1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
59 #include "completer.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
70 #include "filestuff.h"
72 #include "namespace.h"
75 #include <sys/types.h>
77 typedef struct symbol *symbolp;
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
97 static const struct objfile_data *dwarf2_objfile_data_key;
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
106 /* A descriptor for dwarf sections.
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
122 struct dwarf2_section_info
126 /* If this is a real section, the bfd section. */
128 /* If this is a virtual section, pointer to the containing ("real")
130 struct dwarf2_section_info *containing_section;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
153 DEF_VEC_I (offset_type);
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
181 /* Index data format version. */
184 /* The total length of the buffer. */
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
208 int nr_uniq_abbrev_tables;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
218 struct dwarf2_per_objfile
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
233 VEC (dwarf2_section_info_def) *types;
236 struct objfile *objfile;
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
242 /* The number of compilation units in ALL_COMP_UNITS. */
245 /* The number of .debug_types-related CUs. */
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
264 /* Type unit statistics, to see how well the scaling improvements
266 struct tu_stats tu_stats;
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
276 /* Non-zero if we've check for whether there is a DWP file. */
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
286 /* A flag indicating wether this objfile has a section loaded at a
288 int has_section_at_zero;
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
306 /* Set during partial symbol reading, to prevent queueing of full
308 int reading_partial_symbols;
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
324 /* Default names of the debugging sections. */
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
347 /* List of DWO/DWP sections. */
349 static const struct dwop_section_names
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
378 /* local data types */
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
409 /* The type to which the method is attached, i.e., its parent class. */
412 /* The index of the method in the type's function fieldlists. */
415 /* The index of the method in the fieldlist. */
418 /* The name of the DIE. */
421 /* The DIE associated with this method. */
422 struct die_info *die;
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
428 /* Internal state when decoding a particular compilation unit. */
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
440 /* Non-zero if base_address has been set. */
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
447 const char *producer;
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
482 /* How many compilation units ago was this CU last referenced? */
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
489 /* Full DIEs if read in. */
490 struct die_info *dies;
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
516 struct dwo_unit *dwo_unit;
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
557 unsigned int processing_has_namespace_info : 1;
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
564 struct dwarf2_per_cu_data
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
569 If the DIE refers to a DWO file, this is always of the original die,
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
587 unsigned int is_debug_types : 1;
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
611 struct dwarf2_section_info *section;
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
656 /* Entry in the signatured_types hash table. */
658 struct signatured_type
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
664 struct dwarf2_per_cu_data per_cu;
666 /* The type's signature. */
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
701 struct stmt_list_hash
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
713 struct type_unit_group
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
740 /* The symbol tables for this TU (obtained from the files listed in
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
751 /* These sections are what may appear in a (real or virtual) DWO file. */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
767 /* CUs/TUs in DWP/DWO files. */
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
794 enum dwp_v2_section_ids
799 /* Data for one DWO file.
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
842 /* These sections are what may appear in a DWP file. */
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
872 struct virtual_v1_dwo_sections
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
890 struct virtual_v2_dwo_sections
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
916 /* Contents of DWP hash tables. */
918 struct dwp_hash_table
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
927 const gdb_byte *indices;
931 /* This is indexed by column number and gives the id of the section
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
947 /* Data for one DWP file. */
951 /* Name of the file. */
954 /* File format version. */
960 /* Section info for this file. */
961 struct dwp_sections sections;
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
979 /* This represents a '.dwz' file. */
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
1000 struct die_reader_specs
1002 /* The bfd of die_section. */
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1049 /* Offset of line number information in .debug_line section. */
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1093 /* Offset of this DIE. */
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1108 /* Flag set if the SCOPE field of this structure has been
1110 unsigned int scope_set : 1;
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1172 /* This data structure holds the information of an abbrev. */
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1192 /* Top level data structure to contain an abbreviation table. */
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1207 struct abbrev_info **abbrevs;
1210 /* Attributes have a name and a value. */
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1224 struct dwarf_block *blk;
1233 /* This data structure holds a complete die structure. */
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1250 unsigned int abbrev;
1252 /* Offset in .debug_info or .debug_types section. */
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1269 /* Get at parts of an attribute structure. */
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1279 /* Blocks are a bunch of untyped bytes. */
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1300 static int bits_per_byte = 8;
1304 struct nextfield *next;
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1320 struct nextfnfield *head;
1323 struct typedef_field_list
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1337 /* Number of fields (including baseclasses). */
1340 /* Number of baseclasses. */
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1355 /* Number of entries in the fnfieldlists array. */
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1364 /* One item on the queue of compilation units to read in full symbols
1366 struct dwarf2_queue_item
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1391 /* local function prototypes */
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1440 static void abbrev_table_free (struct abbrev_table *);
1442 static void abbrev_table_free_cleanup (void *);
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1447 static void dwarf2_free_abbrev_table (void *);
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1538 static void free_line_header (struct line_header *lh);
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1547 static void dwarf2_start_subfile (const char *, const char *);
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1572 static int need_gnat_info (struct dwarf2_cu *);
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1609 static int dwarf2_get_pc_bounds (struct die_info *,
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
1613 static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1617 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1620 static void dwarf2_add_field (struct field_info *, struct die_info *,
1621 struct dwarf2_cu *);
1623 static void dwarf2_attach_fields_to_type (struct field_info *,
1624 struct type *, struct dwarf2_cu *);
1626 static void dwarf2_add_member_fn (struct field_info *,
1627 struct die_info *, struct type *,
1628 struct dwarf2_cu *);
1630 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1632 struct dwarf2_cu *);
1634 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1636 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1638 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1640 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1642 static struct using_direct **using_directives (enum language);
1644 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1646 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1648 static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1651 static const char *namespace_name (struct die_info *die,
1652 int *is_anonymous, struct dwarf2_cu *);
1654 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1656 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1658 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1659 struct dwarf2_cu *);
1661 static struct die_info *read_die_and_siblings_1
1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1665 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
1668 struct die_info *parent);
1670 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1674 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1678 static void process_die (struct die_info *, struct dwarf2_cu *);
1680 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1683 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1685 static const char *dwarf2_full_name (const char *name,
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1689 static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1692 static struct die_info *dwarf2_extension (struct die_info *die,
1693 struct dwarf2_cu **);
1695 static const char *dwarf_tag_name (unsigned int);
1697 static const char *dwarf_attr_name (unsigned int);
1699 static const char *dwarf_form_name (unsigned int);
1701 static char *dwarf_bool_name (unsigned int);
1703 static const char *dwarf_type_encoding_name (unsigned int);
1705 static struct die_info *sibling_die (struct die_info *);
1707 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1709 static void dump_die_for_error (struct die_info *);
1711 static void dump_die_1 (struct ui_file *, int level, int max_level,
1714 /*static*/ void dump_die (struct die_info *, int max_level);
1716 static void store_in_ref_table (struct die_info *,
1717 struct dwarf2_cu *);
1719 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1721 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1723 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu **);
1727 static struct die_info *follow_die_ref (struct die_info *,
1728 const struct attribute *,
1729 struct dwarf2_cu **);
1731 static struct die_info *follow_die_sig (struct die_info *,
1732 const struct attribute *,
1733 struct dwarf2_cu **);
1735 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1738 static struct type *get_DW_AT_signature_type (struct die_info *,
1739 const struct attribute *,
1740 struct dwarf2_cu *);
1742 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1744 static void read_signatured_type (struct signatured_type *);
1746 static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1750 /* memory allocation interface */
1752 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1754 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1756 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1758 static int attr_form_is_block (const struct attribute *);
1760 static int attr_form_is_section_offset (const struct attribute *);
1762 static int attr_form_is_constant (const struct attribute *);
1764 static int attr_form_is_ref (const struct attribute *);
1766 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
1768 const struct attribute *attr);
1770 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1772 struct dwarf2_cu *cu,
1775 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
1779 static void free_stack_comp_unit (void *);
1781 static hashval_t partial_die_hash (const void *item);
1783 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1785 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1788 static void init_one_comp_unit (struct dwarf2_cu *cu,
1789 struct dwarf2_per_cu_data *per_cu);
1791 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
1795 static void free_heap_comp_unit (void *);
1797 static void free_cached_comp_units (void *);
1799 static void age_cached_comp_units (void);
1801 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1803 static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1806 static void create_all_comp_units (struct objfile *);
1808 static int create_all_type_units (struct objfile *);
1810 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1813 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1816 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1819 static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1822 static void dwarf2_mark (struct dwarf2_cu *);
1824 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1826 static struct type *get_die_type_at_offset (sect_offset,
1827 struct dwarf2_per_cu_data *);
1829 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1831 static void dwarf2_release_queue (void *dummy);
1833 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1836 static void process_queue (void);
1838 static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
1840 const char **name, const char **comp_dir);
1842 static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1845 static const gdb_byte *read_and_check_comp_unit_head
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1849 int is_debug_types_section);
1851 static void init_cutu_and_read_dies
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
1854 die_reader_func_ftype *die_reader_func, void *data);
1856 static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
1860 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1862 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1864 static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
1868 static struct dwp_file *get_dwp_file (void);
1870 static struct dwo_unit *lookup_dwo_comp_unit
1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1873 static struct dwo_unit *lookup_dwo_type_unit
1874 (struct signatured_type *, const char *, const char *);
1876 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1878 static void free_dwo_file_cleanup (void *);
1880 static void process_cu_includes (void);
1882 static void check_producer (struct dwarf2_cu *cu);
1884 static void free_line_header_voidp (void *arg);
1886 /* Various complaints about symbol reading that don't abort the process. */
1889 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1896 dwarf2_debug_line_missing_file_complaint (void)
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1903 dwarf2_debug_line_missing_end_sequence_complaint (void)
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1911 dwarf2_complex_location_expr_complaint (void)
1913 complaint (&symfile_complaints, _("location expression too complex"));
1917 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1926 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1931 get_section_name (section),
1932 get_section_file_name (section));
1936 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1945 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1952 /* Hash function for line_header_hash. */
1955 line_header_hash (const struct line_header *ofs)
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1960 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1963 line_header_hash_voidp (const void *item)
1965 const struct line_header *ofs = (const struct line_header *) item;
1967 return line_header_hash (ofs);
1970 /* Equality function for line_header_hash. */
1973 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1985 /* Convert VALUE between big- and little-endian. */
1987 byte_swap (offset_type value)
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1998 #define MAYBE_SWAP(V) byte_swap (V)
2001 #define MAYBE_SWAP(V) (V)
2002 #endif /* WORDS_BIGENDIAN */
2004 /* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2008 attr_value_as_address (struct attribute *attr)
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2029 addr = DW_ADDR (attr);
2034 /* The suffix for an index file. */
2035 #define INDEX_SUFFIX ".gdb-index"
2037 /* Try to locate the sections we need for DWARF 2 debugging
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
2043 dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
2048 if (!dwarf2_per_objfile)
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2060 dwarf2_per_objfile->objfile = objfile;
2062 return (!dwarf2_per_objfile->info.is_virtual
2063 && dwarf2_per_objfile->info.s.section != NULL
2064 && !dwarf2_per_objfile->abbrev.is_virtual
2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
2068 /* Return the containing section of virtual section SECTION. */
2070 static struct dwarf2_section_info *
2071 get_containing_section (const struct dwarf2_section_info *section)
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
2077 /* Return the bfd owner of SECTION. */
2080 get_section_bfd_owner (const struct dwarf2_section_info *section)
2082 if (section->is_virtual)
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2087 return section->s.section->owner;
2090 /* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2094 get_section_bfd_section (const struct dwarf2_section_info *section)
2096 if (section->is_virtual)
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2101 return section->s.section;
2104 /* Return the name of SECTION. */
2107 get_section_name (const struct dwarf2_section_info *section)
2109 asection *sectp = get_section_bfd_section (section);
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2115 /* Return the name of the file SECTION is in. */
2118 get_section_file_name (const struct dwarf2_section_info *section)
2120 bfd *abfd = get_section_bfd_owner (section);
2122 return bfd_get_filename (abfd);
2125 /* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2129 get_section_id (const struct dwarf2_section_info *section)
2131 asection *sectp = get_section_bfd_section (section);
2138 /* Return the flags of SECTION.
2139 SECTION (or containing section if this is a virtual section) must exist. */
2142 get_section_flags (const struct dwarf2_section_info *section)
2144 asection *sectp = get_section_bfd_section (section);
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2150 /* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
2154 section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2166 /* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2171 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2173 const struct dwarf2_debug_sections *names;
2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
2177 names = &dwarf2_elf_names;
2179 names = (const struct dwarf2_debug_sections *) vnames;
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2184 else if (section_is_p (sectp->name, &names->info))
2186 dwarf2_per_objfile->info.s.section = sectp;
2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2189 else if (section_is_p (sectp->name, &names->abbrev))
2191 dwarf2_per_objfile->abbrev.s.section = sectp;
2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2194 else if (section_is_p (sectp->name, &names->line))
2196 dwarf2_per_objfile->line.s.section = sectp;
2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2199 else if (section_is_p (sectp->name, &names->loc))
2201 dwarf2_per_objfile->loc.s.section = sectp;
2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2204 else if (section_is_p (sectp->name, &names->macinfo))
2206 dwarf2_per_objfile->macinfo.s.section = sectp;
2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2209 else if (section_is_p (sectp->name, &names->macro))
2211 dwarf2_per_objfile->macro.s.section = sectp;
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2214 else if (section_is_p (sectp->name, &names->str))
2216 dwarf2_per_objfile->str.s.section = sectp;
2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2219 else if (section_is_p (sectp->name, &names->addr))
2221 dwarf2_per_objfile->addr.s.section = sectp;
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2224 else if (section_is_p (sectp->name, &names->frame))
2226 dwarf2_per_objfile->frame.s.section = sectp;
2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2229 else if (section_is_p (sectp->name, &names->eh_frame))
2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2234 else if (section_is_p (sectp->name, &names->ranges))
2236 dwarf2_per_objfile->ranges.s.section = sectp;
2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2239 else if (section_is_p (sectp->name, &names->types))
2241 struct dwarf2_section_info type_section;
2243 memset (&type_section, 0, sizeof (type_section));
2244 type_section.s.section = sectp;
2245 type_section.size = bfd_get_section_size (sectp);
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2250 else if (section_is_p (sectp->name, &names->gdb_index))
2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
2261 /* A helper function that decides whether a section is empty,
2265 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2267 if (section->is_virtual)
2268 return section->size == 0;
2269 return section->s.section == NULL || section->size == 0;
2272 /* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2276 If the section is compressed, uncompress it before returning. */
2279 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2283 gdb_byte *buf, *retbuf;
2287 info->buffer = NULL;
2290 if (dwarf2_section_empty_p (info))
2293 sectp = get_section_bfd_section (info);
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2338 info->buffer = retbuf;
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2354 /* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2361 static bfd_size_type
2362 dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2366 dwarf2_read_section (objfile, info);
2370 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2374 dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
2376 asection **sectp, const gdb_byte **bufp,
2377 bfd_size_type *sizep)
2379 struct dwarf2_per_objfile *data
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
2382 struct dwarf2_section_info *info;
2384 /* We may see an objfile without any DWARF, in which case we just
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2402 gdb_assert_not_reached ("unexpected section");
2405 dwarf2_read_section (objfile, info);
2407 *sectp = get_section_bfd_section (info);
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2412 /* A helper function to find the sections for a .dwz file. */
2415 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2423 dwz_file->abbrev.s.section = sectp;
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2428 dwz_file->info.s.section = sectp;
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2433 dwz_file->str.s.section = sectp;
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2438 dwz_file->line.s.section = sectp;
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2443 dwz_file->macro.s.section = sectp;
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2448 dwz_file->gdb_index.s.section = sectp;
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2453 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
2457 static struct dwz_file *
2458 dwarf2_get_dwz_file (void)
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
2465 bfd_size_type buildid_len_arg;
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2474 &buildid_len_arg, &buildid);
2477 if (bfd_get_error () == bfd_error_no_error)
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2482 cleanup = make_cleanup (xfree, data);
2483 make_cleanup (xfree, buildid);
2485 buildid_len = (size_t) buildid_len_arg;
2487 filename = (const char *) data;
2488 if (!IS_ABSOLUTE_PATH (filename))
2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2505 if (dwz_bfd != NULL)
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2509 gdb_bfd_unref (dwz_bfd);
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2523 result->dwz_bfd = dwz_bfd;
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2527 do_cleanups (cleanup);
2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2530 dwarf2_per_objfile->dwz_file = result;
2534 /* DWARF quick_symbols_functions support. */
2536 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541 struct quick_file_names
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2549 /* The file names from the line table, after being run through
2551 const char **file_names;
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2558 /* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561 struct dwarf2_per_cu_quick_data
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
2570 struct compunit_symtab *compunit_symtab;
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2581 /* Utility hash function for a stmt_list_hash. */
2584 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2594 /* Utility equality function for a stmt_list_hash. */
2597 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2609 /* Hash function for a quick_file_names. */
2612 hash_file_name_entry (const void *e)
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
2617 return hash_stmt_list_entry (&file_data->hash);
2620 /* Equality function for a quick_file_names. */
2623 eq_file_name_entry (const void *a, const void *b)
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2631 /* Delete function for a quick_file_names. */
2634 delete_file_name_entry (void *e)
2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
2639 for (i = 0; i < file_data->num_file_names; ++i)
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2650 /* Create a quick_file_names hash table. */
2653 create_quick_file_names_table (unsigned int nr_initial_entries)
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2660 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2665 load_cu (struct dwarf2_per_cu_data *per_cu)
2667 if (per_cu->is_debug_types)
2668 load_full_type_unit (per_cu);
2670 load_full_comp_unit (per_cu, language_minimal);
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2678 /* Read in the symbols for PER_CU. */
2681 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2683 struct cleanup *back_to;
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2692 if (dwarf2_per_objfile->using_index
2693 ? per_cu->v.quick->compunit_symtab == NULL
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2696 queue_comp_unit (per_cu, language_minimal);
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
2703 && per_cu->cu != NULL
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2718 do_cleanups (back_to);
2721 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2725 static struct compunit_symtab *
2726 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2728 gdb_assert (dwarf2_per_objfile->using_index);
2729 if (!per_cu->v.quick->compunit_symtab)
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
2733 dw2_do_instantiate_symtab (per_cu);
2734 process_cu_includes ();
2735 do_cleanups (back_to);
2738 return per_cu->v.quick->compunit_symtab;
2741 /* Return the CU/TU given its index.
2743 This is intended for loops like:
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2754 static struct dwarf2_per_cu_data *
2755 dw2_get_cutu (int index)
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2759 index -= dwarf2_per_objfile->n_comp_units;
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2764 return dwarf2_per_objfile->all_comp_units[index];
2767 /* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2771 static struct dwarf2_per_cu_data *
2772 dw2_get_cu (int index)
2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2776 return dwarf2_per_objfile->all_comp_units[index];
2779 /* A helper for create_cus_from_index that handles a given list of
2783 create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2791 for (i = 0; i < n_elements; i += 2)
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
2803 the_cu->offset.sect_off = offset;
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
2806 the_cu->section = section;
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2814 /* Read the CU list from the mapped index, and use it to create all
2815 the CU objects for this objfile. */
2818 create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2822 struct dwz_file *dwz;
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2832 if (dwz_elements == 0)
2835 dwz = dwarf2_get_dwz_file ();
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2840 /* Create the signatured type hash table from the index. */
2843 create_signatured_type_table_from_index (struct objfile *objfile,
2844 struct dwarf2_section_info *section,
2845 const gdb_byte *bytes,
2846 offset_type elements)
2849 htab_t sig_types_hash;
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2857 sig_types_hash = allocate_signatured_type_table (objfile);
2859 for (i = 0; i < elements; i += 3)
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2873 struct signatured_type);
2874 sig_type->signature = signature;
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
2877 sig_type->per_cu.section = section;
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
2893 /* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2897 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
2929 hex_string (lo), hex_string (hi));
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2951 /* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2960 mapped_index_string_hash (int index_version, const void *p)
2962 const unsigned char *str = (const unsigned char *) p;
2966 while ((c = *str++) != 0)
2968 if (index_version >= 5)
2970 r = r * 67 + c - 113;
2976 /* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2981 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2986 offset_type slot, step;
2987 int (*cmp) (const char *, const char *);
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2997 if (strchr (name, '(') != NULL)
2999 char *without_params = cp_remove_params (name);
3001 if (without_params != NULL)
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3009 /* Index version 4 did not support case insensitive searches. But the
3010 indices for case insensitive languages are built in lowercase, therefore
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3028 do_cleanups (back_to);
3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3033 if (!cmp (name, str))
3035 *vec_out = (offset_type *) (index->constant_pool
3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
3037 do_cleanups (back_to);
3041 slot = (slot + step) & (index->symbol_table_slots - 1);
3045 /* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3054 Returns 1 if all went well, 0 otherwise. */
3057 read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
3067 const gdb_byte *addr;
3068 offset_type version;
3069 offset_type *metadata;
3072 if (dwarf2_section_empty_p (section))
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3080 dwarf2_read_section (objfile, section);
3082 addr = section->buffer;
3083 /* Version check. */
3084 version = MAYBE_SWAP (*(offset_type *) addr);
3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
3086 causes the index to behave very poorly for certain requests. Version 3
3087 contained incomplete addrmap. So, it seems better to just ignore such
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
3096 warning_printed = 1;
3100 /* Index version 4 uses a different hash function than index version
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
3108 if (version < 6 && !deprecated_ok)
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3114 Skipping deprecated .gdb_index section in %s.\n\
3115 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116 to use the section anyway."),
3118 warning_printed = 1;
3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
3130 /* Indexes with higher version than the one supported by GDB may be no
3131 longer backward compatible. */
3135 map->version = version;
3136 map->total_size = section->size;
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3169 /* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3173 dwarf2_read_index (struct objfile *objfile)
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3178 struct dwz_file *dwz;
3180 if (!read_index_from_section (objfile, objfile_name (objfile),
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3187 /* Don't use the index if it's empty. */
3188 if (local_map.symbol_table_slots == 0)
3191 /* If there is a .dwz file, read it so we can get its CU list as
3193 dwz = dwarf2_get_dwz_file ();
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3205 &dwz_types_elements_ignore))
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3216 if (types_list_elements)
3218 struct dwarf2_section_info *section;
3220 /* We can only handle a single .debug_types when we have an
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
3232 create_addrmap_from_index (objfile, &local_map);
3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3245 /* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
3249 dw2_setup (struct objfile *objfile)
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
3253 gdb_assert (dwarf2_per_objfile);
3256 /* die_reader_func for dw2_get_file_names. */
3259 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3260 const gdb_byte *info_ptr,
3261 struct die_info *comp_unit_die,
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
3268 struct dwarf2_per_cu_data *lh_cu;
3269 struct line_header *lh;
3270 struct attribute *attr;
3272 const char *name, *comp_dir;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
3277 gdb_assert (! this_cu->is_debug_types);
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3283 this_cu->v.quick->no_file_data = 1;
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3295 struct quick_file_names find_entry;
3297 line_offset = DW_UNSND (attr);
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3311 lh = dwarf_decode_line_header (line_offset, cu);
3315 lh_cu->v.quick->no_file_data = 1;
3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
3322 gdb_assert (slot != NULL);
3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3327 qfn->num_file_names = lh->num_file_names;
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3330 for (i = 0; i < lh->num_file_names; ++i)
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
3334 free_line_header (lh);
3336 lh_cu->v.quick->file_names = qfn;
3339 /* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3342 static struct quick_file_names *
3343 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3358 if (this_cu->v.quick->no_file_data)
3360 return this_cu->v.quick->file_names;
3363 /* A helper for the "quick" functions which computes and caches the
3364 real path for a given file name from the line table. */
3367 dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3372 qfn->num_file_names, const char *);
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3377 return qfn->real_names[index];
3380 static struct symtab *
3381 dw2_find_last_source_symtab (struct objfile *objfile)
3383 struct compunit_symtab *cust;
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3391 return compunit_primary_filetab (cust);
3394 /* Traversal function for dw2_forget_cached_source_info. */
3397 dw2_free_cached_file_names (void **slot, void *info)
3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3401 if (file_data->real_names)
3405 for (i = 0; i < file_data->num_file_names; ++i)
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
3416 dw2_forget_cached_source_info (struct objfile *objfile)
3418 dw2_setup (objfile);
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
3424 /* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3428 dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
3430 const char *name, const char *real_path,
3431 int (*callback) (struct symtab *, void *),
3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3436 /* Don't visit already-expanded CUs. */
3437 if (per_cu->v.quick->compunit_symtab)
3440 /* This may expand more than one symtab, and we want to iterate over
3442 dw2_instantiate_symtab (per_cu);
3444 return iterate_over_some_symtabs (name, real_path, callback, data,
3445 objfile->compunit_symtabs, last_made);
3448 /* Implementation of the map_symtabs_matching_filename method. */
3451 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3452 const char *real_path,
3453 int (*callback) (struct symtab *, void *),
3457 const char *name_basename = lbasename (name);
3459 dw2_setup (objfile);
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3468 struct quick_file_names *file_data;
3470 /* We only need to look at symtabs not already expanded. */
3471 if (per_cu->v.quick->compunit_symtab)
3474 file_data = dw2_get_file_names (per_cu);
3475 if (file_data == NULL)
3478 for (j = 0; j < file_data->num_file_names; ++j)
3480 const char *this_name = file_data->file_names[j];
3481 const char *this_real_name;
3483 if (compare_filenames_for_search (this_name, name))
3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3506 if (real_path != NULL)
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
3510 if (this_real_name != NULL
3511 && FILENAME_CMP (real_path, this_real_name) == 0)
3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3525 /* Struct used to manage iterating over all CUs looking for a symbol. */
3527 struct dw2_symtab_iterator
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3536 /* The kind of symbol we're looking for. */
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3541 /* The next element in VEC to look at. */
3543 /* The number of elements in VEC, or zero if there is no match. */
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3552 /* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3557 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3569 iter->global_seen = 0;
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3580 /* Return the next matching CU or NULL if there are no more. */
3582 static struct dwarf2_per_cu_data *
3583 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3585 for ( ; iter->next < iter->length; ++iter->next)
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3590 struct dwarf2_per_cu_data *per_cu;
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
3611 objfile_name (dwarf2_per_objfile->objfile));
3615 per_cu = dw2_get_cutu (cu_index);
3617 /* Skip if already read in. */
3618 if (per_cu->v.quick->compunit_symtab)
3621 /* Check static vs global. */
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3631 iter->global_seen = 1;
3634 /* Only check the symbol's kind if it has one. */
3637 switch (iter->domain)
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3666 static struct compunit_symtab *
3667 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
3670 struct compunit_symtab *stab_best = NULL;
3671 struct mapped_index *index;
3673 dw2_setup (objfile);
3675 index = dwarf2_per_objfile->index_table;
3677 /* index is NULL if OBJF_READNOW. */
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3687 struct symbol *sym, *with_opaque = NULL;
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3707 /* Keep looking through other CUs. */
3715 dw2_print_stats (struct objfile *objfile)
3717 int i, total, count;
3719 dw2_setup (objfile);
3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3722 for (i = 0; i < total; ++i)
3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3726 if (!per_cu->v.quick->compunit_symtab)
3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3733 /* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3739 dw2_dump (struct objfile *objfile)
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
3755 dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
3759 /* There's nothing to relocate here. */
3763 dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3766 struct mapped_index *index;
3768 dw2_setup (objfile);
3770 index = dwarf2_per_objfile->index_table;
3772 /* index is NULL if OBJF_READNOW. */
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3788 dw2_expand_all_symtabs (struct objfile *objfile)
3792 dw2_setup (objfile);
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3795 + dwarf2_per_objfile->n_type_units); ++i)
3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3799 dw2_instantiate_symtab (per_cu);
3804 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
3809 dw2_setup (objfile);
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3820 struct quick_file_names *file_data;
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3826 file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3830 for (j = 0; j < file_data->num_file_names; ++j)
3832 const char *this_fullname = file_data->file_names[j];
3834 if (filename_cmp (this_fullname, fullname) == 0)
3836 dw2_instantiate_symtab (per_cu);
3844 dw2_map_matching_symbols (struct objfile *objfile,
3845 const char * name, domain_enum domain,
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
3852 /* Currently unimplemented; used for Ada. The function can be called if the
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
3858 dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3862 expand_symtabs_exp_notify_ftype *expansion_notify,
3863 enum search_domain kind,
3868 struct mapped_index *index;
3870 dw2_setup (objfile);
3872 /* index_table is NULL if OBJF_READNOW. */
3873 if (!dwarf2_per_objfile->index_table)
3875 index = dwarf2_per_objfile->index_table;
3877 if (file_matcher != NULL)
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3898 struct quick_file_names *file_data;
3903 per_cu->v.quick->mark = 0;
3905 /* We only need to look at symtabs not already expanded. */
3906 if (per_cu->v.quick->compunit_symtab)
3909 file_data = dw2_get_file_names (per_cu);
3910 if (file_data == NULL)
3913 if (htab_find (visited_not_found, file_data) != NULL)
3915 else if (htab_find (visited_found, file_data) != NULL)
3917 per_cu->v.quick->mark = 1;
3921 for (j = 0; j < file_data->num_file_names; ++j)
3923 const char *this_real_name;
3925 if (file_matcher (file_data->file_names[j], data, 0))
3927 per_cu->v.quick->mark = 1;
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3941 per_cu->v.quick->mark = 1;
3946 slot = htab_find_slot (per_cu->v.quick->mark
3948 : visited_not_found,
3953 do_cleanups (cleanup);
3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3958 offset_type idx = 2 * iter;
3960 offset_type *vec, vec_len, vec_idx;
3961 int global_seen = 0;
3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3970 if (! (*symbol_matcher) (name, data))
3973 /* The name was matched, now expand corresponding CUs that were
3975 vec = (offset_type *) (index->constant_pool
3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3980 struct dwarf2_per_cu_data *per_cu;
3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3995 /* Work around gold/15646. */
3998 if (!is_static && global_seen)
4004 /* Only check the symbol's kind if it has one. */
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4032 " [in module %s]"), objfile_name (objfile));
4036 per_cu = dw2_get_cutu (cu_index);
4037 if (file_matcher == NULL || per_cu->v.quick->mark)
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4042 dw2_instantiate_symtab (per_cu);
4044 if (expansion_notify != NULL
4046 && per_cu->v.quick->compunit_symtab != NULL)
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4056 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4059 static struct compunit_symtab *
4060 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4069 if (cust->includes == NULL)
4072 for (i = 0; cust->includes[i]; ++i)
4074 struct compunit_symtab *s = cust->includes[i];
4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4084 static struct compunit_symtab *
4085 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4088 struct obj_section *section,
4091 struct dwarf2_per_cu_data *data;
4092 struct compunit_symtab *result;
4094 dw2_setup (objfile);
4096 if (!objfile->psymtabs_addrmap)
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4104 if (warn_if_readin && data->v.quick->compunit_symtab)
4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4106 paddress (get_objfile_arch (objfile), pc));
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4111 gdb_assert (result != NULL);
4116 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4117 void *data, int need_fullname)
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
4124 cleanup = make_cleanup_htab_delete (visited);
4125 dw2_setup (objfile);
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4135 if (per_cu->v.quick->compunit_symtab)
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4140 *slot = per_cu->v.quick->file_names;
4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4148 struct quick_file_names *file_data;
4151 /* We only need to look at symtabs not already expanded. */
4152 if (per_cu->v.quick->compunit_symtab)
4155 file_data = dw2_get_file_names (per_cu);
4156 if (file_data == NULL)
4159 slot = htab_find_slot (visited, file_data, INSERT);
4162 /* Already visited. */
4167 for (j = 0; j < file_data->num_file_names; ++j)
4169 const char *this_real_name;
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4174 this_real_name = NULL;
4175 (*fun) (file_data->file_names[j], this_real_name, data);
4179 do_cleanups (cleanup);
4183 dw2_has_symbols (struct objfile *objfile)
4188 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
4193 dw2_map_symtabs_matching_filename,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
4200 dw2_expand_symtabs_with_fullname,
4201 dw2_map_matching_symbols,
4202 dw2_expand_symtabs_matching,
4203 dw2_find_pc_sect_compunit_symtab,
4204 dw2_map_symbol_filenames
4207 /* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4211 dwarf2_initialize_objfile (struct objfile *objfile)
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4217 if ((objfile->flags & OBJF_READNOW))
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
4223 create_all_type_units (objfile);
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4228 + dwarf2_per_objfile->n_type_units); ++i)
4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4242 if (dwarf2_read_index (objfile))
4250 /* Build a partial symbol table. */
4253 dwarf2_build_psymtabs (struct objfile *objfile)
4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4258 init_psymbol_list (objfile, 1024);
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4271 CATCH (except, RETURN_MASK_ERROR)
4273 exception_print (gdb_stderr, except);
4278 /* Return the total length of the CU described by HEADER. */
4281 get_cu_length (const struct comp_unit_head *header)
4283 return header->initial_length_size + header->length;
4286 /* Return TRUE if OFFSET is within CU_HEADER. */
4289 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4291 sect_offset bottom = { cu_header->offset.sect_off };
4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4297 /* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4304 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4306 struct attribute *attr;
4309 cu->base_address = 0;
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4314 cu->base_address = attr_value_as_address (attr);
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4322 cu->base_address = attr_value_as_address (attr);
4328 /* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4332 static const gdb_byte *
4333 read_comp_unit_head (struct comp_unit_head *cu_header,
4334 const gdb_byte *info_ptr, bfd *abfd)
4337 unsigned int bytes_read;
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4342 info_ptr += bytes_read;
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4347 info_ptr += bytes_read;
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
4352 internal_error (__FILE__, __LINE__,
4353 _("read_comp_unit_head: dwarf from non elf file"));
4354 cu_header->signed_addr_p = signed_addr;
4359 /* Helper function that returns the proper abbrev section for
4362 static struct dwarf2_section_info *
4363 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4365 struct dwarf2_section_info *abbrev;
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4370 abbrev = &dwarf2_per_objfile->abbrev;
4375 /* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4380 error_check_comp_unit_head (struct comp_unit_head *header,
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4392 if (header->abbrev_offset.sect_off
4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
4405 (long) header->length, (long) header->offset.sect_off,
4409 /* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
4413 static const gdb_byte *
4414 read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4416 struct dwarf2_section_info *abbrev_section,
4417 const gdb_byte *info_ptr,
4418 int is_debug_types_section)
4420 const gdb_byte *beg_of_comp_unit = info_ptr;
4421 bfd *abfd = get_section_bfd_owner (section);
4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
4429 if (is_debug_types_section)
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4434 error_check_comp_unit_head (header, section, abbrev_section);
4439 /* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4442 static const gdb_byte *
4443 read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4445 struct dwarf2_section_info *abbrev_section,
4446 const gdb_byte *info_ptr,
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
4450 const gdb_byte *beg_of_comp_unit = info_ptr;
4451 bfd *abfd = get_section_bfd_owner (section);
4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
4465 info_ptr += header->offset_size;
4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4469 error_check_comp_unit_head (header, section, abbrev_section);
4474 /* Fetch the abbreviation table offset from a comp or type unit header. */
4477 read_abbrev_offset (struct dwarf2_section_info *section,
4480 bfd *abfd = get_section_bfd_owner (section);
4481 const gdb_byte *info_ptr;
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4494 /* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4498 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4499 struct objfile *objfile)
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
4521 subpst->compunit_symtab = NULL;
4522 subpst->read_symtab = pst->read_symtab;
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
4527 the regular ones. */
4528 subpst->read_symtab_private = NULL;
4531 /* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
4533 partial symtab for each of these included files. */
4536 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4537 struct die_info *die,
4538 struct partial_symtab *pst)
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4547 return; /* No linetable, so no includes. */
4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4552 free_line_header (lh);
4556 hash_signatured_type (const void *item)
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4562 return sig_type->signature;
4566 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4571 return lhs->signature == rhs->signature;
4574 /* Allocate a hash table for signatured types. */
4577 allocate_signatured_type_table (struct objfile *objfile)
4579 return htab_create_alloc_ex (41,
4580 hash_signatured_type,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4588 /* A helper function to add a signatured type CU to a table. */
4591 add_signatured_type_cu_to_table (void **slot, void *datum)
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
4602 /* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4607 The result is a pointer to the hash table or NULL if there are no types.
4609 Note: This function processes DWO files only, not DWP files. */
4612 create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
4616 htab_t types_htab = NULL;
4618 struct dwarf2_section_info *section;
4619 struct dwarf2_section_info *abbrev_section;
4621 if (VEC_empty (dwarf2_section_info_def, types))
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4628 if (dwarf_read_debug)
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
4631 get_section_file_name (abbrev_section));
4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4638 const gdb_byte *info_ptr, *end_ptr;
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
4643 if (info_ptr == NULL)
4646 /* We can't set abfd until now because the section may be empty or
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4658 cu_offset type_offset_in_tu;
4660 struct signatured_type *sig_type;
4661 struct dwo_unit *dwo_tu;
4663 const gdb_byte *ptr = info_ptr;
4664 struct comp_unit_head header;
4665 unsigned int length;
4667 offset.sect_off = ptr - section->buffer;
4669 /* We need to read the type's signature in order to build the hash
4670 table, but we don't need anything else just yet. */
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
4674 &signature, &type_offset_in_tu);
4676 length = get_cu_length (&header);
4678 /* Skip dummy type units. */
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
4686 if (types_htab == NULL)
4689 types_htab = allocate_dwo_unit_table (objfile);
4691 types_htab = allocate_signatured_type_table (objfile);
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4702 dwo_tu->section = section;
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
4717 sig_type->per_cu.section = section;
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4725 gdb_assert (slot != NULL);
4728 sect_offset dup_offset;
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
4735 dup_offset = dup_tu->offset;
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
4742 dup_offset = dup_tu->per_cu.offset;
4745 complaint (&symfile_complaints,
4746 _("debug type entry at offset 0x%x is duplicate to"
4747 " the entry at offset 0x%x, signature %s"),
4748 offset.sect_off, dup_offset.sect_off,
4749 hex_string (signature));
4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4753 if (dwarf_read_debug > 1)
4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4756 hex_string (signature));
4765 /* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4771 create_all_type_units (struct objfile *objfile)
4774 struct signatured_type **iter;
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4779 dwarf2_per_objfile->signatured_types = NULL;
4783 dwarf2_per_objfile->signatured_types = types_htab;
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
4798 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4802 static struct signatured_type *
4803 add_type_unit (ULONGEST sig, void **slot)
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4841 gdb_assert (*slot == NULL);
4843 /* The rest of sig_type must be filled in by the caller. */
4847 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4851 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4855 /* Make sure we're not clobbering something we don't expect to. */
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
4858 if (dwarf2_per_objfile->using_index)
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4879 /* Subroutine of lookup_signatured_type.
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4891 static struct signatured_type *
4892 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4902 /* If TU skeletons have been removed then we may not have read in any
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4910 /* We only ever need to read in one copy of a signatured type.
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
4916 find_sig_entry.signature = sig;
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
4919 sig_entry = (struct signatured_type *) *slot;
4921 /* We can get here with the TU already read, *or* in the process of being
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4940 find_dwo_entry.signature = sig;
4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4942 if (dwo_entry == NULL)
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4950 sig_entry->per_cu.tu_read = 1;
4954 /* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
4959 static struct signatured_type *
4960 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4971 /* If TU skeletons have been removed then we may not have read in any
4973 if (dwarf2_per_objfile->signatured_types == NULL)
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
4982 sig_entry = (struct signatured_type *) *slot;
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4990 if (dwp_file->tus == NULL)
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
4994 if (dwo_entry == NULL)
4997 sig_entry = add_type_unit (sig, slot);
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5003 /* Lookup a signature based type for DW_FORM_ref_sig8.
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
5007 static struct signatured_type *
5008 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5011 && dwarf2_per_objfile->using_index)
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5018 return lookup_dwp_signatured_type (cu, sig);
5022 struct signatured_type find_entry, *entry;
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5026 find_entry.signature = sig;
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5033 /* Low level DIE reading support. */
5035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5038 init_cu_die_reader (struct die_reader_specs *reader,
5039 struct dwarf2_cu *cu,
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
5043 gdb_assert (section->readin && section->buffer != NULL);
5044 reader->abfd = get_section_bfd_owner (section);
5046 reader->dwo_file = dwo_file;
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
5049 reader->buffer_end = section->buffer + section->size;
5050 reader->comp_dir = NULL;
5053 /* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5071 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
5075 const char *stub_comp_dir,
5076 struct die_reader_specs *result_reader,
5077 const gdb_byte **result_info_ptr,
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5085 const gdb_byte *begin_info_ptr, *info_ptr;
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5110 if (stub_comp_unit_die != NULL)
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5126 cu->addr_base = DW_UNSND (attr);
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5133 cu->ranges_base = DW_UNSND (attr);
5135 else if (stub_comp_dir != NULL)
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
5149 abfd = get_section_bfd_owner (section);
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5154 if (this_cu->is_debug_types)
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5164 &type_offset_in_tu);
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5194 dwo_unit->length = get_cu_length (&cu->header);
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
5199 if (abbrev_table_provided)
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5204 /* Ensure the DWO abbrev table gets freed. */
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5211 /* Leave any existing abbrev table cleanup as is. */
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5241 if (dwarf_die_debug)
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
5245 get_section_name (section),
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
5248 dump_die (comp_unit_die, dwarf_die_debug);
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5263 *result_info_ptr = info_ptr;
5267 /* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5269 Returns NULL if the specified DWO unit cannot be found. */
5271 static struct dwo_unit *
5272 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5281 gdb_assert (cu != NULL);
5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5287 if (this_cu->is_debug_types)
5289 struct signatured_type *sig_type;
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5299 struct attribute *attr;
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5305 dwo_name, objfile_name (this_cu->objfile));
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5314 /* Subroutine of init_cutu_and_read_dies to simplify it.
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
5324 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
5326 die_reader_func_ftype *die_reader_func,
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5337 /* Verify we can do the following downcast, and that we have the
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5343 cleanups = make_cleanup (null_cleanup, NULL);
5345 if (use_existing_cu && this_cu->cu != NULL)
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
5356 cu = XNEW (struct dwarf2_cu);
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5371 &comp_unit_die, &has_children) == 0)
5374 do_cleanups (cleanups);
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5381 /* This duplicates the code in init_cutu_and_read_dies,
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
5385 if (free_cu_cleanup != NULL)
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5402 do_cleanups (free_cu_cleanup);
5405 do_cleanups (cleanups);
5408 /* Initialize a CU (or TU) and read its DIEs.
5409 If the CU defers to a DWO file, read the DWO file as well.
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5422 linker) then DIE_READER_FUNC will not get called. */
5425 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5426 struct abbrev_table *abbrev_table,
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
5432 struct dwarf2_section_info *section = this_cu->section;
5433 bfd *abfd = get_section_bfd_owner (section);
5434 struct dwarf2_cu *cu;
5435 const gdb_byte *begin_info_ptr, *info_ptr;
5436 struct die_reader_specs reader;
5437 struct die_info *comp_unit_die;
5439 struct attribute *attr;
5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5441 struct signatured_type *sig_type = NULL;
5442 struct dwarf2_section_info *abbrev_section;
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
5446 int rereading_dwo_cu = 0;
5448 if (dwarf_die_debug)
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5453 if (use_existing_cu)
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
5468 cleanups = make_cleanup (null_cleanup, NULL);
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
5477 if (use_existing_cu && this_cu->cu != NULL)
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
5493 cu = XNEW (struct dwarf2_cu);
5494 init_one_comp_unit (cu, this_cu);
5495 /* If an error occurs while loading, release our storage. */
5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5499 /* Get the header. */
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5507 if (this_cu->is_debug_types)
5510 cu_offset type_offset_in_tu;
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
5515 &type_offset_in_tu);
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
5527 this_cu->length = get_cu_length (&cu->header);
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5544 /* Skip dummy compilation units. */
5545 if (info_ptr >= begin_info_ptr + this_cu->length
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5548 do_cleanups (cleanups);
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
5557 if (abbrev_table != NULL)
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5564 else if (cu->abbrev_table == NULL)
5566 dwarf2_read_abbrevs (cu, abbrev_section);
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5569 else if (rereading_dwo_cu)
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5575 /* Read the top level CU/TU die. */
5576 init_cu_die_reader (&reader, cu, section, NULL);
5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5586 struct dwo_unit *dwo_unit;
5587 struct die_info *dwo_comp_unit_die;
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5597 if (dwo_unit != NULL)
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
5601 comp_unit_die, NULL,
5603 &dwo_comp_unit_die, &has_children) == 0)
5606 do_cleanups (cleanups);
5609 comp_unit_die = dwo_comp_unit_die;
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5621 /* All of the above is setup for this call. Yikes. */
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5624 /* Done, clean up. */
5625 if (free_cu_cleanup != NULL)
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5642 do_cleanups (free_cu_cleanup);
5645 do_cleanups (cleanups);
5648 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5653 THIS_CU->is_debug_types, but nothing else.
5655 We fill in THIS_CU->length.
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5660 THIS_CU->cu is always freed when done.
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
5665 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5666 struct dwo_file *dwo_file,
5667 die_reader_func_ftype *die_reader_func,
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
5671 struct dwarf2_section_info *section = this_cu->section;
5672 bfd *abfd = get_section_bfd_owner (section);
5673 struct dwarf2_section_info *abbrev_section;
5674 struct dwarf2_cu cu;
5675 const gdb_byte *begin_info_ptr, *info_ptr;
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5681 if (dwarf_die_debug)
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5686 gdb_assert (this_cu->cu == NULL);
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5695 init_one_comp_unit (&cu, this_cu);
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
5702 this_cu->is_debug_types);
5704 this_cu->length = get_cu_length (&cu.header);
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
5710 do_cleanups (cleanups);
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5722 do_cleanups (cleanups);
5725 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
5729 THIS_CU->cu is always freed when done.
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
5735 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5742 /* Type Unit Groups.
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
5751 hash_type_unit_group (const void *item)
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
5756 return hash_stmt_list_entry (&tu_group->hash);
5760 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5768 /* Allocate a hash table for type unit groups. */
5771 allocate_type_unit_groups_table (void)
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5782 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5788 /* Helper routine for get_type_unit_group.
5789 Create the type_unit_group object used to hold one or more TUs. */
5791 static struct type_unit_group *
5792 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
5795 struct dwarf2_per_cu_data *per_cu;
5796 struct type_unit_group *tu_group;
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
5800 per_cu = &tu_group->per_cu;
5801 per_cu->objfile = objfile;
5803 if (dwarf2_per_objfile->using_index)
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5821 pst = create_partial_symtab (per_cu, name);
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
5833 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
5836 static struct type_unit_group *
5837 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5851 /* Do we need to create a new group, or can we use an existing one? */
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5877 tu_group = (struct type_unit_group *) *slot;
5878 gdb_assert (tu_group != NULL);
5882 sect_offset line_offset_struct;
5884 line_offset_struct.sect_off = line_offset;
5885 tu_group = create_type_unit_group (cu, line_offset_struct);
5887 ++tu_stats->nr_symtabs;
5893 /* Partial symbol tables. */
5895 /* Create a psymtab named NAME and assign it to PER_CU.
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5900 static struct partial_symtab *
5901 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5906 pst = start_psymtab_common (objfile, name, 0,
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5910 pst->psymtabs_addrmap_supported = 1;
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5920 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5923 struct process_psymtab_comp_unit_data
5925 /* True if we are reading a DW_TAG_partial_unit. */
5927 int want_partial_unit;
5929 /* The "pretend" language that is used if the CU doesn't declare a
5932 enum language pretend_language;
5935 /* die_reader_func for process_psymtab_comp_unit. */
5938 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5939 const gdb_byte *info_ptr,
5940 struct die_info *comp_unit_die,
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5952 const char *filename;
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5959 gdb_assert (! per_cu->is_debug_types);
5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5963 cu->list_in_scope = &file_symbols;
5965 /* Allocate a new partial symbol table structure. */
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
5970 pst = create_partial_symtab (per_cu, filename);
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5977 dwarf2_find_base_address (comp_unit_die, cu);
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6019 best_highpc = highpc;
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6025 end_psymtab_common (objfile, pst);
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6035 pst->number_of_dependencies = len;
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6042 pst->dependencies[i] = iter->v.psymtab;
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6051 if (dwarf_read_debug)
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6066 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6070 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6071 int want_partial_unit,
6072 enum language pretend_language)
6074 struct process_psymtab_comp_unit_data info;
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6084 gdb_assert (! this_cu->is_debug_types);
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6095 /* Reader function for build_type_psymtabs. */
6098 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6099 const gdb_byte *info_ptr,
6100 struct die_info *type_unit_die,
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6107 struct signatured_type *sig_type;
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6114 gdb_assert (data == NULL);
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6122 tu_group = get_type_unit_group (cu, attr);
6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6137 end_psymtab_common (objfile, pst);
6140 /* Struct used to sort TUs by their abbreviation table offset. */
6142 struct tu_abbrev_offset
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6148 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6151 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6160 return (aoff > boff) - (aoff < boff);
6163 /* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6182 build_type_psymtabs_1 (void)
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6196 if (dwarf2_per_objfile->n_type_units == 0)
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6209 The basic algorithm here is:
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6218 if (dwarf_read_debug)
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6250 if (abbrev_table != NULL)
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6257 abbrev_offset = tu->abbrev_offset;
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6261 ++tu_stats->nr_uniq_abbrev_tables;
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6268 do_cleanups (cleanups);
6271 /* Print collected type unit statistics. */
6274 print_tu_stats (void)
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
6293 /* Traversal function for build_type_psymtabs. */
6296 build_type_psymtab_dependencies (void **slot, void *info)
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6301 struct partial_symtab *pst = per_cu->v.psymtab;
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
6306 gdb_assert (len > 0);
6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6309 pst->number_of_dependencies = len;
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
6318 iter->type_unit_group = tu_group;
6321 VEC_free (sig_type_ptr, tu_group->tus);
6326 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6330 build_type_psymtabs (struct objfile *objfile)
6332 if (! create_all_type_units (objfile))
6335 build_type_psymtabs_1 ();
6338 /* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6342 process_skeletonless_type_unit (void **slot, void *info)
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6345 struct objfile *objfile = (struct objfile *) info;
6346 struct signatured_type find_entry, *entry;
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6364 /* This does the job that create_all_type_units would have done for
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6377 /* Traversal function for process_skeletonless_type_units. */
6380 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6384 if (dwo_file->tus != NULL)
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6393 /* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6398 process_skeletonless_type_units (struct objfile *objfile)
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6410 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6413 psymtabs_addrmap_cleanup (void *o)
6415 struct objfile *objfile = (struct objfile *) o;
6417 objfile->psymtabs_addrmap = NULL;
6420 /* Compute the 'user' field for each psymtab in OBJFILE. */
6423 set_partial_user (struct objfile *objfile)
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6445 /* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
6449 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
6455 if (dwarf_read_debug)
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6458 objfile_name (objfile));
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
6469 build_type_psymtabs (objfile);
6471 create_all_comp_units (objfile);
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6497 if (dwarf_read_debug)
6500 set_partial_user (objfile);
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
6504 discard_cleanups (addrmap_cleanup);
6506 do_cleanups (back_to);
6508 if (dwarf_read_debug)
6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6510 objfile_name (objfile));
6513 /* die_reader_func for load_partial_comp_unit. */
6516 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6517 const gdb_byte *info_ptr,
6518 struct die_info *comp_unit_die,
6522 struct dwarf2_cu *cu = reader->cu;
6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
6528 If not, there's no more debug_info for this comp unit. */
6530 load_partial_dies (reader, info_ptr, 0);
6533 /* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
6537 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
6544 read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6549 struct dwarf2_per_cu_data ***all_comp_units)
6551 const gdb_byte *info_ptr;
6552 bfd *abfd = get_section_bfd_owner (section);
6554 if (dwarf_read_debug)
6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6556 get_section_name (section),
6557 get_section_file_name (section));
6559 dwarf2_read_section (objfile, section);
6561 info_ptr = section->buffer;
6563 while (info_ptr < section->buffer + section->size)
6565 unsigned int length, initial_length_size;
6566 struct dwarf2_per_cu_data *this_cu;
6569 offset.sect_off = info_ptr - section->buffer;
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6575 /* Save the compilation unit for later lookup. */
6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
6579 this_cu->length = length + initial_length_size;
6580 this_cu->is_dwz = is_dwz;
6581 this_cu->objfile = objfile;
6582 this_cu->section = section;
6584 if (*n_comp_units == *n_allocated)
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6593 info_ptr = info_ptr + this_cu->length;
6597 /* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6601 create_all_comp_units (struct objfile *objfile)
6605 struct dwarf2_per_cu_data **all_comp_units;
6606 struct dwz_file *dwz;
6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6615 dwz = dwarf2_get_dwz_file ();
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
6630 /* Process all loaded DIEs for compilation unit CU, starting at
6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6637 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
6641 struct partial_die_info *pdi;
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
6651 fixup_partial_die (pdi, cu);
6653 /* Anonymous namespaces or modules have no name but have interesting
6654 children, so we need to look at them. Ditto for anonymous
6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
6663 case DW_TAG_subprogram:
6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6666 case DW_TAG_constant:
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
6669 case DW_TAG_union_type:
6670 if (!pdi->is_declaration)
6672 add_partial_symbol (pdi, cu);
6675 case DW_TAG_class_type:
6676 case DW_TAG_interface_type:
6677 case DW_TAG_structure_type:
6678 if (!pdi->is_declaration)
6680 add_partial_symbol (pdi, cu);
6683 case DW_TAG_enumeration_type:
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
6687 case DW_TAG_base_type:
6688 case DW_TAG_subrange_type:
6689 /* File scope base type definitions are added to the partial
6691 add_partial_symbol (pdi, cu);
6693 case DW_TAG_namespace:
6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6699 case DW_TAG_imported_unit:
6701 struct dwarf2_per_cu_data *per_cu;
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
6708 objfile_name (cu->objfile));
6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
6719 VEC_safe_push (dwarf2_per_cu_ptr,
6720 cu->per_cu->imported_symtabs, per_cu);
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6731 /* If the die has a sibling, skip to the sibling. */
6733 pdi = pdi->die_sibling;
6737 /* Functions used to compute the fully scoped name of a partial DIE.
6739 Normally, this is simple. For C++, the parent DIE's fully scoped
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6757 /* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
6762 partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6765 const char *grandparent_scope;
6766 struct partial_die_info *parent, *real_pdi;
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6772 while (real_pdi->has_specification)
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
6776 parent = real_pdi->die_parent;
6780 if (parent->scope_set)
6781 return parent->scope;
6783 fixup_partial_die (parent, cu);
6785 grandparent_scope = partial_die_parent_scope (parent, cu);
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6791 && parent->tag == DW_TAG_namespace
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
6804 || parent->tag == DW_TAG_module
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
6807 || parent->tag == DW_TAG_interface_type
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6816 parent->name, 0, cu);
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6823 complaint (&symfile_complaints,
6824 _("unhandled containing DIE tag %d for DIE at %d"),
6825 parent->tag, pdi->offset.sect_off);
6826 parent->scope = grandparent_scope;
6829 parent->scope_set = 1;
6830 return parent->scope;
6833 /* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
6837 partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6840 const char *parent_scope;
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6848 fixup_partial_die (pdi, cu);
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6856 /* DW_FORM_ref_addr is using section offset. */
6858 attr.form = DW_FORM_ref_addr;
6859 attr.u.unsnd = pdi->offset.sect_off;
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6874 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6876 struct objfile *objfile = cu->objfile;
6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6879 const char *actual_name = NULL;
6881 char *built_actual_name;
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6894 case DW_TAG_subprogram:
6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6896 if (pdi->is_external || cu->language == language_ada)
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
6902 add_psymbol_to_list (actual_name, strlen (actual_name),
6903 built_actual_name != NULL,
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
6906 addr, cu->language, objfile);
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 addr, cu->language, objfile);
6917 case DW_TAG_constant:
6919 struct psymbol_allocation_list *list;
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, cu->language, objfile);
6930 case DW_TAG_variable:
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6936 && !dwarf2_per_objfile->has_section_at_zero)
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6943 else if (pdi->is_external)
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6964 cu->language, objfile);
6968 int has_loc = pdi->d.locdesc != NULL;
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6974 xfree (built_actual_name);
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6983 cu->language, objfile);
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
6988 case DW_TAG_subrange_type:
6989 add_psymbol_to_list (actual_name, strlen (actual_name),
6990 built_actual_name != NULL,
6991 VAR_DOMAIN, LOC_TYPEDEF,
6992 &objfile->static_psymbols,
6993 0, cu->language, objfile);
6995 case DW_TAG_imported_declaration:
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
6998 built_actual_name != NULL,
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
7001 0, cu->language, objfile);
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
7008 0, cu->language, objfile);
7010 case DW_TAG_class_type:
7011 case DW_TAG_interface_type:
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
7022 xfree (built_actual_name);
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
7028 add_psymbol_to_list (actual_name, strlen (actual_name),
7029 built_actual_name != NULL,
7030 STRUCT_DOMAIN, LOC_TYPEDEF,
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
7035 0, cu->language, objfile);
7038 case DW_TAG_enumerator:
7039 add_psymbol_to_list (actual_name, strlen (actual_name),
7040 built_actual_name != NULL,
7041 VAR_DOMAIN, LOC_CONST,
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
7046 0, cu->language, objfile);
7052 xfree (built_actual_name);
7055 /* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
7060 add_partial_namespace (struct partial_die_info *pdi,
7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7062 int set_addrmap, struct dwarf2_cu *cu)
7064 /* Add a symbol for the namespace. */
7066 add_partial_symbol (pdi, cu);
7068 /* Now scan partial symbols in that namespace. */
7070 if (pdi->has_children)
7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7074 /* Read a partial die corresponding to a Fortran module. */
7077 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7080 /* Add a symbol for the namespace. */
7082 add_partial_symbol (pdi, cu);
7084 /* Now scan partial symbols in that module. */
7086 if (pdi->has_children)
7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7090 /* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
7093 that this subprogram contains. If SET_ADDRMAP is true, record the
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7103 add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7105 int set_addrmap, struct dwarf2_cu *cu)
7107 if (pdi->tag == DW_TAG_subprogram)
7109 if (pdi->has_pc_info)
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
7117 struct objfile *objfile = cu->objfile;
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7130 cu->per_cu->v.psymtab);
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7136 if (!pdi->is_declaration)
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7141 add_partial_symbol (pdi, cu);
7145 if (! pdi->has_children)
7148 if (cu->language == language_ada)
7150 pdi = pdi->die_child;
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7157 pdi = pdi->die_sibling;
7162 /* Read a partial die corresponding to an enumeration type. */
7165 add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
7168 struct partial_die_info *pdi;
7170 if (enum_pdi->name != NULL)
7171 add_partial_symbol (enum_pdi, cu);
7173 pdi = enum_pdi->die_child;
7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
7184 /* Return the initial uleb128 in the die at INFO_PTR. */
7187 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7189 unsigned int bytes_read;
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7194 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7199 static struct abbrev_info *
7200 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7201 struct dwarf2_cu *cu)
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7209 if (abbrev_number == 0)
7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
7224 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7228 static const gdb_byte *
7229 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7231 struct dwarf2_cu *cu = reader->cu;
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7239 return info_ptr + bytes_read;
7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7245 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7251 static const gdb_byte *
7252 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7253 struct abbrev_info *abbrev)
7255 unsigned int bytes_read;
7256 struct attribute attr;
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
7259 const gdb_byte *buffer = reader->buffer;
7260 const gdb_byte *buffer_end = reader->buffer_end;
7261 const gdb_byte *start_info_ptr = info_ptr;
7262 unsigned int form, i;
7264 for (i = 0; i < abbrev->num_attrs; i++)
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7270 if (attr.form == DW_FORM_ref_addr)
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7293 case DW_FORM_ref_addr:
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7299 info_ptr += cu->header.offset_size;
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7305 info_ptr += cu->header.addr_size;
7312 case DW_FORM_flag_present:
7324 case DW_FORM_ref_sig8:
7327 case DW_FORM_string:
7328 read_direct_string (abfd, info_ptr, &bytes_read);
7329 info_ptr += bytes_read;
7331 case DW_FORM_sec_offset:
7333 case DW_FORM_GNU_strp_alt:
7334 info_ptr += cu->header.offset_size;
7336 case DW_FORM_exprloc:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7352 case DW_FORM_ref_udata:
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7362 goto skip_attribute;
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7372 if (abbrev->has_children)
7373 return skip_children (reader, info_ptr);
7378 /* Locate ORIG_PDI's sibling.
7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7381 static const gdb_byte *
7382 locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
7384 const gdb_byte *info_ptr)
7386 /* Do we know the sibling already? */
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7391 /* Are there any children to deal with? */
7393 if (!orig_pdi->has_children)
7396 /* Skip the children the long way. */
7398 return skip_children (reader, info_ptr);
7401 /* Expand this partial symbol table into a full symbol table. SELF is
7405 dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
7410 warning (_("bug: psymtab for %s is already read in."),
7417 printf_filtered (_("Reading in symbols for %s..."),
7419 gdb_flush (gdb_stdout);
7422 /* Restore our global data. */
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7433 struct dwarf2_per_objfile *dpo_backlink
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7444 psymtab_to_symtab_1 (self);
7446 /* Finish up the debug error message. */
7448 printf_filtered (_("done.\n"));
7451 process_cu_includes ();
7454 /* Reading in full CUs. */
7456 /* Add PER_CU to the queue. */
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7462 struct dwarf2_queue_item *item;
7465 item = XNEW (struct dwarf2_queue_item);
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7473 dwarf2_queue_tail->next = item;
7475 dwarf2_queue_tail = item;
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7502 /* Mark the dependence relation so that we don't flush PER_CU
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7507 /* If it's already on the queue, we have nothing to do. */
7511 /* If the compilation unit is already loaded, just mark it as
7513 if (per_cu->cu != NULL)
7515 per_cu->cu->last_used = 0;
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7525 /* Process the queue. */
7528 process_queue (void)
7530 struct dwarf2_queue_item *item, *next_item;
7532 if (dwarf_read_debug)
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7550 unsigned int debug_print_threshold;
7553 if (per_cu->is_debug_types)
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7558 sprintf (buf, "TU %s at offset 0x%x",
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7571 if (dwarf_read_debug >= debug_print_threshold)
7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7577 process_full_comp_unit (per_cu, item->pretend_language);
7579 if (dwarf_read_debug >= debug_print_threshold)
7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7588 dwarf2_queue_tail = NULL;
7590 if (dwarf_read_debug)
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7593 objfile_name (dwarf2_per_objfile->objfile));
7597 /* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7602 dwarf2_release_queue (void *dummy)
7604 struct dwarf2_queue_item *item, *last;
7606 item = dwarf2_queue;
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7613 if (item->per_cu->cu != NULL)
7614 free_one_cached_comp_unit (item->per_cu);
7615 item->per_cu->queued = 0;
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7626 /* Read in full symbols for PST, and anything it depends on. */
7629 psymtab_to_symtab_1 (struct partial_symtab *pst)
7631 struct dwarf2_per_cu_data *per_cu;
7637 for (i = 0; i < pst->number_of_dependencies; i++)
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
7641 /* Inform about additional files that need to be read in. */
7644 /* FIXME: i18n: Need to make this a single string. */
7645 fputs_filtered (" ", gdb_stdout);
7647 fputs_filtered ("and ", gdb_stdout);
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
7650 wrap_here (""); /* Flush output. */
7651 gdb_flush (gdb_stdout);
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7666 dw2_do_instantiate_symtab (per_cu);
7669 /* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
7673 die_hash (const void *item)
7675 const struct die_info *die = (const struct die_info *) item;
7677 return die->offset.sect_off;
7680 /* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
7684 die_eq (const void *item_lhs, const void *item_rhs)
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7692 /* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
7697 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7698 const gdb_byte *info_ptr,
7699 struct die_info *comp_unit_die,
7703 struct dwarf2_cu *cu = reader->cu;
7704 enum language *language_ptr = (enum language *) data;
7706 gdb_assert (cu->die_hash == NULL);
7708 htab_create_alloc_ex (cu->header.length / 12,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
7722 /* We try not to read any attributes in this function, because not
7723 all CUs needed for references have been loaded yet, and symbol
7724 table processing isn't initialized. But we have to set the CU language,
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7731 /* Load the DIEs associated with PER_CU into memory. */
7734 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
7737 gdb_assert (! this_cu->is_debug_types);
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
7743 /* Add a DIE to the delayed physname list. */
7746 add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7750 struct delayed_method_info mi;
7752 mi.fnfield_index = fnfield_index;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7759 /* A cleanup for freeing the delayed method list. */
7762 free_delayed_list (void *ptr)
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7772 /* Compute the physnames of any methods on the CU's method list.
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7779 compute_delayed_physnames (struct dwarf2_cu *cu)
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7785 const char *physname;
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7788 physname = dwarf2_physname (mi->name, mi->die, cu);
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
7794 /* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7806 fixup_go_packaging (struct dwarf2_cu *cu)
7808 char *package_name = NULL;
7809 struct pending *list;
7812 for (list = global_symbols; list != NULL; list = list->next)
7814 for (i = 0; i < list->nsyms; ++i)
7816 struct symbol *sym = list->symbol[i];
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7821 char *this_package_name = go_symbol_package_name (sym);
7823 if (this_package_name == NULL)
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
7835 : objfile_name (cu->objfile)),
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7843 if (package_name != NULL)
7845 struct objfile *objfile = cu->objfile;
7846 const char *saved_package_name
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7849 strlen (package_name));
7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7851 saved_package_name, objfile);
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7856 sym = allocate_symbol (objfile);
7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7864 SYMBOL_TYPE (sym) = type;
7866 add_symbol_to_list (sym, &global_symbols);
7868 xfree (package_name);
7872 /* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7875 static struct compunit_symtab *
7876 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7878 return (dwarf2_per_objfile->using_index
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
7883 /* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7887 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7888 htab_t all_children, htab_t all_type_symtabs,
7889 struct dwarf2_per_cu_data *per_cu,
7890 struct compunit_symtab *immediate_parent)
7894 struct compunit_symtab *cust;
7895 struct dwarf2_per_cu_data *iter;
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7900 /* This inclusion and its children have been processed. */
7905 /* Only add a CU if it has a symbol table. */
7906 cust = get_compunit_symtab (per_cu);
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7934 recursively_compute_inclusions (result, all_children,
7935 all_type_symtabs, iter, cust);
7939 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7943 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7945 gdb_assert (! per_cu->is_debug_types);
7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7950 struct dwarf2_per_cu_data *per_cu_iter;
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7953 htab_t all_children, all_type_symtabs;
7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7956 /* If we don't have a symtab, we can just skip this case. */
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7970 recursively_compute_inclusions (&result_symtabs, all_children,
7971 all_type_symtabs, per_cu_iter,
7975 /* Now we have a transitive closure of all the included symtabs. */
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
7987 VEC_free (compunit_symtab_ptr, result_symtabs);
7988 htab_delete (all_children);
7989 htab_delete (all_type_symtabs);
7993 /* Compute the 'includes' field for the symtabs of all the CUs we just
7997 process_cu_includes (void)
8000 struct dwarf2_per_cu_data *iter;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8007 if (! iter->is_debug_types)
8008 compute_compunit_symtab_includes (iter);
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8014 /* Generate full symbol information for PER_CU, whose DIEs have
8015 already been loaded into memory. */
8018 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
8021 struct dwarf2_cu *cu = per_cu->cu;
8022 struct objfile *objfile = per_cu->objfile;
8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8024 CORE_ADDR lowpc, highpc;
8025 struct compunit_symtab *cust;
8026 struct cleanup *back_to, *delayed_list_cleanup;
8028 struct block *static_block;
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8037 cu->list_in_scope = &file_symbols;
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8042 /* Do line number decoding in read_file_scope () */
8043 process_die (cu->dies, cu);
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
8080 if (!(cu->language == language_c
8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8096 if (cu->has_loclist && gcc_4_minor >= 5)
8097 cust->locations_valid = 1;
8099 if (gcc_4_minor >= 5)
8100 cust->epilogue_unwind_valid = 1;
8102 cust->call_site_htab = cu->call_site_htab;
8105 if (dwarf2_per_objfile->using_index)
8106 per_cu->v.quick->compunit_symtab = cust;
8109 struct partial_symtab *pst = per_cu->v.psymtab;
8110 pst->compunit_symtab = cust;
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8117 do_cleanups (back_to);
8120 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8124 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
8129 struct compunit_symtab *cust;
8130 struct cleanup *back_to, *delayed_list_cleanup;
8131 struct signatured_type *sig_type;
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8140 cu->list_in_scope = &file_symbols;
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
8180 augment_type_symtab ();
8181 cust = sig_type->type_unit_group->compunit_symtab;
8184 if (dwarf2_per_objfile->using_index)
8185 per_cu->v.quick->compunit_symtab = cust;
8188 struct partial_symtab *pst = per_cu->v.psymtab;
8189 pst->compunit_symtab = cust;
8193 do_cleanups (back_to);
8196 /* Process an imported unit DIE. */
8199 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8201 struct attribute *attr;
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
8208 objfile_name (cu->objfile));
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8219 offset = dwarf2_get_ref_die_offset (attr);
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8223 /* If necessary, add it to the queue and load its DIEs. */
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8232 /* Reset the in_process bit of a die. */
8235 reset_die_in_process (void *arg)
8237 struct die_info *die = (struct die_info *) arg;
8239 die->in_process = 0;
8242 /* Process a die and its children. */
8245 process_die (struct die_info *die, struct dwarf2_cu *cu)
8247 struct cleanup *in_process;
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8257 case DW_TAG_padding:
8259 case DW_TAG_compile_unit:
8260 case DW_TAG_partial_unit:
8261 read_file_scope (die, cu);
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8266 case DW_TAG_subprogram:
8267 case DW_TAG_inlined_subroutine:
8268 read_func_scope (die, cu);
8270 case DW_TAG_lexical_block:
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
8273 read_lexical_block_scope (die, cu);
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8278 case DW_TAG_class_type:
8279 case DW_TAG_interface_type:
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
8282 process_structure_scope (die, cu);
8284 case DW_TAG_enumeration_type:
8285 process_enumeration_scope (die, cu);
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
8291 case DW_TAG_subroutine_type:
8292 case DW_TAG_set_type:
8293 case DW_TAG_array_type:
8294 case DW_TAG_pointer_type:
8295 case DW_TAG_ptr_to_member_type:
8296 case DW_TAG_reference_type:
8297 case DW_TAG_string_type:
8300 case DW_TAG_base_type:
8301 case DW_TAG_subrange_type:
8302 case DW_TAG_typedef:
8303 /* Add a typedef symbol for the type definition, if it has a
8305 new_symbol (die, read_type_die (die, cu), cu);
8307 case DW_TAG_common_block:
8308 read_common_block (die, cu);
8310 case DW_TAG_common_inclusion:
8312 case DW_TAG_namespace:
8313 cu->processing_has_namespace_info = 1;
8314 read_namespace (die, cu);
8317 cu->processing_has_namespace_info = 1;
8318 read_module (die, cu);
8320 case DW_TAG_imported_declaration:
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8324 /* The declaration is not a global namespace alias: fall through. */
8325 case DW_TAG_imported_module:
8326 cu->processing_has_namespace_info = 1;
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8339 new_symbol (die, NULL, cu);
8343 do_cleanups (in_process);
8346 /* DWARF name computation. */
8348 /* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8353 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8355 struct attribute *attr;
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
8368 case DW_TAG_inlined_subroutine:
8370 case DW_TAG_imported_declaration:
8373 case DW_TAG_variable:
8374 case DW_TAG_constant:
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8382 struct dwarf2_cu *spec_cu = cu;
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8388 attr = dwarf2_attr (die, DW_AT_external, cu);
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
8407 /* Retrieve the last character from a mem_file. */
8410 do_ui_file_peek_last (void *object, const char *buffer, long length)
8412 char *last_char_p = (char *) object;
8415 *last_char_p = buffer[length - 1];
8418 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8431 The result is allocated on the objfile_obstack and canonicalized. */
8434 dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
8438 struct objfile *objfile = cu->objfile;
8441 name = dwarf2_name (die, cu);
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
8458 const char *linkage_name;
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
8467 /* These are the only languages we know how to qualify names in. */
8469 && (cu->language == language_cplus || cu->language == language_java
8470 || cu->language == language_fortran || cu->language == language_d))
8472 if (die_needs_namespace (die, cu))
8476 struct ui_file *buf;
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8491 fputs_unfiltered (name, buf);
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8516 struct attribute *attr;
8517 struct die_info *child;
8520 die->building_fullname = 1;
8522 for (child = die->child; child != NULL; child = child->sibling)
8526 const gdb_byte *bytes;
8527 struct dwarf2_locexpr_baton *baton;
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8536 fputs_unfiltered ("<", buf);
8540 fputs_unfiltered (", ", buf);
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8550 type = die_type (child, cu);
8552 if (child->tag == DW_TAG_template_type_param)
8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8561 complaint (&symfile_complaints,
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8578 struct value_print_options opts;
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8585 else if (bytes != NULL)
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8592 v = value_from_longest (type, value);
8594 /* Specify decimal so that we do not depend on
8596 get_formatted_print_options (&opts, 'd');
8598 value_print (v, buf, &opts);
8604 die->building_fullname = 0;
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8615 fputs_unfiltered (">", buf);
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8626 struct type *type = read_type_die (die, cu);
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
8631 if (cu->language == language_java)
8633 /* For java, we must append the return type to method
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8637 0, 0, &type_print_raw_options);
8639 else if (cu->language == language_cplus)
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8651 fputs_unfiltered (" const", buf);
8655 intermediate_name = ui_file_xstrdup (buf, &length);
8656 ui_file_delete (buf);
8658 if (cu->language == language_cplus)
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8670 strlen (intermediate_name)));
8672 name = canonical_name;
8674 xfree (intermediate_name);
8681 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
8683 will be allocated on the storage_obstack, or NULL if the DIE does
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8687 The output string will be canonicalized (if C++/Java). */
8690 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8692 return dwarf2_compute_name (name, die, cu, 0);
8695 /* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8700 The output string will be canonicalized (if C++/Java). */
8703 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8705 struct objfile *objfile = cu->objfile;
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8716 back_to = make_cleanup (null_cleanup, NULL);
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8724 if (mangled != NULL)
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8737 if (cu->language == language_go)
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8754 make_cleanup (xfree, demangled);
8764 if (canon == NULL || check_physname)
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
8800 do_cleanups (back_to);
8804 /* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8810 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8812 struct attribute *attr;
8814 /* If the die does not have a name, this is not a namespace
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8864 /* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8873 static struct using_direct **
8874 using_directives (enum language language)
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8879 return &local_using_directives;
8882 /* Read the import statement specified by the given die and record it. */
8885 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8887 struct objfile *objfile = cu->objfile;
8888 struct attribute *import_attr;
8889 struct die_info *imported_die, *child_die;
8890 struct dwarf2_cu *imported_cu;
8891 const char *imported_name;
8892 const char *imported_name_prefix;
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
8896 const char *import_prefix;
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
8911 if (imported_name == NULL)
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8915 The import in the following code:
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
8964 else if (strlen (imported_name_prefix) > 0)
8965 canonical_name = obconcat (&objfile->objfile_obstack,
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
8970 canonical_name = imported_name;
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8983 if (child_die->tag != DW_TAG_imported_declaration)
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
8988 child_die->offset.sect_off, objfile_name (objfile));
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
9009 child_die->offset.sect_off, objfile_name (objfile));
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9015 process_die (child_die, cu);
9018 add_using_directive (using_directives (cu->language),
9022 imported_declaration,
9025 &objfile->objfile_obstack);
9027 do_cleanups (cleanups);
9030 /* Cleanup function for handle_DW_AT_stmt_list. */
9033 free_cu_line_header (void *arg)
9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9041 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9046 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9051 return cu->producer_is_gcc_lt_4_3;
9055 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9056 const char **name, const char **comp_dir)
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9067 char *d = ldirname (*name);
9071 make_cleanup (xfree, d);
9073 if (*comp_dir != NULL)
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
9077 const char *cp = strchr (*comp_dir, ':');
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9084 *name = "<unknown>";
9087 /* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9093 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
9097 struct attribute *attr;
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9105 gdb_assert (! cu->per_cu->is_debug_types);
9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9111 line_offset = DW_UNSND (attr);
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9138 line_header_local_hash, NO_INSERT);
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9145 gdb_assert (*slot != NULL);
9146 cu->line_header = (struct line_header *) *slot;
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9166 if (slot != NULL && *slot == NULL)
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9187 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9190 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
9210 if (lowpc == ((CORE_ADDR) -1))
9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9214 find_file_and_directory (die, cu, &name, &comp_dir);
9216 prepare_one_comp_unit (cu, die, cu->language);
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9264 unsigned int macro_offset = DW_UNSND (attr);
9266 dwarf_decode_macros (cu, macro_offset, 0);
9270 do_cleanups (back_to);
9273 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
9280 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9286 struct line_header *lh;
9287 struct attribute *attr;
9288 unsigned int i, line_offset;
9289 struct signatured_type *sig_type;
9291 gdb_assert (per_cu->is_debug_types);
9292 sig_type = (struct signatured_type *) per_cu;
9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9296 /* If we're using .gdb_index (includes -readnow) then
9297 per_cu->type_unit_group may not have been set up yet. */
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
9306 first_time = tu_group->compunit_symtab == NULL;
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9322 gdb_assert (tu_group->symtabs == NULL);
9323 restart_symtab (tu_group->compunit_symtab, "", 0);
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9335 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9336 still initializing it, and our caller (a few levels up)
9337 process_full_type_unit still needs to know if this is the first
9340 tu_group->num_symtabs = lh->num_file_names;
9341 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9343 for (i = 0; i < lh->num_file_names; ++i)
9345 const char *dir = NULL;
9346 struct file_entry *fe = &lh->file_names[i];
9348 if (fe->dir_index && lh->include_dirs != NULL)
9349 dir = lh->include_dirs[fe->dir_index - 1];
9350 dwarf2_start_subfile (fe->name, dir);
9352 if (current_subfile->symtab == NULL)
9354 /* NOTE: start_subfile will recognize when it's been passed
9355 a file it has already seen. So we can't assume there's a
9356 simple mapping from lh->file_names to subfiles, plus
9357 lh->file_names may contain dups. */
9358 current_subfile->symtab
9359 = allocate_symtab (cust, current_subfile->name);
9362 fe->symtab = current_subfile->symtab;
9363 tu_group->symtabs[i] = fe->symtab;
9368 restart_symtab (tu_group->compunit_symtab, "", 0);
9370 for (i = 0; i < lh->num_file_names; ++i)
9372 struct file_entry *fe = &lh->file_names[i];
9374 fe->symtab = tu_group->symtabs[i];
9378 /* The main symtab is allocated last. Type units don't have DW_AT_name
9379 so they don't have a "real" (so to speak) symtab anyway.
9380 There is later code that will assign the main symtab to all symbols
9381 that don't have one. We need to handle the case of a symbol with a
9382 missing symtab (DW_AT_decl_file) anyway. */
9385 /* Process DW_TAG_type_unit.
9386 For TUs we want to skip the first top level sibling if it's not the
9387 actual type being defined by this TU. In this case the first top
9388 level sibling is there to provide context only. */
9391 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9393 struct die_info *child_die;
9395 prepare_one_comp_unit (cu, die, language_minimal);
9397 /* Initialize (or reinitialize) the machinery for building symtabs.
9398 We do this before processing child DIEs, so that the line header table
9399 is available for DW_AT_decl_file. */
9400 setup_type_unit_groups (die, cu);
9402 if (die->child != NULL)
9404 child_die = die->child;
9405 while (child_die && child_die->tag)
9407 process_die (child_die, cu);
9408 child_die = sibling_die (child_die);
9415 http://gcc.gnu.org/wiki/DebugFission
9416 http://gcc.gnu.org/wiki/DebugFissionDWP
9418 To simplify handling of both DWO files ("object" files with the DWARF info)
9419 and DWP files (a file with the DWOs packaged up into one file), we treat
9420 DWP files as having a collection of virtual DWO files. */
9423 hash_dwo_file (const void *item)
9425 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9428 hash = htab_hash_string (dwo_file->dwo_name);
9429 if (dwo_file->comp_dir != NULL)
9430 hash += htab_hash_string (dwo_file->comp_dir);
9435 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9437 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9438 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9440 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9442 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9443 return lhs->comp_dir == rhs->comp_dir;
9444 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9447 /* Allocate a hash table for DWO files. */
9450 allocate_dwo_file_hash_table (void)
9452 struct objfile *objfile = dwarf2_per_objfile->objfile;
9454 return htab_create_alloc_ex (41,
9458 &objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9463 /* Lookup DWO file DWO_NAME. */
9466 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9468 struct dwo_file find_entry;
9471 if (dwarf2_per_objfile->dwo_files == NULL)
9472 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9474 memset (&find_entry, 0, sizeof (find_entry));
9475 find_entry.dwo_name = dwo_name;
9476 find_entry.comp_dir = comp_dir;
9477 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9483 hash_dwo_unit (const void *item)
9485 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9487 /* This drops the top 32 bits of the id, but is ok for a hash. */
9488 return dwo_unit->signature;
9492 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9494 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9495 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9497 /* The signature is assumed to be unique within the DWO file.
9498 So while object file CU dwo_id's always have the value zero,
9499 that's OK, assuming each object file DWO file has only one CU,
9500 and that's the rule for now. */
9501 return lhs->signature == rhs->signature;
9504 /* Allocate a hash table for DWO CUs,TUs.
9505 There is one of these tables for each of CUs,TUs for each DWO file. */
9508 allocate_dwo_unit_table (struct objfile *objfile)
9510 /* Start out with a pretty small number.
9511 Generally DWO files contain only one CU and maybe some TUs. */
9512 return htab_create_alloc_ex (3,
9516 &objfile->objfile_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9521 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9523 struct create_dwo_cu_data
9525 struct dwo_file *dwo_file;
9526 struct dwo_unit dwo_unit;
9529 /* die_reader_func for create_dwo_cu. */
9532 create_dwo_cu_reader (const struct die_reader_specs *reader,
9533 const gdb_byte *info_ptr,
9534 struct die_info *comp_unit_die,
9538 struct dwarf2_cu *cu = reader->cu;
9539 struct objfile *objfile = dwarf2_per_objfile->objfile;
9540 sect_offset offset = cu->per_cu->offset;
9541 struct dwarf2_section_info *section = cu->per_cu->section;
9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9543 struct dwo_file *dwo_file = data->dwo_file;
9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
9545 struct attribute *attr;
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
9559 dwo_unit->section = section;
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9563 if (dwarf_read_debug)
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
9568 /* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
9571 static struct dwo_unit *
9572 create_dwo_cu (struct dwo_file *dwo_file)
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9578 const gdb_byte *info_ptr, *end_ptr;
9579 struct create_dwo_cu_data create_dwo_cu_data;
9580 struct dwo_unit *dwo_unit;
9582 dwarf2_read_section (objfile, section);
9583 info_ptr = section->buffer;
9585 if (info_ptr == NULL)
9588 /* We can't set abfd until now because the section may be empty or
9589 not present, in which case section->asection will be NULL. */
9590 abfd = get_section_bfd_owner (section);
9592 if (dwarf_read_debug)
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9595 get_section_name (section),
9596 get_section_file_name (section));
9599 create_dwo_cu_data.dwo_file = dwo_file;
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9605 struct dwarf2_per_cu_data per_cu;
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
9613 per_cu.section = section;
9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
9628 dwo_file->dwo_name, objfile_name (objfile));
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9636 info_ptr += per_cu.length;
9642 /* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9653 The index section header consists of:
9655 V, 32 bit version number
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
9660 Numbers are recorded using the byte order of the application binary.
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9695 Index Section Contents:
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9702 The index section header consists of:
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9709 Numbers are recorded using the byte order of the application binary.
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9752 Hash table lookup is handled the same in version 1 and 2:
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
9771 Because M > N and H' and M are relatively prime, the search is guaranteed
9772 to stop at an unused slot or find the match. */
9774 /* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9779 static struct dwp_hash_table *
9780 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
9784 const gdb_byte *index_ptr, *index_end;
9785 struct dwarf2_section_info *index;
9786 uint32_t version, nr_columns, nr_units, nr_slots;
9787 struct dwp_hash_table *htab;
9790 index = &dwp_file->sections.tu_index;
9792 index = &dwp_file->sections.cu_index;
9794 if (dwarf2_section_empty_p (index))
9796 dwarf2_read_section (objfile, index);
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9801 version = read_4_bytes (dbfd, index_ptr);
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9813 if (version != 1 && version != 2)
9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
9817 pulongest (version), dwp_file->name);
9819 if (nr_slots != (nr_slots & -nr_slots))
9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9822 " is not power of 2 [in module %s]"),
9823 pulongest (nr_slots), dwp_file->name);
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9889 if (ids_seen[id] != -1)
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9931 /* Update SECTIONS with the data from SECTP.
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
9935 read comes from the DWP V1 hash table, not the full ELF section table.
9937 The result is non-zero for success, or zero if an error was found. */
9940 locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
9943 const struct dwop_section_names *names = &dwop_section_names;
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9947 /* There can be only one. */
9948 if (sections->abbrev.s.section != NULL)
9950 sections->abbrev.s.section = sectp;
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9956 /* There can be only one. */
9957 if (sections->info_or_types.s.section != NULL)
9959 sections->info_or_types.s.section = sectp;
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9964 /* There can be only one. */
9965 if (sections->line.s.section != NULL)
9967 sections->line.s.section = sectp;
9968 sections->line.size = bfd_get_section_size (sectp);
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9972 /* There can be only one. */
9973 if (sections->loc.s.section != NULL)
9975 sections->loc.s.section = sectp;
9976 sections->loc.size = bfd_get_section_size (sectp);
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9980 /* There can be only one. */
9981 if (sections->macinfo.s.section != NULL)
9983 sections->macinfo.s.section = sectp;
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9988 /* There can be only one. */
9989 if (sections->macro.s.section != NULL)
9991 sections->macro.s.section = sectp;
9992 sections->macro.size = bfd_get_section_size (sectp);
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9996 /* There can be only one. */
9997 if (sections->str_offsets.s.section != NULL)
9999 sections->str_offsets.s.section = sectp;
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10004 /* No other kind of section is valid. */
10011 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
10016 static struct dwo_unit *
10017 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
10029 struct virtual_v1_dwo_sections sections;
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct dwarf2_section_info *cutu;
10033 struct cleanup *cleanups;
10036 gdb_assert (dwp_file->version == 1);
10038 if (dwarf_read_debug)
10040 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10042 pulongest (unit_index), hex_string (signature),
10046 /* Fetch the sections of this DWO unit.
10047 Put a limit on the number of sections we look for so that bad data
10048 doesn't cause us to loop forever. */
10050 #define MAX_NR_V1_DWO_SECTIONS \
10051 (1 /* .debug_info or .debug_types */ \
10052 + 1 /* .debug_abbrev */ \
10053 + 1 /* .debug_line */ \
10054 + 1 /* .debug_loc */ \
10055 + 1 /* .debug_str_offsets */ \
10056 + 1 /* .debug_macro or .debug_macinfo */ \
10057 + 1 /* trailing zero */)
10059 memset (§ions, 0, sizeof (sections));
10060 cleanups = make_cleanup (null_cleanup, 0);
10062 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10065 uint32_t section_nr =
10066 read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v1.indices
10068 + (unit_index + i) * sizeof (uint32_t));
10070 if (section_nr == 0)
10072 if (section_nr >= dwp_file->num_sections)
10074 error (_("Dwarf Error: bad DWP hash table, section number too large"
10075 " [in module %s]"),
10079 sectp = dwp_file->elf_sections[section_nr];
10080 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
10082 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10083 " [in module %s]"),
10089 || dwarf2_section_empty_p (§ions.info_or_types)
10090 || dwarf2_section_empty_p (§ions.abbrev))
10092 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10093 " [in module %s]"),
10096 if (i == MAX_NR_V1_DWO_SECTIONS)
10098 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10099 " [in module %s]"),
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10106 The DWP file can be made up of a random collection of CUs and TUs.
10107 However, for each CU + set of TUs that came from the same original DWO
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10113 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10114 get_section_id (§ions.abbrev),
10115 get_section_id (§ions.line),
10116 get_section_id (§ions.loc),
10117 get_section_id (§ions.str_offsets));
10118 make_cleanup (xfree, virtual_dwo_name);
10119 /* Can we use an existing virtual DWO file? */
10120 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10121 /* Create one if necessary. */
10122 if (*dwo_file_slot == NULL)
10124 if (dwarf_read_debug)
10126 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10129 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10131 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10133 strlen (virtual_dwo_name));
10134 dwo_file->comp_dir = comp_dir;
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
10143 /* The info or types section is assigned below to dwo_unit,
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
10148 for it, invalidating all copies of pointers into the previous
10150 *dwo_file_slot = dwo_file;
10154 if (dwarf_read_debug)
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10159 dwo_file = (struct dwo_file *) *dwo_file_slot;
10161 do_cleanups (cleanups);
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
10166 dwo_unit->section =
10167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10168 *dwo_unit->section = sections.info_or_types;
10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10174 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10179 static struct dwarf2_section_info
10180 create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10183 struct dwarf2_section_info result;
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10196 sectp = get_section_bfd_section (section);
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10202 || offset + size > bfd_get_section_size (sectp))
10204 bfd *abfd = sectp->owner;
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10212 result.virtual_offset = offset;
10213 result.size = size;
10217 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10222 static struct dwo_unit *
10223 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10242 gdb_assert (dwp_file->version == 2);
10244 if (dwarf_read_debug)
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10248 pulongest (unit_index), hex_string (signature),
10252 /* Fetch the section offsets of this DWO unit. */
10254 memset (§ions, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10268 * sizeof (uint32_t)));
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10326 if (dwarf_read_debug)
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10333 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10335 strlen (virtual_dwo_name));
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10365 *dwo_file_slot = dwo_file;
10369 if (dwarf_read_debug)
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10374 dwo_file = (struct dwo_file *) *dwo_file_slot;
10376 do_cleanups (cleanups);
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
10381 dwo_unit->section =
10382 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10393 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
10396 static struct dwo_unit *
10397 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
10402 bfd *dbfd = dwp_file->dbfd;
10403 uint32_t mask = dwp_htab->nr_slots - 1;
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
10418 return (struct dwo_unit *) *slot;
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
10423 ULONGEST signature_in_table;
10425 signature_in_table =
10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10427 if (signature_in_table == signature)
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
10433 if (dwp_file->version == 1)
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10445 return (struct dwo_unit *) *slot;
10447 if (signature_in_table == 0)
10449 hash = (hash + hash2) & mask;
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10457 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
10466 If unable to find/open the file, return NULL.
10467 NOTE: This function is derived from symfile_bfd_open. */
10470 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10474 char *absolute_name;
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, NULL);
10487 search_path = xstrdup (".");
10490 search_path = xstrdup (debug_file_directory);
10492 flags = OPF_RETURN_REALPATH;
10494 flags |= OPF_SEARCH_IN_PATH;
10495 desc = openp (search_path, flags, file_name,
10496 O_RDONLY | O_BINARY, &absolute_name);
10497 xfree (search_path);
10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10502 xfree (absolute_name);
10503 if (sym_bfd == NULL)
10505 bfd_set_cacheable (sym_bfd, 1);
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10522 /* Try to open DWO file FILE_NAME.
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10530 open_dwo_file (const char *file_name, const char *comp_dir)
10534 if (IS_ABSOLUTE_PATH (file_name))
10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10539 if (comp_dir != NULL)
10541 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10543 /* NOTE: If comp_dir is a relative path, this will also try the
10544 search path, which seems useful. */
10545 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10546 xfree (path_to_try);
10551 /* That didn't work, try debug-file-directory, which, despite its name,
10552 is a list of paths. */
10554 if (*debug_file_directory == '\0')
10557 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10560 /* This function is mapped across the sections and remembers the offset and
10561 size of each of the DWO debugging sections we are interested in. */
10564 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10566 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10567 const struct dwop_section_names *names = &dwop_section_names;
10569 if (section_is_p (sectp->name, &names->abbrev_dwo))
10571 dwo_sections->abbrev.s.section = sectp;
10572 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10574 else if (section_is_p (sectp->name, &names->info_dwo))
10576 dwo_sections->info.s.section = sectp;
10577 dwo_sections->info.size = bfd_get_section_size (sectp);
10579 else if (section_is_p (sectp->name, &names->line_dwo))
10581 dwo_sections->line.s.section = sectp;
10582 dwo_sections->line.size = bfd_get_section_size (sectp);
10584 else if (section_is_p (sectp->name, &names->loc_dwo))
10586 dwo_sections->loc.s.section = sectp;
10587 dwo_sections->loc.size = bfd_get_section_size (sectp);
10589 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10591 dwo_sections->macinfo.s.section = sectp;
10592 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10594 else if (section_is_p (sectp->name, &names->macro_dwo))
10596 dwo_sections->macro.s.section = sectp;
10597 dwo_sections->macro.size = bfd_get_section_size (sectp);
10599 else if (section_is_p (sectp->name, &names->str_dwo))
10601 dwo_sections->str.s.section = sectp;
10602 dwo_sections->str.size = bfd_get_section_size (sectp);
10604 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10606 dwo_sections->str_offsets.s.section = sectp;
10607 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10609 else if (section_is_p (sectp->name, &names->types_dwo))
10611 struct dwarf2_section_info type_section;
10613 memset (&type_section, 0, sizeof (type_section));
10614 type_section.s.section = sectp;
10615 type_section.size = bfd_get_section_size (sectp);
10616 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10621 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10622 by PER_CU. This is for the non-DWP case.
10623 The result is NULL if DWO_NAME can't be found. */
10625 static struct dwo_file *
10626 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10627 const char *dwo_name, const char *comp_dir)
10629 struct objfile *objfile = dwarf2_per_objfile->objfile;
10630 struct dwo_file *dwo_file;
10632 struct cleanup *cleanups;
10634 dbfd = open_dwo_file (dwo_name, comp_dir);
10637 if (dwarf_read_debug)
10638 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10641 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10642 dwo_file->dwo_name = dwo_name;
10643 dwo_file->comp_dir = comp_dir;
10644 dwo_file->dbfd = dbfd;
10646 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10648 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10650 dwo_file->cu = create_dwo_cu (dwo_file);
10652 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10653 dwo_file->sections.types);
10655 discard_cleanups (cleanups);
10657 if (dwarf_read_debug)
10658 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10663 /* This function is mapped across the sections and remembers the offset and
10664 size of each of the DWP debugging sections common to version 1 and 2 that
10665 we are interested in. */
10668 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10669 void *dwp_file_ptr)
10671 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10672 const struct dwop_section_names *names = &dwop_section_names;
10673 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10675 /* Record the ELF section number for later lookup: this is what the
10676 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10677 gdb_assert (elf_section_nr < dwp_file->num_sections);
10678 dwp_file->elf_sections[elf_section_nr] = sectp;
10680 /* Look for specific sections that we need. */
10681 if (section_is_p (sectp->name, &names->str_dwo))
10683 dwp_file->sections.str.s.section = sectp;
10684 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10686 else if (section_is_p (sectp->name, &names->cu_index))
10688 dwp_file->sections.cu_index.s.section = sectp;
10689 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10691 else if (section_is_p (sectp->name, &names->tu_index))
10693 dwp_file->sections.tu_index.s.section = sectp;
10694 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10698 /* This function is mapped across the sections and remembers the offset and
10699 size of each of the DWP version 2 debugging sections that we are interested
10700 in. This is split into a separate function because we don't know if we
10701 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10704 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10706 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10707 const struct dwop_section_names *names = &dwop_section_names;
10708 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10710 /* Record the ELF section number for later lookup: this is what the
10711 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10712 gdb_assert (elf_section_nr < dwp_file->num_sections);
10713 dwp_file->elf_sections[elf_section_nr] = sectp;
10715 /* Look for specific sections that we need. */
10716 if (section_is_p (sectp->name, &names->abbrev_dwo))
10718 dwp_file->sections.abbrev.s.section = sectp;
10719 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10721 else if (section_is_p (sectp->name, &names->info_dwo))
10723 dwp_file->sections.info.s.section = sectp;
10724 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10726 else if (section_is_p (sectp->name, &names->line_dwo))
10728 dwp_file->sections.line.s.section = sectp;
10729 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10731 else if (section_is_p (sectp->name, &names->loc_dwo))
10733 dwp_file->sections.loc.s.section = sectp;
10734 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10736 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10738 dwp_file->sections.macinfo.s.section = sectp;
10739 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10741 else if (section_is_p (sectp->name, &names->macro_dwo))
10743 dwp_file->sections.macro.s.section = sectp;
10744 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10746 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10748 dwp_file->sections.str_offsets.s.section = sectp;
10749 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10751 else if (section_is_p (sectp->name, &names->types_dwo))
10753 dwp_file->sections.types.s.section = sectp;
10754 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10758 /* Hash function for dwp_file loaded CUs/TUs. */
10761 hash_dwp_loaded_cutus (const void *item)
10763 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10765 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10766 return dwo_unit->signature;
10769 /* Equality function for dwp_file loaded CUs/TUs. */
10772 eq_dwp_loaded_cutus (const void *a, const void *b)
10774 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10775 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10777 return dua->signature == dub->signature;
10780 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10783 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10785 return htab_create_alloc_ex (3,
10786 hash_dwp_loaded_cutus,
10787 eq_dwp_loaded_cutus,
10789 &objfile->objfile_obstack,
10790 hashtab_obstack_allocate,
10791 dummy_obstack_deallocate);
10794 /* Try to open DWP file FILE_NAME.
10795 The result is the bfd handle of the file.
10796 If there is a problem finding or opening the file, return NULL.
10797 Upon success, the canonicalized path of the file is stored in the bfd,
10798 same as symfile_bfd_open. */
10801 open_dwp_file (const char *file_name)
10805 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10809 /* Work around upstream bug 15652.
10810 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10811 [Whether that's a "bug" is debatable, but it is getting in our way.]
10812 We have no real idea where the dwp file is, because gdb's realpath-ing
10813 of the executable's path may have discarded the needed info.
10814 [IWBN if the dwp file name was recorded in the executable, akin to
10815 .gnu_debuglink, but that doesn't exist yet.]
10816 Strip the directory from FILE_NAME and search again. */
10817 if (*debug_file_directory != '\0')
10819 /* Don't implicitly search the current directory here.
10820 If the user wants to search "." to handle this case,
10821 it must be added to debug-file-directory. */
10822 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10829 /* Initialize the use of the DWP file for the current objfile.
10830 By convention the name of the DWP file is ${objfile}.dwp.
10831 The result is NULL if it can't be found. */
10833 static struct dwp_file *
10834 open_and_init_dwp_file (void)
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837 struct dwp_file *dwp_file;
10840 struct cleanup *cleanups;
10842 /* Try to find first .dwp for the binary file before any symbolic links
10844 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10845 cleanups = make_cleanup (xfree, dwp_name);
10847 dbfd = open_dwp_file (dwp_name);
10849 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10851 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10853 make_cleanup (xfree, dwp_name);
10854 dbfd = open_dwp_file (dwp_name);
10859 if (dwarf_read_debug)
10860 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10861 do_cleanups (cleanups);
10864 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10865 dwp_file->name = bfd_get_filename (dbfd);
10866 dwp_file->dbfd = dbfd;
10867 do_cleanups (cleanups);
10869 /* +1: section 0 is unused */
10870 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10871 dwp_file->elf_sections =
10872 OBSTACK_CALLOC (&objfile->objfile_obstack,
10873 dwp_file->num_sections, asection *);
10875 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10877 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10879 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10881 /* The DWP file version is stored in the hash table. Oh well. */
10882 if (dwp_file->cus->version != dwp_file->tus->version)
10884 /* Technically speaking, we should try to limp along, but this is
10885 pretty bizarre. We use pulongest here because that's the established
10886 portability solution (e.g, we cannot use %u for uint32_t). */
10887 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10888 " TU version %s [in DWP file %s]"),
10889 pulongest (dwp_file->cus->version),
10890 pulongest (dwp_file->tus->version), dwp_name);
10892 dwp_file->version = dwp_file->cus->version;
10894 if (dwp_file->version == 2)
10895 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10897 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10898 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10900 if (dwarf_read_debug)
10902 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10903 fprintf_unfiltered (gdb_stdlog,
10904 " %s CUs, %s TUs\n",
10905 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10906 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10912 /* Wrapper around open_and_init_dwp_file, only open it once. */
10914 static struct dwp_file *
10915 get_dwp_file (void)
10917 if (! dwarf2_per_objfile->dwp_checked)
10919 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10920 dwarf2_per_objfile->dwp_checked = 1;
10922 return dwarf2_per_objfile->dwp_file;
10925 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10926 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10927 or in the DWP file for the objfile, referenced by THIS_UNIT.
10928 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10929 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10931 This is called, for example, when wanting to read a variable with a
10932 complex location. Therefore we don't want to do file i/o for every call.
10933 Therefore we don't want to look for a DWO file on every call.
10934 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10935 then we check if we've already seen DWO_NAME, and only THEN do we check
10938 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10939 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10941 static struct dwo_unit *
10942 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10943 const char *dwo_name, const char *comp_dir,
10944 ULONGEST signature, int is_debug_types)
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
10947 const char *kind = is_debug_types ? "TU" : "CU";
10948 void **dwo_file_slot;
10949 struct dwo_file *dwo_file;
10950 struct dwp_file *dwp_file;
10952 /* First see if there's a DWP file.
10953 If we have a DWP file but didn't find the DWO inside it, don't
10954 look for the original DWO file. It makes gdb behave differently
10955 depending on whether one is debugging in the build tree. */
10957 dwp_file = get_dwp_file ();
10958 if (dwp_file != NULL)
10960 const struct dwp_hash_table *dwp_htab =
10961 is_debug_types ? dwp_file->tus : dwp_file->cus;
10963 if (dwp_htab != NULL)
10965 struct dwo_unit *dwo_cutu =
10966 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10967 signature, is_debug_types);
10969 if (dwo_cutu != NULL)
10971 if (dwarf_read_debug)
10973 fprintf_unfiltered (gdb_stdlog,
10974 "Virtual DWO %s %s found: @%s\n",
10975 kind, hex_string (signature),
10976 host_address_to_string (dwo_cutu));
10984 /* No DWP file, look for the DWO file. */
10986 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10987 if (*dwo_file_slot == NULL)
10989 /* Read in the file and build a table of the CUs/TUs it contains. */
10990 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10992 /* NOTE: This will be NULL if unable to open the file. */
10993 dwo_file = (struct dwo_file *) *dwo_file_slot;
10995 if (dwo_file != NULL)
10997 struct dwo_unit *dwo_cutu = NULL;
10999 if (is_debug_types && dwo_file->tus)
11001 struct dwo_unit find_dwo_cutu;
11003 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11004 find_dwo_cutu.signature = signature;
11006 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11008 else if (!is_debug_types && dwo_file->cu)
11010 if (signature == dwo_file->cu->signature)
11011 dwo_cutu = dwo_file->cu;
11014 if (dwo_cutu != NULL)
11016 if (dwarf_read_debug)
11018 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11019 kind, dwo_name, hex_string (signature),
11020 host_address_to_string (dwo_cutu));
11027 /* We didn't find it. This could mean a dwo_id mismatch, or
11028 someone deleted the DWO/DWP file, or the search path isn't set up
11029 correctly to find the file. */
11031 if (dwarf_read_debug)
11033 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11034 kind, dwo_name, hex_string (signature));
11037 /* This is a warning and not a complaint because it can be caused by
11038 pilot error (e.g., user accidentally deleting the DWO). */
11040 /* Print the name of the DWP file if we looked there, helps the user
11041 better diagnose the problem. */
11042 char *dwp_text = NULL;
11043 struct cleanup *cleanups;
11045 if (dwp_file != NULL)
11046 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11047 cleanups = make_cleanup (xfree, dwp_text);
11049 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11050 " [in module %s]"),
11051 kind, dwo_name, hex_string (signature),
11052 dwp_text != NULL ? dwp_text : "",
11053 this_unit->is_debug_types ? "TU" : "CU",
11054 this_unit->offset.sect_off, objfile_name (objfile));
11056 do_cleanups (cleanups);
11061 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11062 See lookup_dwo_cutu_unit for details. */
11064 static struct dwo_unit *
11065 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11066 const char *dwo_name, const char *comp_dir,
11067 ULONGEST signature)
11069 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11072 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11073 See lookup_dwo_cutu_unit for details. */
11075 static struct dwo_unit *
11076 lookup_dwo_type_unit (struct signatured_type *this_tu,
11077 const char *dwo_name, const char *comp_dir)
11079 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11082 /* Traversal function for queue_and_load_all_dwo_tus. */
11085 queue_and_load_dwo_tu (void **slot, void *info)
11087 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11088 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11089 ULONGEST signature = dwo_unit->signature;
11090 struct signatured_type *sig_type =
11091 lookup_dwo_signatured_type (per_cu->cu, signature);
11093 if (sig_type != NULL)
11095 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11097 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11098 a real dependency of PER_CU on SIG_TYPE. That is detected later
11099 while processing PER_CU. */
11100 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11101 load_full_type_unit (sig_cu);
11102 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11108 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11109 The DWO may have the only definition of the type, though it may not be
11110 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11111 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11114 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11116 struct dwo_unit *dwo_unit;
11117 struct dwo_file *dwo_file;
11119 gdb_assert (!per_cu->is_debug_types);
11120 gdb_assert (get_dwp_file () == NULL);
11121 gdb_assert (per_cu->cu != NULL);
11123 dwo_unit = per_cu->cu->dwo_unit;
11124 gdb_assert (dwo_unit != NULL);
11126 dwo_file = dwo_unit->dwo_file;
11127 if (dwo_file->tus != NULL)
11128 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11131 /* Free all resources associated with DWO_FILE.
11132 Close the DWO file and munmap the sections.
11133 All memory should be on the objfile obstack. */
11136 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11139 struct dwarf2_section_info *section;
11141 /* Note: dbfd is NULL for virtual DWO files. */
11142 gdb_bfd_unref (dwo_file->dbfd);
11144 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11147 /* Wrapper for free_dwo_file for use in cleanups. */
11150 free_dwo_file_cleanup (void *arg)
11152 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11153 struct objfile *objfile = dwarf2_per_objfile->objfile;
11155 free_dwo_file (dwo_file, objfile);
11158 /* Traversal function for free_dwo_files. */
11161 free_dwo_file_from_slot (void **slot, void *info)
11163 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11164 struct objfile *objfile = (struct objfile *) info;
11166 free_dwo_file (dwo_file, objfile);
11171 /* Free all resources associated with DWO_FILES. */
11174 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11176 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11179 /* Read in various DIEs. */
11181 /* qsort helper for inherit_abstract_dies. */
11184 unsigned_int_compar (const void *ap, const void *bp)
11186 unsigned int a = *(unsigned int *) ap;
11187 unsigned int b = *(unsigned int *) bp;
11189 return (a > b) - (b > a);
11192 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11193 Inherit only the children of the DW_AT_abstract_origin DIE not being
11194 already referenced by DW_AT_abstract_origin from the children of the
11198 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11200 struct die_info *child_die;
11201 unsigned die_children_count;
11202 /* CU offsets which were referenced by children of the current DIE. */
11203 sect_offset *offsets;
11204 sect_offset *offsets_end, *offsetp;
11205 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11206 struct die_info *origin_die;
11207 /* Iterator of the ORIGIN_DIE children. */
11208 struct die_info *origin_child_die;
11209 struct cleanup *cleanups;
11210 struct attribute *attr;
11211 struct dwarf2_cu *origin_cu;
11212 struct pending **origin_previous_list_in_scope;
11214 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11218 /* Note that following die references may follow to a die in a
11222 origin_die = follow_die_ref (die, attr, &origin_cu);
11224 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11226 origin_previous_list_in_scope = origin_cu->list_in_scope;
11227 origin_cu->list_in_scope = cu->list_in_scope;
11229 if (die->tag != origin_die->tag
11230 && !(die->tag == DW_TAG_inlined_subroutine
11231 && origin_die->tag == DW_TAG_subprogram))
11232 complaint (&symfile_complaints,
11233 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11234 die->offset.sect_off, origin_die->offset.sect_off);
11236 child_die = die->child;
11237 die_children_count = 0;
11238 while (child_die && child_die->tag)
11240 child_die = sibling_die (child_die);
11241 die_children_count++;
11243 offsets = XNEWVEC (sect_offset, die_children_count);
11244 cleanups = make_cleanup (xfree, offsets);
11246 offsets_end = offsets;
11247 for (child_die = die->child;
11248 child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11251 struct die_info *child_origin_die;
11252 struct dwarf2_cu *child_origin_cu;
11254 /* We are trying to process concrete instance entries:
11255 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11256 it's not relevant to our analysis here. i.e. detecting DIEs that are
11257 present in the abstract instance but not referenced in the concrete
11259 if (child_die->tag == DW_TAG_GNU_call_site)
11262 /* For each CHILD_DIE, find the corresponding child of
11263 ORIGIN_DIE. If there is more than one layer of
11264 DW_AT_abstract_origin, follow them all; there shouldn't be,
11265 but GCC versions at least through 4.4 generate this (GCC PR
11267 child_origin_die = child_die;
11268 child_origin_cu = cu;
11271 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11275 child_origin_die = follow_die_ref (child_origin_die, attr,
11279 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11280 counterpart may exist. */
11281 if (child_origin_die != child_die)
11283 if (child_die->tag != child_origin_die->tag
11284 && !(child_die->tag == DW_TAG_inlined_subroutine
11285 && child_origin_die->tag == DW_TAG_subprogram))
11286 complaint (&symfile_complaints,
11287 _("Child DIE 0x%x and its abstract origin 0x%x have "
11288 "different tags"), child_die->offset.sect_off,
11289 child_origin_die->offset.sect_off);
11290 if (child_origin_die->parent != origin_die)
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
11293 "different parents"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
11296 *offsets_end++ = child_origin_die->offset;
11299 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11300 unsigned_int_compar);
11301 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11302 if (offsetp[-1].sect_off == offsetp->sect_off)
11303 complaint (&symfile_complaints,
11304 _("Multiple children of DIE 0x%x refer "
11305 "to DIE 0x%x as their abstract origin"),
11306 die->offset.sect_off, offsetp->sect_off);
11309 origin_child_die = origin_die->child;
11310 while (origin_child_die && origin_child_die->tag)
11312 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11313 while (offsetp < offsets_end
11314 && offsetp->sect_off < origin_child_die->offset.sect_off)
11316 if (offsetp >= offsets_end
11317 || offsetp->sect_off > origin_child_die->offset.sect_off)
11319 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11320 Check whether we're already processing ORIGIN_CHILD_DIE.
11321 This can happen with mutually referenced abstract_origins.
11323 if (!origin_child_die->in_process)
11324 process_die (origin_child_die, origin_cu);
11326 origin_child_die = sibling_die (origin_child_die);
11328 origin_cu->list_in_scope = origin_previous_list_in_scope;
11330 do_cleanups (cleanups);
11334 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11336 struct objfile *objfile = cu->objfile;
11337 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11338 struct context_stack *newobj;
11341 struct die_info *child_die;
11342 struct attribute *attr, *call_line, *call_file;
11344 CORE_ADDR baseaddr;
11345 struct block *block;
11346 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11347 VEC (symbolp) *template_args = NULL;
11348 struct template_symbol *templ_func = NULL;
11352 /* If we do not have call site information, we can't show the
11353 caller of this inlined function. That's too confusing, so
11354 only use the scope for local variables. */
11355 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11356 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11357 if (call_line == NULL || call_file == NULL)
11359 read_lexical_block_scope (die, cu);
11364 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11366 name = dwarf2_name (die, cu);
11368 /* Ignore functions with missing or empty names. These are actually
11369 illegal according to the DWARF standard. */
11372 complaint (&symfile_complaints,
11373 _("missing name for subprogram DIE at %d"),
11374 die->offset.sect_off);
11378 /* Ignore functions with missing or invalid low and high pc attributes. */
11379 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11381 attr = dwarf2_attr (die, DW_AT_external, cu);
11382 if (!attr || !DW_UNSND (attr))
11383 complaint (&symfile_complaints,
11384 _("cannot get low and high bounds "
11385 "for subprogram DIE at %d"),
11386 die->offset.sect_off);
11390 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11393 /* If we have any template arguments, then we must allocate a
11394 different sort of symbol. */
11395 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11397 if (child_die->tag == DW_TAG_template_type_param
11398 || child_die->tag == DW_TAG_template_value_param)
11400 templ_func = allocate_template_symbol (objfile);
11401 templ_func->base.is_cplus_template_function = 1;
11406 newobj = push_context (0, lowpc);
11407 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11408 (struct symbol *) templ_func);
11410 /* If there is a location expression for DW_AT_frame_base, record
11412 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11414 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11416 /* If there is a location for the static link, record it. */
11417 newobj->static_link = NULL;
11418 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11421 newobj->static_link
11422 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11423 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11426 cu->list_in_scope = &local_symbols;
11428 if (die->child != NULL)
11430 child_die = die->child;
11431 while (child_die && child_die->tag)
11433 if (child_die->tag == DW_TAG_template_type_param
11434 || child_die->tag == DW_TAG_template_value_param)
11436 struct symbol *arg = new_symbol (child_die, NULL, cu);
11439 VEC_safe_push (symbolp, template_args, arg);
11442 process_die (child_die, cu);
11443 child_die = sibling_die (child_die);
11447 inherit_abstract_dies (die, cu);
11449 /* If we have a DW_AT_specification, we might need to import using
11450 directives from the context of the specification DIE. See the
11451 comment in determine_prefix. */
11452 if (cu->language == language_cplus
11453 && dwarf2_attr (die, DW_AT_specification, cu))
11455 struct dwarf2_cu *spec_cu = cu;
11456 struct die_info *spec_die = die_specification (die, &spec_cu);
11460 child_die = spec_die->child;
11461 while (child_die && child_die->tag)
11463 if (child_die->tag == DW_TAG_imported_module)
11464 process_die (child_die, spec_cu);
11465 child_die = sibling_die (child_die);
11468 /* In some cases, GCC generates specification DIEs that
11469 themselves contain DW_AT_specification attributes. */
11470 spec_die = die_specification (spec_die, &spec_cu);
11474 newobj = pop_context ();
11475 /* Make a block for the local symbols within. */
11476 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11477 newobj->static_link, lowpc, highpc);
11479 /* For C++, set the block's scope. */
11480 if ((cu->language == language_cplus
11481 || cu->language == language_fortran
11482 || cu->language == language_d)
11483 && cu->processing_has_namespace_info)
11484 block_set_scope (block, determine_prefix (die, cu),
11485 &objfile->objfile_obstack);
11487 /* If we have address ranges, record them. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11490 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11492 /* Attach template arguments to function. */
11493 if (! VEC_empty (symbolp, template_args))
11495 gdb_assert (templ_func != NULL);
11497 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11498 templ_func->template_arguments
11499 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11500 templ_func->n_template_arguments);
11501 memcpy (templ_func->template_arguments,
11502 VEC_address (symbolp, template_args),
11503 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11504 VEC_free (symbolp, template_args);
11507 /* In C++, we can have functions nested inside functions (e.g., when
11508 a function declares a class that has methods). This means that
11509 when we finish processing a function scope, we may need to go
11510 back to building a containing block's symbol lists. */
11511 local_symbols = newobj->locals;
11512 local_using_directives = newobj->local_using_directives;
11514 /* If we've finished processing a top-level function, subsequent
11515 symbols go in the file symbol list. */
11516 if (outermost_context_p ())
11517 cu->list_in_scope = &file_symbols;
11520 /* Process all the DIES contained within a lexical block scope. Start
11521 a new scope, process the dies, and then close the scope. */
11524 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11526 struct objfile *objfile = cu->objfile;
11527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11528 struct context_stack *newobj;
11529 CORE_ADDR lowpc, highpc;
11530 struct die_info *child_die;
11531 CORE_ADDR baseaddr;
11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11535 /* Ignore blocks with missing or invalid low and high pc attributes. */
11536 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11537 as multiple lexical blocks? Handling children in a sane way would
11538 be nasty. Might be easier to properly extend generic blocks to
11539 describe ranges. */
11540 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11542 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11543 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11545 push_context (0, lowpc);
11546 if (die->child != NULL)
11548 child_die = die->child;
11549 while (child_die && child_die->tag)
11551 process_die (child_die, cu);
11552 child_die = sibling_die (child_die);
11555 inherit_abstract_dies (die, cu);
11556 newobj = pop_context ();
11558 if (local_symbols != NULL || local_using_directives != NULL)
11560 struct block *block
11561 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11562 newobj->start_addr, highpc);
11564 /* Note that recording ranges after traversing children, as we
11565 do here, means that recording a parent's ranges entails
11566 walking across all its children's ranges as they appear in
11567 the address map, which is quadratic behavior.
11569 It would be nicer to record the parent's ranges before
11570 traversing its children, simply overriding whatever you find
11571 there. But since we don't even decide whether to create a
11572 block until after we've traversed its children, that's hard
11574 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11576 local_symbols = newobj->locals;
11577 local_using_directives = newobj->local_using_directives;
11580 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11583 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11585 struct objfile *objfile = cu->objfile;
11586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11587 CORE_ADDR pc, baseaddr;
11588 struct attribute *attr;
11589 struct call_site *call_site, call_site_local;
11592 struct die_info *child_die;
11594 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11596 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11599 complaint (&symfile_complaints,
11600 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11601 "DIE 0x%x [in module %s]"),
11602 die->offset.sect_off, objfile_name (objfile));
11605 pc = attr_value_as_address (attr) + baseaddr;
11606 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11608 if (cu->call_site_htab == NULL)
11609 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11610 NULL, &objfile->objfile_obstack,
11611 hashtab_obstack_allocate, NULL);
11612 call_site_local.pc = pc;
11613 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11616 complaint (&symfile_complaints,
11617 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11618 "DIE 0x%x [in module %s]"),
11619 paddress (gdbarch, pc), die->offset.sect_off,
11620 objfile_name (objfile));
11624 /* Count parameters at the caller. */
11627 for (child_die = die->child; child_die && child_die->tag;
11628 child_die = sibling_die (child_die))
11630 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11632 complaint (&symfile_complaints,
11633 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11634 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11635 child_die->tag, child_die->offset.sect_off,
11636 objfile_name (objfile));
11644 = ((struct call_site *)
11645 obstack_alloc (&objfile->objfile_obstack,
11646 sizeof (*call_site)
11647 + (sizeof (*call_site->parameter) * (nparams - 1))));
11649 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11650 call_site->pc = pc;
11652 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11654 struct die_info *func_die;
11656 /* Skip also over DW_TAG_inlined_subroutine. */
11657 for (func_die = die->parent;
11658 func_die && func_die->tag != DW_TAG_subprogram
11659 && func_die->tag != DW_TAG_subroutine_type;
11660 func_die = func_die->parent);
11662 /* DW_AT_GNU_all_call_sites is a superset
11663 of DW_AT_GNU_all_tail_call_sites. */
11665 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11666 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11668 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11669 not complete. But keep CALL_SITE for look ups via call_site_htab,
11670 both the initial caller containing the real return address PC and
11671 the final callee containing the current PC of a chain of tail
11672 calls do not need to have the tail call list complete. But any
11673 function candidate for a virtual tail call frame searched via
11674 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11675 determined unambiguously. */
11679 struct type *func_type = NULL;
11682 func_type = get_die_type (func_die, cu);
11683 if (func_type != NULL)
11685 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11687 /* Enlist this call site to the function. */
11688 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11689 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11692 complaint (&symfile_complaints,
11693 _("Cannot find function owning DW_TAG_GNU_call_site "
11694 "DIE 0x%x [in module %s]"),
11695 die->offset.sect_off, objfile_name (objfile));
11699 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11701 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11702 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11703 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11704 /* Keep NULL DWARF_BLOCK. */;
11705 else if (attr_form_is_block (attr))
11707 struct dwarf2_locexpr_baton *dlbaton;
11709 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11710 dlbaton->data = DW_BLOCK (attr)->data;
11711 dlbaton->size = DW_BLOCK (attr)->size;
11712 dlbaton->per_cu = cu->per_cu;
11714 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11716 else if (attr_form_is_ref (attr))
11718 struct dwarf2_cu *target_cu = cu;
11719 struct die_info *target_die;
11721 target_die = follow_die_ref (die, attr, &target_cu);
11722 gdb_assert (target_cu->objfile == objfile);
11723 if (die_is_declaration (target_die, target_cu))
11725 const char *target_physname;
11727 /* Prefer the mangled name; otherwise compute the demangled one. */
11728 target_physname = dwarf2_string_attr (target_die,
11729 DW_AT_linkage_name,
11731 if (target_physname == NULL)
11732 target_physname = dwarf2_string_attr (target_die,
11733 DW_AT_MIPS_linkage_name,
11735 if (target_physname == NULL)
11736 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11737 if (target_physname == NULL)
11738 complaint (&symfile_complaints,
11739 _("DW_AT_GNU_call_site_target target DIE has invalid "
11740 "physname, for referencing DIE 0x%x [in module %s]"),
11741 die->offset.sect_off, objfile_name (objfile));
11743 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11749 /* DW_AT_entry_pc should be preferred. */
11750 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11751 complaint (&symfile_complaints,
11752 _("DW_AT_GNU_call_site_target target DIE has invalid "
11753 "low pc, for referencing DIE 0x%x [in module %s]"),
11754 die->offset.sect_off, objfile_name (objfile));
11757 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11758 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11763 complaint (&symfile_complaints,
11764 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11765 "block nor reference, for DIE 0x%x [in module %s]"),
11766 die->offset.sect_off, objfile_name (objfile));
11768 call_site->per_cu = cu->per_cu;
11770 for (child_die = die->child;
11771 child_die && child_die->tag;
11772 child_die = sibling_die (child_die))
11774 struct call_site_parameter *parameter;
11775 struct attribute *loc, *origin;
11777 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11779 /* Already printed the complaint above. */
11783 gdb_assert (call_site->parameter_count < nparams);
11784 parameter = &call_site->parameter[call_site->parameter_count];
11786 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11787 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11788 register is contained in DW_AT_GNU_call_site_value. */
11790 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11791 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11792 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11794 sect_offset offset;
11796 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11797 offset = dwarf2_get_ref_die_offset (origin);
11798 if (!offset_in_cu_p (&cu->header, offset))
11800 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11801 binding can be done only inside one CU. Such referenced DIE
11802 therefore cannot be even moved to DW_TAG_partial_unit. */
11803 complaint (&symfile_complaints,
11804 _("DW_AT_abstract_origin offset is not in CU for "
11805 "DW_TAG_GNU_call_site child DIE 0x%x "
11807 child_die->offset.sect_off, objfile_name (objfile));
11810 parameter->u.param_offset.cu_off = (offset.sect_off
11811 - cu->header.offset.sect_off);
11813 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11815 complaint (&symfile_complaints,
11816 _("No DW_FORM_block* DW_AT_location for "
11817 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11818 child_die->offset.sect_off, objfile_name (objfile));
11823 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11824 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11825 if (parameter->u.dwarf_reg != -1)
11826 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11827 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11828 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11829 ¶meter->u.fb_offset))
11830 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11833 complaint (&symfile_complaints,
11834 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11835 "for DW_FORM_block* DW_AT_location is supported for "
11836 "DW_TAG_GNU_call_site child DIE 0x%x "
11838 child_die->offset.sect_off, objfile_name (objfile));
11843 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11844 if (!attr_form_is_block (attr))
11846 complaint (&symfile_complaints,
11847 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11848 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11849 child_die->offset.sect_off, objfile_name (objfile));
11852 parameter->value = DW_BLOCK (attr)->data;
11853 parameter->value_size = DW_BLOCK (attr)->size;
11855 /* Parameters are not pre-cleared by memset above. */
11856 parameter->data_value = NULL;
11857 parameter->data_value_size = 0;
11858 call_site->parameter_count++;
11860 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11863 if (!attr_form_is_block (attr))
11864 complaint (&symfile_complaints,
11865 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11866 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11867 child_die->offset.sect_off, objfile_name (objfile));
11870 parameter->data_value = DW_BLOCK (attr)->data;
11871 parameter->data_value_size = DW_BLOCK (attr)->size;
11877 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11878 Return 1 if the attributes are present and valid, otherwise, return 0.
11879 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11882 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11883 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11884 struct partial_symtab *ranges_pst)
11886 struct objfile *objfile = cu->objfile;
11887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11888 struct comp_unit_head *cu_header = &cu->header;
11889 bfd *obfd = objfile->obfd;
11890 unsigned int addr_size = cu_header->addr_size;
11891 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11892 /* Base address selection entry. */
11895 unsigned int dummy;
11896 const gdb_byte *buffer;
11900 CORE_ADDR high = 0;
11901 CORE_ADDR baseaddr;
11903 found_base = cu->base_known;
11904 base = cu->base_address;
11906 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11907 if (offset >= dwarf2_per_objfile->ranges.size)
11909 complaint (&symfile_complaints,
11910 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11914 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11916 /* Read in the largest possible address. */
11917 marker = read_address (obfd, buffer, cu, &dummy);
11918 if ((marker & mask) == mask)
11920 /* If we found the largest possible address, then
11921 read the base address. */
11922 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11923 buffer += 2 * addr_size;
11924 offset += 2 * addr_size;
11930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11934 CORE_ADDR range_beginning, range_end;
11936 range_beginning = read_address (obfd, buffer, cu, &dummy);
11937 buffer += addr_size;
11938 range_end = read_address (obfd, buffer, cu, &dummy);
11939 buffer += addr_size;
11940 offset += 2 * addr_size;
11942 /* An end of list marker is a pair of zero addresses. */
11943 if (range_beginning == 0 && range_end == 0)
11944 /* Found the end of list entry. */
11947 /* Each base address selection entry is a pair of 2 values.
11948 The first is the largest possible address, the second is
11949 the base address. Check for a base address here. */
11950 if ((range_beginning & mask) == mask)
11952 /* If we found the largest possible address, then
11953 read the base address. */
11954 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11961 /* We have no valid base address for the ranges
11963 complaint (&symfile_complaints,
11964 _("Invalid .debug_ranges data (no base address)"));
11968 if (range_beginning > range_end)
11970 /* Inverted range entries are invalid. */
11971 complaint (&symfile_complaints,
11972 _("Invalid .debug_ranges data (inverted range)"));
11976 /* Empty range entries have no effect. */
11977 if (range_beginning == range_end)
11980 range_beginning += base;
11983 /* A not-uncommon case of bad debug info.
11984 Don't pollute the addrmap with bad data. */
11985 if (range_beginning + baseaddr == 0
11986 && !dwarf2_per_objfile->has_section_at_zero)
11988 complaint (&symfile_complaints,
11989 _(".debug_ranges entry has start address of zero"
11990 " [in module %s]"), objfile_name (objfile));
11994 if (ranges_pst != NULL)
11999 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12000 range_beginning + baseaddr);
12001 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12002 range_end + baseaddr);
12003 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12007 /* FIXME: This is recording everything as a low-high
12008 segment of consecutive addresses. We should have a
12009 data structure for discontiguous block ranges
12013 low = range_beginning;
12019 if (range_beginning < low)
12020 low = range_beginning;
12021 if (range_end > high)
12027 /* If the first entry is an end-of-list marker, the range
12028 describes an empty scope, i.e. no instructions. */
12034 *high_return = high;
12038 /* Get low and high pc attributes from a die. Return 1 if the attributes
12039 are present and valid, otherwise, return 0. Return -1 if the range is
12040 discontinuous, i.e. derived from DW_AT_ranges information. */
12043 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12044 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12045 struct partial_symtab *pst)
12047 struct attribute *attr;
12048 struct attribute *attr_high;
12050 CORE_ADDR high = 0;
12053 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12056 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12059 low = attr_value_as_address (attr);
12060 high = attr_value_as_address (attr_high);
12061 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12065 /* Found high w/o low attribute. */
12068 /* Found consecutive range of addresses. */
12073 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12076 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12077 We take advantage of the fact that DW_AT_ranges does not appear
12078 in DW_TAG_compile_unit of DWO files. */
12079 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12080 unsigned int ranges_offset = (DW_UNSND (attr)
12081 + (need_ranges_base
12085 /* Value of the DW_AT_ranges attribute is the offset in the
12086 .debug_ranges section. */
12087 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12089 /* Found discontinuous range of addresses. */
12094 /* read_partial_die has also the strict LOW < HIGH requirement. */
12098 /* When using the GNU linker, .gnu.linkonce. sections are used to
12099 eliminate duplicate copies of functions and vtables and such.
12100 The linker will arbitrarily choose one and discard the others.
12101 The AT_*_pc values for such functions refer to local labels in
12102 these sections. If the section from that file was discarded, the
12103 labels are not in the output, so the relocs get a value of 0.
12104 If this is a discarded function, mark the pc bounds as invalid,
12105 so that GDB will ignore it. */
12106 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12115 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12116 its low and high PC addresses. Do nothing if these addresses could not
12117 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12118 and HIGHPC to the high address if greater than HIGHPC. */
12121 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12122 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12123 struct dwarf2_cu *cu)
12125 CORE_ADDR low, high;
12126 struct die_info *child = die->child;
12128 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12130 *lowpc = min (*lowpc, low);
12131 *highpc = max (*highpc, high);
12134 /* If the language does not allow nested subprograms (either inside
12135 subprograms or lexical blocks), we're done. */
12136 if (cu->language != language_ada)
12139 /* Check all the children of the given DIE. If it contains nested
12140 subprograms, then check their pc bounds. Likewise, we need to
12141 check lexical blocks as well, as they may also contain subprogram
12143 while (child && child->tag)
12145 if (child->tag == DW_TAG_subprogram
12146 || child->tag == DW_TAG_lexical_block)
12147 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12148 child = sibling_die (child);
12152 /* Get the low and high pc's represented by the scope DIE, and store
12153 them in *LOWPC and *HIGHPC. If the correct values can't be
12154 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12157 get_scope_pc_bounds (struct die_info *die,
12158 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12159 struct dwarf2_cu *cu)
12161 CORE_ADDR best_low = (CORE_ADDR) -1;
12162 CORE_ADDR best_high = (CORE_ADDR) 0;
12163 CORE_ADDR current_low, current_high;
12165 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
12167 best_low = current_low;
12168 best_high = current_high;
12172 struct die_info *child = die->child;
12174 while (child && child->tag)
12176 switch (child->tag) {
12177 case DW_TAG_subprogram:
12178 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12180 case DW_TAG_namespace:
12181 case DW_TAG_module:
12182 /* FIXME: carlton/2004-01-16: Should we do this for
12183 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12184 that current GCC's always emit the DIEs corresponding
12185 to definitions of methods of classes as children of a
12186 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12187 the DIEs giving the declarations, which could be
12188 anywhere). But I don't see any reason why the
12189 standards says that they have to be there. */
12190 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
12192 if (current_low != ((CORE_ADDR) -1))
12194 best_low = min (best_low, current_low);
12195 best_high = max (best_high, current_high);
12203 child = sibling_die (child);
12208 *highpc = best_high;
12211 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12215 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12216 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12218 struct objfile *objfile = cu->objfile;
12219 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12220 struct attribute *attr;
12221 struct attribute *attr_high;
12223 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12226 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12229 CORE_ADDR low = attr_value_as_address (attr);
12230 CORE_ADDR high = attr_value_as_address (attr_high);
12232 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12235 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12236 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12237 record_block_range (block, low, high - 1);
12241 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12244 bfd *obfd = objfile->obfd;
12245 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12246 We take advantage of the fact that DW_AT_ranges does not appear
12247 in DW_TAG_compile_unit of DWO files. */
12248 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12250 /* The value of the DW_AT_ranges attribute is the offset of the
12251 address range list in the .debug_ranges section. */
12252 unsigned long offset = (DW_UNSND (attr)
12253 + (need_ranges_base ? cu->ranges_base : 0));
12254 const gdb_byte *buffer;
12256 /* For some target architectures, but not others, the
12257 read_address function sign-extends the addresses it returns.
12258 To recognize base address selection entries, we need a
12260 unsigned int addr_size = cu->header.addr_size;
12261 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12263 /* The base address, to which the next pair is relative. Note
12264 that this 'base' is a DWARF concept: most entries in a range
12265 list are relative, to reduce the number of relocs against the
12266 debugging information. This is separate from this function's
12267 'baseaddr' argument, which GDB uses to relocate debugging
12268 information from a shared library based on the address at
12269 which the library was loaded. */
12270 CORE_ADDR base = cu->base_address;
12271 int base_known = cu->base_known;
12273 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12274 if (offset >= dwarf2_per_objfile->ranges.size)
12276 complaint (&symfile_complaints,
12277 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12281 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12285 unsigned int bytes_read;
12286 CORE_ADDR start, end;
12288 start = read_address (obfd, buffer, cu, &bytes_read);
12289 buffer += bytes_read;
12290 end = read_address (obfd, buffer, cu, &bytes_read);
12291 buffer += bytes_read;
12293 /* Did we find the end of the range list? */
12294 if (start == 0 && end == 0)
12297 /* Did we find a base address selection entry? */
12298 else if ((start & base_select_mask) == base_select_mask)
12304 /* We found an ordinary address range. */
12309 complaint (&symfile_complaints,
12310 _("Invalid .debug_ranges data "
12311 "(no base address)"));
12317 /* Inverted range entries are invalid. */
12318 complaint (&symfile_complaints,
12319 _("Invalid .debug_ranges data "
12320 "(inverted range)"));
12324 /* Empty range entries have no effect. */
12328 start += base + baseaddr;
12329 end += base + baseaddr;
12331 /* A not-uncommon case of bad debug info.
12332 Don't pollute the addrmap with bad data. */
12333 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12335 complaint (&symfile_complaints,
12336 _(".debug_ranges entry has start address of zero"
12337 " [in module %s]"), objfile_name (objfile));
12341 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12342 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12343 record_block_range (block, start, end - 1);
12349 /* Check whether the producer field indicates either of GCC < 4.6, or the
12350 Intel C/C++ compiler, and cache the result in CU. */
12353 check_producer (struct dwarf2_cu *cu)
12358 if (cu->producer == NULL)
12360 /* For unknown compilers expect their behavior is DWARF version
12363 GCC started to support .debug_types sections by -gdwarf-4 since
12364 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12365 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12366 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12367 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12369 else if (producer_is_gcc (cu->producer, &major, &minor))
12371 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12372 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12374 else if (startswith (cu->producer, "Intel(R) C"))
12375 cu->producer_is_icc = 1;
12378 /* For other non-GCC compilers, expect their behavior is DWARF version
12382 cu->checked_producer = 1;
12385 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12386 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12387 during 4.6.0 experimental. */
12390 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12392 if (!cu->checked_producer)
12393 check_producer (cu);
12395 return cu->producer_is_gxx_lt_4_6;
12398 /* Return the default accessibility type if it is not overriden by
12399 DW_AT_accessibility. */
12401 static enum dwarf_access_attribute
12402 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12404 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12406 /* The default DWARF 2 accessibility for members is public, the default
12407 accessibility for inheritance is private. */
12409 if (die->tag != DW_TAG_inheritance)
12410 return DW_ACCESS_public;
12412 return DW_ACCESS_private;
12416 /* DWARF 3+ defines the default accessibility a different way. The same
12417 rules apply now for DW_TAG_inheritance as for the members and it only
12418 depends on the container kind. */
12420 if (die->parent->tag == DW_TAG_class_type)
12421 return DW_ACCESS_private;
12423 return DW_ACCESS_public;
12427 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12428 offset. If the attribute was not found return 0, otherwise return
12429 1. If it was found but could not properly be handled, set *OFFSET
12433 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12436 struct attribute *attr;
12438 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12443 /* Note that we do not check for a section offset first here.
12444 This is because DW_AT_data_member_location is new in DWARF 4,
12445 so if we see it, we can assume that a constant form is really
12446 a constant and not a section offset. */
12447 if (attr_form_is_constant (attr))
12448 *offset = dwarf2_get_attr_constant_value (attr, 0);
12449 else if (attr_form_is_section_offset (attr))
12450 dwarf2_complex_location_expr_complaint ();
12451 else if (attr_form_is_block (attr))
12452 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12454 dwarf2_complex_location_expr_complaint ();
12462 /* Add an aggregate field to the field list. */
12465 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12466 struct dwarf2_cu *cu)
12468 struct objfile *objfile = cu->objfile;
12469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12470 struct nextfield *new_field;
12471 struct attribute *attr;
12473 const char *fieldname = "";
12475 /* Allocate a new field list entry and link it in. */
12476 new_field = XNEW (struct nextfield);
12477 make_cleanup (xfree, new_field);
12478 memset (new_field, 0, sizeof (struct nextfield));
12480 if (die->tag == DW_TAG_inheritance)
12482 new_field->next = fip->baseclasses;
12483 fip->baseclasses = new_field;
12487 new_field->next = fip->fields;
12488 fip->fields = new_field;
12492 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12494 new_field->accessibility = DW_UNSND (attr);
12496 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12497 if (new_field->accessibility != DW_ACCESS_public)
12498 fip->non_public_fields = 1;
12500 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12502 new_field->virtuality = DW_UNSND (attr);
12504 new_field->virtuality = DW_VIRTUALITY_none;
12506 fp = &new_field->field;
12508 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12512 /* Data member other than a C++ static data member. */
12514 /* Get type of field. */
12515 fp->type = die_type (die, cu);
12517 SET_FIELD_BITPOS (*fp, 0);
12519 /* Get bit size of field (zero if none). */
12520 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12523 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12527 FIELD_BITSIZE (*fp) = 0;
12530 /* Get bit offset of field. */
12531 if (handle_data_member_location (die, cu, &offset))
12532 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12533 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12536 if (gdbarch_bits_big_endian (gdbarch))
12538 /* For big endian bits, the DW_AT_bit_offset gives the
12539 additional bit offset from the MSB of the containing
12540 anonymous object to the MSB of the field. We don't
12541 have to do anything special since we don't need to
12542 know the size of the anonymous object. */
12543 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12547 /* For little endian bits, compute the bit offset to the
12548 MSB of the anonymous object, subtract off the number of
12549 bits from the MSB of the field to the MSB of the
12550 object, and then subtract off the number of bits of
12551 the field itself. The result is the bit offset of
12552 the LSB of the field. */
12553 int anonymous_size;
12554 int bit_offset = DW_UNSND (attr);
12556 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12559 /* The size of the anonymous object containing
12560 the bit field is explicit, so use the
12561 indicated size (in bytes). */
12562 anonymous_size = DW_UNSND (attr);
12566 /* The size of the anonymous object containing
12567 the bit field must be inferred from the type
12568 attribute of the data member containing the
12570 anonymous_size = TYPE_LENGTH (fp->type);
12572 SET_FIELD_BITPOS (*fp,
12573 (FIELD_BITPOS (*fp)
12574 + anonymous_size * bits_per_byte
12575 - bit_offset - FIELD_BITSIZE (*fp)));
12579 /* Get name of field. */
12580 fieldname = dwarf2_name (die, cu);
12581 if (fieldname == NULL)
12584 /* The name is already allocated along with this objfile, so we don't
12585 need to duplicate it for the type. */
12586 fp->name = fieldname;
12588 /* Change accessibility for artificial fields (e.g. virtual table
12589 pointer or virtual base class pointer) to private. */
12590 if (dwarf2_attr (die, DW_AT_artificial, cu))
12592 FIELD_ARTIFICIAL (*fp) = 1;
12593 new_field->accessibility = DW_ACCESS_private;
12594 fip->non_public_fields = 1;
12597 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12599 /* C++ static member. */
12601 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12602 is a declaration, but all versions of G++ as of this writing
12603 (so through at least 3.2.1) incorrectly generate
12604 DW_TAG_variable tags. */
12606 const char *physname;
12608 /* Get name of field. */
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12615 /* Only create a symbol if this is an external value.
12616 new_symbol checks this and puts the value in the global symbol
12617 table, which we want. If it is not external, new_symbol
12618 will try to put the value in cu->list_in_scope which is wrong. */
12619 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12621 /* A static const member, not much different than an enum as far as
12622 we're concerned, except that we can support more types. */
12623 new_symbol (die, NULL, cu);
12626 /* Get physical name. */
12627 physname = dwarf2_physname (fieldname, die, cu);
12629 /* The name is already allocated along with this objfile, so we don't
12630 need to duplicate it for the type. */
12631 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12632 FIELD_TYPE (*fp) = die_type (die, cu);
12633 FIELD_NAME (*fp) = fieldname;
12635 else if (die->tag == DW_TAG_inheritance)
12639 /* C++ base class field. */
12640 if (handle_data_member_location (die, cu, &offset))
12641 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12642 FIELD_BITSIZE (*fp) = 0;
12643 FIELD_TYPE (*fp) = die_type (die, cu);
12644 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12645 fip->nbaseclasses++;
12649 /* Add a typedef defined in the scope of the FIP's class. */
12652 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12653 struct dwarf2_cu *cu)
12655 struct objfile *objfile = cu->objfile;
12656 struct typedef_field_list *new_field;
12657 struct attribute *attr;
12658 struct typedef_field *fp;
12659 char *fieldname = "";
12661 /* Allocate a new field list entry and link it in. */
12662 new_field = XCNEW (struct typedef_field_list);
12663 make_cleanup (xfree, new_field);
12665 gdb_assert (die->tag == DW_TAG_typedef);
12667 fp = &new_field->field;
12669 /* Get name of field. */
12670 fp->name = dwarf2_name (die, cu);
12671 if (fp->name == NULL)
12674 fp->type = read_type_die (die, cu);
12676 new_field->next = fip->typedef_field_list;
12677 fip->typedef_field_list = new_field;
12678 fip->typedef_field_list_count++;
12681 /* Create the vector of fields, and attach it to the type. */
12684 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12685 struct dwarf2_cu *cu)
12687 int nfields = fip->nfields;
12689 /* Record the field count, allocate space for the array of fields,
12690 and create blank accessibility bitfields if necessary. */
12691 TYPE_NFIELDS (type) = nfields;
12692 TYPE_FIELDS (type) = (struct field *)
12693 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12694 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12696 if (fip->non_public_fields && cu->language != language_ada)
12698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12700 TYPE_FIELD_PRIVATE_BITS (type) =
12701 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12702 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12704 TYPE_FIELD_PROTECTED_BITS (type) =
12705 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12706 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12708 TYPE_FIELD_IGNORE_BITS (type) =
12709 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12710 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12713 /* If the type has baseclasses, allocate and clear a bit vector for
12714 TYPE_FIELD_VIRTUAL_BITS. */
12715 if (fip->nbaseclasses && cu->language != language_ada)
12717 int num_bytes = B_BYTES (fip->nbaseclasses);
12718 unsigned char *pointer;
12720 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12721 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12722 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12723 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12724 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12727 /* Copy the saved-up fields into the field vector. Start from the head of
12728 the list, adding to the tail of the field array, so that they end up in
12729 the same order in the array in which they were added to the list. */
12730 while (nfields-- > 0)
12732 struct nextfield *fieldp;
12736 fieldp = fip->fields;
12737 fip->fields = fieldp->next;
12741 fieldp = fip->baseclasses;
12742 fip->baseclasses = fieldp->next;
12745 TYPE_FIELD (type, nfields) = fieldp->field;
12746 switch (fieldp->accessibility)
12748 case DW_ACCESS_private:
12749 if (cu->language != language_ada)
12750 SET_TYPE_FIELD_PRIVATE (type, nfields);
12753 case DW_ACCESS_protected:
12754 if (cu->language != language_ada)
12755 SET_TYPE_FIELD_PROTECTED (type, nfields);
12758 case DW_ACCESS_public:
12762 /* Unknown accessibility. Complain and treat it as public. */
12764 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12765 fieldp->accessibility);
12769 if (nfields < fip->nbaseclasses)
12771 switch (fieldp->virtuality)
12773 case DW_VIRTUALITY_virtual:
12774 case DW_VIRTUALITY_pure_virtual:
12775 if (cu->language == language_ada)
12776 error (_("unexpected virtuality in component of Ada type"));
12777 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12784 /* Return true if this member function is a constructor, false
12788 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12790 const char *fieldname;
12791 const char *type_name;
12794 if (die->parent == NULL)
12797 if (die->parent->tag != DW_TAG_structure_type
12798 && die->parent->tag != DW_TAG_union_type
12799 && die->parent->tag != DW_TAG_class_type)
12802 fieldname = dwarf2_name (die, cu);
12803 type_name = dwarf2_name (die->parent, cu);
12804 if (fieldname == NULL || type_name == NULL)
12807 len = strlen (fieldname);
12808 return (strncmp (fieldname, type_name, len) == 0
12809 && (type_name[len] == '\0' || type_name[len] == '<'));
12812 /* Add a member function to the proper fieldlist. */
12815 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12816 struct type *type, struct dwarf2_cu *cu)
12818 struct objfile *objfile = cu->objfile;
12819 struct attribute *attr;
12820 struct fnfieldlist *flp;
12822 struct fn_field *fnp;
12823 const char *fieldname;
12824 struct nextfnfield *new_fnfield;
12825 struct type *this_type;
12826 enum dwarf_access_attribute accessibility;
12828 if (cu->language == language_ada)
12829 error (_("unexpected member function in Ada type"));
12831 /* Get name of member function. */
12832 fieldname = dwarf2_name (die, cu);
12833 if (fieldname == NULL)
12836 /* Look up member function name in fieldlist. */
12837 for (i = 0; i < fip->nfnfields; i++)
12839 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12843 /* Create new list element if necessary. */
12844 if (i < fip->nfnfields)
12845 flp = &fip->fnfieldlists[i];
12848 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12850 fip->fnfieldlists = (struct fnfieldlist *)
12851 xrealloc (fip->fnfieldlists,
12852 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12853 * sizeof (struct fnfieldlist));
12854 if (fip->nfnfields == 0)
12855 make_cleanup (free_current_contents, &fip->fnfieldlists);
12857 flp = &fip->fnfieldlists[fip->nfnfields];
12858 flp->name = fieldname;
12861 i = fip->nfnfields++;
12864 /* Create a new member function field and chain it to the field list
12866 new_fnfield = XNEW (struct nextfnfield);
12867 make_cleanup (xfree, new_fnfield);
12868 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12869 new_fnfield->next = flp->head;
12870 flp->head = new_fnfield;
12873 /* Fill in the member function field info. */
12874 fnp = &new_fnfield->fnfield;
12876 /* Delay processing of the physname until later. */
12877 if (cu->language == language_cplus || cu->language == language_java)
12879 add_to_method_list (type, i, flp->length - 1, fieldname,
12884 const char *physname = dwarf2_physname (fieldname, die, cu);
12885 fnp->physname = physname ? physname : "";
12888 fnp->type = alloc_type (objfile);
12889 this_type = read_type_die (die, cu);
12890 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12892 int nparams = TYPE_NFIELDS (this_type);
12894 /* TYPE is the domain of this method, and THIS_TYPE is the type
12895 of the method itself (TYPE_CODE_METHOD). */
12896 smash_to_method_type (fnp->type, type,
12897 TYPE_TARGET_TYPE (this_type),
12898 TYPE_FIELDS (this_type),
12899 TYPE_NFIELDS (this_type),
12900 TYPE_VARARGS (this_type));
12902 /* Handle static member functions.
12903 Dwarf2 has no clean way to discern C++ static and non-static
12904 member functions. G++ helps GDB by marking the first
12905 parameter for non-static member functions (which is the this
12906 pointer) as artificial. We obtain this information from
12907 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12908 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12909 fnp->voffset = VOFFSET_STATIC;
12912 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12913 dwarf2_full_name (fieldname, die, cu));
12915 /* Get fcontext from DW_AT_containing_type if present. */
12916 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12917 fnp->fcontext = die_containing_type (die, cu);
12919 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12920 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12922 /* Get accessibility. */
12923 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12925 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12927 accessibility = dwarf2_default_access_attribute (die, cu);
12928 switch (accessibility)
12930 case DW_ACCESS_private:
12931 fnp->is_private = 1;
12933 case DW_ACCESS_protected:
12934 fnp->is_protected = 1;
12938 /* Check for artificial methods. */
12939 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12940 if (attr && DW_UNSND (attr) != 0)
12941 fnp->is_artificial = 1;
12943 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12945 /* Get index in virtual function table if it is a virtual member
12946 function. For older versions of GCC, this is an offset in the
12947 appropriate virtual table, as specified by DW_AT_containing_type.
12948 For everyone else, it is an expression to be evaluated relative
12949 to the object address. */
12951 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12954 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12956 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12958 /* Old-style GCC. */
12959 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12961 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12962 || (DW_BLOCK (attr)->size > 1
12963 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12964 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12966 struct dwarf_block blk;
12969 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12971 blk.size = DW_BLOCK (attr)->size - offset;
12972 blk.data = DW_BLOCK (attr)->data + offset;
12973 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12974 if ((fnp->voffset % cu->header.addr_size) != 0)
12975 dwarf2_complex_location_expr_complaint ();
12977 fnp->voffset /= cu->header.addr_size;
12981 dwarf2_complex_location_expr_complaint ();
12983 if (!fnp->fcontext)
12985 /* If there is no `this' field and no DW_AT_containing_type,
12986 we cannot actually find a base class context for the
12988 if (TYPE_NFIELDS (this_type) == 0
12989 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12991 complaint (&symfile_complaints,
12992 _("cannot determine context for virtual member "
12993 "function \"%s\" (offset %d)"),
12994 fieldname, die->offset.sect_off);
12999 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13003 else if (attr_form_is_section_offset (attr))
13005 dwarf2_complex_location_expr_complaint ();
13009 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13015 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13016 if (attr && DW_UNSND (attr))
13018 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13019 complaint (&symfile_complaints,
13020 _("Member function \"%s\" (offset %d) is virtual "
13021 "but the vtable offset is not specified"),
13022 fieldname, die->offset.sect_off);
13023 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13024 TYPE_CPLUS_DYNAMIC (type) = 1;
13029 /* Create the vector of member function fields, and attach it to the type. */
13032 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13033 struct dwarf2_cu *cu)
13035 struct fnfieldlist *flp;
13038 if (cu->language == language_ada)
13039 error (_("unexpected member functions in Ada type"));
13041 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13042 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13043 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13045 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13047 struct nextfnfield *nfp = flp->head;
13048 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13051 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13052 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13053 fn_flp->fn_fields = (struct fn_field *)
13054 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13055 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13056 fn_flp->fn_fields[k] = nfp->fnfield;
13059 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13062 /* Returns non-zero if NAME is the name of a vtable member in CU's
13063 language, zero otherwise. */
13065 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13067 static const char vptr[] = "_vptr";
13068 static const char vtable[] = "vtable";
13070 /* Look for the C++ and Java forms of the vtable. */
13071 if ((cu->language == language_java
13072 && startswith (name, vtable))
13073 || (startswith (name, vptr)
13074 && is_cplus_marker (name[sizeof (vptr) - 1])))
13080 /* GCC outputs unnamed structures that are really pointers to member
13081 functions, with the ABI-specified layout. If TYPE describes
13082 such a structure, smash it into a member function type.
13084 GCC shouldn't do this; it should just output pointer to member DIEs.
13085 This is GCC PR debug/28767. */
13088 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13090 struct type *pfn_type, *self_type, *new_type;
13092 /* Check for a structure with no name and two children. */
13093 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13096 /* Check for __pfn and __delta members. */
13097 if (TYPE_FIELD_NAME (type, 0) == NULL
13098 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13099 || TYPE_FIELD_NAME (type, 1) == NULL
13100 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13103 /* Find the type of the method. */
13104 pfn_type = TYPE_FIELD_TYPE (type, 0);
13105 if (pfn_type == NULL
13106 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13107 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13110 /* Look for the "this" argument. */
13111 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13112 if (TYPE_NFIELDS (pfn_type) == 0
13113 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13114 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13117 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13118 new_type = alloc_type (objfile);
13119 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13120 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13121 TYPE_VARARGS (pfn_type));
13122 smash_to_methodptr_type (type, new_type);
13125 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13129 producer_is_icc (struct dwarf2_cu *cu)
13131 if (!cu->checked_producer)
13132 check_producer (cu);
13134 return cu->producer_is_icc;
13137 /* Called when we find the DIE that starts a structure or union scope
13138 (definition) to create a type for the structure or union. Fill in
13139 the type's name and general properties; the members will not be
13140 processed until process_structure_scope. A symbol table entry for
13141 the type will also not be done until process_structure_scope (assuming
13142 the type has a name).
13144 NOTE: we need to call these functions regardless of whether or not the
13145 DIE has a DW_AT_name attribute, since it might be an anonymous
13146 structure or union. This gets the type entered into our set of
13147 user defined types. */
13149 static struct type *
13150 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13152 struct objfile *objfile = cu->objfile;
13154 struct attribute *attr;
13157 /* If the definition of this type lives in .debug_types, read that type.
13158 Don't follow DW_AT_specification though, that will take us back up
13159 the chain and we want to go down. */
13160 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13163 type = get_DW_AT_signature_type (die, attr, cu);
13165 /* The type's CU may not be the same as CU.
13166 Ensure TYPE is recorded with CU in die_type_hash. */
13167 return set_die_type (die, type, cu);
13170 type = alloc_type (objfile);
13171 INIT_CPLUS_SPECIFIC (type);
13173 name = dwarf2_name (die, cu);
13176 if (cu->language == language_cplus
13177 || cu->language == language_java
13178 || cu->language == language_d)
13180 const char *full_name = dwarf2_full_name (name, die, cu);
13182 /* dwarf2_full_name might have already finished building the DIE's
13183 type. If so, there is no need to continue. */
13184 if (get_die_type (die, cu) != NULL)
13185 return get_die_type (die, cu);
13187 TYPE_TAG_NAME (type) = full_name;
13188 if (die->tag == DW_TAG_structure_type
13189 || die->tag == DW_TAG_class_type)
13190 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13194 /* The name is already allocated along with this objfile, so
13195 we don't need to duplicate it for the type. */
13196 TYPE_TAG_NAME (type) = name;
13197 if (die->tag == DW_TAG_class_type)
13198 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13202 if (die->tag == DW_TAG_structure_type)
13204 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13206 else if (die->tag == DW_TAG_union_type)
13208 TYPE_CODE (type) = TYPE_CODE_UNION;
13212 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13215 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13216 TYPE_DECLARED_CLASS (type) = 1;
13218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13221 TYPE_LENGTH (type) = DW_UNSND (attr);
13225 TYPE_LENGTH (type) = 0;
13228 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13230 /* ICC does not output the required DW_AT_declaration
13231 on incomplete types, but gives them a size of zero. */
13232 TYPE_STUB (type) = 1;
13235 TYPE_STUB_SUPPORTED (type) = 1;
13237 if (die_is_declaration (die, cu))
13238 TYPE_STUB (type) = 1;
13239 else if (attr == NULL && die->child == NULL
13240 && producer_is_realview (cu->producer))
13241 /* RealView does not output the required DW_AT_declaration
13242 on incomplete types. */
13243 TYPE_STUB (type) = 1;
13245 /* We need to add the type field to the die immediately so we don't
13246 infinitely recurse when dealing with pointers to the structure
13247 type within the structure itself. */
13248 set_die_type (die, type, cu);
13250 /* set_die_type should be already done. */
13251 set_descriptive_type (type, die, cu);
13256 /* Finish creating a structure or union type, including filling in
13257 its members and creating a symbol for it. */
13260 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13262 struct objfile *objfile = cu->objfile;
13263 struct die_info *child_die;
13266 type = get_die_type (die, cu);
13268 type = read_structure_type (die, cu);
13270 if (die->child != NULL && ! die_is_declaration (die, cu))
13272 struct field_info fi;
13273 VEC (symbolp) *template_args = NULL;
13274 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13276 memset (&fi, 0, sizeof (struct field_info));
13278 child_die = die->child;
13280 while (child_die && child_die->tag)
13282 if (child_die->tag == DW_TAG_member
13283 || child_die->tag == DW_TAG_variable)
13285 /* NOTE: carlton/2002-11-05: A C++ static data member
13286 should be a DW_TAG_member that is a declaration, but
13287 all versions of G++ as of this writing (so through at
13288 least 3.2.1) incorrectly generate DW_TAG_variable
13289 tags for them instead. */
13290 dwarf2_add_field (&fi, child_die, cu);
13292 else if (child_die->tag == DW_TAG_subprogram)
13294 /* C++ member function. */
13295 dwarf2_add_member_fn (&fi, child_die, type, cu);
13297 else if (child_die->tag == DW_TAG_inheritance)
13299 /* C++ base class field. */
13300 dwarf2_add_field (&fi, child_die, cu);
13302 else if (child_die->tag == DW_TAG_typedef)
13303 dwarf2_add_typedef (&fi, child_die, cu);
13304 else if (child_die->tag == DW_TAG_template_type_param
13305 || child_die->tag == DW_TAG_template_value_param)
13307 struct symbol *arg = new_symbol (child_die, NULL, cu);
13310 VEC_safe_push (symbolp, template_args, arg);
13313 child_die = sibling_die (child_die);
13316 /* Attach template arguments to type. */
13317 if (! VEC_empty (symbolp, template_args))
13319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13320 TYPE_N_TEMPLATE_ARGUMENTS (type)
13321 = VEC_length (symbolp, template_args);
13322 TYPE_TEMPLATE_ARGUMENTS (type)
13323 = XOBNEWVEC (&objfile->objfile_obstack,
13325 TYPE_N_TEMPLATE_ARGUMENTS (type));
13326 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13327 VEC_address (symbolp, template_args),
13328 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13329 * sizeof (struct symbol *)));
13330 VEC_free (symbolp, template_args);
13333 /* Attach fields and member functions to the type. */
13335 dwarf2_attach_fields_to_type (&fi, type, cu);
13338 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13340 /* Get the type which refers to the base class (possibly this
13341 class itself) which contains the vtable pointer for the current
13342 class from the DW_AT_containing_type attribute. This use of
13343 DW_AT_containing_type is a GNU extension. */
13345 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13347 struct type *t = die_containing_type (die, cu);
13349 set_type_vptr_basetype (type, t);
13354 /* Our own class provides vtbl ptr. */
13355 for (i = TYPE_NFIELDS (t) - 1;
13356 i >= TYPE_N_BASECLASSES (t);
13359 const char *fieldname = TYPE_FIELD_NAME (t, i);
13361 if (is_vtable_name (fieldname, cu))
13363 set_type_vptr_fieldno (type, i);
13368 /* Complain if virtual function table field not found. */
13369 if (i < TYPE_N_BASECLASSES (t))
13370 complaint (&symfile_complaints,
13371 _("virtual function table pointer "
13372 "not found when defining class '%s'"),
13373 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13378 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13381 else if (cu->producer
13382 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13384 /* The IBM XLC compiler does not provide direct indication
13385 of the containing type, but the vtable pointer is
13386 always named __vfp. */
13390 for (i = TYPE_NFIELDS (type) - 1;
13391 i >= TYPE_N_BASECLASSES (type);
13394 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13396 set_type_vptr_fieldno (type, i);
13397 set_type_vptr_basetype (type, type);
13404 /* Copy fi.typedef_field_list linked list elements content into the
13405 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13406 if (fi.typedef_field_list)
13408 int i = fi.typedef_field_list_count;
13410 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13411 TYPE_TYPEDEF_FIELD_ARRAY (type)
13412 = ((struct typedef_field *)
13413 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13414 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13416 /* Reverse the list order to keep the debug info elements order. */
13419 struct typedef_field *dest, *src;
13421 dest = &TYPE_TYPEDEF_FIELD (type, i);
13422 src = &fi.typedef_field_list->field;
13423 fi.typedef_field_list = fi.typedef_field_list->next;
13428 do_cleanups (back_to);
13430 if (HAVE_CPLUS_STRUCT (type))
13431 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13434 quirk_gcc_member_function_pointer (type, objfile);
13436 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13437 snapshots) has been known to create a die giving a declaration
13438 for a class that has, as a child, a die giving a definition for a
13439 nested class. So we have to process our children even if the
13440 current die is a declaration. Normally, of course, a declaration
13441 won't have any children at all. */
13443 child_die = die->child;
13445 while (child_die != NULL && child_die->tag)
13447 if (child_die->tag == DW_TAG_member
13448 || child_die->tag == DW_TAG_variable
13449 || child_die->tag == DW_TAG_inheritance
13450 || child_die->tag == DW_TAG_template_value_param
13451 || child_die->tag == DW_TAG_template_type_param)
13456 process_die (child_die, cu);
13458 child_die = sibling_die (child_die);
13461 /* Do not consider external references. According to the DWARF standard,
13462 these DIEs are identified by the fact that they have no byte_size
13463 attribute, and a declaration attribute. */
13464 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13465 || !die_is_declaration (die, cu))
13466 new_symbol (die, type, cu);
13469 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13470 update TYPE using some information only available in DIE's children. */
13473 update_enumeration_type_from_children (struct die_info *die,
13475 struct dwarf2_cu *cu)
13477 struct obstack obstack;
13478 struct die_info *child_die;
13479 int unsigned_enum = 1;
13482 struct cleanup *old_chain;
13484 obstack_init (&obstack);
13485 old_chain = make_cleanup_obstack_free (&obstack);
13487 for (child_die = die->child;
13488 child_die != NULL && child_die->tag;
13489 child_die = sibling_die (child_die))
13491 struct attribute *attr;
13493 const gdb_byte *bytes;
13494 struct dwarf2_locexpr_baton *baton;
13497 if (child_die->tag != DW_TAG_enumerator)
13500 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13504 name = dwarf2_name (child_die, cu);
13506 name = "<anonymous enumerator>";
13508 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13509 &value, &bytes, &baton);
13515 else if ((mask & value) != 0)
13520 /* If we already know that the enum type is neither unsigned, nor
13521 a flag type, no need to look at the rest of the enumerates. */
13522 if (!unsigned_enum && !flag_enum)
13527 TYPE_UNSIGNED (type) = 1;
13529 TYPE_FLAG_ENUM (type) = 1;
13531 do_cleanups (old_chain);
13534 /* Given a DW_AT_enumeration_type die, set its type. We do not
13535 complete the type's fields yet, or create any symbols. */
13537 static struct type *
13538 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13540 struct objfile *objfile = cu->objfile;
13542 struct attribute *attr;
13545 /* If the definition of this type lives in .debug_types, read that type.
13546 Don't follow DW_AT_specification though, that will take us back up
13547 the chain and we want to go down. */
13548 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13551 type = get_DW_AT_signature_type (die, attr, cu);
13553 /* The type's CU may not be the same as CU.
13554 Ensure TYPE is recorded with CU in die_type_hash. */
13555 return set_die_type (die, type, cu);
13558 type = alloc_type (objfile);
13560 TYPE_CODE (type) = TYPE_CODE_ENUM;
13561 name = dwarf2_full_name (NULL, die, cu);
13563 TYPE_TAG_NAME (type) = name;
13565 attr = dwarf2_attr (die, DW_AT_type, cu);
13568 struct type *underlying_type = die_type (die, cu);
13570 TYPE_TARGET_TYPE (type) = underlying_type;
13573 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13576 TYPE_LENGTH (type) = DW_UNSND (attr);
13580 TYPE_LENGTH (type) = 0;
13583 /* The enumeration DIE can be incomplete. In Ada, any type can be
13584 declared as private in the package spec, and then defined only
13585 inside the package body. Such types are known as Taft Amendment
13586 Types. When another package uses such a type, an incomplete DIE
13587 may be generated by the compiler. */
13588 if (die_is_declaration (die, cu))
13589 TYPE_STUB (type) = 1;
13591 /* Finish the creation of this type by using the enum's children.
13592 We must call this even when the underlying type has been provided
13593 so that we can determine if we're looking at a "flag" enum. */
13594 update_enumeration_type_from_children (die, type, cu);
13596 /* If this type has an underlying type that is not a stub, then we
13597 may use its attributes. We always use the "unsigned" attribute
13598 in this situation, because ordinarily we guess whether the type
13599 is unsigned -- but the guess can be wrong and the underlying type
13600 can tell us the reality. However, we defer to a local size
13601 attribute if one exists, because this lets the compiler override
13602 the underlying type if needed. */
13603 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13605 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13606 if (TYPE_LENGTH (type) == 0)
13607 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13610 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13612 return set_die_type (die, type, cu);
13615 /* Given a pointer to a die which begins an enumeration, process all
13616 the dies that define the members of the enumeration, and create the
13617 symbol for the enumeration type.
13619 NOTE: We reverse the order of the element list. */
13622 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13624 struct type *this_type;
13626 this_type = get_die_type (die, cu);
13627 if (this_type == NULL)
13628 this_type = read_enumeration_type (die, cu);
13630 if (die->child != NULL)
13632 struct die_info *child_die;
13633 struct symbol *sym;
13634 struct field *fields = NULL;
13635 int num_fields = 0;
13638 child_die = die->child;
13639 while (child_die && child_die->tag)
13641 if (child_die->tag != DW_TAG_enumerator)
13643 process_die (child_die, cu);
13647 name = dwarf2_name (child_die, cu);
13650 sym = new_symbol (child_die, this_type, cu);
13652 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13654 fields = (struct field *)
13656 (num_fields + DW_FIELD_ALLOC_CHUNK)
13657 * sizeof (struct field));
13660 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13661 FIELD_TYPE (fields[num_fields]) = NULL;
13662 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13663 FIELD_BITSIZE (fields[num_fields]) = 0;
13669 child_die = sibling_die (child_die);
13674 TYPE_NFIELDS (this_type) = num_fields;
13675 TYPE_FIELDS (this_type) = (struct field *)
13676 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13677 memcpy (TYPE_FIELDS (this_type), fields,
13678 sizeof (struct field) * num_fields);
13683 /* If we are reading an enum from a .debug_types unit, and the enum
13684 is a declaration, and the enum is not the signatured type in the
13685 unit, then we do not want to add a symbol for it. Adding a
13686 symbol would in some cases obscure the true definition of the
13687 enum, giving users an incomplete type when the definition is
13688 actually available. Note that we do not want to do this for all
13689 enums which are just declarations, because C++0x allows forward
13690 enum declarations. */
13691 if (cu->per_cu->is_debug_types
13692 && die_is_declaration (die, cu))
13694 struct signatured_type *sig_type;
13696 sig_type = (struct signatured_type *) cu->per_cu;
13697 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13698 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13702 new_symbol (die, this_type, cu);
13705 /* Extract all information from a DW_TAG_array_type DIE and put it in
13706 the DIE's type field. For now, this only handles one dimensional
13709 static struct type *
13710 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13712 struct objfile *objfile = cu->objfile;
13713 struct die_info *child_die;
13715 struct type *element_type, *range_type, *index_type;
13716 struct type **range_types = NULL;
13717 struct attribute *attr;
13719 struct cleanup *back_to;
13721 unsigned int bit_stride = 0;
13723 element_type = die_type (die, cu);
13725 /* The die_type call above may have already set the type for this DIE. */
13726 type = get_die_type (die, cu);
13730 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13732 bit_stride = DW_UNSND (attr) * 8;
13734 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13736 bit_stride = DW_UNSND (attr);
13738 /* Irix 6.2 native cc creates array types without children for
13739 arrays with unspecified length. */
13740 if (die->child == NULL)
13742 index_type = objfile_type (objfile)->builtin_int;
13743 range_type = create_static_range_type (NULL, index_type, 0, -1);
13744 type = create_array_type_with_stride (NULL, element_type, range_type,
13746 return set_die_type (die, type, cu);
13749 back_to = make_cleanup (null_cleanup, NULL);
13750 child_die = die->child;
13751 while (child_die && child_die->tag)
13753 if (child_die->tag == DW_TAG_subrange_type)
13755 struct type *child_type = read_type_die (child_die, cu);
13757 if (child_type != NULL)
13759 /* The range type was succesfully read. Save it for the
13760 array type creation. */
13761 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13763 range_types = (struct type **)
13764 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13765 * sizeof (struct type *));
13767 make_cleanup (free_current_contents, &range_types);
13769 range_types[ndim++] = child_type;
13772 child_die = sibling_die (child_die);
13775 /* Dwarf2 dimensions are output from left to right, create the
13776 necessary array types in backwards order. */
13778 type = element_type;
13780 if (read_array_order (die, cu) == DW_ORD_col_major)
13785 type = create_array_type_with_stride (NULL, type, range_types[i++],
13791 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13795 /* Understand Dwarf2 support for vector types (like they occur on
13796 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13797 array type. This is not part of the Dwarf2/3 standard yet, but a
13798 custom vendor extension. The main difference between a regular
13799 array and the vector variant is that vectors are passed by value
13801 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13803 make_vector_type (type);
13805 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13806 implementation may choose to implement triple vectors using this
13808 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13811 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13812 TYPE_LENGTH (type) = DW_UNSND (attr);
13814 complaint (&symfile_complaints,
13815 _("DW_AT_byte_size for array type smaller "
13816 "than the total size of elements"));
13819 name = dwarf2_name (die, cu);
13821 TYPE_NAME (type) = name;
13823 /* Install the type in the die. */
13824 set_die_type (die, type, cu);
13826 /* set_die_type should be already done. */
13827 set_descriptive_type (type, die, cu);
13829 do_cleanups (back_to);
13834 static enum dwarf_array_dim_ordering
13835 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13837 struct attribute *attr;
13839 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13842 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13844 /* GNU F77 is a special case, as at 08/2004 array type info is the
13845 opposite order to the dwarf2 specification, but data is still
13846 laid out as per normal fortran.
13848 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13849 version checking. */
13851 if (cu->language == language_fortran
13852 && cu->producer && strstr (cu->producer, "GNU F77"))
13854 return DW_ORD_row_major;
13857 switch (cu->language_defn->la_array_ordering)
13859 case array_column_major:
13860 return DW_ORD_col_major;
13861 case array_row_major:
13863 return DW_ORD_row_major;
13867 /* Extract all information from a DW_TAG_set_type DIE and put it in
13868 the DIE's type field. */
13870 static struct type *
13871 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13873 struct type *domain_type, *set_type;
13874 struct attribute *attr;
13876 domain_type = die_type (die, cu);
13878 /* The die_type call above may have already set the type for this DIE. */
13879 set_type = get_die_type (die, cu);
13883 set_type = create_set_type (NULL, domain_type);
13885 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13887 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13889 return set_die_type (die, set_type, cu);
13892 /* A helper for read_common_block that creates a locexpr baton.
13893 SYM is the symbol which we are marking as computed.
13894 COMMON_DIE is the DIE for the common block.
13895 COMMON_LOC is the location expression attribute for the common
13897 MEMBER_LOC is the location expression attribute for the particular
13898 member of the common block that we are processing.
13899 CU is the CU from which the above come. */
13902 mark_common_block_symbol_computed (struct symbol *sym,
13903 struct die_info *common_die,
13904 struct attribute *common_loc,
13905 struct attribute *member_loc,
13906 struct dwarf2_cu *cu)
13908 struct objfile *objfile = dwarf2_per_objfile->objfile;
13909 struct dwarf2_locexpr_baton *baton;
13911 unsigned int cu_off;
13912 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13913 LONGEST offset = 0;
13915 gdb_assert (common_loc && member_loc);
13916 gdb_assert (attr_form_is_block (common_loc));
13917 gdb_assert (attr_form_is_block (member_loc)
13918 || attr_form_is_constant (member_loc));
13920 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13921 baton->per_cu = cu->per_cu;
13922 gdb_assert (baton->per_cu);
13924 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13926 if (attr_form_is_constant (member_loc))
13928 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13929 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13932 baton->size += DW_BLOCK (member_loc)->size;
13934 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13937 *ptr++ = DW_OP_call4;
13938 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13939 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13942 if (attr_form_is_constant (member_loc))
13944 *ptr++ = DW_OP_addr;
13945 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13946 ptr += cu->header.addr_size;
13950 /* We have to copy the data here, because DW_OP_call4 will only
13951 use a DW_AT_location attribute. */
13952 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13953 ptr += DW_BLOCK (member_loc)->size;
13956 *ptr++ = DW_OP_plus;
13957 gdb_assert (ptr - baton->data == baton->size);
13959 SYMBOL_LOCATION_BATON (sym) = baton;
13960 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13963 /* Create appropriate locally-scoped variables for all the
13964 DW_TAG_common_block entries. Also create a struct common_block
13965 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13966 is used to sepate the common blocks name namespace from regular
13970 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13972 struct attribute *attr;
13974 attr = dwarf2_attr (die, DW_AT_location, cu);
13977 /* Support the .debug_loc offsets. */
13978 if (attr_form_is_block (attr))
13982 else if (attr_form_is_section_offset (attr))
13984 dwarf2_complex_location_expr_complaint ();
13989 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13990 "common block member");
13995 if (die->child != NULL)
13997 struct objfile *objfile = cu->objfile;
13998 struct die_info *child_die;
13999 size_t n_entries = 0, size;
14000 struct common_block *common_block;
14001 struct symbol *sym;
14003 for (child_die = die->child;
14004 child_die && child_die->tag;
14005 child_die = sibling_die (child_die))
14008 size = (sizeof (struct common_block)
14009 + (n_entries - 1) * sizeof (struct symbol *));
14011 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14013 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14014 common_block->n_entries = 0;
14016 for (child_die = die->child;
14017 child_die && child_die->tag;
14018 child_die = sibling_die (child_die))
14020 /* Create the symbol in the DW_TAG_common_block block in the current
14022 sym = new_symbol (child_die, NULL, cu);
14025 struct attribute *member_loc;
14027 common_block->contents[common_block->n_entries++] = sym;
14029 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14033 /* GDB has handled this for a long time, but it is
14034 not specified by DWARF. It seems to have been
14035 emitted by gfortran at least as recently as:
14036 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14037 complaint (&symfile_complaints,
14038 _("Variable in common block has "
14039 "DW_AT_data_member_location "
14040 "- DIE at 0x%x [in module %s]"),
14041 child_die->offset.sect_off,
14042 objfile_name (cu->objfile));
14044 if (attr_form_is_section_offset (member_loc))
14045 dwarf2_complex_location_expr_complaint ();
14046 else if (attr_form_is_constant (member_loc)
14047 || attr_form_is_block (member_loc))
14050 mark_common_block_symbol_computed (sym, die, attr,
14054 dwarf2_complex_location_expr_complaint ();
14059 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14060 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14064 /* Create a type for a C++ namespace. */
14066 static struct type *
14067 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14069 struct objfile *objfile = cu->objfile;
14070 const char *previous_prefix, *name;
14074 /* For extensions, reuse the type of the original namespace. */
14075 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14077 struct die_info *ext_die;
14078 struct dwarf2_cu *ext_cu = cu;
14080 ext_die = dwarf2_extension (die, &ext_cu);
14081 type = read_type_die (ext_die, ext_cu);
14083 /* EXT_CU may not be the same as CU.
14084 Ensure TYPE is recorded with CU in die_type_hash. */
14085 return set_die_type (die, type, cu);
14088 name = namespace_name (die, &is_anonymous, cu);
14090 /* Now build the name of the current namespace. */
14092 previous_prefix = determine_prefix (die, cu);
14093 if (previous_prefix[0] != '\0')
14094 name = typename_concat (&objfile->objfile_obstack,
14095 previous_prefix, name, 0, cu);
14097 /* Create the type. */
14098 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14100 TYPE_NAME (type) = name;
14101 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14103 return set_die_type (die, type, cu);
14106 /* Read a namespace scope. */
14109 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14111 struct objfile *objfile = cu->objfile;
14114 /* Add a symbol associated to this if we haven't seen the namespace
14115 before. Also, add a using directive if it's an anonymous
14118 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14122 type = read_type_die (die, cu);
14123 new_symbol (die, type, cu);
14125 namespace_name (die, &is_anonymous, cu);
14128 const char *previous_prefix = determine_prefix (die, cu);
14130 add_using_directive (using_directives (cu->language),
14131 previous_prefix, TYPE_NAME (type), NULL,
14132 NULL, NULL, 0, &objfile->objfile_obstack);
14136 if (die->child != NULL)
14138 struct die_info *child_die = die->child;
14140 while (child_die && child_die->tag)
14142 process_die (child_die, cu);
14143 child_die = sibling_die (child_die);
14148 /* Read a Fortran module as type. This DIE can be only a declaration used for
14149 imported module. Still we need that type as local Fortran "use ... only"
14150 declaration imports depend on the created type in determine_prefix. */
14152 static struct type *
14153 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14155 struct objfile *objfile = cu->objfile;
14156 const char *module_name;
14159 module_name = dwarf2_name (die, cu);
14161 complaint (&symfile_complaints,
14162 _("DW_TAG_module has no name, offset 0x%x"),
14163 die->offset.sect_off);
14164 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14166 /* determine_prefix uses TYPE_TAG_NAME. */
14167 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14169 return set_die_type (die, type, cu);
14172 /* Read a Fortran module. */
14175 read_module (struct die_info *die, struct dwarf2_cu *cu)
14177 struct die_info *child_die = die->child;
14180 type = read_type_die (die, cu);
14181 new_symbol (die, type, cu);
14183 while (child_die && child_die->tag)
14185 process_die (child_die, cu);
14186 child_die = sibling_die (child_die);
14190 /* Return the name of the namespace represented by DIE. Set
14191 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14194 static const char *
14195 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14197 struct die_info *current_die;
14198 const char *name = NULL;
14200 /* Loop through the extensions until we find a name. */
14202 for (current_die = die;
14203 current_die != NULL;
14204 current_die = dwarf2_extension (die, &cu))
14206 /* We don't use dwarf2_name here so that we can detect the absence
14207 of a name -> anonymous namespace. */
14208 name = dwarf2_string_attr (die, DW_AT_name, cu);
14214 /* Is it an anonymous namespace? */
14216 *is_anonymous = (name == NULL);
14218 name = CP_ANONYMOUS_NAMESPACE_STR;
14223 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14224 the user defined type vector. */
14226 static struct type *
14227 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14229 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14230 struct comp_unit_head *cu_header = &cu->header;
14232 struct attribute *attr_byte_size;
14233 struct attribute *attr_address_class;
14234 int byte_size, addr_class;
14235 struct type *target_type;
14237 target_type = die_type (die, cu);
14239 /* The die_type call above may have already set the type for this DIE. */
14240 type = get_die_type (die, cu);
14244 type = lookup_pointer_type (target_type);
14246 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14247 if (attr_byte_size)
14248 byte_size = DW_UNSND (attr_byte_size);
14250 byte_size = cu_header->addr_size;
14252 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14253 if (attr_address_class)
14254 addr_class = DW_UNSND (attr_address_class);
14256 addr_class = DW_ADDR_none;
14258 /* If the pointer size or address class is different than the
14259 default, create a type variant marked as such and set the
14260 length accordingly. */
14261 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14263 if (gdbarch_address_class_type_flags_p (gdbarch))
14267 type_flags = gdbarch_address_class_type_flags
14268 (gdbarch, byte_size, addr_class);
14269 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14271 type = make_type_with_address_space (type, type_flags);
14273 else if (TYPE_LENGTH (type) != byte_size)
14275 complaint (&symfile_complaints,
14276 _("invalid pointer size %d"), byte_size);
14280 /* Should we also complain about unhandled address classes? */
14284 TYPE_LENGTH (type) = byte_size;
14285 return set_die_type (die, type, cu);
14288 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14289 the user defined type vector. */
14291 static struct type *
14292 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14295 struct type *to_type;
14296 struct type *domain;
14298 to_type = die_type (die, cu);
14299 domain = die_containing_type (die, cu);
14301 /* The calls above may have already set the type for this DIE. */
14302 type = get_die_type (die, cu);
14306 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14307 type = lookup_methodptr_type (to_type);
14308 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14310 struct type *new_type = alloc_type (cu->objfile);
14312 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14313 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14314 TYPE_VARARGS (to_type));
14315 type = lookup_methodptr_type (new_type);
14318 type = lookup_memberptr_type (to_type, domain);
14320 return set_die_type (die, type, cu);
14323 /* Extract all information from a DW_TAG_reference_type DIE and add to
14324 the user defined type vector. */
14326 static struct type *
14327 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14329 struct comp_unit_head *cu_header = &cu->header;
14330 struct type *type, *target_type;
14331 struct attribute *attr;
14333 target_type = die_type (die, cu);
14335 /* The die_type call above may have already set the type for this DIE. */
14336 type = get_die_type (die, cu);
14340 type = lookup_reference_type (target_type);
14341 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14344 TYPE_LENGTH (type) = DW_UNSND (attr);
14348 TYPE_LENGTH (type) = cu_header->addr_size;
14350 return set_die_type (die, type, cu);
14353 /* Add the given cv-qualifiers to the element type of the array. GCC
14354 outputs DWARF type qualifiers that apply to an array, not the
14355 element type. But GDB relies on the array element type to carry
14356 the cv-qualifiers. This mimics section 6.7.3 of the C99
14359 static struct type *
14360 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14361 struct type *base_type, int cnst, int voltl)
14363 struct type *el_type, *inner_array;
14365 base_type = copy_type (base_type);
14366 inner_array = base_type;
14368 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14370 TYPE_TARGET_TYPE (inner_array) =
14371 copy_type (TYPE_TARGET_TYPE (inner_array));
14372 inner_array = TYPE_TARGET_TYPE (inner_array);
14375 el_type = TYPE_TARGET_TYPE (inner_array);
14376 cnst |= TYPE_CONST (el_type);
14377 voltl |= TYPE_VOLATILE (el_type);
14378 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14380 return set_die_type (die, base_type, cu);
14383 static struct type *
14384 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14386 struct type *base_type, *cv_type;
14388 base_type = die_type (die, cu);
14390 /* The die_type call above may have already set the type for this DIE. */
14391 cv_type = get_die_type (die, cu);
14395 /* In case the const qualifier is applied to an array type, the element type
14396 is so qualified, not the array type (section 6.7.3 of C99). */
14397 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14398 return add_array_cv_type (die, cu, base_type, 1, 0);
14400 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14401 return set_die_type (die, cv_type, cu);
14404 static struct type *
14405 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14407 struct type *base_type, *cv_type;
14409 base_type = die_type (die, cu);
14411 /* The die_type call above may have already set the type for this DIE. */
14412 cv_type = get_die_type (die, cu);
14416 /* In case the volatile qualifier is applied to an array type, the
14417 element type is so qualified, not the array type (section 6.7.3
14419 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14420 return add_array_cv_type (die, cu, base_type, 0, 1);
14422 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14423 return set_die_type (die, cv_type, cu);
14426 /* Handle DW_TAG_restrict_type. */
14428 static struct type *
14429 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14431 struct type *base_type, *cv_type;
14433 base_type = die_type (die, cu);
14435 /* The die_type call above may have already set the type for this DIE. */
14436 cv_type = get_die_type (die, cu);
14440 cv_type = make_restrict_type (base_type);
14441 return set_die_type (die, cv_type, cu);
14444 /* Handle DW_TAG_atomic_type. */
14446 static struct type *
14447 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14449 struct type *base_type, *cv_type;
14451 base_type = die_type (die, cu);
14453 /* The die_type call above may have already set the type for this DIE. */
14454 cv_type = get_die_type (die, cu);
14458 cv_type = make_atomic_type (base_type);
14459 return set_die_type (die, cv_type, cu);
14462 /* Extract all information from a DW_TAG_string_type DIE and add to
14463 the user defined type vector. It isn't really a user defined type,
14464 but it behaves like one, with other DIE's using an AT_user_def_type
14465 attribute to reference it. */
14467 static struct type *
14468 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14470 struct objfile *objfile = cu->objfile;
14471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14472 struct type *type, *range_type, *index_type, *char_type;
14473 struct attribute *attr;
14474 unsigned int length;
14476 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14479 length = DW_UNSND (attr);
14483 /* Check for the DW_AT_byte_size attribute. */
14484 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14487 length = DW_UNSND (attr);
14495 index_type = objfile_type (objfile)->builtin_int;
14496 range_type = create_static_range_type (NULL, index_type, 1, length);
14497 char_type = language_string_char_type (cu->language_defn, gdbarch);
14498 type = create_string_type (NULL, char_type, range_type);
14500 return set_die_type (die, type, cu);
14503 /* Assuming that DIE corresponds to a function, returns nonzero
14504 if the function is prototyped. */
14507 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14509 struct attribute *attr;
14511 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14512 if (attr && (DW_UNSND (attr) != 0))
14515 /* The DWARF standard implies that the DW_AT_prototyped attribute
14516 is only meaninful for C, but the concept also extends to other
14517 languages that allow unprototyped functions (Eg: Objective C).
14518 For all other languages, assume that functions are always
14520 if (cu->language != language_c
14521 && cu->language != language_objc
14522 && cu->language != language_opencl)
14525 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14526 prototyped and unprototyped functions; default to prototyped,
14527 since that is more common in modern code (and RealView warns
14528 about unprototyped functions). */
14529 if (producer_is_realview (cu->producer))
14535 /* Handle DIES due to C code like:
14539 int (*funcp)(int a, long l);
14543 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14545 static struct type *
14546 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14548 struct objfile *objfile = cu->objfile;
14549 struct type *type; /* Type that this function returns. */
14550 struct type *ftype; /* Function that returns above type. */
14551 struct attribute *attr;
14553 type = die_type (die, cu);
14555 /* The die_type call above may have already set the type for this DIE. */
14556 ftype = get_die_type (die, cu);
14560 ftype = lookup_function_type (type);
14562 if (prototyped_function_p (die, cu))
14563 TYPE_PROTOTYPED (ftype) = 1;
14565 /* Store the calling convention in the type if it's available in
14566 the subroutine die. Otherwise set the calling convention to
14567 the default value DW_CC_normal. */
14568 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14570 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14571 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14572 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14574 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14576 /* Record whether the function returns normally to its caller or not
14577 if the DWARF producer set that information. */
14578 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14579 if (attr && (DW_UNSND (attr) != 0))
14580 TYPE_NO_RETURN (ftype) = 1;
14582 /* We need to add the subroutine type to the die immediately so
14583 we don't infinitely recurse when dealing with parameters
14584 declared as the same subroutine type. */
14585 set_die_type (die, ftype, cu);
14587 if (die->child != NULL)
14589 struct type *void_type = objfile_type (objfile)->builtin_void;
14590 struct die_info *child_die;
14591 int nparams, iparams;
14593 /* Count the number of parameters.
14594 FIXME: GDB currently ignores vararg functions, but knows about
14595 vararg member functions. */
14597 child_die = die->child;
14598 while (child_die && child_die->tag)
14600 if (child_die->tag == DW_TAG_formal_parameter)
14602 else if (child_die->tag == DW_TAG_unspecified_parameters)
14603 TYPE_VARARGS (ftype) = 1;
14604 child_die = sibling_die (child_die);
14607 /* Allocate storage for parameters and fill them in. */
14608 TYPE_NFIELDS (ftype) = nparams;
14609 TYPE_FIELDS (ftype) = (struct field *)
14610 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14612 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14613 even if we error out during the parameters reading below. */
14614 for (iparams = 0; iparams < nparams; iparams++)
14615 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14618 child_die = die->child;
14619 while (child_die && child_die->tag)
14621 if (child_die->tag == DW_TAG_formal_parameter)
14623 struct type *arg_type;
14625 /* DWARF version 2 has no clean way to discern C++
14626 static and non-static member functions. G++ helps
14627 GDB by marking the first parameter for non-static
14628 member functions (which is the this pointer) as
14629 artificial. We pass this information to
14630 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14632 DWARF version 3 added DW_AT_object_pointer, which GCC
14633 4.5 does not yet generate. */
14634 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14636 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14639 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14641 /* GCC/43521: In java, the formal parameter
14642 "this" is sometimes not marked with DW_AT_artificial. */
14643 if (cu->language == language_java)
14645 const char *name = dwarf2_name (child_die, cu);
14647 if (name && !strcmp (name, "this"))
14648 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14651 arg_type = die_type (child_die, cu);
14653 /* RealView does not mark THIS as const, which the testsuite
14654 expects. GCC marks THIS as const in method definitions,
14655 but not in the class specifications (GCC PR 43053). */
14656 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14657 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14660 struct dwarf2_cu *arg_cu = cu;
14661 const char *name = dwarf2_name (child_die, cu);
14663 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14666 /* If the compiler emits this, use it. */
14667 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14670 else if (name && strcmp (name, "this") == 0)
14671 /* Function definitions will have the argument names. */
14673 else if (name == NULL && iparams == 0)
14674 /* Declarations may not have the names, so like
14675 elsewhere in GDB, assume an artificial first
14676 argument is "this". */
14680 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14684 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14687 child_die = sibling_die (child_die);
14694 static struct type *
14695 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14697 struct objfile *objfile = cu->objfile;
14698 const char *name = NULL;
14699 struct type *this_type, *target_type;
14701 name = dwarf2_full_name (NULL, die, cu);
14702 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14703 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14704 TYPE_NAME (this_type) = name;
14705 set_die_type (die, this_type, cu);
14706 target_type = die_type (die, cu);
14707 if (target_type != this_type)
14708 TYPE_TARGET_TYPE (this_type) = target_type;
14711 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14712 spec and cause infinite loops in GDB. */
14713 complaint (&symfile_complaints,
14714 _("Self-referential DW_TAG_typedef "
14715 "- DIE at 0x%x [in module %s]"),
14716 die->offset.sect_off, objfile_name (objfile));
14717 TYPE_TARGET_TYPE (this_type) = NULL;
14722 /* Find a representation of a given base type and install
14723 it in the TYPE field of the die. */
14725 static struct type *
14726 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14728 struct objfile *objfile = cu->objfile;
14730 struct attribute *attr;
14731 int encoding = 0, size = 0;
14733 enum type_code code = TYPE_CODE_INT;
14734 int type_flags = 0;
14735 struct type *target_type = NULL;
14737 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14740 encoding = DW_UNSND (attr);
14742 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14745 size = DW_UNSND (attr);
14747 name = dwarf2_name (die, cu);
14750 complaint (&symfile_complaints,
14751 _("DW_AT_name missing from DW_TAG_base_type"));
14756 case DW_ATE_address:
14757 /* Turn DW_ATE_address into a void * pointer. */
14758 code = TYPE_CODE_PTR;
14759 type_flags |= TYPE_FLAG_UNSIGNED;
14760 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14762 case DW_ATE_boolean:
14763 code = TYPE_CODE_BOOL;
14764 type_flags |= TYPE_FLAG_UNSIGNED;
14766 case DW_ATE_complex_float:
14767 code = TYPE_CODE_COMPLEX;
14768 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14770 case DW_ATE_decimal_float:
14771 code = TYPE_CODE_DECFLOAT;
14774 code = TYPE_CODE_FLT;
14776 case DW_ATE_signed:
14778 case DW_ATE_unsigned:
14779 type_flags |= TYPE_FLAG_UNSIGNED;
14780 if (cu->language == language_fortran
14782 && startswith (name, "character("))
14783 code = TYPE_CODE_CHAR;
14785 case DW_ATE_signed_char:
14786 if (cu->language == language_ada || cu->language == language_m2
14787 || cu->language == language_pascal
14788 || cu->language == language_fortran)
14789 code = TYPE_CODE_CHAR;
14791 case DW_ATE_unsigned_char:
14792 if (cu->language == language_ada || cu->language == language_m2
14793 || cu->language == language_pascal
14794 || cu->language == language_fortran)
14795 code = TYPE_CODE_CHAR;
14796 type_flags |= TYPE_FLAG_UNSIGNED;
14799 /* We just treat this as an integer and then recognize the
14800 type by name elsewhere. */
14804 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14805 dwarf_type_encoding_name (encoding));
14809 type = init_type (code, size, type_flags, NULL, objfile);
14810 TYPE_NAME (type) = name;
14811 TYPE_TARGET_TYPE (type) = target_type;
14813 if (name && strcmp (name, "char") == 0)
14814 TYPE_NOSIGN (type) = 1;
14816 return set_die_type (die, type, cu);
14819 /* Parse dwarf attribute if it's a block, reference or constant and put the
14820 resulting value of the attribute into struct bound_prop.
14821 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14824 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14825 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14827 struct dwarf2_property_baton *baton;
14828 struct obstack *obstack = &cu->objfile->objfile_obstack;
14830 if (attr == NULL || prop == NULL)
14833 if (attr_form_is_block (attr))
14835 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14836 baton->referenced_type = NULL;
14837 baton->locexpr.per_cu = cu->per_cu;
14838 baton->locexpr.size = DW_BLOCK (attr)->size;
14839 baton->locexpr.data = DW_BLOCK (attr)->data;
14840 prop->data.baton = baton;
14841 prop->kind = PROP_LOCEXPR;
14842 gdb_assert (prop->data.baton != NULL);
14844 else if (attr_form_is_ref (attr))
14846 struct dwarf2_cu *target_cu = cu;
14847 struct die_info *target_die;
14848 struct attribute *target_attr;
14850 target_die = follow_die_ref (die, attr, &target_cu);
14851 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14852 if (target_attr == NULL)
14853 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14855 if (target_attr == NULL)
14858 switch (target_attr->name)
14860 case DW_AT_location:
14861 if (attr_form_is_section_offset (target_attr))
14863 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14864 baton->referenced_type = die_type (target_die, target_cu);
14865 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14866 prop->data.baton = baton;
14867 prop->kind = PROP_LOCLIST;
14868 gdb_assert (prop->data.baton != NULL);
14870 else if (attr_form_is_block (target_attr))
14872 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14873 baton->referenced_type = die_type (target_die, target_cu);
14874 baton->locexpr.per_cu = cu->per_cu;
14875 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14876 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14877 prop->data.baton = baton;
14878 prop->kind = PROP_LOCEXPR;
14879 gdb_assert (prop->data.baton != NULL);
14883 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14884 "dynamic property");
14888 case DW_AT_data_member_location:
14892 if (!handle_data_member_location (target_die, target_cu,
14896 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14897 baton->referenced_type = read_type_die (target_die->parent,
14899 baton->offset_info.offset = offset;
14900 baton->offset_info.type = die_type (target_die, target_cu);
14901 prop->data.baton = baton;
14902 prop->kind = PROP_ADDR_OFFSET;
14907 else if (attr_form_is_constant (attr))
14909 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14910 prop->kind = PROP_CONST;
14914 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14915 dwarf2_name (die, cu));
14922 /* Read the given DW_AT_subrange DIE. */
14924 static struct type *
14925 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14927 struct type *base_type, *orig_base_type;
14928 struct type *range_type;
14929 struct attribute *attr;
14930 struct dynamic_prop low, high;
14931 int low_default_is_valid;
14932 int high_bound_is_count = 0;
14934 LONGEST negative_mask;
14936 orig_base_type = die_type (die, cu);
14937 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14938 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14939 creating the range type, but we use the result of check_typedef
14940 when examining properties of the type. */
14941 base_type = check_typedef (orig_base_type);
14943 /* The die_type call above may have already set the type for this DIE. */
14944 range_type = get_die_type (die, cu);
14948 low.kind = PROP_CONST;
14949 high.kind = PROP_CONST;
14950 high.data.const_val = 0;
14952 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14953 omitting DW_AT_lower_bound. */
14954 switch (cu->language)
14957 case language_cplus:
14958 low.data.const_val = 0;
14959 low_default_is_valid = 1;
14961 case language_fortran:
14962 low.data.const_val = 1;
14963 low_default_is_valid = 1;
14966 case language_java:
14967 case language_objc:
14968 low.data.const_val = 0;
14969 low_default_is_valid = (cu->header.version >= 4);
14973 case language_pascal:
14974 low.data.const_val = 1;
14975 low_default_is_valid = (cu->header.version >= 4);
14978 low.data.const_val = 0;
14979 low_default_is_valid = 0;
14983 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14985 attr_to_dynamic_prop (attr, die, cu, &low);
14986 else if (!low_default_is_valid)
14987 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14988 "- DIE at 0x%x [in module %s]"),
14989 die->offset.sect_off, objfile_name (cu->objfile));
14991 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14992 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14994 attr = dwarf2_attr (die, DW_AT_count, cu);
14995 if (attr_to_dynamic_prop (attr, die, cu, &high))
14997 /* If bounds are constant do the final calculation here. */
14998 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14999 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15001 high_bound_is_count = 1;
15005 /* Dwarf-2 specifications explicitly allows to create subrange types
15006 without specifying a base type.
15007 In that case, the base type must be set to the type of
15008 the lower bound, upper bound or count, in that order, if any of these
15009 three attributes references an object that has a type.
15010 If no base type is found, the Dwarf-2 specifications say that
15011 a signed integer type of size equal to the size of an address should
15013 For the following C code: `extern char gdb_int [];'
15014 GCC produces an empty range DIE.
15015 FIXME: muller/2010-05-28: Possible references to object for low bound,
15016 high bound or count are not yet handled by this code. */
15017 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15019 struct objfile *objfile = cu->objfile;
15020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15021 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15022 struct type *int_type = objfile_type (objfile)->builtin_int;
15024 /* Test "int", "long int", and "long long int" objfile types,
15025 and select the first one having a size above or equal to the
15026 architecture address size. */
15027 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15028 base_type = int_type;
15031 int_type = objfile_type (objfile)->builtin_long;
15032 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15033 base_type = int_type;
15036 int_type = objfile_type (objfile)->builtin_long_long;
15037 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15038 base_type = int_type;
15043 /* Normally, the DWARF producers are expected to use a signed
15044 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15045 But this is unfortunately not always the case, as witnessed
15046 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15047 is used instead. To work around that ambiguity, we treat
15048 the bounds as signed, and thus sign-extend their values, when
15049 the base type is signed. */
15051 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15052 if (low.kind == PROP_CONST
15053 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15054 low.data.const_val |= negative_mask;
15055 if (high.kind == PROP_CONST
15056 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15057 high.data.const_val |= negative_mask;
15059 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15061 if (high_bound_is_count)
15062 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15064 /* Ada expects an empty array on no boundary attributes. */
15065 if (attr == NULL && cu->language != language_ada)
15066 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15068 name = dwarf2_name (die, cu);
15070 TYPE_NAME (range_type) = name;
15072 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15074 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15076 set_die_type (die, range_type, cu);
15078 /* set_die_type should be already done. */
15079 set_descriptive_type (range_type, die, cu);
15084 static struct type *
15085 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15089 /* For now, we only support the C meaning of an unspecified type: void. */
15091 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15092 TYPE_NAME (type) = dwarf2_name (die, cu);
15094 return set_die_type (die, type, cu);
15097 /* Read a single die and all its descendents. Set the die's sibling
15098 field to NULL; set other fields in the die correctly, and set all
15099 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15100 location of the info_ptr after reading all of those dies. PARENT
15101 is the parent of the die in question. */
15103 static struct die_info *
15104 read_die_and_children (const struct die_reader_specs *reader,
15105 const gdb_byte *info_ptr,
15106 const gdb_byte **new_info_ptr,
15107 struct die_info *parent)
15109 struct die_info *die;
15110 const gdb_byte *cur_ptr;
15113 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15116 *new_info_ptr = cur_ptr;
15119 store_in_ref_table (die, reader->cu);
15122 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15126 *new_info_ptr = cur_ptr;
15129 die->sibling = NULL;
15130 die->parent = parent;
15134 /* Read a die, all of its descendents, and all of its siblings; set
15135 all of the fields of all of the dies correctly. Arguments are as
15136 in read_die_and_children. */
15138 static struct die_info *
15139 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15140 const gdb_byte *info_ptr,
15141 const gdb_byte **new_info_ptr,
15142 struct die_info *parent)
15144 struct die_info *first_die, *last_sibling;
15145 const gdb_byte *cur_ptr;
15147 cur_ptr = info_ptr;
15148 first_die = last_sibling = NULL;
15152 struct die_info *die
15153 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15157 *new_info_ptr = cur_ptr;
15164 last_sibling->sibling = die;
15166 last_sibling = die;
15170 /* Read a die, all of its descendents, and all of its siblings; set
15171 all of the fields of all of the dies correctly. Arguments are as
15172 in read_die_and_children.
15173 This the main entry point for reading a DIE and all its children. */
15175 static struct die_info *
15176 read_die_and_siblings (const struct die_reader_specs *reader,
15177 const gdb_byte *info_ptr,
15178 const gdb_byte **new_info_ptr,
15179 struct die_info *parent)
15181 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15182 new_info_ptr, parent);
15184 if (dwarf_die_debug)
15186 fprintf_unfiltered (gdb_stdlog,
15187 "Read die from %s@0x%x of %s:\n",
15188 get_section_name (reader->die_section),
15189 (unsigned) (info_ptr - reader->die_section->buffer),
15190 bfd_get_filename (reader->abfd));
15191 dump_die (die, dwarf_die_debug);
15197 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15199 The caller is responsible for filling in the extra attributes
15200 and updating (*DIEP)->num_attrs.
15201 Set DIEP to point to a newly allocated die with its information,
15202 except for its child, sibling, and parent fields.
15203 Set HAS_CHILDREN to tell whether the die has children or not. */
15205 static const gdb_byte *
15206 read_full_die_1 (const struct die_reader_specs *reader,
15207 struct die_info **diep, const gdb_byte *info_ptr,
15208 int *has_children, int num_extra_attrs)
15210 unsigned int abbrev_number, bytes_read, i;
15211 sect_offset offset;
15212 struct abbrev_info *abbrev;
15213 struct die_info *die;
15214 struct dwarf2_cu *cu = reader->cu;
15215 bfd *abfd = reader->abfd;
15217 offset.sect_off = info_ptr - reader->buffer;
15218 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15219 info_ptr += bytes_read;
15220 if (!abbrev_number)
15227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15229 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15231 bfd_get_filename (abfd));
15233 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15234 die->offset = offset;
15235 die->tag = abbrev->tag;
15236 die->abbrev = abbrev_number;
15238 /* Make the result usable.
15239 The caller needs to update num_attrs after adding the extra
15241 die->num_attrs = abbrev->num_attrs;
15243 for (i = 0; i < abbrev->num_attrs; ++i)
15244 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15248 *has_children = abbrev->has_children;
15252 /* Read a die and all its attributes.
15253 Set DIEP to point to a newly allocated die with its information,
15254 except for its child, sibling, and parent fields.
15255 Set HAS_CHILDREN to tell whether the die has children or not. */
15257 static const gdb_byte *
15258 read_full_die (const struct die_reader_specs *reader,
15259 struct die_info **diep, const gdb_byte *info_ptr,
15262 const gdb_byte *result;
15264 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15266 if (dwarf_die_debug)
15268 fprintf_unfiltered (gdb_stdlog,
15269 "Read die from %s@0x%x of %s:\n",
15270 get_section_name (reader->die_section),
15271 (unsigned) (info_ptr - reader->die_section->buffer),
15272 bfd_get_filename (reader->abfd));
15273 dump_die (*diep, dwarf_die_debug);
15279 /* Abbreviation tables.
15281 In DWARF version 2, the description of the debugging information is
15282 stored in a separate .debug_abbrev section. Before we read any
15283 dies from a section we read in all abbreviations and install them
15284 in a hash table. */
15286 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15288 static struct abbrev_info *
15289 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15291 struct abbrev_info *abbrev;
15293 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15294 memset (abbrev, 0, sizeof (struct abbrev_info));
15299 /* Add an abbreviation to the table. */
15302 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15303 unsigned int abbrev_number,
15304 struct abbrev_info *abbrev)
15306 unsigned int hash_number;
15308 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15309 abbrev->next = abbrev_table->abbrevs[hash_number];
15310 abbrev_table->abbrevs[hash_number] = abbrev;
15313 /* Look up an abbrev in the table.
15314 Returns NULL if the abbrev is not found. */
15316 static struct abbrev_info *
15317 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15318 unsigned int abbrev_number)
15320 unsigned int hash_number;
15321 struct abbrev_info *abbrev;
15323 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15324 abbrev = abbrev_table->abbrevs[hash_number];
15328 if (abbrev->number == abbrev_number)
15330 abbrev = abbrev->next;
15335 /* Read in an abbrev table. */
15337 static struct abbrev_table *
15338 abbrev_table_read_table (struct dwarf2_section_info *section,
15339 sect_offset offset)
15341 struct objfile *objfile = dwarf2_per_objfile->objfile;
15342 bfd *abfd = get_section_bfd_owner (section);
15343 struct abbrev_table *abbrev_table;
15344 const gdb_byte *abbrev_ptr;
15345 struct abbrev_info *cur_abbrev;
15346 unsigned int abbrev_number, bytes_read, abbrev_name;
15347 unsigned int abbrev_form;
15348 struct attr_abbrev *cur_attrs;
15349 unsigned int allocated_attrs;
15351 abbrev_table = XNEW (struct abbrev_table);
15352 abbrev_table->offset = offset;
15353 obstack_init (&abbrev_table->abbrev_obstack);
15354 abbrev_table->abbrevs =
15355 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15357 memset (abbrev_table->abbrevs, 0,
15358 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15360 dwarf2_read_section (objfile, section);
15361 abbrev_ptr = section->buffer + offset.sect_off;
15362 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15363 abbrev_ptr += bytes_read;
15365 allocated_attrs = ATTR_ALLOC_CHUNK;
15366 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15368 /* Loop until we reach an abbrev number of 0. */
15369 while (abbrev_number)
15371 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15373 /* read in abbrev header */
15374 cur_abbrev->number = abbrev_number;
15376 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15377 abbrev_ptr += bytes_read;
15378 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15381 /* now read in declarations */
15382 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
15384 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15385 abbrev_ptr += bytes_read;
15386 while (abbrev_name)
15388 if (cur_abbrev->num_attrs == allocated_attrs)
15390 allocated_attrs += ATTR_ALLOC_CHUNK;
15392 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15395 cur_attrs[cur_abbrev->num_attrs].name
15396 = (enum dwarf_attribute) abbrev_name;
15397 cur_attrs[cur_abbrev->num_attrs++].form
15398 = (enum dwarf_form) abbrev_form;
15399 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15400 abbrev_ptr += bytes_read;
15401 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15402 abbrev_ptr += bytes_read;
15405 cur_abbrev->attrs =
15406 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15407 cur_abbrev->num_attrs);
15408 memcpy (cur_abbrev->attrs, cur_attrs,
15409 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15411 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15413 /* Get next abbreviation.
15414 Under Irix6 the abbreviations for a compilation unit are not
15415 always properly terminated with an abbrev number of 0.
15416 Exit loop if we encounter an abbreviation which we have
15417 already read (which means we are about to read the abbreviations
15418 for the next compile unit) or if the end of the abbreviation
15419 table is reached. */
15420 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15422 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15423 abbrev_ptr += bytes_read;
15424 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15429 return abbrev_table;
15432 /* Free the resources held by ABBREV_TABLE. */
15435 abbrev_table_free (struct abbrev_table *abbrev_table)
15437 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15438 xfree (abbrev_table);
15441 /* Same as abbrev_table_free but as a cleanup.
15442 We pass in a pointer to the pointer to the table so that we can
15443 set the pointer to NULL when we're done. It also simplifies
15444 build_type_psymtabs_1. */
15447 abbrev_table_free_cleanup (void *table_ptr)
15449 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15451 if (*abbrev_table_ptr != NULL)
15452 abbrev_table_free (*abbrev_table_ptr);
15453 *abbrev_table_ptr = NULL;
15456 /* Read the abbrev table for CU from ABBREV_SECTION. */
15459 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15460 struct dwarf2_section_info *abbrev_section)
15463 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15466 /* Release the memory used by the abbrev table for a compilation unit. */
15469 dwarf2_free_abbrev_table (void *ptr_to_cu)
15471 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15473 if (cu->abbrev_table != NULL)
15474 abbrev_table_free (cu->abbrev_table);
15475 /* Set this to NULL so that we SEGV if we try to read it later,
15476 and also because free_comp_unit verifies this is NULL. */
15477 cu->abbrev_table = NULL;
15480 /* Returns nonzero if TAG represents a type that we might generate a partial
15484 is_type_tag_for_partial (int tag)
15489 /* Some types that would be reasonable to generate partial symbols for,
15490 that we don't at present. */
15491 case DW_TAG_array_type:
15492 case DW_TAG_file_type:
15493 case DW_TAG_ptr_to_member_type:
15494 case DW_TAG_set_type:
15495 case DW_TAG_string_type:
15496 case DW_TAG_subroutine_type:
15498 case DW_TAG_base_type:
15499 case DW_TAG_class_type:
15500 case DW_TAG_interface_type:
15501 case DW_TAG_enumeration_type:
15502 case DW_TAG_structure_type:
15503 case DW_TAG_subrange_type:
15504 case DW_TAG_typedef:
15505 case DW_TAG_union_type:
15512 /* Load all DIEs that are interesting for partial symbols into memory. */
15514 static struct partial_die_info *
15515 load_partial_dies (const struct die_reader_specs *reader,
15516 const gdb_byte *info_ptr, int building_psymtab)
15518 struct dwarf2_cu *cu = reader->cu;
15519 struct objfile *objfile = cu->objfile;
15520 struct partial_die_info *part_die;
15521 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15522 struct abbrev_info *abbrev;
15523 unsigned int bytes_read;
15524 unsigned int load_all = 0;
15525 int nesting_level = 1;
15530 gdb_assert (cu->per_cu != NULL);
15531 if (cu->per_cu->load_all_dies)
15535 = htab_create_alloc_ex (cu->header.length / 12,
15539 &cu->comp_unit_obstack,
15540 hashtab_obstack_allocate,
15541 dummy_obstack_deallocate);
15543 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15547 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15549 /* A NULL abbrev means the end of a series of children. */
15550 if (abbrev == NULL)
15552 if (--nesting_level == 0)
15554 /* PART_DIE was probably the last thing allocated on the
15555 comp_unit_obstack, so we could call obstack_free
15556 here. We don't do that because the waste is small,
15557 and will be cleaned up when we're done with this
15558 compilation unit. This way, we're also more robust
15559 against other users of the comp_unit_obstack. */
15562 info_ptr += bytes_read;
15563 last_die = parent_die;
15564 parent_die = parent_die->die_parent;
15568 /* Check for template arguments. We never save these; if
15569 they're seen, we just mark the parent, and go on our way. */
15570 if (parent_die != NULL
15571 && cu->language == language_cplus
15572 && (abbrev->tag == DW_TAG_template_type_param
15573 || abbrev->tag == DW_TAG_template_value_param))
15575 parent_die->has_template_arguments = 1;
15579 /* We don't need a partial DIE for the template argument. */
15580 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15585 /* We only recurse into c++ subprograms looking for template arguments.
15586 Skip their other children. */
15588 && cu->language == language_cplus
15589 && parent_die != NULL
15590 && parent_die->tag == DW_TAG_subprogram)
15592 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15596 /* Check whether this DIE is interesting enough to save. Normally
15597 we would not be interested in members here, but there may be
15598 later variables referencing them via DW_AT_specification (for
15599 static members). */
15601 && !is_type_tag_for_partial (abbrev->tag)
15602 && abbrev->tag != DW_TAG_constant
15603 && abbrev->tag != DW_TAG_enumerator
15604 && abbrev->tag != DW_TAG_subprogram
15605 && abbrev->tag != DW_TAG_lexical_block
15606 && abbrev->tag != DW_TAG_variable
15607 && abbrev->tag != DW_TAG_namespace
15608 && abbrev->tag != DW_TAG_module
15609 && abbrev->tag != DW_TAG_member
15610 && abbrev->tag != DW_TAG_imported_unit
15611 && abbrev->tag != DW_TAG_imported_declaration)
15613 /* Otherwise we skip to the next sibling, if any. */
15614 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15618 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15621 /* This two-pass algorithm for processing partial symbols has a
15622 high cost in cache pressure. Thus, handle some simple cases
15623 here which cover the majority of C partial symbols. DIEs
15624 which neither have specification tags in them, nor could have
15625 specification tags elsewhere pointing at them, can simply be
15626 processed and discarded.
15628 This segment is also optional; scan_partial_symbols and
15629 add_partial_symbol will handle these DIEs if we chain
15630 them in normally. When compilers which do not emit large
15631 quantities of duplicate debug information are more common,
15632 this code can probably be removed. */
15634 /* Any complete simple types at the top level (pretty much all
15635 of them, for a language without namespaces), can be processed
15637 if (parent_die == NULL
15638 && part_die->has_specification == 0
15639 && part_die->is_declaration == 0
15640 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15641 || part_die->tag == DW_TAG_base_type
15642 || part_die->tag == DW_TAG_subrange_type))
15644 if (building_psymtab && part_die->name != NULL)
15645 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15646 VAR_DOMAIN, LOC_TYPEDEF,
15647 &objfile->static_psymbols,
15648 0, cu->language, objfile);
15649 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15653 /* The exception for DW_TAG_typedef with has_children above is
15654 a workaround of GCC PR debug/47510. In the case of this complaint
15655 type_name_no_tag_or_error will error on such types later.
15657 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15658 it could not find the child DIEs referenced later, this is checked
15659 above. In correct DWARF DW_TAG_typedef should have no children. */
15661 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15662 complaint (&symfile_complaints,
15663 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15664 "- DIE at 0x%x [in module %s]"),
15665 part_die->offset.sect_off, objfile_name (objfile));
15667 /* If we're at the second level, and we're an enumerator, and
15668 our parent has no specification (meaning possibly lives in a
15669 namespace elsewhere), then we can add the partial symbol now
15670 instead of queueing it. */
15671 if (part_die->tag == DW_TAG_enumerator
15672 && parent_die != NULL
15673 && parent_die->die_parent == NULL
15674 && parent_die->tag == DW_TAG_enumeration_type
15675 && parent_die->has_specification == 0)
15677 if (part_die->name == NULL)
15678 complaint (&symfile_complaints,
15679 _("malformed enumerator DIE ignored"));
15680 else if (building_psymtab)
15681 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15682 VAR_DOMAIN, LOC_CONST,
15683 (cu->language == language_cplus
15684 || cu->language == language_java)
15685 ? &objfile->global_psymbols
15686 : &objfile->static_psymbols,
15687 0, cu->language, objfile);
15689 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15693 /* We'll save this DIE so link it in. */
15694 part_die->die_parent = parent_die;
15695 part_die->die_sibling = NULL;
15696 part_die->die_child = NULL;
15698 if (last_die && last_die == parent_die)
15699 last_die->die_child = part_die;
15701 last_die->die_sibling = part_die;
15703 last_die = part_die;
15705 if (first_die == NULL)
15706 first_die = part_die;
15708 /* Maybe add the DIE to the hash table. Not all DIEs that we
15709 find interesting need to be in the hash table, because we
15710 also have the parent/sibling/child chains; only those that we
15711 might refer to by offset later during partial symbol reading.
15713 For now this means things that might have be the target of a
15714 DW_AT_specification, DW_AT_abstract_origin, or
15715 DW_AT_extension. DW_AT_extension will refer only to
15716 namespaces; DW_AT_abstract_origin refers to functions (and
15717 many things under the function DIE, but we do not recurse
15718 into function DIEs during partial symbol reading) and
15719 possibly variables as well; DW_AT_specification refers to
15720 declarations. Declarations ought to have the DW_AT_declaration
15721 flag. It happens that GCC forgets to put it in sometimes, but
15722 only for functions, not for types.
15724 Adding more things than necessary to the hash table is harmless
15725 except for the performance cost. Adding too few will result in
15726 wasted time in find_partial_die, when we reread the compilation
15727 unit with load_all_dies set. */
15730 || abbrev->tag == DW_TAG_constant
15731 || abbrev->tag == DW_TAG_subprogram
15732 || abbrev->tag == DW_TAG_variable
15733 || abbrev->tag == DW_TAG_namespace
15734 || part_die->is_declaration)
15738 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15739 part_die->offset.sect_off, INSERT);
15743 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15745 /* For some DIEs we want to follow their children (if any). For C
15746 we have no reason to follow the children of structures; for other
15747 languages we have to, so that we can get at method physnames
15748 to infer fully qualified class names, for DW_AT_specification,
15749 and for C++ template arguments. For C++, we also look one level
15750 inside functions to find template arguments (if the name of the
15751 function does not already contain the template arguments).
15753 For Ada, we need to scan the children of subprograms and lexical
15754 blocks as well because Ada allows the definition of nested
15755 entities that could be interesting for the debugger, such as
15756 nested subprograms for instance. */
15757 if (last_die->has_children
15759 || last_die->tag == DW_TAG_namespace
15760 || last_die->tag == DW_TAG_module
15761 || last_die->tag == DW_TAG_enumeration_type
15762 || (cu->language == language_cplus
15763 && last_die->tag == DW_TAG_subprogram
15764 && (last_die->name == NULL
15765 || strchr (last_die->name, '<') == NULL))
15766 || (cu->language != language_c
15767 && (last_die->tag == DW_TAG_class_type
15768 || last_die->tag == DW_TAG_interface_type
15769 || last_die->tag == DW_TAG_structure_type
15770 || last_die->tag == DW_TAG_union_type))
15771 || (cu->language == language_ada
15772 && (last_die->tag == DW_TAG_subprogram
15773 || last_die->tag == DW_TAG_lexical_block))))
15776 parent_die = last_die;
15780 /* Otherwise we skip to the next sibling, if any. */
15781 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15783 /* Back to the top, do it again. */
15787 /* Read a minimal amount of information into the minimal die structure. */
15789 static const gdb_byte *
15790 read_partial_die (const struct die_reader_specs *reader,
15791 struct partial_die_info *part_die,
15792 struct abbrev_info *abbrev, unsigned int abbrev_len,
15793 const gdb_byte *info_ptr)
15795 struct dwarf2_cu *cu = reader->cu;
15796 struct objfile *objfile = cu->objfile;
15797 const gdb_byte *buffer = reader->buffer;
15799 struct attribute attr;
15800 int has_low_pc_attr = 0;
15801 int has_high_pc_attr = 0;
15802 int high_pc_relative = 0;
15804 memset (part_die, 0, sizeof (struct partial_die_info));
15806 part_die->offset.sect_off = info_ptr - buffer;
15808 info_ptr += abbrev_len;
15810 if (abbrev == NULL)
15813 part_die->tag = abbrev->tag;
15814 part_die->has_children = abbrev->has_children;
15816 for (i = 0; i < abbrev->num_attrs; ++i)
15818 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15820 /* Store the data if it is of an attribute we want to keep in a
15821 partial symbol table. */
15825 switch (part_die->tag)
15827 case DW_TAG_compile_unit:
15828 case DW_TAG_partial_unit:
15829 case DW_TAG_type_unit:
15830 /* Compilation units have a DW_AT_name that is a filename, not
15831 a source language identifier. */
15832 case DW_TAG_enumeration_type:
15833 case DW_TAG_enumerator:
15834 /* These tags always have simple identifiers already; no need
15835 to canonicalize them. */
15836 part_die->name = DW_STRING (&attr);
15840 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15841 &objfile->per_bfd->storage_obstack);
15845 case DW_AT_linkage_name:
15846 case DW_AT_MIPS_linkage_name:
15847 /* Note that both forms of linkage name might appear. We
15848 assume they will be the same, and we only store the last
15850 if (cu->language == language_ada)
15851 part_die->name = DW_STRING (&attr);
15852 part_die->linkage_name = DW_STRING (&attr);
15855 has_low_pc_attr = 1;
15856 part_die->lowpc = attr_value_as_address (&attr);
15858 case DW_AT_high_pc:
15859 has_high_pc_attr = 1;
15860 part_die->highpc = attr_value_as_address (&attr);
15861 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15862 high_pc_relative = 1;
15864 case DW_AT_location:
15865 /* Support the .debug_loc offsets. */
15866 if (attr_form_is_block (&attr))
15868 part_die->d.locdesc = DW_BLOCK (&attr);
15870 else if (attr_form_is_section_offset (&attr))
15872 dwarf2_complex_location_expr_complaint ();
15876 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15877 "partial symbol information");
15880 case DW_AT_external:
15881 part_die->is_external = DW_UNSND (&attr);
15883 case DW_AT_declaration:
15884 part_die->is_declaration = DW_UNSND (&attr);
15887 part_die->has_type = 1;
15889 case DW_AT_abstract_origin:
15890 case DW_AT_specification:
15891 case DW_AT_extension:
15892 part_die->has_specification = 1;
15893 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15894 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15895 || cu->per_cu->is_dwz);
15897 case DW_AT_sibling:
15898 /* Ignore absolute siblings, they might point outside of
15899 the current compile unit. */
15900 if (attr.form == DW_FORM_ref_addr)
15901 complaint (&symfile_complaints,
15902 _("ignoring absolute DW_AT_sibling"));
15905 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15906 const gdb_byte *sibling_ptr = buffer + off;
15908 if (sibling_ptr < info_ptr)
15909 complaint (&symfile_complaints,
15910 _("DW_AT_sibling points backwards"));
15911 else if (sibling_ptr > reader->buffer_end)
15912 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15914 part_die->sibling = sibling_ptr;
15917 case DW_AT_byte_size:
15918 part_die->has_byte_size = 1;
15920 case DW_AT_const_value:
15921 part_die->has_const_value = 1;
15923 case DW_AT_calling_convention:
15924 /* DWARF doesn't provide a way to identify a program's source-level
15925 entry point. DW_AT_calling_convention attributes are only meant
15926 to describe functions' calling conventions.
15928 However, because it's a necessary piece of information in
15929 Fortran, and because DW_CC_program is the only piece of debugging
15930 information whose definition refers to a 'main program' at all,
15931 several compilers have begun marking Fortran main programs with
15932 DW_CC_program --- even when those functions use the standard
15933 calling conventions.
15935 So until DWARF specifies a way to provide this information and
15936 compilers pick up the new representation, we'll support this
15938 if (DW_UNSND (&attr) == DW_CC_program
15939 && cu->language == language_fortran)
15940 set_objfile_main_name (objfile, part_die->name, language_fortran);
15943 if (DW_UNSND (&attr) == DW_INL_inlined
15944 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15945 part_die->may_be_inlined = 1;
15949 if (part_die->tag == DW_TAG_imported_unit)
15951 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15952 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15953 || cu->per_cu->is_dwz);
15962 if (high_pc_relative)
15963 part_die->highpc += part_die->lowpc;
15965 if (has_low_pc_attr && has_high_pc_attr)
15967 /* When using the GNU linker, .gnu.linkonce. sections are used to
15968 eliminate duplicate copies of functions and vtables and such.
15969 The linker will arbitrarily choose one and discard the others.
15970 The AT_*_pc values for such functions refer to local labels in
15971 these sections. If the section from that file was discarded, the
15972 labels are not in the output, so the relocs get a value of 0.
15973 If this is a discarded function, mark the pc bounds as invalid,
15974 so that GDB will ignore it. */
15975 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15979 complaint (&symfile_complaints,
15980 _("DW_AT_low_pc %s is zero "
15981 "for DIE at 0x%x [in module %s]"),
15982 paddress (gdbarch, part_die->lowpc),
15983 part_die->offset.sect_off, objfile_name (objfile));
15985 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15986 else if (part_die->lowpc >= part_die->highpc)
15988 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15990 complaint (&symfile_complaints,
15991 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15992 "for DIE at 0x%x [in module %s]"),
15993 paddress (gdbarch, part_die->lowpc),
15994 paddress (gdbarch, part_die->highpc),
15995 part_die->offset.sect_off, objfile_name (objfile));
15998 part_die->has_pc_info = 1;
16004 /* Find a cached partial DIE at OFFSET in CU. */
16006 static struct partial_die_info *
16007 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16009 struct partial_die_info *lookup_die = NULL;
16010 struct partial_die_info part_die;
16012 part_die.offset = offset;
16013 lookup_die = ((struct partial_die_info *)
16014 htab_find_with_hash (cu->partial_dies, &part_die,
16020 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16021 except in the case of .debug_types DIEs which do not reference
16022 outside their CU (they do however referencing other types via
16023 DW_FORM_ref_sig8). */
16025 static struct partial_die_info *
16026 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16028 struct objfile *objfile = cu->objfile;
16029 struct dwarf2_per_cu_data *per_cu = NULL;
16030 struct partial_die_info *pd = NULL;
16032 if (offset_in_dwz == cu->per_cu->is_dwz
16033 && offset_in_cu_p (&cu->header, offset))
16035 pd = find_partial_die_in_comp_unit (offset, cu);
16038 /* We missed recording what we needed.
16039 Load all dies and try again. */
16040 per_cu = cu->per_cu;
16044 /* TUs don't reference other CUs/TUs (except via type signatures). */
16045 if (cu->per_cu->is_debug_types)
16047 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16048 " external reference to offset 0x%lx [in module %s].\n"),
16049 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16050 bfd_get_filename (objfile->obfd));
16052 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16055 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16056 load_partial_comp_unit (per_cu);
16058 per_cu->cu->last_used = 0;
16059 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16062 /* If we didn't find it, and not all dies have been loaded,
16063 load them all and try again. */
16065 if (pd == NULL && per_cu->load_all_dies == 0)
16067 per_cu->load_all_dies = 1;
16069 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16070 THIS_CU->cu may already be in use. So we can't just free it and
16071 replace its DIEs with the ones we read in. Instead, we leave those
16072 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16073 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16075 load_partial_comp_unit (per_cu);
16077 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16081 internal_error (__FILE__, __LINE__,
16082 _("could not find partial DIE 0x%x "
16083 "in cache [from module %s]\n"),
16084 offset.sect_off, bfd_get_filename (objfile->obfd));
16088 /* See if we can figure out if the class lives in a namespace. We do
16089 this by looking for a member function; its demangled name will
16090 contain namespace info, if there is any. */
16093 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16094 struct dwarf2_cu *cu)
16096 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16097 what template types look like, because the demangler
16098 frequently doesn't give the same name as the debug info. We
16099 could fix this by only using the demangled name to get the
16100 prefix (but see comment in read_structure_type). */
16102 struct partial_die_info *real_pdi;
16103 struct partial_die_info *child_pdi;
16105 /* If this DIE (this DIE's specification, if any) has a parent, then
16106 we should not do this. We'll prepend the parent's fully qualified
16107 name when we create the partial symbol. */
16109 real_pdi = struct_pdi;
16110 while (real_pdi->has_specification)
16111 real_pdi = find_partial_die (real_pdi->spec_offset,
16112 real_pdi->spec_is_dwz, cu);
16114 if (real_pdi->die_parent != NULL)
16117 for (child_pdi = struct_pdi->die_child;
16119 child_pdi = child_pdi->die_sibling)
16121 if (child_pdi->tag == DW_TAG_subprogram
16122 && child_pdi->linkage_name != NULL)
16124 char *actual_class_name
16125 = language_class_name_from_physname (cu->language_defn,
16126 child_pdi->linkage_name);
16127 if (actual_class_name != NULL)
16131 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16133 strlen (actual_class_name)));
16134 xfree (actual_class_name);
16141 /* Adjust PART_DIE before generating a symbol for it. This function
16142 may set the is_external flag or change the DIE's name. */
16145 fixup_partial_die (struct partial_die_info *part_die,
16146 struct dwarf2_cu *cu)
16148 /* Once we've fixed up a die, there's no point in doing so again.
16149 This also avoids a memory leak if we were to call
16150 guess_partial_die_structure_name multiple times. */
16151 if (part_die->fixup_called)
16154 /* If we found a reference attribute and the DIE has no name, try
16155 to find a name in the referred to DIE. */
16157 if (part_die->name == NULL && part_die->has_specification)
16159 struct partial_die_info *spec_die;
16161 spec_die = find_partial_die (part_die->spec_offset,
16162 part_die->spec_is_dwz, cu);
16164 fixup_partial_die (spec_die, cu);
16166 if (spec_die->name)
16168 part_die->name = spec_die->name;
16170 /* Copy DW_AT_external attribute if it is set. */
16171 if (spec_die->is_external)
16172 part_die->is_external = spec_die->is_external;
16176 /* Set default names for some unnamed DIEs. */
16178 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16179 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16181 /* If there is no parent die to provide a namespace, and there are
16182 children, see if we can determine the namespace from their linkage
16184 if (cu->language == language_cplus
16185 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16186 && part_die->die_parent == NULL
16187 && part_die->has_children
16188 && (part_die->tag == DW_TAG_class_type
16189 || part_die->tag == DW_TAG_structure_type
16190 || part_die->tag == DW_TAG_union_type))
16191 guess_partial_die_structure_name (part_die, cu);
16193 /* GCC might emit a nameless struct or union that has a linkage
16194 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16195 if (part_die->name == NULL
16196 && (part_die->tag == DW_TAG_class_type
16197 || part_die->tag == DW_TAG_interface_type
16198 || part_die->tag == DW_TAG_structure_type
16199 || part_die->tag == DW_TAG_union_type)
16200 && part_die->linkage_name != NULL)
16204 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16209 /* Strip any leading namespaces/classes, keep only the base name.
16210 DW_AT_name for named DIEs does not contain the prefixes. */
16211 base = strrchr (demangled, ':');
16212 if (base && base > demangled && base[-1] == ':')
16219 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16220 base, strlen (base)));
16225 part_die->fixup_called = 1;
16228 /* Read an attribute value described by an attribute form. */
16230 static const gdb_byte *
16231 read_attribute_value (const struct die_reader_specs *reader,
16232 struct attribute *attr, unsigned form,
16233 const gdb_byte *info_ptr)
16235 struct dwarf2_cu *cu = reader->cu;
16236 struct objfile *objfile = cu->objfile;
16237 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16238 bfd *abfd = reader->abfd;
16239 struct comp_unit_head *cu_header = &cu->header;
16240 unsigned int bytes_read;
16241 struct dwarf_block *blk;
16243 attr->form = (enum dwarf_form) form;
16246 case DW_FORM_ref_addr:
16247 if (cu->header.version == 2)
16248 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16250 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16251 &cu->header, &bytes_read);
16252 info_ptr += bytes_read;
16254 case DW_FORM_GNU_ref_alt:
16255 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16256 info_ptr += bytes_read;
16259 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16260 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16261 info_ptr += bytes_read;
16263 case DW_FORM_block2:
16264 blk = dwarf_alloc_block (cu);
16265 blk->size = read_2_bytes (abfd, info_ptr);
16267 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16268 info_ptr += blk->size;
16269 DW_BLOCK (attr) = blk;
16271 case DW_FORM_block4:
16272 blk = dwarf_alloc_block (cu);
16273 blk->size = read_4_bytes (abfd, info_ptr);
16275 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16276 info_ptr += blk->size;
16277 DW_BLOCK (attr) = blk;
16279 case DW_FORM_data2:
16280 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16283 case DW_FORM_data4:
16284 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16287 case DW_FORM_data8:
16288 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16291 case DW_FORM_sec_offset:
16292 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16293 info_ptr += bytes_read;
16295 case DW_FORM_string:
16296 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16297 DW_STRING_IS_CANONICAL (attr) = 0;
16298 info_ptr += bytes_read;
16301 if (!cu->per_cu->is_dwz)
16303 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16305 DW_STRING_IS_CANONICAL (attr) = 0;
16306 info_ptr += bytes_read;
16310 case DW_FORM_GNU_strp_alt:
16312 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16313 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16316 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16317 DW_STRING_IS_CANONICAL (attr) = 0;
16318 info_ptr += bytes_read;
16321 case DW_FORM_exprloc:
16322 case DW_FORM_block:
16323 blk = dwarf_alloc_block (cu);
16324 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16325 info_ptr += bytes_read;
16326 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16327 info_ptr += blk->size;
16328 DW_BLOCK (attr) = blk;
16330 case DW_FORM_block1:
16331 blk = dwarf_alloc_block (cu);
16332 blk->size = read_1_byte (abfd, info_ptr);
16334 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16335 info_ptr += blk->size;
16336 DW_BLOCK (attr) = blk;
16338 case DW_FORM_data1:
16339 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16343 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16346 case DW_FORM_flag_present:
16347 DW_UNSND (attr) = 1;
16349 case DW_FORM_sdata:
16350 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16351 info_ptr += bytes_read;
16353 case DW_FORM_udata:
16354 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16355 info_ptr += bytes_read;
16358 DW_UNSND (attr) = (cu->header.offset.sect_off
16359 + read_1_byte (abfd, info_ptr));
16363 DW_UNSND (attr) = (cu->header.offset.sect_off
16364 + read_2_bytes (abfd, info_ptr));
16368 DW_UNSND (attr) = (cu->header.offset.sect_off
16369 + read_4_bytes (abfd, info_ptr));
16373 DW_UNSND (attr) = (cu->header.offset.sect_off
16374 + read_8_bytes (abfd, info_ptr));
16377 case DW_FORM_ref_sig8:
16378 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16381 case DW_FORM_ref_udata:
16382 DW_UNSND (attr) = (cu->header.offset.sect_off
16383 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16384 info_ptr += bytes_read;
16386 case DW_FORM_indirect:
16387 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16388 info_ptr += bytes_read;
16389 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16391 case DW_FORM_GNU_addr_index:
16392 if (reader->dwo_file == NULL)
16394 /* For now flag a hard error.
16395 Later we can turn this into a complaint. */
16396 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16397 dwarf_form_name (form),
16398 bfd_get_filename (abfd));
16400 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16401 info_ptr += bytes_read;
16403 case DW_FORM_GNU_str_index:
16404 if (reader->dwo_file == NULL)
16406 /* For now flag a hard error.
16407 Later we can turn this into a complaint if warranted. */
16408 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16409 dwarf_form_name (form),
16410 bfd_get_filename (abfd));
16413 ULONGEST str_index =
16414 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16416 DW_STRING (attr) = read_str_index (reader, str_index);
16417 DW_STRING_IS_CANONICAL (attr) = 0;
16418 info_ptr += bytes_read;
16422 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16423 dwarf_form_name (form),
16424 bfd_get_filename (abfd));
16428 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16429 attr->form = DW_FORM_GNU_ref_alt;
16431 /* We have seen instances where the compiler tried to emit a byte
16432 size attribute of -1 which ended up being encoded as an unsigned
16433 0xffffffff. Although 0xffffffff is technically a valid size value,
16434 an object of this size seems pretty unlikely so we can relatively
16435 safely treat these cases as if the size attribute was invalid and
16436 treat them as zero by default. */
16437 if (attr->name == DW_AT_byte_size
16438 && form == DW_FORM_data4
16439 && DW_UNSND (attr) >= 0xffffffff)
16442 (&symfile_complaints,
16443 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16444 hex_string (DW_UNSND (attr)));
16445 DW_UNSND (attr) = 0;
16451 /* Read an attribute described by an abbreviated attribute. */
16453 static const gdb_byte *
16454 read_attribute (const struct die_reader_specs *reader,
16455 struct attribute *attr, struct attr_abbrev *abbrev,
16456 const gdb_byte *info_ptr)
16458 attr->name = abbrev->name;
16459 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16462 /* Read dwarf information from a buffer. */
16464 static unsigned int
16465 read_1_byte (bfd *abfd, const gdb_byte *buf)
16467 return bfd_get_8 (abfd, buf);
16471 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16473 return bfd_get_signed_8 (abfd, buf);
16476 static unsigned int
16477 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16479 return bfd_get_16 (abfd, buf);
16483 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16485 return bfd_get_signed_16 (abfd, buf);
16488 static unsigned int
16489 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16491 return bfd_get_32 (abfd, buf);
16495 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16497 return bfd_get_signed_32 (abfd, buf);
16501 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16503 return bfd_get_64 (abfd, buf);
16507 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16508 unsigned int *bytes_read)
16510 struct comp_unit_head *cu_header = &cu->header;
16511 CORE_ADDR retval = 0;
16513 if (cu_header->signed_addr_p)
16515 switch (cu_header->addr_size)
16518 retval = bfd_get_signed_16 (abfd, buf);
16521 retval = bfd_get_signed_32 (abfd, buf);
16524 retval = bfd_get_signed_64 (abfd, buf);
16527 internal_error (__FILE__, __LINE__,
16528 _("read_address: bad switch, signed [in module %s]"),
16529 bfd_get_filename (abfd));
16534 switch (cu_header->addr_size)
16537 retval = bfd_get_16 (abfd, buf);
16540 retval = bfd_get_32 (abfd, buf);
16543 retval = bfd_get_64 (abfd, buf);
16546 internal_error (__FILE__, __LINE__,
16547 _("read_address: bad switch, "
16548 "unsigned [in module %s]"),
16549 bfd_get_filename (abfd));
16553 *bytes_read = cu_header->addr_size;
16557 /* Read the initial length from a section. The (draft) DWARF 3
16558 specification allows the initial length to take up either 4 bytes
16559 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16560 bytes describe the length and all offsets will be 8 bytes in length
16563 An older, non-standard 64-bit format is also handled by this
16564 function. The older format in question stores the initial length
16565 as an 8-byte quantity without an escape value. Lengths greater
16566 than 2^32 aren't very common which means that the initial 4 bytes
16567 is almost always zero. Since a length value of zero doesn't make
16568 sense for the 32-bit format, this initial zero can be considered to
16569 be an escape value which indicates the presence of the older 64-bit
16570 format. As written, the code can't detect (old format) lengths
16571 greater than 4GB. If it becomes necessary to handle lengths
16572 somewhat larger than 4GB, we could allow other small values (such
16573 as the non-sensical values of 1, 2, and 3) to also be used as
16574 escape values indicating the presence of the old format.
16576 The value returned via bytes_read should be used to increment the
16577 relevant pointer after calling read_initial_length().
16579 [ Note: read_initial_length() and read_offset() are based on the
16580 document entitled "DWARF Debugging Information Format", revision
16581 3, draft 8, dated November 19, 2001. This document was obtained
16584 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16586 This document is only a draft and is subject to change. (So beware.)
16588 Details regarding the older, non-standard 64-bit format were
16589 determined empirically by examining 64-bit ELF files produced by
16590 the SGI toolchain on an IRIX 6.5 machine.
16592 - Kevin, July 16, 2002
16596 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16598 LONGEST length = bfd_get_32 (abfd, buf);
16600 if (length == 0xffffffff)
16602 length = bfd_get_64 (abfd, buf + 4);
16605 else if (length == 0)
16607 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16608 length = bfd_get_64 (abfd, buf);
16619 /* Cover function for read_initial_length.
16620 Returns the length of the object at BUF, and stores the size of the
16621 initial length in *BYTES_READ and stores the size that offsets will be in
16623 If the initial length size is not equivalent to that specified in
16624 CU_HEADER then issue a complaint.
16625 This is useful when reading non-comp-unit headers. */
16628 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16629 const struct comp_unit_head *cu_header,
16630 unsigned int *bytes_read,
16631 unsigned int *offset_size)
16633 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16635 gdb_assert (cu_header->initial_length_size == 4
16636 || cu_header->initial_length_size == 8
16637 || cu_header->initial_length_size == 12);
16639 if (cu_header->initial_length_size != *bytes_read)
16640 complaint (&symfile_complaints,
16641 _("intermixed 32-bit and 64-bit DWARF sections"));
16643 *offset_size = (*bytes_read == 4) ? 4 : 8;
16647 /* Read an offset from the data stream. The size of the offset is
16648 given by cu_header->offset_size. */
16651 read_offset (bfd *abfd, const gdb_byte *buf,
16652 const struct comp_unit_head *cu_header,
16653 unsigned int *bytes_read)
16655 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16657 *bytes_read = cu_header->offset_size;
16661 /* Read an offset from the data stream. */
16664 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16666 LONGEST retval = 0;
16668 switch (offset_size)
16671 retval = bfd_get_32 (abfd, buf);
16674 retval = bfd_get_64 (abfd, buf);
16677 internal_error (__FILE__, __LINE__,
16678 _("read_offset_1: bad switch [in module %s]"),
16679 bfd_get_filename (abfd));
16685 static const gdb_byte *
16686 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16688 /* If the size of a host char is 8 bits, we can return a pointer
16689 to the buffer, otherwise we have to copy the data to a buffer
16690 allocated on the temporary obstack. */
16691 gdb_assert (HOST_CHAR_BIT == 8);
16695 static const char *
16696 read_direct_string (bfd *abfd, const gdb_byte *buf,
16697 unsigned int *bytes_read_ptr)
16699 /* If the size of a host char is 8 bits, we can return a pointer
16700 to the string, otherwise we have to copy the string to a buffer
16701 allocated on the temporary obstack. */
16702 gdb_assert (HOST_CHAR_BIT == 8);
16705 *bytes_read_ptr = 1;
16708 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16709 return (const char *) buf;
16712 static const char *
16713 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16715 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16716 if (dwarf2_per_objfile->str.buffer == NULL)
16717 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16718 bfd_get_filename (abfd));
16719 if (str_offset >= dwarf2_per_objfile->str.size)
16720 error (_("DW_FORM_strp pointing outside of "
16721 ".debug_str section [in module %s]"),
16722 bfd_get_filename (abfd));
16723 gdb_assert (HOST_CHAR_BIT == 8);
16724 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16726 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16729 /* Read a string at offset STR_OFFSET in the .debug_str section from
16730 the .dwz file DWZ. Throw an error if the offset is too large. If
16731 the string consists of a single NUL byte, return NULL; otherwise
16732 return a pointer to the string. */
16734 static const char *
16735 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16737 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16739 if (dwz->str.buffer == NULL)
16740 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16741 "section [in module %s]"),
16742 bfd_get_filename (dwz->dwz_bfd));
16743 if (str_offset >= dwz->str.size)
16744 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16745 ".debug_str section [in module %s]"),
16746 bfd_get_filename (dwz->dwz_bfd));
16747 gdb_assert (HOST_CHAR_BIT == 8);
16748 if (dwz->str.buffer[str_offset] == '\0')
16750 return (const char *) (dwz->str.buffer + str_offset);
16753 static const char *
16754 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16755 const struct comp_unit_head *cu_header,
16756 unsigned int *bytes_read_ptr)
16758 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16760 return read_indirect_string_at_offset (abfd, str_offset);
16764 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16765 unsigned int *bytes_read_ptr)
16768 unsigned int num_read;
16770 unsigned char byte;
16778 byte = bfd_get_8 (abfd, buf);
16781 result |= ((ULONGEST) (byte & 127) << shift);
16782 if ((byte & 128) == 0)
16788 *bytes_read_ptr = num_read;
16793 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16794 unsigned int *bytes_read_ptr)
16797 int i, shift, num_read;
16798 unsigned char byte;
16806 byte = bfd_get_8 (abfd, buf);
16809 result |= ((LONGEST) (byte & 127) << shift);
16811 if ((byte & 128) == 0)
16816 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16817 result |= -(((LONGEST) 1) << shift);
16818 *bytes_read_ptr = num_read;
16822 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16823 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16824 ADDR_SIZE is the size of addresses from the CU header. */
16827 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16829 struct objfile *objfile = dwarf2_per_objfile->objfile;
16830 bfd *abfd = objfile->obfd;
16831 const gdb_byte *info_ptr;
16833 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16834 if (dwarf2_per_objfile->addr.buffer == NULL)
16835 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16836 objfile_name (objfile));
16837 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16838 error (_("DW_FORM_addr_index pointing outside of "
16839 ".debug_addr section [in module %s]"),
16840 objfile_name (objfile));
16841 info_ptr = (dwarf2_per_objfile->addr.buffer
16842 + addr_base + addr_index * addr_size);
16843 if (addr_size == 4)
16844 return bfd_get_32 (abfd, info_ptr);
16846 return bfd_get_64 (abfd, info_ptr);
16849 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16852 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16854 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16857 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16860 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16861 unsigned int *bytes_read)
16863 bfd *abfd = cu->objfile->obfd;
16864 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16866 return read_addr_index (cu, addr_index);
16869 /* Data structure to pass results from dwarf2_read_addr_index_reader
16870 back to dwarf2_read_addr_index. */
16872 struct dwarf2_read_addr_index_data
16874 ULONGEST addr_base;
16878 /* die_reader_func for dwarf2_read_addr_index. */
16881 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16882 const gdb_byte *info_ptr,
16883 struct die_info *comp_unit_die,
16887 struct dwarf2_cu *cu = reader->cu;
16888 struct dwarf2_read_addr_index_data *aidata =
16889 (struct dwarf2_read_addr_index_data *) data;
16891 aidata->addr_base = cu->addr_base;
16892 aidata->addr_size = cu->header.addr_size;
16895 /* Given an index in .debug_addr, fetch the value.
16896 NOTE: This can be called during dwarf expression evaluation,
16897 long after the debug information has been read, and thus per_cu->cu
16898 may no longer exist. */
16901 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16902 unsigned int addr_index)
16904 struct objfile *objfile = per_cu->objfile;
16905 struct dwarf2_cu *cu = per_cu->cu;
16906 ULONGEST addr_base;
16909 /* This is intended to be called from outside this file. */
16910 dw2_setup (objfile);
16912 /* We need addr_base and addr_size.
16913 If we don't have PER_CU->cu, we have to get it.
16914 Nasty, but the alternative is storing the needed info in PER_CU,
16915 which at this point doesn't seem justified: it's not clear how frequently
16916 it would get used and it would increase the size of every PER_CU.
16917 Entry points like dwarf2_per_cu_addr_size do a similar thing
16918 so we're not in uncharted territory here.
16919 Alas we need to be a bit more complicated as addr_base is contained
16922 We don't need to read the entire CU(/TU).
16923 We just need the header and top level die.
16925 IWBN to use the aging mechanism to let us lazily later discard the CU.
16926 For now we skip this optimization. */
16930 addr_base = cu->addr_base;
16931 addr_size = cu->header.addr_size;
16935 struct dwarf2_read_addr_index_data aidata;
16937 /* Note: We can't use init_cutu_and_read_dies_simple here,
16938 we need addr_base. */
16939 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16940 dwarf2_read_addr_index_reader, &aidata);
16941 addr_base = aidata.addr_base;
16942 addr_size = aidata.addr_size;
16945 return read_addr_index_1 (addr_index, addr_base, addr_size);
16948 /* Given a DW_FORM_GNU_str_index, fetch the string.
16949 This is only used by the Fission support. */
16951 static const char *
16952 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16954 struct objfile *objfile = dwarf2_per_objfile->objfile;
16955 const char *objf_name = objfile_name (objfile);
16956 bfd *abfd = objfile->obfd;
16957 struct dwarf2_cu *cu = reader->cu;
16958 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16959 struct dwarf2_section_info *str_offsets_section =
16960 &reader->dwo_file->sections.str_offsets;
16961 const gdb_byte *info_ptr;
16962 ULONGEST str_offset;
16963 static const char form_name[] = "DW_FORM_GNU_str_index";
16965 dwarf2_read_section (objfile, str_section);
16966 dwarf2_read_section (objfile, str_offsets_section);
16967 if (str_section->buffer == NULL)
16968 error (_("%s used without .debug_str.dwo section"
16969 " in CU at offset 0x%lx [in module %s]"),
16970 form_name, (long) cu->header.offset.sect_off, objf_name);
16971 if (str_offsets_section->buffer == NULL)
16972 error (_("%s used without .debug_str_offsets.dwo section"
16973 " in CU at offset 0x%lx [in module %s]"),
16974 form_name, (long) cu->header.offset.sect_off, objf_name);
16975 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16976 error (_("%s pointing outside of .debug_str_offsets.dwo"
16977 " section in CU at offset 0x%lx [in module %s]"),
16978 form_name, (long) cu->header.offset.sect_off, objf_name);
16979 info_ptr = (str_offsets_section->buffer
16980 + str_index * cu->header.offset_size);
16981 if (cu->header.offset_size == 4)
16982 str_offset = bfd_get_32 (abfd, info_ptr);
16984 str_offset = bfd_get_64 (abfd, info_ptr);
16985 if (str_offset >= str_section->size)
16986 error (_("Offset from %s pointing outside of"
16987 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16988 form_name, (long) cu->header.offset.sect_off, objf_name);
16989 return (const char *) (str_section->buffer + str_offset);
16992 /* Return the length of an LEB128 number in BUF. */
16995 leb128_size (const gdb_byte *buf)
16997 const gdb_byte *begin = buf;
17003 if ((byte & 128) == 0)
17004 return buf - begin;
17009 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17018 cu->language = language_c;
17020 case DW_LANG_C_plus_plus:
17021 case DW_LANG_C_plus_plus_11:
17022 case DW_LANG_C_plus_plus_14:
17023 cu->language = language_cplus;
17026 cu->language = language_d;
17028 case DW_LANG_Fortran77:
17029 case DW_LANG_Fortran90:
17030 case DW_LANG_Fortran95:
17031 case DW_LANG_Fortran03:
17032 case DW_LANG_Fortran08:
17033 cu->language = language_fortran;
17036 cu->language = language_go;
17038 case DW_LANG_Mips_Assembler:
17039 cu->language = language_asm;
17042 cu->language = language_java;
17044 case DW_LANG_Ada83:
17045 case DW_LANG_Ada95:
17046 cu->language = language_ada;
17048 case DW_LANG_Modula2:
17049 cu->language = language_m2;
17051 case DW_LANG_Pascal83:
17052 cu->language = language_pascal;
17055 cu->language = language_objc;
17057 case DW_LANG_Cobol74:
17058 case DW_LANG_Cobol85:
17060 cu->language = language_minimal;
17063 cu->language_defn = language_def (cu->language);
17066 /* Return the named attribute or NULL if not there. */
17068 static struct attribute *
17069 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17074 struct attribute *spec = NULL;
17076 for (i = 0; i < die->num_attrs; ++i)
17078 if (die->attrs[i].name == name)
17079 return &die->attrs[i];
17080 if (die->attrs[i].name == DW_AT_specification
17081 || die->attrs[i].name == DW_AT_abstract_origin)
17082 spec = &die->attrs[i];
17088 die = follow_die_ref (die, spec, &cu);
17094 /* Return the named attribute or NULL if not there,
17095 but do not follow DW_AT_specification, etc.
17096 This is for use in contexts where we're reading .debug_types dies.
17097 Following DW_AT_specification, DW_AT_abstract_origin will take us
17098 back up the chain, and we want to go down. */
17100 static struct attribute *
17101 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17105 for (i = 0; i < die->num_attrs; ++i)
17106 if (die->attrs[i].name == name)
17107 return &die->attrs[i];
17112 /* Return the string associated with a string-typed attribute, or NULL if it
17113 is either not found or is of an incorrect type. */
17115 static const char *
17116 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17118 struct attribute *attr;
17119 const char *str = NULL;
17121 attr = dwarf2_attr (die, name, cu);
17125 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17126 || attr->form == DW_FORM_GNU_strp_alt)
17127 str = DW_STRING (attr);
17129 complaint (&symfile_complaints,
17130 _("string type expected for attribute %s for "
17131 "DIE at 0x%x in module %s"),
17132 dwarf_attr_name (name), die->offset.sect_off,
17133 objfile_name (cu->objfile));
17139 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17140 and holds a non-zero value. This function should only be used for
17141 DW_FORM_flag or DW_FORM_flag_present attributes. */
17144 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17146 struct attribute *attr = dwarf2_attr (die, name, cu);
17148 return (attr && DW_UNSND (attr));
17152 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17154 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17155 which value is non-zero. However, we have to be careful with
17156 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17157 (via dwarf2_flag_true_p) follows this attribute. So we may
17158 end up accidently finding a declaration attribute that belongs
17159 to a different DIE referenced by the specification attribute,
17160 even though the given DIE does not have a declaration attribute. */
17161 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17162 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17165 /* Return the die giving the specification for DIE, if there is
17166 one. *SPEC_CU is the CU containing DIE on input, and the CU
17167 containing the return value on output. If there is no
17168 specification, but there is an abstract origin, that is
17171 static struct die_info *
17172 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17174 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17177 if (spec_attr == NULL)
17178 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17180 if (spec_attr == NULL)
17183 return follow_die_ref (die, spec_attr, spec_cu);
17186 /* Free the line_header structure *LH, and any arrays and strings it
17188 NOTE: This is also used as a "cleanup" function. */
17191 free_line_header (struct line_header *lh)
17193 if (lh->standard_opcode_lengths)
17194 xfree (lh->standard_opcode_lengths);
17196 /* Remember that all the lh->file_names[i].name pointers are
17197 pointers into debug_line_buffer, and don't need to be freed. */
17198 if (lh->file_names)
17199 xfree (lh->file_names);
17201 /* Similarly for the include directory names. */
17202 if (lh->include_dirs)
17203 xfree (lh->include_dirs);
17208 /* Stub for free_line_header to match void * callback types. */
17211 free_line_header_voidp (void *arg)
17213 struct line_header *lh = (struct line_header *) arg;
17215 free_line_header (lh);
17218 /* Add an entry to LH's include directory table. */
17221 add_include_dir (struct line_header *lh, const char *include_dir)
17223 if (dwarf_line_debug >= 2)
17224 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17225 lh->num_include_dirs + 1, include_dir);
17227 /* Grow the array if necessary. */
17228 if (lh->include_dirs_size == 0)
17230 lh->include_dirs_size = 1; /* for testing */
17231 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17233 else if (lh->num_include_dirs >= lh->include_dirs_size)
17235 lh->include_dirs_size *= 2;
17236 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17237 lh->include_dirs_size);
17240 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17243 /* Add an entry to LH's file name table. */
17246 add_file_name (struct line_header *lh,
17248 unsigned int dir_index,
17249 unsigned int mod_time,
17250 unsigned int length)
17252 struct file_entry *fe;
17254 if (dwarf_line_debug >= 2)
17255 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17256 lh->num_file_names + 1, name);
17258 /* Grow the array if necessary. */
17259 if (lh->file_names_size == 0)
17261 lh->file_names_size = 1; /* for testing */
17262 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17264 else if (lh->num_file_names >= lh->file_names_size)
17266 lh->file_names_size *= 2;
17268 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17271 fe = &lh->file_names[lh->num_file_names++];
17273 fe->dir_index = dir_index;
17274 fe->mod_time = mod_time;
17275 fe->length = length;
17276 fe->included_p = 0;
17280 /* A convenience function to find the proper .debug_line section for a CU. */
17282 static struct dwarf2_section_info *
17283 get_debug_line_section (struct dwarf2_cu *cu)
17285 struct dwarf2_section_info *section;
17287 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17289 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17290 section = &cu->dwo_unit->dwo_file->sections.line;
17291 else if (cu->per_cu->is_dwz)
17293 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17295 section = &dwz->line;
17298 section = &dwarf2_per_objfile->line;
17303 /* Read the statement program header starting at OFFSET in
17304 .debug_line, or .debug_line.dwo. Return a pointer
17305 to a struct line_header, allocated using xmalloc.
17306 Returns NULL if there is a problem reading the header, e.g., if it
17307 has a version we don't understand.
17309 NOTE: the strings in the include directory and file name tables of
17310 the returned object point into the dwarf line section buffer,
17311 and must not be freed. */
17313 static struct line_header *
17314 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17316 struct cleanup *back_to;
17317 struct line_header *lh;
17318 const gdb_byte *line_ptr;
17319 unsigned int bytes_read, offset_size;
17321 const char *cur_dir, *cur_file;
17322 struct dwarf2_section_info *section;
17325 section = get_debug_line_section (cu);
17326 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17327 if (section->buffer == NULL)
17329 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17330 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17332 complaint (&symfile_complaints, _("missing .debug_line section"));
17336 /* We can't do this until we know the section is non-empty.
17337 Only then do we know we have such a section. */
17338 abfd = get_section_bfd_owner (section);
17340 /* Make sure that at least there's room for the total_length field.
17341 That could be 12 bytes long, but we're just going to fudge that. */
17342 if (offset + 4 >= section->size)
17344 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17348 lh = XNEW (struct line_header);
17349 memset (lh, 0, sizeof (*lh));
17350 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17353 lh->offset.sect_off = offset;
17354 lh->offset_in_dwz = cu->per_cu->is_dwz;
17356 line_ptr = section->buffer + offset;
17358 /* Read in the header. */
17360 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17361 &bytes_read, &offset_size);
17362 line_ptr += bytes_read;
17363 if (line_ptr + lh->total_length > (section->buffer + section->size))
17365 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17366 do_cleanups (back_to);
17369 lh->statement_program_end = line_ptr + lh->total_length;
17370 lh->version = read_2_bytes (abfd, line_ptr);
17372 if (lh->version > 4)
17374 /* This is a version we don't understand. The format could have
17375 changed in ways we don't handle properly so just punt. */
17376 complaint (&symfile_complaints,
17377 _("unsupported version in .debug_line section"));
17380 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17381 line_ptr += offset_size;
17382 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17384 if (lh->version >= 4)
17386 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17390 lh->maximum_ops_per_instruction = 1;
17392 if (lh->maximum_ops_per_instruction == 0)
17394 lh->maximum_ops_per_instruction = 1;
17395 complaint (&symfile_complaints,
17396 _("invalid maximum_ops_per_instruction "
17397 "in `.debug_line' section"));
17400 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17402 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17404 lh->line_range = read_1_byte (abfd, line_ptr);
17406 lh->opcode_base = read_1_byte (abfd, line_ptr);
17408 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17410 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17411 for (i = 1; i < lh->opcode_base; ++i)
17413 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17417 /* Read directory table. */
17418 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17420 line_ptr += bytes_read;
17421 add_include_dir (lh, cur_dir);
17423 line_ptr += bytes_read;
17425 /* Read file name table. */
17426 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17428 unsigned int dir_index, mod_time, length;
17430 line_ptr += bytes_read;
17431 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17432 line_ptr += bytes_read;
17433 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17434 line_ptr += bytes_read;
17435 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17436 line_ptr += bytes_read;
17438 add_file_name (lh, cur_file, dir_index, mod_time, length);
17440 line_ptr += bytes_read;
17441 lh->statement_program_start = line_ptr;
17443 if (line_ptr > (section->buffer + section->size))
17444 complaint (&symfile_complaints,
17445 _("line number info header doesn't "
17446 "fit in `.debug_line' section"));
17448 discard_cleanups (back_to);
17452 /* Subroutine of dwarf_decode_lines to simplify it.
17453 Return the file name of the psymtab for included file FILE_INDEX
17454 in line header LH of PST.
17455 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17456 If space for the result is malloc'd, it will be freed by a cleanup.
17457 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17459 The function creates dangling cleanup registration. */
17461 static const char *
17462 psymtab_include_file_name (const struct line_header *lh, int file_index,
17463 const struct partial_symtab *pst,
17464 const char *comp_dir)
17466 const struct file_entry fe = lh->file_names [file_index];
17467 const char *include_name = fe.name;
17468 const char *include_name_to_compare = include_name;
17469 const char *dir_name = NULL;
17470 const char *pst_filename;
17471 char *copied_name = NULL;
17474 if (fe.dir_index && lh->include_dirs != NULL)
17475 dir_name = lh->include_dirs[fe.dir_index - 1];
17477 if (!IS_ABSOLUTE_PATH (include_name)
17478 && (dir_name != NULL || comp_dir != NULL))
17480 /* Avoid creating a duplicate psymtab for PST.
17481 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17482 Before we do the comparison, however, we need to account
17483 for DIR_NAME and COMP_DIR.
17484 First prepend dir_name (if non-NULL). If we still don't
17485 have an absolute path prepend comp_dir (if non-NULL).
17486 However, the directory we record in the include-file's
17487 psymtab does not contain COMP_DIR (to match the
17488 corresponding symtab(s)).
17493 bash$ gcc -g ./hello.c
17494 include_name = "hello.c"
17496 DW_AT_comp_dir = comp_dir = "/tmp"
17497 DW_AT_name = "./hello.c"
17501 if (dir_name != NULL)
17503 char *tem = concat (dir_name, SLASH_STRING,
17504 include_name, (char *)NULL);
17506 make_cleanup (xfree, tem);
17507 include_name = tem;
17508 include_name_to_compare = include_name;
17510 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17512 char *tem = concat (comp_dir, SLASH_STRING,
17513 include_name, (char *)NULL);
17515 make_cleanup (xfree, tem);
17516 include_name_to_compare = tem;
17520 pst_filename = pst->filename;
17521 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17523 copied_name = concat (pst->dirname, SLASH_STRING,
17524 pst_filename, (char *)NULL);
17525 pst_filename = copied_name;
17528 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17530 if (copied_name != NULL)
17531 xfree (copied_name);
17535 return include_name;
17538 /* State machine to track the state of the line number program. */
17542 /* These are part of the standard DWARF line number state machine. */
17544 unsigned char op_index;
17549 unsigned int discriminator;
17551 /* Additional bits of state we need to track. */
17553 /* The last file that we called dwarf2_start_subfile for.
17554 This is only used for TLLs. */
17555 unsigned int last_file;
17556 /* The last file a line number was recorded for. */
17557 struct subfile *last_subfile;
17559 /* The function to call to record a line. */
17560 record_line_ftype *record_line;
17562 /* The last line number that was recorded, used to coalesce
17563 consecutive entries for the same line. This can happen, for
17564 example, when discriminators are present. PR 17276. */
17565 unsigned int last_line;
17566 int line_has_non_zero_discriminator;
17567 } lnp_state_machine;
17569 /* There's a lot of static state to pass to dwarf_record_line.
17570 This keeps it all together. */
17575 struct gdbarch *gdbarch;
17577 /* The line number header. */
17578 struct line_header *line_header;
17580 /* Non-zero if we're recording lines.
17581 Otherwise we're building partial symtabs and are just interested in
17582 finding include files mentioned by the line number program. */
17583 int record_lines_p;
17584 } lnp_reader_state;
17586 /* Ignore this record_line request. */
17589 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17594 /* Return non-zero if we should add LINE to the line number table.
17595 LINE is the line to add, LAST_LINE is the last line that was added,
17596 LAST_SUBFILE is the subfile for LAST_LINE.
17597 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17598 had a non-zero discriminator.
17600 We have to be careful in the presence of discriminators.
17601 E.g., for this line:
17603 for (i = 0; i < 100000; i++);
17605 clang can emit four line number entries for that one line,
17606 each with a different discriminator.
17607 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17609 However, we want gdb to coalesce all four entries into one.
17610 Otherwise the user could stepi into the middle of the line and
17611 gdb would get confused about whether the pc really was in the
17612 middle of the line.
17614 Things are further complicated by the fact that two consecutive
17615 line number entries for the same line is a heuristic used by gcc
17616 to denote the end of the prologue. So we can't just discard duplicate
17617 entries, we have to be selective about it. The heuristic we use is
17618 that we only collapse consecutive entries for the same line if at least
17619 one of those entries has a non-zero discriminator. PR 17276.
17621 Note: Addresses in the line number state machine can never go backwards
17622 within one sequence, thus this coalescing is ok. */
17625 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17626 int line_has_non_zero_discriminator,
17627 struct subfile *last_subfile)
17629 if (current_subfile != last_subfile)
17631 if (line != last_line)
17633 /* Same line for the same file that we've seen already.
17634 As a last check, for pr 17276, only record the line if the line
17635 has never had a non-zero discriminator. */
17636 if (!line_has_non_zero_discriminator)
17641 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17642 in the line table of subfile SUBFILE. */
17645 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17646 unsigned int line, CORE_ADDR address,
17647 record_line_ftype p_record_line)
17649 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17651 if (dwarf_line_debug)
17653 fprintf_unfiltered (gdb_stdlog,
17654 "Recording line %u, file %s, address %s\n",
17655 line, lbasename (subfile->name),
17656 paddress (gdbarch, address));
17659 (*p_record_line) (subfile, line, addr);
17662 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17663 Mark the end of a set of line number records.
17664 The arguments are the same as for dwarf_record_line_1.
17665 If SUBFILE is NULL the request is ignored. */
17668 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17669 CORE_ADDR address, record_line_ftype p_record_line)
17671 if (subfile == NULL)
17674 if (dwarf_line_debug)
17676 fprintf_unfiltered (gdb_stdlog,
17677 "Finishing current line, file %s, address %s\n",
17678 lbasename (subfile->name),
17679 paddress (gdbarch, address));
17682 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17685 /* Record the line in STATE.
17686 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17689 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17692 const struct line_header *lh = reader->line_header;
17693 unsigned int file, line, discriminator;
17696 file = state->file;
17697 line = state->line;
17698 is_stmt = state->is_stmt;
17699 discriminator = state->discriminator;
17701 if (dwarf_line_debug)
17703 fprintf_unfiltered (gdb_stdlog,
17704 "Processing actual line %u: file %u,"
17705 " address %s, is_stmt %u, discrim %u\n",
17707 paddress (reader->gdbarch, state->address),
17708 is_stmt, discriminator);
17711 if (file == 0 || file - 1 >= lh->num_file_names)
17712 dwarf2_debug_line_missing_file_complaint ();
17713 /* For now we ignore lines not starting on an instruction boundary.
17714 But not when processing end_sequence for compatibility with the
17715 previous version of the code. */
17716 else if (state->op_index == 0 || end_sequence)
17718 lh->file_names[file - 1].included_p = 1;
17719 if (reader->record_lines_p && is_stmt)
17721 if (state->last_subfile != current_subfile || end_sequence)
17723 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17724 state->address, state->record_line);
17729 if (dwarf_record_line_p (line, state->last_line,
17730 state->line_has_non_zero_discriminator,
17731 state->last_subfile))
17733 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17734 line, state->address,
17735 state->record_line);
17737 state->last_subfile = current_subfile;
17738 state->last_line = line;
17744 /* Initialize STATE for the start of a line number program. */
17747 init_lnp_state_machine (lnp_state_machine *state,
17748 const lnp_reader_state *reader)
17750 memset (state, 0, sizeof (*state));
17752 /* Just starting, there is no "last file". */
17753 state->last_file = 0;
17754 state->last_subfile = NULL;
17756 state->record_line = record_line;
17758 state->last_line = 0;
17759 state->line_has_non_zero_discriminator = 0;
17761 /* Initialize these according to the DWARF spec. */
17762 state->op_index = 0;
17765 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17766 was a line entry for it so that the backend has a chance to adjust it
17767 and also record it in case it needs it. This is currently used by MIPS
17768 code, cf. `mips_adjust_dwarf2_line'. */
17769 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17770 state->is_stmt = reader->line_header->default_is_stmt;
17771 state->discriminator = 0;
17774 /* Check address and if invalid nop-out the rest of the lines in this
17778 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17779 const gdb_byte *line_ptr,
17780 CORE_ADDR lowpc, CORE_ADDR address)
17782 /* If address < lowpc then it's not a usable value, it's outside the
17783 pc range of the CU. However, we restrict the test to only address
17784 values of zero to preserve GDB's previous behaviour which is to
17785 handle the specific case of a function being GC'd by the linker. */
17787 if (address == 0 && address < lowpc)
17789 /* This line table is for a function which has been
17790 GCd by the linker. Ignore it. PR gdb/12528 */
17792 struct objfile *objfile = cu->objfile;
17793 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17795 complaint (&symfile_complaints,
17796 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17797 line_offset, objfile_name (objfile));
17798 state->record_line = noop_record_line;
17799 /* Note: sm.record_line is left as noop_record_line
17800 until we see DW_LNE_end_sequence. */
17804 /* Subroutine of dwarf_decode_lines to simplify it.
17805 Process the line number information in LH.
17806 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17807 program in order to set included_p for every referenced header. */
17810 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17811 const int decode_for_pst_p, CORE_ADDR lowpc)
17813 const gdb_byte *line_ptr, *extended_end;
17814 const gdb_byte *line_end;
17815 unsigned int bytes_read, extended_len;
17816 unsigned char op_code, extended_op;
17817 CORE_ADDR baseaddr;
17818 struct objfile *objfile = cu->objfile;
17819 bfd *abfd = objfile->obfd;
17820 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17821 /* Non-zero if we're recording line info (as opposed to building partial
17823 int record_lines_p = !decode_for_pst_p;
17824 /* A collection of things we need to pass to dwarf_record_line. */
17825 lnp_reader_state reader_state;
17827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17829 line_ptr = lh->statement_program_start;
17830 line_end = lh->statement_program_end;
17832 reader_state.gdbarch = gdbarch;
17833 reader_state.line_header = lh;
17834 reader_state.record_lines_p = record_lines_p;
17836 /* Read the statement sequences until there's nothing left. */
17837 while (line_ptr < line_end)
17839 /* The DWARF line number program state machine. */
17840 lnp_state_machine state_machine;
17841 int end_sequence = 0;
17843 /* Reset the state machine at the start of each sequence. */
17844 init_lnp_state_machine (&state_machine, &reader_state);
17846 if (record_lines_p && lh->num_file_names >= state_machine.file)
17848 /* Start a subfile for the current file of the state machine. */
17849 /* lh->include_dirs and lh->file_names are 0-based, but the
17850 directory and file name numbers in the statement program
17852 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17853 const char *dir = NULL;
17855 if (fe->dir_index && lh->include_dirs != NULL)
17856 dir = lh->include_dirs[fe->dir_index - 1];
17858 dwarf2_start_subfile (fe->name, dir);
17861 /* Decode the table. */
17862 while (line_ptr < line_end && !end_sequence)
17864 op_code = read_1_byte (abfd, line_ptr);
17867 if (op_code >= lh->opcode_base)
17869 /* Special opcode. */
17870 unsigned char adj_opcode;
17871 CORE_ADDR addr_adj;
17874 adj_opcode = op_code - lh->opcode_base;
17875 addr_adj = (((state_machine.op_index
17876 + (adj_opcode / lh->line_range))
17877 / lh->maximum_ops_per_instruction)
17878 * lh->minimum_instruction_length);
17879 state_machine.address
17880 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17881 state_machine.op_index = ((state_machine.op_index
17882 + (adj_opcode / lh->line_range))
17883 % lh->maximum_ops_per_instruction);
17884 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17885 state_machine.line += line_delta;
17886 if (line_delta != 0)
17887 state_machine.line_has_non_zero_discriminator
17888 = state_machine.discriminator != 0;
17890 dwarf_record_line (&reader_state, &state_machine, 0);
17891 state_machine.discriminator = 0;
17893 else switch (op_code)
17895 case DW_LNS_extended_op:
17896 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17898 line_ptr += bytes_read;
17899 extended_end = line_ptr + extended_len;
17900 extended_op = read_1_byte (abfd, line_ptr);
17902 switch (extended_op)
17904 case DW_LNE_end_sequence:
17905 state_machine.record_line = record_line;
17908 case DW_LNE_set_address:
17911 = read_address (abfd, line_ptr, cu, &bytes_read);
17913 line_ptr += bytes_read;
17914 check_line_address (cu, &state_machine, line_ptr,
17916 state_machine.op_index = 0;
17917 address += baseaddr;
17918 state_machine.address
17919 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17922 case DW_LNE_define_file:
17924 const char *cur_file;
17925 unsigned int dir_index, mod_time, length;
17927 cur_file = read_direct_string (abfd, line_ptr,
17929 line_ptr += bytes_read;
17931 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17932 line_ptr += bytes_read;
17934 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17935 line_ptr += bytes_read;
17937 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17938 line_ptr += bytes_read;
17939 add_file_name (lh, cur_file, dir_index, mod_time, length);
17942 case DW_LNE_set_discriminator:
17943 /* The discriminator is not interesting to the debugger;
17944 just ignore it. We still need to check its value though:
17945 if there are consecutive entries for the same
17946 (non-prologue) line we want to coalesce them.
17948 state_machine.discriminator
17949 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17950 state_machine.line_has_non_zero_discriminator
17951 |= state_machine.discriminator != 0;
17952 line_ptr += bytes_read;
17955 complaint (&symfile_complaints,
17956 _("mangled .debug_line section"));
17959 /* Make sure that we parsed the extended op correctly. If e.g.
17960 we expected a different address size than the producer used,
17961 we may have read the wrong number of bytes. */
17962 if (line_ptr != extended_end)
17964 complaint (&symfile_complaints,
17965 _("mangled .debug_line section"));
17970 dwarf_record_line (&reader_state, &state_machine, 0);
17971 state_machine.discriminator = 0;
17973 case DW_LNS_advance_pc:
17976 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17977 CORE_ADDR addr_adj;
17979 addr_adj = (((state_machine.op_index + adjust)
17980 / lh->maximum_ops_per_instruction)
17981 * lh->minimum_instruction_length);
17982 state_machine.address
17983 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17984 state_machine.op_index = ((state_machine.op_index + adjust)
17985 % lh->maximum_ops_per_instruction);
17986 line_ptr += bytes_read;
17989 case DW_LNS_advance_line:
17992 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17994 state_machine.line += line_delta;
17995 if (line_delta != 0)
17996 state_machine.line_has_non_zero_discriminator
17997 = state_machine.discriminator != 0;
17998 line_ptr += bytes_read;
18001 case DW_LNS_set_file:
18003 /* The arrays lh->include_dirs and lh->file_names are
18004 0-based, but the directory and file name numbers in
18005 the statement program are 1-based. */
18006 struct file_entry *fe;
18007 const char *dir = NULL;
18009 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18011 line_ptr += bytes_read;
18012 if (state_machine.file == 0
18013 || state_machine.file - 1 >= lh->num_file_names)
18014 dwarf2_debug_line_missing_file_complaint ();
18017 fe = &lh->file_names[state_machine.file - 1];
18018 if (fe->dir_index && lh->include_dirs != NULL)
18019 dir = lh->include_dirs[fe->dir_index - 1];
18020 if (record_lines_p)
18022 state_machine.last_subfile = current_subfile;
18023 state_machine.line_has_non_zero_discriminator
18024 = state_machine.discriminator != 0;
18025 dwarf2_start_subfile (fe->name, dir);
18030 case DW_LNS_set_column:
18031 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18032 line_ptr += bytes_read;
18034 case DW_LNS_negate_stmt:
18035 state_machine.is_stmt = (!state_machine.is_stmt);
18037 case DW_LNS_set_basic_block:
18039 /* Add to the address register of the state machine the
18040 address increment value corresponding to special opcode
18041 255. I.e., this value is scaled by the minimum
18042 instruction length since special opcode 255 would have
18043 scaled the increment. */
18044 case DW_LNS_const_add_pc:
18046 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18047 CORE_ADDR addr_adj;
18049 addr_adj = (((state_machine.op_index + adjust)
18050 / lh->maximum_ops_per_instruction)
18051 * lh->minimum_instruction_length);
18052 state_machine.address
18053 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18054 state_machine.op_index = ((state_machine.op_index + adjust)
18055 % lh->maximum_ops_per_instruction);
18058 case DW_LNS_fixed_advance_pc:
18060 CORE_ADDR addr_adj;
18062 addr_adj = read_2_bytes (abfd, line_ptr);
18063 state_machine.address
18064 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18065 state_machine.op_index = 0;
18071 /* Unknown standard opcode, ignore it. */
18074 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18076 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18077 line_ptr += bytes_read;
18084 dwarf2_debug_line_missing_end_sequence_complaint ();
18086 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18087 in which case we still finish recording the last line). */
18088 dwarf_record_line (&reader_state, &state_machine, 1);
18092 /* Decode the Line Number Program (LNP) for the given line_header
18093 structure and CU. The actual information extracted and the type
18094 of structures created from the LNP depends on the value of PST.
18096 1. If PST is NULL, then this procedure uses the data from the program
18097 to create all necessary symbol tables, and their linetables.
18099 2. If PST is not NULL, this procedure reads the program to determine
18100 the list of files included by the unit represented by PST, and
18101 builds all the associated partial symbol tables.
18103 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18104 It is used for relative paths in the line table.
18105 NOTE: When processing partial symtabs (pst != NULL),
18106 comp_dir == pst->dirname.
18108 NOTE: It is important that psymtabs have the same file name (via strcmp)
18109 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18110 symtab we don't use it in the name of the psymtabs we create.
18111 E.g. expand_line_sal requires this when finding psymtabs to expand.
18112 A good testcase for this is mb-inline.exp.
18114 LOWPC is the lowest address in CU (or 0 if not known).
18116 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18117 for its PC<->lines mapping information. Otherwise only the filename
18118 table is read in. */
18121 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18122 struct dwarf2_cu *cu, struct partial_symtab *pst,
18123 CORE_ADDR lowpc, int decode_mapping)
18125 struct objfile *objfile = cu->objfile;
18126 const int decode_for_pst_p = (pst != NULL);
18128 if (decode_mapping)
18129 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18131 if (decode_for_pst_p)
18135 /* Now that we're done scanning the Line Header Program, we can
18136 create the psymtab of each included file. */
18137 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18138 if (lh->file_names[file_index].included_p == 1)
18140 const char *include_name =
18141 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18142 if (include_name != NULL)
18143 dwarf2_create_include_psymtab (include_name, pst, objfile);
18148 /* Make sure a symtab is created for every file, even files
18149 which contain only variables (i.e. no code with associated
18151 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18154 for (i = 0; i < lh->num_file_names; i++)
18156 const char *dir = NULL;
18157 struct file_entry *fe;
18159 fe = &lh->file_names[i];
18160 if (fe->dir_index && lh->include_dirs != NULL)
18161 dir = lh->include_dirs[fe->dir_index - 1];
18162 dwarf2_start_subfile (fe->name, dir);
18164 if (current_subfile->symtab == NULL)
18166 current_subfile->symtab
18167 = allocate_symtab (cust, current_subfile->name);
18169 fe->symtab = current_subfile->symtab;
18174 /* Start a subfile for DWARF. FILENAME is the name of the file and
18175 DIRNAME the name of the source directory which contains FILENAME
18176 or NULL if not known.
18177 This routine tries to keep line numbers from identical absolute and
18178 relative file names in a common subfile.
18180 Using the `list' example from the GDB testsuite, which resides in
18181 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18182 of /srcdir/list0.c yields the following debugging information for list0.c:
18184 DW_AT_name: /srcdir/list0.c
18185 DW_AT_comp_dir: /compdir
18186 files.files[0].name: list0.h
18187 files.files[0].dir: /srcdir
18188 files.files[1].name: list0.c
18189 files.files[1].dir: /srcdir
18191 The line number information for list0.c has to end up in a single
18192 subfile, so that `break /srcdir/list0.c:1' works as expected.
18193 start_subfile will ensure that this happens provided that we pass the
18194 concatenation of files.files[1].dir and files.files[1].name as the
18198 dwarf2_start_subfile (const char *filename, const char *dirname)
18202 /* In order not to lose the line information directory,
18203 we concatenate it to the filename when it makes sense.
18204 Note that the Dwarf3 standard says (speaking of filenames in line
18205 information): ``The directory index is ignored for file names
18206 that represent full path names''. Thus ignoring dirname in the
18207 `else' branch below isn't an issue. */
18209 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18211 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18215 start_subfile (filename);
18221 /* Start a symtab for DWARF.
18222 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18224 static struct compunit_symtab *
18225 dwarf2_start_symtab (struct dwarf2_cu *cu,
18226 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18228 struct compunit_symtab *cust
18229 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18231 record_debugformat ("DWARF 2");
18232 record_producer (cu->producer);
18234 /* We assume that we're processing GCC output. */
18235 processing_gcc_compilation = 2;
18237 cu->processing_has_namespace_info = 0;
18243 var_decode_location (struct attribute *attr, struct symbol *sym,
18244 struct dwarf2_cu *cu)
18246 struct objfile *objfile = cu->objfile;
18247 struct comp_unit_head *cu_header = &cu->header;
18249 /* NOTE drow/2003-01-30: There used to be a comment and some special
18250 code here to turn a symbol with DW_AT_external and a
18251 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18252 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18253 with some versions of binutils) where shared libraries could have
18254 relocations against symbols in their debug information - the
18255 minimal symbol would have the right address, but the debug info
18256 would not. It's no longer necessary, because we will explicitly
18257 apply relocations when we read in the debug information now. */
18259 /* A DW_AT_location attribute with no contents indicates that a
18260 variable has been optimized away. */
18261 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18263 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18267 /* Handle one degenerate form of location expression specially, to
18268 preserve GDB's previous behavior when section offsets are
18269 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18270 then mark this symbol as LOC_STATIC. */
18272 if (attr_form_is_block (attr)
18273 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18274 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18275 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18276 && (DW_BLOCK (attr)->size
18277 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18279 unsigned int dummy;
18281 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18282 SYMBOL_VALUE_ADDRESS (sym) =
18283 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18285 SYMBOL_VALUE_ADDRESS (sym) =
18286 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18287 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18288 fixup_symbol_section (sym, objfile);
18289 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18290 SYMBOL_SECTION (sym));
18294 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18295 expression evaluator, and use LOC_COMPUTED only when necessary
18296 (i.e. when the value of a register or memory location is
18297 referenced, or a thread-local block, etc.). Then again, it might
18298 not be worthwhile. I'm assuming that it isn't unless performance
18299 or memory numbers show me otherwise. */
18301 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18303 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18304 cu->has_loclist = 1;
18307 /* Given a pointer to a DWARF information entry, figure out if we need
18308 to make a symbol table entry for it, and if so, create a new entry
18309 and return a pointer to it.
18310 If TYPE is NULL, determine symbol type from the die, otherwise
18311 used the passed type.
18312 If SPACE is not NULL, use it to hold the new symbol. If it is
18313 NULL, allocate a new symbol on the objfile's obstack. */
18315 static struct symbol *
18316 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18317 struct symbol *space)
18319 struct objfile *objfile = cu->objfile;
18320 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18321 struct symbol *sym = NULL;
18323 struct attribute *attr = NULL;
18324 struct attribute *attr2 = NULL;
18325 CORE_ADDR baseaddr;
18326 struct pending **list_to_add = NULL;
18328 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18330 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18332 name = dwarf2_name (die, cu);
18335 const char *linkagename;
18336 int suppress_add = 0;
18341 sym = allocate_symbol (objfile);
18342 OBJSTAT (objfile, n_syms++);
18344 /* Cache this symbol's name and the name's demangled form (if any). */
18345 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18346 linkagename = dwarf2_physname (name, die, cu);
18347 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18349 /* Fortran does not have mangling standard and the mangling does differ
18350 between gfortran, iFort etc. */
18351 if (cu->language == language_fortran
18352 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18353 symbol_set_demangled_name (&(sym->ginfo),
18354 dwarf2_full_name (name, die, cu),
18357 /* Default assumptions.
18358 Use the passed type or decode it from the die. */
18359 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18360 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18362 SYMBOL_TYPE (sym) = type;
18364 SYMBOL_TYPE (sym) = die_type (die, cu);
18365 attr = dwarf2_attr (die,
18366 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18370 SYMBOL_LINE (sym) = DW_UNSND (attr);
18373 attr = dwarf2_attr (die,
18374 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18378 int file_index = DW_UNSND (attr);
18380 if (cu->line_header == NULL
18381 || file_index > cu->line_header->num_file_names)
18382 complaint (&symfile_complaints,
18383 _("file index out of range"));
18384 else if (file_index > 0)
18386 struct file_entry *fe;
18388 fe = &cu->line_header->file_names[file_index - 1];
18389 symbol_set_symtab (sym, fe->symtab);
18396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18401 addr = attr_value_as_address (attr);
18402 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18403 SYMBOL_VALUE_ADDRESS (sym) = addr;
18405 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18406 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18407 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18408 add_symbol_to_list (sym, cu->list_in_scope);
18410 case DW_TAG_subprogram:
18411 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18413 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18414 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18415 if ((attr2 && (DW_UNSND (attr2) != 0))
18416 || cu->language == language_ada)
18418 /* Subprograms marked external are stored as a global symbol.
18419 Ada subprograms, whether marked external or not, are always
18420 stored as a global symbol, because we want to be able to
18421 access them globally. For instance, we want to be able
18422 to break on a nested subprogram without having to
18423 specify the context. */
18424 list_to_add = &global_symbols;
18428 list_to_add = cu->list_in_scope;
18431 case DW_TAG_inlined_subroutine:
18432 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18434 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18435 SYMBOL_INLINED (sym) = 1;
18436 list_to_add = cu->list_in_scope;
18438 case DW_TAG_template_value_param:
18440 /* Fall through. */
18441 case DW_TAG_constant:
18442 case DW_TAG_variable:
18443 case DW_TAG_member:
18444 /* Compilation with minimal debug info may result in
18445 variables with missing type entries. Change the
18446 misleading `void' type to something sensible. */
18447 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18449 = objfile_type (objfile)->nodebug_data_symbol;
18451 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18452 /* In the case of DW_TAG_member, we should only be called for
18453 static const members. */
18454 if (die->tag == DW_TAG_member)
18456 /* dwarf2_add_field uses die_is_declaration,
18457 so we do the same. */
18458 gdb_assert (die_is_declaration (die, cu));
18463 dwarf2_const_value (attr, sym, cu);
18464 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18467 if (attr2 && (DW_UNSND (attr2) != 0))
18468 list_to_add = &global_symbols;
18470 list_to_add = cu->list_in_scope;
18474 attr = dwarf2_attr (die, DW_AT_location, cu);
18477 var_decode_location (attr, sym, cu);
18478 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18480 /* Fortran explicitly imports any global symbols to the local
18481 scope by DW_TAG_common_block. */
18482 if (cu->language == language_fortran && die->parent
18483 && die->parent->tag == DW_TAG_common_block)
18486 if (SYMBOL_CLASS (sym) == LOC_STATIC
18487 && SYMBOL_VALUE_ADDRESS (sym) == 0
18488 && !dwarf2_per_objfile->has_section_at_zero)
18490 /* When a static variable is eliminated by the linker,
18491 the corresponding debug information is not stripped
18492 out, but the variable address is set to null;
18493 do not add such variables into symbol table. */
18495 else if (attr2 && (DW_UNSND (attr2) != 0))
18497 /* Workaround gfortran PR debug/40040 - it uses
18498 DW_AT_location for variables in -fPIC libraries which may
18499 get overriden by other libraries/executable and get
18500 a different address. Resolve it by the minimal symbol
18501 which may come from inferior's executable using copy
18502 relocation. Make this workaround only for gfortran as for
18503 other compilers GDB cannot guess the minimal symbol
18504 Fortran mangling kind. */
18505 if (cu->language == language_fortran && die->parent
18506 && die->parent->tag == DW_TAG_module
18508 && startswith (cu->producer, "GNU Fortran "))
18509 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18511 /* A variable with DW_AT_external is never static,
18512 but it may be block-scoped. */
18513 list_to_add = (cu->list_in_scope == &file_symbols
18514 ? &global_symbols : cu->list_in_scope);
18517 list_to_add = cu->list_in_scope;
18521 /* We do not know the address of this symbol.
18522 If it is an external symbol and we have type information
18523 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18524 The address of the variable will then be determined from
18525 the minimal symbol table whenever the variable is
18527 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18529 /* Fortran explicitly imports any global symbols to the local
18530 scope by DW_TAG_common_block. */
18531 if (cu->language == language_fortran && die->parent
18532 && die->parent->tag == DW_TAG_common_block)
18534 /* SYMBOL_CLASS doesn't matter here because
18535 read_common_block is going to reset it. */
18537 list_to_add = cu->list_in_scope;
18539 else if (attr2 && (DW_UNSND (attr2) != 0)
18540 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18542 /* A variable with DW_AT_external is never static, but it
18543 may be block-scoped. */
18544 list_to_add = (cu->list_in_scope == &file_symbols
18545 ? &global_symbols : cu->list_in_scope);
18547 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18549 else if (!die_is_declaration (die, cu))
18551 /* Use the default LOC_OPTIMIZED_OUT class. */
18552 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18554 list_to_add = cu->list_in_scope;
18558 case DW_TAG_formal_parameter:
18559 /* If we are inside a function, mark this as an argument. If
18560 not, we might be looking at an argument to an inlined function
18561 when we do not have enough information to show inlined frames;
18562 pretend it's a local variable in that case so that the user can
18564 if (context_stack_depth > 0
18565 && context_stack[context_stack_depth - 1].name != NULL)
18566 SYMBOL_IS_ARGUMENT (sym) = 1;
18567 attr = dwarf2_attr (die, DW_AT_location, cu);
18570 var_decode_location (attr, sym, cu);
18572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18575 dwarf2_const_value (attr, sym, cu);
18578 list_to_add = cu->list_in_scope;
18580 case DW_TAG_unspecified_parameters:
18581 /* From varargs functions; gdb doesn't seem to have any
18582 interest in this information, so just ignore it for now.
18585 case DW_TAG_template_type_param:
18587 /* Fall through. */
18588 case DW_TAG_class_type:
18589 case DW_TAG_interface_type:
18590 case DW_TAG_structure_type:
18591 case DW_TAG_union_type:
18592 case DW_TAG_set_type:
18593 case DW_TAG_enumeration_type:
18594 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18595 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18598 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18599 really ever be static objects: otherwise, if you try
18600 to, say, break of a class's method and you're in a file
18601 which doesn't mention that class, it won't work unless
18602 the check for all static symbols in lookup_symbol_aux
18603 saves you. See the OtherFileClass tests in
18604 gdb.c++/namespace.exp. */
18608 list_to_add = (cu->list_in_scope == &file_symbols
18609 && (cu->language == language_cplus
18610 || cu->language == language_java)
18611 ? &global_symbols : cu->list_in_scope);
18613 /* The semantics of C++ state that "struct foo {
18614 ... }" also defines a typedef for "foo". A Java
18615 class declaration also defines a typedef for the
18617 if (cu->language == language_cplus
18618 || cu->language == language_java
18619 || cu->language == language_ada
18620 || cu->language == language_d)
18622 /* The symbol's name is already allocated along
18623 with this objfile, so we don't need to
18624 duplicate it for the type. */
18625 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18626 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18631 case DW_TAG_typedef:
18632 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18633 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18634 list_to_add = cu->list_in_scope;
18636 case DW_TAG_base_type:
18637 case DW_TAG_subrange_type:
18638 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18639 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18640 list_to_add = cu->list_in_scope;
18642 case DW_TAG_enumerator:
18643 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18646 dwarf2_const_value (attr, sym, cu);
18649 /* NOTE: carlton/2003-11-10: See comment above in the
18650 DW_TAG_class_type, etc. block. */
18652 list_to_add = (cu->list_in_scope == &file_symbols
18653 && (cu->language == language_cplus
18654 || cu->language == language_java)
18655 ? &global_symbols : cu->list_in_scope);
18658 case DW_TAG_imported_declaration:
18659 case DW_TAG_namespace:
18660 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18661 list_to_add = &global_symbols;
18663 case DW_TAG_module:
18664 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18665 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18666 list_to_add = &global_symbols;
18668 case DW_TAG_common_block:
18669 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18670 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18671 add_symbol_to_list (sym, cu->list_in_scope);
18674 /* Not a tag we recognize. Hopefully we aren't processing
18675 trash data, but since we must specifically ignore things
18676 we don't recognize, there is nothing else we should do at
18678 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18679 dwarf_tag_name (die->tag));
18685 sym->hash_next = objfile->template_symbols;
18686 objfile->template_symbols = sym;
18687 list_to_add = NULL;
18690 if (list_to_add != NULL)
18691 add_symbol_to_list (sym, list_to_add);
18693 /* For the benefit of old versions of GCC, check for anonymous
18694 namespaces based on the demangled name. */
18695 if (!cu->processing_has_namespace_info
18696 && cu->language == language_cplus)
18697 cp_scan_for_anonymous_namespaces (sym, objfile);
18702 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18704 static struct symbol *
18705 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18707 return new_symbol_full (die, type, cu, NULL);
18710 /* Given an attr with a DW_FORM_dataN value in host byte order,
18711 zero-extend it as appropriate for the symbol's type. The DWARF
18712 standard (v4) is not entirely clear about the meaning of using
18713 DW_FORM_dataN for a constant with a signed type, where the type is
18714 wider than the data. The conclusion of a discussion on the DWARF
18715 list was that this is unspecified. We choose to always zero-extend
18716 because that is the interpretation long in use by GCC. */
18719 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18720 struct dwarf2_cu *cu, LONGEST *value, int bits)
18722 struct objfile *objfile = cu->objfile;
18723 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18724 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18725 LONGEST l = DW_UNSND (attr);
18727 if (bits < sizeof (*value) * 8)
18729 l &= ((LONGEST) 1 << bits) - 1;
18732 else if (bits == sizeof (*value) * 8)
18736 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18737 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18744 /* Read a constant value from an attribute. Either set *VALUE, or if
18745 the value does not fit in *VALUE, set *BYTES - either already
18746 allocated on the objfile obstack, or newly allocated on OBSTACK,
18747 or, set *BATON, if we translated the constant to a location
18751 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18752 const char *name, struct obstack *obstack,
18753 struct dwarf2_cu *cu,
18754 LONGEST *value, const gdb_byte **bytes,
18755 struct dwarf2_locexpr_baton **baton)
18757 struct objfile *objfile = cu->objfile;
18758 struct comp_unit_head *cu_header = &cu->header;
18759 struct dwarf_block *blk;
18760 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18761 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18767 switch (attr->form)
18770 case DW_FORM_GNU_addr_index:
18774 if (TYPE_LENGTH (type) != cu_header->addr_size)
18775 dwarf2_const_value_length_mismatch_complaint (name,
18776 cu_header->addr_size,
18777 TYPE_LENGTH (type));
18778 /* Symbols of this form are reasonably rare, so we just
18779 piggyback on the existing location code rather than writing
18780 a new implementation of symbol_computed_ops. */
18781 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18782 (*baton)->per_cu = cu->per_cu;
18783 gdb_assert ((*baton)->per_cu);
18785 (*baton)->size = 2 + cu_header->addr_size;
18786 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18787 (*baton)->data = data;
18789 data[0] = DW_OP_addr;
18790 store_unsigned_integer (&data[1], cu_header->addr_size,
18791 byte_order, DW_ADDR (attr));
18792 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18795 case DW_FORM_string:
18797 case DW_FORM_GNU_str_index:
18798 case DW_FORM_GNU_strp_alt:
18799 /* DW_STRING is already allocated on the objfile obstack, point
18801 *bytes = (const gdb_byte *) DW_STRING (attr);
18803 case DW_FORM_block1:
18804 case DW_FORM_block2:
18805 case DW_FORM_block4:
18806 case DW_FORM_block:
18807 case DW_FORM_exprloc:
18808 blk = DW_BLOCK (attr);
18809 if (TYPE_LENGTH (type) != blk->size)
18810 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18811 TYPE_LENGTH (type));
18812 *bytes = blk->data;
18815 /* The DW_AT_const_value attributes are supposed to carry the
18816 symbol's value "represented as it would be on the target
18817 architecture." By the time we get here, it's already been
18818 converted to host endianness, so we just need to sign- or
18819 zero-extend it as appropriate. */
18820 case DW_FORM_data1:
18821 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18823 case DW_FORM_data2:
18824 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18826 case DW_FORM_data4:
18827 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18829 case DW_FORM_data8:
18830 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18833 case DW_FORM_sdata:
18834 *value = DW_SND (attr);
18837 case DW_FORM_udata:
18838 *value = DW_UNSND (attr);
18842 complaint (&symfile_complaints,
18843 _("unsupported const value attribute form: '%s'"),
18844 dwarf_form_name (attr->form));
18851 /* Copy constant value from an attribute to a symbol. */
18854 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18855 struct dwarf2_cu *cu)
18857 struct objfile *objfile = cu->objfile;
18858 struct comp_unit_head *cu_header = &cu->header;
18860 const gdb_byte *bytes;
18861 struct dwarf2_locexpr_baton *baton;
18863 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18864 SYMBOL_PRINT_NAME (sym),
18865 &objfile->objfile_obstack, cu,
18866 &value, &bytes, &baton);
18870 SYMBOL_LOCATION_BATON (sym) = baton;
18871 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18873 else if (bytes != NULL)
18875 SYMBOL_VALUE_BYTES (sym) = bytes;
18876 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18880 SYMBOL_VALUE (sym) = value;
18881 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18885 /* Return the type of the die in question using its DW_AT_type attribute. */
18887 static struct type *
18888 die_type (struct die_info *die, struct dwarf2_cu *cu)
18890 struct attribute *type_attr;
18892 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18895 /* A missing DW_AT_type represents a void type. */
18896 return objfile_type (cu->objfile)->builtin_void;
18899 return lookup_die_type (die, type_attr, cu);
18902 /* True iff CU's producer generates GNAT Ada auxiliary information
18903 that allows to find parallel types through that information instead
18904 of having to do expensive parallel lookups by type name. */
18907 need_gnat_info (struct dwarf2_cu *cu)
18909 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18910 of GNAT produces this auxiliary information, without any indication
18911 that it is produced. Part of enhancing the FSF version of GNAT
18912 to produce that information will be to put in place an indicator
18913 that we can use in order to determine whether the descriptive type
18914 info is available or not. One suggestion that has been made is
18915 to use a new attribute, attached to the CU die. For now, assume
18916 that the descriptive type info is not available. */
18920 /* Return the auxiliary type of the die in question using its
18921 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18922 attribute is not present. */
18924 static struct type *
18925 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18927 struct attribute *type_attr;
18929 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18933 return lookup_die_type (die, type_attr, cu);
18936 /* If DIE has a descriptive_type attribute, then set the TYPE's
18937 descriptive type accordingly. */
18940 set_descriptive_type (struct type *type, struct die_info *die,
18941 struct dwarf2_cu *cu)
18943 struct type *descriptive_type = die_descriptive_type (die, cu);
18945 if (descriptive_type)
18947 ALLOCATE_GNAT_AUX_TYPE (type);
18948 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18952 /* Return the containing type of the die in question using its
18953 DW_AT_containing_type attribute. */
18955 static struct type *
18956 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18958 struct attribute *type_attr;
18960 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18962 error (_("Dwarf Error: Problem turning containing type into gdb type "
18963 "[in module %s]"), objfile_name (cu->objfile));
18965 return lookup_die_type (die, type_attr, cu);
18968 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18970 static struct type *
18971 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18973 struct objfile *objfile = dwarf2_per_objfile->objfile;
18974 char *message, *saved;
18976 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18977 objfile_name (objfile),
18978 cu->header.offset.sect_off,
18979 die->offset.sect_off);
18980 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18981 message, strlen (message));
18984 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18987 /* Look up the type of DIE in CU using its type attribute ATTR.
18988 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18989 DW_AT_containing_type.
18990 If there is no type substitute an error marker. */
18992 static struct type *
18993 lookup_die_type (struct die_info *die, const struct attribute *attr,
18994 struct dwarf2_cu *cu)
18996 struct objfile *objfile = cu->objfile;
18997 struct type *this_type;
18999 gdb_assert (attr->name == DW_AT_type
19000 || attr->name == DW_AT_GNAT_descriptive_type
19001 || attr->name == DW_AT_containing_type);
19003 /* First see if we have it cached. */
19005 if (attr->form == DW_FORM_GNU_ref_alt)
19007 struct dwarf2_per_cu_data *per_cu;
19008 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19010 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19011 this_type = get_die_type_at_offset (offset, per_cu);
19013 else if (attr_form_is_ref (attr))
19015 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19017 this_type = get_die_type_at_offset (offset, cu->per_cu);
19019 else if (attr->form == DW_FORM_ref_sig8)
19021 ULONGEST signature = DW_SIGNATURE (attr);
19023 return get_signatured_type (die, signature, cu);
19027 complaint (&symfile_complaints,
19028 _("Dwarf Error: Bad type attribute %s in DIE"
19029 " at 0x%x [in module %s]"),
19030 dwarf_attr_name (attr->name), die->offset.sect_off,
19031 objfile_name (objfile));
19032 return build_error_marker_type (cu, die);
19035 /* If not cached we need to read it in. */
19037 if (this_type == NULL)
19039 struct die_info *type_die = NULL;
19040 struct dwarf2_cu *type_cu = cu;
19042 if (attr_form_is_ref (attr))
19043 type_die = follow_die_ref (die, attr, &type_cu);
19044 if (type_die == NULL)
19045 return build_error_marker_type (cu, die);
19046 /* If we find the type now, it's probably because the type came
19047 from an inter-CU reference and the type's CU got expanded before
19049 this_type = read_type_die (type_die, type_cu);
19052 /* If we still don't have a type use an error marker. */
19054 if (this_type == NULL)
19055 return build_error_marker_type (cu, die);
19060 /* Return the type in DIE, CU.
19061 Returns NULL for invalid types.
19063 This first does a lookup in die_type_hash,
19064 and only reads the die in if necessary.
19066 NOTE: This can be called when reading in partial or full symbols. */
19068 static struct type *
19069 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19071 struct type *this_type;
19073 this_type = get_die_type (die, cu);
19077 return read_type_die_1 (die, cu);
19080 /* Read the type in DIE, CU.
19081 Returns NULL for invalid types. */
19083 static struct type *
19084 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19086 struct type *this_type = NULL;
19090 case DW_TAG_class_type:
19091 case DW_TAG_interface_type:
19092 case DW_TAG_structure_type:
19093 case DW_TAG_union_type:
19094 this_type = read_structure_type (die, cu);
19096 case DW_TAG_enumeration_type:
19097 this_type = read_enumeration_type (die, cu);
19099 case DW_TAG_subprogram:
19100 case DW_TAG_subroutine_type:
19101 case DW_TAG_inlined_subroutine:
19102 this_type = read_subroutine_type (die, cu);
19104 case DW_TAG_array_type:
19105 this_type = read_array_type (die, cu);
19107 case DW_TAG_set_type:
19108 this_type = read_set_type (die, cu);
19110 case DW_TAG_pointer_type:
19111 this_type = read_tag_pointer_type (die, cu);
19113 case DW_TAG_ptr_to_member_type:
19114 this_type = read_tag_ptr_to_member_type (die, cu);
19116 case DW_TAG_reference_type:
19117 this_type = read_tag_reference_type (die, cu);
19119 case DW_TAG_const_type:
19120 this_type = read_tag_const_type (die, cu);
19122 case DW_TAG_volatile_type:
19123 this_type = read_tag_volatile_type (die, cu);
19125 case DW_TAG_restrict_type:
19126 this_type = read_tag_restrict_type (die, cu);
19128 case DW_TAG_string_type:
19129 this_type = read_tag_string_type (die, cu);
19131 case DW_TAG_typedef:
19132 this_type = read_typedef (die, cu);
19134 case DW_TAG_subrange_type:
19135 this_type = read_subrange_type (die, cu);
19137 case DW_TAG_base_type:
19138 this_type = read_base_type (die, cu);
19140 case DW_TAG_unspecified_type:
19141 this_type = read_unspecified_type (die, cu);
19143 case DW_TAG_namespace:
19144 this_type = read_namespace_type (die, cu);
19146 case DW_TAG_module:
19147 this_type = read_module_type (die, cu);
19149 case DW_TAG_atomic_type:
19150 this_type = read_tag_atomic_type (die, cu);
19153 complaint (&symfile_complaints,
19154 _("unexpected tag in read_type_die: '%s'"),
19155 dwarf_tag_name (die->tag));
19162 /* See if we can figure out if the class lives in a namespace. We do
19163 this by looking for a member function; its demangled name will
19164 contain namespace info, if there is any.
19165 Return the computed name or NULL.
19166 Space for the result is allocated on the objfile's obstack.
19167 This is the full-die version of guess_partial_die_structure_name.
19168 In this case we know DIE has no useful parent. */
19171 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19173 struct die_info *spec_die;
19174 struct dwarf2_cu *spec_cu;
19175 struct die_info *child;
19178 spec_die = die_specification (die, &spec_cu);
19179 if (spec_die != NULL)
19185 for (child = die->child;
19187 child = child->sibling)
19189 if (child->tag == DW_TAG_subprogram)
19191 const char *linkage_name;
19193 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19194 if (linkage_name == NULL)
19195 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19197 if (linkage_name != NULL)
19200 = language_class_name_from_physname (cu->language_defn,
19204 if (actual_name != NULL)
19206 const char *die_name = dwarf2_name (die, cu);
19208 if (die_name != NULL
19209 && strcmp (die_name, actual_name) != 0)
19211 /* Strip off the class name from the full name.
19212 We want the prefix. */
19213 int die_name_len = strlen (die_name);
19214 int actual_name_len = strlen (actual_name);
19216 /* Test for '::' as a sanity check. */
19217 if (actual_name_len > die_name_len + 2
19218 && actual_name[actual_name_len
19219 - die_name_len - 1] == ':')
19220 name = (char *) obstack_copy0 (
19221 &cu->objfile->per_bfd->storage_obstack,
19222 actual_name, actual_name_len - die_name_len - 2);
19225 xfree (actual_name);
19234 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19235 prefix part in such case. See
19236 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19239 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19241 struct attribute *attr;
19244 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19245 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19248 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19251 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19253 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19254 if (attr == NULL || DW_STRING (attr) == NULL)
19257 /* dwarf2_name had to be already called. */
19258 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19260 /* Strip the base name, keep any leading namespaces/classes. */
19261 base = strrchr (DW_STRING (attr), ':');
19262 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19265 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19267 &base[-1] - DW_STRING (attr));
19270 /* Return the name of the namespace/class that DIE is defined within,
19271 or "" if we can't tell. The caller should not xfree the result.
19273 For example, if we're within the method foo() in the following
19283 then determine_prefix on foo's die will return "N::C". */
19285 static const char *
19286 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19288 struct die_info *parent, *spec_die;
19289 struct dwarf2_cu *spec_cu;
19290 struct type *parent_type;
19293 if (cu->language != language_cplus && cu->language != language_java
19294 && cu->language != language_fortran && cu->language != language_d)
19297 retval = anonymous_struct_prefix (die, cu);
19301 /* We have to be careful in the presence of DW_AT_specification.
19302 For example, with GCC 3.4, given the code
19306 // Definition of N::foo.
19310 then we'll have a tree of DIEs like this:
19312 1: DW_TAG_compile_unit
19313 2: DW_TAG_namespace // N
19314 3: DW_TAG_subprogram // declaration of N::foo
19315 4: DW_TAG_subprogram // definition of N::foo
19316 DW_AT_specification // refers to die #3
19318 Thus, when processing die #4, we have to pretend that we're in
19319 the context of its DW_AT_specification, namely the contex of die
19322 spec_die = die_specification (die, &spec_cu);
19323 if (spec_die == NULL)
19324 parent = die->parent;
19327 parent = spec_die->parent;
19331 if (parent == NULL)
19333 else if (parent->building_fullname)
19336 const char *parent_name;
19338 /* It has been seen on RealView 2.2 built binaries,
19339 DW_TAG_template_type_param types actually _defined_ as
19340 children of the parent class:
19343 template class <class Enum> Class{};
19344 Class<enum E> class_e;
19346 1: DW_TAG_class_type (Class)
19347 2: DW_TAG_enumeration_type (E)
19348 3: DW_TAG_enumerator (enum1:0)
19349 3: DW_TAG_enumerator (enum2:1)
19351 2: DW_TAG_template_type_param
19352 DW_AT_type DW_FORM_ref_udata (E)
19354 Besides being broken debug info, it can put GDB into an
19355 infinite loop. Consider:
19357 When we're building the full name for Class<E>, we'll start
19358 at Class, and go look over its template type parameters,
19359 finding E. We'll then try to build the full name of E, and
19360 reach here. We're now trying to build the full name of E,
19361 and look over the parent DIE for containing scope. In the
19362 broken case, if we followed the parent DIE of E, we'd again
19363 find Class, and once again go look at its template type
19364 arguments, etc., etc. Simply don't consider such parent die
19365 as source-level parent of this die (it can't be, the language
19366 doesn't allow it), and break the loop here. */
19367 name = dwarf2_name (die, cu);
19368 parent_name = dwarf2_name (parent, cu);
19369 complaint (&symfile_complaints,
19370 _("template param type '%s' defined within parent '%s'"),
19371 name ? name : "<unknown>",
19372 parent_name ? parent_name : "<unknown>");
19376 switch (parent->tag)
19378 case DW_TAG_namespace:
19379 parent_type = read_type_die (parent, cu);
19380 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19381 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19382 Work around this problem here. */
19383 if (cu->language == language_cplus
19384 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19386 /* We give a name to even anonymous namespaces. */
19387 return TYPE_TAG_NAME (parent_type);
19388 case DW_TAG_class_type:
19389 case DW_TAG_interface_type:
19390 case DW_TAG_structure_type:
19391 case DW_TAG_union_type:
19392 case DW_TAG_module:
19393 parent_type = read_type_die (parent, cu);
19394 if (TYPE_TAG_NAME (parent_type) != NULL)
19395 return TYPE_TAG_NAME (parent_type);
19397 /* An anonymous structure is only allowed non-static data
19398 members; no typedefs, no member functions, et cetera.
19399 So it does not need a prefix. */
19401 case DW_TAG_compile_unit:
19402 case DW_TAG_partial_unit:
19403 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19404 if (cu->language == language_cplus
19405 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19406 && die->child != NULL
19407 && (die->tag == DW_TAG_class_type
19408 || die->tag == DW_TAG_structure_type
19409 || die->tag == DW_TAG_union_type))
19411 char *name = guess_full_die_structure_name (die, cu);
19416 case DW_TAG_enumeration_type:
19417 parent_type = read_type_die (parent, cu);
19418 if (TYPE_DECLARED_CLASS (parent_type))
19420 if (TYPE_TAG_NAME (parent_type) != NULL)
19421 return TYPE_TAG_NAME (parent_type);
19424 /* Fall through. */
19426 return determine_prefix (parent, cu);
19430 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19431 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19432 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19433 an obconcat, otherwise allocate storage for the result. The CU argument is
19434 used to determine the language and hence, the appropriate separator. */
19436 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19439 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19440 int physname, struct dwarf2_cu *cu)
19442 const char *lead = "";
19445 if (suffix == NULL || suffix[0] == '\0'
19446 || prefix == NULL || prefix[0] == '\0')
19448 else if (cu->language == language_java)
19450 else if (cu->language == language_d)
19452 /* For D, the 'main' function could be defined in any module, but it
19453 should never be prefixed. */
19454 if (strcmp (suffix, "D main") == 0)
19462 else if (cu->language == language_fortran && physname)
19464 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19465 DW_AT_MIPS_linkage_name is preferred and used instead. */
19473 if (prefix == NULL)
19475 if (suffix == NULL)
19482 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19484 strcpy (retval, lead);
19485 strcat (retval, prefix);
19486 strcat (retval, sep);
19487 strcat (retval, suffix);
19492 /* We have an obstack. */
19493 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19497 /* Return sibling of die, NULL if no sibling. */
19499 static struct die_info *
19500 sibling_die (struct die_info *die)
19502 return die->sibling;
19505 /* Get name of a die, return NULL if not found. */
19507 static const char *
19508 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19509 struct obstack *obstack)
19511 if (name && cu->language == language_cplus)
19513 char *canon_name = cp_canonicalize_string (name);
19515 if (canon_name != NULL)
19517 if (strcmp (canon_name, name) != 0)
19518 name = (const char *) obstack_copy0 (obstack, canon_name,
19519 strlen (canon_name));
19520 xfree (canon_name);
19527 /* Get name of a die, return NULL if not found.
19528 Anonymous namespaces are converted to their magic string. */
19530 static const char *
19531 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19533 struct attribute *attr;
19535 attr = dwarf2_attr (die, DW_AT_name, cu);
19536 if ((!attr || !DW_STRING (attr))
19537 && die->tag != DW_TAG_namespace
19538 && die->tag != DW_TAG_class_type
19539 && die->tag != DW_TAG_interface_type
19540 && die->tag != DW_TAG_structure_type
19541 && die->tag != DW_TAG_union_type)
19546 case DW_TAG_compile_unit:
19547 case DW_TAG_partial_unit:
19548 /* Compilation units have a DW_AT_name that is a filename, not
19549 a source language identifier. */
19550 case DW_TAG_enumeration_type:
19551 case DW_TAG_enumerator:
19552 /* These tags always have simple identifiers already; no need
19553 to canonicalize them. */
19554 return DW_STRING (attr);
19556 case DW_TAG_namespace:
19557 if (attr != NULL && DW_STRING (attr) != NULL)
19558 return DW_STRING (attr);
19559 return CP_ANONYMOUS_NAMESPACE_STR;
19561 case DW_TAG_subprogram:
19562 /* Java constructors will all be named "<init>", so return
19563 the class name when we see this special case. */
19564 if (cu->language == language_java
19565 && DW_STRING (attr) != NULL
19566 && strcmp (DW_STRING (attr), "<init>") == 0)
19568 struct dwarf2_cu *spec_cu = cu;
19569 struct die_info *spec_die;
19571 /* GCJ will output '<init>' for Java constructor names.
19572 For this special case, return the name of the parent class. */
19574 /* GCJ may output subprogram DIEs with AT_specification set.
19575 If so, use the name of the specified DIE. */
19576 spec_die = die_specification (die, &spec_cu);
19577 if (spec_die != NULL)
19578 return dwarf2_name (spec_die, spec_cu);
19583 if (die->tag == DW_TAG_class_type)
19584 return dwarf2_name (die, cu);
19586 while (die->tag != DW_TAG_compile_unit
19587 && die->tag != DW_TAG_partial_unit);
19591 case DW_TAG_class_type:
19592 case DW_TAG_interface_type:
19593 case DW_TAG_structure_type:
19594 case DW_TAG_union_type:
19595 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19596 structures or unions. These were of the form "._%d" in GCC 4.1,
19597 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19598 and GCC 4.4. We work around this problem by ignoring these. */
19599 if (attr && DW_STRING (attr)
19600 && (startswith (DW_STRING (attr), "._")
19601 || startswith (DW_STRING (attr), "<anonymous")))
19604 /* GCC might emit a nameless typedef that has a linkage name. See
19605 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19606 if (!attr || DW_STRING (attr) == NULL)
19608 char *demangled = NULL;
19610 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19612 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19614 if (attr == NULL || DW_STRING (attr) == NULL)
19617 /* Avoid demangling DW_STRING (attr) the second time on a second
19618 call for the same DIE. */
19619 if (!DW_STRING_IS_CANONICAL (attr))
19620 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19626 /* FIXME: we already did this for the partial symbol... */
19629 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19630 demangled, strlen (demangled)));
19631 DW_STRING_IS_CANONICAL (attr) = 1;
19634 /* Strip any leading namespaces/classes, keep only the base name.
19635 DW_AT_name for named DIEs does not contain the prefixes. */
19636 base = strrchr (DW_STRING (attr), ':');
19637 if (base && base > DW_STRING (attr) && base[-1] == ':')
19640 return DW_STRING (attr);
19649 if (!DW_STRING_IS_CANONICAL (attr))
19652 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19653 &cu->objfile->per_bfd->storage_obstack);
19654 DW_STRING_IS_CANONICAL (attr) = 1;
19656 return DW_STRING (attr);
19659 /* Return the die that this die in an extension of, or NULL if there
19660 is none. *EXT_CU is the CU containing DIE on input, and the CU
19661 containing the return value on output. */
19663 static struct die_info *
19664 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19666 struct attribute *attr;
19668 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19672 return follow_die_ref (die, attr, ext_cu);
19675 /* Convert a DIE tag into its string name. */
19677 static const char *
19678 dwarf_tag_name (unsigned tag)
19680 const char *name = get_DW_TAG_name (tag);
19683 return "DW_TAG_<unknown>";
19688 /* Convert a DWARF attribute code into its string name. */
19690 static const char *
19691 dwarf_attr_name (unsigned attr)
19695 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19696 if (attr == DW_AT_MIPS_fde)
19697 return "DW_AT_MIPS_fde";
19699 if (attr == DW_AT_HP_block_index)
19700 return "DW_AT_HP_block_index";
19703 name = get_DW_AT_name (attr);
19706 return "DW_AT_<unknown>";
19711 /* Convert a DWARF value form code into its string name. */
19713 static const char *
19714 dwarf_form_name (unsigned form)
19716 const char *name = get_DW_FORM_name (form);
19719 return "DW_FORM_<unknown>";
19725 dwarf_bool_name (unsigned mybool)
19733 /* Convert a DWARF type code into its string name. */
19735 static const char *
19736 dwarf_type_encoding_name (unsigned enc)
19738 const char *name = get_DW_ATE_name (enc);
19741 return "DW_ATE_<unknown>";
19747 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19751 print_spaces (indent, f);
19752 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19753 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19755 if (die->parent != NULL)
19757 print_spaces (indent, f);
19758 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19759 die->parent->offset.sect_off);
19762 print_spaces (indent, f);
19763 fprintf_unfiltered (f, " has children: %s\n",
19764 dwarf_bool_name (die->child != NULL));
19766 print_spaces (indent, f);
19767 fprintf_unfiltered (f, " attributes:\n");
19769 for (i = 0; i < die->num_attrs; ++i)
19771 print_spaces (indent, f);
19772 fprintf_unfiltered (f, " %s (%s) ",
19773 dwarf_attr_name (die->attrs[i].name),
19774 dwarf_form_name (die->attrs[i].form));
19776 switch (die->attrs[i].form)
19779 case DW_FORM_GNU_addr_index:
19780 fprintf_unfiltered (f, "address: ");
19781 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19783 case DW_FORM_block2:
19784 case DW_FORM_block4:
19785 case DW_FORM_block:
19786 case DW_FORM_block1:
19787 fprintf_unfiltered (f, "block: size %s",
19788 pulongest (DW_BLOCK (&die->attrs[i])->size));
19790 case DW_FORM_exprloc:
19791 fprintf_unfiltered (f, "expression: size %s",
19792 pulongest (DW_BLOCK (&die->attrs[i])->size));
19794 case DW_FORM_ref_addr:
19795 fprintf_unfiltered (f, "ref address: ");
19796 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19798 case DW_FORM_GNU_ref_alt:
19799 fprintf_unfiltered (f, "alt ref address: ");
19800 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19806 case DW_FORM_ref_udata:
19807 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19808 (long) (DW_UNSND (&die->attrs[i])));
19810 case DW_FORM_data1:
19811 case DW_FORM_data2:
19812 case DW_FORM_data4:
19813 case DW_FORM_data8:
19814 case DW_FORM_udata:
19815 case DW_FORM_sdata:
19816 fprintf_unfiltered (f, "constant: %s",
19817 pulongest (DW_UNSND (&die->attrs[i])));
19819 case DW_FORM_sec_offset:
19820 fprintf_unfiltered (f, "section offset: %s",
19821 pulongest (DW_UNSND (&die->attrs[i])));
19823 case DW_FORM_ref_sig8:
19824 fprintf_unfiltered (f, "signature: %s",
19825 hex_string (DW_SIGNATURE (&die->attrs[i])));
19827 case DW_FORM_string:
19829 case DW_FORM_GNU_str_index:
19830 case DW_FORM_GNU_strp_alt:
19831 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19832 DW_STRING (&die->attrs[i])
19833 ? DW_STRING (&die->attrs[i]) : "",
19834 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19837 if (DW_UNSND (&die->attrs[i]))
19838 fprintf_unfiltered (f, "flag: TRUE");
19840 fprintf_unfiltered (f, "flag: FALSE");
19842 case DW_FORM_flag_present:
19843 fprintf_unfiltered (f, "flag: TRUE");
19845 case DW_FORM_indirect:
19846 /* The reader will have reduced the indirect form to
19847 the "base form" so this form should not occur. */
19848 fprintf_unfiltered (f,
19849 "unexpected attribute form: DW_FORM_indirect");
19852 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19853 die->attrs[i].form);
19856 fprintf_unfiltered (f, "\n");
19861 dump_die_for_error (struct die_info *die)
19863 dump_die_shallow (gdb_stderr, 0, die);
19867 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19869 int indent = level * 4;
19871 gdb_assert (die != NULL);
19873 if (level >= max_level)
19876 dump_die_shallow (f, indent, die);
19878 if (die->child != NULL)
19880 print_spaces (indent, f);
19881 fprintf_unfiltered (f, " Children:");
19882 if (level + 1 < max_level)
19884 fprintf_unfiltered (f, "\n");
19885 dump_die_1 (f, level + 1, max_level, die->child);
19889 fprintf_unfiltered (f,
19890 " [not printed, max nesting level reached]\n");
19894 if (die->sibling != NULL && level > 0)
19896 dump_die_1 (f, level, max_level, die->sibling);
19900 /* This is called from the pdie macro in gdbinit.in.
19901 It's not static so gcc will keep a copy callable from gdb. */
19904 dump_die (struct die_info *die, int max_level)
19906 dump_die_1 (gdb_stdlog, 0, max_level, die);
19910 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19914 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19920 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19924 dwarf2_get_ref_die_offset (const struct attribute *attr)
19926 sect_offset retval = { DW_UNSND (attr) };
19928 if (attr_form_is_ref (attr))
19931 retval.sect_off = 0;
19932 complaint (&symfile_complaints,
19933 _("unsupported die ref attribute form: '%s'"),
19934 dwarf_form_name (attr->form));
19938 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19939 * the value held by the attribute is not constant. */
19942 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19944 if (attr->form == DW_FORM_sdata)
19945 return DW_SND (attr);
19946 else if (attr->form == DW_FORM_udata
19947 || attr->form == DW_FORM_data1
19948 || attr->form == DW_FORM_data2
19949 || attr->form == DW_FORM_data4
19950 || attr->form == DW_FORM_data8)
19951 return DW_UNSND (attr);
19954 complaint (&symfile_complaints,
19955 _("Attribute value is not a constant (%s)"),
19956 dwarf_form_name (attr->form));
19957 return default_value;
19961 /* Follow reference or signature attribute ATTR of SRC_DIE.
19962 On entry *REF_CU is the CU of SRC_DIE.
19963 On exit *REF_CU is the CU of the result. */
19965 static struct die_info *
19966 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19967 struct dwarf2_cu **ref_cu)
19969 struct die_info *die;
19971 if (attr_form_is_ref (attr))
19972 die = follow_die_ref (src_die, attr, ref_cu);
19973 else if (attr->form == DW_FORM_ref_sig8)
19974 die = follow_die_sig (src_die, attr, ref_cu);
19977 dump_die_for_error (src_die);
19978 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19979 objfile_name ((*ref_cu)->objfile));
19985 /* Follow reference OFFSET.
19986 On entry *REF_CU is the CU of the source die referencing OFFSET.
19987 On exit *REF_CU is the CU of the result.
19988 Returns NULL if OFFSET is invalid. */
19990 static struct die_info *
19991 follow_die_offset (sect_offset offset, int offset_in_dwz,
19992 struct dwarf2_cu **ref_cu)
19994 struct die_info temp_die;
19995 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19997 gdb_assert (cu->per_cu != NULL);
20001 if (cu->per_cu->is_debug_types)
20003 /* .debug_types CUs cannot reference anything outside their CU.
20004 If they need to, they have to reference a signatured type via
20005 DW_FORM_ref_sig8. */
20006 if (! offset_in_cu_p (&cu->header, offset))
20009 else if (offset_in_dwz != cu->per_cu->is_dwz
20010 || ! offset_in_cu_p (&cu->header, offset))
20012 struct dwarf2_per_cu_data *per_cu;
20014 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20017 /* If necessary, add it to the queue and load its DIEs. */
20018 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20019 load_full_comp_unit (per_cu, cu->language);
20021 target_cu = per_cu->cu;
20023 else if (cu->dies == NULL)
20025 /* We're loading full DIEs during partial symbol reading. */
20026 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20027 load_full_comp_unit (cu->per_cu, language_minimal);
20030 *ref_cu = target_cu;
20031 temp_die.offset = offset;
20032 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20033 &temp_die, offset.sect_off);
20036 /* Follow reference attribute ATTR of SRC_DIE.
20037 On entry *REF_CU is the CU of SRC_DIE.
20038 On exit *REF_CU is the CU of the result. */
20040 static struct die_info *
20041 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20042 struct dwarf2_cu **ref_cu)
20044 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20045 struct dwarf2_cu *cu = *ref_cu;
20046 struct die_info *die;
20048 die = follow_die_offset (offset,
20049 (attr->form == DW_FORM_GNU_ref_alt
20050 || cu->per_cu->is_dwz),
20053 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20054 "at 0x%x [in module %s]"),
20055 offset.sect_off, src_die->offset.sect_off,
20056 objfile_name (cu->objfile));
20061 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20062 Returned value is intended for DW_OP_call*. Returned
20063 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20065 struct dwarf2_locexpr_baton
20066 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20067 struct dwarf2_per_cu_data *per_cu,
20068 CORE_ADDR (*get_frame_pc) (void *baton),
20071 struct dwarf2_cu *cu;
20072 struct die_info *die;
20073 struct attribute *attr;
20074 struct dwarf2_locexpr_baton retval;
20076 dw2_setup (per_cu->objfile);
20078 if (per_cu->cu == NULL)
20083 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20084 Instead just throw an error, not much else we can do. */
20085 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20086 offset.sect_off, objfile_name (per_cu->objfile));
20089 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20091 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20092 offset.sect_off, objfile_name (per_cu->objfile));
20094 attr = dwarf2_attr (die, DW_AT_location, cu);
20097 /* DWARF: "If there is no such attribute, then there is no effect.".
20098 DATA is ignored if SIZE is 0. */
20100 retval.data = NULL;
20103 else if (attr_form_is_section_offset (attr))
20105 struct dwarf2_loclist_baton loclist_baton;
20106 CORE_ADDR pc = (*get_frame_pc) (baton);
20109 fill_in_loclist_baton (cu, &loclist_baton, attr);
20111 retval.data = dwarf2_find_location_expression (&loclist_baton,
20113 retval.size = size;
20117 if (!attr_form_is_block (attr))
20118 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20119 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20120 offset.sect_off, objfile_name (per_cu->objfile));
20122 retval.data = DW_BLOCK (attr)->data;
20123 retval.size = DW_BLOCK (attr)->size;
20125 retval.per_cu = cu->per_cu;
20127 age_cached_comp_units ();
20132 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20135 struct dwarf2_locexpr_baton
20136 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20137 struct dwarf2_per_cu_data *per_cu,
20138 CORE_ADDR (*get_frame_pc) (void *baton),
20141 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20143 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20146 /* Write a constant of a given type as target-ordered bytes into
20149 static const gdb_byte *
20150 write_constant_as_bytes (struct obstack *obstack,
20151 enum bfd_endian byte_order,
20158 *len = TYPE_LENGTH (type);
20159 result = (gdb_byte *) obstack_alloc (obstack, *len);
20160 store_unsigned_integer (result, *len, byte_order, value);
20165 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20166 pointer to the constant bytes and set LEN to the length of the
20167 data. If memory is needed, allocate it on OBSTACK. If the DIE
20168 does not have a DW_AT_const_value, return NULL. */
20171 dwarf2_fetch_constant_bytes (sect_offset offset,
20172 struct dwarf2_per_cu_data *per_cu,
20173 struct obstack *obstack,
20176 struct dwarf2_cu *cu;
20177 struct die_info *die;
20178 struct attribute *attr;
20179 const gdb_byte *result = NULL;
20182 enum bfd_endian byte_order;
20184 dw2_setup (per_cu->objfile);
20186 if (per_cu->cu == NULL)
20191 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20192 Instead just throw an error, not much else we can do. */
20193 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20194 offset.sect_off, objfile_name (per_cu->objfile));
20197 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20199 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20200 offset.sect_off, objfile_name (per_cu->objfile));
20203 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20207 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20208 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20210 switch (attr->form)
20213 case DW_FORM_GNU_addr_index:
20217 *len = cu->header.addr_size;
20218 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20219 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20223 case DW_FORM_string:
20225 case DW_FORM_GNU_str_index:
20226 case DW_FORM_GNU_strp_alt:
20227 /* DW_STRING is already allocated on the objfile obstack, point
20229 result = (const gdb_byte *) DW_STRING (attr);
20230 *len = strlen (DW_STRING (attr));
20232 case DW_FORM_block1:
20233 case DW_FORM_block2:
20234 case DW_FORM_block4:
20235 case DW_FORM_block:
20236 case DW_FORM_exprloc:
20237 result = DW_BLOCK (attr)->data;
20238 *len = DW_BLOCK (attr)->size;
20241 /* The DW_AT_const_value attributes are supposed to carry the
20242 symbol's value "represented as it would be on the target
20243 architecture." By the time we get here, it's already been
20244 converted to host endianness, so we just need to sign- or
20245 zero-extend it as appropriate. */
20246 case DW_FORM_data1:
20247 type = die_type (die, cu);
20248 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20249 if (result == NULL)
20250 result = write_constant_as_bytes (obstack, byte_order,
20253 case DW_FORM_data2:
20254 type = die_type (die, cu);
20255 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20256 if (result == NULL)
20257 result = write_constant_as_bytes (obstack, byte_order,
20260 case DW_FORM_data4:
20261 type = die_type (die, cu);
20262 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20263 if (result == NULL)
20264 result = write_constant_as_bytes (obstack, byte_order,
20267 case DW_FORM_data8:
20268 type = die_type (die, cu);
20269 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20270 if (result == NULL)
20271 result = write_constant_as_bytes (obstack, byte_order,
20275 case DW_FORM_sdata:
20276 type = die_type (die, cu);
20277 result = write_constant_as_bytes (obstack, byte_order,
20278 type, DW_SND (attr), len);
20281 case DW_FORM_udata:
20282 type = die_type (die, cu);
20283 result = write_constant_as_bytes (obstack, byte_order,
20284 type, DW_UNSND (attr), len);
20288 complaint (&symfile_complaints,
20289 _("unsupported const value attribute form: '%s'"),
20290 dwarf_form_name (attr->form));
20297 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20301 dwarf2_get_die_type (cu_offset die_offset,
20302 struct dwarf2_per_cu_data *per_cu)
20304 sect_offset die_offset_sect;
20306 dw2_setup (per_cu->objfile);
20308 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20309 return get_die_type_at_offset (die_offset_sect, per_cu);
20312 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20313 On entry *REF_CU is the CU of SRC_DIE.
20314 On exit *REF_CU is the CU of the result.
20315 Returns NULL if the referenced DIE isn't found. */
20317 static struct die_info *
20318 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20319 struct dwarf2_cu **ref_cu)
20321 struct objfile *objfile = (*ref_cu)->objfile;
20322 struct die_info temp_die;
20323 struct dwarf2_cu *sig_cu;
20324 struct die_info *die;
20326 /* While it might be nice to assert sig_type->type == NULL here,
20327 we can get here for DW_AT_imported_declaration where we need
20328 the DIE not the type. */
20330 /* If necessary, add it to the queue and load its DIEs. */
20332 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20333 read_signatured_type (sig_type);
20335 sig_cu = sig_type->per_cu.cu;
20336 gdb_assert (sig_cu != NULL);
20337 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20338 temp_die.offset = sig_type->type_offset_in_section;
20339 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20340 temp_die.offset.sect_off);
20343 /* For .gdb_index version 7 keep track of included TUs.
20344 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20345 if (dwarf2_per_objfile->index_table != NULL
20346 && dwarf2_per_objfile->index_table->version <= 7)
20348 VEC_safe_push (dwarf2_per_cu_ptr,
20349 (*ref_cu)->per_cu->imported_symtabs,
20360 /* Follow signatured type referenced by ATTR in SRC_DIE.
20361 On entry *REF_CU is the CU of SRC_DIE.
20362 On exit *REF_CU is the CU of the result.
20363 The result is the DIE of the type.
20364 If the referenced type cannot be found an error is thrown. */
20366 static struct die_info *
20367 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20368 struct dwarf2_cu **ref_cu)
20370 ULONGEST signature = DW_SIGNATURE (attr);
20371 struct signatured_type *sig_type;
20372 struct die_info *die;
20374 gdb_assert (attr->form == DW_FORM_ref_sig8);
20376 sig_type = lookup_signatured_type (*ref_cu, signature);
20377 /* sig_type will be NULL if the signatured type is missing from
20379 if (sig_type == NULL)
20381 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20382 " from DIE at 0x%x [in module %s]"),
20383 hex_string (signature), src_die->offset.sect_off,
20384 objfile_name ((*ref_cu)->objfile));
20387 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20390 dump_die_for_error (src_die);
20391 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20392 " from DIE at 0x%x [in module %s]"),
20393 hex_string (signature), src_die->offset.sect_off,
20394 objfile_name ((*ref_cu)->objfile));
20400 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20401 reading in and processing the type unit if necessary. */
20403 static struct type *
20404 get_signatured_type (struct die_info *die, ULONGEST signature,
20405 struct dwarf2_cu *cu)
20407 struct signatured_type *sig_type;
20408 struct dwarf2_cu *type_cu;
20409 struct die_info *type_die;
20412 sig_type = lookup_signatured_type (cu, signature);
20413 /* sig_type will be NULL if the signatured type is missing from
20415 if (sig_type == NULL)
20417 complaint (&symfile_complaints,
20418 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20419 " from DIE at 0x%x [in module %s]"),
20420 hex_string (signature), die->offset.sect_off,
20421 objfile_name (dwarf2_per_objfile->objfile));
20422 return build_error_marker_type (cu, die);
20425 /* If we already know the type we're done. */
20426 if (sig_type->type != NULL)
20427 return sig_type->type;
20430 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20431 if (type_die != NULL)
20433 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20434 is created. This is important, for example, because for c++ classes
20435 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20436 type = read_type_die (type_die, type_cu);
20439 complaint (&symfile_complaints,
20440 _("Dwarf Error: Cannot build signatured type %s"
20441 " referenced from DIE at 0x%x [in module %s]"),
20442 hex_string (signature), die->offset.sect_off,
20443 objfile_name (dwarf2_per_objfile->objfile));
20444 type = build_error_marker_type (cu, die);
20449 complaint (&symfile_complaints,
20450 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20451 " from DIE at 0x%x [in module %s]"),
20452 hex_string (signature), die->offset.sect_off,
20453 objfile_name (dwarf2_per_objfile->objfile));
20454 type = build_error_marker_type (cu, die);
20456 sig_type->type = type;
20461 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20462 reading in and processing the type unit if necessary. */
20464 static struct type *
20465 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20466 struct dwarf2_cu *cu) /* ARI: editCase function */
20468 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20469 if (attr_form_is_ref (attr))
20471 struct dwarf2_cu *type_cu = cu;
20472 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20474 return read_type_die (type_die, type_cu);
20476 else if (attr->form == DW_FORM_ref_sig8)
20478 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20482 complaint (&symfile_complaints,
20483 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20484 " at 0x%x [in module %s]"),
20485 dwarf_form_name (attr->form), die->offset.sect_off,
20486 objfile_name (dwarf2_per_objfile->objfile));
20487 return build_error_marker_type (cu, die);
20491 /* Load the DIEs associated with type unit PER_CU into memory. */
20494 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20496 struct signatured_type *sig_type;
20498 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20499 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20501 /* We have the per_cu, but we need the signatured_type.
20502 Fortunately this is an easy translation. */
20503 gdb_assert (per_cu->is_debug_types);
20504 sig_type = (struct signatured_type *) per_cu;
20506 gdb_assert (per_cu->cu == NULL);
20508 read_signatured_type (sig_type);
20510 gdb_assert (per_cu->cu != NULL);
20513 /* die_reader_func for read_signatured_type.
20514 This is identical to load_full_comp_unit_reader,
20515 but is kept separate for now. */
20518 read_signatured_type_reader (const struct die_reader_specs *reader,
20519 const gdb_byte *info_ptr,
20520 struct die_info *comp_unit_die,
20524 struct dwarf2_cu *cu = reader->cu;
20526 gdb_assert (cu->die_hash == NULL);
20528 htab_create_alloc_ex (cu->header.length / 12,
20532 &cu->comp_unit_obstack,
20533 hashtab_obstack_allocate,
20534 dummy_obstack_deallocate);
20537 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20538 &info_ptr, comp_unit_die);
20539 cu->dies = comp_unit_die;
20540 /* comp_unit_die is not stored in die_hash, no need. */
20542 /* We try not to read any attributes in this function, because not
20543 all CUs needed for references have been loaded yet, and symbol
20544 table processing isn't initialized. But we have to set the CU language,
20545 or we won't be able to build types correctly.
20546 Similarly, if we do not read the producer, we can not apply
20547 producer-specific interpretation. */
20548 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20551 /* Read in a signatured type and build its CU and DIEs.
20552 If the type is a stub for the real type in a DWO file,
20553 read in the real type from the DWO file as well. */
20556 read_signatured_type (struct signatured_type *sig_type)
20558 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20560 gdb_assert (per_cu->is_debug_types);
20561 gdb_assert (per_cu->cu == NULL);
20563 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20564 read_signatured_type_reader, NULL);
20565 sig_type->per_cu.tu_read = 1;
20568 /* Decode simple location descriptions.
20569 Given a pointer to a dwarf block that defines a location, compute
20570 the location and return the value.
20572 NOTE drow/2003-11-18: This function is called in two situations
20573 now: for the address of static or global variables (partial symbols
20574 only) and for offsets into structures which are expected to be
20575 (more or less) constant. The partial symbol case should go away,
20576 and only the constant case should remain. That will let this
20577 function complain more accurately. A few special modes are allowed
20578 without complaint for global variables (for instance, global
20579 register values and thread-local values).
20581 A location description containing no operations indicates that the
20582 object is optimized out. The return value is 0 for that case.
20583 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20584 callers will only want a very basic result and this can become a
20587 Note that stack[0] is unused except as a default error return. */
20590 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20592 struct objfile *objfile = cu->objfile;
20594 size_t size = blk->size;
20595 const gdb_byte *data = blk->data;
20596 CORE_ADDR stack[64];
20598 unsigned int bytes_read, unsnd;
20604 stack[++stacki] = 0;
20643 stack[++stacki] = op - DW_OP_lit0;
20678 stack[++stacki] = op - DW_OP_reg0;
20680 dwarf2_complex_location_expr_complaint ();
20684 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20686 stack[++stacki] = unsnd;
20688 dwarf2_complex_location_expr_complaint ();
20692 stack[++stacki] = read_address (objfile->obfd, &data[i],
20697 case DW_OP_const1u:
20698 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20702 case DW_OP_const1s:
20703 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20707 case DW_OP_const2u:
20708 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20712 case DW_OP_const2s:
20713 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20717 case DW_OP_const4u:
20718 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20722 case DW_OP_const4s:
20723 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20727 case DW_OP_const8u:
20728 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20733 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20739 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20744 stack[stacki + 1] = stack[stacki];
20749 stack[stacki - 1] += stack[stacki];
20753 case DW_OP_plus_uconst:
20754 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20760 stack[stacki - 1] -= stack[stacki];
20765 /* If we're not the last op, then we definitely can't encode
20766 this using GDB's address_class enum. This is valid for partial
20767 global symbols, although the variable's address will be bogus
20770 dwarf2_complex_location_expr_complaint ();
20773 case DW_OP_GNU_push_tls_address:
20774 /* The top of the stack has the offset from the beginning
20775 of the thread control block at which the variable is located. */
20776 /* Nothing should follow this operator, so the top of stack would
20778 /* This is valid for partial global symbols, but the variable's
20779 address will be bogus in the psymtab. Make it always at least
20780 non-zero to not look as a variable garbage collected by linker
20781 which have DW_OP_addr 0. */
20783 dwarf2_complex_location_expr_complaint ();
20787 case DW_OP_GNU_uninit:
20790 case DW_OP_GNU_addr_index:
20791 case DW_OP_GNU_const_index:
20792 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20799 const char *name = get_DW_OP_name (op);
20802 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20805 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20809 return (stack[stacki]);
20812 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20813 outside of the allocated space. Also enforce minimum>0. */
20814 if (stacki >= ARRAY_SIZE (stack) - 1)
20816 complaint (&symfile_complaints,
20817 _("location description stack overflow"));
20823 complaint (&symfile_complaints,
20824 _("location description stack underflow"));
20828 return (stack[stacki]);
20831 /* memory allocation interface */
20833 static struct dwarf_block *
20834 dwarf_alloc_block (struct dwarf2_cu *cu)
20836 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20839 static struct die_info *
20840 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20842 struct die_info *die;
20843 size_t size = sizeof (struct die_info);
20846 size += (num_attrs - 1) * sizeof (struct attribute);
20848 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20849 memset (die, 0, sizeof (struct die_info));
20854 /* Macro support. */
20856 /* Return file name relative to the compilation directory of file number I in
20857 *LH's file name table. The result is allocated using xmalloc; the caller is
20858 responsible for freeing it. */
20861 file_file_name (int file, struct line_header *lh)
20863 /* Is the file number a valid index into the line header's file name
20864 table? Remember that file numbers start with one, not zero. */
20865 if (1 <= file && file <= lh->num_file_names)
20867 struct file_entry *fe = &lh->file_names[file - 1];
20869 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20870 || lh->include_dirs == NULL)
20871 return xstrdup (fe->name);
20872 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20877 /* The compiler produced a bogus file number. We can at least
20878 record the macro definitions made in the file, even if we
20879 won't be able to find the file by name. */
20880 char fake_name[80];
20882 xsnprintf (fake_name, sizeof (fake_name),
20883 "<bad macro file number %d>", file);
20885 complaint (&symfile_complaints,
20886 _("bad file number in macro information (%d)"),
20889 return xstrdup (fake_name);
20893 /* Return the full name of file number I in *LH's file name table.
20894 Use COMP_DIR as the name of the current directory of the
20895 compilation. The result is allocated using xmalloc; the caller is
20896 responsible for freeing it. */
20898 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20900 /* Is the file number a valid index into the line header's file name
20901 table? Remember that file numbers start with one, not zero. */
20902 if (1 <= file && file <= lh->num_file_names)
20904 char *relative = file_file_name (file, lh);
20906 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20908 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20911 return file_file_name (file, lh);
20915 static struct macro_source_file *
20916 macro_start_file (int file, int line,
20917 struct macro_source_file *current_file,
20918 struct line_header *lh)
20920 /* File name relative to the compilation directory of this source file. */
20921 char *file_name = file_file_name (file, lh);
20923 if (! current_file)
20925 /* Note: We don't create a macro table for this compilation unit
20926 at all until we actually get a filename. */
20927 struct macro_table *macro_table = get_macro_table ();
20929 /* If we have no current file, then this must be the start_file
20930 directive for the compilation unit's main source file. */
20931 current_file = macro_set_main (macro_table, file_name);
20932 macro_define_special (macro_table);
20935 current_file = macro_include (current_file, line, file_name);
20939 return current_file;
20943 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20944 followed by a null byte. */
20946 copy_string (const char *buf, int len)
20948 char *s = (char *) xmalloc (len + 1);
20950 memcpy (s, buf, len);
20956 static const char *
20957 consume_improper_spaces (const char *p, const char *body)
20961 complaint (&symfile_complaints,
20962 _("macro definition contains spaces "
20963 "in formal argument list:\n`%s'"),
20975 parse_macro_definition (struct macro_source_file *file, int line,
20980 /* The body string takes one of two forms. For object-like macro
20981 definitions, it should be:
20983 <macro name> " " <definition>
20985 For function-like macro definitions, it should be:
20987 <macro name> "() " <definition>
20989 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20991 Spaces may appear only where explicitly indicated, and in the
20994 The Dwarf 2 spec says that an object-like macro's name is always
20995 followed by a space, but versions of GCC around March 2002 omit
20996 the space when the macro's definition is the empty string.
20998 The Dwarf 2 spec says that there should be no spaces between the
20999 formal arguments in a function-like macro's formal argument list,
21000 but versions of GCC around March 2002 include spaces after the
21004 /* Find the extent of the macro name. The macro name is terminated
21005 by either a space or null character (for an object-like macro) or
21006 an opening paren (for a function-like macro). */
21007 for (p = body; *p; p++)
21008 if (*p == ' ' || *p == '(')
21011 if (*p == ' ' || *p == '\0')
21013 /* It's an object-like macro. */
21014 int name_len = p - body;
21015 char *name = copy_string (body, name_len);
21016 const char *replacement;
21019 replacement = body + name_len + 1;
21022 dwarf2_macro_malformed_definition_complaint (body);
21023 replacement = body + name_len;
21026 macro_define_object (file, line, name, replacement);
21030 else if (*p == '(')
21032 /* It's a function-like macro. */
21033 char *name = copy_string (body, p - body);
21036 char **argv = XNEWVEC (char *, argv_size);
21040 p = consume_improper_spaces (p, body);
21042 /* Parse the formal argument list. */
21043 while (*p && *p != ')')
21045 /* Find the extent of the current argument name. */
21046 const char *arg_start = p;
21048 while (*p && *p != ',' && *p != ')' && *p != ' ')
21051 if (! *p || p == arg_start)
21052 dwarf2_macro_malformed_definition_complaint (body);
21055 /* Make sure argv has room for the new argument. */
21056 if (argc >= argv_size)
21059 argv = XRESIZEVEC (char *, argv, argv_size);
21062 argv[argc++] = copy_string (arg_start, p - arg_start);
21065 p = consume_improper_spaces (p, body);
21067 /* Consume the comma, if present. */
21072 p = consume_improper_spaces (p, body);
21081 /* Perfectly formed definition, no complaints. */
21082 macro_define_function (file, line, name,
21083 argc, (const char **) argv,
21085 else if (*p == '\0')
21087 /* Complain, but do define it. */
21088 dwarf2_macro_malformed_definition_complaint (body);
21089 macro_define_function (file, line, name,
21090 argc, (const char **) argv,
21094 /* Just complain. */
21095 dwarf2_macro_malformed_definition_complaint (body);
21098 /* Just complain. */
21099 dwarf2_macro_malformed_definition_complaint (body);
21105 for (i = 0; i < argc; i++)
21111 dwarf2_macro_malformed_definition_complaint (body);
21114 /* Skip some bytes from BYTES according to the form given in FORM.
21115 Returns the new pointer. */
21117 static const gdb_byte *
21118 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21119 enum dwarf_form form,
21120 unsigned int offset_size,
21121 struct dwarf2_section_info *section)
21123 unsigned int bytes_read;
21127 case DW_FORM_data1:
21132 case DW_FORM_data2:
21136 case DW_FORM_data4:
21140 case DW_FORM_data8:
21144 case DW_FORM_string:
21145 read_direct_string (abfd, bytes, &bytes_read);
21146 bytes += bytes_read;
21149 case DW_FORM_sec_offset:
21151 case DW_FORM_GNU_strp_alt:
21152 bytes += offset_size;
21155 case DW_FORM_block:
21156 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21157 bytes += bytes_read;
21160 case DW_FORM_block1:
21161 bytes += 1 + read_1_byte (abfd, bytes);
21163 case DW_FORM_block2:
21164 bytes += 2 + read_2_bytes (abfd, bytes);
21166 case DW_FORM_block4:
21167 bytes += 4 + read_4_bytes (abfd, bytes);
21170 case DW_FORM_sdata:
21171 case DW_FORM_udata:
21172 case DW_FORM_GNU_addr_index:
21173 case DW_FORM_GNU_str_index:
21174 bytes = gdb_skip_leb128 (bytes, buffer_end);
21177 dwarf2_section_buffer_overflow_complaint (section);
21185 complaint (&symfile_complaints,
21186 _("invalid form 0x%x in `%s'"),
21187 form, get_section_name (section));
21195 /* A helper for dwarf_decode_macros that handles skipping an unknown
21196 opcode. Returns an updated pointer to the macro data buffer; or,
21197 on error, issues a complaint and returns NULL. */
21199 static const gdb_byte *
21200 skip_unknown_opcode (unsigned int opcode,
21201 const gdb_byte **opcode_definitions,
21202 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21204 unsigned int offset_size,
21205 struct dwarf2_section_info *section)
21207 unsigned int bytes_read, i;
21209 const gdb_byte *defn;
21211 if (opcode_definitions[opcode] == NULL)
21213 complaint (&symfile_complaints,
21214 _("unrecognized DW_MACFINO opcode 0x%x"),
21219 defn = opcode_definitions[opcode];
21220 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21221 defn += bytes_read;
21223 for (i = 0; i < arg; ++i)
21225 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21226 (enum dwarf_form) defn[i], offset_size,
21228 if (mac_ptr == NULL)
21230 /* skip_form_bytes already issued the complaint. */
21238 /* A helper function which parses the header of a macro section.
21239 If the macro section is the extended (for now called "GNU") type,
21240 then this updates *OFFSET_SIZE. Returns a pointer to just after
21241 the header, or issues a complaint and returns NULL on error. */
21243 static const gdb_byte *
21244 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21246 const gdb_byte *mac_ptr,
21247 unsigned int *offset_size,
21248 int section_is_gnu)
21250 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21252 if (section_is_gnu)
21254 unsigned int version, flags;
21256 version = read_2_bytes (abfd, mac_ptr);
21259 complaint (&symfile_complaints,
21260 _("unrecognized version `%d' in .debug_macro section"),
21266 flags = read_1_byte (abfd, mac_ptr);
21268 *offset_size = (flags & 1) ? 8 : 4;
21270 if ((flags & 2) != 0)
21271 /* We don't need the line table offset. */
21272 mac_ptr += *offset_size;
21274 /* Vendor opcode descriptions. */
21275 if ((flags & 4) != 0)
21277 unsigned int i, count;
21279 count = read_1_byte (abfd, mac_ptr);
21281 for (i = 0; i < count; ++i)
21283 unsigned int opcode, bytes_read;
21286 opcode = read_1_byte (abfd, mac_ptr);
21288 opcode_definitions[opcode] = mac_ptr;
21289 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21290 mac_ptr += bytes_read;
21299 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21300 including DW_MACRO_GNU_transparent_include. */
21303 dwarf_decode_macro_bytes (bfd *abfd,
21304 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21305 struct macro_source_file *current_file,
21306 struct line_header *lh,
21307 struct dwarf2_section_info *section,
21308 int section_is_gnu, int section_is_dwz,
21309 unsigned int offset_size,
21310 htab_t include_hash)
21312 struct objfile *objfile = dwarf2_per_objfile->objfile;
21313 enum dwarf_macro_record_type macinfo_type;
21314 int at_commandline;
21315 const gdb_byte *opcode_definitions[256];
21317 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21318 &offset_size, section_is_gnu);
21319 if (mac_ptr == NULL)
21321 /* We already issued a complaint. */
21325 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21326 GDB is still reading the definitions from command line. First
21327 DW_MACINFO_start_file will need to be ignored as it was already executed
21328 to create CURRENT_FILE for the main source holding also the command line
21329 definitions. On first met DW_MACINFO_start_file this flag is reset to
21330 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21332 at_commandline = 1;
21336 /* Do we at least have room for a macinfo type byte? */
21337 if (mac_ptr >= mac_end)
21339 dwarf2_section_buffer_overflow_complaint (section);
21343 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21346 /* Note that we rely on the fact that the corresponding GNU and
21347 DWARF constants are the same. */
21348 switch (macinfo_type)
21350 /* A zero macinfo type indicates the end of the macro
21355 case DW_MACRO_GNU_define:
21356 case DW_MACRO_GNU_undef:
21357 case DW_MACRO_GNU_define_indirect:
21358 case DW_MACRO_GNU_undef_indirect:
21359 case DW_MACRO_GNU_define_indirect_alt:
21360 case DW_MACRO_GNU_undef_indirect_alt:
21362 unsigned int bytes_read;
21367 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21368 mac_ptr += bytes_read;
21370 if (macinfo_type == DW_MACRO_GNU_define
21371 || macinfo_type == DW_MACRO_GNU_undef)
21373 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21374 mac_ptr += bytes_read;
21378 LONGEST str_offset;
21380 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21381 mac_ptr += offset_size;
21383 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21384 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21387 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21389 body = read_indirect_string_from_dwz (dwz, str_offset);
21392 body = read_indirect_string_at_offset (abfd, str_offset);
21395 is_define = (macinfo_type == DW_MACRO_GNU_define
21396 || macinfo_type == DW_MACRO_GNU_define_indirect
21397 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21398 if (! current_file)
21400 /* DWARF violation as no main source is present. */
21401 complaint (&symfile_complaints,
21402 _("debug info with no main source gives macro %s "
21404 is_define ? _("definition") : _("undefinition"),
21408 if ((line == 0 && !at_commandline)
21409 || (line != 0 && at_commandline))
21410 complaint (&symfile_complaints,
21411 _("debug info gives %s macro %s with %s line %d: %s"),
21412 at_commandline ? _("command-line") : _("in-file"),
21413 is_define ? _("definition") : _("undefinition"),
21414 line == 0 ? _("zero") : _("non-zero"), line, body);
21417 parse_macro_definition (current_file, line, body);
21420 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21421 || macinfo_type == DW_MACRO_GNU_undef_indirect
21422 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21423 macro_undef (current_file, line, body);
21428 case DW_MACRO_GNU_start_file:
21430 unsigned int bytes_read;
21433 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21434 mac_ptr += bytes_read;
21435 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21436 mac_ptr += bytes_read;
21438 if ((line == 0 && !at_commandline)
21439 || (line != 0 && at_commandline))
21440 complaint (&symfile_complaints,
21441 _("debug info gives source %d included "
21442 "from %s at %s line %d"),
21443 file, at_commandline ? _("command-line") : _("file"),
21444 line == 0 ? _("zero") : _("non-zero"), line);
21446 if (at_commandline)
21448 /* This DW_MACRO_GNU_start_file was executed in the
21450 at_commandline = 0;
21453 current_file = macro_start_file (file, line, current_file, lh);
21457 case DW_MACRO_GNU_end_file:
21458 if (! current_file)
21459 complaint (&symfile_complaints,
21460 _("macro debug info has an unmatched "
21461 "`close_file' directive"));
21464 current_file = current_file->included_by;
21465 if (! current_file)
21467 enum dwarf_macro_record_type next_type;
21469 /* GCC circa March 2002 doesn't produce the zero
21470 type byte marking the end of the compilation
21471 unit. Complain if it's not there, but exit no
21474 /* Do we at least have room for a macinfo type byte? */
21475 if (mac_ptr >= mac_end)
21477 dwarf2_section_buffer_overflow_complaint (section);
21481 /* We don't increment mac_ptr here, so this is just
21484 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21486 if (next_type != 0)
21487 complaint (&symfile_complaints,
21488 _("no terminating 0-type entry for "
21489 "macros in `.debug_macinfo' section"));
21496 case DW_MACRO_GNU_transparent_include:
21497 case DW_MACRO_GNU_transparent_include_alt:
21501 bfd *include_bfd = abfd;
21502 struct dwarf2_section_info *include_section = section;
21503 struct dwarf2_section_info alt_section;
21504 const gdb_byte *include_mac_end = mac_end;
21505 int is_dwz = section_is_dwz;
21506 const gdb_byte *new_mac_ptr;
21508 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21509 mac_ptr += offset_size;
21511 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21513 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21515 dwarf2_read_section (objfile, &dwz->macro);
21517 include_section = &dwz->macro;
21518 include_bfd = get_section_bfd_owner (include_section);
21519 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21523 new_mac_ptr = include_section->buffer + offset;
21524 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21528 /* This has actually happened; see
21529 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21530 complaint (&symfile_complaints,
21531 _("recursive DW_MACRO_GNU_transparent_include in "
21532 ".debug_macro section"));
21536 *slot = (void *) new_mac_ptr;
21538 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21539 include_mac_end, current_file, lh,
21540 section, section_is_gnu, is_dwz,
21541 offset_size, include_hash);
21543 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21548 case DW_MACINFO_vendor_ext:
21549 if (!section_is_gnu)
21551 unsigned int bytes_read;
21554 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21555 mac_ptr += bytes_read;
21556 read_direct_string (abfd, mac_ptr, &bytes_read);
21557 mac_ptr += bytes_read;
21559 /* We don't recognize any vendor extensions. */
21565 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21566 mac_ptr, mac_end, abfd, offset_size,
21568 if (mac_ptr == NULL)
21572 } while (macinfo_type != 0);
21576 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21577 int section_is_gnu)
21579 struct objfile *objfile = dwarf2_per_objfile->objfile;
21580 struct line_header *lh = cu->line_header;
21582 const gdb_byte *mac_ptr, *mac_end;
21583 struct macro_source_file *current_file = 0;
21584 enum dwarf_macro_record_type macinfo_type;
21585 unsigned int offset_size = cu->header.offset_size;
21586 const gdb_byte *opcode_definitions[256];
21587 struct cleanup *cleanup;
21588 htab_t include_hash;
21590 struct dwarf2_section_info *section;
21591 const char *section_name;
21593 if (cu->dwo_unit != NULL)
21595 if (section_is_gnu)
21597 section = &cu->dwo_unit->dwo_file->sections.macro;
21598 section_name = ".debug_macro.dwo";
21602 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21603 section_name = ".debug_macinfo.dwo";
21608 if (section_is_gnu)
21610 section = &dwarf2_per_objfile->macro;
21611 section_name = ".debug_macro";
21615 section = &dwarf2_per_objfile->macinfo;
21616 section_name = ".debug_macinfo";
21620 dwarf2_read_section (objfile, section);
21621 if (section->buffer == NULL)
21623 complaint (&symfile_complaints, _("missing %s section"), section_name);
21626 abfd = get_section_bfd_owner (section);
21628 /* First pass: Find the name of the base filename.
21629 This filename is needed in order to process all macros whose definition
21630 (or undefinition) comes from the command line. These macros are defined
21631 before the first DW_MACINFO_start_file entry, and yet still need to be
21632 associated to the base file.
21634 To determine the base file name, we scan the macro definitions until we
21635 reach the first DW_MACINFO_start_file entry. We then initialize
21636 CURRENT_FILE accordingly so that any macro definition found before the
21637 first DW_MACINFO_start_file can still be associated to the base file. */
21639 mac_ptr = section->buffer + offset;
21640 mac_end = section->buffer + section->size;
21642 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21643 &offset_size, section_is_gnu);
21644 if (mac_ptr == NULL)
21646 /* We already issued a complaint. */
21652 /* Do we at least have room for a macinfo type byte? */
21653 if (mac_ptr >= mac_end)
21655 /* Complaint is printed during the second pass as GDB will probably
21656 stop the first pass earlier upon finding
21657 DW_MACINFO_start_file. */
21661 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21664 /* Note that we rely on the fact that the corresponding GNU and
21665 DWARF constants are the same. */
21666 switch (macinfo_type)
21668 /* A zero macinfo type indicates the end of the macro
21673 case DW_MACRO_GNU_define:
21674 case DW_MACRO_GNU_undef:
21675 /* Only skip the data by MAC_PTR. */
21677 unsigned int bytes_read;
21679 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21680 mac_ptr += bytes_read;
21681 read_direct_string (abfd, mac_ptr, &bytes_read);
21682 mac_ptr += bytes_read;
21686 case DW_MACRO_GNU_start_file:
21688 unsigned int bytes_read;
21691 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21692 mac_ptr += bytes_read;
21693 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21694 mac_ptr += bytes_read;
21696 current_file = macro_start_file (file, line, current_file, lh);
21700 case DW_MACRO_GNU_end_file:
21701 /* No data to skip by MAC_PTR. */
21704 case DW_MACRO_GNU_define_indirect:
21705 case DW_MACRO_GNU_undef_indirect:
21706 case DW_MACRO_GNU_define_indirect_alt:
21707 case DW_MACRO_GNU_undef_indirect_alt:
21709 unsigned int bytes_read;
21711 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21712 mac_ptr += bytes_read;
21713 mac_ptr += offset_size;
21717 case DW_MACRO_GNU_transparent_include:
21718 case DW_MACRO_GNU_transparent_include_alt:
21719 /* Note that, according to the spec, a transparent include
21720 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21721 skip this opcode. */
21722 mac_ptr += offset_size;
21725 case DW_MACINFO_vendor_ext:
21726 /* Only skip the data by MAC_PTR. */
21727 if (!section_is_gnu)
21729 unsigned int bytes_read;
21731 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21732 mac_ptr += bytes_read;
21733 read_direct_string (abfd, mac_ptr, &bytes_read);
21734 mac_ptr += bytes_read;
21739 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21740 mac_ptr, mac_end, abfd, offset_size,
21742 if (mac_ptr == NULL)
21746 } while (macinfo_type != 0 && current_file == NULL);
21748 /* Second pass: Process all entries.
21750 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21751 command-line macro definitions/undefinitions. This flag is unset when we
21752 reach the first DW_MACINFO_start_file entry. */
21754 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21755 NULL, xcalloc, xfree);
21756 cleanup = make_cleanup_htab_delete (include_hash);
21757 mac_ptr = section->buffer + offset;
21758 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21759 *slot = (void *) mac_ptr;
21760 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21761 current_file, lh, section,
21762 section_is_gnu, 0, offset_size, include_hash);
21763 do_cleanups (cleanup);
21766 /* Check if the attribute's form is a DW_FORM_block*
21767 if so return true else false. */
21770 attr_form_is_block (const struct attribute *attr)
21772 return (attr == NULL ? 0 :
21773 attr->form == DW_FORM_block1
21774 || attr->form == DW_FORM_block2
21775 || attr->form == DW_FORM_block4
21776 || attr->form == DW_FORM_block
21777 || attr->form == DW_FORM_exprloc);
21780 /* Return non-zero if ATTR's value is a section offset --- classes
21781 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21782 You may use DW_UNSND (attr) to retrieve such offsets.
21784 Section 7.5.4, "Attribute Encodings", explains that no attribute
21785 may have a value that belongs to more than one of these classes; it
21786 would be ambiguous if we did, because we use the same forms for all
21790 attr_form_is_section_offset (const struct attribute *attr)
21792 return (attr->form == DW_FORM_data4
21793 || attr->form == DW_FORM_data8
21794 || attr->form == DW_FORM_sec_offset);
21797 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21798 zero otherwise. When this function returns true, you can apply
21799 dwarf2_get_attr_constant_value to it.
21801 However, note that for some attributes you must check
21802 attr_form_is_section_offset before using this test. DW_FORM_data4
21803 and DW_FORM_data8 are members of both the constant class, and of
21804 the classes that contain offsets into other debug sections
21805 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21806 that, if an attribute's can be either a constant or one of the
21807 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21808 taken as section offsets, not constants. */
21811 attr_form_is_constant (const struct attribute *attr)
21813 switch (attr->form)
21815 case DW_FORM_sdata:
21816 case DW_FORM_udata:
21817 case DW_FORM_data1:
21818 case DW_FORM_data2:
21819 case DW_FORM_data4:
21820 case DW_FORM_data8:
21828 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21829 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21832 attr_form_is_ref (const struct attribute *attr)
21834 switch (attr->form)
21836 case DW_FORM_ref_addr:
21841 case DW_FORM_ref_udata:
21842 case DW_FORM_GNU_ref_alt:
21849 /* Return the .debug_loc section to use for CU.
21850 For DWO files use .debug_loc.dwo. */
21852 static struct dwarf2_section_info *
21853 cu_debug_loc_section (struct dwarf2_cu *cu)
21856 return &cu->dwo_unit->dwo_file->sections.loc;
21857 return &dwarf2_per_objfile->loc;
21860 /* A helper function that fills in a dwarf2_loclist_baton. */
21863 fill_in_loclist_baton (struct dwarf2_cu *cu,
21864 struct dwarf2_loclist_baton *baton,
21865 const struct attribute *attr)
21867 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21869 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21871 baton->per_cu = cu->per_cu;
21872 gdb_assert (baton->per_cu);
21873 /* We don't know how long the location list is, but make sure we
21874 don't run off the edge of the section. */
21875 baton->size = section->size - DW_UNSND (attr);
21876 baton->data = section->buffer + DW_UNSND (attr);
21877 baton->base_address = cu->base_address;
21878 baton->from_dwo = cu->dwo_unit != NULL;
21882 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21883 struct dwarf2_cu *cu, int is_block)
21885 struct objfile *objfile = dwarf2_per_objfile->objfile;
21886 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21888 if (attr_form_is_section_offset (attr)
21889 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21890 the section. If so, fall through to the complaint in the
21892 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21894 struct dwarf2_loclist_baton *baton;
21896 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21898 fill_in_loclist_baton (cu, baton, attr);
21900 if (cu->base_known == 0)
21901 complaint (&symfile_complaints,
21902 _("Location list used without "
21903 "specifying the CU base address."));
21905 SYMBOL_ACLASS_INDEX (sym) = (is_block
21906 ? dwarf2_loclist_block_index
21907 : dwarf2_loclist_index);
21908 SYMBOL_LOCATION_BATON (sym) = baton;
21912 struct dwarf2_locexpr_baton *baton;
21914 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21915 baton->per_cu = cu->per_cu;
21916 gdb_assert (baton->per_cu);
21918 if (attr_form_is_block (attr))
21920 /* Note that we're just copying the block's data pointer
21921 here, not the actual data. We're still pointing into the
21922 info_buffer for SYM's objfile; right now we never release
21923 that buffer, but when we do clean up properly this may
21925 baton->size = DW_BLOCK (attr)->size;
21926 baton->data = DW_BLOCK (attr)->data;
21930 dwarf2_invalid_attrib_class_complaint ("location description",
21931 SYMBOL_NATURAL_NAME (sym));
21935 SYMBOL_ACLASS_INDEX (sym) = (is_block
21936 ? dwarf2_locexpr_block_index
21937 : dwarf2_locexpr_index);
21938 SYMBOL_LOCATION_BATON (sym) = baton;
21942 /* Return the OBJFILE associated with the compilation unit CU. If CU
21943 came from a separate debuginfo file, then the master objfile is
21947 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21949 struct objfile *objfile = per_cu->objfile;
21951 /* Return the master objfile, so that we can report and look up the
21952 correct file containing this variable. */
21953 if (objfile->separate_debug_objfile_backlink)
21954 objfile = objfile->separate_debug_objfile_backlink;
21959 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21960 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21961 CU_HEADERP first. */
21963 static const struct comp_unit_head *
21964 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21965 struct dwarf2_per_cu_data *per_cu)
21967 const gdb_byte *info_ptr;
21970 return &per_cu->cu->header;
21972 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21974 memset (cu_headerp, 0, sizeof (*cu_headerp));
21975 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21980 /* Return the address size given in the compilation unit header for CU. */
21983 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21985 struct comp_unit_head cu_header_local;
21986 const struct comp_unit_head *cu_headerp;
21988 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21990 return cu_headerp->addr_size;
21993 /* Return the offset size given in the compilation unit header for CU. */
21996 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21998 struct comp_unit_head cu_header_local;
21999 const struct comp_unit_head *cu_headerp;
22001 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22003 return cu_headerp->offset_size;
22006 /* See its dwarf2loc.h declaration. */
22009 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22011 struct comp_unit_head cu_header_local;
22012 const struct comp_unit_head *cu_headerp;
22014 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22016 if (cu_headerp->version == 2)
22017 return cu_headerp->addr_size;
22019 return cu_headerp->offset_size;
22022 /* Return the text offset of the CU. The returned offset comes from
22023 this CU's objfile. If this objfile came from a separate debuginfo
22024 file, then the offset may be different from the corresponding
22025 offset in the parent objfile. */
22028 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22030 struct objfile *objfile = per_cu->objfile;
22032 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22035 /* Locate the .debug_info compilation unit from CU's objfile which contains
22036 the DIE at OFFSET. Raises an error on failure. */
22038 static struct dwarf2_per_cu_data *
22039 dwarf2_find_containing_comp_unit (sect_offset offset,
22040 unsigned int offset_in_dwz,
22041 struct objfile *objfile)
22043 struct dwarf2_per_cu_data *this_cu;
22045 const sect_offset *cu_off;
22048 high = dwarf2_per_objfile->n_comp_units - 1;
22051 struct dwarf2_per_cu_data *mid_cu;
22052 int mid = low + (high - low) / 2;
22054 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22055 cu_off = &mid_cu->offset;
22056 if (mid_cu->is_dwz > offset_in_dwz
22057 || (mid_cu->is_dwz == offset_in_dwz
22058 && cu_off->sect_off >= offset.sect_off))
22063 gdb_assert (low == high);
22064 this_cu = dwarf2_per_objfile->all_comp_units[low];
22065 cu_off = &this_cu->offset;
22066 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22068 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22069 error (_("Dwarf Error: could not find partial DIE containing "
22070 "offset 0x%lx [in module %s]"),
22071 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22073 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22074 <= offset.sect_off);
22075 return dwarf2_per_objfile->all_comp_units[low-1];
22079 this_cu = dwarf2_per_objfile->all_comp_units[low];
22080 if (low == dwarf2_per_objfile->n_comp_units - 1
22081 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22082 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22083 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22088 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22091 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22093 memset (cu, 0, sizeof (*cu));
22095 cu->per_cu = per_cu;
22096 cu->objfile = per_cu->objfile;
22097 obstack_init (&cu->comp_unit_obstack);
22100 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22103 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22104 enum language pretend_language)
22106 struct attribute *attr;
22108 /* Set the language we're debugging. */
22109 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22111 set_cu_language (DW_UNSND (attr), cu);
22114 cu->language = pretend_language;
22115 cu->language_defn = language_def (cu->language);
22118 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22121 /* Release one cached compilation unit, CU. We unlink it from the tree
22122 of compilation units, but we don't remove it from the read_in_chain;
22123 the caller is responsible for that.
22124 NOTE: DATA is a void * because this function is also used as a
22125 cleanup routine. */
22128 free_heap_comp_unit (void *data)
22130 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22132 gdb_assert (cu->per_cu != NULL);
22133 cu->per_cu->cu = NULL;
22136 obstack_free (&cu->comp_unit_obstack, NULL);
22141 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22142 when we're finished with it. We can't free the pointer itself, but be
22143 sure to unlink it from the cache. Also release any associated storage. */
22146 free_stack_comp_unit (void *data)
22148 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22150 gdb_assert (cu->per_cu != NULL);
22151 cu->per_cu->cu = NULL;
22154 obstack_free (&cu->comp_unit_obstack, NULL);
22155 cu->partial_dies = NULL;
22158 /* Free all cached compilation units. */
22161 free_cached_comp_units (void *data)
22163 struct dwarf2_per_cu_data *per_cu, **last_chain;
22165 per_cu = dwarf2_per_objfile->read_in_chain;
22166 last_chain = &dwarf2_per_objfile->read_in_chain;
22167 while (per_cu != NULL)
22169 struct dwarf2_per_cu_data *next_cu;
22171 next_cu = per_cu->cu->read_in_chain;
22173 free_heap_comp_unit (per_cu->cu);
22174 *last_chain = next_cu;
22180 /* Increase the age counter on each cached compilation unit, and free
22181 any that are too old. */
22184 age_cached_comp_units (void)
22186 struct dwarf2_per_cu_data *per_cu, **last_chain;
22188 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22189 per_cu = dwarf2_per_objfile->read_in_chain;
22190 while (per_cu != NULL)
22192 per_cu->cu->last_used ++;
22193 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22194 dwarf2_mark (per_cu->cu);
22195 per_cu = per_cu->cu->read_in_chain;
22198 per_cu = dwarf2_per_objfile->read_in_chain;
22199 last_chain = &dwarf2_per_objfile->read_in_chain;
22200 while (per_cu != NULL)
22202 struct dwarf2_per_cu_data *next_cu;
22204 next_cu = per_cu->cu->read_in_chain;
22206 if (!per_cu->cu->mark)
22208 free_heap_comp_unit (per_cu->cu);
22209 *last_chain = next_cu;
22212 last_chain = &per_cu->cu->read_in_chain;
22218 /* Remove a single compilation unit from the cache. */
22221 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22223 struct dwarf2_per_cu_data *per_cu, **last_chain;
22225 per_cu = dwarf2_per_objfile->read_in_chain;
22226 last_chain = &dwarf2_per_objfile->read_in_chain;
22227 while (per_cu != NULL)
22229 struct dwarf2_per_cu_data *next_cu;
22231 next_cu = per_cu->cu->read_in_chain;
22233 if (per_cu == target_per_cu)
22235 free_heap_comp_unit (per_cu->cu);
22237 *last_chain = next_cu;
22241 last_chain = &per_cu->cu->read_in_chain;
22247 /* Release all extra memory associated with OBJFILE. */
22250 dwarf2_free_objfile (struct objfile *objfile)
22253 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22254 dwarf2_objfile_data_key);
22256 if (dwarf2_per_objfile == NULL)
22259 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22260 free_cached_comp_units (NULL);
22262 if (dwarf2_per_objfile->quick_file_names_table)
22263 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22265 if (dwarf2_per_objfile->line_header_hash)
22266 htab_delete (dwarf2_per_objfile->line_header_hash);
22268 /* Everything else should be on the objfile obstack. */
22271 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22272 We store these in a hash table separate from the DIEs, and preserve them
22273 when the DIEs are flushed out of cache.
22275 The CU "per_cu" pointer is needed because offset alone is not enough to
22276 uniquely identify the type. A file may have multiple .debug_types sections,
22277 or the type may come from a DWO file. Furthermore, while it's more logical
22278 to use per_cu->section+offset, with Fission the section with the data is in
22279 the DWO file but we don't know that section at the point we need it.
22280 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22281 because we can enter the lookup routine, get_die_type_at_offset, from
22282 outside this file, and thus won't necessarily have PER_CU->cu.
22283 Fortunately, PER_CU is stable for the life of the objfile. */
22285 struct dwarf2_per_cu_offset_and_type
22287 const struct dwarf2_per_cu_data *per_cu;
22288 sect_offset offset;
22292 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22295 per_cu_offset_and_type_hash (const void *item)
22297 const struct dwarf2_per_cu_offset_and_type *ofs
22298 = (const struct dwarf2_per_cu_offset_and_type *) item;
22300 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22303 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22306 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22308 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22309 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22310 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22311 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22313 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22314 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22317 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22318 table if necessary. For convenience, return TYPE.
22320 The DIEs reading must have careful ordering to:
22321 * Not cause infite loops trying to read in DIEs as a prerequisite for
22322 reading current DIE.
22323 * Not trying to dereference contents of still incompletely read in types
22324 while reading in other DIEs.
22325 * Enable referencing still incompletely read in types just by a pointer to
22326 the type without accessing its fields.
22328 Therefore caller should follow these rules:
22329 * Try to fetch any prerequisite types we may need to build this DIE type
22330 before building the type and calling set_die_type.
22331 * After building type call set_die_type for current DIE as soon as
22332 possible before fetching more types to complete the current type.
22333 * Make the type as complete as possible before fetching more types. */
22335 static struct type *
22336 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22338 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22339 struct objfile *objfile = cu->objfile;
22340 struct attribute *attr;
22341 struct dynamic_prop prop;
22343 /* For Ada types, make sure that the gnat-specific data is always
22344 initialized (if not already set). There are a few types where
22345 we should not be doing so, because the type-specific area is
22346 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22347 where the type-specific area is used to store the floatformat).
22348 But this is not a problem, because the gnat-specific information
22349 is actually not needed for these types. */
22350 if (need_gnat_info (cu)
22351 && TYPE_CODE (type) != TYPE_CODE_FUNC
22352 && TYPE_CODE (type) != TYPE_CODE_FLT
22353 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22354 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22355 && TYPE_CODE (type) != TYPE_CODE_METHOD
22356 && !HAVE_GNAT_AUX_INFO (type))
22357 INIT_GNAT_SPECIFIC (type);
22359 /* Read DW_AT_allocated and set in type. */
22360 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22361 if (attr_form_is_block (attr))
22363 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22364 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22366 else if (attr != NULL)
22368 complaint (&symfile_complaints,
22369 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22370 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22371 die->offset.sect_off);
22374 /* Read DW_AT_associated and set in type. */
22375 attr = dwarf2_attr (die, DW_AT_associated, cu);
22376 if (attr_form_is_block (attr))
22378 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22379 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22381 else if (attr != NULL)
22383 complaint (&symfile_complaints,
22384 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22385 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22386 die->offset.sect_off);
22389 /* Read DW_AT_data_location and set in type. */
22390 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22391 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22392 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22394 if (dwarf2_per_objfile->die_type_hash == NULL)
22396 dwarf2_per_objfile->die_type_hash =
22397 htab_create_alloc_ex (127,
22398 per_cu_offset_and_type_hash,
22399 per_cu_offset_and_type_eq,
22401 &objfile->objfile_obstack,
22402 hashtab_obstack_allocate,
22403 dummy_obstack_deallocate);
22406 ofs.per_cu = cu->per_cu;
22407 ofs.offset = die->offset;
22409 slot = (struct dwarf2_per_cu_offset_and_type **)
22410 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22412 complaint (&symfile_complaints,
22413 _("A problem internal to GDB: DIE 0x%x has type already set"),
22414 die->offset.sect_off);
22415 *slot = XOBNEW (&objfile->objfile_obstack,
22416 struct dwarf2_per_cu_offset_and_type);
22421 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22422 or return NULL if the die does not have a saved type. */
22424 static struct type *
22425 get_die_type_at_offset (sect_offset offset,
22426 struct dwarf2_per_cu_data *per_cu)
22428 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22430 if (dwarf2_per_objfile->die_type_hash == NULL)
22433 ofs.per_cu = per_cu;
22434 ofs.offset = offset;
22435 slot = ((struct dwarf2_per_cu_offset_and_type *)
22436 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22443 /* Look up the type for DIE in CU in die_type_hash,
22444 or return NULL if DIE does not have a saved type. */
22446 static struct type *
22447 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22449 return get_die_type_at_offset (die->offset, cu->per_cu);
22452 /* Add a dependence relationship from CU to REF_PER_CU. */
22455 dwarf2_add_dependence (struct dwarf2_cu *cu,
22456 struct dwarf2_per_cu_data *ref_per_cu)
22460 if (cu->dependencies == NULL)
22462 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22463 NULL, &cu->comp_unit_obstack,
22464 hashtab_obstack_allocate,
22465 dummy_obstack_deallocate);
22467 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22469 *slot = ref_per_cu;
22472 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22473 Set the mark field in every compilation unit in the
22474 cache that we must keep because we are keeping CU. */
22477 dwarf2_mark_helper (void **slot, void *data)
22479 struct dwarf2_per_cu_data *per_cu;
22481 per_cu = (struct dwarf2_per_cu_data *) *slot;
22483 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22484 reading of the chain. As such dependencies remain valid it is not much
22485 useful to track and undo them during QUIT cleanups. */
22486 if (per_cu->cu == NULL)
22489 if (per_cu->cu->mark)
22491 per_cu->cu->mark = 1;
22493 if (per_cu->cu->dependencies != NULL)
22494 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22499 /* Set the mark field in CU and in every other compilation unit in the
22500 cache that we must keep because we are keeping CU. */
22503 dwarf2_mark (struct dwarf2_cu *cu)
22508 if (cu->dependencies != NULL)
22509 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22513 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22517 per_cu->cu->mark = 0;
22518 per_cu = per_cu->cu->read_in_chain;
22522 /* Trivial hash function for partial_die_info: the hash value of a DIE
22523 is its offset in .debug_info for this objfile. */
22526 partial_die_hash (const void *item)
22528 const struct partial_die_info *part_die
22529 = (const struct partial_die_info *) item;
22531 return part_die->offset.sect_off;
22534 /* Trivial comparison function for partial_die_info structures: two DIEs
22535 are equal if they have the same offset. */
22538 partial_die_eq (const void *item_lhs, const void *item_rhs)
22540 const struct partial_die_info *part_die_lhs
22541 = (const struct partial_die_info *) item_lhs;
22542 const struct partial_die_info *part_die_rhs
22543 = (const struct partial_die_info *) item_rhs;
22545 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22548 static struct cmd_list_element *set_dwarf_cmdlist;
22549 static struct cmd_list_element *show_dwarf_cmdlist;
22552 set_dwarf_cmd (char *args, int from_tty)
22554 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22559 show_dwarf_cmd (char *args, int from_tty)
22561 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22564 /* Free data associated with OBJFILE, if necessary. */
22567 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22569 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22572 /* Make sure we don't accidentally use dwarf2_per_objfile while
22574 dwarf2_per_objfile = NULL;
22576 for (ix = 0; ix < data->n_comp_units; ++ix)
22577 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22579 for (ix = 0; ix < data->n_type_units; ++ix)
22580 VEC_free (dwarf2_per_cu_ptr,
22581 data->all_type_units[ix]->per_cu.imported_symtabs);
22582 xfree (data->all_type_units);
22584 VEC_free (dwarf2_section_info_def, data->types);
22586 if (data->dwo_files)
22587 free_dwo_files (data->dwo_files, objfile);
22588 if (data->dwp_file)
22589 gdb_bfd_unref (data->dwp_file->dbfd);
22591 if (data->dwz_file && data->dwz_file->dwz_bfd)
22592 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22596 /* The "save gdb-index" command. */
22598 /* The contents of the hash table we create when building the string
22600 struct strtab_entry
22602 offset_type offset;
22606 /* Hash function for a strtab_entry.
22608 Function is used only during write_hash_table so no index format backward
22609 compatibility is needed. */
22612 hash_strtab_entry (const void *e)
22614 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22615 return mapped_index_string_hash (INT_MAX, entry->str);
22618 /* Equality function for a strtab_entry. */
22621 eq_strtab_entry (const void *a, const void *b)
22623 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22624 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22625 return !strcmp (ea->str, eb->str);
22628 /* Create a strtab_entry hash table. */
22631 create_strtab (void)
22633 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22634 xfree, xcalloc, xfree);
22637 /* Add a string to the constant pool. Return the string's offset in
22641 add_string (htab_t table, struct obstack *cpool, const char *str)
22644 struct strtab_entry entry;
22645 struct strtab_entry *result;
22648 slot = htab_find_slot (table, &entry, INSERT);
22650 result = (struct strtab_entry *) *slot;
22653 result = XNEW (struct strtab_entry);
22654 result->offset = obstack_object_size (cpool);
22656 obstack_grow_str0 (cpool, str);
22659 return result->offset;
22662 /* An entry in the symbol table. */
22663 struct symtab_index_entry
22665 /* The name of the symbol. */
22667 /* The offset of the name in the constant pool. */
22668 offset_type index_offset;
22669 /* A sorted vector of the indices of all the CUs that hold an object
22671 VEC (offset_type) *cu_indices;
22674 /* The symbol table. This is a power-of-2-sized hash table. */
22675 struct mapped_symtab
22677 offset_type n_elements;
22679 struct symtab_index_entry **data;
22682 /* Hash function for a symtab_index_entry. */
22685 hash_symtab_entry (const void *e)
22687 const struct symtab_index_entry *entry
22688 = (const struct symtab_index_entry *) e;
22689 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22690 sizeof (offset_type) * VEC_length (offset_type,
22691 entry->cu_indices),
22695 /* Equality function for a symtab_index_entry. */
22698 eq_symtab_entry (const void *a, const void *b)
22700 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22701 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22702 int len = VEC_length (offset_type, ea->cu_indices);
22703 if (len != VEC_length (offset_type, eb->cu_indices))
22705 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22706 VEC_address (offset_type, eb->cu_indices),
22707 sizeof (offset_type) * len);
22710 /* Destroy a symtab_index_entry. */
22713 delete_symtab_entry (void *p)
22715 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22716 VEC_free (offset_type, entry->cu_indices);
22720 /* Create a hash table holding symtab_index_entry objects. */
22723 create_symbol_hash_table (void)
22725 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22726 delete_symtab_entry, xcalloc, xfree);
22729 /* Create a new mapped symtab object. */
22731 static struct mapped_symtab *
22732 create_mapped_symtab (void)
22734 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22735 symtab->n_elements = 0;
22736 symtab->size = 1024;
22737 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22741 /* Destroy a mapped_symtab. */
22744 cleanup_mapped_symtab (void *p)
22746 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22747 /* The contents of the array are freed when the other hash table is
22749 xfree (symtab->data);
22753 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22756 Function is used only during write_hash_table so no index format backward
22757 compatibility is needed. */
22759 static struct symtab_index_entry **
22760 find_slot (struct mapped_symtab *symtab, const char *name)
22762 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22764 index = hash & (symtab->size - 1);
22765 step = ((hash * 17) & (symtab->size - 1)) | 1;
22769 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22770 return &symtab->data[index];
22771 index = (index + step) & (symtab->size - 1);
22775 /* Expand SYMTAB's hash table. */
22778 hash_expand (struct mapped_symtab *symtab)
22780 offset_type old_size = symtab->size;
22782 struct symtab_index_entry **old_entries = symtab->data;
22785 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22787 for (i = 0; i < old_size; ++i)
22789 if (old_entries[i])
22791 struct symtab_index_entry **slot = find_slot (symtab,
22792 old_entries[i]->name);
22793 *slot = old_entries[i];
22797 xfree (old_entries);
22800 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22801 CU_INDEX is the index of the CU in which the symbol appears.
22802 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22805 add_index_entry (struct mapped_symtab *symtab, const char *name,
22806 int is_static, gdb_index_symbol_kind kind,
22807 offset_type cu_index)
22809 struct symtab_index_entry **slot;
22810 offset_type cu_index_and_attrs;
22812 ++symtab->n_elements;
22813 if (4 * symtab->n_elements / 3 >= symtab->size)
22814 hash_expand (symtab);
22816 slot = find_slot (symtab, name);
22819 *slot = XNEW (struct symtab_index_entry);
22820 (*slot)->name = name;
22821 /* index_offset is set later. */
22822 (*slot)->cu_indices = NULL;
22825 cu_index_and_attrs = 0;
22826 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22827 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22828 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22830 /* We don't want to record an index value twice as we want to avoid the
22832 We process all global symbols and then all static symbols
22833 (which would allow us to avoid the duplication by only having to check
22834 the last entry pushed), but a symbol could have multiple kinds in one CU.
22835 To keep things simple we don't worry about the duplication here and
22836 sort and uniqufy the list after we've processed all symbols. */
22837 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22840 /* qsort helper routine for uniquify_cu_indices. */
22843 offset_type_compare (const void *ap, const void *bp)
22845 offset_type a = *(offset_type *) ap;
22846 offset_type b = *(offset_type *) bp;
22848 return (a > b) - (b > a);
22851 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22854 uniquify_cu_indices (struct mapped_symtab *symtab)
22858 for (i = 0; i < symtab->size; ++i)
22860 struct symtab_index_entry *entry = symtab->data[i];
22863 && entry->cu_indices != NULL)
22865 unsigned int next_to_insert, next_to_check;
22866 offset_type last_value;
22868 qsort (VEC_address (offset_type, entry->cu_indices),
22869 VEC_length (offset_type, entry->cu_indices),
22870 sizeof (offset_type), offset_type_compare);
22872 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22873 next_to_insert = 1;
22874 for (next_to_check = 1;
22875 next_to_check < VEC_length (offset_type, entry->cu_indices);
22878 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22881 last_value = VEC_index (offset_type, entry->cu_indices,
22883 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22888 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22893 /* Add a vector of indices to the constant pool. */
22896 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22897 struct symtab_index_entry *entry)
22901 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22904 offset_type len = VEC_length (offset_type, entry->cu_indices);
22905 offset_type val = MAYBE_SWAP (len);
22910 entry->index_offset = obstack_object_size (cpool);
22912 obstack_grow (cpool, &val, sizeof (val));
22914 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22917 val = MAYBE_SWAP (iter);
22918 obstack_grow (cpool, &val, sizeof (val));
22923 struct symtab_index_entry *old_entry
22924 = (struct symtab_index_entry *) *slot;
22925 entry->index_offset = old_entry->index_offset;
22928 return entry->index_offset;
22931 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22932 constant pool entries going into the obstack CPOOL. */
22935 write_hash_table (struct mapped_symtab *symtab,
22936 struct obstack *output, struct obstack *cpool)
22939 htab_t symbol_hash_table;
22942 symbol_hash_table = create_symbol_hash_table ();
22943 str_table = create_strtab ();
22945 /* We add all the index vectors to the constant pool first, to
22946 ensure alignment is ok. */
22947 for (i = 0; i < symtab->size; ++i)
22949 if (symtab->data[i])
22950 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22953 /* Now write out the hash table. */
22954 for (i = 0; i < symtab->size; ++i)
22956 offset_type str_off, vec_off;
22958 if (symtab->data[i])
22960 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22961 vec_off = symtab->data[i]->index_offset;
22965 /* While 0 is a valid constant pool index, it is not valid
22966 to have 0 for both offsets. */
22971 str_off = MAYBE_SWAP (str_off);
22972 vec_off = MAYBE_SWAP (vec_off);
22974 obstack_grow (output, &str_off, sizeof (str_off));
22975 obstack_grow (output, &vec_off, sizeof (vec_off));
22978 htab_delete (str_table);
22979 htab_delete (symbol_hash_table);
22982 /* Struct to map psymtab to CU index in the index file. */
22983 struct psymtab_cu_index_map
22985 struct partial_symtab *psymtab;
22986 unsigned int cu_index;
22990 hash_psymtab_cu_index (const void *item)
22992 const struct psymtab_cu_index_map *map
22993 = (const struct psymtab_cu_index_map *) item;
22995 return htab_hash_pointer (map->psymtab);
22999 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23001 const struct psymtab_cu_index_map *lhs
23002 = (const struct psymtab_cu_index_map *) item_lhs;
23003 const struct psymtab_cu_index_map *rhs
23004 = (const struct psymtab_cu_index_map *) item_rhs;
23006 return lhs->psymtab == rhs->psymtab;
23009 /* Helper struct for building the address table. */
23010 struct addrmap_index_data
23012 struct objfile *objfile;
23013 struct obstack *addr_obstack;
23014 htab_t cu_index_htab;
23016 /* Non-zero if the previous_* fields are valid.
23017 We can't write an entry until we see the next entry (since it is only then
23018 that we know the end of the entry). */
23019 int previous_valid;
23020 /* Index of the CU in the table of all CUs in the index file. */
23021 unsigned int previous_cu_index;
23022 /* Start address of the CU. */
23023 CORE_ADDR previous_cu_start;
23026 /* Write an address entry to OBSTACK. */
23029 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23030 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23032 offset_type cu_index_to_write;
23034 CORE_ADDR baseaddr;
23036 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23038 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23039 obstack_grow (obstack, addr, 8);
23040 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23041 obstack_grow (obstack, addr, 8);
23042 cu_index_to_write = MAYBE_SWAP (cu_index);
23043 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23046 /* Worker function for traversing an addrmap to build the address table. */
23049 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23051 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23052 struct partial_symtab *pst = (struct partial_symtab *) obj;
23054 if (data->previous_valid)
23055 add_address_entry (data->objfile, data->addr_obstack,
23056 data->previous_cu_start, start_addr,
23057 data->previous_cu_index);
23059 data->previous_cu_start = start_addr;
23062 struct psymtab_cu_index_map find_map, *map;
23063 find_map.psymtab = pst;
23064 map = ((struct psymtab_cu_index_map *)
23065 htab_find (data->cu_index_htab, &find_map));
23066 gdb_assert (map != NULL);
23067 data->previous_cu_index = map->cu_index;
23068 data->previous_valid = 1;
23071 data->previous_valid = 0;
23076 /* Write OBJFILE's address map to OBSTACK.
23077 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23078 in the index file. */
23081 write_address_map (struct objfile *objfile, struct obstack *obstack,
23082 htab_t cu_index_htab)
23084 struct addrmap_index_data addrmap_index_data;
23086 /* When writing the address table, we have to cope with the fact that
23087 the addrmap iterator only provides the start of a region; we have to
23088 wait until the next invocation to get the start of the next region. */
23090 addrmap_index_data.objfile = objfile;
23091 addrmap_index_data.addr_obstack = obstack;
23092 addrmap_index_data.cu_index_htab = cu_index_htab;
23093 addrmap_index_data.previous_valid = 0;
23095 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23096 &addrmap_index_data);
23098 /* It's highly unlikely the last entry (end address = 0xff...ff)
23099 is valid, but we should still handle it.
23100 The end address is recorded as the start of the next region, but that
23101 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23103 if (addrmap_index_data.previous_valid)
23104 add_address_entry (objfile, obstack,
23105 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23106 addrmap_index_data.previous_cu_index);
23109 /* Return the symbol kind of PSYM. */
23111 static gdb_index_symbol_kind
23112 symbol_kind (struct partial_symbol *psym)
23114 domain_enum domain = PSYMBOL_DOMAIN (psym);
23115 enum address_class aclass = PSYMBOL_CLASS (psym);
23123 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23125 return GDB_INDEX_SYMBOL_KIND_TYPE;
23127 case LOC_CONST_BYTES:
23128 case LOC_OPTIMIZED_OUT:
23130 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23132 /* Note: It's currently impossible to recognize psyms as enum values
23133 short of reading the type info. For now punt. */
23134 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23136 /* There are other LOC_FOO values that one might want to classify
23137 as variables, but dwarf2read.c doesn't currently use them. */
23138 return GDB_INDEX_SYMBOL_KIND_OTHER;
23140 case STRUCT_DOMAIN:
23141 return GDB_INDEX_SYMBOL_KIND_TYPE;
23143 return GDB_INDEX_SYMBOL_KIND_OTHER;
23147 /* Add a list of partial symbols to SYMTAB. */
23150 write_psymbols (struct mapped_symtab *symtab,
23152 struct partial_symbol **psymp,
23154 offset_type cu_index,
23157 for (; count-- > 0; ++psymp)
23159 struct partial_symbol *psym = *psymp;
23162 if (SYMBOL_LANGUAGE (psym) == language_ada)
23163 error (_("Ada is not currently supported by the index"));
23165 /* Only add a given psymbol once. */
23166 slot = htab_find_slot (psyms_seen, psym, INSERT);
23169 gdb_index_symbol_kind kind = symbol_kind (psym);
23172 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23173 is_static, kind, cu_index);
23178 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23179 exception if there is an error. */
23182 write_obstack (FILE *file, struct obstack *obstack)
23184 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23186 != obstack_object_size (obstack))
23187 error (_("couldn't data write to file"));
23190 /* Unlink a file if the argument is not NULL. */
23193 unlink_if_set (void *p)
23195 char **filename = (char **) p;
23197 unlink (*filename);
23200 /* A helper struct used when iterating over debug_types. */
23201 struct signatured_type_index_data
23203 struct objfile *objfile;
23204 struct mapped_symtab *symtab;
23205 struct obstack *types_list;
23210 /* A helper function that writes a single signatured_type to an
23214 write_one_signatured_type (void **slot, void *d)
23216 struct signatured_type_index_data *info
23217 = (struct signatured_type_index_data *) d;
23218 struct signatured_type *entry = (struct signatured_type *) *slot;
23219 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23222 write_psymbols (info->symtab,
23224 info->objfile->global_psymbols.list
23225 + psymtab->globals_offset,
23226 psymtab->n_global_syms, info->cu_index,
23228 write_psymbols (info->symtab,
23230 info->objfile->static_psymbols.list
23231 + psymtab->statics_offset,
23232 psymtab->n_static_syms, info->cu_index,
23235 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23236 entry->per_cu.offset.sect_off);
23237 obstack_grow (info->types_list, val, 8);
23238 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23239 entry->type_offset_in_tu.cu_off);
23240 obstack_grow (info->types_list, val, 8);
23241 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23242 obstack_grow (info->types_list, val, 8);
23249 /* Recurse into all "included" dependencies and write their symbols as
23250 if they appeared in this psymtab. */
23253 recursively_write_psymbols (struct objfile *objfile,
23254 struct partial_symtab *psymtab,
23255 struct mapped_symtab *symtab,
23257 offset_type cu_index)
23261 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23262 if (psymtab->dependencies[i]->user != NULL)
23263 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23264 symtab, psyms_seen, cu_index);
23266 write_psymbols (symtab,
23268 objfile->global_psymbols.list + psymtab->globals_offset,
23269 psymtab->n_global_syms, cu_index,
23271 write_psymbols (symtab,
23273 objfile->static_psymbols.list + psymtab->statics_offset,
23274 psymtab->n_static_syms, cu_index,
23278 /* Create an index file for OBJFILE in the directory DIR. */
23281 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23283 struct cleanup *cleanup;
23284 char *filename, *cleanup_filename;
23285 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23286 struct obstack cu_list, types_cu_list;
23289 struct mapped_symtab *symtab;
23290 offset_type val, size_of_contents, total_len;
23293 htab_t cu_index_htab;
23294 struct psymtab_cu_index_map *psymtab_cu_index_map;
23296 if (dwarf2_per_objfile->using_index)
23297 error (_("Cannot use an index to create the index"));
23299 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23300 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23302 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23305 if (stat (objfile_name (objfile), &st) < 0)
23306 perror_with_name (objfile_name (objfile));
23308 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23309 INDEX_SUFFIX, (char *) NULL);
23310 cleanup = make_cleanup (xfree, filename);
23312 out_file = gdb_fopen_cloexec (filename, "wb");
23314 error (_("Can't open `%s' for writing"), filename);
23316 cleanup_filename = filename;
23317 make_cleanup (unlink_if_set, &cleanup_filename);
23319 symtab = create_mapped_symtab ();
23320 make_cleanup (cleanup_mapped_symtab, symtab);
23322 obstack_init (&addr_obstack);
23323 make_cleanup_obstack_free (&addr_obstack);
23325 obstack_init (&cu_list);
23326 make_cleanup_obstack_free (&cu_list);
23328 obstack_init (&types_cu_list);
23329 make_cleanup_obstack_free (&types_cu_list);
23331 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23332 NULL, xcalloc, xfree);
23333 make_cleanup_htab_delete (psyms_seen);
23335 /* While we're scanning CU's create a table that maps a psymtab pointer
23336 (which is what addrmap records) to its index (which is what is recorded
23337 in the index file). This will later be needed to write the address
23339 cu_index_htab = htab_create_alloc (100,
23340 hash_psymtab_cu_index,
23341 eq_psymtab_cu_index,
23342 NULL, xcalloc, xfree);
23343 make_cleanup_htab_delete (cu_index_htab);
23344 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23345 dwarf2_per_objfile->n_comp_units);
23346 make_cleanup (xfree, psymtab_cu_index_map);
23348 /* The CU list is already sorted, so we don't need to do additional
23349 work here. Also, the debug_types entries do not appear in
23350 all_comp_units, but only in their own hash table. */
23351 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23353 struct dwarf2_per_cu_data *per_cu
23354 = dwarf2_per_objfile->all_comp_units[i];
23355 struct partial_symtab *psymtab = per_cu->v.psymtab;
23357 struct psymtab_cu_index_map *map;
23360 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23361 It may be referenced from a local scope but in such case it does not
23362 need to be present in .gdb_index. */
23363 if (psymtab == NULL)
23366 if (psymtab->user == NULL)
23367 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23369 map = &psymtab_cu_index_map[i];
23370 map->psymtab = psymtab;
23372 slot = htab_find_slot (cu_index_htab, map, INSERT);
23373 gdb_assert (slot != NULL);
23374 gdb_assert (*slot == NULL);
23377 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23378 per_cu->offset.sect_off);
23379 obstack_grow (&cu_list, val, 8);
23380 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23381 obstack_grow (&cu_list, val, 8);
23384 /* Dump the address map. */
23385 write_address_map (objfile, &addr_obstack, cu_index_htab);
23387 /* Write out the .debug_type entries, if any. */
23388 if (dwarf2_per_objfile->signatured_types)
23390 struct signatured_type_index_data sig_data;
23392 sig_data.objfile = objfile;
23393 sig_data.symtab = symtab;
23394 sig_data.types_list = &types_cu_list;
23395 sig_data.psyms_seen = psyms_seen;
23396 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23397 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23398 write_one_signatured_type, &sig_data);
23401 /* Now that we've processed all symbols we can shrink their cu_indices
23403 uniquify_cu_indices (symtab);
23405 obstack_init (&constant_pool);
23406 make_cleanup_obstack_free (&constant_pool);
23407 obstack_init (&symtab_obstack);
23408 make_cleanup_obstack_free (&symtab_obstack);
23409 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23411 obstack_init (&contents);
23412 make_cleanup_obstack_free (&contents);
23413 size_of_contents = 6 * sizeof (offset_type);
23414 total_len = size_of_contents;
23416 /* The version number. */
23417 val = MAYBE_SWAP (8);
23418 obstack_grow (&contents, &val, sizeof (val));
23420 /* The offset of the CU list from the start of the file. */
23421 val = MAYBE_SWAP (total_len);
23422 obstack_grow (&contents, &val, sizeof (val));
23423 total_len += obstack_object_size (&cu_list);
23425 /* The offset of the types CU list from the start of the file. */
23426 val = MAYBE_SWAP (total_len);
23427 obstack_grow (&contents, &val, sizeof (val));
23428 total_len += obstack_object_size (&types_cu_list);
23430 /* The offset of the address table from the start of the file. */
23431 val = MAYBE_SWAP (total_len);
23432 obstack_grow (&contents, &val, sizeof (val));
23433 total_len += obstack_object_size (&addr_obstack);
23435 /* The offset of the symbol table from the start of the file. */
23436 val = MAYBE_SWAP (total_len);
23437 obstack_grow (&contents, &val, sizeof (val));
23438 total_len += obstack_object_size (&symtab_obstack);
23440 /* The offset of the constant pool from the start of the file. */
23441 val = MAYBE_SWAP (total_len);
23442 obstack_grow (&contents, &val, sizeof (val));
23443 total_len += obstack_object_size (&constant_pool);
23445 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23447 write_obstack (out_file, &contents);
23448 write_obstack (out_file, &cu_list);
23449 write_obstack (out_file, &types_cu_list);
23450 write_obstack (out_file, &addr_obstack);
23451 write_obstack (out_file, &symtab_obstack);
23452 write_obstack (out_file, &constant_pool);
23456 /* We want to keep the file, so we set cleanup_filename to NULL
23457 here. See unlink_if_set. */
23458 cleanup_filename = NULL;
23460 do_cleanups (cleanup);
23463 /* Implementation of the `save gdb-index' command.
23465 Note that the file format used by this command is documented in the
23466 GDB manual. Any changes here must be documented there. */
23469 save_gdb_index_command (char *arg, int from_tty)
23471 struct objfile *objfile;
23474 error (_("usage: save gdb-index DIRECTORY"));
23476 ALL_OBJFILES (objfile)
23480 /* If the objfile does not correspond to an actual file, skip it. */
23481 if (stat (objfile_name (objfile), &st) < 0)
23485 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23486 dwarf2_objfile_data_key);
23487 if (dwarf2_per_objfile)
23492 write_psymtabs_to_index (objfile, arg);
23494 CATCH (except, RETURN_MASK_ERROR)
23496 exception_fprintf (gdb_stderr, except,
23497 _("Error while writing index for `%s': "),
23498 objfile_name (objfile));
23507 int dwarf_always_disassemble;
23510 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23511 struct cmd_list_element *c, const char *value)
23513 fprintf_filtered (file,
23514 _("Whether to always disassemble "
23515 "DWARF expressions is %s.\n"),
23520 show_check_physname (struct ui_file *file, int from_tty,
23521 struct cmd_list_element *c, const char *value)
23523 fprintf_filtered (file,
23524 _("Whether to check \"physname\" is %s.\n"),
23528 void _initialize_dwarf2_read (void);
23531 _initialize_dwarf2_read (void)
23533 struct cmd_list_element *c;
23535 dwarf2_objfile_data_key
23536 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23538 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23539 Set DWARF specific variables.\n\
23540 Configure DWARF variables such as the cache size"),
23541 &set_dwarf_cmdlist, "maintenance set dwarf ",
23542 0/*allow-unknown*/, &maintenance_set_cmdlist);
23544 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23545 Show DWARF specific variables\n\
23546 Show DWARF variables such as the cache size"),
23547 &show_dwarf_cmdlist, "maintenance show dwarf ",
23548 0/*allow-unknown*/, &maintenance_show_cmdlist);
23550 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23551 &dwarf_max_cache_age, _("\
23552 Set the upper bound on the age of cached DWARF compilation units."), _("\
23553 Show the upper bound on the age of cached DWARF compilation units."), _("\
23554 A higher limit means that cached compilation units will be stored\n\
23555 in memory longer, and more total memory will be used. Zero disables\n\
23556 caching, which can slow down startup."),
23558 show_dwarf_max_cache_age,
23559 &set_dwarf_cmdlist,
23560 &show_dwarf_cmdlist);
23562 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23563 &dwarf_always_disassemble, _("\
23564 Set whether `info address' always disassembles DWARF expressions."), _("\
23565 Show whether `info address' always disassembles DWARF expressions."), _("\
23566 When enabled, DWARF expressions are always printed in an assembly-like\n\
23567 syntax. When disabled, expressions will be printed in a more\n\
23568 conversational style, when possible."),
23570 show_dwarf_always_disassemble,
23571 &set_dwarf_cmdlist,
23572 &show_dwarf_cmdlist);
23574 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23575 Set debugging of the DWARF reader."), _("\
23576 Show debugging of the DWARF reader."), _("\
23577 When enabled (non-zero), debugging messages are printed during DWARF\n\
23578 reading and symtab expansion. A value of 1 (one) provides basic\n\
23579 information. A value greater than 1 provides more verbose information."),
23582 &setdebuglist, &showdebuglist);
23584 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23585 Set debugging of the DWARF DIE reader."), _("\
23586 Show debugging of the DWARF DIE reader."), _("\
23587 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23588 The value is the maximum depth to print."),
23591 &setdebuglist, &showdebuglist);
23593 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23594 Set debugging of the dwarf line reader."), _("\
23595 Show debugging of the dwarf line reader."), _("\
23596 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23597 A value of 1 (one) provides basic information.\n\
23598 A value greater than 1 provides more verbose information."),
23601 &setdebuglist, &showdebuglist);
23603 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23604 Set cross-checking of \"physname\" code against demangler."), _("\
23605 Show cross-checking of \"physname\" code against demangler."), _("\
23606 When enabled, GDB's internal \"physname\" code is checked against\n\
23608 NULL, show_check_physname,
23609 &setdebuglist, &showdebuglist);
23611 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23612 no_class, &use_deprecated_index_sections, _("\
23613 Set whether to use deprecated gdb_index sections."), _("\
23614 Show whether to use deprecated gdb_index sections."), _("\
23615 When enabled, deprecated .gdb_index sections are used anyway.\n\
23616 Normally they are ignored either because of a missing feature or\n\
23617 performance issue.\n\
23618 Warning: This option must be enabled before gdb reads the file."),
23621 &setlist, &showlist);
23623 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23625 Save a gdb-index file.\n\
23626 Usage: save gdb-index DIRECTORY"),
23628 set_cmd_completer (c, filename_completer);
23630 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23631 &dwarf2_locexpr_funcs);
23632 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23633 &dwarf2_loclist_funcs);
23635 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23636 &dwarf2_block_frame_base_locexpr_funcs);
23637 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23638 &dwarf2_block_frame_base_loclist_funcs);