1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2013 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
58 #include "exceptions.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
73 #include "gdb_string.h"
74 #include "gdb_assert.h"
75 #include <sys/types.h>
77 typedef struct symbol *symbolp;
80 /* When non-zero, print basic high level tracing messages.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static int dwarf2_read_debug = 0;
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
93 static const struct objfile_data *dwarf2_objfile_data_key;
95 struct dwarf2_section_info
100 /* True if we have tried to read this section. */
104 typedef struct dwarf2_section_info dwarf2_section_info_def;
105 DEF_VEC_O (dwarf2_section_info_def);
107 /* All offsets in the index are of this type. It must be
108 architecture-independent. */
109 typedef uint32_t offset_type;
111 DEF_VEC_I (offset_type);
113 /* Ensure only legit values are used. */
114 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
116 gdb_assert ((unsigned int) (value) <= 1); \
117 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
120 /* Ensure only legit values are used. */
121 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
123 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
124 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
125 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
128 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
129 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
131 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
132 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
135 /* A description of the mapped index. The file format is described in
136 a comment by the code that writes the index. */
139 /* Index data format version. */
142 /* The total length of the buffer. */
145 /* A pointer to the address table data. */
146 const gdb_byte *address_table;
148 /* Size of the address table data in bytes. */
149 offset_type address_table_size;
151 /* The symbol table, implemented as a hash table. */
152 const offset_type *symbol_table;
154 /* Size in slots, each slot is 2 offset_types. */
155 offset_type symbol_table_slots;
157 /* A pointer to the constant pool. */
158 const char *constant_pool;
161 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
162 DEF_VEC_P (dwarf2_per_cu_ptr);
164 /* Collection of data recorded per objfile.
165 This hangs off of dwarf2_objfile_data_key. */
167 struct dwarf2_per_objfile
169 struct dwarf2_section_info info;
170 struct dwarf2_section_info abbrev;
171 struct dwarf2_section_info line;
172 struct dwarf2_section_info loc;
173 struct dwarf2_section_info macinfo;
174 struct dwarf2_section_info macro;
175 struct dwarf2_section_info str;
176 struct dwarf2_section_info ranges;
177 struct dwarf2_section_info addr;
178 struct dwarf2_section_info frame;
179 struct dwarf2_section_info eh_frame;
180 struct dwarf2_section_info gdb_index;
182 VEC (dwarf2_section_info_def) *types;
185 struct objfile *objfile;
187 /* Table of all the compilation units. This is used to locate
188 the target compilation unit of a particular reference. */
189 struct dwarf2_per_cu_data **all_comp_units;
191 /* The number of compilation units in ALL_COMP_UNITS. */
194 /* The number of .debug_types-related CUs. */
197 /* The .debug_types-related CUs (TUs). */
198 struct signatured_type **all_type_units;
200 /* The number of entries in all_type_unit_groups. */
201 int n_type_unit_groups;
203 /* Table of type unit groups.
204 This exists to make it easy to iterate over all CUs and TU groups. */
205 struct type_unit_group **all_type_unit_groups;
207 /* Table of struct type_unit_group objects.
208 The hash key is the DW_AT_stmt_list value. */
209 htab_t type_unit_groups;
211 /* A table mapping .debug_types signatures to its signatured_type entry.
212 This is NULL if the .debug_types section hasn't been read in yet. */
213 htab_t signatured_types;
215 /* Type unit statistics, to see how well the scaling improvements
219 int nr_uniq_abbrev_tables;
221 int nr_symtab_sharers;
222 int nr_stmt_less_type_units;
225 /* A chain of compilation units that are currently read in, so that
226 they can be freed later. */
227 struct dwarf2_per_cu_data *read_in_chain;
229 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
230 This is NULL if the table hasn't been allocated yet. */
233 /* Non-zero if we've check for whether there is a DWP file. */
236 /* The DWP file if there is one, or NULL. */
237 struct dwp_file *dwp_file;
239 /* The shared '.dwz' file, if one exists. This is used when the
240 original data was compressed using 'dwz -m'. */
241 struct dwz_file *dwz_file;
243 /* A flag indicating wether this objfile has a section loaded at a
245 int has_section_at_zero;
247 /* True if we are using the mapped index,
248 or we are faking it for OBJF_READNOW's sake. */
249 unsigned char using_index;
251 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
252 struct mapped_index *index_table;
254 /* When using index_table, this keeps track of all quick_file_names entries.
255 TUs typically share line table entries with a CU, so we maintain a
256 separate table of all line table entries to support the sharing.
257 Note that while there can be way more TUs than CUs, we've already
258 sorted all the TUs into "type unit groups", grouped by their
259 DW_AT_stmt_list value. Therefore the only sharing done here is with a
260 CU and its associated TU group if there is one. */
261 htab_t quick_file_names_table;
263 /* Set during partial symbol reading, to prevent queueing of full
265 int reading_partial_symbols;
267 /* Table mapping type DIEs to their struct type *.
268 This is NULL if not allocated yet.
269 The mapping is done via (CU/TU signature + DIE offset) -> type. */
270 htab_t die_type_hash;
272 /* The CUs we recently read. */
273 VEC (dwarf2_per_cu_ptr) *just_read_cus;
276 static struct dwarf2_per_objfile *dwarf2_per_objfile;
278 /* Default names of the debugging sections. */
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_macinfo", ".zdebug_macinfo" },
290 { ".debug_macro", ".zdebug_macro" },
291 { ".debug_str", ".zdebug_str" },
292 { ".debug_ranges", ".zdebug_ranges" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
301 /* List of DWO/DWP sections. */
303 static const struct dwop_section_names
305 struct dwarf2_section_names abbrev_dwo;
306 struct dwarf2_section_names info_dwo;
307 struct dwarf2_section_names line_dwo;
308 struct dwarf2_section_names loc_dwo;
309 struct dwarf2_section_names macinfo_dwo;
310 struct dwarf2_section_names macro_dwo;
311 struct dwarf2_section_names str_dwo;
312 struct dwarf2_section_names str_offsets_dwo;
313 struct dwarf2_section_names types_dwo;
314 struct dwarf2_section_names cu_index;
315 struct dwarf2_section_names tu_index;
319 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
320 { ".debug_info.dwo", ".zdebug_info.dwo" },
321 { ".debug_line.dwo", ".zdebug_line.dwo" },
322 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
323 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
324 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
325 { ".debug_str.dwo", ".zdebug_str.dwo" },
326 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
327 { ".debug_types.dwo", ".zdebug_types.dwo" },
328 { ".debug_cu_index", ".zdebug_cu_index" },
329 { ".debug_tu_index", ".zdebug_tu_index" },
332 /* local data types */
334 /* The data in a compilation unit header, after target2host
335 translation, looks like this. */
336 struct comp_unit_head
340 unsigned char addr_size;
341 unsigned char signed_addr_p;
342 sect_offset abbrev_offset;
344 /* Size of file offsets; either 4 or 8. */
345 unsigned int offset_size;
347 /* Size of the length field; either 4 or 12. */
348 unsigned int initial_length_size;
350 /* Offset to the first byte of this compilation unit header in the
351 .debug_info section, for resolving relative reference dies. */
354 /* Offset to first die in this cu from the start of the cu.
355 This will be the first byte following the compilation unit header. */
356 cu_offset first_die_offset;
359 /* Type used for delaying computation of method physnames.
360 See comments for compute_delayed_physnames. */
361 struct delayed_method_info
363 /* The type to which the method is attached, i.e., its parent class. */
366 /* The index of the method in the type's function fieldlists. */
369 /* The index of the method in the fieldlist. */
372 /* The name of the DIE. */
375 /* The DIE associated with this method. */
376 struct die_info *die;
379 typedef struct delayed_method_info delayed_method_info;
380 DEF_VEC_O (delayed_method_info);
382 /* Internal state when decoding a particular compilation unit. */
385 /* The objfile containing this compilation unit. */
386 struct objfile *objfile;
388 /* The header of the compilation unit. */
389 struct comp_unit_head header;
391 /* Base address of this compilation unit. */
392 CORE_ADDR base_address;
394 /* Non-zero if base_address has been set. */
397 /* The language we are debugging. */
398 enum language language;
399 const struct language_defn *language_defn;
401 const char *producer;
403 /* The generic symbol table building routines have separate lists for
404 file scope symbols and all all other scopes (local scopes). So
405 we need to select the right one to pass to add_symbol_to_list().
406 We do it by keeping a pointer to the correct list in list_in_scope.
408 FIXME: The original dwarf code just treated the file scope as the
409 first local scope, and all other local scopes as nested local
410 scopes, and worked fine. Check to see if we really need to
411 distinguish these in buildsym.c. */
412 struct pending **list_in_scope;
414 /* The abbrev table for this CU.
415 Normally this points to the abbrev table in the objfile.
416 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
417 struct abbrev_table *abbrev_table;
419 /* Hash table holding all the loaded partial DIEs
420 with partial_die->offset.SECT_OFF as hash. */
423 /* Storage for things with the same lifetime as this read-in compilation
424 unit, including partial DIEs. */
425 struct obstack comp_unit_obstack;
427 /* When multiple dwarf2_cu structures are living in memory, this field
428 chains them all together, so that they can be released efficiently.
429 We will probably also want a generation counter so that most-recently-used
430 compilation units are cached... */
431 struct dwarf2_per_cu_data *read_in_chain;
433 /* Backchain to our per_cu entry if the tree has been built. */
434 struct dwarf2_per_cu_data *per_cu;
436 /* How many compilation units ago was this CU last referenced? */
439 /* A hash table of DIE cu_offset for following references with
440 die_info->offset.sect_off as hash. */
443 /* Full DIEs if read in. */
444 struct die_info *dies;
446 /* A set of pointers to dwarf2_per_cu_data objects for compilation
447 units referenced by this one. Only set during full symbol processing;
448 partial symbol tables do not have dependencies. */
451 /* Header data from the line table, during full symbol processing. */
452 struct line_header *line_header;
454 /* A list of methods which need to have physnames computed
455 after all type information has been read. */
456 VEC (delayed_method_info) *method_list;
458 /* To be copied to symtab->call_site_htab. */
459 htab_t call_site_htab;
461 /* Non-NULL if this CU came from a DWO file.
462 There is an invariant here that is important to remember:
463 Except for attributes copied from the top level DIE in the "main"
464 (or "stub") file in preparation for reading the DWO file
465 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
466 Either there isn't a DWO file (in which case this is NULL and the point
467 is moot), or there is and either we're not going to read it (in which
468 case this is NULL) or there is and we are reading it (in which case this
470 struct dwo_unit *dwo_unit;
472 /* The DW_AT_addr_base attribute if present, zero otherwise
473 (zero is a valid value though).
474 Note this value comes from the stub CU/TU's DIE. */
477 /* The DW_AT_ranges_base attribute if present, zero otherwise
478 (zero is a valid value though).
479 Note this value comes from the stub CU/TU's DIE.
480 Also note that the value is zero in the non-DWO case so this value can
481 be used without needing to know whether DWO files are in use or not.
482 N.B. This does not apply to DW_AT_ranges appearing in
483 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
484 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
485 DW_AT_ranges_base *would* have to be applied, and we'd have to care
486 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
487 ULONGEST ranges_base;
489 /* Mark used when releasing cached dies. */
490 unsigned int mark : 1;
492 /* This CU references .debug_loc. See the symtab->locations_valid field.
493 This test is imperfect as there may exist optimized debug code not using
494 any location list and still facing inlining issues if handled as
495 unoptimized code. For a future better test see GCC PR other/32998. */
496 unsigned int has_loclist : 1;
498 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
499 if all the producer_is_* fields are valid. This information is cached
500 because profiling CU expansion showed excessive time spent in
501 producer_is_gxx_lt_4_6. */
502 unsigned int checked_producer : 1;
503 unsigned int producer_is_gxx_lt_4_6 : 1;
504 unsigned int producer_is_gcc_lt_4_3 : 1;
505 unsigned int producer_is_icc : 1;
507 /* When set, the file that we're processing is known to have
508 debugging info for C++ namespaces. GCC 3.3.x did not produce
509 this information, but later versions do. */
511 unsigned int processing_has_namespace_info : 1;
514 /* Persistent data held for a compilation unit, even when not
515 processing it. We put a pointer to this structure in the
516 read_symtab_private field of the psymtab. */
518 struct dwarf2_per_cu_data
520 /* The start offset and length of this compilation unit.
521 NOTE: Unlike comp_unit_head.length, this length includes
523 If the DIE refers to a DWO file, this is always of the original die,
528 /* Flag indicating this compilation unit will be read in before
529 any of the current compilation units are processed. */
530 unsigned int queued : 1;
532 /* This flag will be set when reading partial DIEs if we need to load
533 absolutely all DIEs for this compilation unit, instead of just the ones
534 we think are interesting. It gets set if we look for a DIE in the
535 hash table and don't find it. */
536 unsigned int load_all_dies : 1;
538 /* Non-zero if this CU is from .debug_types. */
539 unsigned int is_debug_types : 1;
541 /* Non-zero if this CU is from the .dwz file. */
542 unsigned int is_dwz : 1;
544 /* The section this CU/TU lives in.
545 If the DIE refers to a DWO file, this is always the original die,
547 struct dwarf2_section_info *info_or_types_section;
549 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
550 of the CU cache it gets reset to NULL again. */
551 struct dwarf2_cu *cu;
553 /* The corresponding objfile.
554 Normally we can get the objfile from dwarf2_per_objfile.
555 However we can enter this file with just a "per_cu" handle. */
556 struct objfile *objfile;
558 /* When using partial symbol tables, the 'psymtab' field is active.
559 Otherwise the 'quick' field is active. */
562 /* The partial symbol table associated with this compilation unit,
563 or NULL for unread partial units. */
564 struct partial_symtab *psymtab;
566 /* Data needed by the "quick" functions. */
567 struct dwarf2_per_cu_quick_data *quick;
570 /* The CUs we import using DW_TAG_imported_unit. This is filled in
571 while reading psymtabs, used to compute the psymtab dependencies,
572 and then cleared. Then it is filled in again while reading full
573 symbols, and only deleted when the objfile is destroyed.
575 This is also used to work around a difference between the way gold
576 generates .gdb_index version <=7 and the way gdb does. Arguably this
577 is a gold bug. For symbols coming from TUs, gold records in the index
578 the CU that includes the TU instead of the TU itself. This breaks
579 dw2_lookup_symbol: It assumes that if the index says symbol X lives
580 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
581 will find X. Alas TUs live in their own symtab, so after expanding CU Y
582 we need to look in TU Z to find X. Fortunately, this is akin to
583 DW_TAG_imported_unit, so we just use the same mechanism: For
584 .gdb_index version <=7 this also records the TUs that the CU referred
585 to. Concurrently with this change gdb was modified to emit version 8
586 indices so we only pay a price for gold generated indices. */
587 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
589 /* Type units are grouped by their DW_AT_stmt_list entry so that they
590 can share them. If this is a TU, this points to the containing
592 struct type_unit_group *type_unit_group;
595 /* Entry in the signatured_types hash table. */
597 struct signatured_type
599 /* The "per_cu" object of this type.
600 N.B.: This is the first member so that it's easy to convert pointers
602 struct dwarf2_per_cu_data per_cu;
604 /* The type's signature. */
607 /* Offset in the TU of the type's DIE, as read from the TU header.
608 If the definition lives in a DWO file, this value is unusable. */
609 cu_offset type_offset_in_tu;
611 /* Offset in the section of the type's DIE.
612 If the definition lives in a DWO file, this is the offset in the
613 .debug_types.dwo section.
614 The value is zero until the actual value is known.
615 Zero is otherwise not a valid section offset. */
616 sect_offset type_offset_in_section;
619 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
620 This includes type_unit_group and quick_file_names. */
622 struct stmt_list_hash
624 /* The DWO unit this table is from or NULL if there is none. */
625 struct dwo_unit *dwo_unit;
627 /* Offset in .debug_line or .debug_line.dwo. */
628 sect_offset line_offset;
631 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
632 an object of this type. */
634 struct type_unit_group
636 /* dwarf2read.c's main "handle" on the symtab.
637 To simplify things we create an artificial CU that "includes" all the
638 type units using this stmt_list so that the rest of the code still has
639 a "per_cu" handle on the symtab.
640 This PER_CU is recognized by having no section. */
641 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
642 struct dwarf2_per_cu_data per_cu;
646 /* The TUs that share this DW_AT_stmt_list entry.
647 This is added to while parsing type units to build partial symtabs,
648 and is deleted afterwards and not used again. */
649 VEC (dwarf2_per_cu_ptr) *tus;
651 /* When reading the line table in "quick" functions, we need a real TU.
652 Any will do, we know they all share the same DW_AT_stmt_list entry.
653 For simplicity's sake, we pick the first one. */
654 struct dwarf2_per_cu_data *first_tu;
657 /* The primary symtab.
658 Type units in a group needn't all be defined in the same source file,
659 so we create an essentially anonymous symtab as the primary symtab. */
660 struct symtab *primary_symtab;
662 /* The data used to construct the hash key. */
663 struct stmt_list_hash hash;
665 /* The number of symtabs from the line header.
666 The value here must match line_header.num_file_names. */
667 unsigned int num_symtabs;
669 /* The symbol tables for this TU (obtained from the files listed in
671 WARNING: The order of entries here must match the order of entries
672 in the line header. After the first TU using this type_unit_group, the
673 line header for the subsequent TUs is recreated from this. This is done
674 because we need to use the same symtabs for each TU using the same
675 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
676 there's no guarantee the line header doesn't have duplicate entries. */
677 struct symtab **symtabs;
680 /* These sections are what may appear in a DWO file. */
684 struct dwarf2_section_info abbrev;
685 struct dwarf2_section_info line;
686 struct dwarf2_section_info loc;
687 struct dwarf2_section_info macinfo;
688 struct dwarf2_section_info macro;
689 struct dwarf2_section_info str;
690 struct dwarf2_section_info str_offsets;
691 /* In the case of a virtual DWO file, these two are unused. */
692 struct dwarf2_section_info info;
693 VEC (dwarf2_section_info_def) *types;
696 /* Common bits of DWO CUs/TUs. */
700 /* Backlink to the containing struct dwo_file. */
701 struct dwo_file *dwo_file;
703 /* The "id" that distinguishes this CU/TU.
704 .debug_info calls this "dwo_id", .debug_types calls this "signature".
705 Since signatures came first, we stick with it for consistency. */
708 /* The section this CU/TU lives in, in the DWO file. */
709 struct dwarf2_section_info *info_or_types_section;
711 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
715 /* For types, offset in the type's DIE of the type defined by this TU. */
716 cu_offset type_offset_in_tu;
719 /* Data for one DWO file.
720 This includes virtual DWO files that have been packaged into a
725 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
726 For virtual DWO files the name is constructed from the section offsets
727 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
728 from related CU+TUs. */
731 /* The bfd, when the file is open. Otherwise this is NULL.
732 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
735 /* Section info for this file. */
736 struct dwo_sections sections;
738 /* Table of CUs in the file.
739 Each element is a struct dwo_unit. */
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
747 /* These sections are what may appear in a DWP file. */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
755 by section number. We don't need to record them here. */
758 /* These sections are what may appear in a virtual DWO file. */
760 struct virtual_dwo_sections
762 struct dwarf2_section_info abbrev;
763 struct dwarf2_section_info line;
764 struct dwarf2_section_info loc;
765 struct dwarf2_section_info macinfo;
766 struct dwarf2_section_info macro;
767 struct dwarf2_section_info str_offsets;
768 /* Each DWP hash table entry records one CU or one TU.
769 That is recorded here, and copied to dwo_unit.info_or_types_section. */
770 struct dwarf2_section_info info_or_types;
773 /* Contents of DWP hash tables. */
775 struct dwp_hash_table
777 uint32_t nr_units, nr_slots;
778 const gdb_byte *hash_table, *unit_table, *section_pool;
781 /* Data for one DWP file. */
785 /* Name of the file. */
788 /* The bfd, when the file is open. Otherwise this is NULL. */
791 /* Section info for this file. */
792 struct dwp_sections sections;
794 /* Table of CUs in the file. */
795 const struct dwp_hash_table *cus;
797 /* Table of TUs in the file. */
798 const struct dwp_hash_table *tus;
800 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
803 /* Table to map ELF section numbers to their sections. */
804 unsigned int num_sections;
805 asection **elf_sections;
808 /* This represents a '.dwz' file. */
812 /* A dwz file can only contain a few sections. */
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info info;
815 struct dwarf2_section_info str;
816 struct dwarf2_section_info line;
817 struct dwarf2_section_info macro;
818 struct dwarf2_section_info gdb_index;
824 /* Struct used to pass misc. parameters to read_die_and_children, et
825 al. which are used for both .debug_info and .debug_types dies.
826 All parameters here are unchanging for the life of the call. This
827 struct exists to abstract away the constant parameters of die reading. */
829 struct die_reader_specs
831 /* die_section->asection->owner. */
834 /* The CU of the DIE we are parsing. */
835 struct dwarf2_cu *cu;
837 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
838 struct dwo_file *dwo_file;
840 /* The section the die comes from.
841 This is either .debug_info or .debug_types, or the .dwo variants. */
842 struct dwarf2_section_info *die_section;
844 /* die_section->buffer. */
847 /* The end of the buffer. */
848 const gdb_byte *buffer_end;
851 /* Type of function passed to init_cutu_and_read_dies, et.al. */
852 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
854 struct die_info *comp_unit_die,
858 /* The line number information for a compilation unit (found in the
859 .debug_line section) begins with a "statement program header",
860 which contains the following information. */
863 unsigned int total_length;
864 unsigned short version;
865 unsigned int header_length;
866 unsigned char minimum_instruction_length;
867 unsigned char maximum_ops_per_instruction;
868 unsigned char default_is_stmt;
870 unsigned char line_range;
871 unsigned char opcode_base;
873 /* standard_opcode_lengths[i] is the number of operands for the
874 standard opcode whose value is i. This means that
875 standard_opcode_lengths[0] is unused, and the last meaningful
876 element is standard_opcode_lengths[opcode_base - 1]. */
877 unsigned char *standard_opcode_lengths;
879 /* The include_directories table. NOTE! These strings are not
880 allocated with xmalloc; instead, they are pointers into
881 debug_line_buffer. If you try to free them, `free' will get
883 unsigned int num_include_dirs, include_dirs_size;
886 /* The file_names table. NOTE! These strings are not allocated
887 with xmalloc; instead, they are pointers into debug_line_buffer.
888 Don't try to free them directly. */
889 unsigned int num_file_names, file_names_size;
893 unsigned int dir_index;
894 unsigned int mod_time;
896 int included_p; /* Non-zero if referenced by the Line Number Program. */
897 struct symtab *symtab; /* The associated symbol table, if any. */
900 /* The start and end of the statement program following this
901 header. These point into dwarf2_per_objfile->line_buffer. */
902 gdb_byte *statement_program_start, *statement_program_end;
905 /* When we construct a partial symbol table entry we only
906 need this much information. */
907 struct partial_die_info
909 /* Offset of this DIE. */
912 /* DWARF-2 tag for this DIE. */
913 ENUM_BITFIELD(dwarf_tag) tag : 16;
915 /* Assorted flags describing the data found in this DIE. */
916 unsigned int has_children : 1;
917 unsigned int is_external : 1;
918 unsigned int is_declaration : 1;
919 unsigned int has_type : 1;
920 unsigned int has_specification : 1;
921 unsigned int has_pc_info : 1;
922 unsigned int may_be_inlined : 1;
924 /* Flag set if the SCOPE field of this structure has been
926 unsigned int scope_set : 1;
928 /* Flag set if the DIE has a byte_size attribute. */
929 unsigned int has_byte_size : 1;
931 /* Flag set if any of the DIE's children are template arguments. */
932 unsigned int has_template_arguments : 1;
934 /* Flag set if fixup_partial_die has been called on this die. */
935 unsigned int fixup_called : 1;
937 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
938 unsigned int is_dwz : 1;
940 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
941 unsigned int spec_is_dwz : 1;
943 /* The name of this DIE. Normally the value of DW_AT_name, but
944 sometimes a default name for unnamed DIEs. */
947 /* The linkage name, if present. */
948 const char *linkage_name;
950 /* The scope to prepend to our children. This is generally
951 allocated on the comp_unit_obstack, so will disappear
952 when this compilation unit leaves the cache. */
955 /* Some data associated with the partial DIE. The tag determines
956 which field is live. */
959 /* The location description associated with this DIE, if any. */
960 struct dwarf_block *locdesc;
961 /* The offset of an import, for DW_TAG_imported_unit. */
965 /* If HAS_PC_INFO, the PC range associated with this DIE. */
969 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
970 DW_AT_sibling, if any. */
971 /* NOTE: This member isn't strictly necessary, read_partial_die could
972 return DW_AT_sibling values to its caller load_partial_dies. */
975 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
976 DW_AT_specification (or DW_AT_abstract_origin or
978 sect_offset spec_offset;
980 /* Pointers to this DIE's parent, first child, and next sibling,
982 struct partial_die_info *die_parent, *die_child, *die_sibling;
985 /* This data structure holds the information of an abbrev. */
988 unsigned int number; /* number identifying abbrev */
989 enum dwarf_tag tag; /* dwarf tag */
990 unsigned short has_children; /* boolean */
991 unsigned short num_attrs; /* number of attributes */
992 struct attr_abbrev *attrs; /* an array of attribute descriptions */
993 struct abbrev_info *next; /* next in chain */
998 ENUM_BITFIELD(dwarf_attribute) name : 16;
999 ENUM_BITFIELD(dwarf_form) form : 16;
1002 /* Size of abbrev_table.abbrev_hash_table. */
1003 #define ABBREV_HASH_SIZE 121
1005 /* Top level data structure to contain an abbreviation table. */
1009 /* Where the abbrev table came from.
1010 This is used as a sanity check when the table is used. */
1013 /* Storage for the abbrev table. */
1014 struct obstack abbrev_obstack;
1016 /* Hash table of abbrevs.
1017 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1018 It could be statically allocated, but the previous code didn't so we
1020 struct abbrev_info **abbrevs;
1023 /* Attributes have a name and a value. */
1026 ENUM_BITFIELD(dwarf_attribute) name : 16;
1027 ENUM_BITFIELD(dwarf_form) form : 15;
1029 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1030 field should be in u.str (existing only for DW_STRING) but it is kept
1031 here for better struct attribute alignment. */
1032 unsigned int string_is_canonical : 1;
1037 struct dwarf_block *blk;
1041 struct signatured_type *signatured_type;
1046 /* This data structure holds a complete die structure. */
1049 /* DWARF-2 tag for this DIE. */
1050 ENUM_BITFIELD(dwarf_tag) tag : 16;
1052 /* Number of attributes */
1053 unsigned char num_attrs;
1055 /* True if we're presently building the full type name for the
1056 type derived from this DIE. */
1057 unsigned char building_fullname : 1;
1060 unsigned int abbrev;
1062 /* Offset in .debug_info or .debug_types section. */
1065 /* The dies in a compilation unit form an n-ary tree. PARENT
1066 points to this die's parent; CHILD points to the first child of
1067 this node; and all the children of a given node are chained
1068 together via their SIBLING fields. */
1069 struct die_info *child; /* Its first child, if any. */
1070 struct die_info *sibling; /* Its next sibling, if any. */
1071 struct die_info *parent; /* Its parent, if any. */
1073 /* An array of attributes, with NUM_ATTRS elements. There may be
1074 zero, but it's not common and zero-sized arrays are not
1075 sufficiently portable C. */
1076 struct attribute attrs[1];
1079 /* Get at parts of an attribute structure. */
1081 #define DW_STRING(attr) ((attr)->u.str)
1082 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1083 #define DW_UNSND(attr) ((attr)->u.unsnd)
1084 #define DW_BLOCK(attr) ((attr)->u.blk)
1085 #define DW_SND(attr) ((attr)->u.snd)
1086 #define DW_ADDR(attr) ((attr)->u.addr)
1087 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
1089 /* Blocks are a bunch of untyped bytes. */
1094 /* Valid only if SIZE is not zero. */
1098 #ifndef ATTR_ALLOC_CHUNK
1099 #define ATTR_ALLOC_CHUNK 4
1102 /* Allocate fields for structs, unions and enums in this size. */
1103 #ifndef DW_FIELD_ALLOC_CHUNK
1104 #define DW_FIELD_ALLOC_CHUNK 4
1107 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1108 but this would require a corresponding change in unpack_field_as_long
1110 static int bits_per_byte = 8;
1112 /* The routines that read and process dies for a C struct or C++ class
1113 pass lists of data member fields and lists of member function fields
1114 in an instance of a field_info structure, as defined below. */
1117 /* List of data member and baseclasses fields. */
1120 struct nextfield *next;
1125 *fields, *baseclasses;
1127 /* Number of fields (including baseclasses). */
1130 /* Number of baseclasses. */
1133 /* Set if the accesibility of one of the fields is not public. */
1134 int non_public_fields;
1136 /* Member function fields array, entries are allocated in the order they
1137 are encountered in the object file. */
1140 struct nextfnfield *next;
1141 struct fn_field fnfield;
1145 /* Member function fieldlist array, contains name of possibly overloaded
1146 member function, number of overloaded member functions and a pointer
1147 to the head of the member function field chain. */
1152 struct nextfnfield *head;
1156 /* Number of entries in the fnfieldlists array. */
1159 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1160 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1161 struct typedef_field_list
1163 struct typedef_field field;
1164 struct typedef_field_list *next;
1166 *typedef_field_list;
1167 unsigned typedef_field_list_count;
1170 /* One item on the queue of compilation units to read in full symbols
1172 struct dwarf2_queue_item
1174 struct dwarf2_per_cu_data *per_cu;
1175 enum language pretend_language;
1176 struct dwarf2_queue_item *next;
1179 /* The current queue. */
1180 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1182 /* Loaded secondary compilation units are kept in memory until they
1183 have not been referenced for the processing of this many
1184 compilation units. Set this to zero to disable caching. Cache
1185 sizes of up to at least twenty will improve startup time for
1186 typical inter-CU-reference binaries, at an obvious memory cost. */
1187 static int dwarf2_max_cache_age = 5;
1189 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1190 struct cmd_list_element *c, const char *value)
1192 fprintf_filtered (file, _("The upper bound on the age of cached "
1193 "dwarf2 compilation units is %s.\n"),
1198 /* Various complaints about symbol reading that don't abort the process. */
1201 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1203 complaint (&symfile_complaints,
1204 _("statement list doesn't fit in .debug_line section"));
1208 dwarf2_debug_line_missing_file_complaint (void)
1210 complaint (&symfile_complaints,
1211 _(".debug_line section has line data without a file"));
1215 dwarf2_debug_line_missing_end_sequence_complaint (void)
1217 complaint (&symfile_complaints,
1218 _(".debug_line section has line "
1219 "program sequence without an end"));
1223 dwarf2_complex_location_expr_complaint (void)
1225 complaint (&symfile_complaints, _("location expression too complex"));
1229 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1232 complaint (&symfile_complaints,
1233 _("const value length mismatch for '%s', got %d, expected %d"),
1238 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1240 complaint (&symfile_complaints,
1241 _("debug info runs off end of %s section"
1243 section->asection->name,
1244 bfd_get_filename (section->asection->owner));
1248 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1250 complaint (&symfile_complaints,
1251 _("macro debug info contains a "
1252 "malformed macro definition:\n`%s'"),
1257 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1259 complaint (&symfile_complaints,
1260 _("invalid attribute class or form for '%s' in '%s'"),
1264 /* local function prototypes */
1266 static void dwarf2_locate_sections (bfd *, asection *, void *);
1268 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1271 static void dwarf2_find_base_address (struct die_info *die,
1272 struct dwarf2_cu *cu);
1274 static void dwarf2_build_psymtabs_hard (struct objfile *);
1276 static void scan_partial_symbols (struct partial_die_info *,
1277 CORE_ADDR *, CORE_ADDR *,
1278 int, struct dwarf2_cu *);
1280 static void add_partial_symbol (struct partial_die_info *,
1281 struct dwarf2_cu *);
1283 static void add_partial_namespace (struct partial_die_info *pdi,
1284 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1285 int need_pc, struct dwarf2_cu *cu);
1287 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1288 CORE_ADDR *highpc, int need_pc,
1289 struct dwarf2_cu *cu);
1291 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1292 struct dwarf2_cu *cu);
1294 static void add_partial_subprogram (struct partial_die_info *pdi,
1295 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1296 int need_pc, struct dwarf2_cu *cu);
1298 static void dwarf2_read_symtab (struct partial_symtab *,
1301 static void psymtab_to_symtab_1 (struct partial_symtab *);
1303 static struct abbrev_info *abbrev_table_lookup_abbrev
1304 (const struct abbrev_table *, unsigned int);
1306 static struct abbrev_table *abbrev_table_read_table
1307 (struct dwarf2_section_info *, sect_offset);
1309 static void abbrev_table_free (struct abbrev_table *);
1311 static void abbrev_table_free_cleanup (void *);
1313 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1314 struct dwarf2_section_info *);
1316 static void dwarf2_free_abbrev_table (void *);
1318 static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1320 static struct partial_die_info *load_partial_dies
1321 (const struct die_reader_specs *, gdb_byte *, int);
1323 static gdb_byte *read_partial_die (const struct die_reader_specs *,
1324 struct partial_die_info *,
1325 struct abbrev_info *,
1329 static struct partial_die_info *find_partial_die (sect_offset, int,
1330 struct dwarf2_cu *);
1332 static void fixup_partial_die (struct partial_die_info *,
1333 struct dwarf2_cu *);
1335 static gdb_byte *read_attribute (const struct die_reader_specs *,
1336 struct attribute *, struct attr_abbrev *,
1339 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1341 static int read_1_signed_byte (bfd *, const gdb_byte *);
1343 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1345 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1347 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1349 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
1352 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1354 static LONGEST read_checked_initial_length_and_offset
1355 (bfd *, gdb_byte *, const struct comp_unit_head *,
1356 unsigned int *, unsigned int *);
1358 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
1361 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
1363 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1366 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
1368 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
1370 static char *read_indirect_string (bfd *, gdb_byte *,
1371 const struct comp_unit_head *,
1374 static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1376 static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
1378 static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
1380 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1383 static char *read_str_index (const struct die_reader_specs *reader,
1384 struct dwarf2_cu *cu, ULONGEST str_index);
1386 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1388 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1389 struct dwarf2_cu *);
1391 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1394 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1395 struct dwarf2_cu *cu);
1397 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1399 static struct die_info *die_specification (struct die_info *die,
1400 struct dwarf2_cu **);
1402 static void free_line_header (struct line_header *lh);
1404 static void add_file_name (struct line_header *, char *, unsigned int,
1405 unsigned int, unsigned int);
1407 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1408 struct dwarf2_cu *cu);
1410 static void dwarf_decode_lines (struct line_header *, const char *,
1411 struct dwarf2_cu *, struct partial_symtab *,
1414 static void dwarf2_start_subfile (char *, const char *, const char *);
1416 static void dwarf2_start_symtab (struct dwarf2_cu *,
1417 const char *, const char *, CORE_ADDR);
1419 static struct symbol *new_symbol (struct die_info *, struct type *,
1420 struct dwarf2_cu *);
1422 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1423 struct dwarf2_cu *, struct symbol *);
1425 static void dwarf2_const_value (struct attribute *, struct symbol *,
1426 struct dwarf2_cu *);
1428 static void dwarf2_const_value_attr (struct attribute *attr,
1431 struct obstack *obstack,
1432 struct dwarf2_cu *cu, LONGEST *value,
1434 struct dwarf2_locexpr_baton **baton);
1436 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1438 static int need_gnat_info (struct dwarf2_cu *);
1440 static struct type *die_descriptive_type (struct die_info *,
1441 struct dwarf2_cu *);
1443 static void set_descriptive_type (struct type *, struct die_info *,
1444 struct dwarf2_cu *);
1446 static struct type *die_containing_type (struct die_info *,
1447 struct dwarf2_cu *);
1449 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1450 struct dwarf2_cu *);
1452 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1454 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1456 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1458 static char *typename_concat (struct obstack *obs, const char *prefix,
1459 const char *suffix, int physname,
1460 struct dwarf2_cu *cu);
1462 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1464 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1466 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1468 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1470 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1472 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1473 struct dwarf2_cu *, struct partial_symtab *);
1475 static int dwarf2_get_pc_bounds (struct die_info *,
1476 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1477 struct partial_symtab *);
1479 static void get_scope_pc_bounds (struct die_info *,
1480 CORE_ADDR *, CORE_ADDR *,
1481 struct dwarf2_cu *);
1483 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1484 CORE_ADDR, struct dwarf2_cu *);
1486 static void dwarf2_add_field (struct field_info *, struct die_info *,
1487 struct dwarf2_cu *);
1489 static void dwarf2_attach_fields_to_type (struct field_info *,
1490 struct type *, struct dwarf2_cu *);
1492 static void dwarf2_add_member_fn (struct field_info *,
1493 struct die_info *, struct type *,
1494 struct dwarf2_cu *);
1496 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1498 struct dwarf2_cu *);
1500 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1502 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1504 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1506 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1508 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1510 static struct type *read_module_type (struct die_info *die,
1511 struct dwarf2_cu *cu);
1513 static const char *namespace_name (struct die_info *die,
1514 int *is_anonymous, struct dwarf2_cu *);
1516 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1518 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1520 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1521 struct dwarf2_cu *);
1523 static struct die_info *read_die_and_children (const struct die_reader_specs *,
1525 gdb_byte **new_info_ptr,
1526 struct die_info *parent);
1528 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1530 gdb_byte **new_info_ptr,
1531 struct die_info *parent);
1533 static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1534 struct die_info **, gdb_byte *, int *, int);
1536 static gdb_byte *read_full_die (const struct die_reader_specs *,
1537 struct die_info **, gdb_byte *, int *);
1539 static void process_die (struct die_info *, struct dwarf2_cu *);
1541 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1544 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1546 static const char *dwarf2_full_name (const char *name,
1547 struct die_info *die,
1548 struct dwarf2_cu *cu);
1550 static struct die_info *dwarf2_extension (struct die_info *die,
1551 struct dwarf2_cu **);
1553 static const char *dwarf_tag_name (unsigned int);
1555 static const char *dwarf_attr_name (unsigned int);
1557 static const char *dwarf_form_name (unsigned int);
1559 static char *dwarf_bool_name (unsigned int);
1561 static const char *dwarf_type_encoding_name (unsigned int);
1563 static struct die_info *sibling_die (struct die_info *);
1565 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1567 static void dump_die_for_error (struct die_info *);
1569 static void dump_die_1 (struct ui_file *, int level, int max_level,
1572 /*static*/ void dump_die (struct die_info *, int max_level);
1574 static void store_in_ref_table (struct die_info *,
1575 struct dwarf2_cu *);
1577 static int is_ref_attr (struct attribute *);
1579 static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
1581 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1583 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1585 struct dwarf2_cu **);
1587 static struct die_info *follow_die_ref (struct die_info *,
1589 struct dwarf2_cu **);
1591 static struct die_info *follow_die_sig (struct die_info *,
1593 struct dwarf2_cu **);
1595 static struct signatured_type *lookup_signatured_type_at_offset
1596 (struct objfile *objfile,
1597 struct dwarf2_section_info *section, sect_offset offset);
1599 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1601 static void read_signatured_type (struct signatured_type *);
1603 static struct type_unit_group *get_type_unit_group
1604 (struct dwarf2_cu *, struct attribute *);
1606 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1608 /* memory allocation interface */
1610 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1612 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1614 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1617 static int attr_form_is_block (struct attribute *);
1619 static int attr_form_is_section_offset (struct attribute *);
1621 static int attr_form_is_constant (struct attribute *);
1623 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1624 struct dwarf2_loclist_baton *baton,
1625 struct attribute *attr);
1627 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1629 struct dwarf2_cu *cu);
1631 static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1633 struct abbrev_info *abbrev);
1635 static void free_stack_comp_unit (void *);
1637 static hashval_t partial_die_hash (const void *item);
1639 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1641 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1642 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1644 static void init_one_comp_unit (struct dwarf2_cu *cu,
1645 struct dwarf2_per_cu_data *per_cu);
1647 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1648 struct die_info *comp_unit_die,
1649 enum language pretend_language);
1651 static void free_heap_comp_unit (void *);
1653 static void free_cached_comp_units (void *);
1655 static void age_cached_comp_units (void);
1657 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1659 static struct type *set_die_type (struct die_info *, struct type *,
1660 struct dwarf2_cu *);
1662 static void create_all_comp_units (struct objfile *);
1664 static int create_all_type_units (struct objfile *);
1666 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1669 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1672 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1675 static void dwarf2_add_dependence (struct dwarf2_cu *,
1676 struct dwarf2_per_cu_data *);
1678 static void dwarf2_mark (struct dwarf2_cu *);
1680 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1682 static struct type *get_die_type_at_offset (sect_offset,
1683 struct dwarf2_per_cu_data *per_cu);
1685 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1687 static void dwarf2_release_queue (void *dummy);
1689 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1690 enum language pretend_language);
1692 static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1693 struct dwarf2_per_cu_data *per_cu,
1694 enum language pretend_language);
1696 static void process_queue (void);
1698 static void find_file_and_directory (struct die_info *die,
1699 struct dwarf2_cu *cu,
1700 const char **name, const char **comp_dir);
1702 static char *file_full_name (int file, struct line_header *lh,
1703 const char *comp_dir);
1705 static gdb_byte *read_and_check_comp_unit_head
1706 (struct comp_unit_head *header,
1707 struct dwarf2_section_info *section,
1708 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1709 int is_debug_types_section);
1711 static void init_cutu_and_read_dies
1712 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1713 int use_existing_cu, int keep,
1714 die_reader_func_ftype *die_reader_func, void *data);
1716 static void init_cutu_and_read_dies_simple
1717 (struct dwarf2_per_cu_data *this_cu,
1718 die_reader_func_ftype *die_reader_func, void *data);
1720 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1722 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1724 static struct dwo_unit *lookup_dwo_comp_unit
1725 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1727 static struct dwo_unit *lookup_dwo_type_unit
1728 (struct signatured_type *, const char *, const char *);
1730 static void free_dwo_file_cleanup (void *);
1732 static void process_cu_includes (void);
1734 static void check_producer (struct dwarf2_cu *cu);
1738 /* Convert VALUE between big- and little-endian. */
1740 byte_swap (offset_type value)
1744 result = (value & 0xff) << 24;
1745 result |= (value & 0xff00) << 8;
1746 result |= (value & 0xff0000) >> 8;
1747 result |= (value & 0xff000000) >> 24;
1751 #define MAYBE_SWAP(V) byte_swap (V)
1754 #define MAYBE_SWAP(V) (V)
1755 #endif /* WORDS_BIGENDIAN */
1757 /* The suffix for an index file. */
1758 #define INDEX_SUFFIX ".gdb-index"
1760 static const char *dwarf2_physname (const char *name, struct die_info *die,
1761 struct dwarf2_cu *cu);
1763 /* Try to locate the sections we need for DWARF 2 debugging
1764 information and return true if we have enough to do something.
1765 NAMES points to the dwarf2 section names, or is NULL if the standard
1766 ELF names are used. */
1769 dwarf2_has_info (struct objfile *objfile,
1770 const struct dwarf2_debug_sections *names)
1772 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1773 if (!dwarf2_per_objfile)
1775 /* Initialize per-objfile state. */
1776 struct dwarf2_per_objfile *data
1777 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1779 memset (data, 0, sizeof (*data));
1780 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1781 dwarf2_per_objfile = data;
1783 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1785 dwarf2_per_objfile->objfile = objfile;
1787 return (dwarf2_per_objfile->info.asection != NULL
1788 && dwarf2_per_objfile->abbrev.asection != NULL);
1791 /* When loading sections, we look either for uncompressed section or for
1792 compressed section names. */
1795 section_is_p (const char *section_name,
1796 const struct dwarf2_section_names *names)
1798 if (names->normal != NULL
1799 && strcmp (section_name, names->normal) == 0)
1801 if (names->compressed != NULL
1802 && strcmp (section_name, names->compressed) == 0)
1807 /* This function is mapped across the sections and remembers the
1808 offset and size of each of the debugging sections we are interested
1812 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
1814 const struct dwarf2_debug_sections *names;
1815 flagword aflag = bfd_get_section_flags (abfd, sectp);
1818 names = &dwarf2_elf_names;
1820 names = (const struct dwarf2_debug_sections *) vnames;
1822 if ((aflag & SEC_HAS_CONTENTS) == 0)
1825 else if (section_is_p (sectp->name, &names->info))
1827 dwarf2_per_objfile->info.asection = sectp;
1828 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1830 else if (section_is_p (sectp->name, &names->abbrev))
1832 dwarf2_per_objfile->abbrev.asection = sectp;
1833 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1835 else if (section_is_p (sectp->name, &names->line))
1837 dwarf2_per_objfile->line.asection = sectp;
1838 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1840 else if (section_is_p (sectp->name, &names->loc))
1842 dwarf2_per_objfile->loc.asection = sectp;
1843 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1845 else if (section_is_p (sectp->name, &names->macinfo))
1847 dwarf2_per_objfile->macinfo.asection = sectp;
1848 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1850 else if (section_is_p (sectp->name, &names->macro))
1852 dwarf2_per_objfile->macro.asection = sectp;
1853 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1855 else if (section_is_p (sectp->name, &names->str))
1857 dwarf2_per_objfile->str.asection = sectp;
1858 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1860 else if (section_is_p (sectp->name, &names->addr))
1862 dwarf2_per_objfile->addr.asection = sectp;
1863 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1865 else if (section_is_p (sectp->name, &names->frame))
1867 dwarf2_per_objfile->frame.asection = sectp;
1868 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1870 else if (section_is_p (sectp->name, &names->eh_frame))
1872 dwarf2_per_objfile->eh_frame.asection = sectp;
1873 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1875 else if (section_is_p (sectp->name, &names->ranges))
1877 dwarf2_per_objfile->ranges.asection = sectp;
1878 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1880 else if (section_is_p (sectp->name, &names->types))
1882 struct dwarf2_section_info type_section;
1884 memset (&type_section, 0, sizeof (type_section));
1885 type_section.asection = sectp;
1886 type_section.size = bfd_get_section_size (sectp);
1888 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1891 else if (section_is_p (sectp->name, &names->gdb_index))
1893 dwarf2_per_objfile->gdb_index.asection = sectp;
1894 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1897 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1898 && bfd_section_vma (abfd, sectp) == 0)
1899 dwarf2_per_objfile->has_section_at_zero = 1;
1902 /* A helper function that decides whether a section is empty,
1906 dwarf2_section_empty_p (struct dwarf2_section_info *info)
1908 return info->asection == NULL || info->size == 0;
1911 /* Read the contents of the section INFO.
1912 OBJFILE is the main object file, but not necessarily the file where
1913 the section comes from. E.g., for DWO files INFO->asection->owner
1914 is the bfd of the DWO file.
1915 If the section is compressed, uncompress it before returning. */
1918 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1920 asection *sectp = info->asection;
1922 gdb_byte *buf, *retbuf;
1923 unsigned char header[4];
1927 info->buffer = NULL;
1930 if (dwarf2_section_empty_p (info))
1933 abfd = sectp->owner;
1935 /* If the section has relocations, we must read it ourselves.
1936 Otherwise we attach it to the BFD. */
1937 if ((sectp->flags & SEC_RELOC) == 0)
1939 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
1941 /* We have to cast away const here for historical reasons.
1942 Fixing dwarf2read to be const-correct would be quite nice. */
1943 info->buffer = (gdb_byte *) bytes;
1947 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1950 /* When debugging .o files, we may need to apply relocations; see
1951 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1952 We never compress sections in .o files, so we only need to
1953 try this when the section is not compressed. */
1954 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1957 info->buffer = retbuf;
1961 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1962 || bfd_bread (buf, info->size, abfd) != info->size)
1963 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1964 bfd_get_filename (abfd));
1967 /* A helper function that returns the size of a section in a safe way.
1968 If you are positive that the section has been read before using the
1969 size, then it is safe to refer to the dwarf2_section_info object's
1970 "size" field directly. In other cases, you must call this
1971 function, because for compressed sections the size field is not set
1972 correctly until the section has been read. */
1974 static bfd_size_type
1975 dwarf2_section_size (struct objfile *objfile,
1976 struct dwarf2_section_info *info)
1979 dwarf2_read_section (objfile, info);
1983 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1987 dwarf2_get_section_info (struct objfile *objfile,
1988 enum dwarf2_section_enum sect,
1989 asection **sectp, gdb_byte **bufp,
1990 bfd_size_type *sizep)
1992 struct dwarf2_per_objfile *data
1993 = objfile_data (objfile, dwarf2_objfile_data_key);
1994 struct dwarf2_section_info *info;
1996 /* We may see an objfile without any DWARF, in which case we just
2007 case DWARF2_DEBUG_FRAME:
2008 info = &data->frame;
2010 case DWARF2_EH_FRAME:
2011 info = &data->eh_frame;
2014 gdb_assert_not_reached ("unexpected section");
2017 dwarf2_read_section (objfile, info);
2019 *sectp = info->asection;
2020 *bufp = info->buffer;
2021 *sizep = info->size;
2024 /* A helper function to find the sections for a .dwz file. */
2027 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2029 struct dwz_file *dwz_file = arg;
2031 /* Note that we only support the standard ELF names, because .dwz
2032 is ELF-only (at the time of writing). */
2033 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2035 dwz_file->abbrev.asection = sectp;
2036 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2038 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2040 dwz_file->info.asection = sectp;
2041 dwz_file->info.size = bfd_get_section_size (sectp);
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2045 dwz_file->str.asection = sectp;
2046 dwz_file->str.size = bfd_get_section_size (sectp);
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2050 dwz_file->line.asection = sectp;
2051 dwz_file->line.size = bfd_get_section_size (sectp);
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2055 dwz_file->macro.asection = sectp;
2056 dwz_file->macro.size = bfd_get_section_size (sectp);
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2060 dwz_file->gdb_index.asection = sectp;
2061 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2065 /* Open the separate '.dwz' debug file, if needed. Error if the file
2068 static struct dwz_file *
2069 dwarf2_get_dwz_file (void)
2071 bfd *abfd, *dwz_bfd;
2074 struct cleanup *cleanup;
2075 const char *filename;
2076 struct dwz_file *result;
2078 if (dwarf2_per_objfile->dwz_file != NULL)
2079 return dwarf2_per_objfile->dwz_file;
2081 abfd = dwarf2_per_objfile->objfile->obfd;
2082 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2083 if (section == NULL)
2084 error (_("could not find '.gnu_debugaltlink' section"));
2085 if (!bfd_malloc_and_get_section (abfd, section, &data))
2086 error (_("could not read '.gnu_debugaltlink' section: %s"),
2087 bfd_errmsg (bfd_get_error ()));
2088 cleanup = make_cleanup (xfree, data);
2091 if (!IS_ABSOLUTE_PATH (filename))
2093 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2096 make_cleanup (xfree, abs);
2097 abs = ldirname (abs);
2098 make_cleanup (xfree, abs);
2100 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2101 make_cleanup (xfree, rel);
2105 /* The format is just a NUL-terminated file name, followed by the
2106 build-id. For now, though, we ignore the build-id. */
2107 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2108 if (dwz_bfd == NULL)
2109 error (_("could not read '%s': %s"), filename,
2110 bfd_errmsg (bfd_get_error ()));
2112 if (!bfd_check_format (dwz_bfd, bfd_object))
2114 gdb_bfd_unref (dwz_bfd);
2115 error (_("file '%s' was not usable: %s"), filename,
2116 bfd_errmsg (bfd_get_error ()));
2119 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2121 result->dwz_bfd = dwz_bfd;
2123 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2125 do_cleanups (cleanup);
2127 dwarf2_per_objfile->dwz_file = result;
2131 /* DWARF quick_symbols_functions support. */
2133 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2134 unique line tables, so we maintain a separate table of all .debug_line
2135 derived entries to support the sharing.
2136 All the quick functions need is the list of file names. We discard the
2137 line_header when we're done and don't need to record it here. */
2138 struct quick_file_names
2140 /* The data used to construct the hash key. */
2141 struct stmt_list_hash hash;
2143 /* The number of entries in file_names, real_names. */
2144 unsigned int num_file_names;
2146 /* The file names from the line table, after being run through
2148 const char **file_names;
2150 /* The file names from the line table after being run through
2151 gdb_realpath. These are computed lazily. */
2152 const char **real_names;
2155 /* When using the index (and thus not using psymtabs), each CU has an
2156 object of this type. This is used to hold information needed by
2157 the various "quick" methods. */
2158 struct dwarf2_per_cu_quick_data
2160 /* The file table. This can be NULL if there was no file table
2161 or it's currently not read in.
2162 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2163 struct quick_file_names *file_names;
2165 /* The corresponding symbol table. This is NULL if symbols for this
2166 CU have not yet been read. */
2167 struct symtab *symtab;
2169 /* A temporary mark bit used when iterating over all CUs in
2170 expand_symtabs_matching. */
2171 unsigned int mark : 1;
2173 /* True if we've tried to read the file table and found there isn't one.
2174 There will be no point in trying to read it again next time. */
2175 unsigned int no_file_data : 1;
2178 /* Utility hash function for a stmt_list_hash. */
2181 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2185 if (stmt_list_hash->dwo_unit != NULL)
2186 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2187 v += stmt_list_hash->line_offset.sect_off;
2191 /* Utility equality function for a stmt_list_hash. */
2194 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2195 const struct stmt_list_hash *rhs)
2197 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2199 if (lhs->dwo_unit != NULL
2200 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2203 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2206 /* Hash function for a quick_file_names. */
2209 hash_file_name_entry (const void *e)
2211 const struct quick_file_names *file_data = e;
2213 return hash_stmt_list_entry (&file_data->hash);
2216 /* Equality function for a quick_file_names. */
2219 eq_file_name_entry (const void *a, const void *b)
2221 const struct quick_file_names *ea = a;
2222 const struct quick_file_names *eb = b;
2224 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2227 /* Delete function for a quick_file_names. */
2230 delete_file_name_entry (void *e)
2232 struct quick_file_names *file_data = e;
2235 for (i = 0; i < file_data->num_file_names; ++i)
2237 xfree ((void*) file_data->file_names[i]);
2238 if (file_data->real_names)
2239 xfree ((void*) file_data->real_names[i]);
2242 /* The space for the struct itself lives on objfile_obstack,
2243 so we don't free it here. */
2246 /* Create a quick_file_names hash table. */
2249 create_quick_file_names_table (unsigned int nr_initial_entries)
2251 return htab_create_alloc (nr_initial_entries,
2252 hash_file_name_entry, eq_file_name_entry,
2253 delete_file_name_entry, xcalloc, xfree);
2256 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2257 have to be created afterwards. You should call age_cached_comp_units after
2258 processing PER_CU->CU. dw2_setup must have been already called. */
2261 load_cu (struct dwarf2_per_cu_data *per_cu)
2263 if (per_cu->is_debug_types)
2264 load_full_type_unit (per_cu);
2266 load_full_comp_unit (per_cu, language_minimal);
2268 gdb_assert (per_cu->cu != NULL);
2270 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2273 /* Read in the symbols for PER_CU. */
2276 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2278 struct cleanup *back_to;
2280 /* Skip type_unit_groups, reading the type units they contain
2281 is handled elsewhere. */
2282 if (IS_TYPE_UNIT_GROUP (per_cu))
2285 back_to = make_cleanup (dwarf2_release_queue, NULL);
2287 if (dwarf2_per_objfile->using_index
2288 ? per_cu->v.quick->symtab == NULL
2289 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2291 queue_comp_unit (per_cu, language_minimal);
2297 /* Age the cache, releasing compilation units that have not
2298 been used recently. */
2299 age_cached_comp_units ();
2301 do_cleanups (back_to);
2304 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2305 the objfile from which this CU came. Returns the resulting symbol
2308 static struct symtab *
2309 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2311 gdb_assert (dwarf2_per_objfile->using_index);
2312 if (!per_cu->v.quick->symtab)
2314 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2315 increment_reading_symtab ();
2316 dw2_do_instantiate_symtab (per_cu);
2317 process_cu_includes ();
2318 do_cleanups (back_to);
2320 return per_cu->v.quick->symtab;
2323 /* Return the CU given its index.
2325 This is intended for loops like:
2327 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2328 + dwarf2_per_objfile->n_type_units); ++i)
2330 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2336 static struct dwarf2_per_cu_data *
2337 dw2_get_cu (int index)
2339 if (index >= dwarf2_per_objfile->n_comp_units)
2341 index -= dwarf2_per_objfile->n_comp_units;
2342 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2343 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2346 return dwarf2_per_objfile->all_comp_units[index];
2349 /* Return the primary CU given its index.
2350 The difference between this function and dw2_get_cu is in the handling
2351 of type units (TUs). Here we return the type_unit_group object.
2353 This is intended for loops like:
2355 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2356 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2358 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2364 static struct dwarf2_per_cu_data *
2365 dw2_get_primary_cu (int index)
2367 if (index >= dwarf2_per_objfile->n_comp_units)
2369 index -= dwarf2_per_objfile->n_comp_units;
2370 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2371 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2374 return dwarf2_per_objfile->all_comp_units[index];
2377 /* A helper for create_cus_from_index that handles a given list of
2381 create_cus_from_index_list (struct objfile *objfile,
2382 const gdb_byte *cu_list, offset_type n_elements,
2383 struct dwarf2_section_info *section,
2389 for (i = 0; i < n_elements; i += 2)
2391 struct dwarf2_per_cu_data *the_cu;
2392 ULONGEST offset, length;
2394 gdb_static_assert (sizeof (ULONGEST) >= 8);
2395 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2396 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2399 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2400 struct dwarf2_per_cu_data);
2401 the_cu->offset.sect_off = offset;
2402 the_cu->length = length;
2403 the_cu->objfile = objfile;
2404 the_cu->info_or_types_section = section;
2405 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2406 struct dwarf2_per_cu_quick_data);
2407 the_cu->is_dwz = is_dwz;
2408 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2412 /* Read the CU list from the mapped index, and use it to create all
2413 the CU objects for this objfile. */
2416 create_cus_from_index (struct objfile *objfile,
2417 const gdb_byte *cu_list, offset_type cu_list_elements,
2418 const gdb_byte *dwz_list, offset_type dwz_elements)
2420 struct dwz_file *dwz;
2422 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2423 dwarf2_per_objfile->all_comp_units
2424 = obstack_alloc (&objfile->objfile_obstack,
2425 dwarf2_per_objfile->n_comp_units
2426 * sizeof (struct dwarf2_per_cu_data *));
2428 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2429 &dwarf2_per_objfile->info, 0, 0);
2431 if (dwz_elements == 0)
2434 dwz = dwarf2_get_dwz_file ();
2435 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2436 cu_list_elements / 2);
2439 /* Create the signatured type hash table from the index. */
2442 create_signatured_type_table_from_index (struct objfile *objfile,
2443 struct dwarf2_section_info *section,
2444 const gdb_byte *bytes,
2445 offset_type elements)
2448 htab_t sig_types_hash;
2450 dwarf2_per_objfile->n_type_units = elements / 3;
2451 dwarf2_per_objfile->all_type_units
2452 = obstack_alloc (&objfile->objfile_obstack,
2453 dwarf2_per_objfile->n_type_units
2454 * sizeof (struct signatured_type *));
2456 sig_types_hash = allocate_signatured_type_table (objfile);
2458 for (i = 0; i < elements; i += 3)
2460 struct signatured_type *sig_type;
2461 ULONGEST offset, type_offset_in_tu, signature;
2464 gdb_static_assert (sizeof (ULONGEST) >= 8);
2465 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2466 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2468 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2471 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2472 struct signatured_type);
2473 sig_type->signature = signature;
2474 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2475 sig_type->per_cu.is_debug_types = 1;
2476 sig_type->per_cu.info_or_types_section = section;
2477 sig_type->per_cu.offset.sect_off = offset;
2478 sig_type->per_cu.objfile = objfile;
2479 sig_type->per_cu.v.quick
2480 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2481 struct dwarf2_per_cu_quick_data);
2483 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2486 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2489 dwarf2_per_objfile->signatured_types = sig_types_hash;
2492 /* Read the address map data from the mapped index, and use it to
2493 populate the objfile's psymtabs_addrmap. */
2496 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2498 const gdb_byte *iter, *end;
2499 struct obstack temp_obstack;
2500 struct addrmap *mutable_map;
2501 struct cleanup *cleanup;
2504 obstack_init (&temp_obstack);
2505 cleanup = make_cleanup_obstack_free (&temp_obstack);
2506 mutable_map = addrmap_create_mutable (&temp_obstack);
2508 iter = index->address_table;
2509 end = iter + index->address_table_size;
2511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2515 ULONGEST hi, lo, cu_index;
2516 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2518 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2520 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2523 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2524 dw2_get_cu (cu_index));
2527 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2528 &objfile->objfile_obstack);
2529 do_cleanups (cleanup);
2532 /* The hash function for strings in the mapped index. This is the same as
2533 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2534 implementation. This is necessary because the hash function is tied to the
2535 format of the mapped index file. The hash values do not have to match with
2538 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2541 mapped_index_string_hash (int index_version, const void *p)
2543 const unsigned char *str = (const unsigned char *) p;
2547 while ((c = *str++) != 0)
2549 if (index_version >= 5)
2551 r = r * 67 + c - 113;
2557 /* Find a slot in the mapped index INDEX for the object named NAME.
2558 If NAME is found, set *VEC_OUT to point to the CU vector in the
2559 constant pool and return 1. If NAME cannot be found, return 0. */
2562 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2563 offset_type **vec_out)
2565 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2567 offset_type slot, step;
2568 int (*cmp) (const char *, const char *);
2570 if (current_language->la_language == language_cplus
2571 || current_language->la_language == language_java
2572 || current_language->la_language == language_fortran)
2574 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2576 const char *paren = strchr (name, '(');
2582 dup = xmalloc (paren - name + 1);
2583 memcpy (dup, name, paren - name);
2584 dup[paren - name] = 0;
2586 make_cleanup (xfree, dup);
2591 /* Index version 4 did not support case insensitive searches. But the
2592 indices for case insensitive languages are built in lowercase, therefore
2593 simulate our NAME being searched is also lowercased. */
2594 hash = mapped_index_string_hash ((index->version == 4
2595 && case_sensitivity == case_sensitive_off
2596 ? 5 : index->version),
2599 slot = hash & (index->symbol_table_slots - 1);
2600 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2601 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2605 /* Convert a slot number to an offset into the table. */
2606 offset_type i = 2 * slot;
2608 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2610 do_cleanups (back_to);
2614 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2615 if (!cmp (name, str))
2617 *vec_out = (offset_type *) (index->constant_pool
2618 + MAYBE_SWAP (index->symbol_table[i + 1]));
2619 do_cleanups (back_to);
2623 slot = (slot + step) & (index->symbol_table_slots - 1);
2627 /* A helper function that reads the .gdb_index from SECTION and fills
2628 in MAP. FILENAME is the name of the file containing the section;
2629 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2630 ok to use deprecated sections.
2632 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2633 out parameters that are filled in with information about the CU and
2634 TU lists in the section.
2636 Returns 1 if all went well, 0 otherwise. */
2639 read_index_from_section (struct objfile *objfile,
2640 const char *filename,
2642 struct dwarf2_section_info *section,
2643 struct mapped_index *map,
2644 const gdb_byte **cu_list,
2645 offset_type *cu_list_elements,
2646 const gdb_byte **types_list,
2647 offset_type *types_list_elements)
2650 offset_type version;
2651 offset_type *metadata;
2654 if (dwarf2_section_empty_p (section))
2657 /* Older elfutils strip versions could keep the section in the main
2658 executable while splitting it for the separate debug info file. */
2659 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
2662 dwarf2_read_section (objfile, section);
2664 addr = section->buffer;
2665 /* Version check. */
2666 version = MAYBE_SWAP (*(offset_type *) addr);
2667 /* Versions earlier than 3 emitted every copy of a psymbol. This
2668 causes the index to behave very poorly for certain requests. Version 3
2669 contained incomplete addrmap. So, it seems better to just ignore such
2673 static int warning_printed = 0;
2674 if (!warning_printed)
2676 warning (_("Skipping obsolete .gdb_index section in %s."),
2678 warning_printed = 1;
2682 /* Index version 4 uses a different hash function than index version
2685 Versions earlier than 6 did not emit psymbols for inlined
2686 functions. Using these files will cause GDB not to be able to
2687 set breakpoints on inlined functions by name, so we ignore these
2688 indices unless the user has done
2689 "set use-deprecated-index-sections on". */
2690 if (version < 6 && !deprecated_ok)
2692 static int warning_printed = 0;
2693 if (!warning_printed)
2696 Skipping deprecated .gdb_index section in %s.\n\
2697 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2698 to use the section anyway."),
2700 warning_printed = 1;
2704 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2705 of the TU (for symbols coming from TUs). It's just a performance bug, and
2706 we can't distinguish gdb-generated indices from gold-generated ones, so
2707 nothing to do here. */
2709 /* Indexes with higher version than the one supported by GDB may be no
2710 longer backward compatible. */
2714 map->version = version;
2715 map->total_size = section->size;
2717 metadata = (offset_type *) (addr + sizeof (offset_type));
2720 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2721 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2725 *types_list = addr + MAYBE_SWAP (metadata[i]);
2726 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2727 - MAYBE_SWAP (metadata[i]))
2731 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2732 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2733 - MAYBE_SWAP (metadata[i]));
2736 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2737 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2738 - MAYBE_SWAP (metadata[i]))
2739 / (2 * sizeof (offset_type)));
2742 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2748 /* Read the index file. If everything went ok, initialize the "quick"
2749 elements of all the CUs and return 1. Otherwise, return 0. */
2752 dwarf2_read_index (struct objfile *objfile)
2754 struct mapped_index local_map, *map;
2755 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2756 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2758 if (!read_index_from_section (objfile, objfile->name,
2759 use_deprecated_index_sections,
2760 &dwarf2_per_objfile->gdb_index, &local_map,
2761 &cu_list, &cu_list_elements,
2762 &types_list, &types_list_elements))
2765 /* Don't use the index if it's empty. */
2766 if (local_map.symbol_table_slots == 0)
2769 /* If there is a .dwz file, read it so we can get its CU list as
2771 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2773 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2774 struct mapped_index dwz_map;
2775 const gdb_byte *dwz_types_ignore;
2776 offset_type dwz_types_elements_ignore;
2778 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2780 &dwz->gdb_index, &dwz_map,
2781 &dwz_list, &dwz_list_elements,
2783 &dwz_types_elements_ignore))
2785 warning (_("could not read '.gdb_index' section from %s; skipping"),
2786 bfd_get_filename (dwz->dwz_bfd));
2791 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
2794 if (types_list_elements)
2796 struct dwarf2_section_info *section;
2798 /* We can only handle a single .debug_types when we have an
2800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2803 section = VEC_index (dwarf2_section_info_def,
2804 dwarf2_per_objfile->types, 0);
2806 create_signatured_type_table_from_index (objfile, section, types_list,
2807 types_list_elements);
2810 create_addrmap_from_index (objfile, &local_map);
2812 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2815 dwarf2_per_objfile->index_table = map;
2816 dwarf2_per_objfile->using_index = 1;
2817 dwarf2_per_objfile->quick_file_names_table =
2818 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2823 /* A helper for the "quick" functions which sets the global
2824 dwarf2_per_objfile according to OBJFILE. */
2827 dw2_setup (struct objfile *objfile)
2829 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2830 gdb_assert (dwarf2_per_objfile);
2833 /* die_reader_func for dw2_get_file_names. */
2836 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2838 struct die_info *comp_unit_die,
2842 struct dwarf2_cu *cu = reader->cu;
2843 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2844 struct objfile *objfile = dwarf2_per_objfile->objfile;
2845 struct dwarf2_per_cu_data *lh_cu;
2846 struct line_header *lh;
2847 struct attribute *attr;
2849 const char *name, *comp_dir;
2851 struct quick_file_names *qfn;
2852 unsigned int line_offset;
2854 /* Our callers never want to match partial units -- instead they
2855 will match the enclosing full CU. */
2856 if (comp_unit_die->tag == DW_TAG_partial_unit)
2858 this_cu->v.quick->no_file_data = 1;
2862 /* If we're reading the line header for TUs, store it in the "per_cu"
2864 if (this_cu->is_debug_types)
2866 struct type_unit_group *tu_group = data;
2868 gdb_assert (tu_group != NULL);
2869 lh_cu = &tu_group->per_cu;
2878 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
2881 struct quick_file_names find_entry;
2883 line_offset = DW_UNSND (attr);
2885 /* We may have already read in this line header (TU line header sharing).
2886 If we have we're done. */
2887 find_entry.hash.dwo_unit = cu->dwo_unit;
2888 find_entry.hash.line_offset.sect_off = line_offset;
2889 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2890 &find_entry, INSERT);
2893 lh_cu->v.quick->file_names = *slot;
2897 lh = dwarf_decode_line_header (line_offset, cu);
2901 lh_cu->v.quick->no_file_data = 1;
2905 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2906 qfn->hash.dwo_unit = cu->dwo_unit;
2907 qfn->hash.line_offset.sect_off = line_offset;
2908 gdb_assert (slot != NULL);
2911 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
2913 qfn->num_file_names = lh->num_file_names;
2914 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2915 lh->num_file_names * sizeof (char *));
2916 for (i = 0; i < lh->num_file_names; ++i)
2917 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2918 qfn->real_names = NULL;
2920 free_line_header (lh);
2922 lh_cu->v.quick->file_names = qfn;
2925 /* A helper for the "quick" functions which attempts to read the line
2926 table for THIS_CU. */
2928 static struct quick_file_names *
2929 dw2_get_file_names (struct objfile *objfile,
2930 struct dwarf2_per_cu_data *this_cu)
2932 /* For TUs this should only be called on the parent group. */
2933 if (this_cu->is_debug_types)
2934 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2936 if (this_cu->v.quick->file_names != NULL)
2937 return this_cu->v.quick->file_names;
2938 /* If we know there is no line data, no point in looking again. */
2939 if (this_cu->v.quick->no_file_data)
2942 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2943 in the stub for CUs, there's is no need to lookup the DWO file.
2944 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2946 if (this_cu->is_debug_types)
2948 struct type_unit_group *tu_group = this_cu->type_unit_group;
2950 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2951 dw2_get_file_names_reader, tu_group);
2954 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
2956 if (this_cu->v.quick->no_file_data)
2958 return this_cu->v.quick->file_names;
2961 /* A helper for the "quick" functions which computes and caches the
2962 real path for a given file name from the line table. */
2965 dw2_get_real_path (struct objfile *objfile,
2966 struct quick_file_names *qfn, int index)
2968 if (qfn->real_names == NULL)
2969 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2970 qfn->num_file_names, sizeof (char *));
2972 if (qfn->real_names[index] == NULL)
2973 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2975 return qfn->real_names[index];
2978 static struct symtab *
2979 dw2_find_last_source_symtab (struct objfile *objfile)
2983 dw2_setup (objfile);
2984 index = dwarf2_per_objfile->n_comp_units - 1;
2985 return dw2_instantiate_symtab (dw2_get_cu (index));
2988 /* Traversal function for dw2_forget_cached_source_info. */
2991 dw2_free_cached_file_names (void **slot, void *info)
2993 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2995 if (file_data->real_names)
2999 for (i = 0; i < file_data->num_file_names; ++i)
3001 xfree ((void*) file_data->real_names[i]);
3002 file_data->real_names[i] = NULL;
3010 dw2_forget_cached_source_info (struct objfile *objfile)
3012 dw2_setup (objfile);
3014 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3015 dw2_free_cached_file_names, NULL);
3018 /* Helper function for dw2_map_symtabs_matching_filename that expands
3019 the symtabs and calls the iterator. */
3022 dw2_map_expand_apply (struct objfile *objfile,
3023 struct dwarf2_per_cu_data *per_cu,
3024 const char *name, const char *real_path,
3025 int (*callback) (struct symtab *, void *),
3028 struct symtab *last_made = objfile->symtabs;
3030 /* Don't visit already-expanded CUs. */
3031 if (per_cu->v.quick->symtab)
3034 /* This may expand more than one symtab, and we want to iterate over
3036 dw2_instantiate_symtab (per_cu);
3038 return iterate_over_some_symtabs (name, real_path, callback, data,
3039 objfile->symtabs, last_made);
3042 /* Implementation of the map_symtabs_matching_filename method. */
3045 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3046 const char *real_path,
3047 int (*callback) (struct symtab *, void *),
3051 const char *name_basename = lbasename (name);
3053 dw2_setup (objfile);
3055 /* The rule is CUs specify all the files, including those used by
3056 any TU, so there's no need to scan TUs here. */
3058 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3061 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3062 struct quick_file_names *file_data;
3064 /* We only need to look at symtabs not already expanded. */
3065 if (per_cu->v.quick->symtab)
3068 file_data = dw2_get_file_names (objfile, per_cu);
3069 if (file_data == NULL)
3072 for (j = 0; j < file_data->num_file_names; ++j)
3074 const char *this_name = file_data->file_names[j];
3076 if (compare_filenames_for_search (this_name, name))
3078 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3083 /* Before we invoke realpath, which can get expensive when many
3084 files are involved, do a quick comparison of the basenames. */
3085 if (! basenames_may_differ
3086 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3089 if (real_path != NULL)
3091 const char *this_real_name = dw2_get_real_path (objfile,
3094 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3095 gdb_assert (IS_ABSOLUTE_PATH (name));
3096 if (this_real_name != NULL
3097 && FILENAME_CMP (real_path, this_real_name) == 0)
3099 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3110 /* Struct used to manage iterating over all CUs looking for a symbol. */
3112 struct dw2_symtab_iterator
3114 /* The internalized form of .gdb_index. */
3115 struct mapped_index *index;
3116 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3117 int want_specific_block;
3118 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3119 Unused if !WANT_SPECIFIC_BLOCK. */
3121 /* The kind of symbol we're looking for. */
3123 /* The list of CUs from the index entry of the symbol,
3124 or NULL if not found. */
3126 /* The next element in VEC to look at. */
3128 /* The number of elements in VEC, or zero if there is no match. */
3132 /* Initialize the index symtab iterator ITER.
3133 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3134 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3137 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3138 struct mapped_index *index,
3139 int want_specific_block,
3144 iter->index = index;
3145 iter->want_specific_block = want_specific_block;
3146 iter->block_index = block_index;
3147 iter->domain = domain;
3150 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3151 iter->length = MAYBE_SWAP (*iter->vec);
3159 /* Return the next matching CU or NULL if there are no more. */
3161 static struct dwarf2_per_cu_data *
3162 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3164 for ( ; iter->next < iter->length; ++iter->next)
3166 offset_type cu_index_and_attrs =
3167 MAYBE_SWAP (iter->vec[iter->next + 1]);
3168 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3169 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
3170 int want_static = iter->block_index != GLOBAL_BLOCK;
3171 /* This value is only valid for index versions >= 7. */
3172 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3173 gdb_index_symbol_kind symbol_kind =
3174 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3175 /* Only check the symbol attributes if they're present.
3176 Indices prior to version 7 don't record them,
3177 and indices >= 7 may elide them for certain symbols
3178 (gold does this). */
3180 (iter->index->version >= 7
3181 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3183 /* Skip if already read in. */
3184 if (per_cu->v.quick->symtab)
3188 && iter->want_specific_block
3189 && want_static != is_static)
3192 /* Only check the symbol's kind if it has one. */
3195 switch (iter->domain)
3198 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3199 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3200 /* Some types are also in VAR_DOMAIN. */
3201 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3205 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3209 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3224 static struct symtab *
3225 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3226 const char *name, domain_enum domain)
3228 struct symtab *stab_best = NULL;
3229 struct mapped_index *index;
3231 dw2_setup (objfile);
3233 index = dwarf2_per_objfile->index_table;
3235 /* index is NULL if OBJF_READNOW. */
3238 struct dw2_symtab_iterator iter;
3239 struct dwarf2_per_cu_data *per_cu;
3241 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3243 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3245 struct symbol *sym = NULL;
3246 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3248 /* Some caution must be observed with overloaded functions
3249 and methods, since the index will not contain any overload
3250 information (but NAME might contain it). */
3253 struct blockvector *bv = BLOCKVECTOR (stab);
3254 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3256 sym = lookup_block_symbol (block, name, domain);
3259 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3261 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3267 /* Keep looking through other CUs. */
3275 dw2_print_stats (struct objfile *objfile)
3279 dw2_setup (objfile);
3281 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3282 + dwarf2_per_objfile->n_type_units); ++i)
3284 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3286 if (!per_cu->v.quick->symtab)
3289 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3293 dw2_dump (struct objfile *objfile)
3295 /* Nothing worth printing. */
3299 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3300 struct section_offsets *delta)
3302 /* There's nothing to relocate here. */
3306 dw2_expand_symtabs_for_function (struct objfile *objfile,
3307 const char *func_name)
3309 struct mapped_index *index;
3311 dw2_setup (objfile);
3313 index = dwarf2_per_objfile->index_table;
3315 /* index is NULL if OBJF_READNOW. */
3318 struct dw2_symtab_iterator iter;
3319 struct dwarf2_per_cu_data *per_cu;
3321 /* Note: It doesn't matter what we pass for block_index here. */
3322 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3325 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3326 dw2_instantiate_symtab (per_cu);
3331 dw2_expand_all_symtabs (struct objfile *objfile)
3335 dw2_setup (objfile);
3337 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3338 + dwarf2_per_objfile->n_type_units); ++i)
3340 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3342 dw2_instantiate_symtab (per_cu);
3347 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3348 const char *fullname)
3352 dw2_setup (objfile);
3354 /* We don't need to consider type units here.
3355 This is only called for examining code, e.g. expand_line_sal.
3356 There can be an order of magnitude (or more) more type units
3357 than comp units, and we avoid them if we can. */
3359 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3362 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3363 struct quick_file_names *file_data;
3365 /* We only need to look at symtabs not already expanded. */
3366 if (per_cu->v.quick->symtab)
3369 file_data = dw2_get_file_names (objfile, per_cu);
3370 if (file_data == NULL)
3373 for (j = 0; j < file_data->num_file_names; ++j)
3375 const char *this_fullname = file_data->file_names[j];
3377 if (filename_cmp (this_fullname, fullname) == 0)
3379 dw2_instantiate_symtab (per_cu);
3386 /* A helper function for dw2_find_symbol_file that finds the primary
3387 file name for a given CU. This is a die_reader_func. */
3390 dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3392 struct die_info *comp_unit_die,
3396 const char **result_ptr = data;
3397 struct dwarf2_cu *cu = reader->cu;
3398 struct attribute *attr;
3400 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3404 *result_ptr = DW_STRING (attr);
3408 dw2_find_symbol_file (struct objfile *objfile, const char *name)
3410 struct dwarf2_per_cu_data *per_cu;
3412 const char *filename;
3414 dw2_setup (objfile);
3416 /* index_table is NULL if OBJF_READNOW. */
3417 if (!dwarf2_per_objfile->index_table)
3421 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3423 struct blockvector *bv = BLOCKVECTOR (s);
3424 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3425 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3429 /* Only file extension of returned filename is recognized. */
3430 return SYMBOL_SYMTAB (sym)->filename;
3436 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3440 /* Note that this just looks at the very first one named NAME -- but
3441 actually we are looking for a function. find_main_filename
3442 should be rewritten so that it doesn't require a custom hook. It
3443 could just use the ordinary symbol tables. */
3444 /* vec[0] is the length, which must always be >0. */
3445 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
3447 if (per_cu->v.quick->symtab != NULL)
3449 /* Only file extension of returned filename is recognized. */
3450 return per_cu->v.quick->symtab->filename;
3453 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3454 dw2_get_primary_filename_reader, &filename);
3456 /* Only file extension of returned filename is recognized. */
3461 dw2_map_matching_symbols (const char * name, domain_enum namespace,
3462 struct objfile *objfile, int global,
3463 int (*callback) (struct block *,
3464 struct symbol *, void *),
3465 void *data, symbol_compare_ftype *match,
3466 symbol_compare_ftype *ordered_compare)
3468 /* Currently unimplemented; used for Ada. The function can be called if the
3469 current language is Ada for a non-Ada objfile using GNU index. As Ada
3470 does not look for non-Ada symbols this function should just return. */
3474 dw2_expand_symtabs_matching
3475 (struct objfile *objfile,
3476 int (*file_matcher) (const char *, void *),
3477 int (*name_matcher) (const char *, void *),
3478 enum search_domain kind,
3483 struct mapped_index *index;
3485 dw2_setup (objfile);
3487 /* index_table is NULL if OBJF_READNOW. */
3488 if (!dwarf2_per_objfile->index_table)
3490 index = dwarf2_per_objfile->index_table;
3492 if (file_matcher != NULL)
3494 struct cleanup *cleanup;
3495 htab_t visited_found, visited_not_found;
3497 visited_found = htab_create_alloc (10,
3498 htab_hash_pointer, htab_eq_pointer,
3499 NULL, xcalloc, xfree);
3500 cleanup = make_cleanup_htab_delete (visited_found);
3501 visited_not_found = htab_create_alloc (10,
3502 htab_hash_pointer, htab_eq_pointer,
3503 NULL, xcalloc, xfree);
3504 make_cleanup_htab_delete (visited_not_found);
3506 /* The rule is CUs specify all the files, including those used by
3507 any TU, so there's no need to scan TUs here. */
3509 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3512 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3513 struct quick_file_names *file_data;
3516 per_cu->v.quick->mark = 0;
3518 /* We only need to look at symtabs not already expanded. */
3519 if (per_cu->v.quick->symtab)
3522 file_data = dw2_get_file_names (objfile, per_cu);
3523 if (file_data == NULL)
3526 if (htab_find (visited_not_found, file_data) != NULL)
3528 else if (htab_find (visited_found, file_data) != NULL)
3530 per_cu->v.quick->mark = 1;
3534 for (j = 0; j < file_data->num_file_names; ++j)
3536 if (file_matcher (file_data->file_names[j], data))
3538 per_cu->v.quick->mark = 1;
3543 slot = htab_find_slot (per_cu->v.quick->mark
3545 : visited_not_found,
3550 do_cleanups (cleanup);
3553 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3555 offset_type idx = 2 * iter;
3557 offset_type *vec, vec_len, vec_idx;
3559 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3562 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3564 if (! (*name_matcher) (name, data))
3567 /* The name was matched, now expand corresponding CUs that were
3569 vec = (offset_type *) (index->constant_pool
3570 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3571 vec_len = MAYBE_SWAP (vec[0]);
3572 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3574 struct dwarf2_per_cu_data *per_cu;
3575 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3576 gdb_index_symbol_kind symbol_kind =
3577 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3578 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3580 /* Don't crash on bad data. */
3581 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3582 + dwarf2_per_objfile->n_type_units))
3585 /* Only check the symbol's kind if it has one.
3586 Indices prior to version 7 don't record it. */
3587 if (index->version >= 7)
3591 case VARIABLES_DOMAIN:
3592 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3595 case FUNCTIONS_DOMAIN:
3596 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3600 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3608 per_cu = dw2_get_cu (cu_index);
3609 if (file_matcher == NULL || per_cu->v.quick->mark)
3610 dw2_instantiate_symtab (per_cu);
3615 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3618 static struct symtab *
3619 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3623 if (BLOCKVECTOR (symtab) != NULL
3624 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3627 if (symtab->includes == NULL)
3630 for (i = 0; symtab->includes[i]; ++i)
3632 struct symtab *s = symtab->includes[i];
3634 s = recursively_find_pc_sect_symtab (s, pc);
3642 static struct symtab *
3643 dw2_find_pc_sect_symtab (struct objfile *objfile,
3644 struct minimal_symbol *msymbol,
3646 struct obj_section *section,
3649 struct dwarf2_per_cu_data *data;
3650 struct symtab *result;
3652 dw2_setup (objfile);
3654 if (!objfile->psymtabs_addrmap)
3657 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3661 if (warn_if_readin && data->v.quick->symtab)
3662 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
3663 paddress (get_objfile_arch (objfile), pc));
3665 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3666 gdb_assert (result != NULL);
3671 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
3672 void *data, int need_fullname)
3675 struct cleanup *cleanup;
3676 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3677 NULL, xcalloc, xfree);
3679 cleanup = make_cleanup_htab_delete (visited);
3680 dw2_setup (objfile);
3682 /* The rule is CUs specify all the files, including those used by
3683 any TU, so there's no need to scan TUs here.
3684 We can ignore file names coming from already-expanded CUs. */
3686 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3688 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3690 if (per_cu->v.quick->symtab)
3692 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3695 *slot = per_cu->v.quick->file_names;
3699 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3702 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3703 struct quick_file_names *file_data;
3706 /* We only need to look at symtabs not already expanded. */
3707 if (per_cu->v.quick->symtab)
3710 file_data = dw2_get_file_names (objfile, per_cu);
3711 if (file_data == NULL)
3714 slot = htab_find_slot (visited, file_data, INSERT);
3717 /* Already visited. */
3722 for (j = 0; j < file_data->num_file_names; ++j)
3724 const char *this_real_name;
3727 this_real_name = dw2_get_real_path (objfile, file_data, j);
3729 this_real_name = NULL;
3730 (*fun) (file_data->file_names[j], this_real_name, data);
3734 do_cleanups (cleanup);
3738 dw2_has_symbols (struct objfile *objfile)
3743 const struct quick_symbol_functions dwarf2_gdb_index_functions =
3746 dw2_find_last_source_symtab,
3747 dw2_forget_cached_source_info,
3748 dw2_map_symtabs_matching_filename,
3753 dw2_expand_symtabs_for_function,
3754 dw2_expand_all_symtabs,
3755 dw2_expand_symtabs_with_fullname,
3756 dw2_find_symbol_file,
3757 dw2_map_matching_symbols,
3758 dw2_expand_symtabs_matching,
3759 dw2_find_pc_sect_symtab,
3760 dw2_map_symbol_filenames
3763 /* Initialize for reading DWARF for this objfile. Return 0 if this
3764 file will use psymtabs, or 1 if using the GNU index. */
3767 dwarf2_initialize_objfile (struct objfile *objfile)
3769 /* If we're about to read full symbols, don't bother with the
3770 indices. In this case we also don't care if some other debug
3771 format is making psymtabs, because they are all about to be
3773 if ((objfile->flags & OBJF_READNOW))
3777 dwarf2_per_objfile->using_index = 1;
3778 create_all_comp_units (objfile);
3779 create_all_type_units (objfile);
3780 dwarf2_per_objfile->quick_file_names_table =
3781 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3783 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3784 + dwarf2_per_objfile->n_type_units); ++i)
3786 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3788 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3789 struct dwarf2_per_cu_quick_data);
3792 /* Return 1 so that gdb sees the "quick" functions. However,
3793 these functions will be no-ops because we will have expanded
3798 if (dwarf2_read_index (objfile))
3806 /* Build a partial symbol table. */
3809 dwarf2_build_psymtabs (struct objfile *objfile)
3811 volatile struct gdb_exception except;
3813 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
3815 init_psymbol_list (objfile, 1024);
3818 TRY_CATCH (except, RETURN_MASK_ERROR)
3820 /* This isn't really ideal: all the data we allocate on the
3821 objfile's obstack is still uselessly kept around. However,
3822 freeing it seems unsafe. */
3823 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
3825 dwarf2_build_psymtabs_hard (objfile);
3826 discard_cleanups (cleanups);
3828 if (except.reason < 0)
3829 exception_print (gdb_stderr, except);
3832 /* Return the total length of the CU described by HEADER. */
3835 get_cu_length (const struct comp_unit_head *header)
3837 return header->initial_length_size + header->length;
3840 /* Return TRUE if OFFSET is within CU_HEADER. */
3843 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
3845 sect_offset bottom = { cu_header->offset.sect_off };
3846 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
3848 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
3851 /* Find the base address of the compilation unit for range lists and
3852 location lists. It will normally be specified by DW_AT_low_pc.
3853 In DWARF-3 draft 4, the base address could be overridden by
3854 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3855 compilation units with discontinuous ranges. */
3858 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3860 struct attribute *attr;
3863 cu->base_address = 0;
3865 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3868 cu->base_address = DW_ADDR (attr);
3873 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3876 cu->base_address = DW_ADDR (attr);
3882 /* Read in the comp unit header information from the debug_info at info_ptr.
3883 NOTE: This leaves members offset, first_die_offset to be filled in
3887 read_comp_unit_head (struct comp_unit_head *cu_header,
3888 gdb_byte *info_ptr, bfd *abfd)
3891 unsigned int bytes_read;
3893 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3894 cu_header->initial_length_size = bytes_read;
3895 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
3896 info_ptr += bytes_read;
3897 cu_header->version = read_2_bytes (abfd, info_ptr);
3899 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3901 info_ptr += bytes_read;
3902 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3904 signed_addr = bfd_get_sign_extend_vma (abfd);
3905 if (signed_addr < 0)
3906 internal_error (__FILE__, __LINE__,
3907 _("read_comp_unit_head: dwarf from non elf file"));
3908 cu_header->signed_addr_p = signed_addr;
3913 /* Helper function that returns the proper abbrev section for
3916 static struct dwarf2_section_info *
3917 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3919 struct dwarf2_section_info *abbrev;
3921 if (this_cu->is_dwz)
3922 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3924 abbrev = &dwarf2_per_objfile->abbrev;
3929 /* Subroutine of read_and_check_comp_unit_head and
3930 read_and_check_type_unit_head to simplify them.
3931 Perform various error checking on the header. */
3934 error_check_comp_unit_head (struct comp_unit_head *header,
3935 struct dwarf2_section_info *section,
3936 struct dwarf2_section_info *abbrev_section)
3938 bfd *abfd = section->asection->owner;
3939 const char *filename = bfd_get_filename (abfd);
3941 if (header->version != 2 && header->version != 3 && header->version != 4)
3942 error (_("Dwarf Error: wrong version in compilation unit header "
3943 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3946 if (header->abbrev_offset.sect_off
3947 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
3948 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3949 "(offset 0x%lx + 6) [in module %s]"),
3950 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
3953 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3954 avoid potential 32-bit overflow. */
3955 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
3957 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3958 "(offset 0x%lx + 0) [in module %s]"),
3959 (long) header->length, (long) header->offset.sect_off,
3963 /* Read in a CU/TU header and perform some basic error checking.
3964 The contents of the header are stored in HEADER.
3965 The result is a pointer to the start of the first DIE. */
3968 read_and_check_comp_unit_head (struct comp_unit_head *header,
3969 struct dwarf2_section_info *section,
3970 struct dwarf2_section_info *abbrev_section,
3972 int is_debug_types_section)
3974 gdb_byte *beg_of_comp_unit = info_ptr;
3975 bfd *abfd = section->asection->owner;
3977 header->offset.sect_off = beg_of_comp_unit - section->buffer;
3979 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3981 /* If we're reading a type unit, skip over the signature and
3982 type_offset fields. */
3983 if (is_debug_types_section)
3984 info_ptr += 8 /*signature*/ + header->offset_size;
3986 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
3988 error_check_comp_unit_head (header, section, abbrev_section);
3993 /* Read in the types comp unit header information from .debug_types entry at
3994 types_ptr. The result is a pointer to one past the end of the header. */
3997 read_and_check_type_unit_head (struct comp_unit_head *header,
3998 struct dwarf2_section_info *section,
3999 struct dwarf2_section_info *abbrev_section,
4001 ULONGEST *signature,
4002 cu_offset *type_offset_in_tu)
4004 gdb_byte *beg_of_comp_unit = info_ptr;
4005 bfd *abfd = section->asection->owner;
4007 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4009 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4011 /* If we're reading a type unit, skip over the signature and
4012 type_offset fields. */
4013 if (signature != NULL)
4014 *signature = read_8_bytes (abfd, info_ptr);
4016 if (type_offset_in_tu != NULL)
4017 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4018 header->offset_size);
4019 info_ptr += header->offset_size;
4021 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4023 error_check_comp_unit_head (header, section, abbrev_section);
4028 /* Fetch the abbreviation table offset from a comp or type unit header. */
4031 read_abbrev_offset (struct dwarf2_section_info *section,
4034 bfd *abfd = section->asection->owner;
4036 unsigned int length, initial_length_size, offset_size;
4037 sect_offset abbrev_offset;
4039 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4040 info_ptr = section->buffer + offset.sect_off;
4041 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4042 offset_size = initial_length_size == 4 ? 4 : 8;
4043 info_ptr += initial_length_size + 2 /*version*/;
4044 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4045 return abbrev_offset;
4048 /* Allocate a new partial symtab for file named NAME and mark this new
4049 partial symtab as being an include of PST. */
4052 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4053 struct objfile *objfile)
4055 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4057 subpst->section_offsets = pst->section_offsets;
4058 subpst->textlow = 0;
4059 subpst->texthigh = 0;
4061 subpst->dependencies = (struct partial_symtab **)
4062 obstack_alloc (&objfile->objfile_obstack,
4063 sizeof (struct partial_symtab *));
4064 subpst->dependencies[0] = pst;
4065 subpst->number_of_dependencies = 1;
4067 subpst->globals_offset = 0;
4068 subpst->n_global_syms = 0;
4069 subpst->statics_offset = 0;
4070 subpst->n_static_syms = 0;
4071 subpst->symtab = NULL;
4072 subpst->read_symtab = pst->read_symtab;
4075 /* No private part is necessary for include psymtabs. This property
4076 can be used to differentiate between such include psymtabs and
4077 the regular ones. */
4078 subpst->read_symtab_private = NULL;
4081 /* Read the Line Number Program data and extract the list of files
4082 included by the source file represented by PST. Build an include
4083 partial symtab for each of these included files. */
4086 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4087 struct die_info *die,
4088 struct partial_symtab *pst)
4090 struct line_header *lh = NULL;
4091 struct attribute *attr;
4093 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4095 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4097 return; /* No linetable, so no includes. */
4099 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4100 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4102 free_line_header (lh);
4106 hash_signatured_type (const void *item)
4108 const struct signatured_type *sig_type = item;
4110 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4111 return sig_type->signature;
4115 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4117 const struct signatured_type *lhs = item_lhs;
4118 const struct signatured_type *rhs = item_rhs;
4120 return lhs->signature == rhs->signature;
4123 /* Allocate a hash table for signatured types. */
4126 allocate_signatured_type_table (struct objfile *objfile)
4128 return htab_create_alloc_ex (41,
4129 hash_signatured_type,
4132 &objfile->objfile_obstack,
4133 hashtab_obstack_allocate,
4134 dummy_obstack_deallocate);
4137 /* A helper function to add a signatured type CU to a table. */
4140 add_signatured_type_cu_to_table (void **slot, void *datum)
4142 struct signatured_type *sigt = *slot;
4143 struct signatured_type ***datap = datum;
4151 /* Create the hash table of all entries in the .debug_types section.
4152 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4154 Note: This function processes DWO files only, not DWP files.
4155 The result is a pointer to the hash table or NULL if there are
4159 create_debug_types_hash_table (struct dwo_file *dwo_file,
4160 VEC (dwarf2_section_info_def) *types)
4162 struct objfile *objfile = dwarf2_per_objfile->objfile;
4163 htab_t types_htab = NULL;
4165 struct dwarf2_section_info *section;
4166 struct dwarf2_section_info *abbrev_section;
4168 if (VEC_empty (dwarf2_section_info_def, types))
4171 abbrev_section = (dwo_file != NULL
4172 ? &dwo_file->sections.abbrev
4173 : &dwarf2_per_objfile->abbrev);
4175 if (dwarf2_read_debug)
4176 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4177 dwo_file ? ".dwo" : "",
4178 bfd_get_filename (abbrev_section->asection->owner));
4181 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4185 gdb_byte *info_ptr, *end_ptr;
4186 struct dwarf2_section_info *abbrev_section;
4188 dwarf2_read_section (objfile, section);
4189 info_ptr = section->buffer;
4191 if (info_ptr == NULL)
4194 /* We can't set abfd until now because the section may be empty or
4195 not present, in which case section->asection will be NULL. */
4196 abfd = section->asection->owner;
4199 abbrev_section = &dwo_file->sections.abbrev;
4201 abbrev_section = &dwarf2_per_objfile->abbrev;
4203 if (types_htab == NULL)
4206 types_htab = allocate_dwo_unit_table (objfile);
4208 types_htab = allocate_signatured_type_table (objfile);
4211 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4212 because we don't need to read any dies: the signature is in the
4215 end_ptr = info_ptr + section->size;
4216 while (info_ptr < end_ptr)
4219 cu_offset type_offset_in_tu;
4221 struct signatured_type *sig_type;
4222 struct dwo_unit *dwo_tu;
4224 gdb_byte *ptr = info_ptr;
4225 struct comp_unit_head header;
4226 unsigned int length;
4228 offset.sect_off = ptr - section->buffer;
4230 /* We need to read the type's signature in order to build the hash
4231 table, but we don't need anything else just yet. */
4233 ptr = read_and_check_type_unit_head (&header, section,
4234 abbrev_section, ptr,
4235 &signature, &type_offset_in_tu);
4237 length = get_cu_length (&header);
4239 /* Skip dummy type units. */
4240 if (ptr >= info_ptr + length
4241 || peek_abbrev_code (abfd, ptr) == 0)
4250 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4252 dwo_tu->dwo_file = dwo_file;
4253 dwo_tu->signature = signature;
4254 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4255 dwo_tu->info_or_types_section = section;
4256 dwo_tu->offset = offset;
4257 dwo_tu->length = length;
4261 /* N.B.: type_offset is not usable if this type uses a DWO file.
4262 The real type_offset is in the DWO file. */
4264 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4265 struct signatured_type);
4266 sig_type->signature = signature;
4267 sig_type->type_offset_in_tu = type_offset_in_tu;
4268 sig_type->per_cu.objfile = objfile;
4269 sig_type->per_cu.is_debug_types = 1;
4270 sig_type->per_cu.info_or_types_section = section;
4271 sig_type->per_cu.offset = offset;
4272 sig_type->per_cu.length = length;
4275 slot = htab_find_slot (types_htab,
4276 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4278 gdb_assert (slot != NULL);
4281 sect_offset dup_offset;
4285 const struct dwo_unit *dup_tu = *slot;
4287 dup_offset = dup_tu->offset;
4291 const struct signatured_type *dup_tu = *slot;
4293 dup_offset = dup_tu->per_cu.offset;
4296 complaint (&symfile_complaints,
4297 _("debug type entry at offset 0x%x is duplicate to the "
4298 "entry at offset 0x%x, signature 0x%s"),
4299 offset.sect_off, dup_offset.sect_off,
4300 phex (signature, sizeof (signature)));
4302 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4304 if (dwarf2_read_debug)
4305 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
4307 phex (signature, sizeof (signature)));
4316 /* Create the hash table of all entries in the .debug_types section,
4317 and initialize all_type_units.
4318 The result is zero if there is an error (e.g. missing .debug_types section),
4319 otherwise non-zero. */
4322 create_all_type_units (struct objfile *objfile)
4325 struct signatured_type **iter;
4327 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4328 if (types_htab == NULL)
4330 dwarf2_per_objfile->signatured_types = NULL;
4334 dwarf2_per_objfile->signatured_types = types_htab;
4336 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4337 dwarf2_per_objfile->all_type_units
4338 = obstack_alloc (&objfile->objfile_obstack,
4339 dwarf2_per_objfile->n_type_units
4340 * sizeof (struct signatured_type *));
4341 iter = &dwarf2_per_objfile->all_type_units[0];
4342 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4343 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4344 == dwarf2_per_objfile->n_type_units);
4349 /* Lookup a signature based type for DW_FORM_ref_sig8.
4350 Returns NULL if signature SIG is not present in the table. */
4352 static struct signatured_type *
4353 lookup_signatured_type (ULONGEST sig)
4355 struct signatured_type find_entry, *entry;
4357 if (dwarf2_per_objfile->signatured_types == NULL)
4359 complaint (&symfile_complaints,
4360 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
4364 find_entry.signature = sig;
4365 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4369 /* Low level DIE reading support. */
4371 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4374 init_cu_die_reader (struct die_reader_specs *reader,
4375 struct dwarf2_cu *cu,
4376 struct dwarf2_section_info *section,
4377 struct dwo_file *dwo_file)
4379 gdb_assert (section->readin && section->buffer != NULL);
4380 reader->abfd = section->asection->owner;
4382 reader->dwo_file = dwo_file;
4383 reader->die_section = section;
4384 reader->buffer = section->buffer;
4385 reader->buffer_end = section->buffer + section->size;
4388 /* Initialize a CU (or TU) and read its DIEs.
4389 If the CU defers to a DWO file, read the DWO file as well.
4391 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4392 Otherwise the table specified in the comp unit header is read in and used.
4393 This is an optimization for when we already have the abbrev table.
4395 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4396 Otherwise, a new CU is allocated with xmalloc.
4398 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4399 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4401 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4402 linker) then DIE_READER_FUNC will not get called. */
4405 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
4406 struct abbrev_table *abbrev_table,
4407 int use_existing_cu, int keep,
4408 die_reader_func_ftype *die_reader_func,
4411 struct objfile *objfile = dwarf2_per_objfile->objfile;
4412 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4413 bfd *abfd = section->asection->owner;
4414 struct dwarf2_cu *cu;
4415 gdb_byte *begin_info_ptr, *info_ptr;
4416 struct die_reader_specs reader;
4417 struct die_info *comp_unit_die;
4419 struct attribute *attr;
4420 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4421 struct signatured_type *sig_type = NULL;
4422 struct dwarf2_section_info *abbrev_section;
4423 /* Non-zero if CU currently points to a DWO file and we need to
4424 reread it. When this happens we need to reread the skeleton die
4425 before we can reread the DWO file. */
4426 int rereading_dwo_cu = 0;
4428 if (dwarf2_die_debug)
4429 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4430 this_cu->is_debug_types ? "type" : "comp",
4431 this_cu->offset.sect_off);
4433 if (use_existing_cu)
4436 cleanups = make_cleanup (null_cleanup, NULL);
4438 /* This is cheap if the section is already read in. */
4439 dwarf2_read_section (objfile, section);
4441 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4443 abbrev_section = get_abbrev_section_for_cu (this_cu);
4445 if (use_existing_cu && this_cu->cu != NULL)
4449 /* If this CU is from a DWO file we need to start over, we need to
4450 refetch the attributes from the skeleton CU.
4451 This could be optimized by retrieving those attributes from when we
4452 were here the first time: the previous comp_unit_die was stored in
4453 comp_unit_obstack. But there's no data yet that we need this
4455 if (cu->dwo_unit != NULL)
4456 rereading_dwo_cu = 1;
4460 /* If !use_existing_cu, this_cu->cu must be NULL. */
4461 gdb_assert (this_cu->cu == NULL);
4463 cu = xmalloc (sizeof (*cu));
4464 init_one_comp_unit (cu, this_cu);
4466 /* If an error occurs while loading, release our storage. */
4467 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
4470 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4472 /* We already have the header, there's no need to read it in again. */
4473 info_ptr += cu->header.first_die_offset.cu_off;
4477 if (this_cu->is_debug_types)
4480 cu_offset type_offset_in_tu;
4482 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4483 abbrev_section, info_ptr,
4485 &type_offset_in_tu);
4487 /* Since per_cu is the first member of struct signatured_type,
4488 we can go from a pointer to one to a pointer to the other. */
4489 sig_type = (struct signatured_type *) this_cu;
4490 gdb_assert (sig_type->signature == signature);
4491 gdb_assert (sig_type->type_offset_in_tu.cu_off
4492 == type_offset_in_tu.cu_off);
4493 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4495 /* LENGTH has not been set yet for type units if we're
4496 using .gdb_index. */
4497 this_cu->length = get_cu_length (&cu->header);
4499 /* Establish the type offset that can be used to lookup the type. */
4500 sig_type->type_offset_in_section.sect_off =
4501 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
4505 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4509 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4510 gdb_assert (this_cu->length == get_cu_length (&cu->header));
4514 /* Skip dummy compilation units. */
4515 if (info_ptr >= begin_info_ptr + this_cu->length
4516 || peek_abbrev_code (abfd, info_ptr) == 0)
4518 do_cleanups (cleanups);
4522 /* If we don't have them yet, read the abbrevs for this compilation unit.
4523 And if we need to read them now, make sure they're freed when we're
4524 done. Note that it's important that if the CU had an abbrev table
4525 on entry we don't free it when we're done: Somewhere up the call stack
4526 it may be in use. */
4527 if (abbrev_table != NULL)
4529 gdb_assert (cu->abbrev_table == NULL);
4530 gdb_assert (cu->header.abbrev_offset.sect_off
4531 == abbrev_table->offset.sect_off);
4532 cu->abbrev_table = abbrev_table;
4534 else if (cu->abbrev_table == NULL)
4536 dwarf2_read_abbrevs (cu, abbrev_section);
4537 make_cleanup (dwarf2_free_abbrev_table, cu);
4539 else if (rereading_dwo_cu)
4541 dwarf2_free_abbrev_table (cu);
4542 dwarf2_read_abbrevs (cu, abbrev_section);
4545 /* Read the top level CU/TU die. */
4546 init_cu_die_reader (&reader, cu, section, NULL);
4547 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4549 /* If we have a DWO stub, process it and then read in the DWO file.
4550 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4551 a DWO CU, that this test will fail. */
4552 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4555 const char *dwo_name = DW_STRING (attr);
4556 const char *comp_dir_string;
4557 struct dwo_unit *dwo_unit;
4558 ULONGEST signature; /* Or dwo_id. */
4559 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4560 int i,num_extra_attrs;
4561 struct dwarf2_section_info *dwo_abbrev_section;
4564 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4565 " has children (offset 0x%x) [in module %s]"),
4566 this_cu->offset.sect_off, bfd_get_filename (abfd));
4568 /* These attributes aren't processed until later:
4569 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4570 However, the attribute is found in the stub which we won't have later.
4571 In order to not impose this complication on the rest of the code,
4572 we read them here and copy them to the DWO CU/TU die. */
4574 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4577 if (! this_cu->is_debug_types)
4578 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4579 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4580 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4581 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
4582 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4584 /* There should be a DW_AT_addr_base attribute here (if needed).
4585 We need the value before we can process DW_FORM_GNU_addr_index. */
4587 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4589 cu->addr_base = DW_UNSND (attr);
4591 /* There should be a DW_AT_ranges_base attribute here (if needed).
4592 We need the value before we can process DW_AT_ranges. */
4593 cu->ranges_base = 0;
4594 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4596 cu->ranges_base = DW_UNSND (attr);
4598 if (this_cu->is_debug_types)
4600 gdb_assert (sig_type != NULL);
4601 signature = sig_type->signature;
4605 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4607 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4609 signature = DW_UNSND (attr);
4612 /* We may need the comp_dir in order to find the DWO file. */
4613 comp_dir_string = NULL;
4615 comp_dir_string = DW_STRING (comp_dir);
4617 if (this_cu->is_debug_types)
4618 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
4620 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
4623 if (dwo_unit == NULL)
4625 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4626 " with ID %s [in module %s]"),
4627 this_cu->offset.sect_off,
4628 phex (signature, sizeof (signature)),
4632 /* Set up for reading the DWO CU/TU. */
4633 cu->dwo_unit = dwo_unit;
4634 section = dwo_unit->info_or_types_section;
4635 dwarf2_read_section (objfile, section);
4636 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4637 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
4638 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4640 if (this_cu->is_debug_types)
4643 cu_offset type_offset_in_tu;
4645 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4649 &type_offset_in_tu);
4650 gdb_assert (sig_type->signature == signature);
4651 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4652 /* For DWOs coming from DWP files, we don't know the CU length
4653 nor the type's offset in the TU until now. */
4654 dwo_unit->length = get_cu_length (&cu->header);
4655 dwo_unit->type_offset_in_tu = type_offset_in_tu;
4657 /* Establish the type offset that can be used to lookup the type.
4658 For DWO files, we don't know it until now. */
4659 sig_type->type_offset_in_section.sect_off =
4660 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4664 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4667 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
4668 /* For DWOs coming from DWP files, we don't know the CU length
4670 dwo_unit->length = get_cu_length (&cu->header);
4673 /* Discard the original CU's abbrev table, and read the DWO's. */
4674 if (abbrev_table == NULL)
4676 dwarf2_free_abbrev_table (cu);
4677 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4681 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4682 make_cleanup (dwarf2_free_abbrev_table, cu);
4685 /* Read in the die, but leave space to copy over the attributes
4686 from the stub. This has the benefit of simplifying the rest of
4687 the code - all the real work is done here. */
4688 num_extra_attrs = ((stmt_list != NULL)
4692 + (comp_dir != NULL));
4693 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4694 &has_children, num_extra_attrs);
4696 /* Copy over the attributes from the stub to the DWO die. */
4697 i = comp_unit_die->num_attrs;
4698 if (stmt_list != NULL)
4699 comp_unit_die->attrs[i++] = *stmt_list;
4701 comp_unit_die->attrs[i++] = *low_pc;
4702 if (high_pc != NULL)
4703 comp_unit_die->attrs[i++] = *high_pc;
4705 comp_unit_die->attrs[i++] = *ranges;
4706 if (comp_dir != NULL)
4707 comp_unit_die->attrs[i++] = *comp_dir;
4708 comp_unit_die->num_attrs += num_extra_attrs;
4710 /* Skip dummy compilation units. */
4711 if (info_ptr >= begin_info_ptr + dwo_unit->length
4712 || peek_abbrev_code (abfd, info_ptr) == 0)
4714 do_cleanups (cleanups);
4719 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4721 if (free_cu_cleanup != NULL)
4725 /* We've successfully allocated this compilation unit. Let our
4726 caller clean it up when finished with it. */
4727 discard_cleanups (free_cu_cleanup);
4729 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4730 So we have to manually free the abbrev table. */
4731 dwarf2_free_abbrev_table (cu);
4733 /* Link this CU into read_in_chain. */
4734 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4735 dwarf2_per_objfile->read_in_chain = this_cu;
4738 do_cleanups (free_cu_cleanup);
4741 do_cleanups (cleanups);
4744 /* Read CU/TU THIS_CU in section SECTION,
4745 but do not follow DW_AT_GNU_dwo_name if present.
4746 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4747 to have already done the lookup to find the DWO/DWP file).
4749 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
4750 THIS_CU->is_debug_types, but nothing else.
4752 We fill in THIS_CU->length.
4754 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4755 linker) then DIE_READER_FUNC will not get called.
4757 THIS_CU->cu is always freed when done.
4758 This is done in order to not leave THIS_CU->cu in a state where we have
4759 to care whether it refers to the "main" CU or the DWO CU. */
4762 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4763 struct dwarf2_section_info *abbrev_section,
4764 struct dwo_file *dwo_file,
4765 die_reader_func_ftype *die_reader_func,
4768 struct objfile *objfile = dwarf2_per_objfile->objfile;
4769 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4770 bfd *abfd = section->asection->owner;
4771 struct dwarf2_cu cu;
4772 gdb_byte *begin_info_ptr, *info_ptr;
4773 struct die_reader_specs reader;
4774 struct cleanup *cleanups;
4775 struct die_info *comp_unit_die;
4778 if (dwarf2_die_debug)
4779 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4780 this_cu->is_debug_types ? "type" : "comp",
4781 this_cu->offset.sect_off);
4783 gdb_assert (this_cu->cu == NULL);
4785 /* This is cheap if the section is already read in. */
4786 dwarf2_read_section (objfile, section);
4788 init_one_comp_unit (&cu, this_cu);
4790 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4792 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4793 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4794 abbrev_section, info_ptr,
4795 this_cu->is_debug_types);
4797 this_cu->length = get_cu_length (&cu.header);
4799 /* Skip dummy compilation units. */
4800 if (info_ptr >= begin_info_ptr + this_cu->length
4801 || peek_abbrev_code (abfd, info_ptr) == 0)
4803 do_cleanups (cleanups);
4807 dwarf2_read_abbrevs (&cu, abbrev_section);
4808 make_cleanup (dwarf2_free_abbrev_table, &cu);
4810 init_cu_die_reader (&reader, &cu, section, dwo_file);
4811 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4813 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4815 do_cleanups (cleanups);
4818 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4819 does not lookup the specified DWO file.
4820 This cannot be used to read DWO files.
4822 THIS_CU->cu is always freed when done.
4823 This is done in order to not leave THIS_CU->cu in a state where we have
4824 to care whether it refers to the "main" CU or the DWO CU.
4825 We can revisit this if the data shows there's a performance issue. */
4828 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4829 die_reader_func_ftype *die_reader_func,
4832 init_cutu_and_read_dies_no_follow (this_cu,
4833 get_abbrev_section_for_cu (this_cu),
4835 die_reader_func, data);
4838 /* Create a psymtab named NAME and assign it to PER_CU.
4840 The caller must fill in the following details:
4841 dirname, textlow, texthigh. */
4843 static struct partial_symtab *
4844 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4846 struct objfile *objfile = per_cu->objfile;
4847 struct partial_symtab *pst;
4849 pst = start_psymtab_common (objfile, objfile->section_offsets,
4851 objfile->global_psymbols.next,
4852 objfile->static_psymbols.next);
4854 pst->psymtabs_addrmap_supported = 1;
4856 /* This is the glue that links PST into GDB's symbol API. */
4857 pst->read_symtab_private = per_cu;
4858 pst->read_symtab = dwarf2_read_symtab;
4859 per_cu->v.psymtab = pst;
4864 /* die_reader_func for process_psymtab_comp_unit. */
4867 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4869 struct die_info *comp_unit_die,
4873 struct dwarf2_cu *cu = reader->cu;
4874 struct objfile *objfile = cu->objfile;
4875 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
4876 struct attribute *attr;
4878 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4879 struct partial_symtab *pst;
4881 const char *filename;
4882 int *want_partial_unit_ptr = data;
4884 if (comp_unit_die->tag == DW_TAG_partial_unit
4885 && (want_partial_unit_ptr == NULL
4886 || !*want_partial_unit_ptr))
4889 gdb_assert (! per_cu->is_debug_types);
4891 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
4893 cu->list_in_scope = &file_symbols;
4895 /* Allocate a new partial symbol table structure. */
4896 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
4897 if (attr == NULL || !DW_STRING (attr))
4900 filename = DW_STRING (attr);
4902 pst = create_partial_symtab (per_cu, filename);
4904 /* This must be done before calling dwarf2_build_include_psymtabs. */
4905 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
4907 pst->dirname = DW_STRING (attr);
4909 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4911 dwarf2_find_base_address (comp_unit_die, cu);
4913 /* Possibly set the default values of LOWPC and HIGHPC from
4915 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
4916 &best_highpc, cu, pst);
4917 if (has_pc_info == 1 && best_lowpc < best_highpc)
4918 /* Store the contiguous range if it is not empty; it can be empty for
4919 CUs with no code. */
4920 addrmap_set_empty (objfile->psymtabs_addrmap,
4921 best_lowpc + baseaddr,
4922 best_highpc + baseaddr - 1, pst);
4924 /* Check if comp unit has_children.
4925 If so, read the rest of the partial symbols from this comp unit.
4926 If not, there's no more debug_info for this comp unit. */
4929 struct partial_die_info *first_die;
4930 CORE_ADDR lowpc, highpc;
4932 lowpc = ((CORE_ADDR) -1);
4933 highpc = ((CORE_ADDR) 0);
4935 first_die = load_partial_dies (reader, info_ptr, 1);
4937 scan_partial_symbols (first_die, &lowpc, &highpc,
4940 /* If we didn't find a lowpc, set it to highpc to avoid
4941 complaints from `maint check'. */
4942 if (lowpc == ((CORE_ADDR) -1))
4945 /* If the compilation unit didn't have an explicit address range,
4946 then use the information extracted from its child dies. */
4950 best_highpc = highpc;
4953 pst->textlow = best_lowpc + baseaddr;
4954 pst->texthigh = best_highpc + baseaddr;
4956 pst->n_global_syms = objfile->global_psymbols.next -
4957 (objfile->global_psymbols.list + pst->globals_offset);
4958 pst->n_static_syms = objfile->static_psymbols.next -
4959 (objfile->static_psymbols.list + pst->statics_offset);
4960 sort_pst_symbols (objfile, pst);
4962 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
4965 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4966 struct dwarf2_per_cu_data *iter;
4968 /* Fill in 'dependencies' here; we fill in 'users' in a
4970 pst->number_of_dependencies = len;
4971 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4972 len * sizeof (struct symtab *));
4974 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
4977 pst->dependencies[i] = iter->v.psymtab;
4979 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
4982 /* Get the list of files included in the current compilation unit,
4983 and build a psymtab for each of them. */
4984 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
4986 if (dwarf2_read_debug)
4988 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4990 fprintf_unfiltered (gdb_stdlog,
4991 "Psymtab for %s unit @0x%x: %s - %s"
4992 ", %d global, %d static syms\n",
4993 per_cu->is_debug_types ? "type" : "comp",
4994 per_cu->offset.sect_off,
4995 paddress (gdbarch, pst->textlow),
4996 paddress (gdbarch, pst->texthigh),
4997 pst->n_global_syms, pst->n_static_syms);
5001 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5002 Process compilation unit THIS_CU for a psymtab. */
5005 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5006 int want_partial_unit)
5008 /* If this compilation unit was already read in, free the
5009 cached copy in order to read it in again. This is
5010 necessary because we skipped some symbols when we first
5011 read in the compilation unit (see load_partial_dies).
5012 This problem could be avoided, but the benefit is unclear. */
5013 if (this_cu->cu != NULL)
5014 free_one_cached_comp_unit (this_cu);
5016 gdb_assert (! this_cu->is_debug_types);
5017 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5018 process_psymtab_comp_unit_reader,
5019 &want_partial_unit);
5021 /* Age out any secondary CUs. */
5022 age_cached_comp_units ();
5026 hash_type_unit_group (const void *item)
5028 const struct type_unit_group *tu_group = item;
5030 return hash_stmt_list_entry (&tu_group->hash);
5034 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5036 const struct type_unit_group *lhs = item_lhs;
5037 const struct type_unit_group *rhs = item_rhs;
5039 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5042 /* Allocate a hash table for type unit groups. */
5045 allocate_type_unit_groups_table (void)
5047 return htab_create_alloc_ex (3,
5048 hash_type_unit_group,
5051 &dwarf2_per_objfile->objfile->objfile_obstack,
5052 hashtab_obstack_allocate,
5053 dummy_obstack_deallocate);
5056 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5057 partial symtabs. We combine several TUs per psymtab to not let the size
5058 of any one psymtab grow too big. */
5059 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5060 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5062 /* Helper routine for get_type_unit_group.
5063 Create the type_unit_group object used to hold one or more TUs. */
5065 static struct type_unit_group *
5066 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5068 struct objfile *objfile = dwarf2_per_objfile->objfile;
5069 struct dwarf2_per_cu_data *per_cu;
5070 struct type_unit_group *tu_group;
5072 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5073 struct type_unit_group);
5074 per_cu = &tu_group->per_cu;
5075 per_cu->objfile = objfile;
5076 per_cu->is_debug_types = 1;
5077 per_cu->type_unit_group = tu_group;
5079 if (dwarf2_per_objfile->using_index)
5081 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5082 struct dwarf2_per_cu_quick_data);
5083 tu_group->t.first_tu = cu->per_cu;
5087 unsigned int line_offset = line_offset_struct.sect_off;
5088 struct partial_symtab *pst;
5091 /* Give the symtab a useful name for debug purposes. */
5092 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5093 name = xstrprintf ("<type_units_%d>",
5094 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5096 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5098 pst = create_partial_symtab (per_cu, name);
5104 tu_group->hash.dwo_unit = cu->dwo_unit;
5105 tu_group->hash.line_offset = line_offset_struct;
5110 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5111 STMT_LIST is a DW_AT_stmt_list attribute. */
5113 static struct type_unit_group *
5114 get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
5116 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5117 struct type_unit_group *tu_group;
5119 unsigned int line_offset;
5120 struct type_unit_group type_unit_group_for_lookup;
5122 if (dwarf2_per_objfile->type_unit_groups == NULL)
5124 dwarf2_per_objfile->type_unit_groups =
5125 allocate_type_unit_groups_table ();
5128 /* Do we need to create a new group, or can we use an existing one? */
5132 line_offset = DW_UNSND (stmt_list);
5133 ++tu_stats->nr_symtab_sharers;
5137 /* Ugh, no stmt_list. Rare, but we have to handle it.
5138 We can do various things here like create one group per TU or
5139 spread them over multiple groups to split up the expansion work.
5140 To avoid worst case scenarios (too many groups or too large groups)
5141 we, umm, group them in bunches. */
5142 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5143 | (tu_stats->nr_stmt_less_type_units
5144 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5145 ++tu_stats->nr_stmt_less_type_units;
5148 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5149 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5150 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5151 &type_unit_group_for_lookup, INSERT);
5155 gdb_assert (tu_group != NULL);
5159 sect_offset line_offset_struct;
5161 line_offset_struct.sect_off = line_offset;
5162 tu_group = create_type_unit_group (cu, line_offset_struct);
5164 ++tu_stats->nr_symtabs;
5170 /* Struct used to sort TUs by their abbreviation table offset. */
5172 struct tu_abbrev_offset
5174 struct signatured_type *sig_type;
5175 sect_offset abbrev_offset;
5178 /* Helper routine for build_type_unit_groups, passed to qsort. */
5181 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5183 const struct tu_abbrev_offset * const *a = ap;
5184 const struct tu_abbrev_offset * const *b = bp;
5185 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5186 unsigned int boff = (*b)->abbrev_offset.sect_off;
5188 return (aoff > boff) - (aoff < boff);
5191 /* A helper function to add a type_unit_group to a table. */
5194 add_type_unit_group_to_table (void **slot, void *datum)
5196 struct type_unit_group *tu_group = *slot;
5197 struct type_unit_group ***datap = datum;
5205 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5206 each one passing FUNC,DATA.
5208 The efficiency is because we sort TUs by the abbrev table they use and
5209 only read each abbrev table once. In one program there are 200K TUs
5210 sharing 8K abbrev tables.
5212 The main purpose of this function is to support building the
5213 dwarf2_per_objfile->type_unit_groups table.
5214 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5215 can collapse the search space by grouping them by stmt_list.
5216 The savings can be significant, in the same program from above the 200K TUs
5217 share 8K stmt_list tables.
5219 FUNC is expected to call get_type_unit_group, which will create the
5220 struct type_unit_group if necessary and add it to
5221 dwarf2_per_objfile->type_unit_groups. */
5224 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5226 struct objfile *objfile = dwarf2_per_objfile->objfile;
5227 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5228 struct cleanup *cleanups;
5229 struct abbrev_table *abbrev_table;
5230 sect_offset abbrev_offset;
5231 struct tu_abbrev_offset *sorted_by_abbrev;
5232 struct type_unit_group **iter;
5235 /* It's up to the caller to not call us multiple times. */
5236 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5238 if (dwarf2_per_objfile->n_type_units == 0)
5241 /* TUs typically share abbrev tables, and there can be way more TUs than
5242 abbrev tables. Sort by abbrev table to reduce the number of times we
5243 read each abbrev table in.
5244 Alternatives are to punt or to maintain a cache of abbrev tables.
5245 This is simpler and efficient enough for now.
5247 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5248 symtab to use). Typically TUs with the same abbrev offset have the same
5249 stmt_list value too so in practice this should work well.
5251 The basic algorithm here is:
5253 sort TUs by abbrev table
5254 for each TU with same abbrev table:
5255 read abbrev table if first user
5256 read TU top level DIE
5257 [IWBN if DWO skeletons had DW_AT_stmt_list]
5260 if (dwarf2_read_debug)
5261 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5263 /* Sort in a separate table to maintain the order of all_type_units
5264 for .gdb_index: TU indices directly index all_type_units. */
5265 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5266 dwarf2_per_objfile->n_type_units);
5267 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5269 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5271 sorted_by_abbrev[i].sig_type = sig_type;
5272 sorted_by_abbrev[i].abbrev_offset =
5273 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5274 sig_type->per_cu.offset);
5276 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5277 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5278 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5280 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5281 called any number of times, so we don't reset tu_stats here. */
5283 abbrev_offset.sect_off = ~(unsigned) 0;
5284 abbrev_table = NULL;
5285 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5287 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5289 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5291 /* Switch to the next abbrev table if necessary. */
5292 if (abbrev_table == NULL
5293 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5295 if (abbrev_table != NULL)
5297 abbrev_table_free (abbrev_table);
5298 /* Reset to NULL in case abbrev_table_read_table throws
5299 an error: abbrev_table_free_cleanup will get called. */
5300 abbrev_table = NULL;
5302 abbrev_offset = tu->abbrev_offset;
5304 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5306 ++tu_stats->nr_uniq_abbrev_tables;
5309 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5313 /* Create a vector of pointers to primary type units to make it easy to
5314 iterate over them and CUs. See dw2_get_primary_cu. */
5315 dwarf2_per_objfile->n_type_unit_groups =
5316 htab_elements (dwarf2_per_objfile->type_unit_groups);
5317 dwarf2_per_objfile->all_type_unit_groups =
5318 obstack_alloc (&objfile->objfile_obstack,
5319 dwarf2_per_objfile->n_type_unit_groups
5320 * sizeof (struct type_unit_group *));
5321 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5322 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5323 add_type_unit_group_to_table, &iter);
5324 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5325 == dwarf2_per_objfile->n_type_unit_groups);
5327 do_cleanups (cleanups);
5329 if (dwarf2_read_debug)
5331 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5332 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5333 dwarf2_per_objfile->n_type_units);
5334 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5335 tu_stats->nr_uniq_abbrev_tables);
5336 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5337 tu_stats->nr_symtabs);
5338 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5339 tu_stats->nr_symtab_sharers);
5340 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5341 tu_stats->nr_stmt_less_type_units);
5345 /* Reader function for build_type_psymtabs. */
5348 build_type_psymtabs_reader (const struct die_reader_specs *reader,
5350 struct die_info *type_unit_die,
5354 struct objfile *objfile = dwarf2_per_objfile->objfile;
5355 struct dwarf2_cu *cu = reader->cu;
5356 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5357 struct type_unit_group *tu_group;
5358 struct attribute *attr;
5359 struct partial_die_info *first_die;
5360 CORE_ADDR lowpc, highpc;
5361 struct partial_symtab *pst;
5363 gdb_assert (data == NULL);
5368 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
5369 tu_group = get_type_unit_group (cu, attr);
5371 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
5373 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5374 cu->list_in_scope = &file_symbols;
5375 pst = create_partial_symtab (per_cu, "");
5378 first_die = load_partial_dies (reader, info_ptr, 1);
5380 lowpc = (CORE_ADDR) -1;
5381 highpc = (CORE_ADDR) 0;
5382 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5384 pst->n_global_syms = objfile->global_psymbols.next -
5385 (objfile->global_psymbols.list + pst->globals_offset);
5386 pst->n_static_syms = objfile->static_psymbols.next -
5387 (objfile->static_psymbols.list + pst->statics_offset);
5388 sort_pst_symbols (objfile, pst);
5391 /* Traversal function for build_type_psymtabs. */
5394 build_type_psymtab_dependencies (void **slot, void *info)
5396 struct objfile *objfile = dwarf2_per_objfile->objfile;
5397 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
5398 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
5399 struct partial_symtab *pst = per_cu->v.psymtab;
5400 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
5401 struct dwarf2_per_cu_data *iter;
5404 gdb_assert (len > 0);
5406 pst->number_of_dependencies = len;
5407 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5408 len * sizeof (struct psymtab *));
5410 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
5413 pst->dependencies[i] = iter->v.psymtab;
5414 iter->type_unit_group = tu_group;
5417 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
5422 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5423 Build partial symbol tables for the .debug_types comp-units. */
5426 build_type_psymtabs (struct objfile *objfile)
5428 if (! create_all_type_units (objfile))
5431 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5433 /* Now that all TUs have been processed we can fill in the dependencies. */
5434 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5435 build_type_psymtab_dependencies, NULL);
5438 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
5441 psymtabs_addrmap_cleanup (void *o)
5443 struct objfile *objfile = o;
5445 objfile->psymtabs_addrmap = NULL;
5448 /* Compute the 'user' field for each psymtab in OBJFILE. */
5451 set_partial_user (struct objfile *objfile)
5455 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5457 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5458 struct partial_symtab *pst = per_cu->v.psymtab;
5464 for (j = 0; j < pst->number_of_dependencies; ++j)
5466 /* Set the 'user' field only if it is not already set. */
5467 if (pst->dependencies[j]->user == NULL)
5468 pst->dependencies[j]->user = pst;
5473 /* Build the partial symbol table by doing a quick pass through the
5474 .debug_info and .debug_abbrev sections. */
5477 dwarf2_build_psymtabs_hard (struct objfile *objfile)
5479 struct cleanup *back_to, *addrmap_cleanup;
5480 struct obstack temp_obstack;
5483 if (dwarf2_read_debug)
5485 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5489 dwarf2_per_objfile->reading_partial_symbols = 1;
5491 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
5493 /* Any cached compilation units will be linked by the per-objfile
5494 read_in_chain. Make sure to free them when we're done. */
5495 back_to = make_cleanup (free_cached_comp_units, NULL);
5497 build_type_psymtabs (objfile);
5499 create_all_comp_units (objfile);
5501 /* Create a temporary address map on a temporary obstack. We later
5502 copy this to the final obstack. */
5503 obstack_init (&temp_obstack);
5504 make_cleanup_obstack_free (&temp_obstack);
5505 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5506 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
5508 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5510 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5512 process_psymtab_comp_unit (per_cu, 0);
5515 set_partial_user (objfile);
5517 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5518 &objfile->objfile_obstack);
5519 discard_cleanups (addrmap_cleanup);
5521 do_cleanups (back_to);
5523 if (dwarf2_read_debug)
5524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5528 /* die_reader_func for load_partial_comp_unit. */
5531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5533 struct die_info *comp_unit_die,
5537 struct dwarf2_cu *cu = reader->cu;
5539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
5541 /* Check if comp unit has_children.
5542 If so, read the rest of the partial symbols from this comp unit.
5543 If not, there's no more debug_info for this comp unit. */
5545 load_partial_dies (reader, info_ptr, 0);
5548 /* Load the partial DIEs for a secondary CU into memory.
5549 This is also used when rereading a primary CU with load_all_dies. */
5552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5554 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5555 load_partial_comp_unit_reader, NULL);
5559 read_comp_units_from_section (struct objfile *objfile,
5560 struct dwarf2_section_info *section,
5561 unsigned int is_dwz,
5564 struct dwarf2_per_cu_data ***all_comp_units)
5567 bfd *abfd = section->asection->owner;
5569 dwarf2_read_section (objfile, section);
5571 info_ptr = section->buffer;
5573 while (info_ptr < section->buffer + section->size)
5575 unsigned int length, initial_length_size;
5576 struct dwarf2_per_cu_data *this_cu;
5579 offset.sect_off = info_ptr - section->buffer;
5581 /* Read just enough information to find out where the next
5582 compilation unit is. */
5583 length = read_initial_length (abfd, info_ptr, &initial_length_size);
5585 /* Save the compilation unit for later lookup. */
5586 this_cu = obstack_alloc (&objfile->objfile_obstack,
5587 sizeof (struct dwarf2_per_cu_data));
5588 memset (this_cu, 0, sizeof (*this_cu));
5589 this_cu->offset = offset;
5590 this_cu->length = length + initial_length_size;
5591 this_cu->is_dwz = is_dwz;
5592 this_cu->objfile = objfile;
5593 this_cu->info_or_types_section = section;
5595 if (*n_comp_units == *n_allocated)
5598 *all_comp_units = xrealloc (*all_comp_units,
5600 * sizeof (struct dwarf2_per_cu_data *));
5602 (*all_comp_units)[*n_comp_units] = this_cu;
5605 info_ptr = info_ptr + this_cu->length;
5609 /* Create a list of all compilation units in OBJFILE.
5610 This is only done for -readnow and building partial symtabs. */
5613 create_all_comp_units (struct objfile *objfile)
5617 struct dwarf2_per_cu_data **all_comp_units;
5621 all_comp_units = xmalloc (n_allocated
5622 * sizeof (struct dwarf2_per_cu_data *));
5624 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5625 &n_allocated, &n_comp_units, &all_comp_units);
5627 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5629 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5631 read_comp_units_from_section (objfile, &dwz->info, 1,
5632 &n_allocated, &n_comp_units,
5636 dwarf2_per_objfile->all_comp_units
5637 = obstack_alloc (&objfile->objfile_obstack,
5638 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5639 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5640 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5641 xfree (all_comp_units);
5642 dwarf2_per_objfile->n_comp_units = n_comp_units;
5645 /* Process all loaded DIEs for compilation unit CU, starting at
5646 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5647 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5648 DW_AT_ranges). If NEED_PC is set, then this function will set
5649 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5650 and record the covered ranges in the addrmap. */
5653 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5654 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
5656 struct partial_die_info *pdi;
5658 /* Now, march along the PDI's, descending into ones which have
5659 interesting children but skipping the children of the other ones,
5660 until we reach the end of the compilation unit. */
5666 fixup_partial_die (pdi, cu);
5668 /* Anonymous namespaces or modules have no name but have interesting
5669 children, so we need to look at them. Ditto for anonymous
5672 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
5673 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5674 || pdi->tag == DW_TAG_imported_unit)
5678 case DW_TAG_subprogram:
5679 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
5681 case DW_TAG_constant:
5682 case DW_TAG_variable:
5683 case DW_TAG_typedef:
5684 case DW_TAG_union_type:
5685 if (!pdi->is_declaration)
5687 add_partial_symbol (pdi, cu);
5690 case DW_TAG_class_type:
5691 case DW_TAG_interface_type:
5692 case DW_TAG_structure_type:
5693 if (!pdi->is_declaration)
5695 add_partial_symbol (pdi, cu);
5698 case DW_TAG_enumeration_type:
5699 if (!pdi->is_declaration)
5700 add_partial_enumeration (pdi, cu);
5702 case DW_TAG_base_type:
5703 case DW_TAG_subrange_type:
5704 /* File scope base type definitions are added to the partial
5706 add_partial_symbol (pdi, cu);
5708 case DW_TAG_namespace:
5709 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
5712 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5714 case DW_TAG_imported_unit:
5716 struct dwarf2_per_cu_data *per_cu;
5718 /* For now we don't handle imported units in type units. */
5719 if (cu->per_cu->is_debug_types)
5721 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5722 " supported in type units [in module %s]"),
5726 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
5730 /* Go read the partial unit, if needed. */
5731 if (per_cu->v.psymtab == NULL)
5732 process_psymtab_comp_unit (per_cu, 1);
5734 VEC_safe_push (dwarf2_per_cu_ptr,
5735 cu->per_cu->imported_symtabs, per_cu);
5743 /* If the die has a sibling, skip to the sibling. */
5745 pdi = pdi->die_sibling;
5749 /* Functions used to compute the fully scoped name of a partial DIE.
5751 Normally, this is simple. For C++, the parent DIE's fully scoped
5752 name is concatenated with "::" and the partial DIE's name. For
5753 Java, the same thing occurs except that "." is used instead of "::".
5754 Enumerators are an exception; they use the scope of their parent
5755 enumeration type, i.e. the name of the enumeration type is not
5756 prepended to the enumerator.
5758 There are two complexities. One is DW_AT_specification; in this
5759 case "parent" means the parent of the target of the specification,
5760 instead of the direct parent of the DIE. The other is compilers
5761 which do not emit DW_TAG_namespace; in this case we try to guess
5762 the fully qualified name of structure types from their members'
5763 linkage names. This must be done using the DIE's children rather
5764 than the children of any DW_AT_specification target. We only need
5765 to do this for structures at the top level, i.e. if the target of
5766 any DW_AT_specification (if any; otherwise the DIE itself) does not
5769 /* Compute the scope prefix associated with PDI's parent, in
5770 compilation unit CU. The result will be allocated on CU's
5771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5772 field. NULL is returned if no prefix is necessary. */
5774 partial_die_parent_scope (struct partial_die_info *pdi,
5775 struct dwarf2_cu *cu)
5777 const char *grandparent_scope;
5778 struct partial_die_info *parent, *real_pdi;
5780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5781 then this means the parent of the specification DIE. */
5784 while (real_pdi->has_specification)
5785 real_pdi = find_partial_die (real_pdi->spec_offset,
5786 real_pdi->spec_is_dwz, cu);
5788 parent = real_pdi->die_parent;
5792 if (parent->scope_set)
5793 return parent->scope;
5795 fixup_partial_die (parent, cu);
5797 grandparent_scope = partial_die_parent_scope (parent, cu);
5799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5801 Work around this problem here. */
5802 if (cu->language == language_cplus
5803 && parent->tag == DW_TAG_namespace
5804 && strcmp (parent->name, "::") == 0
5805 && grandparent_scope == NULL)
5807 parent->scope = NULL;
5808 parent->scope_set = 1;
5812 if (pdi->tag == DW_TAG_enumerator)
5813 /* Enumerators should not get the name of the enumeration as a prefix. */
5814 parent->scope = grandparent_scope;
5815 else if (parent->tag == DW_TAG_namespace
5816 || parent->tag == DW_TAG_module
5817 || parent->tag == DW_TAG_structure_type
5818 || parent->tag == DW_TAG_class_type
5819 || parent->tag == DW_TAG_interface_type
5820 || parent->tag == DW_TAG_union_type
5821 || parent->tag == DW_TAG_enumeration_type)
5823 if (grandparent_scope == NULL)
5824 parent->scope = parent->name;
5826 parent->scope = typename_concat (&cu->comp_unit_obstack,
5828 parent->name, 0, cu);
5832 /* FIXME drow/2004-04-01: What should we be doing with
5833 function-local names? For partial symbols, we should probably be
5835 complaint (&symfile_complaints,
5836 _("unhandled containing DIE tag %d for DIE at %d"),
5837 parent->tag, pdi->offset.sect_off);
5838 parent->scope = grandparent_scope;
5841 parent->scope_set = 1;
5842 return parent->scope;
5845 /* Return the fully scoped name associated with PDI, from compilation unit
5846 CU. The result will be allocated with malloc. */
5849 partial_die_full_name (struct partial_die_info *pdi,
5850 struct dwarf2_cu *cu)
5852 const char *parent_scope;
5854 /* If this is a template instantiation, we can not work out the
5855 template arguments from partial DIEs. So, unfortunately, we have
5856 to go through the full DIEs. At least any work we do building
5857 types here will be reused if full symbols are loaded later. */
5858 if (pdi->has_template_arguments)
5860 fixup_partial_die (pdi, cu);
5862 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5864 struct die_info *die;
5865 struct attribute attr;
5866 struct dwarf2_cu *ref_cu = cu;
5868 /* DW_FORM_ref_addr is using section offset. */
5870 attr.form = DW_FORM_ref_addr;
5871 attr.u.unsnd = pdi->offset.sect_off;
5872 die = follow_die_ref (NULL, &attr, &ref_cu);
5874 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5878 parent_scope = partial_die_parent_scope (pdi, cu);
5879 if (parent_scope == NULL)
5882 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
5886 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
5888 struct objfile *objfile = cu->objfile;
5890 const char *actual_name = NULL;
5892 char *built_actual_name;
5894 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5896 built_actual_name = partial_die_full_name (pdi, cu);
5897 if (built_actual_name != NULL)
5898 actual_name = built_actual_name;
5900 if (actual_name == NULL)
5901 actual_name = pdi->name;
5905 case DW_TAG_subprogram:
5906 if (pdi->is_external || cu->language == language_ada)
5908 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5909 of the global scope. But in Ada, we want to be able to access
5910 nested procedures globally. So all Ada subprograms are stored
5911 in the global scope. */
5912 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5913 mst_text, objfile); */
5914 add_psymbol_to_list (actual_name, strlen (actual_name),
5915 built_actual_name != NULL,
5916 VAR_DOMAIN, LOC_BLOCK,
5917 &objfile->global_psymbols,
5918 0, pdi->lowpc + baseaddr,
5919 cu->language, objfile);
5923 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
5924 mst_file_text, objfile); */
5925 add_psymbol_to_list (actual_name, strlen (actual_name),
5926 built_actual_name != NULL,
5927 VAR_DOMAIN, LOC_BLOCK,
5928 &objfile->static_psymbols,
5929 0, pdi->lowpc + baseaddr,
5930 cu->language, objfile);
5933 case DW_TAG_constant:
5935 struct psymbol_allocation_list *list;
5937 if (pdi->is_external)
5938 list = &objfile->global_psymbols;
5940 list = &objfile->static_psymbols;
5941 add_psymbol_to_list (actual_name, strlen (actual_name),
5942 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
5943 list, 0, 0, cu->language, objfile);
5946 case DW_TAG_variable:
5948 addr = decode_locdesc (pdi->d.locdesc, cu);
5952 && !dwarf2_per_objfile->has_section_at_zero)
5954 /* A global or static variable may also have been stripped
5955 out by the linker if unused, in which case its address
5956 will be nullified; do not add such variables into partial
5957 symbol table then. */
5959 else if (pdi->is_external)
5962 Don't enter into the minimal symbol tables as there is
5963 a minimal symbol table entry from the ELF symbols already.
5964 Enter into partial symbol table if it has a location
5965 descriptor or a type.
5966 If the location descriptor is missing, new_symbol will create
5967 a LOC_UNRESOLVED symbol, the address of the variable will then
5968 be determined from the minimal symbol table whenever the variable
5970 The address for the partial symbol table entry is not
5971 used by GDB, but it comes in handy for debugging partial symbol
5974 if (pdi->d.locdesc || pdi->has_type)
5975 add_psymbol_to_list (actual_name, strlen (actual_name),
5976 built_actual_name != NULL,
5977 VAR_DOMAIN, LOC_STATIC,
5978 &objfile->global_psymbols,
5980 cu->language, objfile);
5984 /* Static Variable. Skip symbols without location descriptors. */
5985 if (pdi->d.locdesc == NULL)
5987 xfree (built_actual_name);
5990 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
5991 mst_file_data, objfile); */
5992 add_psymbol_to_list (actual_name, strlen (actual_name),
5993 built_actual_name != NULL,
5994 VAR_DOMAIN, LOC_STATIC,
5995 &objfile->static_psymbols,
5997 cu->language, objfile);
6000 case DW_TAG_typedef:
6001 case DW_TAG_base_type:
6002 case DW_TAG_subrange_type:
6003 add_psymbol_to_list (actual_name, strlen (actual_name),
6004 built_actual_name != NULL,
6005 VAR_DOMAIN, LOC_TYPEDEF,
6006 &objfile->static_psymbols,
6007 0, (CORE_ADDR) 0, cu->language, objfile);
6009 case DW_TAG_namespace:
6010 add_psymbol_to_list (actual_name, strlen (actual_name),
6011 built_actual_name != NULL,
6012 VAR_DOMAIN, LOC_TYPEDEF,
6013 &objfile->global_psymbols,
6014 0, (CORE_ADDR) 0, cu->language, objfile);
6016 case DW_TAG_class_type:
6017 case DW_TAG_interface_type:
6018 case DW_TAG_structure_type:
6019 case DW_TAG_union_type:
6020 case DW_TAG_enumeration_type:
6021 /* Skip external references. The DWARF standard says in the section
6022 about "Structure, Union, and Class Type Entries": "An incomplete
6023 structure, union or class type is represented by a structure,
6024 union or class entry that does not have a byte size attribute
6025 and that has a DW_AT_declaration attribute." */
6026 if (!pdi->has_byte_size && pdi->is_declaration)
6028 xfree (built_actual_name);
6032 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6033 static vs. global. */
6034 add_psymbol_to_list (actual_name, strlen (actual_name),
6035 built_actual_name != NULL,
6036 STRUCT_DOMAIN, LOC_TYPEDEF,
6037 (cu->language == language_cplus
6038 || cu->language == language_java)
6039 ? &objfile->global_psymbols
6040 : &objfile->static_psymbols,
6041 0, (CORE_ADDR) 0, cu->language, objfile);
6044 case DW_TAG_enumerator:
6045 add_psymbol_to_list (actual_name, strlen (actual_name),
6046 built_actual_name != NULL,
6047 VAR_DOMAIN, LOC_CONST,
6048 (cu->language == language_cplus
6049 || cu->language == language_java)
6050 ? &objfile->global_psymbols
6051 : &objfile->static_psymbols,
6052 0, (CORE_ADDR) 0, cu->language, objfile);
6058 xfree (built_actual_name);
6061 /* Read a partial die corresponding to a namespace; also, add a symbol
6062 corresponding to that namespace to the symbol table. NAMESPACE is
6063 the name of the enclosing namespace. */
6066 add_partial_namespace (struct partial_die_info *pdi,
6067 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6068 int need_pc, struct dwarf2_cu *cu)
6070 /* Add a symbol for the namespace. */
6072 add_partial_symbol (pdi, cu);
6074 /* Now scan partial symbols in that namespace. */
6076 if (pdi->has_children)
6077 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6080 /* Read a partial die corresponding to a Fortran module. */
6083 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6084 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6086 /* Now scan partial symbols in that module. */
6088 if (pdi->has_children)
6089 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6092 /* Read a partial die corresponding to a subprogram and create a partial
6093 symbol for that subprogram. When the CU language allows it, this
6094 routine also defines a partial symbol for each nested subprogram
6095 that this subprogram contains.
6097 DIE my also be a lexical block, in which case we simply search
6098 recursively for suprograms defined inside that lexical block.
6099 Again, this is only performed when the CU language allows this
6100 type of definitions. */
6103 add_partial_subprogram (struct partial_die_info *pdi,
6104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6105 int need_pc, struct dwarf2_cu *cu)
6107 if (pdi->tag == DW_TAG_subprogram)
6109 if (pdi->has_pc_info)
6111 if (pdi->lowpc < *lowpc)
6112 *lowpc = pdi->lowpc;
6113 if (pdi->highpc > *highpc)
6114 *highpc = pdi->highpc;
6118 struct objfile *objfile = cu->objfile;
6120 baseaddr = ANOFFSET (objfile->section_offsets,
6121 SECT_OFF_TEXT (objfile));
6122 addrmap_set_empty (objfile->psymtabs_addrmap,
6123 pdi->lowpc + baseaddr,
6124 pdi->highpc - 1 + baseaddr,
6125 cu->per_cu->v.psymtab);
6129 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6131 if (!pdi->is_declaration)
6132 /* Ignore subprogram DIEs that do not have a name, they are
6133 illegal. Do not emit a complaint at this point, we will
6134 do so when we convert this psymtab into a symtab. */
6136 add_partial_symbol (pdi, cu);
6140 if (! pdi->has_children)
6143 if (cu->language == language_ada)
6145 pdi = pdi->die_child;
6148 fixup_partial_die (pdi, cu);
6149 if (pdi->tag == DW_TAG_subprogram
6150 || pdi->tag == DW_TAG_lexical_block)
6151 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6152 pdi = pdi->die_sibling;
6157 /* Read a partial die corresponding to an enumeration type. */
6160 add_partial_enumeration (struct partial_die_info *enum_pdi,
6161 struct dwarf2_cu *cu)
6163 struct partial_die_info *pdi;
6165 if (enum_pdi->name != NULL)
6166 add_partial_symbol (enum_pdi, cu);
6168 pdi = enum_pdi->die_child;
6171 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
6172 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
6174 add_partial_symbol (pdi, cu);
6175 pdi = pdi->die_sibling;
6179 /* Return the initial uleb128 in the die at INFO_PTR. */
6182 peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6184 unsigned int bytes_read;
6186 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6189 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6190 Return the corresponding abbrev, or NULL if the number is zero (indicating
6191 an empty DIE). In either case *BYTES_READ will be set to the length of
6192 the initial number. */
6194 static struct abbrev_info *
6195 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
6196 struct dwarf2_cu *cu)
6198 bfd *abfd = cu->objfile->obfd;
6199 unsigned int abbrev_number;
6200 struct abbrev_info *abbrev;
6202 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6204 if (abbrev_number == 0)
6207 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
6210 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6211 abbrev_number, bfd_get_filename (abfd));
6217 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6218 Returns a pointer to the end of a series of DIEs, terminated by an empty
6219 DIE. Any children of the skipped DIEs will also be skipped. */
6222 skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
6224 struct dwarf2_cu *cu = reader->cu;
6225 struct abbrev_info *abbrev;
6226 unsigned int bytes_read;
6230 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6232 return info_ptr + bytes_read;
6234 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
6238 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6239 INFO_PTR should point just after the initial uleb128 of a DIE, and the
6240 abbrev corresponding to that skipped uleb128 should be passed in
6241 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6245 skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6246 struct abbrev_info *abbrev)
6248 unsigned int bytes_read;
6249 struct attribute attr;
6250 bfd *abfd = reader->abfd;
6251 struct dwarf2_cu *cu = reader->cu;
6252 gdb_byte *buffer = reader->buffer;
6253 const gdb_byte *buffer_end = reader->buffer_end;
6254 gdb_byte *start_info_ptr = info_ptr;
6255 unsigned int form, i;
6257 for (i = 0; i < abbrev->num_attrs; i++)
6259 /* The only abbrev we care about is DW_AT_sibling. */
6260 if (abbrev->attrs[i].name == DW_AT_sibling)
6262 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
6263 if (attr.form == DW_FORM_ref_addr)
6264 complaint (&symfile_complaints,
6265 _("ignoring absolute DW_AT_sibling"));
6267 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
6270 /* If it isn't DW_AT_sibling, skip this attribute. */
6271 form = abbrev->attrs[i].form;
6275 case DW_FORM_ref_addr:
6276 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6277 and later it is offset sized. */
6278 if (cu->header.version == 2)
6279 info_ptr += cu->header.addr_size;
6281 info_ptr += cu->header.offset_size;
6283 case DW_FORM_GNU_ref_alt:
6284 info_ptr += cu->header.offset_size;
6287 info_ptr += cu->header.addr_size;
6294 case DW_FORM_flag_present:
6306 case DW_FORM_ref_sig8:
6309 case DW_FORM_string:
6310 read_direct_string (abfd, info_ptr, &bytes_read);
6311 info_ptr += bytes_read;
6313 case DW_FORM_sec_offset:
6315 case DW_FORM_GNU_strp_alt:
6316 info_ptr += cu->header.offset_size;
6318 case DW_FORM_exprloc:
6320 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6321 info_ptr += bytes_read;
6323 case DW_FORM_block1:
6324 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6326 case DW_FORM_block2:
6327 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6329 case DW_FORM_block4:
6330 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6334 case DW_FORM_ref_udata:
6335 case DW_FORM_GNU_addr_index:
6336 case DW_FORM_GNU_str_index:
6337 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
6339 case DW_FORM_indirect:
6340 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6341 info_ptr += bytes_read;
6342 /* We need to continue parsing from here, so just go back to
6344 goto skip_attribute;
6347 error (_("Dwarf Error: Cannot handle %s "
6348 "in DWARF reader [in module %s]"),
6349 dwarf_form_name (form),
6350 bfd_get_filename (abfd));
6354 if (abbrev->has_children)
6355 return skip_children (reader, info_ptr);
6360 /* Locate ORIG_PDI's sibling.
6361 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
6364 locate_pdi_sibling (const struct die_reader_specs *reader,
6365 struct partial_die_info *orig_pdi,
6368 /* Do we know the sibling already? */
6370 if (orig_pdi->sibling)
6371 return orig_pdi->sibling;
6373 /* Are there any children to deal with? */
6375 if (!orig_pdi->has_children)
6378 /* Skip the children the long way. */
6380 return skip_children (reader, info_ptr);
6383 /* Expand this partial symbol table into a full symbol table. SELF is
6387 dwarf2_read_symtab (struct partial_symtab *self,
6388 struct objfile *objfile)
6392 warning (_("bug: psymtab for %s is already read in."),
6399 printf_filtered (_("Reading in symbols for %s..."),
6401 gdb_flush (gdb_stdout);
6404 /* Restore our global data. */
6405 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
6407 /* If this psymtab is constructed from a debug-only objfile, the
6408 has_section_at_zero flag will not necessarily be correct. We
6409 can get the correct value for this flag by looking at the data
6410 associated with the (presumably stripped) associated objfile. */
6411 if (objfile->separate_debug_objfile_backlink)
6413 struct dwarf2_per_objfile *dpo_backlink
6414 = objfile_data (objfile->separate_debug_objfile_backlink,
6415 dwarf2_objfile_data_key);
6417 dwarf2_per_objfile->has_section_at_zero
6418 = dpo_backlink->has_section_at_zero;
6421 dwarf2_per_objfile->reading_partial_symbols = 0;
6423 psymtab_to_symtab_1 (self);
6425 /* Finish up the debug error message. */
6427 printf_filtered (_("done.\n"));
6430 process_cu_includes ();
6433 /* Reading in full CUs. */
6435 /* Add PER_CU to the queue. */
6438 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6439 enum language pretend_language)
6441 struct dwarf2_queue_item *item;
6444 item = xmalloc (sizeof (*item));
6445 item->per_cu = per_cu;
6446 item->pretend_language = pretend_language;
6449 if (dwarf2_queue == NULL)
6450 dwarf2_queue = item;
6452 dwarf2_queue_tail->next = item;
6454 dwarf2_queue_tail = item;
6457 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6458 unit and add it to our queue.
6459 The result is non-zero if PER_CU was queued, otherwise the result is zero
6460 meaning either PER_CU is already queued or it is already loaded. */
6463 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6464 struct dwarf2_per_cu_data *per_cu,
6465 enum language pretend_language)
6467 /* We may arrive here during partial symbol reading, if we need full
6468 DIEs to process an unusual case (e.g. template arguments). Do
6469 not queue PER_CU, just tell our caller to load its DIEs. */
6470 if (dwarf2_per_objfile->reading_partial_symbols)
6472 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6477 /* Mark the dependence relation so that we don't flush PER_CU
6479 dwarf2_add_dependence (this_cu, per_cu);
6481 /* If it's already on the queue, we have nothing to do. */
6485 /* If the compilation unit is already loaded, just mark it as
6487 if (per_cu->cu != NULL)
6489 per_cu->cu->last_used = 0;
6493 /* Add it to the queue. */
6494 queue_comp_unit (per_cu, pretend_language);
6499 /* Process the queue. */
6502 process_queue (void)
6504 struct dwarf2_queue_item *item, *next_item;
6506 if (dwarf2_read_debug)
6508 fprintf_unfiltered (gdb_stdlog,
6509 "Expanding one or more symtabs of objfile %s ...\n",
6510 dwarf2_per_objfile->objfile->name);
6513 /* The queue starts out with one item, but following a DIE reference
6514 may load a new CU, adding it to the end of the queue. */
6515 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6517 if (dwarf2_per_objfile->using_index
6518 ? !item->per_cu->v.quick->symtab
6519 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
6521 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6523 if (dwarf2_read_debug)
6525 fprintf_unfiltered (gdb_stdlog,
6526 "Expanding symtab of %s at offset 0x%x\n",
6527 per_cu->is_debug_types ? "TU" : "CU",
6528 per_cu->offset.sect_off);
6531 if (per_cu->is_debug_types)
6532 process_full_type_unit (per_cu, item->pretend_language);
6534 process_full_comp_unit (per_cu, item->pretend_language);
6536 if (dwarf2_read_debug)
6538 fprintf_unfiltered (gdb_stdlog,
6539 "Done expanding %s at offset 0x%x\n",
6540 per_cu->is_debug_types ? "TU" : "CU",
6541 per_cu->offset.sect_off);
6545 item->per_cu->queued = 0;
6546 next_item = item->next;
6550 dwarf2_queue_tail = NULL;
6552 if (dwarf2_read_debug)
6554 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6555 dwarf2_per_objfile->objfile->name);
6559 /* Free all allocated queue entries. This function only releases anything if
6560 an error was thrown; if the queue was processed then it would have been
6561 freed as we went along. */
6564 dwarf2_release_queue (void *dummy)
6566 struct dwarf2_queue_item *item, *last;
6568 item = dwarf2_queue;
6571 /* Anything still marked queued is likely to be in an
6572 inconsistent state, so discard it. */
6573 if (item->per_cu->queued)
6575 if (item->per_cu->cu != NULL)
6576 free_one_cached_comp_unit (item->per_cu);
6577 item->per_cu->queued = 0;
6585 dwarf2_queue = dwarf2_queue_tail = NULL;
6588 /* Read in full symbols for PST, and anything it depends on. */
6591 psymtab_to_symtab_1 (struct partial_symtab *pst)
6593 struct dwarf2_per_cu_data *per_cu;
6599 for (i = 0; i < pst->number_of_dependencies; i++)
6600 if (!pst->dependencies[i]->readin
6601 && pst->dependencies[i]->user == NULL)
6603 /* Inform about additional files that need to be read in. */
6606 /* FIXME: i18n: Need to make this a single string. */
6607 fputs_filtered (" ", gdb_stdout);
6609 fputs_filtered ("and ", gdb_stdout);
6611 printf_filtered ("%s...", pst->dependencies[i]->filename);
6612 wrap_here (""); /* Flush output. */
6613 gdb_flush (gdb_stdout);
6615 psymtab_to_symtab_1 (pst->dependencies[i]);
6618 per_cu = pst->read_symtab_private;
6622 /* It's an include file, no symbols to read for it.
6623 Everything is in the parent symtab. */
6628 dw2_do_instantiate_symtab (per_cu);
6631 /* Trivial hash function for die_info: the hash value of a DIE
6632 is its offset in .debug_info for this objfile. */
6635 die_hash (const void *item)
6637 const struct die_info *die = item;
6639 return die->offset.sect_off;
6642 /* Trivial comparison function for die_info structures: two DIEs
6643 are equal if they have the same offset. */
6646 die_eq (const void *item_lhs, const void *item_rhs)
6648 const struct die_info *die_lhs = item_lhs;
6649 const struct die_info *die_rhs = item_rhs;
6651 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6654 /* die_reader_func for load_full_comp_unit.
6655 This is identical to read_signatured_type_reader,
6656 but is kept separate for now. */
6659 load_full_comp_unit_reader (const struct die_reader_specs *reader,
6661 struct die_info *comp_unit_die,
6665 struct dwarf2_cu *cu = reader->cu;
6666 enum language *language_ptr = data;
6668 gdb_assert (cu->die_hash == NULL);
6670 htab_create_alloc_ex (cu->header.length / 12,
6674 &cu->comp_unit_obstack,
6675 hashtab_obstack_allocate,
6676 dummy_obstack_deallocate);
6679 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6680 &info_ptr, comp_unit_die);
6681 cu->dies = comp_unit_die;
6682 /* comp_unit_die is not stored in die_hash, no need. */
6684 /* We try not to read any attributes in this function, because not
6685 all CUs needed for references have been loaded yet, and symbol
6686 table processing isn't initialized. But we have to set the CU language,
6687 or we won't be able to build types correctly.
6688 Similarly, if we do not read the producer, we can not apply
6689 producer-specific interpretation. */
6690 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
6693 /* Load the DIEs associated with PER_CU into memory. */
6696 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6697 enum language pretend_language)
6699 gdb_assert (! this_cu->is_debug_types);
6701 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6702 load_full_comp_unit_reader, &pretend_language);
6705 /* Add a DIE to the delayed physname list. */
6708 add_to_method_list (struct type *type, int fnfield_index, int index,
6709 const char *name, struct die_info *die,
6710 struct dwarf2_cu *cu)
6712 struct delayed_method_info mi;
6714 mi.fnfield_index = fnfield_index;
6718 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6721 /* A cleanup for freeing the delayed method list. */
6724 free_delayed_list (void *ptr)
6726 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6727 if (cu->method_list != NULL)
6729 VEC_free (delayed_method_info, cu->method_list);
6730 cu->method_list = NULL;
6734 /* Compute the physnames of any methods on the CU's method list.
6736 The computation of method physnames is delayed in order to avoid the
6737 (bad) condition that one of the method's formal parameters is of an as yet
6741 compute_delayed_physnames (struct dwarf2_cu *cu)
6744 struct delayed_method_info *mi;
6745 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6747 const char *physname;
6748 struct fn_fieldlist *fn_flp
6749 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
6750 physname = dwarf2_physname (mi->name, mi->die, cu);
6751 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6755 /* Go objects should be embedded in a DW_TAG_module DIE,
6756 and it's not clear if/how imported objects will appear.
6757 To keep Go support simple until that's worked out,
6758 go back through what we've read and create something usable.
6759 We could do this while processing each DIE, and feels kinda cleaner,
6760 but that way is more invasive.
6761 This is to, for example, allow the user to type "p var" or "b main"
6762 without having to specify the package name, and allow lookups
6763 of module.object to work in contexts that use the expression
6767 fixup_go_packaging (struct dwarf2_cu *cu)
6769 char *package_name = NULL;
6770 struct pending *list;
6773 for (list = global_symbols; list != NULL; list = list->next)
6775 for (i = 0; i < list->nsyms; ++i)
6777 struct symbol *sym = list->symbol[i];
6779 if (SYMBOL_LANGUAGE (sym) == language_go
6780 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6782 char *this_package_name = go_symbol_package_name (sym);
6784 if (this_package_name == NULL)
6786 if (package_name == NULL)
6787 package_name = this_package_name;
6790 if (strcmp (package_name, this_package_name) != 0)
6791 complaint (&symfile_complaints,
6792 _("Symtab %s has objects from two different Go packages: %s and %s"),
6793 (SYMBOL_SYMTAB (sym)
6794 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
6795 : cu->objfile->name),
6796 this_package_name, package_name);
6797 xfree (this_package_name);
6803 if (package_name != NULL)
6805 struct objfile *objfile = cu->objfile;
6806 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
6808 strlen (package_name));
6809 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6810 saved_package_name, objfile);
6813 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6815 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6816 SYMBOL_SET_LANGUAGE (sym, language_go);
6817 SYMBOL_SET_NAMES (sym, saved_package_name,
6818 strlen (saved_package_name), 0, objfile);
6819 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6820 e.g., "main" finds the "main" module and not C's main(). */
6821 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6822 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6823 SYMBOL_TYPE (sym) = type;
6825 add_symbol_to_list (sym, &global_symbols);
6827 xfree (package_name);
6831 static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6833 /* Return the symtab for PER_CU. This works properly regardless of
6834 whether we're using the index or psymtabs. */
6836 static struct symtab *
6837 get_symtab (struct dwarf2_per_cu_data *per_cu)
6839 return (dwarf2_per_objfile->using_index
6840 ? per_cu->v.quick->symtab
6841 : per_cu->v.psymtab->symtab);
6844 /* A helper function for computing the list of all symbol tables
6845 included by PER_CU. */
6848 recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6849 htab_t all_children,
6850 struct dwarf2_per_cu_data *per_cu)
6854 struct dwarf2_per_cu_data *iter;
6856 slot = htab_find_slot (all_children, per_cu, INSERT);
6859 /* This inclusion and its children have been processed. */
6864 /* Only add a CU if it has a symbol table. */
6865 if (get_symtab (per_cu) != NULL)
6866 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6869 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
6871 recursively_compute_inclusions (result, all_children, iter);
6874 /* Compute the symtab 'includes' fields for the symtab related to
6878 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6880 gdb_assert (! per_cu->is_debug_types);
6882 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
6885 struct dwarf2_per_cu_data *iter;
6886 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6887 htab_t all_children;
6888 struct symtab *symtab = get_symtab (per_cu);
6890 /* If we don't have a symtab, we can just skip this case. */
6894 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6895 NULL, xcalloc, xfree);
6898 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
6901 recursively_compute_inclusions (&result_children, all_children, iter);
6903 /* Now we have a transitive closure of all the included CUs, and
6904 for .gdb_index version 7 the included TUs, so we can convert it
6905 to a list of symtabs. */
6906 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6908 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6909 (len + 1) * sizeof (struct symtab *));
6911 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6913 symtab->includes[ix] = get_symtab (iter);
6914 symtab->includes[len] = NULL;
6916 VEC_free (dwarf2_per_cu_ptr, result_children);
6917 htab_delete (all_children);
6921 /* Compute the 'includes' field for the symtabs of all the CUs we just
6925 process_cu_includes (void)
6928 struct dwarf2_per_cu_data *iter;
6931 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6935 if (! iter->is_debug_types)
6936 compute_symtab_includes (iter);
6939 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6942 /* Generate full symbol information for PER_CU, whose DIEs have
6943 already been loaded into memory. */
6946 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6947 enum language pretend_language)
6949 struct dwarf2_cu *cu = per_cu->cu;
6950 struct objfile *objfile = per_cu->objfile;
6951 CORE_ADDR lowpc, highpc;
6952 struct symtab *symtab;
6953 struct cleanup *back_to, *delayed_list_cleanup;
6955 struct block *static_block;
6957 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6960 back_to = make_cleanup (really_free_pendings, NULL);
6961 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
6963 cu->list_in_scope = &file_symbols;
6965 cu->language = pretend_language;
6966 cu->language_defn = language_def (cu->language);
6968 /* Do line number decoding in read_file_scope () */
6969 process_die (cu->dies, cu);
6971 /* For now fudge the Go package. */
6972 if (cu->language == language_go)
6973 fixup_go_packaging (cu);
6975 /* Now that we have processed all the DIEs in the CU, all the types
6976 should be complete, and it should now be safe to compute all of the
6978 compute_delayed_physnames (cu);
6979 do_cleanups (delayed_list_cleanup);
6981 /* Some compilers don't define a DW_AT_high_pc attribute for the
6982 compilation unit. If the DW_AT_high_pc is missing, synthesize
6983 it, by scanning the DIE's below the compilation unit. */
6984 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
6987 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6988 per_cu->imported_symtabs != NULL);
6990 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6991 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6992 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6993 addrmap to help ensure it has an accurate map of pc values belonging to
6995 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6997 symtab = end_symtab_from_static_block (static_block, objfile,
6998 SECT_OFF_TEXT (objfile), 0);
7002 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7004 /* Set symtab language to language from DW_AT_language. If the
7005 compilation is from a C file generated by language preprocessors, do
7006 not set the language if it was already deduced by start_subfile. */
7007 if (!(cu->language == language_c && symtab->language != language_c))
7008 symtab->language = cu->language;
7010 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7011 produce DW_AT_location with location lists but it can be possibly
7012 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7013 there were bugs in prologue debug info, fixed later in GCC-4.5
7014 by "unwind info for epilogues" patch (which is not directly related).
7016 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7017 needed, it would be wrong due to missing DW_AT_producer there.
7019 Still one can confuse GDB by using non-standard GCC compilation
7020 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7022 if (cu->has_loclist && gcc_4_minor >= 5)
7023 symtab->locations_valid = 1;
7025 if (gcc_4_minor >= 5)
7026 symtab->epilogue_unwind_valid = 1;
7028 symtab->call_site_htab = cu->call_site_htab;
7031 if (dwarf2_per_objfile->using_index)
7032 per_cu->v.quick->symtab = symtab;
7035 struct partial_symtab *pst = per_cu->v.psymtab;
7036 pst->symtab = symtab;
7040 /* Push it for inclusion processing later. */
7041 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7043 do_cleanups (back_to);
7046 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7047 already been loaded into memory. */
7050 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7051 enum language pretend_language)
7053 struct dwarf2_cu *cu = per_cu->cu;
7054 struct objfile *objfile = per_cu->objfile;
7055 struct symtab *symtab;
7056 struct cleanup *back_to, *delayed_list_cleanup;
7059 back_to = make_cleanup (really_free_pendings, NULL);
7060 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7062 cu->list_in_scope = &file_symbols;
7064 cu->language = pretend_language;
7065 cu->language_defn = language_def (cu->language);
7067 /* The symbol tables are set up in read_type_unit_scope. */
7068 process_die (cu->dies, cu);
7070 /* For now fudge the Go package. */
7071 if (cu->language == language_go)
7072 fixup_go_packaging (cu);
7074 /* Now that we have processed all the DIEs in the CU, all the types
7075 should be complete, and it should now be safe to compute all of the
7077 compute_delayed_physnames (cu);
7078 do_cleanups (delayed_list_cleanup);
7080 /* TUs share symbol tables.
7081 If this is the first TU to use this symtab, complete the construction
7082 of it with end_expandable_symtab. Otherwise, complete the addition of
7083 this TU's symbols to the existing symtab. */
7084 if (per_cu->type_unit_group->primary_symtab == NULL)
7086 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7087 per_cu->type_unit_group->primary_symtab = symtab;
7091 /* Set symtab language to language from DW_AT_language. If the
7092 compilation is from a C file generated by language preprocessors,
7093 do not set the language if it was already deduced by
7095 if (!(cu->language == language_c && symtab->language != language_c))
7096 symtab->language = cu->language;
7101 augment_type_symtab (objfile,
7102 per_cu->type_unit_group->primary_symtab);
7103 symtab = per_cu->type_unit_group->primary_symtab;
7106 if (dwarf2_per_objfile->using_index)
7107 per_cu->v.quick->symtab = symtab;
7110 struct partial_symtab *pst = per_cu->v.psymtab;
7111 pst->symtab = symtab;
7115 do_cleanups (back_to);
7118 /* Process an imported unit DIE. */
7121 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7123 struct attribute *attr;
7125 /* For now we don't handle imported units in type units. */
7126 if (cu->per_cu->is_debug_types)
7128 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7129 " supported in type units [in module %s]"),
7133 attr = dwarf2_attr (die, DW_AT_import, cu);
7136 struct dwarf2_per_cu_data *per_cu;
7137 struct symtab *imported_symtab;
7141 offset = dwarf2_get_ref_die_offset (attr);
7142 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7143 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
7145 /* Queue the unit, if needed. */
7146 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7147 load_full_comp_unit (per_cu, cu->language);
7149 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7154 /* Process a die and its children. */
7157 process_die (struct die_info *die, struct dwarf2_cu *cu)
7161 case DW_TAG_padding:
7163 case DW_TAG_compile_unit:
7164 case DW_TAG_partial_unit:
7165 read_file_scope (die, cu);
7167 case DW_TAG_type_unit:
7168 read_type_unit_scope (die, cu);
7170 case DW_TAG_subprogram:
7171 case DW_TAG_inlined_subroutine:
7172 read_func_scope (die, cu);
7174 case DW_TAG_lexical_block:
7175 case DW_TAG_try_block:
7176 case DW_TAG_catch_block:
7177 read_lexical_block_scope (die, cu);
7179 case DW_TAG_GNU_call_site:
7180 read_call_site_scope (die, cu);
7182 case DW_TAG_class_type:
7183 case DW_TAG_interface_type:
7184 case DW_TAG_structure_type:
7185 case DW_TAG_union_type:
7186 process_structure_scope (die, cu);
7188 case DW_TAG_enumeration_type:
7189 process_enumeration_scope (die, cu);
7192 /* These dies have a type, but processing them does not create
7193 a symbol or recurse to process the children. Therefore we can
7194 read them on-demand through read_type_die. */
7195 case DW_TAG_subroutine_type:
7196 case DW_TAG_set_type:
7197 case DW_TAG_array_type:
7198 case DW_TAG_pointer_type:
7199 case DW_TAG_ptr_to_member_type:
7200 case DW_TAG_reference_type:
7201 case DW_TAG_string_type:
7204 case DW_TAG_base_type:
7205 case DW_TAG_subrange_type:
7206 case DW_TAG_typedef:
7207 /* Add a typedef symbol for the type definition, if it has a
7209 new_symbol (die, read_type_die (die, cu), cu);
7211 case DW_TAG_common_block:
7212 read_common_block (die, cu);
7214 case DW_TAG_common_inclusion:
7216 case DW_TAG_namespace:
7217 cu->processing_has_namespace_info = 1;
7218 read_namespace (die, cu);
7221 cu->processing_has_namespace_info = 1;
7222 read_module (die, cu);
7224 case DW_TAG_imported_declaration:
7225 case DW_TAG_imported_module:
7226 cu->processing_has_namespace_info = 1;
7227 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7228 || cu->language != language_fortran))
7229 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7230 dwarf_tag_name (die->tag));
7231 read_import_statement (die, cu);
7234 case DW_TAG_imported_unit:
7235 process_imported_unit_die (die, cu);
7239 new_symbol (die, NULL, cu);
7244 /* A helper function for dwarf2_compute_name which determines whether DIE
7245 needs to have the name of the scope prepended to the name listed in the
7249 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7251 struct attribute *attr;
7255 case DW_TAG_namespace:
7256 case DW_TAG_typedef:
7257 case DW_TAG_class_type:
7258 case DW_TAG_interface_type:
7259 case DW_TAG_structure_type:
7260 case DW_TAG_union_type:
7261 case DW_TAG_enumeration_type:
7262 case DW_TAG_enumerator:
7263 case DW_TAG_subprogram:
7267 case DW_TAG_variable:
7268 case DW_TAG_constant:
7269 /* We only need to prefix "globally" visible variables. These include
7270 any variable marked with DW_AT_external or any variable that
7271 lives in a namespace. [Variables in anonymous namespaces
7272 require prefixing, but they are not DW_AT_external.] */
7274 if (dwarf2_attr (die, DW_AT_specification, cu))
7276 struct dwarf2_cu *spec_cu = cu;
7278 return die_needs_namespace (die_specification (die, &spec_cu),
7282 attr = dwarf2_attr (die, DW_AT_external, cu);
7283 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7284 && die->parent->tag != DW_TAG_module)
7286 /* A variable in a lexical block of some kind does not need a
7287 namespace, even though in C++ such variables may be external
7288 and have a mangled name. */
7289 if (die->parent->tag == DW_TAG_lexical_block
7290 || die->parent->tag == DW_TAG_try_block
7291 || die->parent->tag == DW_TAG_catch_block
7292 || die->parent->tag == DW_TAG_subprogram)
7301 /* Retrieve the last character from a mem_file. */
7304 do_ui_file_peek_last (void *object, const char *buffer, long length)
7306 char *last_char_p = (char *) object;
7309 *last_char_p = buffer[length - 1];
7312 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
7313 compute the physname for the object, which include a method's:
7314 - formal parameters (C++/Java),
7315 - receiver type (Go),
7316 - return type (Java).
7318 The term "physname" is a bit confusing.
7319 For C++, for example, it is the demangled name.
7320 For Go, for example, it's the mangled name.
7322 For Ada, return the DIE's linkage name rather than the fully qualified
7323 name. PHYSNAME is ignored..
7325 The result is allocated on the objfile_obstack and canonicalized. */
7328 dwarf2_compute_name (const char *name,
7329 struct die_info *die, struct dwarf2_cu *cu,
7332 struct objfile *objfile = cu->objfile;
7335 name = dwarf2_name (die, cu);
7337 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7338 compute it by typename_concat inside GDB. */
7339 if (cu->language == language_ada
7340 || (cu->language == language_fortran && physname))
7342 /* For Ada unit, we prefer the linkage name over the name, as
7343 the former contains the exported name, which the user expects
7344 to be able to reference. Ideally, we want the user to be able
7345 to reference this entity using either natural or linkage name,
7346 but we haven't started looking at this enhancement yet. */
7347 struct attribute *attr;
7349 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7351 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7352 if (attr && DW_STRING (attr))
7353 return DW_STRING (attr);
7356 /* These are the only languages we know how to qualify names in. */
7358 && (cu->language == language_cplus || cu->language == language_java
7359 || cu->language == language_fortran))
7361 if (die_needs_namespace (die, cu))
7365 struct ui_file *buf;
7367 prefix = determine_prefix (die, cu);
7368 buf = mem_fileopen ();
7369 if (*prefix != '\0')
7371 char *prefixed_name = typename_concat (NULL, prefix, name,
7374 fputs_unfiltered (prefixed_name, buf);
7375 xfree (prefixed_name);
7378 fputs_unfiltered (name, buf);
7380 /* Template parameters may be specified in the DIE's DW_AT_name, or
7381 as children with DW_TAG_template_type_param or
7382 DW_TAG_value_type_param. If the latter, add them to the name
7383 here. If the name already has template parameters, then
7384 skip this step; some versions of GCC emit both, and
7385 it is more efficient to use the pre-computed name.
7387 Something to keep in mind about this process: it is very
7388 unlikely, or in some cases downright impossible, to produce
7389 something that will match the mangled name of a function.
7390 If the definition of the function has the same debug info,
7391 we should be able to match up with it anyway. But fallbacks
7392 using the minimal symbol, for instance to find a method
7393 implemented in a stripped copy of libstdc++, will not work.
7394 If we do not have debug info for the definition, we will have to
7395 match them up some other way.
7397 When we do name matching there is a related problem with function
7398 templates; two instantiated function templates are allowed to
7399 differ only by their return types, which we do not add here. */
7401 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7403 struct attribute *attr;
7404 struct die_info *child;
7407 die->building_fullname = 1;
7409 for (child = die->child; child != NULL; child = child->sibling)
7414 struct dwarf2_locexpr_baton *baton;
7417 if (child->tag != DW_TAG_template_type_param
7418 && child->tag != DW_TAG_template_value_param)
7423 fputs_unfiltered ("<", buf);
7427 fputs_unfiltered (", ", buf);
7429 attr = dwarf2_attr (child, DW_AT_type, cu);
7432 complaint (&symfile_complaints,
7433 _("template parameter missing DW_AT_type"));
7434 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7437 type = die_type (child, cu);
7439 if (child->tag == DW_TAG_template_type_param)
7441 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
7445 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7448 complaint (&symfile_complaints,
7449 _("template parameter missing "
7450 "DW_AT_const_value"));
7451 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7455 dwarf2_const_value_attr (attr, type, name,
7456 &cu->comp_unit_obstack, cu,
7457 &value, &bytes, &baton);
7459 if (TYPE_NOSIGN (type))
7460 /* GDB prints characters as NUMBER 'CHAR'. If that's
7461 changed, this can use value_print instead. */
7462 c_printchar (value, type, buf);
7465 struct value_print_options opts;
7468 v = dwarf2_evaluate_loc_desc (type, NULL,
7472 else if (bytes != NULL)
7474 v = allocate_value (type);
7475 memcpy (value_contents_writeable (v), bytes,
7476 TYPE_LENGTH (type));
7479 v = value_from_longest (type, value);
7481 /* Specify decimal so that we do not depend on
7483 get_formatted_print_options (&opts, 'd');
7485 value_print (v, buf, &opts);
7491 die->building_fullname = 0;
7495 /* Close the argument list, with a space if necessary
7496 (nested templates). */
7497 char last_char = '\0';
7498 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7499 if (last_char == '>')
7500 fputs_unfiltered (" >", buf);
7502 fputs_unfiltered (">", buf);
7506 /* For Java and C++ methods, append formal parameter type
7507 information, if PHYSNAME. */
7509 if (physname && die->tag == DW_TAG_subprogram
7510 && (cu->language == language_cplus
7511 || cu->language == language_java))
7513 struct type *type = read_type_die (die, cu);
7515 c_type_print_args (type, buf, 1, cu->language,
7516 &type_print_raw_options);
7518 if (cu->language == language_java)
7520 /* For java, we must append the return type to method
7522 if (die->tag == DW_TAG_subprogram)
7523 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7524 0, 0, &type_print_raw_options);
7526 else if (cu->language == language_cplus)
7528 /* Assume that an artificial first parameter is
7529 "this", but do not crash if it is not. RealView
7530 marks unnamed (and thus unused) parameters as
7531 artificial; there is no way to differentiate
7533 if (TYPE_NFIELDS (type) > 0
7534 && TYPE_FIELD_ARTIFICIAL (type, 0)
7535 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
7536 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7538 fputs_unfiltered (" const", buf);
7542 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
7544 ui_file_delete (buf);
7546 if (cu->language == language_cplus)
7549 = dwarf2_canonicalize_name (name, cu,
7550 &objfile->objfile_obstack);
7561 /* Return the fully qualified name of DIE, based on its DW_AT_name.
7562 If scope qualifiers are appropriate they will be added. The result
7563 will be allocated on the objfile_obstack, or NULL if the DIE does
7564 not have a name. NAME may either be from a previous call to
7565 dwarf2_name or NULL.
7567 The output string will be canonicalized (if C++/Java). */
7570 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7572 return dwarf2_compute_name (name, die, cu, 0);
7575 /* Construct a physname for the given DIE in CU. NAME may either be
7576 from a previous call to dwarf2_name or NULL. The result will be
7577 allocated on the objfile_objstack or NULL if the DIE does not have a
7580 The output string will be canonicalized (if C++/Java). */
7583 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
7585 struct objfile *objfile = cu->objfile;
7586 struct attribute *attr;
7587 const char *retval, *mangled = NULL, *canon = NULL;
7588 struct cleanup *back_to;
7591 /* In this case dwarf2_compute_name is just a shortcut not building anything
7593 if (!die_needs_namespace (die, cu))
7594 return dwarf2_compute_name (name, die, cu, 1);
7596 back_to = make_cleanup (null_cleanup, NULL);
7598 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7600 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7602 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7604 if (attr && DW_STRING (attr))
7608 mangled = DW_STRING (attr);
7610 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7611 type. It is easier for GDB users to search for such functions as
7612 `name(params)' than `long name(params)'. In such case the minimal
7613 symbol names do not match the full symbol names but for template
7614 functions there is never a need to look up their definition from their
7615 declaration so the only disadvantage remains the minimal symbol
7616 variant `long name(params)' does not have the proper inferior type.
7619 if (cu->language == language_go)
7621 /* This is a lie, but we already lie to the caller new_symbol_full.
7622 new_symbol_full assumes we return the mangled name.
7623 This just undoes that lie until things are cleaned up. */
7628 demangled = cplus_demangle (mangled,
7629 (DMGL_PARAMS | DMGL_ANSI
7630 | (cu->language == language_java
7631 ? DMGL_JAVA | DMGL_RET_POSTFIX
7636 make_cleanup (xfree, demangled);
7646 if (canon == NULL || check_physname)
7648 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7650 if (canon != NULL && strcmp (physname, canon) != 0)
7652 /* It may not mean a bug in GDB. The compiler could also
7653 compute DW_AT_linkage_name incorrectly. But in such case
7654 GDB would need to be bug-to-bug compatible. */
7656 complaint (&symfile_complaints,
7657 _("Computed physname <%s> does not match demangled <%s> "
7658 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
7659 physname, canon, mangled, die->offset.sect_off, objfile->name);
7661 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7662 is available here - over computed PHYSNAME. It is safer
7663 against both buggy GDB and buggy compilers. */
7677 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
7679 do_cleanups (back_to);
7683 /* Read the import statement specified by the given die and record it. */
7686 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7688 struct objfile *objfile = cu->objfile;
7689 struct attribute *import_attr;
7690 struct die_info *imported_die, *child_die;
7691 struct dwarf2_cu *imported_cu;
7692 const char *imported_name;
7693 const char *imported_name_prefix;
7694 const char *canonical_name;
7695 const char *import_alias;
7696 const char *imported_declaration = NULL;
7697 const char *import_prefix;
7698 VEC (const_char_ptr) *excludes = NULL;
7699 struct cleanup *cleanups;
7701 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7702 if (import_attr == NULL)
7704 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7705 dwarf_tag_name (die->tag));
7710 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7711 imported_name = dwarf2_name (imported_die, imported_cu);
7712 if (imported_name == NULL)
7714 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7716 The import in the following code:
7730 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7731 <52> DW_AT_decl_file : 1
7732 <53> DW_AT_decl_line : 6
7733 <54> DW_AT_import : <0x75>
7734 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7736 <5b> DW_AT_decl_file : 1
7737 <5c> DW_AT_decl_line : 2
7738 <5d> DW_AT_type : <0x6e>
7740 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7741 <76> DW_AT_byte_size : 4
7742 <77> DW_AT_encoding : 5 (signed)
7744 imports the wrong die ( 0x75 instead of 0x58 ).
7745 This case will be ignored until the gcc bug is fixed. */
7749 /* Figure out the local name after import. */
7750 import_alias = dwarf2_name (die, cu);
7752 /* Figure out where the statement is being imported to. */
7753 import_prefix = determine_prefix (die, cu);
7755 /* Figure out what the scope of the imported die is and prepend it
7756 to the name of the imported die. */
7757 imported_name_prefix = determine_prefix (imported_die, imported_cu);
7759 if (imported_die->tag != DW_TAG_namespace
7760 && imported_die->tag != DW_TAG_module)
7762 imported_declaration = imported_name;
7763 canonical_name = imported_name_prefix;
7765 else if (strlen (imported_name_prefix) > 0)
7766 canonical_name = obconcat (&objfile->objfile_obstack,
7767 imported_name_prefix, "::", imported_name,
7770 canonical_name = imported_name;
7772 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7774 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7775 for (child_die = die->child; child_die && child_die->tag;
7776 child_die = sibling_die (child_die))
7778 /* DWARF-4: A Fortran use statement with a “rename list” may be
7779 represented by an imported module entry with an import attribute
7780 referring to the module and owned entries corresponding to those
7781 entities that are renamed as part of being imported. */
7783 if (child_die->tag != DW_TAG_imported_declaration)
7785 complaint (&symfile_complaints,
7786 _("child DW_TAG_imported_declaration expected "
7787 "- DIE at 0x%x [in module %s]"),
7788 child_die->offset.sect_off, objfile->name);
7792 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7793 if (import_attr == NULL)
7795 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7796 dwarf_tag_name (child_die->tag));
7801 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7803 imported_name = dwarf2_name (imported_die, imported_cu);
7804 if (imported_name == NULL)
7806 complaint (&symfile_complaints,
7807 _("child DW_TAG_imported_declaration has unknown "
7808 "imported name - DIE at 0x%x [in module %s]"),
7809 child_die->offset.sect_off, objfile->name);
7813 VEC_safe_push (const_char_ptr, excludes, imported_name);
7815 process_die (child_die, cu);
7818 cp_add_using_directive (import_prefix,
7821 imported_declaration,
7824 &objfile->objfile_obstack);
7826 do_cleanups (cleanups);
7829 /* Cleanup function for handle_DW_AT_stmt_list. */
7832 free_cu_line_header (void *arg)
7834 struct dwarf2_cu *cu = arg;
7836 free_line_header (cu->line_header);
7837 cu->line_header = NULL;
7840 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
7841 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
7842 this, it was first present in GCC release 4.3.0. */
7845 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
7847 if (!cu->checked_producer)
7848 check_producer (cu);
7850 return cu->producer_is_gcc_lt_4_3;
7854 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7855 const char **name, const char **comp_dir)
7857 struct attribute *attr;
7862 /* Find the filename. Do not use dwarf2_name here, since the filename
7863 is not a source language identifier. */
7864 attr = dwarf2_attr (die, DW_AT_name, cu);
7867 *name = DW_STRING (attr);
7870 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7872 *comp_dir = DW_STRING (attr);
7873 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
7874 && IS_ABSOLUTE_PATH (*name))
7876 char *d = ldirname (*name);
7880 make_cleanup (xfree, d);
7882 if (*comp_dir != NULL)
7884 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7885 directory, get rid of it. */
7886 char *cp = strchr (*comp_dir, ':');
7888 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7893 *name = "<unknown>";
7896 /* Handle DW_AT_stmt_list for a compilation unit.
7897 DIE is the DW_TAG_compile_unit die for CU.
7898 COMP_DIR is the compilation directory.
7899 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
7902 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
7903 const char *comp_dir)
7905 struct attribute *attr;
7907 gdb_assert (! cu->per_cu->is_debug_types);
7909 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7912 unsigned int line_offset = DW_UNSND (attr);
7913 struct line_header *line_header
7914 = dwarf_decode_line_header (line_offset, cu);
7918 cu->line_header = line_header;
7919 make_cleanup (free_cu_line_header, cu);
7920 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
7925 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
7928 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
7930 struct objfile *objfile = dwarf2_per_objfile->objfile;
7931 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
7932 CORE_ADDR lowpc = ((CORE_ADDR) -1);
7933 CORE_ADDR highpc = ((CORE_ADDR) 0);
7934 struct attribute *attr;
7935 const char *name = NULL;
7936 const char *comp_dir = NULL;
7937 struct die_info *child_die;
7938 bfd *abfd = objfile->obfd;
7941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7943 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
7945 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7946 from finish_block. */
7947 if (lowpc == ((CORE_ADDR) -1))
7952 find_file_and_directory (die, cu, &name, &comp_dir);
7954 prepare_one_comp_unit (cu, die, cu->language);
7956 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7957 standardised yet. As a workaround for the language detection we fall
7958 back to the DW_AT_producer string. */
7959 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7960 cu->language = language_opencl;
7962 /* Similar hack for Go. */
7963 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7964 set_cu_language (DW_LANG_Go, cu);
7966 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
7968 /* Decode line number information if present. We do this before
7969 processing child DIEs, so that the line header table is available
7970 for DW_AT_decl_file. */
7971 handle_DW_AT_stmt_list (die, cu, comp_dir);
7973 /* Process all dies in compilation unit. */
7974 if (die->child != NULL)
7976 child_die = die->child;
7977 while (child_die && child_die->tag)
7979 process_die (child_die, cu);
7980 child_die = sibling_die (child_die);
7984 /* Decode macro information, if present. Dwarf 2 macro information
7985 refers to information in the line number info statement program
7986 header, so we can only read it if we've read the header
7988 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7989 if (attr && cu->line_header)
7991 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7992 complaint (&symfile_complaints,
7993 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7995 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
7999 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8000 if (attr && cu->line_header)
8002 unsigned int macro_offset = DW_UNSND (attr);
8004 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8008 do_cleanups (back_to);
8011 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8012 Create the set of symtabs used by this TU, or if this TU is sharing
8013 symtabs with another TU and the symtabs have already been created
8014 then restore those symtabs in the line header.
8015 We don't need the pc/line-number mapping for type units. */
8018 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8020 struct objfile *objfile = dwarf2_per_objfile->objfile;
8021 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8022 struct type_unit_group *tu_group;
8024 struct line_header *lh;
8025 struct attribute *attr;
8026 unsigned int i, line_offset;
8028 gdb_assert (per_cu->is_debug_types);
8030 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8032 /* If we're using .gdb_index (includes -readnow) then
8033 per_cu->s.type_unit_group may not have been set up yet. */
8034 if (per_cu->type_unit_group == NULL)
8035 per_cu->type_unit_group = get_type_unit_group (cu, attr);
8036 tu_group = per_cu->type_unit_group;
8038 /* If we've already processed this stmt_list there's no real need to
8039 do it again, we could fake it and just recreate the part we need
8040 (file name,index -> symtab mapping). If data shows this optimization
8041 is useful we can do it then. */
8042 first_time = tu_group->primary_symtab == NULL;
8044 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
8049 line_offset = DW_UNSND (attr);
8050 lh = dwarf_decode_line_header (line_offset, cu);
8055 dwarf2_start_symtab (cu, "", NULL, 0);
8058 gdb_assert (tu_group->symtabs == NULL);
8061 /* Note: The primary symtab will get allocated at the end. */
8065 cu->line_header = lh;
8066 make_cleanup (free_cu_line_header, cu);
8070 dwarf2_start_symtab (cu, "", NULL, 0);
8072 tu_group->num_symtabs = lh->num_file_names;
8073 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
8075 for (i = 0; i < lh->num_file_names; ++i)
8078 struct file_entry *fe = &lh->file_names[i];
8081 dir = lh->include_dirs[fe->dir_index - 1];
8082 dwarf2_start_subfile (fe->name, dir, NULL);
8084 /* Note: We don't have to watch for the main subfile here, type units
8085 don't have DW_AT_name. */
8087 if (current_subfile->symtab == NULL)
8089 /* NOTE: start_subfile will recognize when it's been passed
8090 a file it has already seen. So we can't assume there's a
8091 simple mapping from lh->file_names to subfiles,
8092 lh->file_names may contain dups. */
8093 current_subfile->symtab = allocate_symtab (current_subfile->name,
8097 fe->symtab = current_subfile->symtab;
8098 tu_group->symtabs[i] = fe->symtab;
8105 for (i = 0; i < lh->num_file_names; ++i)
8107 struct file_entry *fe = &lh->file_names[i];
8109 fe->symtab = tu_group->symtabs[i];
8113 /* The main symtab is allocated last. Type units don't have DW_AT_name
8114 so they don't have a "real" (so to speak) symtab anyway.
8115 There is later code that will assign the main symtab to all symbols
8116 that don't have one. We need to handle the case of a symbol with a
8117 missing symtab (DW_AT_decl_file) anyway. */
8120 /* Process DW_TAG_type_unit.
8121 For TUs we want to skip the first top level sibling if it's not the
8122 actual type being defined by this TU. In this case the first top
8123 level sibling is there to provide context only. */
8126 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8128 struct die_info *child_die;
8130 prepare_one_comp_unit (cu, die, language_minimal);
8132 /* Initialize (or reinitialize) the machinery for building symtabs.
8133 We do this before processing child DIEs, so that the line header table
8134 is available for DW_AT_decl_file. */
8135 setup_type_unit_groups (die, cu);
8137 if (die->child != NULL)
8139 child_die = die->child;
8140 while (child_die && child_die->tag)
8142 process_die (child_die, cu);
8143 child_die = sibling_die (child_die);
8150 http://gcc.gnu.org/wiki/DebugFission
8151 http://gcc.gnu.org/wiki/DebugFissionDWP
8153 To simplify handling of both DWO files ("object" files with the DWARF info)
8154 and DWP files (a file with the DWOs packaged up into one file), we treat
8155 DWP files as having a collection of virtual DWO files. */
8158 hash_dwo_file (const void *item)
8160 const struct dwo_file *dwo_file = item;
8162 return htab_hash_string (dwo_file->name);
8166 eq_dwo_file (const void *item_lhs, const void *item_rhs)
8168 const struct dwo_file *lhs = item_lhs;
8169 const struct dwo_file *rhs = item_rhs;
8171 return strcmp (lhs->name, rhs->name) == 0;
8174 /* Allocate a hash table for DWO files. */
8177 allocate_dwo_file_hash_table (void)
8179 struct objfile *objfile = dwarf2_per_objfile->objfile;
8181 return htab_create_alloc_ex (41,
8185 &objfile->objfile_obstack,
8186 hashtab_obstack_allocate,
8187 dummy_obstack_deallocate);
8190 /* Lookup DWO file DWO_NAME. */
8193 lookup_dwo_file_slot (const char *dwo_name)
8195 struct dwo_file find_entry;
8198 if (dwarf2_per_objfile->dwo_files == NULL)
8199 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8201 memset (&find_entry, 0, sizeof (find_entry));
8202 find_entry.name = dwo_name;
8203 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8209 hash_dwo_unit (const void *item)
8211 const struct dwo_unit *dwo_unit = item;
8213 /* This drops the top 32 bits of the id, but is ok for a hash. */
8214 return dwo_unit->signature;
8218 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8220 const struct dwo_unit *lhs = item_lhs;
8221 const struct dwo_unit *rhs = item_rhs;
8223 /* The signature is assumed to be unique within the DWO file.
8224 So while object file CU dwo_id's always have the value zero,
8225 that's OK, assuming each object file DWO file has only one CU,
8226 and that's the rule for now. */
8227 return lhs->signature == rhs->signature;
8230 /* Allocate a hash table for DWO CUs,TUs.
8231 There is one of these tables for each of CUs,TUs for each DWO file. */
8234 allocate_dwo_unit_table (struct objfile *objfile)
8236 /* Start out with a pretty small number.
8237 Generally DWO files contain only one CU and maybe some TUs. */
8238 return htab_create_alloc_ex (3,
8242 &objfile->objfile_obstack,
8243 hashtab_obstack_allocate,
8244 dummy_obstack_deallocate);
8247 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
8249 struct create_dwo_info_table_data
8251 struct dwo_file *dwo_file;
8255 /* die_reader_func for create_dwo_debug_info_hash_table. */
8258 create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8260 struct die_info *comp_unit_die,
8264 struct dwarf2_cu *cu = reader->cu;
8265 struct objfile *objfile = dwarf2_per_objfile->objfile;
8266 sect_offset offset = cu->per_cu->offset;
8267 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8268 struct create_dwo_info_table_data *data = datap;
8269 struct dwo_file *dwo_file = data->dwo_file;
8270 htab_t cu_htab = data->cu_htab;
8272 struct attribute *attr;
8273 struct dwo_unit *dwo_unit;
8275 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8278 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8279 " its dwo_id [in module %s]"),
8280 offset.sect_off, dwo_file->name);
8284 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8285 dwo_unit->dwo_file = dwo_file;
8286 dwo_unit->signature = DW_UNSND (attr);
8287 dwo_unit->info_or_types_section = section;
8288 dwo_unit->offset = offset;
8289 dwo_unit->length = cu->per_cu->length;
8291 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8292 gdb_assert (slot != NULL);
8295 const struct dwo_unit *dup_dwo_unit = *slot;
8297 complaint (&symfile_complaints,
8298 _("debug entry at offset 0x%x is duplicate to the entry at"
8299 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8300 offset.sect_off, dup_dwo_unit->offset.sect_off,
8301 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
8307 if (dwarf2_read_debug)
8308 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8310 phex (dwo_unit->signature,
8311 sizeof (dwo_unit->signature)));
8314 /* Create a hash table to map DWO IDs to their CU entry in
8315 .debug_info.dwo in DWO_FILE.
8316 Note: This function processes DWO files only, not DWP files. */
8319 create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
8321 struct objfile *objfile = dwarf2_per_objfile->objfile;
8322 struct dwarf2_section_info *section = &dwo_file->sections.info;
8325 gdb_byte *info_ptr, *end_ptr;
8326 struct create_dwo_info_table_data create_dwo_info_table_data;
8328 dwarf2_read_section (objfile, section);
8329 info_ptr = section->buffer;
8331 if (info_ptr == NULL)
8334 /* We can't set abfd until now because the section may be empty or
8335 not present, in which case section->asection will be NULL. */
8336 abfd = section->asection->owner;
8338 if (dwarf2_read_debug)
8339 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8340 bfd_get_filename (abfd));
8342 cu_htab = allocate_dwo_unit_table (objfile);
8344 create_dwo_info_table_data.dwo_file = dwo_file;
8345 create_dwo_info_table_data.cu_htab = cu_htab;
8347 end_ptr = info_ptr + section->size;
8348 while (info_ptr < end_ptr)
8350 struct dwarf2_per_cu_data per_cu;
8352 memset (&per_cu, 0, sizeof (per_cu));
8353 per_cu.objfile = objfile;
8354 per_cu.is_debug_types = 0;
8355 per_cu.offset.sect_off = info_ptr - section->buffer;
8356 per_cu.info_or_types_section = section;
8358 init_cutu_and_read_dies_no_follow (&per_cu,
8359 &dwo_file->sections.abbrev,
8361 create_dwo_debug_info_hash_table_reader,
8362 &create_dwo_info_table_data);
8364 info_ptr += per_cu.length;
8370 /* DWP file .debug_{cu,tu}_index section format:
8371 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8373 Both index sections have the same format, and serve to map a 64-bit
8374 signature to a set of section numbers. Each section begins with a header,
8375 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8376 indexes, and a pool of 32-bit section numbers. The index sections will be
8377 aligned at 8-byte boundaries in the file.
8379 The index section header contains two unsigned 32-bit values (using the
8380 byte order of the application binary):
8382 N, the number of compilation units or type units in the index
8383 M, the number of slots in the hash table
8385 (We assume that N and M will not exceed 2^32 - 1.)
8387 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8389 The hash table begins at offset 8 in the section, and consists of an array
8390 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8391 order of the application binary). Unused slots in the hash table are 0.
8392 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8394 The parallel table begins immediately after the hash table
8395 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8396 array of 32-bit indexes (using the byte order of the application binary),
8397 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8398 table contains a 32-bit index into the pool of section numbers. For unused
8399 hash table slots, the corresponding entry in the parallel table will be 0.
8401 Given a 64-bit compilation unit signature or a type signature S, an entry
8402 in the hash table is located as follows:
8404 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8405 the low-order k bits all set to 1.
8407 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8409 3) If the hash table entry at index H matches the signature, use that
8410 entry. If the hash table entry at index H is unused (all zeroes),
8411 terminate the search: the signature is not present in the table.
8413 4) Let H = (H + H') modulo M. Repeat at Step 3.
8415 Because M > N and H' and M are relatively prime, the search is guaranteed
8416 to stop at an unused slot or find the match.
8418 The pool of section numbers begins immediately following the hash table
8419 (at offset 8 + 12 * M from the beginning of the section). The pool of
8420 section numbers consists of an array of 32-bit words (using the byte order
8421 of the application binary). Each item in the array is indexed starting
8422 from 0. The hash table entry provides the index of the first section
8423 number in the set. Additional section numbers in the set follow, and the
8424 set is terminated by a 0 entry (section number 0 is not used in ELF).
8426 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8427 section must be the first entry in the set, and the .debug_abbrev.dwo must
8428 be the second entry. Other members of the set may follow in any order. */
8430 /* Create a hash table to map DWO IDs to their CU/TU entry in
8431 .debug_{info,types}.dwo in DWP_FILE.
8432 Returns NULL if there isn't one.
8433 Note: This function processes DWP files only, not DWO files. */
8435 static struct dwp_hash_table *
8436 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8438 struct objfile *objfile = dwarf2_per_objfile->objfile;
8439 bfd *dbfd = dwp_file->dbfd;
8440 char *index_ptr, *index_end;
8441 struct dwarf2_section_info *index;
8442 uint32_t version, nr_units, nr_slots;
8443 struct dwp_hash_table *htab;
8446 index = &dwp_file->sections.tu_index;
8448 index = &dwp_file->sections.cu_index;
8450 if (dwarf2_section_empty_p (index))
8452 dwarf2_read_section (objfile, index);
8454 index_ptr = index->buffer;
8455 index_end = index_ptr + index->size;
8457 version = read_4_bytes (dbfd, index_ptr);
8458 index_ptr += 8; /* Skip the unused word. */
8459 nr_units = read_4_bytes (dbfd, index_ptr);
8461 nr_slots = read_4_bytes (dbfd, index_ptr);
8466 error (_("Dwarf Error: unsupported DWP file version (%u)"
8468 version, dwp_file->name);
8470 if (nr_slots != (nr_slots & -nr_slots))
8472 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8473 " is not power of 2 [in module %s]"),
8474 nr_slots, dwp_file->name);
8477 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8478 htab->nr_units = nr_units;
8479 htab->nr_slots = nr_slots;
8480 htab->hash_table = index_ptr;
8481 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8482 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8487 /* Update SECTIONS with the data from SECTP.
8489 This function is like the other "locate" section routines that are
8490 passed to bfd_map_over_sections, but in this context the sections to
8491 read comes from the DWP hash table, not the full ELF section table.
8493 The result is non-zero for success, or zero if an error was found. */
8496 locate_virtual_dwo_sections (asection *sectp,
8497 struct virtual_dwo_sections *sections)
8499 const struct dwop_section_names *names = &dwop_section_names;
8501 if (section_is_p (sectp->name, &names->abbrev_dwo))
8503 /* There can be only one. */
8504 if (sections->abbrev.asection != NULL)
8506 sections->abbrev.asection = sectp;
8507 sections->abbrev.size = bfd_get_section_size (sectp);
8509 else if (section_is_p (sectp->name, &names->info_dwo)
8510 || section_is_p (sectp->name, &names->types_dwo))
8512 /* There can be only one. */
8513 if (sections->info_or_types.asection != NULL)
8515 sections->info_or_types.asection = sectp;
8516 sections->info_or_types.size = bfd_get_section_size (sectp);
8518 else if (section_is_p (sectp->name, &names->line_dwo))
8520 /* There can be only one. */
8521 if (sections->line.asection != NULL)
8523 sections->line.asection = sectp;
8524 sections->line.size = bfd_get_section_size (sectp);
8526 else if (section_is_p (sectp->name, &names->loc_dwo))
8528 /* There can be only one. */
8529 if (sections->loc.asection != NULL)
8531 sections->loc.asection = sectp;
8532 sections->loc.size = bfd_get_section_size (sectp);
8534 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8536 /* There can be only one. */
8537 if (sections->macinfo.asection != NULL)
8539 sections->macinfo.asection = sectp;
8540 sections->macinfo.size = bfd_get_section_size (sectp);
8542 else if (section_is_p (sectp->name, &names->macro_dwo))
8544 /* There can be only one. */
8545 if (sections->macro.asection != NULL)
8547 sections->macro.asection = sectp;
8548 sections->macro.size = bfd_get_section_size (sectp);
8550 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8552 /* There can be only one. */
8553 if (sections->str_offsets.asection != NULL)
8555 sections->str_offsets.asection = sectp;
8556 sections->str_offsets.size = bfd_get_section_size (sectp);
8560 /* No other kind of section is valid. */
8567 /* Create a dwo_unit object for the DWO with signature SIGNATURE.
8568 HTAB is the hash table from the DWP file.
8569 SECTION_INDEX is the index of the DWO in HTAB. */
8571 static struct dwo_unit *
8572 create_dwo_in_dwp (struct dwp_file *dwp_file,
8573 const struct dwp_hash_table *htab,
8574 uint32_t section_index,
8575 ULONGEST signature, int is_debug_types)
8577 struct objfile *objfile = dwarf2_per_objfile->objfile;
8578 bfd *dbfd = dwp_file->dbfd;
8579 const char *kind = is_debug_types ? "TU" : "CU";
8580 struct dwo_file *dwo_file;
8581 struct dwo_unit *dwo_unit;
8582 struct virtual_dwo_sections sections;
8583 void **dwo_file_slot;
8584 char *virtual_dwo_name;
8585 struct dwarf2_section_info *cutu;
8586 struct cleanup *cleanups;
8589 if (dwarf2_read_debug)
8591 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8593 section_index, phex (signature, sizeof (signature)),
8597 /* Fetch the sections of this DWO.
8598 Put a limit on the number of sections we look for so that bad data
8599 doesn't cause us to loop forever. */
8601 #define MAX_NR_DWO_SECTIONS \
8602 (1 /* .debug_info or .debug_types */ \
8603 + 1 /* .debug_abbrev */ \
8604 + 1 /* .debug_line */ \
8605 + 1 /* .debug_loc */ \
8606 + 1 /* .debug_str_offsets */ \
8607 + 1 /* .debug_macro */ \
8608 + 1 /* .debug_macinfo */ \
8609 + 1 /* trailing zero */)
8611 memset (§ions, 0, sizeof (sections));
8612 cleanups = make_cleanup (null_cleanup, 0);
8614 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8617 uint32_t section_nr =
8620 + (section_index + i) * sizeof (uint32_t));
8622 if (section_nr == 0)
8624 if (section_nr >= dwp_file->num_sections)
8626 error (_("Dwarf Error: bad DWP hash table, section number too large"
8631 sectp = dwp_file->elf_sections[section_nr];
8632 if (! locate_virtual_dwo_sections (sectp, §ions))
8634 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8641 || sections.info_or_types.asection == NULL
8642 || sections.abbrev.asection == NULL)
8644 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8648 if (i == MAX_NR_DWO_SECTIONS)
8650 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8655 /* It's easier for the rest of the code if we fake a struct dwo_file and
8656 have dwo_unit "live" in that. At least for now.
8658 The DWP file can be made up of a random collection of CUs and TUs.
8659 However, for each CU + set of TUs that came from the same original DWO
8660 file, we want to combine them back into a virtual DWO file to save space
8661 (fewer struct dwo_file objects to allocated). Remember that for really
8662 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8665 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
8666 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8667 sections.line.asection ? sections.line.asection->id : 0,
8668 sections.loc.asection ? sections.loc.asection->id : 0,
8669 (sections.str_offsets.asection
8670 ? sections.str_offsets.asection->id
8672 make_cleanup (xfree, virtual_dwo_name);
8673 /* Can we use an existing virtual DWO file? */
8674 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8675 /* Create one if necessary. */
8676 if (*dwo_file_slot == NULL)
8678 if (dwarf2_read_debug)
8680 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8683 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8684 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8686 strlen (virtual_dwo_name));
8687 dwo_file->sections.abbrev = sections.abbrev;
8688 dwo_file->sections.line = sections.line;
8689 dwo_file->sections.loc = sections.loc;
8690 dwo_file->sections.macinfo = sections.macinfo;
8691 dwo_file->sections.macro = sections.macro;
8692 dwo_file->sections.str_offsets = sections.str_offsets;
8693 /* The "str" section is global to the entire DWP file. */
8694 dwo_file->sections.str = dwp_file->sections.str;
8695 /* The info or types section is assigned later to dwo_unit,
8696 there's no need to record it in dwo_file.
8697 Also, we can't simply record type sections in dwo_file because
8698 we record a pointer into the vector in dwo_unit. As we collect more
8699 types we'll grow the vector and eventually have to reallocate space
8700 for it, invalidating all the pointers into the current copy. */
8701 *dwo_file_slot = dwo_file;
8705 if (dwarf2_read_debug)
8707 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8710 dwo_file = *dwo_file_slot;
8712 do_cleanups (cleanups);
8714 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8715 dwo_unit->dwo_file = dwo_file;
8716 dwo_unit->signature = signature;
8717 dwo_unit->info_or_types_section =
8718 obstack_alloc (&objfile->objfile_obstack,
8719 sizeof (struct dwarf2_section_info));
8720 *dwo_unit->info_or_types_section = sections.info_or_types;
8721 /* offset, length, type_offset_in_tu are set later. */
8726 /* Lookup the DWO with SIGNATURE in DWP_FILE. */
8728 static struct dwo_unit *
8729 lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8730 const struct dwp_hash_table *htab,
8731 ULONGEST signature, int is_debug_types)
8733 bfd *dbfd = dwp_file->dbfd;
8734 uint32_t mask = htab->nr_slots - 1;
8735 uint32_t hash = signature & mask;
8736 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8739 struct dwo_unit find_dwo_cu, *dwo_cu;
8741 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8742 find_dwo_cu.signature = signature;
8743 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8748 /* Use a for loop so that we don't loop forever on bad debug info. */
8749 for (i = 0; i < htab->nr_slots; ++i)
8751 ULONGEST signature_in_table;
8753 signature_in_table =
8754 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8755 if (signature_in_table == signature)
8757 uint32_t section_index =
8758 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8760 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8761 signature, is_debug_types);
8764 if (signature_in_table == 0)
8766 hash = (hash + hash2) & mask;
8769 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8774 /* Subroutine of open_dwop_file to simplify it.
8775 Open the file specified by FILE_NAME and hand it off to BFD for
8776 preliminary analysis. Return a newly initialized bfd *, which
8777 includes a canonicalized copy of FILE_NAME.
8778 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8779 In case of trouble, return NULL.
8780 NOTE: This function is derived from symfile_bfd_open. */
8783 try_open_dwop_file (const char *file_name, int is_dwp)
8787 char *absolute_name;
8789 flags = OPF_TRY_CWD_FIRST;
8791 flags |= OPF_SEARCH_IN_PATH;
8792 desc = openp (debug_file_directory, flags, file_name,
8793 O_RDONLY | O_BINARY, &absolute_name);
8797 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
8800 xfree (absolute_name);
8803 xfree (absolute_name);
8804 bfd_set_cacheable (sym_bfd, 1);
8806 if (!bfd_check_format (sym_bfd, bfd_object))
8808 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
8815 /* Try to open DWO/DWP file FILE_NAME.
8816 COMP_DIR is the DW_AT_comp_dir attribute.
8817 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
8818 The result is the bfd handle of the file.
8819 If there is a problem finding or opening the file, return NULL.
8820 Upon success, the canonicalized path of the file is stored in the bfd,
8821 same as symfile_bfd_open. */
8824 open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
8828 if (IS_ABSOLUTE_PATH (file_name))
8829 return try_open_dwop_file (file_name, is_dwp);
8831 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8833 if (comp_dir != NULL)
8835 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
8837 /* NOTE: If comp_dir is a relative path, this will also try the
8838 search path, which seems useful. */
8839 abfd = try_open_dwop_file (path_to_try, is_dwp);
8840 xfree (path_to_try);
8845 /* That didn't work, try debug-file-directory, which, despite its name,
8846 is a list of paths. */
8848 if (*debug_file_directory == '\0')
8851 return try_open_dwop_file (file_name, is_dwp);
8854 /* This function is mapped across the sections and remembers the offset and
8855 size of each of the DWO debugging sections we are interested in. */
8858 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8860 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8861 const struct dwop_section_names *names = &dwop_section_names;
8863 if (section_is_p (sectp->name, &names->abbrev_dwo))
8865 dwo_sections->abbrev.asection = sectp;
8866 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8868 else if (section_is_p (sectp->name, &names->info_dwo))
8870 dwo_sections->info.asection = sectp;
8871 dwo_sections->info.size = bfd_get_section_size (sectp);
8873 else if (section_is_p (sectp->name, &names->line_dwo))
8875 dwo_sections->line.asection = sectp;
8876 dwo_sections->line.size = bfd_get_section_size (sectp);
8878 else if (section_is_p (sectp->name, &names->loc_dwo))
8880 dwo_sections->loc.asection = sectp;
8881 dwo_sections->loc.size = bfd_get_section_size (sectp);
8883 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8885 dwo_sections->macinfo.asection = sectp;
8886 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8888 else if (section_is_p (sectp->name, &names->macro_dwo))
8890 dwo_sections->macro.asection = sectp;
8891 dwo_sections->macro.size = bfd_get_section_size (sectp);
8893 else if (section_is_p (sectp->name, &names->str_dwo))
8895 dwo_sections->str.asection = sectp;
8896 dwo_sections->str.size = bfd_get_section_size (sectp);
8898 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8900 dwo_sections->str_offsets.asection = sectp;
8901 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8903 else if (section_is_p (sectp->name, &names->types_dwo))
8905 struct dwarf2_section_info type_section;
8907 memset (&type_section, 0, sizeof (type_section));
8908 type_section.asection = sectp;
8909 type_section.size = bfd_get_section_size (sectp);
8910 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8915 /* Initialize the use of the DWO file specified by DWO_NAME.
8916 The result is NULL if DWO_NAME can't be found. */
8918 static struct dwo_file *
8919 open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
8921 struct objfile *objfile = dwarf2_per_objfile->objfile;
8922 struct dwo_file *dwo_file;
8924 struct cleanup *cleanups;
8926 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8929 if (dwarf2_read_debug)
8930 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8933 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8934 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8935 dwo_name, strlen (dwo_name));
8936 dwo_file->dbfd = dbfd;
8938 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8940 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
8942 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
8944 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8945 dwo_file->sections.types);
8947 discard_cleanups (cleanups);
8949 if (dwarf2_read_debug)
8950 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8955 /* This function is mapped across the sections and remembers the offset and
8956 size of each of the DWP debugging sections we are interested in. */
8959 dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
8961 struct dwp_file *dwp_file = dwp_file_ptr;
8962 const struct dwop_section_names *names = &dwop_section_names;
8963 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
8965 /* Record the ELF section number for later lookup: this is what the
8966 .debug_cu_index,.debug_tu_index tables use. */
8967 gdb_assert (elf_section_nr < dwp_file->num_sections);
8968 dwp_file->elf_sections[elf_section_nr] = sectp;
8970 /* Look for specific sections that we need. */
8971 if (section_is_p (sectp->name, &names->str_dwo))
8973 dwp_file->sections.str.asection = sectp;
8974 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8976 else if (section_is_p (sectp->name, &names->cu_index))
8978 dwp_file->sections.cu_index.asection = sectp;
8979 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8981 else if (section_is_p (sectp->name, &names->tu_index))
8983 dwp_file->sections.tu_index.asection = sectp;
8984 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8988 /* Hash function for dwp_file loaded CUs/TUs. */
8991 hash_dwp_loaded_cutus (const void *item)
8993 const struct dwo_unit *dwo_unit = item;
8995 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8996 return dwo_unit->signature;
8999 /* Equality function for dwp_file loaded CUs/TUs. */
9002 eq_dwp_loaded_cutus (const void *a, const void *b)
9004 const struct dwo_unit *dua = a;
9005 const struct dwo_unit *dub = b;
9007 return dua->signature == dub->signature;
9010 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
9013 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
9015 return htab_create_alloc_ex (3,
9016 hash_dwp_loaded_cutus,
9017 eq_dwp_loaded_cutus,
9019 &objfile->objfile_obstack,
9020 hashtab_obstack_allocate,
9021 dummy_obstack_deallocate);
9024 /* Initialize the use of the DWP file for the current objfile.
9025 By convention the name of the DWP file is ${objfile}.dwp.
9026 The result is NULL if it can't be found. */
9028 static struct dwp_file *
9029 open_and_init_dwp_file (const char *comp_dir)
9031 struct objfile *objfile = dwarf2_per_objfile->objfile;
9032 struct dwp_file *dwp_file;
9035 struct cleanup *cleanups;
9037 dwp_name = xstrprintf ("%s.dwp", dwarf2_per_objfile->objfile->name);
9038 cleanups = make_cleanup (xfree, dwp_name);
9040 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
9043 if (dwarf2_read_debug)
9044 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
9045 do_cleanups (cleanups);
9048 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
9049 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
9050 dwp_name, strlen (dwp_name));
9051 dwp_file->dbfd = dbfd;
9052 do_cleanups (cleanups);
9054 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
9056 /* +1: section 0 is unused */
9057 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9058 dwp_file->elf_sections =
9059 OBSTACK_CALLOC (&objfile->objfile_obstack,
9060 dwp_file->num_sections, asection *);
9062 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9064 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9066 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9068 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9070 discard_cleanups (cleanups);
9072 if (dwarf2_read_debug)
9074 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9075 fprintf_unfiltered (gdb_stdlog,
9076 " %u CUs, %u TUs\n",
9077 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9078 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9084 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9085 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9086 or in the DWP file for the objfile, referenced by THIS_UNIT.
9087 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
9088 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9090 This is called, for example, when wanting to read a variable with a
9091 complex location. Therefore we don't want to do file i/o for every call.
9092 Therefore we don't want to look for a DWO file on every call.
9093 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9094 then we check if we've already seen DWO_NAME, and only THEN do we check
9097 The result is a pointer to the dwo_unit object or NULL if we didn't find it
9098 (dwo_id mismatch or couldn't find the DWO/DWP file). */
9100 static struct dwo_unit *
9101 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9102 const char *dwo_name, const char *comp_dir,
9103 ULONGEST signature, int is_debug_types)
9105 struct objfile *objfile = dwarf2_per_objfile->objfile;
9106 const char *kind = is_debug_types ? "TU" : "CU";
9107 void **dwo_file_slot;
9108 struct dwo_file *dwo_file;
9109 struct dwp_file *dwp_file;
9111 /* Have we already read SIGNATURE from a DWP file? */
9113 if (! dwarf2_per_objfile->dwp_checked)
9115 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9116 dwarf2_per_objfile->dwp_checked = 1;
9118 dwp_file = dwarf2_per_objfile->dwp_file;
9120 if (dwp_file != NULL)
9122 const struct dwp_hash_table *dwp_htab =
9123 is_debug_types ? dwp_file->tus : dwp_file->cus;
9125 if (dwp_htab != NULL)
9127 struct dwo_unit *dwo_cutu =
9128 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9130 if (dwo_cutu != NULL)
9132 if (dwarf2_read_debug)
9134 fprintf_unfiltered (gdb_stdlog,
9135 "Virtual DWO %s %s found: @%s\n",
9136 kind, hex_string (signature),
9137 host_address_to_string (dwo_cutu));
9144 /* Have we already seen DWO_NAME? */
9146 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9147 if (*dwo_file_slot == NULL)
9149 /* Read in the file and build a table of the DWOs it contains. */
9150 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9152 /* NOTE: This will be NULL if unable to open the file. */
9153 dwo_file = *dwo_file_slot;
9155 if (dwo_file != NULL)
9157 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9161 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9163 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9164 find_dwo_cutu.signature = signature;
9165 dwo_cutu = htab_find (htab, &find_dwo_cutu);
9167 if (dwo_cutu != NULL)
9169 if (dwarf2_read_debug)
9171 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9172 kind, dwo_name, hex_string (signature),
9173 host_address_to_string (dwo_cutu));
9180 /* We didn't find it. This could mean a dwo_id mismatch, or
9181 someone deleted the DWO/DWP file, or the search path isn't set up
9182 correctly to find the file. */
9184 if (dwarf2_read_debug)
9186 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9187 kind, dwo_name, hex_string (signature));
9190 complaint (&symfile_complaints,
9191 _("Could not find DWO CU referenced by CU at offset 0x%x"
9193 this_unit->offset.sect_off, objfile->name);
9197 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9198 See lookup_dwo_cutu_unit for details. */
9200 static struct dwo_unit *
9201 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9202 const char *dwo_name, const char *comp_dir,
9205 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9208 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9209 See lookup_dwo_cutu_unit for details. */
9211 static struct dwo_unit *
9212 lookup_dwo_type_unit (struct signatured_type *this_tu,
9213 const char *dwo_name, const char *comp_dir)
9215 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9218 /* Free all resources associated with DWO_FILE.
9219 Close the DWO file and munmap the sections.
9220 All memory should be on the objfile obstack. */
9223 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
9226 struct dwarf2_section_info *section;
9228 gdb_bfd_unref (dwo_file->dbfd);
9230 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9233 /* Wrapper for free_dwo_file for use in cleanups. */
9236 free_dwo_file_cleanup (void *arg)
9238 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9239 struct objfile *objfile = dwarf2_per_objfile->objfile;
9241 free_dwo_file (dwo_file, objfile);
9244 /* Traversal function for free_dwo_files. */
9247 free_dwo_file_from_slot (void **slot, void *info)
9249 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9250 struct objfile *objfile = (struct objfile *) info;
9252 free_dwo_file (dwo_file, objfile);
9257 /* Free all resources associated with DWO_FILES. */
9260 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9262 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
9265 /* Read in various DIEs. */
9267 /* qsort helper for inherit_abstract_dies. */
9270 unsigned_int_compar (const void *ap, const void *bp)
9272 unsigned int a = *(unsigned int *) ap;
9273 unsigned int b = *(unsigned int *) bp;
9275 return (a > b) - (b > a);
9278 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
9279 Inherit only the children of the DW_AT_abstract_origin DIE not being
9280 already referenced by DW_AT_abstract_origin from the children of the
9284 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9286 struct die_info *child_die;
9287 unsigned die_children_count;
9288 /* CU offsets which were referenced by children of the current DIE. */
9289 sect_offset *offsets;
9290 sect_offset *offsets_end, *offsetp;
9291 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9292 struct die_info *origin_die;
9293 /* Iterator of the ORIGIN_DIE children. */
9294 struct die_info *origin_child_die;
9295 struct cleanup *cleanups;
9296 struct attribute *attr;
9297 struct dwarf2_cu *origin_cu;
9298 struct pending **origin_previous_list_in_scope;
9300 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9304 /* Note that following die references may follow to a die in a
9308 origin_die = follow_die_ref (die, attr, &origin_cu);
9310 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9312 origin_previous_list_in_scope = origin_cu->list_in_scope;
9313 origin_cu->list_in_scope = cu->list_in_scope;
9315 if (die->tag != origin_die->tag
9316 && !(die->tag == DW_TAG_inlined_subroutine
9317 && origin_die->tag == DW_TAG_subprogram))
9318 complaint (&symfile_complaints,
9319 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9320 die->offset.sect_off, origin_die->offset.sect_off);
9322 child_die = die->child;
9323 die_children_count = 0;
9324 while (child_die && child_die->tag)
9326 child_die = sibling_die (child_die);
9327 die_children_count++;
9329 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9330 cleanups = make_cleanup (xfree, offsets);
9332 offsets_end = offsets;
9333 child_die = die->child;
9334 while (child_die && child_die->tag)
9336 /* For each CHILD_DIE, find the corresponding child of
9337 ORIGIN_DIE. If there is more than one layer of
9338 DW_AT_abstract_origin, follow them all; there shouldn't be,
9339 but GCC versions at least through 4.4 generate this (GCC PR
9341 struct die_info *child_origin_die = child_die;
9342 struct dwarf2_cu *child_origin_cu = cu;
9346 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9350 child_origin_die = follow_die_ref (child_origin_die, attr,
9354 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9355 counterpart may exist. */
9356 if (child_origin_die != child_die)
9358 if (child_die->tag != child_origin_die->tag
9359 && !(child_die->tag == DW_TAG_inlined_subroutine
9360 && child_origin_die->tag == DW_TAG_subprogram))
9361 complaint (&symfile_complaints,
9362 _("Child DIE 0x%x and its abstract origin 0x%x have "
9363 "different tags"), child_die->offset.sect_off,
9364 child_origin_die->offset.sect_off);
9365 if (child_origin_die->parent != origin_die)
9366 complaint (&symfile_complaints,
9367 _("Child DIE 0x%x and its abstract origin 0x%x have "
9368 "different parents"), child_die->offset.sect_off,
9369 child_origin_die->offset.sect_off);
9371 *offsets_end++ = child_origin_die->offset;
9373 child_die = sibling_die (child_die);
9375 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9376 unsigned_int_compar);
9377 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9378 if (offsetp[-1].sect_off == offsetp->sect_off)
9379 complaint (&symfile_complaints,
9380 _("Multiple children of DIE 0x%x refer "
9381 "to DIE 0x%x as their abstract origin"),
9382 die->offset.sect_off, offsetp->sect_off);
9385 origin_child_die = origin_die->child;
9386 while (origin_child_die && origin_child_die->tag)
9388 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
9389 while (offsetp < offsets_end
9390 && offsetp->sect_off < origin_child_die->offset.sect_off)
9392 if (offsetp >= offsets_end
9393 || offsetp->sect_off > origin_child_die->offset.sect_off)
9395 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
9396 process_die (origin_child_die, origin_cu);
9398 origin_child_die = sibling_die (origin_child_die);
9400 origin_cu->list_in_scope = origin_previous_list_in_scope;
9402 do_cleanups (cleanups);
9406 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
9408 struct objfile *objfile = cu->objfile;
9409 struct context_stack *new;
9412 struct die_info *child_die;
9413 struct attribute *attr, *call_line, *call_file;
9416 struct block *block;
9417 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
9418 VEC (symbolp) *template_args = NULL;
9419 struct template_symbol *templ_func = NULL;
9423 /* If we do not have call site information, we can't show the
9424 caller of this inlined function. That's too confusing, so
9425 only use the scope for local variables. */
9426 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9427 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9428 if (call_line == NULL || call_file == NULL)
9430 read_lexical_block_scope (die, cu);
9435 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9437 name = dwarf2_name (die, cu);
9439 /* Ignore functions with missing or empty names. These are actually
9440 illegal according to the DWARF standard. */
9443 complaint (&symfile_complaints,
9444 _("missing name for subprogram DIE at %d"),
9445 die->offset.sect_off);
9449 /* Ignore functions with missing or invalid low and high pc attributes. */
9450 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9452 attr = dwarf2_attr (die, DW_AT_external, cu);
9453 if (!attr || !DW_UNSND (attr))
9454 complaint (&symfile_complaints,
9455 _("cannot get low and high bounds "
9456 "for subprogram DIE at %d"),
9457 die->offset.sect_off);
9464 /* If we have any template arguments, then we must allocate a
9465 different sort of symbol. */
9466 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9468 if (child_die->tag == DW_TAG_template_type_param
9469 || child_die->tag == DW_TAG_template_value_param)
9471 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9472 struct template_symbol);
9473 templ_func->base.is_cplus_template_function = 1;
9478 new = push_context (0, lowpc);
9479 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9480 (struct symbol *) templ_func);
9482 /* If there is a location expression for DW_AT_frame_base, record
9484 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
9486 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9487 expression is being recorded directly in the function's symbol
9488 and not in a separate frame-base object. I guess this hack is
9489 to avoid adding some sort of frame-base adjunct/annex to the
9490 function's symbol :-(. The problem with doing this is that it
9491 results in a function symbol with a location expression that
9492 has nothing to do with the location of the function, ouch! The
9493 relationship should be: a function's symbol has-a frame base; a
9494 frame-base has-a location expression. */
9495 dwarf2_symbol_mark_computed (attr, new->name, cu);
9497 cu->list_in_scope = &local_symbols;
9499 if (die->child != NULL)
9501 child_die = die->child;
9502 while (child_die && child_die->tag)
9504 if (child_die->tag == DW_TAG_template_type_param
9505 || child_die->tag == DW_TAG_template_value_param)
9507 struct symbol *arg = new_symbol (child_die, NULL, cu);
9510 VEC_safe_push (symbolp, template_args, arg);
9513 process_die (child_die, cu);
9514 child_die = sibling_die (child_die);
9518 inherit_abstract_dies (die, cu);
9520 /* If we have a DW_AT_specification, we might need to import using
9521 directives from the context of the specification DIE. See the
9522 comment in determine_prefix. */
9523 if (cu->language == language_cplus
9524 && dwarf2_attr (die, DW_AT_specification, cu))
9526 struct dwarf2_cu *spec_cu = cu;
9527 struct die_info *spec_die = die_specification (die, &spec_cu);
9531 child_die = spec_die->child;
9532 while (child_die && child_die->tag)
9534 if (child_die->tag == DW_TAG_imported_module)
9535 process_die (child_die, spec_cu);
9536 child_die = sibling_die (child_die);
9539 /* In some cases, GCC generates specification DIEs that
9540 themselves contain DW_AT_specification attributes. */
9541 spec_die = die_specification (spec_die, &spec_cu);
9545 new = pop_context ();
9546 /* Make a block for the local symbols within. */
9547 block = finish_block (new->name, &local_symbols, new->old_blocks,
9548 lowpc, highpc, objfile);
9550 /* For C++, set the block's scope. */
9551 if ((cu->language == language_cplus || cu->language == language_fortran)
9552 && cu->processing_has_namespace_info)
9553 block_set_scope (block, determine_prefix (die, cu),
9554 &objfile->objfile_obstack);
9556 /* If we have address ranges, record them. */
9557 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9559 /* Attach template arguments to function. */
9560 if (! VEC_empty (symbolp, template_args))
9562 gdb_assert (templ_func != NULL);
9564 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9565 templ_func->template_arguments
9566 = obstack_alloc (&objfile->objfile_obstack,
9567 (templ_func->n_template_arguments
9568 * sizeof (struct symbol *)));
9569 memcpy (templ_func->template_arguments,
9570 VEC_address (symbolp, template_args),
9571 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9572 VEC_free (symbolp, template_args);
9575 /* In C++, we can have functions nested inside functions (e.g., when
9576 a function declares a class that has methods). This means that
9577 when we finish processing a function scope, we may need to go
9578 back to building a containing block's symbol lists. */
9579 local_symbols = new->locals;
9580 using_directives = new->using_directives;
9582 /* If we've finished processing a top-level function, subsequent
9583 symbols go in the file symbol list. */
9584 if (outermost_context_p ())
9585 cu->list_in_scope = &file_symbols;
9588 /* Process all the DIES contained within a lexical block scope. Start
9589 a new scope, process the dies, and then close the scope. */
9592 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
9594 struct objfile *objfile = cu->objfile;
9595 struct context_stack *new;
9596 CORE_ADDR lowpc, highpc;
9597 struct die_info *child_die;
9600 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9602 /* Ignore blocks with missing or invalid low and high pc attributes. */
9603 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9604 as multiple lexical blocks? Handling children in a sane way would
9605 be nasty. Might be easier to properly extend generic blocks to
9607 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9612 push_context (0, lowpc);
9613 if (die->child != NULL)
9615 child_die = die->child;
9616 while (child_die && child_die->tag)
9618 process_die (child_die, cu);
9619 child_die = sibling_die (child_die);
9622 new = pop_context ();
9624 if (local_symbols != NULL || using_directives != NULL)
9627 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9630 /* Note that recording ranges after traversing children, as we
9631 do here, means that recording a parent's ranges entails
9632 walking across all its children's ranges as they appear in
9633 the address map, which is quadratic behavior.
9635 It would be nicer to record the parent's ranges before
9636 traversing its children, simply overriding whatever you find
9637 there. But since we don't even decide whether to create a
9638 block until after we've traversed its children, that's hard
9640 dwarf2_record_block_ranges (die, block, baseaddr, cu);
9642 local_symbols = new->locals;
9643 using_directives = new->using_directives;
9646 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9649 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9651 struct objfile *objfile = cu->objfile;
9652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9653 CORE_ADDR pc, baseaddr;
9654 struct attribute *attr;
9655 struct call_site *call_site, call_site_local;
9658 struct die_info *child_die;
9660 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9662 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9665 complaint (&symfile_complaints,
9666 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9667 "DIE 0x%x [in module %s]"),
9668 die->offset.sect_off, objfile->name);
9671 pc = DW_ADDR (attr) + baseaddr;
9673 if (cu->call_site_htab == NULL)
9674 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9675 NULL, &objfile->objfile_obstack,
9676 hashtab_obstack_allocate, NULL);
9677 call_site_local.pc = pc;
9678 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9681 complaint (&symfile_complaints,
9682 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9683 "DIE 0x%x [in module %s]"),
9684 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
9688 /* Count parameters at the caller. */
9691 for (child_die = die->child; child_die && child_die->tag;
9692 child_die = sibling_die (child_die))
9694 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9696 complaint (&symfile_complaints,
9697 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9698 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9699 child_die->tag, child_die->offset.sect_off, objfile->name);
9706 call_site = obstack_alloc (&objfile->objfile_obstack,
9707 (sizeof (*call_site)
9708 + (sizeof (*call_site->parameter)
9711 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9714 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9716 struct die_info *func_die;
9718 /* Skip also over DW_TAG_inlined_subroutine. */
9719 for (func_die = die->parent;
9720 func_die && func_die->tag != DW_TAG_subprogram
9721 && func_die->tag != DW_TAG_subroutine_type;
9722 func_die = func_die->parent);
9724 /* DW_AT_GNU_all_call_sites is a superset
9725 of DW_AT_GNU_all_tail_call_sites. */
9727 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9728 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9730 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9731 not complete. But keep CALL_SITE for look ups via call_site_htab,
9732 both the initial caller containing the real return address PC and
9733 the final callee containing the current PC of a chain of tail
9734 calls do not need to have the tail call list complete. But any
9735 function candidate for a virtual tail call frame searched via
9736 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9737 determined unambiguously. */
9741 struct type *func_type = NULL;
9744 func_type = get_die_type (func_die, cu);
9745 if (func_type != NULL)
9747 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9749 /* Enlist this call site to the function. */
9750 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9751 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9754 complaint (&symfile_complaints,
9755 _("Cannot find function owning DW_TAG_GNU_call_site "
9756 "DIE 0x%x [in module %s]"),
9757 die->offset.sect_off, objfile->name);
9761 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9763 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9764 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9765 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9766 /* Keep NULL DWARF_BLOCK. */;
9767 else if (attr_form_is_block (attr))
9769 struct dwarf2_locexpr_baton *dlbaton;
9771 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9772 dlbaton->data = DW_BLOCK (attr)->data;
9773 dlbaton->size = DW_BLOCK (attr)->size;
9774 dlbaton->per_cu = cu->per_cu;
9776 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9778 else if (is_ref_attr (attr))
9780 struct dwarf2_cu *target_cu = cu;
9781 struct die_info *target_die;
9783 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9784 gdb_assert (target_cu->objfile == objfile);
9785 if (die_is_declaration (target_die, target_cu))
9787 const char *target_physname;
9789 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9790 if (target_physname == NULL)
9791 complaint (&symfile_complaints,
9792 _("DW_AT_GNU_call_site_target target DIE has invalid "
9793 "physname, for referencing DIE 0x%x [in module %s]"),
9794 die->offset.sect_off, objfile->name);
9796 SET_FIELD_PHYSNAME (call_site->target, target_physname);
9802 /* DW_AT_entry_pc should be preferred. */
9803 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9804 complaint (&symfile_complaints,
9805 _("DW_AT_GNU_call_site_target target DIE has invalid "
9806 "low pc, for referencing DIE 0x%x [in module %s]"),
9807 die->offset.sect_off, objfile->name);
9809 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9813 complaint (&symfile_complaints,
9814 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9815 "block nor reference, for DIE 0x%x [in module %s]"),
9816 die->offset.sect_off, objfile->name);
9818 call_site->per_cu = cu->per_cu;
9820 for (child_die = die->child;
9821 child_die && child_die->tag;
9822 child_die = sibling_die (child_die))
9824 struct call_site_parameter *parameter;
9825 struct attribute *loc, *origin;
9827 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9829 /* Already printed the complaint above. */
9833 gdb_assert (call_site->parameter_count < nparams);
9834 parameter = &call_site->parameter[call_site->parameter_count];
9836 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9837 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9838 register is contained in DW_AT_GNU_call_site_value. */
9840 loc = dwarf2_attr (child_die, DW_AT_location, cu);
9841 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9842 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9846 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9847 offset = dwarf2_get_ref_die_offset (origin);
9848 if (!offset_in_cu_p (&cu->header, offset))
9850 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9851 binding can be done only inside one CU. Such referenced DIE
9852 therefore cannot be even moved to DW_TAG_partial_unit. */
9853 complaint (&symfile_complaints,
9854 _("DW_AT_abstract_origin offset is not in CU for "
9855 "DW_TAG_GNU_call_site child DIE 0x%x "
9857 child_die->offset.sect_off, objfile->name);
9860 parameter->u.param_offset.cu_off = (offset.sect_off
9861 - cu->header.offset.sect_off);
9863 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
9865 complaint (&symfile_complaints,
9866 _("No DW_FORM_block* DW_AT_location for "
9867 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9868 child_die->offset.sect_off, objfile->name);
9873 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9874 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9875 if (parameter->u.dwarf_reg != -1)
9876 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9877 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9878 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9879 ¶meter->u.fb_offset))
9880 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9883 complaint (&symfile_complaints,
9884 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9885 "for DW_FORM_block* DW_AT_location is supported for "
9886 "DW_TAG_GNU_call_site child DIE 0x%x "
9888 child_die->offset.sect_off, objfile->name);
9893 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9894 if (!attr_form_is_block (attr))
9896 complaint (&symfile_complaints,
9897 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9898 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9899 child_die->offset.sect_off, objfile->name);
9902 parameter->value = DW_BLOCK (attr)->data;
9903 parameter->value_size = DW_BLOCK (attr)->size;
9905 /* Parameters are not pre-cleared by memset above. */
9906 parameter->data_value = NULL;
9907 parameter->data_value_size = 0;
9908 call_site->parameter_count++;
9910 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9913 if (!attr_form_is_block (attr))
9914 complaint (&symfile_complaints,
9915 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9916 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
9917 child_die->offset.sect_off, objfile->name);
9920 parameter->data_value = DW_BLOCK (attr)->data;
9921 parameter->data_value_size = DW_BLOCK (attr)->size;
9927 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
9928 Return 1 if the attributes are present and valid, otherwise, return 0.
9929 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
9932 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
9933 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9934 struct partial_symtab *ranges_pst)
9936 struct objfile *objfile = cu->objfile;
9937 struct comp_unit_head *cu_header = &cu->header;
9938 bfd *obfd = objfile->obfd;
9939 unsigned int addr_size = cu_header->addr_size;
9940 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9941 /* Base address selection entry. */
9952 found_base = cu->base_known;
9953 base = cu->base_address;
9955 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
9956 if (offset >= dwarf2_per_objfile->ranges.size)
9958 complaint (&symfile_complaints,
9959 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9963 buffer = dwarf2_per_objfile->ranges.buffer + offset;
9965 /* Read in the largest possible address. */
9966 marker = read_address (obfd, buffer, cu, &dummy);
9967 if ((marker & mask) == mask)
9969 /* If we found the largest possible address, then
9970 read the base address. */
9971 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9972 buffer += 2 * addr_size;
9973 offset += 2 * addr_size;
9979 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9983 CORE_ADDR range_beginning, range_end;
9985 range_beginning = read_address (obfd, buffer, cu, &dummy);
9986 buffer += addr_size;
9987 range_end = read_address (obfd, buffer, cu, &dummy);
9988 buffer += addr_size;
9989 offset += 2 * addr_size;
9991 /* An end of list marker is a pair of zero addresses. */
9992 if (range_beginning == 0 && range_end == 0)
9993 /* Found the end of list entry. */
9996 /* Each base address selection entry is a pair of 2 values.
9997 The first is the largest possible address, the second is
9998 the base address. Check for a base address here. */
9999 if ((range_beginning & mask) == mask)
10001 /* If we found the largest possible address, then
10002 read the base address. */
10003 base = read_address (obfd, buffer + addr_size, cu, &dummy);
10010 /* We have no valid base address for the ranges
10012 complaint (&symfile_complaints,
10013 _("Invalid .debug_ranges data (no base address)"));
10017 if (range_beginning > range_end)
10019 /* Inverted range entries are invalid. */
10020 complaint (&symfile_complaints,
10021 _("Invalid .debug_ranges data (inverted range)"));
10025 /* Empty range entries have no effect. */
10026 if (range_beginning == range_end)
10029 range_beginning += base;
10032 /* A not-uncommon case of bad debug info.
10033 Don't pollute the addrmap with bad data. */
10034 if (range_beginning + baseaddr == 0
10035 && !dwarf2_per_objfile->has_section_at_zero)
10037 complaint (&symfile_complaints,
10038 _(".debug_ranges entry has start address of zero"
10039 " [in module %s]"), objfile->name);
10043 if (ranges_pst != NULL)
10044 addrmap_set_empty (objfile->psymtabs_addrmap,
10045 range_beginning + baseaddr,
10046 range_end - 1 + baseaddr,
10049 /* FIXME: This is recording everything as a low-high
10050 segment of consecutive addresses. We should have a
10051 data structure for discontiguous block ranges
10055 low = range_beginning;
10061 if (range_beginning < low)
10062 low = range_beginning;
10063 if (range_end > high)
10069 /* If the first entry is an end-of-list marker, the range
10070 describes an empty scope, i.e. no instructions. */
10076 *high_return = high;
10080 /* Get low and high pc attributes from a die. Return 1 if the attributes
10081 are present and valid, otherwise, return 0. Return -1 if the range is
10082 discontinuous, i.e. derived from DW_AT_ranges information. */
10085 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
10086 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10087 struct partial_symtab *pst)
10089 struct attribute *attr;
10090 struct attribute *attr_high;
10092 CORE_ADDR high = 0;
10095 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10098 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10101 low = DW_ADDR (attr);
10102 if (attr_high->form == DW_FORM_addr
10103 || attr_high->form == DW_FORM_GNU_addr_index)
10104 high = DW_ADDR (attr_high);
10106 high = low + DW_UNSND (attr_high);
10109 /* Found high w/o low attribute. */
10112 /* Found consecutive range of addresses. */
10117 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10120 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10121 We take advantage of the fact that DW_AT_ranges does not appear
10122 in DW_TAG_compile_unit of DWO files. */
10123 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10124 unsigned int ranges_offset = (DW_UNSND (attr)
10125 + (need_ranges_base
10129 /* Value of the DW_AT_ranges attribute is the offset in the
10130 .debug_ranges section. */
10131 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
10133 /* Found discontinuous range of addresses. */
10138 /* read_partial_die has also the strict LOW < HIGH requirement. */
10142 /* When using the GNU linker, .gnu.linkonce. sections are used to
10143 eliminate duplicate copies of functions and vtables and such.
10144 The linker will arbitrarily choose one and discard the others.
10145 The AT_*_pc values for such functions refer to local labels in
10146 these sections. If the section from that file was discarded, the
10147 labels are not in the output, so the relocs get a value of 0.
10148 If this is a discarded function, mark the pc bounds as invalid,
10149 so that GDB will ignore it. */
10150 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
10159 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
10160 its low and high PC addresses. Do nothing if these addresses could not
10161 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10162 and HIGHPC to the high address if greater than HIGHPC. */
10165 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10166 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10167 struct dwarf2_cu *cu)
10169 CORE_ADDR low, high;
10170 struct die_info *child = die->child;
10172 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
10174 *lowpc = min (*lowpc, low);
10175 *highpc = max (*highpc, high);
10178 /* If the language does not allow nested subprograms (either inside
10179 subprograms or lexical blocks), we're done. */
10180 if (cu->language != language_ada)
10183 /* Check all the children of the given DIE. If it contains nested
10184 subprograms, then check their pc bounds. Likewise, we need to
10185 check lexical blocks as well, as they may also contain subprogram
10187 while (child && child->tag)
10189 if (child->tag == DW_TAG_subprogram
10190 || child->tag == DW_TAG_lexical_block)
10191 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10192 child = sibling_die (child);
10196 /* Get the low and high pc's represented by the scope DIE, and store
10197 them in *LOWPC and *HIGHPC. If the correct values can't be
10198 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10201 get_scope_pc_bounds (struct die_info *die,
10202 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10203 struct dwarf2_cu *cu)
10205 CORE_ADDR best_low = (CORE_ADDR) -1;
10206 CORE_ADDR best_high = (CORE_ADDR) 0;
10207 CORE_ADDR current_low, current_high;
10209 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
10211 best_low = current_low;
10212 best_high = current_high;
10216 struct die_info *child = die->child;
10218 while (child && child->tag)
10220 switch (child->tag) {
10221 case DW_TAG_subprogram:
10222 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
10224 case DW_TAG_namespace:
10225 case DW_TAG_module:
10226 /* FIXME: carlton/2004-01-16: Should we do this for
10227 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10228 that current GCC's always emit the DIEs corresponding
10229 to definitions of methods of classes as children of a
10230 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10231 the DIEs giving the declarations, which could be
10232 anywhere). But I don't see any reason why the
10233 standards says that they have to be there. */
10234 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
10236 if (current_low != ((CORE_ADDR) -1))
10238 best_low = min (best_low, current_low);
10239 best_high = max (best_high, current_high);
10247 child = sibling_die (child);
10252 *highpc = best_high;
10255 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
10259 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10260 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10262 struct objfile *objfile = cu->objfile;
10263 struct attribute *attr;
10264 struct attribute *attr_high;
10266 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10269 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10272 CORE_ADDR low = DW_ADDR (attr);
10274 if (attr_high->form == DW_FORM_addr
10275 || attr_high->form == DW_FORM_GNU_addr_index)
10276 high = DW_ADDR (attr_high);
10278 high = low + DW_UNSND (attr_high);
10280 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10284 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10287 bfd *obfd = objfile->obfd;
10288 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
10289 We take advantage of the fact that DW_AT_ranges does not appear
10290 in DW_TAG_compile_unit of DWO files. */
10291 int need_ranges_base = die->tag != DW_TAG_compile_unit;
10293 /* The value of the DW_AT_ranges attribute is the offset of the
10294 address range list in the .debug_ranges section. */
10295 unsigned long offset = (DW_UNSND (attr)
10296 + (need_ranges_base ? cu->ranges_base : 0));
10297 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
10299 /* For some target architectures, but not others, the
10300 read_address function sign-extends the addresses it returns.
10301 To recognize base address selection entries, we need a
10303 unsigned int addr_size = cu->header.addr_size;
10304 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10306 /* The base address, to which the next pair is relative. Note
10307 that this 'base' is a DWARF concept: most entries in a range
10308 list are relative, to reduce the number of relocs against the
10309 debugging information. This is separate from this function's
10310 'baseaddr' argument, which GDB uses to relocate debugging
10311 information from a shared library based on the address at
10312 which the library was loaded. */
10313 CORE_ADDR base = cu->base_address;
10314 int base_known = cu->base_known;
10316 gdb_assert (dwarf2_per_objfile->ranges.readin);
10317 if (offset >= dwarf2_per_objfile->ranges.size)
10319 complaint (&symfile_complaints,
10320 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10327 unsigned int bytes_read;
10328 CORE_ADDR start, end;
10330 start = read_address (obfd, buffer, cu, &bytes_read);
10331 buffer += bytes_read;
10332 end = read_address (obfd, buffer, cu, &bytes_read);
10333 buffer += bytes_read;
10335 /* Did we find the end of the range list? */
10336 if (start == 0 && end == 0)
10339 /* Did we find a base address selection entry? */
10340 else if ((start & base_select_mask) == base_select_mask)
10346 /* We found an ordinary address range. */
10351 complaint (&symfile_complaints,
10352 _("Invalid .debug_ranges data "
10353 "(no base address)"));
10359 /* Inverted range entries are invalid. */
10360 complaint (&symfile_complaints,
10361 _("Invalid .debug_ranges data "
10362 "(inverted range)"));
10366 /* Empty range entries have no effect. */
10370 start += base + baseaddr;
10371 end += base + baseaddr;
10373 /* A not-uncommon case of bad debug info.
10374 Don't pollute the addrmap with bad data. */
10375 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10377 complaint (&symfile_complaints,
10378 _(".debug_ranges entry has start address of zero"
10379 " [in module %s]"), objfile->name);
10383 record_block_range (block, start, end - 1);
10389 /* Check whether the producer field indicates either of GCC < 4.6, or the
10390 Intel C/C++ compiler, and cache the result in CU. */
10393 check_producer (struct dwarf2_cu *cu)
10396 int major, minor, release;
10398 if (cu->producer == NULL)
10400 /* For unknown compilers expect their behavior is DWARF version
10403 GCC started to support .debug_types sections by -gdwarf-4 since
10404 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10405 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10406 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10407 interpreted incorrectly by GDB now - GCC PR debug/48229. */
10409 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
10411 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10413 cs = &cu->producer[strlen ("GNU ")];
10414 while (*cs && !isdigit (*cs))
10416 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10418 /* Not recognized as GCC. */
10422 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10423 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
10426 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10427 cu->producer_is_icc = 1;
10430 /* For other non-GCC compilers, expect their behavior is DWARF version
10434 cu->checked_producer = 1;
10437 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10438 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10439 during 4.6.0 experimental. */
10442 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10444 if (!cu->checked_producer)
10445 check_producer (cu);
10447 return cu->producer_is_gxx_lt_4_6;
10450 /* Return the default accessibility type if it is not overriden by
10451 DW_AT_accessibility. */
10453 static enum dwarf_access_attribute
10454 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10456 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10458 /* The default DWARF 2 accessibility for members is public, the default
10459 accessibility for inheritance is private. */
10461 if (die->tag != DW_TAG_inheritance)
10462 return DW_ACCESS_public;
10464 return DW_ACCESS_private;
10468 /* DWARF 3+ defines the default accessibility a different way. The same
10469 rules apply now for DW_TAG_inheritance as for the members and it only
10470 depends on the container kind. */
10472 if (die->parent->tag == DW_TAG_class_type)
10473 return DW_ACCESS_private;
10475 return DW_ACCESS_public;
10479 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10480 offset. If the attribute was not found return 0, otherwise return
10481 1. If it was found but could not properly be handled, set *OFFSET
10485 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10488 struct attribute *attr;
10490 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10495 /* Note that we do not check for a section offset first here.
10496 This is because DW_AT_data_member_location is new in DWARF 4,
10497 so if we see it, we can assume that a constant form is really
10498 a constant and not a section offset. */
10499 if (attr_form_is_constant (attr))
10500 *offset = dwarf2_get_attr_constant_value (attr, 0);
10501 else if (attr_form_is_section_offset (attr))
10502 dwarf2_complex_location_expr_complaint ();
10503 else if (attr_form_is_block (attr))
10504 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10506 dwarf2_complex_location_expr_complaint ();
10514 /* Add an aggregate field to the field list. */
10517 dwarf2_add_field (struct field_info *fip, struct die_info *die,
10518 struct dwarf2_cu *cu)
10520 struct objfile *objfile = cu->objfile;
10521 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10522 struct nextfield *new_field;
10523 struct attribute *attr;
10525 const char *fieldname = "";
10527 /* Allocate a new field list entry and link it in. */
10528 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
10529 make_cleanup (xfree, new_field);
10530 memset (new_field, 0, sizeof (struct nextfield));
10532 if (die->tag == DW_TAG_inheritance)
10534 new_field->next = fip->baseclasses;
10535 fip->baseclasses = new_field;
10539 new_field->next = fip->fields;
10540 fip->fields = new_field;
10544 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10546 new_field->accessibility = DW_UNSND (attr);
10548 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
10549 if (new_field->accessibility != DW_ACCESS_public)
10550 fip->non_public_fields = 1;
10552 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10554 new_field->virtuality = DW_UNSND (attr);
10556 new_field->virtuality = DW_VIRTUALITY_none;
10558 fp = &new_field->field;
10560 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
10564 /* Data member other than a C++ static data member. */
10566 /* Get type of field. */
10567 fp->type = die_type (die, cu);
10569 SET_FIELD_BITPOS (*fp, 0);
10571 /* Get bit size of field (zero if none). */
10572 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
10575 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10579 FIELD_BITSIZE (*fp) = 0;
10582 /* Get bit offset of field. */
10583 if (handle_data_member_location (die, cu, &offset))
10584 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10585 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
10588 if (gdbarch_bits_big_endian (gdbarch))
10590 /* For big endian bits, the DW_AT_bit_offset gives the
10591 additional bit offset from the MSB of the containing
10592 anonymous object to the MSB of the field. We don't
10593 have to do anything special since we don't need to
10594 know the size of the anonymous object. */
10595 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
10599 /* For little endian bits, compute the bit offset to the
10600 MSB of the anonymous object, subtract off the number of
10601 bits from the MSB of the field to the MSB of the
10602 object, and then subtract off the number of bits of
10603 the field itself. The result is the bit offset of
10604 the LSB of the field. */
10605 int anonymous_size;
10606 int bit_offset = DW_UNSND (attr);
10608 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
10611 /* The size of the anonymous object containing
10612 the bit field is explicit, so use the
10613 indicated size (in bytes). */
10614 anonymous_size = DW_UNSND (attr);
10618 /* The size of the anonymous object containing
10619 the bit field must be inferred from the type
10620 attribute of the data member containing the
10622 anonymous_size = TYPE_LENGTH (fp->type);
10624 SET_FIELD_BITPOS (*fp,
10625 (FIELD_BITPOS (*fp)
10626 + anonymous_size * bits_per_byte
10627 - bit_offset - FIELD_BITSIZE (*fp)));
10631 /* Get name of field. */
10632 fieldname = dwarf2_name (die, cu);
10633 if (fieldname == NULL)
10636 /* The name is already allocated along with this objfile, so we don't
10637 need to duplicate it for the type. */
10638 fp->name = fieldname;
10640 /* Change accessibility for artificial fields (e.g. virtual table
10641 pointer or virtual base class pointer) to private. */
10642 if (dwarf2_attr (die, DW_AT_artificial, cu))
10644 FIELD_ARTIFICIAL (*fp) = 1;
10645 new_field->accessibility = DW_ACCESS_private;
10646 fip->non_public_fields = 1;
10649 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
10651 /* C++ static member. */
10653 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10654 is a declaration, but all versions of G++ as of this writing
10655 (so through at least 3.2.1) incorrectly generate
10656 DW_TAG_variable tags. */
10658 const char *physname;
10660 /* Get name of field. */
10661 fieldname = dwarf2_name (die, cu);
10662 if (fieldname == NULL)
10665 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10667 /* Only create a symbol if this is an external value.
10668 new_symbol checks this and puts the value in the global symbol
10669 table, which we want. If it is not external, new_symbol
10670 will try to put the value in cu->list_in_scope which is wrong. */
10671 && dwarf2_flag_true_p (die, DW_AT_external, cu))
10673 /* A static const member, not much different than an enum as far as
10674 we're concerned, except that we can support more types. */
10675 new_symbol (die, NULL, cu);
10678 /* Get physical name. */
10679 physname = dwarf2_physname (fieldname, die, cu);
10681 /* The name is already allocated along with this objfile, so we don't
10682 need to duplicate it for the type. */
10683 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
10684 FIELD_TYPE (*fp) = die_type (die, cu);
10685 FIELD_NAME (*fp) = fieldname;
10687 else if (die->tag == DW_TAG_inheritance)
10691 /* C++ base class field. */
10692 if (handle_data_member_location (die, cu, &offset))
10693 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
10694 FIELD_BITSIZE (*fp) = 0;
10695 FIELD_TYPE (*fp) = die_type (die, cu);
10696 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10697 fip->nbaseclasses++;
10701 /* Add a typedef defined in the scope of the FIP's class. */
10704 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10705 struct dwarf2_cu *cu)
10707 struct objfile *objfile = cu->objfile;
10708 struct typedef_field_list *new_field;
10709 struct attribute *attr;
10710 struct typedef_field *fp;
10711 char *fieldname = "";
10713 /* Allocate a new field list entry and link it in. */
10714 new_field = xzalloc (sizeof (*new_field));
10715 make_cleanup (xfree, new_field);
10717 gdb_assert (die->tag == DW_TAG_typedef);
10719 fp = &new_field->field;
10721 /* Get name of field. */
10722 fp->name = dwarf2_name (die, cu);
10723 if (fp->name == NULL)
10726 fp->type = read_type_die (die, cu);
10728 new_field->next = fip->typedef_field_list;
10729 fip->typedef_field_list = new_field;
10730 fip->typedef_field_list_count++;
10733 /* Create the vector of fields, and attach it to the type. */
10736 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
10737 struct dwarf2_cu *cu)
10739 int nfields = fip->nfields;
10741 /* Record the field count, allocate space for the array of fields,
10742 and create blank accessibility bitfields if necessary. */
10743 TYPE_NFIELDS (type) = nfields;
10744 TYPE_FIELDS (type) = (struct field *)
10745 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10746 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10748 if (fip->non_public_fields && cu->language != language_ada)
10750 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10752 TYPE_FIELD_PRIVATE_BITS (type) =
10753 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10754 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10756 TYPE_FIELD_PROTECTED_BITS (type) =
10757 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10758 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10760 TYPE_FIELD_IGNORE_BITS (type) =
10761 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10762 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
10765 /* If the type has baseclasses, allocate and clear a bit vector for
10766 TYPE_FIELD_VIRTUAL_BITS. */
10767 if (fip->nbaseclasses && cu->language != language_ada)
10769 int num_bytes = B_BYTES (fip->nbaseclasses);
10770 unsigned char *pointer;
10772 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10773 pointer = TYPE_ALLOC (type, num_bytes);
10774 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
10775 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10776 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10779 /* Copy the saved-up fields into the field vector. Start from the head of
10780 the list, adding to the tail of the field array, so that they end up in
10781 the same order in the array in which they were added to the list. */
10782 while (nfields-- > 0)
10784 struct nextfield *fieldp;
10788 fieldp = fip->fields;
10789 fip->fields = fieldp->next;
10793 fieldp = fip->baseclasses;
10794 fip->baseclasses = fieldp->next;
10797 TYPE_FIELD (type, nfields) = fieldp->field;
10798 switch (fieldp->accessibility)
10800 case DW_ACCESS_private:
10801 if (cu->language != language_ada)
10802 SET_TYPE_FIELD_PRIVATE (type, nfields);
10805 case DW_ACCESS_protected:
10806 if (cu->language != language_ada)
10807 SET_TYPE_FIELD_PROTECTED (type, nfields);
10810 case DW_ACCESS_public:
10814 /* Unknown accessibility. Complain and treat it as public. */
10816 complaint (&symfile_complaints, _("unsupported accessibility %d"),
10817 fieldp->accessibility);
10821 if (nfields < fip->nbaseclasses)
10823 switch (fieldp->virtuality)
10825 case DW_VIRTUALITY_virtual:
10826 case DW_VIRTUALITY_pure_virtual:
10827 if (cu->language == language_ada)
10828 error (_("unexpected virtuality in component of Ada type"));
10829 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10836 /* Return true if this member function is a constructor, false
10840 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
10842 const char *fieldname;
10843 const char *typename;
10846 if (die->parent == NULL)
10849 if (die->parent->tag != DW_TAG_structure_type
10850 && die->parent->tag != DW_TAG_union_type
10851 && die->parent->tag != DW_TAG_class_type)
10854 fieldname = dwarf2_name (die, cu);
10855 typename = dwarf2_name (die->parent, cu);
10856 if (fieldname == NULL || typename == NULL)
10859 len = strlen (fieldname);
10860 return (strncmp (fieldname, typename, len) == 0
10861 && (typename[len] == '\0' || typename[len] == '<'));
10864 /* Add a member function to the proper fieldlist. */
10867 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
10868 struct type *type, struct dwarf2_cu *cu)
10870 struct objfile *objfile = cu->objfile;
10871 struct attribute *attr;
10872 struct fnfieldlist *flp;
10874 struct fn_field *fnp;
10875 const char *fieldname;
10876 struct nextfnfield *new_fnfield;
10877 struct type *this_type;
10878 enum dwarf_access_attribute accessibility;
10880 if (cu->language == language_ada)
10881 error (_("unexpected member function in Ada type"));
10883 /* Get name of member function. */
10884 fieldname = dwarf2_name (die, cu);
10885 if (fieldname == NULL)
10888 /* Look up member function name in fieldlist. */
10889 for (i = 0; i < fip->nfnfields; i++)
10891 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
10895 /* Create new list element if necessary. */
10896 if (i < fip->nfnfields)
10897 flp = &fip->fnfieldlists[i];
10900 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10902 fip->fnfieldlists = (struct fnfieldlist *)
10903 xrealloc (fip->fnfieldlists,
10904 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
10905 * sizeof (struct fnfieldlist));
10906 if (fip->nfnfields == 0)
10907 make_cleanup (free_current_contents, &fip->fnfieldlists);
10909 flp = &fip->fnfieldlists[fip->nfnfields];
10910 flp->name = fieldname;
10913 i = fip->nfnfields++;
10916 /* Create a new member function field and chain it to the field list
10918 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
10919 make_cleanup (xfree, new_fnfield);
10920 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10921 new_fnfield->next = flp->head;
10922 flp->head = new_fnfield;
10925 /* Fill in the member function field info. */
10926 fnp = &new_fnfield->fnfield;
10928 /* Delay processing of the physname until later. */
10929 if (cu->language == language_cplus || cu->language == language_java)
10931 add_to_method_list (type, i, flp->length - 1, fieldname,
10936 const char *physname = dwarf2_physname (fieldname, die, cu);
10937 fnp->physname = physname ? physname : "";
10940 fnp->type = alloc_type (objfile);
10941 this_type = read_type_die (die, cu);
10942 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
10944 int nparams = TYPE_NFIELDS (this_type);
10946 /* TYPE is the domain of this method, and THIS_TYPE is the type
10947 of the method itself (TYPE_CODE_METHOD). */
10948 smash_to_method_type (fnp->type, type,
10949 TYPE_TARGET_TYPE (this_type),
10950 TYPE_FIELDS (this_type),
10951 TYPE_NFIELDS (this_type),
10952 TYPE_VARARGS (this_type));
10954 /* Handle static member functions.
10955 Dwarf2 has no clean way to discern C++ static and non-static
10956 member functions. G++ helps GDB by marking the first
10957 parameter for non-static member functions (which is the this
10958 pointer) as artificial. We obtain this information from
10959 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
10960 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
10961 fnp->voffset = VOFFSET_STATIC;
10964 complaint (&symfile_complaints, _("member function type missing for '%s'"),
10965 dwarf2_full_name (fieldname, die, cu));
10967 /* Get fcontext from DW_AT_containing_type if present. */
10968 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
10969 fnp->fcontext = die_containing_type (die, cu);
10971 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10972 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
10974 /* Get accessibility. */
10975 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
10977 accessibility = DW_UNSND (attr);
10979 accessibility = dwarf2_default_access_attribute (die, cu);
10980 switch (accessibility)
10982 case DW_ACCESS_private:
10983 fnp->is_private = 1;
10985 case DW_ACCESS_protected:
10986 fnp->is_protected = 1;
10990 /* Check for artificial methods. */
10991 attr = dwarf2_attr (die, DW_AT_artificial, cu);
10992 if (attr && DW_UNSND (attr) != 0)
10993 fnp->is_artificial = 1;
10995 fnp->is_constructor = dwarf2_is_constructor (die, cu);
10997 /* Get index in virtual function table if it is a virtual member
10998 function. For older versions of GCC, this is an offset in the
10999 appropriate virtual table, as specified by DW_AT_containing_type.
11000 For everyone else, it is an expression to be evaluated relative
11001 to the object address. */
11003 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
11006 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
11008 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
11010 /* Old-style GCC. */
11011 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
11013 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
11014 || (DW_BLOCK (attr)->size > 1
11015 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
11016 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
11018 struct dwarf_block blk;
11021 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
11023 blk.size = DW_BLOCK (attr)->size - offset;
11024 blk.data = DW_BLOCK (attr)->data + offset;
11025 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
11026 if ((fnp->voffset % cu->header.addr_size) != 0)
11027 dwarf2_complex_location_expr_complaint ();
11029 fnp->voffset /= cu->header.addr_size;
11033 dwarf2_complex_location_expr_complaint ();
11035 if (!fnp->fcontext)
11036 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
11038 else if (attr_form_is_section_offset (attr))
11040 dwarf2_complex_location_expr_complaint ();
11044 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
11050 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
11051 if (attr && DW_UNSND (attr))
11053 /* GCC does this, as of 2008-08-25; PR debug/37237. */
11054 complaint (&symfile_complaints,
11055 _("Member function \"%s\" (offset %d) is virtual "
11056 "but the vtable offset is not specified"),
11057 fieldname, die->offset.sect_off);
11058 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11059 TYPE_CPLUS_DYNAMIC (type) = 1;
11064 /* Create the vector of member function fields, and attach it to the type. */
11067 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
11068 struct dwarf2_cu *cu)
11070 struct fnfieldlist *flp;
11073 if (cu->language == language_ada)
11074 error (_("unexpected member functions in Ada type"));
11076 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11077 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
11078 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
11080 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
11082 struct nextfnfield *nfp = flp->head;
11083 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
11086 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
11087 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
11088 fn_flp->fn_fields = (struct fn_field *)
11089 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
11090 for (k = flp->length; (k--, nfp); nfp = nfp->next)
11091 fn_flp->fn_fields[k] = nfp->fnfield;
11094 TYPE_NFN_FIELDS (type) = fip->nfnfields;
11097 /* Returns non-zero if NAME is the name of a vtable member in CU's
11098 language, zero otherwise. */
11100 is_vtable_name (const char *name, struct dwarf2_cu *cu)
11102 static const char vptr[] = "_vptr";
11103 static const char vtable[] = "vtable";
11105 /* Look for the C++ and Java forms of the vtable. */
11106 if ((cu->language == language_java
11107 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11108 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11109 && is_cplus_marker (name[sizeof (vptr) - 1])))
11115 /* GCC outputs unnamed structures that are really pointers to member
11116 functions, with the ABI-specified layout. If TYPE describes
11117 such a structure, smash it into a member function type.
11119 GCC shouldn't do this; it should just output pointer to member DIEs.
11120 This is GCC PR debug/28767. */
11123 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
11125 struct type *pfn_type, *domain_type, *new_type;
11127 /* Check for a structure with no name and two children. */
11128 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11131 /* Check for __pfn and __delta members. */
11132 if (TYPE_FIELD_NAME (type, 0) == NULL
11133 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11134 || TYPE_FIELD_NAME (type, 1) == NULL
11135 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11138 /* Find the type of the method. */
11139 pfn_type = TYPE_FIELD_TYPE (type, 0);
11140 if (pfn_type == NULL
11141 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11142 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
11145 /* Look for the "this" argument. */
11146 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11147 if (TYPE_NFIELDS (pfn_type) == 0
11148 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
11149 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
11152 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
11153 new_type = alloc_type (objfile);
11154 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
11155 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11156 TYPE_VARARGS (pfn_type));
11157 smash_to_methodptr_type (type, new_type);
11160 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11164 producer_is_icc (struct dwarf2_cu *cu)
11166 if (!cu->checked_producer)
11167 check_producer (cu);
11169 return cu->producer_is_icc;
11172 /* Called when we find the DIE that starts a structure or union scope
11173 (definition) to create a type for the structure or union. Fill in
11174 the type's name and general properties; the members will not be
11175 processed until process_structure_type.
11177 NOTE: we need to call these functions regardless of whether or not the
11178 DIE has a DW_AT_name attribute, since it might be an anonymous
11179 structure or union. This gets the type entered into our set of
11180 user defined types.
11182 However, if the structure is incomplete (an opaque struct/union)
11183 then suppress creating a symbol table entry for it since gdb only
11184 wants to find the one with the complete definition. Note that if
11185 it is complete, we just call new_symbol, which does it's own
11186 checking about whether the struct/union is anonymous or not (and
11187 suppresses creating a symbol table entry itself). */
11189 static struct type *
11190 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
11192 struct objfile *objfile = cu->objfile;
11194 struct attribute *attr;
11197 /* If the definition of this type lives in .debug_types, read that type.
11198 Don't follow DW_AT_specification though, that will take us back up
11199 the chain and we want to go down. */
11200 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11203 struct dwarf2_cu *type_cu = cu;
11204 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11206 /* We could just recurse on read_structure_type, but we need to call
11207 get_die_type to ensure only one type for this DIE is created.
11208 This is important, for example, because for c++ classes we need
11209 TYPE_NAME set which is only done by new_symbol. Blech. */
11210 type = read_type_die (type_die, type_cu);
11212 /* TYPE_CU may not be the same as CU.
11213 Ensure TYPE is recorded in CU's type_hash table. */
11214 return set_die_type (die, type, cu);
11217 type = alloc_type (objfile);
11218 INIT_CPLUS_SPECIFIC (type);
11220 name = dwarf2_name (die, cu);
11223 if (cu->language == language_cplus
11224 || cu->language == language_java)
11226 const char *full_name = dwarf2_full_name (name, die, cu);
11228 /* dwarf2_full_name might have already finished building the DIE's
11229 type. If so, there is no need to continue. */
11230 if (get_die_type (die, cu) != NULL)
11231 return get_die_type (die, cu);
11233 TYPE_TAG_NAME (type) = full_name;
11234 if (die->tag == DW_TAG_structure_type
11235 || die->tag == DW_TAG_class_type)
11236 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11240 /* The name is already allocated along with this objfile, so
11241 we don't need to duplicate it for the type. */
11242 TYPE_TAG_NAME (type) = name;
11243 if (die->tag == DW_TAG_class_type)
11244 TYPE_NAME (type) = TYPE_TAG_NAME (type);
11248 if (die->tag == DW_TAG_structure_type)
11250 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11252 else if (die->tag == DW_TAG_union_type)
11254 TYPE_CODE (type) = TYPE_CODE_UNION;
11258 TYPE_CODE (type) = TYPE_CODE_CLASS;
11261 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11262 TYPE_DECLARED_CLASS (type) = 1;
11264 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11267 TYPE_LENGTH (type) = DW_UNSND (attr);
11271 TYPE_LENGTH (type) = 0;
11274 if (producer_is_icc (cu))
11276 /* ICC does not output the required DW_AT_declaration
11277 on incomplete types, but gives them a size of zero. */
11280 TYPE_STUB_SUPPORTED (type) = 1;
11282 if (die_is_declaration (die, cu))
11283 TYPE_STUB (type) = 1;
11284 else if (attr == NULL && die->child == NULL
11285 && producer_is_realview (cu->producer))
11286 /* RealView does not output the required DW_AT_declaration
11287 on incomplete types. */
11288 TYPE_STUB (type) = 1;
11290 /* We need to add the type field to the die immediately so we don't
11291 infinitely recurse when dealing with pointers to the structure
11292 type within the structure itself. */
11293 set_die_type (die, type, cu);
11295 /* set_die_type should be already done. */
11296 set_descriptive_type (type, die, cu);
11301 /* Finish creating a structure or union type, including filling in
11302 its members and creating a symbol for it. */
11305 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11307 struct objfile *objfile = cu->objfile;
11308 struct die_info *child_die = die->child;
11311 type = get_die_type (die, cu);
11313 type = read_structure_type (die, cu);
11315 if (die->child != NULL && ! die_is_declaration (die, cu))
11317 struct field_info fi;
11318 struct die_info *child_die;
11319 VEC (symbolp) *template_args = NULL;
11320 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
11322 memset (&fi, 0, sizeof (struct field_info));
11324 child_die = die->child;
11326 while (child_die && child_die->tag)
11328 if (child_die->tag == DW_TAG_member
11329 || child_die->tag == DW_TAG_variable)
11331 /* NOTE: carlton/2002-11-05: A C++ static data member
11332 should be a DW_TAG_member that is a declaration, but
11333 all versions of G++ as of this writing (so through at
11334 least 3.2.1) incorrectly generate DW_TAG_variable
11335 tags for them instead. */
11336 dwarf2_add_field (&fi, child_die, cu);
11338 else if (child_die->tag == DW_TAG_subprogram)
11340 /* C++ member function. */
11341 dwarf2_add_member_fn (&fi, child_die, type, cu);
11343 else if (child_die->tag == DW_TAG_inheritance)
11345 /* C++ base class field. */
11346 dwarf2_add_field (&fi, child_die, cu);
11348 else if (child_die->tag == DW_TAG_typedef)
11349 dwarf2_add_typedef (&fi, child_die, cu);
11350 else if (child_die->tag == DW_TAG_template_type_param
11351 || child_die->tag == DW_TAG_template_value_param)
11353 struct symbol *arg = new_symbol (child_die, NULL, cu);
11356 VEC_safe_push (symbolp, template_args, arg);
11359 child_die = sibling_die (child_die);
11362 /* Attach template arguments to type. */
11363 if (! VEC_empty (symbolp, template_args))
11365 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11366 TYPE_N_TEMPLATE_ARGUMENTS (type)
11367 = VEC_length (symbolp, template_args);
11368 TYPE_TEMPLATE_ARGUMENTS (type)
11369 = obstack_alloc (&objfile->objfile_obstack,
11370 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11371 * sizeof (struct symbol *)));
11372 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11373 VEC_address (symbolp, template_args),
11374 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11375 * sizeof (struct symbol *)));
11376 VEC_free (symbolp, template_args);
11379 /* Attach fields and member functions to the type. */
11381 dwarf2_attach_fields_to_type (&fi, type, cu);
11384 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
11386 /* Get the type which refers to the base class (possibly this
11387 class itself) which contains the vtable pointer for the current
11388 class from the DW_AT_containing_type attribute. This use of
11389 DW_AT_containing_type is a GNU extension. */
11391 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
11393 struct type *t = die_containing_type (die, cu);
11395 TYPE_VPTR_BASETYPE (type) = t;
11400 /* Our own class provides vtbl ptr. */
11401 for (i = TYPE_NFIELDS (t) - 1;
11402 i >= TYPE_N_BASECLASSES (t);
11405 const char *fieldname = TYPE_FIELD_NAME (t, i);
11407 if (is_vtable_name (fieldname, cu))
11409 TYPE_VPTR_FIELDNO (type) = i;
11414 /* Complain if virtual function table field not found. */
11415 if (i < TYPE_N_BASECLASSES (t))
11416 complaint (&symfile_complaints,
11417 _("virtual function table pointer "
11418 "not found when defining class '%s'"),
11419 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11424 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11427 else if (cu->producer
11428 && strncmp (cu->producer,
11429 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11431 /* The IBM XLC compiler does not provide direct indication
11432 of the containing type, but the vtable pointer is
11433 always named __vfp. */
11437 for (i = TYPE_NFIELDS (type) - 1;
11438 i >= TYPE_N_BASECLASSES (type);
11441 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11443 TYPE_VPTR_FIELDNO (type) = i;
11444 TYPE_VPTR_BASETYPE (type) = type;
11451 /* Copy fi.typedef_field_list linked list elements content into the
11452 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11453 if (fi.typedef_field_list)
11455 int i = fi.typedef_field_list_count;
11457 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11458 TYPE_TYPEDEF_FIELD_ARRAY (type)
11459 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11460 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11462 /* Reverse the list order to keep the debug info elements order. */
11465 struct typedef_field *dest, *src;
11467 dest = &TYPE_TYPEDEF_FIELD (type, i);
11468 src = &fi.typedef_field_list->field;
11469 fi.typedef_field_list = fi.typedef_field_list->next;
11474 do_cleanups (back_to);
11476 if (HAVE_CPLUS_STRUCT (type))
11477 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
11480 quirk_gcc_member_function_pointer (type, objfile);
11482 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11483 snapshots) has been known to create a die giving a declaration
11484 for a class that has, as a child, a die giving a definition for a
11485 nested class. So we have to process our children even if the
11486 current die is a declaration. Normally, of course, a declaration
11487 won't have any children at all. */
11489 while (child_die != NULL && child_die->tag)
11491 if (child_die->tag == DW_TAG_member
11492 || child_die->tag == DW_TAG_variable
11493 || child_die->tag == DW_TAG_inheritance
11494 || child_die->tag == DW_TAG_template_value_param
11495 || child_die->tag == DW_TAG_template_type_param)
11500 process_die (child_die, cu);
11502 child_die = sibling_die (child_die);
11505 /* Do not consider external references. According to the DWARF standard,
11506 these DIEs are identified by the fact that they have no byte_size
11507 attribute, and a declaration attribute. */
11508 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11509 || !die_is_declaration (die, cu))
11510 new_symbol (die, type, cu);
11513 /* Given a DW_AT_enumeration_type die, set its type. We do not
11514 complete the type's fields yet, or create any symbols. */
11516 static struct type *
11517 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
11519 struct objfile *objfile = cu->objfile;
11521 struct attribute *attr;
11524 /* If the definition of this type lives in .debug_types, read that type.
11525 Don't follow DW_AT_specification though, that will take us back up
11526 the chain and we want to go down. */
11527 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
11530 struct dwarf2_cu *type_cu = cu;
11531 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11533 type = read_type_die (type_die, type_cu);
11535 /* TYPE_CU may not be the same as CU.
11536 Ensure TYPE is recorded in CU's type_hash table. */
11537 return set_die_type (die, type, cu);
11540 type = alloc_type (objfile);
11542 TYPE_CODE (type) = TYPE_CODE_ENUM;
11543 name = dwarf2_full_name (NULL, die, cu);
11545 TYPE_TAG_NAME (type) = name;
11547 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11550 TYPE_LENGTH (type) = DW_UNSND (attr);
11554 TYPE_LENGTH (type) = 0;
11557 /* The enumeration DIE can be incomplete. In Ada, any type can be
11558 declared as private in the package spec, and then defined only
11559 inside the package body. Such types are known as Taft Amendment
11560 Types. When another package uses such a type, an incomplete DIE
11561 may be generated by the compiler. */
11562 if (die_is_declaration (die, cu))
11563 TYPE_STUB (type) = 1;
11565 return set_die_type (die, type, cu);
11568 /* Given a pointer to a die which begins an enumeration, process all
11569 the dies that define the members of the enumeration, and create the
11570 symbol for the enumeration type.
11572 NOTE: We reverse the order of the element list. */
11575 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11577 struct type *this_type;
11579 this_type = get_die_type (die, cu);
11580 if (this_type == NULL)
11581 this_type = read_enumeration_type (die, cu);
11583 if (die->child != NULL)
11585 struct die_info *child_die;
11586 struct symbol *sym;
11587 struct field *fields = NULL;
11588 int num_fields = 0;
11589 int unsigned_enum = 1;
11594 child_die = die->child;
11595 while (child_die && child_die->tag)
11597 if (child_die->tag != DW_TAG_enumerator)
11599 process_die (child_die, cu);
11603 name = dwarf2_name (child_die, cu);
11606 sym = new_symbol (child_die, this_type, cu);
11607 if (SYMBOL_VALUE (sym) < 0)
11612 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11615 mask |= SYMBOL_VALUE (sym);
11617 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11619 fields = (struct field *)
11621 (num_fields + DW_FIELD_ALLOC_CHUNK)
11622 * sizeof (struct field));
11625 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
11626 FIELD_TYPE (fields[num_fields]) = NULL;
11627 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
11628 FIELD_BITSIZE (fields[num_fields]) = 0;
11634 child_die = sibling_die (child_die);
11639 TYPE_NFIELDS (this_type) = num_fields;
11640 TYPE_FIELDS (this_type) = (struct field *)
11641 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11642 memcpy (TYPE_FIELDS (this_type), fields,
11643 sizeof (struct field) * num_fields);
11647 TYPE_UNSIGNED (this_type) = 1;
11649 TYPE_FLAG_ENUM (this_type) = 1;
11652 /* If we are reading an enum from a .debug_types unit, and the enum
11653 is a declaration, and the enum is not the signatured type in the
11654 unit, then we do not want to add a symbol for it. Adding a
11655 symbol would in some cases obscure the true definition of the
11656 enum, giving users an incomplete type when the definition is
11657 actually available. Note that we do not want to do this for all
11658 enums which are just declarations, because C++0x allows forward
11659 enum declarations. */
11660 if (cu->per_cu->is_debug_types
11661 && die_is_declaration (die, cu))
11663 struct signatured_type *sig_type;
11666 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
11667 cu->per_cu->info_or_types_section,
11668 cu->per_cu->offset);
11669 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11670 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
11674 new_symbol (die, this_type, cu);
11677 /* Extract all information from a DW_TAG_array_type DIE and put it in
11678 the DIE's type field. For now, this only handles one dimensional
11681 static struct type *
11682 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
11684 struct objfile *objfile = cu->objfile;
11685 struct die_info *child_die;
11687 struct type *element_type, *range_type, *index_type;
11688 struct type **range_types = NULL;
11689 struct attribute *attr;
11691 struct cleanup *back_to;
11694 element_type = die_type (die, cu);
11696 /* The die_type call above may have already set the type for this DIE. */
11697 type = get_die_type (die, cu);
11701 /* Irix 6.2 native cc creates array types without children for
11702 arrays with unspecified length. */
11703 if (die->child == NULL)
11705 index_type = objfile_type (objfile)->builtin_int;
11706 range_type = create_range_type (NULL, index_type, 0, -1);
11707 type = create_array_type (NULL, element_type, range_type);
11708 return set_die_type (die, type, cu);
11711 back_to = make_cleanup (null_cleanup, NULL);
11712 child_die = die->child;
11713 while (child_die && child_die->tag)
11715 if (child_die->tag == DW_TAG_subrange_type)
11717 struct type *child_type = read_type_die (child_die, cu);
11719 if (child_type != NULL)
11721 /* The range type was succesfully read. Save it for the
11722 array type creation. */
11723 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11725 range_types = (struct type **)
11726 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11727 * sizeof (struct type *));
11729 make_cleanup (free_current_contents, &range_types);
11731 range_types[ndim++] = child_type;
11734 child_die = sibling_die (child_die);
11737 /* Dwarf2 dimensions are output from left to right, create the
11738 necessary array types in backwards order. */
11740 type = element_type;
11742 if (read_array_order (die, cu) == DW_ORD_col_major)
11747 type = create_array_type (NULL, type, range_types[i++]);
11752 type = create_array_type (NULL, type, range_types[ndim]);
11755 /* Understand Dwarf2 support for vector types (like they occur on
11756 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11757 array type. This is not part of the Dwarf2/3 standard yet, but a
11758 custom vendor extension. The main difference between a regular
11759 array and the vector variant is that vectors are passed by value
11761 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
11763 make_vector_type (type);
11765 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11766 implementation may choose to implement triple vectors using this
11768 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11771 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11772 TYPE_LENGTH (type) = DW_UNSND (attr);
11774 complaint (&symfile_complaints,
11775 _("DW_AT_byte_size for array type smaller "
11776 "than the total size of elements"));
11779 name = dwarf2_name (die, cu);
11781 TYPE_NAME (type) = name;
11783 /* Install the type in the die. */
11784 set_die_type (die, type, cu);
11786 /* set_die_type should be already done. */
11787 set_descriptive_type (type, die, cu);
11789 do_cleanups (back_to);
11794 static enum dwarf_array_dim_ordering
11795 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
11797 struct attribute *attr;
11799 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11801 if (attr) return DW_SND (attr);
11803 /* GNU F77 is a special case, as at 08/2004 array type info is the
11804 opposite order to the dwarf2 specification, but data is still
11805 laid out as per normal fortran.
11807 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11808 version checking. */
11810 if (cu->language == language_fortran
11811 && cu->producer && strstr (cu->producer, "GNU F77"))
11813 return DW_ORD_row_major;
11816 switch (cu->language_defn->la_array_ordering)
11818 case array_column_major:
11819 return DW_ORD_col_major;
11820 case array_row_major:
11822 return DW_ORD_row_major;
11826 /* Extract all information from a DW_TAG_set_type DIE and put it in
11827 the DIE's type field. */
11829 static struct type *
11830 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11832 struct type *domain_type, *set_type;
11833 struct attribute *attr;
11835 domain_type = die_type (die, cu);
11837 /* The die_type call above may have already set the type for this DIE. */
11838 set_type = get_die_type (die, cu);
11842 set_type = create_set_type (NULL, domain_type);
11844 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11846 TYPE_LENGTH (set_type) = DW_UNSND (attr);
11848 return set_die_type (die, set_type, cu);
11851 /* A helper for read_common_block that creates a locexpr baton.
11852 SYM is the symbol which we are marking as computed.
11853 COMMON_DIE is the DIE for the common block.
11854 COMMON_LOC is the location expression attribute for the common
11856 MEMBER_LOC is the location expression attribute for the particular
11857 member of the common block that we are processing.
11858 CU is the CU from which the above come. */
11861 mark_common_block_symbol_computed (struct symbol *sym,
11862 struct die_info *common_die,
11863 struct attribute *common_loc,
11864 struct attribute *member_loc,
11865 struct dwarf2_cu *cu)
11867 struct objfile *objfile = dwarf2_per_objfile->objfile;
11868 struct dwarf2_locexpr_baton *baton;
11870 unsigned int cu_off;
11871 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11872 LONGEST offset = 0;
11874 gdb_assert (common_loc && member_loc);
11875 gdb_assert (attr_form_is_block (common_loc));
11876 gdb_assert (attr_form_is_block (member_loc)
11877 || attr_form_is_constant (member_loc));
11879 baton = obstack_alloc (&objfile->objfile_obstack,
11880 sizeof (struct dwarf2_locexpr_baton));
11881 baton->per_cu = cu->per_cu;
11882 gdb_assert (baton->per_cu);
11884 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11886 if (attr_form_is_constant (member_loc))
11888 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11889 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11892 baton->size += DW_BLOCK (member_loc)->size;
11894 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11897 *ptr++ = DW_OP_call4;
11898 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11899 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11902 if (attr_form_is_constant (member_loc))
11904 *ptr++ = DW_OP_addr;
11905 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11906 ptr += cu->header.addr_size;
11910 /* We have to copy the data here, because DW_OP_call4 will only
11911 use a DW_AT_location attribute. */
11912 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11913 ptr += DW_BLOCK (member_loc)->size;
11916 *ptr++ = DW_OP_plus;
11917 gdb_assert (ptr - baton->data == baton->size);
11919 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11920 SYMBOL_LOCATION_BATON (sym) = baton;
11921 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11924 /* Create appropriate locally-scoped variables for all the
11925 DW_TAG_common_block entries. Also create a struct common_block
11926 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11927 is used to sepate the common blocks name namespace from regular
11931 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
11933 struct attribute *attr;
11935 attr = dwarf2_attr (die, DW_AT_location, cu);
11938 /* Support the .debug_loc offsets. */
11939 if (attr_form_is_block (attr))
11943 else if (attr_form_is_section_offset (attr))
11945 dwarf2_complex_location_expr_complaint ();
11950 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11951 "common block member");
11956 if (die->child != NULL)
11958 struct objfile *objfile = cu->objfile;
11959 struct die_info *child_die;
11960 size_t n_entries = 0, size;
11961 struct common_block *common_block;
11962 struct symbol *sym;
11964 for (child_die = die->child;
11965 child_die && child_die->tag;
11966 child_die = sibling_die (child_die))
11969 size = (sizeof (struct common_block)
11970 + (n_entries - 1) * sizeof (struct symbol *));
11971 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11972 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11973 common_block->n_entries = 0;
11975 for (child_die = die->child;
11976 child_die && child_die->tag;
11977 child_die = sibling_die (child_die))
11979 /* Create the symbol in the DW_TAG_common_block block in the current
11981 sym = new_symbol (child_die, NULL, cu);
11984 struct attribute *member_loc;
11986 common_block->contents[common_block->n_entries++] = sym;
11988 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11992 /* GDB has handled this for a long time, but it is
11993 not specified by DWARF. It seems to have been
11994 emitted by gfortran at least as recently as:
11995 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11996 complaint (&symfile_complaints,
11997 _("Variable in common block has "
11998 "DW_AT_data_member_location "
11999 "- DIE at 0x%x [in module %s]"),
12000 child_die->offset.sect_off, cu->objfile->name);
12002 if (attr_form_is_section_offset (member_loc))
12003 dwarf2_complex_location_expr_complaint ();
12004 else if (attr_form_is_constant (member_loc)
12005 || attr_form_is_block (member_loc))
12008 mark_common_block_symbol_computed (sym, die, attr,
12012 dwarf2_complex_location_expr_complaint ();
12017 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
12018 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
12022 /* Create a type for a C++ namespace. */
12024 static struct type *
12025 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
12027 struct objfile *objfile = cu->objfile;
12028 const char *previous_prefix, *name;
12032 /* For extensions, reuse the type of the original namespace. */
12033 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
12035 struct die_info *ext_die;
12036 struct dwarf2_cu *ext_cu = cu;
12038 ext_die = dwarf2_extension (die, &ext_cu);
12039 type = read_type_die (ext_die, ext_cu);
12041 /* EXT_CU may not be the same as CU.
12042 Ensure TYPE is recorded in CU's type_hash table. */
12043 return set_die_type (die, type, cu);
12046 name = namespace_name (die, &is_anonymous, cu);
12048 /* Now build the name of the current namespace. */
12050 previous_prefix = determine_prefix (die, cu);
12051 if (previous_prefix[0] != '\0')
12052 name = typename_concat (&objfile->objfile_obstack,
12053 previous_prefix, name, 0, cu);
12055 /* Create the type. */
12056 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
12058 TYPE_NAME (type) = name;
12059 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12061 return set_die_type (die, type, cu);
12064 /* Read a C++ namespace. */
12067 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
12069 struct objfile *objfile = cu->objfile;
12072 /* Add a symbol associated to this if we haven't seen the namespace
12073 before. Also, add a using directive if it's an anonymous
12076 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
12080 type = read_type_die (die, cu);
12081 new_symbol (die, type, cu);
12083 namespace_name (die, &is_anonymous, cu);
12086 const char *previous_prefix = determine_prefix (die, cu);
12088 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12089 NULL, NULL, 0, &objfile->objfile_obstack);
12093 if (die->child != NULL)
12095 struct die_info *child_die = die->child;
12097 while (child_die && child_die->tag)
12099 process_die (child_die, cu);
12100 child_die = sibling_die (child_die);
12105 /* Read a Fortran module as type. This DIE can be only a declaration used for
12106 imported module. Still we need that type as local Fortran "use ... only"
12107 declaration imports depend on the created type in determine_prefix. */
12109 static struct type *
12110 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12112 struct objfile *objfile = cu->objfile;
12113 const char *module_name;
12116 module_name = dwarf2_name (die, cu);
12118 complaint (&symfile_complaints,
12119 _("DW_TAG_module has no name, offset 0x%x"),
12120 die->offset.sect_off);
12121 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12123 /* determine_prefix uses TYPE_TAG_NAME. */
12124 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12126 return set_die_type (die, type, cu);
12129 /* Read a Fortran module. */
12132 read_module (struct die_info *die, struct dwarf2_cu *cu)
12134 struct die_info *child_die = die->child;
12136 while (child_die && child_die->tag)
12138 process_die (child_die, cu);
12139 child_die = sibling_die (child_die);
12143 /* Return the name of the namespace represented by DIE. Set
12144 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12147 static const char *
12148 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
12150 struct die_info *current_die;
12151 const char *name = NULL;
12153 /* Loop through the extensions until we find a name. */
12155 for (current_die = die;
12156 current_die != NULL;
12157 current_die = dwarf2_extension (die, &cu))
12159 name = dwarf2_name (current_die, cu);
12164 /* Is it an anonymous namespace? */
12166 *is_anonymous = (name == NULL);
12168 name = CP_ANONYMOUS_NAMESPACE_STR;
12173 /* Extract all information from a DW_TAG_pointer_type DIE and add to
12174 the user defined type vector. */
12176 static struct type *
12177 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
12179 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
12180 struct comp_unit_head *cu_header = &cu->header;
12182 struct attribute *attr_byte_size;
12183 struct attribute *attr_address_class;
12184 int byte_size, addr_class;
12185 struct type *target_type;
12187 target_type = die_type (die, cu);
12189 /* The die_type call above may have already set the type for this DIE. */
12190 type = get_die_type (die, cu);
12194 type = lookup_pointer_type (target_type);
12196 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
12197 if (attr_byte_size)
12198 byte_size = DW_UNSND (attr_byte_size);
12200 byte_size = cu_header->addr_size;
12202 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
12203 if (attr_address_class)
12204 addr_class = DW_UNSND (attr_address_class);
12206 addr_class = DW_ADDR_none;
12208 /* If the pointer size or address class is different than the
12209 default, create a type variant marked as such and set the
12210 length accordingly. */
12211 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
12213 if (gdbarch_address_class_type_flags_p (gdbarch))
12217 type_flags = gdbarch_address_class_type_flags
12218 (gdbarch, byte_size, addr_class);
12219 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12221 type = make_type_with_address_space (type, type_flags);
12223 else if (TYPE_LENGTH (type) != byte_size)
12225 complaint (&symfile_complaints,
12226 _("invalid pointer size %d"), byte_size);
12230 /* Should we also complain about unhandled address classes? */
12234 TYPE_LENGTH (type) = byte_size;
12235 return set_die_type (die, type, cu);
12238 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12239 the user defined type vector. */
12241 static struct type *
12242 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
12245 struct type *to_type;
12246 struct type *domain;
12248 to_type = die_type (die, cu);
12249 domain = die_containing_type (die, cu);
12251 /* The calls above may have already set the type for this DIE. */
12252 type = get_die_type (die, cu);
12256 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12257 type = lookup_methodptr_type (to_type);
12258 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
12260 struct type *new_type = alloc_type (cu->objfile);
12262 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
12263 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
12264 TYPE_VARARGS (to_type));
12265 type = lookup_methodptr_type (new_type);
12268 type = lookup_memberptr_type (to_type, domain);
12270 return set_die_type (die, type, cu);
12273 /* Extract all information from a DW_TAG_reference_type DIE and add to
12274 the user defined type vector. */
12276 static struct type *
12277 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
12279 struct comp_unit_head *cu_header = &cu->header;
12280 struct type *type, *target_type;
12281 struct attribute *attr;
12283 target_type = die_type (die, cu);
12285 /* The die_type call above may have already set the type for this DIE. */
12286 type = get_die_type (die, cu);
12290 type = lookup_reference_type (target_type);
12291 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12294 TYPE_LENGTH (type) = DW_UNSND (attr);
12298 TYPE_LENGTH (type) = cu_header->addr_size;
12300 return set_die_type (die, type, cu);
12303 static struct type *
12304 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
12306 struct type *base_type, *cv_type;
12308 base_type = die_type (die, cu);
12310 /* The die_type call above may have already set the type for this DIE. */
12311 cv_type = get_die_type (die, cu);
12315 /* In case the const qualifier is applied to an array type, the element type
12316 is so qualified, not the array type (section 6.7.3 of C99). */
12317 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12319 struct type *el_type, *inner_array;
12321 base_type = copy_type (base_type);
12322 inner_array = base_type;
12324 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12326 TYPE_TARGET_TYPE (inner_array) =
12327 copy_type (TYPE_TARGET_TYPE (inner_array));
12328 inner_array = TYPE_TARGET_TYPE (inner_array);
12331 el_type = TYPE_TARGET_TYPE (inner_array);
12332 TYPE_TARGET_TYPE (inner_array) =
12333 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12335 return set_die_type (die, base_type, cu);
12338 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12339 return set_die_type (die, cv_type, cu);
12342 static struct type *
12343 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
12345 struct type *base_type, *cv_type;
12347 base_type = die_type (die, cu);
12349 /* The die_type call above may have already set the type for this DIE. */
12350 cv_type = get_die_type (die, cu);
12354 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12355 return set_die_type (die, cv_type, cu);
12358 /* Handle DW_TAG_restrict_type. */
12360 static struct type *
12361 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
12363 struct type *base_type, *cv_type;
12365 base_type = die_type (die, cu);
12367 /* The die_type call above may have already set the type for this DIE. */
12368 cv_type = get_die_type (die, cu);
12372 cv_type = make_restrict_type (base_type);
12373 return set_die_type (die, cv_type, cu);
12376 /* Extract all information from a DW_TAG_string_type DIE and add to
12377 the user defined type vector. It isn't really a user defined type,
12378 but it behaves like one, with other DIE's using an AT_user_def_type
12379 attribute to reference it. */
12381 static struct type *
12382 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
12384 struct objfile *objfile = cu->objfile;
12385 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12386 struct type *type, *range_type, *index_type, *char_type;
12387 struct attribute *attr;
12388 unsigned int length;
12390 attr = dwarf2_attr (die, DW_AT_string_length, cu);
12393 length = DW_UNSND (attr);
12397 /* Check for the DW_AT_byte_size attribute. */
12398 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12401 length = DW_UNSND (attr);
12409 index_type = objfile_type (objfile)->builtin_int;
12410 range_type = create_range_type (NULL, index_type, 1, length);
12411 char_type = language_string_char_type (cu->language_defn, gdbarch);
12412 type = create_string_type (NULL, char_type, range_type);
12414 return set_die_type (die, type, cu);
12417 /* Handle DIES due to C code like:
12421 int (*funcp)(int a, long l);
12425 ('funcp' generates a DW_TAG_subroutine_type DIE). */
12427 static struct type *
12428 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
12430 struct objfile *objfile = cu->objfile;
12431 struct type *type; /* Type that this function returns. */
12432 struct type *ftype; /* Function that returns above type. */
12433 struct attribute *attr;
12435 type = die_type (die, cu);
12437 /* The die_type call above may have already set the type for this DIE. */
12438 ftype = get_die_type (die, cu);
12442 ftype = lookup_function_type (type);
12444 /* All functions in C++, Pascal and Java have prototypes. */
12445 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
12446 if ((attr && (DW_UNSND (attr) != 0))
12447 || cu->language == language_cplus
12448 || cu->language == language_java
12449 || cu->language == language_pascal)
12450 TYPE_PROTOTYPED (ftype) = 1;
12451 else if (producer_is_realview (cu->producer))
12452 /* RealView does not emit DW_AT_prototyped. We can not
12453 distinguish prototyped and unprototyped functions; default to
12454 prototyped, since that is more common in modern code (and
12455 RealView warns about unprototyped functions). */
12456 TYPE_PROTOTYPED (ftype) = 1;
12458 /* Store the calling convention in the type if it's available in
12459 the subroutine die. Otherwise set the calling convention to
12460 the default value DW_CC_normal. */
12461 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
12463 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12464 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12465 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12467 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
12469 /* We need to add the subroutine type to the die immediately so
12470 we don't infinitely recurse when dealing with parameters
12471 declared as the same subroutine type. */
12472 set_die_type (die, ftype, cu);
12474 if (die->child != NULL)
12476 struct type *void_type = objfile_type (objfile)->builtin_void;
12477 struct die_info *child_die;
12478 int nparams, iparams;
12480 /* Count the number of parameters.
12481 FIXME: GDB currently ignores vararg functions, but knows about
12482 vararg member functions. */
12484 child_die = die->child;
12485 while (child_die && child_die->tag)
12487 if (child_die->tag == DW_TAG_formal_parameter)
12489 else if (child_die->tag == DW_TAG_unspecified_parameters)
12490 TYPE_VARARGS (ftype) = 1;
12491 child_die = sibling_die (child_die);
12494 /* Allocate storage for parameters and fill them in. */
12495 TYPE_NFIELDS (ftype) = nparams;
12496 TYPE_FIELDS (ftype) = (struct field *)
12497 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
12499 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12500 even if we error out during the parameters reading below. */
12501 for (iparams = 0; iparams < nparams; iparams++)
12502 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12505 child_die = die->child;
12506 while (child_die && child_die->tag)
12508 if (child_die->tag == DW_TAG_formal_parameter)
12510 struct type *arg_type;
12512 /* DWARF version 2 has no clean way to discern C++
12513 static and non-static member functions. G++ helps
12514 GDB by marking the first parameter for non-static
12515 member functions (which is the this pointer) as
12516 artificial. We pass this information to
12517 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12519 DWARF version 3 added DW_AT_object_pointer, which GCC
12520 4.5 does not yet generate. */
12521 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
12523 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12526 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12528 /* GCC/43521: In java, the formal parameter
12529 "this" is sometimes not marked with DW_AT_artificial. */
12530 if (cu->language == language_java)
12532 const char *name = dwarf2_name (child_die, cu);
12534 if (name && !strcmp (name, "this"))
12535 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12538 arg_type = die_type (child_die, cu);
12540 /* RealView does not mark THIS as const, which the testsuite
12541 expects. GCC marks THIS as const in method definitions,
12542 but not in the class specifications (GCC PR 43053). */
12543 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12544 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12547 struct dwarf2_cu *arg_cu = cu;
12548 const char *name = dwarf2_name (child_die, cu);
12550 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12553 /* If the compiler emits this, use it. */
12554 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12557 else if (name && strcmp (name, "this") == 0)
12558 /* Function definitions will have the argument names. */
12560 else if (name == NULL && iparams == 0)
12561 /* Declarations may not have the names, so like
12562 elsewhere in GDB, assume an artificial first
12563 argument is "this". */
12567 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12571 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
12574 child_die = sibling_die (child_die);
12581 static struct type *
12582 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
12584 struct objfile *objfile = cu->objfile;
12585 const char *name = NULL;
12586 struct type *this_type, *target_type;
12588 name = dwarf2_full_name (NULL, die, cu);
12589 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
12590 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12591 TYPE_NAME (this_type) = name;
12592 set_die_type (die, this_type, cu);
12593 target_type = die_type (die, cu);
12594 if (target_type != this_type)
12595 TYPE_TARGET_TYPE (this_type) = target_type;
12598 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12599 spec and cause infinite loops in GDB. */
12600 complaint (&symfile_complaints,
12601 _("Self-referential DW_TAG_typedef "
12602 "- DIE at 0x%x [in module %s]"),
12603 die->offset.sect_off, objfile->name);
12604 TYPE_TARGET_TYPE (this_type) = NULL;
12609 /* Find a representation of a given base type and install
12610 it in the TYPE field of the die. */
12612 static struct type *
12613 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
12615 struct objfile *objfile = cu->objfile;
12617 struct attribute *attr;
12618 int encoding = 0, size = 0;
12620 enum type_code code = TYPE_CODE_INT;
12621 int type_flags = 0;
12622 struct type *target_type = NULL;
12624 attr = dwarf2_attr (die, DW_AT_encoding, cu);
12627 encoding = DW_UNSND (attr);
12629 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12632 size = DW_UNSND (attr);
12634 name = dwarf2_name (die, cu);
12637 complaint (&symfile_complaints,
12638 _("DW_AT_name missing from DW_TAG_base_type"));
12643 case DW_ATE_address:
12644 /* Turn DW_ATE_address into a void * pointer. */
12645 code = TYPE_CODE_PTR;
12646 type_flags |= TYPE_FLAG_UNSIGNED;
12647 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12649 case DW_ATE_boolean:
12650 code = TYPE_CODE_BOOL;
12651 type_flags |= TYPE_FLAG_UNSIGNED;
12653 case DW_ATE_complex_float:
12654 code = TYPE_CODE_COMPLEX;
12655 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12657 case DW_ATE_decimal_float:
12658 code = TYPE_CODE_DECFLOAT;
12661 code = TYPE_CODE_FLT;
12663 case DW_ATE_signed:
12665 case DW_ATE_unsigned:
12666 type_flags |= TYPE_FLAG_UNSIGNED;
12667 if (cu->language == language_fortran
12669 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12670 code = TYPE_CODE_CHAR;
12672 case DW_ATE_signed_char:
12673 if (cu->language == language_ada || cu->language == language_m2
12674 || cu->language == language_pascal
12675 || cu->language == language_fortran)
12676 code = TYPE_CODE_CHAR;
12678 case DW_ATE_unsigned_char:
12679 if (cu->language == language_ada || cu->language == language_m2
12680 || cu->language == language_pascal
12681 || cu->language == language_fortran)
12682 code = TYPE_CODE_CHAR;
12683 type_flags |= TYPE_FLAG_UNSIGNED;
12686 /* We just treat this as an integer and then recognize the
12687 type by name elsewhere. */
12691 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12692 dwarf_type_encoding_name (encoding));
12696 type = init_type (code, size, type_flags, NULL, objfile);
12697 TYPE_NAME (type) = name;
12698 TYPE_TARGET_TYPE (type) = target_type;
12700 if (name && strcmp (name, "char") == 0)
12701 TYPE_NOSIGN (type) = 1;
12703 return set_die_type (die, type, cu);
12706 /* Read the given DW_AT_subrange DIE. */
12708 static struct type *
12709 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12711 struct type *base_type;
12712 struct type *range_type;
12713 struct attribute *attr;
12715 int low_default_is_valid;
12717 LONGEST negative_mask;
12719 base_type = die_type (die, cu);
12720 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12721 check_typedef (base_type);
12723 /* The die_type call above may have already set the type for this DIE. */
12724 range_type = get_die_type (die, cu);
12728 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12729 omitting DW_AT_lower_bound. */
12730 switch (cu->language)
12733 case language_cplus:
12735 low_default_is_valid = 1;
12737 case language_fortran:
12739 low_default_is_valid = 1;
12742 case language_java:
12743 case language_objc:
12745 low_default_is_valid = (cu->header.version >= 4);
12749 case language_pascal:
12751 low_default_is_valid = (cu->header.version >= 4);
12755 low_default_is_valid = 0;
12759 /* FIXME: For variable sized arrays either of these could be
12760 a variable rather than a constant value. We'll allow it,
12761 but we don't know how to handle it. */
12762 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
12764 low = dwarf2_get_attr_constant_value (attr, low);
12765 else if (!low_default_is_valid)
12766 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12767 "- DIE at 0x%x [in module %s]"),
12768 die->offset.sect_off, cu->objfile->name);
12770 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
12773 if (attr_form_is_block (attr) || is_ref_attr (attr))
12775 /* GCC encodes arrays with unspecified or dynamic length
12776 with a DW_FORM_block1 attribute or a reference attribute.
12777 FIXME: GDB does not yet know how to handle dynamic
12778 arrays properly, treat them as arrays with unspecified
12781 FIXME: jimb/2003-09-22: GDB does not really know
12782 how to handle arrays of unspecified length
12783 either; we just represent them as zero-length
12784 arrays. Choose an appropriate upper bound given
12785 the lower bound we've computed above. */
12789 high = dwarf2_get_attr_constant_value (attr, 1);
12793 attr = dwarf2_attr (die, DW_AT_count, cu);
12796 int count = dwarf2_get_attr_constant_value (attr, 1);
12797 high = low + count - 1;
12801 /* Unspecified array length. */
12806 /* Dwarf-2 specifications explicitly allows to create subrange types
12807 without specifying a base type.
12808 In that case, the base type must be set to the type of
12809 the lower bound, upper bound or count, in that order, if any of these
12810 three attributes references an object that has a type.
12811 If no base type is found, the Dwarf-2 specifications say that
12812 a signed integer type of size equal to the size of an address should
12814 For the following C code: `extern char gdb_int [];'
12815 GCC produces an empty range DIE.
12816 FIXME: muller/2010-05-28: Possible references to object for low bound,
12817 high bound or count are not yet handled by this code. */
12818 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12820 struct objfile *objfile = cu->objfile;
12821 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12822 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12823 struct type *int_type = objfile_type (objfile)->builtin_int;
12825 /* Test "int", "long int", and "long long int" objfile types,
12826 and select the first one having a size above or equal to the
12827 architecture address size. */
12828 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12829 base_type = int_type;
12832 int_type = objfile_type (objfile)->builtin_long;
12833 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12834 base_type = int_type;
12837 int_type = objfile_type (objfile)->builtin_long_long;
12838 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12839 base_type = int_type;
12845 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12846 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12847 low |= negative_mask;
12848 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12849 high |= negative_mask;
12851 range_type = create_range_type (NULL, base_type, low, high);
12853 /* Mark arrays with dynamic length at least as an array of unspecified
12854 length. GDB could check the boundary but before it gets implemented at
12855 least allow accessing the array elements. */
12856 if (attr && attr_form_is_block (attr))
12857 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12859 /* Ada expects an empty array on no boundary attributes. */
12860 if (attr == NULL && cu->language != language_ada)
12861 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12863 name = dwarf2_name (die, cu);
12865 TYPE_NAME (range_type) = name;
12867 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12869 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12871 set_die_type (die, range_type, cu);
12873 /* set_die_type should be already done. */
12874 set_descriptive_type (range_type, die, cu);
12879 static struct type *
12880 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12884 /* For now, we only support the C meaning of an unspecified type: void. */
12886 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12887 TYPE_NAME (type) = dwarf2_name (die, cu);
12889 return set_die_type (die, type, cu);
12892 /* Read a single die and all its descendents. Set the die's sibling
12893 field to NULL; set other fields in the die correctly, and set all
12894 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12895 location of the info_ptr after reading all of those dies. PARENT
12896 is the parent of the die in question. */
12898 static struct die_info *
12899 read_die_and_children (const struct die_reader_specs *reader,
12900 gdb_byte *info_ptr,
12901 gdb_byte **new_info_ptr,
12902 struct die_info *parent)
12904 struct die_info *die;
12908 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
12911 *new_info_ptr = cur_ptr;
12914 store_in_ref_table (die, reader->cu);
12917 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
12921 *new_info_ptr = cur_ptr;
12924 die->sibling = NULL;
12925 die->parent = parent;
12929 /* Read a die, all of its descendents, and all of its siblings; set
12930 all of the fields of all of the dies correctly. Arguments are as
12931 in read_die_and_children. */
12933 static struct die_info *
12934 read_die_and_siblings (const struct die_reader_specs *reader,
12935 gdb_byte *info_ptr,
12936 gdb_byte **new_info_ptr,
12937 struct die_info *parent)
12939 struct die_info *first_die, *last_sibling;
12942 cur_ptr = info_ptr;
12943 first_die = last_sibling = NULL;
12947 struct die_info *die
12948 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
12952 *new_info_ptr = cur_ptr;
12959 last_sibling->sibling = die;
12961 last_sibling = die;
12965 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12967 The caller is responsible for filling in the extra attributes
12968 and updating (*DIEP)->num_attrs.
12969 Set DIEP to point to a newly allocated die with its information,
12970 except for its child, sibling, and parent fields.
12971 Set HAS_CHILDREN to tell whether the die has children or not. */
12974 read_full_die_1 (const struct die_reader_specs *reader,
12975 struct die_info **diep, gdb_byte *info_ptr,
12976 int *has_children, int num_extra_attrs)
12978 unsigned int abbrev_number, bytes_read, i;
12979 sect_offset offset;
12980 struct abbrev_info *abbrev;
12981 struct die_info *die;
12982 struct dwarf2_cu *cu = reader->cu;
12983 bfd *abfd = reader->abfd;
12985 offset.sect_off = info_ptr - reader->buffer;
12986 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12987 info_ptr += bytes_read;
12988 if (!abbrev_number)
12995 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
12997 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12999 bfd_get_filename (abfd));
13001 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
13002 die->offset = offset;
13003 die->tag = abbrev->tag;
13004 die->abbrev = abbrev_number;
13006 /* Make the result usable.
13007 The caller needs to update num_attrs after adding the extra
13009 die->num_attrs = abbrev->num_attrs;
13011 for (i = 0; i < abbrev->num_attrs; ++i)
13012 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
13016 *has_children = abbrev->has_children;
13020 /* Read a die and all its attributes.
13021 Set DIEP to point to a newly allocated die with its information,
13022 except for its child, sibling, and parent fields.
13023 Set HAS_CHILDREN to tell whether the die has children or not. */
13026 read_full_die (const struct die_reader_specs *reader,
13027 struct die_info **diep, gdb_byte *info_ptr,
13030 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
13033 /* Abbreviation tables.
13035 In DWARF version 2, the description of the debugging information is
13036 stored in a separate .debug_abbrev section. Before we read any
13037 dies from a section we read in all abbreviations and install them
13038 in a hash table. */
13040 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
13042 static struct abbrev_info *
13043 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
13045 struct abbrev_info *abbrev;
13047 abbrev = (struct abbrev_info *)
13048 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
13049 memset (abbrev, 0, sizeof (struct abbrev_info));
13053 /* Add an abbreviation to the table. */
13056 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
13057 unsigned int abbrev_number,
13058 struct abbrev_info *abbrev)
13060 unsigned int hash_number;
13062 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13063 abbrev->next = abbrev_table->abbrevs[hash_number];
13064 abbrev_table->abbrevs[hash_number] = abbrev;
13067 /* Look up an abbrev in the table.
13068 Returns NULL if the abbrev is not found. */
13070 static struct abbrev_info *
13071 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
13072 unsigned int abbrev_number)
13074 unsigned int hash_number;
13075 struct abbrev_info *abbrev;
13077 hash_number = abbrev_number % ABBREV_HASH_SIZE;
13078 abbrev = abbrev_table->abbrevs[hash_number];
13082 if (abbrev->number == abbrev_number)
13084 abbrev = abbrev->next;
13089 /* Read in an abbrev table. */
13091 static struct abbrev_table *
13092 abbrev_table_read_table (struct dwarf2_section_info *section,
13093 sect_offset offset)
13095 struct objfile *objfile = dwarf2_per_objfile->objfile;
13096 bfd *abfd = section->asection->owner;
13097 struct abbrev_table *abbrev_table;
13098 gdb_byte *abbrev_ptr;
13099 struct abbrev_info *cur_abbrev;
13100 unsigned int abbrev_number, bytes_read, abbrev_name;
13101 unsigned int abbrev_form;
13102 struct attr_abbrev *cur_attrs;
13103 unsigned int allocated_attrs;
13105 abbrev_table = XMALLOC (struct abbrev_table);
13106 abbrev_table->offset = offset;
13107 obstack_init (&abbrev_table->abbrev_obstack);
13108 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
13110 * sizeof (struct abbrev_info *)));
13111 memset (abbrev_table->abbrevs, 0,
13112 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
13114 dwarf2_read_section (objfile, section);
13115 abbrev_ptr = section->buffer + offset.sect_off;
13116 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13117 abbrev_ptr += bytes_read;
13119 allocated_attrs = ATTR_ALLOC_CHUNK;
13120 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
13122 /* Loop until we reach an abbrev number of 0. */
13123 while (abbrev_number)
13125 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
13127 /* read in abbrev header */
13128 cur_abbrev->number = abbrev_number;
13129 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13130 abbrev_ptr += bytes_read;
13131 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13134 /* now read in declarations */
13135 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13136 abbrev_ptr += bytes_read;
13137 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13138 abbrev_ptr += bytes_read;
13139 while (abbrev_name)
13141 if (cur_abbrev->num_attrs == allocated_attrs)
13143 allocated_attrs += ATTR_ALLOC_CHUNK;
13145 = xrealloc (cur_attrs, (allocated_attrs
13146 * sizeof (struct attr_abbrev)));
13149 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13150 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
13151 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13152 abbrev_ptr += bytes_read;
13153 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13154 abbrev_ptr += bytes_read;
13157 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
13158 (cur_abbrev->num_attrs
13159 * sizeof (struct attr_abbrev)));
13160 memcpy (cur_abbrev->attrs, cur_attrs,
13161 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13163 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
13165 /* Get next abbreviation.
13166 Under Irix6 the abbreviations for a compilation unit are not
13167 always properly terminated with an abbrev number of 0.
13168 Exit loop if we encounter an abbreviation which we have
13169 already read (which means we are about to read the abbreviations
13170 for the next compile unit) or if the end of the abbreviation
13171 table is reached. */
13172 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
13174 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13175 abbrev_ptr += bytes_read;
13176 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
13181 return abbrev_table;
13184 /* Free the resources held by ABBREV_TABLE. */
13187 abbrev_table_free (struct abbrev_table *abbrev_table)
13189 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13190 xfree (abbrev_table);
13193 /* Same as abbrev_table_free but as a cleanup.
13194 We pass in a pointer to the pointer to the table so that we can
13195 set the pointer to NULL when we're done. It also simplifies
13196 build_type_unit_groups. */
13199 abbrev_table_free_cleanup (void *table_ptr)
13201 struct abbrev_table **abbrev_table_ptr = table_ptr;
13203 if (*abbrev_table_ptr != NULL)
13204 abbrev_table_free (*abbrev_table_ptr);
13205 *abbrev_table_ptr = NULL;
13208 /* Read the abbrev table for CU from ABBREV_SECTION. */
13211 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13212 struct dwarf2_section_info *abbrev_section)
13215 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13218 /* Release the memory used by the abbrev table for a compilation unit. */
13221 dwarf2_free_abbrev_table (void *ptr_to_cu)
13223 struct dwarf2_cu *cu = ptr_to_cu;
13225 abbrev_table_free (cu->abbrev_table);
13226 /* Set this to NULL so that we SEGV if we try to read it later,
13227 and also because free_comp_unit verifies this is NULL. */
13228 cu->abbrev_table = NULL;
13231 /* Returns nonzero if TAG represents a type that we might generate a partial
13235 is_type_tag_for_partial (int tag)
13240 /* Some types that would be reasonable to generate partial symbols for,
13241 that we don't at present. */
13242 case DW_TAG_array_type:
13243 case DW_TAG_file_type:
13244 case DW_TAG_ptr_to_member_type:
13245 case DW_TAG_set_type:
13246 case DW_TAG_string_type:
13247 case DW_TAG_subroutine_type:
13249 case DW_TAG_base_type:
13250 case DW_TAG_class_type:
13251 case DW_TAG_interface_type:
13252 case DW_TAG_enumeration_type:
13253 case DW_TAG_structure_type:
13254 case DW_TAG_subrange_type:
13255 case DW_TAG_typedef:
13256 case DW_TAG_union_type:
13263 /* Load all DIEs that are interesting for partial symbols into memory. */
13265 static struct partial_die_info *
13266 load_partial_dies (const struct die_reader_specs *reader,
13267 gdb_byte *info_ptr, int building_psymtab)
13269 struct dwarf2_cu *cu = reader->cu;
13270 struct objfile *objfile = cu->objfile;
13271 struct partial_die_info *part_die;
13272 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13273 struct abbrev_info *abbrev;
13274 unsigned int bytes_read;
13275 unsigned int load_all = 0;
13276 int nesting_level = 1;
13281 gdb_assert (cu->per_cu != NULL);
13282 if (cu->per_cu->load_all_dies)
13286 = htab_create_alloc_ex (cu->header.length / 12,
13290 &cu->comp_unit_obstack,
13291 hashtab_obstack_allocate,
13292 dummy_obstack_deallocate);
13294 part_die = obstack_alloc (&cu->comp_unit_obstack,
13295 sizeof (struct partial_die_info));
13299 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13301 /* A NULL abbrev means the end of a series of children. */
13302 if (abbrev == NULL)
13304 if (--nesting_level == 0)
13306 /* PART_DIE was probably the last thing allocated on the
13307 comp_unit_obstack, so we could call obstack_free
13308 here. We don't do that because the waste is small,
13309 and will be cleaned up when we're done with this
13310 compilation unit. This way, we're also more robust
13311 against other users of the comp_unit_obstack. */
13314 info_ptr += bytes_read;
13315 last_die = parent_die;
13316 parent_die = parent_die->die_parent;
13320 /* Check for template arguments. We never save these; if
13321 they're seen, we just mark the parent, and go on our way. */
13322 if (parent_die != NULL
13323 && cu->language == language_cplus
13324 && (abbrev->tag == DW_TAG_template_type_param
13325 || abbrev->tag == DW_TAG_template_value_param))
13327 parent_die->has_template_arguments = 1;
13331 /* We don't need a partial DIE for the template argument. */
13332 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13337 /* We only recurse into c++ subprograms looking for template arguments.
13338 Skip their other children. */
13340 && cu->language == language_cplus
13341 && parent_die != NULL
13342 && parent_die->tag == DW_TAG_subprogram)
13344 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13348 /* Check whether this DIE is interesting enough to save. Normally
13349 we would not be interested in members here, but there may be
13350 later variables referencing them via DW_AT_specification (for
13351 static members). */
13353 && !is_type_tag_for_partial (abbrev->tag)
13354 && abbrev->tag != DW_TAG_constant
13355 && abbrev->tag != DW_TAG_enumerator
13356 && abbrev->tag != DW_TAG_subprogram
13357 && abbrev->tag != DW_TAG_lexical_block
13358 && abbrev->tag != DW_TAG_variable
13359 && abbrev->tag != DW_TAG_namespace
13360 && abbrev->tag != DW_TAG_module
13361 && abbrev->tag != DW_TAG_member
13362 && abbrev->tag != DW_TAG_imported_unit)
13364 /* Otherwise we skip to the next sibling, if any. */
13365 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
13369 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13372 /* This two-pass algorithm for processing partial symbols has a
13373 high cost in cache pressure. Thus, handle some simple cases
13374 here which cover the majority of C partial symbols. DIEs
13375 which neither have specification tags in them, nor could have
13376 specification tags elsewhere pointing at them, can simply be
13377 processed and discarded.
13379 This segment is also optional; scan_partial_symbols and
13380 add_partial_symbol will handle these DIEs if we chain
13381 them in normally. When compilers which do not emit large
13382 quantities of duplicate debug information are more common,
13383 this code can probably be removed. */
13385 /* Any complete simple types at the top level (pretty much all
13386 of them, for a language without namespaces), can be processed
13388 if (parent_die == NULL
13389 && part_die->has_specification == 0
13390 && part_die->is_declaration == 0
13391 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
13392 || part_die->tag == DW_TAG_base_type
13393 || part_die->tag == DW_TAG_subrange_type))
13395 if (building_psymtab && part_die->name != NULL)
13396 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13397 VAR_DOMAIN, LOC_TYPEDEF,
13398 &objfile->static_psymbols,
13399 0, (CORE_ADDR) 0, cu->language, objfile);
13400 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13404 /* The exception for DW_TAG_typedef with has_children above is
13405 a workaround of GCC PR debug/47510. In the case of this complaint
13406 type_name_no_tag_or_error will error on such types later.
13408 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13409 it could not find the child DIEs referenced later, this is checked
13410 above. In correct DWARF DW_TAG_typedef should have no children. */
13412 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13413 complaint (&symfile_complaints,
13414 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13415 "- DIE at 0x%x [in module %s]"),
13416 part_die->offset.sect_off, objfile->name);
13418 /* If we're at the second level, and we're an enumerator, and
13419 our parent has no specification (meaning possibly lives in a
13420 namespace elsewhere), then we can add the partial symbol now
13421 instead of queueing it. */
13422 if (part_die->tag == DW_TAG_enumerator
13423 && parent_die != NULL
13424 && parent_die->die_parent == NULL
13425 && parent_die->tag == DW_TAG_enumeration_type
13426 && parent_die->has_specification == 0)
13428 if (part_die->name == NULL)
13429 complaint (&symfile_complaints,
13430 _("malformed enumerator DIE ignored"));
13431 else if (building_psymtab)
13432 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
13433 VAR_DOMAIN, LOC_CONST,
13434 (cu->language == language_cplus
13435 || cu->language == language_java)
13436 ? &objfile->global_psymbols
13437 : &objfile->static_psymbols,
13438 0, (CORE_ADDR) 0, cu->language, objfile);
13440 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
13444 /* We'll save this DIE so link it in. */
13445 part_die->die_parent = parent_die;
13446 part_die->die_sibling = NULL;
13447 part_die->die_child = NULL;
13449 if (last_die && last_die == parent_die)
13450 last_die->die_child = part_die;
13452 last_die->die_sibling = part_die;
13454 last_die = part_die;
13456 if (first_die == NULL)
13457 first_die = part_die;
13459 /* Maybe add the DIE to the hash table. Not all DIEs that we
13460 find interesting need to be in the hash table, because we
13461 also have the parent/sibling/child chains; only those that we
13462 might refer to by offset later during partial symbol reading.
13464 For now this means things that might have be the target of a
13465 DW_AT_specification, DW_AT_abstract_origin, or
13466 DW_AT_extension. DW_AT_extension will refer only to
13467 namespaces; DW_AT_abstract_origin refers to functions (and
13468 many things under the function DIE, but we do not recurse
13469 into function DIEs during partial symbol reading) and
13470 possibly variables as well; DW_AT_specification refers to
13471 declarations. Declarations ought to have the DW_AT_declaration
13472 flag. It happens that GCC forgets to put it in sometimes, but
13473 only for functions, not for types.
13475 Adding more things than necessary to the hash table is harmless
13476 except for the performance cost. Adding too few will result in
13477 wasted time in find_partial_die, when we reread the compilation
13478 unit with load_all_dies set. */
13481 || abbrev->tag == DW_TAG_constant
13482 || abbrev->tag == DW_TAG_subprogram
13483 || abbrev->tag == DW_TAG_variable
13484 || abbrev->tag == DW_TAG_namespace
13485 || part_die->is_declaration)
13489 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
13490 part_die->offset.sect_off, INSERT);
13494 part_die = obstack_alloc (&cu->comp_unit_obstack,
13495 sizeof (struct partial_die_info));
13497 /* For some DIEs we want to follow their children (if any). For C
13498 we have no reason to follow the children of structures; for other
13499 languages we have to, so that we can get at method physnames
13500 to infer fully qualified class names, for DW_AT_specification,
13501 and for C++ template arguments. For C++, we also look one level
13502 inside functions to find template arguments (if the name of the
13503 function does not already contain the template arguments).
13505 For Ada, we need to scan the children of subprograms and lexical
13506 blocks as well because Ada allows the definition of nested
13507 entities that could be interesting for the debugger, such as
13508 nested subprograms for instance. */
13509 if (last_die->has_children
13511 || last_die->tag == DW_TAG_namespace
13512 || last_die->tag == DW_TAG_module
13513 || last_die->tag == DW_TAG_enumeration_type
13514 || (cu->language == language_cplus
13515 && last_die->tag == DW_TAG_subprogram
13516 && (last_die->name == NULL
13517 || strchr (last_die->name, '<') == NULL))
13518 || (cu->language != language_c
13519 && (last_die->tag == DW_TAG_class_type
13520 || last_die->tag == DW_TAG_interface_type
13521 || last_die->tag == DW_TAG_structure_type
13522 || last_die->tag == DW_TAG_union_type))
13523 || (cu->language == language_ada
13524 && (last_die->tag == DW_TAG_subprogram
13525 || last_die->tag == DW_TAG_lexical_block))))
13528 parent_die = last_die;
13532 /* Otherwise we skip to the next sibling, if any. */
13533 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
13535 /* Back to the top, do it again. */
13539 /* Read a minimal amount of information into the minimal die structure. */
13542 read_partial_die (const struct die_reader_specs *reader,
13543 struct partial_die_info *part_die,
13544 struct abbrev_info *abbrev, unsigned int abbrev_len,
13545 gdb_byte *info_ptr)
13547 struct dwarf2_cu *cu = reader->cu;
13548 struct objfile *objfile = cu->objfile;
13549 gdb_byte *buffer = reader->buffer;
13551 struct attribute attr;
13552 int has_low_pc_attr = 0;
13553 int has_high_pc_attr = 0;
13554 int high_pc_relative = 0;
13556 memset (part_die, 0, sizeof (struct partial_die_info));
13558 part_die->offset.sect_off = info_ptr - buffer;
13560 info_ptr += abbrev_len;
13562 if (abbrev == NULL)
13565 part_die->tag = abbrev->tag;
13566 part_die->has_children = abbrev->has_children;
13568 for (i = 0; i < abbrev->num_attrs; ++i)
13570 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
13572 /* Store the data if it is of an attribute we want to keep in a
13573 partial symbol table. */
13577 switch (part_die->tag)
13579 case DW_TAG_compile_unit:
13580 case DW_TAG_partial_unit:
13581 case DW_TAG_type_unit:
13582 /* Compilation units have a DW_AT_name that is a filename, not
13583 a source language identifier. */
13584 case DW_TAG_enumeration_type:
13585 case DW_TAG_enumerator:
13586 /* These tags always have simple identifiers already; no need
13587 to canonicalize them. */
13588 part_die->name = DW_STRING (&attr);
13592 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
13593 &objfile->objfile_obstack);
13597 case DW_AT_linkage_name:
13598 case DW_AT_MIPS_linkage_name:
13599 /* Note that both forms of linkage name might appear. We
13600 assume they will be the same, and we only store the last
13602 if (cu->language == language_ada)
13603 part_die->name = DW_STRING (&attr);
13604 part_die->linkage_name = DW_STRING (&attr);
13607 has_low_pc_attr = 1;
13608 part_die->lowpc = DW_ADDR (&attr);
13610 case DW_AT_high_pc:
13611 has_high_pc_attr = 1;
13612 if (attr.form == DW_FORM_addr
13613 || attr.form == DW_FORM_GNU_addr_index)
13614 part_die->highpc = DW_ADDR (&attr);
13617 high_pc_relative = 1;
13618 part_die->highpc = DW_UNSND (&attr);
13621 case DW_AT_location:
13622 /* Support the .debug_loc offsets. */
13623 if (attr_form_is_block (&attr))
13625 part_die->d.locdesc = DW_BLOCK (&attr);
13627 else if (attr_form_is_section_offset (&attr))
13629 dwarf2_complex_location_expr_complaint ();
13633 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13634 "partial symbol information");
13637 case DW_AT_external:
13638 part_die->is_external = DW_UNSND (&attr);
13640 case DW_AT_declaration:
13641 part_die->is_declaration = DW_UNSND (&attr);
13644 part_die->has_type = 1;
13646 case DW_AT_abstract_origin:
13647 case DW_AT_specification:
13648 case DW_AT_extension:
13649 part_die->has_specification = 1;
13650 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
13651 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13652 || cu->per_cu->is_dwz);
13654 case DW_AT_sibling:
13655 /* Ignore absolute siblings, they might point outside of
13656 the current compile unit. */
13657 if (attr.form == DW_FORM_ref_addr)
13658 complaint (&symfile_complaints,
13659 _("ignoring absolute DW_AT_sibling"));
13661 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
13663 case DW_AT_byte_size:
13664 part_die->has_byte_size = 1;
13666 case DW_AT_calling_convention:
13667 /* DWARF doesn't provide a way to identify a program's source-level
13668 entry point. DW_AT_calling_convention attributes are only meant
13669 to describe functions' calling conventions.
13671 However, because it's a necessary piece of information in
13672 Fortran, and because DW_CC_program is the only piece of debugging
13673 information whose definition refers to a 'main program' at all,
13674 several compilers have begun marking Fortran main programs with
13675 DW_CC_program --- even when those functions use the standard
13676 calling conventions.
13678 So until DWARF specifies a way to provide this information and
13679 compilers pick up the new representation, we'll support this
13681 if (DW_UNSND (&attr) == DW_CC_program
13682 && cu->language == language_fortran)
13684 set_main_name (part_die->name);
13686 /* As this DIE has a static linkage the name would be difficult
13687 to look up later. */
13688 language_of_main = language_fortran;
13692 if (DW_UNSND (&attr) == DW_INL_inlined
13693 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13694 part_die->may_be_inlined = 1;
13698 if (part_die->tag == DW_TAG_imported_unit)
13700 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13701 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13702 || cu->per_cu->is_dwz);
13711 if (high_pc_relative)
13712 part_die->highpc += part_die->lowpc;
13714 if (has_low_pc_attr && has_high_pc_attr)
13716 /* When using the GNU linker, .gnu.linkonce. sections are used to
13717 eliminate duplicate copies of functions and vtables and such.
13718 The linker will arbitrarily choose one and discard the others.
13719 The AT_*_pc values for such functions refer to local labels in
13720 these sections. If the section from that file was discarded, the
13721 labels are not in the output, so the relocs get a value of 0.
13722 If this is a discarded function, mark the pc bounds as invalid,
13723 so that GDB will ignore it. */
13724 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13726 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13728 complaint (&symfile_complaints,
13729 _("DW_AT_low_pc %s is zero "
13730 "for DIE at 0x%x [in module %s]"),
13731 paddress (gdbarch, part_die->lowpc),
13732 part_die->offset.sect_off, objfile->name);
13734 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13735 else if (part_die->lowpc >= part_die->highpc)
13737 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13739 complaint (&symfile_complaints,
13740 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13741 "for DIE at 0x%x [in module %s]"),
13742 paddress (gdbarch, part_die->lowpc),
13743 paddress (gdbarch, part_die->highpc),
13744 part_die->offset.sect_off, objfile->name);
13747 part_die->has_pc_info = 1;
13753 /* Find a cached partial DIE at OFFSET in CU. */
13755 static struct partial_die_info *
13756 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
13758 struct partial_die_info *lookup_die = NULL;
13759 struct partial_die_info part_die;
13761 part_die.offset = offset;
13762 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13768 /* Find a partial DIE at OFFSET, which may or may not be in CU,
13769 except in the case of .debug_types DIEs which do not reference
13770 outside their CU (they do however referencing other types via
13771 DW_FORM_ref_sig8). */
13773 static struct partial_die_info *
13774 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
13776 struct objfile *objfile = cu->objfile;
13777 struct dwarf2_per_cu_data *per_cu = NULL;
13778 struct partial_die_info *pd = NULL;
13780 if (offset_in_dwz == cu->per_cu->is_dwz
13781 && offset_in_cu_p (&cu->header, offset))
13783 pd = find_partial_die_in_comp_unit (offset, cu);
13786 /* We missed recording what we needed.
13787 Load all dies and try again. */
13788 per_cu = cu->per_cu;
13792 /* TUs don't reference other CUs/TUs (except via type signatures). */
13793 if (cu->per_cu->is_debug_types)
13795 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13796 " external reference to offset 0x%lx [in module %s].\n"),
13797 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13798 bfd_get_filename (objfile->obfd));
13800 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13803 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13804 load_partial_comp_unit (per_cu);
13806 per_cu->cu->last_used = 0;
13807 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13810 /* If we didn't find it, and not all dies have been loaded,
13811 load them all and try again. */
13813 if (pd == NULL && per_cu->load_all_dies == 0)
13815 per_cu->load_all_dies = 1;
13817 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13818 THIS_CU->cu may already be in use. So we can't just free it and
13819 replace its DIEs with the ones we read in. Instead, we leave those
13820 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13821 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13823 load_partial_comp_unit (per_cu);
13825 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13829 internal_error (__FILE__, __LINE__,
13830 _("could not find partial DIE 0x%x "
13831 "in cache [from module %s]\n"),
13832 offset.sect_off, bfd_get_filename (objfile->obfd));
13836 /* See if we can figure out if the class lives in a namespace. We do
13837 this by looking for a member function; its demangled name will
13838 contain namespace info, if there is any. */
13841 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13842 struct dwarf2_cu *cu)
13844 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13845 what template types look like, because the demangler
13846 frequently doesn't give the same name as the debug info. We
13847 could fix this by only using the demangled name to get the
13848 prefix (but see comment in read_structure_type). */
13850 struct partial_die_info *real_pdi;
13851 struct partial_die_info *child_pdi;
13853 /* If this DIE (this DIE's specification, if any) has a parent, then
13854 we should not do this. We'll prepend the parent's fully qualified
13855 name when we create the partial symbol. */
13857 real_pdi = struct_pdi;
13858 while (real_pdi->has_specification)
13859 real_pdi = find_partial_die (real_pdi->spec_offset,
13860 real_pdi->spec_is_dwz, cu);
13862 if (real_pdi->die_parent != NULL)
13865 for (child_pdi = struct_pdi->die_child;
13867 child_pdi = child_pdi->die_sibling)
13869 if (child_pdi->tag == DW_TAG_subprogram
13870 && child_pdi->linkage_name != NULL)
13872 char *actual_class_name
13873 = language_class_name_from_physname (cu->language_defn,
13874 child_pdi->linkage_name);
13875 if (actual_class_name != NULL)
13878 = obstack_copy0 (&cu->objfile->objfile_obstack,
13880 strlen (actual_class_name));
13881 xfree (actual_class_name);
13888 /* Adjust PART_DIE before generating a symbol for it. This function
13889 may set the is_external flag or change the DIE's name. */
13892 fixup_partial_die (struct partial_die_info *part_die,
13893 struct dwarf2_cu *cu)
13895 /* Once we've fixed up a die, there's no point in doing so again.
13896 This also avoids a memory leak if we were to call
13897 guess_partial_die_structure_name multiple times. */
13898 if (part_die->fixup_called)
13901 /* If we found a reference attribute and the DIE has no name, try
13902 to find a name in the referred to DIE. */
13904 if (part_die->name == NULL && part_die->has_specification)
13906 struct partial_die_info *spec_die;
13908 spec_die = find_partial_die (part_die->spec_offset,
13909 part_die->spec_is_dwz, cu);
13911 fixup_partial_die (spec_die, cu);
13913 if (spec_die->name)
13915 part_die->name = spec_die->name;
13917 /* Copy DW_AT_external attribute if it is set. */
13918 if (spec_die->is_external)
13919 part_die->is_external = spec_die->is_external;
13923 /* Set default names for some unnamed DIEs. */
13925 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
13926 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
13928 /* If there is no parent die to provide a namespace, and there are
13929 children, see if we can determine the namespace from their linkage
13931 if (cu->language == language_cplus
13932 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
13933 && part_die->die_parent == NULL
13934 && part_die->has_children
13935 && (part_die->tag == DW_TAG_class_type
13936 || part_die->tag == DW_TAG_structure_type
13937 || part_die->tag == DW_TAG_union_type))
13938 guess_partial_die_structure_name (part_die, cu);
13940 /* GCC might emit a nameless struct or union that has a linkage
13941 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13942 if (part_die->name == NULL
13943 && (part_die->tag == DW_TAG_class_type
13944 || part_die->tag == DW_TAG_interface_type
13945 || part_die->tag == DW_TAG_structure_type
13946 || part_die->tag == DW_TAG_union_type)
13947 && part_die->linkage_name != NULL)
13951 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13956 /* Strip any leading namespaces/classes, keep only the base name.
13957 DW_AT_name for named DIEs does not contain the prefixes. */
13958 base = strrchr (demangled, ':');
13959 if (base && base > demangled && base[-1] == ':')
13964 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
13965 base, strlen (base));
13970 part_die->fixup_called = 1;
13973 /* Read an attribute value described by an attribute form. */
13976 read_attribute_value (const struct die_reader_specs *reader,
13977 struct attribute *attr, unsigned form,
13978 gdb_byte *info_ptr)
13980 struct dwarf2_cu *cu = reader->cu;
13981 bfd *abfd = reader->abfd;
13982 struct comp_unit_head *cu_header = &cu->header;
13983 unsigned int bytes_read;
13984 struct dwarf_block *blk;
13989 case DW_FORM_ref_addr:
13990 if (cu->header.version == 2)
13991 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
13993 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13994 &cu->header, &bytes_read);
13995 info_ptr += bytes_read;
13997 case DW_FORM_GNU_ref_alt:
13998 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13999 info_ptr += bytes_read;
14002 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
14003 info_ptr += bytes_read;
14005 case DW_FORM_block2:
14006 blk = dwarf_alloc_block (cu);
14007 blk->size = read_2_bytes (abfd, info_ptr);
14009 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14010 info_ptr += blk->size;
14011 DW_BLOCK (attr) = blk;
14013 case DW_FORM_block4:
14014 blk = dwarf_alloc_block (cu);
14015 blk->size = read_4_bytes (abfd, info_ptr);
14017 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14018 info_ptr += blk->size;
14019 DW_BLOCK (attr) = blk;
14021 case DW_FORM_data2:
14022 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
14025 case DW_FORM_data4:
14026 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
14029 case DW_FORM_data8:
14030 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
14033 case DW_FORM_sec_offset:
14034 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
14035 info_ptr += bytes_read;
14037 case DW_FORM_string:
14038 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
14039 DW_STRING_IS_CANONICAL (attr) = 0;
14040 info_ptr += bytes_read;
14043 if (!cu->per_cu->is_dwz)
14045 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
14047 DW_STRING_IS_CANONICAL (attr) = 0;
14048 info_ptr += bytes_read;
14052 case DW_FORM_GNU_strp_alt:
14054 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14055 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
14058 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
14059 DW_STRING_IS_CANONICAL (attr) = 0;
14060 info_ptr += bytes_read;
14063 case DW_FORM_exprloc:
14064 case DW_FORM_block:
14065 blk = dwarf_alloc_block (cu);
14066 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14067 info_ptr += bytes_read;
14068 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14069 info_ptr += blk->size;
14070 DW_BLOCK (attr) = blk;
14072 case DW_FORM_block1:
14073 blk = dwarf_alloc_block (cu);
14074 blk->size = read_1_byte (abfd, info_ptr);
14076 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
14077 info_ptr += blk->size;
14078 DW_BLOCK (attr) = blk;
14080 case DW_FORM_data1:
14081 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14085 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
14088 case DW_FORM_flag_present:
14089 DW_UNSND (attr) = 1;
14091 case DW_FORM_sdata:
14092 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
14093 info_ptr += bytes_read;
14095 case DW_FORM_udata:
14096 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14097 info_ptr += bytes_read;
14100 DW_UNSND (attr) = (cu->header.offset.sect_off
14101 + read_1_byte (abfd, info_ptr));
14105 DW_UNSND (attr) = (cu->header.offset.sect_off
14106 + read_2_bytes (abfd, info_ptr));
14110 DW_UNSND (attr) = (cu->header.offset.sect_off
14111 + read_4_bytes (abfd, info_ptr));
14115 DW_UNSND (attr) = (cu->header.offset.sect_off
14116 + read_8_bytes (abfd, info_ptr));
14119 case DW_FORM_ref_sig8:
14120 /* Convert the signature to something we can record in DW_UNSND
14122 NOTE: This is NULL if the type wasn't found. */
14123 DW_SIGNATURED_TYPE (attr) =
14124 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
14127 case DW_FORM_ref_udata:
14128 DW_UNSND (attr) = (cu->header.offset.sect_off
14129 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
14130 info_ptr += bytes_read;
14132 case DW_FORM_indirect:
14133 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14134 info_ptr += bytes_read;
14135 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
14137 case DW_FORM_GNU_addr_index:
14138 if (reader->dwo_file == NULL)
14140 /* For now flag a hard error.
14141 Later we can turn this into a complaint. */
14142 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14143 dwarf_form_name (form),
14144 bfd_get_filename (abfd));
14146 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14147 info_ptr += bytes_read;
14149 case DW_FORM_GNU_str_index:
14150 if (reader->dwo_file == NULL)
14152 /* For now flag a hard error.
14153 Later we can turn this into a complaint if warranted. */
14154 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14155 dwarf_form_name (form),
14156 bfd_get_filename (abfd));
14159 ULONGEST str_index =
14160 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14162 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14163 DW_STRING_IS_CANONICAL (attr) = 0;
14164 info_ptr += bytes_read;
14168 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
14169 dwarf_form_name (form),
14170 bfd_get_filename (abfd));
14174 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14175 attr->form = DW_FORM_GNU_ref_alt;
14177 /* We have seen instances where the compiler tried to emit a byte
14178 size attribute of -1 which ended up being encoded as an unsigned
14179 0xffffffff. Although 0xffffffff is technically a valid size value,
14180 an object of this size seems pretty unlikely so we can relatively
14181 safely treat these cases as if the size attribute was invalid and
14182 treat them as zero by default. */
14183 if (attr->name == DW_AT_byte_size
14184 && form == DW_FORM_data4
14185 && DW_UNSND (attr) >= 0xffffffff)
14188 (&symfile_complaints,
14189 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14190 hex_string (DW_UNSND (attr)));
14191 DW_UNSND (attr) = 0;
14197 /* Read an attribute described by an abbreviated attribute. */
14200 read_attribute (const struct die_reader_specs *reader,
14201 struct attribute *attr, struct attr_abbrev *abbrev,
14202 gdb_byte *info_ptr)
14204 attr->name = abbrev->name;
14205 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
14208 /* Read dwarf information from a buffer. */
14210 static unsigned int
14211 read_1_byte (bfd *abfd, const gdb_byte *buf)
14213 return bfd_get_8 (abfd, buf);
14217 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
14219 return bfd_get_signed_8 (abfd, buf);
14222 static unsigned int
14223 read_2_bytes (bfd *abfd, const gdb_byte *buf)
14225 return bfd_get_16 (abfd, buf);
14229 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
14231 return bfd_get_signed_16 (abfd, buf);
14234 static unsigned int
14235 read_4_bytes (bfd *abfd, const gdb_byte *buf)
14237 return bfd_get_32 (abfd, buf);
14241 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
14243 return bfd_get_signed_32 (abfd, buf);
14247 read_8_bytes (bfd *abfd, const gdb_byte *buf)
14249 return bfd_get_64 (abfd, buf);
14253 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
14254 unsigned int *bytes_read)
14256 struct comp_unit_head *cu_header = &cu->header;
14257 CORE_ADDR retval = 0;
14259 if (cu_header->signed_addr_p)
14261 switch (cu_header->addr_size)
14264 retval = bfd_get_signed_16 (abfd, buf);
14267 retval = bfd_get_signed_32 (abfd, buf);
14270 retval = bfd_get_signed_64 (abfd, buf);
14273 internal_error (__FILE__, __LINE__,
14274 _("read_address: bad switch, signed [in module %s]"),
14275 bfd_get_filename (abfd));
14280 switch (cu_header->addr_size)
14283 retval = bfd_get_16 (abfd, buf);
14286 retval = bfd_get_32 (abfd, buf);
14289 retval = bfd_get_64 (abfd, buf);
14292 internal_error (__FILE__, __LINE__,
14293 _("read_address: bad switch, "
14294 "unsigned [in module %s]"),
14295 bfd_get_filename (abfd));
14299 *bytes_read = cu_header->addr_size;
14303 /* Read the initial length from a section. The (draft) DWARF 3
14304 specification allows the initial length to take up either 4 bytes
14305 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14306 bytes describe the length and all offsets will be 8 bytes in length
14309 An older, non-standard 64-bit format is also handled by this
14310 function. The older format in question stores the initial length
14311 as an 8-byte quantity without an escape value. Lengths greater
14312 than 2^32 aren't very common which means that the initial 4 bytes
14313 is almost always zero. Since a length value of zero doesn't make
14314 sense for the 32-bit format, this initial zero can be considered to
14315 be an escape value which indicates the presence of the older 64-bit
14316 format. As written, the code can't detect (old format) lengths
14317 greater than 4GB. If it becomes necessary to handle lengths
14318 somewhat larger than 4GB, we could allow other small values (such
14319 as the non-sensical values of 1, 2, and 3) to also be used as
14320 escape values indicating the presence of the old format.
14322 The value returned via bytes_read should be used to increment the
14323 relevant pointer after calling read_initial_length().
14325 [ Note: read_initial_length() and read_offset() are based on the
14326 document entitled "DWARF Debugging Information Format", revision
14327 3, draft 8, dated November 19, 2001. This document was obtained
14330 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
14332 This document is only a draft and is subject to change. (So beware.)
14334 Details regarding the older, non-standard 64-bit format were
14335 determined empirically by examining 64-bit ELF files produced by
14336 the SGI toolchain on an IRIX 6.5 machine.
14338 - Kevin, July 16, 2002
14342 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
14344 LONGEST length = bfd_get_32 (abfd, buf);
14346 if (length == 0xffffffff)
14348 length = bfd_get_64 (abfd, buf + 4);
14351 else if (length == 0)
14353 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
14354 length = bfd_get_64 (abfd, buf);
14365 /* Cover function for read_initial_length.
14366 Returns the length of the object at BUF, and stores the size of the
14367 initial length in *BYTES_READ and stores the size that offsets will be in
14369 If the initial length size is not equivalent to that specified in
14370 CU_HEADER then issue a complaint.
14371 This is useful when reading non-comp-unit headers. */
14374 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14375 const struct comp_unit_head *cu_header,
14376 unsigned int *bytes_read,
14377 unsigned int *offset_size)
14379 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14381 gdb_assert (cu_header->initial_length_size == 4
14382 || cu_header->initial_length_size == 8
14383 || cu_header->initial_length_size == 12);
14385 if (cu_header->initial_length_size != *bytes_read)
14386 complaint (&symfile_complaints,
14387 _("intermixed 32-bit and 64-bit DWARF sections"));
14389 *offset_size = (*bytes_read == 4) ? 4 : 8;
14393 /* Read an offset from the data stream. The size of the offset is
14394 given by cu_header->offset_size. */
14397 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
14398 unsigned int *bytes_read)
14400 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
14402 *bytes_read = cu_header->offset_size;
14406 /* Read an offset from the data stream. */
14409 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
14411 LONGEST retval = 0;
14413 switch (offset_size)
14416 retval = bfd_get_32 (abfd, buf);
14419 retval = bfd_get_64 (abfd, buf);
14422 internal_error (__FILE__, __LINE__,
14423 _("read_offset_1: bad switch [in module %s]"),
14424 bfd_get_filename (abfd));
14431 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
14433 /* If the size of a host char is 8 bits, we can return a pointer
14434 to the buffer, otherwise we have to copy the data to a buffer
14435 allocated on the temporary obstack. */
14436 gdb_assert (HOST_CHAR_BIT == 8);
14441 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14443 /* If the size of a host char is 8 bits, we can return a pointer
14444 to the string, otherwise we have to copy the string to a buffer
14445 allocated on the temporary obstack. */
14446 gdb_assert (HOST_CHAR_BIT == 8);
14449 *bytes_read_ptr = 1;
14452 *bytes_read_ptr = strlen ((char *) buf) + 1;
14453 return (char *) buf;
14457 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
14459 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
14460 if (dwarf2_per_objfile->str.buffer == NULL)
14461 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14462 bfd_get_filename (abfd));
14463 if (str_offset >= dwarf2_per_objfile->str.size)
14464 error (_("DW_FORM_strp pointing outside of "
14465 ".debug_str section [in module %s]"),
14466 bfd_get_filename (abfd));
14467 gdb_assert (HOST_CHAR_BIT == 8);
14468 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
14470 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
14473 /* Read a string at offset STR_OFFSET in the .debug_str section from
14474 the .dwz file DWZ. Throw an error if the offset is too large. If
14475 the string consists of a single NUL byte, return NULL; otherwise
14476 return a pointer to the string. */
14479 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14481 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14483 if (dwz->str.buffer == NULL)
14484 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14485 "section [in module %s]"),
14486 bfd_get_filename (dwz->dwz_bfd));
14487 if (str_offset >= dwz->str.size)
14488 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14489 ".debug_str section [in module %s]"),
14490 bfd_get_filename (dwz->dwz_bfd));
14491 gdb_assert (HOST_CHAR_BIT == 8);
14492 if (dwz->str.buffer[str_offset] == '\0')
14494 return (char *) (dwz->str.buffer + str_offset);
14498 read_indirect_string (bfd *abfd, gdb_byte *buf,
14499 const struct comp_unit_head *cu_header,
14500 unsigned int *bytes_read_ptr)
14502 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14504 return read_indirect_string_at_offset (abfd, str_offset);
14508 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14511 unsigned int num_read;
14513 unsigned char byte;
14521 byte = bfd_get_8 (abfd, buf);
14524 result |= ((ULONGEST) (byte & 127) << shift);
14525 if ((byte & 128) == 0)
14531 *bytes_read_ptr = num_read;
14536 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
14539 int i, shift, num_read;
14540 unsigned char byte;
14548 byte = bfd_get_8 (abfd, buf);
14551 result |= ((LONGEST) (byte & 127) << shift);
14553 if ((byte & 128) == 0)
14558 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
14559 result |= -(((LONGEST) 1) << shift);
14560 *bytes_read_ptr = num_read;
14564 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
14565 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14566 ADDR_SIZE is the size of addresses from the CU header. */
14569 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14571 struct objfile *objfile = dwarf2_per_objfile->objfile;
14572 bfd *abfd = objfile->obfd;
14573 const gdb_byte *info_ptr;
14575 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14576 if (dwarf2_per_objfile->addr.buffer == NULL)
14577 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14579 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14580 error (_("DW_FORM_addr_index pointing outside of "
14581 ".debug_addr section [in module %s]"),
14583 info_ptr = (dwarf2_per_objfile->addr.buffer
14584 + addr_base + addr_index * addr_size);
14585 if (addr_size == 4)
14586 return bfd_get_32 (abfd, info_ptr);
14588 return bfd_get_64 (abfd, info_ptr);
14591 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14594 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14596 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14599 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14602 read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14603 unsigned int *bytes_read)
14605 bfd *abfd = cu->objfile->obfd;
14606 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14608 return read_addr_index (cu, addr_index);
14611 /* Data structure to pass results from dwarf2_read_addr_index_reader
14612 back to dwarf2_read_addr_index. */
14614 struct dwarf2_read_addr_index_data
14616 ULONGEST addr_base;
14620 /* die_reader_func for dwarf2_read_addr_index. */
14623 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14624 gdb_byte *info_ptr,
14625 struct die_info *comp_unit_die,
14629 struct dwarf2_cu *cu = reader->cu;
14630 struct dwarf2_read_addr_index_data *aidata =
14631 (struct dwarf2_read_addr_index_data *) data;
14633 aidata->addr_base = cu->addr_base;
14634 aidata->addr_size = cu->header.addr_size;
14637 /* Given an index in .debug_addr, fetch the value.
14638 NOTE: This can be called during dwarf expression evaluation,
14639 long after the debug information has been read, and thus per_cu->cu
14640 may no longer exist. */
14643 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14644 unsigned int addr_index)
14646 struct objfile *objfile = per_cu->objfile;
14647 struct dwarf2_cu *cu = per_cu->cu;
14648 ULONGEST addr_base;
14651 /* This is intended to be called from outside this file. */
14652 dw2_setup (objfile);
14654 /* We need addr_base and addr_size.
14655 If we don't have PER_CU->cu, we have to get it.
14656 Nasty, but the alternative is storing the needed info in PER_CU,
14657 which at this point doesn't seem justified: it's not clear how frequently
14658 it would get used and it would increase the size of every PER_CU.
14659 Entry points like dwarf2_per_cu_addr_size do a similar thing
14660 so we're not in uncharted territory here.
14661 Alas we need to be a bit more complicated as addr_base is contained
14664 We don't need to read the entire CU(/TU).
14665 We just need the header and top level die.
14667 IWBN to use the aging mechanism to let us lazily later discard the CU.
14668 For now we skip this optimization. */
14672 addr_base = cu->addr_base;
14673 addr_size = cu->header.addr_size;
14677 struct dwarf2_read_addr_index_data aidata;
14679 /* Note: We can't use init_cutu_and_read_dies_simple here,
14680 we need addr_base. */
14681 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14682 dwarf2_read_addr_index_reader, &aidata);
14683 addr_base = aidata.addr_base;
14684 addr_size = aidata.addr_size;
14687 return read_addr_index_1 (addr_index, addr_base, addr_size);
14690 /* Given a DW_AT_str_index, fetch the string. */
14693 read_str_index (const struct die_reader_specs *reader,
14694 struct dwarf2_cu *cu, ULONGEST str_index)
14696 struct objfile *objfile = dwarf2_per_objfile->objfile;
14697 const char *dwo_name = objfile->name;
14698 bfd *abfd = objfile->obfd;
14699 struct dwo_sections *sections = &reader->dwo_file->sections;
14700 gdb_byte *info_ptr;
14701 ULONGEST str_offset;
14703 dwarf2_read_section (objfile, §ions->str);
14704 dwarf2_read_section (objfile, §ions->str_offsets);
14705 if (sections->str.buffer == NULL)
14706 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14707 " in CU at offset 0x%lx [in module %s]"),
14708 (long) cu->header.offset.sect_off, dwo_name);
14709 if (sections->str_offsets.buffer == NULL)
14710 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14711 " in CU at offset 0x%lx [in module %s]"),
14712 (long) cu->header.offset.sect_off, dwo_name);
14713 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14714 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14715 " section in CU at offset 0x%lx [in module %s]"),
14716 (long) cu->header.offset.sect_off, dwo_name);
14717 info_ptr = (sections->str_offsets.buffer
14718 + str_index * cu->header.offset_size);
14719 if (cu->header.offset_size == 4)
14720 str_offset = bfd_get_32 (abfd, info_ptr);
14722 str_offset = bfd_get_64 (abfd, info_ptr);
14723 if (str_offset >= sections->str.size)
14724 error (_("Offset from DW_FORM_str_index pointing outside of"
14725 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14726 (long) cu->header.offset.sect_off, dwo_name);
14727 return (char *) (sections->str.buffer + str_offset);
14730 /* Return the length of an LEB128 number in BUF. */
14733 leb128_size (const gdb_byte *buf)
14735 const gdb_byte *begin = buf;
14741 if ((byte & 128) == 0)
14742 return buf - begin;
14747 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
14754 cu->language = language_c;
14756 case DW_LANG_C_plus_plus:
14757 cu->language = language_cplus;
14760 cu->language = language_d;
14762 case DW_LANG_Fortran77:
14763 case DW_LANG_Fortran90:
14764 case DW_LANG_Fortran95:
14765 cu->language = language_fortran;
14768 cu->language = language_go;
14770 case DW_LANG_Mips_Assembler:
14771 cu->language = language_asm;
14774 cu->language = language_java;
14776 case DW_LANG_Ada83:
14777 case DW_LANG_Ada95:
14778 cu->language = language_ada;
14780 case DW_LANG_Modula2:
14781 cu->language = language_m2;
14783 case DW_LANG_Pascal83:
14784 cu->language = language_pascal;
14787 cu->language = language_objc;
14789 case DW_LANG_Cobol74:
14790 case DW_LANG_Cobol85:
14792 cu->language = language_minimal;
14795 cu->language_defn = language_def (cu->language);
14798 /* Return the named attribute or NULL if not there. */
14800 static struct attribute *
14801 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
14806 struct attribute *spec = NULL;
14808 for (i = 0; i < die->num_attrs; ++i)
14810 if (die->attrs[i].name == name)
14811 return &die->attrs[i];
14812 if (die->attrs[i].name == DW_AT_specification
14813 || die->attrs[i].name == DW_AT_abstract_origin)
14814 spec = &die->attrs[i];
14820 die = follow_die_ref (die, spec, &cu);
14826 /* Return the named attribute or NULL if not there,
14827 but do not follow DW_AT_specification, etc.
14828 This is for use in contexts where we're reading .debug_types dies.
14829 Following DW_AT_specification, DW_AT_abstract_origin will take us
14830 back up the chain, and we want to go down. */
14832 static struct attribute *
14833 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
14837 for (i = 0; i < die->num_attrs; ++i)
14838 if (die->attrs[i].name == name)
14839 return &die->attrs[i];
14844 /* Return non-zero iff the attribute NAME is defined for the given DIE,
14845 and holds a non-zero value. This function should only be used for
14846 DW_FORM_flag or DW_FORM_flag_present attributes. */
14849 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14851 struct attribute *attr = dwarf2_attr (die, name, cu);
14853 return (attr && DW_UNSND (attr));
14857 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
14859 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14860 which value is non-zero. However, we have to be careful with
14861 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14862 (via dwarf2_flag_true_p) follows this attribute. So we may
14863 end up accidently finding a declaration attribute that belongs
14864 to a different DIE referenced by the specification attribute,
14865 even though the given DIE does not have a declaration attribute. */
14866 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14867 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
14870 /* Return the die giving the specification for DIE, if there is
14871 one. *SPEC_CU is the CU containing DIE on input, and the CU
14872 containing the return value on output. If there is no
14873 specification, but there is an abstract origin, that is
14876 static struct die_info *
14877 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
14879 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14882 if (spec_attr == NULL)
14883 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14885 if (spec_attr == NULL)
14888 return follow_die_ref (die, spec_attr, spec_cu);
14891 /* Free the line_header structure *LH, and any arrays and strings it
14893 NOTE: This is also used as a "cleanup" function. */
14896 free_line_header (struct line_header *lh)
14898 if (lh->standard_opcode_lengths)
14899 xfree (lh->standard_opcode_lengths);
14901 /* Remember that all the lh->file_names[i].name pointers are
14902 pointers into debug_line_buffer, and don't need to be freed. */
14903 if (lh->file_names)
14904 xfree (lh->file_names);
14906 /* Similarly for the include directory names. */
14907 if (lh->include_dirs)
14908 xfree (lh->include_dirs);
14913 /* Add an entry to LH's include directory table. */
14916 add_include_dir (struct line_header *lh, char *include_dir)
14918 /* Grow the array if necessary. */
14919 if (lh->include_dirs_size == 0)
14921 lh->include_dirs_size = 1; /* for testing */
14922 lh->include_dirs = xmalloc (lh->include_dirs_size
14923 * sizeof (*lh->include_dirs));
14925 else if (lh->num_include_dirs >= lh->include_dirs_size)
14927 lh->include_dirs_size *= 2;
14928 lh->include_dirs = xrealloc (lh->include_dirs,
14929 (lh->include_dirs_size
14930 * sizeof (*lh->include_dirs)));
14933 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14936 /* Add an entry to LH's file name table. */
14939 add_file_name (struct line_header *lh,
14941 unsigned int dir_index,
14942 unsigned int mod_time,
14943 unsigned int length)
14945 struct file_entry *fe;
14947 /* Grow the array if necessary. */
14948 if (lh->file_names_size == 0)
14950 lh->file_names_size = 1; /* for testing */
14951 lh->file_names = xmalloc (lh->file_names_size
14952 * sizeof (*lh->file_names));
14954 else if (lh->num_file_names >= lh->file_names_size)
14956 lh->file_names_size *= 2;
14957 lh->file_names = xrealloc (lh->file_names,
14958 (lh->file_names_size
14959 * sizeof (*lh->file_names)));
14962 fe = &lh->file_names[lh->num_file_names++];
14964 fe->dir_index = dir_index;
14965 fe->mod_time = mod_time;
14966 fe->length = length;
14967 fe->included_p = 0;
14971 /* A convenience function to find the proper .debug_line section for a
14974 static struct dwarf2_section_info *
14975 get_debug_line_section (struct dwarf2_cu *cu)
14977 struct dwarf2_section_info *section;
14979 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14981 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14982 section = &cu->dwo_unit->dwo_file->sections.line;
14983 else if (cu->per_cu->is_dwz)
14985 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14987 section = &dwz->line;
14990 section = &dwarf2_per_objfile->line;
14995 /* Read the statement program header starting at OFFSET in
14996 .debug_line, or .debug_line.dwo. Return a pointer
14997 to a struct line_header, allocated using xmalloc.
14999 NOTE: the strings in the include directory and file name tables of
15000 the returned object point into the dwarf line section buffer,
15001 and must not be freed. */
15003 static struct line_header *
15004 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
15006 struct cleanup *back_to;
15007 struct line_header *lh;
15008 gdb_byte *line_ptr;
15009 unsigned int bytes_read, offset_size;
15011 char *cur_dir, *cur_file;
15012 struct dwarf2_section_info *section;
15015 section = get_debug_line_section (cu);
15016 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
15017 if (section->buffer == NULL)
15019 if (cu->dwo_unit && cu->per_cu->is_debug_types)
15020 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
15022 complaint (&symfile_complaints, _("missing .debug_line section"));
15026 /* We can't do this until we know the section is non-empty.
15027 Only then do we know we have such a section. */
15028 abfd = section->asection->owner;
15030 /* Make sure that at least there's room for the total_length field.
15031 That could be 12 bytes long, but we're just going to fudge that. */
15032 if (offset + 4 >= section->size)
15034 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15038 lh = xmalloc (sizeof (*lh));
15039 memset (lh, 0, sizeof (*lh));
15040 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
15043 line_ptr = section->buffer + offset;
15045 /* Read in the header. */
15047 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
15048 &bytes_read, &offset_size);
15049 line_ptr += bytes_read;
15050 if (line_ptr + lh->total_length > (section->buffer + section->size))
15052 dwarf2_statement_list_fits_in_line_number_section_complaint ();
15055 lh->statement_program_end = line_ptr + lh->total_length;
15056 lh->version = read_2_bytes (abfd, line_ptr);
15058 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
15059 line_ptr += offset_size;
15060 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
15062 if (lh->version >= 4)
15064 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
15068 lh->maximum_ops_per_instruction = 1;
15070 if (lh->maximum_ops_per_instruction == 0)
15072 lh->maximum_ops_per_instruction = 1;
15073 complaint (&symfile_complaints,
15074 _("invalid maximum_ops_per_instruction "
15075 "in `.debug_line' section"));
15078 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
15080 lh->line_base = read_1_signed_byte (abfd, line_ptr);
15082 lh->line_range = read_1_byte (abfd, line_ptr);
15084 lh->opcode_base = read_1_byte (abfd, line_ptr);
15086 lh->standard_opcode_lengths
15087 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
15089 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
15090 for (i = 1; i < lh->opcode_base; ++i)
15092 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
15096 /* Read directory table. */
15097 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15099 line_ptr += bytes_read;
15100 add_include_dir (lh, cur_dir);
15102 line_ptr += bytes_read;
15104 /* Read file name table. */
15105 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
15107 unsigned int dir_index, mod_time, length;
15109 line_ptr += bytes_read;
15110 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15111 line_ptr += bytes_read;
15112 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15113 line_ptr += bytes_read;
15114 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15115 line_ptr += bytes_read;
15117 add_file_name (lh, cur_file, dir_index, mod_time, length);
15119 line_ptr += bytes_read;
15120 lh->statement_program_start = line_ptr;
15122 if (line_ptr > (section->buffer + section->size))
15123 complaint (&symfile_complaints,
15124 _("line number info header doesn't "
15125 "fit in `.debug_line' section"));
15127 discard_cleanups (back_to);
15131 /* Subroutine of dwarf_decode_lines to simplify it.
15132 Return the file name of the psymtab for included file FILE_INDEX
15133 in line header LH of PST.
15134 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15135 If space for the result is malloc'd, it will be freed by a cleanup.
15136 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
15138 The function creates dangling cleanup registration. */
15141 psymtab_include_file_name (const struct line_header *lh, int file_index,
15142 const struct partial_symtab *pst,
15143 const char *comp_dir)
15145 const struct file_entry fe = lh->file_names [file_index];
15146 char *include_name = fe.name;
15147 char *include_name_to_compare = include_name;
15148 char *dir_name = NULL;
15149 const char *pst_filename;
15150 char *copied_name = NULL;
15154 dir_name = lh->include_dirs[fe.dir_index - 1];
15156 if (!IS_ABSOLUTE_PATH (include_name)
15157 && (dir_name != NULL || comp_dir != NULL))
15159 /* Avoid creating a duplicate psymtab for PST.
15160 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15161 Before we do the comparison, however, we need to account
15162 for DIR_NAME and COMP_DIR.
15163 First prepend dir_name (if non-NULL). If we still don't
15164 have an absolute path prepend comp_dir (if non-NULL).
15165 However, the directory we record in the include-file's
15166 psymtab does not contain COMP_DIR (to match the
15167 corresponding symtab(s)).
15172 bash$ gcc -g ./hello.c
15173 include_name = "hello.c"
15175 DW_AT_comp_dir = comp_dir = "/tmp"
15176 DW_AT_name = "./hello.c" */
15178 if (dir_name != NULL)
15180 include_name = concat (dir_name, SLASH_STRING,
15181 include_name, (char *)NULL);
15182 include_name_to_compare = include_name;
15183 make_cleanup (xfree, include_name);
15185 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15187 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15188 include_name, (char *)NULL);
15192 pst_filename = pst->filename;
15193 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15195 copied_name = concat (pst->dirname, SLASH_STRING,
15196 pst_filename, (char *)NULL);
15197 pst_filename = copied_name;
15200 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
15202 if (include_name_to_compare != include_name)
15203 xfree (include_name_to_compare);
15204 if (copied_name != NULL)
15205 xfree (copied_name);
15209 return include_name;
15212 /* Ignore this record_line request. */
15215 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15220 /* Subroutine of dwarf_decode_lines to simplify it.
15221 Process the line number information in LH. */
15224 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15225 struct dwarf2_cu *cu, struct partial_symtab *pst)
15227 gdb_byte *line_ptr, *extended_end;
15228 gdb_byte *line_end;
15229 unsigned int bytes_read, extended_len;
15230 unsigned char op_code, extended_op, adj_opcode;
15231 CORE_ADDR baseaddr;
15232 struct objfile *objfile = cu->objfile;
15233 bfd *abfd = objfile->obfd;
15234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15235 const int decode_for_pst_p = (pst != NULL);
15236 struct subfile *last_subfile = NULL;
15237 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15240 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15242 line_ptr = lh->statement_program_start;
15243 line_end = lh->statement_program_end;
15245 /* Read the statement sequences until there's nothing left. */
15246 while (line_ptr < line_end)
15248 /* state machine registers */
15249 CORE_ADDR address = 0;
15250 unsigned int file = 1;
15251 unsigned int line = 1;
15252 unsigned int column = 0;
15253 int is_stmt = lh->default_is_stmt;
15254 int basic_block = 0;
15255 int end_sequence = 0;
15257 unsigned char op_index = 0;
15259 if (!decode_for_pst_p && lh->num_file_names >= file)
15261 /* Start a subfile for the current file of the state machine. */
15262 /* lh->include_dirs and lh->file_names are 0-based, but the
15263 directory and file name numbers in the statement program
15265 struct file_entry *fe = &lh->file_names[file - 1];
15269 dir = lh->include_dirs[fe->dir_index - 1];
15271 dwarf2_start_subfile (fe->name, dir, comp_dir);
15274 /* Decode the table. */
15275 while (!end_sequence)
15277 op_code = read_1_byte (abfd, line_ptr);
15279 if (line_ptr > line_end)
15281 dwarf2_debug_line_missing_end_sequence_complaint ();
15285 if (op_code >= lh->opcode_base)
15287 /* Special operand. */
15288 adj_opcode = op_code - lh->opcode_base;
15289 address += (((op_index + (adj_opcode / lh->line_range))
15290 / lh->maximum_ops_per_instruction)
15291 * lh->minimum_instruction_length);
15292 op_index = ((op_index + (adj_opcode / lh->line_range))
15293 % lh->maximum_ops_per_instruction);
15294 line += lh->line_base + (adj_opcode % lh->line_range);
15295 if (lh->num_file_names < file || file == 0)
15296 dwarf2_debug_line_missing_file_complaint ();
15297 /* For now we ignore lines not starting on an
15298 instruction boundary. */
15299 else if (op_index == 0)
15301 lh->file_names[file - 1].included_p = 1;
15302 if (!decode_for_pst_p && is_stmt)
15304 if (last_subfile != current_subfile)
15306 addr = gdbarch_addr_bits_remove (gdbarch, address);
15308 (*p_record_line) (last_subfile, 0, addr);
15309 last_subfile = current_subfile;
15311 /* Append row to matrix using current values. */
15312 addr = gdbarch_addr_bits_remove (gdbarch, address);
15313 (*p_record_line) (current_subfile, line, addr);
15318 else switch (op_code)
15320 case DW_LNS_extended_op:
15321 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15323 line_ptr += bytes_read;
15324 extended_end = line_ptr + extended_len;
15325 extended_op = read_1_byte (abfd, line_ptr);
15327 switch (extended_op)
15329 case DW_LNE_end_sequence:
15330 p_record_line = record_line;
15333 case DW_LNE_set_address:
15334 address = read_address (abfd, line_ptr, cu, &bytes_read);
15336 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15338 /* This line table is for a function which has been
15339 GCd by the linker. Ignore it. PR gdb/12528 */
15342 = line_ptr - get_debug_line_section (cu)->buffer;
15344 complaint (&symfile_complaints,
15345 _(".debug_line address at offset 0x%lx is 0 "
15347 line_offset, objfile->name);
15348 p_record_line = noop_record_line;
15352 line_ptr += bytes_read;
15353 address += baseaddr;
15355 case DW_LNE_define_file:
15358 unsigned int dir_index, mod_time, length;
15360 cur_file = read_direct_string (abfd, line_ptr,
15362 line_ptr += bytes_read;
15364 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15365 line_ptr += bytes_read;
15367 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15368 line_ptr += bytes_read;
15370 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15371 line_ptr += bytes_read;
15372 add_file_name (lh, cur_file, dir_index, mod_time, length);
15375 case DW_LNE_set_discriminator:
15376 /* The discriminator is not interesting to the debugger;
15378 line_ptr = extended_end;
15381 complaint (&symfile_complaints,
15382 _("mangled .debug_line section"));
15385 /* Make sure that we parsed the extended op correctly. If e.g.
15386 we expected a different address size than the producer used,
15387 we may have read the wrong number of bytes. */
15388 if (line_ptr != extended_end)
15390 complaint (&symfile_complaints,
15391 _("mangled .debug_line section"));
15396 if (lh->num_file_names < file || file == 0)
15397 dwarf2_debug_line_missing_file_complaint ();
15400 lh->file_names[file - 1].included_p = 1;
15401 if (!decode_for_pst_p && is_stmt)
15403 if (last_subfile != current_subfile)
15405 addr = gdbarch_addr_bits_remove (gdbarch, address);
15407 (*p_record_line) (last_subfile, 0, addr);
15408 last_subfile = current_subfile;
15410 addr = gdbarch_addr_bits_remove (gdbarch, address);
15411 (*p_record_line) (current_subfile, line, addr);
15416 case DW_LNS_advance_pc:
15419 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15421 address += (((op_index + adjust)
15422 / lh->maximum_ops_per_instruction)
15423 * lh->minimum_instruction_length);
15424 op_index = ((op_index + adjust)
15425 % lh->maximum_ops_per_instruction);
15426 line_ptr += bytes_read;
15429 case DW_LNS_advance_line:
15430 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15431 line_ptr += bytes_read;
15433 case DW_LNS_set_file:
15435 /* The arrays lh->include_dirs and lh->file_names are
15436 0-based, but the directory and file name numbers in
15437 the statement program are 1-based. */
15438 struct file_entry *fe;
15441 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15442 line_ptr += bytes_read;
15443 if (lh->num_file_names < file || file == 0)
15444 dwarf2_debug_line_missing_file_complaint ();
15447 fe = &lh->file_names[file - 1];
15449 dir = lh->include_dirs[fe->dir_index - 1];
15450 if (!decode_for_pst_p)
15452 last_subfile = current_subfile;
15453 dwarf2_start_subfile (fe->name, dir, comp_dir);
15458 case DW_LNS_set_column:
15459 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15460 line_ptr += bytes_read;
15462 case DW_LNS_negate_stmt:
15463 is_stmt = (!is_stmt);
15465 case DW_LNS_set_basic_block:
15468 /* Add to the address register of the state machine the
15469 address increment value corresponding to special opcode
15470 255. I.e., this value is scaled by the minimum
15471 instruction length since special opcode 255 would have
15472 scaled the increment. */
15473 case DW_LNS_const_add_pc:
15475 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15477 address += (((op_index + adjust)
15478 / lh->maximum_ops_per_instruction)
15479 * lh->minimum_instruction_length);
15480 op_index = ((op_index + adjust)
15481 % lh->maximum_ops_per_instruction);
15484 case DW_LNS_fixed_advance_pc:
15485 address += read_2_bytes (abfd, line_ptr);
15491 /* Unknown standard opcode, ignore it. */
15494 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
15496 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15497 line_ptr += bytes_read;
15502 if (lh->num_file_names < file || file == 0)
15503 dwarf2_debug_line_missing_file_complaint ();
15506 lh->file_names[file - 1].included_p = 1;
15507 if (!decode_for_pst_p)
15509 addr = gdbarch_addr_bits_remove (gdbarch, address);
15510 (*p_record_line) (current_subfile, 0, addr);
15516 /* Decode the Line Number Program (LNP) for the given line_header
15517 structure and CU. The actual information extracted and the type
15518 of structures created from the LNP depends on the value of PST.
15520 1. If PST is NULL, then this procedure uses the data from the program
15521 to create all necessary symbol tables, and their linetables.
15523 2. If PST is not NULL, this procedure reads the program to determine
15524 the list of files included by the unit represented by PST, and
15525 builds all the associated partial symbol tables.
15527 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15528 It is used for relative paths in the line table.
15529 NOTE: When processing partial symtabs (pst != NULL),
15530 comp_dir == pst->dirname.
15532 NOTE: It is important that psymtabs have the same file name (via strcmp)
15533 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15534 symtab we don't use it in the name of the psymtabs we create.
15535 E.g. expand_line_sal requires this when finding psymtabs to expand.
15536 A good testcase for this is mb-inline.exp. */
15539 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15540 struct dwarf2_cu *cu, struct partial_symtab *pst,
15541 int want_line_info)
15543 struct objfile *objfile = cu->objfile;
15544 const int decode_for_pst_p = (pst != NULL);
15545 struct subfile *first_subfile = current_subfile;
15547 if (want_line_info)
15548 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
15550 if (decode_for_pst_p)
15554 /* Now that we're done scanning the Line Header Program, we can
15555 create the psymtab of each included file. */
15556 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15557 if (lh->file_names[file_index].included_p == 1)
15559 char *include_name =
15560 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15561 if (include_name != NULL)
15562 dwarf2_create_include_psymtab (include_name, pst, objfile);
15567 /* Make sure a symtab is created for every file, even files
15568 which contain only variables (i.e. no code with associated
15572 for (i = 0; i < lh->num_file_names; i++)
15575 struct file_entry *fe;
15577 fe = &lh->file_names[i];
15579 dir = lh->include_dirs[fe->dir_index - 1];
15580 dwarf2_start_subfile (fe->name, dir, comp_dir);
15582 /* Skip the main file; we don't need it, and it must be
15583 allocated last, so that it will show up before the
15584 non-primary symtabs in the objfile's symtab list. */
15585 if (current_subfile == first_subfile)
15588 if (current_subfile->symtab == NULL)
15589 current_subfile->symtab = allocate_symtab (current_subfile->name,
15591 fe->symtab = current_subfile->symtab;
15596 /* Start a subfile for DWARF. FILENAME is the name of the file and
15597 DIRNAME the name of the source directory which contains FILENAME
15598 or NULL if not known. COMP_DIR is the compilation directory for the
15599 linetable's compilation unit or NULL if not known.
15600 This routine tries to keep line numbers from identical absolute and
15601 relative file names in a common subfile.
15603 Using the `list' example from the GDB testsuite, which resides in
15604 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15605 of /srcdir/list0.c yields the following debugging information for list0.c:
15607 DW_AT_name: /srcdir/list0.c
15608 DW_AT_comp_dir: /compdir
15609 files.files[0].name: list0.h
15610 files.files[0].dir: /srcdir
15611 files.files[1].name: list0.c
15612 files.files[1].dir: /srcdir
15614 The line number information for list0.c has to end up in a single
15615 subfile, so that `break /srcdir/list0.c:1' works as expected.
15616 start_subfile will ensure that this happens provided that we pass the
15617 concatenation of files.files[1].dir and files.files[1].name as the
15621 dwarf2_start_subfile (char *filename, const char *dirname,
15622 const char *comp_dir)
15626 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15627 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15628 second argument to start_subfile. To be consistent, we do the
15629 same here. In order not to lose the line information directory,
15630 we concatenate it to the filename when it makes sense.
15631 Note that the Dwarf3 standard says (speaking of filenames in line
15632 information): ``The directory index is ignored for file names
15633 that represent full path names''. Thus ignoring dirname in the
15634 `else' branch below isn't an issue. */
15636 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
15637 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15639 fullname = filename;
15641 start_subfile (fullname, comp_dir);
15643 if (fullname != filename)
15647 /* Start a symtab for DWARF.
15648 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15651 dwarf2_start_symtab (struct dwarf2_cu *cu,
15652 const char *name, const char *comp_dir, CORE_ADDR low_pc)
15654 start_symtab (name, comp_dir, low_pc);
15655 record_debugformat ("DWARF 2");
15656 record_producer (cu->producer);
15658 /* We assume that we're processing GCC output. */
15659 processing_gcc_compilation = 2;
15661 cu->processing_has_namespace_info = 0;
15665 var_decode_location (struct attribute *attr, struct symbol *sym,
15666 struct dwarf2_cu *cu)
15668 struct objfile *objfile = cu->objfile;
15669 struct comp_unit_head *cu_header = &cu->header;
15671 /* NOTE drow/2003-01-30: There used to be a comment and some special
15672 code here to turn a symbol with DW_AT_external and a
15673 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15674 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15675 with some versions of binutils) where shared libraries could have
15676 relocations against symbols in their debug information - the
15677 minimal symbol would have the right address, but the debug info
15678 would not. It's no longer necessary, because we will explicitly
15679 apply relocations when we read in the debug information now. */
15681 /* A DW_AT_location attribute with no contents indicates that a
15682 variable has been optimized away. */
15683 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15685 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15689 /* Handle one degenerate form of location expression specially, to
15690 preserve GDB's previous behavior when section offsets are
15691 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15692 then mark this symbol as LOC_STATIC. */
15694 if (attr_form_is_block (attr)
15695 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15696 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15697 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15698 && (DW_BLOCK (attr)->size
15699 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
15701 unsigned int dummy;
15703 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15704 SYMBOL_VALUE_ADDRESS (sym) =
15705 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15707 SYMBOL_VALUE_ADDRESS (sym) =
15708 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
15709 SYMBOL_CLASS (sym) = LOC_STATIC;
15710 fixup_symbol_section (sym, objfile);
15711 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15712 SYMBOL_SECTION (sym));
15716 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15717 expression evaluator, and use LOC_COMPUTED only when necessary
15718 (i.e. when the value of a register or memory location is
15719 referenced, or a thread-local block, etc.). Then again, it might
15720 not be worthwhile. I'm assuming that it isn't unless performance
15721 or memory numbers show me otherwise. */
15723 dwarf2_symbol_mark_computed (attr, sym, cu);
15724 SYMBOL_CLASS (sym) = LOC_COMPUTED;
15726 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15727 cu->has_loclist = 1;
15730 /* Given a pointer to a DWARF information entry, figure out if we need
15731 to make a symbol table entry for it, and if so, create a new entry
15732 and return a pointer to it.
15733 If TYPE is NULL, determine symbol type from the die, otherwise
15734 used the passed type.
15735 If SPACE is not NULL, use it to hold the new symbol. If it is
15736 NULL, allocate a new symbol on the objfile's obstack. */
15738 static struct symbol *
15739 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15740 struct symbol *space)
15742 struct objfile *objfile = cu->objfile;
15743 struct symbol *sym = NULL;
15745 struct attribute *attr = NULL;
15746 struct attribute *attr2 = NULL;
15747 CORE_ADDR baseaddr;
15748 struct pending **list_to_add = NULL;
15750 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
15752 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15754 name = dwarf2_name (die, cu);
15757 const char *linkagename;
15758 int suppress_add = 0;
15763 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
15764 OBJSTAT (objfile, n_syms++);
15766 /* Cache this symbol's name and the name's demangled form (if any). */
15767 SYMBOL_SET_LANGUAGE (sym, cu->language);
15768 linkagename = dwarf2_physname (name, die, cu);
15769 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
15771 /* Fortran does not have mangling standard and the mangling does differ
15772 between gfortran, iFort etc. */
15773 if (cu->language == language_fortran
15774 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
15775 symbol_set_demangled_name (&(sym->ginfo),
15776 dwarf2_full_name (name, die, cu),
15779 /* Default assumptions.
15780 Use the passed type or decode it from the die. */
15781 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
15782 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15784 SYMBOL_TYPE (sym) = type;
15786 SYMBOL_TYPE (sym) = die_type (die, cu);
15787 attr = dwarf2_attr (die,
15788 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15792 SYMBOL_LINE (sym) = DW_UNSND (attr);
15795 attr = dwarf2_attr (die,
15796 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15800 int file_index = DW_UNSND (attr);
15802 if (cu->line_header == NULL
15803 || file_index > cu->line_header->num_file_names)
15804 complaint (&symfile_complaints,
15805 _("file index out of range"));
15806 else if (file_index > 0)
15808 struct file_entry *fe;
15810 fe = &cu->line_header->file_names[file_index - 1];
15811 SYMBOL_SYMTAB (sym) = fe->symtab;
15818 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15821 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15823 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15824 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
15825 SYMBOL_CLASS (sym) = LOC_LABEL;
15826 add_symbol_to_list (sym, cu->list_in_scope);
15828 case DW_TAG_subprogram:
15829 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15831 SYMBOL_CLASS (sym) = LOC_BLOCK;
15832 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15833 if ((attr2 && (DW_UNSND (attr2) != 0))
15834 || cu->language == language_ada)
15836 /* Subprograms marked external are stored as a global symbol.
15837 Ada subprograms, whether marked external or not, are always
15838 stored as a global symbol, because we want to be able to
15839 access them globally. For instance, we want to be able
15840 to break on a nested subprogram without having to
15841 specify the context. */
15842 list_to_add = &global_symbols;
15846 list_to_add = cu->list_in_scope;
15849 case DW_TAG_inlined_subroutine:
15850 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15852 SYMBOL_CLASS (sym) = LOC_BLOCK;
15853 SYMBOL_INLINED (sym) = 1;
15854 list_to_add = cu->list_in_scope;
15856 case DW_TAG_template_value_param:
15858 /* Fall through. */
15859 case DW_TAG_constant:
15860 case DW_TAG_variable:
15861 case DW_TAG_member:
15862 /* Compilation with minimal debug info may result in
15863 variables with missing type entries. Change the
15864 misleading `void' type to something sensible. */
15865 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
15867 = objfile_type (objfile)->nodebug_data_symbol;
15869 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15870 /* In the case of DW_TAG_member, we should only be called for
15871 static const members. */
15872 if (die->tag == DW_TAG_member)
15874 /* dwarf2_add_field uses die_is_declaration,
15875 so we do the same. */
15876 gdb_assert (die_is_declaration (die, cu));
15881 dwarf2_const_value (attr, sym, cu);
15882 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15885 if (attr2 && (DW_UNSND (attr2) != 0))
15886 list_to_add = &global_symbols;
15888 list_to_add = cu->list_in_scope;
15892 attr = dwarf2_attr (die, DW_AT_location, cu);
15895 var_decode_location (attr, sym, cu);
15896 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15898 /* Fortran explicitly imports any global symbols to the local
15899 scope by DW_TAG_common_block. */
15900 if (cu->language == language_fortran && die->parent
15901 && die->parent->tag == DW_TAG_common_block)
15904 if (SYMBOL_CLASS (sym) == LOC_STATIC
15905 && SYMBOL_VALUE_ADDRESS (sym) == 0
15906 && !dwarf2_per_objfile->has_section_at_zero)
15908 /* When a static variable is eliminated by the linker,
15909 the corresponding debug information is not stripped
15910 out, but the variable address is set to null;
15911 do not add such variables into symbol table. */
15913 else if (attr2 && (DW_UNSND (attr2) != 0))
15915 /* Workaround gfortran PR debug/40040 - it uses
15916 DW_AT_location for variables in -fPIC libraries which may
15917 get overriden by other libraries/executable and get
15918 a different address. Resolve it by the minimal symbol
15919 which may come from inferior's executable using copy
15920 relocation. Make this workaround only for gfortran as for
15921 other compilers GDB cannot guess the minimal symbol
15922 Fortran mangling kind. */
15923 if (cu->language == language_fortran && die->parent
15924 && die->parent->tag == DW_TAG_module
15926 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15927 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15929 /* A variable with DW_AT_external is never static,
15930 but it may be block-scoped. */
15931 list_to_add = (cu->list_in_scope == &file_symbols
15932 ? &global_symbols : cu->list_in_scope);
15935 list_to_add = cu->list_in_scope;
15939 /* We do not know the address of this symbol.
15940 If it is an external symbol and we have type information
15941 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15942 The address of the variable will then be determined from
15943 the minimal symbol table whenever the variable is
15945 attr2 = dwarf2_attr (die, DW_AT_external, cu);
15947 /* Fortran explicitly imports any global symbols to the local
15948 scope by DW_TAG_common_block. */
15949 if (cu->language == language_fortran && die->parent
15950 && die->parent->tag == DW_TAG_common_block)
15952 /* SYMBOL_CLASS doesn't matter here because
15953 read_common_block is going to reset it. */
15955 list_to_add = cu->list_in_scope;
15957 else if (attr2 && (DW_UNSND (attr2) != 0)
15958 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
15960 /* A variable with DW_AT_external is never static, but it
15961 may be block-scoped. */
15962 list_to_add = (cu->list_in_scope == &file_symbols
15963 ? &global_symbols : cu->list_in_scope);
15965 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15967 else if (!die_is_declaration (die, cu))
15969 /* Use the default LOC_OPTIMIZED_OUT class. */
15970 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
15972 list_to_add = cu->list_in_scope;
15976 case DW_TAG_formal_parameter:
15977 /* If we are inside a function, mark this as an argument. If
15978 not, we might be looking at an argument to an inlined function
15979 when we do not have enough information to show inlined frames;
15980 pretend it's a local variable in that case so that the user can
15982 if (context_stack_depth > 0
15983 && context_stack[context_stack_depth - 1].name != NULL)
15984 SYMBOL_IS_ARGUMENT (sym) = 1;
15985 attr = dwarf2_attr (die, DW_AT_location, cu);
15988 var_decode_location (attr, sym, cu);
15990 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15993 dwarf2_const_value (attr, sym, cu);
15996 list_to_add = cu->list_in_scope;
15998 case DW_TAG_unspecified_parameters:
15999 /* From varargs functions; gdb doesn't seem to have any
16000 interest in this information, so just ignore it for now.
16003 case DW_TAG_template_type_param:
16005 /* Fall through. */
16006 case DW_TAG_class_type:
16007 case DW_TAG_interface_type:
16008 case DW_TAG_structure_type:
16009 case DW_TAG_union_type:
16010 case DW_TAG_set_type:
16011 case DW_TAG_enumeration_type:
16012 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16013 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
16016 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
16017 really ever be static objects: otherwise, if you try
16018 to, say, break of a class's method and you're in a file
16019 which doesn't mention that class, it won't work unless
16020 the check for all static symbols in lookup_symbol_aux
16021 saves you. See the OtherFileClass tests in
16022 gdb.c++/namespace.exp. */
16026 list_to_add = (cu->list_in_scope == &file_symbols
16027 && (cu->language == language_cplus
16028 || cu->language == language_java)
16029 ? &global_symbols : cu->list_in_scope);
16031 /* The semantics of C++ state that "struct foo {
16032 ... }" also defines a typedef for "foo". A Java
16033 class declaration also defines a typedef for the
16035 if (cu->language == language_cplus
16036 || cu->language == language_java
16037 || cu->language == language_ada)
16039 /* The symbol's name is already allocated along
16040 with this objfile, so we don't need to
16041 duplicate it for the type. */
16042 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
16043 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
16048 case DW_TAG_typedef:
16049 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16050 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16051 list_to_add = cu->list_in_scope;
16053 case DW_TAG_base_type:
16054 case DW_TAG_subrange_type:
16055 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16056 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
16057 list_to_add = cu->list_in_scope;
16059 case DW_TAG_enumerator:
16060 attr = dwarf2_attr (die, DW_AT_const_value, cu);
16063 dwarf2_const_value (attr, sym, cu);
16066 /* NOTE: carlton/2003-11-10: See comment above in the
16067 DW_TAG_class_type, etc. block. */
16069 list_to_add = (cu->list_in_scope == &file_symbols
16070 && (cu->language == language_cplus
16071 || cu->language == language_java)
16072 ? &global_symbols : cu->list_in_scope);
16075 case DW_TAG_namespace:
16076 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
16077 list_to_add = &global_symbols;
16079 case DW_TAG_common_block:
16080 SYMBOL_CLASS (sym) = LOC_COMMON_BLOCK;
16081 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
16082 add_symbol_to_list (sym, cu->list_in_scope);
16085 /* Not a tag we recognize. Hopefully we aren't processing
16086 trash data, but since we must specifically ignore things
16087 we don't recognize, there is nothing else we should do at
16089 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
16090 dwarf_tag_name (die->tag));
16096 sym->hash_next = objfile->template_symbols;
16097 objfile->template_symbols = sym;
16098 list_to_add = NULL;
16101 if (list_to_add != NULL)
16102 add_symbol_to_list (sym, list_to_add);
16104 /* For the benefit of old versions of GCC, check for anonymous
16105 namespaces based on the demangled name. */
16106 if (!cu->processing_has_namespace_info
16107 && cu->language == language_cplus)
16108 cp_scan_for_anonymous_namespaces (sym, objfile);
16113 /* A wrapper for new_symbol_full that always allocates a new symbol. */
16115 static struct symbol *
16116 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
16118 return new_symbol_full (die, type, cu, NULL);
16121 /* Given an attr with a DW_FORM_dataN value in host byte order,
16122 zero-extend it as appropriate for the symbol's type. The DWARF
16123 standard (v4) is not entirely clear about the meaning of using
16124 DW_FORM_dataN for a constant with a signed type, where the type is
16125 wider than the data. The conclusion of a discussion on the DWARF
16126 list was that this is unspecified. We choose to always zero-extend
16127 because that is the interpretation long in use by GCC. */
16130 dwarf2_const_value_data (struct attribute *attr, struct type *type,
16131 const char *name, struct obstack *obstack,
16132 struct dwarf2_cu *cu, LONGEST *value, int bits)
16134 struct objfile *objfile = cu->objfile;
16135 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16136 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
16137 LONGEST l = DW_UNSND (attr);
16139 if (bits < sizeof (*value) * 8)
16141 l &= ((LONGEST) 1 << bits) - 1;
16144 else if (bits == sizeof (*value) * 8)
16148 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16149 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16156 /* Read a constant value from an attribute. Either set *VALUE, or if
16157 the value does not fit in *VALUE, set *BYTES - either already
16158 allocated on the objfile obstack, or newly allocated on OBSTACK,
16159 or, set *BATON, if we translated the constant to a location
16163 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16164 const char *name, struct obstack *obstack,
16165 struct dwarf2_cu *cu,
16166 LONGEST *value, gdb_byte **bytes,
16167 struct dwarf2_locexpr_baton **baton)
16169 struct objfile *objfile = cu->objfile;
16170 struct comp_unit_head *cu_header = &cu->header;
16171 struct dwarf_block *blk;
16172 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16173 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16179 switch (attr->form)
16182 case DW_FORM_GNU_addr_index:
16186 if (TYPE_LENGTH (type) != cu_header->addr_size)
16187 dwarf2_const_value_length_mismatch_complaint (name,
16188 cu_header->addr_size,
16189 TYPE_LENGTH (type));
16190 /* Symbols of this form are reasonably rare, so we just
16191 piggyback on the existing location code rather than writing
16192 a new implementation of symbol_computed_ops. */
16193 *baton = obstack_alloc (&objfile->objfile_obstack,
16194 sizeof (struct dwarf2_locexpr_baton));
16195 (*baton)->per_cu = cu->per_cu;
16196 gdb_assert ((*baton)->per_cu);
16198 (*baton)->size = 2 + cu_header->addr_size;
16199 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16200 (*baton)->data = data;
16202 data[0] = DW_OP_addr;
16203 store_unsigned_integer (&data[1], cu_header->addr_size,
16204 byte_order, DW_ADDR (attr));
16205 data[cu_header->addr_size + 1] = DW_OP_stack_value;
16208 case DW_FORM_string:
16210 case DW_FORM_GNU_str_index:
16211 case DW_FORM_GNU_strp_alt:
16212 /* DW_STRING is already allocated on the objfile obstack, point
16214 *bytes = (gdb_byte *) DW_STRING (attr);
16216 case DW_FORM_block1:
16217 case DW_FORM_block2:
16218 case DW_FORM_block4:
16219 case DW_FORM_block:
16220 case DW_FORM_exprloc:
16221 blk = DW_BLOCK (attr);
16222 if (TYPE_LENGTH (type) != blk->size)
16223 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16224 TYPE_LENGTH (type));
16225 *bytes = blk->data;
16228 /* The DW_AT_const_value attributes are supposed to carry the
16229 symbol's value "represented as it would be on the target
16230 architecture." By the time we get here, it's already been
16231 converted to host endianness, so we just need to sign- or
16232 zero-extend it as appropriate. */
16233 case DW_FORM_data1:
16234 *bytes = dwarf2_const_value_data (attr, type, name,
16235 obstack, cu, value, 8);
16237 case DW_FORM_data2:
16238 *bytes = dwarf2_const_value_data (attr, type, name,
16239 obstack, cu, value, 16);
16241 case DW_FORM_data4:
16242 *bytes = dwarf2_const_value_data (attr, type, name,
16243 obstack, cu, value, 32);
16245 case DW_FORM_data8:
16246 *bytes = dwarf2_const_value_data (attr, type, name,
16247 obstack, cu, value, 64);
16250 case DW_FORM_sdata:
16251 *value = DW_SND (attr);
16254 case DW_FORM_udata:
16255 *value = DW_UNSND (attr);
16259 complaint (&symfile_complaints,
16260 _("unsupported const value attribute form: '%s'"),
16261 dwarf_form_name (attr->form));
16268 /* Copy constant value from an attribute to a symbol. */
16271 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16272 struct dwarf2_cu *cu)
16274 struct objfile *objfile = cu->objfile;
16275 struct comp_unit_head *cu_header = &cu->header;
16278 struct dwarf2_locexpr_baton *baton;
16280 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16281 SYMBOL_PRINT_NAME (sym),
16282 &objfile->objfile_obstack, cu,
16283 &value, &bytes, &baton);
16287 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16288 SYMBOL_LOCATION_BATON (sym) = baton;
16289 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16291 else if (bytes != NULL)
16293 SYMBOL_VALUE_BYTES (sym) = bytes;
16294 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16298 SYMBOL_VALUE (sym) = value;
16299 SYMBOL_CLASS (sym) = LOC_CONST;
16303 /* Return the type of the die in question using its DW_AT_type attribute. */
16305 static struct type *
16306 die_type (struct die_info *die, struct dwarf2_cu *cu)
16308 struct attribute *type_attr;
16310 type_attr = dwarf2_attr (die, DW_AT_type, cu);
16313 /* A missing DW_AT_type represents a void type. */
16314 return objfile_type (cu->objfile)->builtin_void;
16317 return lookup_die_type (die, type_attr, cu);
16320 /* True iff CU's producer generates GNAT Ada auxiliary information
16321 that allows to find parallel types through that information instead
16322 of having to do expensive parallel lookups by type name. */
16325 need_gnat_info (struct dwarf2_cu *cu)
16327 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16328 of GNAT produces this auxiliary information, without any indication
16329 that it is produced. Part of enhancing the FSF version of GNAT
16330 to produce that information will be to put in place an indicator
16331 that we can use in order to determine whether the descriptive type
16332 info is available or not. One suggestion that has been made is
16333 to use a new attribute, attached to the CU die. For now, assume
16334 that the descriptive type info is not available. */
16338 /* Return the auxiliary type of the die in question using its
16339 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16340 attribute is not present. */
16342 static struct type *
16343 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16345 struct attribute *type_attr;
16347 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16351 return lookup_die_type (die, type_attr, cu);
16354 /* If DIE has a descriptive_type attribute, then set the TYPE's
16355 descriptive type accordingly. */
16358 set_descriptive_type (struct type *type, struct die_info *die,
16359 struct dwarf2_cu *cu)
16361 struct type *descriptive_type = die_descriptive_type (die, cu);
16363 if (descriptive_type)
16365 ALLOCATE_GNAT_AUX_TYPE (type);
16366 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16370 /* Return the containing type of the die in question using its
16371 DW_AT_containing_type attribute. */
16373 static struct type *
16374 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
16376 struct attribute *type_attr;
16378 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
16380 error (_("Dwarf Error: Problem turning containing type into gdb type "
16381 "[in module %s]"), cu->objfile->name);
16383 return lookup_die_type (die, type_attr, cu);
16386 /* Look up the type of DIE in CU using its type attribute ATTR.
16387 If there is no type substitute an error marker. */
16389 static struct type *
16390 lookup_die_type (struct die_info *die, struct attribute *attr,
16391 struct dwarf2_cu *cu)
16393 struct objfile *objfile = cu->objfile;
16394 struct type *this_type;
16396 /* First see if we have it cached. */
16398 if (attr->form == DW_FORM_GNU_ref_alt)
16400 struct dwarf2_per_cu_data *per_cu;
16401 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16403 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16404 this_type = get_die_type_at_offset (offset, per_cu);
16406 else if (is_ref_attr (attr))
16408 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16410 this_type = get_die_type_at_offset (offset, cu->per_cu);
16412 else if (attr->form == DW_FORM_ref_sig8)
16414 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
16416 /* sig_type will be NULL if the signatured type is missing from
16418 if (sig_type == NULL)
16419 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16420 "at 0x%x [in module %s]"),
16421 die->offset.sect_off, objfile->name);
16423 gdb_assert (sig_type->per_cu.is_debug_types);
16424 /* If we haven't filled in type_offset_in_section yet, then we
16425 haven't read the type in yet. */
16427 if (sig_type->type_offset_in_section.sect_off != 0)
16430 get_die_type_at_offset (sig_type->type_offset_in_section,
16431 &sig_type->per_cu);
16436 dump_die_for_error (die);
16437 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
16438 dwarf_attr_name (attr->name), objfile->name);
16441 /* If not cached we need to read it in. */
16443 if (this_type == NULL)
16445 struct die_info *type_die;
16446 struct dwarf2_cu *type_cu = cu;
16448 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
16449 /* If we found the type now, it's probably because the type came
16450 from an inter-CU reference and the type's CU got expanded before
16452 this_type = get_die_type (type_die, type_cu);
16453 if (this_type == NULL)
16454 this_type = read_type_die_1 (type_die, type_cu);
16457 /* If we still don't have a type use an error marker. */
16459 if (this_type == NULL)
16461 char *message, *saved;
16463 /* read_type_die already issued a complaint. */
16464 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
16466 cu->header.offset.sect_off,
16467 die->offset.sect_off);
16468 saved = obstack_copy0 (&objfile->objfile_obstack,
16469 message, strlen (message));
16472 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
16478 /* Return the type in DIE, CU.
16479 Returns NULL for invalid types.
16481 This first does a lookup in the appropriate type_hash table,
16482 and only reads the die in if necessary.
16484 NOTE: This can be called when reading in partial or full symbols. */
16486 static struct type *
16487 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
16489 struct type *this_type;
16491 this_type = get_die_type (die, cu);
16495 return read_type_die_1 (die, cu);
16498 /* Read the type in DIE, CU.
16499 Returns NULL for invalid types. */
16501 static struct type *
16502 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16504 struct type *this_type = NULL;
16508 case DW_TAG_class_type:
16509 case DW_TAG_interface_type:
16510 case DW_TAG_structure_type:
16511 case DW_TAG_union_type:
16512 this_type = read_structure_type (die, cu);
16514 case DW_TAG_enumeration_type:
16515 this_type = read_enumeration_type (die, cu);
16517 case DW_TAG_subprogram:
16518 case DW_TAG_subroutine_type:
16519 case DW_TAG_inlined_subroutine:
16520 this_type = read_subroutine_type (die, cu);
16522 case DW_TAG_array_type:
16523 this_type = read_array_type (die, cu);
16525 case DW_TAG_set_type:
16526 this_type = read_set_type (die, cu);
16528 case DW_TAG_pointer_type:
16529 this_type = read_tag_pointer_type (die, cu);
16531 case DW_TAG_ptr_to_member_type:
16532 this_type = read_tag_ptr_to_member_type (die, cu);
16534 case DW_TAG_reference_type:
16535 this_type = read_tag_reference_type (die, cu);
16537 case DW_TAG_const_type:
16538 this_type = read_tag_const_type (die, cu);
16540 case DW_TAG_volatile_type:
16541 this_type = read_tag_volatile_type (die, cu);
16543 case DW_TAG_restrict_type:
16544 this_type = read_tag_restrict_type (die, cu);
16546 case DW_TAG_string_type:
16547 this_type = read_tag_string_type (die, cu);
16549 case DW_TAG_typedef:
16550 this_type = read_typedef (die, cu);
16552 case DW_TAG_subrange_type:
16553 this_type = read_subrange_type (die, cu);
16555 case DW_TAG_base_type:
16556 this_type = read_base_type (die, cu);
16558 case DW_TAG_unspecified_type:
16559 this_type = read_unspecified_type (die, cu);
16561 case DW_TAG_namespace:
16562 this_type = read_namespace_type (die, cu);
16564 case DW_TAG_module:
16565 this_type = read_module_type (die, cu);
16568 complaint (&symfile_complaints,
16569 _("unexpected tag in read_type_die: '%s'"),
16570 dwarf_tag_name (die->tag));
16577 /* See if we can figure out if the class lives in a namespace. We do
16578 this by looking for a member function; its demangled name will
16579 contain namespace info, if there is any.
16580 Return the computed name or NULL.
16581 Space for the result is allocated on the objfile's obstack.
16582 This is the full-die version of guess_partial_die_structure_name.
16583 In this case we know DIE has no useful parent. */
16586 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16588 struct die_info *spec_die;
16589 struct dwarf2_cu *spec_cu;
16590 struct die_info *child;
16593 spec_die = die_specification (die, &spec_cu);
16594 if (spec_die != NULL)
16600 for (child = die->child;
16602 child = child->sibling)
16604 if (child->tag == DW_TAG_subprogram)
16606 struct attribute *attr;
16608 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16610 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16614 = language_class_name_from_physname (cu->language_defn,
16618 if (actual_name != NULL)
16620 const char *die_name = dwarf2_name (die, cu);
16622 if (die_name != NULL
16623 && strcmp (die_name, actual_name) != 0)
16625 /* Strip off the class name from the full name.
16626 We want the prefix. */
16627 int die_name_len = strlen (die_name);
16628 int actual_name_len = strlen (actual_name);
16630 /* Test for '::' as a sanity check. */
16631 if (actual_name_len > die_name_len + 2
16632 && actual_name[actual_name_len
16633 - die_name_len - 1] == ':')
16635 obstack_copy0 (&cu->objfile->objfile_obstack,
16637 actual_name_len - die_name_len - 2);
16640 xfree (actual_name);
16649 /* GCC might emit a nameless typedef that has a linkage name. Determine the
16650 prefix part in such case. See
16651 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16654 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16656 struct attribute *attr;
16659 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16660 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16663 attr = dwarf2_attr (die, DW_AT_name, cu);
16664 if (attr != NULL && DW_STRING (attr) != NULL)
16667 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16669 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16670 if (attr == NULL || DW_STRING (attr) == NULL)
16673 /* dwarf2_name had to be already called. */
16674 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16676 /* Strip the base name, keep any leading namespaces/classes. */
16677 base = strrchr (DW_STRING (attr), ':');
16678 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16681 return obstack_copy0 (&cu->objfile->objfile_obstack,
16682 DW_STRING (attr), &base[-1] - DW_STRING (attr));
16685 /* Return the name of the namespace/class that DIE is defined within,
16686 or "" if we can't tell. The caller should not xfree the result.
16688 For example, if we're within the method foo() in the following
16698 then determine_prefix on foo's die will return "N::C". */
16700 static const char *
16701 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
16703 struct die_info *parent, *spec_die;
16704 struct dwarf2_cu *spec_cu;
16705 struct type *parent_type;
16708 if (cu->language != language_cplus && cu->language != language_java
16709 && cu->language != language_fortran)
16712 retval = anonymous_struct_prefix (die, cu);
16716 /* We have to be careful in the presence of DW_AT_specification.
16717 For example, with GCC 3.4, given the code
16721 // Definition of N::foo.
16725 then we'll have a tree of DIEs like this:
16727 1: DW_TAG_compile_unit
16728 2: DW_TAG_namespace // N
16729 3: DW_TAG_subprogram // declaration of N::foo
16730 4: DW_TAG_subprogram // definition of N::foo
16731 DW_AT_specification // refers to die #3
16733 Thus, when processing die #4, we have to pretend that we're in
16734 the context of its DW_AT_specification, namely the contex of die
16737 spec_die = die_specification (die, &spec_cu);
16738 if (spec_die == NULL)
16739 parent = die->parent;
16742 parent = spec_die->parent;
16746 if (parent == NULL)
16748 else if (parent->building_fullname)
16751 const char *parent_name;
16753 /* It has been seen on RealView 2.2 built binaries,
16754 DW_TAG_template_type_param types actually _defined_ as
16755 children of the parent class:
16758 template class <class Enum> Class{};
16759 Class<enum E> class_e;
16761 1: DW_TAG_class_type (Class)
16762 2: DW_TAG_enumeration_type (E)
16763 3: DW_TAG_enumerator (enum1:0)
16764 3: DW_TAG_enumerator (enum2:1)
16766 2: DW_TAG_template_type_param
16767 DW_AT_type DW_FORM_ref_udata (E)
16769 Besides being broken debug info, it can put GDB into an
16770 infinite loop. Consider:
16772 When we're building the full name for Class<E>, we'll start
16773 at Class, and go look over its template type parameters,
16774 finding E. We'll then try to build the full name of E, and
16775 reach here. We're now trying to build the full name of E,
16776 and look over the parent DIE for containing scope. In the
16777 broken case, if we followed the parent DIE of E, we'd again
16778 find Class, and once again go look at its template type
16779 arguments, etc., etc. Simply don't consider such parent die
16780 as source-level parent of this die (it can't be, the language
16781 doesn't allow it), and break the loop here. */
16782 name = dwarf2_name (die, cu);
16783 parent_name = dwarf2_name (parent, cu);
16784 complaint (&symfile_complaints,
16785 _("template param type '%s' defined within parent '%s'"),
16786 name ? name : "<unknown>",
16787 parent_name ? parent_name : "<unknown>");
16791 switch (parent->tag)
16793 case DW_TAG_namespace:
16794 parent_type = read_type_die (parent, cu);
16795 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16796 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16797 Work around this problem here. */
16798 if (cu->language == language_cplus
16799 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16801 /* We give a name to even anonymous namespaces. */
16802 return TYPE_TAG_NAME (parent_type);
16803 case DW_TAG_class_type:
16804 case DW_TAG_interface_type:
16805 case DW_TAG_structure_type:
16806 case DW_TAG_union_type:
16807 case DW_TAG_module:
16808 parent_type = read_type_die (parent, cu);
16809 if (TYPE_TAG_NAME (parent_type) != NULL)
16810 return TYPE_TAG_NAME (parent_type);
16812 /* An anonymous structure is only allowed non-static data
16813 members; no typedefs, no member functions, et cetera.
16814 So it does not need a prefix. */
16816 case DW_TAG_compile_unit:
16817 case DW_TAG_partial_unit:
16818 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16819 if (cu->language == language_cplus
16820 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16821 && die->child != NULL
16822 && (die->tag == DW_TAG_class_type
16823 || die->tag == DW_TAG_structure_type
16824 || die->tag == DW_TAG_union_type))
16826 char *name = guess_full_die_structure_name (die, cu);
16832 return determine_prefix (parent, cu);
16836 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16837 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16838 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16839 an obconcat, otherwise allocate storage for the result. The CU argument is
16840 used to determine the language and hence, the appropriate separator. */
16842 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
16845 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16846 int physname, struct dwarf2_cu *cu)
16848 const char *lead = "";
16851 if (suffix == NULL || suffix[0] == '\0'
16852 || prefix == NULL || prefix[0] == '\0')
16854 else if (cu->language == language_java)
16856 else if (cu->language == language_fortran && physname)
16858 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16859 DW_AT_MIPS_linkage_name is preferred and used instead. */
16867 if (prefix == NULL)
16869 if (suffix == NULL)
16875 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
16877 strcpy (retval, lead);
16878 strcat (retval, prefix);
16879 strcat (retval, sep);
16880 strcat (retval, suffix);
16885 /* We have an obstack. */
16886 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
16890 /* Return sibling of die, NULL if no sibling. */
16892 static struct die_info *
16893 sibling_die (struct die_info *die)
16895 return die->sibling;
16898 /* Get name of a die, return NULL if not found. */
16900 static const char *
16901 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
16902 struct obstack *obstack)
16904 if (name && cu->language == language_cplus)
16906 char *canon_name = cp_canonicalize_string (name);
16908 if (canon_name != NULL)
16910 if (strcmp (canon_name, name) != 0)
16911 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
16912 xfree (canon_name);
16919 /* Get name of a die, return NULL if not found. */
16921 static const char *
16922 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
16924 struct attribute *attr;
16926 attr = dwarf2_attr (die, DW_AT_name, cu);
16927 if ((!attr || !DW_STRING (attr))
16928 && die->tag != DW_TAG_class_type
16929 && die->tag != DW_TAG_interface_type
16930 && die->tag != DW_TAG_structure_type
16931 && die->tag != DW_TAG_union_type)
16936 case DW_TAG_compile_unit:
16937 case DW_TAG_partial_unit:
16938 /* Compilation units have a DW_AT_name that is a filename, not
16939 a source language identifier. */
16940 case DW_TAG_enumeration_type:
16941 case DW_TAG_enumerator:
16942 /* These tags always have simple identifiers already; no need
16943 to canonicalize them. */
16944 return DW_STRING (attr);
16946 case DW_TAG_subprogram:
16947 /* Java constructors will all be named "<init>", so return
16948 the class name when we see this special case. */
16949 if (cu->language == language_java
16950 && DW_STRING (attr) != NULL
16951 && strcmp (DW_STRING (attr), "<init>") == 0)
16953 struct dwarf2_cu *spec_cu = cu;
16954 struct die_info *spec_die;
16956 /* GCJ will output '<init>' for Java constructor names.
16957 For this special case, return the name of the parent class. */
16959 /* GCJ may output suprogram DIEs with AT_specification set.
16960 If so, use the name of the specified DIE. */
16961 spec_die = die_specification (die, &spec_cu);
16962 if (spec_die != NULL)
16963 return dwarf2_name (spec_die, spec_cu);
16968 if (die->tag == DW_TAG_class_type)
16969 return dwarf2_name (die, cu);
16971 while (die->tag != DW_TAG_compile_unit
16972 && die->tag != DW_TAG_partial_unit);
16976 case DW_TAG_class_type:
16977 case DW_TAG_interface_type:
16978 case DW_TAG_structure_type:
16979 case DW_TAG_union_type:
16980 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16981 structures or unions. These were of the form "._%d" in GCC 4.1,
16982 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16983 and GCC 4.4. We work around this problem by ignoring these. */
16984 if (attr && DW_STRING (attr)
16985 && (strncmp (DW_STRING (attr), "._", 2) == 0
16986 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
16989 /* GCC might emit a nameless typedef that has a linkage name. See
16990 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16991 if (!attr || DW_STRING (attr) == NULL)
16993 char *demangled = NULL;
16995 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16997 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16999 if (attr == NULL || DW_STRING (attr) == NULL)
17002 /* Avoid demangling DW_STRING (attr) the second time on a second
17003 call for the same DIE. */
17004 if (!DW_STRING_IS_CANONICAL (attr))
17005 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
17011 /* FIXME: we already did this for the partial symbol... */
17012 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
17013 demangled, strlen (demangled));
17014 DW_STRING_IS_CANONICAL (attr) = 1;
17017 /* Strip any leading namespaces/classes, keep only the base name.
17018 DW_AT_name for named DIEs does not contain the prefixes. */
17019 base = strrchr (DW_STRING (attr), ':');
17020 if (base && base > DW_STRING (attr) && base[-1] == ':')
17023 return DW_STRING (attr);
17032 if (!DW_STRING_IS_CANONICAL (attr))
17035 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
17036 &cu->objfile->objfile_obstack);
17037 DW_STRING_IS_CANONICAL (attr) = 1;
17039 return DW_STRING (attr);
17042 /* Return the die that this die in an extension of, or NULL if there
17043 is none. *EXT_CU is the CU containing DIE on input, and the CU
17044 containing the return value on output. */
17046 static struct die_info *
17047 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
17049 struct attribute *attr;
17051 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
17055 return follow_die_ref (die, attr, ext_cu);
17058 /* Convert a DIE tag into its string name. */
17060 static const char *
17061 dwarf_tag_name (unsigned tag)
17063 const char *name = get_DW_TAG_name (tag);
17066 return "DW_TAG_<unknown>";
17071 /* Convert a DWARF attribute code into its string name. */
17073 static const char *
17074 dwarf_attr_name (unsigned attr)
17078 #ifdef MIPS /* collides with DW_AT_HP_block_index */
17079 if (attr == DW_AT_MIPS_fde)
17080 return "DW_AT_MIPS_fde";
17082 if (attr == DW_AT_HP_block_index)
17083 return "DW_AT_HP_block_index";
17086 name = get_DW_AT_name (attr);
17089 return "DW_AT_<unknown>";
17094 /* Convert a DWARF value form code into its string name. */
17096 static const char *
17097 dwarf_form_name (unsigned form)
17099 const char *name = get_DW_FORM_name (form);
17102 return "DW_FORM_<unknown>";
17108 dwarf_bool_name (unsigned mybool)
17116 /* Convert a DWARF type code into its string name. */
17118 static const char *
17119 dwarf_type_encoding_name (unsigned enc)
17121 const char *name = get_DW_ATE_name (enc);
17124 return "DW_ATE_<unknown>";
17130 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
17134 print_spaces (indent, f);
17135 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
17136 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
17138 if (die->parent != NULL)
17140 print_spaces (indent, f);
17141 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
17142 die->parent->offset.sect_off);
17145 print_spaces (indent, f);
17146 fprintf_unfiltered (f, " has children: %s\n",
17147 dwarf_bool_name (die->child != NULL));
17149 print_spaces (indent, f);
17150 fprintf_unfiltered (f, " attributes:\n");
17152 for (i = 0; i < die->num_attrs; ++i)
17154 print_spaces (indent, f);
17155 fprintf_unfiltered (f, " %s (%s) ",
17156 dwarf_attr_name (die->attrs[i].name),
17157 dwarf_form_name (die->attrs[i].form));
17159 switch (die->attrs[i].form)
17162 case DW_FORM_GNU_addr_index:
17163 fprintf_unfiltered (f, "address: ");
17164 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
17166 case DW_FORM_block2:
17167 case DW_FORM_block4:
17168 case DW_FORM_block:
17169 case DW_FORM_block1:
17170 fprintf_unfiltered (f, "block: size %s",
17171 pulongest (DW_BLOCK (&die->attrs[i])->size));
17173 case DW_FORM_exprloc:
17174 fprintf_unfiltered (f, "expression: size %s",
17175 pulongest (DW_BLOCK (&die->attrs[i])->size));
17177 case DW_FORM_ref_addr:
17178 fprintf_unfiltered (f, "ref address: ");
17179 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17181 case DW_FORM_GNU_ref_alt:
17182 fprintf_unfiltered (f, "alt ref address: ");
17183 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17189 case DW_FORM_ref_udata:
17190 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
17191 (long) (DW_UNSND (&die->attrs[i])));
17193 case DW_FORM_data1:
17194 case DW_FORM_data2:
17195 case DW_FORM_data4:
17196 case DW_FORM_data8:
17197 case DW_FORM_udata:
17198 case DW_FORM_sdata:
17199 fprintf_unfiltered (f, "constant: %s",
17200 pulongest (DW_UNSND (&die->attrs[i])));
17202 case DW_FORM_sec_offset:
17203 fprintf_unfiltered (f, "section offset: %s",
17204 pulongest (DW_UNSND (&die->attrs[i])));
17206 case DW_FORM_ref_sig8:
17207 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17208 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
17209 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
17211 fprintf_unfiltered (f, "signatured type, offset: unknown");
17213 case DW_FORM_string:
17215 case DW_FORM_GNU_str_index:
17216 case DW_FORM_GNU_strp_alt:
17217 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
17218 DW_STRING (&die->attrs[i])
17219 ? DW_STRING (&die->attrs[i]) : "",
17220 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
17223 if (DW_UNSND (&die->attrs[i]))
17224 fprintf_unfiltered (f, "flag: TRUE");
17226 fprintf_unfiltered (f, "flag: FALSE");
17228 case DW_FORM_flag_present:
17229 fprintf_unfiltered (f, "flag: TRUE");
17231 case DW_FORM_indirect:
17232 /* The reader will have reduced the indirect form to
17233 the "base form" so this form should not occur. */
17234 fprintf_unfiltered (f,
17235 "unexpected attribute form: DW_FORM_indirect");
17238 fprintf_unfiltered (f, "unsupported attribute form: %d.",
17239 die->attrs[i].form);
17242 fprintf_unfiltered (f, "\n");
17247 dump_die_for_error (struct die_info *die)
17249 dump_die_shallow (gdb_stderr, 0, die);
17253 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17255 int indent = level * 4;
17257 gdb_assert (die != NULL);
17259 if (level >= max_level)
17262 dump_die_shallow (f, indent, die);
17264 if (die->child != NULL)
17266 print_spaces (indent, f);
17267 fprintf_unfiltered (f, " Children:");
17268 if (level + 1 < max_level)
17270 fprintf_unfiltered (f, "\n");
17271 dump_die_1 (f, level + 1, max_level, die->child);
17275 fprintf_unfiltered (f,
17276 " [not printed, max nesting level reached]\n");
17280 if (die->sibling != NULL && level > 0)
17282 dump_die_1 (f, level, max_level, die->sibling);
17286 /* This is called from the pdie macro in gdbinit.in.
17287 It's not static so gcc will keep a copy callable from gdb. */
17290 dump_die (struct die_info *die, int max_level)
17292 dump_die_1 (gdb_stdlog, 0, max_level, die);
17296 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
17300 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17306 /* DW_ADDR is always stored already as sect_offset; despite for the forms
17307 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17310 is_ref_attr (struct attribute *attr)
17312 switch (attr->form)
17314 case DW_FORM_ref_addr:
17319 case DW_FORM_ref_udata:
17320 case DW_FORM_GNU_ref_alt:
17327 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17331 dwarf2_get_ref_die_offset (struct attribute *attr)
17333 sect_offset retval = { DW_UNSND (attr) };
17335 if (is_ref_attr (attr))
17338 retval.sect_off = 0;
17339 complaint (&symfile_complaints,
17340 _("unsupported die ref attribute form: '%s'"),
17341 dwarf_form_name (attr->form));
17345 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17346 * the value held by the attribute is not constant. */
17349 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17351 if (attr->form == DW_FORM_sdata)
17352 return DW_SND (attr);
17353 else if (attr->form == DW_FORM_udata
17354 || attr->form == DW_FORM_data1
17355 || attr->form == DW_FORM_data2
17356 || attr->form == DW_FORM_data4
17357 || attr->form == DW_FORM_data8)
17358 return DW_UNSND (attr);
17361 complaint (&symfile_complaints,
17362 _("Attribute value is not a constant (%s)"),
17363 dwarf_form_name (attr->form));
17364 return default_value;
17368 /* Follow reference or signature attribute ATTR of SRC_DIE.
17369 On entry *REF_CU is the CU of SRC_DIE.
17370 On exit *REF_CU is the CU of the result. */
17372 static struct die_info *
17373 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17374 struct dwarf2_cu **ref_cu)
17376 struct die_info *die;
17378 if (is_ref_attr (attr))
17379 die = follow_die_ref (src_die, attr, ref_cu);
17380 else if (attr->form == DW_FORM_ref_sig8)
17381 die = follow_die_sig (src_die, attr, ref_cu);
17384 dump_die_for_error (src_die);
17385 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17386 (*ref_cu)->objfile->name);
17392 /* Follow reference OFFSET.
17393 On entry *REF_CU is the CU of the source die referencing OFFSET.
17394 On exit *REF_CU is the CU of the result.
17395 Returns NULL if OFFSET is invalid. */
17397 static struct die_info *
17398 follow_die_offset (sect_offset offset, int offset_in_dwz,
17399 struct dwarf2_cu **ref_cu)
17401 struct die_info temp_die;
17402 struct dwarf2_cu *target_cu, *cu = *ref_cu;
17404 gdb_assert (cu->per_cu != NULL);
17408 if (cu->per_cu->is_debug_types)
17410 /* .debug_types CUs cannot reference anything outside their CU.
17411 If they need to, they have to reference a signatured type via
17412 DW_FORM_ref_sig8. */
17413 if (! offset_in_cu_p (&cu->header, offset))
17416 else if (offset_in_dwz != cu->per_cu->is_dwz
17417 || ! offset_in_cu_p (&cu->header, offset))
17419 struct dwarf2_per_cu_data *per_cu;
17421 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17424 /* If necessary, add it to the queue and load its DIEs. */
17425 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17426 load_full_comp_unit (per_cu, cu->language);
17428 target_cu = per_cu->cu;
17430 else if (cu->dies == NULL)
17432 /* We're loading full DIEs during partial symbol reading. */
17433 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
17434 load_full_comp_unit (cu->per_cu, language_minimal);
17437 *ref_cu = target_cu;
17438 temp_die.offset = offset;
17439 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
17442 /* Follow reference attribute ATTR of SRC_DIE.
17443 On entry *REF_CU is the CU of SRC_DIE.
17444 On exit *REF_CU is the CU of the result. */
17446 static struct die_info *
17447 follow_die_ref (struct die_info *src_die, struct attribute *attr,
17448 struct dwarf2_cu **ref_cu)
17450 sect_offset offset = dwarf2_get_ref_die_offset (attr);
17451 struct dwarf2_cu *cu = *ref_cu;
17452 struct die_info *die;
17454 die = follow_die_offset (offset,
17455 (attr->form == DW_FORM_GNU_ref_alt
17456 || cu->per_cu->is_dwz),
17459 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17460 "at 0x%x [in module %s]"),
17461 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
17466 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17467 Returned value is intended for DW_OP_call*. Returned
17468 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
17470 struct dwarf2_locexpr_baton
17471 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
17472 struct dwarf2_per_cu_data *per_cu,
17473 CORE_ADDR (*get_frame_pc) (void *baton),
17476 struct dwarf2_cu *cu;
17477 struct die_info *die;
17478 struct attribute *attr;
17479 struct dwarf2_locexpr_baton retval;
17481 dw2_setup (per_cu->objfile);
17483 if (per_cu->cu == NULL)
17487 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
17489 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
17490 offset.sect_off, per_cu->objfile->name);
17492 attr = dwarf2_attr (die, DW_AT_location, cu);
17495 /* DWARF: "If there is no such attribute, then there is no effect.".
17496 DATA is ignored if SIZE is 0. */
17498 retval.data = NULL;
17501 else if (attr_form_is_section_offset (attr))
17503 struct dwarf2_loclist_baton loclist_baton;
17504 CORE_ADDR pc = (*get_frame_pc) (baton);
17507 fill_in_loclist_baton (cu, &loclist_baton, attr);
17509 retval.data = dwarf2_find_location_expression (&loclist_baton,
17511 retval.size = size;
17515 if (!attr_form_is_block (attr))
17516 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17517 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
17518 offset.sect_off, per_cu->objfile->name);
17520 retval.data = DW_BLOCK (attr)->data;
17521 retval.size = DW_BLOCK (attr)->size;
17523 retval.per_cu = cu->per_cu;
17525 age_cached_comp_units ();
17530 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
17533 struct dwarf2_locexpr_baton
17534 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
17535 struct dwarf2_per_cu_data *per_cu,
17536 CORE_ADDR (*get_frame_pc) (void *baton),
17539 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
17541 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
17544 /* Return the type of the DIE at DIE_OFFSET in the CU named by
17548 dwarf2_get_die_type (cu_offset die_offset,
17549 struct dwarf2_per_cu_data *per_cu)
17551 sect_offset die_offset_sect;
17553 dw2_setup (per_cu->objfile);
17555 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17556 return get_die_type_at_offset (die_offset_sect, per_cu);
17559 /* Follow the signature attribute ATTR in SRC_DIE.
17560 On entry *REF_CU is the CU of SRC_DIE.
17561 On exit *REF_CU is the CU of the result. */
17563 static struct die_info *
17564 follow_die_sig (struct die_info *src_die, struct attribute *attr,
17565 struct dwarf2_cu **ref_cu)
17567 struct objfile *objfile = (*ref_cu)->objfile;
17568 struct die_info temp_die;
17569 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17570 struct dwarf2_cu *sig_cu;
17571 struct die_info *die;
17573 /* sig_type will be NULL if the signatured type is missing from
17575 if (sig_type == NULL)
17576 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17577 "at 0x%x [in module %s]"),
17578 src_die->offset.sect_off, objfile->name);
17580 /* If necessary, add it to the queue and load its DIEs. */
17582 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
17583 read_signatured_type (sig_type);
17585 gdb_assert (sig_type->per_cu.cu != NULL);
17587 sig_cu = sig_type->per_cu.cu;
17588 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17589 temp_die.offset = sig_type->type_offset_in_section;
17590 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17591 temp_die.offset.sect_off);
17594 /* For .gdb_index version 7 keep track of included TUs.
17595 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
17596 if (dwarf2_per_objfile->index_table != NULL
17597 && dwarf2_per_objfile->index_table->version <= 7)
17599 VEC_safe_push (dwarf2_per_cu_ptr,
17600 (*ref_cu)->per_cu->imported_symtabs,
17608 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17609 "from DIE at 0x%x [in module %s]"),
17610 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
17613 /* Given an offset of a signatured type, return its signatured_type. */
17615 static struct signatured_type *
17616 lookup_signatured_type_at_offset (struct objfile *objfile,
17617 struct dwarf2_section_info *section,
17618 sect_offset offset)
17620 gdb_byte *info_ptr = section->buffer + offset.sect_off;
17621 unsigned int length, initial_length_size;
17622 unsigned int sig_offset;
17623 struct signatured_type find_entry, *sig_type;
17625 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17626 sig_offset = (initial_length_size
17628 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17629 + 1 /*address_size*/);
17630 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
17631 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
17633 /* This is only used to lookup previously recorded types.
17634 If we didn't find it, it's our bug. */
17635 gdb_assert (sig_type != NULL);
17636 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
17641 /* Load the DIEs associated with type unit PER_CU into memory. */
17644 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
17646 struct signatured_type *sig_type;
17648 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17649 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17651 /* We have the per_cu, but we need the signatured_type.
17652 Fortunately this is an easy translation. */
17653 gdb_assert (per_cu->is_debug_types);
17654 sig_type = (struct signatured_type *) per_cu;
17656 gdb_assert (per_cu->cu == NULL);
17658 read_signatured_type (sig_type);
17660 gdb_assert (per_cu->cu != NULL);
17663 /* die_reader_func for read_signatured_type.
17664 This is identical to load_full_comp_unit_reader,
17665 but is kept separate for now. */
17668 read_signatured_type_reader (const struct die_reader_specs *reader,
17669 gdb_byte *info_ptr,
17670 struct die_info *comp_unit_die,
17674 struct dwarf2_cu *cu = reader->cu;
17676 gdb_assert (cu->die_hash == NULL);
17678 htab_create_alloc_ex (cu->header.length / 12,
17682 &cu->comp_unit_obstack,
17683 hashtab_obstack_allocate,
17684 dummy_obstack_deallocate);
17687 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17688 &info_ptr, comp_unit_die);
17689 cu->dies = comp_unit_die;
17690 /* comp_unit_die is not stored in die_hash, no need. */
17692 /* We try not to read any attributes in this function, because not
17693 all CUs needed for references have been loaded yet, and symbol
17694 table processing isn't initialized. But we have to set the CU language,
17695 or we won't be able to build types correctly.
17696 Similarly, if we do not read the producer, we can not apply
17697 producer-specific interpretation. */
17698 prepare_one_comp_unit (cu, cu->dies, language_minimal);
17701 /* Read in a signatured type and build its CU and DIEs.
17702 If the type is a stub for the real type in a DWO file,
17703 read in the real type from the DWO file as well. */
17706 read_signatured_type (struct signatured_type *sig_type)
17708 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
17710 gdb_assert (per_cu->is_debug_types);
17711 gdb_assert (per_cu->cu == NULL);
17713 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17714 read_signatured_type_reader, NULL);
17717 /* Decode simple location descriptions.
17718 Given a pointer to a dwarf block that defines a location, compute
17719 the location and return the value.
17721 NOTE drow/2003-11-18: This function is called in two situations
17722 now: for the address of static or global variables (partial symbols
17723 only) and for offsets into structures which are expected to be
17724 (more or less) constant. The partial symbol case should go away,
17725 and only the constant case should remain. That will let this
17726 function complain more accurately. A few special modes are allowed
17727 without complaint for global variables (for instance, global
17728 register values and thread-local values).
17730 A location description containing no operations indicates that the
17731 object is optimized out. The return value is 0 for that case.
17732 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17733 callers will only want a very basic result and this can become a
17736 Note that stack[0] is unused except as a default error return. */
17739 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
17741 struct objfile *objfile = cu->objfile;
17743 size_t size = blk->size;
17744 gdb_byte *data = blk->data;
17745 CORE_ADDR stack[64];
17747 unsigned int bytes_read, unsnd;
17753 stack[++stacki] = 0;
17792 stack[++stacki] = op - DW_OP_lit0;
17827 stack[++stacki] = op - DW_OP_reg0;
17829 dwarf2_complex_location_expr_complaint ();
17833 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17835 stack[++stacki] = unsnd;
17837 dwarf2_complex_location_expr_complaint ();
17841 stack[++stacki] = read_address (objfile->obfd, &data[i],
17846 case DW_OP_const1u:
17847 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17851 case DW_OP_const1s:
17852 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17856 case DW_OP_const2u:
17857 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17861 case DW_OP_const2s:
17862 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17866 case DW_OP_const4u:
17867 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17871 case DW_OP_const4s:
17872 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17876 case DW_OP_const8u:
17877 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17882 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17888 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17893 stack[stacki + 1] = stack[stacki];
17898 stack[stacki - 1] += stack[stacki];
17902 case DW_OP_plus_uconst:
17903 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17909 stack[stacki - 1] -= stack[stacki];
17914 /* If we're not the last op, then we definitely can't encode
17915 this using GDB's address_class enum. This is valid for partial
17916 global symbols, although the variable's address will be bogus
17919 dwarf2_complex_location_expr_complaint ();
17922 case DW_OP_GNU_push_tls_address:
17923 /* The top of the stack has the offset from the beginning
17924 of the thread control block at which the variable is located. */
17925 /* Nothing should follow this operator, so the top of stack would
17927 /* This is valid for partial global symbols, but the variable's
17928 address will be bogus in the psymtab. Make it always at least
17929 non-zero to not look as a variable garbage collected by linker
17930 which have DW_OP_addr 0. */
17932 dwarf2_complex_location_expr_complaint ();
17936 case DW_OP_GNU_uninit:
17939 case DW_OP_GNU_addr_index:
17940 case DW_OP_GNU_const_index:
17941 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17948 const char *name = get_DW_OP_name (op);
17951 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17954 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17958 return (stack[stacki]);
17961 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17962 outside of the allocated space. Also enforce minimum>0. */
17963 if (stacki >= ARRAY_SIZE (stack) - 1)
17965 complaint (&symfile_complaints,
17966 _("location description stack overflow"));
17972 complaint (&symfile_complaints,
17973 _("location description stack underflow"));
17977 return (stack[stacki]);
17980 /* memory allocation interface */
17982 static struct dwarf_block *
17983 dwarf_alloc_block (struct dwarf2_cu *cu)
17985 struct dwarf_block *blk;
17987 blk = (struct dwarf_block *)
17988 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
17992 static struct die_info *
17993 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
17995 struct die_info *die;
17996 size_t size = sizeof (struct die_info);
17999 size += (num_attrs - 1) * sizeof (struct attribute);
18001 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
18002 memset (die, 0, sizeof (struct die_info));
18007 /* Macro support. */
18009 /* Return the full name of file number I in *LH's file name table.
18010 Use COMP_DIR as the name of the current directory of the
18011 compilation. The result is allocated using xmalloc; the caller is
18012 responsible for freeing it. */
18014 file_full_name (int file, struct line_header *lh, const char *comp_dir)
18016 /* Is the file number a valid index into the line header's file name
18017 table? Remember that file numbers start with one, not zero. */
18018 if (1 <= file && file <= lh->num_file_names)
18020 struct file_entry *fe = &lh->file_names[file - 1];
18022 if (IS_ABSOLUTE_PATH (fe->name))
18023 return xstrdup (fe->name);
18031 dir = lh->include_dirs[fe->dir_index - 1];
18037 dir_len = strlen (dir);
18038 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
18039 strcpy (full_name, dir);
18040 full_name[dir_len] = '/';
18041 strcpy (full_name + dir_len + 1, fe->name);
18045 return xstrdup (fe->name);
18050 /* The compiler produced a bogus file number. We can at least
18051 record the macro definitions made in the file, even if we
18052 won't be able to find the file by name. */
18053 char fake_name[80];
18055 xsnprintf (fake_name, sizeof (fake_name),
18056 "<bad macro file number %d>", file);
18058 complaint (&symfile_complaints,
18059 _("bad file number in macro information (%d)"),
18062 return xstrdup (fake_name);
18067 static struct macro_source_file *
18068 macro_start_file (int file, int line,
18069 struct macro_source_file *current_file,
18070 const char *comp_dir,
18071 struct line_header *lh, struct objfile *objfile)
18073 /* The full name of this source file. */
18074 char *full_name = file_full_name (file, lh, comp_dir);
18076 /* We don't create a macro table for this compilation unit
18077 at all until we actually get a filename. */
18078 if (! pending_macros)
18079 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
18080 objfile->per_bfd->macro_cache);
18082 if (! current_file)
18084 /* If we have no current file, then this must be the start_file
18085 directive for the compilation unit's main source file. */
18086 current_file = macro_set_main (pending_macros, full_name);
18087 macro_define_special (pending_macros);
18090 current_file = macro_include (current_file, line, full_name);
18094 return current_file;
18098 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
18099 followed by a null byte. */
18101 copy_string (const char *buf, int len)
18103 char *s = xmalloc (len + 1);
18105 memcpy (s, buf, len);
18111 static const char *
18112 consume_improper_spaces (const char *p, const char *body)
18116 complaint (&symfile_complaints,
18117 _("macro definition contains spaces "
18118 "in formal argument list:\n`%s'"),
18130 parse_macro_definition (struct macro_source_file *file, int line,
18135 /* The body string takes one of two forms. For object-like macro
18136 definitions, it should be:
18138 <macro name> " " <definition>
18140 For function-like macro definitions, it should be:
18142 <macro name> "() " <definition>
18144 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
18146 Spaces may appear only where explicitly indicated, and in the
18149 The Dwarf 2 spec says that an object-like macro's name is always
18150 followed by a space, but versions of GCC around March 2002 omit
18151 the space when the macro's definition is the empty string.
18153 The Dwarf 2 spec says that there should be no spaces between the
18154 formal arguments in a function-like macro's formal argument list,
18155 but versions of GCC around March 2002 include spaces after the
18159 /* Find the extent of the macro name. The macro name is terminated
18160 by either a space or null character (for an object-like macro) or
18161 an opening paren (for a function-like macro). */
18162 for (p = body; *p; p++)
18163 if (*p == ' ' || *p == '(')
18166 if (*p == ' ' || *p == '\0')
18168 /* It's an object-like macro. */
18169 int name_len = p - body;
18170 char *name = copy_string (body, name_len);
18171 const char *replacement;
18174 replacement = body + name_len + 1;
18177 dwarf2_macro_malformed_definition_complaint (body);
18178 replacement = body + name_len;
18181 macro_define_object (file, line, name, replacement);
18185 else if (*p == '(')
18187 /* It's a function-like macro. */
18188 char *name = copy_string (body, p - body);
18191 char **argv = xmalloc (argv_size * sizeof (*argv));
18195 p = consume_improper_spaces (p, body);
18197 /* Parse the formal argument list. */
18198 while (*p && *p != ')')
18200 /* Find the extent of the current argument name. */
18201 const char *arg_start = p;
18203 while (*p && *p != ',' && *p != ')' && *p != ' ')
18206 if (! *p || p == arg_start)
18207 dwarf2_macro_malformed_definition_complaint (body);
18210 /* Make sure argv has room for the new argument. */
18211 if (argc >= argv_size)
18214 argv = xrealloc (argv, argv_size * sizeof (*argv));
18217 argv[argc++] = copy_string (arg_start, p - arg_start);
18220 p = consume_improper_spaces (p, body);
18222 /* Consume the comma, if present. */
18227 p = consume_improper_spaces (p, body);
18236 /* Perfectly formed definition, no complaints. */
18237 macro_define_function (file, line, name,
18238 argc, (const char **) argv,
18240 else if (*p == '\0')
18242 /* Complain, but do define it. */
18243 dwarf2_macro_malformed_definition_complaint (body);
18244 macro_define_function (file, line, name,
18245 argc, (const char **) argv,
18249 /* Just complain. */
18250 dwarf2_macro_malformed_definition_complaint (body);
18253 /* Just complain. */
18254 dwarf2_macro_malformed_definition_complaint (body);
18260 for (i = 0; i < argc; i++)
18266 dwarf2_macro_malformed_definition_complaint (body);
18269 /* Skip some bytes from BYTES according to the form given in FORM.
18270 Returns the new pointer. */
18273 skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
18274 enum dwarf_form form,
18275 unsigned int offset_size,
18276 struct dwarf2_section_info *section)
18278 unsigned int bytes_read;
18282 case DW_FORM_data1:
18287 case DW_FORM_data2:
18291 case DW_FORM_data4:
18295 case DW_FORM_data8:
18299 case DW_FORM_string:
18300 read_direct_string (abfd, bytes, &bytes_read);
18301 bytes += bytes_read;
18304 case DW_FORM_sec_offset:
18306 case DW_FORM_GNU_strp_alt:
18307 bytes += offset_size;
18310 case DW_FORM_block:
18311 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18312 bytes += bytes_read;
18315 case DW_FORM_block1:
18316 bytes += 1 + read_1_byte (abfd, bytes);
18318 case DW_FORM_block2:
18319 bytes += 2 + read_2_bytes (abfd, bytes);
18321 case DW_FORM_block4:
18322 bytes += 4 + read_4_bytes (abfd, bytes);
18325 case DW_FORM_sdata:
18326 case DW_FORM_udata:
18327 case DW_FORM_GNU_addr_index:
18328 case DW_FORM_GNU_str_index:
18329 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18332 dwarf2_section_buffer_overflow_complaint (section);
18340 complaint (&symfile_complaints,
18341 _("invalid form 0x%x in `%s'"),
18343 section->asection->name);
18351 /* A helper for dwarf_decode_macros that handles skipping an unknown
18352 opcode. Returns an updated pointer to the macro data buffer; or,
18353 on error, issues a complaint and returns NULL. */
18356 skip_unknown_opcode (unsigned int opcode,
18357 gdb_byte **opcode_definitions,
18358 gdb_byte *mac_ptr, gdb_byte *mac_end,
18360 unsigned int offset_size,
18361 struct dwarf2_section_info *section)
18363 unsigned int bytes_read, i;
18367 if (opcode_definitions[opcode] == NULL)
18369 complaint (&symfile_complaints,
18370 _("unrecognized DW_MACFINO opcode 0x%x"),
18375 defn = opcode_definitions[opcode];
18376 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18377 defn += bytes_read;
18379 for (i = 0; i < arg; ++i)
18381 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18383 if (mac_ptr == NULL)
18385 /* skip_form_bytes already issued the complaint. */
18393 /* A helper function which parses the header of a macro section.
18394 If the macro section is the extended (for now called "GNU") type,
18395 then this updates *OFFSET_SIZE. Returns a pointer to just after
18396 the header, or issues a complaint and returns NULL on error. */
18399 dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18402 unsigned int *offset_size,
18403 int section_is_gnu)
18405 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
18407 if (section_is_gnu)
18409 unsigned int version, flags;
18411 version = read_2_bytes (abfd, mac_ptr);
18414 complaint (&symfile_complaints,
18415 _("unrecognized version `%d' in .debug_macro section"),
18421 flags = read_1_byte (abfd, mac_ptr);
18423 *offset_size = (flags & 1) ? 8 : 4;
18425 if ((flags & 2) != 0)
18426 /* We don't need the line table offset. */
18427 mac_ptr += *offset_size;
18429 /* Vendor opcode descriptions. */
18430 if ((flags & 4) != 0)
18432 unsigned int i, count;
18434 count = read_1_byte (abfd, mac_ptr);
18436 for (i = 0; i < count; ++i)
18438 unsigned int opcode, bytes_read;
18441 opcode = read_1_byte (abfd, mac_ptr);
18443 opcode_definitions[opcode] = mac_ptr;
18444 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18445 mac_ptr += bytes_read;
18454 /* A helper for dwarf_decode_macros that handles the GNU extensions,
18455 including DW_MACRO_GNU_transparent_include. */
18458 dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18459 struct macro_source_file *current_file,
18460 struct line_header *lh, const char *comp_dir,
18461 struct dwarf2_section_info *section,
18462 int section_is_gnu, int section_is_dwz,
18463 unsigned int offset_size,
18464 struct objfile *objfile,
18465 htab_t include_hash)
18467 enum dwarf_macro_record_type macinfo_type;
18468 int at_commandline;
18469 gdb_byte *opcode_definitions[256];
18471 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18472 &offset_size, section_is_gnu);
18473 if (mac_ptr == NULL)
18475 /* We already issued a complaint. */
18479 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18480 GDB is still reading the definitions from command line. First
18481 DW_MACINFO_start_file will need to be ignored as it was already executed
18482 to create CURRENT_FILE for the main source holding also the command line
18483 definitions. On first met DW_MACINFO_start_file this flag is reset to
18484 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18486 at_commandline = 1;
18490 /* Do we at least have room for a macinfo type byte? */
18491 if (mac_ptr >= mac_end)
18493 dwarf2_section_buffer_overflow_complaint (section);
18497 macinfo_type = read_1_byte (abfd, mac_ptr);
18500 /* Note that we rely on the fact that the corresponding GNU and
18501 DWARF constants are the same. */
18502 switch (macinfo_type)
18504 /* A zero macinfo type indicates the end of the macro
18509 case DW_MACRO_GNU_define:
18510 case DW_MACRO_GNU_undef:
18511 case DW_MACRO_GNU_define_indirect:
18512 case DW_MACRO_GNU_undef_indirect:
18513 case DW_MACRO_GNU_define_indirect_alt:
18514 case DW_MACRO_GNU_undef_indirect_alt:
18516 unsigned int bytes_read;
18521 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18522 mac_ptr += bytes_read;
18524 if (macinfo_type == DW_MACRO_GNU_define
18525 || macinfo_type == DW_MACRO_GNU_undef)
18527 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18528 mac_ptr += bytes_read;
18532 LONGEST str_offset;
18534 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18535 mac_ptr += offset_size;
18537 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
18538 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18541 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18543 body = read_indirect_string_from_dwz (dwz, str_offset);
18546 body = read_indirect_string_at_offset (abfd, str_offset);
18549 is_define = (macinfo_type == DW_MACRO_GNU_define
18550 || macinfo_type == DW_MACRO_GNU_define_indirect
18551 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
18552 if (! current_file)
18554 /* DWARF violation as no main source is present. */
18555 complaint (&symfile_complaints,
18556 _("debug info with no main source gives macro %s "
18558 is_define ? _("definition") : _("undefinition"),
18562 if ((line == 0 && !at_commandline)
18563 || (line != 0 && at_commandline))
18564 complaint (&symfile_complaints,
18565 _("debug info gives %s macro %s with %s line %d: %s"),
18566 at_commandline ? _("command-line") : _("in-file"),
18567 is_define ? _("definition") : _("undefinition"),
18568 line == 0 ? _("zero") : _("non-zero"), line, body);
18571 parse_macro_definition (current_file, line, body);
18574 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
18575 || macinfo_type == DW_MACRO_GNU_undef_indirect
18576 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
18577 macro_undef (current_file, line, body);
18582 case DW_MACRO_GNU_start_file:
18584 unsigned int bytes_read;
18587 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18588 mac_ptr += bytes_read;
18589 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18590 mac_ptr += bytes_read;
18592 if ((line == 0 && !at_commandline)
18593 || (line != 0 && at_commandline))
18594 complaint (&symfile_complaints,
18595 _("debug info gives source %d included "
18596 "from %s at %s line %d"),
18597 file, at_commandline ? _("command-line") : _("file"),
18598 line == 0 ? _("zero") : _("non-zero"), line);
18600 if (at_commandline)
18602 /* This DW_MACRO_GNU_start_file was executed in the
18604 at_commandline = 0;
18607 current_file = macro_start_file (file, line,
18608 current_file, comp_dir,
18613 case DW_MACRO_GNU_end_file:
18614 if (! current_file)
18615 complaint (&symfile_complaints,
18616 _("macro debug info has an unmatched "
18617 "`close_file' directive"));
18620 current_file = current_file->included_by;
18621 if (! current_file)
18623 enum dwarf_macro_record_type next_type;
18625 /* GCC circa March 2002 doesn't produce the zero
18626 type byte marking the end of the compilation
18627 unit. Complain if it's not there, but exit no
18630 /* Do we at least have room for a macinfo type byte? */
18631 if (mac_ptr >= mac_end)
18633 dwarf2_section_buffer_overflow_complaint (section);
18637 /* We don't increment mac_ptr here, so this is just
18639 next_type = read_1_byte (abfd, mac_ptr);
18640 if (next_type != 0)
18641 complaint (&symfile_complaints,
18642 _("no terminating 0-type entry for "
18643 "macros in `.debug_macinfo' section"));
18650 case DW_MACRO_GNU_transparent_include:
18651 case DW_MACRO_GNU_transparent_include_alt:
18655 bfd *include_bfd = abfd;
18656 struct dwarf2_section_info *include_section = section;
18657 struct dwarf2_section_info alt_section;
18658 gdb_byte *include_mac_end = mac_end;
18659 int is_dwz = section_is_dwz;
18660 gdb_byte *new_mac_ptr;
18662 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18663 mac_ptr += offset_size;
18665 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18667 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18669 dwarf2_read_section (dwarf2_per_objfile->objfile,
18672 include_bfd = dwz->macro.asection->owner;
18673 include_section = &dwz->macro;
18674 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18678 new_mac_ptr = include_section->buffer + offset;
18679 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18683 /* This has actually happened; see
18684 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18685 complaint (&symfile_complaints,
18686 _("recursive DW_MACRO_GNU_transparent_include in "
18687 ".debug_macro section"));
18691 *slot = new_mac_ptr;
18693 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
18694 include_mac_end, current_file,
18696 section, section_is_gnu, is_dwz,
18697 offset_size, objfile, include_hash);
18699 htab_remove_elt (include_hash, new_mac_ptr);
18704 case DW_MACINFO_vendor_ext:
18705 if (!section_is_gnu)
18707 unsigned int bytes_read;
18710 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18711 mac_ptr += bytes_read;
18712 read_direct_string (abfd, mac_ptr, &bytes_read);
18713 mac_ptr += bytes_read;
18715 /* We don't recognize any vendor extensions. */
18721 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18722 mac_ptr, mac_end, abfd, offset_size,
18724 if (mac_ptr == NULL)
18728 } while (macinfo_type != 0);
18732 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18733 const char *comp_dir, int section_is_gnu)
18735 struct objfile *objfile = dwarf2_per_objfile->objfile;
18736 struct line_header *lh = cu->line_header;
18738 gdb_byte *mac_ptr, *mac_end;
18739 struct macro_source_file *current_file = 0;
18740 enum dwarf_macro_record_type macinfo_type;
18741 unsigned int offset_size = cu->header.offset_size;
18742 gdb_byte *opcode_definitions[256];
18743 struct cleanup *cleanup;
18744 htab_t include_hash;
18746 struct dwarf2_section_info *section;
18747 const char *section_name;
18749 if (cu->dwo_unit != NULL)
18751 if (section_is_gnu)
18753 section = &cu->dwo_unit->dwo_file->sections.macro;
18754 section_name = ".debug_macro.dwo";
18758 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18759 section_name = ".debug_macinfo.dwo";
18764 if (section_is_gnu)
18766 section = &dwarf2_per_objfile->macro;
18767 section_name = ".debug_macro";
18771 section = &dwarf2_per_objfile->macinfo;
18772 section_name = ".debug_macinfo";
18776 dwarf2_read_section (objfile, section);
18777 if (section->buffer == NULL)
18779 complaint (&symfile_complaints, _("missing %s section"), section_name);
18782 abfd = section->asection->owner;
18784 /* First pass: Find the name of the base filename.
18785 This filename is needed in order to process all macros whose definition
18786 (or undefinition) comes from the command line. These macros are defined
18787 before the first DW_MACINFO_start_file entry, and yet still need to be
18788 associated to the base file.
18790 To determine the base file name, we scan the macro definitions until we
18791 reach the first DW_MACINFO_start_file entry. We then initialize
18792 CURRENT_FILE accordingly so that any macro definition found before the
18793 first DW_MACINFO_start_file can still be associated to the base file. */
18795 mac_ptr = section->buffer + offset;
18796 mac_end = section->buffer + section->size;
18798 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18799 &offset_size, section_is_gnu);
18800 if (mac_ptr == NULL)
18802 /* We already issued a complaint. */
18808 /* Do we at least have room for a macinfo type byte? */
18809 if (mac_ptr >= mac_end)
18811 /* Complaint is printed during the second pass as GDB will probably
18812 stop the first pass earlier upon finding
18813 DW_MACINFO_start_file. */
18817 macinfo_type = read_1_byte (abfd, mac_ptr);
18820 /* Note that we rely on the fact that the corresponding GNU and
18821 DWARF constants are the same. */
18822 switch (macinfo_type)
18824 /* A zero macinfo type indicates the end of the macro
18829 case DW_MACRO_GNU_define:
18830 case DW_MACRO_GNU_undef:
18831 /* Only skip the data by MAC_PTR. */
18833 unsigned int bytes_read;
18835 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18836 mac_ptr += bytes_read;
18837 read_direct_string (abfd, mac_ptr, &bytes_read);
18838 mac_ptr += bytes_read;
18842 case DW_MACRO_GNU_start_file:
18844 unsigned int bytes_read;
18847 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18848 mac_ptr += bytes_read;
18849 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18850 mac_ptr += bytes_read;
18852 current_file = macro_start_file (file, line, current_file,
18853 comp_dir, lh, objfile);
18857 case DW_MACRO_GNU_end_file:
18858 /* No data to skip by MAC_PTR. */
18861 case DW_MACRO_GNU_define_indirect:
18862 case DW_MACRO_GNU_undef_indirect:
18863 case DW_MACRO_GNU_define_indirect_alt:
18864 case DW_MACRO_GNU_undef_indirect_alt:
18866 unsigned int bytes_read;
18868 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18869 mac_ptr += bytes_read;
18870 mac_ptr += offset_size;
18874 case DW_MACRO_GNU_transparent_include:
18875 case DW_MACRO_GNU_transparent_include_alt:
18876 /* Note that, according to the spec, a transparent include
18877 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18878 skip this opcode. */
18879 mac_ptr += offset_size;
18882 case DW_MACINFO_vendor_ext:
18883 /* Only skip the data by MAC_PTR. */
18884 if (!section_is_gnu)
18886 unsigned int bytes_read;
18888 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18889 mac_ptr += bytes_read;
18890 read_direct_string (abfd, mac_ptr, &bytes_read);
18891 mac_ptr += bytes_read;
18896 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
18897 mac_ptr, mac_end, abfd, offset_size,
18899 if (mac_ptr == NULL)
18903 } while (macinfo_type != 0 && current_file == NULL);
18905 /* Second pass: Process all entries.
18907 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18908 command-line macro definitions/undefinitions. This flag is unset when we
18909 reach the first DW_MACINFO_start_file entry. */
18911 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18912 NULL, xcalloc, xfree);
18913 cleanup = make_cleanup_htab_delete (include_hash);
18914 mac_ptr = section->buffer + offset;
18915 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18917 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
18918 current_file, lh, comp_dir, section,
18920 offset_size, objfile, include_hash);
18921 do_cleanups (cleanup);
18924 /* Check if the attribute's form is a DW_FORM_block*
18925 if so return true else false. */
18928 attr_form_is_block (struct attribute *attr)
18930 return (attr == NULL ? 0 :
18931 attr->form == DW_FORM_block1
18932 || attr->form == DW_FORM_block2
18933 || attr->form == DW_FORM_block4
18934 || attr->form == DW_FORM_block
18935 || attr->form == DW_FORM_exprloc);
18938 /* Return non-zero if ATTR's value is a section offset --- classes
18939 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18940 You may use DW_UNSND (attr) to retrieve such offsets.
18942 Section 7.5.4, "Attribute Encodings", explains that no attribute
18943 may have a value that belongs to more than one of these classes; it
18944 would be ambiguous if we did, because we use the same forms for all
18948 attr_form_is_section_offset (struct attribute *attr)
18950 return (attr->form == DW_FORM_data4
18951 || attr->form == DW_FORM_data8
18952 || attr->form == DW_FORM_sec_offset);
18955 /* Return non-zero if ATTR's value falls in the 'constant' class, or
18956 zero otherwise. When this function returns true, you can apply
18957 dwarf2_get_attr_constant_value to it.
18959 However, note that for some attributes you must check
18960 attr_form_is_section_offset before using this test. DW_FORM_data4
18961 and DW_FORM_data8 are members of both the constant class, and of
18962 the classes that contain offsets into other debug sections
18963 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18964 that, if an attribute's can be either a constant or one of the
18965 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18966 taken as section offsets, not constants. */
18969 attr_form_is_constant (struct attribute *attr)
18971 switch (attr->form)
18973 case DW_FORM_sdata:
18974 case DW_FORM_udata:
18975 case DW_FORM_data1:
18976 case DW_FORM_data2:
18977 case DW_FORM_data4:
18978 case DW_FORM_data8:
18985 /* Return the .debug_loc section to use for CU.
18986 For DWO files use .debug_loc.dwo. */
18988 static struct dwarf2_section_info *
18989 cu_debug_loc_section (struct dwarf2_cu *cu)
18992 return &cu->dwo_unit->dwo_file->sections.loc;
18993 return &dwarf2_per_objfile->loc;
18996 /* A helper function that fills in a dwarf2_loclist_baton. */
18999 fill_in_loclist_baton (struct dwarf2_cu *cu,
19000 struct dwarf2_loclist_baton *baton,
19001 struct attribute *attr)
19003 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19005 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
19007 baton->per_cu = cu->per_cu;
19008 gdb_assert (baton->per_cu);
19009 /* We don't know how long the location list is, but make sure we
19010 don't run off the edge of the section. */
19011 baton->size = section->size - DW_UNSND (attr);
19012 baton->data = section->buffer + DW_UNSND (attr);
19013 baton->base_address = cu->base_address;
19014 baton->from_dwo = cu->dwo_unit != NULL;
19018 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
19019 struct dwarf2_cu *cu)
19021 struct objfile *objfile = dwarf2_per_objfile->objfile;
19022 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19024 if (attr_form_is_section_offset (attr)
19025 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
19026 the section. If so, fall through to the complaint in the
19028 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
19030 struct dwarf2_loclist_baton *baton;
19032 baton = obstack_alloc (&objfile->objfile_obstack,
19033 sizeof (struct dwarf2_loclist_baton));
19035 fill_in_loclist_baton (cu, baton, attr);
19037 if (cu->base_known == 0)
19038 complaint (&symfile_complaints,
19039 _("Location list used without "
19040 "specifying the CU base address."));
19042 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
19043 SYMBOL_LOCATION_BATON (sym) = baton;
19047 struct dwarf2_locexpr_baton *baton;
19049 baton = obstack_alloc (&objfile->objfile_obstack,
19050 sizeof (struct dwarf2_locexpr_baton));
19051 baton->per_cu = cu->per_cu;
19052 gdb_assert (baton->per_cu);
19054 if (attr_form_is_block (attr))
19056 /* Note that we're just copying the block's data pointer
19057 here, not the actual data. We're still pointing into the
19058 info_buffer for SYM's objfile; right now we never release
19059 that buffer, but when we do clean up properly this may
19061 baton->size = DW_BLOCK (attr)->size;
19062 baton->data = DW_BLOCK (attr)->data;
19066 dwarf2_invalid_attrib_class_complaint ("location description",
19067 SYMBOL_NATURAL_NAME (sym));
19071 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
19072 SYMBOL_LOCATION_BATON (sym) = baton;
19076 /* Return the OBJFILE associated with the compilation unit CU. If CU
19077 came from a separate debuginfo file, then the master objfile is
19081 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
19083 struct objfile *objfile = per_cu->objfile;
19085 /* Return the master objfile, so that we can report and look up the
19086 correct file containing this variable. */
19087 if (objfile->separate_debug_objfile_backlink)
19088 objfile = objfile->separate_debug_objfile_backlink;
19093 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
19094 (CU_HEADERP is unused in such case) or prepare a temporary copy at
19095 CU_HEADERP first. */
19097 static const struct comp_unit_head *
19098 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
19099 struct dwarf2_per_cu_data *per_cu)
19101 gdb_byte *info_ptr;
19104 return &per_cu->cu->header;
19106 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
19108 memset (cu_headerp, 0, sizeof (*cu_headerp));
19109 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
19114 /* Return the address size given in the compilation unit header for CU. */
19117 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
19119 struct comp_unit_head cu_header_local;
19120 const struct comp_unit_head *cu_headerp;
19122 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19124 return cu_headerp->addr_size;
19127 /* Return the offset size given in the compilation unit header for CU. */
19130 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
19132 struct comp_unit_head cu_header_local;
19133 const struct comp_unit_head *cu_headerp;
19135 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19137 return cu_headerp->offset_size;
19140 /* See its dwarf2loc.h declaration. */
19143 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
19145 struct comp_unit_head cu_header_local;
19146 const struct comp_unit_head *cu_headerp;
19148 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
19150 if (cu_headerp->version == 2)
19151 return cu_headerp->addr_size;
19153 return cu_headerp->offset_size;
19156 /* Return the text offset of the CU. The returned offset comes from
19157 this CU's objfile. If this objfile came from a separate debuginfo
19158 file, then the offset may be different from the corresponding
19159 offset in the parent objfile. */
19162 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19164 struct objfile *objfile = per_cu->objfile;
19166 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19169 /* Locate the .debug_info compilation unit from CU's objfile which contains
19170 the DIE at OFFSET. Raises an error on failure. */
19172 static struct dwarf2_per_cu_data *
19173 dwarf2_find_containing_comp_unit (sect_offset offset,
19174 unsigned int offset_in_dwz,
19175 struct objfile *objfile)
19177 struct dwarf2_per_cu_data *this_cu;
19179 const sect_offset *cu_off;
19182 high = dwarf2_per_objfile->n_comp_units - 1;
19185 struct dwarf2_per_cu_data *mid_cu;
19186 int mid = low + (high - low) / 2;
19188 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19189 cu_off = &mid_cu->offset;
19190 if (mid_cu->is_dwz > offset_in_dwz
19191 || (mid_cu->is_dwz == offset_in_dwz
19192 && cu_off->sect_off >= offset.sect_off))
19197 gdb_assert (low == high);
19198 this_cu = dwarf2_per_objfile->all_comp_units[low];
19199 cu_off = &this_cu->offset;
19200 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
19202 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
19203 error (_("Dwarf Error: could not find partial DIE containing "
19204 "offset 0x%lx [in module %s]"),
19205 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
19207 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19208 <= offset.sect_off);
19209 return dwarf2_per_objfile->all_comp_units[low-1];
19213 this_cu = dwarf2_per_objfile->all_comp_units[low];
19214 if (low == dwarf2_per_objfile->n_comp_units - 1
19215 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19216 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19217 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
19222 /* Initialize dwarf2_cu CU, owned by PER_CU. */
19225 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
19227 memset (cu, 0, sizeof (*cu));
19229 cu->per_cu = per_cu;
19230 cu->objfile = per_cu->objfile;
19231 obstack_init (&cu->comp_unit_obstack);
19234 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19237 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19238 enum language pretend_language)
19240 struct attribute *attr;
19242 /* Set the language we're debugging. */
19243 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19245 set_cu_language (DW_UNSND (attr), cu);
19248 cu->language = pretend_language;
19249 cu->language_defn = language_def (cu->language);
19252 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19254 cu->producer = DW_STRING (attr);
19257 /* Release one cached compilation unit, CU. We unlink it from the tree
19258 of compilation units, but we don't remove it from the read_in_chain;
19259 the caller is responsible for that.
19260 NOTE: DATA is a void * because this function is also used as a
19261 cleanup routine. */
19264 free_heap_comp_unit (void *data)
19266 struct dwarf2_cu *cu = data;
19268 gdb_assert (cu->per_cu != NULL);
19269 cu->per_cu->cu = NULL;
19272 obstack_free (&cu->comp_unit_obstack, NULL);
19277 /* This cleanup function is passed the address of a dwarf2_cu on the stack
19278 when we're finished with it. We can't free the pointer itself, but be
19279 sure to unlink it from the cache. Also release any associated storage. */
19282 free_stack_comp_unit (void *data)
19284 struct dwarf2_cu *cu = data;
19286 gdb_assert (cu->per_cu != NULL);
19287 cu->per_cu->cu = NULL;
19290 obstack_free (&cu->comp_unit_obstack, NULL);
19291 cu->partial_dies = NULL;
19294 /* Free all cached compilation units. */
19297 free_cached_comp_units (void *data)
19299 struct dwarf2_per_cu_data *per_cu, **last_chain;
19301 per_cu = dwarf2_per_objfile->read_in_chain;
19302 last_chain = &dwarf2_per_objfile->read_in_chain;
19303 while (per_cu != NULL)
19305 struct dwarf2_per_cu_data *next_cu;
19307 next_cu = per_cu->cu->read_in_chain;
19309 free_heap_comp_unit (per_cu->cu);
19310 *last_chain = next_cu;
19316 /* Increase the age counter on each cached compilation unit, and free
19317 any that are too old. */
19320 age_cached_comp_units (void)
19322 struct dwarf2_per_cu_data *per_cu, **last_chain;
19324 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19325 per_cu = dwarf2_per_objfile->read_in_chain;
19326 while (per_cu != NULL)
19328 per_cu->cu->last_used ++;
19329 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19330 dwarf2_mark (per_cu->cu);
19331 per_cu = per_cu->cu->read_in_chain;
19334 per_cu = dwarf2_per_objfile->read_in_chain;
19335 last_chain = &dwarf2_per_objfile->read_in_chain;
19336 while (per_cu != NULL)
19338 struct dwarf2_per_cu_data *next_cu;
19340 next_cu = per_cu->cu->read_in_chain;
19342 if (!per_cu->cu->mark)
19344 free_heap_comp_unit (per_cu->cu);
19345 *last_chain = next_cu;
19348 last_chain = &per_cu->cu->read_in_chain;
19354 /* Remove a single compilation unit from the cache. */
19357 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
19359 struct dwarf2_per_cu_data *per_cu, **last_chain;
19361 per_cu = dwarf2_per_objfile->read_in_chain;
19362 last_chain = &dwarf2_per_objfile->read_in_chain;
19363 while (per_cu != NULL)
19365 struct dwarf2_per_cu_data *next_cu;
19367 next_cu = per_cu->cu->read_in_chain;
19369 if (per_cu == target_per_cu)
19371 free_heap_comp_unit (per_cu->cu);
19373 *last_chain = next_cu;
19377 last_chain = &per_cu->cu->read_in_chain;
19383 /* Release all extra memory associated with OBJFILE. */
19386 dwarf2_free_objfile (struct objfile *objfile)
19388 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19390 if (dwarf2_per_objfile == NULL)
19393 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19394 free_cached_comp_units (NULL);
19396 if (dwarf2_per_objfile->quick_file_names_table)
19397 htab_delete (dwarf2_per_objfile->quick_file_names_table);
19399 /* Everything else should be on the objfile obstack. */
19402 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19403 We store these in a hash table separate from the DIEs, and preserve them
19404 when the DIEs are flushed out of cache.
19406 The CU "per_cu" pointer is needed because offset alone is not enough to
19407 uniquely identify the type. A file may have multiple .debug_types sections,
19408 or the type may come from a DWO file. We have to use something in
19409 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19410 routine, get_die_type_at_offset, from outside this file, and thus won't
19411 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19414 struct dwarf2_per_cu_offset_and_type
19416 const struct dwarf2_per_cu_data *per_cu;
19417 sect_offset offset;
19421 /* Hash function for a dwarf2_per_cu_offset_and_type. */
19424 per_cu_offset_and_type_hash (const void *item)
19426 const struct dwarf2_per_cu_offset_and_type *ofs = item;
19428 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
19431 /* Equality function for a dwarf2_per_cu_offset_and_type. */
19434 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
19436 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19437 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
19439 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19440 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
19443 /* Set the type associated with DIE to TYPE. Save it in CU's hash
19444 table if necessary. For convenience, return TYPE.
19446 The DIEs reading must have careful ordering to:
19447 * Not cause infite loops trying to read in DIEs as a prerequisite for
19448 reading current DIE.
19449 * Not trying to dereference contents of still incompletely read in types
19450 while reading in other DIEs.
19451 * Enable referencing still incompletely read in types just by a pointer to
19452 the type without accessing its fields.
19454 Therefore caller should follow these rules:
19455 * Try to fetch any prerequisite types we may need to build this DIE type
19456 before building the type and calling set_die_type.
19457 * After building type call set_die_type for current DIE as soon as
19458 possible before fetching more types to complete the current type.
19459 * Make the type as complete as possible before fetching more types. */
19461 static struct type *
19462 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19464 struct dwarf2_per_cu_offset_and_type **slot, ofs;
19465 struct objfile *objfile = cu->objfile;
19467 /* For Ada types, make sure that the gnat-specific data is always
19468 initialized (if not already set). There are a few types where
19469 we should not be doing so, because the type-specific area is
19470 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19471 where the type-specific area is used to store the floatformat).
19472 But this is not a problem, because the gnat-specific information
19473 is actually not needed for these types. */
19474 if (need_gnat_info (cu)
19475 && TYPE_CODE (type) != TYPE_CODE_FUNC
19476 && TYPE_CODE (type) != TYPE_CODE_FLT
19477 && !HAVE_GNAT_AUX_INFO (type))
19478 INIT_GNAT_SPECIFIC (type);
19480 if (dwarf2_per_objfile->die_type_hash == NULL)
19482 dwarf2_per_objfile->die_type_hash =
19483 htab_create_alloc_ex (127,
19484 per_cu_offset_and_type_hash,
19485 per_cu_offset_and_type_eq,
19487 &objfile->objfile_obstack,
19488 hashtab_obstack_allocate,
19489 dummy_obstack_deallocate);
19492 ofs.per_cu = cu->per_cu;
19493 ofs.offset = die->offset;
19495 slot = (struct dwarf2_per_cu_offset_and_type **)
19496 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
19498 complaint (&symfile_complaints,
19499 _("A problem internal to GDB: DIE 0x%x has type already set"),
19500 die->offset.sect_off);
19501 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
19506 /* Look up the type for the die at OFFSET in the appropriate type_hash
19507 table, or return NULL if the die does not have a saved type. */
19509 static struct type *
19510 get_die_type_at_offset (sect_offset offset,
19511 struct dwarf2_per_cu_data *per_cu)
19513 struct dwarf2_per_cu_offset_and_type *slot, ofs;
19515 if (dwarf2_per_objfile->die_type_hash == NULL)
19518 ofs.per_cu = per_cu;
19519 ofs.offset = offset;
19520 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
19527 /* Look up the type for DIE in the appropriate type_hash table,
19528 or return NULL if DIE does not have a saved type. */
19530 static struct type *
19531 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19533 return get_die_type_at_offset (die->offset, cu->per_cu);
19536 /* Add a dependence relationship from CU to REF_PER_CU. */
19539 dwarf2_add_dependence (struct dwarf2_cu *cu,
19540 struct dwarf2_per_cu_data *ref_per_cu)
19544 if (cu->dependencies == NULL)
19546 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19547 NULL, &cu->comp_unit_obstack,
19548 hashtab_obstack_allocate,
19549 dummy_obstack_deallocate);
19551 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19553 *slot = ref_per_cu;
19556 /* Subroutine of dwarf2_mark to pass to htab_traverse.
19557 Set the mark field in every compilation unit in the
19558 cache that we must keep because we are keeping CU. */
19561 dwarf2_mark_helper (void **slot, void *data)
19563 struct dwarf2_per_cu_data *per_cu;
19565 per_cu = (struct dwarf2_per_cu_data *) *slot;
19567 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19568 reading of the chain. As such dependencies remain valid it is not much
19569 useful to track and undo them during QUIT cleanups. */
19570 if (per_cu->cu == NULL)
19573 if (per_cu->cu->mark)
19575 per_cu->cu->mark = 1;
19577 if (per_cu->cu->dependencies != NULL)
19578 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19583 /* Set the mark field in CU and in every other compilation unit in the
19584 cache that we must keep because we are keeping CU. */
19587 dwarf2_mark (struct dwarf2_cu *cu)
19592 if (cu->dependencies != NULL)
19593 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
19597 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19601 per_cu->cu->mark = 0;
19602 per_cu = per_cu->cu->read_in_chain;
19606 /* Trivial hash function for partial_die_info: the hash value of a DIE
19607 is its offset in .debug_info for this objfile. */
19610 partial_die_hash (const void *item)
19612 const struct partial_die_info *part_die = item;
19614 return part_die->offset.sect_off;
19617 /* Trivial comparison function for partial_die_info structures: two DIEs
19618 are equal if they have the same offset. */
19621 partial_die_eq (const void *item_lhs, const void *item_rhs)
19623 const struct partial_die_info *part_die_lhs = item_lhs;
19624 const struct partial_die_info *part_die_rhs = item_rhs;
19626 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
19629 static struct cmd_list_element *set_dwarf2_cmdlist;
19630 static struct cmd_list_element *show_dwarf2_cmdlist;
19633 set_dwarf2_cmd (char *args, int from_tty)
19635 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19639 show_dwarf2_cmd (char *args, int from_tty)
19641 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19644 /* Free data associated with OBJFILE, if necessary. */
19647 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
19649 struct dwarf2_per_objfile *data = d;
19652 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19653 VEC_free (dwarf2_per_cu_ptr,
19654 dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs);
19656 for (ix = 0; ix < dwarf2_per_objfile->n_type_units; ++ix)
19657 VEC_free (dwarf2_per_cu_ptr,
19658 dwarf2_per_objfile->all_type_units[ix]->per_cu.imported_symtabs);
19660 VEC_free (dwarf2_section_info_def, data->types);
19662 if (data->dwo_files)
19663 free_dwo_files (data->dwo_files, objfile);
19665 if (data->dwz_file && data->dwz_file->dwz_bfd)
19666 gdb_bfd_unref (data->dwz_file->dwz_bfd);
19670 /* The "save gdb-index" command. */
19672 /* The contents of the hash table we create when building the string
19674 struct strtab_entry
19676 offset_type offset;
19680 /* Hash function for a strtab_entry.
19682 Function is used only during write_hash_table so no index format backward
19683 compatibility is needed. */
19686 hash_strtab_entry (const void *e)
19688 const struct strtab_entry *entry = e;
19689 return mapped_index_string_hash (INT_MAX, entry->str);
19692 /* Equality function for a strtab_entry. */
19695 eq_strtab_entry (const void *a, const void *b)
19697 const struct strtab_entry *ea = a;
19698 const struct strtab_entry *eb = b;
19699 return !strcmp (ea->str, eb->str);
19702 /* Create a strtab_entry hash table. */
19705 create_strtab (void)
19707 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19708 xfree, xcalloc, xfree);
19711 /* Add a string to the constant pool. Return the string's offset in
19715 add_string (htab_t table, struct obstack *cpool, const char *str)
19718 struct strtab_entry entry;
19719 struct strtab_entry *result;
19722 slot = htab_find_slot (table, &entry, INSERT);
19727 result = XNEW (struct strtab_entry);
19728 result->offset = obstack_object_size (cpool);
19730 obstack_grow_str0 (cpool, str);
19733 return result->offset;
19736 /* An entry in the symbol table. */
19737 struct symtab_index_entry
19739 /* The name of the symbol. */
19741 /* The offset of the name in the constant pool. */
19742 offset_type index_offset;
19743 /* A sorted vector of the indices of all the CUs that hold an object
19745 VEC (offset_type) *cu_indices;
19748 /* The symbol table. This is a power-of-2-sized hash table. */
19749 struct mapped_symtab
19751 offset_type n_elements;
19753 struct symtab_index_entry **data;
19756 /* Hash function for a symtab_index_entry. */
19759 hash_symtab_entry (const void *e)
19761 const struct symtab_index_entry *entry = e;
19762 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19763 sizeof (offset_type) * VEC_length (offset_type,
19764 entry->cu_indices),
19768 /* Equality function for a symtab_index_entry. */
19771 eq_symtab_entry (const void *a, const void *b)
19773 const struct symtab_index_entry *ea = a;
19774 const struct symtab_index_entry *eb = b;
19775 int len = VEC_length (offset_type, ea->cu_indices);
19776 if (len != VEC_length (offset_type, eb->cu_indices))
19778 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19779 VEC_address (offset_type, eb->cu_indices),
19780 sizeof (offset_type) * len);
19783 /* Destroy a symtab_index_entry. */
19786 delete_symtab_entry (void *p)
19788 struct symtab_index_entry *entry = p;
19789 VEC_free (offset_type, entry->cu_indices);
19793 /* Create a hash table holding symtab_index_entry objects. */
19796 create_symbol_hash_table (void)
19798 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19799 delete_symtab_entry, xcalloc, xfree);
19802 /* Create a new mapped symtab object. */
19804 static struct mapped_symtab *
19805 create_mapped_symtab (void)
19807 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19808 symtab->n_elements = 0;
19809 symtab->size = 1024;
19810 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19814 /* Destroy a mapped_symtab. */
19817 cleanup_mapped_symtab (void *p)
19819 struct mapped_symtab *symtab = p;
19820 /* The contents of the array are freed when the other hash table is
19822 xfree (symtab->data);
19826 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
19829 Function is used only during write_hash_table so no index format backward
19830 compatibility is needed. */
19832 static struct symtab_index_entry **
19833 find_slot (struct mapped_symtab *symtab, const char *name)
19835 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
19837 index = hash & (symtab->size - 1);
19838 step = ((hash * 17) & (symtab->size - 1)) | 1;
19842 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19843 return &symtab->data[index];
19844 index = (index + step) & (symtab->size - 1);
19848 /* Expand SYMTAB's hash table. */
19851 hash_expand (struct mapped_symtab *symtab)
19853 offset_type old_size = symtab->size;
19855 struct symtab_index_entry **old_entries = symtab->data;
19858 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19860 for (i = 0; i < old_size; ++i)
19862 if (old_entries[i])
19864 struct symtab_index_entry **slot = find_slot (symtab,
19865 old_entries[i]->name);
19866 *slot = old_entries[i];
19870 xfree (old_entries);
19873 /* Add an entry to SYMTAB. NAME is the name of the symbol.
19874 CU_INDEX is the index of the CU in which the symbol appears.
19875 IS_STATIC is one if the symbol is static, otherwise zero (global). */
19878 add_index_entry (struct mapped_symtab *symtab, const char *name,
19879 int is_static, gdb_index_symbol_kind kind,
19880 offset_type cu_index)
19882 struct symtab_index_entry **slot;
19883 offset_type cu_index_and_attrs;
19885 ++symtab->n_elements;
19886 if (4 * symtab->n_elements / 3 >= symtab->size)
19887 hash_expand (symtab);
19889 slot = find_slot (symtab, name);
19892 *slot = XNEW (struct symtab_index_entry);
19893 (*slot)->name = name;
19894 /* index_offset is set later. */
19895 (*slot)->cu_indices = NULL;
19898 cu_index_and_attrs = 0;
19899 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19900 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19901 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19903 /* We don't want to record an index value twice as we want to avoid the
19905 We process all global symbols and then all static symbols
19906 (which would allow us to avoid the duplication by only having to check
19907 the last entry pushed), but a symbol could have multiple kinds in one CU.
19908 To keep things simple we don't worry about the duplication here and
19909 sort and uniqufy the list after we've processed all symbols. */
19910 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19913 /* qsort helper routine for uniquify_cu_indices. */
19916 offset_type_compare (const void *ap, const void *bp)
19918 offset_type a = *(offset_type *) ap;
19919 offset_type b = *(offset_type *) bp;
19921 return (a > b) - (b > a);
19924 /* Sort and remove duplicates of all symbols' cu_indices lists. */
19927 uniquify_cu_indices (struct mapped_symtab *symtab)
19931 for (i = 0; i < symtab->size; ++i)
19933 struct symtab_index_entry *entry = symtab->data[i];
19936 && entry->cu_indices != NULL)
19938 unsigned int next_to_insert, next_to_check;
19939 offset_type last_value;
19941 qsort (VEC_address (offset_type, entry->cu_indices),
19942 VEC_length (offset_type, entry->cu_indices),
19943 sizeof (offset_type), offset_type_compare);
19945 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19946 next_to_insert = 1;
19947 for (next_to_check = 1;
19948 next_to_check < VEC_length (offset_type, entry->cu_indices);
19951 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19954 last_value = VEC_index (offset_type, entry->cu_indices,
19956 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19961 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19966 /* Add a vector of indices to the constant pool. */
19969 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
19970 struct symtab_index_entry *entry)
19974 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
19977 offset_type len = VEC_length (offset_type, entry->cu_indices);
19978 offset_type val = MAYBE_SWAP (len);
19983 entry->index_offset = obstack_object_size (cpool);
19985 obstack_grow (cpool, &val, sizeof (val));
19987 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19990 val = MAYBE_SWAP (iter);
19991 obstack_grow (cpool, &val, sizeof (val));
19996 struct symtab_index_entry *old_entry = *slot;
19997 entry->index_offset = old_entry->index_offset;
20000 return entry->index_offset;
20003 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
20004 constant pool entries going into the obstack CPOOL. */
20007 write_hash_table (struct mapped_symtab *symtab,
20008 struct obstack *output, struct obstack *cpool)
20011 htab_t symbol_hash_table;
20014 symbol_hash_table = create_symbol_hash_table ();
20015 str_table = create_strtab ();
20017 /* We add all the index vectors to the constant pool first, to
20018 ensure alignment is ok. */
20019 for (i = 0; i < symtab->size; ++i)
20021 if (symtab->data[i])
20022 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
20025 /* Now write out the hash table. */
20026 for (i = 0; i < symtab->size; ++i)
20028 offset_type str_off, vec_off;
20030 if (symtab->data[i])
20032 str_off = add_string (str_table, cpool, symtab->data[i]->name);
20033 vec_off = symtab->data[i]->index_offset;
20037 /* While 0 is a valid constant pool index, it is not valid
20038 to have 0 for both offsets. */
20043 str_off = MAYBE_SWAP (str_off);
20044 vec_off = MAYBE_SWAP (vec_off);
20046 obstack_grow (output, &str_off, sizeof (str_off));
20047 obstack_grow (output, &vec_off, sizeof (vec_off));
20050 htab_delete (str_table);
20051 htab_delete (symbol_hash_table);
20054 /* Struct to map psymtab to CU index in the index file. */
20055 struct psymtab_cu_index_map
20057 struct partial_symtab *psymtab;
20058 unsigned int cu_index;
20062 hash_psymtab_cu_index (const void *item)
20064 const struct psymtab_cu_index_map *map = item;
20066 return htab_hash_pointer (map->psymtab);
20070 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
20072 const struct psymtab_cu_index_map *lhs = item_lhs;
20073 const struct psymtab_cu_index_map *rhs = item_rhs;
20075 return lhs->psymtab == rhs->psymtab;
20078 /* Helper struct for building the address table. */
20079 struct addrmap_index_data
20081 struct objfile *objfile;
20082 struct obstack *addr_obstack;
20083 htab_t cu_index_htab;
20085 /* Non-zero if the previous_* fields are valid.
20086 We can't write an entry until we see the next entry (since it is only then
20087 that we know the end of the entry). */
20088 int previous_valid;
20089 /* Index of the CU in the table of all CUs in the index file. */
20090 unsigned int previous_cu_index;
20091 /* Start address of the CU. */
20092 CORE_ADDR previous_cu_start;
20095 /* Write an address entry to OBSTACK. */
20098 add_address_entry (struct objfile *objfile, struct obstack *obstack,
20099 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
20101 offset_type cu_index_to_write;
20103 CORE_ADDR baseaddr;
20105 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20107 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
20108 obstack_grow (obstack, addr, 8);
20109 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
20110 obstack_grow (obstack, addr, 8);
20111 cu_index_to_write = MAYBE_SWAP (cu_index);
20112 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
20115 /* Worker function for traversing an addrmap to build the address table. */
20118 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
20120 struct addrmap_index_data *data = datap;
20121 struct partial_symtab *pst = obj;
20123 if (data->previous_valid)
20124 add_address_entry (data->objfile, data->addr_obstack,
20125 data->previous_cu_start, start_addr,
20126 data->previous_cu_index);
20128 data->previous_cu_start = start_addr;
20131 struct psymtab_cu_index_map find_map, *map;
20132 find_map.psymtab = pst;
20133 map = htab_find (data->cu_index_htab, &find_map);
20134 gdb_assert (map != NULL);
20135 data->previous_cu_index = map->cu_index;
20136 data->previous_valid = 1;
20139 data->previous_valid = 0;
20144 /* Write OBJFILE's address map to OBSTACK.
20145 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
20146 in the index file. */
20149 write_address_map (struct objfile *objfile, struct obstack *obstack,
20150 htab_t cu_index_htab)
20152 struct addrmap_index_data addrmap_index_data;
20154 /* When writing the address table, we have to cope with the fact that
20155 the addrmap iterator only provides the start of a region; we have to
20156 wait until the next invocation to get the start of the next region. */
20158 addrmap_index_data.objfile = objfile;
20159 addrmap_index_data.addr_obstack = obstack;
20160 addrmap_index_data.cu_index_htab = cu_index_htab;
20161 addrmap_index_data.previous_valid = 0;
20163 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20164 &addrmap_index_data);
20166 /* It's highly unlikely the last entry (end address = 0xff...ff)
20167 is valid, but we should still handle it.
20168 The end address is recorded as the start of the next region, but that
20169 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20171 if (addrmap_index_data.previous_valid)
20172 add_address_entry (objfile, obstack,
20173 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20174 addrmap_index_data.previous_cu_index);
20177 /* Return the symbol kind of PSYM. */
20179 static gdb_index_symbol_kind
20180 symbol_kind (struct partial_symbol *psym)
20182 domain_enum domain = PSYMBOL_DOMAIN (psym);
20183 enum address_class aclass = PSYMBOL_CLASS (psym);
20191 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20193 return GDB_INDEX_SYMBOL_KIND_TYPE;
20195 case LOC_CONST_BYTES:
20196 case LOC_OPTIMIZED_OUT:
20198 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20200 /* Note: It's currently impossible to recognize psyms as enum values
20201 short of reading the type info. For now punt. */
20202 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20204 /* There are other LOC_FOO values that one might want to classify
20205 as variables, but dwarf2read.c doesn't currently use them. */
20206 return GDB_INDEX_SYMBOL_KIND_OTHER;
20208 case STRUCT_DOMAIN:
20209 return GDB_INDEX_SYMBOL_KIND_TYPE;
20211 return GDB_INDEX_SYMBOL_KIND_OTHER;
20215 /* Add a list of partial symbols to SYMTAB. */
20218 write_psymbols (struct mapped_symtab *symtab,
20220 struct partial_symbol **psymp,
20222 offset_type cu_index,
20225 for (; count-- > 0; ++psymp)
20227 struct partial_symbol *psym = *psymp;
20230 if (SYMBOL_LANGUAGE (psym) == language_ada)
20231 error (_("Ada is not currently supported by the index"));
20233 /* Only add a given psymbol once. */
20234 slot = htab_find_slot (psyms_seen, psym, INSERT);
20237 gdb_index_symbol_kind kind = symbol_kind (psym);
20240 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20241 is_static, kind, cu_index);
20246 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
20247 exception if there is an error. */
20250 write_obstack (FILE *file, struct obstack *obstack)
20252 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20254 != obstack_object_size (obstack))
20255 error (_("couldn't data write to file"));
20258 /* Unlink a file if the argument is not NULL. */
20261 unlink_if_set (void *p)
20263 char **filename = p;
20265 unlink (*filename);
20268 /* A helper struct used when iterating over debug_types. */
20269 struct signatured_type_index_data
20271 struct objfile *objfile;
20272 struct mapped_symtab *symtab;
20273 struct obstack *types_list;
20278 /* A helper function that writes a single signatured_type to an
20282 write_one_signatured_type (void **slot, void *d)
20284 struct signatured_type_index_data *info = d;
20285 struct signatured_type *entry = (struct signatured_type *) *slot;
20286 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20287 struct partial_symtab *psymtab = per_cu->v.psymtab;
20290 write_psymbols (info->symtab,
20292 info->objfile->global_psymbols.list
20293 + psymtab->globals_offset,
20294 psymtab->n_global_syms, info->cu_index,
20296 write_psymbols (info->symtab,
20298 info->objfile->static_psymbols.list
20299 + psymtab->statics_offset,
20300 psymtab->n_static_syms, info->cu_index,
20303 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20304 entry->per_cu.offset.sect_off);
20305 obstack_grow (info->types_list, val, 8);
20306 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20307 entry->type_offset_in_tu.cu_off);
20308 obstack_grow (info->types_list, val, 8);
20309 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20310 obstack_grow (info->types_list, val, 8);
20317 /* Recurse into all "included" dependencies and write their symbols as
20318 if they appeared in this psymtab. */
20321 recursively_write_psymbols (struct objfile *objfile,
20322 struct partial_symtab *psymtab,
20323 struct mapped_symtab *symtab,
20325 offset_type cu_index)
20329 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20330 if (psymtab->dependencies[i]->user != NULL)
20331 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20332 symtab, psyms_seen, cu_index);
20334 write_psymbols (symtab,
20336 objfile->global_psymbols.list + psymtab->globals_offset,
20337 psymtab->n_global_syms, cu_index,
20339 write_psymbols (symtab,
20341 objfile->static_psymbols.list + psymtab->statics_offset,
20342 psymtab->n_static_syms, cu_index,
20346 /* Create an index file for OBJFILE in the directory DIR. */
20349 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20351 struct cleanup *cleanup;
20352 char *filename, *cleanup_filename;
20353 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20354 struct obstack cu_list, types_cu_list;
20357 struct mapped_symtab *symtab;
20358 offset_type val, size_of_contents, total_len;
20361 htab_t cu_index_htab;
20362 struct psymtab_cu_index_map *psymtab_cu_index_map;
20364 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
20367 if (dwarf2_per_objfile->using_index)
20368 error (_("Cannot use an index to create the index"));
20370 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20371 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20373 if (stat (objfile->name, &st) < 0)
20374 perror_with_name (objfile->name);
20376 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20377 INDEX_SUFFIX, (char *) NULL);
20378 cleanup = make_cleanup (xfree, filename);
20380 out_file = fopen (filename, "wb");
20382 error (_("Can't open `%s' for writing"), filename);
20384 cleanup_filename = filename;
20385 make_cleanup (unlink_if_set, &cleanup_filename);
20387 symtab = create_mapped_symtab ();
20388 make_cleanup (cleanup_mapped_symtab, symtab);
20390 obstack_init (&addr_obstack);
20391 make_cleanup_obstack_free (&addr_obstack);
20393 obstack_init (&cu_list);
20394 make_cleanup_obstack_free (&cu_list);
20396 obstack_init (&types_cu_list);
20397 make_cleanup_obstack_free (&types_cu_list);
20399 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20400 NULL, xcalloc, xfree);
20401 make_cleanup_htab_delete (psyms_seen);
20403 /* While we're scanning CU's create a table that maps a psymtab pointer
20404 (which is what addrmap records) to its index (which is what is recorded
20405 in the index file). This will later be needed to write the address
20407 cu_index_htab = htab_create_alloc (100,
20408 hash_psymtab_cu_index,
20409 eq_psymtab_cu_index,
20410 NULL, xcalloc, xfree);
20411 make_cleanup_htab_delete (cu_index_htab);
20412 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20413 xmalloc (sizeof (struct psymtab_cu_index_map)
20414 * dwarf2_per_objfile->n_comp_units);
20415 make_cleanup (xfree, psymtab_cu_index_map);
20417 /* The CU list is already sorted, so we don't need to do additional
20418 work here. Also, the debug_types entries do not appear in
20419 all_comp_units, but only in their own hash table. */
20420 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20422 struct dwarf2_per_cu_data *per_cu
20423 = dwarf2_per_objfile->all_comp_units[i];
20424 struct partial_symtab *psymtab = per_cu->v.psymtab;
20426 struct psymtab_cu_index_map *map;
20429 if (psymtab->user == NULL)
20430 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
20432 map = &psymtab_cu_index_map[i];
20433 map->psymtab = psymtab;
20435 slot = htab_find_slot (cu_index_htab, map, INSERT);
20436 gdb_assert (slot != NULL);
20437 gdb_assert (*slot == NULL);
20440 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20441 per_cu->offset.sect_off);
20442 obstack_grow (&cu_list, val, 8);
20443 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
20444 obstack_grow (&cu_list, val, 8);
20447 /* Dump the address map. */
20448 write_address_map (objfile, &addr_obstack, cu_index_htab);
20450 /* Write out the .debug_type entries, if any. */
20451 if (dwarf2_per_objfile->signatured_types)
20453 struct signatured_type_index_data sig_data;
20455 sig_data.objfile = objfile;
20456 sig_data.symtab = symtab;
20457 sig_data.types_list = &types_cu_list;
20458 sig_data.psyms_seen = psyms_seen;
20459 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20460 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20461 write_one_signatured_type, &sig_data);
20464 /* Now that we've processed all symbols we can shrink their cu_indices
20466 uniquify_cu_indices (symtab);
20468 obstack_init (&constant_pool);
20469 make_cleanup_obstack_free (&constant_pool);
20470 obstack_init (&symtab_obstack);
20471 make_cleanup_obstack_free (&symtab_obstack);
20472 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20474 obstack_init (&contents);
20475 make_cleanup_obstack_free (&contents);
20476 size_of_contents = 6 * sizeof (offset_type);
20477 total_len = size_of_contents;
20479 /* The version number. */
20480 val = MAYBE_SWAP (8);
20481 obstack_grow (&contents, &val, sizeof (val));
20483 /* The offset of the CU list from the start of the file. */
20484 val = MAYBE_SWAP (total_len);
20485 obstack_grow (&contents, &val, sizeof (val));
20486 total_len += obstack_object_size (&cu_list);
20488 /* The offset of the types CU list from the start of the file. */
20489 val = MAYBE_SWAP (total_len);
20490 obstack_grow (&contents, &val, sizeof (val));
20491 total_len += obstack_object_size (&types_cu_list);
20493 /* The offset of the address table from the start of the file. */
20494 val = MAYBE_SWAP (total_len);
20495 obstack_grow (&contents, &val, sizeof (val));
20496 total_len += obstack_object_size (&addr_obstack);
20498 /* The offset of the symbol table from the start of the file. */
20499 val = MAYBE_SWAP (total_len);
20500 obstack_grow (&contents, &val, sizeof (val));
20501 total_len += obstack_object_size (&symtab_obstack);
20503 /* The offset of the constant pool from the start of the file. */
20504 val = MAYBE_SWAP (total_len);
20505 obstack_grow (&contents, &val, sizeof (val));
20506 total_len += obstack_object_size (&constant_pool);
20508 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20510 write_obstack (out_file, &contents);
20511 write_obstack (out_file, &cu_list);
20512 write_obstack (out_file, &types_cu_list);
20513 write_obstack (out_file, &addr_obstack);
20514 write_obstack (out_file, &symtab_obstack);
20515 write_obstack (out_file, &constant_pool);
20519 /* We want to keep the file, so we set cleanup_filename to NULL
20520 here. See unlink_if_set. */
20521 cleanup_filename = NULL;
20523 do_cleanups (cleanup);
20526 /* Implementation of the `save gdb-index' command.
20528 Note that the file format used by this command is documented in the
20529 GDB manual. Any changes here must be documented there. */
20532 save_gdb_index_command (char *arg, int from_tty)
20534 struct objfile *objfile;
20537 error (_("usage: save gdb-index DIRECTORY"));
20539 ALL_OBJFILES (objfile)
20543 /* If the objfile does not correspond to an actual file, skip it. */
20544 if (stat (objfile->name, &st) < 0)
20547 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20548 if (dwarf2_per_objfile)
20550 volatile struct gdb_exception except;
20552 TRY_CATCH (except, RETURN_MASK_ERROR)
20554 write_psymtabs_to_index (objfile, arg);
20556 if (except.reason < 0)
20557 exception_fprintf (gdb_stderr, except,
20558 _("Error while writing index for `%s': "),
20566 int dwarf2_always_disassemble;
20569 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20570 struct cmd_list_element *c, const char *value)
20572 fprintf_filtered (file,
20573 _("Whether to always disassemble "
20574 "DWARF expressions is %s.\n"),
20579 show_check_physname (struct ui_file *file, int from_tty,
20580 struct cmd_list_element *c, const char *value)
20582 fprintf_filtered (file,
20583 _("Whether to check \"physname\" is %s.\n"),
20587 void _initialize_dwarf2_read (void);
20590 _initialize_dwarf2_read (void)
20592 struct cmd_list_element *c;
20594 dwarf2_objfile_data_key
20595 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
20597 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20598 Set DWARF 2 specific variables.\n\
20599 Configure DWARF 2 variables such as the cache size"),
20600 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20601 0/*allow-unknown*/, &maintenance_set_cmdlist);
20603 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20604 Show DWARF 2 specific variables\n\
20605 Show DWARF 2 variables such as the cache size"),
20606 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20607 0/*allow-unknown*/, &maintenance_show_cmdlist);
20609 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
20610 &dwarf2_max_cache_age, _("\
20611 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20612 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20613 A higher limit means that cached compilation units will be stored\n\
20614 in memory longer, and more total memory will be used. Zero disables\n\
20615 caching, which can slow down startup."),
20617 show_dwarf2_max_cache_age,
20618 &set_dwarf2_cmdlist,
20619 &show_dwarf2_cmdlist);
20621 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20622 &dwarf2_always_disassemble, _("\
20623 Set whether `info address' always disassembles DWARF expressions."), _("\
20624 Show whether `info address' always disassembles DWARF expressions."), _("\
20625 When enabled, DWARF expressions are always printed in an assembly-like\n\
20626 syntax. When disabled, expressions will be printed in a more\n\
20627 conversational style, when possible."),
20629 show_dwarf2_always_disassemble,
20630 &set_dwarf2_cmdlist,
20631 &show_dwarf2_cmdlist);
20633 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20634 Set debugging of the dwarf2 reader."), _("\
20635 Show debugging of the dwarf2 reader."), _("\
20636 When enabled, debugging messages are printed during dwarf2 reading\n\
20637 and symtab expansion."),
20640 &setdebuglist, &showdebuglist);
20642 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
20643 Set debugging of the dwarf2 DIE reader."), _("\
20644 Show debugging of the dwarf2 DIE reader."), _("\
20645 When enabled (non-zero), DIEs are dumped after they are read in.\n\
20646 The value is the maximum depth to print."),
20649 &setdebuglist, &showdebuglist);
20651 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20652 Set cross-checking of \"physname\" code against demangler."), _("\
20653 Show cross-checking of \"physname\" code against demangler."), _("\
20654 When enabled, GDB's internal \"physname\" code is checked against\n\
20656 NULL, show_check_physname,
20657 &setdebuglist, &showdebuglist);
20659 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20660 no_class, &use_deprecated_index_sections, _("\
20661 Set whether to use deprecated gdb_index sections."), _("\
20662 Show whether to use deprecated gdb_index sections."), _("\
20663 When enabled, deprecated .gdb_index sections are used anyway.\n\
20664 Normally they are ignored either because of a missing feature or\n\
20665 performance issue.\n\
20666 Warning: This option must be enabled before gdb reads the file."),
20669 &setlist, &showlist);
20671 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
20673 Save a gdb-index file.\n\
20674 Usage: save gdb-index DIRECTORY"),
20676 set_cmd_completer (c, filename_completer);