1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
58 #include "exceptions.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
77 typedef struct symbol *symbolp;
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
93 static const struct objfile_data *dwarf2_objfile_data_key;
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
102 struct dwarf2_section_info
105 const gdb_byte *buffer;
107 /* True if we have tried to read this section. */
111 typedef struct dwarf2_section_info dwarf2_section_info_def;
112 DEF_VEC_O (dwarf2_section_info_def);
114 /* All offsets in the index are of this type. It must be
115 architecture-independent. */
116 typedef uint32_t offset_type;
118 DEF_VEC_I (offset_type);
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
123 gdb_assert ((unsigned int) (value) <= 1); \
124 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
127 /* Ensure only legit values are used. */
128 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
130 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
131 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
132 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
135 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
136 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
138 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
139 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
142 /* A description of the mapped index. The file format is described in
143 a comment by the code that writes the index. */
146 /* Index data format version. */
149 /* The total length of the buffer. */
152 /* A pointer to the address table data. */
153 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
158 /* The symbol table, implemented as a hash table. */
159 const offset_type *symbol_table;
161 /* Size in slots, each slot is 2 offset_types. */
162 offset_type symbol_table_slots;
164 /* A pointer to the constant pool. */
165 const char *constant_pool;
168 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
169 DEF_VEC_P (dwarf2_per_cu_ptr);
171 /* Collection of data recorded per objfile.
172 This hangs off of dwarf2_objfile_data_key. */
174 struct dwarf2_per_objfile
176 struct dwarf2_section_info info;
177 struct dwarf2_section_info abbrev;
178 struct dwarf2_section_info line;
179 struct dwarf2_section_info loc;
180 struct dwarf2_section_info macinfo;
181 struct dwarf2_section_info macro;
182 struct dwarf2_section_info str;
183 struct dwarf2_section_info ranges;
184 struct dwarf2_section_info addr;
185 struct dwarf2_section_info frame;
186 struct dwarf2_section_info eh_frame;
187 struct dwarf2_section_info gdb_index;
189 VEC (dwarf2_section_info_def) *types;
192 struct objfile *objfile;
194 /* Table of all the compilation units. This is used to locate
195 the target compilation unit of a particular reference. */
196 struct dwarf2_per_cu_data **all_comp_units;
198 /* The number of compilation units in ALL_COMP_UNITS. */
201 /* The number of .debug_types-related CUs. */
204 /* The .debug_types-related CUs (TUs). */
205 struct signatured_type **all_type_units;
207 /* The number of entries in all_type_unit_groups. */
208 int n_type_unit_groups;
210 /* Table of type unit groups.
211 This exists to make it easy to iterate over all CUs and TU groups. */
212 struct type_unit_group **all_type_unit_groups;
214 /* Table of struct type_unit_group objects.
215 The hash key is the DW_AT_stmt_list value. */
216 htab_t type_unit_groups;
218 /* A table mapping .debug_types signatures to its signatured_type entry.
219 This is NULL if the .debug_types section hasn't been read in yet. */
220 htab_t signatured_types;
222 /* Type unit statistics, to see how well the scaling improvements
226 int nr_uniq_abbrev_tables;
228 int nr_symtab_sharers;
229 int nr_stmt_less_type_units;
232 /* A chain of compilation units that are currently read in, so that
233 they can be freed later. */
234 struct dwarf2_per_cu_data *read_in_chain;
236 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
237 This is NULL if the table hasn't been allocated yet. */
240 /* Non-zero if we've check for whether there is a DWP file. */
243 /* The DWP file if there is one, or NULL. */
244 struct dwp_file *dwp_file;
246 /* The shared '.dwz' file, if one exists. This is used when the
247 original data was compressed using 'dwz -m'. */
248 struct dwz_file *dwz_file;
250 /* A flag indicating wether this objfile has a section loaded at a
252 int has_section_at_zero;
254 /* True if we are using the mapped index,
255 or we are faking it for OBJF_READNOW's sake. */
256 unsigned char using_index;
258 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
259 struct mapped_index *index_table;
261 /* When using index_table, this keeps track of all quick_file_names entries.
262 TUs typically share line table entries with a CU, so we maintain a
263 separate table of all line table entries to support the sharing.
264 Note that while there can be way more TUs than CUs, we've already
265 sorted all the TUs into "type unit groups", grouped by their
266 DW_AT_stmt_list value. Therefore the only sharing done here is with a
267 CU and its associated TU group if there is one. */
268 htab_t quick_file_names_table;
270 /* Set during partial symbol reading, to prevent queueing of full
272 int reading_partial_symbols;
274 /* Table mapping type DIEs to their struct type *.
275 This is NULL if not allocated yet.
276 The mapping is done via (CU/TU + DIE offset) -> type. */
277 htab_t die_type_hash;
279 /* The CUs we recently read. */
280 VEC (dwarf2_per_cu_ptr) *just_read_cus;
283 static struct dwarf2_per_objfile *dwarf2_per_objfile;
285 /* Default names of the debugging sections. */
287 /* Note that if the debugging section has been compressed, it might
288 have a name like .zdebug_info. */
290 static const struct dwarf2_debug_sections dwarf2_elf_names =
292 { ".debug_info", ".zdebug_info" },
293 { ".debug_abbrev", ".zdebug_abbrev" },
294 { ".debug_line", ".zdebug_line" },
295 { ".debug_loc", ".zdebug_loc" },
296 { ".debug_macinfo", ".zdebug_macinfo" },
297 { ".debug_macro", ".zdebug_macro" },
298 { ".debug_str", ".zdebug_str" },
299 { ".debug_ranges", ".zdebug_ranges" },
300 { ".debug_types", ".zdebug_types" },
301 { ".debug_addr", ".zdebug_addr" },
302 { ".debug_frame", ".zdebug_frame" },
303 { ".eh_frame", NULL },
304 { ".gdb_index", ".zgdb_index" },
308 /* List of DWO/DWP sections. */
310 static const struct dwop_section_names
312 struct dwarf2_section_names abbrev_dwo;
313 struct dwarf2_section_names info_dwo;
314 struct dwarf2_section_names line_dwo;
315 struct dwarf2_section_names loc_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
331 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
332 { ".debug_str.dwo", ".zdebug_str.dwo" },
333 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
334 { ".debug_types.dwo", ".zdebug_types.dwo" },
335 { ".debug_cu_index", ".zdebug_cu_index" },
336 { ".debug_tu_index", ".zdebug_tu_index" },
339 /* local data types */
341 /* The data in a compilation unit header, after target2host
342 translation, looks like this. */
343 struct comp_unit_head
347 unsigned char addr_size;
348 unsigned char signed_addr_p;
349 sect_offset abbrev_offset;
351 /* Size of file offsets; either 4 or 8. */
352 unsigned int offset_size;
354 /* Size of the length field; either 4 or 12. */
355 unsigned int initial_length_size;
357 /* Offset to the first byte of this compilation unit header in the
358 .debug_info section, for resolving relative reference dies. */
361 /* Offset to first die in this cu from the start of the cu.
362 This will be the first byte following the compilation unit header. */
363 cu_offset first_die_offset;
366 /* Type used for delaying computation of method physnames.
367 See comments for compute_delayed_physnames. */
368 struct delayed_method_info
370 /* The type to which the method is attached, i.e., its parent class. */
373 /* The index of the method in the type's function fieldlists. */
376 /* The index of the method in the fieldlist. */
379 /* The name of the DIE. */
382 /* The DIE associated with this method. */
383 struct die_info *die;
386 typedef struct delayed_method_info delayed_method_info;
387 DEF_VEC_O (delayed_method_info);
389 /* Internal state when decoding a particular compilation unit. */
392 /* The objfile containing this compilation unit. */
393 struct objfile *objfile;
395 /* The header of the compilation unit. */
396 struct comp_unit_head header;
398 /* Base address of this compilation unit. */
399 CORE_ADDR base_address;
401 /* Non-zero if base_address has been set. */
404 /* The language we are debugging. */
405 enum language language;
406 const struct language_defn *language_defn;
408 const char *producer;
410 /* The generic symbol table building routines have separate lists for
411 file scope symbols and all all other scopes (local scopes). So
412 we need to select the right one to pass to add_symbol_to_list().
413 We do it by keeping a pointer to the correct list in list_in_scope.
415 FIXME: The original dwarf code just treated the file scope as the
416 first local scope, and all other local scopes as nested local
417 scopes, and worked fine. Check to see if we really need to
418 distinguish these in buildsym.c. */
419 struct pending **list_in_scope;
421 /* The abbrev table for this CU.
422 Normally this points to the abbrev table in the objfile.
423 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
424 struct abbrev_table *abbrev_table;
426 /* Hash table holding all the loaded partial DIEs
427 with partial_die->offset.SECT_OFF as hash. */
430 /* Storage for things with the same lifetime as this read-in compilation
431 unit, including partial DIEs. */
432 struct obstack comp_unit_obstack;
434 /* When multiple dwarf2_cu structures are living in memory, this field
435 chains them all together, so that they can be released efficiently.
436 We will probably also want a generation counter so that most-recently-used
437 compilation units are cached... */
438 struct dwarf2_per_cu_data *read_in_chain;
440 /* Backchain to our per_cu entry if the tree has been built. */
441 struct dwarf2_per_cu_data *per_cu;
443 /* How many compilation units ago was this CU last referenced? */
446 /* A hash table of DIE cu_offset for following references with
447 die_info->offset.sect_off as hash. */
450 /* Full DIEs if read in. */
451 struct die_info *dies;
453 /* A set of pointers to dwarf2_per_cu_data objects for compilation
454 units referenced by this one. Only set during full symbol processing;
455 partial symbol tables do not have dependencies. */
458 /* Header data from the line table, during full symbol processing. */
459 struct line_header *line_header;
461 /* A list of methods which need to have physnames computed
462 after all type information has been read. */
463 VEC (delayed_method_info) *method_list;
465 /* To be copied to symtab->call_site_htab. */
466 htab_t call_site_htab;
468 /* Non-NULL if this CU came from a DWO file.
469 There is an invariant here that is important to remember:
470 Except for attributes copied from the top level DIE in the "main"
471 (or "stub") file in preparation for reading the DWO file
472 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
473 Either there isn't a DWO file (in which case this is NULL and the point
474 is moot), or there is and either we're not going to read it (in which
475 case this is NULL) or there is and we are reading it (in which case this
477 struct dwo_unit *dwo_unit;
479 /* The DW_AT_addr_base attribute if present, zero otherwise
480 (zero is a valid value though).
481 Note this value comes from the stub CU/TU's DIE. */
484 /* The DW_AT_ranges_base attribute if present, zero otherwise
485 (zero is a valid value though).
486 Note this value comes from the stub CU/TU's DIE.
487 Also note that the value is zero in the non-DWO case so this value can
488 be used without needing to know whether DWO files are in use or not.
489 N.B. This does not apply to DW_AT_ranges appearing in
490 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
491 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
492 DW_AT_ranges_base *would* have to be applied, and we'd have to care
493 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
494 ULONGEST ranges_base;
496 /* Mark used when releasing cached dies. */
497 unsigned int mark : 1;
499 /* This CU references .debug_loc. See the symtab->locations_valid field.
500 This test is imperfect as there may exist optimized debug code not using
501 any location list and still facing inlining issues if handled as
502 unoptimized code. For a future better test see GCC PR other/32998. */
503 unsigned int has_loclist : 1;
505 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
506 if all the producer_is_* fields are valid. This information is cached
507 because profiling CU expansion showed excessive time spent in
508 producer_is_gxx_lt_4_6. */
509 unsigned int checked_producer : 1;
510 unsigned int producer_is_gxx_lt_4_6 : 1;
511 unsigned int producer_is_gcc_lt_4_3 : 1;
512 unsigned int producer_is_icc : 1;
514 /* When set, the file that we're processing is known to have
515 debugging info for C++ namespaces. GCC 3.3.x did not produce
516 this information, but later versions do. */
518 unsigned int processing_has_namespace_info : 1;
521 /* Persistent data held for a compilation unit, even when not
522 processing it. We put a pointer to this structure in the
523 read_symtab_private field of the psymtab. */
525 struct dwarf2_per_cu_data
527 /* The start offset and length of this compilation unit.
528 NOTE: Unlike comp_unit_head.length, this length includes
530 If the DIE refers to a DWO file, this is always of the original die,
535 /* Flag indicating this compilation unit will be read in before
536 any of the current compilation units are processed. */
537 unsigned int queued : 1;
539 /* This flag will be set when reading partial DIEs if we need to load
540 absolutely all DIEs for this compilation unit, instead of just the ones
541 we think are interesting. It gets set if we look for a DIE in the
542 hash table and don't find it. */
543 unsigned int load_all_dies : 1;
545 /* Non-zero if this CU is from .debug_types.
546 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
548 unsigned int is_debug_types : 1;
550 /* Non-zero if this CU is from the .dwz file. */
551 unsigned int is_dwz : 1;
553 /* The section this CU/TU lives in.
554 If the DIE refers to a DWO file, this is always the original die,
556 struct dwarf2_section_info *section;
558 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
559 of the CU cache it gets reset to NULL again. */
560 struct dwarf2_cu *cu;
562 /* The corresponding objfile.
563 Normally we can get the objfile from dwarf2_per_objfile.
564 However we can enter this file with just a "per_cu" handle. */
565 struct objfile *objfile;
567 /* When using partial symbol tables, the 'psymtab' field is active.
568 Otherwise the 'quick' field is active. */
571 /* The partial symbol table associated with this compilation unit,
572 or NULL for unread partial units. */
573 struct partial_symtab *psymtab;
575 /* Data needed by the "quick" functions. */
576 struct dwarf2_per_cu_quick_data *quick;
579 /* The CUs we import using DW_TAG_imported_unit. This is filled in
580 while reading psymtabs, used to compute the psymtab dependencies,
581 and then cleared. Then it is filled in again while reading full
582 symbols, and only deleted when the objfile is destroyed.
584 This is also used to work around a difference between the way gold
585 generates .gdb_index version <=7 and the way gdb does. Arguably this
586 is a gold bug. For symbols coming from TUs, gold records in the index
587 the CU that includes the TU instead of the TU itself. This breaks
588 dw2_lookup_symbol: It assumes that if the index says symbol X lives
589 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
590 will find X. Alas TUs live in their own symtab, so after expanding CU Y
591 we need to look in TU Z to find X. Fortunately, this is akin to
592 DW_TAG_imported_unit, so we just use the same mechanism: For
593 .gdb_index version <=7 this also records the TUs that the CU referred
594 to. Concurrently with this change gdb was modified to emit version 8
595 indices so we only pay a price for gold generated indices. */
596 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
599 /* Entry in the signatured_types hash table. */
601 struct signatured_type
603 /* The "per_cu" object of this type.
604 N.B.: This is the first member so that it's easy to convert pointers
606 struct dwarf2_per_cu_data per_cu;
608 /* The type's signature. */
611 /* Offset in the TU of the type's DIE, as read from the TU header.
612 If this TU is a DWO stub and the definition lives in a DWO file
613 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
614 cu_offset type_offset_in_tu;
616 /* Offset in the section of the type's DIE.
617 If the definition lives in a DWO file, this is the offset in the
618 .debug_types.dwo section.
619 The value is zero until the actual value is known.
620 Zero is otherwise not a valid section offset. */
621 sect_offset type_offset_in_section;
623 /* Type units are grouped by their DW_AT_stmt_list entry so that they
624 can share them. This points to the containing symtab. */
625 struct type_unit_group *type_unit_group;
628 typedef struct signatured_type *sig_type_ptr;
629 DEF_VEC_P (sig_type_ptr);
631 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
632 This includes type_unit_group and quick_file_names. */
634 struct stmt_list_hash
636 /* The DWO unit this table is from or NULL if there is none. */
637 struct dwo_unit *dwo_unit;
639 /* Offset in .debug_line or .debug_line.dwo. */
640 sect_offset line_offset;
643 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
644 an object of this type. */
646 struct type_unit_group
648 /* dwarf2read.c's main "handle" on a TU symtab.
649 To simplify things we create an artificial CU that "includes" all the
650 type units using this stmt_list so that the rest of the code still has
651 a "per_cu" handle on the symtab.
652 This PER_CU is recognized by having no section. */
653 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
654 struct dwarf2_per_cu_data per_cu;
656 /* The TUs that share this DW_AT_stmt_list entry.
657 This is added to while parsing type units to build partial symtabs,
658 and is deleted afterwards and not used again. */
659 VEC (sig_type_ptr) *tus;
661 /* The primary symtab.
662 Type units in a group needn't all be defined in the same source file,
663 so we create an essentially anonymous symtab as the primary symtab. */
664 struct symtab *primary_symtab;
666 /* The data used to construct the hash key. */
667 struct stmt_list_hash hash;
669 /* The number of symtabs from the line header.
670 The value here must match line_header.num_file_names. */
671 unsigned int num_symtabs;
673 /* The symbol tables for this TU (obtained from the files listed in
675 WARNING: The order of entries here must match the order of entries
676 in the line header. After the first TU using this type_unit_group, the
677 line header for the subsequent TUs is recreated from this. This is done
678 because we need to use the same symtabs for each TU using the same
679 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
680 there's no guarantee the line header doesn't have duplicate entries. */
681 struct symtab **symtabs;
684 /* These sections are what may appear in a DWO file. */
688 struct dwarf2_section_info abbrev;
689 struct dwarf2_section_info line;
690 struct dwarf2_section_info loc;
691 struct dwarf2_section_info macinfo;
692 struct dwarf2_section_info macro;
693 struct dwarf2_section_info str;
694 struct dwarf2_section_info str_offsets;
695 /* In the case of a virtual DWO file, these two are unused. */
696 struct dwarf2_section_info info;
697 VEC (dwarf2_section_info_def) *types;
700 /* CUs/TUs in DWP/DWO files. */
704 /* Backlink to the containing struct dwo_file. */
705 struct dwo_file *dwo_file;
707 /* The "id" that distinguishes this CU/TU.
708 .debug_info calls this "dwo_id", .debug_types calls this "signature".
709 Since signatures came first, we stick with it for consistency. */
712 /* The section this CU/TU lives in, in the DWO file. */
713 struct dwarf2_section_info *section;
715 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
719 /* For types, offset in the type's DIE of the type defined by this TU. */
720 cu_offset type_offset_in_tu;
723 /* Data for one DWO file.
724 This includes virtual DWO files that have been packaged into a
729 /* The DW_AT_GNU_dwo_name attribute.
730 For virtual DWO files the name is constructed from the section offsets
731 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
732 from related CU+TUs. */
733 const char *dwo_name;
735 /* The DW_AT_comp_dir attribute. */
736 const char *comp_dir;
738 /* The bfd, when the file is open. Otherwise this is NULL.
739 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
742 /* Section info for this file. */
743 struct dwo_sections sections;
745 /* The CU in the file.
746 We only support one because having more than one requires hacking the
747 dwo_name of each to match, which is highly unlikely to happen.
748 Doing this means all TUs can share comp_dir: We also assume that
749 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
752 /* Table of TUs in the file.
753 Each element is a struct dwo_unit. */
757 /* These sections are what may appear in a DWP file. */
761 struct dwarf2_section_info str;
762 struct dwarf2_section_info cu_index;
763 struct dwarf2_section_info tu_index;
764 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
765 by section number. We don't need to record them here. */
768 /* These sections are what may appear in a virtual DWO file. */
770 struct virtual_dwo_sections
772 struct dwarf2_section_info abbrev;
773 struct dwarf2_section_info line;
774 struct dwarf2_section_info loc;
775 struct dwarf2_section_info macinfo;
776 struct dwarf2_section_info macro;
777 struct dwarf2_section_info str_offsets;
778 /* Each DWP hash table entry records one CU or one TU.
779 That is recorded here, and copied to dwo_unit.section. */
780 struct dwarf2_section_info info_or_types;
783 /* Contents of DWP hash tables. */
785 struct dwp_hash_table
787 uint32_t nr_units, nr_slots;
788 const gdb_byte *hash_table, *unit_table, *section_pool;
791 /* Data for one DWP file. */
795 /* Name of the file. */
798 /* The bfd, when the file is open. Otherwise this is NULL. */
801 /* Section info for this file. */
802 struct dwp_sections sections;
804 /* Table of CUs in the file. */
805 const struct dwp_hash_table *cus;
807 /* Table of TUs in the file. */
808 const struct dwp_hash_table *tus;
810 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
813 /* Table to map ELF section numbers to their sections. */
814 unsigned int num_sections;
815 asection **elf_sections;
818 /* This represents a '.dwz' file. */
822 /* A dwz file can only contain a few sections. */
823 struct dwarf2_section_info abbrev;
824 struct dwarf2_section_info info;
825 struct dwarf2_section_info str;
826 struct dwarf2_section_info line;
827 struct dwarf2_section_info macro;
828 struct dwarf2_section_info gdb_index;
834 /* Struct used to pass misc. parameters to read_die_and_children, et
835 al. which are used for both .debug_info and .debug_types dies.
836 All parameters here are unchanging for the life of the call. This
837 struct exists to abstract away the constant parameters of die reading. */
839 struct die_reader_specs
841 /* die_section->asection->owner. */
844 /* The CU of the DIE we are parsing. */
845 struct dwarf2_cu *cu;
847 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
848 struct dwo_file *dwo_file;
850 /* The section the die comes from.
851 This is either .debug_info or .debug_types, or the .dwo variants. */
852 struct dwarf2_section_info *die_section;
854 /* die_section->buffer. */
855 const gdb_byte *buffer;
857 /* The end of the buffer. */
858 const gdb_byte *buffer_end;
861 /* Type of function passed to init_cutu_and_read_dies, et.al. */
862 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
863 const gdb_byte *info_ptr,
864 struct die_info *comp_unit_die,
868 /* The line number information for a compilation unit (found in the
869 .debug_line section) begins with a "statement program header",
870 which contains the following information. */
873 unsigned int total_length;
874 unsigned short version;
875 unsigned int header_length;
876 unsigned char minimum_instruction_length;
877 unsigned char maximum_ops_per_instruction;
878 unsigned char default_is_stmt;
880 unsigned char line_range;
881 unsigned char opcode_base;
883 /* standard_opcode_lengths[i] is the number of operands for the
884 standard opcode whose value is i. This means that
885 standard_opcode_lengths[0] is unused, and the last meaningful
886 element is standard_opcode_lengths[opcode_base - 1]. */
887 unsigned char *standard_opcode_lengths;
889 /* The include_directories table. NOTE! These strings are not
890 allocated with xmalloc; instead, they are pointers into
891 debug_line_buffer. If you try to free them, `free' will get
893 unsigned int num_include_dirs, include_dirs_size;
894 const char **include_dirs;
896 /* The file_names table. NOTE! These strings are not allocated
897 with xmalloc; instead, they are pointers into debug_line_buffer.
898 Don't try to free them directly. */
899 unsigned int num_file_names, file_names_size;
903 unsigned int dir_index;
904 unsigned int mod_time;
906 int included_p; /* Non-zero if referenced by the Line Number Program. */
907 struct symtab *symtab; /* The associated symbol table, if any. */
910 /* The start and end of the statement program following this
911 header. These point into dwarf2_per_objfile->line_buffer. */
912 const gdb_byte *statement_program_start, *statement_program_end;
915 /* When we construct a partial symbol table entry we only
916 need this much information. */
917 struct partial_die_info
919 /* Offset of this DIE. */
922 /* DWARF-2 tag for this DIE. */
923 ENUM_BITFIELD(dwarf_tag) tag : 16;
925 /* Assorted flags describing the data found in this DIE. */
926 unsigned int has_children : 1;
927 unsigned int is_external : 1;
928 unsigned int is_declaration : 1;
929 unsigned int has_type : 1;
930 unsigned int has_specification : 1;
931 unsigned int has_pc_info : 1;
932 unsigned int may_be_inlined : 1;
934 /* Flag set if the SCOPE field of this structure has been
936 unsigned int scope_set : 1;
938 /* Flag set if the DIE has a byte_size attribute. */
939 unsigned int has_byte_size : 1;
941 /* Flag set if any of the DIE's children are template arguments. */
942 unsigned int has_template_arguments : 1;
944 /* Flag set if fixup_partial_die has been called on this die. */
945 unsigned int fixup_called : 1;
947 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
948 unsigned int is_dwz : 1;
950 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
951 unsigned int spec_is_dwz : 1;
953 /* The name of this DIE. Normally the value of DW_AT_name, but
954 sometimes a default name for unnamed DIEs. */
957 /* The linkage name, if present. */
958 const char *linkage_name;
960 /* The scope to prepend to our children. This is generally
961 allocated on the comp_unit_obstack, so will disappear
962 when this compilation unit leaves the cache. */
965 /* Some data associated with the partial DIE. The tag determines
966 which field is live. */
969 /* The location description associated with this DIE, if any. */
970 struct dwarf_block *locdesc;
971 /* The offset of an import, for DW_TAG_imported_unit. */
975 /* If HAS_PC_INFO, the PC range associated with this DIE. */
979 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
980 DW_AT_sibling, if any. */
981 /* NOTE: This member isn't strictly necessary, read_partial_die could
982 return DW_AT_sibling values to its caller load_partial_dies. */
983 const gdb_byte *sibling;
985 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
986 DW_AT_specification (or DW_AT_abstract_origin or
988 sect_offset spec_offset;
990 /* Pointers to this DIE's parent, first child, and next sibling,
992 struct partial_die_info *die_parent, *die_child, *die_sibling;
995 /* This data structure holds the information of an abbrev. */
998 unsigned int number; /* number identifying abbrev */
999 enum dwarf_tag tag; /* dwarf tag */
1000 unsigned short has_children; /* boolean */
1001 unsigned short num_attrs; /* number of attributes */
1002 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1003 struct abbrev_info *next; /* next in chain */
1008 ENUM_BITFIELD(dwarf_attribute) name : 16;
1009 ENUM_BITFIELD(dwarf_form) form : 16;
1012 /* Size of abbrev_table.abbrev_hash_table. */
1013 #define ABBREV_HASH_SIZE 121
1015 /* Top level data structure to contain an abbreviation table. */
1019 /* Where the abbrev table came from.
1020 This is used as a sanity check when the table is used. */
1023 /* Storage for the abbrev table. */
1024 struct obstack abbrev_obstack;
1026 /* Hash table of abbrevs.
1027 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1028 It could be statically allocated, but the previous code didn't so we
1030 struct abbrev_info **abbrevs;
1033 /* Attributes have a name and a value. */
1036 ENUM_BITFIELD(dwarf_attribute) name : 16;
1037 ENUM_BITFIELD(dwarf_form) form : 15;
1039 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1040 field should be in u.str (existing only for DW_STRING) but it is kept
1041 here for better struct attribute alignment. */
1042 unsigned int string_is_canonical : 1;
1047 struct dwarf_block *blk;
1051 struct signatured_type *signatured_type;
1056 /* This data structure holds a complete die structure. */
1059 /* DWARF-2 tag for this DIE. */
1060 ENUM_BITFIELD(dwarf_tag) tag : 16;
1062 /* Number of attributes */
1063 unsigned char num_attrs;
1065 /* True if we're presently building the full type name for the
1066 type derived from this DIE. */
1067 unsigned char building_fullname : 1;
1070 unsigned int abbrev;
1072 /* Offset in .debug_info or .debug_types section. */
1075 /* The dies in a compilation unit form an n-ary tree. PARENT
1076 points to this die's parent; CHILD points to the first child of
1077 this node; and all the children of a given node are chained
1078 together via their SIBLING fields. */
1079 struct die_info *child; /* Its first child, if any. */
1080 struct die_info *sibling; /* Its next sibling, if any. */
1081 struct die_info *parent; /* Its parent, if any. */
1083 /* An array of attributes, with NUM_ATTRS elements. There may be
1084 zero, but it's not common and zero-sized arrays are not
1085 sufficiently portable C. */
1086 struct attribute attrs[1];
1089 /* Get at parts of an attribute structure. */
1091 #define DW_STRING(attr) ((attr)->u.str)
1092 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1093 #define DW_UNSND(attr) ((attr)->u.unsnd)
1094 #define DW_BLOCK(attr) ((attr)->u.blk)
1095 #define DW_SND(attr) ((attr)->u.snd)
1096 #define DW_ADDR(attr) ((attr)->u.addr)
1097 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1099 /* Blocks are a bunch of untyped bytes. */
1104 /* Valid only if SIZE is not zero. */
1105 const gdb_byte *data;
1108 #ifndef ATTR_ALLOC_CHUNK
1109 #define ATTR_ALLOC_CHUNK 4
1112 /* Allocate fields for structs, unions and enums in this size. */
1113 #ifndef DW_FIELD_ALLOC_CHUNK
1114 #define DW_FIELD_ALLOC_CHUNK 4
1117 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1118 but this would require a corresponding change in unpack_field_as_long
1120 static int bits_per_byte = 8;
1122 /* The routines that read and process dies for a C struct or C++ class
1123 pass lists of data member fields and lists of member function fields
1124 in an instance of a field_info structure, as defined below. */
1127 /* List of data member and baseclasses fields. */
1130 struct nextfield *next;
1135 *fields, *baseclasses;
1137 /* Number of fields (including baseclasses). */
1140 /* Number of baseclasses. */
1143 /* Set if the accesibility of one of the fields is not public. */
1144 int non_public_fields;
1146 /* Member function fields array, entries are allocated in the order they
1147 are encountered in the object file. */
1150 struct nextfnfield *next;
1151 struct fn_field fnfield;
1155 /* Member function fieldlist array, contains name of possibly overloaded
1156 member function, number of overloaded member functions and a pointer
1157 to the head of the member function field chain. */
1162 struct nextfnfield *head;
1166 /* Number of entries in the fnfieldlists array. */
1169 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1170 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1171 struct typedef_field_list
1173 struct typedef_field field;
1174 struct typedef_field_list *next;
1176 *typedef_field_list;
1177 unsigned typedef_field_list_count;
1180 /* One item on the queue of compilation units to read in full symbols
1182 struct dwarf2_queue_item
1184 struct dwarf2_per_cu_data *per_cu;
1185 enum language pretend_language;
1186 struct dwarf2_queue_item *next;
1189 /* The current queue. */
1190 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1192 /* Loaded secondary compilation units are kept in memory until they
1193 have not been referenced for the processing of this many
1194 compilation units. Set this to zero to disable caching. Cache
1195 sizes of up to at least twenty will improve startup time for
1196 typical inter-CU-reference binaries, at an obvious memory cost. */
1197 static int dwarf2_max_cache_age = 5;
1199 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c, const char *value)
1202 fprintf_filtered (file, _("The upper bound on the age of cached "
1203 "dwarf2 compilation units is %s.\n"),
1208 /* Various complaints about symbol reading that don't abort the process. */
1211 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1213 complaint (&symfile_complaints,
1214 _("statement list doesn't fit in .debug_line section"));
1218 dwarf2_debug_line_missing_file_complaint (void)
1220 complaint (&symfile_complaints,
1221 _(".debug_line section has line data without a file"));
1225 dwarf2_debug_line_missing_end_sequence_complaint (void)
1227 complaint (&symfile_complaints,
1228 _(".debug_line section has line "
1229 "program sequence without an end"));
1233 dwarf2_complex_location_expr_complaint (void)
1235 complaint (&symfile_complaints, _("location expression too complex"));
1239 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1242 complaint (&symfile_complaints,
1243 _("const value length mismatch for '%s', got %d, expected %d"),
1248 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1250 complaint (&symfile_complaints,
1251 _("debug info runs off end of %s section"
1253 section->asection->name,
1254 bfd_get_filename (section->asection->owner));
1258 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1260 complaint (&symfile_complaints,
1261 _("macro debug info contains a "
1262 "malformed macro definition:\n`%s'"),
1267 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1269 complaint (&symfile_complaints,
1270 _("invalid attribute class or form for '%s' in '%s'"),
1274 /* local function prototypes */
1276 static void dwarf2_locate_sections (bfd *, asection *, void *);
1278 static void dwarf2_find_base_address (struct die_info *die,
1279 struct dwarf2_cu *cu);
1281 static struct partial_symtab *create_partial_symtab
1282 (struct dwarf2_per_cu_data *per_cu, const char *name);
1284 static void dwarf2_build_psymtabs_hard (struct objfile *);
1286 static void scan_partial_symbols (struct partial_die_info *,
1287 CORE_ADDR *, CORE_ADDR *,
1288 int, struct dwarf2_cu *);
1290 static void add_partial_symbol (struct partial_die_info *,
1291 struct dwarf2_cu *);
1293 static void add_partial_namespace (struct partial_die_info *pdi,
1294 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1295 int need_pc, struct dwarf2_cu *cu);
1297 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1298 CORE_ADDR *highpc, int need_pc,
1299 struct dwarf2_cu *cu);
1301 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1302 struct dwarf2_cu *cu);
1304 static void add_partial_subprogram (struct partial_die_info *pdi,
1305 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1306 int need_pc, struct dwarf2_cu *cu);
1308 static void dwarf2_read_symtab (struct partial_symtab *,
1311 static void psymtab_to_symtab_1 (struct partial_symtab *);
1313 static struct abbrev_info *abbrev_table_lookup_abbrev
1314 (const struct abbrev_table *, unsigned int);
1316 static struct abbrev_table *abbrev_table_read_table
1317 (struct dwarf2_section_info *, sect_offset);
1319 static void abbrev_table_free (struct abbrev_table *);
1321 static void abbrev_table_free_cleanup (void *);
1323 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1324 struct dwarf2_section_info *);
1326 static void dwarf2_free_abbrev_table (void *);
1328 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1330 static struct partial_die_info *load_partial_dies
1331 (const struct die_reader_specs *, const gdb_byte *, int);
1333 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1334 struct partial_die_info *,
1335 struct abbrev_info *,
1339 static struct partial_die_info *find_partial_die (sect_offset, int,
1340 struct dwarf2_cu *);
1342 static void fixup_partial_die (struct partial_die_info *,
1343 struct dwarf2_cu *);
1345 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1346 struct attribute *, struct attr_abbrev *,
1349 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1351 static int read_1_signed_byte (bfd *, const gdb_byte *);
1353 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1355 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1357 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1359 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1362 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1364 static LONGEST read_checked_initial_length_and_offset
1365 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1366 unsigned int *, unsigned int *);
1368 static LONGEST read_offset (bfd *, const gdb_byte *,
1369 const struct comp_unit_head *,
1372 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1374 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1377 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1379 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1381 static const char *read_indirect_string (bfd *, const gdb_byte *,
1382 const struct comp_unit_head *,
1385 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1387 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1389 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1391 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1395 static const char *read_str_index (const struct die_reader_specs *reader,
1396 struct dwarf2_cu *cu, ULONGEST str_index);
1398 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1400 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1401 struct dwarf2_cu *);
1403 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1406 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1407 struct dwarf2_cu *cu);
1409 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1411 static struct die_info *die_specification (struct die_info *die,
1412 struct dwarf2_cu **);
1414 static void free_line_header (struct line_header *lh);
1416 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1417 struct dwarf2_cu *cu);
1419 static void dwarf_decode_lines (struct line_header *, const char *,
1420 struct dwarf2_cu *, struct partial_symtab *,
1423 static void dwarf2_start_subfile (const char *, const char *, const char *);
1425 static void dwarf2_start_symtab (struct dwarf2_cu *,
1426 const char *, const char *, CORE_ADDR);
1428 static struct symbol *new_symbol (struct die_info *, struct type *,
1429 struct dwarf2_cu *);
1431 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1432 struct dwarf2_cu *, struct symbol *);
1434 static void dwarf2_const_value (struct attribute *, struct symbol *,
1435 struct dwarf2_cu *);
1437 static void dwarf2_const_value_attr (struct attribute *attr,
1440 struct obstack *obstack,
1441 struct dwarf2_cu *cu, LONGEST *value,
1442 const gdb_byte **bytes,
1443 struct dwarf2_locexpr_baton **baton);
1445 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1447 static int need_gnat_info (struct dwarf2_cu *);
1449 static struct type *die_descriptive_type (struct die_info *,
1450 struct dwarf2_cu *);
1452 static void set_descriptive_type (struct type *, struct die_info *,
1453 struct dwarf2_cu *);
1455 static struct type *die_containing_type (struct die_info *,
1456 struct dwarf2_cu *);
1458 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1459 struct dwarf2_cu *);
1461 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1463 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1465 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1467 static char *typename_concat (struct obstack *obs, const char *prefix,
1468 const char *suffix, int physname,
1469 struct dwarf2_cu *cu);
1471 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1473 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1475 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1477 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1479 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1481 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1482 struct dwarf2_cu *, struct partial_symtab *);
1484 static int dwarf2_get_pc_bounds (struct die_info *,
1485 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1486 struct partial_symtab *);
1488 static void get_scope_pc_bounds (struct die_info *,
1489 CORE_ADDR *, CORE_ADDR *,
1490 struct dwarf2_cu *);
1492 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1493 CORE_ADDR, struct dwarf2_cu *);
1495 static void dwarf2_add_field (struct field_info *, struct die_info *,
1496 struct dwarf2_cu *);
1498 static void dwarf2_attach_fields_to_type (struct field_info *,
1499 struct type *, struct dwarf2_cu *);
1501 static void dwarf2_add_member_fn (struct field_info *,
1502 struct die_info *, struct type *,
1503 struct dwarf2_cu *);
1505 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1507 struct dwarf2_cu *);
1509 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1511 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1513 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1515 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1517 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1519 static struct type *read_module_type (struct die_info *die,
1520 struct dwarf2_cu *cu);
1522 static const char *namespace_name (struct die_info *die,
1523 int *is_anonymous, struct dwarf2_cu *);
1525 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1527 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1529 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1530 struct dwarf2_cu *);
1532 static struct die_info *read_die_and_siblings_1
1533 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1536 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1537 const gdb_byte *info_ptr,
1538 const gdb_byte **new_info_ptr,
1539 struct die_info *parent);
1541 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1542 struct die_info **, const gdb_byte *,
1545 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1546 struct die_info **, const gdb_byte *,
1549 static void process_die (struct die_info *, struct dwarf2_cu *);
1551 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1554 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1556 static const char *dwarf2_full_name (const char *name,
1557 struct die_info *die,
1558 struct dwarf2_cu *cu);
1560 static const char *dwarf2_physname (const char *name, struct die_info *die,
1561 struct dwarf2_cu *cu);
1563 static struct die_info *dwarf2_extension (struct die_info *die,
1564 struct dwarf2_cu **);
1566 static const char *dwarf_tag_name (unsigned int);
1568 static const char *dwarf_attr_name (unsigned int);
1570 static const char *dwarf_form_name (unsigned int);
1572 static char *dwarf_bool_name (unsigned int);
1574 static const char *dwarf_type_encoding_name (unsigned int);
1576 static struct die_info *sibling_die (struct die_info *);
1578 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1580 static void dump_die_for_error (struct die_info *);
1582 static void dump_die_1 (struct ui_file *, int level, int max_level,
1585 /*static*/ void dump_die (struct die_info *, int max_level);
1587 static void store_in_ref_table (struct die_info *,
1588 struct dwarf2_cu *);
1590 static int is_ref_attr (struct attribute *);
1592 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1594 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1596 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1598 struct dwarf2_cu **);
1600 static struct die_info *follow_die_ref (struct die_info *,
1602 struct dwarf2_cu **);
1604 static struct die_info *follow_die_sig (struct die_info *,
1606 struct dwarf2_cu **);
1608 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1610 static void read_signatured_type (struct signatured_type *);
1612 static struct type_unit_group *get_type_unit_group
1613 (struct dwarf2_cu *, struct attribute *);
1615 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1617 /* memory allocation interface */
1619 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1621 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1623 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1626 static int attr_form_is_block (struct attribute *);
1628 static int attr_form_is_section_offset (struct attribute *);
1630 static int attr_form_is_constant (struct attribute *);
1632 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1633 struct dwarf2_loclist_baton *baton,
1634 struct attribute *attr);
1636 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1638 struct dwarf2_cu *cu,
1641 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1642 const gdb_byte *info_ptr,
1643 struct abbrev_info *abbrev);
1645 static void free_stack_comp_unit (void *);
1647 static hashval_t partial_die_hash (const void *item);
1649 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1651 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1652 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1654 static void init_one_comp_unit (struct dwarf2_cu *cu,
1655 struct dwarf2_per_cu_data *per_cu);
1657 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1658 struct die_info *comp_unit_die,
1659 enum language pretend_language);
1661 static void free_heap_comp_unit (void *);
1663 static void free_cached_comp_units (void *);
1665 static void age_cached_comp_units (void);
1667 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1669 static struct type *set_die_type (struct die_info *, struct type *,
1670 struct dwarf2_cu *);
1672 static void create_all_comp_units (struct objfile *);
1674 static int create_all_type_units (struct objfile *);
1676 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1679 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1682 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1685 static void dwarf2_add_dependence (struct dwarf2_cu *,
1686 struct dwarf2_per_cu_data *);
1688 static void dwarf2_mark (struct dwarf2_cu *);
1690 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1692 static struct type *get_die_type_at_offset (sect_offset,
1693 struct dwarf2_per_cu_data *per_cu);
1695 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1697 static void dwarf2_release_queue (void *dummy);
1699 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1700 enum language pretend_language);
1702 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1703 struct dwarf2_per_cu_data *per_cu,
1704 enum language pretend_language);
1706 static void process_queue (void);
1708 static void find_file_and_directory (struct die_info *die,
1709 struct dwarf2_cu *cu,
1710 const char **name, const char **comp_dir);
1712 static char *file_full_name (int file, struct line_header *lh,
1713 const char *comp_dir);
1715 static const gdb_byte *read_and_check_comp_unit_head
1716 (struct comp_unit_head *header,
1717 struct dwarf2_section_info *section,
1718 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1719 int is_debug_types_section);
1721 static void init_cutu_and_read_dies
1722 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1723 int use_existing_cu, int keep,
1724 die_reader_func_ftype *die_reader_func, void *data);
1726 static void init_cutu_and_read_dies_simple
1727 (struct dwarf2_per_cu_data *this_cu,
1728 die_reader_func_ftype *die_reader_func, void *data);
1730 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1732 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1734 static struct dwo_unit *lookup_dwo_comp_unit
1735 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1737 static struct dwo_unit *lookup_dwo_type_unit
1738 (struct signatured_type *, const char *, const char *);
1740 static void free_dwo_file_cleanup (void *);
1742 static void process_cu_includes (void);
1744 static void check_producer (struct dwarf2_cu *cu);
1748 /* Convert VALUE between big- and little-endian. */
1750 byte_swap (offset_type value)
1754 result = (value & 0xff) << 24;
1755 result |= (value & 0xff00) << 8;
1756 result |= (value & 0xff0000) >> 8;
1757 result |= (value & 0xff000000) >> 24;
1761 #define MAYBE_SWAP(V) byte_swap (V)
1764 #define MAYBE_SWAP(V) (V)
1765 #endif /* WORDS_BIGENDIAN */
1767 /* The suffix for an index file. */
1768 #define INDEX_SUFFIX ".gdb-index"
1770 /* Try to locate the sections we need for DWARF 2 debugging
1771 information and return true if we have enough to do something.
1772 NAMES points to the dwarf2 section names, or is NULL if the standard
1773 ELF names are used. */
1776 dwarf2_has_info (struct objfile *objfile,
1777 const struct dwarf2_debug_sections *names)
1779 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1780 if (!dwarf2_per_objfile)
1782 /* Initialize per-objfile state. */
1783 struct dwarf2_per_objfile *data
1784 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1786 memset (data, 0, sizeof (*data));
1787 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1788 dwarf2_per_objfile = data;
1790 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1792 dwarf2_per_objfile->objfile = objfile;
1794 return (dwarf2_per_objfile->info.asection != NULL
1795 && dwarf2_per_objfile->abbrev.asection != NULL);
1798 /* When loading sections, we look either for uncompressed section or for
1799 compressed section names. */
1802 section_is_p (const char *section_name,
1803 const struct dwarf2_section_names *names)
1805 if (names->normal != NULL
1806 && strcmp (section_name, names->normal) == 0)
1808 if (names->compressed != NULL
1809 && strcmp (section_name, names->compressed) == 0)
1814 /* This function is mapped across the sections and remembers the
1815 offset and size of each of the debugging sections we are interested
1819 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1821 const struct dwarf2_debug_sections *names;
1822 flagword aflag = bfd_get_section_flags (abfd, sectp);
1825 names = &dwarf2_elf_names;
1827 names = (const struct dwarf2_debug_sections *) vnames;
1829 if ((aflag & SEC_HAS_CONTENTS) == 0)
1832 else if (section_is_p (sectp->name, &names->info))
1834 dwarf2_per_objfile->info.asection = sectp;
1835 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1837 else if (section_is_p (sectp->name, &names->abbrev))
1839 dwarf2_per_objfile->abbrev.asection = sectp;
1840 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1842 else if (section_is_p (sectp->name, &names->line))
1844 dwarf2_per_objfile->line.asection = sectp;
1845 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1847 else if (section_is_p (sectp->name, &names->loc))
1849 dwarf2_per_objfile->loc.asection = sectp;
1850 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1852 else if (section_is_p (sectp->name, &names->macinfo))
1854 dwarf2_per_objfile->macinfo.asection = sectp;
1855 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1857 else if (section_is_p (sectp->name, &names->macro))
1859 dwarf2_per_objfile->macro.asection = sectp;
1860 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1862 else if (section_is_p (sectp->name, &names->str))
1864 dwarf2_per_objfile->str.asection = sectp;
1865 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1867 else if (section_is_p (sectp->name, &names->addr))
1869 dwarf2_per_objfile->addr.asection = sectp;
1870 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1872 else if (section_is_p (sectp->name, &names->frame))
1874 dwarf2_per_objfile->frame.asection = sectp;
1875 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1877 else if (section_is_p (sectp->name, &names->eh_frame))
1879 dwarf2_per_objfile->eh_frame.asection = sectp;
1880 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1882 else if (section_is_p (sectp->name, &names->ranges))
1884 dwarf2_per_objfile->ranges.asection = sectp;
1885 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1887 else if (section_is_p (sectp->name, &names->types))
1889 struct dwarf2_section_info type_section;
1891 memset (&type_section, 0, sizeof (type_section));
1892 type_section.asection = sectp;
1893 type_section.size = bfd_get_section_size (sectp);
1895 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1898 else if (section_is_p (sectp->name, &names->gdb_index))
1900 dwarf2_per_objfile->gdb_index.asection = sectp;
1901 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1904 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1905 && bfd_section_vma (abfd, sectp) == 0)
1906 dwarf2_per_objfile->has_section_at_zero = 1;
1909 /* A helper function that decides whether a section is empty,
1913 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1915 return info->asection == NULL || info->size == 0;
1918 /* Read the contents of the section INFO.
1919 OBJFILE is the main object file, but not necessarily the file where
1920 the section comes from. E.g., for DWO files INFO->asection->owner
1921 is the bfd of the DWO file.
1922 If the section is compressed, uncompress it before returning. */
1925 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1927 asection *sectp = info->asection;
1929 gdb_byte *buf, *retbuf;
1930 unsigned char header[4];
1934 info->buffer = NULL;
1937 if (dwarf2_section_empty_p (info))
1940 abfd = sectp->owner;
1942 /* If the section has relocations, we must read it ourselves.
1943 Otherwise we attach it to the BFD. */
1944 if ((sectp->flags & SEC_RELOC) == 0)
1946 info->buffer = gdb_bfd_map_section (sectp, &info->size);
1950 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1953 /* When debugging .o files, we may need to apply relocations; see
1954 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1955 We never compress sections in .o files, so we only need to
1956 try this when the section is not compressed. */
1957 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1960 info->buffer = retbuf;
1964 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1965 || bfd_bread (buf, info->size, abfd) != info->size)
1966 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1967 bfd_get_filename (abfd));
1970 /* A helper function that returns the size of a section in a safe way.
1971 If you are positive that the section has been read before using the
1972 size, then it is safe to refer to the dwarf2_section_info object's
1973 "size" field directly. In other cases, you must call this
1974 function, because for compressed sections the size field is not set
1975 correctly until the section has been read. */
1977 static bfd_size_type
1978 dwarf2_section_size (struct objfile *objfile,
1979 struct dwarf2_section_info *info)
1982 dwarf2_read_section (objfile, info);
1986 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1990 dwarf2_get_section_info (struct objfile *objfile,
1991 enum dwarf2_section_enum sect,
1992 asection **sectp, const gdb_byte **bufp,
1993 bfd_size_type *sizep)
1995 struct dwarf2_per_objfile *data
1996 = objfile_data (objfile, dwarf2_objfile_data_key);
1997 struct dwarf2_section_info *info;
1999 /* We may see an objfile without any DWARF, in which case we just
2010 case DWARF2_DEBUG_FRAME:
2011 info = &data->frame;
2013 case DWARF2_EH_FRAME:
2014 info = &data->eh_frame;
2017 gdb_assert_not_reached ("unexpected section");
2020 dwarf2_read_section (objfile, info);
2022 *sectp = info->asection;
2023 *bufp = info->buffer;
2024 *sizep = info->size;
2027 /* A helper function to find the sections for a .dwz file. */
2030 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2032 struct dwz_file *dwz_file = arg;
2034 /* Note that we only support the standard ELF names, because .dwz
2035 is ELF-only (at the time of writing). */
2036 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2038 dwz_file->abbrev.asection = sectp;
2039 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2041 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2043 dwz_file->info.asection = sectp;
2044 dwz_file->info.size = bfd_get_section_size (sectp);
2046 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2048 dwz_file->str.asection = sectp;
2049 dwz_file->str.size = bfd_get_section_size (sectp);
2051 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2053 dwz_file->line.asection = sectp;
2054 dwz_file->line.size = bfd_get_section_size (sectp);
2056 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2058 dwz_file->macro.asection = sectp;
2059 dwz_file->macro.size = bfd_get_section_size (sectp);
2061 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2063 dwz_file->gdb_index.asection = sectp;
2064 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2068 /* Open the separate '.dwz' debug file, if needed. Error if the file
2071 static struct dwz_file *
2072 dwarf2_get_dwz_file (void)
2074 bfd *abfd, *dwz_bfd;
2077 struct cleanup *cleanup;
2078 const char *filename;
2079 struct dwz_file *result;
2081 if (dwarf2_per_objfile->dwz_file != NULL)
2082 return dwarf2_per_objfile->dwz_file;
2084 abfd = dwarf2_per_objfile->objfile->obfd;
2085 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2086 if (section == NULL)
2087 error (_("could not find '.gnu_debugaltlink' section"));
2088 if (!bfd_malloc_and_get_section (abfd, section, &data))
2089 error (_("could not read '.gnu_debugaltlink' section: %s"),
2090 bfd_errmsg (bfd_get_error ()));
2091 cleanup = make_cleanup (xfree, data);
2094 if (!IS_ABSOLUTE_PATH (filename))
2096 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2099 make_cleanup (xfree, abs);
2100 abs = ldirname (abs);
2101 make_cleanup (xfree, abs);
2103 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2104 make_cleanup (xfree, rel);
2108 /* The format is just a NUL-terminated file name, followed by the
2109 build-id. For now, though, we ignore the build-id. */
2110 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2111 if (dwz_bfd == NULL)
2112 error (_("could not read '%s': %s"), filename,
2113 bfd_errmsg (bfd_get_error ()));
2115 if (!bfd_check_format (dwz_bfd, bfd_object))
2117 gdb_bfd_unref (dwz_bfd);
2118 error (_("file '%s' was not usable: %s"), filename,
2119 bfd_errmsg (bfd_get_error ()));
2122 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2124 result->dwz_bfd = dwz_bfd;
2126 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2128 do_cleanups (cleanup);
2130 dwarf2_per_objfile->dwz_file = result;
2134 /* DWARF quick_symbols_functions support. */
2136 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2137 unique line tables, so we maintain a separate table of all .debug_line
2138 derived entries to support the sharing.
2139 All the quick functions need is the list of file names. We discard the
2140 line_header when we're done and don't need to record it here. */
2141 struct quick_file_names
2143 /* The data used to construct the hash key. */
2144 struct stmt_list_hash hash;
2146 /* The number of entries in file_names, real_names. */
2147 unsigned int num_file_names;
2149 /* The file names from the line table, after being run through
2151 const char **file_names;
2153 /* The file names from the line table after being run through
2154 gdb_realpath. These are computed lazily. */
2155 const char **real_names;
2158 /* When using the index (and thus not using psymtabs), each CU has an
2159 object of this type. This is used to hold information needed by
2160 the various "quick" methods. */
2161 struct dwarf2_per_cu_quick_data
2163 /* The file table. This can be NULL if there was no file table
2164 or it's currently not read in.
2165 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2166 struct quick_file_names *file_names;
2168 /* The corresponding symbol table. This is NULL if symbols for this
2169 CU have not yet been read. */
2170 struct symtab *symtab;
2172 /* A temporary mark bit used when iterating over all CUs in
2173 expand_symtabs_matching. */
2174 unsigned int mark : 1;
2176 /* True if we've tried to read the file table and found there isn't one.
2177 There will be no point in trying to read it again next time. */
2178 unsigned int no_file_data : 1;
2181 /* Utility hash function for a stmt_list_hash. */
2184 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2188 if (stmt_list_hash->dwo_unit != NULL)
2189 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2190 v += stmt_list_hash->line_offset.sect_off;
2194 /* Utility equality function for a stmt_list_hash. */
2197 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2198 const struct stmt_list_hash *rhs)
2200 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2202 if (lhs->dwo_unit != NULL
2203 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2206 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2209 /* Hash function for a quick_file_names. */
2212 hash_file_name_entry (const void *e)
2214 const struct quick_file_names *file_data = e;
2216 return hash_stmt_list_entry (&file_data->hash);
2219 /* Equality function for a quick_file_names. */
2222 eq_file_name_entry (const void *a, const void *b)
2224 const struct quick_file_names *ea = a;
2225 const struct quick_file_names *eb = b;
2227 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2230 /* Delete function for a quick_file_names. */
2233 delete_file_name_entry (void *e)
2235 struct quick_file_names *file_data = e;
2238 for (i = 0; i < file_data->num_file_names; ++i)
2240 xfree ((void*) file_data->file_names[i]);
2241 if (file_data->real_names)
2242 xfree ((void*) file_data->real_names[i]);
2245 /* The space for the struct itself lives on objfile_obstack,
2246 so we don't free it here. */
2249 /* Create a quick_file_names hash table. */
2252 create_quick_file_names_table (unsigned int nr_initial_entries)
2254 return htab_create_alloc (nr_initial_entries,
2255 hash_file_name_entry, eq_file_name_entry,
2256 delete_file_name_entry, xcalloc, xfree);
2259 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2260 have to be created afterwards. You should call age_cached_comp_units after
2261 processing PER_CU->CU. dw2_setup must have been already called. */
2264 load_cu (struct dwarf2_per_cu_data *per_cu)
2266 if (per_cu->is_debug_types)
2267 load_full_type_unit (per_cu);
2269 load_full_comp_unit (per_cu, language_minimal);
2271 gdb_assert (per_cu->cu != NULL);
2273 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2276 /* Read in the symbols for PER_CU. */
2279 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2281 struct cleanup *back_to;
2283 /* Skip type_unit_groups, reading the type units they contain
2284 is handled elsewhere. */
2285 if (IS_TYPE_UNIT_GROUP (per_cu))
2288 back_to = make_cleanup (dwarf2_release_queue, NULL);
2290 if (dwarf2_per_objfile->using_index
2291 ? per_cu->v.quick->symtab == NULL
2292 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2294 queue_comp_unit (per_cu, language_minimal);
2300 /* Age the cache, releasing compilation units that have not
2301 been used recently. */
2302 age_cached_comp_units ();
2304 do_cleanups (back_to);
2307 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2308 the objfile from which this CU came. Returns the resulting symbol
2311 static struct symtab *
2312 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2314 gdb_assert (dwarf2_per_objfile->using_index);
2315 if (!per_cu->v.quick->symtab)
2317 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2318 increment_reading_symtab ();
2319 dw2_do_instantiate_symtab (per_cu);
2320 process_cu_includes ();
2321 do_cleanups (back_to);
2323 return per_cu->v.quick->symtab;
2326 /* Return the CU given its index.
2328 This is intended for loops like:
2330 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2331 + dwarf2_per_objfile->n_type_units); ++i)
2333 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2339 static struct dwarf2_per_cu_data *
2340 dw2_get_cu (int index)
2342 if (index >= dwarf2_per_objfile->n_comp_units)
2344 index -= dwarf2_per_objfile->n_comp_units;
2345 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2346 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2349 return dwarf2_per_objfile->all_comp_units[index];
2352 /* Return the primary CU given its index.
2353 The difference between this function and dw2_get_cu is in the handling
2354 of type units (TUs). Here we return the type_unit_group object.
2356 This is intended for loops like:
2358 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2359 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2361 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2367 static struct dwarf2_per_cu_data *
2368 dw2_get_primary_cu (int index)
2370 if (index >= dwarf2_per_objfile->n_comp_units)
2372 index -= dwarf2_per_objfile->n_comp_units;
2373 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2374 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2377 return dwarf2_per_objfile->all_comp_units[index];
2380 /* A helper for create_cus_from_index that handles a given list of
2384 create_cus_from_index_list (struct objfile *objfile,
2385 const gdb_byte *cu_list, offset_type n_elements,
2386 struct dwarf2_section_info *section,
2392 for (i = 0; i < n_elements; i += 2)
2394 struct dwarf2_per_cu_data *the_cu;
2395 ULONGEST offset, length;
2397 gdb_static_assert (sizeof (ULONGEST) >= 8);
2398 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2399 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2402 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2403 struct dwarf2_per_cu_data);
2404 the_cu->offset.sect_off = offset;
2405 the_cu->length = length;
2406 the_cu->objfile = objfile;
2407 the_cu->section = section;
2408 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2409 struct dwarf2_per_cu_quick_data);
2410 the_cu->is_dwz = is_dwz;
2411 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2415 /* Read the CU list from the mapped index, and use it to create all
2416 the CU objects for this objfile. */
2419 create_cus_from_index (struct objfile *objfile,
2420 const gdb_byte *cu_list, offset_type cu_list_elements,
2421 const gdb_byte *dwz_list, offset_type dwz_elements)
2423 struct dwz_file *dwz;
2425 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2426 dwarf2_per_objfile->all_comp_units
2427 = obstack_alloc (&objfile->objfile_obstack,
2428 dwarf2_per_objfile->n_comp_units
2429 * sizeof (struct dwarf2_per_cu_data *));
2431 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2432 &dwarf2_per_objfile->info, 0, 0);
2434 if (dwz_elements == 0)
2437 dwz = dwarf2_get_dwz_file ();
2438 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2439 cu_list_elements / 2);
2442 /* Create the signatured type hash table from the index. */
2445 create_signatured_type_table_from_index (struct objfile *objfile,
2446 struct dwarf2_section_info *section,
2447 const gdb_byte *bytes,
2448 offset_type elements)
2451 htab_t sig_types_hash;
2453 dwarf2_per_objfile->n_type_units = elements / 3;
2454 dwarf2_per_objfile->all_type_units
2455 = obstack_alloc (&objfile->objfile_obstack,
2456 dwarf2_per_objfile->n_type_units
2457 * sizeof (struct signatured_type *));
2459 sig_types_hash = allocate_signatured_type_table (objfile);
2461 for (i = 0; i < elements; i += 3)
2463 struct signatured_type *sig_type;
2464 ULONGEST offset, type_offset_in_tu, signature;
2467 gdb_static_assert (sizeof (ULONGEST) >= 8);
2468 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2469 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2471 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2474 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2475 struct signatured_type);
2476 sig_type->signature = signature;
2477 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2478 sig_type->per_cu.is_debug_types = 1;
2479 sig_type->per_cu.section = section;
2480 sig_type->per_cu.offset.sect_off = offset;
2481 sig_type->per_cu.objfile = objfile;
2482 sig_type->per_cu.v.quick
2483 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2484 struct dwarf2_per_cu_quick_data);
2486 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2489 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2492 dwarf2_per_objfile->signatured_types = sig_types_hash;
2495 /* Read the address map data from the mapped index, and use it to
2496 populate the objfile's psymtabs_addrmap. */
2499 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2501 const gdb_byte *iter, *end;
2502 struct obstack temp_obstack;
2503 struct addrmap *mutable_map;
2504 struct cleanup *cleanup;
2507 obstack_init (&temp_obstack);
2508 cleanup = make_cleanup_obstack_free (&temp_obstack);
2509 mutable_map = addrmap_create_mutable (&temp_obstack);
2511 iter = index->address_table;
2512 end = iter + index->address_table_size;
2514 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2518 ULONGEST hi, lo, cu_index;
2519 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2521 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2523 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2526 if (cu_index < dwarf2_per_objfile->n_comp_units)
2528 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2529 dw2_get_cu (cu_index));
2533 complaint (&symfile_complaints,
2534 _(".gdb_index address table has invalid CU number %u"),
2535 (unsigned) cu_index);
2539 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2540 &objfile->objfile_obstack);
2541 do_cleanups (cleanup);
2544 /* The hash function for strings in the mapped index. This is the same as
2545 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2546 implementation. This is necessary because the hash function is tied to the
2547 format of the mapped index file. The hash values do not have to match with
2550 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2553 mapped_index_string_hash (int index_version, const void *p)
2555 const unsigned char *str = (const unsigned char *) p;
2559 while ((c = *str++) != 0)
2561 if (index_version >= 5)
2563 r = r * 67 + c - 113;
2569 /* Find a slot in the mapped index INDEX for the object named NAME.
2570 If NAME is found, set *VEC_OUT to point to the CU vector in the
2571 constant pool and return 1. If NAME cannot be found, return 0. */
2574 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2575 offset_type **vec_out)
2577 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2579 offset_type slot, step;
2580 int (*cmp) (const char *, const char *);
2582 if (current_language->la_language == language_cplus
2583 || current_language->la_language == language_java
2584 || current_language->la_language == language_fortran)
2586 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2588 const char *paren = strchr (name, '(');
2594 dup = xmalloc (paren - name + 1);
2595 memcpy (dup, name, paren - name);
2596 dup[paren - name] = 0;
2598 make_cleanup (xfree, dup);
2603 /* Index version 4 did not support case insensitive searches. But the
2604 indices for case insensitive languages are built in lowercase, therefore
2605 simulate our NAME being searched is also lowercased. */
2606 hash = mapped_index_string_hash ((index->version == 4
2607 && case_sensitivity == case_sensitive_off
2608 ? 5 : index->version),
2611 slot = hash & (index->symbol_table_slots - 1);
2612 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2613 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2617 /* Convert a slot number to an offset into the table. */
2618 offset_type i = 2 * slot;
2620 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2622 do_cleanups (back_to);
2626 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2627 if (!cmp (name, str))
2629 *vec_out = (offset_type *) (index->constant_pool
2630 + MAYBE_SWAP (index->symbol_table[i + 1]));
2631 do_cleanups (back_to);
2635 slot = (slot + step) & (index->symbol_table_slots - 1);
2639 /* A helper function that reads the .gdb_index from SECTION and fills
2640 in MAP. FILENAME is the name of the file containing the section;
2641 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2642 ok to use deprecated sections.
2644 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2645 out parameters that are filled in with information about the CU and
2646 TU lists in the section.
2648 Returns 1 if all went well, 0 otherwise. */
2651 read_index_from_section (struct objfile *objfile,
2652 const char *filename,
2654 struct dwarf2_section_info *section,
2655 struct mapped_index *map,
2656 const gdb_byte **cu_list,
2657 offset_type *cu_list_elements,
2658 const gdb_byte **types_list,
2659 offset_type *types_list_elements)
2662 offset_type version;
2663 offset_type *metadata;
2666 if (dwarf2_section_empty_p (section))
2669 /* Older elfutils strip versions could keep the section in the main
2670 executable while splitting it for the separate debug info file. */
2671 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2674 dwarf2_read_section (objfile, section);
2676 addr = section->buffer;
2677 /* Version check. */
2678 version = MAYBE_SWAP (*(offset_type *) addr);
2679 /* Versions earlier than 3 emitted every copy of a psymbol. This
2680 causes the index to behave very poorly for certain requests. Version 3
2681 contained incomplete addrmap. So, it seems better to just ignore such
2685 static int warning_printed = 0;
2686 if (!warning_printed)
2688 warning (_("Skipping obsolete .gdb_index section in %s."),
2690 warning_printed = 1;
2694 /* Index version 4 uses a different hash function than index version
2697 Versions earlier than 6 did not emit psymbols for inlined
2698 functions. Using these files will cause GDB not to be able to
2699 set breakpoints on inlined functions by name, so we ignore these
2700 indices unless the user has done
2701 "set use-deprecated-index-sections on". */
2702 if (version < 6 && !deprecated_ok)
2704 static int warning_printed = 0;
2705 if (!warning_printed)
2708 Skipping deprecated .gdb_index section in %s.\n\
2709 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2710 to use the section anyway."),
2712 warning_printed = 1;
2716 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2717 of the TU (for symbols coming from TUs). It's just a performance bug, and
2718 we can't distinguish gdb-generated indices from gold-generated ones, so
2719 nothing to do here. */
2721 /* Indexes with higher version than the one supported by GDB may be no
2722 longer backward compatible. */
2726 map->version = version;
2727 map->total_size = section->size;
2729 metadata = (offset_type *) (addr + sizeof (offset_type));
2732 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2733 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2737 *types_list = addr + MAYBE_SWAP (metadata[i]);
2738 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2739 - MAYBE_SWAP (metadata[i]))
2743 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2744 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2745 - MAYBE_SWAP (metadata[i]));
2748 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2749 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2750 - MAYBE_SWAP (metadata[i]))
2751 / (2 * sizeof (offset_type)));
2754 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2760 /* Read the index file. If everything went ok, initialize the "quick"
2761 elements of all the CUs and return 1. Otherwise, return 0. */
2764 dwarf2_read_index (struct objfile *objfile)
2766 struct mapped_index local_map, *map;
2767 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2768 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2770 if (!read_index_from_section (objfile, objfile->name,
2771 use_deprecated_index_sections,
2772 &dwarf2_per_objfile->gdb_index, &local_map,
2773 &cu_list, &cu_list_elements,
2774 &types_list, &types_list_elements))
2777 /* Don't use the index if it's empty. */
2778 if (local_map.symbol_table_slots == 0)
2781 /* If there is a .dwz file, read it so we can get its CU list as
2783 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2785 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2786 struct mapped_index dwz_map;
2787 const gdb_byte *dwz_types_ignore;
2788 offset_type dwz_types_elements_ignore;
2790 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2792 &dwz->gdb_index, &dwz_map,
2793 &dwz_list, &dwz_list_elements,
2795 &dwz_types_elements_ignore))
2797 warning (_("could not read '.gdb_index' section from %s; skipping"),
2798 bfd_get_filename (dwz->dwz_bfd));
2803 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2806 if (types_list_elements)
2808 struct dwarf2_section_info *section;
2810 /* We can only handle a single .debug_types when we have an
2812 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2815 section = VEC_index (dwarf2_section_info_def,
2816 dwarf2_per_objfile->types, 0);
2818 create_signatured_type_table_from_index (objfile, section, types_list,
2819 types_list_elements);
2822 create_addrmap_from_index (objfile, &local_map);
2824 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2827 dwarf2_per_objfile->index_table = map;
2828 dwarf2_per_objfile->using_index = 1;
2829 dwarf2_per_objfile->quick_file_names_table =
2830 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2835 /* A helper for the "quick" functions which sets the global
2836 dwarf2_per_objfile according to OBJFILE. */
2839 dw2_setup (struct objfile *objfile)
2841 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2842 gdb_assert (dwarf2_per_objfile);
2845 /* die_reader_func for dw2_get_file_names. */
2848 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2849 const gdb_byte *info_ptr,
2850 struct die_info *comp_unit_die,
2854 struct dwarf2_cu *cu = reader->cu;
2855 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2856 struct objfile *objfile = dwarf2_per_objfile->objfile;
2857 struct dwarf2_per_cu_data *lh_cu;
2858 struct line_header *lh;
2859 struct attribute *attr;
2861 const char *name, *comp_dir;
2863 struct quick_file_names *qfn;
2864 unsigned int line_offset;
2866 gdb_assert (! this_cu->is_debug_types);
2868 /* Our callers never want to match partial units -- instead they
2869 will match the enclosing full CU. */
2870 if (comp_unit_die->tag == DW_TAG_partial_unit)
2872 this_cu->v.quick->no_file_data = 1;
2881 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2884 struct quick_file_names find_entry;
2886 line_offset = DW_UNSND (attr);
2888 /* We may have already read in this line header (TU line header sharing).
2889 If we have we're done. */
2890 find_entry.hash.dwo_unit = cu->dwo_unit;
2891 find_entry.hash.line_offset.sect_off = line_offset;
2892 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2893 &find_entry, INSERT);
2896 lh_cu->v.quick->file_names = *slot;
2900 lh = dwarf_decode_line_header (line_offset, cu);
2904 lh_cu->v.quick->no_file_data = 1;
2908 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2909 qfn->hash.dwo_unit = cu->dwo_unit;
2910 qfn->hash.line_offset.sect_off = line_offset;
2911 gdb_assert (slot != NULL);
2914 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2916 qfn->num_file_names = lh->num_file_names;
2917 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2918 lh->num_file_names * sizeof (char *));
2919 for (i = 0; i < lh->num_file_names; ++i)
2920 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2921 qfn->real_names = NULL;
2923 free_line_header (lh);
2925 lh_cu->v.quick->file_names = qfn;
2928 /* A helper for the "quick" functions which attempts to read the line
2929 table for THIS_CU. */
2931 static struct quick_file_names *
2932 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
2934 /* This should never be called for TUs. */
2935 gdb_assert (! this_cu->is_debug_types);
2936 /* Nor type unit groups. */
2937 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
2939 if (this_cu->v.quick->file_names != NULL)
2940 return this_cu->v.quick->file_names;
2941 /* If we know there is no line data, no point in looking again. */
2942 if (this_cu->v.quick->no_file_data)
2945 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2947 if (this_cu->v.quick->no_file_data)
2949 return this_cu->v.quick->file_names;
2952 /* A helper for the "quick" functions which computes and caches the
2953 real path for a given file name from the line table. */
2956 dw2_get_real_path (struct objfile *objfile,
2957 struct quick_file_names *qfn, int index)
2959 if (qfn->real_names == NULL)
2960 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2961 qfn->num_file_names, sizeof (char *));
2963 if (qfn->real_names[index] == NULL)
2964 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2966 return qfn->real_names[index];
2969 static struct symtab *
2970 dw2_find_last_source_symtab (struct objfile *objfile)
2974 dw2_setup (objfile);
2975 index = dwarf2_per_objfile->n_comp_units - 1;
2976 return dw2_instantiate_symtab (dw2_get_cu (index));
2979 /* Traversal function for dw2_forget_cached_source_info. */
2982 dw2_free_cached_file_names (void **slot, void *info)
2984 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2986 if (file_data->real_names)
2990 for (i = 0; i < file_data->num_file_names; ++i)
2992 xfree ((void*) file_data->real_names[i]);
2993 file_data->real_names[i] = NULL;
3001 dw2_forget_cached_source_info (struct objfile *objfile)
3003 dw2_setup (objfile);
3005 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3006 dw2_free_cached_file_names, NULL);
3009 /* Helper function for dw2_map_symtabs_matching_filename that expands
3010 the symtabs and calls the iterator. */
3013 dw2_map_expand_apply (struct objfile *objfile,
3014 struct dwarf2_per_cu_data *per_cu,
3015 const char *name, const char *real_path,
3016 int (*callback) (struct symtab *, void *),
3019 struct symtab *last_made = objfile->symtabs;
3021 /* Don't visit already-expanded CUs. */
3022 if (per_cu->v.quick->symtab)
3025 /* This may expand more than one symtab, and we want to iterate over
3027 dw2_instantiate_symtab (per_cu);
3029 return iterate_over_some_symtabs (name, real_path, callback, data,
3030 objfile->symtabs, last_made);
3033 /* Implementation of the map_symtabs_matching_filename method. */
3036 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3037 const char *real_path,
3038 int (*callback) (struct symtab *, void *),
3042 const char *name_basename = lbasename (name);
3044 dw2_setup (objfile);
3046 /* The rule is CUs specify all the files, including those used by
3047 any TU, so there's no need to scan TUs here. */
3049 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3052 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3053 struct quick_file_names *file_data;
3055 /* We only need to look at symtabs not already expanded. */
3056 if (per_cu->v.quick->symtab)
3059 file_data = dw2_get_file_names (per_cu);
3060 if (file_data == NULL)
3063 for (j = 0; j < file_data->num_file_names; ++j)
3065 const char *this_name = file_data->file_names[j];
3066 const char *this_real_name;
3068 if (compare_filenames_for_search (this_name, name))
3070 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3076 /* Before we invoke realpath, which can get expensive when many
3077 files are involved, do a quick comparison of the basenames. */
3078 if (! basenames_may_differ
3079 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3082 this_real_name = dw2_get_real_path (objfile, file_data, j);
3083 if (compare_filenames_for_search (this_real_name, name))
3085 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3091 if (real_path != NULL)
3093 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3094 gdb_assert (IS_ABSOLUTE_PATH (name));
3095 if (this_real_name != NULL
3096 && FILENAME_CMP (real_path, this_real_name) == 0)
3098 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3110 /* Struct used to manage iterating over all CUs looking for a symbol. */
3112 struct dw2_symtab_iterator
3114 /* The internalized form of .gdb_index. */
3115 struct mapped_index *index;
3116 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3117 int want_specific_block;
3118 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3119 Unused if !WANT_SPECIFIC_BLOCK. */
3121 /* The kind of symbol we're looking for. */
3123 /* The list of CUs from the index entry of the symbol,
3124 or NULL if not found. */
3126 /* The next element in VEC to look at. */
3128 /* The number of elements in VEC, or zero if there is no match. */
3132 /* Initialize the index symtab iterator ITER.
3133 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3134 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3137 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3138 struct mapped_index *index,
3139 int want_specific_block,
3144 iter->index = index;
3145 iter->want_specific_block = want_specific_block;
3146 iter->block_index = block_index;
3147 iter->domain = domain;
3150 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3151 iter->length = MAYBE_SWAP (*iter->vec);
3159 /* Return the next matching CU or NULL if there are no more. */
3161 static struct dwarf2_per_cu_data *
3162 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3164 for ( ; iter->next < iter->length; ++iter->next)
3166 offset_type cu_index_and_attrs =
3167 MAYBE_SWAP (iter->vec[iter->next + 1]);
3168 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3169 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3170 int want_static = iter->block_index != GLOBAL_BLOCK;
3171 /* This value is only valid for index versions >= 7. */
3172 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3173 gdb_index_symbol_kind symbol_kind =
3174 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3175 /* Only check the symbol attributes if they're present.
3176 Indices prior to version 7 don't record them,
3177 and indices >= 7 may elide them for certain symbols
3178 (gold does this). */
3180 (iter->index->version >= 7
3181 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3183 /* Skip if already read in. */
3184 if (per_cu->v.quick->symtab)
3188 && iter->want_specific_block
3189 && want_static != is_static)
3192 /* Only check the symbol's kind if it has one. */
3195 switch (iter->domain)
3198 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3199 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3200 /* Some types are also in VAR_DOMAIN. */
3201 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3205 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3209 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3224 static struct symtab *
3225 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3226 const char *name, domain_enum domain)
3228 struct symtab *stab_best = NULL;
3229 struct mapped_index *index;
3231 dw2_setup (objfile);
3233 index = dwarf2_per_objfile->index_table;
3235 /* index is NULL if OBJF_READNOW. */
3238 struct dw2_symtab_iterator iter;
3239 struct dwarf2_per_cu_data *per_cu;
3241 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3243 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3245 struct symbol *sym = NULL;
3246 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3248 /* Some caution must be observed with overloaded functions
3249 and methods, since the index will not contain any overload
3250 information (but NAME might contain it). */
3253 struct blockvector *bv = BLOCKVECTOR (stab);
3254 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3256 sym = lookup_block_symbol (block, name, domain);
3259 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3261 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3267 /* Keep looking through other CUs. */
3275 dw2_print_stats (struct objfile *objfile)
3277 int i, total, count;
3279 dw2_setup (objfile);
3280 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3282 for (i = 0; i < total; ++i)
3284 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3286 if (!per_cu->v.quick->symtab)
3289 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3290 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3294 dw2_dump (struct objfile *objfile)
3296 /* Nothing worth printing. */
3300 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3301 struct section_offsets *delta)
3303 /* There's nothing to relocate here. */
3307 dw2_expand_symtabs_for_function (struct objfile *objfile,
3308 const char *func_name)
3310 struct mapped_index *index;
3312 dw2_setup (objfile);
3314 index = dwarf2_per_objfile->index_table;
3316 /* index is NULL if OBJF_READNOW. */
3319 struct dw2_symtab_iterator iter;
3320 struct dwarf2_per_cu_data *per_cu;
3322 /* Note: It doesn't matter what we pass for block_index here. */
3323 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3326 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3327 dw2_instantiate_symtab (per_cu);
3332 dw2_expand_all_symtabs (struct objfile *objfile)
3336 dw2_setup (objfile);
3338 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3339 + dwarf2_per_objfile->n_type_units); ++i)
3341 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3343 dw2_instantiate_symtab (per_cu);
3348 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3349 const char *fullname)
3353 dw2_setup (objfile);
3355 /* We don't need to consider type units here.
3356 This is only called for examining code, e.g. expand_line_sal.
3357 There can be an order of magnitude (or more) more type units
3358 than comp units, and we avoid them if we can. */
3360 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3363 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3364 struct quick_file_names *file_data;
3366 /* We only need to look at symtabs not already expanded. */
3367 if (per_cu->v.quick->symtab)
3370 file_data = dw2_get_file_names (per_cu);
3371 if (file_data == NULL)
3374 for (j = 0; j < file_data->num_file_names; ++j)
3376 const char *this_fullname = file_data->file_names[j];
3378 if (filename_cmp (this_fullname, fullname) == 0)
3380 dw2_instantiate_symtab (per_cu);
3387 /* A helper function for dw2_find_symbol_file that finds the primary
3388 file name for a given CU. This is a die_reader_func. */
3391 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3392 const gdb_byte *info_ptr,
3393 struct die_info *comp_unit_die,
3397 const char **result_ptr = data;
3398 struct dwarf2_cu *cu = reader->cu;
3399 struct attribute *attr;
3401 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3405 *result_ptr = DW_STRING (attr);
3409 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3411 struct dwarf2_per_cu_data *per_cu;
3413 const char *filename;
3415 dw2_setup (objfile);
3417 /* index_table is NULL if OBJF_READNOW. */
3418 if (!dwarf2_per_objfile->index_table)
3422 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3424 struct blockvector *bv = BLOCKVECTOR (s);
3425 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3426 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3430 /* Only file extension of returned filename is recognized. */
3431 return SYMBOL_SYMTAB (sym)->filename;
3437 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3441 /* Note that this just looks at the very first one named NAME -- but
3442 actually we are looking for a function. find_main_filename
3443 should be rewritten so that it doesn't require a custom hook. It
3444 could just use the ordinary symbol tables. */
3445 /* vec[0] is the length, which must always be >0. */
3446 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3448 if (per_cu->v.quick->symtab != NULL)
3450 /* Only file extension of returned filename is recognized. */
3451 return per_cu->v.quick->symtab->filename;
3454 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3455 dw2_get_primary_filename_reader, &filename);
3457 /* Only file extension of returned filename is recognized. */
3462 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3463 struct objfile *objfile, int global,
3464 int (*callback) (struct block *,
3465 struct symbol *, void *),
3466 void *data, symbol_compare_ftype *match,
3467 symbol_compare_ftype *ordered_compare)
3469 /* Currently unimplemented; used for Ada. The function can be called if the
3470 current language is Ada for a non-Ada objfile using GNU index. As Ada
3471 does not look for non-Ada symbols this function should just return. */
3475 dw2_expand_symtabs_matching
3476 (struct objfile *objfile,
3477 int (*file_matcher) (const char *, void *, int basenames),
3478 int (*name_matcher) (const char *, void *),
3479 enum search_domain kind,
3484 struct mapped_index *index;
3486 dw2_setup (objfile);
3488 /* index_table is NULL if OBJF_READNOW. */
3489 if (!dwarf2_per_objfile->index_table)
3491 index = dwarf2_per_objfile->index_table;
3493 if (file_matcher != NULL)
3495 struct cleanup *cleanup;
3496 htab_t visited_found, visited_not_found;
3498 visited_found = htab_create_alloc (10,
3499 htab_hash_pointer, htab_eq_pointer,
3500 NULL, xcalloc, xfree);
3501 cleanup = make_cleanup_htab_delete (visited_found);
3502 visited_not_found = htab_create_alloc (10,
3503 htab_hash_pointer, htab_eq_pointer,
3504 NULL, xcalloc, xfree);
3505 make_cleanup_htab_delete (visited_not_found);
3507 /* The rule is CUs specify all the files, including those used by
3508 any TU, so there's no need to scan TUs here. */
3510 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3513 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3514 struct quick_file_names *file_data;
3517 per_cu->v.quick->mark = 0;
3519 /* We only need to look at symtabs not already expanded. */
3520 if (per_cu->v.quick->symtab)
3523 file_data = dw2_get_file_names (per_cu);
3524 if (file_data == NULL)
3527 if (htab_find (visited_not_found, file_data) != NULL)
3529 else if (htab_find (visited_found, file_data) != NULL)
3531 per_cu->v.quick->mark = 1;
3535 for (j = 0; j < file_data->num_file_names; ++j)
3537 const char *this_real_name;
3539 if (file_matcher (file_data->file_names[j], data, 0))
3541 per_cu->v.quick->mark = 1;
3545 /* Before we invoke realpath, which can get expensive when many
3546 files are involved, do a quick comparison of the basenames. */
3547 if (!basenames_may_differ
3548 && !file_matcher (lbasename (file_data->file_names[j]),
3552 this_real_name = dw2_get_real_path (objfile, file_data, j);
3553 if (file_matcher (this_real_name, data, 0))
3555 per_cu->v.quick->mark = 1;
3560 slot = htab_find_slot (per_cu->v.quick->mark
3562 : visited_not_found,
3567 do_cleanups (cleanup);
3570 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3572 offset_type idx = 2 * iter;
3574 offset_type *vec, vec_len, vec_idx;
3576 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3579 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3581 if (! (*name_matcher) (name, data))
3584 /* The name was matched, now expand corresponding CUs that were
3586 vec = (offset_type *) (index->constant_pool
3587 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3588 vec_len = MAYBE_SWAP (vec[0]);
3589 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3591 struct dwarf2_per_cu_data *per_cu;
3592 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3593 gdb_index_symbol_kind symbol_kind =
3594 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3595 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3597 /* Don't crash on bad data. */
3598 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3599 + dwarf2_per_objfile->n_type_units))
3602 /* Only check the symbol's kind if it has one.
3603 Indices prior to version 7 don't record it. */
3604 if (index->version >= 7)
3608 case VARIABLES_DOMAIN:
3609 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3612 case FUNCTIONS_DOMAIN:
3613 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3617 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3625 per_cu = dw2_get_cu (cu_index);
3626 if (file_matcher == NULL || per_cu->v.quick->mark)
3627 dw2_instantiate_symtab (per_cu);
3632 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3635 static struct symtab *
3636 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3640 if (BLOCKVECTOR (symtab) != NULL
3641 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3644 if (symtab->includes == NULL)
3647 for (i = 0; symtab->includes[i]; ++i)
3649 struct symtab *s = symtab->includes[i];
3651 s = recursively_find_pc_sect_symtab (s, pc);
3659 static struct symtab *
3660 dw2_find_pc_sect_symtab (struct objfile *objfile,
3661 struct minimal_symbol *msymbol,
3663 struct obj_section *section,
3666 struct dwarf2_per_cu_data *data;
3667 struct symtab *result;
3669 dw2_setup (objfile);
3671 if (!objfile->psymtabs_addrmap)
3674 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3678 if (warn_if_readin && data->v.quick->symtab)
3679 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3680 paddress (get_objfile_arch (objfile), pc));
3682 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3683 gdb_assert (result != NULL);
3688 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3689 void *data, int need_fullname)
3692 struct cleanup *cleanup;
3693 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3694 NULL, xcalloc, xfree);
3696 cleanup = make_cleanup_htab_delete (visited);
3697 dw2_setup (objfile);
3699 /* The rule is CUs specify all the files, including those used by
3700 any TU, so there's no need to scan TUs here.
3701 We can ignore file names coming from already-expanded CUs. */
3703 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3705 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3707 if (per_cu->v.quick->symtab)
3709 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3712 *slot = per_cu->v.quick->file_names;
3716 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3719 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3720 struct quick_file_names *file_data;
3723 /* We only need to look at symtabs not already expanded. */
3724 if (per_cu->v.quick->symtab)
3727 file_data = dw2_get_file_names (per_cu);
3728 if (file_data == NULL)
3731 slot = htab_find_slot (visited, file_data, INSERT);
3734 /* Already visited. */
3739 for (j = 0; j < file_data->num_file_names; ++j)
3741 const char *this_real_name;
3744 this_real_name = dw2_get_real_path (objfile, file_data, j);
3746 this_real_name = NULL;
3747 (*fun) (file_data->file_names[j], this_real_name, data);
3751 do_cleanups (cleanup);
3755 dw2_has_symbols (struct objfile *objfile)
3760 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3763 dw2_find_last_source_symtab,
3764 dw2_forget_cached_source_info,
3765 dw2_map_symtabs_matching_filename,
3770 dw2_expand_symtabs_for_function,
3771 dw2_expand_all_symtabs,
3772 dw2_expand_symtabs_with_fullname,
3773 dw2_find_symbol_file,
3774 dw2_map_matching_symbols,
3775 dw2_expand_symtabs_matching,
3776 dw2_find_pc_sect_symtab,
3777 dw2_map_symbol_filenames
3780 /* Initialize for reading DWARF for this objfile. Return 0 if this
3781 file will use psymtabs, or 1 if using the GNU index. */
3784 dwarf2_initialize_objfile (struct objfile *objfile)
3786 /* If we're about to read full symbols, don't bother with the
3787 indices. In this case we also don't care if some other debug
3788 format is making psymtabs, because they are all about to be
3790 if ((objfile->flags & OBJF_READNOW))
3794 dwarf2_per_objfile->using_index = 1;
3795 create_all_comp_units (objfile);
3796 create_all_type_units (objfile);
3797 dwarf2_per_objfile->quick_file_names_table =
3798 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3800 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3801 + dwarf2_per_objfile->n_type_units); ++i)
3803 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3806 struct dwarf2_per_cu_quick_data);
3809 /* Return 1 so that gdb sees the "quick" functions. However,
3810 these functions will be no-ops because we will have expanded
3815 if (dwarf2_read_index (objfile))
3823 /* Build a partial symbol table. */
3826 dwarf2_build_psymtabs (struct objfile *objfile)
3828 volatile struct gdb_exception except;
3830 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3832 init_psymbol_list (objfile, 1024);
3835 TRY_CATCH (except, RETURN_MASK_ERROR)
3837 /* This isn't really ideal: all the data we allocate on the
3838 objfile's obstack is still uselessly kept around. However,
3839 freeing it seems unsafe. */
3840 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3842 dwarf2_build_psymtabs_hard (objfile);
3843 discard_cleanups (cleanups);
3845 if (except.reason < 0)
3846 exception_print (gdb_stderr, except);
3849 /* Return the total length of the CU described by HEADER. */
3852 get_cu_length (const struct comp_unit_head *header)
3854 return header->initial_length_size + header->length;
3857 /* Return TRUE if OFFSET is within CU_HEADER. */
3860 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3862 sect_offset bottom = { cu_header->offset.sect_off };
3863 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3865 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3868 /* Find the base address of the compilation unit for range lists and
3869 location lists. It will normally be specified by DW_AT_low_pc.
3870 In DWARF-3 draft 4, the base address could be overridden by
3871 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3872 compilation units with discontinuous ranges. */
3875 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3877 struct attribute *attr;
3880 cu->base_address = 0;
3882 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3885 cu->base_address = DW_ADDR (attr);
3890 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3893 cu->base_address = DW_ADDR (attr);
3899 /* Read in the comp unit header information from the debug_info at info_ptr.
3900 NOTE: This leaves members offset, first_die_offset to be filled in
3903 static const gdb_byte *
3904 read_comp_unit_head (struct comp_unit_head *cu_header,
3905 const gdb_byte *info_ptr, bfd *abfd)
3908 unsigned int bytes_read;
3910 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3911 cu_header->initial_length_size = bytes_read;
3912 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3913 info_ptr += bytes_read;
3914 cu_header->version = read_2_bytes (abfd, info_ptr);
3916 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3918 info_ptr += bytes_read;
3919 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3921 signed_addr = bfd_get_sign_extend_vma (abfd);
3922 if (signed_addr < 0)
3923 internal_error (__FILE__, __LINE__,
3924 _("read_comp_unit_head: dwarf from non elf file"));
3925 cu_header->signed_addr_p = signed_addr;
3930 /* Helper function that returns the proper abbrev section for
3933 static struct dwarf2_section_info *
3934 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3936 struct dwarf2_section_info *abbrev;
3938 if (this_cu->is_dwz)
3939 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3941 abbrev = &dwarf2_per_objfile->abbrev;
3946 /* Subroutine of read_and_check_comp_unit_head and
3947 read_and_check_type_unit_head to simplify them.
3948 Perform various error checking on the header. */
3951 error_check_comp_unit_head (struct comp_unit_head *header,
3952 struct dwarf2_section_info *section,
3953 struct dwarf2_section_info *abbrev_section)
3955 bfd *abfd = section->asection->owner;
3956 const char *filename = bfd_get_filename (abfd);
3958 if (header->version != 2 && header->version != 3 && header->version != 4)
3959 error (_("Dwarf Error: wrong version in compilation unit header "
3960 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3963 if (header->abbrev_offset.sect_off
3964 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3965 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3966 "(offset 0x%lx + 6) [in module %s]"),
3967 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3970 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3971 avoid potential 32-bit overflow. */
3972 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3974 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3975 "(offset 0x%lx + 0) [in module %s]"),
3976 (long) header->length, (long) header->offset.sect_off,
3980 /* Read in a CU/TU header and perform some basic error checking.
3981 The contents of the header are stored in HEADER.
3982 The result is a pointer to the start of the first DIE. */
3984 static const gdb_byte *
3985 read_and_check_comp_unit_head (struct comp_unit_head *header,
3986 struct dwarf2_section_info *section,
3987 struct dwarf2_section_info *abbrev_section,
3988 const gdb_byte *info_ptr,
3989 int is_debug_types_section)
3991 const gdb_byte *beg_of_comp_unit = info_ptr;
3992 bfd *abfd = section->asection->owner;
3994 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3996 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3998 /* If we're reading a type unit, skip over the signature and
3999 type_offset fields. */
4000 if (is_debug_types_section)
4001 info_ptr += 8 /*signature*/ + header->offset_size;
4003 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4005 error_check_comp_unit_head (header, section, abbrev_section);
4010 /* Read in the types comp unit header information from .debug_types entry at
4011 types_ptr. The result is a pointer to one past the end of the header. */
4013 static const gdb_byte *
4014 read_and_check_type_unit_head (struct comp_unit_head *header,
4015 struct dwarf2_section_info *section,
4016 struct dwarf2_section_info *abbrev_section,
4017 const gdb_byte *info_ptr,
4018 ULONGEST *signature,
4019 cu_offset *type_offset_in_tu)
4021 const gdb_byte *beg_of_comp_unit = info_ptr;
4022 bfd *abfd = section->asection->owner;
4024 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4026 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4028 /* If we're reading a type unit, skip over the signature and
4029 type_offset fields. */
4030 if (signature != NULL)
4031 *signature = read_8_bytes (abfd, info_ptr);
4033 if (type_offset_in_tu != NULL)
4034 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4035 header->offset_size);
4036 info_ptr += header->offset_size;
4038 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4040 error_check_comp_unit_head (header, section, abbrev_section);
4045 /* Fetch the abbreviation table offset from a comp or type unit header. */
4048 read_abbrev_offset (struct dwarf2_section_info *section,
4051 bfd *abfd = section->asection->owner;
4052 const gdb_byte *info_ptr;
4053 unsigned int length, initial_length_size, offset_size;
4054 sect_offset abbrev_offset;
4056 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4057 info_ptr = section->buffer + offset.sect_off;
4058 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4059 offset_size = initial_length_size == 4 ? 4 : 8;
4060 info_ptr += initial_length_size + 2 /*version*/;
4061 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4062 return abbrev_offset;
4065 /* Allocate a new partial symtab for file named NAME and mark this new
4066 partial symtab as being an include of PST. */
4069 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4070 struct objfile *objfile)
4072 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4074 if (!IS_ABSOLUTE_PATH (subpst->filename))
4076 /* It shares objfile->objfile_obstack. */
4077 subpst->dirname = pst->dirname;
4080 subpst->section_offsets = pst->section_offsets;
4081 subpst->textlow = 0;
4082 subpst->texthigh = 0;
4084 subpst->dependencies = (struct partial_symtab **)
4085 obstack_alloc (&objfile->objfile_obstack,
4086 sizeof (struct partial_symtab *));
4087 subpst->dependencies[0] = pst;
4088 subpst->number_of_dependencies = 1;
4090 subpst->globals_offset = 0;
4091 subpst->n_global_syms = 0;
4092 subpst->statics_offset = 0;
4093 subpst->n_static_syms = 0;
4094 subpst->symtab = NULL;
4095 subpst->read_symtab = pst->read_symtab;
4098 /* No private part is necessary for include psymtabs. This property
4099 can be used to differentiate between such include psymtabs and
4100 the regular ones. */
4101 subpst->read_symtab_private = NULL;
4104 /* Read the Line Number Program data and extract the list of files
4105 included by the source file represented by PST. Build an include
4106 partial symtab for each of these included files. */
4109 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4110 struct die_info *die,
4111 struct partial_symtab *pst)
4113 struct line_header *lh = NULL;
4114 struct attribute *attr;
4116 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4118 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4120 return; /* No linetable, so no includes. */
4122 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4123 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4125 free_line_header (lh);
4129 hash_signatured_type (const void *item)
4131 const struct signatured_type *sig_type = item;
4133 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4134 return sig_type->signature;
4138 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4140 const struct signatured_type *lhs = item_lhs;
4141 const struct signatured_type *rhs = item_rhs;
4143 return lhs->signature == rhs->signature;
4146 /* Allocate a hash table for signatured types. */
4149 allocate_signatured_type_table (struct objfile *objfile)
4151 return htab_create_alloc_ex (41,
4152 hash_signatured_type,
4155 &objfile->objfile_obstack,
4156 hashtab_obstack_allocate,
4157 dummy_obstack_deallocate);
4160 /* A helper function to add a signatured type CU to a table. */
4163 add_signatured_type_cu_to_table (void **slot, void *datum)
4165 struct signatured_type *sigt = *slot;
4166 struct signatured_type ***datap = datum;
4174 /* Create the hash table of all entries in the .debug_types
4175 (or .debug_types.dwo) section(s).
4176 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4177 otherwise it is NULL.
4179 The result is a pointer to the hash table or NULL if there are no types.
4181 Note: This function processes DWO files only, not DWP files. */
4184 create_debug_types_hash_table (struct dwo_file *dwo_file,
4185 VEC (dwarf2_section_info_def) *types)
4187 struct objfile *objfile = dwarf2_per_objfile->objfile;
4188 htab_t types_htab = NULL;
4190 struct dwarf2_section_info *section;
4191 struct dwarf2_section_info *abbrev_section;
4193 if (VEC_empty (dwarf2_section_info_def, types))
4196 abbrev_section = (dwo_file != NULL
4197 ? &dwo_file->sections.abbrev
4198 : &dwarf2_per_objfile->abbrev);
4200 if (dwarf2_read_debug)
4201 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4202 dwo_file ? ".dwo" : "",
4203 bfd_get_filename (abbrev_section->asection->owner));
4206 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4210 const gdb_byte *info_ptr, *end_ptr;
4211 struct dwarf2_section_info *abbrev_section;
4213 dwarf2_read_section (objfile, section);
4214 info_ptr = section->buffer;
4216 if (info_ptr == NULL)
4219 /* We can't set abfd until now because the section may be empty or
4220 not present, in which case section->asection will be NULL. */
4221 abfd = section->asection->owner;
4224 abbrev_section = &dwo_file->sections.abbrev;
4226 abbrev_section = &dwarf2_per_objfile->abbrev;
4228 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4229 because we don't need to read any dies: the signature is in the
4232 end_ptr = info_ptr + section->size;
4233 while (info_ptr < end_ptr)
4236 cu_offset type_offset_in_tu;
4238 struct signatured_type *sig_type;
4239 struct dwo_unit *dwo_tu;
4241 const gdb_byte *ptr = info_ptr;
4242 struct comp_unit_head header;
4243 unsigned int length;
4245 offset.sect_off = ptr - section->buffer;
4247 /* We need to read the type's signature in order to build the hash
4248 table, but we don't need anything else just yet. */
4250 ptr = read_and_check_type_unit_head (&header, section,
4251 abbrev_section, ptr,
4252 &signature, &type_offset_in_tu);
4254 length = get_cu_length (&header);
4256 /* Skip dummy type units. */
4257 if (ptr >= info_ptr + length
4258 || peek_abbrev_code (abfd, ptr) == 0)
4264 if (types_htab == NULL)
4267 types_htab = allocate_dwo_unit_table (objfile);
4269 types_htab = allocate_signatured_type_table (objfile);
4275 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4277 dwo_tu->dwo_file = dwo_file;
4278 dwo_tu->signature = signature;
4279 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4280 dwo_tu->section = section;
4281 dwo_tu->offset = offset;
4282 dwo_tu->length = length;
4286 /* N.B.: type_offset is not usable if this type uses a DWO file.
4287 The real type_offset is in the DWO file. */
4289 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4290 struct signatured_type);
4291 sig_type->signature = signature;
4292 sig_type->type_offset_in_tu = type_offset_in_tu;
4293 sig_type->per_cu.objfile = objfile;
4294 sig_type->per_cu.is_debug_types = 1;
4295 sig_type->per_cu.section = section;
4296 sig_type->per_cu.offset = offset;
4297 sig_type->per_cu.length = length;
4300 slot = htab_find_slot (types_htab,
4301 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4303 gdb_assert (slot != NULL);
4306 sect_offset dup_offset;
4310 const struct dwo_unit *dup_tu = *slot;
4312 dup_offset = dup_tu->offset;
4316 const struct signatured_type *dup_tu = *slot;
4318 dup_offset = dup_tu->per_cu.offset;
4321 complaint (&symfile_complaints,
4322 _("debug type entry at offset 0x%x is duplicate to"
4323 " the entry at offset 0x%x, signature %s"),
4324 offset.sect_off, dup_offset.sect_off,
4325 hex_string (signature));
4327 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4329 if (dwarf2_read_debug)
4330 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4332 hex_string (signature));
4341 /* Create the hash table of all entries in the .debug_types section,
4342 and initialize all_type_units.
4343 The result is zero if there is an error (e.g. missing .debug_types section),
4344 otherwise non-zero. */
4347 create_all_type_units (struct objfile *objfile)
4350 struct signatured_type **iter;
4352 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4353 if (types_htab == NULL)
4355 dwarf2_per_objfile->signatured_types = NULL;
4359 dwarf2_per_objfile->signatured_types = types_htab;
4361 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4362 dwarf2_per_objfile->all_type_units
4363 = obstack_alloc (&objfile->objfile_obstack,
4364 dwarf2_per_objfile->n_type_units
4365 * sizeof (struct signatured_type *));
4366 iter = &dwarf2_per_objfile->all_type_units[0];
4367 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4368 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4369 == dwarf2_per_objfile->n_type_units);
4374 /* Lookup a signature based type for DW_FORM_ref_sig8.
4375 Returns NULL if signature SIG is not present in the table.
4376 It is up to the caller to complain about this. */
4378 static struct signatured_type *
4379 lookup_signatured_type (ULONGEST sig)
4381 struct signatured_type find_entry, *entry;
4383 if (dwarf2_per_objfile->signatured_types == NULL)
4385 find_entry.signature = sig;
4386 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4390 /* Low level DIE reading support. */
4392 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4395 init_cu_die_reader (struct die_reader_specs *reader,
4396 struct dwarf2_cu *cu,
4397 struct dwarf2_section_info *section,
4398 struct dwo_file *dwo_file)
4400 gdb_assert (section->readin && section->buffer != NULL);
4401 reader->abfd = section->asection->owner;
4403 reader->dwo_file = dwo_file;
4404 reader->die_section = section;
4405 reader->buffer = section->buffer;
4406 reader->buffer_end = section->buffer + section->size;
4409 /* Subroutine of init_cutu_and_read_dies to simplify it.
4410 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4411 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4414 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4415 from it to the DIE in the DWO. If NULL we are skipping the stub.
4416 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4417 are filled in with the info of the DIE from the DWO file.
4418 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4419 provided an abbrev table to use.
4420 The result is non-zero if a valid (non-dummy) DIE was found. */
4423 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4424 struct dwo_unit *dwo_unit,
4425 int abbrev_table_provided,
4426 struct die_info *stub_comp_unit_die,
4427 struct die_reader_specs *result_reader,
4428 const gdb_byte **result_info_ptr,
4429 struct die_info **result_comp_unit_die,
4430 int *result_has_children)
4432 struct objfile *objfile = dwarf2_per_objfile->objfile;
4433 struct dwarf2_cu *cu = this_cu->cu;
4434 struct dwarf2_section_info *section;
4436 const gdb_byte *begin_info_ptr, *info_ptr;
4437 const char *comp_dir_string;
4438 ULONGEST signature; /* Or dwo_id. */
4439 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4440 int i,num_extra_attrs;
4441 struct dwarf2_section_info *dwo_abbrev_section;
4442 struct attribute *attr;
4443 struct die_info *comp_unit_die;
4445 /* These attributes aren't processed until later:
4446 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4447 However, the attribute is found in the stub which we won't have later.
4448 In order to not impose this complication on the rest of the code,
4449 we read them here and copy them to the DWO CU/TU die. */
4457 if (stub_comp_unit_die != NULL)
4459 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4461 if (! this_cu->is_debug_types)
4462 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
4463 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
4464 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
4465 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
4466 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
4468 /* There should be a DW_AT_addr_base attribute here (if needed).
4469 We need the value before we can process DW_FORM_GNU_addr_index. */
4471 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
4473 cu->addr_base = DW_UNSND (attr);
4475 /* There should be a DW_AT_ranges_base attribute here (if needed).
4476 We need the value before we can process DW_AT_ranges. */
4477 cu->ranges_base = 0;
4478 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
4480 cu->ranges_base = DW_UNSND (attr);
4483 /* Set up for reading the DWO CU/TU. */
4484 cu->dwo_unit = dwo_unit;
4485 section = dwo_unit->section;
4486 dwarf2_read_section (objfile, section);
4487 abfd = section->asection->owner;
4488 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4489 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4490 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
4492 if (this_cu->is_debug_types)
4494 ULONGEST header_signature;
4495 cu_offset type_offset_in_tu;
4496 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
4498 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4502 &type_offset_in_tu);
4503 gdb_assert (sig_type->signature == header_signature);
4504 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4505 /* For DWOs coming from DWP files, we don't know the CU length
4506 nor the type's offset in the TU until now. */
4507 dwo_unit->length = get_cu_length (&cu->header);
4508 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4510 /* Establish the type offset that can be used to lookup the type.
4511 For DWO files, we don't know it until now. */
4512 sig_type->type_offset_in_section.sect_off =
4513 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4517 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4520 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4521 /* For DWOs coming from DWP files, we don't know the CU length
4523 dwo_unit->length = get_cu_length (&cu->header);
4526 /* Replace the CU's original abbrev table with the DWO's.
4527 Reminder: We can't read the abbrev table until we've read the header. */
4528 if (abbrev_table_provided)
4530 /* Don't free the provided abbrev table, the caller of
4531 init_cutu_and_read_dies owns it. */
4532 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4533 /* Ensure the DWO abbrev table gets freed. */
4534 make_cleanup (dwarf2_free_abbrev_table, cu);
4538 dwarf2_free_abbrev_table (cu);
4539 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4540 /* Leave any existing abbrev table cleanup as is. */
4543 /* Read in the die, but leave space to copy over the attributes
4544 from the stub. This has the benefit of simplifying the rest of
4545 the code - all the work to maintain the illusion of a single
4546 DW_TAG_{compile,type}_unit DIE is done here. */
4547 num_extra_attrs = ((stmt_list != NULL)
4551 + (comp_dir != NULL));
4552 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
4553 result_has_children, num_extra_attrs);
4555 /* Copy over the attributes from the stub to the DIE we just read in. */
4556 comp_unit_die = *result_comp_unit_die;
4557 i = comp_unit_die->num_attrs;
4558 if (stmt_list != NULL)
4559 comp_unit_die->attrs[i++] = *stmt_list;
4561 comp_unit_die->attrs[i++] = *low_pc;
4562 if (high_pc != NULL)
4563 comp_unit_die->attrs[i++] = *high_pc;
4565 comp_unit_die->attrs[i++] = *ranges;
4566 if (comp_dir != NULL)
4567 comp_unit_die->attrs[i++] = *comp_dir;
4568 comp_unit_die->num_attrs += num_extra_attrs;
4570 if (dwarf2_die_debug)
4572 fprintf_unfiltered (gdb_stdlog,
4573 "Read die from %s@0x%x of %s:\n",
4574 bfd_section_name (abfd, section->asection),
4575 (unsigned) (begin_info_ptr - section->buffer),
4576 bfd_get_filename (abfd));
4577 dump_die (comp_unit_die, dwarf2_die_debug);
4580 /* Skip dummy compilation units. */
4581 if (info_ptr >= begin_info_ptr + dwo_unit->length
4582 || peek_abbrev_code (abfd, info_ptr) == 0)
4585 *result_info_ptr = info_ptr;
4589 /* Subroutine of init_cutu_and_read_dies to simplify it.
4590 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
4591 If the specified DWO unit cannot be found an error is thrown. */
4593 static struct dwo_unit *
4594 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
4595 struct die_info *comp_unit_die)
4597 struct dwarf2_cu *cu = this_cu->cu;
4598 struct attribute *attr;
4600 struct dwo_unit *dwo_unit;
4601 const char *comp_dir, *dwo_name;
4603 /* Yeah, we look dwo_name up again, but it simplifies the code. */
4604 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4605 gdb_assert (attr != NULL);
4606 dwo_name = DW_STRING (attr);
4608 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4610 comp_dir = DW_STRING (attr);
4612 if (this_cu->is_debug_types)
4614 struct signatured_type *sig_type;
4616 /* Since this_cu is the first member of struct signatured_type,
4617 we can go from a pointer to one to a pointer to the other. */
4618 sig_type = (struct signatured_type *) this_cu;
4619 signature = sig_type->signature;
4620 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
4624 struct attribute *attr;
4626 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4628 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
4630 dwo_name, this_cu->objfile->name);
4631 signature = DW_UNSND (attr);
4632 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
4636 if (dwo_unit == NULL)
4638 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4639 " with ID %s [in module %s]"),
4640 this_cu->offset.sect_off, hex_string (signature),
4641 this_cu->objfile->name);
4647 /* Initialize a CU (or TU) and read its DIEs.
4648 If the CU defers to a DWO file, read the DWO file as well.
4650 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4651 Otherwise the table specified in the comp unit header is read in and used.
4652 This is an optimization for when we already have the abbrev table.
4654 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4655 Otherwise, a new CU is allocated with xmalloc.
4657 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4658 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4660 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4661 linker) then DIE_READER_FUNC will not get called. */
4664 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4665 struct abbrev_table *abbrev_table,
4666 int use_existing_cu, int keep,
4667 die_reader_func_ftype *die_reader_func,
4670 struct objfile *objfile = dwarf2_per_objfile->objfile;
4671 struct dwarf2_section_info *section = this_cu->section;
4672 bfd *abfd = section->asection->owner;
4673 struct dwarf2_cu *cu;
4674 const gdb_byte *begin_info_ptr, *info_ptr;
4675 struct die_reader_specs reader;
4676 struct die_info *comp_unit_die;
4678 struct attribute *attr;
4679 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4680 struct signatured_type *sig_type = NULL;
4681 struct dwarf2_section_info *abbrev_section;
4682 /* Non-zero if CU currently points to a DWO file and we need to
4683 reread it. When this happens we need to reread the skeleton die
4684 before we can reread the DWO file. */
4685 int rereading_dwo_cu = 0;
4687 if (dwarf2_die_debug)
4688 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4689 this_cu->is_debug_types ? "type" : "comp",
4690 this_cu->offset.sect_off);
4692 if (use_existing_cu)
4695 cleanups = make_cleanup (null_cleanup, NULL);
4697 /* This is cheap if the section is already read in. */
4698 dwarf2_read_section (objfile, section);
4700 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4702 abbrev_section = get_abbrev_section_for_cu (this_cu);
4704 if (use_existing_cu && this_cu->cu != NULL)
4708 /* If this CU is from a DWO file we need to start over, we need to
4709 refetch the attributes from the skeleton CU.
4710 This could be optimized by retrieving those attributes from when we
4711 were here the first time: the previous comp_unit_die was stored in
4712 comp_unit_obstack. But there's no data yet that we need this
4714 if (cu->dwo_unit != NULL)
4715 rereading_dwo_cu = 1;
4719 /* If !use_existing_cu, this_cu->cu must be NULL. */
4720 gdb_assert (this_cu->cu == NULL);
4722 cu = xmalloc (sizeof (*cu));
4723 init_one_comp_unit (cu, this_cu);
4725 /* If an error occurs while loading, release our storage. */
4726 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4729 /* Get the header. */
4730 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4732 /* We already have the header, there's no need to read it in again. */
4733 info_ptr += cu->header.first_die_offset.cu_off;
4737 if (this_cu->is_debug_types)
4740 cu_offset type_offset_in_tu;
4742 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4743 abbrev_section, info_ptr,
4745 &type_offset_in_tu);
4747 /* Since per_cu is the first member of struct signatured_type,
4748 we can go from a pointer to one to a pointer to the other. */
4749 sig_type = (struct signatured_type *) this_cu;
4750 gdb_assert (sig_type->signature == signature);
4751 gdb_assert (sig_type->type_offset_in_tu.cu_off
4752 == type_offset_in_tu.cu_off);
4753 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4755 /* LENGTH has not been set yet for type units if we're
4756 using .gdb_index. */
4757 this_cu->length = get_cu_length (&cu->header);
4759 /* Establish the type offset that can be used to lookup the type. */
4760 sig_type->type_offset_in_section.sect_off =
4761 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4765 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4769 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4770 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4774 /* Skip dummy compilation units. */
4775 if (info_ptr >= begin_info_ptr + this_cu->length
4776 || peek_abbrev_code (abfd, info_ptr) == 0)
4778 do_cleanups (cleanups);
4782 /* If we don't have them yet, read the abbrevs for this compilation unit.
4783 And if we need to read them now, make sure they're freed when we're
4784 done. Note that it's important that if the CU had an abbrev table
4785 on entry we don't free it when we're done: Somewhere up the call stack
4786 it may be in use. */
4787 if (abbrev_table != NULL)
4789 gdb_assert (cu->abbrev_table == NULL);
4790 gdb_assert (cu->header.abbrev_offset.sect_off
4791 == abbrev_table->offset.sect_off);
4792 cu->abbrev_table = abbrev_table;
4794 else if (cu->abbrev_table == NULL)
4796 dwarf2_read_abbrevs (cu, abbrev_section);
4797 make_cleanup (dwarf2_free_abbrev_table, cu);
4799 else if (rereading_dwo_cu)
4801 dwarf2_free_abbrev_table (cu);
4802 dwarf2_read_abbrevs (cu, abbrev_section);
4805 /* Read the top level CU/TU die. */
4806 init_cu_die_reader (&reader, cu, section, NULL);
4807 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4809 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
4811 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
4812 DWO CU, that this test will fail (the attribute will not be present). */
4813 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4816 struct dwo_unit *dwo_unit;
4817 struct die_info *dwo_comp_unit_die;
4820 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4821 " has children (offset 0x%x) [in module %s]"),
4822 this_cu->offset.sect_off, bfd_get_filename (abfd));
4823 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
4824 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
4825 abbrev_table != NULL,
4828 &dwo_comp_unit_die, &has_children) == 0)
4831 do_cleanups (cleanups);
4834 comp_unit_die = dwo_comp_unit_die;
4837 /* All of the above is setup for this call. Yikes. */
4838 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4840 /* Done, clean up. */
4841 if (free_cu_cleanup != NULL)
4845 /* We've successfully allocated this compilation unit. Let our
4846 caller clean it up when finished with it. */
4847 discard_cleanups (free_cu_cleanup);
4849 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4850 So we have to manually free the abbrev table. */
4851 dwarf2_free_abbrev_table (cu);
4853 /* Link this CU into read_in_chain. */
4854 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4855 dwarf2_per_objfile->read_in_chain = this_cu;
4858 do_cleanups (free_cu_cleanup);
4861 do_cleanups (cleanups);
4864 /* Read CU/TU THIS_CU in section SECTION,
4865 but do not follow DW_AT_GNU_dwo_name if present.
4866 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4867 to have already done the lookup to find the DWO/DWP file).
4869 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4870 THIS_CU->is_debug_types, but nothing else.
4872 We fill in THIS_CU->length.
4874 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4875 linker) then DIE_READER_FUNC will not get called.
4877 THIS_CU->cu is always freed when done.
4878 This is done in order to not leave THIS_CU->cu in a state where we have
4879 to care whether it refers to the "main" CU or the DWO CU. */
4882 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4883 struct dwarf2_section_info *abbrev_section,
4884 struct dwo_file *dwo_file,
4885 die_reader_func_ftype *die_reader_func,
4888 struct objfile *objfile = dwarf2_per_objfile->objfile;
4889 struct dwarf2_section_info *section = this_cu->section;
4890 bfd *abfd = section->asection->owner;
4891 struct dwarf2_cu cu;
4892 const gdb_byte *begin_info_ptr, *info_ptr;
4893 struct die_reader_specs reader;
4894 struct cleanup *cleanups;
4895 struct die_info *comp_unit_die;
4898 if (dwarf2_die_debug)
4899 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4900 this_cu->is_debug_types ? "type" : "comp",
4901 this_cu->offset.sect_off);
4903 gdb_assert (this_cu->cu == NULL);
4905 /* This is cheap if the section is already read in. */
4906 dwarf2_read_section (objfile, section);
4908 init_one_comp_unit (&cu, this_cu);
4910 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4912 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4913 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4914 abbrev_section, info_ptr,
4915 this_cu->is_debug_types);
4917 this_cu->length = get_cu_length (&cu.header);
4919 /* Skip dummy compilation units. */
4920 if (info_ptr >= begin_info_ptr + this_cu->length
4921 || peek_abbrev_code (abfd, info_ptr) == 0)
4923 do_cleanups (cleanups);
4927 dwarf2_read_abbrevs (&cu, abbrev_section);
4928 make_cleanup (dwarf2_free_abbrev_table, &cu);
4930 init_cu_die_reader (&reader, &cu, section, dwo_file);
4931 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4933 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4935 do_cleanups (cleanups);
4938 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4939 does not lookup the specified DWO file.
4940 This cannot be used to read DWO files.
4942 THIS_CU->cu is always freed when done.
4943 This is done in order to not leave THIS_CU->cu in a state where we have
4944 to care whether it refers to the "main" CU or the DWO CU.
4945 We can revisit this if the data shows there's a performance issue. */
4948 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4949 die_reader_func_ftype *die_reader_func,
4952 init_cutu_and_read_dies_no_follow (this_cu,
4953 get_abbrev_section_for_cu (this_cu),
4955 die_reader_func, data);
4958 /* Type Unit Groups.
4960 Type Unit Groups are a way to collapse the set of all TUs (type units) into
4961 a more manageable set. The grouping is done by DW_AT_stmt_list entry
4962 so that all types coming from the same compilation (.o file) are grouped
4963 together. A future step could be to put the types in the same symtab as
4964 the CU the types ultimately came from. */
4967 hash_type_unit_group (const void *item)
4969 const struct type_unit_group *tu_group = item;
4971 return hash_stmt_list_entry (&tu_group->hash);
4975 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
4977 const struct type_unit_group *lhs = item_lhs;
4978 const struct type_unit_group *rhs = item_rhs;
4980 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
4983 /* Allocate a hash table for type unit groups. */
4986 allocate_type_unit_groups_table (void)
4988 return htab_create_alloc_ex (3,
4989 hash_type_unit_group,
4992 &dwarf2_per_objfile->objfile->objfile_obstack,
4993 hashtab_obstack_allocate,
4994 dummy_obstack_deallocate);
4997 /* Type units that don't have DW_AT_stmt_list are grouped into their own
4998 partial symtabs. We combine several TUs per psymtab to not let the size
4999 of any one psymtab grow too big. */
5000 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5001 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5003 /* Helper routine for get_type_unit_group.
5004 Create the type_unit_group object used to hold one or more TUs. */
5006 static struct type_unit_group *
5007 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5009 struct objfile *objfile = dwarf2_per_objfile->objfile;
5010 struct dwarf2_per_cu_data *per_cu;
5011 struct type_unit_group *tu_group;
5013 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5014 struct type_unit_group);
5015 per_cu = &tu_group->per_cu;
5016 per_cu->objfile = objfile;
5018 if (dwarf2_per_objfile->using_index)
5020 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5021 struct dwarf2_per_cu_quick_data);
5025 unsigned int line_offset = line_offset_struct.sect_off;
5026 struct partial_symtab *pst;
5029 /* Give the symtab a useful name for debug purposes. */
5030 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5031 name = xstrprintf ("<type_units_%d>",
5032 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5034 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5036 pst = create_partial_symtab (per_cu, name);
5042 tu_group->hash.dwo_unit = cu->dwo_unit;
5043 tu_group->hash.line_offset = line_offset_struct;
5048 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5049 STMT_LIST is a DW_AT_stmt_list attribute. */
5051 static struct type_unit_group *
5052 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5054 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5055 struct type_unit_group *tu_group;
5057 unsigned int line_offset;
5058 struct type_unit_group type_unit_group_for_lookup;
5060 if (dwarf2_per_objfile->type_unit_groups == NULL)
5062 dwarf2_per_objfile->type_unit_groups =
5063 allocate_type_unit_groups_table ();
5066 /* Do we need to create a new group, or can we use an existing one? */
5070 line_offset = DW_UNSND (stmt_list);
5071 ++tu_stats->nr_symtab_sharers;
5075 /* Ugh, no stmt_list. Rare, but we have to handle it.
5076 We can do various things here like create one group per TU or
5077 spread them over multiple groups to split up the expansion work.
5078 To avoid worst case scenarios (too many groups or too large groups)
5079 we, umm, group them in bunches. */
5080 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5081 | (tu_stats->nr_stmt_less_type_units
5082 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5083 ++tu_stats->nr_stmt_less_type_units;
5086 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5087 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5088 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5089 &type_unit_group_for_lookup, INSERT);
5093 gdb_assert (tu_group != NULL);
5097 sect_offset line_offset_struct;
5099 line_offset_struct.sect_off = line_offset;
5100 tu_group = create_type_unit_group (cu, line_offset_struct);
5102 ++tu_stats->nr_symtabs;
5108 /* Struct used to sort TUs by their abbreviation table offset. */
5110 struct tu_abbrev_offset
5112 struct signatured_type *sig_type;
5113 sect_offset abbrev_offset;
5116 /* Helper routine for build_type_unit_groups, passed to qsort. */
5119 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5121 const struct tu_abbrev_offset * const *a = ap;
5122 const struct tu_abbrev_offset * const *b = bp;
5123 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5124 unsigned int boff = (*b)->abbrev_offset.sect_off;
5126 return (aoff > boff) - (aoff < boff);
5129 /* A helper function to add a type_unit_group to a table. */
5132 add_type_unit_group_to_table (void **slot, void *datum)
5134 struct type_unit_group *tu_group = *slot;
5135 struct type_unit_group ***datap = datum;
5143 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5144 each one passing FUNC,DATA.
5146 The efficiency is because we sort TUs by the abbrev table they use and
5147 only read each abbrev table once. In one program there are 200K TUs
5148 sharing 8K abbrev tables.
5150 The main purpose of this function is to support building the
5151 dwarf2_per_objfile->type_unit_groups table.
5152 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5153 can collapse the search space by grouping them by stmt_list.
5154 The savings can be significant, in the same program from above the 200K TUs
5155 share 8K stmt_list tables.
5157 FUNC is expected to call get_type_unit_group, which will create the
5158 struct type_unit_group if necessary and add it to
5159 dwarf2_per_objfile->type_unit_groups. */
5162 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5164 struct objfile *objfile = dwarf2_per_objfile->objfile;
5165 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5166 struct cleanup *cleanups;
5167 struct abbrev_table *abbrev_table;
5168 sect_offset abbrev_offset;
5169 struct tu_abbrev_offset *sorted_by_abbrev;
5170 struct type_unit_group **iter;
5173 /* It's up to the caller to not call us multiple times. */
5174 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5176 if (dwarf2_per_objfile->n_type_units == 0)
5179 /* TUs typically share abbrev tables, and there can be way more TUs than
5180 abbrev tables. Sort by abbrev table to reduce the number of times we
5181 read each abbrev table in.
5182 Alternatives are to punt or to maintain a cache of abbrev tables.
5183 This is simpler and efficient enough for now.
5185 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5186 symtab to use). Typically TUs with the same abbrev offset have the same
5187 stmt_list value too so in practice this should work well.
5189 The basic algorithm here is:
5191 sort TUs by abbrev table
5192 for each TU with same abbrev table:
5193 read abbrev table if first user
5194 read TU top level DIE
5195 [IWBN if DWO skeletons had DW_AT_stmt_list]
5198 if (dwarf2_read_debug)
5199 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5201 /* Sort in a separate table to maintain the order of all_type_units
5202 for .gdb_index: TU indices directly index all_type_units. */
5203 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5204 dwarf2_per_objfile->n_type_units);
5205 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5207 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5209 sorted_by_abbrev[i].sig_type = sig_type;
5210 sorted_by_abbrev[i].abbrev_offset =
5211 read_abbrev_offset (sig_type->per_cu.section,
5212 sig_type->per_cu.offset);
5214 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5215 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5216 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5218 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5219 called any number of times, so we don't reset tu_stats here. */
5221 abbrev_offset.sect_off = ~(unsigned) 0;
5222 abbrev_table = NULL;
5223 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5227 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5229 /* Switch to the next abbrev table if necessary. */
5230 if (abbrev_table == NULL
5231 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5233 if (abbrev_table != NULL)
5235 abbrev_table_free (abbrev_table);
5236 /* Reset to NULL in case abbrev_table_read_table throws
5237 an error: abbrev_table_free_cleanup will get called. */
5238 abbrev_table = NULL;
5240 abbrev_offset = tu->abbrev_offset;
5242 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5244 ++tu_stats->nr_uniq_abbrev_tables;
5247 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5251 /* Create a vector of pointers to primary type units to make it easy to
5252 iterate over them and CUs. See dw2_get_primary_cu. */
5253 dwarf2_per_objfile->n_type_unit_groups =
5254 htab_elements (dwarf2_per_objfile->type_unit_groups);
5255 dwarf2_per_objfile->all_type_unit_groups =
5256 obstack_alloc (&objfile->objfile_obstack,
5257 dwarf2_per_objfile->n_type_unit_groups
5258 * sizeof (struct type_unit_group *));
5259 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5260 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5261 add_type_unit_group_to_table, &iter);
5262 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5263 == dwarf2_per_objfile->n_type_unit_groups);
5265 do_cleanups (cleanups);
5267 if (dwarf2_read_debug)
5269 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5270 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5271 dwarf2_per_objfile->n_type_units);
5272 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5273 tu_stats->nr_uniq_abbrev_tables);
5274 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5275 tu_stats->nr_symtabs);
5276 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5277 tu_stats->nr_symtab_sharers);
5278 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5279 tu_stats->nr_stmt_less_type_units);
5283 /* Partial symbol tables. */
5285 /* Create a psymtab named NAME and assign it to PER_CU.
5287 The caller must fill in the following details:
5288 dirname, textlow, texthigh. */
5290 static struct partial_symtab *
5291 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5293 struct objfile *objfile = per_cu->objfile;
5294 struct partial_symtab *pst;
5296 pst = start_psymtab_common (objfile, objfile->section_offsets,
5298 objfile->global_psymbols.next,
5299 objfile->static_psymbols.next);
5301 pst->psymtabs_addrmap_supported = 1;
5303 /* This is the glue that links PST into GDB's symbol API. */
5304 pst->read_symtab_private = per_cu;
5305 pst->read_symtab = dwarf2_read_symtab;
5306 per_cu->v.psymtab = pst;
5311 /* die_reader_func for process_psymtab_comp_unit. */
5314 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5315 const gdb_byte *info_ptr,
5316 struct die_info *comp_unit_die,
5320 struct dwarf2_cu *cu = reader->cu;
5321 struct objfile *objfile = cu->objfile;
5322 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5323 struct attribute *attr;
5325 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5326 struct partial_symtab *pst;
5328 const char *filename;
5329 int *want_partial_unit_ptr = data;
5331 if (comp_unit_die->tag == DW_TAG_partial_unit
5332 && (want_partial_unit_ptr == NULL
5333 || !*want_partial_unit_ptr))
5336 gdb_assert (! per_cu->is_debug_types);
5338 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5340 cu->list_in_scope = &file_symbols;
5342 /* Allocate a new partial symbol table structure. */
5343 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5344 if (attr == NULL || !DW_STRING (attr))
5347 filename = DW_STRING (attr);
5349 pst = create_partial_symtab (per_cu, filename);
5351 /* This must be done before calling dwarf2_build_include_psymtabs. */
5352 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5354 pst->dirname = DW_STRING (attr);
5356 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5358 dwarf2_find_base_address (comp_unit_die, cu);
5360 /* Possibly set the default values of LOWPC and HIGHPC from
5362 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5363 &best_highpc, cu, pst);
5364 if (has_pc_info == 1 && best_lowpc < best_highpc)
5365 /* Store the contiguous range if it is not empty; it can be empty for
5366 CUs with no code. */
5367 addrmap_set_empty (objfile->psymtabs_addrmap,
5368 best_lowpc + baseaddr,
5369 best_highpc + baseaddr - 1, pst);
5371 /* Check if comp unit has_children.
5372 If so, read the rest of the partial symbols from this comp unit.
5373 If not, there's no more debug_info for this comp unit. */
5376 struct partial_die_info *first_die;
5377 CORE_ADDR lowpc, highpc;
5379 lowpc = ((CORE_ADDR) -1);
5380 highpc = ((CORE_ADDR) 0);
5382 first_die = load_partial_dies (reader, info_ptr, 1);
5384 scan_partial_symbols (first_die, &lowpc, &highpc,
5387 /* If we didn't find a lowpc, set it to highpc to avoid
5388 complaints from `maint check'. */
5389 if (lowpc == ((CORE_ADDR) -1))
5392 /* If the compilation unit didn't have an explicit address range,
5393 then use the information extracted from its child dies. */
5397 best_highpc = highpc;
5400 pst->textlow = best_lowpc + baseaddr;
5401 pst->texthigh = best_highpc + baseaddr;
5403 pst->n_global_syms = objfile->global_psymbols.next -
5404 (objfile->global_psymbols.list + pst->globals_offset);
5405 pst->n_static_syms = objfile->static_psymbols.next -
5406 (objfile->static_psymbols.list + pst->statics_offset);
5407 sort_pst_symbols (objfile, pst);
5409 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5412 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5413 struct dwarf2_per_cu_data *iter;
5415 /* Fill in 'dependencies' here; we fill in 'users' in a
5417 pst->number_of_dependencies = len;
5418 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5419 len * sizeof (struct symtab *));
5421 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5424 pst->dependencies[i] = iter->v.psymtab;
5426 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5429 /* Get the list of files included in the current compilation unit,
5430 and build a psymtab for each of them. */
5431 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5433 if (dwarf2_read_debug)
5435 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5437 fprintf_unfiltered (gdb_stdlog,
5438 "Psymtab for %s unit @0x%x: %s - %s"
5439 ", %d global, %d static syms\n",
5440 per_cu->is_debug_types ? "type" : "comp",
5441 per_cu->offset.sect_off,
5442 paddress (gdbarch, pst->textlow),
5443 paddress (gdbarch, pst->texthigh),
5444 pst->n_global_syms, pst->n_static_syms);
5448 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5449 Process compilation unit THIS_CU for a psymtab. */
5452 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5453 int want_partial_unit)
5455 /* If this compilation unit was already read in, free the
5456 cached copy in order to read it in again. This is
5457 necessary because we skipped some symbols when we first
5458 read in the compilation unit (see load_partial_dies).
5459 This problem could be avoided, but the benefit is unclear. */
5460 if (this_cu->cu != NULL)
5461 free_one_cached_comp_unit (this_cu);
5463 gdb_assert (! this_cu->is_debug_types);
5464 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5465 process_psymtab_comp_unit_reader,
5466 &want_partial_unit);
5468 /* Age out any secondary CUs. */
5469 age_cached_comp_units ();
5472 /* Reader function for build_type_psymtabs. */
5475 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5476 const gdb_byte *info_ptr,
5477 struct die_info *type_unit_die,
5481 struct objfile *objfile = dwarf2_per_objfile->objfile;
5482 struct dwarf2_cu *cu = reader->cu;
5483 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5484 struct signatured_type *sig_type;
5485 struct type_unit_group *tu_group;
5486 struct attribute *attr;
5487 struct partial_die_info *first_die;
5488 CORE_ADDR lowpc, highpc;
5489 struct partial_symtab *pst;
5491 gdb_assert (data == NULL);
5492 gdb_assert (per_cu->is_debug_types);
5493 sig_type = (struct signatured_type *) per_cu;
5498 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5499 tu_group = get_type_unit_group (cu, attr);
5501 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
5503 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5504 cu->list_in_scope = &file_symbols;
5505 pst = create_partial_symtab (per_cu, "");
5508 first_die = load_partial_dies (reader, info_ptr, 1);
5510 lowpc = (CORE_ADDR) -1;
5511 highpc = (CORE_ADDR) 0;
5512 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5514 pst->n_global_syms = objfile->global_psymbols.next -
5515 (objfile->global_psymbols.list + pst->globals_offset);
5516 pst->n_static_syms = objfile->static_psymbols.next -
5517 (objfile->static_psymbols.list + pst->statics_offset);
5518 sort_pst_symbols (objfile, pst);
5521 /* Traversal function for build_type_psymtabs. */
5524 build_type_psymtab_dependencies (void **slot, void *info)
5526 struct objfile *objfile = dwarf2_per_objfile->objfile;
5527 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5528 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5529 struct partial_symtab *pst = per_cu->v.psymtab;
5530 int len = VEC_length (sig_type_ptr, tu_group->tus);
5531 struct signatured_type *iter;
5534 gdb_assert (len > 0);
5535 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
5537 pst->number_of_dependencies = len;
5538 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5539 len * sizeof (struct psymtab *));
5541 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
5544 gdb_assert (iter->per_cu.is_debug_types);
5545 pst->dependencies[i] = iter->per_cu.v.psymtab;
5546 iter->type_unit_group = tu_group;
5549 VEC_free (sig_type_ptr, tu_group->tus);
5554 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5555 Build partial symbol tables for the .debug_types comp-units. */
5558 build_type_psymtabs (struct objfile *objfile)
5560 if (! create_all_type_units (objfile))
5563 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5565 /* Now that all TUs have been processed we can fill in the dependencies. */
5566 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5567 build_type_psymtab_dependencies, NULL);
5570 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5573 psymtabs_addrmap_cleanup (void *o)
5575 struct objfile *objfile = o;
5577 objfile->psymtabs_addrmap = NULL;
5580 /* Compute the 'user' field for each psymtab in OBJFILE. */
5583 set_partial_user (struct objfile *objfile)
5587 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5589 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5590 struct partial_symtab *pst = per_cu->v.psymtab;
5596 for (j = 0; j < pst->number_of_dependencies; ++j)
5598 /* Set the 'user' field only if it is not already set. */
5599 if (pst->dependencies[j]->user == NULL)
5600 pst->dependencies[j]->user = pst;
5605 /* Build the partial symbol table by doing a quick pass through the
5606 .debug_info and .debug_abbrev sections. */
5609 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5611 struct cleanup *back_to, *addrmap_cleanup;
5612 struct obstack temp_obstack;
5615 if (dwarf2_read_debug)
5617 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5621 dwarf2_per_objfile->reading_partial_symbols = 1;
5623 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5625 /* Any cached compilation units will be linked by the per-objfile
5626 read_in_chain. Make sure to free them when we're done. */
5627 back_to = make_cleanup (free_cached_comp_units, NULL);
5629 build_type_psymtabs (objfile);
5631 create_all_comp_units (objfile);
5633 /* Create a temporary address map on a temporary obstack. We later
5634 copy this to the final obstack. */
5635 obstack_init (&temp_obstack);
5636 make_cleanup_obstack_free (&temp_obstack);
5637 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5638 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5640 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5642 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5644 process_psymtab_comp_unit (per_cu, 0);
5647 set_partial_user (objfile);
5649 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5650 &objfile->objfile_obstack);
5651 discard_cleanups (addrmap_cleanup);
5653 do_cleanups (back_to);
5655 if (dwarf2_read_debug)
5656 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5660 /* die_reader_func for load_partial_comp_unit. */
5663 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5664 const gdb_byte *info_ptr,
5665 struct die_info *comp_unit_die,
5669 struct dwarf2_cu *cu = reader->cu;
5671 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5673 /* Check if comp unit has_children.
5674 If so, read the rest of the partial symbols from this comp unit.
5675 If not, there's no more debug_info for this comp unit. */
5677 load_partial_dies (reader, info_ptr, 0);
5680 /* Load the partial DIEs for a secondary CU into memory.
5681 This is also used when rereading a primary CU with load_all_dies. */
5684 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5686 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5687 load_partial_comp_unit_reader, NULL);
5691 read_comp_units_from_section (struct objfile *objfile,
5692 struct dwarf2_section_info *section,
5693 unsigned int is_dwz,
5696 struct dwarf2_per_cu_data ***all_comp_units)
5698 const gdb_byte *info_ptr;
5699 bfd *abfd = section->asection->owner;
5701 if (dwarf2_read_debug)
5702 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
5703 section->asection->name, bfd_get_filename (abfd));
5705 dwarf2_read_section (objfile, section);
5707 info_ptr = section->buffer;
5709 while (info_ptr < section->buffer + section->size)
5711 unsigned int length, initial_length_size;
5712 struct dwarf2_per_cu_data *this_cu;
5715 offset.sect_off = info_ptr - section->buffer;
5717 /* Read just enough information to find out where the next
5718 compilation unit is. */
5719 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5721 /* Save the compilation unit for later lookup. */
5722 this_cu = obstack_alloc (&objfile->objfile_obstack,
5723 sizeof (struct dwarf2_per_cu_data));
5724 memset (this_cu, 0, sizeof (*this_cu));
5725 this_cu->offset = offset;
5726 this_cu->length = length + initial_length_size;
5727 this_cu->is_dwz = is_dwz;
5728 this_cu->objfile = objfile;
5729 this_cu->section = section;
5731 if (*n_comp_units == *n_allocated)
5734 *all_comp_units = xrealloc (*all_comp_units,
5736 * sizeof (struct dwarf2_per_cu_data *));
5738 (*all_comp_units)[*n_comp_units] = this_cu;
5741 info_ptr = info_ptr + this_cu->length;
5745 /* Create a list of all compilation units in OBJFILE.
5746 This is only done for -readnow and building partial symtabs. */
5749 create_all_comp_units (struct objfile *objfile)
5753 struct dwarf2_per_cu_data **all_comp_units;
5757 all_comp_units = xmalloc (n_allocated
5758 * sizeof (struct dwarf2_per_cu_data *));
5760 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5761 &n_allocated, &n_comp_units, &all_comp_units);
5763 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5765 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5767 read_comp_units_from_section (objfile, &dwz->info, 1,
5768 &n_allocated, &n_comp_units,
5772 dwarf2_per_objfile->all_comp_units
5773 = obstack_alloc (&objfile->objfile_obstack,
5774 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5775 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5776 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5777 xfree (all_comp_units);
5778 dwarf2_per_objfile->n_comp_units = n_comp_units;
5781 /* Process all loaded DIEs for compilation unit CU, starting at
5782 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5783 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5784 DW_AT_ranges). If NEED_PC is set, then this function will set
5785 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5786 and record the covered ranges in the addrmap. */
5789 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5790 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5792 struct partial_die_info *pdi;
5794 /* Now, march along the PDI's, descending into ones which have
5795 interesting children but skipping the children of the other ones,
5796 until we reach the end of the compilation unit. */
5802 fixup_partial_die (pdi, cu);
5804 /* Anonymous namespaces or modules have no name but have interesting
5805 children, so we need to look at them. Ditto for anonymous
5808 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5809 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5810 || pdi->tag == DW_TAG_imported_unit)
5814 case DW_TAG_subprogram:
5815 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5817 case DW_TAG_constant:
5818 case DW_TAG_variable:
5819 case DW_TAG_typedef:
5820 case DW_TAG_union_type:
5821 if (!pdi->is_declaration)
5823 add_partial_symbol (pdi, cu);
5826 case DW_TAG_class_type:
5827 case DW_TAG_interface_type:
5828 case DW_TAG_structure_type:
5829 if (!pdi->is_declaration)
5831 add_partial_symbol (pdi, cu);
5834 case DW_TAG_enumeration_type:
5835 if (!pdi->is_declaration)
5836 add_partial_enumeration (pdi, cu);
5838 case DW_TAG_base_type:
5839 case DW_TAG_subrange_type:
5840 /* File scope base type definitions are added to the partial
5842 add_partial_symbol (pdi, cu);
5844 case DW_TAG_namespace:
5845 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5848 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5850 case DW_TAG_imported_unit:
5852 struct dwarf2_per_cu_data *per_cu;
5854 /* For now we don't handle imported units in type units. */
5855 if (cu->per_cu->is_debug_types)
5857 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5858 " supported in type units [in module %s]"),
5862 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5866 /* Go read the partial unit, if needed. */
5867 if (per_cu->v.psymtab == NULL)
5868 process_psymtab_comp_unit (per_cu, 1);
5870 VEC_safe_push (dwarf2_per_cu_ptr,
5871 cu->per_cu->imported_symtabs, per_cu);
5879 /* If the die has a sibling, skip to the sibling. */
5881 pdi = pdi->die_sibling;
5885 /* Functions used to compute the fully scoped name of a partial DIE.
5887 Normally, this is simple. For C++, the parent DIE's fully scoped
5888 name is concatenated with "::" and the partial DIE's name. For
5889 Java, the same thing occurs except that "." is used instead of "::".
5890 Enumerators are an exception; they use the scope of their parent
5891 enumeration type, i.e. the name of the enumeration type is not
5892 prepended to the enumerator.
5894 There are two complexities. One is DW_AT_specification; in this
5895 case "parent" means the parent of the target of the specification,
5896 instead of the direct parent of the DIE. The other is compilers
5897 which do not emit DW_TAG_namespace; in this case we try to guess
5898 the fully qualified name of structure types from their members'
5899 linkage names. This must be done using the DIE's children rather
5900 than the children of any DW_AT_specification target. We only need
5901 to do this for structures at the top level, i.e. if the target of
5902 any DW_AT_specification (if any; otherwise the DIE itself) does not
5905 /* Compute the scope prefix associated with PDI's parent, in
5906 compilation unit CU. The result will be allocated on CU's
5907 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5908 field. NULL is returned if no prefix is necessary. */
5910 partial_die_parent_scope (struct partial_die_info *pdi,
5911 struct dwarf2_cu *cu)
5913 const char *grandparent_scope;
5914 struct partial_die_info *parent, *real_pdi;
5916 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5917 then this means the parent of the specification DIE. */
5920 while (real_pdi->has_specification)
5921 real_pdi = find_partial_die (real_pdi->spec_offset,
5922 real_pdi->spec_is_dwz, cu);
5924 parent = real_pdi->die_parent;
5928 if (parent->scope_set)
5929 return parent->scope;
5931 fixup_partial_die (parent, cu);
5933 grandparent_scope = partial_die_parent_scope (parent, cu);
5935 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5936 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5937 Work around this problem here. */
5938 if (cu->language == language_cplus
5939 && parent->tag == DW_TAG_namespace
5940 && strcmp (parent->name, "::") == 0
5941 && grandparent_scope == NULL)
5943 parent->scope = NULL;
5944 parent->scope_set = 1;
5948 if (pdi->tag == DW_TAG_enumerator)
5949 /* Enumerators should not get the name of the enumeration as a prefix. */
5950 parent->scope = grandparent_scope;
5951 else if (parent->tag == DW_TAG_namespace
5952 || parent->tag == DW_TAG_module
5953 || parent->tag == DW_TAG_structure_type
5954 || parent->tag == DW_TAG_class_type
5955 || parent->tag == DW_TAG_interface_type
5956 || parent->tag == DW_TAG_union_type
5957 || parent->tag == DW_TAG_enumeration_type)
5959 if (grandparent_scope == NULL)
5960 parent->scope = parent->name;
5962 parent->scope = typename_concat (&cu->comp_unit_obstack,
5964 parent->name, 0, cu);
5968 /* FIXME drow/2004-04-01: What should we be doing with
5969 function-local names? For partial symbols, we should probably be
5971 complaint (&symfile_complaints,
5972 _("unhandled containing DIE tag %d for DIE at %d"),
5973 parent->tag, pdi->offset.sect_off);
5974 parent->scope = grandparent_scope;
5977 parent->scope_set = 1;
5978 return parent->scope;
5981 /* Return the fully scoped name associated with PDI, from compilation unit
5982 CU. The result will be allocated with malloc. */
5985 partial_die_full_name (struct partial_die_info *pdi,
5986 struct dwarf2_cu *cu)
5988 const char *parent_scope;
5990 /* If this is a template instantiation, we can not work out the
5991 template arguments from partial DIEs. So, unfortunately, we have
5992 to go through the full DIEs. At least any work we do building
5993 types here will be reused if full symbols are loaded later. */
5994 if (pdi->has_template_arguments)
5996 fixup_partial_die (pdi, cu);
5998 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6000 struct die_info *die;
6001 struct attribute attr;
6002 struct dwarf2_cu *ref_cu = cu;
6004 /* DW_FORM_ref_addr is using section offset. */
6006 attr.form = DW_FORM_ref_addr;
6007 attr.u.unsnd = pdi->offset.sect_off;
6008 die = follow_die_ref (NULL, &attr, &ref_cu);
6010 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6014 parent_scope = partial_die_parent_scope (pdi, cu);
6015 if (parent_scope == NULL)
6018 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6022 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6024 struct objfile *objfile = cu->objfile;
6026 const char *actual_name = NULL;
6028 char *built_actual_name;
6030 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6032 built_actual_name = partial_die_full_name (pdi, cu);
6033 if (built_actual_name != NULL)
6034 actual_name = built_actual_name;
6036 if (actual_name == NULL)
6037 actual_name = pdi->name;
6041 case DW_TAG_subprogram:
6042 if (pdi->is_external || cu->language == language_ada)
6044 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6045 of the global scope. But in Ada, we want to be able to access
6046 nested procedures globally. So all Ada subprograms are stored
6047 in the global scope. */
6048 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6049 mst_text, objfile); */
6050 add_psymbol_to_list (actual_name, strlen (actual_name),
6051 built_actual_name != NULL,
6052 VAR_DOMAIN, LOC_BLOCK,
6053 &objfile->global_psymbols,
6054 0, pdi->lowpc + baseaddr,
6055 cu->language, objfile);
6059 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6060 mst_file_text, objfile); */
6061 add_psymbol_to_list (actual_name, strlen (actual_name),
6062 built_actual_name != NULL,
6063 VAR_DOMAIN, LOC_BLOCK,
6064 &objfile->static_psymbols,
6065 0, pdi->lowpc + baseaddr,
6066 cu->language, objfile);
6069 case DW_TAG_constant:
6071 struct psymbol_allocation_list *list;
6073 if (pdi->is_external)
6074 list = &objfile->global_psymbols;
6076 list = &objfile->static_psymbols;
6077 add_psymbol_to_list (actual_name, strlen (actual_name),
6078 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6079 list, 0, 0, cu->language, objfile);
6082 case DW_TAG_variable:
6084 addr = decode_locdesc (pdi->d.locdesc, cu);
6088 && !dwarf2_per_objfile->has_section_at_zero)
6090 /* A global or static variable may also have been stripped
6091 out by the linker if unused, in which case its address
6092 will be nullified; do not add such variables into partial
6093 symbol table then. */
6095 else if (pdi->is_external)
6098 Don't enter into the minimal symbol tables as there is
6099 a minimal symbol table entry from the ELF symbols already.
6100 Enter into partial symbol table if it has a location
6101 descriptor or a type.
6102 If the location descriptor is missing, new_symbol will create
6103 a LOC_UNRESOLVED symbol, the address of the variable will then
6104 be determined from the minimal symbol table whenever the variable
6106 The address for the partial symbol table entry is not
6107 used by GDB, but it comes in handy for debugging partial symbol
6110 if (pdi->d.locdesc || pdi->has_type)
6111 add_psymbol_to_list (actual_name, strlen (actual_name),
6112 built_actual_name != NULL,
6113 VAR_DOMAIN, LOC_STATIC,
6114 &objfile->global_psymbols,
6116 cu->language, objfile);
6120 /* Static Variable. Skip symbols without location descriptors. */
6121 if (pdi->d.locdesc == NULL)
6123 xfree (built_actual_name);
6126 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6127 mst_file_data, objfile); */
6128 add_psymbol_to_list (actual_name, strlen (actual_name),
6129 built_actual_name != NULL,
6130 VAR_DOMAIN, LOC_STATIC,
6131 &objfile->static_psymbols,
6133 cu->language, objfile);
6136 case DW_TAG_typedef:
6137 case DW_TAG_base_type:
6138 case DW_TAG_subrange_type:
6139 add_psymbol_to_list (actual_name, strlen (actual_name),
6140 built_actual_name != NULL,
6141 VAR_DOMAIN, LOC_TYPEDEF,
6142 &objfile->static_psymbols,
6143 0, (CORE_ADDR) 0, cu->language, objfile);
6145 case DW_TAG_namespace:
6146 add_psymbol_to_list (actual_name, strlen (actual_name),
6147 built_actual_name != NULL,
6148 VAR_DOMAIN, LOC_TYPEDEF,
6149 &objfile->global_psymbols,
6150 0, (CORE_ADDR) 0, cu->language, objfile);
6152 case DW_TAG_class_type:
6153 case DW_TAG_interface_type:
6154 case DW_TAG_structure_type:
6155 case DW_TAG_union_type:
6156 case DW_TAG_enumeration_type:
6157 /* Skip external references. The DWARF standard says in the section
6158 about "Structure, Union, and Class Type Entries": "An incomplete
6159 structure, union or class type is represented by a structure,
6160 union or class entry that does not have a byte size attribute
6161 and that has a DW_AT_declaration attribute." */
6162 if (!pdi->has_byte_size && pdi->is_declaration)
6164 xfree (built_actual_name);
6168 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6169 static vs. global. */
6170 add_psymbol_to_list (actual_name, strlen (actual_name),
6171 built_actual_name != NULL,
6172 STRUCT_DOMAIN, LOC_TYPEDEF,
6173 (cu->language == language_cplus
6174 || cu->language == language_java)
6175 ? &objfile->global_psymbols
6176 : &objfile->static_psymbols,
6177 0, (CORE_ADDR) 0, cu->language, objfile);
6180 case DW_TAG_enumerator:
6181 add_psymbol_to_list (actual_name, strlen (actual_name),
6182 built_actual_name != NULL,
6183 VAR_DOMAIN, LOC_CONST,
6184 (cu->language == language_cplus
6185 || cu->language == language_java)
6186 ? &objfile->global_psymbols
6187 : &objfile->static_psymbols,
6188 0, (CORE_ADDR) 0, cu->language, objfile);
6194 xfree (built_actual_name);
6197 /* Read a partial die corresponding to a namespace; also, add a symbol
6198 corresponding to that namespace to the symbol table. NAMESPACE is
6199 the name of the enclosing namespace. */
6202 add_partial_namespace (struct partial_die_info *pdi,
6203 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6204 int need_pc, struct dwarf2_cu *cu)
6206 /* Add a symbol for the namespace. */
6208 add_partial_symbol (pdi, cu);
6210 /* Now scan partial symbols in that namespace. */
6212 if (pdi->has_children)
6213 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6216 /* Read a partial die corresponding to a Fortran module. */
6219 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6220 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6222 /* Now scan partial symbols in that module. */
6224 if (pdi->has_children)
6225 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6228 /* Read a partial die corresponding to a subprogram and create a partial
6229 symbol for that subprogram. When the CU language allows it, this
6230 routine also defines a partial symbol for each nested subprogram
6231 that this subprogram contains.
6233 DIE my also be a lexical block, in which case we simply search
6234 recursively for suprograms defined inside that lexical block.
6235 Again, this is only performed when the CU language allows this
6236 type of definitions. */
6239 add_partial_subprogram (struct partial_die_info *pdi,
6240 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6241 int need_pc, struct dwarf2_cu *cu)
6243 if (pdi->tag == DW_TAG_subprogram)
6245 if (pdi->has_pc_info)
6247 if (pdi->lowpc < *lowpc)
6248 *lowpc = pdi->lowpc;
6249 if (pdi->highpc > *highpc)
6250 *highpc = pdi->highpc;
6254 struct objfile *objfile = cu->objfile;
6256 baseaddr = ANOFFSET (objfile->section_offsets,
6257 SECT_OFF_TEXT (objfile));
6258 addrmap_set_empty (objfile->psymtabs_addrmap,
6259 pdi->lowpc + baseaddr,
6260 pdi->highpc - 1 + baseaddr,
6261 cu->per_cu->v.psymtab);
6265 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6267 if (!pdi->is_declaration)
6268 /* Ignore subprogram DIEs that do not have a name, they are
6269 illegal. Do not emit a complaint at this point, we will
6270 do so when we convert this psymtab into a symtab. */
6272 add_partial_symbol (pdi, cu);
6276 if (! pdi->has_children)
6279 if (cu->language == language_ada)
6281 pdi = pdi->die_child;
6284 fixup_partial_die (pdi, cu);
6285 if (pdi->tag == DW_TAG_subprogram
6286 || pdi->tag == DW_TAG_lexical_block)
6287 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6288 pdi = pdi->die_sibling;
6293 /* Read a partial die corresponding to an enumeration type. */
6296 add_partial_enumeration (struct partial_die_info *enum_pdi,
6297 struct dwarf2_cu *cu)
6299 struct partial_die_info *pdi;
6301 if (enum_pdi->name != NULL)
6302 add_partial_symbol (enum_pdi, cu);
6304 pdi = enum_pdi->die_child;
6307 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6308 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6310 add_partial_symbol (pdi, cu);
6311 pdi = pdi->die_sibling;
6315 /* Return the initial uleb128 in the die at INFO_PTR. */
6318 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6320 unsigned int bytes_read;
6322 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6325 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6326 Return the corresponding abbrev, or NULL if the number is zero (indicating
6327 an empty DIE). In either case *BYTES_READ will be set to the length of
6328 the initial number. */
6330 static struct abbrev_info *
6331 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
6332 struct dwarf2_cu *cu)
6334 bfd *abfd = cu->objfile->obfd;
6335 unsigned int abbrev_number;
6336 struct abbrev_info *abbrev;
6338 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6340 if (abbrev_number == 0)
6343 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6346 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6347 abbrev_number, bfd_get_filename (abfd));
6353 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6354 Returns a pointer to the end of a series of DIEs, terminated by an empty
6355 DIE. Any children of the skipped DIEs will also be skipped. */
6357 static const gdb_byte *
6358 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
6360 struct dwarf2_cu *cu = reader->cu;
6361 struct abbrev_info *abbrev;
6362 unsigned int bytes_read;
6366 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6368 return info_ptr + bytes_read;
6370 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6374 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6375 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6376 abbrev corresponding to that skipped uleb128 should be passed in
6377 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6380 static const gdb_byte *
6381 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
6382 struct abbrev_info *abbrev)
6384 unsigned int bytes_read;
6385 struct attribute attr;
6386 bfd *abfd = reader->abfd;
6387 struct dwarf2_cu *cu = reader->cu;
6388 const gdb_byte *buffer = reader->buffer;
6389 const gdb_byte *buffer_end = reader->buffer_end;
6390 const gdb_byte *start_info_ptr = info_ptr;
6391 unsigned int form, i;
6393 for (i = 0; i < abbrev->num_attrs; i++)
6395 /* The only abbrev we care about is DW_AT_sibling. */
6396 if (abbrev->attrs[i].name == DW_AT_sibling)
6398 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6399 if (attr.form == DW_FORM_ref_addr)
6400 complaint (&symfile_complaints,
6401 _("ignoring absolute DW_AT_sibling"));
6403 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6406 /* If it isn't DW_AT_sibling, skip this attribute. */
6407 form = abbrev->attrs[i].form;
6411 case DW_FORM_ref_addr:
6412 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6413 and later it is offset sized. */
6414 if (cu->header.version == 2)
6415 info_ptr += cu->header.addr_size;
6417 info_ptr += cu->header.offset_size;
6419 case DW_FORM_GNU_ref_alt:
6420 info_ptr += cu->header.offset_size;
6423 info_ptr += cu->header.addr_size;
6430 case DW_FORM_flag_present:
6442 case DW_FORM_ref_sig8:
6445 case DW_FORM_string:
6446 read_direct_string (abfd, info_ptr, &bytes_read);
6447 info_ptr += bytes_read;
6449 case DW_FORM_sec_offset:
6451 case DW_FORM_GNU_strp_alt:
6452 info_ptr += cu->header.offset_size;
6454 case DW_FORM_exprloc:
6456 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6457 info_ptr += bytes_read;
6459 case DW_FORM_block1:
6460 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6462 case DW_FORM_block2:
6463 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6465 case DW_FORM_block4:
6466 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6470 case DW_FORM_ref_udata:
6471 case DW_FORM_GNU_addr_index:
6472 case DW_FORM_GNU_str_index:
6473 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
6475 case DW_FORM_indirect:
6476 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6477 info_ptr += bytes_read;
6478 /* We need to continue parsing from here, so just go back to
6480 goto skip_attribute;
6483 error (_("Dwarf Error: Cannot handle %s "
6484 "in DWARF reader [in module %s]"),
6485 dwarf_form_name (form),
6486 bfd_get_filename (abfd));
6490 if (abbrev->has_children)
6491 return skip_children (reader, info_ptr);
6496 /* Locate ORIG_PDI's sibling.
6497 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6499 static const gdb_byte *
6500 locate_pdi_sibling (const struct die_reader_specs *reader,
6501 struct partial_die_info *orig_pdi,
6502 const gdb_byte *info_ptr)
6504 /* Do we know the sibling already? */
6506 if (orig_pdi->sibling)
6507 return orig_pdi->sibling;
6509 /* Are there any children to deal with? */
6511 if (!orig_pdi->has_children)
6514 /* Skip the children the long way. */
6516 return skip_children (reader, info_ptr);
6519 /* Expand this partial symbol table into a full symbol table. SELF is
6523 dwarf2_read_symtab (struct partial_symtab *self,
6524 struct objfile *objfile)
6528 warning (_("bug: psymtab for %s is already read in."),
6535 printf_filtered (_("Reading in symbols for %s..."),
6537 gdb_flush (gdb_stdout);
6540 /* Restore our global data. */
6541 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6543 /* If this psymtab is constructed from a debug-only objfile, the
6544 has_section_at_zero flag will not necessarily be correct. We
6545 can get the correct value for this flag by looking at the data
6546 associated with the (presumably stripped) associated objfile. */
6547 if (objfile->separate_debug_objfile_backlink)
6549 struct dwarf2_per_objfile *dpo_backlink
6550 = objfile_data (objfile->separate_debug_objfile_backlink,
6551 dwarf2_objfile_data_key);
6553 dwarf2_per_objfile->has_section_at_zero
6554 = dpo_backlink->has_section_at_zero;
6557 dwarf2_per_objfile->reading_partial_symbols = 0;
6559 psymtab_to_symtab_1 (self);
6561 /* Finish up the debug error message. */
6563 printf_filtered (_("done.\n"));
6566 process_cu_includes ();
6569 /* Reading in full CUs. */
6571 /* Add PER_CU to the queue. */
6574 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6575 enum language pretend_language)
6577 struct dwarf2_queue_item *item;
6580 item = xmalloc (sizeof (*item));
6581 item->per_cu = per_cu;
6582 item->pretend_language = pretend_language;
6585 if (dwarf2_queue == NULL)
6586 dwarf2_queue = item;
6588 dwarf2_queue_tail->next = item;
6590 dwarf2_queue_tail = item;
6593 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6594 unit and add it to our queue.
6595 The result is non-zero if PER_CU was queued, otherwise the result is zero
6596 meaning either PER_CU is already queued or it is already loaded. */
6599 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6600 struct dwarf2_per_cu_data *per_cu,
6601 enum language pretend_language)
6603 /* We may arrive here during partial symbol reading, if we need full
6604 DIEs to process an unusual case (e.g. template arguments). Do
6605 not queue PER_CU, just tell our caller to load its DIEs. */
6606 if (dwarf2_per_objfile->reading_partial_symbols)
6608 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6613 /* Mark the dependence relation so that we don't flush PER_CU
6615 dwarf2_add_dependence (this_cu, per_cu);
6617 /* If it's already on the queue, we have nothing to do. */
6621 /* If the compilation unit is already loaded, just mark it as
6623 if (per_cu->cu != NULL)
6625 per_cu->cu->last_used = 0;
6629 /* Add it to the queue. */
6630 queue_comp_unit (per_cu, pretend_language);
6635 /* Process the queue. */
6638 process_queue (void)
6640 struct dwarf2_queue_item *item, *next_item;
6642 if (dwarf2_read_debug)
6644 fprintf_unfiltered (gdb_stdlog,
6645 "Expanding one or more symtabs of objfile %s ...\n",
6646 dwarf2_per_objfile->objfile->name);
6649 /* The queue starts out with one item, but following a DIE reference
6650 may load a new CU, adding it to the end of the queue. */
6651 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6653 if (dwarf2_per_objfile->using_index
6654 ? !item->per_cu->v.quick->symtab
6655 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6657 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6659 if (dwarf2_read_debug)
6661 fprintf_unfiltered (gdb_stdlog,
6662 "Expanding symtab of %s at offset 0x%x\n",
6663 per_cu->is_debug_types ? "TU" : "CU",
6664 per_cu->offset.sect_off);
6667 if (per_cu->is_debug_types)
6668 process_full_type_unit (per_cu, item->pretend_language);
6670 process_full_comp_unit (per_cu, item->pretend_language);
6672 if (dwarf2_read_debug)
6674 fprintf_unfiltered (gdb_stdlog,
6675 "Done expanding %s at offset 0x%x\n",
6676 per_cu->is_debug_types ? "TU" : "CU",
6677 per_cu->offset.sect_off);
6681 item->per_cu->queued = 0;
6682 next_item = item->next;
6686 dwarf2_queue_tail = NULL;
6688 if (dwarf2_read_debug)
6690 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6691 dwarf2_per_objfile->objfile->name);
6695 /* Free all allocated queue entries. This function only releases anything if
6696 an error was thrown; if the queue was processed then it would have been
6697 freed as we went along. */
6700 dwarf2_release_queue (void *dummy)
6702 struct dwarf2_queue_item *item, *last;
6704 item = dwarf2_queue;
6707 /* Anything still marked queued is likely to be in an
6708 inconsistent state, so discard it. */
6709 if (item->per_cu->queued)
6711 if (item->per_cu->cu != NULL)
6712 free_one_cached_comp_unit (item->per_cu);
6713 item->per_cu->queued = 0;
6721 dwarf2_queue = dwarf2_queue_tail = NULL;
6724 /* Read in full symbols for PST, and anything it depends on. */
6727 psymtab_to_symtab_1 (struct partial_symtab *pst)
6729 struct dwarf2_per_cu_data *per_cu;
6735 for (i = 0; i < pst->number_of_dependencies; i++)
6736 if (!pst->dependencies[i]->readin
6737 && pst->dependencies[i]->user == NULL)
6739 /* Inform about additional files that need to be read in. */
6742 /* FIXME: i18n: Need to make this a single string. */
6743 fputs_filtered (" ", gdb_stdout);
6745 fputs_filtered ("and ", gdb_stdout);
6747 printf_filtered ("%s...", pst->dependencies[i]->filename);
6748 wrap_here (""); /* Flush output. */
6749 gdb_flush (gdb_stdout);
6751 psymtab_to_symtab_1 (pst->dependencies[i]);
6754 per_cu = pst->read_symtab_private;
6758 /* It's an include file, no symbols to read for it.
6759 Everything is in the parent symtab. */
6764 dw2_do_instantiate_symtab (per_cu);
6767 /* Trivial hash function for die_info: the hash value of a DIE
6768 is its offset in .debug_info for this objfile. */
6771 die_hash (const void *item)
6773 const struct die_info *die = item;
6775 return die->offset.sect_off;
6778 /* Trivial comparison function for die_info structures: two DIEs
6779 are equal if they have the same offset. */
6782 die_eq (const void *item_lhs, const void *item_rhs)
6784 const struct die_info *die_lhs = item_lhs;
6785 const struct die_info *die_rhs = item_rhs;
6787 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6790 /* die_reader_func for load_full_comp_unit.
6791 This is identical to read_signatured_type_reader,
6792 but is kept separate for now. */
6795 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6796 const gdb_byte *info_ptr,
6797 struct die_info *comp_unit_die,
6801 struct dwarf2_cu *cu = reader->cu;
6802 enum language *language_ptr = data;
6804 gdb_assert (cu->die_hash == NULL);
6806 htab_create_alloc_ex (cu->header.length / 12,
6810 &cu->comp_unit_obstack,
6811 hashtab_obstack_allocate,
6812 dummy_obstack_deallocate);
6815 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6816 &info_ptr, comp_unit_die);
6817 cu->dies = comp_unit_die;
6818 /* comp_unit_die is not stored in die_hash, no need. */
6820 /* We try not to read any attributes in this function, because not
6821 all CUs needed for references have been loaded yet, and symbol
6822 table processing isn't initialized. But we have to set the CU language,
6823 or we won't be able to build types correctly.
6824 Similarly, if we do not read the producer, we can not apply
6825 producer-specific interpretation. */
6826 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6829 /* Load the DIEs associated with PER_CU into memory. */
6832 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6833 enum language pretend_language)
6835 gdb_assert (! this_cu->is_debug_types);
6837 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6838 load_full_comp_unit_reader, &pretend_language);
6841 /* Add a DIE to the delayed physname list. */
6844 add_to_method_list (struct type *type, int fnfield_index, int index,
6845 const char *name, struct die_info *die,
6846 struct dwarf2_cu *cu)
6848 struct delayed_method_info mi;
6850 mi.fnfield_index = fnfield_index;
6854 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6857 /* A cleanup for freeing the delayed method list. */
6860 free_delayed_list (void *ptr)
6862 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6863 if (cu->method_list != NULL)
6865 VEC_free (delayed_method_info, cu->method_list);
6866 cu->method_list = NULL;
6870 /* Compute the physnames of any methods on the CU's method list.
6872 The computation of method physnames is delayed in order to avoid the
6873 (bad) condition that one of the method's formal parameters is of an as yet
6877 compute_delayed_physnames (struct dwarf2_cu *cu)
6880 struct delayed_method_info *mi;
6881 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6883 const char *physname;
6884 struct fn_fieldlist *fn_flp
6885 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6886 physname = dwarf2_physname (mi->name, mi->die, cu);
6887 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6891 /* Go objects should be embedded in a DW_TAG_module DIE,
6892 and it's not clear if/how imported objects will appear.
6893 To keep Go support simple until that's worked out,
6894 go back through what we've read and create something usable.
6895 We could do this while processing each DIE, and feels kinda cleaner,
6896 but that way is more invasive.
6897 This is to, for example, allow the user to type "p var" or "b main"
6898 without having to specify the package name, and allow lookups
6899 of module.object to work in contexts that use the expression
6903 fixup_go_packaging (struct dwarf2_cu *cu)
6905 char *package_name = NULL;
6906 struct pending *list;
6909 for (list = global_symbols; list != NULL; list = list->next)
6911 for (i = 0; i < list->nsyms; ++i)
6913 struct symbol *sym = list->symbol[i];
6915 if (SYMBOL_LANGUAGE (sym) == language_go
6916 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6918 char *this_package_name = go_symbol_package_name (sym);
6920 if (this_package_name == NULL)
6922 if (package_name == NULL)
6923 package_name = this_package_name;
6926 if (strcmp (package_name, this_package_name) != 0)
6927 complaint (&symfile_complaints,
6928 _("Symtab %s has objects from two different Go packages: %s and %s"),
6929 (SYMBOL_SYMTAB (sym)
6930 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6931 : cu->objfile->name),
6932 this_package_name, package_name);
6933 xfree (this_package_name);
6939 if (package_name != NULL)
6941 struct objfile *objfile = cu->objfile;
6942 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6944 strlen (package_name));
6945 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6946 saved_package_name, objfile);
6949 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6951 sym = allocate_symbol (objfile);
6952 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
6953 SYMBOL_SET_NAMES (sym, saved_package_name,
6954 strlen (saved_package_name), 0, objfile);
6955 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6956 e.g., "main" finds the "main" module and not C's main(). */
6957 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6958 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
6959 SYMBOL_TYPE (sym) = type;
6961 add_symbol_to_list (sym, &global_symbols);
6963 xfree (package_name);
6967 /* Return the symtab for PER_CU. This works properly regardless of
6968 whether we're using the index or psymtabs. */
6970 static struct symtab *
6971 get_symtab (struct dwarf2_per_cu_data *per_cu)
6973 return (dwarf2_per_objfile->using_index
6974 ? per_cu->v.quick->symtab
6975 : per_cu->v.psymtab->symtab);
6978 /* A helper function for computing the list of all symbol tables
6979 included by PER_CU. */
6982 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6983 htab_t all_children,
6984 struct dwarf2_per_cu_data *per_cu)
6988 struct dwarf2_per_cu_data *iter;
6990 slot = htab_find_slot (all_children, per_cu, INSERT);
6993 /* This inclusion and its children have been processed. */
6998 /* Only add a CU if it has a symbol table. */
6999 if (get_symtab (per_cu) != NULL)
7000 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
7003 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7005 recursively_compute_inclusions (result, all_children, iter);
7008 /* Compute the symtab 'includes' fields for the symtab related to
7012 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7014 gdb_assert (! per_cu->is_debug_types);
7016 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7019 struct dwarf2_per_cu_data *iter;
7020 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
7021 htab_t all_children;
7022 struct symtab *symtab = get_symtab (per_cu);
7024 /* If we don't have a symtab, we can just skip this case. */
7028 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7029 NULL, xcalloc, xfree);
7032 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7035 recursively_compute_inclusions (&result_children, all_children, iter);
7037 /* Now we have a transitive closure of all the included CUs, and
7038 for .gdb_index version 7 the included TUs, so we can convert it
7039 to a list of symtabs. */
7040 len = VEC_length (dwarf2_per_cu_ptr, result_children);
7042 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7043 (len + 1) * sizeof (struct symtab *));
7045 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
7047 symtab->includes[ix] = get_symtab (iter);
7048 symtab->includes[len] = NULL;
7050 VEC_free (dwarf2_per_cu_ptr, result_children);
7051 htab_delete (all_children);
7055 /* Compute the 'includes' field for the symtabs of all the CUs we just
7059 process_cu_includes (void)
7062 struct dwarf2_per_cu_data *iter;
7065 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7069 if (! iter->is_debug_types)
7070 compute_symtab_includes (iter);
7073 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7076 /* Generate full symbol information for PER_CU, whose DIEs have
7077 already been loaded into memory. */
7080 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7081 enum language pretend_language)
7083 struct dwarf2_cu *cu = per_cu->cu;
7084 struct objfile *objfile = per_cu->objfile;
7085 CORE_ADDR lowpc, highpc;
7086 struct symtab *symtab;
7087 struct cleanup *back_to, *delayed_list_cleanup;
7089 struct block *static_block;
7091 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7094 back_to = make_cleanup (really_free_pendings, NULL);
7095 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7097 cu->list_in_scope = &file_symbols;
7099 cu->language = pretend_language;
7100 cu->language_defn = language_def (cu->language);
7102 /* Do line number decoding in read_file_scope () */
7103 process_die (cu->dies, cu);
7105 /* For now fudge the Go package. */
7106 if (cu->language == language_go)
7107 fixup_go_packaging (cu);
7109 /* Now that we have processed all the DIEs in the CU, all the types
7110 should be complete, and it should now be safe to compute all of the
7112 compute_delayed_physnames (cu);
7113 do_cleanups (delayed_list_cleanup);
7115 /* Some compilers don't define a DW_AT_high_pc attribute for the
7116 compilation unit. If the DW_AT_high_pc is missing, synthesize
7117 it, by scanning the DIE's below the compilation unit. */
7118 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7121 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
7122 per_cu->imported_symtabs != NULL);
7124 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7125 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7126 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7127 addrmap to help ensure it has an accurate map of pc values belonging to
7129 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7131 symtab = end_symtab_from_static_block (static_block, objfile,
7132 SECT_OFF_TEXT (objfile), 0);
7136 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7138 /* Set symtab language to language from DW_AT_language. If the
7139 compilation is from a C file generated by language preprocessors, do
7140 not set the language if it was already deduced by start_subfile. */
7141 if (!(cu->language == language_c && symtab->language != language_c))
7142 symtab->language = cu->language;
7144 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7145 produce DW_AT_location with location lists but it can be possibly
7146 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7147 there were bugs in prologue debug info, fixed later in GCC-4.5
7148 by "unwind info for epilogues" patch (which is not directly related).
7150 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7151 needed, it would be wrong due to missing DW_AT_producer there.
7153 Still one can confuse GDB by using non-standard GCC compilation
7154 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7156 if (cu->has_loclist && gcc_4_minor >= 5)
7157 symtab->locations_valid = 1;
7159 if (gcc_4_minor >= 5)
7160 symtab->epilogue_unwind_valid = 1;
7162 symtab->call_site_htab = cu->call_site_htab;
7165 if (dwarf2_per_objfile->using_index)
7166 per_cu->v.quick->symtab = symtab;
7169 struct partial_symtab *pst = per_cu->v.psymtab;
7170 pst->symtab = symtab;
7174 /* Push it for inclusion processing later. */
7175 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7177 do_cleanups (back_to);
7180 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7181 already been loaded into memory. */
7184 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7185 enum language pretend_language)
7187 struct dwarf2_cu *cu = per_cu->cu;
7188 struct objfile *objfile = per_cu->objfile;
7189 struct symtab *symtab;
7190 struct cleanup *back_to, *delayed_list_cleanup;
7191 struct signatured_type *sig_type;
7193 gdb_assert (per_cu->is_debug_types);
7194 sig_type = (struct signatured_type *) per_cu;
7197 back_to = make_cleanup (really_free_pendings, NULL);
7198 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7200 cu->list_in_scope = &file_symbols;
7202 cu->language = pretend_language;
7203 cu->language_defn = language_def (cu->language);
7205 /* The symbol tables are set up in read_type_unit_scope. */
7206 process_die (cu->dies, cu);
7208 /* For now fudge the Go package. */
7209 if (cu->language == language_go)
7210 fixup_go_packaging (cu);
7212 /* Now that we have processed all the DIEs in the CU, all the types
7213 should be complete, and it should now be safe to compute all of the
7215 compute_delayed_physnames (cu);
7216 do_cleanups (delayed_list_cleanup);
7218 /* TUs share symbol tables.
7219 If this is the first TU to use this symtab, complete the construction
7220 of it with end_expandable_symtab. Otherwise, complete the addition of
7221 this TU's symbols to the existing symtab. */
7222 if (sig_type->type_unit_group->primary_symtab == NULL)
7224 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7225 sig_type->type_unit_group->primary_symtab = symtab;
7229 /* Set symtab language to language from DW_AT_language. If the
7230 compilation is from a C file generated by language preprocessors,
7231 do not set the language if it was already deduced by
7233 if (!(cu->language == language_c && symtab->language != language_c))
7234 symtab->language = cu->language;
7239 augment_type_symtab (objfile,
7240 sig_type->type_unit_group->primary_symtab);
7241 symtab = sig_type->type_unit_group->primary_symtab;
7244 if (dwarf2_per_objfile->using_index)
7245 per_cu->v.quick->symtab = symtab;
7248 struct partial_symtab *pst = per_cu->v.psymtab;
7249 pst->symtab = symtab;
7253 do_cleanups (back_to);
7256 /* Process an imported unit DIE. */
7259 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7261 struct attribute *attr;
7263 /* For now we don't handle imported units in type units. */
7264 if (cu->per_cu->is_debug_types)
7266 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7267 " supported in type units [in module %s]"),
7271 attr = dwarf2_attr (die, DW_AT_import, cu);
7274 struct dwarf2_per_cu_data *per_cu;
7275 struct symtab *imported_symtab;
7279 offset = dwarf2_get_ref_die_offset (attr);
7280 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7281 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7283 /* Queue the unit, if needed. */
7284 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7285 load_full_comp_unit (per_cu, cu->language);
7287 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7292 /* Process a die and its children. */
7295 process_die (struct die_info *die, struct dwarf2_cu *cu)
7299 case DW_TAG_padding:
7301 case DW_TAG_compile_unit:
7302 case DW_TAG_partial_unit:
7303 read_file_scope (die, cu);
7305 case DW_TAG_type_unit:
7306 read_type_unit_scope (die, cu);
7308 case DW_TAG_subprogram:
7309 case DW_TAG_inlined_subroutine:
7310 read_func_scope (die, cu);
7312 case DW_TAG_lexical_block:
7313 case DW_TAG_try_block:
7314 case DW_TAG_catch_block:
7315 read_lexical_block_scope (die, cu);
7317 case DW_TAG_GNU_call_site:
7318 read_call_site_scope (die, cu);
7320 case DW_TAG_class_type:
7321 case DW_TAG_interface_type:
7322 case DW_TAG_structure_type:
7323 case DW_TAG_union_type:
7324 process_structure_scope (die, cu);
7326 case DW_TAG_enumeration_type:
7327 process_enumeration_scope (die, cu);
7330 /* These dies have a type, but processing them does not create
7331 a symbol or recurse to process the children. Therefore we can
7332 read them on-demand through read_type_die. */
7333 case DW_TAG_subroutine_type:
7334 case DW_TAG_set_type:
7335 case DW_TAG_array_type:
7336 case DW_TAG_pointer_type:
7337 case DW_TAG_ptr_to_member_type:
7338 case DW_TAG_reference_type:
7339 case DW_TAG_string_type:
7342 case DW_TAG_base_type:
7343 case DW_TAG_subrange_type:
7344 case DW_TAG_typedef:
7345 /* Add a typedef symbol for the type definition, if it has a
7347 new_symbol (die, read_type_die (die, cu), cu);
7349 case DW_TAG_common_block:
7350 read_common_block (die, cu);
7352 case DW_TAG_common_inclusion:
7354 case DW_TAG_namespace:
7355 cu->processing_has_namespace_info = 1;
7356 read_namespace (die, cu);
7359 cu->processing_has_namespace_info = 1;
7360 read_module (die, cu);
7362 case DW_TAG_imported_declaration:
7363 case DW_TAG_imported_module:
7364 cu->processing_has_namespace_info = 1;
7365 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7366 || cu->language != language_fortran))
7367 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7368 dwarf_tag_name (die->tag));
7369 read_import_statement (die, cu);
7372 case DW_TAG_imported_unit:
7373 process_imported_unit_die (die, cu);
7377 new_symbol (die, NULL, cu);
7382 /* DWARF name computation. */
7384 /* A helper function for dwarf2_compute_name which determines whether DIE
7385 needs to have the name of the scope prepended to the name listed in the
7389 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7391 struct attribute *attr;
7395 case DW_TAG_namespace:
7396 case DW_TAG_typedef:
7397 case DW_TAG_class_type:
7398 case DW_TAG_interface_type:
7399 case DW_TAG_structure_type:
7400 case DW_TAG_union_type:
7401 case DW_TAG_enumeration_type:
7402 case DW_TAG_enumerator:
7403 case DW_TAG_subprogram:
7407 case DW_TAG_variable:
7408 case DW_TAG_constant:
7409 /* We only need to prefix "globally" visible variables. These include
7410 any variable marked with DW_AT_external or any variable that
7411 lives in a namespace. [Variables in anonymous namespaces
7412 require prefixing, but they are not DW_AT_external.] */
7414 if (dwarf2_attr (die, DW_AT_specification, cu))
7416 struct dwarf2_cu *spec_cu = cu;
7418 return die_needs_namespace (die_specification (die, &spec_cu),
7422 attr = dwarf2_attr (die, DW_AT_external, cu);
7423 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7424 && die->parent->tag != DW_TAG_module)
7426 /* A variable in a lexical block of some kind does not need a
7427 namespace, even though in C++ such variables may be external
7428 and have a mangled name. */
7429 if (die->parent->tag == DW_TAG_lexical_block
7430 || die->parent->tag == DW_TAG_try_block
7431 || die->parent->tag == DW_TAG_catch_block
7432 || die->parent->tag == DW_TAG_subprogram)
7441 /* Retrieve the last character from a mem_file. */
7444 do_ui_file_peek_last (void *object, const char *buffer, long length)
7446 char *last_char_p = (char *) object;
7449 *last_char_p = buffer[length - 1];
7452 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7453 compute the physname for the object, which include a method's:
7454 - formal parameters (C++/Java),
7455 - receiver type (Go),
7456 - return type (Java).
7458 The term "physname" is a bit confusing.
7459 For C++, for example, it is the demangled name.
7460 For Go, for example, it's the mangled name.
7462 For Ada, return the DIE's linkage name rather than the fully qualified
7463 name. PHYSNAME is ignored..
7465 The result is allocated on the objfile_obstack and canonicalized. */
7468 dwarf2_compute_name (const char *name,
7469 struct die_info *die, struct dwarf2_cu *cu,
7472 struct objfile *objfile = cu->objfile;
7475 name = dwarf2_name (die, cu);
7477 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7478 compute it by typename_concat inside GDB. */
7479 if (cu->language == language_ada
7480 || (cu->language == language_fortran && physname))
7482 /* For Ada unit, we prefer the linkage name over the name, as
7483 the former contains the exported name, which the user expects
7484 to be able to reference. Ideally, we want the user to be able
7485 to reference this entity using either natural or linkage name,
7486 but we haven't started looking at this enhancement yet. */
7487 struct attribute *attr;
7489 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7491 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7492 if (attr && DW_STRING (attr))
7493 return DW_STRING (attr);
7496 /* These are the only languages we know how to qualify names in. */
7498 && (cu->language == language_cplus || cu->language == language_java
7499 || cu->language == language_fortran))
7501 if (die_needs_namespace (die, cu))
7505 struct ui_file *buf;
7507 prefix = determine_prefix (die, cu);
7508 buf = mem_fileopen ();
7509 if (*prefix != '\0')
7511 char *prefixed_name = typename_concat (NULL, prefix, name,
7514 fputs_unfiltered (prefixed_name, buf);
7515 xfree (prefixed_name);
7518 fputs_unfiltered (name, buf);
7520 /* Template parameters may be specified in the DIE's DW_AT_name, or
7521 as children with DW_TAG_template_type_param or
7522 DW_TAG_value_type_param. If the latter, add them to the name
7523 here. If the name already has template parameters, then
7524 skip this step; some versions of GCC emit both, and
7525 it is more efficient to use the pre-computed name.
7527 Something to keep in mind about this process: it is very
7528 unlikely, or in some cases downright impossible, to produce
7529 something that will match the mangled name of a function.
7530 If the definition of the function has the same debug info,
7531 we should be able to match up with it anyway. But fallbacks
7532 using the minimal symbol, for instance to find a method
7533 implemented in a stripped copy of libstdc++, will not work.
7534 If we do not have debug info for the definition, we will have to
7535 match them up some other way.
7537 When we do name matching there is a related problem with function
7538 templates; two instantiated function templates are allowed to
7539 differ only by their return types, which we do not add here. */
7541 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7543 struct attribute *attr;
7544 struct die_info *child;
7547 die->building_fullname = 1;
7549 for (child = die->child; child != NULL; child = child->sibling)
7553 const gdb_byte *bytes;
7554 struct dwarf2_locexpr_baton *baton;
7557 if (child->tag != DW_TAG_template_type_param
7558 && child->tag != DW_TAG_template_value_param)
7563 fputs_unfiltered ("<", buf);
7567 fputs_unfiltered (", ", buf);
7569 attr = dwarf2_attr (child, DW_AT_type, cu);
7572 complaint (&symfile_complaints,
7573 _("template parameter missing DW_AT_type"));
7574 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7577 type = die_type (child, cu);
7579 if (child->tag == DW_TAG_template_type_param)
7581 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7585 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7588 complaint (&symfile_complaints,
7589 _("template parameter missing "
7590 "DW_AT_const_value"));
7591 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7595 dwarf2_const_value_attr (attr, type, name,
7596 &cu->comp_unit_obstack, cu,
7597 &value, &bytes, &baton);
7599 if (TYPE_NOSIGN (type))
7600 /* GDB prints characters as NUMBER 'CHAR'. If that's
7601 changed, this can use value_print instead. */
7602 c_printchar (value, type, buf);
7605 struct value_print_options opts;
7608 v = dwarf2_evaluate_loc_desc (type, NULL,
7612 else if (bytes != NULL)
7614 v = allocate_value (type);
7615 memcpy (value_contents_writeable (v), bytes,
7616 TYPE_LENGTH (type));
7619 v = value_from_longest (type, value);
7621 /* Specify decimal so that we do not depend on
7623 get_formatted_print_options (&opts, 'd');
7625 value_print (v, buf, &opts);
7631 die->building_fullname = 0;
7635 /* Close the argument list, with a space if necessary
7636 (nested templates). */
7637 char last_char = '\0';
7638 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7639 if (last_char == '>')
7640 fputs_unfiltered (" >", buf);
7642 fputs_unfiltered (">", buf);
7646 /* For Java and C++ methods, append formal parameter type
7647 information, if PHYSNAME. */
7649 if (physname && die->tag == DW_TAG_subprogram
7650 && (cu->language == language_cplus
7651 || cu->language == language_java))
7653 struct type *type = read_type_die (die, cu);
7655 c_type_print_args (type, buf, 1, cu->language,
7656 &type_print_raw_options);
7658 if (cu->language == language_java)
7660 /* For java, we must append the return type to method
7662 if (die->tag == DW_TAG_subprogram)
7663 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7664 0, 0, &type_print_raw_options);
7666 else if (cu->language == language_cplus)
7668 /* Assume that an artificial first parameter is
7669 "this", but do not crash if it is not. RealView
7670 marks unnamed (and thus unused) parameters as
7671 artificial; there is no way to differentiate
7673 if (TYPE_NFIELDS (type) > 0
7674 && TYPE_FIELD_ARTIFICIAL (type, 0)
7675 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7676 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7678 fputs_unfiltered (" const", buf);
7682 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7684 ui_file_delete (buf);
7686 if (cu->language == language_cplus)
7689 = dwarf2_canonicalize_name (name, cu,
7690 &objfile->objfile_obstack);
7701 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7702 If scope qualifiers are appropriate they will be added. The result
7703 will be allocated on the objfile_obstack, or NULL if the DIE does
7704 not have a name. NAME may either be from a previous call to
7705 dwarf2_name or NULL.
7707 The output string will be canonicalized (if C++/Java). */
7710 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7712 return dwarf2_compute_name (name, die, cu, 0);
7715 /* Construct a physname for the given DIE in CU. NAME may either be
7716 from a previous call to dwarf2_name or NULL. The result will be
7717 allocated on the objfile_objstack or NULL if the DIE does not have a
7720 The output string will be canonicalized (if C++/Java). */
7723 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7725 struct objfile *objfile = cu->objfile;
7726 struct attribute *attr;
7727 const char *retval, *mangled = NULL, *canon = NULL;
7728 struct cleanup *back_to;
7731 /* In this case dwarf2_compute_name is just a shortcut not building anything
7733 if (!die_needs_namespace (die, cu))
7734 return dwarf2_compute_name (name, die, cu, 1);
7736 back_to = make_cleanup (null_cleanup, NULL);
7738 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7740 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7742 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7744 if (attr && DW_STRING (attr))
7748 mangled = DW_STRING (attr);
7750 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7751 type. It is easier for GDB users to search for such functions as
7752 `name(params)' than `long name(params)'. In such case the minimal
7753 symbol names do not match the full symbol names but for template
7754 functions there is never a need to look up their definition from their
7755 declaration so the only disadvantage remains the minimal symbol
7756 variant `long name(params)' does not have the proper inferior type.
7759 if (cu->language == language_go)
7761 /* This is a lie, but we already lie to the caller new_symbol_full.
7762 new_symbol_full assumes we return the mangled name.
7763 This just undoes that lie until things are cleaned up. */
7768 demangled = gdb_demangle (mangled,
7769 (DMGL_PARAMS | DMGL_ANSI
7770 | (cu->language == language_java
7771 ? DMGL_JAVA | DMGL_RET_POSTFIX
7776 make_cleanup (xfree, demangled);
7786 if (canon == NULL || check_physname)
7788 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7790 if (canon != NULL && strcmp (physname, canon) != 0)
7792 /* It may not mean a bug in GDB. The compiler could also
7793 compute DW_AT_linkage_name incorrectly. But in such case
7794 GDB would need to be bug-to-bug compatible. */
7796 complaint (&symfile_complaints,
7797 _("Computed physname <%s> does not match demangled <%s> "
7798 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7799 physname, canon, mangled, die->offset.sect_off, objfile->name);
7801 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7802 is available here - over computed PHYSNAME. It is safer
7803 against both buggy GDB and buggy compilers. */
7817 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7819 do_cleanups (back_to);
7823 /* Read the import statement specified by the given die and record it. */
7826 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7828 struct objfile *objfile = cu->objfile;
7829 struct attribute *import_attr;
7830 struct die_info *imported_die, *child_die;
7831 struct dwarf2_cu *imported_cu;
7832 const char *imported_name;
7833 const char *imported_name_prefix;
7834 const char *canonical_name;
7835 const char *import_alias;
7836 const char *imported_declaration = NULL;
7837 const char *import_prefix;
7838 VEC (const_char_ptr) *excludes = NULL;
7839 struct cleanup *cleanups;
7841 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7842 if (import_attr == NULL)
7844 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7845 dwarf_tag_name (die->tag));
7850 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7851 imported_name = dwarf2_name (imported_die, imported_cu);
7852 if (imported_name == NULL)
7854 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7856 The import in the following code:
7870 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7871 <52> DW_AT_decl_file : 1
7872 <53> DW_AT_decl_line : 6
7873 <54> DW_AT_import : <0x75>
7874 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7876 <5b> DW_AT_decl_file : 1
7877 <5c> DW_AT_decl_line : 2
7878 <5d> DW_AT_type : <0x6e>
7880 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7881 <76> DW_AT_byte_size : 4
7882 <77> DW_AT_encoding : 5 (signed)
7884 imports the wrong die ( 0x75 instead of 0x58 ).
7885 This case will be ignored until the gcc bug is fixed. */
7889 /* Figure out the local name after import. */
7890 import_alias = dwarf2_name (die, cu);
7892 /* Figure out where the statement is being imported to. */
7893 import_prefix = determine_prefix (die, cu);
7895 /* Figure out what the scope of the imported die is and prepend it
7896 to the name of the imported die. */
7897 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7899 if (imported_die->tag != DW_TAG_namespace
7900 && imported_die->tag != DW_TAG_module)
7902 imported_declaration = imported_name;
7903 canonical_name = imported_name_prefix;
7905 else if (strlen (imported_name_prefix) > 0)
7906 canonical_name = obconcat (&objfile->objfile_obstack,
7907 imported_name_prefix, "::", imported_name,
7910 canonical_name = imported_name;
7912 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7914 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7915 for (child_die = die->child; child_die && child_die->tag;
7916 child_die = sibling_die (child_die))
7918 /* DWARF-4: A Fortran use statement with a “rename list” may be
7919 represented by an imported module entry with an import attribute
7920 referring to the module and owned entries corresponding to those
7921 entities that are renamed as part of being imported. */
7923 if (child_die->tag != DW_TAG_imported_declaration)
7925 complaint (&symfile_complaints,
7926 _("child DW_TAG_imported_declaration expected "
7927 "- DIE at 0x%x [in module %s]"),
7928 child_die->offset.sect_off, objfile->name);
7932 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7933 if (import_attr == NULL)
7935 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7936 dwarf_tag_name (child_die->tag));
7941 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7943 imported_name = dwarf2_name (imported_die, imported_cu);
7944 if (imported_name == NULL)
7946 complaint (&symfile_complaints,
7947 _("child DW_TAG_imported_declaration has unknown "
7948 "imported name - DIE at 0x%x [in module %s]"),
7949 child_die->offset.sect_off, objfile->name);
7953 VEC_safe_push (const_char_ptr, excludes, imported_name);
7955 process_die (child_die, cu);
7958 cp_add_using_directive (import_prefix,
7961 imported_declaration,
7964 &objfile->objfile_obstack);
7966 do_cleanups (cleanups);
7969 /* Cleanup function for handle_DW_AT_stmt_list. */
7972 free_cu_line_header (void *arg)
7974 struct dwarf2_cu *cu = arg;
7976 free_line_header (cu->line_header);
7977 cu->line_header = NULL;
7980 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7981 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7982 this, it was first present in GCC release 4.3.0. */
7985 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7987 if (!cu->checked_producer)
7988 check_producer (cu);
7990 return cu->producer_is_gcc_lt_4_3;
7994 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7995 const char **name, const char **comp_dir)
7997 struct attribute *attr;
8002 /* Find the filename. Do not use dwarf2_name here, since the filename
8003 is not a source language identifier. */
8004 attr = dwarf2_attr (die, DW_AT_name, cu);
8007 *name = DW_STRING (attr);
8010 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8012 *comp_dir = DW_STRING (attr);
8013 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8014 && IS_ABSOLUTE_PATH (*name))
8016 char *d = ldirname (*name);
8020 make_cleanup (xfree, d);
8022 if (*comp_dir != NULL)
8024 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8025 directory, get rid of it. */
8026 char *cp = strchr (*comp_dir, ':');
8028 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8033 *name = "<unknown>";
8036 /* Handle DW_AT_stmt_list for a compilation unit.
8037 DIE is the DW_TAG_compile_unit die for CU.
8038 COMP_DIR is the compilation directory.
8039 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8042 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8043 const char *comp_dir)
8045 struct attribute *attr;
8047 gdb_assert (! cu->per_cu->is_debug_types);
8049 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8052 unsigned int line_offset = DW_UNSND (attr);
8053 struct line_header *line_header
8054 = dwarf_decode_line_header (line_offset, cu);
8058 cu->line_header = line_header;
8059 make_cleanup (free_cu_line_header, cu);
8060 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8065 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8068 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8070 struct objfile *objfile = dwarf2_per_objfile->objfile;
8071 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8072 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8073 CORE_ADDR highpc = ((CORE_ADDR) 0);
8074 struct attribute *attr;
8075 const char *name = NULL;
8076 const char *comp_dir = NULL;
8077 struct die_info *child_die;
8078 bfd *abfd = objfile->obfd;
8081 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8083 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8085 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8086 from finish_block. */
8087 if (lowpc == ((CORE_ADDR) -1))
8092 find_file_and_directory (die, cu, &name, &comp_dir);
8094 prepare_one_comp_unit (cu, die, cu->language);
8096 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8097 standardised yet. As a workaround for the language detection we fall
8098 back to the DW_AT_producer string. */
8099 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8100 cu->language = language_opencl;
8102 /* Similar hack for Go. */
8103 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8104 set_cu_language (DW_LANG_Go, cu);
8106 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8108 /* Decode line number information if present. We do this before
8109 processing child DIEs, so that the line header table is available
8110 for DW_AT_decl_file. */
8111 handle_DW_AT_stmt_list (die, cu, comp_dir);
8113 /* Process all dies in compilation unit. */
8114 if (die->child != NULL)
8116 child_die = die->child;
8117 while (child_die && child_die->tag)
8119 process_die (child_die, cu);
8120 child_die = sibling_die (child_die);
8124 /* Decode macro information, if present. Dwarf 2 macro information
8125 refers to information in the line number info statement program
8126 header, so we can only read it if we've read the header
8128 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8129 if (attr && cu->line_header)
8131 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8132 complaint (&symfile_complaints,
8133 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8135 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8139 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8140 if (attr && cu->line_header)
8142 unsigned int macro_offset = DW_UNSND (attr);
8144 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8148 do_cleanups (back_to);
8151 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8152 Create the set of symtabs used by this TU, or if this TU is sharing
8153 symtabs with another TU and the symtabs have already been created
8154 then restore those symtabs in the line header.
8155 We don't need the pc/line-number mapping for type units. */
8158 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8160 struct objfile *objfile = dwarf2_per_objfile->objfile;
8161 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8162 struct type_unit_group *tu_group;
8164 struct line_header *lh;
8165 struct attribute *attr;
8166 unsigned int i, line_offset;
8167 struct signatured_type *sig_type;
8169 gdb_assert (per_cu->is_debug_types);
8170 sig_type = (struct signatured_type *) per_cu;
8172 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8174 /* If we're using .gdb_index (includes -readnow) then
8175 per_cu->s.type_unit_group may not have been set up yet. */
8176 if (sig_type->type_unit_group == NULL)
8177 sig_type->type_unit_group = get_type_unit_group (cu, attr);
8178 tu_group = sig_type->type_unit_group;
8180 /* If we've already processed this stmt_list there's no real need to
8181 do it again, we could fake it and just recreate the part we need
8182 (file name,index -> symtab mapping). If data shows this optimization
8183 is useful we can do it then. */
8184 first_time = tu_group->primary_symtab == NULL;
8186 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8191 line_offset = DW_UNSND (attr);
8192 lh = dwarf_decode_line_header (line_offset, cu);
8197 dwarf2_start_symtab (cu, "", NULL, 0);
8200 gdb_assert (tu_group->symtabs == NULL);
8203 /* Note: The primary symtab will get allocated at the end. */
8207 cu->line_header = lh;
8208 make_cleanup (free_cu_line_header, cu);
8212 dwarf2_start_symtab (cu, "", NULL, 0);
8214 tu_group->num_symtabs = lh->num_file_names;
8215 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8217 for (i = 0; i < lh->num_file_names; ++i)
8219 const char *dir = NULL;
8220 struct file_entry *fe = &lh->file_names[i];
8223 dir = lh->include_dirs[fe->dir_index - 1];
8224 dwarf2_start_subfile (fe->name, dir, NULL);
8226 /* Note: We don't have to watch for the main subfile here, type units
8227 don't have DW_AT_name. */
8229 if (current_subfile->symtab == NULL)
8231 /* NOTE: start_subfile will recognize when it's been passed
8232 a file it has already seen. So we can't assume there's a
8233 simple mapping from lh->file_names to subfiles,
8234 lh->file_names may contain dups. */
8235 current_subfile->symtab = allocate_symtab (current_subfile->name,
8239 fe->symtab = current_subfile->symtab;
8240 tu_group->symtabs[i] = fe->symtab;
8247 for (i = 0; i < lh->num_file_names; ++i)
8249 struct file_entry *fe = &lh->file_names[i];
8251 fe->symtab = tu_group->symtabs[i];
8255 /* The main symtab is allocated last. Type units don't have DW_AT_name
8256 so they don't have a "real" (so to speak) symtab anyway.
8257 There is later code that will assign the main symtab to all symbols
8258 that don't have one. We need to handle the case of a symbol with a
8259 missing symtab (DW_AT_decl_file) anyway. */
8262 /* Process DW_TAG_type_unit.
8263 For TUs we want to skip the first top level sibling if it's not the
8264 actual type being defined by this TU. In this case the first top
8265 level sibling is there to provide context only. */
8268 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8270 struct die_info *child_die;
8272 prepare_one_comp_unit (cu, die, language_minimal);
8274 /* Initialize (or reinitialize) the machinery for building symtabs.
8275 We do this before processing child DIEs, so that the line header table
8276 is available for DW_AT_decl_file. */
8277 setup_type_unit_groups (die, cu);
8279 if (die->child != NULL)
8281 child_die = die->child;
8282 while (child_die && child_die->tag)
8284 process_die (child_die, cu);
8285 child_die = sibling_die (child_die);
8292 http://gcc.gnu.org/wiki/DebugFission
8293 http://gcc.gnu.org/wiki/DebugFissionDWP
8295 To simplify handling of both DWO files ("object" files with the DWARF info)
8296 and DWP files (a file with the DWOs packaged up into one file), we treat
8297 DWP files as having a collection of virtual DWO files. */
8300 hash_dwo_file (const void *item)
8302 const struct dwo_file *dwo_file = item;
8304 return (htab_hash_string (dwo_file->dwo_name)
8305 + htab_hash_string (dwo_file->comp_dir));
8309 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8311 const struct dwo_file *lhs = item_lhs;
8312 const struct dwo_file *rhs = item_rhs;
8314 return (strcmp (lhs->dwo_name, rhs->dwo_name) == 0
8315 && strcmp (lhs->comp_dir, rhs->comp_dir) == 0);
8318 /* Allocate a hash table for DWO files. */
8321 allocate_dwo_file_hash_table (void)
8323 struct objfile *objfile = dwarf2_per_objfile->objfile;
8325 return htab_create_alloc_ex (41,
8329 &objfile->objfile_obstack,
8330 hashtab_obstack_allocate,
8331 dummy_obstack_deallocate);
8334 /* Lookup DWO file DWO_NAME. */
8337 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
8339 struct dwo_file find_entry;
8342 if (dwarf2_per_objfile->dwo_files == NULL)
8343 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8345 memset (&find_entry, 0, sizeof (find_entry));
8346 find_entry.dwo_name = dwo_name;
8347 find_entry.comp_dir = comp_dir;
8348 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8354 hash_dwo_unit (const void *item)
8356 const struct dwo_unit *dwo_unit = item;
8358 /* This drops the top 32 bits of the id, but is ok for a hash. */
8359 return dwo_unit->signature;
8363 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8365 const struct dwo_unit *lhs = item_lhs;
8366 const struct dwo_unit *rhs = item_rhs;
8368 /* The signature is assumed to be unique within the DWO file.
8369 So while object file CU dwo_id's always have the value zero,
8370 that's OK, assuming each object file DWO file has only one CU,
8371 and that's the rule for now. */
8372 return lhs->signature == rhs->signature;
8375 /* Allocate a hash table for DWO CUs,TUs.
8376 There is one of these tables for each of CUs,TUs for each DWO file. */
8379 allocate_dwo_unit_table (struct objfile *objfile)
8381 /* Start out with a pretty small number.
8382 Generally DWO files contain only one CU and maybe some TUs. */
8383 return htab_create_alloc_ex (3,
8387 &objfile->objfile_obstack,
8388 hashtab_obstack_allocate,
8389 dummy_obstack_deallocate);
8392 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8394 struct create_dwo_cu_data
8396 struct dwo_file *dwo_file;
8397 struct dwo_unit dwo_unit;
8400 /* die_reader_func for create_dwo_cu. */
8403 create_dwo_cu_reader (const struct die_reader_specs *reader,
8404 const gdb_byte *info_ptr,
8405 struct die_info *comp_unit_die,
8409 struct dwarf2_cu *cu = reader->cu;
8410 struct objfile *objfile = dwarf2_per_objfile->objfile;
8411 sect_offset offset = cu->per_cu->offset;
8412 struct dwarf2_section_info *section = cu->per_cu->section;
8413 struct create_dwo_cu_data *data = datap;
8414 struct dwo_file *dwo_file = data->dwo_file;
8415 struct dwo_unit *dwo_unit = &data->dwo_unit;
8416 struct attribute *attr;
8418 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8421 complaint (&symfile_complaints,
8422 _("Dwarf Error: debug entry at offset 0x%x is missing"
8423 " its dwo_id [in module %s]"),
8424 offset.sect_off, dwo_file->dwo_name);
8428 dwo_unit->dwo_file = dwo_file;
8429 dwo_unit->signature = DW_UNSND (attr);
8430 dwo_unit->section = section;
8431 dwo_unit->offset = offset;
8432 dwo_unit->length = cu->per_cu->length;
8434 if (dwarf2_read_debug)
8435 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
8436 offset.sect_off, hex_string (dwo_unit->signature));
8439 /* Create the dwo_unit for the lone CU in DWO_FILE.
8440 Note: This function processes DWO files only, not DWP files. */
8442 static struct dwo_unit *
8443 create_dwo_cu (struct dwo_file *dwo_file)
8445 struct objfile *objfile = dwarf2_per_objfile->objfile;
8446 struct dwarf2_section_info *section = &dwo_file->sections.info;
8449 const gdb_byte *info_ptr, *end_ptr;
8450 struct create_dwo_cu_data create_dwo_cu_data;
8451 struct dwo_unit *dwo_unit;
8453 dwarf2_read_section (objfile, section);
8454 info_ptr = section->buffer;
8456 if (info_ptr == NULL)
8459 /* We can't set abfd until now because the section may be empty or
8460 not present, in which case section->asection will be NULL. */
8461 abfd = section->asection->owner;
8463 if (dwarf2_read_debug)
8465 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
8466 bfd_section_name (abfd, section->asection),
8467 bfd_get_filename (abfd));
8470 create_dwo_cu_data.dwo_file = dwo_file;
8473 end_ptr = info_ptr + section->size;
8474 while (info_ptr < end_ptr)
8476 struct dwarf2_per_cu_data per_cu;
8478 memset (&create_dwo_cu_data.dwo_unit, 0,
8479 sizeof (create_dwo_cu_data.dwo_unit));
8480 memset (&per_cu, 0, sizeof (per_cu));
8481 per_cu.objfile = objfile;
8482 per_cu.is_debug_types = 0;
8483 per_cu.offset.sect_off = info_ptr - section->buffer;
8484 per_cu.section = section;
8486 init_cutu_and_read_dies_no_follow (&per_cu,
8487 &dwo_file->sections.abbrev,
8489 create_dwo_cu_reader,
8490 &create_dwo_cu_data);
8492 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
8494 /* If we've already found one, complain. We only support one
8495 because having more than one requires hacking the dwo_name of
8496 each to match, which is highly unlikely to happen. */
8497 if (dwo_unit != NULL)
8499 complaint (&symfile_complaints,
8500 _("Multiple CUs in DWO file %s [in module %s]"),
8501 dwo_file->dwo_name, objfile->name);
8505 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8506 *dwo_unit = create_dwo_cu_data.dwo_unit;
8509 info_ptr += per_cu.length;
8515 /* DWP file .debug_{cu,tu}_index section format:
8516 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8518 Both index sections have the same format, and serve to map a 64-bit
8519 signature to a set of section numbers. Each section begins with a header,
8520 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8521 indexes, and a pool of 32-bit section numbers. The index sections will be
8522 aligned at 8-byte boundaries in the file.
8524 The index section header contains two unsigned 32-bit values (using the
8525 byte order of the application binary):
8527 N, the number of compilation units or type units in the index
8528 M, the number of slots in the hash table
8530 (We assume that N and M will not exceed 2^32 - 1.)
8532 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8534 The hash table begins at offset 8 in the section, and consists of an array
8535 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8536 order of the application binary). Unused slots in the hash table are 0.
8537 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8539 The parallel table begins immediately after the hash table
8540 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8541 array of 32-bit indexes (using the byte order of the application binary),
8542 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8543 table contains a 32-bit index into the pool of section numbers. For unused
8544 hash table slots, the corresponding entry in the parallel table will be 0.
8546 Given a 64-bit compilation unit signature or a type signature S, an entry
8547 in the hash table is located as follows:
8549 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8550 the low-order k bits all set to 1.
8552 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8554 3) If the hash table entry at index H matches the signature, use that
8555 entry. If the hash table entry at index H is unused (all zeroes),
8556 terminate the search: the signature is not present in the table.
8558 4) Let H = (H + H') modulo M. Repeat at Step 3.
8560 Because M > N and H' and M are relatively prime, the search is guaranteed
8561 to stop at an unused slot or find the match.
8563 The pool of section numbers begins immediately following the hash table
8564 (at offset 8 + 12 * M from the beginning of the section). The pool of
8565 section numbers consists of an array of 32-bit words (using the byte order
8566 of the application binary). Each item in the array is indexed starting
8567 from 0. The hash table entry provides the index of the first section
8568 number in the set. Additional section numbers in the set follow, and the
8569 set is terminated by a 0 entry (section number 0 is not used in ELF).
8571 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8572 section must be the first entry in the set, and the .debug_abbrev.dwo must
8573 be the second entry. Other members of the set may follow in any order. */
8575 /* Create a hash table to map DWO IDs to their CU/TU entry in
8576 .debug_{info,types}.dwo in DWP_FILE.
8577 Returns NULL if there isn't one.
8578 Note: This function processes DWP files only, not DWO files. */
8580 static struct dwp_hash_table *
8581 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8583 struct objfile *objfile = dwarf2_per_objfile->objfile;
8584 bfd *dbfd = dwp_file->dbfd;
8585 const char *index_ptr, *index_end;
8586 struct dwarf2_section_info *index;
8587 uint32_t version, nr_units, nr_slots;
8588 struct dwp_hash_table *htab;
8591 index = &dwp_file->sections.tu_index;
8593 index = &dwp_file->sections.cu_index;
8595 if (dwarf2_section_empty_p (index))
8597 dwarf2_read_section (objfile, index);
8599 index_ptr = index->buffer;
8600 index_end = index_ptr + index->size;
8602 version = read_4_bytes (dbfd, index_ptr);
8603 index_ptr += 8; /* Skip the unused word. */
8604 nr_units = read_4_bytes (dbfd, index_ptr);
8606 nr_slots = read_4_bytes (dbfd, index_ptr);
8611 error (_("Dwarf Error: unsupported DWP file version (%u)"
8613 version, dwp_file->name);
8615 if (nr_slots != (nr_slots & -nr_slots))
8617 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8618 " is not power of 2 [in module %s]"),
8619 nr_slots, dwp_file->name);
8622 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8623 htab->nr_units = nr_units;
8624 htab->nr_slots = nr_slots;
8625 htab->hash_table = index_ptr;
8626 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8627 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8632 /* Update SECTIONS with the data from SECTP.
8634 This function is like the other "locate" section routines that are
8635 passed to bfd_map_over_sections, but in this context the sections to
8636 read comes from the DWP hash table, not the full ELF section table.
8638 The result is non-zero for success, or zero if an error was found. */
8641 locate_virtual_dwo_sections (asection *sectp,
8642 struct virtual_dwo_sections *sections)
8644 const struct dwop_section_names *names = &dwop_section_names;
8646 if (section_is_p (sectp->name, &names->abbrev_dwo))
8648 /* There can be only one. */
8649 if (sections->abbrev.asection != NULL)
8651 sections->abbrev.asection = sectp;
8652 sections->abbrev.size = bfd_get_section_size (sectp);
8654 else if (section_is_p (sectp->name, &names->info_dwo)
8655 || section_is_p (sectp->name, &names->types_dwo))
8657 /* There can be only one. */
8658 if (sections->info_or_types.asection != NULL)
8660 sections->info_or_types.asection = sectp;
8661 sections->info_or_types.size = bfd_get_section_size (sectp);
8663 else if (section_is_p (sectp->name, &names->line_dwo))
8665 /* There can be only one. */
8666 if (sections->line.asection != NULL)
8668 sections->line.asection = sectp;
8669 sections->line.size = bfd_get_section_size (sectp);
8671 else if (section_is_p (sectp->name, &names->loc_dwo))
8673 /* There can be only one. */
8674 if (sections->loc.asection != NULL)
8676 sections->loc.asection = sectp;
8677 sections->loc.size = bfd_get_section_size (sectp);
8679 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8681 /* There can be only one. */
8682 if (sections->macinfo.asection != NULL)
8684 sections->macinfo.asection = sectp;
8685 sections->macinfo.size = bfd_get_section_size (sectp);
8687 else if (section_is_p (sectp->name, &names->macro_dwo))
8689 /* There can be only one. */
8690 if (sections->macro.asection != NULL)
8692 sections->macro.asection = sectp;
8693 sections->macro.size = bfd_get_section_size (sectp);
8695 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8697 /* There can be only one. */
8698 if (sections->str_offsets.asection != NULL)
8700 sections->str_offsets.asection = sectp;
8701 sections->str_offsets.size = bfd_get_section_size (sectp);
8705 /* No other kind of section is valid. */
8712 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8713 HTAB is the hash table from the DWP file.
8714 SECTION_INDEX is the index of the DWO in HTAB.
8715 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. */
8717 static struct dwo_unit *
8718 create_dwo_in_dwp (struct dwp_file *dwp_file,
8719 const struct dwp_hash_table *htab,
8720 uint32_t section_index,
8721 const char *comp_dir,
8722 ULONGEST signature, int is_debug_types)
8724 struct objfile *objfile = dwarf2_per_objfile->objfile;
8725 bfd *dbfd = dwp_file->dbfd;
8726 const char *kind = is_debug_types ? "TU" : "CU";
8727 struct dwo_file *dwo_file;
8728 struct dwo_unit *dwo_unit;
8729 struct virtual_dwo_sections sections;
8730 void **dwo_file_slot;
8731 char *virtual_dwo_name;
8732 struct dwarf2_section_info *cutu;
8733 struct cleanup *cleanups;
8736 if (dwarf2_read_debug)
8738 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/%s in DWP file: %s\n",
8740 section_index, hex_string (signature),
8744 /* Fetch the sections of this DWO.
8745 Put a limit on the number of sections we look for so that bad data
8746 doesn't cause us to loop forever. */
8748 #define MAX_NR_DWO_SECTIONS \
8749 (1 /* .debug_info or .debug_types */ \
8750 + 1 /* .debug_abbrev */ \
8751 + 1 /* .debug_line */ \
8752 + 1 /* .debug_loc */ \
8753 + 1 /* .debug_str_offsets */ \
8754 + 1 /* .debug_macro */ \
8755 + 1 /* .debug_macinfo */ \
8756 + 1 /* trailing zero */)
8758 memset (§ions, 0, sizeof (sections));
8759 cleanups = make_cleanup (null_cleanup, 0);
8761 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8764 uint32_t section_nr =
8767 + (section_index + i) * sizeof (uint32_t));
8769 if (section_nr == 0)
8771 if (section_nr >= dwp_file->num_sections)
8773 error (_("Dwarf Error: bad DWP hash table, section number too large"
8778 sectp = dwp_file->elf_sections[section_nr];
8779 if (! locate_virtual_dwo_sections (sectp, §ions))
8781 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8788 || sections.info_or_types.asection == NULL
8789 || sections.abbrev.asection == NULL)
8791 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8795 if (i == MAX_NR_DWO_SECTIONS)
8797 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8802 /* It's easier for the rest of the code if we fake a struct dwo_file and
8803 have dwo_unit "live" in that. At least for now.
8805 The DWP file can be made up of a random collection of CUs and TUs.
8806 However, for each CU + set of TUs that came from the same original DWO
8807 file, we want to combine them back into a virtual DWO file to save space
8808 (fewer struct dwo_file objects to allocated). Remember that for really
8809 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8812 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8813 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8814 sections.line.asection ? sections.line.asection->id : 0,
8815 sections.loc.asection ? sections.loc.asection->id : 0,
8816 (sections.str_offsets.asection
8817 ? sections.str_offsets.asection->id
8819 make_cleanup (xfree, virtual_dwo_name);
8820 /* Can we use an existing virtual DWO file? */
8821 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
8822 /* Create one if necessary. */
8823 if (*dwo_file_slot == NULL)
8825 if (dwarf2_read_debug)
8827 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8830 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8831 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
8833 strlen (virtual_dwo_name));
8834 dwo_file->comp_dir = comp_dir;
8835 dwo_file->sections.abbrev = sections.abbrev;
8836 dwo_file->sections.line = sections.line;
8837 dwo_file->sections.loc = sections.loc;
8838 dwo_file->sections.macinfo = sections.macinfo;
8839 dwo_file->sections.macro = sections.macro;
8840 dwo_file->sections.str_offsets = sections.str_offsets;
8841 /* The "str" section is global to the entire DWP file. */
8842 dwo_file->sections.str = dwp_file->sections.str;
8843 /* The info or types section is assigned later to dwo_unit,
8844 there's no need to record it in dwo_file.
8845 Also, we can't simply record type sections in dwo_file because
8846 we record a pointer into the vector in dwo_unit. As we collect more
8847 types we'll grow the vector and eventually have to reallocate space
8848 for it, invalidating all the pointers into the current copy. */
8849 *dwo_file_slot = dwo_file;
8853 if (dwarf2_read_debug)
8855 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8858 dwo_file = *dwo_file_slot;
8860 do_cleanups (cleanups);
8862 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8863 dwo_unit->dwo_file = dwo_file;
8864 dwo_unit->signature = signature;
8865 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
8866 sizeof (struct dwarf2_section_info));
8867 *dwo_unit->section = sections.info_or_types;
8868 /* offset, length, type_offset_in_tu are set later. */
8873 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8875 static struct dwo_unit *
8876 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8877 const struct dwp_hash_table *htab,
8878 const char *comp_dir,
8879 ULONGEST signature, int is_debug_types)
8881 bfd *dbfd = dwp_file->dbfd;
8882 uint32_t mask = htab->nr_slots - 1;
8883 uint32_t hash = signature & mask;
8884 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8887 struct dwo_unit find_dwo_cu, *dwo_cu;
8889 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8890 find_dwo_cu.signature = signature;
8891 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8896 /* Use a for loop so that we don't loop forever on bad debug info. */
8897 for (i = 0; i < htab->nr_slots; ++i)
8899 ULONGEST signature_in_table;
8901 signature_in_table =
8902 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8903 if (signature_in_table == signature)
8905 uint32_t section_index =
8906 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8908 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8909 comp_dir, signature, is_debug_types);
8912 if (signature_in_table == 0)
8914 hash = (hash + hash2) & mask;
8917 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8922 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
8923 Open the file specified by FILE_NAME and hand it off to BFD for
8924 preliminary analysis. Return a newly initialized bfd *, which
8925 includes a canonicalized copy of FILE_NAME.
8926 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8927 In case of trouble, return NULL.
8928 NOTE: This function is derived from symfile_bfd_open. */
8931 try_open_dwop_file (const char *file_name, int is_dwp)
8935 char *absolute_name;
8937 flags = OPF_TRY_CWD_FIRST;
8939 flags |= OPF_SEARCH_IN_PATH;
8940 desc = openp (debug_file_directory, flags, file_name,
8941 O_RDONLY | O_BINARY, &absolute_name);
8945 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8948 xfree (absolute_name);
8951 xfree (absolute_name);
8952 bfd_set_cacheable (sym_bfd, 1);
8954 if (!bfd_check_format (sym_bfd, bfd_object))
8956 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8963 /* Try to open DWO file FILE_NAME.
8964 COMP_DIR is the DW_AT_comp_dir attribute.
8965 The result is the bfd handle of the file.
8966 If there is a problem finding or opening the file, return NULL.
8967 Upon success, the canonicalized path of the file is stored in the bfd,
8968 same as symfile_bfd_open. */
8971 open_dwo_file (const char *file_name, const char *comp_dir)
8975 if (IS_ABSOLUTE_PATH (file_name))
8976 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
8978 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8980 if (comp_dir != NULL)
8982 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8984 /* NOTE: If comp_dir is a relative path, this will also try the
8985 search path, which seems useful. */
8986 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/);
8987 xfree (path_to_try);
8992 /* That didn't work, try debug-file-directory, which, despite its name,
8993 is a list of paths. */
8995 if (*debug_file_directory == '\0')
8998 return try_open_dwop_file (file_name, 0 /*is_dwp*/);
9001 /* This function is mapped across the sections and remembers the offset and
9002 size of each of the DWO debugging sections we are interested in. */
9005 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
9007 struct dwo_sections *dwo_sections = dwo_sections_ptr;
9008 const struct dwop_section_names *names = &dwop_section_names;
9010 if (section_is_p (sectp->name, &names->abbrev_dwo))
9012 dwo_sections->abbrev.asection = sectp;
9013 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
9015 else if (section_is_p (sectp->name, &names->info_dwo))
9017 dwo_sections->info.asection = sectp;
9018 dwo_sections->info.size = bfd_get_section_size (sectp);
9020 else if (section_is_p (sectp->name, &names->line_dwo))
9022 dwo_sections->line.asection = sectp;
9023 dwo_sections->line.size = bfd_get_section_size (sectp);
9025 else if (section_is_p (sectp->name, &names->loc_dwo))
9027 dwo_sections->loc.asection = sectp;
9028 dwo_sections->loc.size = bfd_get_section_size (sectp);
9030 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9032 dwo_sections->macinfo.asection = sectp;
9033 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
9035 else if (section_is_p (sectp->name, &names->macro_dwo))
9037 dwo_sections->macro.asection = sectp;
9038 dwo_sections->macro.size = bfd_get_section_size (sectp);
9040 else if (section_is_p (sectp->name, &names->str_dwo))
9042 dwo_sections->str.asection = sectp;
9043 dwo_sections->str.size = bfd_get_section_size (sectp);
9045 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9047 dwo_sections->str_offsets.asection = sectp;
9048 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
9050 else if (section_is_p (sectp->name, &names->types_dwo))
9052 struct dwarf2_section_info type_section;
9054 memset (&type_section, 0, sizeof (type_section));
9055 type_section.asection = sectp;
9056 type_section.size = bfd_get_section_size (sectp);
9057 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
9062 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
9063 by PER_CU. This is for the non-DWP case.
9064 The result is NULL if DWO_NAME can't be found. */
9066 static struct dwo_file *
9067 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
9068 const char *dwo_name, const char *comp_dir)
9070 struct objfile *objfile = dwarf2_per_objfile->objfile;
9071 struct dwo_file *dwo_file;
9073 struct cleanup *cleanups;
9075 dbfd = open_dwo_file (dwo_name, comp_dir);
9078 if (dwarf2_read_debug)
9079 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
9082 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9083 dwo_file->dwo_name = dwo_name;
9084 dwo_file->comp_dir = comp_dir;
9085 dwo_file->dbfd = dbfd;
9087 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
9089 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
9091 dwo_file->cu = create_dwo_cu (dwo_file);
9093 dwo_file->tus = create_debug_types_hash_table (dwo_file,
9094 dwo_file->sections.types);
9096 discard_cleanups (cleanups);
9098 if (dwarf2_read_debug)
9099 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
9104 /* This function is mapped across the sections and remembers the offset and
9105 size of each of the DWP debugging sections we are interested in. */
9108 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
9110 struct dwp_file *dwp_file = dwp_file_ptr;
9111 const struct dwop_section_names *names = &dwop_section_names;
9112 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
9114 /* Record the ELF section number for later lookup: this is what the
9115 .debug_cu_index,.debug_tu_index tables use. */
9116 gdb_assert (elf_section_nr < dwp_file->num_sections);
9117 dwp_file->elf_sections[elf_section_nr] = sectp;
9119 /* Look for specific sections that we need. */
9120 if (section_is_p (sectp->name, &names->str_dwo))
9122 dwp_file->sections.str.asection = sectp;
9123 dwp_file->sections.str.size = bfd_get_section_size (sectp);
9125 else if (section_is_p (sectp->name, &names->cu_index))
9127 dwp_file->sections.cu_index.asection = sectp;
9128 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
9130 else if (section_is_p (sectp->name, &names->tu_index))
9132 dwp_file->sections.tu_index.asection = sectp;
9133 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
9137 /* Hash function for dwp_file loaded CUs/TUs. */
9140 hash_dwp_loaded_cutus (const void *item)
9142 const struct dwo_unit *dwo_unit = item;
9144 /* This drops the top 32 bits of the signature, but is ok for a hash. */
9145 return dwo_unit->signature;
9148 /* Equality function for dwp_file loaded CUs/TUs. */
9151 eq_dwp_loaded_cutus (const void *a, const void *b)
9153 const struct dwo_unit *dua = a;
9154 const struct dwo_unit *dub = b;
9156 return dua->signature == dub->signature;
9159 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9162 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9164 return htab_create_alloc_ex (3,
9165 hash_dwp_loaded_cutus,
9166 eq_dwp_loaded_cutus,
9168 &objfile->objfile_obstack,
9169 hashtab_obstack_allocate,
9170 dummy_obstack_deallocate);
9173 /* Try to open DWP file FILE_NAME.
9174 The result is the bfd handle of the file.
9175 If there is a problem finding or opening the file, return NULL.
9176 Upon success, the canonicalized path of the file is stored in the bfd,
9177 same as symfile_bfd_open. */
9180 open_dwp_file (const char *file_name)
9182 return try_open_dwop_file (file_name, 1 /*is_dwp*/);
9185 /* Initialize the use of the DWP file for the current objfile.
9186 By convention the name of the DWP file is ${objfile}.dwp.
9187 The result is NULL if it can't be found. */
9189 static struct dwp_file *
9190 open_and_init_dwp_file (void)
9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
9193 struct dwp_file *dwp_file;
9196 struct cleanup *cleanups;
9198 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9199 cleanups = make_cleanup (xfree, dwp_name);
9201 dbfd = open_dwp_file (dwp_name);
9204 if (dwarf2_read_debug)
9205 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9206 do_cleanups (cleanups);
9209 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9210 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9211 dwp_name, strlen (dwp_name));
9212 dwp_file->dbfd = dbfd;
9213 do_cleanups (cleanups);
9215 /* +1: section 0 is unused */
9216 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9217 dwp_file->elf_sections =
9218 OBSTACK_CALLOC (&objfile->objfile_obstack,
9219 dwp_file->num_sections, asection *);
9221 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9223 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9225 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9227 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9229 if (dwarf2_read_debug)
9231 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9232 fprintf_unfiltered (gdb_stdlog,
9233 " %u CUs, %u TUs\n",
9234 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9235 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9241 /* Wrapper around open_and_init_dwp_file, only open it once. */
9243 static struct dwp_file *
9246 if (! dwarf2_per_objfile->dwp_checked)
9248 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
9249 dwarf2_per_objfile->dwp_checked = 1;
9251 return dwarf2_per_objfile->dwp_file;
9254 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9255 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9256 or in the DWP file for the objfile, referenced by THIS_UNIT.
9257 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9258 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9260 This is called, for example, when wanting to read a variable with a
9261 complex location. Therefore we don't want to do file i/o for every call.
9262 Therefore we don't want to look for a DWO file on every call.
9263 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9264 then we check if we've already seen DWO_NAME, and only THEN do we check
9267 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9268 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9270 static struct dwo_unit *
9271 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9272 const char *dwo_name, const char *comp_dir,
9273 ULONGEST signature, int is_debug_types)
9275 struct objfile *objfile = dwarf2_per_objfile->objfile;
9276 const char *kind = is_debug_types ? "TU" : "CU";
9277 void **dwo_file_slot;
9278 struct dwo_file *dwo_file;
9279 struct dwp_file *dwp_file;
9281 /* Have we already read SIGNATURE from a DWP file? */
9283 dwp_file = get_dwp_file ();
9284 if (dwp_file != NULL)
9286 const struct dwp_hash_table *dwp_htab =
9287 is_debug_types ? dwp_file->tus : dwp_file->cus;
9289 if (dwp_htab != NULL)
9291 struct dwo_unit *dwo_cutu =
9292 lookup_dwo_in_dwp (dwp_file, dwp_htab, comp_dir,
9293 signature, is_debug_types);
9295 if (dwo_cutu != NULL)
9297 if (dwarf2_read_debug)
9299 fprintf_unfiltered (gdb_stdlog,
9300 "Virtual DWO %s %s found: @%s\n",
9301 kind, hex_string (signature),
9302 host_address_to_string (dwo_cutu));
9309 /* Have we already seen DWO_NAME? */
9311 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
9312 if (*dwo_file_slot == NULL)
9314 /* Read in the file and build a table of the DWOs it contains. */
9315 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
9317 /* NOTE: This will be NULL if unable to open the file. */
9318 dwo_file = *dwo_file_slot;
9320 if (dwo_file != NULL)
9322 struct dwo_unit *dwo_cutu = NULL;
9324 if (is_debug_types && dwo_file->tus)
9326 struct dwo_unit find_dwo_cutu;
9328 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9329 find_dwo_cutu.signature = signature;
9330 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
9332 else if (!is_debug_types && dwo_file->cu)
9334 if (signature == dwo_file->cu->signature)
9335 dwo_cutu = dwo_file->cu;
9338 if (dwo_cutu != NULL)
9340 if (dwarf2_read_debug)
9342 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9343 kind, dwo_name, hex_string (signature),
9344 host_address_to_string (dwo_cutu));
9350 /* We didn't find it. This could mean a dwo_id mismatch, or
9351 someone deleted the DWO/DWP file, or the search path isn't set up
9352 correctly to find the file. */
9354 if (dwarf2_read_debug)
9356 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9357 kind, dwo_name, hex_string (signature));
9360 complaint (&symfile_complaints,
9361 _("Could not find DWO %s referenced by CU at offset 0x%x"
9363 kind, this_unit->offset.sect_off, objfile->name);
9367 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9368 See lookup_dwo_cutu_unit for details. */
9370 static struct dwo_unit *
9371 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9372 const char *dwo_name, const char *comp_dir,
9375 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9378 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9379 See lookup_dwo_cutu_unit for details. */
9381 static struct dwo_unit *
9382 lookup_dwo_type_unit (struct signatured_type *this_tu,
9383 const char *dwo_name, const char *comp_dir)
9385 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9388 /* Free all resources associated with DWO_FILE.
9389 Close the DWO file and munmap the sections.
9390 All memory should be on the objfile obstack. */
9393 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9396 struct dwarf2_section_info *section;
9398 /* Note: dbfd is NULL for virtual DWO files. */
9399 gdb_bfd_unref (dwo_file->dbfd);
9401 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9404 /* Wrapper for free_dwo_file for use in cleanups. */
9407 free_dwo_file_cleanup (void *arg)
9409 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9410 struct objfile *objfile = dwarf2_per_objfile->objfile;
9412 free_dwo_file (dwo_file, objfile);
9415 /* Traversal function for free_dwo_files. */
9418 free_dwo_file_from_slot (void **slot, void *info)
9420 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9421 struct objfile *objfile = (struct objfile *) info;
9423 free_dwo_file (dwo_file, objfile);
9428 /* Free all resources associated with DWO_FILES. */
9431 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9433 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9436 /* Read in various DIEs. */
9438 /* qsort helper for inherit_abstract_dies. */
9441 unsigned_int_compar (const void *ap, const void *bp)
9443 unsigned int a = *(unsigned int *) ap;
9444 unsigned int b = *(unsigned int *) bp;
9446 return (a > b) - (b > a);
9449 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9450 Inherit only the children of the DW_AT_abstract_origin DIE not being
9451 already referenced by DW_AT_abstract_origin from the children of the
9455 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9457 struct die_info *child_die;
9458 unsigned die_children_count;
9459 /* CU offsets which were referenced by children of the current DIE. */
9460 sect_offset *offsets;
9461 sect_offset *offsets_end, *offsetp;
9462 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9463 struct die_info *origin_die;
9464 /* Iterator of the ORIGIN_DIE children. */
9465 struct die_info *origin_child_die;
9466 struct cleanup *cleanups;
9467 struct attribute *attr;
9468 struct dwarf2_cu *origin_cu;
9469 struct pending **origin_previous_list_in_scope;
9471 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9475 /* Note that following die references may follow to a die in a
9479 origin_die = follow_die_ref (die, attr, &origin_cu);
9481 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9483 origin_previous_list_in_scope = origin_cu->list_in_scope;
9484 origin_cu->list_in_scope = cu->list_in_scope;
9486 if (die->tag != origin_die->tag
9487 && !(die->tag == DW_TAG_inlined_subroutine
9488 && origin_die->tag == DW_TAG_subprogram))
9489 complaint (&symfile_complaints,
9490 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9491 die->offset.sect_off, origin_die->offset.sect_off);
9493 child_die = die->child;
9494 die_children_count = 0;
9495 while (child_die && child_die->tag)
9497 child_die = sibling_die (child_die);
9498 die_children_count++;
9500 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9501 cleanups = make_cleanup (xfree, offsets);
9503 offsets_end = offsets;
9504 child_die = die->child;
9505 while (child_die && child_die->tag)
9507 /* For each CHILD_DIE, find the corresponding child of
9508 ORIGIN_DIE. If there is more than one layer of
9509 DW_AT_abstract_origin, follow them all; there shouldn't be,
9510 but GCC versions at least through 4.4 generate this (GCC PR
9512 struct die_info *child_origin_die = child_die;
9513 struct dwarf2_cu *child_origin_cu = cu;
9517 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9521 child_origin_die = follow_die_ref (child_origin_die, attr,
9525 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9526 counterpart may exist. */
9527 if (child_origin_die != child_die)
9529 if (child_die->tag != child_origin_die->tag
9530 && !(child_die->tag == DW_TAG_inlined_subroutine
9531 && child_origin_die->tag == DW_TAG_subprogram))
9532 complaint (&symfile_complaints,
9533 _("Child DIE 0x%x and its abstract origin 0x%x have "
9534 "different tags"), child_die->offset.sect_off,
9535 child_origin_die->offset.sect_off);
9536 if (child_origin_die->parent != origin_die)
9537 complaint (&symfile_complaints,
9538 _("Child DIE 0x%x and its abstract origin 0x%x have "
9539 "different parents"), child_die->offset.sect_off,
9540 child_origin_die->offset.sect_off);
9542 *offsets_end++ = child_origin_die->offset;
9544 child_die = sibling_die (child_die);
9546 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9547 unsigned_int_compar);
9548 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9549 if (offsetp[-1].sect_off == offsetp->sect_off)
9550 complaint (&symfile_complaints,
9551 _("Multiple children of DIE 0x%x refer "
9552 "to DIE 0x%x as their abstract origin"),
9553 die->offset.sect_off, offsetp->sect_off);
9556 origin_child_die = origin_die->child;
9557 while (origin_child_die && origin_child_die->tag)
9559 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9560 while (offsetp < offsets_end
9561 && offsetp->sect_off < origin_child_die->offset.sect_off)
9563 if (offsetp >= offsets_end
9564 || offsetp->sect_off > origin_child_die->offset.sect_off)
9566 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9567 process_die (origin_child_die, origin_cu);
9569 origin_child_die = sibling_die (origin_child_die);
9571 origin_cu->list_in_scope = origin_previous_list_in_scope;
9573 do_cleanups (cleanups);
9577 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9579 struct objfile *objfile = cu->objfile;
9580 struct context_stack *new;
9583 struct die_info *child_die;
9584 struct attribute *attr, *call_line, *call_file;
9587 struct block *block;
9588 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9589 VEC (symbolp) *template_args = NULL;
9590 struct template_symbol *templ_func = NULL;
9594 /* If we do not have call site information, we can't show the
9595 caller of this inlined function. That's too confusing, so
9596 only use the scope for local variables. */
9597 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9598 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9599 if (call_line == NULL || call_file == NULL)
9601 read_lexical_block_scope (die, cu);
9606 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9608 name = dwarf2_name (die, cu);
9610 /* Ignore functions with missing or empty names. These are actually
9611 illegal according to the DWARF standard. */
9614 complaint (&symfile_complaints,
9615 _("missing name for subprogram DIE at %d"),
9616 die->offset.sect_off);
9620 /* Ignore functions with missing or invalid low and high pc attributes. */
9621 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9623 attr = dwarf2_attr (die, DW_AT_external, cu);
9624 if (!attr || !DW_UNSND (attr))
9625 complaint (&symfile_complaints,
9626 _("cannot get low and high bounds "
9627 "for subprogram DIE at %d"),
9628 die->offset.sect_off);
9635 /* If we have any template arguments, then we must allocate a
9636 different sort of symbol. */
9637 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9639 if (child_die->tag == DW_TAG_template_type_param
9640 || child_die->tag == DW_TAG_template_value_param)
9642 templ_func = allocate_template_symbol (objfile);
9643 templ_func->base.is_cplus_template_function = 1;
9648 new = push_context (0, lowpc);
9649 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9650 (struct symbol *) templ_func);
9652 /* If there is a location expression for DW_AT_frame_base, record
9654 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9656 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
9658 cu->list_in_scope = &local_symbols;
9660 if (die->child != NULL)
9662 child_die = die->child;
9663 while (child_die && child_die->tag)
9665 if (child_die->tag == DW_TAG_template_type_param
9666 || child_die->tag == DW_TAG_template_value_param)
9668 struct symbol *arg = new_symbol (child_die, NULL, cu);
9671 VEC_safe_push (symbolp, template_args, arg);
9674 process_die (child_die, cu);
9675 child_die = sibling_die (child_die);
9679 inherit_abstract_dies (die, cu);
9681 /* If we have a DW_AT_specification, we might need to import using
9682 directives from the context of the specification DIE. See the
9683 comment in determine_prefix. */
9684 if (cu->language == language_cplus
9685 && dwarf2_attr (die, DW_AT_specification, cu))
9687 struct dwarf2_cu *spec_cu = cu;
9688 struct die_info *spec_die = die_specification (die, &spec_cu);
9692 child_die = spec_die->child;
9693 while (child_die && child_die->tag)
9695 if (child_die->tag == DW_TAG_imported_module)
9696 process_die (child_die, spec_cu);
9697 child_die = sibling_die (child_die);
9700 /* In some cases, GCC generates specification DIEs that
9701 themselves contain DW_AT_specification attributes. */
9702 spec_die = die_specification (spec_die, &spec_cu);
9706 new = pop_context ();
9707 /* Make a block for the local symbols within. */
9708 block = finish_block (new->name, &local_symbols, new->old_blocks,
9709 lowpc, highpc, objfile);
9711 /* For C++, set the block's scope. */
9712 if ((cu->language == language_cplus || cu->language == language_fortran)
9713 && cu->processing_has_namespace_info)
9714 block_set_scope (block, determine_prefix (die, cu),
9715 &objfile->objfile_obstack);
9717 /* If we have address ranges, record them. */
9718 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9720 /* Attach template arguments to function. */
9721 if (! VEC_empty (symbolp, template_args))
9723 gdb_assert (templ_func != NULL);
9725 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9726 templ_func->template_arguments
9727 = obstack_alloc (&objfile->objfile_obstack,
9728 (templ_func->n_template_arguments
9729 * sizeof (struct symbol *)));
9730 memcpy (templ_func->template_arguments,
9731 VEC_address (symbolp, template_args),
9732 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9733 VEC_free (symbolp, template_args);
9736 /* In C++, we can have functions nested inside functions (e.g., when
9737 a function declares a class that has methods). This means that
9738 when we finish processing a function scope, we may need to go
9739 back to building a containing block's symbol lists. */
9740 local_symbols = new->locals;
9741 using_directives = new->using_directives;
9743 /* If we've finished processing a top-level function, subsequent
9744 symbols go in the file symbol list. */
9745 if (outermost_context_p ())
9746 cu->list_in_scope = &file_symbols;
9749 /* Process all the DIES contained within a lexical block scope. Start
9750 a new scope, process the dies, and then close the scope. */
9753 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9755 struct objfile *objfile = cu->objfile;
9756 struct context_stack *new;
9757 CORE_ADDR lowpc, highpc;
9758 struct die_info *child_die;
9761 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9763 /* Ignore blocks with missing or invalid low and high pc attributes. */
9764 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9765 as multiple lexical blocks? Handling children in a sane way would
9766 be nasty. Might be easier to properly extend generic blocks to
9768 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9773 push_context (0, lowpc);
9774 if (die->child != NULL)
9776 child_die = die->child;
9777 while (child_die && child_die->tag)
9779 process_die (child_die, cu);
9780 child_die = sibling_die (child_die);
9783 new = pop_context ();
9785 if (local_symbols != NULL || using_directives != NULL)
9788 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9791 /* Note that recording ranges after traversing children, as we
9792 do here, means that recording a parent's ranges entails
9793 walking across all its children's ranges as they appear in
9794 the address map, which is quadratic behavior.
9796 It would be nicer to record the parent's ranges before
9797 traversing its children, simply overriding whatever you find
9798 there. But since we don't even decide whether to create a
9799 block until after we've traversed its children, that's hard
9801 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9803 local_symbols = new->locals;
9804 using_directives = new->using_directives;
9807 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9810 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9812 struct objfile *objfile = cu->objfile;
9813 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9814 CORE_ADDR pc, baseaddr;
9815 struct attribute *attr;
9816 struct call_site *call_site, call_site_local;
9819 struct die_info *child_die;
9821 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9823 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9826 complaint (&symfile_complaints,
9827 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9828 "DIE 0x%x [in module %s]"),
9829 die->offset.sect_off, objfile->name);
9832 pc = DW_ADDR (attr) + baseaddr;
9834 if (cu->call_site_htab == NULL)
9835 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9836 NULL, &objfile->objfile_obstack,
9837 hashtab_obstack_allocate, NULL);
9838 call_site_local.pc = pc;
9839 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9842 complaint (&symfile_complaints,
9843 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9844 "DIE 0x%x [in module %s]"),
9845 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9849 /* Count parameters at the caller. */
9852 for (child_die = die->child; child_die && child_die->tag;
9853 child_die = sibling_die (child_die))
9855 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9857 complaint (&symfile_complaints,
9858 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9859 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9860 child_die->tag, child_die->offset.sect_off, objfile->name);
9867 call_site = obstack_alloc (&objfile->objfile_obstack,
9868 (sizeof (*call_site)
9869 + (sizeof (*call_site->parameter)
9872 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9875 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9877 struct die_info *func_die;
9879 /* Skip also over DW_TAG_inlined_subroutine. */
9880 for (func_die = die->parent;
9881 func_die && func_die->tag != DW_TAG_subprogram
9882 && func_die->tag != DW_TAG_subroutine_type;
9883 func_die = func_die->parent);
9885 /* DW_AT_GNU_all_call_sites is a superset
9886 of DW_AT_GNU_all_tail_call_sites. */
9888 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9889 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9891 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9892 not complete. But keep CALL_SITE for look ups via call_site_htab,
9893 both the initial caller containing the real return address PC and
9894 the final callee containing the current PC of a chain of tail
9895 calls do not need to have the tail call list complete. But any
9896 function candidate for a virtual tail call frame searched via
9897 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9898 determined unambiguously. */
9902 struct type *func_type = NULL;
9905 func_type = get_die_type (func_die, cu);
9906 if (func_type != NULL)
9908 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9910 /* Enlist this call site to the function. */
9911 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9912 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9915 complaint (&symfile_complaints,
9916 _("Cannot find function owning DW_TAG_GNU_call_site "
9917 "DIE 0x%x [in module %s]"),
9918 die->offset.sect_off, objfile->name);
9922 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9924 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9925 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9926 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9927 /* Keep NULL DWARF_BLOCK. */;
9928 else if (attr_form_is_block (attr))
9930 struct dwarf2_locexpr_baton *dlbaton;
9932 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9933 dlbaton->data = DW_BLOCK (attr)->data;
9934 dlbaton->size = DW_BLOCK (attr)->size;
9935 dlbaton->per_cu = cu->per_cu;
9937 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9939 else if (is_ref_attr (attr))
9941 struct dwarf2_cu *target_cu = cu;
9942 struct die_info *target_die;
9944 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9945 gdb_assert (target_cu->objfile == objfile);
9946 if (die_is_declaration (target_die, target_cu))
9948 const char *target_physname = NULL;
9949 struct attribute *target_attr;
9951 /* Prefer the mangled name; otherwise compute the demangled one. */
9952 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
9953 if (target_attr == NULL)
9954 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
9956 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
9957 target_physname = DW_STRING (target_attr);
9959 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9960 if (target_physname == NULL)
9961 complaint (&symfile_complaints,
9962 _("DW_AT_GNU_call_site_target target DIE has invalid "
9963 "physname, for referencing DIE 0x%x [in module %s]"),
9964 die->offset.sect_off, objfile->name);
9966 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9972 /* DW_AT_entry_pc should be preferred. */
9973 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9974 complaint (&symfile_complaints,
9975 _("DW_AT_GNU_call_site_target target DIE has invalid "
9976 "low pc, for referencing DIE 0x%x [in module %s]"),
9977 die->offset.sect_off, objfile->name);
9979 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9983 complaint (&symfile_complaints,
9984 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9985 "block nor reference, for DIE 0x%x [in module %s]"),
9986 die->offset.sect_off, objfile->name);
9988 call_site->per_cu = cu->per_cu;
9990 for (child_die = die->child;
9991 child_die && child_die->tag;
9992 child_die = sibling_die (child_die))
9994 struct call_site_parameter *parameter;
9995 struct attribute *loc, *origin;
9997 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9999 /* Already printed the complaint above. */
10003 gdb_assert (call_site->parameter_count < nparams);
10004 parameter = &call_site->parameter[call_site->parameter_count];
10006 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
10007 specifies DW_TAG_formal_parameter. Value of the data assumed for the
10008 register is contained in DW_AT_GNU_call_site_value. */
10010 loc = dwarf2_attr (child_die, DW_AT_location, cu);
10011 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
10012 if (loc == NULL && origin != NULL && is_ref_attr (origin))
10014 sect_offset offset;
10016 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
10017 offset = dwarf2_get_ref_die_offset (origin);
10018 if (!offset_in_cu_p (&cu->header, offset))
10020 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
10021 binding can be done only inside one CU. Such referenced DIE
10022 therefore cannot be even moved to DW_TAG_partial_unit. */
10023 complaint (&symfile_complaints,
10024 _("DW_AT_abstract_origin offset is not in CU for "
10025 "DW_TAG_GNU_call_site child DIE 0x%x "
10027 child_die->offset.sect_off, objfile->name);
10030 parameter->u.param_offset.cu_off = (offset.sect_off
10031 - cu->header.offset.sect_off);
10033 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
10035 complaint (&symfile_complaints,
10036 _("No DW_FORM_block* DW_AT_location for "
10037 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10038 child_die->offset.sect_off, objfile->name);
10043 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
10044 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
10045 if (parameter->u.dwarf_reg != -1)
10046 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
10047 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
10048 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
10049 ¶meter->u.fb_offset))
10050 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
10053 complaint (&symfile_complaints,
10054 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
10055 "for DW_FORM_block* DW_AT_location is supported for "
10056 "DW_TAG_GNU_call_site child DIE 0x%x "
10058 child_die->offset.sect_off, objfile->name);
10063 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
10064 if (!attr_form_is_block (attr))
10066 complaint (&symfile_complaints,
10067 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
10068 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10069 child_die->offset.sect_off, objfile->name);
10072 parameter->value = DW_BLOCK (attr)->data;
10073 parameter->value_size = DW_BLOCK (attr)->size;
10075 /* Parameters are not pre-cleared by memset above. */
10076 parameter->data_value = NULL;
10077 parameter->data_value_size = 0;
10078 call_site->parameter_count++;
10080 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
10083 if (!attr_form_is_block (attr))
10084 complaint (&symfile_complaints,
10085 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
10086 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
10087 child_die->offset.sect_off, objfile->name);
10090 parameter->data_value = DW_BLOCK (attr)->data;
10091 parameter->data_value_size = DW_BLOCK (attr)->size;
10097 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
10098 Return 1 if the attributes are present and valid, otherwise, return 0.
10099 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
10102 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
10103 CORE_ADDR *high_return, struct dwarf2_cu *cu,
10104 struct partial_symtab *ranges_pst)
10106 struct objfile *objfile = cu->objfile;
10107 struct comp_unit_head *cu_header = &cu->header;
10108 bfd *obfd = objfile->obfd;
10109 unsigned int addr_size = cu_header->addr_size;
10110 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10111 /* Base address selection entry. */
10114 unsigned int dummy;
10115 const gdb_byte *buffer;
10119 CORE_ADDR high = 0;
10120 CORE_ADDR baseaddr;
10122 found_base = cu->base_known;
10123 base = cu->base_address;
10125 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
10126 if (offset >= dwarf2_per_objfile->ranges.size)
10128 complaint (&symfile_complaints,
10129 _("Offset %d out of bounds for DW_AT_ranges attribute"),
10133 buffer = dwarf2_per_objfile->ranges.buffer + offset;
10135 /* Read in the largest possible address. */
10136 marker = read_address (obfd, buffer, cu, &dummy);
10137 if ((marker & mask) == mask)
10139 /* If we found the largest possible address, then
10140 read the base address. */
10141 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10142 buffer += 2 * addr_size;
10143 offset += 2 * addr_size;
10149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10153 CORE_ADDR range_beginning, range_end;
10155 range_beginning = read_address (obfd, buffer, cu, &dummy);
10156 buffer += addr_size;
10157 range_end = read_address (obfd, buffer, cu, &dummy);
10158 buffer += addr_size;
10159 offset += 2 * addr_size;
10161 /* An end of list marker is a pair of zero addresses. */
10162 if (range_beginning == 0 && range_end == 0)
10163 /* Found the end of list entry. */
10166 /* Each base address selection entry is a pair of 2 values.
10167 The first is the largest possible address, the second is
10168 the base address. Check for a base address here. */
10169 if ((range_beginning & mask) == mask)
10171 /* If we found the largest possible address, then
10172 read the base address. */
10173 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10180 /* We have no valid base address for the ranges
10182 complaint (&symfile_complaints,
10183 _("Invalid .debug_ranges data (no base address)"));
10187 if (range_beginning > range_end)
10189 /* Inverted range entries are invalid. */
10190 complaint (&symfile_complaints,
10191 _("Invalid .debug_ranges data (inverted range)"));
10195 /* Empty range entries have no effect. */
10196 if (range_beginning == range_end)
10199 range_beginning += base;
10202 /* A not-uncommon case of bad debug info.
10203 Don't pollute the addrmap with bad data. */
10204 if (range_beginning + baseaddr == 0
10205 && !dwarf2_per_objfile->has_section_at_zero)
10207 complaint (&symfile_complaints,
10208 _(".debug_ranges entry has start address of zero"
10209 " [in module %s]"), objfile->name);
10213 if (ranges_pst != NULL)
10214 addrmap_set_empty (objfile->psymtabs_addrmap,
10215 range_beginning + baseaddr,
10216 range_end - 1 + baseaddr,
10219 /* FIXME: This is recording everything as a low-high
10220 segment of consecutive addresses. We should have a
10221 data structure for discontiguous block ranges
10225 low = range_beginning;
10231 if (range_beginning < low)
10232 low = range_beginning;
10233 if (range_end > high)
10239 /* If the first entry is an end-of-list marker, the range
10240 describes an empty scope, i.e. no instructions. */
10246 *high_return = high;
10250 /* Get low and high pc attributes from a die. Return 1 if the attributes
10251 are present and valid, otherwise, return 0. Return -1 if the range is
10252 discontinuous, i.e. derived from DW_AT_ranges information. */
10255 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10256 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10257 struct partial_symtab *pst)
10259 struct attribute *attr;
10260 struct attribute *attr_high;
10262 CORE_ADDR high = 0;
10265 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10268 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10271 low = DW_ADDR (attr);
10272 if (attr_high->form == DW_FORM_addr
10273 || attr_high->form == DW_FORM_GNU_addr_index)
10274 high = DW_ADDR (attr_high);
10276 high = low + DW_UNSND (attr_high);
10279 /* Found high w/o low attribute. */
10282 /* Found consecutive range of addresses. */
10287 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10290 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10291 We take advantage of the fact that DW_AT_ranges does not appear
10292 in DW_TAG_compile_unit of DWO files. */
10293 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10294 unsigned int ranges_offset = (DW_UNSND (attr)
10295 + (need_ranges_base
10299 /* Value of the DW_AT_ranges attribute is the offset in the
10300 .debug_ranges section. */
10301 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10303 /* Found discontinuous range of addresses. */
10308 /* read_partial_die has also the strict LOW < HIGH requirement. */
10312 /* When using the GNU linker, .gnu.linkonce. sections are used to
10313 eliminate duplicate copies of functions and vtables and such.
10314 The linker will arbitrarily choose one and discard the others.
10315 The AT_*_pc values for such functions refer to local labels in
10316 these sections. If the section from that file was discarded, the
10317 labels are not in the output, so the relocs get a value of 0.
10318 If this is a discarded function, mark the pc bounds as invalid,
10319 so that GDB will ignore it. */
10320 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10329 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10330 its low and high PC addresses. Do nothing if these addresses could not
10331 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10332 and HIGHPC to the high address if greater than HIGHPC. */
10335 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10336 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10337 struct dwarf2_cu *cu)
10339 CORE_ADDR low, high;
10340 struct die_info *child = die->child;
10342 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10344 *lowpc = min (*lowpc, low);
10345 *highpc = max (*highpc, high);
10348 /* If the language does not allow nested subprograms (either inside
10349 subprograms or lexical blocks), we're done. */
10350 if (cu->language != language_ada)
10353 /* Check all the children of the given DIE. If it contains nested
10354 subprograms, then check their pc bounds. Likewise, we need to
10355 check lexical blocks as well, as they may also contain subprogram
10357 while (child && child->tag)
10359 if (child->tag == DW_TAG_subprogram
10360 || child->tag == DW_TAG_lexical_block)
10361 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10362 child = sibling_die (child);
10366 /* Get the low and high pc's represented by the scope DIE, and store
10367 them in *LOWPC and *HIGHPC. If the correct values can't be
10368 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10371 get_scope_pc_bounds (struct die_info *die,
10372 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10373 struct dwarf2_cu *cu)
10375 CORE_ADDR best_low = (CORE_ADDR) -1;
10376 CORE_ADDR best_high = (CORE_ADDR) 0;
10377 CORE_ADDR current_low, current_high;
10379 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
10381 best_low = current_low;
10382 best_high = current_high;
10386 struct die_info *child = die->child;
10388 while (child && child->tag)
10390 switch (child->tag) {
10391 case DW_TAG_subprogram:
10392 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10394 case DW_TAG_namespace:
10395 case DW_TAG_module:
10396 /* FIXME: carlton/2004-01-16: Should we do this for
10397 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10398 that current GCC's always emit the DIEs corresponding
10399 to definitions of methods of classes as children of a
10400 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10401 the DIEs giving the declarations, which could be
10402 anywhere). But I don't see any reason why the
10403 standards says that they have to be there. */
10404 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
10406 if (current_low != ((CORE_ADDR) -1))
10408 best_low = min (best_low, current_low);
10409 best_high = max (best_high, current_high);
10417 child = sibling_die (child);
10422 *highpc = best_high;
10425 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10429 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10430 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10432 struct objfile *objfile = cu->objfile;
10433 struct attribute *attr;
10434 struct attribute *attr_high;
10436 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10439 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10442 CORE_ADDR low = DW_ADDR (attr);
10444 if (attr_high->form == DW_FORM_addr
10445 || attr_high->form == DW_FORM_GNU_addr_index)
10446 high = DW_ADDR (attr_high);
10448 high = low + DW_UNSND (attr_high);
10450 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10454 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10457 bfd *obfd = objfile->obfd;
10458 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10459 We take advantage of the fact that DW_AT_ranges does not appear
10460 in DW_TAG_compile_unit of DWO files. */
10461 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10463 /* The value of the DW_AT_ranges attribute is the offset of the
10464 address range list in the .debug_ranges section. */
10465 unsigned long offset = (DW_UNSND (attr)
10466 + (need_ranges_base ? cu->ranges_base : 0));
10467 const gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10469 /* For some target architectures, but not others, the
10470 read_address function sign-extends the addresses it returns.
10471 To recognize base address selection entries, we need a
10473 unsigned int addr_size = cu->header.addr_size;
10474 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10476 /* The base address, to which the next pair is relative. Note
10477 that this 'base' is a DWARF concept: most entries in a range
10478 list are relative, to reduce the number of relocs against the
10479 debugging information. This is separate from this function's
10480 'baseaddr' argument, which GDB uses to relocate debugging
10481 information from a shared library based on the address at
10482 which the library was loaded. */
10483 CORE_ADDR base = cu->base_address;
10484 int base_known = cu->base_known;
10486 gdb_assert (dwarf2_per_objfile->ranges.readin);
10487 if (offset >= dwarf2_per_objfile->ranges.size)
10489 complaint (&symfile_complaints,
10490 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10497 unsigned int bytes_read;
10498 CORE_ADDR start, end;
10500 start = read_address (obfd, buffer, cu, &bytes_read);
10501 buffer += bytes_read;
10502 end = read_address (obfd, buffer, cu, &bytes_read);
10503 buffer += bytes_read;
10505 /* Did we find the end of the range list? */
10506 if (start == 0 && end == 0)
10509 /* Did we find a base address selection entry? */
10510 else if ((start & base_select_mask) == base_select_mask)
10516 /* We found an ordinary address range. */
10521 complaint (&symfile_complaints,
10522 _("Invalid .debug_ranges data "
10523 "(no base address)"));
10529 /* Inverted range entries are invalid. */
10530 complaint (&symfile_complaints,
10531 _("Invalid .debug_ranges data "
10532 "(inverted range)"));
10536 /* Empty range entries have no effect. */
10540 start += base + baseaddr;
10541 end += base + baseaddr;
10543 /* A not-uncommon case of bad debug info.
10544 Don't pollute the addrmap with bad data. */
10545 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10547 complaint (&symfile_complaints,
10548 _(".debug_ranges entry has start address of zero"
10549 " [in module %s]"), objfile->name);
10553 record_block_range (block, start, end - 1);
10559 /* Check whether the producer field indicates either of GCC < 4.6, or the
10560 Intel C/C++ compiler, and cache the result in CU. */
10563 check_producer (struct dwarf2_cu *cu)
10566 int major, minor, release;
10568 if (cu->producer == NULL)
10570 /* For unknown compilers expect their behavior is DWARF version
10573 GCC started to support .debug_types sections by -gdwarf-4 since
10574 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10575 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10576 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10577 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10579 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10581 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10583 cs = &cu->producer[strlen ("GNU ")];
10584 while (*cs && !isdigit (*cs))
10586 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10588 /* Not recognized as GCC. */
10592 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10593 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10596 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10597 cu->producer_is_icc = 1;
10600 /* For other non-GCC compilers, expect their behavior is DWARF version
10604 cu->checked_producer = 1;
10607 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10608 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10609 during 4.6.0 experimental. */
10612 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10614 if (!cu->checked_producer)
10615 check_producer (cu);
10617 return cu->producer_is_gxx_lt_4_6;
10620 /* Return the default accessibility type if it is not overriden by
10621 DW_AT_accessibility. */
10623 static enum dwarf_access_attribute
10624 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10626 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10628 /* The default DWARF 2 accessibility for members is public, the default
10629 accessibility for inheritance is private. */
10631 if (die->tag != DW_TAG_inheritance)
10632 return DW_ACCESS_public;
10634 return DW_ACCESS_private;
10638 /* DWARF 3+ defines the default accessibility a different way. The same
10639 rules apply now for DW_TAG_inheritance as for the members and it only
10640 depends on the container kind. */
10642 if (die->parent->tag == DW_TAG_class_type)
10643 return DW_ACCESS_private;
10645 return DW_ACCESS_public;
10649 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10650 offset. If the attribute was not found return 0, otherwise return
10651 1. If it was found but could not properly be handled, set *OFFSET
10655 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10658 struct attribute *attr;
10660 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10665 /* Note that we do not check for a section offset first here.
10666 This is because DW_AT_data_member_location is new in DWARF 4,
10667 so if we see it, we can assume that a constant form is really
10668 a constant and not a section offset. */
10669 if (attr_form_is_constant (attr))
10670 *offset = dwarf2_get_attr_constant_value (attr, 0);
10671 else if (attr_form_is_section_offset (attr))
10672 dwarf2_complex_location_expr_complaint ();
10673 else if (attr_form_is_block (attr))
10674 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10676 dwarf2_complex_location_expr_complaint ();
10684 /* Add an aggregate field to the field list. */
10687 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10688 struct dwarf2_cu *cu)
10690 struct objfile *objfile = cu->objfile;
10691 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10692 struct nextfield *new_field;
10693 struct attribute *attr;
10695 const char *fieldname = "";
10697 /* Allocate a new field list entry and link it in. */
10698 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10699 make_cleanup (xfree, new_field);
10700 memset (new_field, 0, sizeof (struct nextfield));
10702 if (die->tag == DW_TAG_inheritance)
10704 new_field->next = fip->baseclasses;
10705 fip->baseclasses = new_field;
10709 new_field->next = fip->fields;
10710 fip->fields = new_field;
10714 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10716 new_field->accessibility = DW_UNSND (attr);
10718 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10719 if (new_field->accessibility != DW_ACCESS_public)
10720 fip->non_public_fields = 1;
10722 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10724 new_field->virtuality = DW_UNSND (attr);
10726 new_field->virtuality = DW_VIRTUALITY_none;
10728 fp = &new_field->field;
10730 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10734 /* Data member other than a C++ static data member. */
10736 /* Get type of field. */
10737 fp->type = die_type (die, cu);
10739 SET_FIELD_BITPOS (*fp, 0);
10741 /* Get bit size of field (zero if none). */
10742 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10745 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10749 FIELD_BITSIZE (*fp) = 0;
10752 /* Get bit offset of field. */
10753 if (handle_data_member_location (die, cu, &offset))
10754 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10755 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10758 if (gdbarch_bits_big_endian (gdbarch))
10760 /* For big endian bits, the DW_AT_bit_offset gives the
10761 additional bit offset from the MSB of the containing
10762 anonymous object to the MSB of the field. We don't
10763 have to do anything special since we don't need to
10764 know the size of the anonymous object. */
10765 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10769 /* For little endian bits, compute the bit offset to the
10770 MSB of the anonymous object, subtract off the number of
10771 bits from the MSB of the field to the MSB of the
10772 object, and then subtract off the number of bits of
10773 the field itself. The result is the bit offset of
10774 the LSB of the field. */
10775 int anonymous_size;
10776 int bit_offset = DW_UNSND (attr);
10778 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10781 /* The size of the anonymous object containing
10782 the bit field is explicit, so use the
10783 indicated size (in bytes). */
10784 anonymous_size = DW_UNSND (attr);
10788 /* The size of the anonymous object containing
10789 the bit field must be inferred from the type
10790 attribute of the data member containing the
10792 anonymous_size = TYPE_LENGTH (fp->type);
10794 SET_FIELD_BITPOS (*fp,
10795 (FIELD_BITPOS (*fp)
10796 + anonymous_size * bits_per_byte
10797 - bit_offset - FIELD_BITSIZE (*fp)));
10801 /* Get name of field. */
10802 fieldname = dwarf2_name (die, cu);
10803 if (fieldname == NULL)
10806 /* The name is already allocated along with this objfile, so we don't
10807 need to duplicate it for the type. */
10808 fp->name = fieldname;
10810 /* Change accessibility for artificial fields (e.g. virtual table
10811 pointer or virtual base class pointer) to private. */
10812 if (dwarf2_attr (die, DW_AT_artificial, cu))
10814 FIELD_ARTIFICIAL (*fp) = 1;
10815 new_field->accessibility = DW_ACCESS_private;
10816 fip->non_public_fields = 1;
10819 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10821 /* C++ static member. */
10823 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10824 is a declaration, but all versions of G++ as of this writing
10825 (so through at least 3.2.1) incorrectly generate
10826 DW_TAG_variable tags. */
10828 const char *physname;
10830 /* Get name of field. */
10831 fieldname = dwarf2_name (die, cu);
10832 if (fieldname == NULL)
10835 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10837 /* Only create a symbol if this is an external value.
10838 new_symbol checks this and puts the value in the global symbol
10839 table, which we want. If it is not external, new_symbol
10840 will try to put the value in cu->list_in_scope which is wrong. */
10841 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10843 /* A static const member, not much different than an enum as far as
10844 we're concerned, except that we can support more types. */
10845 new_symbol (die, NULL, cu);
10848 /* Get physical name. */
10849 physname = dwarf2_physname (fieldname, die, cu);
10851 /* The name is already allocated along with this objfile, so we don't
10852 need to duplicate it for the type. */
10853 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10854 FIELD_TYPE (*fp) = die_type (die, cu);
10855 FIELD_NAME (*fp) = fieldname;
10857 else if (die->tag == DW_TAG_inheritance)
10861 /* C++ base class field. */
10862 if (handle_data_member_location (die, cu, &offset))
10863 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10864 FIELD_BITSIZE (*fp) = 0;
10865 FIELD_TYPE (*fp) = die_type (die, cu);
10866 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10867 fip->nbaseclasses++;
10871 /* Add a typedef defined in the scope of the FIP's class. */
10874 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10875 struct dwarf2_cu *cu)
10877 struct objfile *objfile = cu->objfile;
10878 struct typedef_field_list *new_field;
10879 struct attribute *attr;
10880 struct typedef_field *fp;
10881 char *fieldname = "";
10883 /* Allocate a new field list entry and link it in. */
10884 new_field = xzalloc (sizeof (*new_field));
10885 make_cleanup (xfree, new_field);
10887 gdb_assert (die->tag == DW_TAG_typedef);
10889 fp = &new_field->field;
10891 /* Get name of field. */
10892 fp->name = dwarf2_name (die, cu);
10893 if (fp->name == NULL)
10896 fp->type = read_type_die (die, cu);
10898 new_field->next = fip->typedef_field_list;
10899 fip->typedef_field_list = new_field;
10900 fip->typedef_field_list_count++;
10903 /* Create the vector of fields, and attach it to the type. */
10906 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10907 struct dwarf2_cu *cu)
10909 int nfields = fip->nfields;
10911 /* Record the field count, allocate space for the array of fields,
10912 and create blank accessibility bitfields if necessary. */
10913 TYPE_NFIELDS (type) = nfields;
10914 TYPE_FIELDS (type) = (struct field *)
10915 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10916 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10918 if (fip->non_public_fields && cu->language != language_ada)
10920 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10922 TYPE_FIELD_PRIVATE_BITS (type) =
10923 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10924 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10926 TYPE_FIELD_PROTECTED_BITS (type) =
10927 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10928 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10930 TYPE_FIELD_IGNORE_BITS (type) =
10931 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10932 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10935 /* If the type has baseclasses, allocate and clear a bit vector for
10936 TYPE_FIELD_VIRTUAL_BITS. */
10937 if (fip->nbaseclasses && cu->language != language_ada)
10939 int num_bytes = B_BYTES (fip->nbaseclasses);
10940 unsigned char *pointer;
10942 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10943 pointer = TYPE_ALLOC (type, num_bytes);
10944 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10945 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10946 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10949 /* Copy the saved-up fields into the field vector. Start from the head of
10950 the list, adding to the tail of the field array, so that they end up in
10951 the same order in the array in which they were added to the list. */
10952 while (nfields-- > 0)
10954 struct nextfield *fieldp;
10958 fieldp = fip->fields;
10959 fip->fields = fieldp->next;
10963 fieldp = fip->baseclasses;
10964 fip->baseclasses = fieldp->next;
10967 TYPE_FIELD (type, nfields) = fieldp->field;
10968 switch (fieldp->accessibility)
10970 case DW_ACCESS_private:
10971 if (cu->language != language_ada)
10972 SET_TYPE_FIELD_PRIVATE (type, nfields);
10975 case DW_ACCESS_protected:
10976 if (cu->language != language_ada)
10977 SET_TYPE_FIELD_PROTECTED (type, nfields);
10980 case DW_ACCESS_public:
10984 /* Unknown accessibility. Complain and treat it as public. */
10986 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10987 fieldp->accessibility);
10991 if (nfields < fip->nbaseclasses)
10993 switch (fieldp->virtuality)
10995 case DW_VIRTUALITY_virtual:
10996 case DW_VIRTUALITY_pure_virtual:
10997 if (cu->language == language_ada)
10998 error (_("unexpected virtuality in component of Ada type"));
10999 SET_TYPE_FIELD_VIRTUAL (type, nfields);
11006 /* Return true if this member function is a constructor, false
11010 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
11012 const char *fieldname;
11013 const char *typename;
11016 if (die->parent == NULL)
11019 if (die->parent->tag != DW_TAG_structure_type
11020 && die->parent->tag != DW_TAG_union_type
11021 && die->parent->tag != DW_TAG_class_type)
11024 fieldname = dwarf2_name (die, cu);
11025 typename = dwarf2_name (die->parent, cu);
11026 if (fieldname == NULL || typename == NULL)
11029 len = strlen (fieldname);
11030 return (strncmp (fieldname, typename, len) == 0
11031 && (typename[len] == '\0' || typename[len] == '<'));
11034 /* Add a member function to the proper fieldlist. */
11037 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
11038 struct type *type, struct dwarf2_cu *cu)
11040 struct objfile *objfile = cu->objfile;
11041 struct attribute *attr;
11042 struct fnfieldlist *flp;
11044 struct fn_field *fnp;
11045 const char *fieldname;
11046 struct nextfnfield *new_fnfield;
11047 struct type *this_type;
11048 enum dwarf_access_attribute accessibility;
11050 if (cu->language == language_ada)
11051 error (_("unexpected member function in Ada type"));
11053 /* Get name of member function. */
11054 fieldname = dwarf2_name (die, cu);
11055 if (fieldname == NULL)
11058 /* Look up member function name in fieldlist. */
11059 for (i = 0; i < fip->nfnfields; i++)
11061 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
11065 /* Create new list element if necessary. */
11066 if (i < fip->nfnfields)
11067 flp = &fip->fnfieldlists[i];
11070 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
11072 fip->fnfieldlists = (struct fnfieldlist *)
11073 xrealloc (fip->fnfieldlists,
11074 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
11075 * sizeof (struct fnfieldlist));
11076 if (fip->nfnfields == 0)
11077 make_cleanup (free_current_contents, &fip->fnfieldlists);
11079 flp = &fip->fnfieldlists[fip->nfnfields];
11080 flp->name = fieldname;
11083 i = fip->nfnfields++;
11086 /* Create a new member function field and chain it to the field list
11088 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
11089 make_cleanup (xfree, new_fnfield);
11090 memset (new_fnfield, 0, sizeof (struct nextfnfield));
11091 new_fnfield->next = flp->head;
11092 flp->head = new_fnfield;
11095 /* Fill in the member function field info. */
11096 fnp = &new_fnfield->fnfield;
11098 /* Delay processing of the physname until later. */
11099 if (cu->language == language_cplus || cu->language == language_java)
11101 add_to_method_list (type, i, flp->length - 1, fieldname,
11106 const char *physname = dwarf2_physname (fieldname, die, cu);
11107 fnp->physname = physname ? physname : "";
11110 fnp->type = alloc_type (objfile);
11111 this_type = read_type_die (die, cu);
11112 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
11114 int nparams = TYPE_NFIELDS (this_type);
11116 /* TYPE is the domain of this method, and THIS_TYPE is the type
11117 of the method itself (TYPE_CODE_METHOD). */
11118 smash_to_method_type (fnp->type, type,
11119 TYPE_TARGET_TYPE (this_type),
11120 TYPE_FIELDS (this_type),
11121 TYPE_NFIELDS (this_type),
11122 TYPE_VARARGS (this_type));
11124 /* Handle static member functions.
11125 Dwarf2 has no clean way to discern C++ static and non-static
11126 member functions. G++ helps GDB by marking the first
11127 parameter for non-static member functions (which is the this
11128 pointer) as artificial. We obtain this information from
11129 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
11130 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
11131 fnp->voffset = VOFFSET_STATIC;
11134 complaint (&symfile_complaints, _("member function type missing for '%s'"),
11135 dwarf2_full_name (fieldname, die, cu));
11137 /* Get fcontext from DW_AT_containing_type if present. */
11138 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11139 fnp->fcontext = die_containing_type (die, cu);
11141 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
11142 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
11144 /* Get accessibility. */
11145 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
11147 accessibility = DW_UNSND (attr);
11149 accessibility = dwarf2_default_access_attribute (die, cu);
11150 switch (accessibility)
11152 case DW_ACCESS_private:
11153 fnp->is_private = 1;
11155 case DW_ACCESS_protected:
11156 fnp->is_protected = 1;
11160 /* Check for artificial methods. */
11161 attr = dwarf2_attr (die, DW_AT_artificial, cu);
11162 if (attr && DW_UNSND (attr) != 0)
11163 fnp->is_artificial = 1;
11165 fnp->is_constructor = dwarf2_is_constructor (die, cu);
11167 /* Get index in virtual function table if it is a virtual member
11168 function. For older versions of GCC, this is an offset in the
11169 appropriate virtual table, as specified by DW_AT_containing_type.
11170 For everyone else, it is an expression to be evaluated relative
11171 to the object address. */
11173 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11176 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11178 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11180 /* Old-style GCC. */
11181 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11183 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11184 || (DW_BLOCK (attr)->size > 1
11185 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11186 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11188 struct dwarf_block blk;
11191 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11193 blk.size = DW_BLOCK (attr)->size - offset;
11194 blk.data = DW_BLOCK (attr)->data + offset;
11195 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11196 if ((fnp->voffset % cu->header.addr_size) != 0)
11197 dwarf2_complex_location_expr_complaint ();
11199 fnp->voffset /= cu->header.addr_size;
11203 dwarf2_complex_location_expr_complaint ();
11205 if (!fnp->fcontext)
11206 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11208 else if (attr_form_is_section_offset (attr))
11210 dwarf2_complex_location_expr_complaint ();
11214 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11220 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11221 if (attr && DW_UNSND (attr))
11223 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11224 complaint (&symfile_complaints,
11225 _("Member function \"%s\" (offset %d) is virtual "
11226 "but the vtable offset is not specified"),
11227 fieldname, die->offset.sect_off);
11228 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11229 TYPE_CPLUS_DYNAMIC (type) = 1;
11234 /* Create the vector of member function fields, and attach it to the type. */
11237 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11238 struct dwarf2_cu *cu)
11240 struct fnfieldlist *flp;
11243 if (cu->language == language_ada)
11244 error (_("unexpected member functions in Ada type"));
11246 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11247 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11248 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11250 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11252 struct nextfnfield *nfp = flp->head;
11253 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11256 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11257 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11258 fn_flp->fn_fields = (struct fn_field *)
11259 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11260 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11261 fn_flp->fn_fields[k] = nfp->fnfield;
11264 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11267 /* Returns non-zero if NAME is the name of a vtable member in CU's
11268 language, zero otherwise. */
11270 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11272 static const char vptr[] = "_vptr";
11273 static const char vtable[] = "vtable";
11275 /* Look for the C++ and Java forms of the vtable. */
11276 if ((cu->language == language_java
11277 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11278 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11279 && is_cplus_marker (name[sizeof (vptr) - 1])))
11285 /* GCC outputs unnamed structures that are really pointers to member
11286 functions, with the ABI-specified layout. If TYPE describes
11287 such a structure, smash it into a member function type.
11289 GCC shouldn't do this; it should just output pointer to member DIEs.
11290 This is GCC PR debug/28767. */
11293 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11295 struct type *pfn_type, *domain_type, *new_type;
11297 /* Check for a structure with no name and two children. */
11298 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11301 /* Check for __pfn and __delta members. */
11302 if (TYPE_FIELD_NAME (type, 0) == NULL
11303 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11304 || TYPE_FIELD_NAME (type, 1) == NULL
11305 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11308 /* Find the type of the method. */
11309 pfn_type = TYPE_FIELD_TYPE (type, 0);
11310 if (pfn_type == NULL
11311 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11312 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11315 /* Look for the "this" argument. */
11316 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11317 if (TYPE_NFIELDS (pfn_type) == 0
11318 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11319 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11322 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11323 new_type = alloc_type (objfile);
11324 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11325 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11326 TYPE_VARARGS (pfn_type));
11327 smash_to_methodptr_type (type, new_type);
11330 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11334 producer_is_icc (struct dwarf2_cu *cu)
11336 if (!cu->checked_producer)
11337 check_producer (cu);
11339 return cu->producer_is_icc;
11342 /* Called when we find the DIE that starts a structure or union scope
11343 (definition) to create a type for the structure or union. Fill in
11344 the type's name and general properties; the members will not be
11345 processed until process_structure_scope.
11347 NOTE: we need to call these functions regardless of whether or not the
11348 DIE has a DW_AT_name attribute, since it might be an anonymous
11349 structure or union. This gets the type entered into our set of
11350 user defined types.
11352 However, if the structure is incomplete (an opaque struct/union)
11353 then suppress creating a symbol table entry for it since gdb only
11354 wants to find the one with the complete definition. Note that if
11355 it is complete, we just call new_symbol, which does it's own
11356 checking about whether the struct/union is anonymous or not (and
11357 suppresses creating a symbol table entry itself). */
11359 static struct type *
11360 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11362 struct objfile *objfile = cu->objfile;
11364 struct attribute *attr;
11367 /* If the definition of this type lives in .debug_types, read that type.
11368 Don't follow DW_AT_specification though, that will take us back up
11369 the chain and we want to go down. */
11370 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11373 struct dwarf2_cu *type_cu = cu;
11374 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11376 /* We could just recurse on read_structure_type, but we need to call
11377 get_die_type to ensure only one type for this DIE is created.
11378 This is important, for example, because for c++ classes we need
11379 TYPE_NAME set which is only done by new_symbol. Blech. */
11380 type = read_type_die (type_die, type_cu);
11382 /* TYPE_CU may not be the same as CU.
11383 Ensure TYPE is recorded with CU in die_type_hash. */
11384 return set_die_type (die, type, cu);
11387 type = alloc_type (objfile);
11388 INIT_CPLUS_SPECIFIC (type);
11390 name = dwarf2_name (die, cu);
11393 if (cu->language == language_cplus
11394 || cu->language == language_java)
11396 const char *full_name = dwarf2_full_name (name, die, cu);
11398 /* dwarf2_full_name might have already finished building the DIE's
11399 type. If so, there is no need to continue. */
11400 if (get_die_type (die, cu) != NULL)
11401 return get_die_type (die, cu);
11403 TYPE_TAG_NAME (type) = full_name;
11404 if (die->tag == DW_TAG_structure_type
11405 || die->tag == DW_TAG_class_type)
11406 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11410 /* The name is already allocated along with this objfile, so
11411 we don't need to duplicate it for the type. */
11412 TYPE_TAG_NAME (type) = name;
11413 if (die->tag == DW_TAG_class_type)
11414 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11418 if (die->tag == DW_TAG_structure_type)
11420 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11422 else if (die->tag == DW_TAG_union_type)
11424 TYPE_CODE (type) = TYPE_CODE_UNION;
11428 TYPE_CODE (type) = TYPE_CODE_CLASS;
11431 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11432 TYPE_DECLARED_CLASS (type) = 1;
11434 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11437 TYPE_LENGTH (type) = DW_UNSND (attr);
11441 TYPE_LENGTH (type) = 0;
11444 if (producer_is_icc (cu))
11446 /* ICC does not output the required DW_AT_declaration
11447 on incomplete types, but gives them a size of zero. */
11450 TYPE_STUB_SUPPORTED (type) = 1;
11452 if (die_is_declaration (die, cu))
11453 TYPE_STUB (type) = 1;
11454 else if (attr == NULL && die->child == NULL
11455 && producer_is_realview (cu->producer))
11456 /* RealView does not output the required DW_AT_declaration
11457 on incomplete types. */
11458 TYPE_STUB (type) = 1;
11460 /* We need to add the type field to the die immediately so we don't
11461 infinitely recurse when dealing with pointers to the structure
11462 type within the structure itself. */
11463 set_die_type (die, type, cu);
11465 /* set_die_type should be already done. */
11466 set_descriptive_type (type, die, cu);
11471 /* Finish creating a structure or union type, including filling in
11472 its members and creating a symbol for it. */
11475 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11477 struct objfile *objfile = cu->objfile;
11478 struct die_info *child_die = die->child;
11481 type = get_die_type (die, cu);
11483 type = read_structure_type (die, cu);
11485 if (die->child != NULL && ! die_is_declaration (die, cu))
11487 struct field_info fi;
11488 struct die_info *child_die;
11489 VEC (symbolp) *template_args = NULL;
11490 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11492 memset (&fi, 0, sizeof (struct field_info));
11494 child_die = die->child;
11496 while (child_die && child_die->tag)
11498 if (child_die->tag == DW_TAG_member
11499 || child_die->tag == DW_TAG_variable)
11501 /* NOTE: carlton/2002-11-05: A C++ static data member
11502 should be a DW_TAG_member that is a declaration, but
11503 all versions of G++ as of this writing (so through at
11504 least 3.2.1) incorrectly generate DW_TAG_variable
11505 tags for them instead. */
11506 dwarf2_add_field (&fi, child_die, cu);
11508 else if (child_die->tag == DW_TAG_subprogram)
11510 /* C++ member function. */
11511 dwarf2_add_member_fn (&fi, child_die, type, cu);
11513 else if (child_die->tag == DW_TAG_inheritance)
11515 /* C++ base class field. */
11516 dwarf2_add_field (&fi, child_die, cu);
11518 else if (child_die->tag == DW_TAG_typedef)
11519 dwarf2_add_typedef (&fi, child_die, cu);
11520 else if (child_die->tag == DW_TAG_template_type_param
11521 || child_die->tag == DW_TAG_template_value_param)
11523 struct symbol *arg = new_symbol (child_die, NULL, cu);
11526 VEC_safe_push (symbolp, template_args, arg);
11529 child_die = sibling_die (child_die);
11532 /* Attach template arguments to type. */
11533 if (! VEC_empty (symbolp, template_args))
11535 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11536 TYPE_N_TEMPLATE_ARGUMENTS (type)
11537 = VEC_length (symbolp, template_args);
11538 TYPE_TEMPLATE_ARGUMENTS (type)
11539 = obstack_alloc (&objfile->objfile_obstack,
11540 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11541 * sizeof (struct symbol *)));
11542 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11543 VEC_address (symbolp, template_args),
11544 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11545 * sizeof (struct symbol *)));
11546 VEC_free (symbolp, template_args);
11549 /* Attach fields and member functions to the type. */
11551 dwarf2_attach_fields_to_type (&fi, type, cu);
11554 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11556 /* Get the type which refers to the base class (possibly this
11557 class itself) which contains the vtable pointer for the current
11558 class from the DW_AT_containing_type attribute. This use of
11559 DW_AT_containing_type is a GNU extension. */
11561 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11563 struct type *t = die_containing_type (die, cu);
11565 TYPE_VPTR_BASETYPE (type) = t;
11570 /* Our own class provides vtbl ptr. */
11571 for (i = TYPE_NFIELDS (t) - 1;
11572 i >= TYPE_N_BASECLASSES (t);
11575 const char *fieldname = TYPE_FIELD_NAME (t, i);
11577 if (is_vtable_name (fieldname, cu))
11579 TYPE_VPTR_FIELDNO (type) = i;
11584 /* Complain if virtual function table field not found. */
11585 if (i < TYPE_N_BASECLASSES (t))
11586 complaint (&symfile_complaints,
11587 _("virtual function table pointer "
11588 "not found when defining class '%s'"),
11589 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11594 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11597 else if (cu->producer
11598 && strncmp (cu->producer,
11599 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11601 /* The IBM XLC compiler does not provide direct indication
11602 of the containing type, but the vtable pointer is
11603 always named __vfp. */
11607 for (i = TYPE_NFIELDS (type) - 1;
11608 i >= TYPE_N_BASECLASSES (type);
11611 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11613 TYPE_VPTR_FIELDNO (type) = i;
11614 TYPE_VPTR_BASETYPE (type) = type;
11621 /* Copy fi.typedef_field_list linked list elements content into the
11622 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11623 if (fi.typedef_field_list)
11625 int i = fi.typedef_field_list_count;
11627 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11628 TYPE_TYPEDEF_FIELD_ARRAY (type)
11629 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11630 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11632 /* Reverse the list order to keep the debug info elements order. */
11635 struct typedef_field *dest, *src;
11637 dest = &TYPE_TYPEDEF_FIELD (type, i);
11638 src = &fi.typedef_field_list->field;
11639 fi.typedef_field_list = fi.typedef_field_list->next;
11644 do_cleanups (back_to);
11646 if (HAVE_CPLUS_STRUCT (type))
11647 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11650 quirk_gcc_member_function_pointer (type, objfile);
11652 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11653 snapshots) has been known to create a die giving a declaration
11654 for a class that has, as a child, a die giving a definition for a
11655 nested class. So we have to process our children even if the
11656 current die is a declaration. Normally, of course, a declaration
11657 won't have any children at all. */
11659 while (child_die != NULL && child_die->tag)
11661 if (child_die->tag == DW_TAG_member
11662 || child_die->tag == DW_TAG_variable
11663 || child_die->tag == DW_TAG_inheritance
11664 || child_die->tag == DW_TAG_template_value_param
11665 || child_die->tag == DW_TAG_template_type_param)
11670 process_die (child_die, cu);
11672 child_die = sibling_die (child_die);
11675 /* Do not consider external references. According to the DWARF standard,
11676 these DIEs are identified by the fact that they have no byte_size
11677 attribute, and a declaration attribute. */
11678 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11679 || !die_is_declaration (die, cu))
11680 new_symbol (die, type, cu);
11683 /* Given a DW_AT_enumeration_type die, set its type. We do not
11684 complete the type's fields yet, or create any symbols. */
11686 static struct type *
11687 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11689 struct objfile *objfile = cu->objfile;
11691 struct attribute *attr;
11694 /* If the definition of this type lives in .debug_types, read that type.
11695 Don't follow DW_AT_specification though, that will take us back up
11696 the chain and we want to go down. */
11697 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11700 struct dwarf2_cu *type_cu = cu;
11701 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11703 type = read_type_die (type_die, type_cu);
11705 /* TYPE_CU may not be the same as CU.
11706 Ensure TYPE is recorded with CU in die_type_hash. */
11707 return set_die_type (die, type, cu);
11710 type = alloc_type (objfile);
11712 TYPE_CODE (type) = TYPE_CODE_ENUM;
11713 name = dwarf2_full_name (NULL, die, cu);
11715 TYPE_TAG_NAME (type) = name;
11717 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11720 TYPE_LENGTH (type) = DW_UNSND (attr);
11724 TYPE_LENGTH (type) = 0;
11727 /* The enumeration DIE can be incomplete. In Ada, any type can be
11728 declared as private in the package spec, and then defined only
11729 inside the package body. Such types are known as Taft Amendment
11730 Types. When another package uses such a type, an incomplete DIE
11731 may be generated by the compiler. */
11732 if (die_is_declaration (die, cu))
11733 TYPE_STUB (type) = 1;
11735 return set_die_type (die, type, cu);
11738 /* Given a pointer to a die which begins an enumeration, process all
11739 the dies that define the members of the enumeration, and create the
11740 symbol for the enumeration type.
11742 NOTE: We reverse the order of the element list. */
11745 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11747 struct type *this_type;
11749 this_type = get_die_type (die, cu);
11750 if (this_type == NULL)
11751 this_type = read_enumeration_type (die, cu);
11753 if (die->child != NULL)
11755 struct die_info *child_die;
11756 struct symbol *sym;
11757 struct field *fields = NULL;
11758 int num_fields = 0;
11759 int unsigned_enum = 1;
11764 child_die = die->child;
11765 while (child_die && child_die->tag)
11767 if (child_die->tag != DW_TAG_enumerator)
11769 process_die (child_die, cu);
11773 name = dwarf2_name (child_die, cu);
11776 sym = new_symbol (child_die, this_type, cu);
11777 if (SYMBOL_VALUE (sym) < 0)
11782 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11785 mask |= SYMBOL_VALUE (sym);
11787 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11789 fields = (struct field *)
11791 (num_fields + DW_FIELD_ALLOC_CHUNK)
11792 * sizeof (struct field));
11795 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11796 FIELD_TYPE (fields[num_fields]) = NULL;
11797 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11798 FIELD_BITSIZE (fields[num_fields]) = 0;
11804 child_die = sibling_die (child_die);
11809 TYPE_NFIELDS (this_type) = num_fields;
11810 TYPE_FIELDS (this_type) = (struct field *)
11811 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11812 memcpy (TYPE_FIELDS (this_type), fields,
11813 sizeof (struct field) * num_fields);
11817 TYPE_UNSIGNED (this_type) = 1;
11819 TYPE_FLAG_ENUM (this_type) = 1;
11822 /* If we are reading an enum from a .debug_types unit, and the enum
11823 is a declaration, and the enum is not the signatured type in the
11824 unit, then we do not want to add a symbol for it. Adding a
11825 symbol would in some cases obscure the true definition of the
11826 enum, giving users an incomplete type when the definition is
11827 actually available. Note that we do not want to do this for all
11828 enums which are just declarations, because C++0x allows forward
11829 enum declarations. */
11830 if (cu->per_cu->is_debug_types
11831 && die_is_declaration (die, cu))
11833 struct signatured_type *sig_type;
11835 sig_type = (struct signatured_type *) cu->per_cu;
11836 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11837 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11841 new_symbol (die, this_type, cu);
11844 /* Extract all information from a DW_TAG_array_type DIE and put it in
11845 the DIE's type field. For now, this only handles one dimensional
11848 static struct type *
11849 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11851 struct objfile *objfile = cu->objfile;
11852 struct die_info *child_die;
11854 struct type *element_type, *range_type, *index_type;
11855 struct type **range_types = NULL;
11856 struct attribute *attr;
11858 struct cleanup *back_to;
11861 element_type = die_type (die, cu);
11863 /* The die_type call above may have already set the type for this DIE. */
11864 type = get_die_type (die, cu);
11868 /* Irix 6.2 native cc creates array types without children for
11869 arrays with unspecified length. */
11870 if (die->child == NULL)
11872 index_type = objfile_type (objfile)->builtin_int;
11873 range_type = create_range_type (NULL, index_type, 0, -1);
11874 type = create_array_type (NULL, element_type, range_type);
11875 return set_die_type (die, type, cu);
11878 back_to = make_cleanup (null_cleanup, NULL);
11879 child_die = die->child;
11880 while (child_die && child_die->tag)
11882 if (child_die->tag == DW_TAG_subrange_type)
11884 struct type *child_type = read_type_die (child_die, cu);
11886 if (child_type != NULL)
11888 /* The range type was succesfully read. Save it for the
11889 array type creation. */
11890 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11892 range_types = (struct type **)
11893 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11894 * sizeof (struct type *));
11896 make_cleanup (free_current_contents, &range_types);
11898 range_types[ndim++] = child_type;
11901 child_die = sibling_die (child_die);
11904 /* Dwarf2 dimensions are output from left to right, create the
11905 necessary array types in backwards order. */
11907 type = element_type;
11909 if (read_array_order (die, cu) == DW_ORD_col_major)
11914 type = create_array_type (NULL, type, range_types[i++]);
11919 type = create_array_type (NULL, type, range_types[ndim]);
11922 /* Understand Dwarf2 support for vector types (like they occur on
11923 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11924 array type. This is not part of the Dwarf2/3 standard yet, but a
11925 custom vendor extension. The main difference between a regular
11926 array and the vector variant is that vectors are passed by value
11928 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11930 make_vector_type (type);
11932 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11933 implementation may choose to implement triple vectors using this
11935 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11938 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11939 TYPE_LENGTH (type) = DW_UNSND (attr);
11941 complaint (&symfile_complaints,
11942 _("DW_AT_byte_size for array type smaller "
11943 "than the total size of elements"));
11946 name = dwarf2_name (die, cu);
11948 TYPE_NAME (type) = name;
11950 /* Install the type in the die. */
11951 set_die_type (die, type, cu);
11953 /* set_die_type should be already done. */
11954 set_descriptive_type (type, die, cu);
11956 do_cleanups (back_to);
11961 static enum dwarf_array_dim_ordering
11962 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11964 struct attribute *attr;
11966 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11968 if (attr) return DW_SND (attr);
11970 /* GNU F77 is a special case, as at 08/2004 array type info is the
11971 opposite order to the dwarf2 specification, but data is still
11972 laid out as per normal fortran.
11974 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11975 version checking. */
11977 if (cu->language == language_fortran
11978 && cu->producer && strstr (cu->producer, "GNU F77"))
11980 return DW_ORD_row_major;
11983 switch (cu->language_defn->la_array_ordering)
11985 case array_column_major:
11986 return DW_ORD_col_major;
11987 case array_row_major:
11989 return DW_ORD_row_major;
11993 /* Extract all information from a DW_TAG_set_type DIE and put it in
11994 the DIE's type field. */
11996 static struct type *
11997 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11999 struct type *domain_type, *set_type;
12000 struct attribute *attr;
12002 domain_type = die_type (die, cu);
12004 /* The die_type call above may have already set the type for this DIE. */
12005 set_type = get_die_type (die, cu);
12009 set_type = create_set_type (NULL, domain_type);
12011 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12013 TYPE_LENGTH (set_type) = DW_UNSND (attr);
12015 return set_die_type (die, set_type, cu);
12018 /* A helper for read_common_block that creates a locexpr baton.
12019 SYM is the symbol which we are marking as computed.
12020 COMMON_DIE is the DIE for the common block.
12021 COMMON_LOC is the location expression attribute for the common
12023 MEMBER_LOC is the location expression attribute for the particular
12024 member of the common block that we are processing.
12025 CU is the CU from which the above come. */
12028 mark_common_block_symbol_computed (struct symbol *sym,
12029 struct die_info *common_die,
12030 struct attribute *common_loc,
12031 struct attribute *member_loc,
12032 struct dwarf2_cu *cu)
12034 struct objfile *objfile = dwarf2_per_objfile->objfile;
12035 struct dwarf2_locexpr_baton *baton;
12037 unsigned int cu_off;
12038 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
12039 LONGEST offset = 0;
12041 gdb_assert (common_loc && member_loc);
12042 gdb_assert (attr_form_is_block (common_loc));
12043 gdb_assert (attr_form_is_block (member_loc)
12044 || attr_form_is_constant (member_loc));
12046 baton = obstack_alloc (&objfile->objfile_obstack,
12047 sizeof (struct dwarf2_locexpr_baton));
12048 baton->per_cu = cu->per_cu;
12049 gdb_assert (baton->per_cu);
12051 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
12053 if (attr_form_is_constant (member_loc))
12055 offset = dwarf2_get_attr_constant_value (member_loc, 0);
12056 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
12059 baton->size += DW_BLOCK (member_loc)->size;
12061 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
12064 *ptr++ = DW_OP_call4;
12065 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
12066 store_unsigned_integer (ptr, 4, byte_order, cu_off);
12069 if (attr_form_is_constant (member_loc))
12071 *ptr++ = DW_OP_addr;
12072 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
12073 ptr += cu->header.addr_size;
12077 /* We have to copy the data here, because DW_OP_call4 will only
12078 use a DW_AT_location attribute. */
12079 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
12080 ptr += DW_BLOCK (member_loc)->size;
12083 *ptr++ = DW_OP_plus;
12084 gdb_assert (ptr - baton->data == baton->size);
12086 SYMBOL_LOCATION_BATON (sym) = baton;
12087 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
12090 /* Create appropriate locally-scoped variables for all the
12091 DW_TAG_common_block entries. Also create a struct common_block
12092 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
12093 is used to sepate the common blocks name namespace from regular
12097 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
12099 struct attribute *attr;
12101 attr = dwarf2_attr (die, DW_AT_location, cu);
12104 /* Support the .debug_loc offsets. */
12105 if (attr_form_is_block (attr))
12109 else if (attr_form_is_section_offset (attr))
12111 dwarf2_complex_location_expr_complaint ();
12116 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
12117 "common block member");
12122 if (die->child != NULL)
12124 struct objfile *objfile = cu->objfile;
12125 struct die_info *child_die;
12126 size_t n_entries = 0, size;
12127 struct common_block *common_block;
12128 struct symbol *sym;
12130 for (child_die = die->child;
12131 child_die && child_die->tag;
12132 child_die = sibling_die (child_die))
12135 size = (sizeof (struct common_block)
12136 + (n_entries - 1) * sizeof (struct symbol *));
12137 common_block = obstack_alloc (&objfile->objfile_obstack, size);
12138 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
12139 common_block->n_entries = 0;
12141 for (child_die = die->child;
12142 child_die && child_die->tag;
12143 child_die = sibling_die (child_die))
12145 /* Create the symbol in the DW_TAG_common_block block in the current
12147 sym = new_symbol (child_die, NULL, cu);
12150 struct attribute *member_loc;
12152 common_block->contents[common_block->n_entries++] = sym;
12154 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
12158 /* GDB has handled this for a long time, but it is
12159 not specified by DWARF. It seems to have been
12160 emitted by gfortran at least as recently as:
12161 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
12162 complaint (&symfile_complaints,
12163 _("Variable in common block has "
12164 "DW_AT_data_member_location "
12165 "- DIE at 0x%x [in module %s]"),
12166 child_die->offset.sect_off, cu->objfile->name);
12168 if (attr_form_is_section_offset (member_loc))
12169 dwarf2_complex_location_expr_complaint ();
12170 else if (attr_form_is_constant (member_loc)
12171 || attr_form_is_block (member_loc))
12174 mark_common_block_symbol_computed (sym, die, attr,
12178 dwarf2_complex_location_expr_complaint ();
12183 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12184 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12188 /* Create a type for a C++ namespace. */
12190 static struct type *
12191 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12193 struct objfile *objfile = cu->objfile;
12194 const char *previous_prefix, *name;
12198 /* For extensions, reuse the type of the original namespace. */
12199 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12201 struct die_info *ext_die;
12202 struct dwarf2_cu *ext_cu = cu;
12204 ext_die = dwarf2_extension (die, &ext_cu);
12205 type = read_type_die (ext_die, ext_cu);
12207 /* EXT_CU may not be the same as CU.
12208 Ensure TYPE is recorded with CU in die_type_hash. */
12209 return set_die_type (die, type, cu);
12212 name = namespace_name (die, &is_anonymous, cu);
12214 /* Now build the name of the current namespace. */
12216 previous_prefix = determine_prefix (die, cu);
12217 if (previous_prefix[0] != '\0')
12218 name = typename_concat (&objfile->objfile_obstack,
12219 previous_prefix, name, 0, cu);
12221 /* Create the type. */
12222 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12224 TYPE_NAME (type) = name;
12225 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12227 return set_die_type (die, type, cu);
12230 /* Read a C++ namespace. */
12233 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12235 struct objfile *objfile = cu->objfile;
12238 /* Add a symbol associated to this if we haven't seen the namespace
12239 before. Also, add a using directive if it's an anonymous
12242 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12246 type = read_type_die (die, cu);
12247 new_symbol (die, type, cu);
12249 namespace_name (die, &is_anonymous, cu);
12252 const char *previous_prefix = determine_prefix (die, cu);
12254 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12255 NULL, NULL, 0, &objfile->objfile_obstack);
12259 if (die->child != NULL)
12261 struct die_info *child_die = die->child;
12263 while (child_die && child_die->tag)
12265 process_die (child_die, cu);
12266 child_die = sibling_die (child_die);
12271 /* Read a Fortran module as type. This DIE can be only a declaration used for
12272 imported module. Still we need that type as local Fortran "use ... only"
12273 declaration imports depend on the created type in determine_prefix. */
12275 static struct type *
12276 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12278 struct objfile *objfile = cu->objfile;
12279 const char *module_name;
12282 module_name = dwarf2_name (die, cu);
12284 complaint (&symfile_complaints,
12285 _("DW_TAG_module has no name, offset 0x%x"),
12286 die->offset.sect_off);
12287 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12289 /* determine_prefix uses TYPE_TAG_NAME. */
12290 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12292 return set_die_type (die, type, cu);
12295 /* Read a Fortran module. */
12298 read_module (struct die_info *die, struct dwarf2_cu *cu)
12300 struct die_info *child_die = die->child;
12302 while (child_die && child_die->tag)
12304 process_die (child_die, cu);
12305 child_die = sibling_die (child_die);
12309 /* Return the name of the namespace represented by DIE. Set
12310 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12313 static const char *
12314 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12316 struct die_info *current_die;
12317 const char *name = NULL;
12319 /* Loop through the extensions until we find a name. */
12321 for (current_die = die;
12322 current_die != NULL;
12323 current_die = dwarf2_extension (die, &cu))
12325 name = dwarf2_name (current_die, cu);
12330 /* Is it an anonymous namespace? */
12332 *is_anonymous = (name == NULL);
12334 name = CP_ANONYMOUS_NAMESPACE_STR;
12339 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12340 the user defined type vector. */
12342 static struct type *
12343 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12345 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12346 struct comp_unit_head *cu_header = &cu->header;
12348 struct attribute *attr_byte_size;
12349 struct attribute *attr_address_class;
12350 int byte_size, addr_class;
12351 struct type *target_type;
12353 target_type = die_type (die, cu);
12355 /* The die_type call above may have already set the type for this DIE. */
12356 type = get_die_type (die, cu);
12360 type = lookup_pointer_type (target_type);
12362 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12363 if (attr_byte_size)
12364 byte_size = DW_UNSND (attr_byte_size);
12366 byte_size = cu_header->addr_size;
12368 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12369 if (attr_address_class)
12370 addr_class = DW_UNSND (attr_address_class);
12372 addr_class = DW_ADDR_none;
12374 /* If the pointer size or address class is different than the
12375 default, create a type variant marked as such and set the
12376 length accordingly. */
12377 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12379 if (gdbarch_address_class_type_flags_p (gdbarch))
12383 type_flags = gdbarch_address_class_type_flags
12384 (gdbarch, byte_size, addr_class);
12385 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12387 type = make_type_with_address_space (type, type_flags);
12389 else if (TYPE_LENGTH (type) != byte_size)
12391 complaint (&symfile_complaints,
12392 _("invalid pointer size %d"), byte_size);
12396 /* Should we also complain about unhandled address classes? */
12400 TYPE_LENGTH (type) = byte_size;
12401 return set_die_type (die, type, cu);
12404 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12405 the user defined type vector. */
12407 static struct type *
12408 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12411 struct type *to_type;
12412 struct type *domain;
12414 to_type = die_type (die, cu);
12415 domain = die_containing_type (die, cu);
12417 /* The calls above may have already set the type for this DIE. */
12418 type = get_die_type (die, cu);
12422 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12423 type = lookup_methodptr_type (to_type);
12424 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12426 struct type *new_type = alloc_type (cu->objfile);
12428 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12429 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12430 TYPE_VARARGS (to_type));
12431 type = lookup_methodptr_type (new_type);
12434 type = lookup_memberptr_type (to_type, domain);
12436 return set_die_type (die, type, cu);
12439 /* Extract all information from a DW_TAG_reference_type DIE and add to
12440 the user defined type vector. */
12442 static struct type *
12443 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12445 struct comp_unit_head *cu_header = &cu->header;
12446 struct type *type, *target_type;
12447 struct attribute *attr;
12449 target_type = die_type (die, cu);
12451 /* The die_type call above may have already set the type for this DIE. */
12452 type = get_die_type (die, cu);
12456 type = lookup_reference_type (target_type);
12457 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12460 TYPE_LENGTH (type) = DW_UNSND (attr);
12464 TYPE_LENGTH (type) = cu_header->addr_size;
12466 return set_die_type (die, type, cu);
12469 static struct type *
12470 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12472 struct type *base_type, *cv_type;
12474 base_type = die_type (die, cu);
12476 /* The die_type call above may have already set the type for this DIE. */
12477 cv_type = get_die_type (die, cu);
12481 /* In case the const qualifier is applied to an array type, the element type
12482 is so qualified, not the array type (section 6.7.3 of C99). */
12483 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12485 struct type *el_type, *inner_array;
12487 base_type = copy_type (base_type);
12488 inner_array = base_type;
12490 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12492 TYPE_TARGET_TYPE (inner_array) =
12493 copy_type (TYPE_TARGET_TYPE (inner_array));
12494 inner_array = TYPE_TARGET_TYPE (inner_array);
12497 el_type = TYPE_TARGET_TYPE (inner_array);
12498 TYPE_TARGET_TYPE (inner_array) =
12499 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12501 return set_die_type (die, base_type, cu);
12504 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12505 return set_die_type (die, cv_type, cu);
12508 static struct type *
12509 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12511 struct type *base_type, *cv_type;
12513 base_type = die_type (die, cu);
12515 /* The die_type call above may have already set the type for this DIE. */
12516 cv_type = get_die_type (die, cu);
12520 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12521 return set_die_type (die, cv_type, cu);
12524 /* Handle DW_TAG_restrict_type. */
12526 static struct type *
12527 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12529 struct type *base_type, *cv_type;
12531 base_type = die_type (die, cu);
12533 /* The die_type call above may have already set the type for this DIE. */
12534 cv_type = get_die_type (die, cu);
12538 cv_type = make_restrict_type (base_type);
12539 return set_die_type (die, cv_type, cu);
12542 /* Extract all information from a DW_TAG_string_type DIE and add to
12543 the user defined type vector. It isn't really a user defined type,
12544 but it behaves like one, with other DIE's using an AT_user_def_type
12545 attribute to reference it. */
12547 static struct type *
12548 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12550 struct objfile *objfile = cu->objfile;
12551 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12552 struct type *type, *range_type, *index_type, *char_type;
12553 struct attribute *attr;
12554 unsigned int length;
12556 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12559 length = DW_UNSND (attr);
12563 /* Check for the DW_AT_byte_size attribute. */
12564 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12567 length = DW_UNSND (attr);
12575 index_type = objfile_type (objfile)->builtin_int;
12576 range_type = create_range_type (NULL, index_type, 1, length);
12577 char_type = language_string_char_type (cu->language_defn, gdbarch);
12578 type = create_string_type (NULL, char_type, range_type);
12580 return set_die_type (die, type, cu);
12583 /* Handle DIES due to C code like:
12587 int (*funcp)(int a, long l);
12591 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12593 static struct type *
12594 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12596 struct objfile *objfile = cu->objfile;
12597 struct type *type; /* Type that this function returns. */
12598 struct type *ftype; /* Function that returns above type. */
12599 struct attribute *attr;
12601 type = die_type (die, cu);
12603 /* The die_type call above may have already set the type for this DIE. */
12604 ftype = get_die_type (die, cu);
12608 ftype = lookup_function_type (type);
12610 /* All functions in C++, Pascal and Java have prototypes. */
12611 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12612 if ((attr && (DW_UNSND (attr) != 0))
12613 || cu->language == language_cplus
12614 || cu->language == language_java
12615 || cu->language == language_pascal)
12616 TYPE_PROTOTYPED (ftype) = 1;
12617 else if (producer_is_realview (cu->producer))
12618 /* RealView does not emit DW_AT_prototyped. We can not
12619 distinguish prototyped and unprototyped functions; default to
12620 prototyped, since that is more common in modern code (and
12621 RealView warns about unprototyped functions). */
12622 TYPE_PROTOTYPED (ftype) = 1;
12624 /* Store the calling convention in the type if it's available in
12625 the subroutine die. Otherwise set the calling convention to
12626 the default value DW_CC_normal. */
12627 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12629 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12630 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12631 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12633 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12635 /* We need to add the subroutine type to the die immediately so
12636 we don't infinitely recurse when dealing with parameters
12637 declared as the same subroutine type. */
12638 set_die_type (die, ftype, cu);
12640 if (die->child != NULL)
12642 struct type *void_type = objfile_type (objfile)->builtin_void;
12643 struct die_info *child_die;
12644 int nparams, iparams;
12646 /* Count the number of parameters.
12647 FIXME: GDB currently ignores vararg functions, but knows about
12648 vararg member functions. */
12650 child_die = die->child;
12651 while (child_die && child_die->tag)
12653 if (child_die->tag == DW_TAG_formal_parameter)
12655 else if (child_die->tag == DW_TAG_unspecified_parameters)
12656 TYPE_VARARGS (ftype) = 1;
12657 child_die = sibling_die (child_die);
12660 /* Allocate storage for parameters and fill them in. */
12661 TYPE_NFIELDS (ftype) = nparams;
12662 TYPE_FIELDS (ftype) = (struct field *)
12663 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12665 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12666 even if we error out during the parameters reading below. */
12667 for (iparams = 0; iparams < nparams; iparams++)
12668 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12671 child_die = die->child;
12672 while (child_die && child_die->tag)
12674 if (child_die->tag == DW_TAG_formal_parameter)
12676 struct type *arg_type;
12678 /* DWARF version 2 has no clean way to discern C++
12679 static and non-static member functions. G++ helps
12680 GDB by marking the first parameter for non-static
12681 member functions (which is the this pointer) as
12682 artificial. We pass this information to
12683 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12685 DWARF version 3 added DW_AT_object_pointer, which GCC
12686 4.5 does not yet generate. */
12687 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12689 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12692 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12694 /* GCC/43521: In java, the formal parameter
12695 "this" is sometimes not marked with DW_AT_artificial. */
12696 if (cu->language == language_java)
12698 const char *name = dwarf2_name (child_die, cu);
12700 if (name && !strcmp (name, "this"))
12701 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12704 arg_type = die_type (child_die, cu);
12706 /* RealView does not mark THIS as const, which the testsuite
12707 expects. GCC marks THIS as const in method definitions,
12708 but not in the class specifications (GCC PR 43053). */
12709 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12710 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12713 struct dwarf2_cu *arg_cu = cu;
12714 const char *name = dwarf2_name (child_die, cu);
12716 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12719 /* If the compiler emits this, use it. */
12720 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12723 else if (name && strcmp (name, "this") == 0)
12724 /* Function definitions will have the argument names. */
12726 else if (name == NULL && iparams == 0)
12727 /* Declarations may not have the names, so like
12728 elsewhere in GDB, assume an artificial first
12729 argument is "this". */
12733 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12737 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12740 child_die = sibling_die (child_die);
12747 static struct type *
12748 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12750 struct objfile *objfile = cu->objfile;
12751 const char *name = NULL;
12752 struct type *this_type, *target_type;
12754 name = dwarf2_full_name (NULL, die, cu);
12755 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12756 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12757 TYPE_NAME (this_type) = name;
12758 set_die_type (die, this_type, cu);
12759 target_type = die_type (die, cu);
12760 if (target_type != this_type)
12761 TYPE_TARGET_TYPE (this_type) = target_type;
12764 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12765 spec and cause infinite loops in GDB. */
12766 complaint (&symfile_complaints,
12767 _("Self-referential DW_TAG_typedef "
12768 "- DIE at 0x%x [in module %s]"),
12769 die->offset.sect_off, objfile->name);
12770 TYPE_TARGET_TYPE (this_type) = NULL;
12775 /* Find a representation of a given base type and install
12776 it in the TYPE field of the die. */
12778 static struct type *
12779 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12781 struct objfile *objfile = cu->objfile;
12783 struct attribute *attr;
12784 int encoding = 0, size = 0;
12786 enum type_code code = TYPE_CODE_INT;
12787 int type_flags = 0;
12788 struct type *target_type = NULL;
12790 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12793 encoding = DW_UNSND (attr);
12795 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12798 size = DW_UNSND (attr);
12800 name = dwarf2_name (die, cu);
12803 complaint (&symfile_complaints,
12804 _("DW_AT_name missing from DW_TAG_base_type"));
12809 case DW_ATE_address:
12810 /* Turn DW_ATE_address into a void * pointer. */
12811 code = TYPE_CODE_PTR;
12812 type_flags |= TYPE_FLAG_UNSIGNED;
12813 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12815 case DW_ATE_boolean:
12816 code = TYPE_CODE_BOOL;
12817 type_flags |= TYPE_FLAG_UNSIGNED;
12819 case DW_ATE_complex_float:
12820 code = TYPE_CODE_COMPLEX;
12821 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12823 case DW_ATE_decimal_float:
12824 code = TYPE_CODE_DECFLOAT;
12827 code = TYPE_CODE_FLT;
12829 case DW_ATE_signed:
12831 case DW_ATE_unsigned:
12832 type_flags |= TYPE_FLAG_UNSIGNED;
12833 if (cu->language == language_fortran
12835 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12836 code = TYPE_CODE_CHAR;
12838 case DW_ATE_signed_char:
12839 if (cu->language == language_ada || cu->language == language_m2
12840 || cu->language == language_pascal
12841 || cu->language == language_fortran)
12842 code = TYPE_CODE_CHAR;
12844 case DW_ATE_unsigned_char:
12845 if (cu->language == language_ada || cu->language == language_m2
12846 || cu->language == language_pascal
12847 || cu->language == language_fortran)
12848 code = TYPE_CODE_CHAR;
12849 type_flags |= TYPE_FLAG_UNSIGNED;
12852 /* We just treat this as an integer and then recognize the
12853 type by name elsewhere. */
12857 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12858 dwarf_type_encoding_name (encoding));
12862 type = init_type (code, size, type_flags, NULL, objfile);
12863 TYPE_NAME (type) = name;
12864 TYPE_TARGET_TYPE (type) = target_type;
12866 if (name && strcmp (name, "char") == 0)
12867 TYPE_NOSIGN (type) = 1;
12869 return set_die_type (die, type, cu);
12872 /* Read the given DW_AT_subrange DIE. */
12874 static struct type *
12875 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12877 struct type *base_type, *orig_base_type;
12878 struct type *range_type;
12879 struct attribute *attr;
12881 int low_default_is_valid;
12883 LONGEST negative_mask;
12885 orig_base_type = die_type (die, cu);
12886 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
12887 whereas the real type might be. So, we use ORIG_BASE_TYPE when
12888 creating the range type, but we use the result of check_typedef
12889 when examining properties of the type. */
12890 base_type = check_typedef (orig_base_type);
12892 /* The die_type call above may have already set the type for this DIE. */
12893 range_type = get_die_type (die, cu);
12897 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12898 omitting DW_AT_lower_bound. */
12899 switch (cu->language)
12902 case language_cplus:
12904 low_default_is_valid = 1;
12906 case language_fortran:
12908 low_default_is_valid = 1;
12911 case language_java:
12912 case language_objc:
12914 low_default_is_valid = (cu->header.version >= 4);
12918 case language_pascal:
12920 low_default_is_valid = (cu->header.version >= 4);
12924 low_default_is_valid = 0;
12928 /* FIXME: For variable sized arrays either of these could be
12929 a variable rather than a constant value. We'll allow it,
12930 but we don't know how to handle it. */
12931 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12933 low = dwarf2_get_attr_constant_value (attr, low);
12934 else if (!low_default_is_valid)
12935 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12936 "- DIE at 0x%x [in module %s]"),
12937 die->offset.sect_off, cu->objfile->name);
12939 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12942 if (attr_form_is_block (attr) || is_ref_attr (attr))
12944 /* GCC encodes arrays with unspecified or dynamic length
12945 with a DW_FORM_block1 attribute or a reference attribute.
12946 FIXME: GDB does not yet know how to handle dynamic
12947 arrays properly, treat them as arrays with unspecified
12950 FIXME: jimb/2003-09-22: GDB does not really know
12951 how to handle arrays of unspecified length
12952 either; we just represent them as zero-length
12953 arrays. Choose an appropriate upper bound given
12954 the lower bound we've computed above. */
12958 high = dwarf2_get_attr_constant_value (attr, 1);
12962 attr = dwarf2_attr (die, DW_AT_count, cu);
12965 int count = dwarf2_get_attr_constant_value (attr, 1);
12966 high = low + count - 1;
12970 /* Unspecified array length. */
12975 /* Dwarf-2 specifications explicitly allows to create subrange types
12976 without specifying a base type.
12977 In that case, the base type must be set to the type of
12978 the lower bound, upper bound or count, in that order, if any of these
12979 three attributes references an object that has a type.
12980 If no base type is found, the Dwarf-2 specifications say that
12981 a signed integer type of size equal to the size of an address should
12983 For the following C code: `extern char gdb_int [];'
12984 GCC produces an empty range DIE.
12985 FIXME: muller/2010-05-28: Possible references to object for low bound,
12986 high bound or count are not yet handled by this code. */
12987 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12989 struct objfile *objfile = cu->objfile;
12990 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12991 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12992 struct type *int_type = objfile_type (objfile)->builtin_int;
12994 /* Test "int", "long int", and "long long int" objfile types,
12995 and select the first one having a size above or equal to the
12996 architecture address size. */
12997 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12998 base_type = int_type;
13001 int_type = objfile_type (objfile)->builtin_long;
13002 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13003 base_type = int_type;
13006 int_type = objfile_type (objfile)->builtin_long_long;
13007 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
13008 base_type = int_type;
13014 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
13015 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
13016 low |= negative_mask;
13017 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
13018 high |= negative_mask;
13020 range_type = create_range_type (NULL, orig_base_type, low, high);
13022 /* Mark arrays with dynamic length at least as an array of unspecified
13023 length. GDB could check the boundary but before it gets implemented at
13024 least allow accessing the array elements. */
13025 if (attr && attr_form_is_block (attr))
13026 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13028 /* Ada expects an empty array on no boundary attributes. */
13029 if (attr == NULL && cu->language != language_ada)
13030 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
13032 name = dwarf2_name (die, cu);
13034 TYPE_NAME (range_type) = name;
13036 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13038 TYPE_LENGTH (range_type) = DW_UNSND (attr);
13040 set_die_type (die, range_type, cu);
13042 /* set_die_type should be already done. */
13043 set_descriptive_type (range_type, die, cu);
13048 static struct type *
13049 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
13053 /* For now, we only support the C meaning of an unspecified type: void. */
13055 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
13056 TYPE_NAME (type) = dwarf2_name (die, cu);
13058 return set_die_type (die, type, cu);
13061 /* Read a single die and all its descendents. Set the die's sibling
13062 field to NULL; set other fields in the die correctly, and set all
13063 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
13064 location of the info_ptr after reading all of those dies. PARENT
13065 is the parent of the die in question. */
13067 static struct die_info *
13068 read_die_and_children (const struct die_reader_specs *reader,
13069 const gdb_byte *info_ptr,
13070 const gdb_byte **new_info_ptr,
13071 struct die_info *parent)
13073 struct die_info *die;
13074 const gdb_byte *cur_ptr;
13077 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
13080 *new_info_ptr = cur_ptr;
13083 store_in_ref_table (die, reader->cu);
13086 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
13090 *new_info_ptr = cur_ptr;
13093 die->sibling = NULL;
13094 die->parent = parent;
13098 /* Read a die, all of its descendents, and all of its siblings; set
13099 all of the fields of all of the dies correctly. Arguments are as
13100 in read_die_and_children. */
13102 static struct die_info *
13103 read_die_and_siblings_1 (const struct die_reader_specs *reader,
13104 const gdb_byte *info_ptr,
13105 const gdb_byte **new_info_ptr,
13106 struct die_info *parent)
13108 struct die_info *first_die, *last_sibling;
13109 const gdb_byte *cur_ptr;
13111 cur_ptr = info_ptr;
13112 first_die = last_sibling = NULL;
13116 struct die_info *die
13117 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
13121 *new_info_ptr = cur_ptr;
13128 last_sibling->sibling = die;
13130 last_sibling = die;
13134 /* Read a die, all of its descendents, and all of its siblings; set
13135 all of the fields of all of the dies correctly. Arguments are as
13136 in read_die_and_children.
13137 This the main entry point for reading a DIE and all its children. */
13139 static struct die_info *
13140 read_die_and_siblings (const struct die_reader_specs *reader,
13141 const gdb_byte *info_ptr,
13142 const gdb_byte **new_info_ptr,
13143 struct die_info *parent)
13145 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
13146 new_info_ptr, parent);
13148 if (dwarf2_die_debug)
13150 fprintf_unfiltered (gdb_stdlog,
13151 "Read die from %s@0x%x of %s:\n",
13152 bfd_section_name (reader->abfd,
13153 reader->die_section->asection),
13154 (unsigned) (info_ptr - reader->die_section->buffer),
13155 bfd_get_filename (reader->abfd));
13156 dump_die (die, dwarf2_die_debug);
13162 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
13164 The caller is responsible for filling in the extra attributes
13165 and updating (*DIEP)->num_attrs.
13166 Set DIEP to point to a newly allocated die with its information,
13167 except for its child, sibling, and parent fields.
13168 Set HAS_CHILDREN to tell whether the die has children or not. */
13170 static const gdb_byte *
13171 read_full_die_1 (const struct die_reader_specs *reader,
13172 struct die_info **diep, const gdb_byte *info_ptr,
13173 int *has_children, int num_extra_attrs)
13175 unsigned int abbrev_number, bytes_read, i;
13176 sect_offset offset;
13177 struct abbrev_info *abbrev;
13178 struct die_info *die;
13179 struct dwarf2_cu *cu = reader->cu;
13180 bfd *abfd = reader->abfd;
13182 offset.sect_off = info_ptr - reader->buffer;
13183 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13184 info_ptr += bytes_read;
13185 if (!abbrev_number)
13192 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
13194 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
13196 bfd_get_filename (abfd));
13198 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13199 die->offset = offset;
13200 die->tag = abbrev->tag;
13201 die->abbrev = abbrev_number;
13203 /* Make the result usable.
13204 The caller needs to update num_attrs after adding the extra
13206 die->num_attrs = abbrev->num_attrs;
13208 for (i = 0; i < abbrev->num_attrs; ++i)
13209 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13213 *has_children = abbrev->has_children;
13217 /* Read a die and all its attributes.
13218 Set DIEP to point to a newly allocated die with its information,
13219 except for its child, sibling, and parent fields.
13220 Set HAS_CHILDREN to tell whether the die has children or not. */
13222 static const gdb_byte *
13223 read_full_die (const struct die_reader_specs *reader,
13224 struct die_info **diep, const gdb_byte *info_ptr,
13227 const gdb_byte *result;
13229 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13231 if (dwarf2_die_debug)
13233 fprintf_unfiltered (gdb_stdlog,
13234 "Read die from %s@0x%x of %s:\n",
13235 bfd_section_name (reader->abfd,
13236 reader->die_section->asection),
13237 (unsigned) (info_ptr - reader->die_section->buffer),
13238 bfd_get_filename (reader->abfd));
13239 dump_die (*diep, dwarf2_die_debug);
13245 /* Abbreviation tables.
13247 In DWARF version 2, the description of the debugging information is
13248 stored in a separate .debug_abbrev section. Before we read any
13249 dies from a section we read in all abbreviations and install them
13250 in a hash table. */
13252 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13254 static struct abbrev_info *
13255 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13257 struct abbrev_info *abbrev;
13259 abbrev = (struct abbrev_info *)
13260 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13261 memset (abbrev, 0, sizeof (struct abbrev_info));
13265 /* Add an abbreviation to the table. */
13268 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13269 unsigned int abbrev_number,
13270 struct abbrev_info *abbrev)
13272 unsigned int hash_number;
13274 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13275 abbrev->next = abbrev_table->abbrevs[hash_number];
13276 abbrev_table->abbrevs[hash_number] = abbrev;
13279 /* Look up an abbrev in the table.
13280 Returns NULL if the abbrev is not found. */
13282 static struct abbrev_info *
13283 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13284 unsigned int abbrev_number)
13286 unsigned int hash_number;
13287 struct abbrev_info *abbrev;
13289 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13290 abbrev = abbrev_table->abbrevs[hash_number];
13294 if (abbrev->number == abbrev_number)
13296 abbrev = abbrev->next;
13301 /* Read in an abbrev table. */
13303 static struct abbrev_table *
13304 abbrev_table_read_table (struct dwarf2_section_info *section,
13305 sect_offset offset)
13307 struct objfile *objfile = dwarf2_per_objfile->objfile;
13308 bfd *abfd = section->asection->owner;
13309 struct abbrev_table *abbrev_table;
13310 const gdb_byte *abbrev_ptr;
13311 struct abbrev_info *cur_abbrev;
13312 unsigned int abbrev_number, bytes_read, abbrev_name;
13313 unsigned int abbrev_form;
13314 struct attr_abbrev *cur_attrs;
13315 unsigned int allocated_attrs;
13317 abbrev_table = XMALLOC (struct abbrev_table);
13318 abbrev_table->offset = offset;
13319 obstack_init (&abbrev_table->abbrev_obstack);
13320 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13322 * sizeof (struct abbrev_info *)));
13323 memset (abbrev_table->abbrevs, 0,
13324 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13326 dwarf2_read_section (objfile, section);
13327 abbrev_ptr = section->buffer + offset.sect_off;
13328 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13329 abbrev_ptr += bytes_read;
13331 allocated_attrs = ATTR_ALLOC_CHUNK;
13332 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13334 /* Loop until we reach an abbrev number of 0. */
13335 while (abbrev_number)
13337 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13339 /* read in abbrev header */
13340 cur_abbrev->number = abbrev_number;
13341 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13342 abbrev_ptr += bytes_read;
13343 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13346 /* now read in declarations */
13347 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13348 abbrev_ptr += bytes_read;
13349 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13350 abbrev_ptr += bytes_read;
13351 while (abbrev_name)
13353 if (cur_abbrev->num_attrs == allocated_attrs)
13355 allocated_attrs += ATTR_ALLOC_CHUNK;
13357 = xrealloc (cur_attrs, (allocated_attrs
13358 * sizeof (struct attr_abbrev)));
13361 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13362 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13363 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13364 abbrev_ptr += bytes_read;
13365 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13366 abbrev_ptr += bytes_read;
13369 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13370 (cur_abbrev->num_attrs
13371 * sizeof (struct attr_abbrev)));
13372 memcpy (cur_abbrev->attrs, cur_attrs,
13373 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13375 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13377 /* Get next abbreviation.
13378 Under Irix6 the abbreviations for a compilation unit are not
13379 always properly terminated with an abbrev number of 0.
13380 Exit loop if we encounter an abbreviation which we have
13381 already read (which means we are about to read the abbreviations
13382 for the next compile unit) or if the end of the abbreviation
13383 table is reached. */
13384 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13386 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13387 abbrev_ptr += bytes_read;
13388 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13393 return abbrev_table;
13396 /* Free the resources held by ABBREV_TABLE. */
13399 abbrev_table_free (struct abbrev_table *abbrev_table)
13401 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13402 xfree (abbrev_table);
13405 /* Same as abbrev_table_free but as a cleanup.
13406 We pass in a pointer to the pointer to the table so that we can
13407 set the pointer to NULL when we're done. It also simplifies
13408 build_type_unit_groups. */
13411 abbrev_table_free_cleanup (void *table_ptr)
13413 struct abbrev_table **abbrev_table_ptr = table_ptr;
13415 if (*abbrev_table_ptr != NULL)
13416 abbrev_table_free (*abbrev_table_ptr);
13417 *abbrev_table_ptr = NULL;
13420 /* Read the abbrev table for CU from ABBREV_SECTION. */
13423 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13424 struct dwarf2_section_info *abbrev_section)
13427 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13430 /* Release the memory used by the abbrev table for a compilation unit. */
13433 dwarf2_free_abbrev_table (void *ptr_to_cu)
13435 struct dwarf2_cu *cu = ptr_to_cu;
13437 abbrev_table_free (cu->abbrev_table);
13438 /* Set this to NULL so that we SEGV if we try to read it later,
13439 and also because free_comp_unit verifies this is NULL. */
13440 cu->abbrev_table = NULL;
13443 /* Returns nonzero if TAG represents a type that we might generate a partial
13447 is_type_tag_for_partial (int tag)
13452 /* Some types that would be reasonable to generate partial symbols for,
13453 that we don't at present. */
13454 case DW_TAG_array_type:
13455 case DW_TAG_file_type:
13456 case DW_TAG_ptr_to_member_type:
13457 case DW_TAG_set_type:
13458 case DW_TAG_string_type:
13459 case DW_TAG_subroutine_type:
13461 case DW_TAG_base_type:
13462 case DW_TAG_class_type:
13463 case DW_TAG_interface_type:
13464 case DW_TAG_enumeration_type:
13465 case DW_TAG_structure_type:
13466 case DW_TAG_subrange_type:
13467 case DW_TAG_typedef:
13468 case DW_TAG_union_type:
13475 /* Load all DIEs that are interesting for partial symbols into memory. */
13477 static struct partial_die_info *
13478 load_partial_dies (const struct die_reader_specs *reader,
13479 const gdb_byte *info_ptr, int building_psymtab)
13481 struct dwarf2_cu *cu = reader->cu;
13482 struct objfile *objfile = cu->objfile;
13483 struct partial_die_info *part_die;
13484 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13485 struct abbrev_info *abbrev;
13486 unsigned int bytes_read;
13487 unsigned int load_all = 0;
13488 int nesting_level = 1;
13493 gdb_assert (cu->per_cu != NULL);
13494 if (cu->per_cu->load_all_dies)
13498 = htab_create_alloc_ex (cu->header.length / 12,
13502 &cu->comp_unit_obstack,
13503 hashtab_obstack_allocate,
13504 dummy_obstack_deallocate);
13506 part_die = obstack_alloc (&cu->comp_unit_obstack,
13507 sizeof (struct partial_die_info));
13511 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13513 /* A NULL abbrev means the end of a series of children. */
13514 if (abbrev == NULL)
13516 if (--nesting_level == 0)
13518 /* PART_DIE was probably the last thing allocated on the
13519 comp_unit_obstack, so we could call obstack_free
13520 here. We don't do that because the waste is small,
13521 and will be cleaned up when we're done with this
13522 compilation unit. This way, we're also more robust
13523 against other users of the comp_unit_obstack. */
13526 info_ptr += bytes_read;
13527 last_die = parent_die;
13528 parent_die = parent_die->die_parent;
13532 /* Check for template arguments. We never save these; if
13533 they're seen, we just mark the parent, and go on our way. */
13534 if (parent_die != NULL
13535 && cu->language == language_cplus
13536 && (abbrev->tag == DW_TAG_template_type_param
13537 || abbrev->tag == DW_TAG_template_value_param))
13539 parent_die->has_template_arguments = 1;
13543 /* We don't need a partial DIE for the template argument. */
13544 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13549 /* We only recurse into c++ subprograms looking for template arguments.
13550 Skip their other children. */
13552 && cu->language == language_cplus
13553 && parent_die != NULL
13554 && parent_die->tag == DW_TAG_subprogram)
13556 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13560 /* Check whether this DIE is interesting enough to save. Normally
13561 we would not be interested in members here, but there may be
13562 later variables referencing them via DW_AT_specification (for
13563 static members). */
13565 && !is_type_tag_for_partial (abbrev->tag)
13566 && abbrev->tag != DW_TAG_constant
13567 && abbrev->tag != DW_TAG_enumerator
13568 && abbrev->tag != DW_TAG_subprogram
13569 && abbrev->tag != DW_TAG_lexical_block
13570 && abbrev->tag != DW_TAG_variable
13571 && abbrev->tag != DW_TAG_namespace
13572 && abbrev->tag != DW_TAG_module
13573 && abbrev->tag != DW_TAG_member
13574 && abbrev->tag != DW_TAG_imported_unit)
13576 /* Otherwise we skip to the next sibling, if any. */
13577 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13581 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13584 /* This two-pass algorithm for processing partial symbols has a
13585 high cost in cache pressure. Thus, handle some simple cases
13586 here which cover the majority of C partial symbols. DIEs
13587 which neither have specification tags in them, nor could have
13588 specification tags elsewhere pointing at them, can simply be
13589 processed and discarded.
13591 This segment is also optional; scan_partial_symbols and
13592 add_partial_symbol will handle these DIEs if we chain
13593 them in normally. When compilers which do not emit large
13594 quantities of duplicate debug information are more common,
13595 this code can probably be removed. */
13597 /* Any complete simple types at the top level (pretty much all
13598 of them, for a language without namespaces), can be processed
13600 if (parent_die == NULL
13601 && part_die->has_specification == 0
13602 && part_die->is_declaration == 0
13603 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13604 || part_die->tag == DW_TAG_base_type
13605 || part_die->tag == DW_TAG_subrange_type))
13607 if (building_psymtab && part_die->name != NULL)
13608 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13609 VAR_DOMAIN, LOC_TYPEDEF,
13610 &objfile->static_psymbols,
13611 0, (CORE_ADDR) 0, cu->language, objfile);
13612 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13616 /* The exception for DW_TAG_typedef with has_children above is
13617 a workaround of GCC PR debug/47510. In the case of this complaint
13618 type_name_no_tag_or_error will error on such types later.
13620 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13621 it could not find the child DIEs referenced later, this is checked
13622 above. In correct DWARF DW_TAG_typedef should have no children. */
13624 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13625 complaint (&symfile_complaints,
13626 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13627 "- DIE at 0x%x [in module %s]"),
13628 part_die->offset.sect_off, objfile->name);
13630 /* If we're at the second level, and we're an enumerator, and
13631 our parent has no specification (meaning possibly lives in a
13632 namespace elsewhere), then we can add the partial symbol now
13633 instead of queueing it. */
13634 if (part_die->tag == DW_TAG_enumerator
13635 && parent_die != NULL
13636 && parent_die->die_parent == NULL
13637 && parent_die->tag == DW_TAG_enumeration_type
13638 && parent_die->has_specification == 0)
13640 if (part_die->name == NULL)
13641 complaint (&symfile_complaints,
13642 _("malformed enumerator DIE ignored"));
13643 else if (building_psymtab)
13644 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13645 VAR_DOMAIN, LOC_CONST,
13646 (cu->language == language_cplus
13647 || cu->language == language_java)
13648 ? &objfile->global_psymbols
13649 : &objfile->static_psymbols,
13650 0, (CORE_ADDR) 0, cu->language, objfile);
13652 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13656 /* We'll save this DIE so link it in. */
13657 part_die->die_parent = parent_die;
13658 part_die->die_sibling = NULL;
13659 part_die->die_child = NULL;
13661 if (last_die && last_die == parent_die)
13662 last_die->die_child = part_die;
13664 last_die->die_sibling = part_die;
13666 last_die = part_die;
13668 if (first_die == NULL)
13669 first_die = part_die;
13671 /* Maybe add the DIE to the hash table. Not all DIEs that we
13672 find interesting need to be in the hash table, because we
13673 also have the parent/sibling/child chains; only those that we
13674 might refer to by offset later during partial symbol reading.
13676 For now this means things that might have be the target of a
13677 DW_AT_specification, DW_AT_abstract_origin, or
13678 DW_AT_extension. DW_AT_extension will refer only to
13679 namespaces; DW_AT_abstract_origin refers to functions (and
13680 many things under the function DIE, but we do not recurse
13681 into function DIEs during partial symbol reading) and
13682 possibly variables as well; DW_AT_specification refers to
13683 declarations. Declarations ought to have the DW_AT_declaration
13684 flag. It happens that GCC forgets to put it in sometimes, but
13685 only for functions, not for types.
13687 Adding more things than necessary to the hash table is harmless
13688 except for the performance cost. Adding too few will result in
13689 wasted time in find_partial_die, when we reread the compilation
13690 unit with load_all_dies set. */
13693 || abbrev->tag == DW_TAG_constant
13694 || abbrev->tag == DW_TAG_subprogram
13695 || abbrev->tag == DW_TAG_variable
13696 || abbrev->tag == DW_TAG_namespace
13697 || part_die->is_declaration)
13701 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13702 part_die->offset.sect_off, INSERT);
13706 part_die = obstack_alloc (&cu->comp_unit_obstack,
13707 sizeof (struct partial_die_info));
13709 /* For some DIEs we want to follow their children (if any). For C
13710 we have no reason to follow the children of structures; for other
13711 languages we have to, so that we can get at method physnames
13712 to infer fully qualified class names, for DW_AT_specification,
13713 and for C++ template arguments. For C++, we also look one level
13714 inside functions to find template arguments (if the name of the
13715 function does not already contain the template arguments).
13717 For Ada, we need to scan the children of subprograms and lexical
13718 blocks as well because Ada allows the definition of nested
13719 entities that could be interesting for the debugger, such as
13720 nested subprograms for instance. */
13721 if (last_die->has_children
13723 || last_die->tag == DW_TAG_namespace
13724 || last_die->tag == DW_TAG_module
13725 || last_die->tag == DW_TAG_enumeration_type
13726 || (cu->language == language_cplus
13727 && last_die->tag == DW_TAG_subprogram
13728 && (last_die->name == NULL
13729 || strchr (last_die->name, '<') == NULL))
13730 || (cu->language != language_c
13731 && (last_die->tag == DW_TAG_class_type
13732 || last_die->tag == DW_TAG_interface_type
13733 || last_die->tag == DW_TAG_structure_type
13734 || last_die->tag == DW_TAG_union_type))
13735 || (cu->language == language_ada
13736 && (last_die->tag == DW_TAG_subprogram
13737 || last_die->tag == DW_TAG_lexical_block))))
13740 parent_die = last_die;
13744 /* Otherwise we skip to the next sibling, if any. */
13745 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13747 /* Back to the top, do it again. */
13751 /* Read a minimal amount of information into the minimal die structure. */
13753 static const gdb_byte *
13754 read_partial_die (const struct die_reader_specs *reader,
13755 struct partial_die_info *part_die,
13756 struct abbrev_info *abbrev, unsigned int abbrev_len,
13757 const gdb_byte *info_ptr)
13759 struct dwarf2_cu *cu = reader->cu;
13760 struct objfile *objfile = cu->objfile;
13761 const gdb_byte *buffer = reader->buffer;
13763 struct attribute attr;
13764 int has_low_pc_attr = 0;
13765 int has_high_pc_attr = 0;
13766 int high_pc_relative = 0;
13768 memset (part_die, 0, sizeof (struct partial_die_info));
13770 part_die->offset.sect_off = info_ptr - buffer;
13772 info_ptr += abbrev_len;
13774 if (abbrev == NULL)
13777 part_die->tag = abbrev->tag;
13778 part_die->has_children = abbrev->has_children;
13780 for (i = 0; i < abbrev->num_attrs; ++i)
13782 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13784 /* Store the data if it is of an attribute we want to keep in a
13785 partial symbol table. */
13789 switch (part_die->tag)
13791 case DW_TAG_compile_unit:
13792 case DW_TAG_partial_unit:
13793 case DW_TAG_type_unit:
13794 /* Compilation units have a DW_AT_name that is a filename, not
13795 a source language identifier. */
13796 case DW_TAG_enumeration_type:
13797 case DW_TAG_enumerator:
13798 /* These tags always have simple identifiers already; no need
13799 to canonicalize them. */
13800 part_die->name = DW_STRING (&attr);
13804 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13805 &objfile->objfile_obstack);
13809 case DW_AT_linkage_name:
13810 case DW_AT_MIPS_linkage_name:
13811 /* Note that both forms of linkage name might appear. We
13812 assume they will be the same, and we only store the last
13814 if (cu->language == language_ada)
13815 part_die->name = DW_STRING (&attr);
13816 part_die->linkage_name = DW_STRING (&attr);
13819 has_low_pc_attr = 1;
13820 part_die->lowpc = DW_ADDR (&attr);
13822 case DW_AT_high_pc:
13823 has_high_pc_attr = 1;
13824 if (attr.form == DW_FORM_addr
13825 || attr.form == DW_FORM_GNU_addr_index)
13826 part_die->highpc = DW_ADDR (&attr);
13829 high_pc_relative = 1;
13830 part_die->highpc = DW_UNSND (&attr);
13833 case DW_AT_location:
13834 /* Support the .debug_loc offsets. */
13835 if (attr_form_is_block (&attr))
13837 part_die->d.locdesc = DW_BLOCK (&attr);
13839 else if (attr_form_is_section_offset (&attr))
13841 dwarf2_complex_location_expr_complaint ();
13845 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13846 "partial symbol information");
13849 case DW_AT_external:
13850 part_die->is_external = DW_UNSND (&attr);
13852 case DW_AT_declaration:
13853 part_die->is_declaration = DW_UNSND (&attr);
13856 part_die->has_type = 1;
13858 case DW_AT_abstract_origin:
13859 case DW_AT_specification:
13860 case DW_AT_extension:
13861 part_die->has_specification = 1;
13862 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13863 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13864 || cu->per_cu->is_dwz);
13866 case DW_AT_sibling:
13867 /* Ignore absolute siblings, they might point outside of
13868 the current compile unit. */
13869 if (attr.form == DW_FORM_ref_addr)
13870 complaint (&symfile_complaints,
13871 _("ignoring absolute DW_AT_sibling"));
13873 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13875 case DW_AT_byte_size:
13876 part_die->has_byte_size = 1;
13878 case DW_AT_calling_convention:
13879 /* DWARF doesn't provide a way to identify a program's source-level
13880 entry point. DW_AT_calling_convention attributes are only meant
13881 to describe functions' calling conventions.
13883 However, because it's a necessary piece of information in
13884 Fortran, and because DW_CC_program is the only piece of debugging
13885 information whose definition refers to a 'main program' at all,
13886 several compilers have begun marking Fortran main programs with
13887 DW_CC_program --- even when those functions use the standard
13888 calling conventions.
13890 So until DWARF specifies a way to provide this information and
13891 compilers pick up the new representation, we'll support this
13893 if (DW_UNSND (&attr) == DW_CC_program
13894 && cu->language == language_fortran)
13896 set_main_name (part_die->name);
13898 /* As this DIE has a static linkage the name would be difficult
13899 to look up later. */
13900 language_of_main = language_fortran;
13904 if (DW_UNSND (&attr) == DW_INL_inlined
13905 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13906 part_die->may_be_inlined = 1;
13910 if (part_die->tag == DW_TAG_imported_unit)
13912 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13913 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13914 || cu->per_cu->is_dwz);
13923 if (high_pc_relative)
13924 part_die->highpc += part_die->lowpc;
13926 if (has_low_pc_attr && has_high_pc_attr)
13928 /* When using the GNU linker, .gnu.linkonce. sections are used to
13929 eliminate duplicate copies of functions and vtables and such.
13930 The linker will arbitrarily choose one and discard the others.
13931 The AT_*_pc values for such functions refer to local labels in
13932 these sections. If the section from that file was discarded, the
13933 labels are not in the output, so the relocs get a value of 0.
13934 If this is a discarded function, mark the pc bounds as invalid,
13935 so that GDB will ignore it. */
13936 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13938 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13940 complaint (&symfile_complaints,
13941 _("DW_AT_low_pc %s is zero "
13942 "for DIE at 0x%x [in module %s]"),
13943 paddress (gdbarch, part_die->lowpc),
13944 part_die->offset.sect_off, objfile->name);
13946 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13947 else if (part_die->lowpc >= part_die->highpc)
13949 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13951 complaint (&symfile_complaints,
13952 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13953 "for DIE at 0x%x [in module %s]"),
13954 paddress (gdbarch, part_die->lowpc),
13955 paddress (gdbarch, part_die->highpc),
13956 part_die->offset.sect_off, objfile->name);
13959 part_die->has_pc_info = 1;
13965 /* Find a cached partial DIE at OFFSET in CU. */
13967 static struct partial_die_info *
13968 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13970 struct partial_die_info *lookup_die = NULL;
13971 struct partial_die_info part_die;
13973 part_die.offset = offset;
13974 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13980 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13981 except in the case of .debug_types DIEs which do not reference
13982 outside their CU (they do however referencing other types via
13983 DW_FORM_ref_sig8). */
13985 static struct partial_die_info *
13986 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13988 struct objfile *objfile = cu->objfile;
13989 struct dwarf2_per_cu_data *per_cu = NULL;
13990 struct partial_die_info *pd = NULL;
13992 if (offset_in_dwz == cu->per_cu->is_dwz
13993 && offset_in_cu_p (&cu->header, offset))
13995 pd = find_partial_die_in_comp_unit (offset, cu);
13998 /* We missed recording what we needed.
13999 Load all dies and try again. */
14000 per_cu = cu->per_cu;
14004 /* TUs don't reference other CUs/TUs (except via type signatures). */
14005 if (cu->per_cu->is_debug_types)
14007 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
14008 " external reference to offset 0x%lx [in module %s].\n"),
14009 (long) cu->header.offset.sect_off, (long) offset.sect_off,
14010 bfd_get_filename (objfile->obfd));
14012 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
14015 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
14016 load_partial_comp_unit (per_cu);
14018 per_cu->cu->last_used = 0;
14019 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14022 /* If we didn't find it, and not all dies have been loaded,
14023 load them all and try again. */
14025 if (pd == NULL && per_cu->load_all_dies == 0)
14027 per_cu->load_all_dies = 1;
14029 /* This is nasty. When we reread the DIEs, somewhere up the call chain
14030 THIS_CU->cu may already be in use. So we can't just free it and
14031 replace its DIEs with the ones we read in. Instead, we leave those
14032 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
14033 and clobber THIS_CU->cu->partial_dies with the hash table for the new
14035 load_partial_comp_unit (per_cu);
14037 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
14041 internal_error (__FILE__, __LINE__,
14042 _("could not find partial DIE 0x%x "
14043 "in cache [from module %s]\n"),
14044 offset.sect_off, bfd_get_filename (objfile->obfd));
14048 /* See if we can figure out if the class lives in a namespace. We do
14049 this by looking for a member function; its demangled name will
14050 contain namespace info, if there is any. */
14053 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
14054 struct dwarf2_cu *cu)
14056 /* NOTE: carlton/2003-10-07: Getting the info this way changes
14057 what template types look like, because the demangler
14058 frequently doesn't give the same name as the debug info. We
14059 could fix this by only using the demangled name to get the
14060 prefix (but see comment in read_structure_type). */
14062 struct partial_die_info *real_pdi;
14063 struct partial_die_info *child_pdi;
14065 /* If this DIE (this DIE's specification, if any) has a parent, then
14066 we should not do this. We'll prepend the parent's fully qualified
14067 name when we create the partial symbol. */
14069 real_pdi = struct_pdi;
14070 while (real_pdi->has_specification)
14071 real_pdi = find_partial_die (real_pdi->spec_offset,
14072 real_pdi->spec_is_dwz, cu);
14074 if (real_pdi->die_parent != NULL)
14077 for (child_pdi = struct_pdi->die_child;
14079 child_pdi = child_pdi->die_sibling)
14081 if (child_pdi->tag == DW_TAG_subprogram
14082 && child_pdi->linkage_name != NULL)
14084 char *actual_class_name
14085 = language_class_name_from_physname (cu->language_defn,
14086 child_pdi->linkage_name);
14087 if (actual_class_name != NULL)
14090 = obstack_copy0 (&cu->objfile->objfile_obstack,
14092 strlen (actual_class_name));
14093 xfree (actual_class_name);
14100 /* Adjust PART_DIE before generating a symbol for it. This function
14101 may set the is_external flag or change the DIE's name. */
14104 fixup_partial_die (struct partial_die_info *part_die,
14105 struct dwarf2_cu *cu)
14107 /* Once we've fixed up a die, there's no point in doing so again.
14108 This also avoids a memory leak if we were to call
14109 guess_partial_die_structure_name multiple times. */
14110 if (part_die->fixup_called)
14113 /* If we found a reference attribute and the DIE has no name, try
14114 to find a name in the referred to DIE. */
14116 if (part_die->name == NULL && part_die->has_specification)
14118 struct partial_die_info *spec_die;
14120 spec_die = find_partial_die (part_die->spec_offset,
14121 part_die->spec_is_dwz, cu);
14123 fixup_partial_die (spec_die, cu);
14125 if (spec_die->name)
14127 part_die->name = spec_die->name;
14129 /* Copy DW_AT_external attribute if it is set. */
14130 if (spec_die->is_external)
14131 part_die->is_external = spec_die->is_external;
14135 /* Set default names for some unnamed DIEs. */
14137 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
14138 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
14140 /* If there is no parent die to provide a namespace, and there are
14141 children, see if we can determine the namespace from their linkage
14143 if (cu->language == language_cplus
14144 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
14145 && part_die->die_parent == NULL
14146 && part_die->has_children
14147 && (part_die->tag == DW_TAG_class_type
14148 || part_die->tag == DW_TAG_structure_type
14149 || part_die->tag == DW_TAG_union_type))
14150 guess_partial_die_structure_name (part_die, cu);
14152 /* GCC might emit a nameless struct or union that has a linkage
14153 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
14154 if (part_die->name == NULL
14155 && (part_die->tag == DW_TAG_class_type
14156 || part_die->tag == DW_TAG_interface_type
14157 || part_die->tag == DW_TAG_structure_type
14158 || part_die->tag == DW_TAG_union_type)
14159 && part_die->linkage_name != NULL)
14163 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
14168 /* Strip any leading namespaces/classes, keep only the base name.
14169 DW_AT_name for named DIEs does not contain the prefixes. */
14170 base = strrchr (demangled, ':');
14171 if (base && base > demangled && base[-1] == ':')
14176 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
14177 base, strlen (base));
14182 part_die->fixup_called = 1;
14185 /* Read an attribute value described by an attribute form. */
14187 static const gdb_byte *
14188 read_attribute_value (const struct die_reader_specs *reader,
14189 struct attribute *attr, unsigned form,
14190 const gdb_byte *info_ptr)
14192 struct dwarf2_cu *cu = reader->cu;
14193 bfd *abfd = reader->abfd;
14194 struct comp_unit_head *cu_header = &cu->header;
14195 unsigned int bytes_read;
14196 struct dwarf_block *blk;
14201 case DW_FORM_ref_addr:
14202 if (cu->header.version == 2)
14203 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14205 DW_UNSND (attr) = read_offset (abfd, info_ptr,
14206 &cu->header, &bytes_read);
14207 info_ptr += bytes_read;
14209 case DW_FORM_GNU_ref_alt:
14210 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14211 info_ptr += bytes_read;
14214 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14215 info_ptr += bytes_read;
14217 case DW_FORM_block2:
14218 blk = dwarf_alloc_block (cu);
14219 blk->size = read_2_bytes (abfd, info_ptr);
14221 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14222 info_ptr += blk->size;
14223 DW_BLOCK (attr) = blk;
14225 case DW_FORM_block4:
14226 blk = dwarf_alloc_block (cu);
14227 blk->size = read_4_bytes (abfd, info_ptr);
14229 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14230 info_ptr += blk->size;
14231 DW_BLOCK (attr) = blk;
14233 case DW_FORM_data2:
14234 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14237 case DW_FORM_data4:
14238 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14241 case DW_FORM_data8:
14242 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14245 case DW_FORM_sec_offset:
14246 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14247 info_ptr += bytes_read;
14249 case DW_FORM_string:
14250 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14251 DW_STRING_IS_CANONICAL (attr) = 0;
14252 info_ptr += bytes_read;
14255 if (!cu->per_cu->is_dwz)
14257 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14259 DW_STRING_IS_CANONICAL (attr) = 0;
14260 info_ptr += bytes_read;
14264 case DW_FORM_GNU_strp_alt:
14266 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14267 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14270 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14271 DW_STRING_IS_CANONICAL (attr) = 0;
14272 info_ptr += bytes_read;
14275 case DW_FORM_exprloc:
14276 case DW_FORM_block:
14277 blk = dwarf_alloc_block (cu);
14278 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14279 info_ptr += bytes_read;
14280 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14281 info_ptr += blk->size;
14282 DW_BLOCK (attr) = blk;
14284 case DW_FORM_block1:
14285 blk = dwarf_alloc_block (cu);
14286 blk->size = read_1_byte (abfd, info_ptr);
14288 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14289 info_ptr += blk->size;
14290 DW_BLOCK (attr) = blk;
14292 case DW_FORM_data1:
14293 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14297 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14300 case DW_FORM_flag_present:
14301 DW_UNSND (attr) = 1;
14303 case DW_FORM_sdata:
14304 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14305 info_ptr += bytes_read;
14307 case DW_FORM_udata:
14308 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14309 info_ptr += bytes_read;
14312 DW_UNSND (attr) = (cu->header.offset.sect_off
14313 + read_1_byte (abfd, info_ptr));
14317 DW_UNSND (attr) = (cu->header.offset.sect_off
14318 + read_2_bytes (abfd, info_ptr));
14322 DW_UNSND (attr) = (cu->header.offset.sect_off
14323 + read_4_bytes (abfd, info_ptr));
14327 DW_UNSND (attr) = (cu->header.offset.sect_off
14328 + read_8_bytes (abfd, info_ptr));
14331 case DW_FORM_ref_sig8:
14332 /* Convert the signature to something we can record in DW_UNSND
14334 NOTE: This is NULL if the type wasn't found. */
14335 DW_SIGNATURED_TYPE (attr) =
14336 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14339 case DW_FORM_ref_udata:
14340 DW_UNSND (attr) = (cu->header.offset.sect_off
14341 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14342 info_ptr += bytes_read;
14344 case DW_FORM_indirect:
14345 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14346 info_ptr += bytes_read;
14347 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14349 case DW_FORM_GNU_addr_index:
14350 if (reader->dwo_file == NULL)
14352 /* For now flag a hard error.
14353 Later we can turn this into a complaint. */
14354 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14355 dwarf_form_name (form),
14356 bfd_get_filename (abfd));
14358 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14359 info_ptr += bytes_read;
14361 case DW_FORM_GNU_str_index:
14362 if (reader->dwo_file == NULL)
14364 /* For now flag a hard error.
14365 Later we can turn this into a complaint if warranted. */
14366 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14367 dwarf_form_name (form),
14368 bfd_get_filename (abfd));
14371 ULONGEST str_index =
14372 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14374 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14375 DW_STRING_IS_CANONICAL (attr) = 0;
14376 info_ptr += bytes_read;
14380 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14381 dwarf_form_name (form),
14382 bfd_get_filename (abfd));
14386 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14387 attr->form = DW_FORM_GNU_ref_alt;
14389 /* We have seen instances where the compiler tried to emit a byte
14390 size attribute of -1 which ended up being encoded as an unsigned
14391 0xffffffff. Although 0xffffffff is technically a valid size value,
14392 an object of this size seems pretty unlikely so we can relatively
14393 safely treat these cases as if the size attribute was invalid and
14394 treat them as zero by default. */
14395 if (attr->name == DW_AT_byte_size
14396 && form == DW_FORM_data4
14397 && DW_UNSND (attr) >= 0xffffffff)
14400 (&symfile_complaints,
14401 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14402 hex_string (DW_UNSND (attr)));
14403 DW_UNSND (attr) = 0;
14409 /* Read an attribute described by an abbreviated attribute. */
14411 static const gdb_byte *
14412 read_attribute (const struct die_reader_specs *reader,
14413 struct attribute *attr, struct attr_abbrev *abbrev,
14414 const gdb_byte *info_ptr)
14416 attr->name = abbrev->name;
14417 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14420 /* Read dwarf information from a buffer. */
14422 static unsigned int
14423 read_1_byte (bfd *abfd, const gdb_byte *buf)
14425 return bfd_get_8 (abfd, buf);
14429 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14431 return bfd_get_signed_8 (abfd, buf);
14434 static unsigned int
14435 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14437 return bfd_get_16 (abfd, buf);
14441 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14443 return bfd_get_signed_16 (abfd, buf);
14446 static unsigned int
14447 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14449 return bfd_get_32 (abfd, buf);
14453 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14455 return bfd_get_signed_32 (abfd, buf);
14459 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14461 return bfd_get_64 (abfd, buf);
14465 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
14466 unsigned int *bytes_read)
14468 struct comp_unit_head *cu_header = &cu->header;
14469 CORE_ADDR retval = 0;
14471 if (cu_header->signed_addr_p)
14473 switch (cu_header->addr_size)
14476 retval = bfd_get_signed_16 (abfd, buf);
14479 retval = bfd_get_signed_32 (abfd, buf);
14482 retval = bfd_get_signed_64 (abfd, buf);
14485 internal_error (__FILE__, __LINE__,
14486 _("read_address: bad switch, signed [in module %s]"),
14487 bfd_get_filename (abfd));
14492 switch (cu_header->addr_size)
14495 retval = bfd_get_16 (abfd, buf);
14498 retval = bfd_get_32 (abfd, buf);
14501 retval = bfd_get_64 (abfd, buf);
14504 internal_error (__FILE__, __LINE__,
14505 _("read_address: bad switch, "
14506 "unsigned [in module %s]"),
14507 bfd_get_filename (abfd));
14511 *bytes_read = cu_header->addr_size;
14515 /* Read the initial length from a section. The (draft) DWARF 3
14516 specification allows the initial length to take up either 4 bytes
14517 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14518 bytes describe the length and all offsets will be 8 bytes in length
14521 An older, non-standard 64-bit format is also handled by this
14522 function. The older format in question stores the initial length
14523 as an 8-byte quantity without an escape value. Lengths greater
14524 than 2^32 aren't very common which means that the initial 4 bytes
14525 is almost always zero. Since a length value of zero doesn't make
14526 sense for the 32-bit format, this initial zero can be considered to
14527 be an escape value which indicates the presence of the older 64-bit
14528 format. As written, the code can't detect (old format) lengths
14529 greater than 4GB. If it becomes necessary to handle lengths
14530 somewhat larger than 4GB, we could allow other small values (such
14531 as the non-sensical values of 1, 2, and 3) to also be used as
14532 escape values indicating the presence of the old format.
14534 The value returned via bytes_read should be used to increment the
14535 relevant pointer after calling read_initial_length().
14537 [ Note: read_initial_length() and read_offset() are based on the
14538 document entitled "DWARF Debugging Information Format", revision
14539 3, draft 8, dated November 19, 2001. This document was obtained
14542 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14544 This document is only a draft and is subject to change. (So beware.)
14546 Details regarding the older, non-standard 64-bit format were
14547 determined empirically by examining 64-bit ELF files produced by
14548 the SGI toolchain on an IRIX 6.5 machine.
14550 - Kevin, July 16, 2002
14554 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
14556 LONGEST length = bfd_get_32 (abfd, buf);
14558 if (length == 0xffffffff)
14560 length = bfd_get_64 (abfd, buf + 4);
14563 else if (length == 0)
14565 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14566 length = bfd_get_64 (abfd, buf);
14577 /* Cover function for read_initial_length.
14578 Returns the length of the object at BUF, and stores the size of the
14579 initial length in *BYTES_READ and stores the size that offsets will be in
14581 If the initial length size is not equivalent to that specified in
14582 CU_HEADER then issue a complaint.
14583 This is useful when reading non-comp-unit headers. */
14586 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
14587 const struct comp_unit_head *cu_header,
14588 unsigned int *bytes_read,
14589 unsigned int *offset_size)
14591 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14593 gdb_assert (cu_header->initial_length_size == 4
14594 || cu_header->initial_length_size == 8
14595 || cu_header->initial_length_size == 12);
14597 if (cu_header->initial_length_size != *bytes_read)
14598 complaint (&symfile_complaints,
14599 _("intermixed 32-bit and 64-bit DWARF sections"));
14601 *offset_size = (*bytes_read == 4) ? 4 : 8;
14605 /* Read an offset from the data stream. The size of the offset is
14606 given by cu_header->offset_size. */
14609 read_offset (bfd *abfd, const gdb_byte *buf,
14610 const struct comp_unit_head *cu_header,
14611 unsigned int *bytes_read)
14613 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14615 *bytes_read = cu_header->offset_size;
14619 /* Read an offset from the data stream. */
14622 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
14624 LONGEST retval = 0;
14626 switch (offset_size)
14629 retval = bfd_get_32 (abfd, buf);
14632 retval = bfd_get_64 (abfd, buf);
14635 internal_error (__FILE__, __LINE__,
14636 _("read_offset_1: bad switch [in module %s]"),
14637 bfd_get_filename (abfd));
14643 static const gdb_byte *
14644 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
14646 /* If the size of a host char is 8 bits, we can return a pointer
14647 to the buffer, otherwise we have to copy the data to a buffer
14648 allocated on the temporary obstack. */
14649 gdb_assert (HOST_CHAR_BIT == 8);
14653 static const char *
14654 read_direct_string (bfd *abfd, const gdb_byte *buf,
14655 unsigned int *bytes_read_ptr)
14657 /* If the size of a host char is 8 bits, we can return a pointer
14658 to the string, otherwise we have to copy the string to a buffer
14659 allocated on the temporary obstack. */
14660 gdb_assert (HOST_CHAR_BIT == 8);
14663 *bytes_read_ptr = 1;
14666 *bytes_read_ptr = strlen ((const char *) buf) + 1;
14667 return (const char *) buf;
14670 static const char *
14671 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14673 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14674 if (dwarf2_per_objfile->str.buffer == NULL)
14675 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14676 bfd_get_filename (abfd));
14677 if (str_offset >= dwarf2_per_objfile->str.size)
14678 error (_("DW_FORM_strp pointing outside of "
14679 ".debug_str section [in module %s]"),
14680 bfd_get_filename (abfd));
14681 gdb_assert (HOST_CHAR_BIT == 8);
14682 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14684 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
14687 /* Read a string at offset STR_OFFSET in the .debug_str section from
14688 the .dwz file DWZ. Throw an error if the offset is too large. If
14689 the string consists of a single NUL byte, return NULL; otherwise
14690 return a pointer to the string. */
14692 static const char *
14693 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14695 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14697 if (dwz->str.buffer == NULL)
14698 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14699 "section [in module %s]"),
14700 bfd_get_filename (dwz->dwz_bfd));
14701 if (str_offset >= dwz->str.size)
14702 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14703 ".debug_str section [in module %s]"),
14704 bfd_get_filename (dwz->dwz_bfd));
14705 gdb_assert (HOST_CHAR_BIT == 8);
14706 if (dwz->str.buffer[str_offset] == '\0')
14708 return (const char *) (dwz->str.buffer + str_offset);
14711 static const char *
14712 read_indirect_string (bfd *abfd, const gdb_byte *buf,
14713 const struct comp_unit_head *cu_header,
14714 unsigned int *bytes_read_ptr)
14716 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14718 return read_indirect_string_at_offset (abfd, str_offset);
14722 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
14723 unsigned int *bytes_read_ptr)
14726 unsigned int num_read;
14728 unsigned char byte;
14736 byte = bfd_get_8 (abfd, buf);
14739 result |= ((ULONGEST) (byte & 127) << shift);
14740 if ((byte & 128) == 0)
14746 *bytes_read_ptr = num_read;
14751 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
14752 unsigned int *bytes_read_ptr)
14755 int i, shift, num_read;
14756 unsigned char byte;
14764 byte = bfd_get_8 (abfd, buf);
14767 result |= ((LONGEST) (byte & 127) << shift);
14769 if ((byte & 128) == 0)
14774 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14775 result |= -(((LONGEST) 1) << shift);
14776 *bytes_read_ptr = num_read;
14780 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14781 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14782 ADDR_SIZE is the size of addresses from the CU header. */
14785 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14787 struct objfile *objfile = dwarf2_per_objfile->objfile;
14788 bfd *abfd = objfile->obfd;
14789 const gdb_byte *info_ptr;
14791 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14792 if (dwarf2_per_objfile->addr.buffer == NULL)
14793 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14795 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14796 error (_("DW_FORM_addr_index pointing outside of "
14797 ".debug_addr section [in module %s]"),
14799 info_ptr = (dwarf2_per_objfile->addr.buffer
14800 + addr_base + addr_index * addr_size);
14801 if (addr_size == 4)
14802 return bfd_get_32 (abfd, info_ptr);
14804 return bfd_get_64 (abfd, info_ptr);
14807 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14810 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14812 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14815 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14818 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
14819 unsigned int *bytes_read)
14821 bfd *abfd = cu->objfile->obfd;
14822 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14824 return read_addr_index (cu, addr_index);
14827 /* Data structure to pass results from dwarf2_read_addr_index_reader
14828 back to dwarf2_read_addr_index. */
14830 struct dwarf2_read_addr_index_data
14832 ULONGEST addr_base;
14836 /* die_reader_func for dwarf2_read_addr_index. */
14839 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14840 const gdb_byte *info_ptr,
14841 struct die_info *comp_unit_die,
14845 struct dwarf2_cu *cu = reader->cu;
14846 struct dwarf2_read_addr_index_data *aidata =
14847 (struct dwarf2_read_addr_index_data *) data;
14849 aidata->addr_base = cu->addr_base;
14850 aidata->addr_size = cu->header.addr_size;
14853 /* Given an index in .debug_addr, fetch the value.
14854 NOTE: This can be called during dwarf expression evaluation,
14855 long after the debug information has been read, and thus per_cu->cu
14856 may no longer exist. */
14859 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14860 unsigned int addr_index)
14862 struct objfile *objfile = per_cu->objfile;
14863 struct dwarf2_cu *cu = per_cu->cu;
14864 ULONGEST addr_base;
14867 /* This is intended to be called from outside this file. */
14868 dw2_setup (objfile);
14870 /* We need addr_base and addr_size.
14871 If we don't have PER_CU->cu, we have to get it.
14872 Nasty, but the alternative is storing the needed info in PER_CU,
14873 which at this point doesn't seem justified: it's not clear how frequently
14874 it would get used and it would increase the size of every PER_CU.
14875 Entry points like dwarf2_per_cu_addr_size do a similar thing
14876 so we're not in uncharted territory here.
14877 Alas we need to be a bit more complicated as addr_base is contained
14880 We don't need to read the entire CU(/TU).
14881 We just need the header and top level die.
14883 IWBN to use the aging mechanism to let us lazily later discard the CU.
14884 For now we skip this optimization. */
14888 addr_base = cu->addr_base;
14889 addr_size = cu->header.addr_size;
14893 struct dwarf2_read_addr_index_data aidata;
14895 /* Note: We can't use init_cutu_and_read_dies_simple here,
14896 we need addr_base. */
14897 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14898 dwarf2_read_addr_index_reader, &aidata);
14899 addr_base = aidata.addr_base;
14900 addr_size = aidata.addr_size;
14903 return read_addr_index_1 (addr_index, addr_base, addr_size);
14906 /* Given a DW_AT_str_index, fetch the string. */
14908 static const char *
14909 read_str_index (const struct die_reader_specs *reader,
14910 struct dwarf2_cu *cu, ULONGEST str_index)
14912 struct objfile *objfile = dwarf2_per_objfile->objfile;
14913 const char *dwo_name = objfile->name;
14914 bfd *abfd = objfile->obfd;
14915 struct dwo_sections *sections = &reader->dwo_file->sections;
14916 const gdb_byte *info_ptr;
14917 ULONGEST str_offset;
14919 dwarf2_read_section (objfile, §ions->str);
14920 dwarf2_read_section (objfile, §ions->str_offsets);
14921 if (sections->str.buffer == NULL)
14922 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14923 " in CU at offset 0x%lx [in module %s]"),
14924 (long) cu->header.offset.sect_off, dwo_name);
14925 if (sections->str_offsets.buffer == NULL)
14926 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14927 " in CU at offset 0x%lx [in module %s]"),
14928 (long) cu->header.offset.sect_off, dwo_name);
14929 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14930 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14931 " section in CU at offset 0x%lx [in module %s]"),
14932 (long) cu->header.offset.sect_off, dwo_name);
14933 info_ptr = (sections->str_offsets.buffer
14934 + str_index * cu->header.offset_size);
14935 if (cu->header.offset_size == 4)
14936 str_offset = bfd_get_32 (abfd, info_ptr);
14938 str_offset = bfd_get_64 (abfd, info_ptr);
14939 if (str_offset >= sections->str.size)
14940 error (_("Offset from DW_FORM_str_index pointing outside of"
14941 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14942 (long) cu->header.offset.sect_off, dwo_name);
14943 return (const char *) (sections->str.buffer + str_offset);
14946 /* Return the length of an LEB128 number in BUF. */
14949 leb128_size (const gdb_byte *buf)
14951 const gdb_byte *begin = buf;
14957 if ((byte & 128) == 0)
14958 return buf - begin;
14963 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14970 cu->language = language_c;
14972 case DW_LANG_C_plus_plus:
14973 cu->language = language_cplus;
14976 cu->language = language_d;
14978 case DW_LANG_Fortran77:
14979 case DW_LANG_Fortran90:
14980 case DW_LANG_Fortran95:
14981 cu->language = language_fortran;
14984 cu->language = language_go;
14986 case DW_LANG_Mips_Assembler:
14987 cu->language = language_asm;
14990 cu->language = language_java;
14992 case DW_LANG_Ada83:
14993 case DW_LANG_Ada95:
14994 cu->language = language_ada;
14996 case DW_LANG_Modula2:
14997 cu->language = language_m2;
14999 case DW_LANG_Pascal83:
15000 cu->language = language_pascal;
15003 cu->language = language_objc;
15005 case DW_LANG_Cobol74:
15006 case DW_LANG_Cobol85:
15008 cu->language = language_minimal;
15011 cu->language_defn = language_def (cu->language);
15014 /* Return the named attribute or NULL if not there. */
15016 static struct attribute *
15017 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
15022 struct attribute *spec = NULL;
15024 for (i = 0; i < die->num_attrs; ++i)
15026 if (die->attrs[i].name == name)
15027 return &die->attrs[i];
15028 if (die->attrs[i].name == DW_AT_specification
15029 || die->attrs[i].name == DW_AT_abstract_origin)
15030 spec = &die->attrs[i];
15036 die = follow_die_ref (die, spec, &cu);
15042 /* Return the named attribute or NULL if not there,
15043 but do not follow DW_AT_specification, etc.
15044 This is for use in contexts where we're reading .debug_types dies.
15045 Following DW_AT_specification, DW_AT_abstract_origin will take us
15046 back up the chain, and we want to go down. */
15048 static struct attribute *
15049 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
15053 for (i = 0; i < die->num_attrs; ++i)
15054 if (die->attrs[i].name == name)
15055 return &die->attrs[i];
15060 /* Return non-zero iff the attribute NAME is defined for the given DIE,
15061 and holds a non-zero value. This function should only be used for
15062 DW_FORM_flag or DW_FORM_flag_present attributes. */
15065 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
15067 struct attribute *attr = dwarf2_attr (die, name, cu);
15069 return (attr && DW_UNSND (attr));
15073 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
15075 /* A DIE is a declaration if it has a DW_AT_declaration attribute
15076 which value is non-zero. However, we have to be careful with
15077 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
15078 (via dwarf2_flag_true_p) follows this attribute. So we may
15079 end up accidently finding a declaration attribute that belongs
15080 to a different DIE referenced by the specification attribute,
15081 even though the given DIE does not have a declaration attribute. */
15082 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
15083 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
15086 /* Return the die giving the specification for DIE, if there is
15087 one. *SPEC_CU is the CU containing DIE on input, and the CU
15088 containing the return value on output. If there is no
15089 specification, but there is an abstract origin, that is
15092 static struct die_info *
15093 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
15095 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
15098 if (spec_attr == NULL)
15099 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
15101 if (spec_attr == NULL)
15104 return follow_die_ref (die, spec_attr, spec_cu);
15107 /* Free the line_header structure *LH, and any arrays and strings it
15109 NOTE: This is also used as a "cleanup" function. */
15112 free_line_header (struct line_header *lh)
15114 if (lh->standard_opcode_lengths)
15115 xfree (lh->standard_opcode_lengths);
15117 /* Remember that all the lh->file_names[i].name pointers are
15118 pointers into debug_line_buffer, and don't need to be freed. */
15119 if (lh->file_names)
15120 xfree (lh->file_names);
15122 /* Similarly for the include directory names. */
15123 if (lh->include_dirs)
15124 xfree (lh->include_dirs);
15129 /* Add an entry to LH's include directory table. */
15132 add_include_dir (struct line_header *lh, const char *include_dir)
15134 /* Grow the array if necessary. */
15135 if (lh->include_dirs_size == 0)
15137 lh->include_dirs_size = 1; /* for testing */
15138 lh->include_dirs = xmalloc (lh->include_dirs_size
15139 * sizeof (*lh->include_dirs));
15141 else if (lh->num_include_dirs >= lh->include_dirs_size)
15143 lh->include_dirs_size *= 2;
15144 lh->include_dirs = xrealloc (lh->include_dirs,
15145 (lh->include_dirs_size
15146 * sizeof (*lh->include_dirs)));
15149 lh->include_dirs[lh->num_include_dirs++] = include_dir;
15152 /* Add an entry to LH's file name table. */
15155 add_file_name (struct line_header *lh,
15157 unsigned int dir_index,
15158 unsigned int mod_time,
15159 unsigned int length)
15161 struct file_entry *fe;
15163 /* Grow the array if necessary. */
15164 if (lh->file_names_size == 0)
15166 lh->file_names_size = 1; /* for testing */
15167 lh->file_names = xmalloc (lh->file_names_size
15168 * sizeof (*lh->file_names));
15170 else if (lh->num_file_names >= lh->file_names_size)
15172 lh->file_names_size *= 2;
15173 lh->file_names = xrealloc (lh->file_names,
15174 (lh->file_names_size
15175 * sizeof (*lh->file_names)));
15178 fe = &lh->file_names[lh->num_file_names++];
15180 fe->dir_index = dir_index;
15181 fe->mod_time = mod_time;
15182 fe->length = length;
15183 fe->included_p = 0;
15187 /* A convenience function to find the proper .debug_line section for a
15190 static struct dwarf2_section_info *
15191 get_debug_line_section (struct dwarf2_cu *cu)
15193 struct dwarf2_section_info *section;
15195 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
15197 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15198 section = &cu->dwo_unit->dwo_file->sections.line;
15199 else if (cu->per_cu->is_dwz)
15201 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15203 section = &dwz->line;
15206 section = &dwarf2_per_objfile->line;
15211 /* Read the statement program header starting at OFFSET in
15212 .debug_line, or .debug_line.dwo. Return a pointer
15213 to a struct line_header, allocated using xmalloc.
15215 NOTE: the strings in the include directory and file name tables of
15216 the returned object point into the dwarf line section buffer,
15217 and must not be freed. */
15219 static struct line_header *
15220 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15222 struct cleanup *back_to;
15223 struct line_header *lh;
15224 const gdb_byte *line_ptr;
15225 unsigned int bytes_read, offset_size;
15227 const char *cur_dir, *cur_file;
15228 struct dwarf2_section_info *section;
15231 section = get_debug_line_section (cu);
15232 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15233 if (section->buffer == NULL)
15235 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15236 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15238 complaint (&symfile_complaints, _("missing .debug_line section"));
15242 /* We can't do this until we know the section is non-empty.
15243 Only then do we know we have such a section. */
15244 abfd = section->asection->owner;
15246 /* Make sure that at least there's room for the total_length field.
15247 That could be 12 bytes long, but we're just going to fudge that. */
15248 if (offset + 4 >= section->size)
15250 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15254 lh = xmalloc (sizeof (*lh));
15255 memset (lh, 0, sizeof (*lh));
15256 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15259 line_ptr = section->buffer + offset;
15261 /* Read in the header. */
15263 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15264 &bytes_read, &offset_size);
15265 line_ptr += bytes_read;
15266 if (line_ptr + lh->total_length > (section->buffer + section->size))
15268 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15271 lh->statement_program_end = line_ptr + lh->total_length;
15272 lh->version = read_2_bytes (abfd, line_ptr);
15274 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15275 line_ptr += offset_size;
15276 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15278 if (lh->version >= 4)
15280 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15284 lh->maximum_ops_per_instruction = 1;
15286 if (lh->maximum_ops_per_instruction == 0)
15288 lh->maximum_ops_per_instruction = 1;
15289 complaint (&symfile_complaints,
15290 _("invalid maximum_ops_per_instruction "
15291 "in `.debug_line' section"));
15294 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15296 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15298 lh->line_range = read_1_byte (abfd, line_ptr);
15300 lh->opcode_base = read_1_byte (abfd, line_ptr);
15302 lh->standard_opcode_lengths
15303 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15305 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15306 for (i = 1; i < lh->opcode_base; ++i)
15308 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15312 /* Read directory table. */
15313 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15315 line_ptr += bytes_read;
15316 add_include_dir (lh, cur_dir);
15318 line_ptr += bytes_read;
15320 /* Read file name table. */
15321 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15323 unsigned int dir_index, mod_time, length;
15325 line_ptr += bytes_read;
15326 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15327 line_ptr += bytes_read;
15328 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15329 line_ptr += bytes_read;
15330 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15331 line_ptr += bytes_read;
15333 add_file_name (lh, cur_file, dir_index, mod_time, length);
15335 line_ptr += bytes_read;
15336 lh->statement_program_start = line_ptr;
15338 if (line_ptr > (section->buffer + section->size))
15339 complaint (&symfile_complaints,
15340 _("line number info header doesn't "
15341 "fit in `.debug_line' section"));
15343 discard_cleanups (back_to);
15347 /* Subroutine of dwarf_decode_lines to simplify it.
15348 Return the file name of the psymtab for included file FILE_INDEX
15349 in line header LH of PST.
15350 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15351 If space for the result is malloc'd, it will be freed by a cleanup.
15352 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15354 The function creates dangling cleanup registration. */
15356 static const char *
15357 psymtab_include_file_name (const struct line_header *lh, int file_index,
15358 const struct partial_symtab *pst,
15359 const char *comp_dir)
15361 const struct file_entry fe = lh->file_names [file_index];
15362 const char *include_name = fe.name;
15363 const char *include_name_to_compare = include_name;
15364 const char *dir_name = NULL;
15365 const char *pst_filename;
15366 char *copied_name = NULL;
15370 dir_name = lh->include_dirs[fe.dir_index - 1];
15372 if (!IS_ABSOLUTE_PATH (include_name)
15373 && (dir_name != NULL || comp_dir != NULL))
15375 /* Avoid creating a duplicate psymtab for PST.
15376 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15377 Before we do the comparison, however, we need to account
15378 for DIR_NAME and COMP_DIR.
15379 First prepend dir_name (if non-NULL). If we still don't
15380 have an absolute path prepend comp_dir (if non-NULL).
15381 However, the directory we record in the include-file's
15382 psymtab does not contain COMP_DIR (to match the
15383 corresponding symtab(s)).
15388 bash$ gcc -g ./hello.c
15389 include_name = "hello.c"
15391 DW_AT_comp_dir = comp_dir = "/tmp"
15392 DW_AT_name = "./hello.c" */
15394 if (dir_name != NULL)
15396 char *tem = concat (dir_name, SLASH_STRING,
15397 include_name, (char *)NULL);
15399 make_cleanup (xfree, tem);
15400 include_name = tem;
15401 include_name_to_compare = include_name;
15403 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15405 char *tem = concat (comp_dir, SLASH_STRING,
15406 include_name, (char *)NULL);
15408 make_cleanup (xfree, tem);
15409 include_name_to_compare = tem;
15413 pst_filename = pst->filename;
15414 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15416 copied_name = concat (pst->dirname, SLASH_STRING,
15417 pst_filename, (char *)NULL);
15418 pst_filename = copied_name;
15421 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15423 if (copied_name != NULL)
15424 xfree (copied_name);
15428 return include_name;
15431 /* Ignore this record_line request. */
15434 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15439 /* Subroutine of dwarf_decode_lines to simplify it.
15440 Process the line number information in LH. */
15443 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15444 struct dwarf2_cu *cu, struct partial_symtab *pst)
15446 const gdb_byte *line_ptr, *extended_end;
15447 const gdb_byte *line_end;
15448 unsigned int bytes_read, extended_len;
15449 unsigned char op_code, extended_op, adj_opcode;
15450 CORE_ADDR baseaddr;
15451 struct objfile *objfile = cu->objfile;
15452 bfd *abfd = objfile->obfd;
15453 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15454 const int decode_for_pst_p = (pst != NULL);
15455 struct subfile *last_subfile = NULL;
15456 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15459 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15461 line_ptr = lh->statement_program_start;
15462 line_end = lh->statement_program_end;
15464 /* Read the statement sequences until there's nothing left. */
15465 while (line_ptr < line_end)
15467 /* state machine registers */
15468 CORE_ADDR address = 0;
15469 unsigned int file = 1;
15470 unsigned int line = 1;
15471 unsigned int column = 0;
15472 int is_stmt = lh->default_is_stmt;
15473 int basic_block = 0;
15474 int end_sequence = 0;
15476 unsigned char op_index = 0;
15478 if (!decode_for_pst_p && lh->num_file_names >= file)
15480 /* Start a subfile for the current file of the state machine. */
15481 /* lh->include_dirs and lh->file_names are 0-based, but the
15482 directory and file name numbers in the statement program
15484 struct file_entry *fe = &lh->file_names[file - 1];
15485 const char *dir = NULL;
15488 dir = lh->include_dirs[fe->dir_index - 1];
15490 dwarf2_start_subfile (fe->name, dir, comp_dir);
15493 /* Decode the table. */
15494 while (!end_sequence)
15496 op_code = read_1_byte (abfd, line_ptr);
15498 if (line_ptr > line_end)
15500 dwarf2_debug_line_missing_end_sequence_complaint ();
15504 if (op_code >= lh->opcode_base)
15506 /* Special operand. */
15507 adj_opcode = op_code - lh->opcode_base;
15508 address += (((op_index + (adj_opcode / lh->line_range))
15509 / lh->maximum_ops_per_instruction)
15510 * lh->minimum_instruction_length);
15511 op_index = ((op_index + (adj_opcode / lh->line_range))
15512 % lh->maximum_ops_per_instruction);
15513 line += lh->line_base + (adj_opcode % lh->line_range);
15514 if (lh->num_file_names < file || file == 0)
15515 dwarf2_debug_line_missing_file_complaint ();
15516 /* For now we ignore lines not starting on an
15517 instruction boundary. */
15518 else if (op_index == 0)
15520 lh->file_names[file - 1].included_p = 1;
15521 if (!decode_for_pst_p && is_stmt)
15523 if (last_subfile != current_subfile)
15525 addr = gdbarch_addr_bits_remove (gdbarch, address);
15527 (*p_record_line) (last_subfile, 0, addr);
15528 last_subfile = current_subfile;
15530 /* Append row to matrix using current values. */
15531 addr = gdbarch_addr_bits_remove (gdbarch, address);
15532 (*p_record_line) (current_subfile, line, addr);
15537 else switch (op_code)
15539 case DW_LNS_extended_op:
15540 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15542 line_ptr += bytes_read;
15543 extended_end = line_ptr + extended_len;
15544 extended_op = read_1_byte (abfd, line_ptr);
15546 switch (extended_op)
15548 case DW_LNE_end_sequence:
15549 p_record_line = record_line;
15552 case DW_LNE_set_address:
15553 address = read_address (abfd, line_ptr, cu, &bytes_read);
15555 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15557 /* This line table is for a function which has been
15558 GCd by the linker. Ignore it. PR gdb/12528 */
15561 = line_ptr - get_debug_line_section (cu)->buffer;
15563 complaint (&symfile_complaints,
15564 _(".debug_line address at offset 0x%lx is 0 "
15566 line_offset, objfile->name);
15567 p_record_line = noop_record_line;
15571 line_ptr += bytes_read;
15572 address += baseaddr;
15574 case DW_LNE_define_file:
15576 const char *cur_file;
15577 unsigned int dir_index, mod_time, length;
15579 cur_file = read_direct_string (abfd, line_ptr,
15581 line_ptr += bytes_read;
15583 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15584 line_ptr += bytes_read;
15586 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15587 line_ptr += bytes_read;
15589 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15590 line_ptr += bytes_read;
15591 add_file_name (lh, cur_file, dir_index, mod_time, length);
15594 case DW_LNE_set_discriminator:
15595 /* The discriminator is not interesting to the debugger;
15597 line_ptr = extended_end;
15600 complaint (&symfile_complaints,
15601 _("mangled .debug_line section"));
15604 /* Make sure that we parsed the extended op correctly. If e.g.
15605 we expected a different address size than the producer used,
15606 we may have read the wrong number of bytes. */
15607 if (line_ptr != extended_end)
15609 complaint (&symfile_complaints,
15610 _("mangled .debug_line section"));
15615 if (lh->num_file_names < file || file == 0)
15616 dwarf2_debug_line_missing_file_complaint ();
15619 lh->file_names[file - 1].included_p = 1;
15620 if (!decode_for_pst_p && is_stmt)
15622 if (last_subfile != current_subfile)
15624 addr = gdbarch_addr_bits_remove (gdbarch, address);
15626 (*p_record_line) (last_subfile, 0, addr);
15627 last_subfile = current_subfile;
15629 addr = gdbarch_addr_bits_remove (gdbarch, address);
15630 (*p_record_line) (current_subfile, line, addr);
15635 case DW_LNS_advance_pc:
15638 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15640 address += (((op_index + adjust)
15641 / lh->maximum_ops_per_instruction)
15642 * lh->minimum_instruction_length);
15643 op_index = ((op_index + adjust)
15644 % lh->maximum_ops_per_instruction);
15645 line_ptr += bytes_read;
15648 case DW_LNS_advance_line:
15649 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15650 line_ptr += bytes_read;
15652 case DW_LNS_set_file:
15654 /* The arrays lh->include_dirs and lh->file_names are
15655 0-based, but the directory and file name numbers in
15656 the statement program are 1-based. */
15657 struct file_entry *fe;
15658 const char *dir = NULL;
15660 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15661 line_ptr += bytes_read;
15662 if (lh->num_file_names < file || file == 0)
15663 dwarf2_debug_line_missing_file_complaint ();
15666 fe = &lh->file_names[file - 1];
15668 dir = lh->include_dirs[fe->dir_index - 1];
15669 if (!decode_for_pst_p)
15671 last_subfile = current_subfile;
15672 dwarf2_start_subfile (fe->name, dir, comp_dir);
15677 case DW_LNS_set_column:
15678 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15679 line_ptr += bytes_read;
15681 case DW_LNS_negate_stmt:
15682 is_stmt = (!is_stmt);
15684 case DW_LNS_set_basic_block:
15687 /* Add to the address register of the state machine the
15688 address increment value corresponding to special opcode
15689 255. I.e., this value is scaled by the minimum
15690 instruction length since special opcode 255 would have
15691 scaled the increment. */
15692 case DW_LNS_const_add_pc:
15694 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15696 address += (((op_index + adjust)
15697 / lh->maximum_ops_per_instruction)
15698 * lh->minimum_instruction_length);
15699 op_index = ((op_index + adjust)
15700 % lh->maximum_ops_per_instruction);
15703 case DW_LNS_fixed_advance_pc:
15704 address += read_2_bytes (abfd, line_ptr);
15710 /* Unknown standard opcode, ignore it. */
15713 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15715 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15716 line_ptr += bytes_read;
15721 if (lh->num_file_names < file || file == 0)
15722 dwarf2_debug_line_missing_file_complaint ();
15725 lh->file_names[file - 1].included_p = 1;
15726 if (!decode_for_pst_p)
15728 addr = gdbarch_addr_bits_remove (gdbarch, address);
15729 (*p_record_line) (current_subfile, 0, addr);
15735 /* Decode the Line Number Program (LNP) for the given line_header
15736 structure and CU. The actual information extracted and the type
15737 of structures created from the LNP depends on the value of PST.
15739 1. If PST is NULL, then this procedure uses the data from the program
15740 to create all necessary symbol tables, and their linetables.
15742 2. If PST is not NULL, this procedure reads the program to determine
15743 the list of files included by the unit represented by PST, and
15744 builds all the associated partial symbol tables.
15746 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15747 It is used for relative paths in the line table.
15748 NOTE: When processing partial symtabs (pst != NULL),
15749 comp_dir == pst->dirname.
15751 NOTE: It is important that psymtabs have the same file name (via strcmp)
15752 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15753 symtab we don't use it in the name of the psymtabs we create.
15754 E.g. expand_line_sal requires this when finding psymtabs to expand.
15755 A good testcase for this is mb-inline.exp. */
15758 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15759 struct dwarf2_cu *cu, struct partial_symtab *pst,
15760 int want_line_info)
15762 struct objfile *objfile = cu->objfile;
15763 const int decode_for_pst_p = (pst != NULL);
15764 struct subfile *first_subfile = current_subfile;
15766 if (want_line_info)
15767 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15769 if (decode_for_pst_p)
15773 /* Now that we're done scanning the Line Header Program, we can
15774 create the psymtab of each included file. */
15775 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15776 if (lh->file_names[file_index].included_p == 1)
15778 const char *include_name =
15779 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15780 if (include_name != NULL)
15781 dwarf2_create_include_psymtab (include_name, pst, objfile);
15786 /* Make sure a symtab is created for every file, even files
15787 which contain only variables (i.e. no code with associated
15791 for (i = 0; i < lh->num_file_names; i++)
15793 const char *dir = NULL;
15794 struct file_entry *fe;
15796 fe = &lh->file_names[i];
15798 dir = lh->include_dirs[fe->dir_index - 1];
15799 dwarf2_start_subfile (fe->name, dir, comp_dir);
15801 /* Skip the main file; we don't need it, and it must be
15802 allocated last, so that it will show up before the
15803 non-primary symtabs in the objfile's symtab list. */
15804 if (current_subfile == first_subfile)
15807 if (current_subfile->symtab == NULL)
15808 current_subfile->symtab = allocate_symtab (current_subfile->name,
15810 fe->symtab = current_subfile->symtab;
15815 /* Start a subfile for DWARF. FILENAME is the name of the file and
15816 DIRNAME the name of the source directory which contains FILENAME
15817 or NULL if not known. COMP_DIR is the compilation directory for the
15818 linetable's compilation unit or NULL if not known.
15819 This routine tries to keep line numbers from identical absolute and
15820 relative file names in a common subfile.
15822 Using the `list' example from the GDB testsuite, which resides in
15823 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15824 of /srcdir/list0.c yields the following debugging information for list0.c:
15826 DW_AT_name: /srcdir/list0.c
15827 DW_AT_comp_dir: /compdir
15828 files.files[0].name: list0.h
15829 files.files[0].dir: /srcdir
15830 files.files[1].name: list0.c
15831 files.files[1].dir: /srcdir
15833 The line number information for list0.c has to end up in a single
15834 subfile, so that `break /srcdir/list0.c:1' works as expected.
15835 start_subfile will ensure that this happens provided that we pass the
15836 concatenation of files.files[1].dir and files.files[1].name as the
15840 dwarf2_start_subfile (const char *filename, const char *dirname,
15841 const char *comp_dir)
15845 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15846 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15847 second argument to start_subfile. To be consistent, we do the
15848 same here. In order not to lose the line information directory,
15849 we concatenate it to the filename when it makes sense.
15850 Note that the Dwarf3 standard says (speaking of filenames in line
15851 information): ``The directory index is ignored for file names
15852 that represent full path names''. Thus ignoring dirname in the
15853 `else' branch below isn't an issue. */
15855 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15857 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15861 start_subfile (filename, comp_dir);
15867 /* Start a symtab for DWARF.
15868 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15871 dwarf2_start_symtab (struct dwarf2_cu *cu,
15872 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15874 start_symtab (name, comp_dir, low_pc);
15875 record_debugformat ("DWARF 2");
15876 record_producer (cu->producer);
15878 /* We assume that we're processing GCC output. */
15879 processing_gcc_compilation = 2;
15881 cu->processing_has_namespace_info = 0;
15885 var_decode_location (struct attribute *attr, struct symbol *sym,
15886 struct dwarf2_cu *cu)
15888 struct objfile *objfile = cu->objfile;
15889 struct comp_unit_head *cu_header = &cu->header;
15891 /* NOTE drow/2003-01-30: There used to be a comment and some special
15892 code here to turn a symbol with DW_AT_external and a
15893 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15894 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15895 with some versions of binutils) where shared libraries could have
15896 relocations against symbols in their debug information - the
15897 minimal symbol would have the right address, but the debug info
15898 would not. It's no longer necessary, because we will explicitly
15899 apply relocations when we read in the debug information now. */
15901 /* A DW_AT_location attribute with no contents indicates that a
15902 variable has been optimized away. */
15903 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15905 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
15909 /* Handle one degenerate form of location expression specially, to
15910 preserve GDB's previous behavior when section offsets are
15911 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15912 then mark this symbol as LOC_STATIC. */
15914 if (attr_form_is_block (attr)
15915 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15916 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15917 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15918 && (DW_BLOCK (attr)->size
15919 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15921 unsigned int dummy;
15923 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15924 SYMBOL_VALUE_ADDRESS (sym) =
15925 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15927 SYMBOL_VALUE_ADDRESS (sym) =
15928 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15929 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
15930 fixup_symbol_section (sym, objfile);
15931 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15932 SYMBOL_SECTION (sym));
15936 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15937 expression evaluator, and use LOC_COMPUTED only when necessary
15938 (i.e. when the value of a register or memory location is
15939 referenced, or a thread-local block, etc.). Then again, it might
15940 not be worthwhile. I'm assuming that it isn't unless performance
15941 or memory numbers show me otherwise. */
15943 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
15945 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
15946 cu->has_loclist = 1;
15949 /* Given a pointer to a DWARF information entry, figure out if we need
15950 to make a symbol table entry for it, and if so, create a new entry
15951 and return a pointer to it.
15952 If TYPE is NULL, determine symbol type from the die, otherwise
15953 used the passed type.
15954 If SPACE is not NULL, use it to hold the new symbol. If it is
15955 NULL, allocate a new symbol on the objfile's obstack. */
15957 static struct symbol *
15958 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15959 struct symbol *space)
15961 struct objfile *objfile = cu->objfile;
15962 struct symbol *sym = NULL;
15964 struct attribute *attr = NULL;
15965 struct attribute *attr2 = NULL;
15966 CORE_ADDR baseaddr;
15967 struct pending **list_to_add = NULL;
15969 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15971 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15973 name = dwarf2_name (die, cu);
15976 const char *linkagename;
15977 int suppress_add = 0;
15982 sym = allocate_symbol (objfile);
15983 OBJSTAT (objfile, n_syms++);
15985 /* Cache this symbol's name and the name's demangled form (if any). */
15986 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
15987 linkagename = dwarf2_physname (name, die, cu);
15988 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15990 /* Fortran does not have mangling standard and the mangling does differ
15991 between gfortran, iFort etc. */
15992 if (cu->language == language_fortran
15993 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15994 symbol_set_demangled_name (&(sym->ginfo),
15995 dwarf2_full_name (name, die, cu),
15998 /* Default assumptions.
15999 Use the passed type or decode it from the die. */
16000 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16001 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
16003 SYMBOL_TYPE (sym) = type;
16005 SYMBOL_TYPE (sym) = die_type (die, cu);
16006 attr = dwarf2_attr (die,
16007 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
16011 SYMBOL_LINE (sym) = DW_UNSND (attr);
16014 attr = dwarf2_attr (die,
16015 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
16019 int file_index = DW_UNSND (attr);
16021 if (cu->line_header == NULL
16022 || file_index > cu->line_header->num_file_names)
16023 complaint (&symfile_complaints,
16024 _("file index out of range"));
16025 else if (file_index > 0)
16027 struct file_entry *fe;
16029 fe = &cu->line_header->file_names[file_index - 1];
16030 SYMBOL_SYMTAB (sym) = fe->symtab;
16037 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
16040 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
16042 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
16043 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
16044 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
16045 add_symbol_to_list (sym, cu->list_in_scope);
16047 case DW_TAG_subprogram:
16048 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16050 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16051 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16052 if ((attr2 && (DW_UNSND (attr2) != 0))
16053 || cu->language == language_ada)
16055 /* Subprograms marked external are stored as a global symbol.
16056 Ada subprograms, whether marked external or not, are always
16057 stored as a global symbol, because we want to be able to
16058 access them globally. For instance, we want to be able
16059 to break on a nested subprogram without having to
16060 specify the context. */
16061 list_to_add = &global_symbols;
16065 list_to_add = cu->list_in_scope;
16068 case DW_TAG_inlined_subroutine:
16069 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
16071 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
16072 SYMBOL_INLINED (sym) = 1;
16073 list_to_add = cu->list_in_scope;
16075 case DW_TAG_template_value_param:
16077 /* Fall through. */
16078 case DW_TAG_constant:
16079 case DW_TAG_variable:
16080 case DW_TAG_member:
16081 /* Compilation with minimal debug info may result in
16082 variables with missing type entries. Change the
16083 misleading `void' type to something sensible. */
16084 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
16086 = objfile_type (objfile)->nodebug_data_symbol;
16088 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16089 /* In the case of DW_TAG_member, we should only be called for
16090 static const members. */
16091 if (die->tag == DW_TAG_member)
16093 /* dwarf2_add_field uses die_is_declaration,
16094 so we do the same. */
16095 gdb_assert (die_is_declaration (die, cu));
16100 dwarf2_const_value (attr, sym, cu);
16101 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16104 if (attr2 && (DW_UNSND (attr2) != 0))
16105 list_to_add = &global_symbols;
16107 list_to_add = cu->list_in_scope;
16111 attr = dwarf2_attr (die, DW_AT_location, cu);
16114 var_decode_location (attr, sym, cu);
16115 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16117 /* Fortran explicitly imports any global symbols to the local
16118 scope by DW_TAG_common_block. */
16119 if (cu->language == language_fortran && die->parent
16120 && die->parent->tag == DW_TAG_common_block)
16123 if (SYMBOL_CLASS (sym) == LOC_STATIC
16124 && SYMBOL_VALUE_ADDRESS (sym) == 0
16125 && !dwarf2_per_objfile->has_section_at_zero)
16127 /* When a static variable is eliminated by the linker,
16128 the corresponding debug information is not stripped
16129 out, but the variable address is set to null;
16130 do not add such variables into symbol table. */
16132 else if (attr2 && (DW_UNSND (attr2) != 0))
16134 /* Workaround gfortran PR debug/40040 - it uses
16135 DW_AT_location for variables in -fPIC libraries which may
16136 get overriden by other libraries/executable and get
16137 a different address. Resolve it by the minimal symbol
16138 which may come from inferior's executable using copy
16139 relocation. Make this workaround only for gfortran as for
16140 other compilers GDB cannot guess the minimal symbol
16141 Fortran mangling kind. */
16142 if (cu->language == language_fortran && die->parent
16143 && die->parent->tag == DW_TAG_module
16145 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
16146 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16148 /* A variable with DW_AT_external is never static,
16149 but it may be block-scoped. */
16150 list_to_add = (cu->list_in_scope == &file_symbols
16151 ? &global_symbols : cu->list_in_scope);
16154 list_to_add = cu->list_in_scope;
16158 /* We do not know the address of this symbol.
16159 If it is an external symbol and we have type information
16160 for it, enter the symbol as a LOC_UNRESOLVED symbol.
16161 The address of the variable will then be determined from
16162 the minimal symbol table whenever the variable is
16164 attr2 = dwarf2_attr (die, DW_AT_external, cu);
16166 /* Fortran explicitly imports any global symbols to the local
16167 scope by DW_TAG_common_block. */
16168 if (cu->language == language_fortran && die->parent
16169 && die->parent->tag == DW_TAG_common_block)
16171 /* SYMBOL_CLASS doesn't matter here because
16172 read_common_block is going to reset it. */
16174 list_to_add = cu->list_in_scope;
16176 else if (attr2 && (DW_UNSND (attr2) != 0)
16177 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
16179 /* A variable with DW_AT_external is never static, but it
16180 may be block-scoped. */
16181 list_to_add = (cu->list_in_scope == &file_symbols
16182 ? &global_symbols : cu->list_in_scope);
16184 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
16186 else if (!die_is_declaration (die, cu))
16188 /* Use the default LOC_OPTIMIZED_OUT class. */
16189 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
16191 list_to_add = cu->list_in_scope;
16195 case DW_TAG_formal_parameter:
16196 /* If we are inside a function, mark this as an argument. If
16197 not, we might be looking at an argument to an inlined function
16198 when we do not have enough information to show inlined frames;
16199 pretend it's a local variable in that case so that the user can
16201 if (context_stack_depth > 0
16202 && context_stack[context_stack_depth - 1].name != NULL)
16203 SYMBOL_IS_ARGUMENT (sym) = 1;
16204 attr = dwarf2_attr (die, DW_AT_location, cu);
16207 var_decode_location (attr, sym, cu);
16209 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16212 dwarf2_const_value (attr, sym, cu);
16215 list_to_add = cu->list_in_scope;
16217 case DW_TAG_unspecified_parameters:
16218 /* From varargs functions; gdb doesn't seem to have any
16219 interest in this information, so just ignore it for now.
16222 case DW_TAG_template_type_param:
16224 /* Fall through. */
16225 case DW_TAG_class_type:
16226 case DW_TAG_interface_type:
16227 case DW_TAG_structure_type:
16228 case DW_TAG_union_type:
16229 case DW_TAG_set_type:
16230 case DW_TAG_enumeration_type:
16231 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16232 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16235 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16236 really ever be static objects: otherwise, if you try
16237 to, say, break of a class's method and you're in a file
16238 which doesn't mention that class, it won't work unless
16239 the check for all static symbols in lookup_symbol_aux
16240 saves you. See the OtherFileClass tests in
16241 gdb.c++/namespace.exp. */
16245 list_to_add = (cu->list_in_scope == &file_symbols
16246 && (cu->language == language_cplus
16247 || cu->language == language_java)
16248 ? &global_symbols : cu->list_in_scope);
16250 /* The semantics of C++ state that "struct foo {
16251 ... }" also defines a typedef for "foo". A Java
16252 class declaration also defines a typedef for the
16254 if (cu->language == language_cplus
16255 || cu->language == language_java
16256 || cu->language == language_ada)
16258 /* The symbol's name is already allocated along
16259 with this objfile, so we don't need to
16260 duplicate it for the type. */
16261 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16262 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16267 case DW_TAG_typedef:
16268 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16269 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16270 list_to_add = cu->list_in_scope;
16272 case DW_TAG_base_type:
16273 case DW_TAG_subrange_type:
16274 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16275 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16276 list_to_add = cu->list_in_scope;
16278 case DW_TAG_enumerator:
16279 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16282 dwarf2_const_value (attr, sym, cu);
16285 /* NOTE: carlton/2003-11-10: See comment above in the
16286 DW_TAG_class_type, etc. block. */
16288 list_to_add = (cu->list_in_scope == &file_symbols
16289 && (cu->language == language_cplus
16290 || cu->language == language_java)
16291 ? &global_symbols : cu->list_in_scope);
16294 case DW_TAG_namespace:
16295 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
16296 list_to_add = &global_symbols;
16298 case DW_TAG_common_block:
16299 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
16300 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16301 add_symbol_to_list (sym, cu->list_in_scope);
16304 /* Not a tag we recognize. Hopefully we aren't processing
16305 trash data, but since we must specifically ignore things
16306 we don't recognize, there is nothing else we should do at
16308 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16309 dwarf_tag_name (die->tag));
16315 sym->hash_next = objfile->template_symbols;
16316 objfile->template_symbols = sym;
16317 list_to_add = NULL;
16320 if (list_to_add != NULL)
16321 add_symbol_to_list (sym, list_to_add);
16323 /* For the benefit of old versions of GCC, check for anonymous
16324 namespaces based on the demangled name. */
16325 if (!cu->processing_has_namespace_info
16326 && cu->language == language_cplus)
16327 cp_scan_for_anonymous_namespaces (sym, objfile);
16332 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16334 static struct symbol *
16335 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16337 return new_symbol_full (die, type, cu, NULL);
16340 /* Given an attr with a DW_FORM_dataN value in host byte order,
16341 zero-extend it as appropriate for the symbol's type. The DWARF
16342 standard (v4) is not entirely clear about the meaning of using
16343 DW_FORM_dataN for a constant with a signed type, where the type is
16344 wider than the data. The conclusion of a discussion on the DWARF
16345 list was that this is unspecified. We choose to always zero-extend
16346 because that is the interpretation long in use by GCC. */
16349 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16350 const char *name, struct obstack *obstack,
16351 struct dwarf2_cu *cu, LONGEST *value, int bits)
16353 struct objfile *objfile = cu->objfile;
16354 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16355 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16356 LONGEST l = DW_UNSND (attr);
16358 if (bits < sizeof (*value) * 8)
16360 l &= ((LONGEST) 1 << bits) - 1;
16363 else if (bits == sizeof (*value) * 8)
16367 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16368 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16375 /* Read a constant value from an attribute. Either set *VALUE, or if
16376 the value does not fit in *VALUE, set *BYTES - either already
16377 allocated on the objfile obstack, or newly allocated on OBSTACK,
16378 or, set *BATON, if we translated the constant to a location
16382 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16383 const char *name, struct obstack *obstack,
16384 struct dwarf2_cu *cu,
16385 LONGEST *value, const gdb_byte **bytes,
16386 struct dwarf2_locexpr_baton **baton)
16388 struct objfile *objfile = cu->objfile;
16389 struct comp_unit_head *cu_header = &cu->header;
16390 struct dwarf_block *blk;
16391 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16392 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16398 switch (attr->form)
16401 case DW_FORM_GNU_addr_index:
16405 if (TYPE_LENGTH (type) != cu_header->addr_size)
16406 dwarf2_const_value_length_mismatch_complaint (name,
16407 cu_header->addr_size,
16408 TYPE_LENGTH (type));
16409 /* Symbols of this form are reasonably rare, so we just
16410 piggyback on the existing location code rather than writing
16411 a new implementation of symbol_computed_ops. */
16412 *baton = obstack_alloc (&objfile->objfile_obstack,
16413 sizeof (struct dwarf2_locexpr_baton));
16414 (*baton)->per_cu = cu->per_cu;
16415 gdb_assert ((*baton)->per_cu);
16417 (*baton)->size = 2 + cu_header->addr_size;
16418 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16419 (*baton)->data = data;
16421 data[0] = DW_OP_addr;
16422 store_unsigned_integer (&data[1], cu_header->addr_size,
16423 byte_order, DW_ADDR (attr));
16424 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16427 case DW_FORM_string:
16429 case DW_FORM_GNU_str_index:
16430 case DW_FORM_GNU_strp_alt:
16431 /* DW_STRING is already allocated on the objfile obstack, point
16433 *bytes = (const gdb_byte *) DW_STRING (attr);
16435 case DW_FORM_block1:
16436 case DW_FORM_block2:
16437 case DW_FORM_block4:
16438 case DW_FORM_block:
16439 case DW_FORM_exprloc:
16440 blk = DW_BLOCK (attr);
16441 if (TYPE_LENGTH (type) != blk->size)
16442 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16443 TYPE_LENGTH (type));
16444 *bytes = blk->data;
16447 /* The DW_AT_const_value attributes are supposed to carry the
16448 symbol's value "represented as it would be on the target
16449 architecture." By the time we get here, it's already been
16450 converted to host endianness, so we just need to sign- or
16451 zero-extend it as appropriate. */
16452 case DW_FORM_data1:
16453 *bytes = dwarf2_const_value_data (attr, type, name,
16454 obstack, cu, value, 8);
16456 case DW_FORM_data2:
16457 *bytes = dwarf2_const_value_data (attr, type, name,
16458 obstack, cu, value, 16);
16460 case DW_FORM_data4:
16461 *bytes = dwarf2_const_value_data (attr, type, name,
16462 obstack, cu, value, 32);
16464 case DW_FORM_data8:
16465 *bytes = dwarf2_const_value_data (attr, type, name,
16466 obstack, cu, value, 64);
16469 case DW_FORM_sdata:
16470 *value = DW_SND (attr);
16473 case DW_FORM_udata:
16474 *value = DW_UNSND (attr);
16478 complaint (&symfile_complaints,
16479 _("unsupported const value attribute form: '%s'"),
16480 dwarf_form_name (attr->form));
16487 /* Copy constant value from an attribute to a symbol. */
16490 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16491 struct dwarf2_cu *cu)
16493 struct objfile *objfile = cu->objfile;
16494 struct comp_unit_head *cu_header = &cu->header;
16496 const gdb_byte *bytes;
16497 struct dwarf2_locexpr_baton *baton;
16499 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16500 SYMBOL_PRINT_NAME (sym),
16501 &objfile->objfile_obstack, cu,
16502 &value, &bytes, &baton);
16506 SYMBOL_LOCATION_BATON (sym) = baton;
16507 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16509 else if (bytes != NULL)
16511 SYMBOL_VALUE_BYTES (sym) = bytes;
16512 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
16516 SYMBOL_VALUE (sym) = value;
16517 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
16521 /* Return the type of the die in question using its DW_AT_type attribute. */
16523 static struct type *
16524 die_type (struct die_info *die, struct dwarf2_cu *cu)
16526 struct attribute *type_attr;
16528 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16531 /* A missing DW_AT_type represents a void type. */
16532 return objfile_type (cu->objfile)->builtin_void;
16535 return lookup_die_type (die, type_attr, cu);
16538 /* True iff CU's producer generates GNAT Ada auxiliary information
16539 that allows to find parallel types through that information instead
16540 of having to do expensive parallel lookups by type name. */
16543 need_gnat_info (struct dwarf2_cu *cu)
16545 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16546 of GNAT produces this auxiliary information, without any indication
16547 that it is produced. Part of enhancing the FSF version of GNAT
16548 to produce that information will be to put in place an indicator
16549 that we can use in order to determine whether the descriptive type
16550 info is available or not. One suggestion that has been made is
16551 to use a new attribute, attached to the CU die. For now, assume
16552 that the descriptive type info is not available. */
16556 /* Return the auxiliary type of the die in question using its
16557 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16558 attribute is not present. */
16560 static struct type *
16561 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16563 struct attribute *type_attr;
16565 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16569 return lookup_die_type (die, type_attr, cu);
16572 /* If DIE has a descriptive_type attribute, then set the TYPE's
16573 descriptive type accordingly. */
16576 set_descriptive_type (struct type *type, struct die_info *die,
16577 struct dwarf2_cu *cu)
16579 struct type *descriptive_type = die_descriptive_type (die, cu);
16581 if (descriptive_type)
16583 ALLOCATE_GNAT_AUX_TYPE (type);
16584 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16588 /* Return the containing type of the die in question using its
16589 DW_AT_containing_type attribute. */
16591 static struct type *
16592 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16594 struct attribute *type_attr;
16596 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16598 error (_("Dwarf Error: Problem turning containing type into gdb type "
16599 "[in module %s]"), cu->objfile->name);
16601 return lookup_die_type (die, type_attr, cu);
16604 /* Look up the type of DIE in CU using its type attribute ATTR.
16605 If there is no type substitute an error marker. */
16607 static struct type *
16608 lookup_die_type (struct die_info *die, struct attribute *attr,
16609 struct dwarf2_cu *cu)
16611 struct objfile *objfile = cu->objfile;
16612 struct type *this_type;
16614 /* First see if we have it cached. */
16616 if (attr->form == DW_FORM_GNU_ref_alt)
16618 struct dwarf2_per_cu_data *per_cu;
16619 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16621 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16622 this_type = get_die_type_at_offset (offset, per_cu);
16624 else if (is_ref_attr (attr))
16626 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16628 this_type = get_die_type_at_offset (offset, cu->per_cu);
16630 else if (attr->form == DW_FORM_ref_sig8)
16632 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16634 /* sig_type will be NULL if the signatured type is missing from
16636 if (sig_type == NULL)
16637 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16638 "at 0x%x [in module %s]"),
16639 die->offset.sect_off, objfile->name);
16641 gdb_assert (sig_type->per_cu.is_debug_types);
16642 /* If we haven't filled in type_offset_in_section yet, then we
16643 haven't read the type in yet. */
16645 if (sig_type->type_offset_in_section.sect_off != 0)
16648 get_die_type_at_offset (sig_type->type_offset_in_section,
16649 &sig_type->per_cu);
16654 dump_die_for_error (die);
16655 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16656 dwarf_attr_name (attr->name), objfile->name);
16659 /* If not cached we need to read it in. */
16661 if (this_type == NULL)
16663 struct die_info *type_die;
16664 struct dwarf2_cu *type_cu = cu;
16666 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16667 /* If we found the type now, it's probably because the type came
16668 from an inter-CU reference and the type's CU got expanded before
16670 this_type = get_die_type (type_die, type_cu);
16671 if (this_type == NULL)
16672 this_type = read_type_die_1 (type_die, type_cu);
16675 /* If we still don't have a type use an error marker. */
16677 if (this_type == NULL)
16679 char *message, *saved;
16681 /* read_type_die already issued a complaint. */
16682 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16684 cu->header.offset.sect_off,
16685 die->offset.sect_off);
16686 saved = obstack_copy0 (&objfile->objfile_obstack,
16687 message, strlen (message));
16690 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16696 /* Return the type in DIE, CU.
16697 Returns NULL for invalid types.
16699 This first does a lookup in die_type_hash,
16700 and only reads the die in if necessary.
16702 NOTE: This can be called when reading in partial or full symbols. */
16704 static struct type *
16705 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16707 struct type *this_type;
16709 this_type = get_die_type (die, cu);
16713 return read_type_die_1 (die, cu);
16716 /* Read the type in DIE, CU.
16717 Returns NULL for invalid types. */
16719 static struct type *
16720 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16722 struct type *this_type = NULL;
16726 case DW_TAG_class_type:
16727 case DW_TAG_interface_type:
16728 case DW_TAG_structure_type:
16729 case DW_TAG_union_type:
16730 this_type = read_structure_type (die, cu);
16732 case DW_TAG_enumeration_type:
16733 this_type = read_enumeration_type (die, cu);
16735 case DW_TAG_subprogram:
16736 case DW_TAG_subroutine_type:
16737 case DW_TAG_inlined_subroutine:
16738 this_type = read_subroutine_type (die, cu);
16740 case DW_TAG_array_type:
16741 this_type = read_array_type (die, cu);
16743 case DW_TAG_set_type:
16744 this_type = read_set_type (die, cu);
16746 case DW_TAG_pointer_type:
16747 this_type = read_tag_pointer_type (die, cu);
16749 case DW_TAG_ptr_to_member_type:
16750 this_type = read_tag_ptr_to_member_type (die, cu);
16752 case DW_TAG_reference_type:
16753 this_type = read_tag_reference_type (die, cu);
16755 case DW_TAG_const_type:
16756 this_type = read_tag_const_type (die, cu);
16758 case DW_TAG_volatile_type:
16759 this_type = read_tag_volatile_type (die, cu);
16761 case DW_TAG_restrict_type:
16762 this_type = read_tag_restrict_type (die, cu);
16764 case DW_TAG_string_type:
16765 this_type = read_tag_string_type (die, cu);
16767 case DW_TAG_typedef:
16768 this_type = read_typedef (die, cu);
16770 case DW_TAG_subrange_type:
16771 this_type = read_subrange_type (die, cu);
16773 case DW_TAG_base_type:
16774 this_type = read_base_type (die, cu);
16776 case DW_TAG_unspecified_type:
16777 this_type = read_unspecified_type (die, cu);
16779 case DW_TAG_namespace:
16780 this_type = read_namespace_type (die, cu);
16782 case DW_TAG_module:
16783 this_type = read_module_type (die, cu);
16786 complaint (&symfile_complaints,
16787 _("unexpected tag in read_type_die: '%s'"),
16788 dwarf_tag_name (die->tag));
16795 /* See if we can figure out if the class lives in a namespace. We do
16796 this by looking for a member function; its demangled name will
16797 contain namespace info, if there is any.
16798 Return the computed name or NULL.
16799 Space for the result is allocated on the objfile's obstack.
16800 This is the full-die version of guess_partial_die_structure_name.
16801 In this case we know DIE has no useful parent. */
16804 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16806 struct die_info *spec_die;
16807 struct dwarf2_cu *spec_cu;
16808 struct die_info *child;
16811 spec_die = die_specification (die, &spec_cu);
16812 if (spec_die != NULL)
16818 for (child = die->child;
16820 child = child->sibling)
16822 if (child->tag == DW_TAG_subprogram)
16824 struct attribute *attr;
16826 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16828 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16832 = language_class_name_from_physname (cu->language_defn,
16836 if (actual_name != NULL)
16838 const char *die_name = dwarf2_name (die, cu);
16840 if (die_name != NULL
16841 && strcmp (die_name, actual_name) != 0)
16843 /* Strip off the class name from the full name.
16844 We want the prefix. */
16845 int die_name_len = strlen (die_name);
16846 int actual_name_len = strlen (actual_name);
16848 /* Test for '::' as a sanity check. */
16849 if (actual_name_len > die_name_len + 2
16850 && actual_name[actual_name_len
16851 - die_name_len - 1] == ':')
16853 obstack_copy0 (&cu->objfile->objfile_obstack,
16855 actual_name_len - die_name_len - 2);
16858 xfree (actual_name);
16867 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16868 prefix part in such case. See
16869 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16872 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16874 struct attribute *attr;
16877 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16878 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16881 attr = dwarf2_attr (die, DW_AT_name, cu);
16882 if (attr != NULL && DW_STRING (attr) != NULL)
16885 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16887 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16888 if (attr == NULL || DW_STRING (attr) == NULL)
16891 /* dwarf2_name had to be already called. */
16892 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16894 /* Strip the base name, keep any leading namespaces/classes. */
16895 base = strrchr (DW_STRING (attr), ':');
16896 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16899 return obstack_copy0 (&cu->objfile->objfile_obstack,
16900 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16903 /* Return the name of the namespace/class that DIE is defined within,
16904 or "" if we can't tell. The caller should not xfree the result.
16906 For example, if we're within the method foo() in the following
16916 then determine_prefix on foo's die will return "N::C". */
16918 static const char *
16919 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16921 struct die_info *parent, *spec_die;
16922 struct dwarf2_cu *spec_cu;
16923 struct type *parent_type;
16926 if (cu->language != language_cplus && cu->language != language_java
16927 && cu->language != language_fortran)
16930 retval = anonymous_struct_prefix (die, cu);
16934 /* We have to be careful in the presence of DW_AT_specification.
16935 For example, with GCC 3.4, given the code
16939 // Definition of N::foo.
16943 then we'll have a tree of DIEs like this:
16945 1: DW_TAG_compile_unit
16946 2: DW_TAG_namespace // N
16947 3: DW_TAG_subprogram // declaration of N::foo
16948 4: DW_TAG_subprogram // definition of N::foo
16949 DW_AT_specification // refers to die #3
16951 Thus, when processing die #4, we have to pretend that we're in
16952 the context of its DW_AT_specification, namely the contex of die
16955 spec_die = die_specification (die, &spec_cu);
16956 if (spec_die == NULL)
16957 parent = die->parent;
16960 parent = spec_die->parent;
16964 if (parent == NULL)
16966 else if (parent->building_fullname)
16969 const char *parent_name;
16971 /* It has been seen on RealView 2.2 built binaries,
16972 DW_TAG_template_type_param types actually _defined_ as
16973 children of the parent class:
16976 template class <class Enum> Class{};
16977 Class<enum E> class_e;
16979 1: DW_TAG_class_type (Class)
16980 2: DW_TAG_enumeration_type (E)
16981 3: DW_TAG_enumerator (enum1:0)
16982 3: DW_TAG_enumerator (enum2:1)
16984 2: DW_TAG_template_type_param
16985 DW_AT_type DW_FORM_ref_udata (E)
16987 Besides being broken debug info, it can put GDB into an
16988 infinite loop. Consider:
16990 When we're building the full name for Class<E>, we'll start
16991 at Class, and go look over its template type parameters,
16992 finding E. We'll then try to build the full name of E, and
16993 reach here. We're now trying to build the full name of E,
16994 and look over the parent DIE for containing scope. In the
16995 broken case, if we followed the parent DIE of E, we'd again
16996 find Class, and once again go look at its template type
16997 arguments, etc., etc. Simply don't consider such parent die
16998 as source-level parent of this die (it can't be, the language
16999 doesn't allow it), and break the loop here. */
17000 name = dwarf2_name (die, cu);
17001 parent_name = dwarf2_name (parent, cu);
17002 complaint (&symfile_complaints,
17003 _("template param type '%s' defined within parent '%s'"),
17004 name ? name : "<unknown>",
17005 parent_name ? parent_name : "<unknown>");
17009 switch (parent->tag)
17011 case DW_TAG_namespace:
17012 parent_type = read_type_die (parent, cu);
17013 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
17014 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
17015 Work around this problem here. */
17016 if (cu->language == language_cplus
17017 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
17019 /* We give a name to even anonymous namespaces. */
17020 return TYPE_TAG_NAME (parent_type);
17021 case DW_TAG_class_type:
17022 case DW_TAG_interface_type:
17023 case DW_TAG_structure_type:
17024 case DW_TAG_union_type:
17025 case DW_TAG_module:
17026 parent_type = read_type_die (parent, cu);
17027 if (TYPE_TAG_NAME (parent_type) != NULL)
17028 return TYPE_TAG_NAME (parent_type);
17030 /* An anonymous structure is only allowed non-static data
17031 members; no typedefs, no member functions, et cetera.
17032 So it does not need a prefix. */
17034 case DW_TAG_compile_unit:
17035 case DW_TAG_partial_unit:
17036 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
17037 if (cu->language == language_cplus
17038 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17039 && die->child != NULL
17040 && (die->tag == DW_TAG_class_type
17041 || die->tag == DW_TAG_structure_type
17042 || die->tag == DW_TAG_union_type))
17044 char *name = guess_full_die_structure_name (die, cu);
17050 return determine_prefix (parent, cu);
17054 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
17055 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
17056 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
17057 an obconcat, otherwise allocate storage for the result. The CU argument is
17058 used to determine the language and hence, the appropriate separator. */
17060 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
17063 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
17064 int physname, struct dwarf2_cu *cu)
17066 const char *lead = "";
17069 if (suffix == NULL || suffix[0] == '\0'
17070 || prefix == NULL || prefix[0] == '\0')
17072 else if (cu->language == language_java)
17074 else if (cu->language == language_fortran && physname)
17076 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
17077 DW_AT_MIPS_linkage_name is preferred and used instead. */
17085 if (prefix == NULL)
17087 if (suffix == NULL)
17093 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
17095 strcpy (retval, lead);
17096 strcat (retval, prefix);
17097 strcat (retval, sep);
17098 strcat (retval, suffix);
17103 /* We have an obstack. */
17104 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
17108 /* Return sibling of die, NULL if no sibling. */
17110 static struct die_info *
17111 sibling_die (struct die_info *die)
17113 return die->sibling;
17116 /* Get name of a die, return NULL if not found. */
17118 static const char *
17119 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
17120 struct obstack *obstack)
17122 if (name && cu->language == language_cplus)
17124 char *canon_name = cp_canonicalize_string (name);
17126 if (canon_name != NULL)
17128 if (strcmp (canon_name, name) != 0)
17129 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
17130 xfree (canon_name);
17137 /* Get name of a die, return NULL if not found. */
17139 static const char *
17140 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
17142 struct attribute *attr;
17144 attr = dwarf2_attr (die, DW_AT_name, cu);
17145 if ((!attr || !DW_STRING (attr))
17146 && die->tag != DW_TAG_class_type
17147 && die->tag != DW_TAG_interface_type
17148 && die->tag != DW_TAG_structure_type
17149 && die->tag != DW_TAG_union_type)
17154 case DW_TAG_compile_unit:
17155 case DW_TAG_partial_unit:
17156 /* Compilation units have a DW_AT_name that is a filename, not
17157 a source language identifier. */
17158 case DW_TAG_enumeration_type:
17159 case DW_TAG_enumerator:
17160 /* These tags always have simple identifiers already; no need
17161 to canonicalize them. */
17162 return DW_STRING (attr);
17164 case DW_TAG_subprogram:
17165 /* Java constructors will all be named "<init>", so return
17166 the class name when we see this special case. */
17167 if (cu->language == language_java
17168 && DW_STRING (attr) != NULL
17169 && strcmp (DW_STRING (attr), "<init>") == 0)
17171 struct dwarf2_cu *spec_cu = cu;
17172 struct die_info *spec_die;
17174 /* GCJ will output '<init>' for Java constructor names.
17175 For this special case, return the name of the parent class. */
17177 /* GCJ may output suprogram DIEs with AT_specification set.
17178 If so, use the name of the specified DIE. */
17179 spec_die = die_specification (die, &spec_cu);
17180 if (spec_die != NULL)
17181 return dwarf2_name (spec_die, spec_cu);
17186 if (die->tag == DW_TAG_class_type)
17187 return dwarf2_name (die, cu);
17189 while (die->tag != DW_TAG_compile_unit
17190 && die->tag != DW_TAG_partial_unit);
17194 case DW_TAG_class_type:
17195 case DW_TAG_interface_type:
17196 case DW_TAG_structure_type:
17197 case DW_TAG_union_type:
17198 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
17199 structures or unions. These were of the form "._%d" in GCC 4.1,
17200 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
17201 and GCC 4.4. We work around this problem by ignoring these. */
17202 if (attr && DW_STRING (attr)
17203 && (strncmp (DW_STRING (attr), "._", 2) == 0
17204 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
17207 /* GCC might emit a nameless typedef that has a linkage name. See
17208 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17209 if (!attr || DW_STRING (attr) == NULL)
17211 char *demangled = NULL;
17213 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
17215 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
17217 if (attr == NULL || DW_STRING (attr) == NULL)
17220 /* Avoid demangling DW_STRING (attr) the second time on a second
17221 call for the same DIE. */
17222 if (!DW_STRING_IS_CANONICAL (attr))
17223 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
17229 /* FIXME: we already did this for the partial symbol... */
17230 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17231 demangled, strlen (demangled));
17232 DW_STRING_IS_CANONICAL (attr) = 1;
17235 /* Strip any leading namespaces/classes, keep only the base name.
17236 DW_AT_name for named DIEs does not contain the prefixes. */
17237 base = strrchr (DW_STRING (attr), ':');
17238 if (base && base > DW_STRING (attr) && base[-1] == ':')
17241 return DW_STRING (attr);
17250 if (!DW_STRING_IS_CANONICAL (attr))
17253 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17254 &cu->objfile->objfile_obstack);
17255 DW_STRING_IS_CANONICAL (attr) = 1;
17257 return DW_STRING (attr);
17260 /* Return the die that this die in an extension of, or NULL if there
17261 is none. *EXT_CU is the CU containing DIE on input, and the CU
17262 containing the return value on output. */
17264 static struct die_info *
17265 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17267 struct attribute *attr;
17269 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17273 return follow_die_ref (die, attr, ext_cu);
17276 /* Convert a DIE tag into its string name. */
17278 static const char *
17279 dwarf_tag_name (unsigned tag)
17281 const char *name = get_DW_TAG_name (tag);
17284 return "DW_TAG_<unknown>";
17289 /* Convert a DWARF attribute code into its string name. */
17291 static const char *
17292 dwarf_attr_name (unsigned attr)
17296 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17297 if (attr == DW_AT_MIPS_fde)
17298 return "DW_AT_MIPS_fde";
17300 if (attr == DW_AT_HP_block_index)
17301 return "DW_AT_HP_block_index";
17304 name = get_DW_AT_name (attr);
17307 return "DW_AT_<unknown>";
17312 /* Convert a DWARF value form code into its string name. */
17314 static const char *
17315 dwarf_form_name (unsigned form)
17317 const char *name = get_DW_FORM_name (form);
17320 return "DW_FORM_<unknown>";
17326 dwarf_bool_name (unsigned mybool)
17334 /* Convert a DWARF type code into its string name. */
17336 static const char *
17337 dwarf_type_encoding_name (unsigned enc)
17339 const char *name = get_DW_ATE_name (enc);
17342 return "DW_ATE_<unknown>";
17348 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17352 print_spaces (indent, f);
17353 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17354 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17356 if (die->parent != NULL)
17358 print_spaces (indent, f);
17359 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17360 die->parent->offset.sect_off);
17363 print_spaces (indent, f);
17364 fprintf_unfiltered (f, " has children: %s\n",
17365 dwarf_bool_name (die->child != NULL));
17367 print_spaces (indent, f);
17368 fprintf_unfiltered (f, " attributes:\n");
17370 for (i = 0; i < die->num_attrs; ++i)
17372 print_spaces (indent, f);
17373 fprintf_unfiltered (f, " %s (%s) ",
17374 dwarf_attr_name (die->attrs[i].name),
17375 dwarf_form_name (die->attrs[i].form));
17377 switch (die->attrs[i].form)
17380 case DW_FORM_GNU_addr_index:
17381 fprintf_unfiltered (f, "address: ");
17382 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17384 case DW_FORM_block2:
17385 case DW_FORM_block4:
17386 case DW_FORM_block:
17387 case DW_FORM_block1:
17388 fprintf_unfiltered (f, "block: size %s",
17389 pulongest (DW_BLOCK (&die->attrs[i])->size));
17391 case DW_FORM_exprloc:
17392 fprintf_unfiltered (f, "expression: size %s",
17393 pulongest (DW_BLOCK (&die->attrs[i])->size));
17395 case DW_FORM_ref_addr:
17396 fprintf_unfiltered (f, "ref address: ");
17397 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17399 case DW_FORM_GNU_ref_alt:
17400 fprintf_unfiltered (f, "alt ref address: ");
17401 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17407 case DW_FORM_ref_udata:
17408 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17409 (long) (DW_UNSND (&die->attrs[i])));
17411 case DW_FORM_data1:
17412 case DW_FORM_data2:
17413 case DW_FORM_data4:
17414 case DW_FORM_data8:
17415 case DW_FORM_udata:
17416 case DW_FORM_sdata:
17417 fprintf_unfiltered (f, "constant: %s",
17418 pulongest (DW_UNSND (&die->attrs[i])));
17420 case DW_FORM_sec_offset:
17421 fprintf_unfiltered (f, "section offset: %s",
17422 pulongest (DW_UNSND (&die->attrs[i])));
17424 case DW_FORM_ref_sig8:
17425 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17427 struct signatured_type *sig_type =
17428 DW_SIGNATURED_TYPE (&die->attrs[i]);
17430 fprintf_unfiltered (f, "signatured type: 0x%s, offset 0x%x",
17431 hex_string (sig_type->signature),
17432 sig_type->per_cu.offset.sect_off);
17435 fprintf_unfiltered (f, "signatured type, unknown");
17437 case DW_FORM_string:
17439 case DW_FORM_GNU_str_index:
17440 case DW_FORM_GNU_strp_alt:
17441 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17442 DW_STRING (&die->attrs[i])
17443 ? DW_STRING (&die->attrs[i]) : "",
17444 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17447 if (DW_UNSND (&die->attrs[i]))
17448 fprintf_unfiltered (f, "flag: TRUE");
17450 fprintf_unfiltered (f, "flag: FALSE");
17452 case DW_FORM_flag_present:
17453 fprintf_unfiltered (f, "flag: TRUE");
17455 case DW_FORM_indirect:
17456 /* The reader will have reduced the indirect form to
17457 the "base form" so this form should not occur. */
17458 fprintf_unfiltered (f,
17459 "unexpected attribute form: DW_FORM_indirect");
17462 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17463 die->attrs[i].form);
17466 fprintf_unfiltered (f, "\n");
17471 dump_die_for_error (struct die_info *die)
17473 dump_die_shallow (gdb_stderr, 0, die);
17477 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17479 int indent = level * 4;
17481 gdb_assert (die != NULL);
17483 if (level >= max_level)
17486 dump_die_shallow (f, indent, die);
17488 if (die->child != NULL)
17490 print_spaces (indent, f);
17491 fprintf_unfiltered (f, " Children:");
17492 if (level + 1 < max_level)
17494 fprintf_unfiltered (f, "\n");
17495 dump_die_1 (f, level + 1, max_level, die->child);
17499 fprintf_unfiltered (f,
17500 " [not printed, max nesting level reached]\n");
17504 if (die->sibling != NULL && level > 0)
17506 dump_die_1 (f, level, max_level, die->sibling);
17510 /* This is called from the pdie macro in gdbinit.in.
17511 It's not static so gcc will keep a copy callable from gdb. */
17514 dump_die (struct die_info *die, int max_level)
17516 dump_die_1 (gdb_stdlog, 0, max_level, die);
17520 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17524 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17530 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17531 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17534 is_ref_attr (struct attribute *attr)
17536 switch (attr->form)
17538 case DW_FORM_ref_addr:
17543 case DW_FORM_ref_udata:
17544 case DW_FORM_GNU_ref_alt:
17551 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17555 dwarf2_get_ref_die_offset (struct attribute *attr)
17557 sect_offset retval = { DW_UNSND (attr) };
17559 if (is_ref_attr (attr))
17562 retval.sect_off = 0;
17563 complaint (&symfile_complaints,
17564 _("unsupported die ref attribute form: '%s'"),
17565 dwarf_form_name (attr->form));
17569 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17570 * the value held by the attribute is not constant. */
17573 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17575 if (attr->form == DW_FORM_sdata)
17576 return DW_SND (attr);
17577 else if (attr->form == DW_FORM_udata
17578 || attr->form == DW_FORM_data1
17579 || attr->form == DW_FORM_data2
17580 || attr->form == DW_FORM_data4
17581 || attr->form == DW_FORM_data8)
17582 return DW_UNSND (attr);
17585 complaint (&symfile_complaints,
17586 _("Attribute value is not a constant (%s)"),
17587 dwarf_form_name (attr->form));
17588 return default_value;
17592 /* Follow reference or signature attribute ATTR of SRC_DIE.
17593 On entry *REF_CU is the CU of SRC_DIE.
17594 On exit *REF_CU is the CU of the result. */
17596 static struct die_info *
17597 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17598 struct dwarf2_cu **ref_cu)
17600 struct die_info *die;
17602 if (is_ref_attr (attr))
17603 die = follow_die_ref (src_die, attr, ref_cu);
17604 else if (attr->form == DW_FORM_ref_sig8)
17605 die = follow_die_sig (src_die, attr, ref_cu);
17608 dump_die_for_error (src_die);
17609 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17610 (*ref_cu)->objfile->name);
17616 /* Follow reference OFFSET.
17617 On entry *REF_CU is the CU of the source die referencing OFFSET.
17618 On exit *REF_CU is the CU of the result.
17619 Returns NULL if OFFSET is invalid. */
17621 static struct die_info *
17622 follow_die_offset (sect_offset offset, int offset_in_dwz,
17623 struct dwarf2_cu **ref_cu)
17625 struct die_info temp_die;
17626 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17628 gdb_assert (cu->per_cu != NULL);
17632 if (cu->per_cu->is_debug_types)
17634 /* .debug_types CUs cannot reference anything outside their CU.
17635 If they need to, they have to reference a signatured type via
17636 DW_FORM_ref_sig8. */
17637 if (! offset_in_cu_p (&cu->header, offset))
17640 else if (offset_in_dwz != cu->per_cu->is_dwz
17641 || ! offset_in_cu_p (&cu->header, offset))
17643 struct dwarf2_per_cu_data *per_cu;
17645 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17648 /* If necessary, add it to the queue and load its DIEs. */
17649 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17650 load_full_comp_unit (per_cu, cu->language);
17652 target_cu = per_cu->cu;
17654 else if (cu->dies == NULL)
17656 /* We're loading full DIEs during partial symbol reading. */
17657 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17658 load_full_comp_unit (cu->per_cu, language_minimal);
17661 *ref_cu = target_cu;
17662 temp_die.offset = offset;
17663 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17666 /* Follow reference attribute ATTR of SRC_DIE.
17667 On entry *REF_CU is the CU of SRC_DIE.
17668 On exit *REF_CU is the CU of the result. */
17670 static struct die_info *
17671 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17672 struct dwarf2_cu **ref_cu)
17674 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17675 struct dwarf2_cu *cu = *ref_cu;
17676 struct die_info *die;
17678 die = follow_die_offset (offset,
17679 (attr->form == DW_FORM_GNU_ref_alt
17680 || cu->per_cu->is_dwz),
17683 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17684 "at 0x%x [in module %s]"),
17685 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17690 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17691 Returned value is intended for DW_OP_call*. Returned
17692 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17694 struct dwarf2_locexpr_baton
17695 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17696 struct dwarf2_per_cu_data *per_cu,
17697 CORE_ADDR (*get_frame_pc) (void *baton),
17700 struct dwarf2_cu *cu;
17701 struct die_info *die;
17702 struct attribute *attr;
17703 struct dwarf2_locexpr_baton retval;
17705 dw2_setup (per_cu->objfile);
17707 if (per_cu->cu == NULL)
17711 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17713 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17714 offset.sect_off, per_cu->objfile->name);
17716 attr = dwarf2_attr (die, DW_AT_location, cu);
17719 /* DWARF: "If there is no such attribute, then there is no effect.".
17720 DATA is ignored if SIZE is 0. */
17722 retval.data = NULL;
17725 else if (attr_form_is_section_offset (attr))
17727 struct dwarf2_loclist_baton loclist_baton;
17728 CORE_ADDR pc = (*get_frame_pc) (baton);
17731 fill_in_loclist_baton (cu, &loclist_baton, attr);
17733 retval.data = dwarf2_find_location_expression (&loclist_baton,
17735 retval.size = size;
17739 if (!attr_form_is_block (attr))
17740 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17741 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17742 offset.sect_off, per_cu->objfile->name);
17744 retval.data = DW_BLOCK (attr)->data;
17745 retval.size = DW_BLOCK (attr)->size;
17747 retval.per_cu = cu->per_cu;
17749 age_cached_comp_units ();
17754 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17757 struct dwarf2_locexpr_baton
17758 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17759 struct dwarf2_per_cu_data *per_cu,
17760 CORE_ADDR (*get_frame_pc) (void *baton),
17763 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17765 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17768 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17772 dwarf2_get_die_type (cu_offset die_offset,
17773 struct dwarf2_per_cu_data *per_cu)
17775 sect_offset die_offset_sect;
17777 dw2_setup (per_cu->objfile);
17779 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17780 return get_die_type_at_offset (die_offset_sect, per_cu);
17783 /* Follow the signature attribute ATTR in SRC_DIE.
17784 On entry *REF_CU is the CU of SRC_DIE.
17785 On exit *REF_CU is the CU of the result. */
17787 static struct die_info *
17788 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17789 struct dwarf2_cu **ref_cu)
17791 struct objfile *objfile = (*ref_cu)->objfile;
17792 struct die_info temp_die;
17793 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17794 struct dwarf2_cu *sig_cu;
17795 struct die_info *die;
17797 /* sig_type will be NULL if the signatured type is missing from
17799 if (sig_type == NULL)
17800 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17801 "at 0x%x [in module %s]"),
17802 src_die->offset.sect_off, objfile->name);
17804 /* If necessary, add it to the queue and load its DIEs. */
17806 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17807 read_signatured_type (sig_type);
17809 gdb_assert (sig_type->per_cu.cu != NULL);
17811 sig_cu = sig_type->per_cu.cu;
17812 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17813 temp_die.offset = sig_type->type_offset_in_section;
17814 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17815 temp_die.offset.sect_off);
17818 /* For .gdb_index version 7 keep track of included TUs.
17819 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17820 if (dwarf2_per_objfile->index_table != NULL
17821 && dwarf2_per_objfile->index_table->version <= 7)
17823 VEC_safe_push (dwarf2_per_cu_ptr,
17824 (*ref_cu)->per_cu->imported_symtabs,
17832 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17833 "from DIE at 0x%x [in module %s]"),
17834 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17837 /* Load the DIEs associated with type unit PER_CU into memory. */
17840 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17842 struct signatured_type *sig_type;
17844 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17845 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17847 /* We have the per_cu, but we need the signatured_type.
17848 Fortunately this is an easy translation. */
17849 gdb_assert (per_cu->is_debug_types);
17850 sig_type = (struct signatured_type *) per_cu;
17852 gdb_assert (per_cu->cu == NULL);
17854 read_signatured_type (sig_type);
17856 gdb_assert (per_cu->cu != NULL);
17859 /* die_reader_func for read_signatured_type.
17860 This is identical to load_full_comp_unit_reader,
17861 but is kept separate for now. */
17864 read_signatured_type_reader (const struct die_reader_specs *reader,
17865 const gdb_byte *info_ptr,
17866 struct die_info *comp_unit_die,
17870 struct dwarf2_cu *cu = reader->cu;
17872 gdb_assert (cu->die_hash == NULL);
17874 htab_create_alloc_ex (cu->header.length / 12,
17878 &cu->comp_unit_obstack,
17879 hashtab_obstack_allocate,
17880 dummy_obstack_deallocate);
17883 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17884 &info_ptr, comp_unit_die);
17885 cu->dies = comp_unit_die;
17886 /* comp_unit_die is not stored in die_hash, no need. */
17888 /* We try not to read any attributes in this function, because not
17889 all CUs needed for references have been loaded yet, and symbol
17890 table processing isn't initialized. But we have to set the CU language,
17891 or we won't be able to build types correctly.
17892 Similarly, if we do not read the producer, we can not apply
17893 producer-specific interpretation. */
17894 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17897 /* Read in a signatured type and build its CU and DIEs.
17898 If the type is a stub for the real type in a DWO file,
17899 read in the real type from the DWO file as well. */
17902 read_signatured_type (struct signatured_type *sig_type)
17904 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17906 gdb_assert (per_cu->is_debug_types);
17907 gdb_assert (per_cu->cu == NULL);
17909 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17910 read_signatured_type_reader, NULL);
17913 /* Decode simple location descriptions.
17914 Given a pointer to a dwarf block that defines a location, compute
17915 the location and return the value.
17917 NOTE drow/2003-11-18: This function is called in two situations
17918 now: for the address of static or global variables (partial symbols
17919 only) and for offsets into structures which are expected to be
17920 (more or less) constant. The partial symbol case should go away,
17921 and only the constant case should remain. That will let this
17922 function complain more accurately. A few special modes are allowed
17923 without complaint for global variables (for instance, global
17924 register values and thread-local values).
17926 A location description containing no operations indicates that the
17927 object is optimized out. The return value is 0 for that case.
17928 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17929 callers will only want a very basic result and this can become a
17932 Note that stack[0] is unused except as a default error return. */
17935 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17937 struct objfile *objfile = cu->objfile;
17939 size_t size = blk->size;
17940 const gdb_byte *data = blk->data;
17941 CORE_ADDR stack[64];
17943 unsigned int bytes_read, unsnd;
17949 stack[++stacki] = 0;
17988 stack[++stacki] = op - DW_OP_lit0;
18023 stack[++stacki] = op - DW_OP_reg0;
18025 dwarf2_complex_location_expr_complaint ();
18029 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
18031 stack[++stacki] = unsnd;
18033 dwarf2_complex_location_expr_complaint ();
18037 stack[++stacki] = read_address (objfile->obfd, &data[i],
18042 case DW_OP_const1u:
18043 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
18047 case DW_OP_const1s:
18048 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
18052 case DW_OP_const2u:
18053 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
18057 case DW_OP_const2s:
18058 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
18062 case DW_OP_const4u:
18063 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
18067 case DW_OP_const4s:
18068 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
18072 case DW_OP_const8u:
18073 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
18078 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
18084 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
18089 stack[stacki + 1] = stack[stacki];
18094 stack[stacki - 1] += stack[stacki];
18098 case DW_OP_plus_uconst:
18099 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
18105 stack[stacki - 1] -= stack[stacki];
18110 /* If we're not the last op, then we definitely can't encode
18111 this using GDB's address_class enum. This is valid for partial
18112 global symbols, although the variable's address will be bogus
18115 dwarf2_complex_location_expr_complaint ();
18118 case DW_OP_GNU_push_tls_address:
18119 /* The top of the stack has the offset from the beginning
18120 of the thread control block at which the variable is located. */
18121 /* Nothing should follow this operator, so the top of stack would
18123 /* This is valid for partial global symbols, but the variable's
18124 address will be bogus in the psymtab. Make it always at least
18125 non-zero to not look as a variable garbage collected by linker
18126 which have DW_OP_addr 0. */
18128 dwarf2_complex_location_expr_complaint ();
18132 case DW_OP_GNU_uninit:
18135 case DW_OP_GNU_addr_index:
18136 case DW_OP_GNU_const_index:
18137 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
18144 const char *name = get_DW_OP_name (op);
18147 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
18150 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
18154 return (stack[stacki]);
18157 /* Enforce maximum stack depth of SIZE-1 to avoid writing
18158 outside of the allocated space. Also enforce minimum>0. */
18159 if (stacki >= ARRAY_SIZE (stack) - 1)
18161 complaint (&symfile_complaints,
18162 _("location description stack overflow"));
18168 complaint (&symfile_complaints,
18169 _("location description stack underflow"));
18173 return (stack[stacki]);
18176 /* memory allocation interface */
18178 static struct dwarf_block *
18179 dwarf_alloc_block (struct dwarf2_cu *cu)
18181 struct dwarf_block *blk;
18183 blk = (struct dwarf_block *)
18184 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
18188 static struct die_info *
18189 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
18191 struct die_info *die;
18192 size_t size = sizeof (struct die_info);
18195 size += (num_attrs - 1) * sizeof (struct attribute);
18197 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18198 memset (die, 0, sizeof (struct die_info));
18203 /* Macro support. */
18205 /* Return file name relative to the compilation directory of file number I in
18206 *LH's file name table. The result is allocated using xmalloc; the caller is
18207 responsible for freeing it. */
18210 file_file_name (int file, struct line_header *lh)
18212 /* Is the file number a valid index into the line header's file name
18213 table? Remember that file numbers start with one, not zero. */
18214 if (1 <= file && file <= lh->num_file_names)
18216 struct file_entry *fe = &lh->file_names[file - 1];
18218 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
18219 return xstrdup (fe->name);
18220 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
18225 /* The compiler produced a bogus file number. We can at least
18226 record the macro definitions made in the file, even if we
18227 won't be able to find the file by name. */
18228 char fake_name[80];
18230 xsnprintf (fake_name, sizeof (fake_name),
18231 "<bad macro file number %d>", file);
18233 complaint (&symfile_complaints,
18234 _("bad file number in macro information (%d)"),
18237 return xstrdup (fake_name);
18241 /* Return the full name of file number I in *LH's file name table.
18242 Use COMP_DIR as the name of the current directory of the
18243 compilation. The result is allocated using xmalloc; the caller is
18244 responsible for freeing it. */
18246 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18248 /* Is the file number a valid index into the line header's file name
18249 table? Remember that file numbers start with one, not zero. */
18250 if (1 <= file && file <= lh->num_file_names)
18252 char *relative = file_file_name (file, lh);
18254 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
18256 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
18259 return file_file_name (file, lh);
18263 static struct macro_source_file *
18264 macro_start_file (int file, int line,
18265 struct macro_source_file *current_file,
18266 const char *comp_dir,
18267 struct line_header *lh, struct objfile *objfile)
18269 /* File name relative to the compilation directory of this source file. */
18270 char *file_name = file_file_name (file, lh);
18272 /* We don't create a macro table for this compilation unit
18273 at all until we actually get a filename. */
18274 if (! pending_macros)
18275 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18276 objfile->per_bfd->macro_cache,
18279 if (! current_file)
18281 /* If we have no current file, then this must be the start_file
18282 directive for the compilation unit's main source file. */
18283 current_file = macro_set_main (pending_macros, file_name);
18284 macro_define_special (pending_macros);
18287 current_file = macro_include (current_file, line, file_name);
18291 return current_file;
18295 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18296 followed by a null byte. */
18298 copy_string (const char *buf, int len)
18300 char *s = xmalloc (len + 1);
18302 memcpy (s, buf, len);
18308 static const char *
18309 consume_improper_spaces (const char *p, const char *body)
18313 complaint (&symfile_complaints,
18314 _("macro definition contains spaces "
18315 "in formal argument list:\n`%s'"),
18327 parse_macro_definition (struct macro_source_file *file, int line,
18332 /* The body string takes one of two forms. For object-like macro
18333 definitions, it should be:
18335 <macro name> " " <definition>
18337 For function-like macro definitions, it should be:
18339 <macro name> "() " <definition>
18341 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18343 Spaces may appear only where explicitly indicated, and in the
18346 The Dwarf 2 spec says that an object-like macro's name is always
18347 followed by a space, but versions of GCC around March 2002 omit
18348 the space when the macro's definition is the empty string.
18350 The Dwarf 2 spec says that there should be no spaces between the
18351 formal arguments in a function-like macro's formal argument list,
18352 but versions of GCC around March 2002 include spaces after the
18356 /* Find the extent of the macro name. The macro name is terminated
18357 by either a space or null character (for an object-like macro) or
18358 an opening paren (for a function-like macro). */
18359 for (p = body; *p; p++)
18360 if (*p == ' ' || *p == '(')
18363 if (*p == ' ' || *p == '\0')
18365 /* It's an object-like macro. */
18366 int name_len = p - body;
18367 char *name = copy_string (body, name_len);
18368 const char *replacement;
18371 replacement = body + name_len + 1;
18374 dwarf2_macro_malformed_definition_complaint (body);
18375 replacement = body + name_len;
18378 macro_define_object (file, line, name, replacement);
18382 else if (*p == '(')
18384 /* It's a function-like macro. */
18385 char *name = copy_string (body, p - body);
18388 char **argv = xmalloc (argv_size * sizeof (*argv));
18392 p = consume_improper_spaces (p, body);
18394 /* Parse the formal argument list. */
18395 while (*p && *p != ')')
18397 /* Find the extent of the current argument name. */
18398 const char *arg_start = p;
18400 while (*p && *p != ',' && *p != ')' && *p != ' ')
18403 if (! *p || p == arg_start)
18404 dwarf2_macro_malformed_definition_complaint (body);
18407 /* Make sure argv has room for the new argument. */
18408 if (argc >= argv_size)
18411 argv = xrealloc (argv, argv_size * sizeof (*argv));
18414 argv[argc++] = copy_string (arg_start, p - arg_start);
18417 p = consume_improper_spaces (p, body);
18419 /* Consume the comma, if present. */
18424 p = consume_improper_spaces (p, body);
18433 /* Perfectly formed definition, no complaints. */
18434 macro_define_function (file, line, name,
18435 argc, (const char **) argv,
18437 else if (*p == '\0')
18439 /* Complain, but do define it. */
18440 dwarf2_macro_malformed_definition_complaint (body);
18441 macro_define_function (file, line, name,
18442 argc, (const char **) argv,
18446 /* Just complain. */
18447 dwarf2_macro_malformed_definition_complaint (body);
18450 /* Just complain. */
18451 dwarf2_macro_malformed_definition_complaint (body);
18457 for (i = 0; i < argc; i++)
18463 dwarf2_macro_malformed_definition_complaint (body);
18466 /* Skip some bytes from BYTES according to the form given in FORM.
18467 Returns the new pointer. */
18469 static const gdb_byte *
18470 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
18471 enum dwarf_form form,
18472 unsigned int offset_size,
18473 struct dwarf2_section_info *section)
18475 unsigned int bytes_read;
18479 case DW_FORM_data1:
18484 case DW_FORM_data2:
18488 case DW_FORM_data4:
18492 case DW_FORM_data8:
18496 case DW_FORM_string:
18497 read_direct_string (abfd, bytes, &bytes_read);
18498 bytes += bytes_read;
18501 case DW_FORM_sec_offset:
18503 case DW_FORM_GNU_strp_alt:
18504 bytes += offset_size;
18507 case DW_FORM_block:
18508 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18509 bytes += bytes_read;
18512 case DW_FORM_block1:
18513 bytes += 1 + read_1_byte (abfd, bytes);
18515 case DW_FORM_block2:
18516 bytes += 2 + read_2_bytes (abfd, bytes);
18518 case DW_FORM_block4:
18519 bytes += 4 + read_4_bytes (abfd, bytes);
18522 case DW_FORM_sdata:
18523 case DW_FORM_udata:
18524 case DW_FORM_GNU_addr_index:
18525 case DW_FORM_GNU_str_index:
18526 bytes = gdb_skip_leb128 (bytes, buffer_end);
18529 dwarf2_section_buffer_overflow_complaint (section);
18537 complaint (&symfile_complaints,
18538 _("invalid form 0x%x in `%s'"),
18540 section->asection->name);
18548 /* A helper for dwarf_decode_macros that handles skipping an unknown
18549 opcode. Returns an updated pointer to the macro data buffer; or,
18550 on error, issues a complaint and returns NULL. */
18552 static const gdb_byte *
18553 skip_unknown_opcode (unsigned int opcode,
18554 const gdb_byte **opcode_definitions,
18555 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
18557 unsigned int offset_size,
18558 struct dwarf2_section_info *section)
18560 unsigned int bytes_read, i;
18562 const gdb_byte *defn;
18564 if (opcode_definitions[opcode] == NULL)
18566 complaint (&symfile_complaints,
18567 _("unrecognized DW_MACFINO opcode 0x%x"),
18572 defn = opcode_definitions[opcode];
18573 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18574 defn += bytes_read;
18576 for (i = 0; i < arg; ++i)
18578 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18580 if (mac_ptr == NULL)
18582 /* skip_form_bytes already issued the complaint. */
18590 /* A helper function which parses the header of a macro section.
18591 If the macro section is the extended (for now called "GNU") type,
18592 then this updates *OFFSET_SIZE. Returns a pointer to just after
18593 the header, or issues a complaint and returns NULL on error. */
18595 static const gdb_byte *
18596 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
18598 const gdb_byte *mac_ptr,
18599 unsigned int *offset_size,
18600 int section_is_gnu)
18602 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18604 if (section_is_gnu)
18606 unsigned int version, flags;
18608 version = read_2_bytes (abfd, mac_ptr);
18611 complaint (&symfile_complaints,
18612 _("unrecognized version `%d' in .debug_macro section"),
18618 flags = read_1_byte (abfd, mac_ptr);
18620 *offset_size = (flags & 1) ? 8 : 4;
18622 if ((flags & 2) != 0)
18623 /* We don't need the line table offset. */
18624 mac_ptr += *offset_size;
18626 /* Vendor opcode descriptions. */
18627 if ((flags & 4) != 0)
18629 unsigned int i, count;
18631 count = read_1_byte (abfd, mac_ptr);
18633 for (i = 0; i < count; ++i)
18635 unsigned int opcode, bytes_read;
18638 opcode = read_1_byte (abfd, mac_ptr);
18640 opcode_definitions[opcode] = mac_ptr;
18641 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18642 mac_ptr += bytes_read;
18651 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18652 including DW_MACRO_GNU_transparent_include. */
18655 dwarf_decode_macro_bytes (bfd *abfd,
18656 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
18657 struct macro_source_file *current_file,
18658 struct line_header *lh, const char *comp_dir,
18659 struct dwarf2_section_info *section,
18660 int section_is_gnu, int section_is_dwz,
18661 unsigned int offset_size,
18662 struct objfile *objfile,
18663 htab_t include_hash)
18665 enum dwarf_macro_record_type macinfo_type;
18666 int at_commandline;
18667 const gdb_byte *opcode_definitions[256];
18669 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18670 &offset_size, section_is_gnu);
18671 if (mac_ptr == NULL)
18673 /* We already issued a complaint. */
18677 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18678 GDB is still reading the definitions from command line. First
18679 DW_MACINFO_start_file will need to be ignored as it was already executed
18680 to create CURRENT_FILE for the main source holding also the command line
18681 definitions. On first met DW_MACINFO_start_file this flag is reset to
18682 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18684 at_commandline = 1;
18688 /* Do we at least have room for a macinfo type byte? */
18689 if (mac_ptr >= mac_end)
18691 dwarf2_section_buffer_overflow_complaint (section);
18695 macinfo_type = read_1_byte (abfd, mac_ptr);
18698 /* Note that we rely on the fact that the corresponding GNU and
18699 DWARF constants are the same. */
18700 switch (macinfo_type)
18702 /* A zero macinfo type indicates the end of the macro
18707 case DW_MACRO_GNU_define:
18708 case DW_MACRO_GNU_undef:
18709 case DW_MACRO_GNU_define_indirect:
18710 case DW_MACRO_GNU_undef_indirect:
18711 case DW_MACRO_GNU_define_indirect_alt:
18712 case DW_MACRO_GNU_undef_indirect_alt:
18714 unsigned int bytes_read;
18719 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18720 mac_ptr += bytes_read;
18722 if (macinfo_type == DW_MACRO_GNU_define
18723 || macinfo_type == DW_MACRO_GNU_undef)
18725 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18726 mac_ptr += bytes_read;
18730 LONGEST str_offset;
18732 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18733 mac_ptr += offset_size;
18735 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18736 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18739 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18741 body = read_indirect_string_from_dwz (dwz, str_offset);
18744 body = read_indirect_string_at_offset (abfd, str_offset);
18747 is_define = (macinfo_type == DW_MACRO_GNU_define
18748 || macinfo_type == DW_MACRO_GNU_define_indirect
18749 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18750 if (! current_file)
18752 /* DWARF violation as no main source is present. */
18753 complaint (&symfile_complaints,
18754 _("debug info with no main source gives macro %s "
18756 is_define ? _("definition") : _("undefinition"),
18760 if ((line == 0 && !at_commandline)
18761 || (line != 0 && at_commandline))
18762 complaint (&symfile_complaints,
18763 _("debug info gives %s macro %s with %s line %d: %s"),
18764 at_commandline ? _("command-line") : _("in-file"),
18765 is_define ? _("definition") : _("undefinition"),
18766 line == 0 ? _("zero") : _("non-zero"), line, body);
18769 parse_macro_definition (current_file, line, body);
18772 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18773 || macinfo_type == DW_MACRO_GNU_undef_indirect
18774 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18775 macro_undef (current_file, line, body);
18780 case DW_MACRO_GNU_start_file:
18782 unsigned int bytes_read;
18785 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18786 mac_ptr += bytes_read;
18787 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18788 mac_ptr += bytes_read;
18790 if ((line == 0 && !at_commandline)
18791 || (line != 0 && at_commandline))
18792 complaint (&symfile_complaints,
18793 _("debug info gives source %d included "
18794 "from %s at %s line %d"),
18795 file, at_commandline ? _("command-line") : _("file"),
18796 line == 0 ? _("zero") : _("non-zero"), line);
18798 if (at_commandline)
18800 /* This DW_MACRO_GNU_start_file was executed in the
18802 at_commandline = 0;
18805 current_file = macro_start_file (file, line,
18806 current_file, comp_dir,
18811 case DW_MACRO_GNU_end_file:
18812 if (! current_file)
18813 complaint (&symfile_complaints,
18814 _("macro debug info has an unmatched "
18815 "`close_file' directive"));
18818 current_file = current_file->included_by;
18819 if (! current_file)
18821 enum dwarf_macro_record_type next_type;
18823 /* GCC circa March 2002 doesn't produce the zero
18824 type byte marking the end of the compilation
18825 unit. Complain if it's not there, but exit no
18828 /* Do we at least have room for a macinfo type byte? */
18829 if (mac_ptr >= mac_end)
18831 dwarf2_section_buffer_overflow_complaint (section);
18835 /* We don't increment mac_ptr here, so this is just
18837 next_type = read_1_byte (abfd, mac_ptr);
18838 if (next_type != 0)
18839 complaint (&symfile_complaints,
18840 _("no terminating 0-type entry for "
18841 "macros in `.debug_macinfo' section"));
18848 case DW_MACRO_GNU_transparent_include:
18849 case DW_MACRO_GNU_transparent_include_alt:
18853 bfd *include_bfd = abfd;
18854 struct dwarf2_section_info *include_section = section;
18855 struct dwarf2_section_info alt_section;
18856 const gdb_byte *include_mac_end = mac_end;
18857 int is_dwz = section_is_dwz;
18858 const gdb_byte *new_mac_ptr;
18860 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18861 mac_ptr += offset_size;
18863 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18865 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18867 dwarf2_read_section (dwarf2_per_objfile->objfile,
18870 include_bfd = dwz->macro.asection->owner;
18871 include_section = &dwz->macro;
18872 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18876 new_mac_ptr = include_section->buffer + offset;
18877 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18881 /* This has actually happened; see
18882 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18883 complaint (&symfile_complaints,
18884 _("recursive DW_MACRO_GNU_transparent_include in "
18885 ".debug_macro section"));
18889 *slot = (void *) new_mac_ptr;
18891 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18892 include_mac_end, current_file,
18894 section, section_is_gnu, is_dwz,
18895 offset_size, objfile, include_hash);
18897 htab_remove_elt (include_hash, (void *) new_mac_ptr);
18902 case DW_MACINFO_vendor_ext:
18903 if (!section_is_gnu)
18905 unsigned int bytes_read;
18908 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18909 mac_ptr += bytes_read;
18910 read_direct_string (abfd, mac_ptr, &bytes_read);
18911 mac_ptr += bytes_read;
18913 /* We don't recognize any vendor extensions. */
18919 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18920 mac_ptr, mac_end, abfd, offset_size,
18922 if (mac_ptr == NULL)
18926 } while (macinfo_type != 0);
18930 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18931 const char *comp_dir, int section_is_gnu)
18933 struct objfile *objfile = dwarf2_per_objfile->objfile;
18934 struct line_header *lh = cu->line_header;
18936 const gdb_byte *mac_ptr, *mac_end;
18937 struct macro_source_file *current_file = 0;
18938 enum dwarf_macro_record_type macinfo_type;
18939 unsigned int offset_size = cu->header.offset_size;
18940 const gdb_byte *opcode_definitions[256];
18941 struct cleanup *cleanup;
18942 htab_t include_hash;
18944 struct dwarf2_section_info *section;
18945 const char *section_name;
18947 if (cu->dwo_unit != NULL)
18949 if (section_is_gnu)
18951 section = &cu->dwo_unit->dwo_file->sections.macro;
18952 section_name = ".debug_macro.dwo";
18956 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18957 section_name = ".debug_macinfo.dwo";
18962 if (section_is_gnu)
18964 section = &dwarf2_per_objfile->macro;
18965 section_name = ".debug_macro";
18969 section = &dwarf2_per_objfile->macinfo;
18970 section_name = ".debug_macinfo";
18974 dwarf2_read_section (objfile, section);
18975 if (section->buffer == NULL)
18977 complaint (&symfile_complaints, _("missing %s section"), section_name);
18980 abfd = section->asection->owner;
18982 /* First pass: Find the name of the base filename.
18983 This filename is needed in order to process all macros whose definition
18984 (or undefinition) comes from the command line. These macros are defined
18985 before the first DW_MACINFO_start_file entry, and yet still need to be
18986 associated to the base file.
18988 To determine the base file name, we scan the macro definitions until we
18989 reach the first DW_MACINFO_start_file entry. We then initialize
18990 CURRENT_FILE accordingly so that any macro definition found before the
18991 first DW_MACINFO_start_file can still be associated to the base file. */
18993 mac_ptr = section->buffer + offset;
18994 mac_end = section->buffer + section->size;
18996 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18997 &offset_size, section_is_gnu);
18998 if (mac_ptr == NULL)
19000 /* We already issued a complaint. */
19006 /* Do we at least have room for a macinfo type byte? */
19007 if (mac_ptr >= mac_end)
19009 /* Complaint is printed during the second pass as GDB will probably
19010 stop the first pass earlier upon finding
19011 DW_MACINFO_start_file. */
19015 macinfo_type = read_1_byte (abfd, mac_ptr);
19018 /* Note that we rely on the fact that the corresponding GNU and
19019 DWARF constants are the same. */
19020 switch (macinfo_type)
19022 /* A zero macinfo type indicates the end of the macro
19027 case DW_MACRO_GNU_define:
19028 case DW_MACRO_GNU_undef:
19029 /* Only skip the data by MAC_PTR. */
19031 unsigned int bytes_read;
19033 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19034 mac_ptr += bytes_read;
19035 read_direct_string (abfd, mac_ptr, &bytes_read);
19036 mac_ptr += bytes_read;
19040 case DW_MACRO_GNU_start_file:
19042 unsigned int bytes_read;
19045 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19046 mac_ptr += bytes_read;
19047 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19048 mac_ptr += bytes_read;
19050 current_file = macro_start_file (file, line, current_file,
19051 comp_dir, lh, objfile);
19055 case DW_MACRO_GNU_end_file:
19056 /* No data to skip by MAC_PTR. */
19059 case DW_MACRO_GNU_define_indirect:
19060 case DW_MACRO_GNU_undef_indirect:
19061 case DW_MACRO_GNU_define_indirect_alt:
19062 case DW_MACRO_GNU_undef_indirect_alt:
19064 unsigned int bytes_read;
19066 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19067 mac_ptr += bytes_read;
19068 mac_ptr += offset_size;
19072 case DW_MACRO_GNU_transparent_include:
19073 case DW_MACRO_GNU_transparent_include_alt:
19074 /* Note that, according to the spec, a transparent include
19075 chain cannot call DW_MACRO_GNU_start_file. So, we can just
19076 skip this opcode. */
19077 mac_ptr += offset_size;
19080 case DW_MACINFO_vendor_ext:
19081 /* Only skip the data by MAC_PTR. */
19082 if (!section_is_gnu)
19084 unsigned int bytes_read;
19086 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
19087 mac_ptr += bytes_read;
19088 read_direct_string (abfd, mac_ptr, &bytes_read);
19089 mac_ptr += bytes_read;
19094 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
19095 mac_ptr, mac_end, abfd, offset_size,
19097 if (mac_ptr == NULL)
19101 } while (macinfo_type != 0 && current_file == NULL);
19103 /* Second pass: Process all entries.
19105 Use the AT_COMMAND_LINE flag to determine whether we are still processing
19106 command-line macro definitions/undefinitions. This flag is unset when we
19107 reach the first DW_MACINFO_start_file entry. */
19109 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
19110 NULL, xcalloc, xfree);
19111 cleanup = make_cleanup_htab_delete (include_hash);
19112 mac_ptr = section->buffer + offset;
19113 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
19114 *slot = (void *) mac_ptr;
19115 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
19116 current_file, lh, comp_dir, section,
19118 offset_size, objfile, include_hash);
19119 do_cleanups (cleanup);
19122 /* Check if the attribute's form is a DW_FORM_block*
19123 if so return true else false. */
19126 attr_form_is_block (struct attribute *attr)
19128 return (attr == NULL ? 0 :
19129 attr->form == DW_FORM_block1
19130 || attr->form == DW_FORM_block2
19131 || attr->form == DW_FORM_block4
19132 || attr->form == DW_FORM_block
19133 || attr->form == DW_FORM_exprloc);
19136 /* Return non-zero if ATTR's value is a section offset --- classes
19137 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
19138 You may use DW_UNSND (attr) to retrieve such offsets.
19140 Section 7.5.4, "Attribute Encodings", explains that no attribute
19141 may have a value that belongs to more than one of these classes; it
19142 would be ambiguous if we did, because we use the same forms for all
19146 attr_form_is_section_offset (struct attribute *attr)
19148 return (attr->form == DW_FORM_data4
19149 || attr->form == DW_FORM_data8
19150 || attr->form == DW_FORM_sec_offset);
19153 /* Return non-zero if ATTR's value falls in the 'constant' class, or
19154 zero otherwise. When this function returns true, you can apply
19155 dwarf2_get_attr_constant_value to it.
19157 However, note that for some attributes you must check
19158 attr_form_is_section_offset before using this test. DW_FORM_data4
19159 and DW_FORM_data8 are members of both the constant class, and of
19160 the classes that contain offsets into other debug sections
19161 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
19162 that, if an attribute's can be either a constant or one of the
19163 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
19164 taken as section offsets, not constants. */
19167 attr_form_is_constant (struct attribute *attr)
19169 switch (attr->form)
19171 case DW_FORM_sdata:
19172 case DW_FORM_udata:
19173 case DW_FORM_data1:
19174 case DW_FORM_data2:
19175 case DW_FORM_data4:
19176 case DW_FORM_data8:
19183 /* Return the .debug_loc section to use for CU.
19184 For DWO files use .debug_loc.dwo. */
19186 static struct dwarf2_section_info *
19187 cu_debug_loc_section (struct dwarf2_cu *cu)
19190 return &cu->dwo_unit->dwo_file->sections.loc;
19191 return &dwarf2_per_objfile->loc;
19194 /* A helper function that fills in a dwarf2_loclist_baton. */
19197 fill_in_loclist_baton (struct dwarf2_cu *cu,
19198 struct dwarf2_loclist_baton *baton,
19199 struct attribute *attr)
19201 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19203 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19205 baton->per_cu = cu->per_cu;
19206 gdb_assert (baton->per_cu);
19207 /* We don't know how long the location list is, but make sure we
19208 don't run off the edge of the section. */
19209 baton->size = section->size - DW_UNSND (attr);
19210 baton->data = section->buffer + DW_UNSND (attr);
19211 baton->base_address = cu->base_address;
19212 baton->from_dwo = cu->dwo_unit != NULL;
19216 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19217 struct dwarf2_cu *cu, int is_block)
19219 struct objfile *objfile = dwarf2_per_objfile->objfile;
19220 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19222 if (attr_form_is_section_offset (attr)
19223 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19224 the section. If so, fall through to the complaint in the
19226 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19228 struct dwarf2_loclist_baton *baton;
19230 baton = obstack_alloc (&objfile->objfile_obstack,
19231 sizeof (struct dwarf2_loclist_baton));
19233 fill_in_loclist_baton (cu, baton, attr);
19235 if (cu->base_known == 0)
19236 complaint (&symfile_complaints,
19237 _("Location list used without "
19238 "specifying the CU base address."));
19240 SYMBOL_ACLASS_INDEX (sym) = (is_block
19241 ? dwarf2_loclist_block_index
19242 : dwarf2_loclist_index);
19243 SYMBOL_LOCATION_BATON (sym) = baton;
19247 struct dwarf2_locexpr_baton *baton;
19249 baton = obstack_alloc (&objfile->objfile_obstack,
19250 sizeof (struct dwarf2_locexpr_baton));
19251 baton->per_cu = cu->per_cu;
19252 gdb_assert (baton->per_cu);
19254 if (attr_form_is_block (attr))
19256 /* Note that we're just copying the block's data pointer
19257 here, not the actual data. We're still pointing into the
19258 info_buffer for SYM's objfile; right now we never release
19259 that buffer, but when we do clean up properly this may
19261 baton->size = DW_BLOCK (attr)->size;
19262 baton->data = DW_BLOCK (attr)->data;
19266 dwarf2_invalid_attrib_class_complaint ("location description",
19267 SYMBOL_NATURAL_NAME (sym));
19271 SYMBOL_ACLASS_INDEX (sym) = (is_block
19272 ? dwarf2_locexpr_block_index
19273 : dwarf2_locexpr_index);
19274 SYMBOL_LOCATION_BATON (sym) = baton;
19278 /* Return the OBJFILE associated with the compilation unit CU. If CU
19279 came from a separate debuginfo file, then the master objfile is
19283 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19285 struct objfile *objfile = per_cu->objfile;
19287 /* Return the master objfile, so that we can report and look up the
19288 correct file containing this variable. */
19289 if (objfile->separate_debug_objfile_backlink)
19290 objfile = objfile->separate_debug_objfile_backlink;
19295 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19296 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19297 CU_HEADERP first. */
19299 static const struct comp_unit_head *
19300 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19301 struct dwarf2_per_cu_data *per_cu)
19303 const gdb_byte *info_ptr;
19306 return &per_cu->cu->header;
19308 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
19310 memset (cu_headerp, 0, sizeof (*cu_headerp));
19311 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19316 /* Return the address size given in the compilation unit header for CU. */
19319 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19321 struct comp_unit_head cu_header_local;
19322 const struct comp_unit_head *cu_headerp;
19324 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19326 return cu_headerp->addr_size;
19329 /* Return the offset size given in the compilation unit header for CU. */
19332 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19334 struct comp_unit_head cu_header_local;
19335 const struct comp_unit_head *cu_headerp;
19337 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19339 return cu_headerp->offset_size;
19342 /* See its dwarf2loc.h declaration. */
19345 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19347 struct comp_unit_head cu_header_local;
19348 const struct comp_unit_head *cu_headerp;
19350 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19352 if (cu_headerp->version == 2)
19353 return cu_headerp->addr_size;
19355 return cu_headerp->offset_size;
19358 /* Return the text offset of the CU. The returned offset comes from
19359 this CU's objfile. If this objfile came from a separate debuginfo
19360 file, then the offset may be different from the corresponding
19361 offset in the parent objfile. */
19364 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19366 struct objfile *objfile = per_cu->objfile;
19368 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19371 /* Locate the .debug_info compilation unit from CU's objfile which contains
19372 the DIE at OFFSET. Raises an error on failure. */
19374 static struct dwarf2_per_cu_data *
19375 dwarf2_find_containing_comp_unit (sect_offset offset,
19376 unsigned int offset_in_dwz,
19377 struct objfile *objfile)
19379 struct dwarf2_per_cu_data *this_cu;
19381 const sect_offset *cu_off;
19384 high = dwarf2_per_objfile->n_comp_units - 1;
19387 struct dwarf2_per_cu_data *mid_cu;
19388 int mid = low + (high - low) / 2;
19390 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19391 cu_off = &mid_cu->offset;
19392 if (mid_cu->is_dwz > offset_in_dwz
19393 || (mid_cu->is_dwz == offset_in_dwz
19394 && cu_off->sect_off >= offset.sect_off))
19399 gdb_assert (low == high);
19400 this_cu = dwarf2_per_objfile->all_comp_units[low];
19401 cu_off = &this_cu->offset;
19402 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19404 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19405 error (_("Dwarf Error: could not find partial DIE containing "
19406 "offset 0x%lx [in module %s]"),
19407 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19409 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19410 <= offset.sect_off);
19411 return dwarf2_per_objfile->all_comp_units[low-1];
19415 this_cu = dwarf2_per_objfile->all_comp_units[low];
19416 if (low == dwarf2_per_objfile->n_comp_units - 1
19417 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19418 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19419 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19424 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19427 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19429 memset (cu, 0, sizeof (*cu));
19431 cu->per_cu = per_cu;
19432 cu->objfile = per_cu->objfile;
19433 obstack_init (&cu->comp_unit_obstack);
19436 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19439 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19440 enum language pretend_language)
19442 struct attribute *attr;
19444 /* Set the language we're debugging. */
19445 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19447 set_cu_language (DW_UNSND (attr), cu);
19450 cu->language = pretend_language;
19451 cu->language_defn = language_def (cu->language);
19454 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19456 cu->producer = DW_STRING (attr);
19459 /* Release one cached compilation unit, CU. We unlink it from the tree
19460 of compilation units, but we don't remove it from the read_in_chain;
19461 the caller is responsible for that.
19462 NOTE: DATA is a void * because this function is also used as a
19463 cleanup routine. */
19466 free_heap_comp_unit (void *data)
19468 struct dwarf2_cu *cu = data;
19470 gdb_assert (cu->per_cu != NULL);
19471 cu->per_cu->cu = NULL;
19474 obstack_free (&cu->comp_unit_obstack, NULL);
19479 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19480 when we're finished with it. We can't free the pointer itself, but be
19481 sure to unlink it from the cache. Also release any associated storage. */
19484 free_stack_comp_unit (void *data)
19486 struct dwarf2_cu *cu = data;
19488 gdb_assert (cu->per_cu != NULL);
19489 cu->per_cu->cu = NULL;
19492 obstack_free (&cu->comp_unit_obstack, NULL);
19493 cu->partial_dies = NULL;
19496 /* Free all cached compilation units. */
19499 free_cached_comp_units (void *data)
19501 struct dwarf2_per_cu_data *per_cu, **last_chain;
19503 per_cu = dwarf2_per_objfile->read_in_chain;
19504 last_chain = &dwarf2_per_objfile->read_in_chain;
19505 while (per_cu != NULL)
19507 struct dwarf2_per_cu_data *next_cu;
19509 next_cu = per_cu->cu->read_in_chain;
19511 free_heap_comp_unit (per_cu->cu);
19512 *last_chain = next_cu;
19518 /* Increase the age counter on each cached compilation unit, and free
19519 any that are too old. */
19522 age_cached_comp_units (void)
19524 struct dwarf2_per_cu_data *per_cu, **last_chain;
19526 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19527 per_cu = dwarf2_per_objfile->read_in_chain;
19528 while (per_cu != NULL)
19530 per_cu->cu->last_used ++;
19531 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19532 dwarf2_mark (per_cu->cu);
19533 per_cu = per_cu->cu->read_in_chain;
19536 per_cu = dwarf2_per_objfile->read_in_chain;
19537 last_chain = &dwarf2_per_objfile->read_in_chain;
19538 while (per_cu != NULL)
19540 struct dwarf2_per_cu_data *next_cu;
19542 next_cu = per_cu->cu->read_in_chain;
19544 if (!per_cu->cu->mark)
19546 free_heap_comp_unit (per_cu->cu);
19547 *last_chain = next_cu;
19550 last_chain = &per_cu->cu->read_in_chain;
19556 /* Remove a single compilation unit from the cache. */
19559 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19561 struct dwarf2_per_cu_data *per_cu, **last_chain;
19563 per_cu = dwarf2_per_objfile->read_in_chain;
19564 last_chain = &dwarf2_per_objfile->read_in_chain;
19565 while (per_cu != NULL)
19567 struct dwarf2_per_cu_data *next_cu;
19569 next_cu = per_cu->cu->read_in_chain;
19571 if (per_cu == target_per_cu)
19573 free_heap_comp_unit (per_cu->cu);
19575 *last_chain = next_cu;
19579 last_chain = &per_cu->cu->read_in_chain;
19585 /* Release all extra memory associated with OBJFILE. */
19588 dwarf2_free_objfile (struct objfile *objfile)
19590 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19592 if (dwarf2_per_objfile == NULL)
19595 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19596 free_cached_comp_units (NULL);
19598 if (dwarf2_per_objfile->quick_file_names_table)
19599 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19601 /* Everything else should be on the objfile obstack. */
19604 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19605 We store these in a hash table separate from the DIEs, and preserve them
19606 when the DIEs are flushed out of cache.
19608 The CU "per_cu" pointer is needed because offset alone is not enough to
19609 uniquely identify the type. A file may have multiple .debug_types sections,
19610 or the type may come from a DWO file. Furthermore, while it's more logical
19611 to use per_cu->section+offset, with Fission the section with the data is in
19612 the DWO file but we don't know that section at the point we need it.
19613 We have to use something in dwarf2_per_cu_data (or the pointer to it)
19614 because we can enter the lookup routine, get_die_type_at_offset, from
19615 outside this file, and thus won't necessarily have PER_CU->cu.
19616 Fortunately, PER_CU is stable for the life of the objfile. */
19618 struct dwarf2_per_cu_offset_and_type
19620 const struct dwarf2_per_cu_data *per_cu;
19621 sect_offset offset;
19625 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19628 per_cu_offset_and_type_hash (const void *item)
19630 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19632 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19635 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19638 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19640 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19641 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19643 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19644 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19647 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19648 table if necessary. For convenience, return TYPE.
19650 The DIEs reading must have careful ordering to:
19651 * Not cause infite loops trying to read in DIEs as a prerequisite for
19652 reading current DIE.
19653 * Not trying to dereference contents of still incompletely read in types
19654 while reading in other DIEs.
19655 * Enable referencing still incompletely read in types just by a pointer to
19656 the type without accessing its fields.
19658 Therefore caller should follow these rules:
19659 * Try to fetch any prerequisite types we may need to build this DIE type
19660 before building the type and calling set_die_type.
19661 * After building type call set_die_type for current DIE as soon as
19662 possible before fetching more types to complete the current type.
19663 * Make the type as complete as possible before fetching more types. */
19665 static struct type *
19666 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19668 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19669 struct objfile *objfile = cu->objfile;
19671 /* For Ada types, make sure that the gnat-specific data is always
19672 initialized (if not already set). There are a few types where
19673 we should not be doing so, because the type-specific area is
19674 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19675 where the type-specific area is used to store the floatformat).
19676 But this is not a problem, because the gnat-specific information
19677 is actually not needed for these types. */
19678 if (need_gnat_info (cu)
19679 && TYPE_CODE (type) != TYPE_CODE_FUNC
19680 && TYPE_CODE (type) != TYPE_CODE_FLT
19681 && !HAVE_GNAT_AUX_INFO (type))
19682 INIT_GNAT_SPECIFIC (type);
19684 if (dwarf2_per_objfile->die_type_hash == NULL)
19686 dwarf2_per_objfile->die_type_hash =
19687 htab_create_alloc_ex (127,
19688 per_cu_offset_and_type_hash,
19689 per_cu_offset_and_type_eq,
19691 &objfile->objfile_obstack,
19692 hashtab_obstack_allocate,
19693 dummy_obstack_deallocate);
19696 ofs.per_cu = cu->per_cu;
19697 ofs.offset = die->offset;
19699 slot = (struct dwarf2_per_cu_offset_and_type **)
19700 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19702 complaint (&symfile_complaints,
19703 _("A problem internal to GDB: DIE 0x%x has type already set"),
19704 die->offset.sect_off);
19705 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19710 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
19711 or return NULL if the die does not have a saved type. */
19713 static struct type *
19714 get_die_type_at_offset (sect_offset offset,
19715 struct dwarf2_per_cu_data *per_cu)
19717 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19719 if (dwarf2_per_objfile->die_type_hash == NULL)
19722 ofs.per_cu = per_cu;
19723 ofs.offset = offset;
19724 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19731 /* Look up the type for DIE in CU in die_type_hash,
19732 or return NULL if DIE does not have a saved type. */
19734 static struct type *
19735 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19737 return get_die_type_at_offset (die->offset, cu->per_cu);
19740 /* Add a dependence relationship from CU to REF_PER_CU. */
19743 dwarf2_add_dependence (struct dwarf2_cu *cu,
19744 struct dwarf2_per_cu_data *ref_per_cu)
19748 if (cu->dependencies == NULL)
19750 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19751 NULL, &cu->comp_unit_obstack,
19752 hashtab_obstack_allocate,
19753 dummy_obstack_deallocate);
19755 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19757 *slot = ref_per_cu;
19760 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19761 Set the mark field in every compilation unit in the
19762 cache that we must keep because we are keeping CU. */
19765 dwarf2_mark_helper (void **slot, void *data)
19767 struct dwarf2_per_cu_data *per_cu;
19769 per_cu = (struct dwarf2_per_cu_data *) *slot;
19771 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19772 reading of the chain. As such dependencies remain valid it is not much
19773 useful to track and undo them during QUIT cleanups. */
19774 if (per_cu->cu == NULL)
19777 if (per_cu->cu->mark)
19779 per_cu->cu->mark = 1;
19781 if (per_cu->cu->dependencies != NULL)
19782 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19787 /* Set the mark field in CU and in every other compilation unit in the
19788 cache that we must keep because we are keeping CU. */
19791 dwarf2_mark (struct dwarf2_cu *cu)
19796 if (cu->dependencies != NULL)
19797 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19801 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19805 per_cu->cu->mark = 0;
19806 per_cu = per_cu->cu->read_in_chain;
19810 /* Trivial hash function for partial_die_info: the hash value of a DIE
19811 is its offset in .debug_info for this objfile. */
19814 partial_die_hash (const void *item)
19816 const struct partial_die_info *part_die = item;
19818 return part_die->offset.sect_off;
19821 /* Trivial comparison function for partial_die_info structures: two DIEs
19822 are equal if they have the same offset. */
19825 partial_die_eq (const void *item_lhs, const void *item_rhs)
19827 const struct partial_die_info *part_die_lhs = item_lhs;
19828 const struct partial_die_info *part_die_rhs = item_rhs;
19830 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19833 static struct cmd_list_element *set_dwarf2_cmdlist;
19834 static struct cmd_list_element *show_dwarf2_cmdlist;
19837 set_dwarf2_cmd (char *args, int from_tty)
19839 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19843 show_dwarf2_cmd (char *args, int from_tty)
19845 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19848 /* Free data associated with OBJFILE, if necessary. */
19851 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19853 struct dwarf2_per_objfile *data = d;
19856 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19857 VEC_free (dwarf2_per_cu_ptr,
19858 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19860 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19861 VEC_free (dwarf2_per_cu_ptr,
19862 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19864 VEC_free (dwarf2_section_info_def, data->types);
19866 if (data->dwo_files)
19867 free_dwo_files (data->dwo_files, objfile);
19868 if (data->dwp_file)
19869 gdb_bfd_unref (data->dwp_file->dbfd);
19871 if (data->dwz_file && data->dwz_file->dwz_bfd)
19872 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19876 /* The "save gdb-index" command. */
19878 /* The contents of the hash table we create when building the string
19880 struct strtab_entry
19882 offset_type offset;
19886 /* Hash function for a strtab_entry.
19888 Function is used only during write_hash_table so no index format backward
19889 compatibility is needed. */
19892 hash_strtab_entry (const void *e)
19894 const struct strtab_entry *entry = e;
19895 return mapped_index_string_hash (INT_MAX, entry->str);
19898 /* Equality function for a strtab_entry. */
19901 eq_strtab_entry (const void *a, const void *b)
19903 const struct strtab_entry *ea = a;
19904 const struct strtab_entry *eb = b;
19905 return !strcmp (ea->str, eb->str);
19908 /* Create a strtab_entry hash table. */
19911 create_strtab (void)
19913 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19914 xfree, xcalloc, xfree);
19917 /* Add a string to the constant pool. Return the string's offset in
19921 add_string (htab_t table, struct obstack *cpool, const char *str)
19924 struct strtab_entry entry;
19925 struct strtab_entry *result;
19928 slot = htab_find_slot (table, &entry, INSERT);
19933 result = XNEW (struct strtab_entry);
19934 result->offset = obstack_object_size (cpool);
19936 obstack_grow_str0 (cpool, str);
19939 return result->offset;
19942 /* An entry in the symbol table. */
19943 struct symtab_index_entry
19945 /* The name of the symbol. */
19947 /* The offset of the name in the constant pool. */
19948 offset_type index_offset;
19949 /* A sorted vector of the indices of all the CUs that hold an object
19951 VEC (offset_type) *cu_indices;
19954 /* The symbol table. This is a power-of-2-sized hash table. */
19955 struct mapped_symtab
19957 offset_type n_elements;
19959 struct symtab_index_entry **data;
19962 /* Hash function for a symtab_index_entry. */
19965 hash_symtab_entry (const void *e)
19967 const struct symtab_index_entry *entry = e;
19968 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19969 sizeof (offset_type) * VEC_length (offset_type,
19970 entry->cu_indices),
19974 /* Equality function for a symtab_index_entry. */
19977 eq_symtab_entry (const void *a, const void *b)
19979 const struct symtab_index_entry *ea = a;
19980 const struct symtab_index_entry *eb = b;
19981 int len = VEC_length (offset_type, ea->cu_indices);
19982 if (len != VEC_length (offset_type, eb->cu_indices))
19984 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19985 VEC_address (offset_type, eb->cu_indices),
19986 sizeof (offset_type) * len);
19989 /* Destroy a symtab_index_entry. */
19992 delete_symtab_entry (void *p)
19994 struct symtab_index_entry *entry = p;
19995 VEC_free (offset_type, entry->cu_indices);
19999 /* Create a hash table holding symtab_index_entry objects. */
20002 create_symbol_hash_table (void)
20004 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
20005 delete_symtab_entry, xcalloc, xfree);
20008 /* Create a new mapped symtab object. */
20010 static struct mapped_symtab *
20011 create_mapped_symtab (void)
20013 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
20014 symtab->n_elements = 0;
20015 symtab->size = 1024;
20016 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20020 /* Destroy a mapped_symtab. */
20023 cleanup_mapped_symtab (void *p)
20025 struct mapped_symtab *symtab = p;
20026 /* The contents of the array are freed when the other hash table is
20028 xfree (symtab->data);
20032 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
20035 Function is used only during write_hash_table so no index format backward
20036 compatibility is needed. */
20038 static struct symtab_index_entry **
20039 find_slot (struct mapped_symtab *symtab, const char *name)
20041 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
20043 index = hash & (symtab->size - 1);
20044 step = ((hash * 17) & (symtab->size - 1)) | 1;
20048 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
20049 return &symtab->data[index];
20050 index = (index + step) & (symtab->size - 1);
20054 /* Expand SYMTAB's hash table. */
20057 hash_expand (struct mapped_symtab *symtab)
20059 offset_type old_size = symtab->size;
20061 struct symtab_index_entry **old_entries = symtab->data;
20064 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
20066 for (i = 0; i < old_size; ++i)
20068 if (old_entries[i])
20070 struct symtab_index_entry **slot = find_slot (symtab,
20071 old_entries[i]->name);
20072 *slot = old_entries[i];
20076 xfree (old_entries);
20079 /* Add an entry to SYMTAB. NAME is the name of the symbol.
20080 CU_INDEX is the index of the CU in which the symbol appears.
20081 IS_STATIC is one if the symbol is static, otherwise zero (global). */
20084 add_index_entry (struct mapped_symtab *symtab, const char *name,
20085 int is_static, gdb_index_symbol_kind kind,
20086 offset_type cu_index)
20088 struct symtab_index_entry **slot;
20089 offset_type cu_index_and_attrs;
20091 ++symtab->n_elements;
20092 if (4 * symtab->n_elements / 3 >= symtab->size)
20093 hash_expand (symtab);
20095 slot = find_slot (symtab, name);
20098 *slot = XNEW (struct symtab_index_entry);
20099 (*slot)->name = name;
20100 /* index_offset is set later. */
20101 (*slot)->cu_indices = NULL;
20104 cu_index_and_attrs = 0;
20105 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
20106 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
20107 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
20109 /* We don't want to record an index value twice as we want to avoid the
20111 We process all global symbols and then all static symbols
20112 (which would allow us to avoid the duplication by only having to check
20113 the last entry pushed), but a symbol could have multiple kinds in one CU.
20114 To keep things simple we don't worry about the duplication here and
20115 sort and uniqufy the list after we've processed all symbols. */
20116 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
20119 /* qsort helper routine for uniquify_cu_indices. */
20122 offset_type_compare (const void *ap, const void *bp)
20124 offset_type a = *(offset_type *) ap;
20125 offset_type b = *(offset_type *) bp;
20127 return (a > b) - (b > a);
20130 /* Sort and remove duplicates of all symbols' cu_indices lists. */
20133 uniquify_cu_indices (struct mapped_symtab *symtab)
20137 for (i = 0; i < symtab->size; ++i)
20139 struct symtab_index_entry *entry = symtab->data[i];
20142 && entry->cu_indices != NULL)
20144 unsigned int next_to_insert, next_to_check;
20145 offset_type last_value;
20147 qsort (VEC_address (offset_type, entry->cu_indices),
20148 VEC_length (offset_type, entry->cu_indices),
20149 sizeof (offset_type), offset_type_compare);
20151 last_value = VEC_index (offset_type, entry->cu_indices, 0);
20152 next_to_insert = 1;
20153 for (next_to_check = 1;
20154 next_to_check < VEC_length (offset_type, entry->cu_indices);
20157 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
20160 last_value = VEC_index (offset_type, entry->cu_indices,
20162 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
20167 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
20172 /* Add a vector of indices to the constant pool. */
20175 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
20176 struct symtab_index_entry *entry)
20180 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
20183 offset_type len = VEC_length (offset_type, entry->cu_indices);
20184 offset_type val = MAYBE_SWAP (len);
20189 entry->index_offset = obstack_object_size (cpool);
20191 obstack_grow (cpool, &val, sizeof (val));
20193 VEC_iterate (offset_type, entry->cu_indices, i, iter);
20196 val = MAYBE_SWAP (iter);
20197 obstack_grow (cpool, &val, sizeof (val));
20202 struct symtab_index_entry *old_entry = *slot;
20203 entry->index_offset = old_entry->index_offset;
20206 return entry->index_offset;
20209 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20210 constant pool entries going into the obstack CPOOL. */
20213 write_hash_table (struct mapped_symtab *symtab,
20214 struct obstack *output, struct obstack *cpool)
20217 htab_t symbol_hash_table;
20220 symbol_hash_table = create_symbol_hash_table ();
20221 str_table = create_strtab ();
20223 /* We add all the index vectors to the constant pool first, to
20224 ensure alignment is ok. */
20225 for (i = 0; i < symtab->size; ++i)
20227 if (symtab->data[i])
20228 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20231 /* Now write out the hash table. */
20232 for (i = 0; i < symtab->size; ++i)
20234 offset_type str_off, vec_off;
20236 if (symtab->data[i])
20238 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20239 vec_off = symtab->data[i]->index_offset;
20243 /* While 0 is a valid constant pool index, it is not valid
20244 to have 0 for both offsets. */
20249 str_off = MAYBE_SWAP (str_off);
20250 vec_off = MAYBE_SWAP (vec_off);
20252 obstack_grow (output, &str_off, sizeof (str_off));
20253 obstack_grow (output, &vec_off, sizeof (vec_off));
20256 htab_delete (str_table);
20257 htab_delete (symbol_hash_table);
20260 /* Struct to map psymtab to CU index in the index file. */
20261 struct psymtab_cu_index_map
20263 struct partial_symtab *psymtab;
20264 unsigned int cu_index;
20268 hash_psymtab_cu_index (const void *item)
20270 const struct psymtab_cu_index_map *map = item;
20272 return htab_hash_pointer (map->psymtab);
20276 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20278 const struct psymtab_cu_index_map *lhs = item_lhs;
20279 const struct psymtab_cu_index_map *rhs = item_rhs;
20281 return lhs->psymtab == rhs->psymtab;
20284 /* Helper struct for building the address table. */
20285 struct addrmap_index_data
20287 struct objfile *objfile;
20288 struct obstack *addr_obstack;
20289 htab_t cu_index_htab;
20291 /* Non-zero if the previous_* fields are valid.
20292 We can't write an entry until we see the next entry (since it is only then
20293 that we know the end of the entry). */
20294 int previous_valid;
20295 /* Index of the CU in the table of all CUs in the index file. */
20296 unsigned int previous_cu_index;
20297 /* Start address of the CU. */
20298 CORE_ADDR previous_cu_start;
20301 /* Write an address entry to OBSTACK. */
20304 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20305 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20307 offset_type cu_index_to_write;
20309 CORE_ADDR baseaddr;
20311 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20313 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20314 obstack_grow (obstack, addr, 8);
20315 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20316 obstack_grow (obstack, addr, 8);
20317 cu_index_to_write = MAYBE_SWAP (cu_index);
20318 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20321 /* Worker function for traversing an addrmap to build the address table. */
20324 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20326 struct addrmap_index_data *data = datap;
20327 struct partial_symtab *pst = obj;
20329 if (data->previous_valid)
20330 add_address_entry (data->objfile, data->addr_obstack,
20331 data->previous_cu_start, start_addr,
20332 data->previous_cu_index);
20334 data->previous_cu_start = start_addr;
20337 struct psymtab_cu_index_map find_map, *map;
20338 find_map.psymtab = pst;
20339 map = htab_find (data->cu_index_htab, &find_map);
20340 gdb_assert (map != NULL);
20341 data->previous_cu_index = map->cu_index;
20342 data->previous_valid = 1;
20345 data->previous_valid = 0;
20350 /* Write OBJFILE's address map to OBSTACK.
20351 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20352 in the index file. */
20355 write_address_map (struct objfile *objfile, struct obstack *obstack,
20356 htab_t cu_index_htab)
20358 struct addrmap_index_data addrmap_index_data;
20360 /* When writing the address table, we have to cope with the fact that
20361 the addrmap iterator only provides the start of a region; we have to
20362 wait until the next invocation to get the start of the next region. */
20364 addrmap_index_data.objfile = objfile;
20365 addrmap_index_data.addr_obstack = obstack;
20366 addrmap_index_data.cu_index_htab = cu_index_htab;
20367 addrmap_index_data.previous_valid = 0;
20369 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20370 &addrmap_index_data);
20372 /* It's highly unlikely the last entry (end address = 0xff...ff)
20373 is valid, but we should still handle it.
20374 The end address is recorded as the start of the next region, but that
20375 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20377 if (addrmap_index_data.previous_valid)
20378 add_address_entry (objfile, obstack,
20379 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20380 addrmap_index_data.previous_cu_index);
20383 /* Return the symbol kind of PSYM. */
20385 static gdb_index_symbol_kind
20386 symbol_kind (struct partial_symbol *psym)
20388 domain_enum domain = PSYMBOL_DOMAIN (psym);
20389 enum address_class aclass = PSYMBOL_CLASS (psym);
20397 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20399 return GDB_INDEX_SYMBOL_KIND_TYPE;
20401 case LOC_CONST_BYTES:
20402 case LOC_OPTIMIZED_OUT:
20404 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20406 /* Note: It's currently impossible to recognize psyms as enum values
20407 short of reading the type info. For now punt. */
20408 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20410 /* There are other LOC_FOO values that one might want to classify
20411 as variables, but dwarf2read.c doesn't currently use them. */
20412 return GDB_INDEX_SYMBOL_KIND_OTHER;
20414 case STRUCT_DOMAIN:
20415 return GDB_INDEX_SYMBOL_KIND_TYPE;
20417 return GDB_INDEX_SYMBOL_KIND_OTHER;
20421 /* Add a list of partial symbols to SYMTAB. */
20424 write_psymbols (struct mapped_symtab *symtab,
20426 struct partial_symbol **psymp,
20428 offset_type cu_index,
20431 for (; count-- > 0; ++psymp)
20433 struct partial_symbol *psym = *psymp;
20436 if (SYMBOL_LANGUAGE (psym) == language_ada)
20437 error (_("Ada is not currently supported by the index"));
20439 /* Only add a given psymbol once. */
20440 slot = htab_find_slot (psyms_seen, psym, INSERT);
20443 gdb_index_symbol_kind kind = symbol_kind (psym);
20446 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20447 is_static, kind, cu_index);
20452 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20453 exception if there is an error. */
20456 write_obstack (FILE *file, struct obstack *obstack)
20458 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20460 != obstack_object_size (obstack))
20461 error (_("couldn't data write to file"));
20464 /* Unlink a file if the argument is not NULL. */
20467 unlink_if_set (void *p)
20469 char **filename = p;
20471 unlink (*filename);
20474 /* A helper struct used when iterating over debug_types. */
20475 struct signatured_type_index_data
20477 struct objfile *objfile;
20478 struct mapped_symtab *symtab;
20479 struct obstack *types_list;
20484 /* A helper function that writes a single signatured_type to an
20488 write_one_signatured_type (void **slot, void *d)
20490 struct signatured_type_index_data *info = d;
20491 struct signatured_type *entry = (struct signatured_type *) *slot;
20492 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
20495 write_psymbols (info->symtab,
20497 info->objfile->global_psymbols.list
20498 + psymtab->globals_offset,
20499 psymtab->n_global_syms, info->cu_index,
20501 write_psymbols (info->symtab,
20503 info->objfile->static_psymbols.list
20504 + psymtab->statics_offset,
20505 psymtab->n_static_syms, info->cu_index,
20508 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20509 entry->per_cu.offset.sect_off);
20510 obstack_grow (info->types_list, val, 8);
20511 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20512 entry->type_offset_in_tu.cu_off);
20513 obstack_grow (info->types_list, val, 8);
20514 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20515 obstack_grow (info->types_list, val, 8);
20522 /* Recurse into all "included" dependencies and write their symbols as
20523 if they appeared in this psymtab. */
20526 recursively_write_psymbols (struct objfile *objfile,
20527 struct partial_symtab *psymtab,
20528 struct mapped_symtab *symtab,
20530 offset_type cu_index)
20534 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20535 if (psymtab->dependencies[i]->user != NULL)
20536 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20537 symtab, psyms_seen, cu_index);
20539 write_psymbols (symtab,
20541 objfile->global_psymbols.list + psymtab->globals_offset,
20542 psymtab->n_global_syms, cu_index,
20544 write_psymbols (symtab,
20546 objfile->static_psymbols.list + psymtab->statics_offset,
20547 psymtab->n_static_syms, cu_index,
20551 /* Create an index file for OBJFILE in the directory DIR. */
20554 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20556 struct cleanup *cleanup;
20557 char *filename, *cleanup_filename;
20558 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20559 struct obstack cu_list, types_cu_list;
20562 struct mapped_symtab *symtab;
20563 offset_type val, size_of_contents, total_len;
20566 htab_t cu_index_htab;
20567 struct psymtab_cu_index_map *psymtab_cu_index_map;
20569 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20572 if (dwarf2_per_objfile->using_index)
20573 error (_("Cannot use an index to create the index"));
20575 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20576 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20578 if (stat (objfile->name, &st) < 0)
20579 perror_with_name (objfile->name);
20581 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20582 INDEX_SUFFIX, (char *) NULL);
20583 cleanup = make_cleanup (xfree, filename);
20585 out_file = fopen (filename, "wb");
20587 error (_("Can't open `%s' for writing"), filename);
20589 cleanup_filename = filename;
20590 make_cleanup (unlink_if_set, &cleanup_filename);
20592 symtab = create_mapped_symtab ();
20593 make_cleanup (cleanup_mapped_symtab, symtab);
20595 obstack_init (&addr_obstack);
20596 make_cleanup_obstack_free (&addr_obstack);
20598 obstack_init (&cu_list);
20599 make_cleanup_obstack_free (&cu_list);
20601 obstack_init (&types_cu_list);
20602 make_cleanup_obstack_free (&types_cu_list);
20604 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20605 NULL, xcalloc, xfree);
20606 make_cleanup_htab_delete (psyms_seen);
20608 /* While we're scanning CU's create a table that maps a psymtab pointer
20609 (which is what addrmap records) to its index (which is what is recorded
20610 in the index file). This will later be needed to write the address
20612 cu_index_htab = htab_create_alloc (100,
20613 hash_psymtab_cu_index,
20614 eq_psymtab_cu_index,
20615 NULL, xcalloc, xfree);
20616 make_cleanup_htab_delete (cu_index_htab);
20617 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20618 xmalloc (sizeof (struct psymtab_cu_index_map)
20619 * dwarf2_per_objfile->n_comp_units);
20620 make_cleanup (xfree, psymtab_cu_index_map);
20622 /* The CU list is already sorted, so we don't need to do additional
20623 work here. Also, the debug_types entries do not appear in
20624 all_comp_units, but only in their own hash table. */
20625 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20627 struct dwarf2_per_cu_data *per_cu
20628 = dwarf2_per_objfile->all_comp_units[i];
20629 struct partial_symtab *psymtab = per_cu->v.psymtab;
20631 struct psymtab_cu_index_map *map;
20634 if (psymtab->user == NULL)
20635 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20637 map = &psymtab_cu_index_map[i];
20638 map->psymtab = psymtab;
20640 slot = htab_find_slot (cu_index_htab, map, INSERT);
20641 gdb_assert (slot != NULL);
20642 gdb_assert (*slot == NULL);
20645 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20646 per_cu->offset.sect_off);
20647 obstack_grow (&cu_list, val, 8);
20648 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20649 obstack_grow (&cu_list, val, 8);
20652 /* Dump the address map. */
20653 write_address_map (objfile, &addr_obstack, cu_index_htab);
20655 /* Write out the .debug_type entries, if any. */
20656 if (dwarf2_per_objfile->signatured_types)
20658 struct signatured_type_index_data sig_data;
20660 sig_data.objfile = objfile;
20661 sig_data.symtab = symtab;
20662 sig_data.types_list = &types_cu_list;
20663 sig_data.psyms_seen = psyms_seen;
20664 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20665 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20666 write_one_signatured_type, &sig_data);
20669 /* Now that we've processed all symbols we can shrink their cu_indices
20671 uniquify_cu_indices (symtab);
20673 obstack_init (&constant_pool);
20674 make_cleanup_obstack_free (&constant_pool);
20675 obstack_init (&symtab_obstack);
20676 make_cleanup_obstack_free (&symtab_obstack);
20677 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20679 obstack_init (&contents);
20680 make_cleanup_obstack_free (&contents);
20681 size_of_contents = 6 * sizeof (offset_type);
20682 total_len = size_of_contents;
20684 /* The version number. */
20685 val = MAYBE_SWAP (8);
20686 obstack_grow (&contents, &val, sizeof (val));
20688 /* The offset of the CU list from the start of the file. */
20689 val = MAYBE_SWAP (total_len);
20690 obstack_grow (&contents, &val, sizeof (val));
20691 total_len += obstack_object_size (&cu_list);
20693 /* The offset of the types CU list from the start of the file. */
20694 val = MAYBE_SWAP (total_len);
20695 obstack_grow (&contents, &val, sizeof (val));
20696 total_len += obstack_object_size (&types_cu_list);
20698 /* The offset of the address table from the start of the file. */
20699 val = MAYBE_SWAP (total_len);
20700 obstack_grow (&contents, &val, sizeof (val));
20701 total_len += obstack_object_size (&addr_obstack);
20703 /* The offset of the symbol table from the start of the file. */
20704 val = MAYBE_SWAP (total_len);
20705 obstack_grow (&contents, &val, sizeof (val));
20706 total_len += obstack_object_size (&symtab_obstack);
20708 /* The offset of the constant pool from the start of the file. */
20709 val = MAYBE_SWAP (total_len);
20710 obstack_grow (&contents, &val, sizeof (val));
20711 total_len += obstack_object_size (&constant_pool);
20713 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20715 write_obstack (out_file, &contents);
20716 write_obstack (out_file, &cu_list);
20717 write_obstack (out_file, &types_cu_list);
20718 write_obstack (out_file, &addr_obstack);
20719 write_obstack (out_file, &symtab_obstack);
20720 write_obstack (out_file, &constant_pool);
20724 /* We want to keep the file, so we set cleanup_filename to NULL
20725 here. See unlink_if_set. */
20726 cleanup_filename = NULL;
20728 do_cleanups (cleanup);
20731 /* Implementation of the `save gdb-index' command.
20733 Note that the file format used by this command is documented in the
20734 GDB manual. Any changes here must be documented there. */
20737 save_gdb_index_command (char *arg, int from_tty)
20739 struct objfile *objfile;
20742 error (_("usage: save gdb-index DIRECTORY"));
20744 ALL_OBJFILES (objfile)
20748 /* If the objfile does not correspond to an actual file, skip it. */
20749 if (stat (objfile->name, &st) < 0)
20752 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20753 if (dwarf2_per_objfile)
20755 volatile struct gdb_exception except;
20757 TRY_CATCH (except, RETURN_MASK_ERROR)
20759 write_psymtabs_to_index (objfile, arg);
20761 if (except.reason < 0)
20762 exception_fprintf (gdb_stderr, except,
20763 _("Error while writing index for `%s': "),
20771 int dwarf2_always_disassemble;
20774 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20775 struct cmd_list_element *c, const char *value)
20777 fprintf_filtered (file,
20778 _("Whether to always disassemble "
20779 "DWARF expressions is %s.\n"),
20784 show_check_physname (struct ui_file *file, int from_tty,
20785 struct cmd_list_element *c, const char *value)
20787 fprintf_filtered (file,
20788 _("Whether to check \"physname\" is %s.\n"),
20792 void _initialize_dwarf2_read (void);
20795 _initialize_dwarf2_read (void)
20797 struct cmd_list_element *c;
20799 dwarf2_objfile_data_key
20800 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20802 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20803 Set DWARF 2 specific variables.\n\
20804 Configure DWARF 2 variables such as the cache size"),
20805 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20806 0/*allow-unknown*/, &maintenance_set_cmdlist);
20808 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20809 Show DWARF 2 specific variables\n\
20810 Show DWARF 2 variables such as the cache size"),
20811 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20812 0/*allow-unknown*/, &maintenance_show_cmdlist);
20814 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20815 &dwarf2_max_cache_age, _("\
20816 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20817 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20818 A higher limit means that cached compilation units will be stored\n\
20819 in memory longer, and more total memory will be used. Zero disables\n\
20820 caching, which can slow down startup."),
20822 show_dwarf2_max_cache_age,
20823 &set_dwarf2_cmdlist,
20824 &show_dwarf2_cmdlist);
20826 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20827 &dwarf2_always_disassemble, _("\
20828 Set whether `info address' always disassembles DWARF expressions."), _("\
20829 Show whether `info address' always disassembles DWARF expressions."), _("\
20830 When enabled, DWARF expressions are always printed in an assembly-like\n\
20831 syntax. When disabled, expressions will be printed in a more\n\
20832 conversational style, when possible."),
20834 show_dwarf2_always_disassemble,
20835 &set_dwarf2_cmdlist,
20836 &show_dwarf2_cmdlist);
20838 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20839 Set debugging of the dwarf2 reader."), _("\
20840 Show debugging of the dwarf2 reader."), _("\
20841 When enabled, debugging messages are printed during dwarf2 reading\n\
20842 and symtab expansion."),
20845 &setdebuglist, &showdebuglist);
20847 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20848 Set debugging of the dwarf2 DIE reader."), _("\
20849 Show debugging of the dwarf2 DIE reader."), _("\
20850 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20851 The value is the maximum depth to print."),
20854 &setdebuglist, &showdebuglist);
20856 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20857 Set cross-checking of \"physname\" code against demangler."), _("\
20858 Show cross-checking of \"physname\" code against demangler."), _("\
20859 When enabled, GDB's internal \"physname\" code is checked against\n\
20861 NULL, show_check_physname,
20862 &setdebuglist, &showdebuglist);
20864 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20865 no_class, &use_deprecated_index_sections, _("\
20866 Set whether to use deprecated gdb_index sections."), _("\
20867 Show whether to use deprecated gdb_index sections."), _("\
20868 When enabled, deprecated .gdb_index sections are used anyway.\n\
20869 Normally they are ignored either because of a missing feature or\n\
20870 performance issue.\n\
20871 Warning: This option must be enabled before gdb reads the file."),
20874 &setlist, &showlist);
20876 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20878 Save a gdb-index file.\n\
20879 Usage: save gdb-index DIRECTORY"),
20881 set_cmd_completer (c, filename_completer);
20883 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
20884 &dwarf2_locexpr_funcs);
20885 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
20886 &dwarf2_loclist_funcs);
20888 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
20889 &dwarf2_block_frame_base_locexpr_funcs);
20890 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
20891 &dwarf2_block_frame_base_loclist_funcs);