NESTED_TYPES_ARRAY (type)
16174 = ((struct decl_field *)
16175 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16176 TYPE_NESTED_TYPES_COUNT (type) = count;
16178 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16179 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16183 quirk_gcc_member_function_pointer (type, objfile);
16184 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16185 cu->rust_unions.push_back (type);
16187 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16188 snapshots) has been known to create a die giving a declaration
16189 for a class that has, as a child, a die giving a definition for a
16190 nested class. So we have to process our children even if the
16191 current die is a declaration. Normally, of course, a declaration
16192 won't have any children at all. */
16194 child_die = die->child;
16196 while (child_die != NULL && child_die->tag)
16198 if (child_die->tag == DW_TAG_member
16199 || child_die->tag == DW_TAG_variable
16200 || child_die->tag == DW_TAG_inheritance
16201 || child_die->tag == DW_TAG_template_value_param
16202 || child_die->tag == DW_TAG_template_type_param)
16207 process_die (child_die, cu);
16209 child_die = sibling_die (child_die);
16212 /* Do not consider external references. According to the DWARF standard,
16213 these DIEs are identified by the fact that they have no byte_size
16214 attribute, and a declaration attribute. */
16215 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16216 || !die_is_declaration (die, cu))
16218 struct symbol *sym = new_symbol (die, type, cu);
16220 if (has_template_parameters)
16222 /* Make sure that the symtab is set on the new symbols.
16223 Even though they don't appear in this symtab directly,
16224 other parts of gdb assume that symbols do, and this is
16225 reasonably true. */
16226 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16227 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16228 symbol_symtab (sym));
16233 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16234 update TYPE using some information only available in DIE's children. */
16237 update_enumeration_type_from_children (struct die_info *die,
16239 struct dwarf2_cu *cu)
16241 struct die_info *child_die;
16242 int unsigned_enum = 1;
16246 auto_obstack obstack;
16248 for (child_die = die->child;
16249 child_die != NULL && child_die->tag;
16250 child_die = sibling_die (child_die))
16252 struct attribute *attr;
16254 const gdb_byte *bytes;
16255 struct dwarf2_locexpr_baton *baton;
16258 if (child_die->tag != DW_TAG_enumerator)
16261 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16265 name = dwarf2_name (child_die, cu);
16267 name = "<anonymous enumerator>";
16269 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16270 &value, &bytes, &baton);
16276 else if ((mask & value) != 0)
16281 /* If we already know that the enum type is neither unsigned, nor
16282 a flag type, no need to look at the rest of the enumerates. */
16283 if (!unsigned_enum && !flag_enum)
16288 TYPE_UNSIGNED (type) = 1;
16290 TYPE_FLAG_ENUM (type) = 1;
16293 /* Given a DW_AT_enumeration_type die, set its type. We do not
16294 complete the type's fields yet, or create any symbols. */
16296 static struct type *
16297 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16299 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16301 struct attribute *attr;
16304 /* If the definition of this type lives in .debug_types, read that type.
16305 Don't follow DW_AT_specification though, that will take us back up
16306 the chain and we want to go down. */
16307 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16310 type = get_DW_AT_signature_type (die, attr, cu);
16312 /* The type's CU may not be the same as CU.
16313 Ensure TYPE is recorded with CU in die_type_hash. */
16314 return set_die_type (die, type, cu);
16317 type = alloc_type (objfile);
16319 TYPE_CODE (type) = TYPE_CODE_ENUM;
16320 name = dwarf2_full_name (NULL, die, cu);
16322 TYPE_NAME (type) = name;
16324 attr = dwarf2_attr (die, DW_AT_type, cu);
16327 struct type *underlying_type = die_type (die, cu);
16329 TYPE_TARGET_TYPE (type) = underlying_type;
16332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16335 TYPE_LENGTH (type) = DW_UNSND (attr);
16339 TYPE_LENGTH (type) = 0;
16342 maybe_set_alignment (cu, die, type);
16344 /* The enumeration DIE can be incomplete. In Ada, any type can be
16345 declared as private in the package spec, and then defined only
16346 inside the package body. Such types are known as Taft Amendment
16347 Types. When another package uses such a type, an incomplete DIE
16348 may be generated by the compiler. */
16349 if (die_is_declaration (die, cu))
16350 TYPE_STUB (type) = 1;
16352 /* Finish the creation of this type by using the enum's children.
16353 We must call this even when the underlying type has been provided
16354 so that we can determine if we're looking at a "flag" enum. */
16355 update_enumeration_type_from_children (die, type, cu);
16357 /* If this type has an underlying type that is not a stub, then we
16358 may use its attributes. We always use the "unsigned" attribute
16359 in this situation, because ordinarily we guess whether the type
16360 is unsigned -- but the guess can be wrong and the underlying type
16361 can tell us the reality. However, we defer to a local size
16362 attribute if one exists, because this lets the compiler override
16363 the underlying type if needed. */
16364 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16366 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16367 if (TYPE_LENGTH (type) == 0)
16368 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16369 if (TYPE_RAW_ALIGN (type) == 0
16370 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16371 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16374 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16376 return set_die_type (die, type, cu);
16379 /* Given a pointer to a die which begins an enumeration, process all
16380 the dies that define the members of the enumeration, and create the
16381 symbol for the enumeration type.
16383 NOTE: We reverse the order of the element list. */
16386 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16388 struct type *this_type;
16390 this_type = get_die_type (die, cu);
16391 if (this_type == NULL)
16392 this_type = read_enumeration_type (die, cu);
16394 if (die->child != NULL)
16396 struct die_info *child_die;
16397 struct symbol *sym;
16398 struct field *fields = NULL;
16399 int num_fields = 0;
16402 child_die = die->child;
16403 while (child_die && child_die->tag)
16405 if (child_die->tag != DW_TAG_enumerator)
16407 process_die (child_die, cu);
16411 name = dwarf2_name (child_die, cu);
16414 sym = new_symbol (child_die, this_type, cu);
16416 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16418 fields = (struct field *)
16420 (num_fields + DW_FIELD_ALLOC_CHUNK)
16421 * sizeof (struct field));
16424 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16425 FIELD_TYPE (fields[num_fields]) = NULL;
16426 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16427 FIELD_BITSIZE (fields[num_fields]) = 0;
16433 child_die = sibling_die (child_die);
16438 TYPE_NFIELDS (this_type) = num_fields;
16439 TYPE_FIELDS (this_type) = (struct field *)
16440 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16441 memcpy (TYPE_FIELDS (this_type), fields,
16442 sizeof (struct field) * num_fields);
16447 /* If we are reading an enum from a .debug_types unit, and the enum
16448 is a declaration, and the enum is not the signatured type in the
16449 unit, then we do not want to add a symbol for it. Adding a
16450 symbol would in some cases obscure the true definition of the
16451 enum, giving users an incomplete type when the definition is
16452 actually available. Note that we do not want to do this for all
16453 enums which are just declarations, because C++0x allows forward
16454 enum declarations. */
16455 if (cu->per_cu->is_debug_types
16456 && die_is_declaration (die, cu))
16458 struct signatured_type *sig_type;
16460 sig_type = (struct signatured_type *) cu->per_cu;
16461 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16462 if (sig_type->type_offset_in_section != die->sect_off)
16466 new_symbol (die, this_type, cu);
16469 /* Extract all information from a DW_TAG_array_type DIE and put it in
16470 the DIE's type field. For now, this only handles one dimensional
16473 static struct type *
16474 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16477 struct die_info *child_die;
16479 struct type *element_type, *range_type, *index_type;
16480 struct attribute *attr;
16482 struct dynamic_prop *byte_stride_prop = NULL;
16483 unsigned int bit_stride = 0;
16485 element_type = die_type (die, cu);
16487 /* The die_type call above may have already set the type for this DIE. */
16488 type = get_die_type (die, cu);
16492 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16498 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16499 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16502 complaint (_("unable to read array DW_AT_byte_stride "
16503 " - DIE at %s [in module %s]"),
16504 sect_offset_str (die->sect_off),
16505 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16506 /* Ignore this attribute. We will likely not be able to print
16507 arrays of this type correctly, but there is little we can do
16508 to help if we cannot read the attribute's value. */
16509 byte_stride_prop = NULL;
16513 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16515 bit_stride = DW_UNSND (attr);
16517 /* Irix 6.2 native cc creates array types without children for
16518 arrays with unspecified length. */
16519 if (die->child == NULL)
16521 index_type = objfile_type (objfile)->builtin_int;
16522 range_type = create_static_range_type (NULL, index_type, 0, -1);
16523 type = create_array_type_with_stride (NULL, element_type, range_type,
16524 byte_stride_prop, bit_stride);
16525 return set_die_type (die, type, cu);
16528 std::vector<struct type *> range_types;
16529 child_die = die->child;
16530 while (child_die && child_die->tag)
16532 if (child_die->tag == DW_TAG_subrange_type)
16534 struct type *child_type = read_type_die (child_die, cu);
16536 if (child_type != NULL)
16538 /* The range type was succesfully read. Save it for the
16539 array type creation. */
16540 range_types.push_back (child_type);
16543 child_die = sibling_die (child_die);
16546 /* Dwarf2 dimensions are output from left to right, create the
16547 necessary array types in backwards order. */
16549 type = element_type;
16551 if (read_array_order (die, cu) == DW_ORD_col_major)
16555 while (i < range_types.size ())
16556 type = create_array_type_with_stride (NULL, type, range_types[i++],
16557 byte_stride_prop, bit_stride);
16561 size_t ndim = range_types.size ();
16563 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16564 byte_stride_prop, bit_stride);
16567 /* Understand Dwarf2 support for vector types (like they occur on
16568 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16569 array type. This is not part of the Dwarf2/3 standard yet, but a
16570 custom vendor extension. The main difference between a regular
16571 array and the vector variant is that vectors are passed by value
16573 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16575 make_vector_type (type);
16577 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16578 implementation may choose to implement triple vectors using this
16580 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16583 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16584 TYPE_LENGTH (type) = DW_UNSND (attr);
16586 complaint (_("DW_AT_byte_size for array type smaller "
16587 "than the total size of elements"));
16590 name = dwarf2_name (die, cu);
16592 TYPE_NAME (type) = name;
16594 maybe_set_alignment (cu, die, type);
16596 /* Install the type in the die. */
16597 set_die_type (die, type, cu);
16599 /* set_die_type should be already done. */
16600 set_descriptive_type (type, die, cu);
16605 static enum dwarf_array_dim_ordering
16606 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16608 struct attribute *attr;
16610 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16613 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16615 /* GNU F77 is a special case, as at 08/2004 array type info is the
16616 opposite order to the dwarf2 specification, but data is still
16617 laid out as per normal fortran.
16619 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16620 version checking. */
16622 if (cu->language == language_fortran
16623 && cu->producer && strstr (cu->producer, "GNU F77"))
16625 return DW_ORD_row_major;
16628 switch (cu->language_defn->la_array_ordering)
16630 case array_column_major:
16631 return DW_ORD_col_major;
16632 case array_row_major:
16634 return DW_ORD_row_major;
16638 /* Extract all information from a DW_TAG_set_type DIE and put it in
16639 the DIE's type field. */
16641 static struct type *
16642 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16644 struct type *domain_type, *set_type;
16645 struct attribute *attr;
16647 domain_type = die_type (die, cu);
16649 /* The die_type call above may have already set the type for this DIE. */
16650 set_type = get_die_type (die, cu);
16654 set_type = create_set_type (NULL, domain_type);
16656 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16658 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16660 maybe_set_alignment (cu, die, set_type);
16662 return set_die_type (die, set_type, cu);
16665 /* A helper for read_common_block that creates a locexpr baton.
16666 SYM is the symbol which we are marking as computed.
16667 COMMON_DIE is the DIE for the common block.
16668 COMMON_LOC is the location expression attribute for the common
16670 MEMBER_LOC is the location expression attribute for the particular
16671 member of the common block that we are processing.
16672 CU is the CU from which the above come. */
16675 mark_common_block_symbol_computed (struct symbol *sym,
16676 struct die_info *common_die,
16677 struct attribute *common_loc,
16678 struct attribute *member_loc,
16679 struct dwarf2_cu *cu)
16681 struct dwarf2_per_objfile *dwarf2_per_objfile
16682 = cu->per_cu->dwarf2_per_objfile;
16683 struct objfile *objfile = dwarf2_per_objfile->objfile;
16684 struct dwarf2_locexpr_baton *baton;
16686 unsigned int cu_off;
16687 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16688 LONGEST offset = 0;
16690 gdb_assert (common_loc && member_loc);
16691 gdb_assert (attr_form_is_block (common_loc));
16692 gdb_assert (attr_form_is_block (member_loc)
16693 || attr_form_is_constant (member_loc));
16695 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16696 baton->per_cu = cu->per_cu;
16697 gdb_assert (baton->per_cu);
16699 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16701 if (attr_form_is_constant (member_loc))
16703 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16704 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16707 baton->size += DW_BLOCK (member_loc)->size;
16709 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16712 *ptr++ = DW_OP_call4;
16713 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16714 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16717 if (attr_form_is_constant (member_loc))
16719 *ptr++ = DW_OP_addr;
16720 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16721 ptr += cu->header.addr_size;
16725 /* We have to copy the data here, because DW_OP_call4 will only
16726 use a DW_AT_location attribute. */
16727 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16728 ptr += DW_BLOCK (member_loc)->size;
16731 *ptr++ = DW_OP_plus;
16732 gdb_assert (ptr - baton->data == baton->size);
16734 SYMBOL_LOCATION_BATON (sym) = baton;
16735 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16738 /* Create appropriate locally-scoped variables for all the
16739 DW_TAG_common_block entries. Also create a struct common_block
16740 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16741 is used to sepate the common blocks name namespace from regular
16745 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16747 struct attribute *attr;
16749 attr = dwarf2_attr (die, DW_AT_location, cu);
16752 /* Support the .debug_loc offsets. */
16753 if (attr_form_is_block (attr))
16757 else if (attr_form_is_section_offset (attr))
16759 dwarf2_complex_location_expr_complaint ();
16764 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16765 "common block member");
16770 if (die->child != NULL)
16772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16773 struct die_info *child_die;
16774 size_t n_entries = 0, size;
16775 struct common_block *common_block;
16776 struct symbol *sym;
16778 for (child_die = die->child;
16779 child_die && child_die->tag;
16780 child_die = sibling_die (child_die))
16783 size = (sizeof (struct common_block)
16784 + (n_entries - 1) * sizeof (struct symbol *));
16786 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16788 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16789 common_block->n_entries = 0;
16791 for (child_die = die->child;
16792 child_die && child_die->tag;
16793 child_die = sibling_die (child_die))
16795 /* Create the symbol in the DW_TAG_common_block block in the current
16797 sym = new_symbol (child_die, NULL, cu);
16800 struct attribute *member_loc;
16802 common_block->contents[common_block->n_entries++] = sym;
16804 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16808 /* GDB has handled this for a long time, but it is
16809 not specified by DWARF. It seems to have been
16810 emitted by gfortran at least as recently as:
16811 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16812 complaint (_("Variable in common block has "
16813 "DW_AT_data_member_location "
16814 "- DIE at %s [in module %s]"),
16815 sect_offset_str (child_die->sect_off),
16816 objfile_name (objfile));
16818 if (attr_form_is_section_offset (member_loc))
16819 dwarf2_complex_location_expr_complaint ();
16820 else if (attr_form_is_constant (member_loc)
16821 || attr_form_is_block (member_loc))
16824 mark_common_block_symbol_computed (sym, die, attr,
16828 dwarf2_complex_location_expr_complaint ();
16833 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16834 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16838 /* Create a type for a C++ namespace. */
16840 static struct type *
16841 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16844 const char *previous_prefix, *name;
16848 /* For extensions, reuse the type of the original namespace. */
16849 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16851 struct die_info *ext_die;
16852 struct dwarf2_cu *ext_cu = cu;
16854 ext_die = dwarf2_extension (die, &ext_cu);
16855 type = read_type_die (ext_die, ext_cu);
16857 /* EXT_CU may not be the same as CU.
16858 Ensure TYPE is recorded with CU in die_type_hash. */
16859 return set_die_type (die, type, cu);
16862 name = namespace_name (die, &is_anonymous, cu);
16864 /* Now build the name of the current namespace. */
16866 previous_prefix = determine_prefix (die, cu);
16867 if (previous_prefix[0] != '\0')
16868 name = typename_concat (&objfile->objfile_obstack,
16869 previous_prefix, name, 0, cu);
16871 /* Create the type. */
16872 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16874 return set_die_type (die, type, cu);
16877 /* Read a namespace scope. */
16880 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16882 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16885 /* Add a symbol associated to this if we haven't seen the namespace
16886 before. Also, add a using directive if it's an anonymous
16889 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16893 type = read_type_die (die, cu);
16894 new_symbol (die, type, cu);
16896 namespace_name (die, &is_anonymous, cu);
16899 const char *previous_prefix = determine_prefix (die, cu);
16901 std::vector<const char *> excludes;
16902 add_using_directive (using_directives (cu),
16903 previous_prefix, TYPE_NAME (type), NULL,
16904 NULL, excludes, 0, &objfile->objfile_obstack);
16908 if (die->child != NULL)
16910 struct die_info *child_die = die->child;
16912 while (child_die && child_die->tag)
16914 process_die (child_die, cu);
16915 child_die = sibling_die (child_die);
16920 /* Read a Fortran module as type. This DIE can be only a declaration used for
16921 imported module. Still we need that type as local Fortran "use ... only"
16922 declaration imports depend on the created type in determine_prefix. */
16924 static struct type *
16925 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16928 const char *module_name;
16931 module_name = dwarf2_name (die, cu);
16933 complaint (_("DW_TAG_module has no name, offset %s"),
16934 sect_offset_str (die->sect_off));
16935 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16937 return set_die_type (die, type, cu);
16940 /* Read a Fortran module. */
16943 read_module (struct die_info *die, struct dwarf2_cu *cu)
16945 struct die_info *child_die = die->child;
16948 type = read_type_die (die, cu);
16949 new_symbol (die, type, cu);
16951 while (child_die && child_die->tag)
16953 process_die (child_die, cu);
16954 child_die = sibling_die (child_die);
16958 /* Return the name of the namespace represented by DIE. Set
16959 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16962 static const char *
16963 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16965 struct die_info *current_die;
16966 const char *name = NULL;
16968 /* Loop through the extensions until we find a name. */
16970 for (current_die = die;
16971 current_die != NULL;
16972 current_die = dwarf2_extension (die, &cu))
16974 /* We don't use dwarf2_name here so that we can detect the absence
16975 of a name -> anonymous namespace. */
16976 name = dwarf2_string_attr (die, DW_AT_name, cu);
16982 /* Is it an anonymous namespace? */
16984 *is_anonymous = (name == NULL);
16986 name = CP_ANONYMOUS_NAMESPACE_STR;
16991 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16992 the user defined type vector. */
16994 static struct type *
16995 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16997 struct gdbarch *gdbarch
16998 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16999 struct comp_unit_head *cu_header = &cu->header;
17001 struct attribute *attr_byte_size;
17002 struct attribute *attr_address_class;
17003 int byte_size, addr_class;
17004 struct type *target_type;
17006 target_type = die_type (die, cu);
17008 /* The die_type call above may have already set the type for this DIE. */
17009 type = get_die_type (die, cu);
17013 type = lookup_pointer_type (target_type);
17015 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17016 if (attr_byte_size)
17017 byte_size = DW_UNSND (attr_byte_size);
17019 byte_size = cu_header->addr_size;
17021 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17022 if (attr_address_class)
17023 addr_class = DW_UNSND (attr_address_class);
17025 addr_class = DW_ADDR_none;
17027 ULONGEST alignment = get_alignment (cu, die);
17029 /* If the pointer size, alignment, or address class is different
17030 than the default, create a type variant marked as such and set
17031 the length accordingly. */
17032 if (TYPE_LENGTH (type) != byte_size
17033 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17034 && alignment != TYPE_RAW_ALIGN (type))
17035 || addr_class != DW_ADDR_none)
17037 if (gdbarch_address_class_type_flags_p (gdbarch))
17041 type_flags = gdbarch_address_class_type_flags
17042 (gdbarch, byte_size, addr_class);
17043 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17045 type = make_type_with_address_space (type, type_flags);
17047 else if (TYPE_LENGTH (type) != byte_size)
17049 complaint (_("invalid pointer size %d"), byte_size);
17051 else if (TYPE_RAW_ALIGN (type) != alignment)
17053 complaint (_("Invalid DW_AT_alignment"
17054 " - DIE at %s [in module %s]"),
17055 sect_offset_str (die->sect_off),
17056 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17060 /* Should we also complain about unhandled address classes? */
17064 TYPE_LENGTH (type) = byte_size;
17065 set_type_align (type, alignment);
17066 return set_die_type (die, type, cu);
17069 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17070 the user defined type vector. */
17072 static struct type *
17073 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17076 struct type *to_type;
17077 struct type *domain;
17079 to_type = die_type (die, cu);
17080 domain = die_containing_type (die, cu);
17082 /* The calls above may have already set the type for this DIE. */
17083 type = get_die_type (die, cu);
17087 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17088 type = lookup_methodptr_type (to_type);
17089 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17091 struct type *new_type
17092 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17094 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17095 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17096 TYPE_VARARGS (to_type));
17097 type = lookup_methodptr_type (new_type);
17100 type = lookup_memberptr_type (to_type, domain);
17102 return set_die_type (die, type, cu);
17105 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17106 the user defined type vector. */
17108 static struct type *
17109 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17110 enum type_code refcode)
17112 struct comp_unit_head *cu_header = &cu->header;
17113 struct type *type, *target_type;
17114 struct attribute *attr;
17116 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17118 target_type = die_type (die, cu);
17120 /* The die_type call above may have already set the type for this DIE. */
17121 type = get_die_type (die, cu);
17125 type = lookup_reference_type (target_type, refcode);
17126 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17129 TYPE_LENGTH (type) = DW_UNSND (attr);
17133 TYPE_LENGTH (type) = cu_header->addr_size;
17135 maybe_set_alignment (cu, die, type);
17136 return set_die_type (die, type, cu);
17139 /* Add the given cv-qualifiers to the element type of the array. GCC
17140 outputs DWARF type qualifiers that apply to an array, not the
17141 element type. But GDB relies on the array element type to carry
17142 the cv-qualifiers. This mimics section 6.7.3 of the C99
17145 static struct type *
17146 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17147 struct type *base_type, int cnst, int voltl)
17149 struct type *el_type, *inner_array;
17151 base_type = copy_type (base_type);
17152 inner_array = base_type;
17154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17156 TYPE_TARGET_TYPE (inner_array) =
17157 copy_type (TYPE_TARGET_TYPE (inner_array));
17158 inner_array = TYPE_TARGET_TYPE (inner_array);
17161 el_type = TYPE_TARGET_TYPE (inner_array);
17162 cnst |= TYPE_CONST (el_type);
17163 voltl |= TYPE_VOLATILE (el_type);
17164 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17166 return set_die_type (die, base_type, cu);
17169 static struct type *
17170 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17172 struct type *base_type, *cv_type;
17174 base_type = die_type (die, cu);
17176 /* The die_type call above may have already set the type for this DIE. */
17177 cv_type = get_die_type (die, cu);
17181 /* In case the const qualifier is applied to an array type, the element type
17182 is so qualified, not the array type (section 6.7.3 of C99). */
17183 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17184 return add_array_cv_type (die, cu, base_type, 1, 0);
17186 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17187 return set_die_type (die, cv_type, cu);
17190 static struct type *
17191 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17193 struct type *base_type, *cv_type;
17195 base_type = die_type (die, cu);
17197 /* The die_type call above may have already set the type for this DIE. */
17198 cv_type = get_die_type (die, cu);
17202 /* In case the volatile qualifier is applied to an array type, the
17203 element type is so qualified, not the array type (section 6.7.3
17205 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17206 return add_array_cv_type (die, cu, base_type, 0, 1);
17208 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17209 return set_die_type (die, cv_type, cu);
17212 /* Handle DW_TAG_restrict_type. */
17214 static struct type *
17215 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17217 struct type *base_type, *cv_type;
17219 base_type = die_type (die, cu);
17221 /* The die_type call above may have already set the type for this DIE. */
17222 cv_type = get_die_type (die, cu);
17226 cv_type = make_restrict_type (base_type);
17227 return set_die_type (die, cv_type, cu);
17230 /* Handle DW_TAG_atomic_type. */
17232 static struct type *
17233 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17235 struct type *base_type, *cv_type;
17237 base_type = die_type (die, cu);
17239 /* The die_type call above may have already set the type for this DIE. */
17240 cv_type = get_die_type (die, cu);
17244 cv_type = make_atomic_type (base_type);
17245 return set_die_type (die, cv_type, cu);
17248 /* Extract all information from a DW_TAG_string_type DIE and add to
17249 the user defined type vector. It isn't really a user defined type,
17250 but it behaves like one, with other DIE's using an AT_user_def_type
17251 attribute to reference it. */
17253 static struct type *
17254 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17257 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17258 struct type *type, *range_type, *index_type, *char_type;
17259 struct attribute *attr;
17260 unsigned int length;
17262 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17265 length = DW_UNSND (attr);
17269 /* Check for the DW_AT_byte_size attribute. */
17270 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17273 length = DW_UNSND (attr);
17281 index_type = objfile_type (objfile)->builtin_int;
17282 range_type = create_static_range_type (NULL, index_type, 1, length);
17283 char_type = language_string_char_type (cu->language_defn, gdbarch);
17284 type = create_string_type (NULL, char_type, range_type);
17286 return set_die_type (die, type, cu);
17289 /* Assuming that DIE corresponds to a function, returns nonzero
17290 if the function is prototyped. */
17293 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17295 struct attribute *attr;
17297 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17298 if (attr && (DW_UNSND (attr) != 0))
17301 /* The DWARF standard implies that the DW_AT_prototyped attribute
17302 is only meaninful for C, but the concept also extends to other
17303 languages that allow unprototyped functions (Eg: Objective C).
17304 For all other languages, assume that functions are always
17306 if (cu->language != language_c
17307 && cu->language != language_objc
17308 && cu->language != language_opencl)
17311 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17312 prototyped and unprototyped functions; default to prototyped,
17313 since that is more common in modern code (and RealView warns
17314 about unprototyped functions). */
17315 if (producer_is_realview (cu->producer))
17321 /* Handle DIES due to C code like:
17325 int (*funcp)(int a, long l);
17329 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17331 static struct type *
17332 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17334 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17335 struct type *type; /* Type that this function returns. */
17336 struct type *ftype; /* Function that returns above type. */
17337 struct attribute *attr;
17339 type = die_type (die, cu);
17341 /* The die_type call above may have already set the type for this DIE. */
17342 ftype = get_die_type (die, cu);
17346 ftype = lookup_function_type (type);
17348 if (prototyped_function_p (die, cu))
17349 TYPE_PROTOTYPED (ftype) = 1;
17351 /* Store the calling convention in the type if it's available in
17352 the subroutine die. Otherwise set the calling convention to
17353 the default value DW_CC_normal. */
17354 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17356 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17357 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17358 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17360 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17362 /* Record whether the function returns normally to its caller or not
17363 if the DWARF producer set that information. */
17364 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17365 if (attr && (DW_UNSND (attr) != 0))
17366 TYPE_NO_RETURN (ftype) = 1;
17368 /* We need to add the subroutine type to the die immediately so
17369 we don't infinitely recurse when dealing with parameters
17370 declared as the same subroutine type. */
17371 set_die_type (die, ftype, cu);
17373 if (die->child != NULL)
17375 struct type *void_type = objfile_type (objfile)->builtin_void;
17376 struct die_info *child_die;
17377 int nparams, iparams;
17379 /* Count the number of parameters.
17380 FIXME: GDB currently ignores vararg functions, but knows about
17381 vararg member functions. */
17383 child_die = die->child;
17384 while (child_die && child_die->tag)
17386 if (child_die->tag == DW_TAG_formal_parameter)
17388 else if (child_die->tag == DW_TAG_unspecified_parameters)
17389 TYPE_VARARGS (ftype) = 1;
17390 child_die = sibling_die (child_die);
17393 /* Allocate storage for parameters and fill them in. */
17394 TYPE_NFIELDS (ftype) = nparams;
17395 TYPE_FIELDS (ftype) = (struct field *)
17396 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17398 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17399 even if we error out during the parameters reading below. */
17400 for (iparams = 0; iparams < nparams; iparams++)
17401 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17404 child_die = die->child;
17405 while (child_die && child_die->tag)
17407 if (child_die->tag == DW_TAG_formal_parameter)
17409 struct type *arg_type;
17411 /* DWARF version 2 has no clean way to discern C++
17412 static and non-static member functions. G++ helps
17413 GDB by marking the first parameter for non-static
17414 member functions (which is the this pointer) as
17415 artificial. We pass this information to
17416 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17418 DWARF version 3 added DW_AT_object_pointer, which GCC
17419 4.5 does not yet generate. */
17420 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17422 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17424 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17425 arg_type = die_type (child_die, cu);
17427 /* RealView does not mark THIS as const, which the testsuite
17428 expects. GCC marks THIS as const in method definitions,
17429 but not in the class specifications (GCC PR 43053). */
17430 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17431 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17434 struct dwarf2_cu *arg_cu = cu;
17435 const char *name = dwarf2_name (child_die, cu);
17437 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17440 /* If the compiler emits this, use it. */
17441 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17444 else if (name && strcmp (name, "this") == 0)
17445 /* Function definitions will have the argument names. */
17447 else if (name == NULL && iparams == 0)
17448 /* Declarations may not have the names, so like
17449 elsewhere in GDB, assume an artificial first
17450 argument is "this". */
17454 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17458 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17461 child_die = sibling_die (child_die);
17468 static struct type *
17469 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17471 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17472 const char *name = NULL;
17473 struct type *this_type, *target_type;
17475 name = dwarf2_full_name (NULL, die, cu);
17476 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17477 TYPE_TARGET_STUB (this_type) = 1;
17478 set_die_type (die, this_type, cu);
17479 target_type = die_type (die, cu);
17480 if (target_type != this_type)
17481 TYPE_TARGET_TYPE (this_type) = target_type;
17484 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17485 spec and cause infinite loops in GDB. */
17486 complaint (_("Self-referential DW_TAG_typedef "
17487 "- DIE at %s [in module %s]"),
17488 sect_offset_str (die->sect_off), objfile_name (objfile));
17489 TYPE_TARGET_TYPE (this_type) = NULL;
17494 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17495 (which may be different from NAME) to the architecture back-end to allow
17496 it to guess the correct format if necessary. */
17498 static struct type *
17499 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17500 const char *name_hint)
17502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17503 const struct floatformat **format;
17506 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17508 type = init_float_type (objfile, bits, name, format);
17510 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17515 /* Allocate an integer type of size BITS and name NAME. */
17517 static struct type *
17518 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17519 int bits, int unsigned_p, const char *name)
17523 /* Versions of Intel's C Compiler generate an integer type called "void"
17524 instead of using DW_TAG_unspecified_type. This has been seen on
17525 at least versions 14, 17, and 18. */
17526 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17527 && strcmp (name, "void") == 0)
17528 type = objfile_type (objfile)->builtin_void;
17530 type = init_integer_type (objfile, bits, unsigned_p, name);
17535 /* Initialise and return a floating point type of size BITS suitable for
17536 use as a component of a complex number. The NAME_HINT is passed through
17537 when initialising the floating point type and is the name of the complex
17540 As DWARF doesn't currently provide an explicit name for the components
17541 of a complex number, but it can be helpful to have these components
17542 named, we try to select a suitable name based on the size of the
17544 static struct type *
17545 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17546 struct objfile *objfile,
17547 int bits, const char *name_hint)
17549 gdbarch *gdbarch = get_objfile_arch (objfile);
17550 struct type *tt = nullptr;
17552 /* Try to find a suitable floating point builtin type of size BITS.
17553 We're going to use the name of this type as the name for the complex
17554 target type that we are about to create. */
17558 tt = builtin_type (gdbarch)->builtin_float;
17561 tt = builtin_type (gdbarch)->builtin_double;
17563 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17565 tt = builtin_type (gdbarch)->builtin_long_double;
17569 /* If the type we found doesn't match the size we were looking for, then
17570 pretend we didn't find a type at all, the complex target type we
17571 create will then be nameless. */
17572 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17575 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17576 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17579 /* Find a representation of a given base type and install
17580 it in the TYPE field of the die. */
17582 static struct type *
17583 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17585 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17587 struct attribute *attr;
17588 int encoding = 0, bits = 0;
17591 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17594 encoding = DW_UNSND (attr);
17596 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17599 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17601 name = dwarf2_name (die, cu);
17604 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17609 case DW_ATE_address:
17610 /* Turn DW_ATE_address into a void * pointer. */
17611 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17612 type = init_pointer_type (objfile, bits, name, type);
17614 case DW_ATE_boolean:
17615 type = init_boolean_type (objfile, bits, 1, name);
17617 case DW_ATE_complex_float:
17618 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17619 type = init_complex_type (objfile, name, type);
17621 case DW_ATE_decimal_float:
17622 type = init_decfloat_type (objfile, bits, name);
17625 type = dwarf2_init_float_type (objfile, bits, name, name);
17627 case DW_ATE_signed:
17628 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17630 case DW_ATE_unsigned:
17631 if (cu->language == language_fortran
17633 && startswith (name, "character("))
17634 type = init_character_type (objfile, bits, 1, name);
17636 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17638 case DW_ATE_signed_char:
17639 if (cu->language == language_ada || cu->language == language_m2
17640 || cu->language == language_pascal
17641 || cu->language == language_fortran)
17642 type = init_character_type (objfile, bits, 0, name);
17644 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17646 case DW_ATE_unsigned_char:
17647 if (cu->language == language_ada || cu->language == language_m2
17648 || cu->language == language_pascal
17649 || cu->language == language_fortran
17650 || cu->language == language_rust)
17651 type = init_character_type (objfile, bits, 1, name);
17653 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17657 gdbarch *arch = get_objfile_arch (objfile);
17660 type = builtin_type (arch)->builtin_char16;
17661 else if (bits == 32)
17662 type = builtin_type (arch)->builtin_char32;
17665 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17667 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17669 return set_die_type (die, type, cu);
17674 complaint (_("unsupported DW_AT_encoding: '%s'"),
17675 dwarf_type_encoding_name (encoding));
17676 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17680 if (name && strcmp (name, "char") == 0)
17681 TYPE_NOSIGN (type) = 1;
17683 maybe_set_alignment (cu, die, type);
17685 return set_die_type (die, type, cu);
17688 /* Parse dwarf attribute if it's a block, reference or constant and put the
17689 resulting value of the attribute into struct bound_prop.
17690 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17693 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17694 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17696 struct dwarf2_property_baton *baton;
17697 struct obstack *obstack
17698 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17700 if (attr == NULL || prop == NULL)
17703 if (attr_form_is_block (attr))
17705 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17706 baton->referenced_type = NULL;
17707 baton->locexpr.per_cu = cu->per_cu;
17708 baton->locexpr.size = DW_BLOCK (attr)->size;
17709 baton->locexpr.data = DW_BLOCK (attr)->data;
17710 prop->data.baton = baton;
17711 prop->kind = PROP_LOCEXPR;
17712 gdb_assert (prop->data.baton != NULL);
17714 else if (attr_form_is_ref (attr))
17716 struct dwarf2_cu *target_cu = cu;
17717 struct die_info *target_die;
17718 struct attribute *target_attr;
17720 target_die = follow_die_ref (die, attr, &target_cu);
17721 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17722 if (target_attr == NULL)
17723 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17725 if (target_attr == NULL)
17728 switch (target_attr->name)
17730 case DW_AT_location:
17731 if (attr_form_is_section_offset (target_attr))
17733 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17734 baton->referenced_type = die_type (target_die, target_cu);
17735 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17736 prop->data.baton = baton;
17737 prop->kind = PROP_LOCLIST;
17738 gdb_assert (prop->data.baton != NULL);
17740 else if (attr_form_is_block (target_attr))
17742 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17743 baton->referenced_type = die_type (target_die, target_cu);
17744 baton->locexpr.per_cu = cu->per_cu;
17745 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17746 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17747 prop->data.baton = baton;
17748 prop->kind = PROP_LOCEXPR;
17749 gdb_assert (prop->data.baton != NULL);
17753 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17754 "dynamic property");
17758 case DW_AT_data_member_location:
17762 if (!handle_data_member_location (target_die, target_cu,
17766 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17767 baton->referenced_type = read_type_die (target_die->parent,
17769 baton->offset_info.offset = offset;
17770 baton->offset_info.type = die_type (target_die, target_cu);
17771 prop->data.baton = baton;
17772 prop->kind = PROP_ADDR_OFFSET;
17777 else if (attr_form_is_constant (attr))
17779 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17780 prop->kind = PROP_CONST;
17784 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17785 dwarf2_name (die, cu));
17792 /* Read the given DW_AT_subrange DIE. */
17794 static struct type *
17795 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17797 struct type *base_type, *orig_base_type;
17798 struct type *range_type;
17799 struct attribute *attr;
17800 struct dynamic_prop low, high;
17801 int low_default_is_valid;
17802 int high_bound_is_count = 0;
17804 ULONGEST negative_mask;
17806 orig_base_type = die_type (die, cu);
17807 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17808 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17809 creating the range type, but we use the result of check_typedef
17810 when examining properties of the type. */
17811 base_type = check_typedef (orig_base_type);
17813 /* The die_type call above may have already set the type for this DIE. */
17814 range_type = get_die_type (die, cu);
17818 low.kind = PROP_CONST;
17819 high.kind = PROP_CONST;
17820 high.data.const_val = 0;
17822 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17823 omitting DW_AT_lower_bound. */
17824 switch (cu->language)
17827 case language_cplus:
17828 low.data.const_val = 0;
17829 low_default_is_valid = 1;
17831 case language_fortran:
17832 low.data.const_val = 1;
17833 low_default_is_valid = 1;
17836 case language_objc:
17837 case language_rust:
17838 low.data.const_val = 0;
17839 low_default_is_valid = (cu->header.version >= 4);
17843 case language_pascal:
17844 low.data.const_val = 1;
17845 low_default_is_valid = (cu->header.version >= 4);
17848 low.data.const_val = 0;
17849 low_default_is_valid = 0;
17853 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17855 attr_to_dynamic_prop (attr, die, cu, &low);
17856 else if (!low_default_is_valid)
17857 complaint (_("Missing DW_AT_lower_bound "
17858 "- DIE at %s [in module %s]"),
17859 sect_offset_str (die->sect_off),
17860 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17862 struct attribute *attr_ub, *attr_count;
17863 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17864 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17866 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17867 if (attr_to_dynamic_prop (attr, die, cu, &high))
17869 /* If bounds are constant do the final calculation here. */
17870 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17871 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17873 high_bound_is_count = 1;
17877 if (attr_ub != NULL)
17878 complaint (_("Unresolved DW_AT_upper_bound "
17879 "- DIE at %s [in module %s]"),
17880 sect_offset_str (die->sect_off),
17881 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17882 if (attr_count != NULL)
17883 complaint (_("Unresolved DW_AT_count "
17884 "- DIE at %s [in module %s]"),
17885 sect_offset_str (die->sect_off),
17886 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17891 /* Dwarf-2 specifications explicitly allows to create subrange types
17892 without specifying a base type.
17893 In that case, the base type must be set to the type of
17894 the lower bound, upper bound or count, in that order, if any of these
17895 three attributes references an object that has a type.
17896 If no base type is found, the Dwarf-2 specifications say that
17897 a signed integer type of size equal to the size of an address should
17899 For the following C code: `extern char gdb_int [];'
17900 GCC produces an empty range DIE.
17901 FIXME: muller/2010-05-28: Possible references to object for low bound,
17902 high bound or count are not yet handled by this code. */
17903 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17905 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17906 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17907 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17908 struct type *int_type = objfile_type (objfile)->builtin_int;
17910 /* Test "int", "long int", and "long long int" objfile types,
17911 and select the first one having a size above or equal to the
17912 architecture address size. */
17913 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17914 base_type = int_type;
17917 int_type = objfile_type (objfile)->builtin_long;
17918 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17919 base_type = int_type;
17922 int_type = objfile_type (objfile)->builtin_long_long;
17923 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17924 base_type = int_type;
17929 /* Normally, the DWARF producers are expected to use a signed
17930 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17931 But this is unfortunately not always the case, as witnessed
17932 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17933 is used instead. To work around that ambiguity, we treat
17934 the bounds as signed, and thus sign-extend their values, when
17935 the base type is signed. */
17937 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17938 if (low.kind == PROP_CONST
17939 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17940 low.data.const_val |= negative_mask;
17941 if (high.kind == PROP_CONST
17942 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17943 high.data.const_val |= negative_mask;
17945 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17947 if (high_bound_is_count)
17948 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17950 /* Ada expects an empty array on no boundary attributes. */
17951 if (attr == NULL && cu->language != language_ada)
17952 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17954 name = dwarf2_name (die, cu);
17956 TYPE_NAME (range_type) = name;
17958 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17960 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17962 maybe_set_alignment (cu, die, range_type);
17964 set_die_type (die, range_type, cu);
17966 /* set_die_type should be already done. */
17967 set_descriptive_type (range_type, die, cu);
17972 static struct type *
17973 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17977 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17979 TYPE_NAME (type) = dwarf2_name (die, cu);
17981 /* In Ada, an unspecified type is typically used when the description
17982 of the type is defered to a different unit. When encountering
17983 such a type, we treat it as a stub, and try to resolve it later on,
17985 if (cu->language == language_ada)
17986 TYPE_STUB (type) = 1;
17988 return set_die_type (die, type, cu);
17991 /* Read a single die and all its descendents. Set the die's sibling
17992 field to NULL; set other fields in the die correctly, and set all
17993 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17994 location of the info_ptr after reading all of those dies. PARENT
17995 is the parent of the die in question. */
17997 static struct die_info *
17998 read_die_and_children (const struct die_reader_specs *reader,
17999 const gdb_byte *info_ptr,
18000 const gdb_byte **new_info_ptr,
18001 struct die_info *parent)
18003 struct die_info *die;
18004 const gdb_byte *cur_ptr;
18007 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18010 *new_info_ptr = cur_ptr;
18013 store_in_ref_table (die, reader->cu);
18016 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18020 *new_info_ptr = cur_ptr;
18023 die->sibling = NULL;
18024 die->parent = parent;
18028 /* Read a die, all of its descendents, and all of its siblings; set
18029 all of the fields of all of the dies correctly. Arguments are as
18030 in read_die_and_children. */
18032 static struct die_info *
18033 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18034 const gdb_byte *info_ptr,
18035 const gdb_byte **new_info_ptr,
18036 struct die_info *parent)
18038 struct die_info *first_die, *last_sibling;
18039 const gdb_byte *cur_ptr;
18041 cur_ptr = info_ptr;
18042 first_die = last_sibling = NULL;
18046 struct die_info *die
18047 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18051 *new_info_ptr = cur_ptr;
18058 last_sibling->sibling = die;
18060 last_sibling = die;
18064 /* Read a die, all of its descendents, and all of its siblings; set
18065 all of the fields of all of the dies correctly. Arguments are as
18066 in read_die_and_children.
18067 This the main entry point for reading a DIE and all its children. */
18069 static struct die_info *
18070 read_die_and_siblings (const struct die_reader_specs *reader,
18071 const gdb_byte *info_ptr,
18072 const gdb_byte **new_info_ptr,
18073 struct die_info *parent)
18075 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18076 new_info_ptr, parent);
18078 if (dwarf_die_debug)
18080 fprintf_unfiltered (gdb_stdlog,
18081 "Read die from %s@0x%x of %s:\n",
18082 get_section_name (reader->die_section),
18083 (unsigned) (info_ptr - reader->die_section->buffer),
18084 bfd_get_filename (reader->abfd));
18085 dump_die (die, dwarf_die_debug);
18091 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18093 The caller is responsible for filling in the extra attributes
18094 and updating (*DIEP)->num_attrs.
18095 Set DIEP to point to a newly allocated die with its information,
18096 except for its child, sibling, and parent fields.
18097 Set HAS_CHILDREN to tell whether the die has children or not. */
18099 static const gdb_byte *
18100 read_full_die_1 (const struct die_reader_specs *reader,
18101 struct die_info **diep, const gdb_byte *info_ptr,
18102 int *has_children, int num_extra_attrs)
18104 unsigned int abbrev_number, bytes_read, i;
18105 struct abbrev_info *abbrev;
18106 struct die_info *die;
18107 struct dwarf2_cu *cu = reader->cu;
18108 bfd *abfd = reader->abfd;
18110 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18111 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18112 info_ptr += bytes_read;
18113 if (!abbrev_number)
18120 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18122 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18124 bfd_get_filename (abfd));
18126 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18127 die->sect_off = sect_off;
18128 die->tag = abbrev->tag;
18129 die->abbrev = abbrev_number;
18131 /* Make the result usable.
18132 The caller needs to update num_attrs after adding the extra
18134 die->num_attrs = abbrev->num_attrs;
18136 for (i = 0; i < abbrev->num_attrs; ++i)
18137 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18141 *has_children = abbrev->has_children;
18145 /* Read a die and all its attributes.
18146 Set DIEP to point to a newly allocated die with its information,
18147 except for its child, sibling, and parent fields.
18148 Set HAS_CHILDREN to tell whether the die has children or not. */
18150 static const gdb_byte *
18151 read_full_die (const struct die_reader_specs *reader,
18152 struct die_info **diep, const gdb_byte *info_ptr,
18155 const gdb_byte *result;
18157 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18159 if (dwarf_die_debug)
18161 fprintf_unfiltered (gdb_stdlog,
18162 "Read die from %s@0x%x of %s:\n",
18163 get_section_name (reader->die_section),
18164 (unsigned) (info_ptr - reader->die_section->buffer),
18165 bfd_get_filename (reader->abfd));
18166 dump_die (*diep, dwarf_die_debug);
18172 /* Abbreviation tables.
18174 In DWARF version 2, the description of the debugging information is
18175 stored in a separate .debug_abbrev section. Before we read any
18176 dies from a section we read in all abbreviations and install them
18177 in a hash table. */
18179 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18181 struct abbrev_info *
18182 abbrev_table::alloc_abbrev ()
18184 struct abbrev_info *abbrev;
18186 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18187 memset (abbrev, 0, sizeof (struct abbrev_info));
18192 /* Add an abbreviation to the table. */
18195 abbrev_table::add_abbrev (unsigned int abbrev_number,
18196 struct abbrev_info *abbrev)
18198 unsigned int hash_number;
18200 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18201 abbrev->next = m_abbrevs[hash_number];
18202 m_abbrevs[hash_number] = abbrev;
18205 /* Look up an abbrev in the table.
18206 Returns NULL if the abbrev is not found. */
18208 struct abbrev_info *
18209 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18211 unsigned int hash_number;
18212 struct abbrev_info *abbrev;
18214 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18215 abbrev = m_abbrevs[hash_number];
18219 if (abbrev->number == abbrev_number)
18221 abbrev = abbrev->next;
18226 /* Read in an abbrev table. */
18228 static abbrev_table_up
18229 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18230 struct dwarf2_section_info *section,
18231 sect_offset sect_off)
18233 struct objfile *objfile = dwarf2_per_objfile->objfile;
18234 bfd *abfd = get_section_bfd_owner (section);
18235 const gdb_byte *abbrev_ptr;
18236 struct abbrev_info *cur_abbrev;
18237 unsigned int abbrev_number, bytes_read, abbrev_name;
18238 unsigned int abbrev_form;
18239 struct attr_abbrev *cur_attrs;
18240 unsigned int allocated_attrs;
18242 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18244 dwarf2_read_section (objfile, section);
18245 abbrev_ptr = section->buffer + to_underlying (sect_off);
18246 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18247 abbrev_ptr += bytes_read;
18249 allocated_attrs = ATTR_ALLOC_CHUNK;
18250 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18252 /* Loop until we reach an abbrev number of 0. */
18253 while (abbrev_number)
18255 cur_abbrev = abbrev_table->alloc_abbrev ();
18257 /* read in abbrev header */
18258 cur_abbrev->number = abbrev_number;
18260 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18261 abbrev_ptr += bytes_read;
18262 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18265 /* now read in declarations */
18268 LONGEST implicit_const;
18270 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18271 abbrev_ptr += bytes_read;
18272 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18273 abbrev_ptr += bytes_read;
18274 if (abbrev_form == DW_FORM_implicit_const)
18276 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18278 abbrev_ptr += bytes_read;
18282 /* Initialize it due to a false compiler warning. */
18283 implicit_const = -1;
18286 if (abbrev_name == 0)
18289 if (cur_abbrev->num_attrs == allocated_attrs)
18291 allocated_attrs += ATTR_ALLOC_CHUNK;
18293 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18296 cur_attrs[cur_abbrev->num_attrs].name
18297 = (enum dwarf_attribute) abbrev_name;
18298 cur_attrs[cur_abbrev->num_attrs].form
18299 = (enum dwarf_form) abbrev_form;
18300 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18301 ++cur_abbrev->num_attrs;
18304 cur_abbrev->attrs =
18305 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18306 cur_abbrev->num_attrs);
18307 memcpy (cur_abbrev->attrs, cur_attrs,
18308 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18310 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18312 /* Get next abbreviation.
18313 Under Irix6 the abbreviations for a compilation unit are not
18314 always properly terminated with an abbrev number of 0.
18315 Exit loop if we encounter an abbreviation which we have
18316 already read (which means we are about to read the abbreviations
18317 for the next compile unit) or if the end of the abbreviation
18318 table is reached. */
18319 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18321 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18322 abbrev_ptr += bytes_read;
18323 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18328 return abbrev_table;
18331 /* Returns nonzero if TAG represents a type that we might generate a partial
18335 is_type_tag_for_partial (int tag)
18340 /* Some types that would be reasonable to generate partial symbols for,
18341 that we don't at present. */
18342 case DW_TAG_array_type:
18343 case DW_TAG_file_type:
18344 case DW_TAG_ptr_to_member_type:
18345 case DW_TAG_set_type:
18346 case DW_TAG_string_type:
18347 case DW_TAG_subroutine_type:
18349 case DW_TAG_base_type:
18350 case DW_TAG_class_type:
18351 case DW_TAG_interface_type:
18352 case DW_TAG_enumeration_type:
18353 case DW_TAG_structure_type:
18354 case DW_TAG_subrange_type:
18355 case DW_TAG_typedef:
18356 case DW_TAG_union_type:
18363 /* Load all DIEs that are interesting for partial symbols into memory. */
18365 static struct partial_die_info *
18366 load_partial_dies (const struct die_reader_specs *reader,
18367 const gdb_byte *info_ptr, int building_psymtab)
18369 struct dwarf2_cu *cu = reader->cu;
18370 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18371 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18372 unsigned int bytes_read;
18373 unsigned int load_all = 0;
18374 int nesting_level = 1;
18379 gdb_assert (cu->per_cu != NULL);
18380 if (cu->per_cu->load_all_dies)
18384 = htab_create_alloc_ex (cu->header.length / 12,
18388 &cu->comp_unit_obstack,
18389 hashtab_obstack_allocate,
18390 dummy_obstack_deallocate);
18394 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18396 /* A NULL abbrev means the end of a series of children. */
18397 if (abbrev == NULL)
18399 if (--nesting_level == 0)
18402 info_ptr += bytes_read;
18403 last_die = parent_die;
18404 parent_die = parent_die->die_parent;
18408 /* Check for template arguments. We never save these; if
18409 they're seen, we just mark the parent, and go on our way. */
18410 if (parent_die != NULL
18411 && cu->language == language_cplus
18412 && (abbrev->tag == DW_TAG_template_type_param
18413 || abbrev->tag == DW_TAG_template_value_param))
18415 parent_die->has_template_arguments = 1;
18419 /* We don't need a partial DIE for the template argument. */
18420 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18425 /* We only recurse into c++ subprograms looking for template arguments.
18426 Skip their other children. */
18428 && cu->language == language_cplus
18429 && parent_die != NULL
18430 && parent_die->tag == DW_TAG_subprogram)
18432 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18436 /* Check whether this DIE is interesting enough to save. Normally
18437 we would not be interested in members here, but there may be
18438 later variables referencing them via DW_AT_specification (for
18439 static members). */
18441 && !is_type_tag_for_partial (abbrev->tag)
18442 && abbrev->tag != DW_TAG_constant
18443 && abbrev->tag != DW_TAG_enumerator
18444 && abbrev->tag != DW_TAG_subprogram
18445 && abbrev->tag != DW_TAG_inlined_subroutine
18446 && abbrev->tag != DW_TAG_lexical_block
18447 && abbrev->tag != DW_TAG_variable
18448 && abbrev->tag != DW_TAG_namespace
18449 && abbrev->tag != DW_TAG_module
18450 && abbrev->tag != DW_TAG_member
18451 && abbrev->tag != DW_TAG_imported_unit
18452 && abbrev->tag != DW_TAG_imported_declaration)
18454 /* Otherwise we skip to the next sibling, if any. */
18455 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18459 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18462 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18464 /* This two-pass algorithm for processing partial symbols has a
18465 high cost in cache pressure. Thus, handle some simple cases
18466 here which cover the majority of C partial symbols. DIEs
18467 which neither have specification tags in them, nor could have
18468 specification tags elsewhere pointing at them, can simply be
18469 processed and discarded.
18471 This segment is also optional; scan_partial_symbols and
18472 add_partial_symbol will handle these DIEs if we chain
18473 them in normally. When compilers which do not emit large
18474 quantities of duplicate debug information are more common,
18475 this code can probably be removed. */
18477 /* Any complete simple types at the top level (pretty much all
18478 of them, for a language without namespaces), can be processed
18480 if (parent_die == NULL
18481 && pdi.has_specification == 0
18482 && pdi.is_declaration == 0
18483 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18484 || pdi.tag == DW_TAG_base_type
18485 || pdi.tag == DW_TAG_subrange_type))
18487 if (building_psymtab && pdi.name != NULL)
18488 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18489 VAR_DOMAIN, LOC_TYPEDEF, -1,
18490 psymbol_placement::STATIC,
18491 0, cu->language, objfile);
18492 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18496 /* The exception for DW_TAG_typedef with has_children above is
18497 a workaround of GCC PR debug/47510. In the case of this complaint
18498 type_name_or_error will error on such types later.
18500 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18501 it could not find the child DIEs referenced later, this is checked
18502 above. In correct DWARF DW_TAG_typedef should have no children. */
18504 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18505 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18506 "- DIE at %s [in module %s]"),
18507 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18509 /* If we're at the second level, and we're an enumerator, and
18510 our parent has no specification (meaning possibly lives in a
18511 namespace elsewhere), then we can add the partial symbol now
18512 instead of queueing it. */
18513 if (pdi.tag == DW_TAG_enumerator
18514 && parent_die != NULL
18515 && parent_die->die_parent == NULL
18516 && parent_die->tag == DW_TAG_enumeration_type
18517 && parent_die->has_specification == 0)
18519 if (pdi.name == NULL)
18520 complaint (_("malformed enumerator DIE ignored"));
18521 else if (building_psymtab)
18522 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18523 VAR_DOMAIN, LOC_CONST, -1,
18524 cu->language == language_cplus
18525 ? psymbol_placement::GLOBAL
18526 : psymbol_placement::STATIC,
18527 0, cu->language, objfile);
18529 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18533 struct partial_die_info *part_die
18534 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18536 /* We'll save this DIE so link it in. */
18537 part_die->die_parent = parent_die;
18538 part_die->die_sibling = NULL;
18539 part_die->die_child = NULL;
18541 if (last_die && last_die == parent_die)
18542 last_die->die_child = part_die;
18544 last_die->die_sibling = part_die;
18546 last_die = part_die;
18548 if (first_die == NULL)
18549 first_die = part_die;
18551 /* Maybe add the DIE to the hash table. Not all DIEs that we
18552 find interesting need to be in the hash table, because we
18553 also have the parent/sibling/child chains; only those that we
18554 might refer to by offset later during partial symbol reading.
18556 For now this means things that might have be the target of a
18557 DW_AT_specification, DW_AT_abstract_origin, or
18558 DW_AT_extension. DW_AT_extension will refer only to
18559 namespaces; DW_AT_abstract_origin refers to functions (and
18560 many things under the function DIE, but we do not recurse
18561 into function DIEs during partial symbol reading) and
18562 possibly variables as well; DW_AT_specification refers to
18563 declarations. Declarations ought to have the DW_AT_declaration
18564 flag. It happens that GCC forgets to put it in sometimes, but
18565 only for functions, not for types.
18567 Adding more things than necessary to the hash table is harmless
18568 except for the performance cost. Adding too few will result in
18569 wasted time in find_partial_die, when we reread the compilation
18570 unit with load_all_dies set. */
18573 || abbrev->tag == DW_TAG_constant
18574 || abbrev->tag == DW_TAG_subprogram
18575 || abbrev->tag == DW_TAG_variable
18576 || abbrev->tag == DW_TAG_namespace
18577 || part_die->is_declaration)
18581 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18582 to_underlying (part_die->sect_off),
18587 /* For some DIEs we want to follow their children (if any). For C
18588 we have no reason to follow the children of structures; for other
18589 languages we have to, so that we can get at method physnames
18590 to infer fully qualified class names, for DW_AT_specification,
18591 and for C++ template arguments. For C++, we also look one level
18592 inside functions to find template arguments (if the name of the
18593 function does not already contain the template arguments).
18595 For Ada, we need to scan the children of subprograms and lexical
18596 blocks as well because Ada allows the definition of nested
18597 entities that could be interesting for the debugger, such as
18598 nested subprograms for instance. */
18599 if (last_die->has_children
18601 || last_die->tag == DW_TAG_namespace
18602 || last_die->tag == DW_TAG_module
18603 || last_die->tag == DW_TAG_enumeration_type
18604 || (cu->language == language_cplus
18605 && last_die->tag == DW_TAG_subprogram
18606 && (last_die->name == NULL
18607 || strchr (last_die->name, '<') == NULL))
18608 || (cu->language != language_c
18609 && (last_die->tag == DW_TAG_class_type
18610 || last_die->tag == DW_TAG_interface_type
18611 || last_die->tag == DW_TAG_structure_type
18612 || last_die->tag == DW_TAG_union_type))
18613 || (cu->language == language_ada
18614 && (last_die->tag == DW_TAG_subprogram
18615 || last_die->tag == DW_TAG_lexical_block))))
18618 parent_die = last_die;
18622 /* Otherwise we skip to the next sibling, if any. */
18623 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18625 /* Back to the top, do it again. */
18629 partial_die_info::partial_die_info (sect_offset sect_off_,
18630 struct abbrev_info *abbrev)
18631 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18635 /* Read a minimal amount of information into the minimal die structure.
18636 INFO_PTR should point just after the initial uleb128 of a DIE. */
18639 partial_die_info::read (const struct die_reader_specs *reader,
18640 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18642 struct dwarf2_cu *cu = reader->cu;
18643 struct dwarf2_per_objfile *dwarf2_per_objfile
18644 = cu->per_cu->dwarf2_per_objfile;
18646 int has_low_pc_attr = 0;
18647 int has_high_pc_attr = 0;
18648 int high_pc_relative = 0;
18650 for (i = 0; i < abbrev.num_attrs; ++i)
18652 struct attribute attr;
18654 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18656 /* Store the data if it is of an attribute we want to keep in a
18657 partial symbol table. */
18663 case DW_TAG_compile_unit:
18664 case DW_TAG_partial_unit:
18665 case DW_TAG_type_unit:
18666 /* Compilation units have a DW_AT_name that is a filename, not
18667 a source language identifier. */
18668 case DW_TAG_enumeration_type:
18669 case DW_TAG_enumerator:
18670 /* These tags always have simple identifiers already; no need
18671 to canonicalize them. */
18672 name = DW_STRING (&attr);
18676 struct objfile *objfile = dwarf2_per_objfile->objfile;
18679 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18680 &objfile->per_bfd->storage_obstack);
18685 case DW_AT_linkage_name:
18686 case DW_AT_MIPS_linkage_name:
18687 /* Note that both forms of linkage name might appear. We
18688 assume they will be the same, and we only store the last
18690 if (cu->language == language_ada)
18691 name = DW_STRING (&attr);
18692 linkage_name = DW_STRING (&attr);
18695 has_low_pc_attr = 1;
18696 lowpc = attr_value_as_address (&attr);
18698 case DW_AT_high_pc:
18699 has_high_pc_attr = 1;
18700 highpc = attr_value_as_address (&attr);
18701 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18702 high_pc_relative = 1;
18704 case DW_AT_location:
18705 /* Support the .debug_loc offsets. */
18706 if (attr_form_is_block (&attr))
18708 d.locdesc = DW_BLOCK (&attr);
18710 else if (attr_form_is_section_offset (&attr))
18712 dwarf2_complex_location_expr_complaint ();
18716 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18717 "partial symbol information");
18720 case DW_AT_external:
18721 is_external = DW_UNSND (&attr);
18723 case DW_AT_declaration:
18724 is_declaration = DW_UNSND (&attr);
18729 case DW_AT_abstract_origin:
18730 case DW_AT_specification:
18731 case DW_AT_extension:
18732 has_specification = 1;
18733 spec_offset = dwarf2_get_ref_die_offset (&attr);
18734 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18735 || cu->per_cu->is_dwz);
18737 case DW_AT_sibling:
18738 /* Ignore absolute siblings, they might point outside of
18739 the current compile unit. */
18740 if (attr.form == DW_FORM_ref_addr)
18741 complaint (_("ignoring absolute DW_AT_sibling"));
18744 const gdb_byte *buffer = reader->buffer;
18745 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18746 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18748 if (sibling_ptr < info_ptr)
18749 complaint (_("DW_AT_sibling points backwards"));
18750 else if (sibling_ptr > reader->buffer_end)
18751 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18753 sibling = sibling_ptr;
18756 case DW_AT_byte_size:
18759 case DW_AT_const_value:
18760 has_const_value = 1;
18762 case DW_AT_calling_convention:
18763 /* DWARF doesn't provide a way to identify a program's source-level
18764 entry point. DW_AT_calling_convention attributes are only meant
18765 to describe functions' calling conventions.
18767 However, because it's a necessary piece of information in
18768 Fortran, and before DWARF 4 DW_CC_program was the only
18769 piece of debugging information whose definition refers to
18770 a 'main program' at all, several compilers marked Fortran
18771 main programs with DW_CC_program --- even when those
18772 functions use the standard calling conventions.
18774 Although DWARF now specifies a way to provide this
18775 information, we support this practice for backward
18777 if (DW_UNSND (&attr) == DW_CC_program
18778 && cu->language == language_fortran)
18779 main_subprogram = 1;
18782 if (DW_UNSND (&attr) == DW_INL_inlined
18783 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18784 may_be_inlined = 1;
18788 if (tag == DW_TAG_imported_unit)
18790 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18791 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18792 || cu->per_cu->is_dwz);
18796 case DW_AT_main_subprogram:
18797 main_subprogram = DW_UNSND (&attr);
18802 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18803 but that requires a full DIE, so instead we just
18805 int need_ranges_base = tag != DW_TAG_compile_unit;
18806 unsigned int ranges_offset = (DW_UNSND (&attr)
18807 + (need_ranges_base
18811 /* Value of the DW_AT_ranges attribute is the offset in the
18812 .debug_ranges section. */
18813 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18824 if (high_pc_relative)
18827 if (has_low_pc_attr && has_high_pc_attr)
18829 /* When using the GNU linker, .gnu.linkonce. sections are used to
18830 eliminate duplicate copies of functions and vtables and such.
18831 The linker will arbitrarily choose one and discard the others.
18832 The AT_*_pc values for such functions refer to local labels in
18833 these sections. If the section from that file was discarded, the
18834 labels are not in the output, so the relocs get a value of 0.
18835 If this is a discarded function, mark the pc bounds as invalid,
18836 so that GDB will ignore it. */
18837 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18839 struct objfile *objfile = dwarf2_per_objfile->objfile;
18840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18842 complaint (_("DW_AT_low_pc %s is zero "
18843 "for DIE at %s [in module %s]"),
18844 paddress (gdbarch, lowpc),
18845 sect_offset_str (sect_off),
18846 objfile_name (objfile));
18848 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18849 else if (lowpc >= highpc)
18851 struct objfile *objfile = dwarf2_per_objfile->objfile;
18852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18854 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18855 "for DIE at %s [in module %s]"),
18856 paddress (gdbarch, lowpc),
18857 paddress (gdbarch, highpc),
18858 sect_offset_str (sect_off),
18859 objfile_name (objfile));
18868 /* Find a cached partial DIE at OFFSET in CU. */
18870 struct partial_die_info *
18871 dwarf2_cu::find_partial_die (sect_offset sect_off)
18873 struct partial_die_info *lookup_die = NULL;
18874 struct partial_die_info part_die (sect_off);
18876 lookup_die = ((struct partial_die_info *)
18877 htab_find_with_hash (partial_dies, &part_die,
18878 to_underlying (sect_off)));
18883 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18884 except in the case of .debug_types DIEs which do not reference
18885 outside their CU (they do however referencing other types via
18886 DW_FORM_ref_sig8). */
18888 static struct partial_die_info *
18889 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18891 struct dwarf2_per_objfile *dwarf2_per_objfile
18892 = cu->per_cu->dwarf2_per_objfile;
18893 struct objfile *objfile = dwarf2_per_objfile->objfile;
18894 struct dwarf2_per_cu_data *per_cu = NULL;
18895 struct partial_die_info *pd = NULL;
18897 if (offset_in_dwz == cu->per_cu->is_dwz
18898 && offset_in_cu_p (&cu->header, sect_off))
18900 pd = cu->find_partial_die (sect_off);
18903 /* We missed recording what we needed.
18904 Load all dies and try again. */
18905 per_cu = cu->per_cu;
18909 /* TUs don't reference other CUs/TUs (except via type signatures). */
18910 if (cu->per_cu->is_debug_types)
18912 error (_("Dwarf Error: Type Unit at offset %s contains"
18913 " external reference to offset %s [in module %s].\n"),
18914 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18915 bfd_get_filename (objfile->obfd));
18917 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18918 dwarf2_per_objfile);
18920 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18921 load_partial_comp_unit (per_cu);
18923 per_cu->cu->last_used = 0;
18924 pd = per_cu->cu->find_partial_die (sect_off);
18927 /* If we didn't find it, and not all dies have been loaded,
18928 load them all and try again. */
18930 if (pd == NULL && per_cu->load_all_dies == 0)
18932 per_cu->load_all_dies = 1;
18934 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18935 THIS_CU->cu may already be in use. So we can't just free it and
18936 replace its DIEs with the ones we read in. Instead, we leave those
18937 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18938 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18940 load_partial_comp_unit (per_cu);
18942 pd = per_cu->cu->find_partial_die (sect_off);
18946 internal_error (__FILE__, __LINE__,
18947 _("could not find partial DIE %s "
18948 "in cache [from module %s]\n"),
18949 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18953 /* See if we can figure out if the class lives in a namespace. We do
18954 this by looking for a member function; its demangled name will
18955 contain namespace info, if there is any. */
18958 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18959 struct dwarf2_cu *cu)
18961 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18962 what template types look like, because the demangler
18963 frequently doesn't give the same name as the debug info. We
18964 could fix this by only using the demangled name to get the
18965 prefix (but see comment in read_structure_type). */
18967 struct partial_die_info *real_pdi;
18968 struct partial_die_info *child_pdi;
18970 /* If this DIE (this DIE's specification, if any) has a parent, then
18971 we should not do this. We'll prepend the parent's fully qualified
18972 name when we create the partial symbol. */
18974 real_pdi = struct_pdi;
18975 while (real_pdi->has_specification)
18976 real_pdi = find_partial_die (real_pdi->spec_offset,
18977 real_pdi->spec_is_dwz, cu);
18979 if (real_pdi->die_parent != NULL)
18982 for (child_pdi = struct_pdi->die_child;
18984 child_pdi = child_pdi->die_sibling)
18986 if (child_pdi->tag == DW_TAG_subprogram
18987 && child_pdi->linkage_name != NULL)
18989 char *actual_class_name
18990 = language_class_name_from_physname (cu->language_defn,
18991 child_pdi->linkage_name);
18992 if (actual_class_name != NULL)
18994 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18997 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18999 strlen (actual_class_name)));
19000 xfree (actual_class_name);
19008 partial_die_info::fixup (struct dwarf2_cu *cu)
19010 /* Once we've fixed up a die, there's no point in doing so again.
19011 This also avoids a memory leak if we were to call
19012 guess_partial_die_structure_name multiple times. */
19016 /* If we found a reference attribute and the DIE has no name, try
19017 to find a name in the referred to DIE. */
19019 if (name == NULL && has_specification)
19021 struct partial_die_info *spec_die;
19023 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19025 spec_die->fixup (cu);
19027 if (spec_die->name)
19029 name = spec_die->name;
19031 /* Copy DW_AT_external attribute if it is set. */
19032 if (spec_die->is_external)
19033 is_external = spec_die->is_external;
19037 /* Set default names for some unnamed DIEs. */
19039 if (name == NULL && tag == DW_TAG_namespace)
19040 name = CP_ANONYMOUS_NAMESPACE_STR;
19042 /* If there is no parent die to provide a namespace, and there are
19043 children, see if we can determine the namespace from their linkage
19045 if (cu->language == language_cplus
19046 && !VEC_empty (dwarf2_section_info_def,
19047 cu->per_cu->dwarf2_per_objfile->types)
19048 && die_parent == NULL
19050 && (tag == DW_TAG_class_type
19051 || tag == DW_TAG_structure_type
19052 || tag == DW_TAG_union_type))
19053 guess_partial_die_structure_name (this, cu);
19055 /* GCC might emit a nameless struct or union that has a linkage
19056 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19058 && (tag == DW_TAG_class_type
19059 || tag == DW_TAG_interface_type
19060 || tag == DW_TAG_structure_type
19061 || tag == DW_TAG_union_type)
19062 && linkage_name != NULL)
19066 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19071 /* Strip any leading namespaces/classes, keep only the base name.
19072 DW_AT_name for named DIEs does not contain the prefixes. */
19073 base = strrchr (demangled, ':');
19074 if (base && base > demangled && base[-1] == ':')
19079 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19082 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19083 base, strlen (base)));
19091 /* Read an attribute value described by an attribute form. */
19093 static const gdb_byte *
19094 read_attribute_value (const struct die_reader_specs *reader,
19095 struct attribute *attr, unsigned form,
19096 LONGEST implicit_const, const gdb_byte *info_ptr)
19098 struct dwarf2_cu *cu = reader->cu;
19099 struct dwarf2_per_objfile *dwarf2_per_objfile
19100 = cu->per_cu->dwarf2_per_objfile;
19101 struct objfile *objfile = dwarf2_per_objfile->objfile;
19102 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19103 bfd *abfd = reader->abfd;
19104 struct comp_unit_head *cu_header = &cu->header;
19105 unsigned int bytes_read;
19106 struct dwarf_block *blk;
19108 attr->form = (enum dwarf_form) form;
19111 case DW_FORM_ref_addr:
19112 if (cu->header.version == 2)
19113 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19115 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19116 &cu->header, &bytes_read);
19117 info_ptr += bytes_read;
19119 case DW_FORM_GNU_ref_alt:
19120 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19121 info_ptr += bytes_read;
19124 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19125 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19126 info_ptr += bytes_read;
19128 case DW_FORM_block2:
19129 blk = dwarf_alloc_block (cu);
19130 blk->size = read_2_bytes (abfd, info_ptr);
19132 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19133 info_ptr += blk->size;
19134 DW_BLOCK (attr) = blk;
19136 case DW_FORM_block4:
19137 blk = dwarf_alloc_block (cu);
19138 blk->size = read_4_bytes (abfd, info_ptr);
19140 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19141 info_ptr += blk->size;
19142 DW_BLOCK (attr) = blk;
19144 case DW_FORM_data2:
19145 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19148 case DW_FORM_data4:
19149 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19152 case DW_FORM_data8:
19153 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19156 case DW_FORM_data16:
19157 blk = dwarf_alloc_block (cu);
19159 blk->data = read_n_bytes (abfd, info_ptr, 16);
19161 DW_BLOCK (attr) = blk;
19163 case DW_FORM_sec_offset:
19164 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19165 info_ptr += bytes_read;
19167 case DW_FORM_string:
19168 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19169 DW_STRING_IS_CANONICAL (attr) = 0;
19170 info_ptr += bytes_read;
19173 if (!cu->per_cu->is_dwz)
19175 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19176 abfd, info_ptr, cu_header,
19178 DW_STRING_IS_CANONICAL (attr) = 0;
19179 info_ptr += bytes_read;
19183 case DW_FORM_line_strp:
19184 if (!cu->per_cu->is_dwz)
19186 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19188 cu_header, &bytes_read);
19189 DW_STRING_IS_CANONICAL (attr) = 0;
19190 info_ptr += bytes_read;
19194 case DW_FORM_GNU_strp_alt:
19196 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19197 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19200 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19202 DW_STRING_IS_CANONICAL (attr) = 0;
19203 info_ptr += bytes_read;
19206 case DW_FORM_exprloc:
19207 case DW_FORM_block:
19208 blk = dwarf_alloc_block (cu);
19209 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19210 info_ptr += bytes_read;
19211 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19212 info_ptr += blk->size;
19213 DW_BLOCK (attr) = blk;
19215 case DW_FORM_block1:
19216 blk = dwarf_alloc_block (cu);
19217 blk->size = read_1_byte (abfd, info_ptr);
19219 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19220 info_ptr += blk->size;
19221 DW_BLOCK (attr) = blk;
19223 case DW_FORM_data1:
19224 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19228 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19231 case DW_FORM_flag_present:
19232 DW_UNSND (attr) = 1;
19234 case DW_FORM_sdata:
19235 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19236 info_ptr += bytes_read;
19238 case DW_FORM_udata:
19239 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19240 info_ptr += bytes_read;
19243 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19244 + read_1_byte (abfd, info_ptr));
19248 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19249 + read_2_bytes (abfd, info_ptr));
19253 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19254 + read_4_bytes (abfd, info_ptr));
19258 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19259 + read_8_bytes (abfd, info_ptr));
19262 case DW_FORM_ref_sig8:
19263 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19266 case DW_FORM_ref_udata:
19267 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19268 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19269 info_ptr += bytes_read;
19271 case DW_FORM_indirect:
19272 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19273 info_ptr += bytes_read;
19274 if (form == DW_FORM_implicit_const)
19276 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19277 info_ptr += bytes_read;
19279 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19282 case DW_FORM_implicit_const:
19283 DW_SND (attr) = implicit_const;
19285 case DW_FORM_addrx:
19286 case DW_FORM_GNU_addr_index:
19287 if (reader->dwo_file == NULL)
19289 /* For now flag a hard error.
19290 Later we can turn this into a complaint. */
19291 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19292 dwarf_form_name (form),
19293 bfd_get_filename (abfd));
19295 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19296 info_ptr += bytes_read;
19298 case DW_FORM_GNU_str_index:
19299 if (reader->dwo_file == NULL)
19301 /* For now flag a hard error.
19302 Later we can turn this into a complaint if warranted. */
19303 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19304 dwarf_form_name (form),
19305 bfd_get_filename (abfd));
19308 ULONGEST str_index =
19309 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19311 DW_STRING (attr) = read_str_index (reader, str_index);
19312 DW_STRING_IS_CANONICAL (attr) = 0;
19313 info_ptr += bytes_read;
19317 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19318 dwarf_form_name (form),
19319 bfd_get_filename (abfd));
19323 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19324 attr->form = DW_FORM_GNU_ref_alt;
19326 /* We have seen instances where the compiler tried to emit a byte
19327 size attribute of -1 which ended up being encoded as an unsigned
19328 0xffffffff. Although 0xffffffff is technically a valid size value,
19329 an object of this size seems pretty unlikely so we can relatively
19330 safely treat these cases as if the size attribute was invalid and
19331 treat them as zero by default. */
19332 if (attr->name == DW_AT_byte_size
19333 && form == DW_FORM_data4
19334 && DW_UNSND (attr) >= 0xffffffff)
19337 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19338 hex_string (DW_UNSND (attr)));
19339 DW_UNSND (attr) = 0;
19345 /* Read an attribute described by an abbreviated attribute. */
19347 static const gdb_byte *
19348 read_attribute (const struct die_reader_specs *reader,
19349 struct attribute *attr, struct attr_abbrev *abbrev,
19350 const gdb_byte *info_ptr)
19352 attr->name = abbrev->name;
19353 return read_attribute_value (reader, attr, abbrev->form,
19354 abbrev->implicit_const, info_ptr);
19357 /* Read dwarf information from a buffer. */
19359 static unsigned int
19360 read_1_byte (bfd *abfd, const gdb_byte *buf)
19362 return bfd_get_8 (abfd, buf);
19366 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19368 return bfd_get_signed_8 (abfd, buf);
19371 static unsigned int
19372 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19374 return bfd_get_16 (abfd, buf);
19378 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19380 return bfd_get_signed_16 (abfd, buf);
19383 static unsigned int
19384 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19386 return bfd_get_32 (abfd, buf);
19390 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19392 return bfd_get_signed_32 (abfd, buf);
19396 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19398 return bfd_get_64 (abfd, buf);
19402 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19403 unsigned int *bytes_read)
19405 struct comp_unit_head *cu_header = &cu->header;
19406 CORE_ADDR retval = 0;
19408 if (cu_header->signed_addr_p)
19410 switch (cu_header->addr_size)
19413 retval = bfd_get_signed_16 (abfd, buf);
19416 retval = bfd_get_signed_32 (abfd, buf);
19419 retval = bfd_get_signed_64 (abfd, buf);
19422 internal_error (__FILE__, __LINE__,
19423 _("read_address: bad switch, signed [in module %s]"),
19424 bfd_get_filename (abfd));
19429 switch (cu_header->addr_size)
19432 retval = bfd_get_16 (abfd, buf);
19435 retval = bfd_get_32 (abfd, buf);
19438 retval = bfd_get_64 (abfd, buf);
19441 internal_error (__FILE__, __LINE__,
19442 _("read_address: bad switch, "
19443 "unsigned [in module %s]"),
19444 bfd_get_filename (abfd));
19448 *bytes_read = cu_header->addr_size;
19452 /* Read the initial length from a section. The (draft) DWARF 3
19453 specification allows the initial length to take up either 4 bytes
19454 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19455 bytes describe the length and all offsets will be 8 bytes in length
19458 An older, non-standard 64-bit format is also handled by this
19459 function. The older format in question stores the initial length
19460 as an 8-byte quantity without an escape value. Lengths greater
19461 than 2^32 aren't very common which means that the initial 4 bytes
19462 is almost always zero. Since a length value of zero doesn't make
19463 sense for the 32-bit format, this initial zero can be considered to
19464 be an escape value which indicates the presence of the older 64-bit
19465 format. As written, the code can't detect (old format) lengths
19466 greater than 4GB. If it becomes necessary to handle lengths
19467 somewhat larger than 4GB, we could allow other small values (such
19468 as the non-sensical values of 1, 2, and 3) to also be used as
19469 escape values indicating the presence of the old format.
19471 The value returned via bytes_read should be used to increment the
19472 relevant pointer after calling read_initial_length().
19474 [ Note: read_initial_length() and read_offset() are based on the
19475 document entitled "DWARF Debugging Information Format", revision
19476 3, draft 8, dated November 19, 2001. This document was obtained
19479 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19481 This document is only a draft and is subject to change. (So beware.)
19483 Details regarding the older, non-standard 64-bit format were
19484 determined empirically by examining 64-bit ELF files produced by
19485 the SGI toolchain on an IRIX 6.5 machine.
19487 - Kevin, July 16, 2002
19491 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19493 LONGEST length = bfd_get_32 (abfd, buf);
19495 if (length == 0xffffffff)
19497 length = bfd_get_64 (abfd, buf + 4);
19500 else if (length == 0)
19502 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19503 length = bfd_get_64 (abfd, buf);
19514 /* Cover function for read_initial_length.
19515 Returns the length of the object at BUF, and stores the size of the
19516 initial length in *BYTES_READ and stores the size that offsets will be in
19518 If the initial length size is not equivalent to that specified in
19519 CU_HEADER then issue a complaint.
19520 This is useful when reading non-comp-unit headers. */
19523 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19524 const struct comp_unit_head *cu_header,
19525 unsigned int *bytes_read,
19526 unsigned int *offset_size)
19528 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19530 gdb_assert (cu_header->initial_length_size == 4
19531 || cu_header->initial_length_size == 8
19532 || cu_header->initial_length_size == 12);
19534 if (cu_header->initial_length_size != *bytes_read)
19535 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19537 *offset_size = (*bytes_read == 4) ? 4 : 8;
19541 /* Read an offset from the data stream. The size of the offset is
19542 given by cu_header->offset_size. */
19545 read_offset (bfd *abfd, const gdb_byte *buf,
19546 const struct comp_unit_head *cu_header,
19547 unsigned int *bytes_read)
19549 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19551 *bytes_read = cu_header->offset_size;
19555 /* Read an offset from the data stream. */
19558 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19560 LONGEST retval = 0;
19562 switch (offset_size)
19565 retval = bfd_get_32 (abfd, buf);
19568 retval = bfd_get_64 (abfd, buf);
19571 internal_error (__FILE__, __LINE__,
19572 _("read_offset_1: bad switch [in module %s]"),
19573 bfd_get_filename (abfd));
19579 static const gdb_byte *
19580 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19582 /* If the size of a host char is 8 bits, we can return a pointer
19583 to the buffer, otherwise we have to copy the data to a buffer
19584 allocated on the temporary obstack. */
19585 gdb_assert (HOST_CHAR_BIT == 8);
19589 static const char *
19590 read_direct_string (bfd *abfd, const gdb_byte *buf,
19591 unsigned int *bytes_read_ptr)
19593 /* If the size of a host char is 8 bits, we can return a pointer
19594 to the string, otherwise we have to copy the string to a buffer
19595 allocated on the temporary obstack. */
19596 gdb_assert (HOST_CHAR_BIT == 8);
19599 *bytes_read_ptr = 1;
19602 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19603 return (const char *) buf;
19606 /* Return pointer to string at section SECT offset STR_OFFSET with error
19607 reporting strings FORM_NAME and SECT_NAME. */
19609 static const char *
19610 read_indirect_string_at_offset_from (struct objfile *objfile,
19611 bfd *abfd, LONGEST str_offset,
19612 struct dwarf2_section_info *sect,
19613 const char *form_name,
19614 const char *sect_name)
19616 dwarf2_read_section (objfile, sect);
19617 if (sect->buffer == NULL)
19618 error (_("%s used without %s section [in module %s]"),
19619 form_name, sect_name, bfd_get_filename (abfd));
19620 if (str_offset >= sect->size)
19621 error (_("%s pointing outside of %s section [in module %s]"),
19622 form_name, sect_name, bfd_get_filename (abfd));
19623 gdb_assert (HOST_CHAR_BIT == 8);
19624 if (sect->buffer[str_offset] == '\0')
19626 return (const char *) (sect->buffer + str_offset);
19629 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19631 static const char *
19632 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19633 bfd *abfd, LONGEST str_offset)
19635 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19637 &dwarf2_per_objfile->str,
19638 "DW_FORM_strp", ".debug_str");
19641 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19643 static const char *
19644 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19645 bfd *abfd, LONGEST str_offset)
19647 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19649 &dwarf2_per_objfile->line_str,
19650 "DW_FORM_line_strp",
19651 ".debug_line_str");
19654 /* Read a string at offset STR_OFFSET in the .debug_str section from
19655 the .dwz file DWZ. Throw an error if the offset is too large. If
19656 the string consists of a single NUL byte, return NULL; otherwise
19657 return a pointer to the string. */
19659 static const char *
19660 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19661 LONGEST str_offset)
19663 dwarf2_read_section (objfile, &dwz->str);
19665 if (dwz->str.buffer == NULL)
19666 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19667 "section [in module %s]"),
19668 bfd_get_filename (dwz->dwz_bfd));
19669 if (str_offset >= dwz->str.size)
19670 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19671 ".debug_str section [in module %s]"),
19672 bfd_get_filename (dwz->dwz_bfd));
19673 gdb_assert (HOST_CHAR_BIT == 8);
19674 if (dwz->str.buffer[str_offset] == '\0')
19676 return (const char *) (dwz->str.buffer + str_offset);
19679 /* Return pointer to string at .debug_str offset as read from BUF.
19680 BUF is assumed to be in a compilation unit described by CU_HEADER.
19681 Return *BYTES_READ_PTR count of bytes read from BUF. */
19683 static const char *
19684 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19685 const gdb_byte *buf,
19686 const struct comp_unit_head *cu_header,
19687 unsigned int *bytes_read_ptr)
19689 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19691 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19694 /* Return pointer to string at .debug_line_str offset as read from BUF.
19695 BUF is assumed to be in a compilation unit described by CU_HEADER.
19696 Return *BYTES_READ_PTR count of bytes read from BUF. */
19698 static const char *
19699 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19700 bfd *abfd, const gdb_byte *buf,
19701 const struct comp_unit_head *cu_header,
19702 unsigned int *bytes_read_ptr)
19704 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19706 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19711 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19712 unsigned int *bytes_read_ptr)
19715 unsigned int num_read;
19717 unsigned char byte;
19724 byte = bfd_get_8 (abfd, buf);
19727 result |= ((ULONGEST) (byte & 127) << shift);
19728 if ((byte & 128) == 0)
19734 *bytes_read_ptr = num_read;
19739 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19740 unsigned int *bytes_read_ptr)
19743 int shift, num_read;
19744 unsigned char byte;
19751 byte = bfd_get_8 (abfd, buf);
19754 result |= ((ULONGEST) (byte & 127) << shift);
19756 if ((byte & 128) == 0)
19761 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19762 result |= -(((ULONGEST) 1) << shift);
19763 *bytes_read_ptr = num_read;
19767 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19768 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19769 ADDR_SIZE is the size of addresses from the CU header. */
19772 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19773 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19775 struct objfile *objfile = dwarf2_per_objfile->objfile;
19776 bfd *abfd = objfile->obfd;
19777 const gdb_byte *info_ptr;
19779 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19780 if (dwarf2_per_objfile->addr.buffer == NULL)
19781 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19782 objfile_name (objfile));
19783 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19784 error (_("DW_FORM_addr_index pointing outside of "
19785 ".debug_addr section [in module %s]"),
19786 objfile_name (objfile));
19787 info_ptr = (dwarf2_per_objfile->addr.buffer
19788 + addr_base + addr_index * addr_size);
19789 if (addr_size == 4)
19790 return bfd_get_32 (abfd, info_ptr);
19792 return bfd_get_64 (abfd, info_ptr);
19795 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19798 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19800 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19801 cu->addr_base, cu->header.addr_size);
19804 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19807 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19808 unsigned int *bytes_read)
19810 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19811 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19813 return read_addr_index (cu, addr_index);
19816 /* Data structure to pass results from dwarf2_read_addr_index_reader
19817 back to dwarf2_read_addr_index. */
19819 struct dwarf2_read_addr_index_data
19821 ULONGEST addr_base;
19825 /* die_reader_func for dwarf2_read_addr_index. */
19828 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19829 const gdb_byte *info_ptr,
19830 struct die_info *comp_unit_die,
19834 struct dwarf2_cu *cu = reader->cu;
19835 struct dwarf2_read_addr_index_data *aidata =
19836 (struct dwarf2_read_addr_index_data *) data;
19838 aidata->addr_base = cu->addr_base;
19839 aidata->addr_size = cu->header.addr_size;
19842 /* Given an index in .debug_addr, fetch the value.
19843 NOTE: This can be called during dwarf expression evaluation,
19844 long after the debug information has been read, and thus per_cu->cu
19845 may no longer exist. */
19848 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19849 unsigned int addr_index)
19851 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19852 struct dwarf2_cu *cu = per_cu->cu;
19853 ULONGEST addr_base;
19856 /* We need addr_base and addr_size.
19857 If we don't have PER_CU->cu, we have to get it.
19858 Nasty, but the alternative is storing the needed info in PER_CU,
19859 which at this point doesn't seem justified: it's not clear how frequently
19860 it would get used and it would increase the size of every PER_CU.
19861 Entry points like dwarf2_per_cu_addr_size do a similar thing
19862 so we're not in uncharted territory here.
19863 Alas we need to be a bit more complicated as addr_base is contained
19866 We don't need to read the entire CU(/TU).
19867 We just need the header and top level die.
19869 IWBN to use the aging mechanism to let us lazily later discard the CU.
19870 For now we skip this optimization. */
19874 addr_base = cu->addr_base;
19875 addr_size = cu->header.addr_size;
19879 struct dwarf2_read_addr_index_data aidata;
19881 /* Note: We can't use init_cutu_and_read_dies_simple here,
19882 we need addr_base. */
19883 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19884 dwarf2_read_addr_index_reader, &aidata);
19885 addr_base = aidata.addr_base;
19886 addr_size = aidata.addr_size;
19889 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19893 /* Given a DW_FORM_GNU_str_index, fetch the string.
19894 This is only used by the Fission support. */
19896 static const char *
19897 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19899 struct dwarf2_cu *cu = reader->cu;
19900 struct dwarf2_per_objfile *dwarf2_per_objfile
19901 = cu->per_cu->dwarf2_per_objfile;
19902 struct objfile *objfile = dwarf2_per_objfile->objfile;
19903 const char *objf_name = objfile_name (objfile);
19904 bfd *abfd = objfile->obfd;
19905 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19906 struct dwarf2_section_info *str_offsets_section =
19907 &reader->dwo_file->sections.str_offsets;
19908 const gdb_byte *info_ptr;
19909 ULONGEST str_offset;
19910 static const char form_name[] = "DW_FORM_GNU_str_index";
19912 dwarf2_read_section (objfile, str_section);
19913 dwarf2_read_section (objfile, str_offsets_section);
19914 if (str_section->buffer == NULL)
19915 error (_("%s used without .debug_str.dwo section"
19916 " in CU at offset %s [in module %s]"),
19917 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19918 if (str_offsets_section->buffer == NULL)
19919 error (_("%s used without .debug_str_offsets.dwo section"
19920 " in CU at offset %s [in module %s]"),
19921 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19922 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19923 error (_("%s pointing outside of .debug_str_offsets.dwo"
19924 " section in CU at offset %s [in module %s]"),
19925 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19926 info_ptr = (str_offsets_section->buffer
19927 + str_index * cu->header.offset_size);
19928 if (cu->header.offset_size == 4)
19929 str_offset = bfd_get_32 (abfd, info_ptr);
19931 str_offset = bfd_get_64 (abfd, info_ptr);
19932 if (str_offset >= str_section->size)
19933 error (_("Offset from %s pointing outside of"
19934 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19935 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19936 return (const char *) (str_section->buffer + str_offset);
19939 /* Return the length of an LEB128 number in BUF. */
19942 leb128_size (const gdb_byte *buf)
19944 const gdb_byte *begin = buf;
19950 if ((byte & 128) == 0)
19951 return buf - begin;
19956 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19965 cu->language = language_c;
19968 case DW_LANG_C_plus_plus:
19969 case DW_LANG_C_plus_plus_11:
19970 case DW_LANG_C_plus_plus_14:
19971 cu->language = language_cplus;
19974 cu->language = language_d;
19976 case DW_LANG_Fortran77:
19977 case DW_LANG_Fortran90:
19978 case DW_LANG_Fortran95:
19979 case DW_LANG_Fortran03:
19980 case DW_LANG_Fortran08:
19981 cu->language = language_fortran;
19984 cu->language = language_go;
19986 case DW_LANG_Mips_Assembler:
19987 cu->language = language_asm;
19989 case DW_LANG_Ada83:
19990 case DW_LANG_Ada95:
19991 cu->language = language_ada;
19993 case DW_LANG_Modula2:
19994 cu->language = language_m2;
19996 case DW_LANG_Pascal83:
19997 cu->language = language_pascal;
20000 cu->language = language_objc;
20003 case DW_LANG_Rust_old:
20004 cu->language = language_rust;
20006 case DW_LANG_Cobol74:
20007 case DW_LANG_Cobol85:
20009 cu->language = language_minimal;
20012 cu->language_defn = language_def (cu->language);
20015 /* Return the named attribute or NULL if not there. */
20017 static struct attribute *
20018 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20023 struct attribute *spec = NULL;
20025 for (i = 0; i < die->num_attrs; ++i)
20027 if (die->attrs[i].name == name)
20028 return &die->attrs[i];
20029 if (die->attrs[i].name == DW_AT_specification
20030 || die->attrs[i].name == DW_AT_abstract_origin)
20031 spec = &die->attrs[i];
20037 die = follow_die_ref (die, spec, &cu);
20043 /* Return the named attribute or NULL if not there,
20044 but do not follow DW_AT_specification, etc.
20045 This is for use in contexts where we're reading .debug_types dies.
20046 Following DW_AT_specification, DW_AT_abstract_origin will take us
20047 back up the chain, and we want to go down. */
20049 static struct attribute *
20050 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20054 for (i = 0; i < die->num_attrs; ++i)
20055 if (die->attrs[i].name == name)
20056 return &die->attrs[i];
20061 /* Return the string associated with a string-typed attribute, or NULL if it
20062 is either not found or is of an incorrect type. */
20064 static const char *
20065 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20067 struct attribute *attr;
20068 const char *str = NULL;
20070 attr = dwarf2_attr (die, name, cu);
20074 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20075 || attr->form == DW_FORM_string
20076 || attr->form == DW_FORM_GNU_str_index
20077 || attr->form == DW_FORM_GNU_strp_alt)
20078 str = DW_STRING (attr);
20080 complaint (_("string type expected for attribute %s for "
20081 "DIE at %s in module %s"),
20082 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20083 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20089 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20090 and holds a non-zero value. This function should only be used for
20091 DW_FORM_flag or DW_FORM_flag_present attributes. */
20094 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20096 struct attribute *attr = dwarf2_attr (die, name, cu);
20098 return (attr && DW_UNSND (attr));
20102 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20104 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20105 which value is non-zero. However, we have to be careful with
20106 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20107 (via dwarf2_flag_true_p) follows this attribute. So we may
20108 end up accidently finding a declaration attribute that belongs
20109 to a different DIE referenced by the specification attribute,
20110 even though the given DIE does not have a declaration attribute. */
20111 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20112 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20115 /* Return the die giving the specification for DIE, if there is
20116 one. *SPEC_CU is the CU containing DIE on input, and the CU
20117 containing the return value on output. If there is no
20118 specification, but there is an abstract origin, that is
20121 static struct die_info *
20122 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20124 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20127 if (spec_attr == NULL)
20128 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20130 if (spec_attr == NULL)
20133 return follow_die_ref (die, spec_attr, spec_cu);
20136 /* Stub for free_line_header to match void * callback types. */
20139 free_line_header_voidp (void *arg)
20141 struct line_header *lh = (struct line_header *) arg;
20147 line_header::add_include_dir (const char *include_dir)
20149 if (dwarf_line_debug >= 2)
20150 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20151 include_dirs.size () + 1, include_dir);
20153 include_dirs.push_back (include_dir);
20157 line_header::add_file_name (const char *name,
20159 unsigned int mod_time,
20160 unsigned int length)
20162 if (dwarf_line_debug >= 2)
20163 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20164 (unsigned) file_names.size () + 1, name);
20166 file_names.emplace_back (name, d_index, mod_time, length);
20169 /* A convenience function to find the proper .debug_line section for a CU. */
20171 static struct dwarf2_section_info *
20172 get_debug_line_section (struct dwarf2_cu *cu)
20174 struct dwarf2_section_info *section;
20175 struct dwarf2_per_objfile *dwarf2_per_objfile
20176 = cu->per_cu->dwarf2_per_objfile;
20178 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20180 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20181 section = &cu->dwo_unit->dwo_file->sections.line;
20182 else if (cu->per_cu->is_dwz)
20184 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20186 section = &dwz->line;
20189 section = &dwarf2_per_objfile->line;
20194 /* Read directory or file name entry format, starting with byte of
20195 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20196 entries count and the entries themselves in the described entry
20200 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20201 bfd *abfd, const gdb_byte **bufp,
20202 struct line_header *lh,
20203 const struct comp_unit_head *cu_header,
20204 void (*callback) (struct line_header *lh,
20207 unsigned int mod_time,
20208 unsigned int length))
20210 gdb_byte format_count, formati;
20211 ULONGEST data_count, datai;
20212 const gdb_byte *buf = *bufp;
20213 const gdb_byte *format_header_data;
20214 unsigned int bytes_read;
20216 format_count = read_1_byte (abfd, buf);
20218 format_header_data = buf;
20219 for (formati = 0; formati < format_count; formati++)
20221 read_unsigned_leb128 (abfd, buf, &bytes_read);
20223 read_unsigned_leb128 (abfd, buf, &bytes_read);
20227 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20229 for (datai = 0; datai < data_count; datai++)
20231 const gdb_byte *format = format_header_data;
20232 struct file_entry fe;
20234 for (formati = 0; formati < format_count; formati++)
20236 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20237 format += bytes_read;
20239 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20240 format += bytes_read;
20242 gdb::optional<const char *> string;
20243 gdb::optional<unsigned int> uint;
20247 case DW_FORM_string:
20248 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20252 case DW_FORM_line_strp:
20253 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20260 case DW_FORM_data1:
20261 uint.emplace (read_1_byte (abfd, buf));
20265 case DW_FORM_data2:
20266 uint.emplace (read_2_bytes (abfd, buf));
20270 case DW_FORM_data4:
20271 uint.emplace (read_4_bytes (abfd, buf));
20275 case DW_FORM_data8:
20276 uint.emplace (read_8_bytes (abfd, buf));
20280 case DW_FORM_udata:
20281 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20285 case DW_FORM_block:
20286 /* It is valid only for DW_LNCT_timestamp which is ignored by
20291 switch (content_type)
20294 if (string.has_value ())
20297 case DW_LNCT_directory_index:
20298 if (uint.has_value ())
20299 fe.d_index = (dir_index) *uint;
20301 case DW_LNCT_timestamp:
20302 if (uint.has_value ())
20303 fe.mod_time = *uint;
20306 if (uint.has_value ())
20312 complaint (_("Unknown format content type %s"),
20313 pulongest (content_type));
20317 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20323 /* Read the statement program header starting at OFFSET in
20324 .debug_line, or .debug_line.dwo. Return a pointer
20325 to a struct line_header, allocated using xmalloc.
20326 Returns NULL if there is a problem reading the header, e.g., if it
20327 has a version we don't understand.
20329 NOTE: the strings in the include directory and file name tables of
20330 the returned object point into the dwarf line section buffer,
20331 and must not be freed. */
20333 static line_header_up
20334 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20336 const gdb_byte *line_ptr;
20337 unsigned int bytes_read, offset_size;
20339 const char *cur_dir, *cur_file;
20340 struct dwarf2_section_info *section;
20342 struct dwarf2_per_objfile *dwarf2_per_objfile
20343 = cu->per_cu->dwarf2_per_objfile;
20345 section = get_debug_line_section (cu);
20346 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20347 if (section->buffer == NULL)
20349 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20350 complaint (_("missing .debug_line.dwo section"));
20352 complaint (_("missing .debug_line section"));
20356 /* We can't do this until we know the section is non-empty.
20357 Only then do we know we have such a section. */
20358 abfd = get_section_bfd_owner (section);
20360 /* Make sure that at least there's room for the total_length field.
20361 That could be 12 bytes long, but we're just going to fudge that. */
20362 if (to_underlying (sect_off) + 4 >= section->size)
20364 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20368 line_header_up lh (new line_header ());
20370 lh->sect_off = sect_off;
20371 lh->offset_in_dwz = cu->per_cu->is_dwz;
20373 line_ptr = section->buffer + to_underlying (sect_off);
20375 /* Read in the header. */
20377 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20378 &bytes_read, &offset_size);
20379 line_ptr += bytes_read;
20380 if (line_ptr + lh->total_length > (section->buffer + section->size))
20382 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20385 lh->statement_program_end = line_ptr + lh->total_length;
20386 lh->version = read_2_bytes (abfd, line_ptr);
20388 if (lh->version > 5)
20390 /* This is a version we don't understand. The format could have
20391 changed in ways we don't handle properly so just punt. */
20392 complaint (_("unsupported version in .debug_line section"));
20395 if (lh->version >= 5)
20397 gdb_byte segment_selector_size;
20399 /* Skip address size. */
20400 read_1_byte (abfd, line_ptr);
20403 segment_selector_size = read_1_byte (abfd, line_ptr);
20405 if (segment_selector_size != 0)
20407 complaint (_("unsupported segment selector size %u "
20408 "in .debug_line section"),
20409 segment_selector_size);
20413 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20414 line_ptr += offset_size;
20415 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20417 if (lh->version >= 4)
20419 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20423 lh->maximum_ops_per_instruction = 1;
20425 if (lh->maximum_ops_per_instruction == 0)
20427 lh->maximum_ops_per_instruction = 1;
20428 complaint (_("invalid maximum_ops_per_instruction "
20429 "in `.debug_line' section"));
20432 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20434 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20436 lh->line_range = read_1_byte (abfd, line_ptr);
20438 lh->opcode_base = read_1_byte (abfd, line_ptr);
20440 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20442 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20443 for (i = 1; i < lh->opcode_base; ++i)
20445 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20449 if (lh->version >= 5)
20451 /* Read directory table. */
20452 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20454 [] (struct line_header *header, const char *name,
20455 dir_index d_index, unsigned int mod_time,
20456 unsigned int length)
20458 header->add_include_dir (name);
20461 /* Read file name table. */
20462 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20464 [] (struct line_header *header, const char *name,
20465 dir_index d_index, unsigned int mod_time,
20466 unsigned int length)
20468 header->add_file_name (name, d_index, mod_time, length);
20473 /* Read directory table. */
20474 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20476 line_ptr += bytes_read;
20477 lh->add_include_dir (cur_dir);
20479 line_ptr += bytes_read;
20481 /* Read file name table. */
20482 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20484 unsigned int mod_time, length;
20487 line_ptr += bytes_read;
20488 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20489 line_ptr += bytes_read;
20490 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20491 line_ptr += bytes_read;
20492 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20493 line_ptr += bytes_read;
20495 lh->add_file_name (cur_file, d_index, mod_time, length);
20497 line_ptr += bytes_read;
20499 lh->statement_program_start = line_ptr;
20501 if (line_ptr > (section->buffer + section->size))
20502 complaint (_("line number info header doesn't "
20503 "fit in `.debug_line' section"));
20508 /* Subroutine of dwarf_decode_lines to simplify it.
20509 Return the file name of the psymtab for included file FILE_INDEX
20510 in line header LH of PST.
20511 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20512 If space for the result is malloc'd, *NAME_HOLDER will be set.
20513 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20515 static const char *
20516 psymtab_include_file_name (const struct line_header *lh, int file_index,
20517 const struct partial_symtab *pst,
20518 const char *comp_dir,
20519 gdb::unique_xmalloc_ptr<char> *name_holder)
20521 const file_entry &fe = lh->file_names[file_index];
20522 const char *include_name = fe.name;
20523 const char *include_name_to_compare = include_name;
20524 const char *pst_filename;
20527 const char *dir_name = fe.include_dir (lh);
20529 gdb::unique_xmalloc_ptr<char> hold_compare;
20530 if (!IS_ABSOLUTE_PATH (include_name)
20531 && (dir_name != NULL || comp_dir != NULL))
20533 /* Avoid creating a duplicate psymtab for PST.
20534 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20535 Before we do the comparison, however, we need to account
20536 for DIR_NAME and COMP_DIR.
20537 First prepend dir_name (if non-NULL). If we still don't
20538 have an absolute path prepend comp_dir (if non-NULL).
20539 However, the directory we record in the include-file's
20540 psymtab does not contain COMP_DIR (to match the
20541 corresponding symtab(s)).
20546 bash$ gcc -g ./hello.c
20547 include_name = "hello.c"
20549 DW_AT_comp_dir = comp_dir = "/tmp"
20550 DW_AT_name = "./hello.c"
20554 if (dir_name != NULL)
20556 name_holder->reset (concat (dir_name, SLASH_STRING,
20557 include_name, (char *) NULL));
20558 include_name = name_holder->get ();
20559 include_name_to_compare = include_name;
20561 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20563 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20564 include_name, (char *) NULL));
20565 include_name_to_compare = hold_compare.get ();
20569 pst_filename = pst->filename;
20570 gdb::unique_xmalloc_ptr<char> copied_name;
20571 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20573 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20574 pst_filename, (char *) NULL));
20575 pst_filename = copied_name.get ();
20578 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20582 return include_name;
20585 /* State machine to track the state of the line number program. */
20587 class lnp_state_machine
20590 /* Initialize a machine state for the start of a line number
20592 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20593 bool record_lines_p);
20595 file_entry *current_file ()
20597 /* lh->file_names is 0-based, but the file name numbers in the
20598 statement program are 1-based. */
20599 return m_line_header->file_name_at (m_file);
20602 /* Record the line in the state machine. END_SEQUENCE is true if
20603 we're processing the end of a sequence. */
20604 void record_line (bool end_sequence);
20606 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20607 nop-out rest of the lines in this sequence. */
20608 void check_line_address (struct dwarf2_cu *cu,
20609 const gdb_byte *line_ptr,
20610 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20612 void handle_set_discriminator (unsigned int discriminator)
20614 m_discriminator = discriminator;
20615 m_line_has_non_zero_discriminator |= discriminator != 0;
20618 /* Handle DW_LNE_set_address. */
20619 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20622 address += baseaddr;
20623 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20626 /* Handle DW_LNS_advance_pc. */
20627 void handle_advance_pc (CORE_ADDR adjust);
20629 /* Handle a special opcode. */
20630 void handle_special_opcode (unsigned char op_code);
20632 /* Handle DW_LNS_advance_line. */
20633 void handle_advance_line (int line_delta)
20635 advance_line (line_delta);
20638 /* Handle DW_LNS_set_file. */
20639 void handle_set_file (file_name_index file);
20641 /* Handle DW_LNS_negate_stmt. */
20642 void handle_negate_stmt ()
20644 m_is_stmt = !m_is_stmt;
20647 /* Handle DW_LNS_const_add_pc. */
20648 void handle_const_add_pc ();
20650 /* Handle DW_LNS_fixed_advance_pc. */
20651 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20653 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20657 /* Handle DW_LNS_copy. */
20658 void handle_copy ()
20660 record_line (false);
20661 m_discriminator = 0;
20664 /* Handle DW_LNE_end_sequence. */
20665 void handle_end_sequence ()
20667 m_currently_recording_lines = true;
20671 /* Advance the line by LINE_DELTA. */
20672 void advance_line (int line_delta)
20674 m_line += line_delta;
20676 if (line_delta != 0)
20677 m_line_has_non_zero_discriminator = m_discriminator != 0;
20680 struct dwarf2_cu *m_cu;
20682 gdbarch *m_gdbarch;
20684 /* True if we're recording lines.
20685 Otherwise we're building partial symtabs and are just interested in
20686 finding include files mentioned by the line number program. */
20687 bool m_record_lines_p;
20689 /* The line number header. */
20690 line_header *m_line_header;
20692 /* These are part of the standard DWARF line number state machine,
20693 and initialized according to the DWARF spec. */
20695 unsigned char m_op_index = 0;
20696 /* The line table index (1-based) of the current file. */
20697 file_name_index m_file = (file_name_index) 1;
20698 unsigned int m_line = 1;
20700 /* These are initialized in the constructor. */
20702 CORE_ADDR m_address;
20704 unsigned int m_discriminator;
20706 /* Additional bits of state we need to track. */
20708 /* The last file that we called dwarf2_start_subfile for.
20709 This is only used for TLLs. */
20710 unsigned int m_last_file = 0;
20711 /* The last file a line number was recorded for. */
20712 struct subfile *m_last_subfile = NULL;
20714 /* When true, record the lines we decode. */
20715 bool m_currently_recording_lines = false;
20717 /* The last line number that was recorded, used to coalesce
20718 consecutive entries for the same line. This can happen, for
20719 example, when discriminators are present. PR 17276. */
20720 unsigned int m_last_line = 0;
20721 bool m_line_has_non_zero_discriminator = false;
20725 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20727 CORE_ADDR addr_adj = (((m_op_index + adjust)
20728 / m_line_header->maximum_ops_per_instruction)
20729 * m_line_header->minimum_instruction_length);
20730 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20731 m_op_index = ((m_op_index + adjust)
20732 % m_line_header->maximum_ops_per_instruction);
20736 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20738 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20739 CORE_ADDR addr_adj = (((m_op_index
20740 + (adj_opcode / m_line_header->line_range))
20741 / m_line_header->maximum_ops_per_instruction)
20742 * m_line_header->minimum_instruction_length);
20743 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20744 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20745 % m_line_header->maximum_ops_per_instruction);
20747 int line_delta = (m_line_header->line_base
20748 + (adj_opcode % m_line_header->line_range));
20749 advance_line (line_delta);
20750 record_line (false);
20751 m_discriminator = 0;
20755 lnp_state_machine::handle_set_file (file_name_index file)
20759 const file_entry *fe = current_file ();
20761 dwarf2_debug_line_missing_file_complaint ();
20762 else if (m_record_lines_p)
20764 const char *dir = fe->include_dir (m_line_header);
20766 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20767 m_line_has_non_zero_discriminator = m_discriminator != 0;
20768 dwarf2_start_subfile (m_cu, fe->name, dir);
20773 lnp_state_machine::handle_const_add_pc ()
20776 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20779 = (((m_op_index + adjust)
20780 / m_line_header->maximum_ops_per_instruction)
20781 * m_line_header->minimum_instruction_length);
20783 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20784 m_op_index = ((m_op_index + adjust)
20785 % m_line_header->maximum_ops_per_instruction);
20788 /* Return non-zero if we should add LINE to the line number table.
20789 LINE is the line to add, LAST_LINE is the last line that was added,
20790 LAST_SUBFILE is the subfile for LAST_LINE.
20791 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20792 had a non-zero discriminator.
20794 We have to be careful in the presence of discriminators.
20795 E.g., for this line:
20797 for (i = 0; i < 100000; i++);
20799 clang can emit four line number entries for that one line,
20800 each with a different discriminator.
20801 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20803 However, we want gdb to coalesce all four entries into one.
20804 Otherwise the user could stepi into the middle of the line and
20805 gdb would get confused about whether the pc really was in the
20806 middle of the line.
20808 Things are further complicated by the fact that two consecutive
20809 line number entries for the same line is a heuristic used by gcc
20810 to denote the end of the prologue. So we can't just discard duplicate
20811 entries, we have to be selective about it. The heuristic we use is
20812 that we only collapse consecutive entries for the same line if at least
20813 one of those entries has a non-zero discriminator. PR 17276.
20815 Note: Addresses in the line number state machine can never go backwards
20816 within one sequence, thus this coalescing is ok. */
20819 dwarf_record_line_p (struct dwarf2_cu *cu,
20820 unsigned int line, unsigned int last_line,
20821 int line_has_non_zero_discriminator,
20822 struct subfile *last_subfile)
20824 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20826 if (line != last_line)
20828 /* Same line for the same file that we've seen already.
20829 As a last check, for pr 17276, only record the line if the line
20830 has never had a non-zero discriminator. */
20831 if (!line_has_non_zero_discriminator)
20836 /* Use the CU's builder to record line number LINE beginning at
20837 address ADDRESS in the line table of subfile SUBFILE. */
20840 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20841 unsigned int line, CORE_ADDR address,
20842 struct dwarf2_cu *cu)
20844 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20846 if (dwarf_line_debug)
20848 fprintf_unfiltered (gdb_stdlog,
20849 "Recording line %u, file %s, address %s\n",
20850 line, lbasename (subfile->name),
20851 paddress (gdbarch, address));
20855 cu->get_builder ()->record_line (subfile, line, addr);
20858 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20859 Mark the end of a set of line number records.
20860 The arguments are the same as for dwarf_record_line_1.
20861 If SUBFILE is NULL the request is ignored. */
20864 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20865 CORE_ADDR address, struct dwarf2_cu *cu)
20867 if (subfile == NULL)
20870 if (dwarf_line_debug)
20872 fprintf_unfiltered (gdb_stdlog,
20873 "Finishing current line, file %s, address %s\n",
20874 lbasename (subfile->name),
20875 paddress (gdbarch, address));
20878 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20882 lnp_state_machine::record_line (bool end_sequence)
20884 if (dwarf_line_debug)
20886 fprintf_unfiltered (gdb_stdlog,
20887 "Processing actual line %u: file %u,"
20888 " address %s, is_stmt %u, discrim %u\n",
20889 m_line, to_underlying (m_file),
20890 paddress (m_gdbarch, m_address),
20891 m_is_stmt, m_discriminator);
20894 file_entry *fe = current_file ();
20897 dwarf2_debug_line_missing_file_complaint ();
20898 /* For now we ignore lines not starting on an instruction boundary.
20899 But not when processing end_sequence for compatibility with the
20900 previous version of the code. */
20901 else if (m_op_index == 0 || end_sequence)
20903 fe->included_p = 1;
20904 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20906 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20909 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20910 m_currently_recording_lines ? m_cu : nullptr);
20915 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20916 m_line_has_non_zero_discriminator,
20919 buildsym_compunit *builder = m_cu->get_builder ();
20920 dwarf_record_line_1 (m_gdbarch,
20921 builder->get_current_subfile (),
20923 m_currently_recording_lines ? m_cu : nullptr);
20925 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20926 m_last_line = m_line;
20932 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20933 line_header *lh, bool record_lines_p)
20937 m_record_lines_p = record_lines_p;
20938 m_line_header = lh;
20940 m_currently_recording_lines = true;
20942 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20943 was a line entry for it so that the backend has a chance to adjust it
20944 and also record it in case it needs it. This is currently used by MIPS
20945 code, cf. `mips_adjust_dwarf2_line'. */
20946 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20947 m_is_stmt = lh->default_is_stmt;
20948 m_discriminator = 0;
20952 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20953 const gdb_byte *line_ptr,
20954 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20956 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20957 the pc range of the CU. However, we restrict the test to only ADDRESS
20958 values of zero to preserve GDB's previous behaviour which is to handle
20959 the specific case of a function being GC'd by the linker. */
20961 if (address == 0 && address < unrelocated_lowpc)
20963 /* This line table is for a function which has been
20964 GCd by the linker. Ignore it. PR gdb/12528 */
20966 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20967 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20969 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20970 line_offset, objfile_name (objfile));
20971 m_currently_recording_lines = false;
20972 /* Note: m_currently_recording_lines is left as false until we see
20973 DW_LNE_end_sequence. */
20977 /* Subroutine of dwarf_decode_lines to simplify it.
20978 Process the line number information in LH.
20979 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20980 program in order to set included_p for every referenced header. */
20983 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20984 const int decode_for_pst_p, CORE_ADDR lowpc)
20986 const gdb_byte *line_ptr, *extended_end;
20987 const gdb_byte *line_end;
20988 unsigned int bytes_read, extended_len;
20989 unsigned char op_code, extended_op;
20990 CORE_ADDR baseaddr;
20991 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20992 bfd *abfd = objfile->obfd;
20993 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20994 /* True if we're recording line info (as opposed to building partial
20995 symtabs and just interested in finding include files mentioned by
20996 the line number program). */
20997 bool record_lines_p = !decode_for_pst_p;
20999 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21001 line_ptr = lh->statement_program_start;
21002 line_end = lh->statement_program_end;
21004 /* Read the statement sequences until there's nothing left. */
21005 while (line_ptr < line_end)
21007 /* The DWARF line number program state machine. Reset the state
21008 machine at the start of each sequence. */
21009 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21010 bool end_sequence = false;
21012 if (record_lines_p)
21014 /* Start a subfile for the current file of the state
21016 const file_entry *fe = state_machine.current_file ();
21019 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21022 /* Decode the table. */
21023 while (line_ptr < line_end && !end_sequence)
21025 op_code = read_1_byte (abfd, line_ptr);
21028 if (op_code >= lh->opcode_base)
21030 /* Special opcode. */
21031 state_machine.handle_special_opcode (op_code);
21033 else switch (op_code)
21035 case DW_LNS_extended_op:
21036 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21038 line_ptr += bytes_read;
21039 extended_end = line_ptr + extended_len;
21040 extended_op = read_1_byte (abfd, line_ptr);
21042 switch (extended_op)
21044 case DW_LNE_end_sequence:
21045 state_machine.handle_end_sequence ();
21046 end_sequence = true;
21048 case DW_LNE_set_address:
21051 = read_address (abfd, line_ptr, cu, &bytes_read);
21052 line_ptr += bytes_read;
21054 state_machine.check_line_address (cu, line_ptr,
21055 lowpc - baseaddr, address);
21056 state_machine.handle_set_address (baseaddr, address);
21059 case DW_LNE_define_file:
21061 const char *cur_file;
21062 unsigned int mod_time, length;
21065 cur_file = read_direct_string (abfd, line_ptr,
21067 line_ptr += bytes_read;
21068 dindex = (dir_index)
21069 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21070 line_ptr += bytes_read;
21072 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21073 line_ptr += bytes_read;
21075 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21076 line_ptr += bytes_read;
21077 lh->add_file_name (cur_file, dindex, mod_time, length);
21080 case DW_LNE_set_discriminator:
21082 /* The discriminator is not interesting to the
21083 debugger; just ignore it. We still need to
21084 check its value though:
21085 if there are consecutive entries for the same
21086 (non-prologue) line we want to coalesce them.
21089 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21090 line_ptr += bytes_read;
21092 state_machine.handle_set_discriminator (discr);
21096 complaint (_("mangled .debug_line section"));
21099 /* Make sure that we parsed the extended op correctly. If e.g.
21100 we expected a different address size than the producer used,
21101 we may have read the wrong number of bytes. */
21102 if (line_ptr != extended_end)
21104 complaint (_("mangled .debug_line section"));
21109 state_machine.handle_copy ();
21111 case DW_LNS_advance_pc:
21114 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21115 line_ptr += bytes_read;
21117 state_machine.handle_advance_pc (adjust);
21120 case DW_LNS_advance_line:
21123 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21124 line_ptr += bytes_read;
21126 state_machine.handle_advance_line (line_delta);
21129 case DW_LNS_set_file:
21131 file_name_index file
21132 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21134 line_ptr += bytes_read;
21136 state_machine.handle_set_file (file);
21139 case DW_LNS_set_column:
21140 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21141 line_ptr += bytes_read;
21143 case DW_LNS_negate_stmt:
21144 state_machine.handle_negate_stmt ();
21146 case DW_LNS_set_basic_block:
21148 /* Add to the address register of the state machine the
21149 address increment value corresponding to special opcode
21150 255. I.e., this value is scaled by the minimum
21151 instruction length since special opcode 255 would have
21152 scaled the increment. */
21153 case DW_LNS_const_add_pc:
21154 state_machine.handle_const_add_pc ();
21156 case DW_LNS_fixed_advance_pc:
21158 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21161 state_machine.handle_fixed_advance_pc (addr_adj);
21166 /* Unknown standard opcode, ignore it. */
21169 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21171 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21172 line_ptr += bytes_read;
21179 dwarf2_debug_line_missing_end_sequence_complaint ();
21181 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21182 in which case we still finish recording the last line). */
21183 state_machine.record_line (true);
21187 /* Decode the Line Number Program (LNP) for the given line_header
21188 structure and CU. The actual information extracted and the type
21189 of structures created from the LNP depends on the value of PST.
21191 1. If PST is NULL, then this procedure uses the data from the program
21192 to create all necessary symbol tables, and their linetables.
21194 2. If PST is not NULL, this procedure reads the program to determine
21195 the list of files included by the unit represented by PST, and
21196 builds all the associated partial symbol tables.
21198 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21199 It is used for relative paths in the line table.
21200 NOTE: When processing partial symtabs (pst != NULL),
21201 comp_dir == pst->dirname.
21203 NOTE: It is important that psymtabs have the same file name (via strcmp)
21204 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21205 symtab we don't use it in the name of the psymtabs we create.
21206 E.g. expand_line_sal requires this when finding psymtabs to expand.
21207 A good testcase for this is mb-inline.exp.
21209 LOWPC is the lowest address in CU (or 0 if not known).
21211 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21212 for its PC<->lines mapping information. Otherwise only the filename
21213 table is read in. */
21216 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21217 struct dwarf2_cu *cu, struct partial_symtab *pst,
21218 CORE_ADDR lowpc, int decode_mapping)
21220 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21221 const int decode_for_pst_p = (pst != NULL);
21223 if (decode_mapping)
21224 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21226 if (decode_for_pst_p)
21230 /* Now that we're done scanning the Line Header Program, we can
21231 create the psymtab of each included file. */
21232 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21233 if (lh->file_names[file_index].included_p == 1)
21235 gdb::unique_xmalloc_ptr<char> name_holder;
21236 const char *include_name =
21237 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21239 if (include_name != NULL)
21240 dwarf2_create_include_psymtab (include_name, pst, objfile);
21245 /* Make sure a symtab is created for every file, even files
21246 which contain only variables (i.e. no code with associated
21248 buildsym_compunit *builder = cu->get_builder ();
21249 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21252 for (i = 0; i < lh->file_names.size (); i++)
21254 file_entry &fe = lh->file_names[i];
21256 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21258 if (builder->get_current_subfile ()->symtab == NULL)
21260 builder->get_current_subfile ()->symtab
21261 = allocate_symtab (cust,
21262 builder->get_current_subfile ()->name);
21264 fe.symtab = builder->get_current_subfile ()->symtab;
21269 /* Start a subfile for DWARF. FILENAME is the name of the file and
21270 DIRNAME the name of the source directory which contains FILENAME
21271 or NULL if not known.
21272 This routine tries to keep line numbers from identical absolute and
21273 relative file names in a common subfile.
21275 Using the `list' example from the GDB testsuite, which resides in
21276 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21277 of /srcdir/list0.c yields the following debugging information for list0.c:
21279 DW_AT_name: /srcdir/list0.c
21280 DW_AT_comp_dir: /compdir
21281 files.files[0].name: list0.h
21282 files.files[0].dir: /srcdir
21283 files.files[1].name: list0.c
21284 files.files[1].dir: /srcdir
21286 The line number information for list0.c has to end up in a single
21287 subfile, so that `break /srcdir/list0.c:1' works as expected.
21288 start_subfile will ensure that this happens provided that we pass the
21289 concatenation of files.files[1].dir and files.files[1].name as the
21293 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21294 const char *dirname)
21298 /* In order not to lose the line information directory,
21299 we concatenate it to the filename when it makes sense.
21300 Note that the Dwarf3 standard says (speaking of filenames in line
21301 information): ``The directory index is ignored for file names
21302 that represent full path names''. Thus ignoring dirname in the
21303 `else' branch below isn't an issue. */
21305 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21307 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21311 cu->get_builder ()->start_subfile (filename);
21317 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21318 buildsym_compunit constructor. */
21320 struct compunit_symtab *
21321 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21324 gdb_assert (m_builder == nullptr);
21326 m_builder.reset (new struct buildsym_compunit
21327 (per_cu->dwarf2_per_objfile->objfile,
21328 name, comp_dir, language, low_pc));
21330 list_in_scope = get_builder ()->get_file_symbols ();
21332 get_builder ()->record_debugformat ("DWARF 2");
21333 get_builder ()->record_producer (producer);
21335 processing_has_namespace_info = false;
21337 return get_builder ()->get_compunit_symtab ();
21341 var_decode_location (struct attribute *attr, struct symbol *sym,
21342 struct dwarf2_cu *cu)
21344 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21345 struct comp_unit_head *cu_header = &cu->header;
21347 /* NOTE drow/2003-01-30: There used to be a comment and some special
21348 code here to turn a symbol with DW_AT_external and a
21349 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21350 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21351 with some versions of binutils) where shared libraries could have
21352 relocations against symbols in their debug information - the
21353 minimal symbol would have the right address, but the debug info
21354 would not. It's no longer necessary, because we will explicitly
21355 apply relocations when we read in the debug information now. */
21357 /* A DW_AT_location attribute with no contents indicates that a
21358 variable has been optimized away. */
21359 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21361 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21365 /* Handle one degenerate form of location expression specially, to
21366 preserve GDB's previous behavior when section offsets are
21367 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21368 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21370 if (attr_form_is_block (attr)
21371 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21372 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21373 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21374 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21375 && (DW_BLOCK (attr)->size
21376 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21378 unsigned int dummy;
21380 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21381 SYMBOL_VALUE_ADDRESS (sym) =
21382 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21384 SYMBOL_VALUE_ADDRESS (sym) =
21385 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21386 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21387 fixup_symbol_section (sym, objfile);
21388 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21389 SYMBOL_SECTION (sym));
21393 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21394 expression evaluator, and use LOC_COMPUTED only when necessary
21395 (i.e. when the value of a register or memory location is
21396 referenced, or a thread-local block, etc.). Then again, it might
21397 not be worthwhile. I'm assuming that it isn't unless performance
21398 or memory numbers show me otherwise. */
21400 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21402 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21403 cu->has_loclist = true;
21406 /* Given a pointer to a DWARF information entry, figure out if we need
21407 to make a symbol table entry for it, and if so, create a new entry
21408 and return a pointer to it.
21409 If TYPE is NULL, determine symbol type from the die, otherwise
21410 used the passed type.
21411 If SPACE is not NULL, use it to hold the new symbol. If it is
21412 NULL, allocate a new symbol on the objfile's obstack. */
21414 static struct symbol *
21415 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21416 struct symbol *space)
21418 struct dwarf2_per_objfile *dwarf2_per_objfile
21419 = cu->per_cu->dwarf2_per_objfile;
21420 struct objfile *objfile = dwarf2_per_objfile->objfile;
21421 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21422 struct symbol *sym = NULL;
21424 struct attribute *attr = NULL;
21425 struct attribute *attr2 = NULL;
21426 CORE_ADDR baseaddr;
21427 struct pending **list_to_add = NULL;
21429 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21431 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21433 name = dwarf2_name (die, cu);
21436 const char *linkagename;
21437 int suppress_add = 0;
21442 sym = allocate_symbol (objfile);
21443 OBJSTAT (objfile, n_syms++);
21445 /* Cache this symbol's name and the name's demangled form (if any). */
21446 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21447 linkagename = dwarf2_physname (name, die, cu);
21448 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21450 /* Fortran does not have mangling standard and the mangling does differ
21451 between gfortran, iFort etc. */
21452 if (cu->language == language_fortran
21453 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21454 symbol_set_demangled_name (&(sym->ginfo),
21455 dwarf2_full_name (name, die, cu),
21458 /* Default assumptions.
21459 Use the passed type or decode it from the die. */
21460 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21461 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21463 SYMBOL_TYPE (sym) = type;
21465 SYMBOL_TYPE (sym) = die_type (die, cu);
21466 attr = dwarf2_attr (die,
21467 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21471 SYMBOL_LINE (sym) = DW_UNSND (attr);
21474 attr = dwarf2_attr (die,
21475 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21479 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21480 struct file_entry *fe;
21482 if (cu->line_header != NULL)
21483 fe = cu->line_header->file_name_at (file_index);
21488 complaint (_("file index out of range"));
21490 symbol_set_symtab (sym, fe->symtab);
21496 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21501 addr = attr_value_as_address (attr);
21502 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21503 SYMBOL_VALUE_ADDRESS (sym) = addr;
21505 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21506 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21507 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21508 add_symbol_to_list (sym, cu->list_in_scope);
21510 case DW_TAG_subprogram:
21511 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21513 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21514 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21515 if ((attr2 && (DW_UNSND (attr2) != 0))
21516 || cu->language == language_ada)
21518 /* Subprograms marked external are stored as a global symbol.
21519 Ada subprograms, whether marked external or not, are always
21520 stored as a global symbol, because we want to be able to
21521 access them globally. For instance, we want to be able
21522 to break on a nested subprogram without having to
21523 specify the context. */
21524 list_to_add = cu->get_builder ()->get_global_symbols ();
21528 list_to_add = cu->list_in_scope;
21531 case DW_TAG_inlined_subroutine:
21532 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21534 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21535 SYMBOL_INLINED (sym) = 1;
21536 list_to_add = cu->list_in_scope;
21538 case DW_TAG_template_value_param:
21540 /* Fall through. */
21541 case DW_TAG_constant:
21542 case DW_TAG_variable:
21543 case DW_TAG_member:
21544 /* Compilation with minimal debug info may result in
21545 variables with missing type entries. Change the
21546 misleading `void' type to something sensible. */
21547 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21548 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21550 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21551 /* In the case of DW_TAG_member, we should only be called for
21552 static const members. */
21553 if (die->tag == DW_TAG_member)
21555 /* dwarf2_add_field uses die_is_declaration,
21556 so we do the same. */
21557 gdb_assert (die_is_declaration (die, cu));
21562 dwarf2_const_value (attr, sym, cu);
21563 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21566 if (attr2 && (DW_UNSND (attr2) != 0))
21567 list_to_add = cu->get_builder ()->get_global_symbols ();
21569 list_to_add = cu->list_in_scope;
21573 attr = dwarf2_attr (die, DW_AT_location, cu);
21576 var_decode_location (attr, sym, cu);
21577 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21579 /* Fortran explicitly imports any global symbols to the local
21580 scope by DW_TAG_common_block. */
21581 if (cu->language == language_fortran && die->parent
21582 && die->parent->tag == DW_TAG_common_block)
21585 if (SYMBOL_CLASS (sym) == LOC_STATIC
21586 && SYMBOL_VALUE_ADDRESS (sym) == 0
21587 && !dwarf2_per_objfile->has_section_at_zero)
21589 /* When a static variable is eliminated by the linker,
21590 the corresponding debug information is not stripped
21591 out, but the variable address is set to null;
21592 do not add such variables into symbol table. */
21594 else if (attr2 && (DW_UNSND (attr2) != 0))
21596 /* Workaround gfortran PR debug/40040 - it uses
21597 DW_AT_location for variables in -fPIC libraries which may
21598 get overriden by other libraries/executable and get
21599 a different address. Resolve it by the minimal symbol
21600 which may come from inferior's executable using copy
21601 relocation. Make this workaround only for gfortran as for
21602 other compilers GDB cannot guess the minimal symbol
21603 Fortran mangling kind. */
21604 if (cu->language == language_fortran && die->parent
21605 && die->parent->tag == DW_TAG_module
21607 && startswith (cu->producer, "GNU Fortran"))
21608 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21610 /* A variable with DW_AT_external is never static,
21611 but it may be block-scoped. */
21613 = ((cu->list_in_scope
21614 == cu->get_builder ()->get_file_symbols ())
21615 ? cu->get_builder ()->get_global_symbols ()
21616 : cu->list_in_scope);
21619 list_to_add = cu->list_in_scope;
21623 /* We do not know the address of this symbol.
21624 If it is an external symbol and we have type information
21625 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21626 The address of the variable will then be determined from
21627 the minimal symbol table whenever the variable is
21629 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21631 /* Fortran explicitly imports any global symbols to the local
21632 scope by DW_TAG_common_block. */
21633 if (cu->language == language_fortran && die->parent
21634 && die->parent->tag == DW_TAG_common_block)
21636 /* SYMBOL_CLASS doesn't matter here because
21637 read_common_block is going to reset it. */
21639 list_to_add = cu->list_in_scope;
21641 else if (attr2 && (DW_UNSND (attr2) != 0)
21642 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21644 /* A variable with DW_AT_external is never static, but it
21645 may be block-scoped. */
21647 = ((cu->list_in_scope
21648 == cu->get_builder ()->get_file_symbols ())
21649 ? cu->get_builder ()->get_global_symbols ()
21650 : cu->list_in_scope);
21652 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21654 else if (!die_is_declaration (die, cu))
21656 /* Use the default LOC_OPTIMIZED_OUT class. */
21657 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21659 list_to_add = cu->list_in_scope;
21663 case DW_TAG_formal_parameter:
21665 /* If we are inside a function, mark this as an argument. If
21666 not, we might be looking at an argument to an inlined function
21667 when we do not have enough information to show inlined frames;
21668 pretend it's a local variable in that case so that the user can
21670 struct context_stack *curr
21671 = cu->get_builder ()->get_current_context_stack ();
21672 if (curr != nullptr && curr->name != nullptr)
21673 SYMBOL_IS_ARGUMENT (sym) = 1;
21674 attr = dwarf2_attr (die, DW_AT_location, cu);
21677 var_decode_location (attr, sym, cu);
21679 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21682 dwarf2_const_value (attr, sym, cu);
21685 list_to_add = cu->list_in_scope;
21688 case DW_TAG_unspecified_parameters:
21689 /* From varargs functions; gdb doesn't seem to have any
21690 interest in this information, so just ignore it for now.
21693 case DW_TAG_template_type_param:
21695 /* Fall through. */
21696 case DW_TAG_class_type:
21697 case DW_TAG_interface_type:
21698 case DW_TAG_structure_type:
21699 case DW_TAG_union_type:
21700 case DW_TAG_set_type:
21701 case DW_TAG_enumeration_type:
21702 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21703 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21706 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21707 really ever be static objects: otherwise, if you try
21708 to, say, break of a class's method and you're in a file
21709 which doesn't mention that class, it won't work unless
21710 the check for all static symbols in lookup_symbol_aux
21711 saves you. See the OtherFileClass tests in
21712 gdb.c++/namespace.exp. */
21716 buildsym_compunit *builder = cu->get_builder ();
21718 = (cu->list_in_scope == builder->get_file_symbols ()
21719 && cu->language == language_cplus
21720 ? builder->get_global_symbols ()
21721 : cu->list_in_scope);
21723 /* The semantics of C++ state that "struct foo {
21724 ... }" also defines a typedef for "foo". */
21725 if (cu->language == language_cplus
21726 || cu->language == language_ada
21727 || cu->language == language_d
21728 || cu->language == language_rust)
21730 /* The symbol's name is already allocated along
21731 with this objfile, so we don't need to
21732 duplicate it for the type. */
21733 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21734 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21739 case DW_TAG_typedef:
21740 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21741 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21742 list_to_add = cu->list_in_scope;
21744 case DW_TAG_base_type:
21745 case DW_TAG_subrange_type:
21746 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21747 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21748 list_to_add = cu->list_in_scope;
21750 case DW_TAG_enumerator:
21751 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21754 dwarf2_const_value (attr, sym, cu);
21757 /* NOTE: carlton/2003-11-10: See comment above in the
21758 DW_TAG_class_type, etc. block. */
21761 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21762 && cu->language == language_cplus
21763 ? cu->get_builder ()->get_global_symbols ()
21764 : cu->list_in_scope);
21767 case DW_TAG_imported_declaration:
21768 case DW_TAG_namespace:
21769 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21770 list_to_add = cu->get_builder ()->get_global_symbols ();
21772 case DW_TAG_module:
21773 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21774 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21775 list_to_add = cu->get_builder ()->get_global_symbols ();
21777 case DW_TAG_common_block:
21778 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21779 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21780 add_symbol_to_list (sym, cu->list_in_scope);
21783 /* Not a tag we recognize. Hopefully we aren't processing
21784 trash data, but since we must specifically ignore things
21785 we don't recognize, there is nothing else we should do at
21787 complaint (_("unsupported tag: '%s'"),
21788 dwarf_tag_name (die->tag));
21794 sym->hash_next = objfile->template_symbols;
21795 objfile->template_symbols = sym;
21796 list_to_add = NULL;
21799 if (list_to_add != NULL)
21800 add_symbol_to_list (sym, list_to_add);
21802 /* For the benefit of old versions of GCC, check for anonymous
21803 namespaces based on the demangled name. */
21804 if (!cu->processing_has_namespace_info
21805 && cu->language == language_cplus)
21806 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21811 /* Given an attr with a DW_FORM_dataN value in host byte order,
21812 zero-extend it as appropriate for the symbol's type. The DWARF
21813 standard (v4) is not entirely clear about the meaning of using
21814 DW_FORM_dataN for a constant with a signed type, where the type is
21815 wider than the data. The conclusion of a discussion on the DWARF
21816 list was that this is unspecified. We choose to always zero-extend
21817 because that is the interpretation long in use by GCC. */
21820 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21821 struct dwarf2_cu *cu, LONGEST *value, int bits)
21823 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21824 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21825 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21826 LONGEST l = DW_UNSND (attr);
21828 if (bits < sizeof (*value) * 8)
21830 l &= ((LONGEST) 1 << bits) - 1;
21833 else if (bits == sizeof (*value) * 8)
21837 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21838 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21845 /* Read a constant value from an attribute. Either set *VALUE, or if
21846 the value does not fit in *VALUE, set *BYTES - either already
21847 allocated on the objfile obstack, or newly allocated on OBSTACK,
21848 or, set *BATON, if we translated the constant to a location
21852 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21853 const char *name, struct obstack *obstack,
21854 struct dwarf2_cu *cu,
21855 LONGEST *value, const gdb_byte **bytes,
21856 struct dwarf2_locexpr_baton **baton)
21858 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21859 struct comp_unit_head *cu_header = &cu->header;
21860 struct dwarf_block *blk;
21861 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21862 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21868 switch (attr->form)
21871 case DW_FORM_addrx:
21872 case DW_FORM_GNU_addr_index:
21876 if (TYPE_LENGTH (type) != cu_header->addr_size)
21877 dwarf2_const_value_length_mismatch_complaint (name,
21878 cu_header->addr_size,
21879 TYPE_LENGTH (type));
21880 /* Symbols of this form are reasonably rare, so we just
21881 piggyback on the existing location code rather than writing
21882 a new implementation of symbol_computed_ops. */
21883 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21884 (*baton)->per_cu = cu->per_cu;
21885 gdb_assert ((*baton)->per_cu);
21887 (*baton)->size = 2 + cu_header->addr_size;
21888 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21889 (*baton)->data = data;
21891 data[0] = DW_OP_addr;
21892 store_unsigned_integer (&data[1], cu_header->addr_size,
21893 byte_order, DW_ADDR (attr));
21894 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21897 case DW_FORM_string:
21899 case DW_FORM_GNU_str_index:
21900 case DW_FORM_GNU_strp_alt:
21901 /* DW_STRING is already allocated on the objfile obstack, point
21903 *bytes = (const gdb_byte *) DW_STRING (attr);
21905 case DW_FORM_block1:
21906 case DW_FORM_block2:
21907 case DW_FORM_block4:
21908 case DW_FORM_block:
21909 case DW_FORM_exprloc:
21910 case DW_FORM_data16:
21911 blk = DW_BLOCK (attr);
21912 if (TYPE_LENGTH (type) != blk->size)
21913 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21914 TYPE_LENGTH (type));
21915 *bytes = blk->data;
21918 /* The DW_AT_const_value attributes are supposed to carry the
21919 symbol's value "represented as it would be on the target
21920 architecture." By the time we get here, it's already been
21921 converted to host endianness, so we just need to sign- or
21922 zero-extend it as appropriate. */
21923 case DW_FORM_data1:
21924 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21926 case DW_FORM_data2:
21927 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21929 case DW_FORM_data4:
21930 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21932 case DW_FORM_data8:
21933 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21936 case DW_FORM_sdata:
21937 case DW_FORM_implicit_const:
21938 *value = DW_SND (attr);
21941 case DW_FORM_udata:
21942 *value = DW_UNSND (attr);
21946 complaint (_("unsupported const value attribute form: '%s'"),
21947 dwarf_form_name (attr->form));
21954 /* Copy constant value from an attribute to a symbol. */
21957 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21958 struct dwarf2_cu *cu)
21960 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21962 const gdb_byte *bytes;
21963 struct dwarf2_locexpr_baton *baton;
21965 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21966 SYMBOL_PRINT_NAME (sym),
21967 &objfile->objfile_obstack, cu,
21968 &value, &bytes, &baton);
21972 SYMBOL_LOCATION_BATON (sym) = baton;
21973 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21975 else if (bytes != NULL)
21977 SYMBOL_VALUE_BYTES (sym) = bytes;
21978 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21982 SYMBOL_VALUE (sym) = value;
21983 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21987 /* Return the type of the die in question using its DW_AT_type attribute. */
21989 static struct type *
21990 die_type (struct die_info *die, struct dwarf2_cu *cu)
21992 struct attribute *type_attr;
21994 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21998 /* A missing DW_AT_type represents a void type. */
21999 return objfile_type (objfile)->builtin_void;
22002 return lookup_die_type (die, type_attr, cu);
22005 /* True iff CU's producer generates GNAT Ada auxiliary information
22006 that allows to find parallel types through that information instead
22007 of having to do expensive parallel lookups by type name. */
22010 need_gnat_info (struct dwarf2_cu *cu)
22012 /* Assume that the Ada compiler was GNAT, which always produces
22013 the auxiliary information. */
22014 return (cu->language == language_ada);
22017 /* Return the auxiliary type of the die in question using its
22018 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22019 attribute is not present. */
22021 static struct type *
22022 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22024 struct attribute *type_attr;
22026 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22030 return lookup_die_type (die, type_attr, cu);
22033 /* If DIE has a descriptive_type attribute, then set the TYPE's
22034 descriptive type accordingly. */
22037 set_descriptive_type (struct type *type, struct die_info *die,
22038 struct dwarf2_cu *cu)
22040 struct type *descriptive_type = die_descriptive_type (die, cu);
22042 if (descriptive_type)
22044 ALLOCATE_GNAT_AUX_TYPE (type);
22045 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22049 /* Return the containing type of the die in question using its
22050 DW_AT_containing_type attribute. */
22052 static struct type *
22053 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22055 struct attribute *type_attr;
22056 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22058 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22060 error (_("Dwarf Error: Problem turning containing type into gdb type "
22061 "[in module %s]"), objfile_name (objfile));
22063 return lookup_die_type (die, type_attr, cu);
22066 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22068 static struct type *
22069 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22071 struct dwarf2_per_objfile *dwarf2_per_objfile
22072 = cu->per_cu->dwarf2_per_objfile;
22073 struct objfile *objfile = dwarf2_per_objfile->objfile;
22076 std::string message
22077 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22078 objfile_name (objfile),
22079 sect_offset_str (cu->header.sect_off),
22080 sect_offset_str (die->sect_off));
22081 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22082 message.c_str (), message.length ());
22084 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22087 /* Look up the type of DIE in CU using its type attribute ATTR.
22088 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22089 DW_AT_containing_type.
22090 If there is no type substitute an error marker. */
22092 static struct type *
22093 lookup_die_type (struct die_info *die, const struct attribute *attr,
22094 struct dwarf2_cu *cu)
22096 struct dwarf2_per_objfile *dwarf2_per_objfile
22097 = cu->per_cu->dwarf2_per_objfile;
22098 struct objfile *objfile = dwarf2_per_objfile->objfile;
22099 struct type *this_type;
22101 gdb_assert (attr->name == DW_AT_type
22102 || attr->name == DW_AT_GNAT_descriptive_type
22103 || attr->name == DW_AT_containing_type);
22105 /* First see if we have it cached. */
22107 if (attr->form == DW_FORM_GNU_ref_alt)
22109 struct dwarf2_per_cu_data *per_cu;
22110 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22112 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22113 dwarf2_per_objfile);
22114 this_type = get_die_type_at_offset (sect_off, per_cu);
22116 else if (attr_form_is_ref (attr))
22118 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22120 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22122 else if (attr->form == DW_FORM_ref_sig8)
22124 ULONGEST signature = DW_SIGNATURE (attr);
22126 return get_signatured_type (die, signature, cu);
22130 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22131 " at %s [in module %s]"),
22132 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22133 objfile_name (objfile));
22134 return build_error_marker_type (cu, die);
22137 /* If not cached we need to read it in. */
22139 if (this_type == NULL)
22141 struct die_info *type_die = NULL;
22142 struct dwarf2_cu *type_cu = cu;
22144 if (attr_form_is_ref (attr))
22145 type_die = follow_die_ref (die, attr, &type_cu);
22146 if (type_die == NULL)
22147 return build_error_marker_type (cu, die);
22148 /* If we find the type now, it's probably because the type came
22149 from an inter-CU reference and the type's CU got expanded before
22151 this_type = read_type_die (type_die, type_cu);
22154 /* If we still don't have a type use an error marker. */
22156 if (this_type == NULL)
22157 return build_error_marker_type (cu, die);
22162 /* Return the type in DIE, CU.
22163 Returns NULL for invalid types.
22165 This first does a lookup in die_type_hash,
22166 and only reads the die in if necessary.
22168 NOTE: This can be called when reading in partial or full symbols. */
22170 static struct type *
22171 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22173 struct type *this_type;
22175 this_type = get_die_type (die, cu);
22179 return read_type_die_1 (die, cu);
22182 /* Read the type in DIE, CU.
22183 Returns NULL for invalid types. */
22185 static struct type *
22186 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22188 struct type *this_type = NULL;
22192 case DW_TAG_class_type:
22193 case DW_TAG_interface_type:
22194 case DW_TAG_structure_type:
22195 case DW_TAG_union_type:
22196 this_type = read_structure_type (die, cu);
22198 case DW_TAG_enumeration_type:
22199 this_type = read_enumeration_type (die, cu);
22201 case DW_TAG_subprogram:
22202 case DW_TAG_subroutine_type:
22203 case DW_TAG_inlined_subroutine:
22204 this_type = read_subroutine_type (die, cu);
22206 case DW_TAG_array_type:
22207 this_type = read_array_type (die, cu);
22209 case DW_TAG_set_type:
22210 this_type = read_set_type (die, cu);
22212 case DW_TAG_pointer_type:
22213 this_type = read_tag_pointer_type (die, cu);
22215 case DW_TAG_ptr_to_member_type:
22216 this_type = read_tag_ptr_to_member_type (die, cu);
22218 case DW_TAG_reference_type:
22219 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22221 case DW_TAG_rvalue_reference_type:
22222 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22224 case DW_TAG_const_type:
22225 this_type = read_tag_const_type (die, cu);
22227 case DW_TAG_volatile_type:
22228 this_type = read_tag_volatile_type (die, cu);
22230 case DW_TAG_restrict_type:
22231 this_type = read_tag_restrict_type (die, cu);
22233 case DW_TAG_string_type:
22234 this_type = read_tag_string_type (die, cu);
22236 case DW_TAG_typedef:
22237 this_type = read_typedef (die, cu);
22239 case DW_TAG_subrange_type:
22240 this_type = read_subrange_type (die, cu);
22242 case DW_TAG_base_type:
22243 this_type = read_base_type (die, cu);
22245 case DW_TAG_unspecified_type:
22246 this_type = read_unspecified_type (die, cu);
22248 case DW_TAG_namespace:
22249 this_type = read_namespace_type (die, cu);
22251 case DW_TAG_module:
22252 this_type = read_module_type (die, cu);
22254 case DW_TAG_atomic_type:
22255 this_type = read_tag_atomic_type (die, cu);
22258 complaint (_("unexpected tag in read_type_die: '%s'"),
22259 dwarf_tag_name (die->tag));
22266 /* See if we can figure out if the class lives in a namespace. We do
22267 this by looking for a member function; its demangled name will
22268 contain namespace info, if there is any.
22269 Return the computed name or NULL.
22270 Space for the result is allocated on the objfile's obstack.
22271 This is the full-die version of guess_partial_die_structure_name.
22272 In this case we know DIE has no useful parent. */
22275 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22277 struct die_info *spec_die;
22278 struct dwarf2_cu *spec_cu;
22279 struct die_info *child;
22280 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22283 spec_die = die_specification (die, &spec_cu);
22284 if (spec_die != NULL)
22290 for (child = die->child;
22292 child = child->sibling)
22294 if (child->tag == DW_TAG_subprogram)
22296 const char *linkage_name = dw2_linkage_name (child, cu);
22298 if (linkage_name != NULL)
22301 = language_class_name_from_physname (cu->language_defn,
22305 if (actual_name != NULL)
22307 const char *die_name = dwarf2_name (die, cu);
22309 if (die_name != NULL
22310 && strcmp (die_name, actual_name) != 0)
22312 /* Strip off the class name from the full name.
22313 We want the prefix. */
22314 int die_name_len = strlen (die_name);
22315 int actual_name_len = strlen (actual_name);
22317 /* Test for '::' as a sanity check. */
22318 if (actual_name_len > die_name_len + 2
22319 && actual_name[actual_name_len
22320 - die_name_len - 1] == ':')
22321 name = (char *) obstack_copy0 (
22322 &objfile->per_bfd->storage_obstack,
22323 actual_name, actual_name_len - die_name_len - 2);
22326 xfree (actual_name);
22335 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22336 prefix part in such case. See
22337 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22339 static const char *
22340 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22342 struct attribute *attr;
22345 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22346 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22349 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22352 attr = dw2_linkage_name_attr (die, cu);
22353 if (attr == NULL || DW_STRING (attr) == NULL)
22356 /* dwarf2_name had to be already called. */
22357 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22359 /* Strip the base name, keep any leading namespaces/classes. */
22360 base = strrchr (DW_STRING (attr), ':');
22361 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22364 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22365 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22367 &base[-1] - DW_STRING (attr));
22370 /* Return the name of the namespace/class that DIE is defined within,
22371 or "" if we can't tell. The caller should not xfree the result.
22373 For example, if we're within the method foo() in the following
22383 then determine_prefix on foo's die will return "N::C". */
22385 static const char *
22386 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22388 struct dwarf2_per_objfile *dwarf2_per_objfile
22389 = cu->per_cu->dwarf2_per_objfile;
22390 struct die_info *parent, *spec_die;
22391 struct dwarf2_cu *spec_cu;
22392 struct type *parent_type;
22393 const char *retval;
22395 if (cu->language != language_cplus
22396 && cu->language != language_fortran && cu->language != language_d
22397 && cu->language != language_rust)
22400 retval = anonymous_struct_prefix (die, cu);
22404 /* We have to be careful in the presence of DW_AT_specification.
22405 For example, with GCC 3.4, given the code
22409 // Definition of N::foo.
22413 then we'll have a tree of DIEs like this:
22415 1: DW_TAG_compile_unit
22416 2: DW_TAG_namespace // N
22417 3: DW_TAG_subprogram // declaration of N::foo
22418 4: DW_TAG_subprogram // definition of N::foo
22419 DW_AT_specification // refers to die #3
22421 Thus, when processing die #4, we have to pretend that we're in
22422 the context of its DW_AT_specification, namely the contex of die
22425 spec_die = die_specification (die, &spec_cu);
22426 if (spec_die == NULL)
22427 parent = die->parent;
22430 parent = spec_die->parent;
22434 if (parent == NULL)
22436 else if (parent->building_fullname)
22439 const char *parent_name;
22441 /* It has been seen on RealView 2.2 built binaries,
22442 DW_TAG_template_type_param types actually _defined_ as
22443 children of the parent class:
22446 template class <class Enum> Class{};
22447 Class<enum E> class_e;
22449 1: DW_TAG_class_type (Class)
22450 2: DW_TAG_enumeration_type (E)
22451 3: DW_TAG_enumerator (enum1:0)
22452 3: DW_TAG_enumerator (enum2:1)
22454 2: DW_TAG_template_type_param
22455 DW_AT_type DW_FORM_ref_udata (E)
22457 Besides being broken debug info, it can put GDB into an
22458 infinite loop. Consider:
22460 When we're building the full name for Class<E>, we'll start
22461 at Class, and go look over its template type parameters,
22462 finding E. We'll then try to build the full name of E, and
22463 reach here. We're now trying to build the full name of E,
22464 and look over the parent DIE for containing scope. In the
22465 broken case, if we followed the parent DIE of E, we'd again
22466 find Class, and once again go look at its template type
22467 arguments, etc., etc. Simply don't consider such parent die
22468 as source-level parent of this die (it can't be, the language
22469 doesn't allow it), and break the loop here. */
22470 name = dwarf2_name (die, cu);
22471 parent_name = dwarf2_name (parent, cu);
22472 complaint (_("template param type '%s' defined within parent '%s'"),
22473 name ? name : "<unknown>",
22474 parent_name ? parent_name : "<unknown>");
22478 switch (parent->tag)
22480 case DW_TAG_namespace:
22481 parent_type = read_type_die (parent, cu);
22482 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22483 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22484 Work around this problem here. */
22485 if (cu->language == language_cplus
22486 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22488 /* We give a name to even anonymous namespaces. */
22489 return TYPE_NAME (parent_type);
22490 case DW_TAG_class_type:
22491 case DW_TAG_interface_type:
22492 case DW_TAG_structure_type:
22493 case DW_TAG_union_type:
22494 case DW_TAG_module:
22495 parent_type = read_type_die (parent, cu);
22496 if (TYPE_NAME (parent_type) != NULL)
22497 return TYPE_NAME (parent_type);
22499 /* An anonymous structure is only allowed non-static data
22500 members; no typedefs, no member functions, et cetera.
22501 So it does not need a prefix. */
22503 case DW_TAG_compile_unit:
22504 case DW_TAG_partial_unit:
22505 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22506 if (cu->language == language_cplus
22507 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22508 && die->child != NULL
22509 && (die->tag == DW_TAG_class_type
22510 || die->tag == DW_TAG_structure_type
22511 || die->tag == DW_TAG_union_type))
22513 char *name = guess_full_die_structure_name (die, cu);
22518 case DW_TAG_enumeration_type:
22519 parent_type = read_type_die (parent, cu);
22520 if (TYPE_DECLARED_CLASS (parent_type))
22522 if (TYPE_NAME (parent_type) != NULL)
22523 return TYPE_NAME (parent_type);
22526 /* Fall through. */
22528 return determine_prefix (parent, cu);
22532 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22533 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22534 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22535 an obconcat, otherwise allocate storage for the result. The CU argument is
22536 used to determine the language and hence, the appropriate separator. */
22538 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22541 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22542 int physname, struct dwarf2_cu *cu)
22544 const char *lead = "";
22547 if (suffix == NULL || suffix[0] == '\0'
22548 || prefix == NULL || prefix[0] == '\0')
22550 else if (cu->language == language_d)
22552 /* For D, the 'main' function could be defined in any module, but it
22553 should never be prefixed. */
22554 if (strcmp (suffix, "D main") == 0)
22562 else if (cu->language == language_fortran && physname)
22564 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22565 DW_AT_MIPS_linkage_name is preferred and used instead. */
22573 if (prefix == NULL)
22575 if (suffix == NULL)
22582 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22584 strcpy (retval, lead);
22585 strcat (retval, prefix);
22586 strcat (retval, sep);
22587 strcat (retval, suffix);
22592 /* We have an obstack. */
22593 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22597 /* Return sibling of die, NULL if no sibling. */
22599 static struct die_info *
22600 sibling_die (struct die_info *die)
22602 return die->sibling;
22605 /* Get name of a die, return NULL if not found. */
22607 static const char *
22608 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22609 struct obstack *obstack)
22611 if (name && cu->language == language_cplus)
22613 std::string canon_name = cp_canonicalize_string (name);
22615 if (!canon_name.empty ())
22617 if (canon_name != name)
22618 name = (const char *) obstack_copy0 (obstack,
22619 canon_name.c_str (),
22620 canon_name.length ());
22627 /* Get name of a die, return NULL if not found.
22628 Anonymous namespaces are converted to their magic string. */
22630 static const char *
22631 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22633 struct attribute *attr;
22634 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22636 attr = dwarf2_attr (die, DW_AT_name, cu);
22637 if ((!attr || !DW_STRING (attr))
22638 && die->tag != DW_TAG_namespace
22639 && die->tag != DW_TAG_class_type
22640 && die->tag != DW_TAG_interface_type
22641 && die->tag != DW_TAG_structure_type
22642 && die->tag != DW_TAG_union_type)
22647 case DW_TAG_compile_unit:
22648 case DW_TAG_partial_unit:
22649 /* Compilation units have a DW_AT_name that is a filename, not
22650 a source language identifier. */
22651 case DW_TAG_enumeration_type:
22652 case DW_TAG_enumerator:
22653 /* These tags always have simple identifiers already; no need
22654 to canonicalize them. */
22655 return DW_STRING (attr);
22657 case DW_TAG_namespace:
22658 if (attr != NULL && DW_STRING (attr) != NULL)
22659 return DW_STRING (attr);
22660 return CP_ANONYMOUS_NAMESPACE_STR;
22662 case DW_TAG_class_type:
22663 case DW_TAG_interface_type:
22664 case DW_TAG_structure_type:
22665 case DW_TAG_union_type:
22666 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22667 structures or unions. These were of the form "._%d" in GCC 4.1,
22668 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22669 and GCC 4.4. We work around this problem by ignoring these. */
22670 if (attr && DW_STRING (attr)
22671 && (startswith (DW_STRING (attr), "._")
22672 || startswith (DW_STRING (attr), "<anonymous")))
22675 /* GCC might emit a nameless typedef that has a linkage name. See
22676 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22677 if (!attr || DW_STRING (attr) == NULL)
22679 char *demangled = NULL;
22681 attr = dw2_linkage_name_attr (die, cu);
22682 if (attr == NULL || DW_STRING (attr) == NULL)
22685 /* Avoid demangling DW_STRING (attr) the second time on a second
22686 call for the same DIE. */
22687 if (!DW_STRING_IS_CANONICAL (attr))
22688 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22694 /* FIXME: we already did this for the partial symbol... */
22697 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22698 demangled, strlen (demangled)));
22699 DW_STRING_IS_CANONICAL (attr) = 1;
22702 /* Strip any leading namespaces/classes, keep only the base name.
22703 DW_AT_name for named DIEs does not contain the prefixes. */
22704 base = strrchr (DW_STRING (attr), ':');
22705 if (base && base > DW_STRING (attr) && base[-1] == ':')
22708 return DW_STRING (attr);
22717 if (!DW_STRING_IS_CANONICAL (attr))
22720 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22721 &objfile->per_bfd->storage_obstack);
22722 DW_STRING_IS_CANONICAL (attr) = 1;
22724 return DW_STRING (attr);
22727 /* Return the die that this die in an extension of, or NULL if there
22728 is none. *EXT_CU is the CU containing DIE on input, and the CU
22729 containing the return value on output. */
22731 static struct die_info *
22732 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22734 struct attribute *attr;
22736 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22740 return follow_die_ref (die, attr, ext_cu);
22743 /* Convert a DIE tag into its string name. */
22745 static const char *
22746 dwarf_tag_name (unsigned tag)
22748 const char *name = get_DW_TAG_name (tag);
22751 return "DW_TAG_<unknown>";
22756 /* Convert a DWARF attribute code into its string name. */
22758 static const char *
22759 dwarf_attr_name (unsigned attr)
22763 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22764 if (attr == DW_AT_MIPS_fde)
22765 return "DW_AT_MIPS_fde";
22767 if (attr == DW_AT_HP_block_index)
22768 return "DW_AT_HP_block_index";
22771 name = get_DW_AT_name (attr);
22774 return "DW_AT_<unknown>";
22779 /* Convert a DWARF value form code into its string name. */
22781 static const char *
22782 dwarf_form_name (unsigned form)
22784 const char *name = get_DW_FORM_name (form);
22787 return "DW_FORM_<unknown>";
22792 static const char *
22793 dwarf_bool_name (unsigned mybool)
22801 /* Convert a DWARF type code into its string name. */
22803 static const char *
22804 dwarf_type_encoding_name (unsigned enc)
22806 const char *name = get_DW_ATE_name (enc);
22809 return "DW_ATE_<unknown>";
22815 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22819 print_spaces (indent, f);
22820 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22821 dwarf_tag_name (die->tag), die->abbrev,
22822 sect_offset_str (die->sect_off));
22824 if (die->parent != NULL)
22826 print_spaces (indent, f);
22827 fprintf_unfiltered (f, " parent at offset: %s\n",
22828 sect_offset_str (die->parent->sect_off));
22831 print_spaces (indent, f);
22832 fprintf_unfiltered (f, " has children: %s\n",
22833 dwarf_bool_name (die->child != NULL));
22835 print_spaces (indent, f);
22836 fprintf_unfiltered (f, " attributes:\n");
22838 for (i = 0; i < die->num_attrs; ++i)
22840 print_spaces (indent, f);
22841 fprintf_unfiltered (f, " %s (%s) ",
22842 dwarf_attr_name (die->attrs[i].name),
22843 dwarf_form_name (die->attrs[i].form));
22845 switch (die->attrs[i].form)
22848 case DW_FORM_addrx:
22849 case DW_FORM_GNU_addr_index:
22850 fprintf_unfiltered (f, "address: ");
22851 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22853 case DW_FORM_block2:
22854 case DW_FORM_block4:
22855 case DW_FORM_block:
22856 case DW_FORM_block1:
22857 fprintf_unfiltered (f, "block: size %s",
22858 pulongest (DW_BLOCK (&die->attrs[i])->size));
22860 case DW_FORM_exprloc:
22861 fprintf_unfiltered (f, "expression: size %s",
22862 pulongest (DW_BLOCK (&die->attrs[i])->size));
22864 case DW_FORM_data16:
22865 fprintf_unfiltered (f, "constant of 16 bytes");
22867 case DW_FORM_ref_addr:
22868 fprintf_unfiltered (f, "ref address: ");
22869 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22871 case DW_FORM_GNU_ref_alt:
22872 fprintf_unfiltered (f, "alt ref address: ");
22873 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22879 case DW_FORM_ref_udata:
22880 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22881 (long) (DW_UNSND (&die->attrs[i])));
22883 case DW_FORM_data1:
22884 case DW_FORM_data2:
22885 case DW_FORM_data4:
22886 case DW_FORM_data8:
22887 case DW_FORM_udata:
22888 case DW_FORM_sdata:
22889 fprintf_unfiltered (f, "constant: %s",
22890 pulongest (DW_UNSND (&die->attrs[i])));
22892 case DW_FORM_sec_offset:
22893 fprintf_unfiltered (f, "section offset: %s",
22894 pulongest (DW_UNSND (&die->attrs[i])));
22896 case DW_FORM_ref_sig8:
22897 fprintf_unfiltered (f, "signature: %s",
22898 hex_string (DW_SIGNATURE (&die->attrs[i])));
22900 case DW_FORM_string:
22902 case DW_FORM_line_strp:
22903 case DW_FORM_GNU_str_index:
22904 case DW_FORM_GNU_strp_alt:
22905 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22906 DW_STRING (&die->attrs[i])
22907 ? DW_STRING (&die->attrs[i]) : "",
22908 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22911 if (DW_UNSND (&die->attrs[i]))
22912 fprintf_unfiltered (f, "flag: TRUE");
22914 fprintf_unfiltered (f, "flag: FALSE");
22916 case DW_FORM_flag_present:
22917 fprintf_unfiltered (f, "flag: TRUE");
22919 case DW_FORM_indirect:
22920 /* The reader will have reduced the indirect form to
22921 the "base form" so this form should not occur. */
22922 fprintf_unfiltered (f,
22923 "unexpected attribute form: DW_FORM_indirect");
22925 case DW_FORM_implicit_const:
22926 fprintf_unfiltered (f, "constant: %s",
22927 plongest (DW_SND (&die->attrs[i])));
22930 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22931 die->attrs[i].form);
22934 fprintf_unfiltered (f, "\n");
22939 dump_die_for_error (struct die_info *die)
22941 dump_die_shallow (gdb_stderr, 0, die);
22945 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22947 int indent = level * 4;
22949 gdb_assert (die != NULL);
22951 if (level >= max_level)
22954 dump_die_shallow (f, indent, die);
22956 if (die->child != NULL)
22958 print_spaces (indent, f);
22959 fprintf_unfiltered (f, " Children:");
22960 if (level + 1 < max_level)
22962 fprintf_unfiltered (f, "\n");
22963 dump_die_1 (f, level + 1, max_level, die->child);
22967 fprintf_unfiltered (f,
22968 " [not printed, max nesting level reached]\n");
22972 if (die->sibling != NULL && level > 0)
22974 dump_die_1 (f, level, max_level, die->sibling);
22978 /* This is called from the pdie macro in gdbinit.in.
22979 It's not static so gcc will keep a copy callable from gdb. */
22982 dump_die (struct die_info *die, int max_level)
22984 dump_die_1 (gdb_stdlog, 0, max_level, die);
22988 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22992 slot = htab_find_slot_with_hash (cu->die_hash, die,
22993 to_underlying (die->sect_off),
22999 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23003 dwarf2_get_ref_die_offset (const struct attribute *attr)
23005 if (attr_form_is_ref (attr))
23006 return (sect_offset) DW_UNSND (attr);
23008 complaint (_("unsupported die ref attribute form: '%s'"),
23009 dwarf_form_name (attr->form));
23013 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23014 * the value held by the attribute is not constant. */
23017 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23019 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23020 return DW_SND (attr);
23021 else if (attr->form == DW_FORM_udata
23022 || attr->form == DW_FORM_data1
23023 || attr->form == DW_FORM_data2
23024 || attr->form == DW_FORM_data4
23025 || attr->form == DW_FORM_data8)
23026 return DW_UNSND (attr);
23029 /* For DW_FORM_data16 see attr_form_is_constant. */
23030 complaint (_("Attribute value is not a constant (%s)"),
23031 dwarf_form_name (attr->form));
23032 return default_value;
23036 /* Follow reference or signature attribute ATTR of SRC_DIE.
23037 On entry *REF_CU is the CU of SRC_DIE.
23038 On exit *REF_CU is the CU of the result. */
23040 static struct die_info *
23041 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23042 struct dwarf2_cu **ref_cu)
23044 struct die_info *die;
23046 if (attr_form_is_ref (attr))
23047 die = follow_die_ref (src_die, attr, ref_cu);
23048 else if (attr->form == DW_FORM_ref_sig8)
23049 die = follow_die_sig (src_die, attr, ref_cu);
23052 dump_die_for_error (src_die);
23053 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23054 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23060 /* Follow reference OFFSET.
23061 On entry *REF_CU is the CU of the source die referencing OFFSET.
23062 On exit *REF_CU is the CU of the result.
23063 Returns NULL if OFFSET is invalid. */
23065 static struct die_info *
23066 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23067 struct dwarf2_cu **ref_cu)
23069 struct die_info temp_die;
23070 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23071 struct dwarf2_per_objfile *dwarf2_per_objfile
23072 = cu->per_cu->dwarf2_per_objfile;
23074 gdb_assert (cu->per_cu != NULL);
23078 if (cu->per_cu->is_debug_types)
23080 /* .debug_types CUs cannot reference anything outside their CU.
23081 If they need to, they have to reference a signatured type via
23082 DW_FORM_ref_sig8. */
23083 if (!offset_in_cu_p (&cu->header, sect_off))
23086 else if (offset_in_dwz != cu->per_cu->is_dwz
23087 || !offset_in_cu_p (&cu->header, sect_off))
23089 struct dwarf2_per_cu_data *per_cu;
23091 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23092 dwarf2_per_objfile);
23094 /* If necessary, add it to the queue and load its DIEs. */
23095 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23096 load_full_comp_unit (per_cu, false, cu->language);
23098 target_cu = per_cu->cu;
23100 else if (cu->dies == NULL)
23102 /* We're loading full DIEs during partial symbol reading. */
23103 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23104 load_full_comp_unit (cu->per_cu, false, language_minimal);
23107 *ref_cu = target_cu;
23108 temp_die.sect_off = sect_off;
23110 if (target_cu != cu)
23111 target_cu->ancestor = cu;
23113 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23115 to_underlying (sect_off));
23118 /* Follow reference attribute ATTR of SRC_DIE.
23119 On entry *REF_CU is the CU of SRC_DIE.
23120 On exit *REF_CU is the CU of the result. */
23122 static struct die_info *
23123 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23124 struct dwarf2_cu **ref_cu)
23126 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23127 struct dwarf2_cu *cu = *ref_cu;
23128 struct die_info *die;
23130 die = follow_die_offset (sect_off,
23131 (attr->form == DW_FORM_GNU_ref_alt
23132 || cu->per_cu->is_dwz),
23135 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23136 "at %s [in module %s]"),
23137 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23138 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23143 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23144 Returned value is intended for DW_OP_call*. Returned
23145 dwarf2_locexpr_baton->data has lifetime of
23146 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23148 struct dwarf2_locexpr_baton
23149 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23150 struct dwarf2_per_cu_data *per_cu,
23151 CORE_ADDR (*get_frame_pc) (void *baton),
23152 void *baton, bool resolve_abstract_p)
23154 struct dwarf2_cu *cu;
23155 struct die_info *die;
23156 struct attribute *attr;
23157 struct dwarf2_locexpr_baton retval;
23158 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23159 struct objfile *objfile = dwarf2_per_objfile->objfile;
23161 if (per_cu->cu == NULL)
23162 load_cu (per_cu, false);
23166 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23167 Instead just throw an error, not much else we can do. */
23168 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23169 sect_offset_str (sect_off), objfile_name (objfile));
23172 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23174 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23175 sect_offset_str (sect_off), objfile_name (objfile));
23177 attr = dwarf2_attr (die, DW_AT_location, cu);
23178 if (!attr && resolve_abstract_p
23179 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23180 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23182 CORE_ADDR pc = (*get_frame_pc) (baton);
23184 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23187 || cand->parent->tag != DW_TAG_subprogram)
23190 CORE_ADDR pc_low, pc_high;
23191 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23192 if (pc_low == ((CORE_ADDR) -1)
23193 || !(pc_low <= pc && pc < pc_high))
23197 attr = dwarf2_attr (die, DW_AT_location, cu);
23204 /* DWARF: "If there is no such attribute, then there is no effect.".
23205 DATA is ignored if SIZE is 0. */
23207 retval.data = NULL;
23210 else if (attr_form_is_section_offset (attr))
23212 struct dwarf2_loclist_baton loclist_baton;
23213 CORE_ADDR pc = (*get_frame_pc) (baton);
23216 fill_in_loclist_baton (cu, &loclist_baton, attr);
23218 retval.data = dwarf2_find_location_expression (&loclist_baton,
23220 retval.size = size;
23224 if (!attr_form_is_block (attr))
23225 error (_("Dwarf Error: DIE at %s referenced in module %s "
23226 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23227 sect_offset_str (sect_off), objfile_name (objfile));
23229 retval.data = DW_BLOCK (attr)->data;
23230 retval.size = DW_BLOCK (attr)->size;
23232 retval.per_cu = cu->per_cu;
23234 age_cached_comp_units (dwarf2_per_objfile);
23239 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23242 struct dwarf2_locexpr_baton
23243 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23244 struct dwarf2_per_cu_data *per_cu,
23245 CORE_ADDR (*get_frame_pc) (void *baton),
23248 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23250 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23253 /* Write a constant of a given type as target-ordered bytes into
23256 static const gdb_byte *
23257 write_constant_as_bytes (struct obstack *obstack,
23258 enum bfd_endian byte_order,
23265 *len = TYPE_LENGTH (type);
23266 result = (gdb_byte *) obstack_alloc (obstack, *len);
23267 store_unsigned_integer (result, *len, byte_order, value);
23272 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23273 pointer to the constant bytes and set LEN to the length of the
23274 data. If memory is needed, allocate it on OBSTACK. If the DIE
23275 does not have a DW_AT_const_value, return NULL. */
23278 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23279 struct dwarf2_per_cu_data *per_cu,
23280 struct obstack *obstack,
23283 struct dwarf2_cu *cu;
23284 struct die_info *die;
23285 struct attribute *attr;
23286 const gdb_byte *result = NULL;
23289 enum bfd_endian byte_order;
23290 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23292 if (per_cu->cu == NULL)
23293 load_cu (per_cu, false);
23297 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23298 Instead just throw an error, not much else we can do. */
23299 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23300 sect_offset_str (sect_off), objfile_name (objfile));
23303 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23305 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23306 sect_offset_str (sect_off), objfile_name (objfile));
23308 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23312 byte_order = (bfd_big_endian (objfile->obfd)
23313 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23315 switch (attr->form)
23318 case DW_FORM_addrx:
23319 case DW_FORM_GNU_addr_index:
23323 *len = cu->header.addr_size;
23324 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23325 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23329 case DW_FORM_string:
23331 case DW_FORM_GNU_str_index:
23332 case DW_FORM_GNU_strp_alt:
23333 /* DW_STRING is already allocated on the objfile obstack, point
23335 result = (const gdb_byte *) DW_STRING (attr);
23336 *len = strlen (DW_STRING (attr));
23338 case DW_FORM_block1:
23339 case DW_FORM_block2:
23340 case DW_FORM_block4:
23341 case DW_FORM_block:
23342 case DW_FORM_exprloc:
23343 case DW_FORM_data16:
23344 result = DW_BLOCK (attr)->data;
23345 *len = DW_BLOCK (attr)->size;
23348 /* The DW_AT_const_value attributes are supposed to carry the
23349 symbol's value "represented as it would be on the target
23350 architecture." By the time we get here, it's already been
23351 converted to host endianness, so we just need to sign- or
23352 zero-extend it as appropriate. */
23353 case DW_FORM_data1:
23354 type = die_type (die, cu);
23355 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23356 if (result == NULL)
23357 result = write_constant_as_bytes (obstack, byte_order,
23360 case DW_FORM_data2:
23361 type = die_type (die, cu);
23362 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23363 if (result == NULL)
23364 result = write_constant_as_bytes (obstack, byte_order,
23367 case DW_FORM_data4:
23368 type = die_type (die, cu);
23369 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23370 if (result == NULL)
23371 result = write_constant_as_bytes (obstack, byte_order,
23374 case DW_FORM_data8:
23375 type = die_type (die, cu);
23376 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23377 if (result == NULL)
23378 result = write_constant_as_bytes (obstack, byte_order,
23382 case DW_FORM_sdata:
23383 case DW_FORM_implicit_const:
23384 type = die_type (die, cu);
23385 result = write_constant_as_bytes (obstack, byte_order,
23386 type, DW_SND (attr), len);
23389 case DW_FORM_udata:
23390 type = die_type (die, cu);
23391 result = write_constant_as_bytes (obstack, byte_order,
23392 type, DW_UNSND (attr), len);
23396 complaint (_("unsupported const value attribute form: '%s'"),
23397 dwarf_form_name (attr->form));
23404 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23405 valid type for this die is found. */
23408 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23409 struct dwarf2_per_cu_data *per_cu)
23411 struct dwarf2_cu *cu;
23412 struct die_info *die;
23414 if (per_cu->cu == NULL)
23415 load_cu (per_cu, false);
23420 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23424 return die_type (die, cu);
23427 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23431 dwarf2_get_die_type (cu_offset die_offset,
23432 struct dwarf2_per_cu_data *per_cu)
23434 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23435 return get_die_type_at_offset (die_offset_sect, per_cu);
23438 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23439 On entry *REF_CU is the CU of SRC_DIE.
23440 On exit *REF_CU is the CU of the result.
23441 Returns NULL if the referenced DIE isn't found. */
23443 static struct die_info *
23444 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23445 struct dwarf2_cu **ref_cu)
23447 struct die_info temp_die;
23448 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23449 struct die_info *die;
23451 /* While it might be nice to assert sig_type->type == NULL here,
23452 we can get here for DW_AT_imported_declaration where we need
23453 the DIE not the type. */
23455 /* If necessary, add it to the queue and load its DIEs. */
23457 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23458 read_signatured_type (sig_type);
23460 sig_cu = sig_type->per_cu.cu;
23461 gdb_assert (sig_cu != NULL);
23462 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23463 temp_die.sect_off = sig_type->type_offset_in_section;
23464 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23465 to_underlying (temp_die.sect_off));
23468 struct dwarf2_per_objfile *dwarf2_per_objfile
23469 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23471 /* For .gdb_index version 7 keep track of included TUs.
23472 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23473 if (dwarf2_per_objfile->index_table != NULL
23474 && dwarf2_per_objfile->index_table->version <= 7)
23476 VEC_safe_push (dwarf2_per_cu_ptr,
23477 (*ref_cu)->per_cu->imported_symtabs,
23483 sig_cu->ancestor = cu;
23491 /* Follow signatured type referenced by ATTR in SRC_DIE.
23492 On entry *REF_CU is the CU of SRC_DIE.
23493 On exit *REF_CU is the CU of the result.
23494 The result is the DIE of the type.
23495 If the referenced type cannot be found an error is thrown. */
23497 static struct die_info *
23498 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23499 struct dwarf2_cu **ref_cu)
23501 ULONGEST signature = DW_SIGNATURE (attr);
23502 struct signatured_type *sig_type;
23503 struct die_info *die;
23505 gdb_assert (attr->form == DW_FORM_ref_sig8);
23507 sig_type = lookup_signatured_type (*ref_cu, signature);
23508 /* sig_type will be NULL if the signatured type is missing from
23510 if (sig_type == NULL)
23512 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23513 " from DIE at %s [in module %s]"),
23514 hex_string (signature), sect_offset_str (src_die->sect_off),
23515 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23518 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23521 dump_die_for_error (src_die);
23522 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23523 " from DIE at %s [in module %s]"),
23524 hex_string (signature), sect_offset_str (src_die->sect_off),
23525 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23531 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23532 reading in and processing the type unit if necessary. */
23534 static struct type *
23535 get_signatured_type (struct die_info *die, ULONGEST signature,
23536 struct dwarf2_cu *cu)
23538 struct dwarf2_per_objfile *dwarf2_per_objfile
23539 = cu->per_cu->dwarf2_per_objfile;
23540 struct signatured_type *sig_type;
23541 struct dwarf2_cu *type_cu;
23542 struct die_info *type_die;
23545 sig_type = lookup_signatured_type (cu, signature);
23546 /* sig_type will be NULL if the signatured type is missing from
23548 if (sig_type == NULL)
23550 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23551 " from DIE at %s [in module %s]"),
23552 hex_string (signature), sect_offset_str (die->sect_off),
23553 objfile_name (dwarf2_per_objfile->objfile));
23554 return build_error_marker_type (cu, die);
23557 /* If we already know the type we're done. */
23558 if (sig_type->type != NULL)
23559 return sig_type->type;
23562 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23563 if (type_die != NULL)
23565 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23566 is created. This is important, for example, because for c++ classes
23567 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23568 type = read_type_die (type_die, type_cu);
23571 complaint (_("Dwarf Error: Cannot build signatured type %s"
23572 " referenced from DIE at %s [in module %s]"),
23573 hex_string (signature), sect_offset_str (die->sect_off),
23574 objfile_name (dwarf2_per_objfile->objfile));
23575 type = build_error_marker_type (cu, die);
23580 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23581 " from DIE at %s [in module %s]"),
23582 hex_string (signature), sect_offset_str (die->sect_off),
23583 objfile_name (dwarf2_per_objfile->objfile));
23584 type = build_error_marker_type (cu, die);
23586 sig_type->type = type;
23591 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23592 reading in and processing the type unit if necessary. */
23594 static struct type *
23595 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23596 struct dwarf2_cu *cu) /* ARI: editCase function */
23598 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23599 if (attr_form_is_ref (attr))
23601 struct dwarf2_cu *type_cu = cu;
23602 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23604 return read_type_die (type_die, type_cu);
23606 else if (attr->form == DW_FORM_ref_sig8)
23608 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23612 struct dwarf2_per_objfile *dwarf2_per_objfile
23613 = cu->per_cu->dwarf2_per_objfile;
23615 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23616 " at %s [in module %s]"),
23617 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23618 objfile_name (dwarf2_per_objfile->objfile));
23619 return build_error_marker_type (cu, die);
23623 /* Load the DIEs associated with type unit PER_CU into memory. */
23626 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23628 struct signatured_type *sig_type;
23630 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23631 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23633 /* We have the per_cu, but we need the signatured_type.
23634 Fortunately this is an easy translation. */
23635 gdb_assert (per_cu->is_debug_types);
23636 sig_type = (struct signatured_type *) per_cu;
23638 gdb_assert (per_cu->cu == NULL);
23640 read_signatured_type (sig_type);
23642 gdb_assert (per_cu->cu != NULL);
23645 /* die_reader_func for read_signatured_type.
23646 This is identical to load_full_comp_unit_reader,
23647 but is kept separate for now. */
23650 read_signatured_type_reader (const struct die_reader_specs *reader,
23651 const gdb_byte *info_ptr,
23652 struct die_info *comp_unit_die,
23656 struct dwarf2_cu *cu = reader->cu;
23658 gdb_assert (cu->die_hash == NULL);
23660 htab_create_alloc_ex (cu->header.length / 12,
23664 &cu->comp_unit_obstack,
23665 hashtab_obstack_allocate,
23666 dummy_obstack_deallocate);
23669 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23670 &info_ptr, comp_unit_die);
23671 cu->dies = comp_unit_die;
23672 /* comp_unit_die is not stored in die_hash, no need. */
23674 /* We try not to read any attributes in this function, because not
23675 all CUs needed for references have been loaded yet, and symbol
23676 table processing isn't initialized. But we have to set the CU language,
23677 or we won't be able to build types correctly.
23678 Similarly, if we do not read the producer, we can not apply
23679 producer-specific interpretation. */
23680 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23683 /* Read in a signatured type and build its CU and DIEs.
23684 If the type is a stub for the real type in a DWO file,
23685 read in the real type from the DWO file as well. */
23688 read_signatured_type (struct signatured_type *sig_type)
23690 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23692 gdb_assert (per_cu->is_debug_types);
23693 gdb_assert (per_cu->cu == NULL);
23695 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23696 read_signatured_type_reader, NULL);
23697 sig_type->per_cu.tu_read = 1;
23700 /* Decode simple location descriptions.
23701 Given a pointer to a dwarf block that defines a location, compute
23702 the location and return the value.
23704 NOTE drow/2003-11-18: This function is called in two situations
23705 now: for the address of static or global variables (partial symbols
23706 only) and for offsets into structures which are expected to be
23707 (more or less) constant. The partial symbol case should go away,
23708 and only the constant case should remain. That will let this
23709 function complain more accurately. A few special modes are allowed
23710 without complaint for global variables (for instance, global
23711 register values and thread-local values).
23713 A location description containing no operations indicates that the
23714 object is optimized out. The return value is 0 for that case.
23715 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23716 callers will only want a very basic result and this can become a
23719 Note that stack[0] is unused except as a default error return. */
23722 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23724 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23726 size_t size = blk->size;
23727 const gdb_byte *data = blk->data;
23728 CORE_ADDR stack[64];
23730 unsigned int bytes_read, unsnd;
23736 stack[++stacki] = 0;
23775 stack[++stacki] = op - DW_OP_lit0;
23810 stack[++stacki] = op - DW_OP_reg0;
23812 dwarf2_complex_location_expr_complaint ();
23816 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23818 stack[++stacki] = unsnd;
23820 dwarf2_complex_location_expr_complaint ();
23824 stack[++stacki] = read_address (objfile->obfd, &data[i],
23829 case DW_OP_const1u:
23830 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23834 case DW_OP_const1s:
23835 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23839 case DW_OP_const2u:
23840 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23844 case DW_OP_const2s:
23845 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23849 case DW_OP_const4u:
23850 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23854 case DW_OP_const4s:
23855 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23859 case DW_OP_const8u:
23860 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23865 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23871 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23876 stack[stacki + 1] = stack[stacki];
23881 stack[stacki - 1] += stack[stacki];
23885 case DW_OP_plus_uconst:
23886 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23892 stack[stacki - 1] -= stack[stacki];
23897 /* If we're not the last op, then we definitely can't encode
23898 this using GDB's address_class enum. This is valid for partial
23899 global symbols, although the variable's address will be bogus
23902 dwarf2_complex_location_expr_complaint ();
23905 case DW_OP_GNU_push_tls_address:
23906 case DW_OP_form_tls_address:
23907 /* The top of the stack has the offset from the beginning
23908 of the thread control block at which the variable is located. */
23909 /* Nothing should follow this operator, so the top of stack would
23911 /* This is valid for partial global symbols, but the variable's
23912 address will be bogus in the psymtab. Make it always at least
23913 non-zero to not look as a variable garbage collected by linker
23914 which have DW_OP_addr 0. */
23916 dwarf2_complex_location_expr_complaint ();
23920 case DW_OP_GNU_uninit:
23924 case DW_OP_GNU_addr_index:
23925 case DW_OP_GNU_const_index:
23926 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23933 const char *name = get_DW_OP_name (op);
23936 complaint (_("unsupported stack op: '%s'"),
23939 complaint (_("unsupported stack op: '%02x'"),
23943 return (stack[stacki]);
23946 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23947 outside of the allocated space. Also enforce minimum>0. */
23948 if (stacki >= ARRAY_SIZE (stack) - 1)
23950 complaint (_("location description stack overflow"));
23956 complaint (_("location description stack underflow"));
23960 return (stack[stacki]);
23963 /* memory allocation interface */
23965 static struct dwarf_block *
23966 dwarf_alloc_block (struct dwarf2_cu *cu)
23968 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23971 static struct die_info *
23972 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23974 struct die_info *die;
23975 size_t size = sizeof (struct die_info);
23978 size += (num_attrs - 1) * sizeof (struct attribute);
23980 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23981 memset (die, 0, sizeof (struct die_info));
23986 /* Macro support. */
23988 /* Return file name relative to the compilation directory of file number I in
23989 *LH's file name table. The result is allocated using xmalloc; the caller is
23990 responsible for freeing it. */
23993 file_file_name (int file, struct line_header *lh)
23995 /* Is the file number a valid index into the line header's file name
23996 table? Remember that file numbers start with one, not zero. */
23997 if (1 <= file && file <= lh->file_names.size ())
23999 const file_entry &fe = lh->file_names[file - 1];
24001 if (!IS_ABSOLUTE_PATH (fe.name))
24003 const char *dir = fe.include_dir (lh);
24005 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24007 return xstrdup (fe.name);
24011 /* The compiler produced a bogus file number. We can at least
24012 record the macro definitions made in the file, even if we
24013 won't be able to find the file by name. */
24014 char fake_name[80];
24016 xsnprintf (fake_name, sizeof (fake_name),
24017 "<bad macro file number %d>", file);
24019 complaint (_("bad file number in macro information (%d)"),
24022 return xstrdup (fake_name);
24026 /* Return the full name of file number I in *LH's file name table.
24027 Use COMP_DIR as the name of the current directory of the
24028 compilation. The result is allocated using xmalloc; the caller is
24029 responsible for freeing it. */
24031 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24033 /* Is the file number a valid index into the line header's file name
24034 table? Remember that file numbers start with one, not zero. */
24035 if (1 <= file && file <= lh->file_names.size ())
24037 char *relative = file_file_name (file, lh);
24039 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24041 return reconcat (relative, comp_dir, SLASH_STRING,
24042 relative, (char *) NULL);
24045 return file_file_name (file, lh);
24049 static struct macro_source_file *
24050 macro_start_file (struct dwarf2_cu *cu,
24051 int file, int line,
24052 struct macro_source_file *current_file,
24053 struct line_header *lh)
24055 /* File name relative to the compilation directory of this source file. */
24056 char *file_name = file_file_name (file, lh);
24058 if (! current_file)
24060 /* Note: We don't create a macro table for this compilation unit
24061 at all until we actually get a filename. */
24062 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24064 /* If we have no current file, then this must be the start_file
24065 directive for the compilation unit's main source file. */
24066 current_file = macro_set_main (macro_table, file_name);
24067 macro_define_special (macro_table);
24070 current_file = macro_include (current_file, line, file_name);
24074 return current_file;
24077 static const char *
24078 consume_improper_spaces (const char *p, const char *body)
24082 complaint (_("macro definition contains spaces "
24083 "in formal argument list:\n`%s'"),
24095 parse_macro_definition (struct macro_source_file *file, int line,
24100 /* The body string takes one of two forms. For object-like macro
24101 definitions, it should be:
24103 <macro name> " " <definition>
24105 For function-like macro definitions, it should be:
24107 <macro name> "() " <definition>
24109 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24111 Spaces may appear only where explicitly indicated, and in the
24114 The Dwarf 2 spec says that an object-like macro's name is always
24115 followed by a space, but versions of GCC around March 2002 omit
24116 the space when the macro's definition is the empty string.
24118 The Dwarf 2 spec says that there should be no spaces between the
24119 formal arguments in a function-like macro's formal argument list,
24120 but versions of GCC around March 2002 include spaces after the
24124 /* Find the extent of the macro name. The macro name is terminated
24125 by either a space or null character (for an object-like macro) or
24126 an opening paren (for a function-like macro). */
24127 for (p = body; *p; p++)
24128 if (*p == ' ' || *p == '(')
24131 if (*p == ' ' || *p == '\0')
24133 /* It's an object-like macro. */
24134 int name_len = p - body;
24135 char *name = savestring (body, name_len);
24136 const char *replacement;
24139 replacement = body + name_len + 1;
24142 dwarf2_macro_malformed_definition_complaint (body);
24143 replacement = body + name_len;
24146 macro_define_object (file, line, name, replacement);
24150 else if (*p == '(')
24152 /* It's a function-like macro. */
24153 char *name = savestring (body, p - body);
24156 char **argv = XNEWVEC (char *, argv_size);
24160 p = consume_improper_spaces (p, body);
24162 /* Parse the formal argument list. */
24163 while (*p && *p != ')')
24165 /* Find the extent of the current argument name. */
24166 const char *arg_start = p;
24168 while (*p && *p != ',' && *p != ')' && *p != ' ')
24171 if (! *p || p == arg_start)
24172 dwarf2_macro_malformed_definition_complaint (body);
24175 /* Make sure argv has room for the new argument. */
24176 if (argc >= argv_size)
24179 argv = XRESIZEVEC (char *, argv, argv_size);
24182 argv[argc++] = savestring (arg_start, p - arg_start);
24185 p = consume_improper_spaces (p, body);
24187 /* Consume the comma, if present. */
24192 p = consume_improper_spaces (p, body);
24201 /* Perfectly formed definition, no complaints. */
24202 macro_define_function (file, line, name,
24203 argc, (const char **) argv,
24205 else if (*p == '\0')
24207 /* Complain, but do define it. */
24208 dwarf2_macro_malformed_definition_complaint (body);
24209 macro_define_function (file, line, name,
24210 argc, (const char **) argv,
24214 /* Just complain. */
24215 dwarf2_macro_malformed_definition_complaint (body);
24218 /* Just complain. */
24219 dwarf2_macro_malformed_definition_complaint (body);
24225 for (i = 0; i < argc; i++)
24231 dwarf2_macro_malformed_definition_complaint (body);
24234 /* Skip some bytes from BYTES according to the form given in FORM.
24235 Returns the new pointer. */
24237 static const gdb_byte *
24238 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24239 enum dwarf_form form,
24240 unsigned int offset_size,
24241 struct dwarf2_section_info *section)
24243 unsigned int bytes_read;
24247 case DW_FORM_data1:
24252 case DW_FORM_data2:
24256 case DW_FORM_data4:
24260 case DW_FORM_data8:
24264 case DW_FORM_data16:
24268 case DW_FORM_string:
24269 read_direct_string (abfd, bytes, &bytes_read);
24270 bytes += bytes_read;
24273 case DW_FORM_sec_offset:
24275 case DW_FORM_GNU_strp_alt:
24276 bytes += offset_size;
24279 case DW_FORM_block:
24280 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24281 bytes += bytes_read;
24284 case DW_FORM_block1:
24285 bytes += 1 + read_1_byte (abfd, bytes);
24287 case DW_FORM_block2:
24288 bytes += 2 + read_2_bytes (abfd, bytes);
24290 case DW_FORM_block4:
24291 bytes += 4 + read_4_bytes (abfd, bytes);
24294 case DW_FORM_addrx:
24295 case DW_FORM_sdata:
24296 case DW_FORM_udata:
24297 case DW_FORM_GNU_addr_index:
24298 case DW_FORM_GNU_str_index:
24299 bytes = gdb_skip_leb128 (bytes, buffer_end);
24302 dwarf2_section_buffer_overflow_complaint (section);
24307 case DW_FORM_implicit_const:
24312 complaint (_("invalid form 0x%x in `%s'"),
24313 form, get_section_name (section));
24321 /* A helper for dwarf_decode_macros that handles skipping an unknown
24322 opcode. Returns an updated pointer to the macro data buffer; or,
24323 on error, issues a complaint and returns NULL. */
24325 static const gdb_byte *
24326 skip_unknown_opcode (unsigned int opcode,
24327 const gdb_byte **opcode_definitions,
24328 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24330 unsigned int offset_size,
24331 struct dwarf2_section_info *section)
24333 unsigned int bytes_read, i;
24335 const gdb_byte *defn;
24337 if (opcode_definitions[opcode] == NULL)
24339 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24344 defn = opcode_definitions[opcode];
24345 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24346 defn += bytes_read;
24348 for (i = 0; i < arg; ++i)
24350 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24351 (enum dwarf_form) defn[i], offset_size,
24353 if (mac_ptr == NULL)
24355 /* skip_form_bytes already issued the complaint. */
24363 /* A helper function which parses the header of a macro section.
24364 If the macro section is the extended (for now called "GNU") type,
24365 then this updates *OFFSET_SIZE. Returns a pointer to just after
24366 the header, or issues a complaint and returns NULL on error. */
24368 static const gdb_byte *
24369 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24371 const gdb_byte *mac_ptr,
24372 unsigned int *offset_size,
24373 int section_is_gnu)
24375 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24377 if (section_is_gnu)
24379 unsigned int version, flags;
24381 version = read_2_bytes (abfd, mac_ptr);
24382 if (version != 4 && version != 5)
24384 complaint (_("unrecognized version `%d' in .debug_macro section"),
24390 flags = read_1_byte (abfd, mac_ptr);
24392 *offset_size = (flags & 1) ? 8 : 4;
24394 if ((flags & 2) != 0)
24395 /* We don't need the line table offset. */
24396 mac_ptr += *offset_size;
24398 /* Vendor opcode descriptions. */
24399 if ((flags & 4) != 0)
24401 unsigned int i, count;
24403 count = read_1_byte (abfd, mac_ptr);
24405 for (i = 0; i < count; ++i)
24407 unsigned int opcode, bytes_read;
24410 opcode = read_1_byte (abfd, mac_ptr);
24412 opcode_definitions[opcode] = mac_ptr;
24413 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24414 mac_ptr += bytes_read;
24423 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24424 including DW_MACRO_import. */
24427 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24429 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24430 struct macro_source_file *current_file,
24431 struct line_header *lh,
24432 struct dwarf2_section_info *section,
24433 int section_is_gnu, int section_is_dwz,
24434 unsigned int offset_size,
24435 htab_t include_hash)
24437 struct dwarf2_per_objfile *dwarf2_per_objfile
24438 = cu->per_cu->dwarf2_per_objfile;
24439 struct objfile *objfile = dwarf2_per_objfile->objfile;
24440 enum dwarf_macro_record_type macinfo_type;
24441 int at_commandline;
24442 const gdb_byte *opcode_definitions[256];
24444 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24445 &offset_size, section_is_gnu);
24446 if (mac_ptr == NULL)
24448 /* We already issued a complaint. */
24452 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24453 GDB is still reading the definitions from command line. First
24454 DW_MACINFO_start_file will need to be ignored as it was already executed
24455 to create CURRENT_FILE for the main source holding also the command line
24456 definitions. On first met DW_MACINFO_start_file this flag is reset to
24457 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24459 at_commandline = 1;
24463 /* Do we at least have room for a macinfo type byte? */
24464 if (mac_ptr >= mac_end)
24466 dwarf2_section_buffer_overflow_complaint (section);
24470 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24473 /* Note that we rely on the fact that the corresponding GNU and
24474 DWARF constants are the same. */
24476 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24477 switch (macinfo_type)
24479 /* A zero macinfo type indicates the end of the macro
24484 case DW_MACRO_define:
24485 case DW_MACRO_undef:
24486 case DW_MACRO_define_strp:
24487 case DW_MACRO_undef_strp:
24488 case DW_MACRO_define_sup:
24489 case DW_MACRO_undef_sup:
24491 unsigned int bytes_read;
24496 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24497 mac_ptr += bytes_read;
24499 if (macinfo_type == DW_MACRO_define
24500 || macinfo_type == DW_MACRO_undef)
24502 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24503 mac_ptr += bytes_read;
24507 LONGEST str_offset;
24509 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24510 mac_ptr += offset_size;
24512 if (macinfo_type == DW_MACRO_define_sup
24513 || macinfo_type == DW_MACRO_undef_sup
24516 struct dwz_file *dwz
24517 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24519 body = read_indirect_string_from_dwz (objfile,
24523 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24527 is_define = (macinfo_type == DW_MACRO_define
24528 || macinfo_type == DW_MACRO_define_strp
24529 || macinfo_type == DW_MACRO_define_sup);
24530 if (! current_file)
24532 /* DWARF violation as no main source is present. */
24533 complaint (_("debug info with no main source gives macro %s "
24535 is_define ? _("definition") : _("undefinition"),
24539 if ((line == 0 && !at_commandline)
24540 || (line != 0 && at_commandline))
24541 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24542 at_commandline ? _("command-line") : _("in-file"),
24543 is_define ? _("definition") : _("undefinition"),
24544 line == 0 ? _("zero") : _("non-zero"), line, body);
24547 parse_macro_definition (current_file, line, body);
24550 gdb_assert (macinfo_type == DW_MACRO_undef
24551 || macinfo_type == DW_MACRO_undef_strp
24552 || macinfo_type == DW_MACRO_undef_sup);
24553 macro_undef (current_file, line, body);
24558 case DW_MACRO_start_file:
24560 unsigned int bytes_read;
24563 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24564 mac_ptr += bytes_read;
24565 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24566 mac_ptr += bytes_read;
24568 if ((line == 0 && !at_commandline)
24569 || (line != 0 && at_commandline))
24570 complaint (_("debug info gives source %d included "
24571 "from %s at %s line %d"),
24572 file, at_commandline ? _("command-line") : _("file"),
24573 line == 0 ? _("zero") : _("non-zero"), line);
24575 if (at_commandline)
24577 /* This DW_MACRO_start_file was executed in the
24579 at_commandline = 0;
24582 current_file = macro_start_file (cu, file, line, current_file,
24587 case DW_MACRO_end_file:
24588 if (! current_file)
24589 complaint (_("macro debug info has an unmatched "
24590 "`close_file' directive"));
24593 current_file = current_file->included_by;
24594 if (! current_file)
24596 enum dwarf_macro_record_type next_type;
24598 /* GCC circa March 2002 doesn't produce the zero
24599 type byte marking the end of the compilation
24600 unit. Complain if it's not there, but exit no
24603 /* Do we at least have room for a macinfo type byte? */
24604 if (mac_ptr >= mac_end)
24606 dwarf2_section_buffer_overflow_complaint (section);
24610 /* We don't increment mac_ptr here, so this is just
24613 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24615 if (next_type != 0)
24616 complaint (_("no terminating 0-type entry for "
24617 "macros in `.debug_macinfo' section"));
24624 case DW_MACRO_import:
24625 case DW_MACRO_import_sup:
24629 bfd *include_bfd = abfd;
24630 struct dwarf2_section_info *include_section = section;
24631 const gdb_byte *include_mac_end = mac_end;
24632 int is_dwz = section_is_dwz;
24633 const gdb_byte *new_mac_ptr;
24635 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24636 mac_ptr += offset_size;
24638 if (macinfo_type == DW_MACRO_import_sup)
24640 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24642 dwarf2_read_section (objfile, &dwz->macro);
24644 include_section = &dwz->macro;
24645 include_bfd = get_section_bfd_owner (include_section);
24646 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24650 new_mac_ptr = include_section->buffer + offset;
24651 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24655 /* This has actually happened; see
24656 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24657 complaint (_("recursive DW_MACRO_import in "
24658 ".debug_macro section"));
24662 *slot = (void *) new_mac_ptr;
24664 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24665 include_mac_end, current_file, lh,
24666 section, section_is_gnu, is_dwz,
24667 offset_size, include_hash);
24669 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24674 case DW_MACINFO_vendor_ext:
24675 if (!section_is_gnu)
24677 unsigned int bytes_read;
24679 /* This reads the constant, but since we don't recognize
24680 any vendor extensions, we ignore it. */
24681 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24682 mac_ptr += bytes_read;
24683 read_direct_string (abfd, mac_ptr, &bytes_read);
24684 mac_ptr += bytes_read;
24686 /* We don't recognize any vendor extensions. */
24692 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24693 mac_ptr, mac_end, abfd, offset_size,
24695 if (mac_ptr == NULL)
24700 } while (macinfo_type != 0);
24704 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24705 int section_is_gnu)
24707 struct dwarf2_per_objfile *dwarf2_per_objfile
24708 = cu->per_cu->dwarf2_per_objfile;
24709 struct objfile *objfile = dwarf2_per_objfile->objfile;
24710 struct line_header *lh = cu->line_header;
24712 const gdb_byte *mac_ptr, *mac_end;
24713 struct macro_source_file *current_file = 0;
24714 enum dwarf_macro_record_type macinfo_type;
24715 unsigned int offset_size = cu->header.offset_size;
24716 const gdb_byte *opcode_definitions[256];
24718 struct dwarf2_section_info *section;
24719 const char *section_name;
24721 if (cu->dwo_unit != NULL)
24723 if (section_is_gnu)
24725 section = &cu->dwo_unit->dwo_file->sections.macro;
24726 section_name = ".debug_macro.dwo";
24730 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24731 section_name = ".debug_macinfo.dwo";
24736 if (section_is_gnu)
24738 section = &dwarf2_per_objfile->macro;
24739 section_name = ".debug_macro";
24743 section = &dwarf2_per_objfile->macinfo;
24744 section_name = ".debug_macinfo";
24748 dwarf2_read_section (objfile, section);
24749 if (section->buffer == NULL)
24751 complaint (_("missing %s section"), section_name);
24754 abfd = get_section_bfd_owner (section);
24756 /* First pass: Find the name of the base filename.
24757 This filename is needed in order to process all macros whose definition
24758 (or undefinition) comes from the command line. These macros are defined
24759 before the first DW_MACINFO_start_file entry, and yet still need to be
24760 associated to the base file.
24762 To determine the base file name, we scan the macro definitions until we
24763 reach the first DW_MACINFO_start_file entry. We then initialize
24764 CURRENT_FILE accordingly so that any macro definition found before the
24765 first DW_MACINFO_start_file can still be associated to the base file. */
24767 mac_ptr = section->buffer + offset;
24768 mac_end = section->buffer + section->size;
24770 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24771 &offset_size, section_is_gnu);
24772 if (mac_ptr == NULL)
24774 /* We already issued a complaint. */
24780 /* Do we at least have room for a macinfo type byte? */
24781 if (mac_ptr >= mac_end)
24783 /* Complaint is printed during the second pass as GDB will probably
24784 stop the first pass earlier upon finding
24785 DW_MACINFO_start_file. */
24789 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24792 /* Note that we rely on the fact that the corresponding GNU and
24793 DWARF constants are the same. */
24795 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24796 switch (macinfo_type)
24798 /* A zero macinfo type indicates the end of the macro
24803 case DW_MACRO_define:
24804 case DW_MACRO_undef:
24805 /* Only skip the data by MAC_PTR. */
24807 unsigned int bytes_read;
24809 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24810 mac_ptr += bytes_read;
24811 read_direct_string (abfd, mac_ptr, &bytes_read);
24812 mac_ptr += bytes_read;
24816 case DW_MACRO_start_file:
24818 unsigned int bytes_read;
24821 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24822 mac_ptr += bytes_read;
24823 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24824 mac_ptr += bytes_read;
24826 current_file = macro_start_file (cu, file, line, current_file, lh);
24830 case DW_MACRO_end_file:
24831 /* No data to skip by MAC_PTR. */
24834 case DW_MACRO_define_strp:
24835 case DW_MACRO_undef_strp:
24836 case DW_MACRO_define_sup:
24837 case DW_MACRO_undef_sup:
24839 unsigned int bytes_read;
24841 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24842 mac_ptr += bytes_read;
24843 mac_ptr += offset_size;
24847 case DW_MACRO_import:
24848 case DW_MACRO_import_sup:
24849 /* Note that, according to the spec, a transparent include
24850 chain cannot call DW_MACRO_start_file. So, we can just
24851 skip this opcode. */
24852 mac_ptr += offset_size;
24855 case DW_MACINFO_vendor_ext:
24856 /* Only skip the data by MAC_PTR. */
24857 if (!section_is_gnu)
24859 unsigned int bytes_read;
24861 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24862 mac_ptr += bytes_read;
24863 read_direct_string (abfd, mac_ptr, &bytes_read);
24864 mac_ptr += bytes_read;
24869 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24870 mac_ptr, mac_end, abfd, offset_size,
24872 if (mac_ptr == NULL)
24877 } while (macinfo_type != 0 && current_file == NULL);
24879 /* Second pass: Process all entries.
24881 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24882 command-line macro definitions/undefinitions. This flag is unset when we
24883 reach the first DW_MACINFO_start_file entry. */
24885 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24887 NULL, xcalloc, xfree));
24888 mac_ptr = section->buffer + offset;
24889 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24890 *slot = (void *) mac_ptr;
24891 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24892 current_file, lh, section,
24893 section_is_gnu, 0, offset_size,
24894 include_hash.get ());
24897 /* Check if the attribute's form is a DW_FORM_block*
24898 if so return true else false. */
24901 attr_form_is_block (const struct attribute *attr)
24903 return (attr == NULL ? 0 :
24904 attr->form == DW_FORM_block1
24905 || attr->form == DW_FORM_block2
24906 || attr->form == DW_FORM_block4
24907 || attr->form == DW_FORM_block
24908 || attr->form == DW_FORM_exprloc);
24911 /* Return non-zero if ATTR's value is a section offset --- classes
24912 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24913 You may use DW_UNSND (attr) to retrieve such offsets.
24915 Section 7.5.4, "Attribute Encodings", explains that no attribute
24916 may have a value that belongs to more than one of these classes; it
24917 would be ambiguous if we did, because we use the same forms for all
24921 attr_form_is_section_offset (const struct attribute *attr)
24923 return (attr->form == DW_FORM_data4
24924 || attr->form == DW_FORM_data8
24925 || attr->form == DW_FORM_sec_offset);
24928 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24929 zero otherwise. When this function returns true, you can apply
24930 dwarf2_get_attr_constant_value to it.
24932 However, note that for some attributes you must check
24933 attr_form_is_section_offset before using this test. DW_FORM_data4
24934 and DW_FORM_data8 are members of both the constant class, and of
24935 the classes that contain offsets into other debug sections
24936 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24937 that, if an attribute's can be either a constant or one of the
24938 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24939 taken as section offsets, not constants.
24941 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24942 cannot handle that. */
24945 attr_form_is_constant (const struct attribute *attr)
24947 switch (attr->form)
24949 case DW_FORM_sdata:
24950 case DW_FORM_udata:
24951 case DW_FORM_data1:
24952 case DW_FORM_data2:
24953 case DW_FORM_data4:
24954 case DW_FORM_data8:
24955 case DW_FORM_implicit_const:
24963 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24964 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24967 attr_form_is_ref (const struct attribute *attr)
24969 switch (attr->form)
24971 case DW_FORM_ref_addr:
24976 case DW_FORM_ref_udata:
24977 case DW_FORM_GNU_ref_alt:
24984 /* Return the .debug_loc section to use for CU.
24985 For DWO files use .debug_loc.dwo. */
24987 static struct dwarf2_section_info *
24988 cu_debug_loc_section (struct dwarf2_cu *cu)
24990 struct dwarf2_per_objfile *dwarf2_per_objfile
24991 = cu->per_cu->dwarf2_per_objfile;
24995 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24997 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
24999 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25000 : &dwarf2_per_objfile->loc);
25003 /* A helper function that fills in a dwarf2_loclist_baton. */
25006 fill_in_loclist_baton (struct dwarf2_cu *cu,
25007 struct dwarf2_loclist_baton *baton,
25008 const struct attribute *attr)
25010 struct dwarf2_per_objfile *dwarf2_per_objfile
25011 = cu->per_cu->dwarf2_per_objfile;
25012 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25014 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25016 baton->per_cu = cu->per_cu;
25017 gdb_assert (baton->per_cu);
25018 /* We don't know how long the location list is, but make sure we
25019 don't run off the edge of the section. */
25020 baton->size = section->size - DW_UNSND (attr);
25021 baton->data = section->buffer + DW_UNSND (attr);
25022 baton->base_address = cu->base_address;
25023 baton->from_dwo = cu->dwo_unit != NULL;
25027 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25028 struct dwarf2_cu *cu, int is_block)
25030 struct dwarf2_per_objfile *dwarf2_per_objfile
25031 = cu->per_cu->dwarf2_per_objfile;
25032 struct objfile *objfile = dwarf2_per_objfile->objfile;
25033 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25035 if (attr_form_is_section_offset (attr)
25036 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25037 the section. If so, fall through to the complaint in the
25039 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25041 struct dwarf2_loclist_baton *baton;
25043 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25045 fill_in_loclist_baton (cu, baton, attr);
25047 if (cu->base_known == 0)
25048 complaint (_("Location list used without "
25049 "specifying the CU base address."));
25051 SYMBOL_ACLASS_INDEX (sym) = (is_block
25052 ? dwarf2_loclist_block_index
25053 : dwarf2_loclist_index);
25054 SYMBOL_LOCATION_BATON (sym) = baton;
25058 struct dwarf2_locexpr_baton *baton;
25060 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25061 baton->per_cu = cu->per_cu;
25062 gdb_assert (baton->per_cu);
25064 if (attr_form_is_block (attr))
25066 /* Note that we're just copying the block's data pointer
25067 here, not the actual data. We're still pointing into the
25068 info_buffer for SYM's objfile; right now we never release
25069 that buffer, but when we do clean up properly this may
25071 baton->size = DW_BLOCK (attr)->size;
25072 baton->data = DW_BLOCK (attr)->data;
25076 dwarf2_invalid_attrib_class_complaint ("location description",
25077 SYMBOL_NATURAL_NAME (sym));
25081 SYMBOL_ACLASS_INDEX (sym) = (is_block
25082 ? dwarf2_locexpr_block_index
25083 : dwarf2_locexpr_index);
25084 SYMBOL_LOCATION_BATON (sym) = baton;
25088 /* Return the OBJFILE associated with the compilation unit CU. If CU
25089 came from a separate debuginfo file, then the master objfile is
25093 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25095 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25097 /* Return the master objfile, so that we can report and look up the
25098 correct file containing this variable. */
25099 if (objfile->separate_debug_objfile_backlink)
25100 objfile = objfile->separate_debug_objfile_backlink;
25105 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25106 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25107 CU_HEADERP first. */
25109 static const struct comp_unit_head *
25110 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25111 struct dwarf2_per_cu_data *per_cu)
25113 const gdb_byte *info_ptr;
25116 return &per_cu->cu->header;
25118 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25120 memset (cu_headerp, 0, sizeof (*cu_headerp));
25121 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25122 rcuh_kind::COMPILE);
25127 /* Return the address size given in the compilation unit header for CU. */
25130 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25132 struct comp_unit_head cu_header_local;
25133 const struct comp_unit_head *cu_headerp;
25135 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25137 return cu_headerp->addr_size;
25140 /* Return the offset size given in the compilation unit header for CU. */
25143 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25145 struct comp_unit_head cu_header_local;
25146 const struct comp_unit_head *cu_headerp;
25148 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25150 return cu_headerp->offset_size;
25153 /* See its dwarf2loc.h declaration. */
25156 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25158 struct comp_unit_head cu_header_local;
25159 const struct comp_unit_head *cu_headerp;
25161 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25163 if (cu_headerp->version == 2)
25164 return cu_headerp->addr_size;
25166 return cu_headerp->offset_size;
25169 /* Return the text offset of the CU. The returned offset comes from
25170 this CU's objfile. If this objfile came from a separate debuginfo
25171 file, then the offset may be different from the corresponding
25172 offset in the parent objfile. */
25175 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25177 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25179 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25182 /* Return DWARF version number of PER_CU. */
25185 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25187 return per_cu->dwarf_version;
25190 /* Locate the .debug_info compilation unit from CU's objfile which contains
25191 the DIE at OFFSET. Raises an error on failure. */
25193 static struct dwarf2_per_cu_data *
25194 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25195 unsigned int offset_in_dwz,
25196 struct dwarf2_per_objfile *dwarf2_per_objfile)
25198 struct dwarf2_per_cu_data *this_cu;
25202 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25205 struct dwarf2_per_cu_data *mid_cu;
25206 int mid = low + (high - low) / 2;
25208 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25209 if (mid_cu->is_dwz > offset_in_dwz
25210 || (mid_cu->is_dwz == offset_in_dwz
25211 && mid_cu->sect_off + mid_cu->length >= sect_off))
25216 gdb_assert (low == high);
25217 this_cu = dwarf2_per_objfile->all_comp_units[low];
25218 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25220 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25221 error (_("Dwarf Error: could not find partial DIE containing "
25222 "offset %s [in module %s]"),
25223 sect_offset_str (sect_off),
25224 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25226 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25228 return dwarf2_per_objfile->all_comp_units[low-1];
25232 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25233 && sect_off >= this_cu->sect_off + this_cu->length)
25234 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25235 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25240 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25242 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25243 : per_cu (per_cu_),
25245 has_loclist (false),
25246 checked_producer (false),
25247 producer_is_gxx_lt_4_6 (false),
25248 producer_is_gcc_lt_4_3 (false),
25249 producer_is_icc (false),
25250 producer_is_icc_lt_14 (false),
25251 producer_is_codewarrior (false),
25252 processing_has_namespace_info (false)
25257 /* Destroy a dwarf2_cu. */
25259 dwarf2_cu::~dwarf2_cu ()
25264 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25267 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25268 enum language pretend_language)
25270 struct attribute *attr;
25272 /* Set the language we're debugging. */
25273 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25275 set_cu_language (DW_UNSND (attr), cu);
25278 cu->language = pretend_language;
25279 cu->language_defn = language_def (cu->language);
25282 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25285 /* Increase the age counter on each cached compilation unit, and free
25286 any that are too old. */
25289 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25291 struct dwarf2_per_cu_data *per_cu, **last_chain;
25293 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25294 per_cu = dwarf2_per_objfile->read_in_chain;
25295 while (per_cu != NULL)
25297 per_cu->cu->last_used ++;
25298 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25299 dwarf2_mark (per_cu->cu);
25300 per_cu = per_cu->cu->read_in_chain;
25303 per_cu = dwarf2_per_objfile->read_in_chain;
25304 last_chain = &dwarf2_per_objfile->read_in_chain;
25305 while (per_cu != NULL)
25307 struct dwarf2_per_cu_data *next_cu;
25309 next_cu = per_cu->cu->read_in_chain;
25311 if (!per_cu->cu->mark)
25314 *last_chain = next_cu;
25317 last_chain = &per_cu->cu->read_in_chain;
25323 /* Remove a single compilation unit from the cache. */
25326 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25328 struct dwarf2_per_cu_data *per_cu, **last_chain;
25329 struct dwarf2_per_objfile *dwarf2_per_objfile
25330 = target_per_cu->dwarf2_per_objfile;
25332 per_cu = dwarf2_per_objfile->read_in_chain;
25333 last_chain = &dwarf2_per_objfile->read_in_chain;
25334 while (per_cu != NULL)
25336 struct dwarf2_per_cu_data *next_cu;
25338 next_cu = per_cu->cu->read_in_chain;
25340 if (per_cu == target_per_cu)
25344 *last_chain = next_cu;
25348 last_chain = &per_cu->cu->read_in_chain;
25354 /* Cleanup function for the dwarf2_per_objfile data. */
25357 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25359 struct dwarf2_per_objfile *dwarf2_per_objfile
25360 = static_cast<struct dwarf2_per_objfile *> (datum);
25362 delete dwarf2_per_objfile;
25365 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25366 We store these in a hash table separate from the DIEs, and preserve them
25367 when the DIEs are flushed out of cache.
25369 The CU "per_cu" pointer is needed because offset alone is not enough to
25370 uniquely identify the type. A file may have multiple .debug_types sections,
25371 or the type may come from a DWO file. Furthermore, while it's more logical
25372 to use per_cu->section+offset, with Fission the section with the data is in
25373 the DWO file but we don't know that section at the point we need it.
25374 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25375 because we can enter the lookup routine, get_die_type_at_offset, from
25376 outside this file, and thus won't necessarily have PER_CU->cu.
25377 Fortunately, PER_CU is stable for the life of the objfile. */
25379 struct dwarf2_per_cu_offset_and_type
25381 const struct dwarf2_per_cu_data *per_cu;
25382 sect_offset sect_off;
25386 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25389 per_cu_offset_and_type_hash (const void *item)
25391 const struct dwarf2_per_cu_offset_and_type *ofs
25392 = (const struct dwarf2_per_cu_offset_and_type *) item;
25394 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25397 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25400 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25402 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25403 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25404 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25405 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25407 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25408 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25411 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25412 table if necessary. For convenience, return TYPE.
25414 The DIEs reading must have careful ordering to:
25415 * Not cause infite loops trying to read in DIEs as a prerequisite for
25416 reading current DIE.
25417 * Not trying to dereference contents of still incompletely read in types
25418 while reading in other DIEs.
25419 * Enable referencing still incompletely read in types just by a pointer to
25420 the type without accessing its fields.
25422 Therefore caller should follow these rules:
25423 * Try to fetch any prerequisite types we may need to build this DIE type
25424 before building the type and calling set_die_type.
25425 * After building type call set_die_type for current DIE as soon as
25426 possible before fetching more types to complete the current type.
25427 * Make the type as complete as possible before fetching more types. */
25429 static struct type *
25430 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25432 struct dwarf2_per_objfile *dwarf2_per_objfile
25433 = cu->per_cu->dwarf2_per_objfile;
25434 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25435 struct objfile *objfile = dwarf2_per_objfile->objfile;
25436 struct attribute *attr;
25437 struct dynamic_prop prop;
25439 /* For Ada types, make sure that the gnat-specific data is always
25440 initialized (if not already set). There are a few types where
25441 we should not be doing so, because the type-specific area is
25442 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25443 where the type-specific area is used to store the floatformat).
25444 But this is not a problem, because the gnat-specific information
25445 is actually not needed for these types. */
25446 if (need_gnat_info (cu)
25447 && TYPE_CODE (type) != TYPE_CODE_FUNC
25448 && TYPE_CODE (type) != TYPE_CODE_FLT
25449 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25450 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25451 && TYPE_CODE (type) != TYPE_CODE_METHOD
25452 && !HAVE_GNAT_AUX_INFO (type))
25453 INIT_GNAT_SPECIFIC (type);
25455 /* Read DW_AT_allocated and set in type. */
25456 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25457 if (attr_form_is_block (attr))
25459 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25460 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25462 else if (attr != NULL)
25464 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25465 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25466 sect_offset_str (die->sect_off));
25469 /* Read DW_AT_associated and set in type. */
25470 attr = dwarf2_attr (die, DW_AT_associated, cu);
25471 if (attr_form_is_block (attr))
25473 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25474 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25476 else if (attr != NULL)
25478 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25479 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25480 sect_offset_str (die->sect_off));
25483 /* Read DW_AT_data_location and set in type. */
25484 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25485 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25486 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25488 if (dwarf2_per_objfile->die_type_hash == NULL)
25490 dwarf2_per_objfile->die_type_hash =
25491 htab_create_alloc_ex (127,
25492 per_cu_offset_and_type_hash,
25493 per_cu_offset_and_type_eq,
25495 &objfile->objfile_obstack,
25496 hashtab_obstack_allocate,
25497 dummy_obstack_deallocate);
25500 ofs.per_cu = cu->per_cu;
25501 ofs.sect_off = die->sect_off;
25503 slot = (struct dwarf2_per_cu_offset_and_type **)
25504 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25506 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25507 sect_offset_str (die->sect_off));
25508 *slot = XOBNEW (&objfile->objfile_obstack,
25509 struct dwarf2_per_cu_offset_and_type);
25514 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25515 or return NULL if the die does not have a saved type. */
25517 static struct type *
25518 get_die_type_at_offset (sect_offset sect_off,
25519 struct dwarf2_per_cu_data *per_cu)
25521 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25522 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25524 if (dwarf2_per_objfile->die_type_hash == NULL)
25527 ofs.per_cu = per_cu;
25528 ofs.sect_off = sect_off;
25529 slot = ((struct dwarf2_per_cu_offset_and_type *)
25530 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25537 /* Look up the type for DIE in CU in die_type_hash,
25538 or return NULL if DIE does not have a saved type. */
25540 static struct type *
25541 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25543 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25546 /* Add a dependence relationship from CU to REF_PER_CU. */
25549 dwarf2_add_dependence (struct dwarf2_cu *cu,
25550 struct dwarf2_per_cu_data *ref_per_cu)
25554 if (cu->dependencies == NULL)
25556 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25557 NULL, &cu->comp_unit_obstack,
25558 hashtab_obstack_allocate,
25559 dummy_obstack_deallocate);
25561 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25563 *slot = ref_per_cu;
25566 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25567 Set the mark field in every compilation unit in the
25568 cache that we must keep because we are keeping CU. */
25571 dwarf2_mark_helper (void **slot, void *data)
25573 struct dwarf2_per_cu_data *per_cu;
25575 per_cu = (struct dwarf2_per_cu_data *) *slot;
25577 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25578 reading of the chain. As such dependencies remain valid it is not much
25579 useful to track and undo them during QUIT cleanups. */
25580 if (per_cu->cu == NULL)
25583 if (per_cu->cu->mark)
25585 per_cu->cu->mark = true;
25587 if (per_cu->cu->dependencies != NULL)
25588 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25593 /* Set the mark field in CU and in every other compilation unit in the
25594 cache that we must keep because we are keeping CU. */
25597 dwarf2_mark (struct dwarf2_cu *cu)
25602 if (cu->dependencies != NULL)
25603 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25607 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25611 per_cu->cu->mark = false;
25612 per_cu = per_cu->cu->read_in_chain;
25616 /* Trivial hash function for partial_die_info: the hash value of a DIE
25617 is its offset in .debug_info for this objfile. */
25620 partial_die_hash (const void *item)
25622 const struct partial_die_info *part_die
25623 = (const struct partial_die_info *) item;
25625 return to_underlying (part_die->sect_off);
25628 /* Trivial comparison function for partial_die_info structures: two DIEs
25629 are equal if they have the same offset. */
25632 partial_die_eq (const void *item_lhs, const void *item_rhs)
25634 const struct partial_die_info *part_die_lhs
25635 = (const struct partial_die_info *) item_lhs;
25636 const struct partial_die_info *part_die_rhs
25637 = (const struct partial_die_info *) item_rhs;
25639 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25642 struct cmd_list_element *set_dwarf_cmdlist;
25643 struct cmd_list_element *show_dwarf_cmdlist;
25646 set_dwarf_cmd (const char *args, int from_tty)
25648 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25653 show_dwarf_cmd (const char *args, int from_tty)
25655 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25658 int dwarf_always_disassemble;
25661 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25662 struct cmd_list_element *c, const char *value)
25664 fprintf_filtered (file,
25665 _("Whether to always disassemble "
25666 "DWARF expressions is %s.\n"),
25671 show_check_physname (struct ui_file *file, int from_tty,
25672 struct cmd_list_element *c, const char *value)
25674 fprintf_filtered (file,
25675 _("Whether to check \"physname\" is %s.\n"),
25680 _initialize_dwarf2_read (void)
25682 dwarf2_objfile_data_key
25683 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25685 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25686 Set DWARF specific variables.\n\
25687 Configure DWARF variables such as the cache size"),
25688 &set_dwarf_cmdlist, "maintenance set dwarf ",
25689 0/*allow-unknown*/, &maintenance_set_cmdlist);
25691 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25692 Show DWARF specific variables\n\
25693 Show DWARF variables such as the cache size"),
25694 &show_dwarf_cmdlist, "maintenance show dwarf ",
25695 0/*allow-unknown*/, &maintenance_show_cmdlist);
25697 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25698 &dwarf_max_cache_age, _("\
25699 Set the upper bound on the age of cached DWARF compilation units."), _("\
25700 Show the upper bound on the age of cached DWARF compilation units."), _("\
25701 A higher limit means that cached compilation units will be stored\n\
25702 in memory longer, and more total memory will be used. Zero disables\n\
25703 caching, which can slow down startup."),
25705 show_dwarf_max_cache_age,
25706 &set_dwarf_cmdlist,
25707 &show_dwarf_cmdlist);
25709 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25710 &dwarf_always_disassemble, _("\
25711 Set whether `info address' always disassembles DWARF expressions."), _("\
25712 Show whether `info address' always disassembles DWARF expressions."), _("\
25713 When enabled, DWARF expressions are always printed in an assembly-like\n\
25714 syntax. When disabled, expressions will be printed in a more\n\
25715 conversational style, when possible."),
25717 show_dwarf_always_disassemble,
25718 &set_dwarf_cmdlist,
25719 &show_dwarf_cmdlist);
25721 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25722 Set debugging of the DWARF reader."), _("\
25723 Show debugging of the DWARF reader."), _("\
25724 When enabled (non-zero), debugging messages are printed during DWARF\n\
25725 reading and symtab expansion. A value of 1 (one) provides basic\n\
25726 information. A value greater than 1 provides more verbose information."),
25729 &setdebuglist, &showdebuglist);
25731 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25732 Set debugging of the DWARF DIE reader."), _("\
25733 Show debugging of the DWARF DIE reader."), _("\
25734 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25735 The value is the maximum depth to print."),
25738 &setdebuglist, &showdebuglist);
25740 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25741 Set debugging of the dwarf line reader."), _("\
25742 Show debugging of the dwarf line reader."), _("\
25743 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25744 A value of 1 (one) provides basic information.\n\
25745 A value greater than 1 provides more verbose information."),
25748 &setdebuglist, &showdebuglist);
25750 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25751 Set cross-checking of \"physname\" code against demangler."), _("\
25752 Show cross-checking of \"physname\" code against demangler."), _("\
25753 When enabled, GDB's internal \"physname\" code is checked against\n\
25755 NULL, show_check_physname,
25756 &setdebuglist, &showdebuglist);
25758 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25759 no_class, &use_deprecated_index_sections, _("\
25760 Set whether to use deprecated gdb_index sections."), _("\
25761 Show whether to use deprecated gdb_index sections."), _("\
25762 When enabled, deprecated .gdb_index sections are used anyway.\n\
25763 Normally they are ignored either because of a missing feature or\n\
25764 performance issue.\n\
25765 Warning: This option must be enabled before gdb reads the file."),
25768 &setlist, &showlist);
25770 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25771 &dwarf2_locexpr_funcs);
25772 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25773 &dwarf2_loclist_funcs);
25775 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25776 &dwarf2_block_frame_base_locexpr_funcs);
25777 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25778 &dwarf2_block_frame_base_loclist_funcs);
25781 selftests::register_test ("dw2_expand_symtabs_matching",
25782 selftests::dw2_expand_symtabs_matching::run_test);