1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
58 #include "exceptions.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "filestuff.h"
75 #include <sys/types.h>
77 typedef struct symbol *symbolp;
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
83 static unsigned int dwarf2_read_debug = 0;
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf2_die_debug = 0;
88 /* When non-zero, cross-check physname against demangler. */
89 static int check_physname = 0;
91 /* When non-zero, do not reject deprecated .gdb_index sections. */
92 static int use_deprecated_index_sections = 0;
94 static const struct objfile_data *dwarf2_objfile_data_key;
96 /* The "aclass" indices for various kinds of computed DWARF symbols. */
98 static int dwarf2_locexpr_index;
99 static int dwarf2_loclist_index;
100 static int dwarf2_locexpr_block_index;
101 static int dwarf2_loclist_block_index;
103 /* A descriptor for dwarf sections.
105 S.ASECTION, SIZE are typically initialized when the objfile is first
106 scanned. BUFFER, READIN are filled in later when the section is read.
107 If the section contained compressed data then SIZE is updated to record
108 the uncompressed size of the section.
110 DWP file format V2 introduces a wrinkle that is easiest to handle by
111 creating the concept of virtual sections contained within a real section.
112 In DWP V2 the sections of the input DWO files are concatenated together
113 into one section, but section offsets are kept relative to the original
115 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
116 the real section this "virtual" section is contained in, and BUFFER,SIZE
117 describe the virtual section. */
119 struct dwarf2_section_info
123 /* If this is a real section, the bfd section. */
125 /* If this is a virtual section, pointer to the containing ("real")
127 struct dwarf2_section_info *containing_section;
129 /* Pointer to section data, only valid if readin. */
130 const gdb_byte *buffer;
131 /* The size of the section, real or virtual. */
133 /* If this is a virtual section, the offset in the real section.
134 Only valid if is_virtual. */
135 bfd_size_type virtual_offset;
136 /* True if we have tried to read this section. */
138 /* True if this is a virtual section, False otherwise.
139 This specifies which of s.asection and s.containing_section to use. */
143 typedef struct dwarf2_section_info dwarf2_section_info_def;
144 DEF_VEC_O (dwarf2_section_info_def);
146 /* All offsets in the index are of this type. It must be
147 architecture-independent. */
148 typedef uint32_t offset_type;
150 DEF_VEC_I (offset_type);
152 /* Ensure only legit values are used. */
153 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
155 gdb_assert ((unsigned int) (value) <= 1); \
156 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 /* Ensure only legit values are used. */
160 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
162 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
163 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
164 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
168 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
170 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
171 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 /* A description of the mapped index. The file format is described in
175 a comment by the code that writes the index. */
178 /* Index data format version. */
181 /* The total length of the buffer. */
184 /* A pointer to the address table data. */
185 const gdb_byte *address_table;
187 /* Size of the address table data in bytes. */
188 offset_type address_table_size;
190 /* The symbol table, implemented as a hash table. */
191 const offset_type *symbol_table;
193 /* Size in slots, each slot is 2 offset_types. */
194 offset_type symbol_table_slots;
196 /* A pointer to the constant pool. */
197 const char *constant_pool;
200 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
201 DEF_VEC_P (dwarf2_per_cu_ptr);
203 /* Collection of data recorded per objfile.
204 This hangs off of dwarf2_objfile_data_key. */
206 struct dwarf2_per_objfile
208 struct dwarf2_section_info info;
209 struct dwarf2_section_info abbrev;
210 struct dwarf2_section_info line;
211 struct dwarf2_section_info loc;
212 struct dwarf2_section_info macinfo;
213 struct dwarf2_section_info macro;
214 struct dwarf2_section_info str;
215 struct dwarf2_section_info ranges;
216 struct dwarf2_section_info addr;
217 struct dwarf2_section_info frame;
218 struct dwarf2_section_info eh_frame;
219 struct dwarf2_section_info gdb_index;
221 VEC (dwarf2_section_info_def) *types;
224 struct objfile *objfile;
226 /* Table of all the compilation units. This is used to locate
227 the target compilation unit of a particular reference. */
228 struct dwarf2_per_cu_data **all_comp_units;
230 /* The number of compilation units in ALL_COMP_UNITS. */
233 /* The number of .debug_types-related CUs. */
236 /* The number of elements allocated in all_type_units.
237 If there are skeleton-less TUs, we add them to all_type_units lazily. */
238 int n_allocated_type_units;
240 /* The .debug_types-related CUs (TUs).
241 This is stored in malloc space because we may realloc it. */
242 struct signatured_type **all_type_units;
244 /* Table of struct type_unit_group objects.
245 The hash key is the DW_AT_stmt_list value. */
246 htab_t type_unit_groups;
248 /* A table mapping .debug_types signatures to its signatured_type entry.
249 This is NULL if the .debug_types section hasn't been read in yet. */
250 htab_t signatured_types;
252 /* Type unit statistics, to see how well the scaling improvements
256 int nr_uniq_abbrev_tables;
258 int nr_symtab_sharers;
259 int nr_stmt_less_type_units;
260 int nr_all_type_units_reallocs;
263 /* A chain of compilation units that are currently read in, so that
264 they can be freed later. */
265 struct dwarf2_per_cu_data *read_in_chain;
267 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
268 This is NULL if the table hasn't been allocated yet. */
271 /* Non-zero if we've check for whether there is a DWP file. */
274 /* The DWP file if there is one, or NULL. */
275 struct dwp_file *dwp_file;
277 /* The shared '.dwz' file, if one exists. This is used when the
278 original data was compressed using 'dwz -m'. */
279 struct dwz_file *dwz_file;
281 /* A flag indicating wether this objfile has a section loaded at a
283 int has_section_at_zero;
285 /* True if we are using the mapped index,
286 or we are faking it for OBJF_READNOW's sake. */
287 unsigned char using_index;
289 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
290 struct mapped_index *index_table;
292 /* When using index_table, this keeps track of all quick_file_names entries.
293 TUs typically share line table entries with a CU, so we maintain a
294 separate table of all line table entries to support the sharing.
295 Note that while there can be way more TUs than CUs, we've already
296 sorted all the TUs into "type unit groups", grouped by their
297 DW_AT_stmt_list value. Therefore the only sharing done here is with a
298 CU and its associated TU group if there is one. */
299 htab_t quick_file_names_table;
301 /* Set during partial symbol reading, to prevent queueing of full
303 int reading_partial_symbols;
305 /* Table mapping type DIEs to their struct type *.
306 This is NULL if not allocated yet.
307 The mapping is done via (CU/TU + DIE offset) -> type. */
308 htab_t die_type_hash;
310 /* The CUs we recently read. */
311 VEC (dwarf2_per_cu_ptr) *just_read_cus;
314 static struct dwarf2_per_objfile *dwarf2_per_objfile;
316 /* Default names of the debugging sections. */
318 /* Note that if the debugging section has been compressed, it might
319 have a name like .zdebug_info. */
321 static const struct dwarf2_debug_sections dwarf2_elf_names =
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_line", ".zdebug_line" },
326 { ".debug_loc", ".zdebug_loc" },
327 { ".debug_macinfo", ".zdebug_macinfo" },
328 { ".debug_macro", ".zdebug_macro" },
329 { ".debug_str", ".zdebug_str" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_types", ".zdebug_types" },
332 { ".debug_addr", ".zdebug_addr" },
333 { ".debug_frame", ".zdebug_frame" },
334 { ".eh_frame", NULL },
335 { ".gdb_index", ".zgdb_index" },
339 /* List of DWO/DWP sections. */
341 static const struct dwop_section_names
343 struct dwarf2_section_names abbrev_dwo;
344 struct dwarf2_section_names info_dwo;
345 struct dwarf2_section_names line_dwo;
346 struct dwarf2_section_names loc_dwo;
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
349 struct dwarf2_section_names str_dwo;
350 struct dwarf2_section_names str_offsets_dwo;
351 struct dwarf2_section_names types_dwo;
352 struct dwarf2_section_names cu_index;
353 struct dwarf2_section_names tu_index;
357 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
358 { ".debug_info.dwo", ".zdebug_info.dwo" },
359 { ".debug_line.dwo", ".zdebug_line.dwo" },
360 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
361 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
362 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
363 { ".debug_str.dwo", ".zdebug_str.dwo" },
364 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
365 { ".debug_types.dwo", ".zdebug_types.dwo" },
366 { ".debug_cu_index", ".zdebug_cu_index" },
367 { ".debug_tu_index", ".zdebug_tu_index" },
370 /* local data types */
372 /* The data in a compilation unit header, after target2host
373 translation, looks like this. */
374 struct comp_unit_head
378 unsigned char addr_size;
379 unsigned char signed_addr_p;
380 sect_offset abbrev_offset;
382 /* Size of file offsets; either 4 or 8. */
383 unsigned int offset_size;
385 /* Size of the length field; either 4 or 12. */
386 unsigned int initial_length_size;
388 /* Offset to the first byte of this compilation unit header in the
389 .debug_info section, for resolving relative reference dies. */
392 /* Offset to first die in this cu from the start of the cu.
393 This will be the first byte following the compilation unit header. */
394 cu_offset first_die_offset;
397 /* Type used for delaying computation of method physnames.
398 See comments for compute_delayed_physnames. */
399 struct delayed_method_info
401 /* The type to which the method is attached, i.e., its parent class. */
404 /* The index of the method in the type's function fieldlists. */
407 /* The index of the method in the fieldlist. */
410 /* The name of the DIE. */
413 /* The DIE associated with this method. */
414 struct die_info *die;
417 typedef struct delayed_method_info delayed_method_info;
418 DEF_VEC_O (delayed_method_info);
420 /* Internal state when decoding a particular compilation unit. */
423 /* The objfile containing this compilation unit. */
424 struct objfile *objfile;
426 /* The header of the compilation unit. */
427 struct comp_unit_head header;
429 /* Base address of this compilation unit. */
430 CORE_ADDR base_address;
432 /* Non-zero if base_address has been set. */
435 /* The language we are debugging. */
436 enum language language;
437 const struct language_defn *language_defn;
439 const char *producer;
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope;
452 /* The abbrev table for this CU.
453 Normally this points to the abbrev table in the objfile.
454 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
455 struct abbrev_table *abbrev_table;
457 /* Hash table holding all the loaded partial DIEs
458 with partial_die->offset.SECT_OFF as hash. */
461 /* Storage for things with the same lifetime as this read-in compilation
462 unit, including partial DIEs. */
463 struct obstack comp_unit_obstack;
465 /* When multiple dwarf2_cu structures are living in memory, this field
466 chains them all together, so that they can be released efficiently.
467 We will probably also want a generation counter so that most-recently-used
468 compilation units are cached... */
469 struct dwarf2_per_cu_data *read_in_chain;
471 /* Backlink to our per_cu entry. */
472 struct dwarf2_per_cu_data *per_cu;
474 /* How many compilation units ago was this CU last referenced? */
477 /* A hash table of DIE cu_offset for following references with
478 die_info->offset.sect_off as hash. */
481 /* Full DIEs if read in. */
482 struct die_info *dies;
484 /* A set of pointers to dwarf2_per_cu_data objects for compilation
485 units referenced by this one. Only set during full symbol processing;
486 partial symbol tables do not have dependencies. */
489 /* Header data from the line table, during full symbol processing. */
490 struct line_header *line_header;
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 VEC (delayed_method_info) *method_list;
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab;
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
508 struct dwo_unit *dwo_unit;
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
512 Note this value comes from the Fission stub CU/TU's DIE. */
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
517 Note this value comes from the Fission stub CU/TU's DIE.
518 Also note that the value is zero in the non-DWO case so this value can
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
525 ULONGEST ranges_base;
527 /* Mark used when releasing cached dies. */
528 unsigned int mark : 1;
530 /* This CU references .debug_loc. See the symtab->locations_valid field.
531 This test is imperfect as there may exist optimized debug code not using
532 any location list and still facing inlining issues if handled as
533 unoptimized code. For a future better test see GCC PR other/32998. */
534 unsigned int has_loclist : 1;
536 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
537 if all the producer_is_* fields are valid. This information is cached
538 because profiling CU expansion showed excessive time spent in
539 producer_is_gxx_lt_4_6. */
540 unsigned int checked_producer : 1;
541 unsigned int producer_is_gxx_lt_4_6 : 1;
542 unsigned int producer_is_gcc_lt_4_3 : 1;
543 unsigned int producer_is_icc : 1;
545 /* When set, the file that we're processing is known to have
546 debugging info for C++ namespaces. GCC 3.3.x did not produce
547 this information, but later versions do. */
549 unsigned int processing_has_namespace_info : 1;
552 /* Persistent data held for a compilation unit, even when not
553 processing it. We put a pointer to this structure in the
554 read_symtab_private field of the psymtab. */
556 struct dwarf2_per_cu_data
558 /* The start offset and length of this compilation unit.
559 NOTE: Unlike comp_unit_head.length, this length includes
561 If the DIE refers to a DWO file, this is always of the original die,
566 /* Flag indicating this compilation unit will be read in before
567 any of the current compilation units are processed. */
568 unsigned int queued : 1;
570 /* This flag will be set when reading partial DIEs if we need to load
571 absolutely all DIEs for this compilation unit, instead of just the ones
572 we think are interesting. It gets set if we look for a DIE in the
573 hash table and don't find it. */
574 unsigned int load_all_dies : 1;
576 /* Non-zero if this CU is from .debug_types.
577 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
579 unsigned int is_debug_types : 1;
581 /* Non-zero if this CU is from the .dwz file. */
582 unsigned int is_dwz : 1;
584 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
585 This flag is only valid if is_debug_types is true.
586 We can't read a CU directly from a DWO file: There are required
587 attributes in the stub. */
588 unsigned int reading_dwo_directly : 1;
590 /* Non-zero if the TU has been read.
591 This is used to assist the "Stay in DWO Optimization" for Fission:
592 When reading a DWO, it's faster to read TUs from the DWO instead of
593 fetching them from random other DWOs (due to comdat folding).
594 If the TU has already been read, the optimization is unnecessary
595 (and unwise - we don't want to change where gdb thinks the TU lives
597 This flag is only valid if is_debug_types is true. */
598 unsigned int tu_read : 1;
600 /* The section this CU/TU lives in.
601 If the DIE refers to a DWO file, this is always the original die,
603 struct dwarf2_section_info *section;
605 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
606 of the CU cache it gets reset to NULL again. */
607 struct dwarf2_cu *cu;
609 /* The corresponding objfile.
610 Normally we can get the objfile from dwarf2_per_objfile.
611 However we can enter this file with just a "per_cu" handle. */
612 struct objfile *objfile;
614 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
615 is active. Otherwise, the 'psymtab' field is active. */
618 /* The partial symbol table associated with this compilation unit,
619 or NULL for unread partial units. */
620 struct partial_symtab *psymtab;
622 /* Data needed by the "quick" functions. */
623 struct dwarf2_per_cu_quick_data *quick;
626 /* The CUs we import using DW_TAG_imported_unit. This is filled in
627 while reading psymtabs, used to compute the psymtab dependencies,
628 and then cleared. Then it is filled in again while reading full
629 symbols, and only deleted when the objfile is destroyed.
631 This is also used to work around a difference between the way gold
632 generates .gdb_index version <=7 and the way gdb does. Arguably this
633 is a gold bug. For symbols coming from TUs, gold records in the index
634 the CU that includes the TU instead of the TU itself. This breaks
635 dw2_lookup_symbol: It assumes that if the index says symbol X lives
636 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
637 will find X. Alas TUs live in their own symtab, so after expanding CU Y
638 we need to look in TU Z to find X. Fortunately, this is akin to
639 DW_TAG_imported_unit, so we just use the same mechanism: For
640 .gdb_index version <=7 this also records the TUs that the CU referred
641 to. Concurrently with this change gdb was modified to emit version 8
642 indices so we only pay a price for gold generated indices.
643 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
644 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 /* Entry in the signatured_types hash table. */
649 struct signatured_type
651 /* The "per_cu" object of this type.
652 This struct is used iff per_cu.is_debug_types.
653 N.B.: This is the first member so that it's easy to convert pointers
655 struct dwarf2_per_cu_data per_cu;
657 /* The type's signature. */
660 /* Offset in the TU of the type's DIE, as read from the TU header.
661 If this TU is a DWO stub and the definition lives in a DWO file
662 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
663 cu_offset type_offset_in_tu;
665 /* Offset in the section of the type's DIE.
666 If the definition lives in a DWO file, this is the offset in the
667 .debug_types.dwo section.
668 The value is zero until the actual value is known.
669 Zero is otherwise not a valid section offset. */
670 sect_offset type_offset_in_section;
672 /* Type units are grouped by their DW_AT_stmt_list entry so that they
673 can share them. This points to the containing symtab. */
674 struct type_unit_group *type_unit_group;
677 The first time we encounter this type we fully read it in and install it
678 in the symbol tables. Subsequent times we only need the type. */
681 /* Containing DWO unit.
682 This field is valid iff per_cu.reading_dwo_directly. */
683 struct dwo_unit *dwo_unit;
686 typedef struct signatured_type *sig_type_ptr;
687 DEF_VEC_P (sig_type_ptr);
689 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
690 This includes type_unit_group and quick_file_names. */
692 struct stmt_list_hash
694 /* The DWO unit this table is from or NULL if there is none. */
695 struct dwo_unit *dwo_unit;
697 /* Offset in .debug_line or .debug_line.dwo. */
698 sect_offset line_offset;
701 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
702 an object of this type. */
704 struct type_unit_group
706 /* dwarf2read.c's main "handle" on a TU symtab.
707 To simplify things we create an artificial CU that "includes" all the
708 type units using this stmt_list so that the rest of the code still has
709 a "per_cu" handle on the symtab.
710 This PER_CU is recognized by having no section. */
711 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
712 struct dwarf2_per_cu_data per_cu;
714 /* The TUs that share this DW_AT_stmt_list entry.
715 This is added to while parsing type units to build partial symtabs,
716 and is deleted afterwards and not used again. */
717 VEC (sig_type_ptr) *tus;
719 /* The primary symtab.
720 Type units in a group needn't all be defined in the same source file,
721 so we create an essentially anonymous symtab as the primary symtab. */
722 struct symtab *primary_symtab;
724 /* The data used to construct the hash key. */
725 struct stmt_list_hash hash;
727 /* The number of symtabs from the line header.
728 The value here must match line_header.num_file_names. */
729 unsigned int num_symtabs;
731 /* The symbol tables for this TU (obtained from the files listed in
733 WARNING: The order of entries here must match the order of entries
734 in the line header. After the first TU using this type_unit_group, the
735 line header for the subsequent TUs is recreated from this. This is done
736 because we need to use the same symtabs for each TU using the same
737 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
738 there's no guarantee the line header doesn't have duplicate entries. */
739 struct symtab **symtabs;
742 /* These sections are what may appear in a (real or virtual) DWO file. */
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info line;
748 struct dwarf2_section_info loc;
749 struct dwarf2_section_info macinfo;
750 struct dwarf2_section_info macro;
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info str_offsets;
753 /* In the case of a virtual DWO file, these two are unused. */
754 struct dwarf2_section_info info;
755 VEC (dwarf2_section_info_def) *types;
758 /* CUs/TUs in DWP/DWO files. */
762 /* Backlink to the containing struct dwo_file. */
763 struct dwo_file *dwo_file;
765 /* The "id" that distinguishes this CU/TU.
766 .debug_info calls this "dwo_id", .debug_types calls this "signature".
767 Since signatures came first, we stick with it for consistency. */
770 /* The section this CU/TU lives in, in the DWO file. */
771 struct dwarf2_section_info *section;
773 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
777 /* For types, offset in the type's DIE of the type defined by this TU. */
778 cu_offset type_offset_in_tu;
781 /* include/dwarf2.h defines the DWP section codes.
782 It defines a max value but it doesn't define a min value, which we
783 use for error checking, so provide one. */
785 enum dwp_v2_section_ids
790 /* Data for one DWO file.
792 This includes virtual DWO files (a virtual DWO file is a DWO file as it
793 appears in a DWP file). DWP files don't really have DWO files per se -
794 comdat folding of types "loses" the DWO file they came from, and from
795 a high level view DWP files appear to contain a mass of random types.
796 However, to maintain consistency with the non-DWP case we pretend DWP
797 files contain virtual DWO files, and we assign each TU with one virtual
798 DWO file (generally based on the line and abbrev section offsets -
799 a heuristic that seems to work in practice). */
803 /* The DW_AT_GNU_dwo_name attribute.
804 For virtual DWO files the name is constructed from the section offsets
805 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
806 from related CU+TUs. */
807 const char *dwo_name;
809 /* The DW_AT_comp_dir attribute. */
810 const char *comp_dir;
812 /* The bfd, when the file is open. Otherwise this is NULL.
813 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 /* The sections that make up this DWO file.
817 Remember that for virtual DWO files in DWP V2, these are virtual
818 sections (for lack of a better name). */
819 struct dwo_sections sections;
821 /* The CU in the file.
822 We only support one because having more than one requires hacking the
823 dwo_name of each to match, which is highly unlikely to happen.
824 Doing this means all TUs can share comp_dir: We also assume that
825 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 /* Table of TUs in the file.
829 Each element is a struct dwo_unit. */
833 /* These sections are what may appear in a DWP file. */
837 /* These are used by both DWP version 1 and 2. */
838 struct dwarf2_section_info str;
839 struct dwarf2_section_info cu_index;
840 struct dwarf2_section_info tu_index;
842 /* These are only used by DWP version 2 files.
843 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
844 sections are referenced by section number, and are not recorded here.
845 In DWP version 2 there is at most one copy of all these sections, each
846 section being (effectively) comprised of the concatenation of all of the
847 individual sections that exist in the version 1 format.
848 To keep the code simple we treat each of these concatenated pieces as a
849 section itself (a virtual section?). */
850 struct dwarf2_section_info abbrev;
851 struct dwarf2_section_info info;
852 struct dwarf2_section_info line;
853 struct dwarf2_section_info loc;
854 struct dwarf2_section_info macinfo;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info str_offsets;
857 struct dwarf2_section_info types;
860 /* These sections are what may appear in a virtual DWO file in DWP version 1.
861 A virtual DWO file is a DWO file as it appears in a DWP file. */
863 struct virtual_v1_dwo_sections
865 struct dwarf2_section_info abbrev;
866 struct dwarf2_section_info line;
867 struct dwarf2_section_info loc;
868 struct dwarf2_section_info macinfo;
869 struct dwarf2_section_info macro;
870 struct dwarf2_section_info str_offsets;
871 /* Each DWP hash table entry records one CU or one TU.
872 That is recorded here, and copied to dwo_unit.section. */
873 struct dwarf2_section_info info_or_types;
876 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
877 In version 2, the sections of the DWO files are concatenated together
878 and stored in one section of that name. Thus each ELF section contains
879 several "virtual" sections. */
881 struct virtual_v2_dwo_sections
883 bfd_size_type abbrev_offset;
884 bfd_size_type abbrev_size;
886 bfd_size_type line_offset;
887 bfd_size_type line_size;
889 bfd_size_type loc_offset;
890 bfd_size_type loc_size;
892 bfd_size_type macinfo_offset;
893 bfd_size_type macinfo_size;
895 bfd_size_type macro_offset;
896 bfd_size_type macro_size;
898 bfd_size_type str_offsets_offset;
899 bfd_size_type str_offsets_size;
901 /* Each DWP hash table entry records one CU or one TU.
902 That is recorded here, and copied to dwo_unit.section. */
903 bfd_size_type info_or_types_offset;
904 bfd_size_type info_or_types_size;
907 /* Contents of DWP hash tables. */
909 struct dwp_hash_table
911 uint32_t version, nr_columns;
912 uint32_t nr_units, nr_slots;
913 const gdb_byte *hash_table, *unit_table;
918 const gdb_byte *indices;
922 /* This is indexed by column number and gives the id of the section
924 #define MAX_NR_V2_DWO_SECTIONS \
925 (1 /* .debug_info or .debug_types */ \
926 + 1 /* .debug_abbrev */ \
927 + 1 /* .debug_line */ \
928 + 1 /* .debug_loc */ \
929 + 1 /* .debug_str_offsets */ \
930 + 1 /* .debug_macro or .debug_macinfo */)
931 int section_ids[MAX_NR_V2_DWO_SECTIONS];
932 const gdb_byte *offsets;
933 const gdb_byte *sizes;
938 /* Data for one DWP file. */
942 /* Name of the file. */
945 /* File format version. */
951 /* Section info for this file. */
952 struct dwp_sections sections;
954 /* Table of CUs in the file. */
955 const struct dwp_hash_table *cus;
957 /* Table of TUs in the file. */
958 const struct dwp_hash_table *tus;
960 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
964 /* Table to map ELF section numbers to their sections.
965 This is only needed for the DWP V1 file format. */
966 unsigned int num_sections;
967 asection **elf_sections;
970 /* This represents a '.dwz' file. */
974 /* A dwz file can only contain a few sections. */
975 struct dwarf2_section_info abbrev;
976 struct dwarf2_section_info info;
977 struct dwarf2_section_info str;
978 struct dwarf2_section_info line;
979 struct dwarf2_section_info macro;
980 struct dwarf2_section_info gdb_index;
986 /* Struct used to pass misc. parameters to read_die_and_children, et
987 al. which are used for both .debug_info and .debug_types dies.
988 All parameters here are unchanging for the life of the call. This
989 struct exists to abstract away the constant parameters of die reading. */
991 struct die_reader_specs
993 /* The bfd of die_section. */
996 /* The CU of the DIE we are parsing. */
997 struct dwarf2_cu *cu;
999 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1000 struct dwo_file *dwo_file;
1002 /* The section the die comes from.
1003 This is either .debug_info or .debug_types, or the .dwo variants. */
1004 struct dwarf2_section_info *die_section;
1006 /* die_section->buffer. */
1007 const gdb_byte *buffer;
1009 /* The end of the buffer. */
1010 const gdb_byte *buffer_end;
1012 /* The value of the DW_AT_comp_dir attribute. */
1013 const char *comp_dir;
1016 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1017 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1018 const gdb_byte *info_ptr,
1019 struct die_info *comp_unit_die,
1023 /* The line number information for a compilation unit (found in the
1024 .debug_line section) begins with a "statement program header",
1025 which contains the following information. */
1028 unsigned int total_length;
1029 unsigned short version;
1030 unsigned int header_length;
1031 unsigned char minimum_instruction_length;
1032 unsigned char maximum_ops_per_instruction;
1033 unsigned char default_is_stmt;
1035 unsigned char line_range;
1036 unsigned char opcode_base;
1038 /* standard_opcode_lengths[i] is the number of operands for the
1039 standard opcode whose value is i. This means that
1040 standard_opcode_lengths[0] is unused, and the last meaningful
1041 element is standard_opcode_lengths[opcode_base - 1]. */
1042 unsigned char *standard_opcode_lengths;
1044 /* The include_directories table. NOTE! These strings are not
1045 allocated with xmalloc; instead, they are pointers into
1046 debug_line_buffer. If you try to free them, `free' will get
1048 unsigned int num_include_dirs, include_dirs_size;
1049 const char **include_dirs;
1051 /* The file_names table. NOTE! These strings are not allocated
1052 with xmalloc; instead, they are pointers into debug_line_buffer.
1053 Don't try to free them directly. */
1054 unsigned int num_file_names, file_names_size;
1058 unsigned int dir_index;
1059 unsigned int mod_time;
1060 unsigned int length;
1061 int included_p; /* Non-zero if referenced by the Line Number Program. */
1062 struct symtab *symtab; /* The associated symbol table, if any. */
1065 /* The start and end of the statement program following this
1066 header. These point into dwarf2_per_objfile->line_buffer. */
1067 const gdb_byte *statement_program_start, *statement_program_end;
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info
1074 /* Offset of this DIE. */
1077 /* DWARF-2 tag for this DIE. */
1078 ENUM_BITFIELD(dwarf_tag) tag : 16;
1080 /* Assorted flags describing the data found in this DIE. */
1081 unsigned int has_children : 1;
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
1087 unsigned int may_be_inlined : 1;
1089 /* Flag set if the SCOPE field of this structure has been
1091 unsigned int scope_set : 1;
1093 /* Flag set if the DIE has a byte_size attribute. */
1094 unsigned int has_byte_size : 1;
1096 /* Flag set if any of the DIE's children are template arguments. */
1097 unsigned int has_template_arguments : 1;
1099 /* Flag set if fixup_partial_die has been called on this die. */
1100 unsigned int fixup_called : 1;
1102 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1103 unsigned int is_dwz : 1;
1105 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1106 unsigned int spec_is_dwz : 1;
1108 /* The name of this DIE. Normally the value of DW_AT_name, but
1109 sometimes a default name for unnamed DIEs. */
1112 /* The linkage name, if present. */
1113 const char *linkage_name;
1115 /* The scope to prepend to our children. This is generally
1116 allocated on the comp_unit_obstack, so will disappear
1117 when this compilation unit leaves the cache. */
1120 /* Some data associated with the partial DIE. The tag determines
1121 which field is live. */
1124 /* The location description associated with this DIE, if any. */
1125 struct dwarf_block *locdesc;
1126 /* The offset of an import, for DW_TAG_imported_unit. */
1130 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1134 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1135 DW_AT_sibling, if any. */
1136 /* NOTE: This member isn't strictly necessary, read_partial_die could
1137 return DW_AT_sibling values to its caller load_partial_dies. */
1138 const gdb_byte *sibling;
1140 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1141 DW_AT_specification (or DW_AT_abstract_origin or
1142 DW_AT_extension). */
1143 sect_offset spec_offset;
1145 /* Pointers to this DIE's parent, first child, and next sibling,
1147 struct partial_die_info *die_parent, *die_child, *die_sibling;
1150 /* This data structure holds the information of an abbrev. */
1153 unsigned int number; /* number identifying abbrev */
1154 enum dwarf_tag tag; /* dwarf tag */
1155 unsigned short has_children; /* boolean */
1156 unsigned short num_attrs; /* number of attributes */
1157 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1158 struct abbrev_info *next; /* next in chain */
1163 ENUM_BITFIELD(dwarf_attribute) name : 16;
1164 ENUM_BITFIELD(dwarf_form) form : 16;
1167 /* Size of abbrev_table.abbrev_hash_table. */
1168 #define ABBREV_HASH_SIZE 121
1170 /* Top level data structure to contain an abbreviation table. */
1174 /* Where the abbrev table came from.
1175 This is used as a sanity check when the table is used. */
1178 /* Storage for the abbrev table. */
1179 struct obstack abbrev_obstack;
1181 /* Hash table of abbrevs.
1182 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1183 It could be statically allocated, but the previous code didn't so we
1185 struct abbrev_info **abbrevs;
1188 /* Attributes have a name and a value. */
1191 ENUM_BITFIELD(dwarf_attribute) name : 16;
1192 ENUM_BITFIELD(dwarf_form) form : 15;
1194 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1195 field should be in u.str (existing only for DW_STRING) but it is kept
1196 here for better struct attribute alignment. */
1197 unsigned int string_is_canonical : 1;
1202 struct dwarf_block *blk;
1211 /* This data structure holds a complete die structure. */
1214 /* DWARF-2 tag for this DIE. */
1215 ENUM_BITFIELD(dwarf_tag) tag : 16;
1217 /* Number of attributes */
1218 unsigned char num_attrs;
1220 /* True if we're presently building the full type name for the
1221 type derived from this DIE. */
1222 unsigned char building_fullname : 1;
1224 /* True if this die is in process. PR 16581. */
1225 unsigned char in_process : 1;
1228 unsigned int abbrev;
1230 /* Offset in .debug_info or .debug_types section. */
1233 /* The dies in a compilation unit form an n-ary tree. PARENT
1234 points to this die's parent; CHILD points to the first child of
1235 this node; and all the children of a given node are chained
1236 together via their SIBLING fields. */
1237 struct die_info *child; /* Its first child, if any. */
1238 struct die_info *sibling; /* Its next sibling, if any. */
1239 struct die_info *parent; /* Its parent, if any. */
1241 /* An array of attributes, with NUM_ATTRS elements. There may be
1242 zero, but it's not common and zero-sized arrays are not
1243 sufficiently portable C. */
1244 struct attribute attrs[1];
1247 /* Get at parts of an attribute structure. */
1249 #define DW_STRING(attr) ((attr)->u.str)
1250 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1251 #define DW_UNSND(attr) ((attr)->u.unsnd)
1252 #define DW_BLOCK(attr) ((attr)->u.blk)
1253 #define DW_SND(attr) ((attr)->u.snd)
1254 #define DW_ADDR(attr) ((attr)->u.addr)
1255 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1257 /* Blocks are a bunch of untyped bytes. */
1262 /* Valid only if SIZE is not zero. */
1263 const gdb_byte *data;
1266 #ifndef ATTR_ALLOC_CHUNK
1267 #define ATTR_ALLOC_CHUNK 4
1270 /* Allocate fields for structs, unions and enums in this size. */
1271 #ifndef DW_FIELD_ALLOC_CHUNK
1272 #define DW_FIELD_ALLOC_CHUNK 4
1275 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1276 but this would require a corresponding change in unpack_field_as_long
1278 static int bits_per_byte = 8;
1280 /* The routines that read and process dies for a C struct or C++ class
1281 pass lists of data member fields and lists of member function fields
1282 in an instance of a field_info structure, as defined below. */
1285 /* List of data member and baseclasses fields. */
1288 struct nextfield *next;
1293 *fields, *baseclasses;
1295 /* Number of fields (including baseclasses). */
1298 /* Number of baseclasses. */
1301 /* Set if the accesibility of one of the fields is not public. */
1302 int non_public_fields;
1304 /* Member function fields array, entries are allocated in the order they
1305 are encountered in the object file. */
1308 struct nextfnfield *next;
1309 struct fn_field fnfield;
1313 /* Member function fieldlist array, contains name of possibly overloaded
1314 member function, number of overloaded member functions and a pointer
1315 to the head of the member function field chain. */
1320 struct nextfnfield *head;
1324 /* Number of entries in the fnfieldlists array. */
1327 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1328 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1329 struct typedef_field_list
1331 struct typedef_field field;
1332 struct typedef_field_list *next;
1334 *typedef_field_list;
1335 unsigned typedef_field_list_count;
1338 /* One item on the queue of compilation units to read in full symbols
1340 struct dwarf2_queue_item
1342 struct dwarf2_per_cu_data *per_cu;
1343 enum language pretend_language;
1344 struct dwarf2_queue_item *next;
1347 /* The current queue. */
1348 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1350 /* Loaded secondary compilation units are kept in memory until they
1351 have not been referenced for the processing of this many
1352 compilation units. Set this to zero to disable caching. Cache
1353 sizes of up to at least twenty will improve startup time for
1354 typical inter-CU-reference binaries, at an obvious memory cost. */
1355 static int dwarf2_max_cache_age = 5;
1357 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1360 fprintf_filtered (file, _("The upper bound on the age of cached "
1361 "dwarf2 compilation units is %s.\n"),
1365 /* local function prototypes */
1367 static const char *get_section_name (const struct dwarf2_section_info *);
1369 static const char *get_section_file_name (const struct dwarf2_section_info *);
1371 static void dwarf2_locate_sections (bfd *, asection *, void *);
1373 static void dwarf2_find_base_address (struct die_info *die,
1374 struct dwarf2_cu *cu);
1376 static struct partial_symtab *create_partial_symtab
1377 (struct dwarf2_per_cu_data *per_cu, const char *name);
1379 static void dwarf2_build_psymtabs_hard (struct objfile *);
1381 static void scan_partial_symbols (struct partial_die_info *,
1382 CORE_ADDR *, CORE_ADDR *,
1383 int, struct dwarf2_cu *);
1385 static void add_partial_symbol (struct partial_die_info *,
1386 struct dwarf2_cu *);
1388 static void add_partial_namespace (struct partial_die_info *pdi,
1389 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1390 int set_addrmap, struct dwarf2_cu *cu);
1392 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1393 CORE_ADDR *highpc, int set_addrmap,
1394 struct dwarf2_cu *cu);
1396 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1397 struct dwarf2_cu *cu);
1399 static void add_partial_subprogram (struct partial_die_info *pdi,
1400 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1401 int need_pc, struct dwarf2_cu *cu);
1403 static void dwarf2_read_symtab (struct partial_symtab *,
1406 static void psymtab_to_symtab_1 (struct partial_symtab *);
1408 static struct abbrev_info *abbrev_table_lookup_abbrev
1409 (const struct abbrev_table *, unsigned int);
1411 static struct abbrev_table *abbrev_table_read_table
1412 (struct dwarf2_section_info *, sect_offset);
1414 static void abbrev_table_free (struct abbrev_table *);
1416 static void abbrev_table_free_cleanup (void *);
1418 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1419 struct dwarf2_section_info *);
1421 static void dwarf2_free_abbrev_table (void *);
1423 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1425 static struct partial_die_info *load_partial_dies
1426 (const struct die_reader_specs *, const gdb_byte *, int);
1428 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1429 struct partial_die_info *,
1430 struct abbrev_info *,
1434 static struct partial_die_info *find_partial_die (sect_offset, int,
1435 struct dwarf2_cu *);
1437 static void fixup_partial_die (struct partial_die_info *,
1438 struct dwarf2_cu *);
1440 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1441 struct attribute *, struct attr_abbrev *,
1444 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1446 static int read_1_signed_byte (bfd *, const gdb_byte *);
1448 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1450 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1452 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1454 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1457 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1459 static LONGEST read_checked_initial_length_and_offset
1460 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1461 unsigned int *, unsigned int *);
1463 static LONGEST read_offset (bfd *, const gdb_byte *,
1464 const struct comp_unit_head *,
1467 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1469 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1472 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1474 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1476 static const char *read_indirect_string (bfd *, const gdb_byte *,
1477 const struct comp_unit_head *,
1480 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1482 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1484 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1490 static const char *read_str_index (const struct die_reader_specs *reader,
1491 ULONGEST str_index);
1493 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1495 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1496 struct dwarf2_cu *);
1498 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1501 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1502 struct dwarf2_cu *cu);
1504 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1506 static struct die_info *die_specification (struct die_info *die,
1507 struct dwarf2_cu **);
1509 static void free_line_header (struct line_header *lh);
1511 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1512 struct dwarf2_cu *cu);
1514 static void dwarf_decode_lines (struct line_header *, const char *,
1515 struct dwarf2_cu *, struct partial_symtab *);
1517 static void dwarf2_start_subfile (const char *, const char *, const char *);
1519 static void dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *, CORE_ADDR);
1522 static struct symbol *new_symbol (struct die_info *, struct type *,
1523 struct dwarf2_cu *);
1525 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1526 struct dwarf2_cu *, struct symbol *);
1528 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1529 struct dwarf2_cu *);
1531 static void dwarf2_const_value_attr (const struct attribute *attr,
1534 struct obstack *obstack,
1535 struct dwarf2_cu *cu, LONGEST *value,
1536 const gdb_byte **bytes,
1537 struct dwarf2_locexpr_baton **baton);
1539 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1541 static int need_gnat_info (struct dwarf2_cu *);
1543 static struct type *die_descriptive_type (struct die_info *,
1544 struct dwarf2_cu *);
1546 static void set_descriptive_type (struct type *, struct die_info *,
1547 struct dwarf2_cu *);
1549 static struct type *die_containing_type (struct die_info *,
1550 struct dwarf2_cu *);
1552 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1553 struct dwarf2_cu *);
1555 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1557 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1561 static char *typename_concat (struct obstack *obs, const char *prefix,
1562 const char *suffix, int physname,
1563 struct dwarf2_cu *cu);
1565 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1567 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1571 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1573 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1576 struct dwarf2_cu *, struct partial_symtab *);
1578 static int dwarf2_get_pc_bounds (struct die_info *,
1579 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1580 struct partial_symtab *);
1582 static void get_scope_pc_bounds (struct die_info *,
1583 CORE_ADDR *, CORE_ADDR *,
1584 struct dwarf2_cu *);
1586 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1587 CORE_ADDR, struct dwarf2_cu *);
1589 static void dwarf2_add_field (struct field_info *, struct die_info *,
1590 struct dwarf2_cu *);
1592 static void dwarf2_attach_fields_to_type (struct field_info *,
1593 struct type *, struct dwarf2_cu *);
1595 static void dwarf2_add_member_fn (struct field_info *,
1596 struct die_info *, struct type *,
1597 struct dwarf2_cu *);
1599 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1601 struct dwarf2_cu *);
1603 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1605 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1607 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1609 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615 static struct type *read_module_type (struct die_info *die,
1616 struct dwarf2_cu *cu);
1618 static const char *namespace_name (struct die_info *die,
1619 int *is_anonymous, struct dwarf2_cu *);
1621 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1623 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1625 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1626 struct dwarf2_cu *);
1628 static struct die_info *read_die_and_siblings_1
1629 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1632 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1633 const gdb_byte *info_ptr,
1634 const gdb_byte **new_info_ptr,
1635 struct die_info *parent);
1637 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1638 struct die_info **, const gdb_byte *,
1641 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1642 struct die_info **, const gdb_byte *,
1645 static void process_die (struct die_info *, struct dwarf2_cu *);
1647 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1650 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1652 static const char *dwarf2_full_name (const char *name,
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1656 static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1659 static struct die_info *dwarf2_extension (struct die_info *die,
1660 struct dwarf2_cu **);
1662 static const char *dwarf_tag_name (unsigned int);
1664 static const char *dwarf_attr_name (unsigned int);
1666 static const char *dwarf_form_name (unsigned int);
1668 static char *dwarf_bool_name (unsigned int);
1670 static const char *dwarf_type_encoding_name (unsigned int);
1672 static struct die_info *sibling_die (struct die_info *);
1674 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676 static void dump_die_for_error (struct die_info *);
1678 static void dump_die_1 (struct ui_file *, int level, int max_level,
1681 /*static*/ void dump_die (struct die_info *, int max_level);
1683 static void store_in_ref_table (struct die_info *,
1684 struct dwarf2_cu *);
1686 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1688 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1690 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1691 const struct attribute *,
1692 struct dwarf2_cu **);
1694 static struct die_info *follow_die_ref (struct die_info *,
1695 const struct attribute *,
1696 struct dwarf2_cu **);
1698 static struct die_info *follow_die_sig (struct die_info *,
1699 const struct attribute *,
1700 struct dwarf2_cu **);
1702 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1703 struct dwarf2_cu *);
1705 static struct type *get_DW_AT_signature_type (struct die_info *,
1706 const struct attribute *,
1707 struct dwarf2_cu *);
1709 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1711 static void read_signatured_type (struct signatured_type *);
1713 /* memory allocation interface */
1715 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1717 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1719 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1722 static int attr_form_is_block (const struct attribute *);
1724 static int attr_form_is_section_offset (const struct attribute *);
1726 static int attr_form_is_constant (const struct attribute *);
1728 static int attr_form_is_ref (const struct attribute *);
1730 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
1732 const struct attribute *attr);
1734 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1736 struct dwarf2_cu *cu,
1739 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
1743 static void free_stack_comp_unit (void *);
1745 static hashval_t partial_die_hash (const void *item);
1747 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1749 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1752 static void init_one_comp_unit (struct dwarf2_cu *cu,
1753 struct dwarf2_per_cu_data *per_cu);
1755 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
1759 static void free_heap_comp_unit (void *);
1761 static void free_cached_comp_units (void *);
1763 static void age_cached_comp_units (void);
1765 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1767 static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1770 static void create_all_comp_units (struct objfile *);
1772 static int create_all_type_units (struct objfile *);
1774 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1777 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1780 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1783 static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1786 static void dwarf2_mark (struct dwarf2_cu *);
1788 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1790 static struct type *get_die_type_at_offset (sect_offset,
1791 struct dwarf2_per_cu_data *);
1793 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1795 static void dwarf2_release_queue (void *dummy);
1797 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1800 static void process_queue (void);
1802 static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
1804 const char **name, const char **comp_dir);
1806 static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1809 static const gdb_byte *read_and_check_comp_unit_head
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1813 int is_debug_types_section);
1815 static void init_cutu_and_read_dies
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
1818 die_reader_func_ftype *die_reader_func, void *data);
1820 static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
1824 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1826 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1828 static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
1832 static struct dwp_file *get_dwp_file (void);
1834 static struct dwo_unit *lookup_dwo_comp_unit
1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1837 static struct dwo_unit *lookup_dwo_type_unit
1838 (struct signatured_type *, const char *, const char *);
1840 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1842 static void free_dwo_file_cleanup (void *);
1844 static void process_cu_includes (void);
1846 static void check_producer (struct dwarf2_cu *cu);
1848 /* Various complaints about symbol reading that don't abort the process. */
1851 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1858 dwarf2_debug_line_missing_file_complaint (void)
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1865 dwarf2_debug_line_missing_end_sequence_complaint (void)
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1873 dwarf2_complex_location_expr_complaint (void)
1875 complaint (&symfile_complaints, _("location expression too complex"));
1879 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1888 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1893 get_section_name (section),
1894 get_section_file_name (section));
1898 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1907 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1916 /* Convert VALUE between big- and little-endian. */
1918 byte_swap (offset_type value)
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1929 #define MAYBE_SWAP(V) byte_swap (V)
1932 #define MAYBE_SWAP(V) (V)
1933 #endif /* WORDS_BIGENDIAN */
1935 /* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1939 attr_value_as_address (struct attribute *attr)
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1960 addr = DW_ADDR (attr);
1965 /* The suffix for an index file. */
1966 #define INDEX_SUFFIX ".gdb-index"
1968 /* Try to locate the sections we need for DWARF 2 debugging
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
1974 dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1990 dwarf2_per_objfile->objfile = objfile;
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1998 /* Return the containing section of virtual section SECTION. */
2000 static struct dwarf2_section_info *
2001 get_containing_section (const struct dwarf2_section_info *section)
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
2007 /* Return the bfd owner of SECTION. */
2010 get_section_bfd_owner (const struct dwarf2_section_info *section)
2012 if (section->is_virtual)
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2017 return section->s.asection->owner;
2020 /* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2024 get_section_bfd_section (const struct dwarf2_section_info *section)
2026 if (section->is_virtual)
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2031 return section->s.asection;
2034 /* Return the name of SECTION. */
2037 get_section_name (const struct dwarf2_section_info *section)
2039 asection *sectp = get_section_bfd_section (section);
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2045 /* Return the name of the file SECTION is in. */
2048 get_section_file_name (const struct dwarf2_section_info *section)
2050 bfd *abfd = get_section_bfd_owner (section);
2052 return bfd_get_filename (abfd);
2055 /* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2059 get_section_id (const struct dwarf2_section_info *section)
2061 asection *sectp = get_section_bfd_section (section);
2068 /* Return the flags of SECTION.
2069 SECTION (or containing section if this is a virtual section) must exist. */
2072 get_section_flags (const struct dwarf2_section_info *section)
2074 asection *sectp = get_section_bfd_section (section);
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2080 /* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
2084 section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2096 /* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2101 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2103 const struct dwarf2_debug_sections *names;
2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
2107 names = &dwarf2_elf_names;
2109 names = (const struct dwarf2_debug_sections *) vnames;
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2114 else if (section_is_p (sectp->name, &names->info))
2116 dwarf2_per_objfile->info.s.asection = sectp;
2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2119 else if (section_is_p (sectp->name, &names->abbrev))
2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2124 else if (section_is_p (sectp->name, &names->line))
2126 dwarf2_per_objfile->line.s.asection = sectp;
2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2129 else if (section_is_p (sectp->name, &names->loc))
2131 dwarf2_per_objfile->loc.s.asection = sectp;
2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2134 else if (section_is_p (sectp->name, &names->macinfo))
2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2139 else if (section_is_p (sectp->name, &names->macro))
2141 dwarf2_per_objfile->macro.s.asection = sectp;
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2144 else if (section_is_p (sectp->name, &names->str))
2146 dwarf2_per_objfile->str.s.asection = sectp;
2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2149 else if (section_is_p (sectp->name, &names->addr))
2151 dwarf2_per_objfile->addr.s.asection = sectp;
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2154 else if (section_is_p (sectp->name, &names->frame))
2156 dwarf2_per_objfile->frame.s.asection = sectp;
2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2159 else if (section_is_p (sectp->name, &names->eh_frame))
2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2164 else if (section_is_p (sectp->name, &names->ranges))
2166 dwarf2_per_objfile->ranges.s.asection = sectp;
2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2169 else if (section_is_p (sectp->name, &names->types))
2171 struct dwarf2_section_info type_section;
2173 memset (&type_section, 0, sizeof (type_section));
2174 type_section.s.asection = sectp;
2175 type_section.size = bfd_get_section_size (sectp);
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2180 else if (section_is_p (sectp->name, &names->gdb_index))
2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
2191 /* A helper function that decides whether a section is empty,
2195 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
2202 /* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2206 If the section is compressed, uncompress it before returning. */
2209 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2213 gdb_byte *buf, *retbuf;
2217 info->buffer = NULL;
2220 if (dwarf2_section_empty_p (info))
2223 sectp = get_section_bfd_section (info);
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2268 info->buffer = retbuf;
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2284 /* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2291 static bfd_size_type
2292 dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2296 dwarf2_read_section (objfile, info);
2300 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2304 dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
2306 asection **sectp, const gdb_byte **bufp,
2307 bfd_size_type *sizep)
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
2313 /* We may see an objfile without any DWARF, in which case we just
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2331 gdb_assert_not_reached ("unexpected section");
2334 dwarf2_read_section (objfile, info);
2336 *sectp = get_section_bfd_section (info);
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2341 /* A helper function to find the sections for a .dwz file. */
2344 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2346 struct dwz_file *dwz_file = arg;
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2352 dwz_file->abbrev.s.asection = sectp;
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2357 dwz_file->info.s.asection = sectp;
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2362 dwz_file->str.s.asection = sectp;
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2367 dwz_file->line.s.asection = sectp;
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2372 dwz_file->macro.s.asection = sectp;
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2377 dwz_file->gdb_index.s.asection = sectp;
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2382 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
2386 static struct dwz_file *
2387 dwarf2_get_dwz_file (void)
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
2394 bfd_size_type buildid_len_arg;
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2403 &buildid_len_arg, &buildid);
2406 if (bfd_get_error () == bfd_error_no_error)
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2411 cleanup = make_cleanup (xfree, data);
2412 make_cleanup (xfree, buildid);
2414 buildid_len = (size_t) buildid_len_arg;
2416 filename = (const char *) data;
2417 if (!IS_ABSOLUTE_PATH (filename))
2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2434 if (dwz_bfd != NULL)
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2438 gdb_bfd_unref (dwz_bfd);
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2452 result->dwz_bfd = dwz_bfd;
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2456 do_cleanups (cleanup);
2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2459 dwarf2_per_objfile->dwz_file = result;
2463 /* DWARF quick_symbols_functions support. */
2465 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470 struct quick_file_names
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2478 /* The file names from the line table, after being run through
2480 const char **file_names;
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2487 /* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490 struct dwarf2_per_cu_quick_data
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct symtab *symtab;
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2510 /* Utility hash function for a stmt_list_hash. */
2513 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2523 /* Utility equality function for a stmt_list_hash. */
2526 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2538 /* Hash function for a quick_file_names. */
2541 hash_file_name_entry (const void *e)
2543 const struct quick_file_names *file_data = e;
2545 return hash_stmt_list_entry (&file_data->hash);
2548 /* Equality function for a quick_file_names. */
2551 eq_file_name_entry (const void *a, const void *b)
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2559 /* Delete function for a quick_file_names. */
2562 delete_file_name_entry (void *e)
2564 struct quick_file_names *file_data = e;
2567 for (i = 0; i < file_data->num_file_names; ++i)
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2578 /* Create a quick_file_names hash table. */
2581 create_quick_file_names_table (unsigned int nr_initial_entries)
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2588 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2593 load_cu (struct dwarf2_per_cu_data *per_cu)
2595 if (per_cu->is_debug_types)
2596 load_full_type_unit (per_cu);
2598 load_full_comp_unit (per_cu, language_minimal);
2600 gdb_assert (per_cu->cu != NULL);
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2605 /* Read in the symbols for PER_CU. */
2608 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2610 struct cleanup *back_to;
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2623 queue_comp_unit (per_cu, language_minimal);
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2644 do_cleanups (back_to);
2647 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2651 static struct symtab *
2652 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2654 gdb_assert (dwarf2_per_objfile->using_index);
2655 if (!per_cu->v.quick->symtab)
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
2659 dw2_do_instantiate_symtab (per_cu);
2660 process_cu_includes ();
2661 do_cleanups (back_to);
2663 return per_cu->v.quick->symtab;
2666 /* Return the CU/TU given its index.
2668 This is intended for loops like:
2670 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2671 + dwarf2_per_objfile->n_type_units); ++i)
2673 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2679 static struct dwarf2_per_cu_data *
2680 dw2_get_cutu (int index)
2682 if (index >= dwarf2_per_objfile->n_comp_units)
2684 index -= dwarf2_per_objfile->n_comp_units;
2685 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2686 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2689 return dwarf2_per_objfile->all_comp_units[index];
2692 /* Return the CU given its index.
2693 This differs from dw2_get_cutu in that it's for when you know INDEX
2696 static struct dwarf2_per_cu_data *
2697 dw2_get_cu (int index)
2699 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2701 return dwarf2_per_objfile->all_comp_units[index];
2704 /* A helper for create_cus_from_index that handles a given list of
2708 create_cus_from_index_list (struct objfile *objfile,
2709 const gdb_byte *cu_list, offset_type n_elements,
2710 struct dwarf2_section_info *section,
2716 for (i = 0; i < n_elements; i += 2)
2718 struct dwarf2_per_cu_data *the_cu;
2719 ULONGEST offset, length;
2721 gdb_static_assert (sizeof (ULONGEST) >= 8);
2722 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2723 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2726 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2727 struct dwarf2_per_cu_data);
2728 the_cu->offset.sect_off = offset;
2729 the_cu->length = length;
2730 the_cu->objfile = objfile;
2731 the_cu->section = section;
2732 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2733 struct dwarf2_per_cu_quick_data);
2734 the_cu->is_dwz = is_dwz;
2735 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2739 /* Read the CU list from the mapped index, and use it to create all
2740 the CU objects for this objfile. */
2743 create_cus_from_index (struct objfile *objfile,
2744 const gdb_byte *cu_list, offset_type cu_list_elements,
2745 const gdb_byte *dwz_list, offset_type dwz_elements)
2747 struct dwz_file *dwz;
2749 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2750 dwarf2_per_objfile->all_comp_units
2751 = obstack_alloc (&objfile->objfile_obstack,
2752 dwarf2_per_objfile->n_comp_units
2753 * sizeof (struct dwarf2_per_cu_data *));
2755 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2756 &dwarf2_per_objfile->info, 0, 0);
2758 if (dwz_elements == 0)
2761 dwz = dwarf2_get_dwz_file ();
2762 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2763 cu_list_elements / 2);
2766 /* Create the signatured type hash table from the index. */
2769 create_signatured_type_table_from_index (struct objfile *objfile,
2770 struct dwarf2_section_info *section,
2771 const gdb_byte *bytes,
2772 offset_type elements)
2775 htab_t sig_types_hash;
2777 dwarf2_per_objfile->n_type_units
2778 = dwarf2_per_objfile->n_allocated_type_units
2780 dwarf2_per_objfile->all_type_units
2781 = xmalloc (dwarf2_per_objfile->n_type_units
2782 * sizeof (struct signatured_type *));
2784 sig_types_hash = allocate_signatured_type_table (objfile);
2786 for (i = 0; i < elements; i += 3)
2788 struct signatured_type *sig_type;
2789 ULONGEST offset, type_offset_in_tu, signature;
2792 gdb_static_assert (sizeof (ULONGEST) >= 8);
2793 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2794 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2799 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2800 struct signatured_type);
2801 sig_type->signature = signature;
2802 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2803 sig_type->per_cu.is_debug_types = 1;
2804 sig_type->per_cu.section = section;
2805 sig_type->per_cu.offset.sect_off = offset;
2806 sig_type->per_cu.objfile = objfile;
2807 sig_type->per_cu.v.quick
2808 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2809 struct dwarf2_per_cu_quick_data);
2811 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2814 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2817 dwarf2_per_objfile->signatured_types = sig_types_hash;
2820 /* Read the address map data from the mapped index, and use it to
2821 populate the objfile's psymtabs_addrmap. */
2824 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826 const gdb_byte *iter, *end;
2827 struct obstack temp_obstack;
2828 struct addrmap *mutable_map;
2829 struct cleanup *cleanup;
2832 obstack_init (&temp_obstack);
2833 cleanup = make_cleanup_obstack_free (&temp_obstack);
2834 mutable_map = addrmap_create_mutable (&temp_obstack);
2836 iter = index->address_table;
2837 end = iter + index->address_table_size;
2839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2843 ULONGEST hi, lo, cu_index;
2844 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2846 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2853 complaint (&symfile_complaints,
2854 _(".gdb_index address table has invalid range (%s - %s)"),
2855 hex_string (lo), hex_string (hi));
2859 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2861 complaint (&symfile_complaints,
2862 _(".gdb_index address table has invalid CU number %u"),
2863 (unsigned) cu_index);
2867 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2868 dw2_get_cutu (cu_index));
2871 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2872 &objfile->objfile_obstack);
2873 do_cleanups (cleanup);
2876 /* The hash function for strings in the mapped index. This is the same as
2877 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2878 implementation. This is necessary because the hash function is tied to the
2879 format of the mapped index file. The hash values do not have to match with
2882 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2885 mapped_index_string_hash (int index_version, const void *p)
2887 const unsigned char *str = (const unsigned char *) p;
2891 while ((c = *str++) != 0)
2893 if (index_version >= 5)
2895 r = r * 67 + c - 113;
2901 /* Find a slot in the mapped index INDEX for the object named NAME.
2902 If NAME is found, set *VEC_OUT to point to the CU vector in the
2903 constant pool and return 1. If NAME cannot be found, return 0. */
2906 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2907 offset_type **vec_out)
2909 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2911 offset_type slot, step;
2912 int (*cmp) (const char *, const char *);
2914 if (current_language->la_language == language_cplus
2915 || current_language->la_language == language_java
2916 || current_language->la_language == language_fortran)
2918 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2920 const char *paren = strchr (name, '(');
2926 dup = xmalloc (paren - name + 1);
2927 memcpy (dup, name, paren - name);
2928 dup[paren - name] = 0;
2930 make_cleanup (xfree, dup);
2935 /* Index version 4 did not support case insensitive searches. But the
2936 indices for case insensitive languages are built in lowercase, therefore
2937 simulate our NAME being searched is also lowercased. */
2938 hash = mapped_index_string_hash ((index->version == 4
2939 && case_sensitivity == case_sensitive_off
2940 ? 5 : index->version),
2943 slot = hash & (index->symbol_table_slots - 1);
2944 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2945 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2949 /* Convert a slot number to an offset into the table. */
2950 offset_type i = 2 * slot;
2952 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2954 do_cleanups (back_to);
2958 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2959 if (!cmp (name, str))
2961 *vec_out = (offset_type *) (index->constant_pool
2962 + MAYBE_SWAP (index->symbol_table[i + 1]));
2963 do_cleanups (back_to);
2967 slot = (slot + step) & (index->symbol_table_slots - 1);
2971 /* A helper function that reads the .gdb_index from SECTION and fills
2972 in MAP. FILENAME is the name of the file containing the section;
2973 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2974 ok to use deprecated sections.
2976 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2977 out parameters that are filled in with information about the CU and
2978 TU lists in the section.
2980 Returns 1 if all went well, 0 otherwise. */
2983 read_index_from_section (struct objfile *objfile,
2984 const char *filename,
2986 struct dwarf2_section_info *section,
2987 struct mapped_index *map,
2988 const gdb_byte **cu_list,
2989 offset_type *cu_list_elements,
2990 const gdb_byte **types_list,
2991 offset_type *types_list_elements)
2993 const gdb_byte *addr;
2994 offset_type version;
2995 offset_type *metadata;
2998 if (dwarf2_section_empty_p (section))
3001 /* Older elfutils strip versions could keep the section in the main
3002 executable while splitting it for the separate debug info file. */
3003 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3006 dwarf2_read_section (objfile, section);
3008 addr = section->buffer;
3009 /* Version check. */
3010 version = MAYBE_SWAP (*(offset_type *) addr);
3011 /* Versions earlier than 3 emitted every copy of a psymbol. This
3012 causes the index to behave very poorly for certain requests. Version 3
3013 contained incomplete addrmap. So, it seems better to just ignore such
3017 static int warning_printed = 0;
3018 if (!warning_printed)
3020 warning (_("Skipping obsolete .gdb_index section in %s."),
3022 warning_printed = 1;
3026 /* Index version 4 uses a different hash function than index version
3029 Versions earlier than 6 did not emit psymbols for inlined
3030 functions. Using these files will cause GDB not to be able to
3031 set breakpoints on inlined functions by name, so we ignore these
3032 indices unless the user has done
3033 "set use-deprecated-index-sections on". */
3034 if (version < 6 && !deprecated_ok)
3036 static int warning_printed = 0;
3037 if (!warning_printed)
3040 Skipping deprecated .gdb_index section in %s.\n\
3041 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3042 to use the section anyway."),
3044 warning_printed = 1;
3048 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3049 of the TU (for symbols coming from TUs),
3050 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3051 Plus gold-generated indices can have duplicate entries for global symbols,
3052 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3053 These are just performance bugs, and we can't distinguish gdb-generated
3054 indices from gold-generated ones, so issue no warning here. */
3056 /* Indexes with higher version than the one supported by GDB may be no
3057 longer backward compatible. */
3061 map->version = version;
3062 map->total_size = section->size;
3064 metadata = (offset_type *) (addr + sizeof (offset_type));
3067 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3068 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3072 *types_list = addr + MAYBE_SWAP (metadata[i]);
3073 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3074 - MAYBE_SWAP (metadata[i]))
3078 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3079 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3080 - MAYBE_SWAP (metadata[i]));
3083 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3084 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3085 - MAYBE_SWAP (metadata[i]))
3086 / (2 * sizeof (offset_type)));
3089 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3095 /* Read the index file. If everything went ok, initialize the "quick"
3096 elements of all the CUs and return 1. Otherwise, return 0. */
3099 dwarf2_read_index (struct objfile *objfile)
3101 struct mapped_index local_map, *map;
3102 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3103 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3104 struct dwz_file *dwz;
3106 if (!read_index_from_section (objfile, objfile_name (objfile),
3107 use_deprecated_index_sections,
3108 &dwarf2_per_objfile->gdb_index, &local_map,
3109 &cu_list, &cu_list_elements,
3110 &types_list, &types_list_elements))
3113 /* Don't use the index if it's empty. */
3114 if (local_map.symbol_table_slots == 0)
3117 /* If there is a .dwz file, read it so we can get its CU list as
3119 dwz = dwarf2_get_dwz_file ();
3122 struct mapped_index dwz_map;
3123 const gdb_byte *dwz_types_ignore;
3124 offset_type dwz_types_elements_ignore;
3126 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3128 &dwz->gdb_index, &dwz_map,
3129 &dwz_list, &dwz_list_elements,
3131 &dwz_types_elements_ignore))
3133 warning (_("could not read '.gdb_index' section from %s; skipping"),
3134 bfd_get_filename (dwz->dwz_bfd));
3139 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3142 if (types_list_elements)
3144 struct dwarf2_section_info *section;
3146 /* We can only handle a single .debug_types when we have an
3148 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3151 section = VEC_index (dwarf2_section_info_def,
3152 dwarf2_per_objfile->types, 0);
3154 create_signatured_type_table_from_index (objfile, section, types_list,
3155 types_list_elements);
3158 create_addrmap_from_index (objfile, &local_map);
3160 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3163 dwarf2_per_objfile->index_table = map;
3164 dwarf2_per_objfile->using_index = 1;
3165 dwarf2_per_objfile->quick_file_names_table =
3166 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3171 /* A helper for the "quick" functions which sets the global
3172 dwarf2_per_objfile according to OBJFILE. */
3175 dw2_setup (struct objfile *objfile)
3177 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3178 gdb_assert (dwarf2_per_objfile);
3181 /* die_reader_func for dw2_get_file_names. */
3184 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3185 const gdb_byte *info_ptr,
3186 struct die_info *comp_unit_die,
3190 struct dwarf2_cu *cu = reader->cu;
3191 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 struct dwarf2_per_cu_data *lh_cu;
3194 struct line_header *lh;
3195 struct attribute *attr;
3197 const char *name, *comp_dir;
3199 struct quick_file_names *qfn;
3200 unsigned int line_offset;
3202 gdb_assert (! this_cu->is_debug_types);
3204 /* Our callers never want to match partial units -- instead they
3205 will match the enclosing full CU. */
3206 if (comp_unit_die->tag == DW_TAG_partial_unit)
3208 this_cu->v.quick->no_file_data = 1;
3217 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3220 struct quick_file_names find_entry;
3222 line_offset = DW_UNSND (attr);
3224 /* We may have already read in this line header (TU line header sharing).
3225 If we have we're done. */
3226 find_entry.hash.dwo_unit = cu->dwo_unit;
3227 find_entry.hash.line_offset.sect_off = line_offset;
3228 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3229 &find_entry, INSERT);
3232 lh_cu->v.quick->file_names = *slot;
3236 lh = dwarf_decode_line_header (line_offset, cu);
3240 lh_cu->v.quick->no_file_data = 1;
3244 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3245 qfn->hash.dwo_unit = cu->dwo_unit;
3246 qfn->hash.line_offset.sect_off = line_offset;
3247 gdb_assert (slot != NULL);
3250 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3252 qfn->num_file_names = lh->num_file_names;
3253 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3254 lh->num_file_names * sizeof (char *));
3255 for (i = 0; i < lh->num_file_names; ++i)
3256 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3257 qfn->real_names = NULL;
3259 free_line_header (lh);
3261 lh_cu->v.quick->file_names = qfn;
3264 /* A helper for the "quick" functions which attempts to read the line
3265 table for THIS_CU. */
3267 static struct quick_file_names *
3268 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3270 /* This should never be called for TUs. */
3271 gdb_assert (! this_cu->is_debug_types);
3272 /* Nor type unit groups. */
3273 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3275 if (this_cu->v.quick->file_names != NULL)
3276 return this_cu->v.quick->file_names;
3277 /* If we know there is no line data, no point in looking again. */
3278 if (this_cu->v.quick->no_file_data)
3281 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3283 if (this_cu->v.quick->no_file_data)
3285 return this_cu->v.quick->file_names;
3288 /* A helper for the "quick" functions which computes and caches the
3289 real path for a given file name from the line table. */
3292 dw2_get_real_path (struct objfile *objfile,
3293 struct quick_file_names *qfn, int index)
3295 if (qfn->real_names == NULL)
3296 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3297 qfn->num_file_names, const char *);
3299 if (qfn->real_names[index] == NULL)
3300 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3302 return qfn->real_names[index];
3305 static struct symtab *
3306 dw2_find_last_source_symtab (struct objfile *objfile)
3310 dw2_setup (objfile);
3311 index = dwarf2_per_objfile->n_comp_units - 1;
3312 return dw2_instantiate_symtab (dw2_get_cutu (index));
3315 /* Traversal function for dw2_forget_cached_source_info. */
3318 dw2_free_cached_file_names (void **slot, void *info)
3320 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3322 if (file_data->real_names)
3326 for (i = 0; i < file_data->num_file_names; ++i)
3328 xfree ((void*) file_data->real_names[i]);
3329 file_data->real_names[i] = NULL;
3337 dw2_forget_cached_source_info (struct objfile *objfile)
3339 dw2_setup (objfile);
3341 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3342 dw2_free_cached_file_names, NULL);
3345 /* Helper function for dw2_map_symtabs_matching_filename that expands
3346 the symtabs and calls the iterator. */
3349 dw2_map_expand_apply (struct objfile *objfile,
3350 struct dwarf2_per_cu_data *per_cu,
3351 const char *name, const char *real_path,
3352 int (*callback) (struct symtab *, void *),
3355 struct symtab *last_made = objfile->symtabs;
3357 /* Don't visit already-expanded CUs. */
3358 if (per_cu->v.quick->symtab)
3361 /* This may expand more than one symtab, and we want to iterate over
3363 dw2_instantiate_symtab (per_cu);
3365 return iterate_over_some_symtabs (name, real_path, callback, data,
3366 objfile->symtabs, last_made);
3369 /* Implementation of the map_symtabs_matching_filename method. */
3372 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3373 const char *real_path,
3374 int (*callback) (struct symtab *, void *),
3378 const char *name_basename = lbasename (name);
3380 dw2_setup (objfile);
3382 /* The rule is CUs specify all the files, including those used by
3383 any TU, so there's no need to scan TUs here. */
3385 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3388 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3389 struct quick_file_names *file_data;
3391 /* We only need to look at symtabs not already expanded. */
3392 if (per_cu->v.quick->symtab)
3395 file_data = dw2_get_file_names (per_cu);
3396 if (file_data == NULL)
3399 for (j = 0; j < file_data->num_file_names; ++j)
3401 const char *this_name = file_data->file_names[j];
3402 const char *this_real_name;
3404 if (compare_filenames_for_search (this_name, name))
3406 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3412 /* Before we invoke realpath, which can get expensive when many
3413 files are involved, do a quick comparison of the basenames. */
3414 if (! basenames_may_differ
3415 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3418 this_real_name = dw2_get_real_path (objfile, file_data, j);
3419 if (compare_filenames_for_search (this_real_name, name))
3421 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3427 if (real_path != NULL)
3429 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3430 gdb_assert (IS_ABSOLUTE_PATH (name));
3431 if (this_real_name != NULL
3432 && FILENAME_CMP (real_path, this_real_name) == 0)
3434 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3446 /* Struct used to manage iterating over all CUs looking for a symbol. */
3448 struct dw2_symtab_iterator
3450 /* The internalized form of .gdb_index. */
3451 struct mapped_index *index;
3452 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3453 int want_specific_block;
3454 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3455 Unused if !WANT_SPECIFIC_BLOCK. */
3457 /* The kind of symbol we're looking for. */
3459 /* The list of CUs from the index entry of the symbol,
3460 or NULL if not found. */
3462 /* The next element in VEC to look at. */
3464 /* The number of elements in VEC, or zero if there is no match. */
3466 /* Have we seen a global version of the symbol?
3467 If so we can ignore all further global instances.
3468 This is to work around gold/15646, inefficient gold-generated
3473 /* Initialize the index symtab iterator ITER.
3474 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3475 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3478 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3479 struct mapped_index *index,
3480 int want_specific_block,
3485 iter->index = index;
3486 iter->want_specific_block = want_specific_block;
3487 iter->block_index = block_index;
3488 iter->domain = domain;
3490 iter->global_seen = 0;
3492 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3493 iter->length = MAYBE_SWAP (*iter->vec);
3501 /* Return the next matching CU or NULL if there are no more. */
3503 static struct dwarf2_per_cu_data *
3504 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3506 for ( ; iter->next < iter->length; ++iter->next)
3508 offset_type cu_index_and_attrs =
3509 MAYBE_SWAP (iter->vec[iter->next + 1]);
3510 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3511 struct dwarf2_per_cu_data *per_cu;
3512 int want_static = iter->block_index != GLOBAL_BLOCK;
3513 /* This value is only valid for index versions >= 7. */
3514 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3515 gdb_index_symbol_kind symbol_kind =
3516 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3517 /* Only check the symbol attributes if they're present.
3518 Indices prior to version 7 don't record them,
3519 and indices >= 7 may elide them for certain symbols
3520 (gold does this). */
3522 (iter->index->version >= 7
3523 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3525 /* Don't crash on bad data. */
3526 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3527 + dwarf2_per_objfile->n_type_units))
3529 complaint (&symfile_complaints,
3530 _(".gdb_index entry has bad CU index"
3532 objfile_name (dwarf2_per_objfile->objfile));
3536 per_cu = dw2_get_cutu (cu_index);
3538 /* Skip if already read in. */
3539 if (per_cu->v.quick->symtab)
3542 /* Check static vs global. */
3545 if (iter->want_specific_block
3546 && want_static != is_static)
3548 /* Work around gold/15646. */
3549 if (!is_static && iter->global_seen)
3552 iter->global_seen = 1;
3555 /* Only check the symbol's kind if it has one. */
3558 switch (iter->domain)
3561 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3562 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3563 /* Some types are also in VAR_DOMAIN. */
3564 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3568 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3572 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3587 static struct symtab *
3588 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3589 const char *name, domain_enum domain)
3591 struct symtab *stab_best = NULL;
3592 struct mapped_index *index;
3594 dw2_setup (objfile);
3596 index = dwarf2_per_objfile->index_table;
3598 /* index is NULL if OBJF_READNOW. */
3601 struct dw2_symtab_iterator iter;
3602 struct dwarf2_per_cu_data *per_cu;
3604 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3606 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3608 struct symbol *sym = NULL;
3609 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3611 /* Some caution must be observed with overloaded functions
3612 and methods, since the index will not contain any overload
3613 information (but NAME might contain it). */
3616 const struct blockvector *bv = BLOCKVECTOR (stab);
3617 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3619 sym = lookup_block_symbol (block, name, domain);
3622 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3624 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3630 /* Keep looking through other CUs. */
3638 dw2_print_stats (struct objfile *objfile)
3640 int i, total, count;
3642 dw2_setup (objfile);
3643 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3645 for (i = 0; i < total; ++i)
3647 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3649 if (!per_cu->v.quick->symtab)
3652 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3653 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3656 /* This dumps minimal information about the index.
3657 It is called via "mt print objfiles".
3658 One use is to verify .gdb_index has been loaded by the
3659 gdb.dwarf2/gdb-index.exp testcase. */
3662 dw2_dump (struct objfile *objfile)
3664 dw2_setup (objfile);
3665 gdb_assert (dwarf2_per_objfile->using_index);
3666 printf_filtered (".gdb_index:");
3667 if (dwarf2_per_objfile->index_table != NULL)
3669 printf_filtered (" version %d\n",
3670 dwarf2_per_objfile->index_table->version);
3673 printf_filtered (" faked for \"readnow\"\n");
3674 printf_filtered ("\n");
3678 dw2_relocate (struct objfile *objfile,
3679 const struct section_offsets *new_offsets,
3680 const struct section_offsets *delta)
3682 /* There's nothing to relocate here. */
3686 dw2_expand_symtabs_for_function (struct objfile *objfile,
3687 const char *func_name)
3689 struct mapped_index *index;
3691 dw2_setup (objfile);
3693 index = dwarf2_per_objfile->index_table;
3695 /* index is NULL if OBJF_READNOW. */
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3701 /* Note: It doesn't matter what we pass for block_index here. */
3702 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3705 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3706 dw2_instantiate_symtab (per_cu);
3711 dw2_expand_all_symtabs (struct objfile *objfile)
3715 dw2_setup (objfile);
3717 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3718 + dwarf2_per_objfile->n_type_units); ++i)
3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3722 dw2_instantiate_symtab (per_cu);
3727 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3728 const char *fullname)
3732 dw2_setup (objfile);
3734 /* We don't need to consider type units here.
3735 This is only called for examining code, e.g. expand_line_sal.
3736 There can be an order of magnitude (or more) more type units
3737 than comp units, and we avoid them if we can. */
3739 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3743 struct quick_file_names *file_data;
3745 /* We only need to look at symtabs not already expanded. */
3746 if (per_cu->v.quick->symtab)
3749 file_data = dw2_get_file_names (per_cu);
3750 if (file_data == NULL)
3753 for (j = 0; j < file_data->num_file_names; ++j)
3755 const char *this_fullname = file_data->file_names[j];
3757 if (filename_cmp (this_fullname, fullname) == 0)
3759 dw2_instantiate_symtab (per_cu);
3767 dw2_map_matching_symbols (struct objfile *objfile,
3768 const char * name, domain_enum namespace,
3770 int (*callback) (struct block *,
3771 struct symbol *, void *),
3772 void *data, symbol_compare_ftype *match,
3773 symbol_compare_ftype *ordered_compare)
3775 /* Currently unimplemented; used for Ada. The function can be called if the
3776 current language is Ada for a non-Ada objfile using GNU index. As Ada
3777 does not look for non-Ada symbols this function should just return. */
3781 dw2_expand_symtabs_matching
3782 (struct objfile *objfile,
3783 expand_symtabs_file_matcher_ftype *file_matcher,
3784 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3785 enum search_domain kind,
3790 struct mapped_index *index;
3792 dw2_setup (objfile);
3794 /* index_table is NULL if OBJF_READNOW. */
3795 if (!dwarf2_per_objfile->index_table)
3797 index = dwarf2_per_objfile->index_table;
3799 if (file_matcher != NULL)
3801 struct cleanup *cleanup;
3802 htab_t visited_found, visited_not_found;
3804 visited_found = htab_create_alloc (10,
3805 htab_hash_pointer, htab_eq_pointer,
3806 NULL, xcalloc, xfree);
3807 cleanup = make_cleanup_htab_delete (visited_found);
3808 visited_not_found = htab_create_alloc (10,
3809 htab_hash_pointer, htab_eq_pointer,
3810 NULL, xcalloc, xfree);
3811 make_cleanup_htab_delete (visited_not_found);
3813 /* The rule is CUs specify all the files, including those used by
3814 any TU, so there's no need to scan TUs here. */
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3820 struct quick_file_names *file_data;
3823 per_cu->v.quick->mark = 0;
3825 /* We only need to look at symtabs not already expanded. */
3826 if (per_cu->v.quick->symtab)
3829 file_data = dw2_get_file_names (per_cu);
3830 if (file_data == NULL)
3833 if (htab_find (visited_not_found, file_data) != NULL)
3835 else if (htab_find (visited_found, file_data) != NULL)
3837 per_cu->v.quick->mark = 1;
3841 for (j = 0; j < file_data->num_file_names; ++j)
3843 const char *this_real_name;
3845 if (file_matcher (file_data->file_names[j], data, 0))
3847 per_cu->v.quick->mark = 1;
3851 /* Before we invoke realpath, which can get expensive when many
3852 files are involved, do a quick comparison of the basenames. */
3853 if (!basenames_may_differ
3854 && !file_matcher (lbasename (file_data->file_names[j]),
3858 this_real_name = dw2_get_real_path (objfile, file_data, j);
3859 if (file_matcher (this_real_name, data, 0))
3861 per_cu->v.quick->mark = 1;
3866 slot = htab_find_slot (per_cu->v.quick->mark
3868 : visited_not_found,
3873 do_cleanups (cleanup);
3876 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3878 offset_type idx = 2 * iter;
3880 offset_type *vec, vec_len, vec_idx;
3881 int global_seen = 0;
3883 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3886 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3888 if (! (*symbol_matcher) (name, data))
3891 /* The name was matched, now expand corresponding CUs that were
3893 vec = (offset_type *) (index->constant_pool
3894 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3895 vec_len = MAYBE_SWAP (vec[0]);
3896 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3898 struct dwarf2_per_cu_data *per_cu;
3899 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3900 /* This value is only valid for index versions >= 7. */
3901 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3902 gdb_index_symbol_kind symbol_kind =
3903 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3904 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3905 /* Only check the symbol attributes if they're present.
3906 Indices prior to version 7 don't record them,
3907 and indices >= 7 may elide them for certain symbols
3908 (gold does this). */
3910 (index->version >= 7
3911 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3913 /* Work around gold/15646. */
3916 if (!is_static && global_seen)
3922 /* Only check the symbol's kind if it has one. */
3927 case VARIABLES_DOMAIN:
3928 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3931 case FUNCTIONS_DOMAIN:
3932 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3936 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3944 /* Don't crash on bad data. */
3945 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3946 + dwarf2_per_objfile->n_type_units))
3948 complaint (&symfile_complaints,
3949 _(".gdb_index entry has bad CU index"
3950 " [in module %s]"), objfile_name (objfile));
3954 per_cu = dw2_get_cutu (cu_index);
3955 if (file_matcher == NULL || per_cu->v.quick->mark)
3956 dw2_instantiate_symtab (per_cu);
3961 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3964 static struct symtab *
3965 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3969 if (BLOCKVECTOR (symtab) != NULL
3970 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3973 if (symtab->includes == NULL)
3976 for (i = 0; symtab->includes[i]; ++i)
3978 struct symtab *s = symtab->includes[i];
3980 s = recursively_find_pc_sect_symtab (s, pc);
3988 static struct symtab *
3989 dw2_find_pc_sect_symtab (struct objfile *objfile,
3990 struct bound_minimal_symbol msymbol,
3992 struct obj_section *section,
3995 struct dwarf2_per_cu_data *data;
3996 struct symtab *result;
3998 dw2_setup (objfile);
4000 if (!objfile->psymtabs_addrmap)
4003 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4007 if (warn_if_readin && data->v.quick->symtab)
4008 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4009 paddress (get_objfile_arch (objfile), pc));
4011 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4012 gdb_assert (result != NULL);
4017 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4018 void *data, int need_fullname)
4021 struct cleanup *cleanup;
4022 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4023 NULL, xcalloc, xfree);
4025 cleanup = make_cleanup_htab_delete (visited);
4026 dw2_setup (objfile);
4028 /* The rule is CUs specify all the files, including those used by
4029 any TU, so there's no need to scan TUs here.
4030 We can ignore file names coming from already-expanded CUs. */
4032 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4034 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4036 if (per_cu->v.quick->symtab)
4038 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4041 *slot = per_cu->v.quick->file_names;
4045 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4048 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4049 struct quick_file_names *file_data;
4052 /* We only need to look at symtabs not already expanded. */
4053 if (per_cu->v.quick->symtab)
4056 file_data = dw2_get_file_names (per_cu);
4057 if (file_data == NULL)
4060 slot = htab_find_slot (visited, file_data, INSERT);
4063 /* Already visited. */
4068 for (j = 0; j < file_data->num_file_names; ++j)
4070 const char *this_real_name;
4073 this_real_name = dw2_get_real_path (objfile, file_data, j);
4075 this_real_name = NULL;
4076 (*fun) (file_data->file_names[j], this_real_name, data);
4080 do_cleanups (cleanup);
4084 dw2_has_symbols (struct objfile *objfile)
4089 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4092 dw2_find_last_source_symtab,
4093 dw2_forget_cached_source_info,
4094 dw2_map_symtabs_matching_filename,
4099 dw2_expand_symtabs_for_function,
4100 dw2_expand_all_symtabs,
4101 dw2_expand_symtabs_with_fullname,
4102 dw2_map_matching_symbols,
4103 dw2_expand_symtabs_matching,
4104 dw2_find_pc_sect_symtab,
4105 dw2_map_symbol_filenames
4108 /* Initialize for reading DWARF for this objfile. Return 0 if this
4109 file will use psymtabs, or 1 if using the GNU index. */
4112 dwarf2_initialize_objfile (struct objfile *objfile)
4114 /* If we're about to read full symbols, don't bother with the
4115 indices. In this case we also don't care if some other debug
4116 format is making psymtabs, because they are all about to be
4118 if ((objfile->flags & OBJF_READNOW))
4122 dwarf2_per_objfile->using_index = 1;
4123 create_all_comp_units (objfile);
4124 create_all_type_units (objfile);
4125 dwarf2_per_objfile->quick_file_names_table =
4126 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4128 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4129 + dwarf2_per_objfile->n_type_units); ++i)
4131 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4133 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4134 struct dwarf2_per_cu_quick_data);
4137 /* Return 1 so that gdb sees the "quick" functions. However,
4138 these functions will be no-ops because we will have expanded
4143 if (dwarf2_read_index (objfile))
4151 /* Build a partial symbol table. */
4154 dwarf2_build_psymtabs (struct objfile *objfile)
4156 volatile struct gdb_exception except;
4158 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4160 init_psymbol_list (objfile, 1024);
4163 TRY_CATCH (except, RETURN_MASK_ERROR)
4165 /* This isn't really ideal: all the data we allocate on the
4166 objfile's obstack is still uselessly kept around. However,
4167 freeing it seems unsafe. */
4168 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4170 dwarf2_build_psymtabs_hard (objfile);
4171 discard_cleanups (cleanups);
4173 if (except.reason < 0)
4174 exception_print (gdb_stderr, except);
4177 /* Return the total length of the CU described by HEADER. */
4180 get_cu_length (const struct comp_unit_head *header)
4182 return header->initial_length_size + header->length;
4185 /* Return TRUE if OFFSET is within CU_HEADER. */
4188 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4190 sect_offset bottom = { cu_header->offset.sect_off };
4191 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4193 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4196 /* Find the base address of the compilation unit for range lists and
4197 location lists. It will normally be specified by DW_AT_low_pc.
4198 In DWARF-3 draft 4, the base address could be overridden by
4199 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4200 compilation units with discontinuous ranges. */
4203 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4205 struct attribute *attr;
4208 cu->base_address = 0;
4210 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4213 cu->base_address = attr_value_as_address (attr);
4218 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4221 cu->base_address = attr_value_as_address (attr);
4227 /* Read in the comp unit header information from the debug_info at info_ptr.
4228 NOTE: This leaves members offset, first_die_offset to be filled in
4231 static const gdb_byte *
4232 read_comp_unit_head (struct comp_unit_head *cu_header,
4233 const gdb_byte *info_ptr, bfd *abfd)
4236 unsigned int bytes_read;
4238 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4239 cu_header->initial_length_size = bytes_read;
4240 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4241 info_ptr += bytes_read;
4242 cu_header->version = read_2_bytes (abfd, info_ptr);
4244 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4246 info_ptr += bytes_read;
4247 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4249 signed_addr = bfd_get_sign_extend_vma (abfd);
4250 if (signed_addr < 0)
4251 internal_error (__FILE__, __LINE__,
4252 _("read_comp_unit_head: dwarf from non elf file"));
4253 cu_header->signed_addr_p = signed_addr;
4258 /* Helper function that returns the proper abbrev section for
4261 static struct dwarf2_section_info *
4262 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4264 struct dwarf2_section_info *abbrev;
4266 if (this_cu->is_dwz)
4267 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4269 abbrev = &dwarf2_per_objfile->abbrev;
4274 /* Subroutine of read_and_check_comp_unit_head and
4275 read_and_check_type_unit_head to simplify them.
4276 Perform various error checking on the header. */
4279 error_check_comp_unit_head (struct comp_unit_head *header,
4280 struct dwarf2_section_info *section,
4281 struct dwarf2_section_info *abbrev_section)
4283 bfd *abfd = get_section_bfd_owner (section);
4284 const char *filename = get_section_file_name (section);
4286 if (header->version != 2 && header->version != 3 && header->version != 4)
4287 error (_("Dwarf Error: wrong version in compilation unit header "
4288 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4291 if (header->abbrev_offset.sect_off
4292 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4293 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4294 "(offset 0x%lx + 6) [in module %s]"),
4295 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4298 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4299 avoid potential 32-bit overflow. */
4300 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4302 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4303 "(offset 0x%lx + 0) [in module %s]"),
4304 (long) header->length, (long) header->offset.sect_off,
4308 /* Read in a CU/TU header and perform some basic error checking.
4309 The contents of the header are stored in HEADER.
4310 The result is a pointer to the start of the first DIE. */
4312 static const gdb_byte *
4313 read_and_check_comp_unit_head (struct comp_unit_head *header,
4314 struct dwarf2_section_info *section,
4315 struct dwarf2_section_info *abbrev_section,
4316 const gdb_byte *info_ptr,
4317 int is_debug_types_section)
4319 const gdb_byte *beg_of_comp_unit = info_ptr;
4320 bfd *abfd = get_section_bfd_owner (section);
4322 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4324 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4326 /* If we're reading a type unit, skip over the signature and
4327 type_offset fields. */
4328 if (is_debug_types_section)
4329 info_ptr += 8 /*signature*/ + header->offset_size;
4331 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4333 error_check_comp_unit_head (header, section, abbrev_section);
4338 /* Read in the types comp unit header information from .debug_types entry at
4339 types_ptr. The result is a pointer to one past the end of the header. */
4341 static const gdb_byte *
4342 read_and_check_type_unit_head (struct comp_unit_head *header,
4343 struct dwarf2_section_info *section,
4344 struct dwarf2_section_info *abbrev_section,
4345 const gdb_byte *info_ptr,
4346 ULONGEST *signature,
4347 cu_offset *type_offset_in_tu)
4349 const gdb_byte *beg_of_comp_unit = info_ptr;
4350 bfd *abfd = get_section_bfd_owner (section);
4352 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4354 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4356 /* If we're reading a type unit, skip over the signature and
4357 type_offset fields. */
4358 if (signature != NULL)
4359 *signature = read_8_bytes (abfd, info_ptr);
4361 if (type_offset_in_tu != NULL)
4362 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4363 header->offset_size);
4364 info_ptr += header->offset_size;
4366 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4368 error_check_comp_unit_head (header, section, abbrev_section);
4373 /* Fetch the abbreviation table offset from a comp or type unit header. */
4376 read_abbrev_offset (struct dwarf2_section_info *section,
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const gdb_byte *info_ptr;
4381 unsigned int length, initial_length_size, offset_size;
4382 sect_offset abbrev_offset;
4384 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4385 info_ptr = section->buffer + offset.sect_off;
4386 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4387 offset_size = initial_length_size == 4 ? 4 : 8;
4388 info_ptr += initial_length_size + 2 /*version*/;
4389 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4390 return abbrev_offset;
4393 /* Allocate a new partial symtab for file named NAME and mark this new
4394 partial symtab as being an include of PST. */
4397 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4398 struct objfile *objfile)
4400 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4402 if (!IS_ABSOLUTE_PATH (subpst->filename))
4404 /* It shares objfile->objfile_obstack. */
4405 subpst->dirname = pst->dirname;
4408 subpst->section_offsets = pst->section_offsets;
4409 subpst->textlow = 0;
4410 subpst->texthigh = 0;
4412 subpst->dependencies = (struct partial_symtab **)
4413 obstack_alloc (&objfile->objfile_obstack,
4414 sizeof (struct partial_symtab *));
4415 subpst->dependencies[0] = pst;
4416 subpst->number_of_dependencies = 1;
4418 subpst->globals_offset = 0;
4419 subpst->n_global_syms = 0;
4420 subpst->statics_offset = 0;
4421 subpst->n_static_syms = 0;
4422 subpst->symtab = NULL;
4423 subpst->read_symtab = pst->read_symtab;
4426 /* No private part is necessary for include psymtabs. This property
4427 can be used to differentiate between such include psymtabs and
4428 the regular ones. */
4429 subpst->read_symtab_private = NULL;
4432 /* Read the Line Number Program data and extract the list of files
4433 included by the source file represented by PST. Build an include
4434 partial symtab for each of these included files. */
4437 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4438 struct die_info *die,
4439 struct partial_symtab *pst)
4441 struct line_header *lh = NULL;
4442 struct attribute *attr;
4444 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4446 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4448 return; /* No linetable, so no includes. */
4450 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4451 dwarf_decode_lines (lh, pst->dirname, cu, pst);
4453 free_line_header (lh);
4457 hash_signatured_type (const void *item)
4459 const struct signatured_type *sig_type = item;
4461 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4462 return sig_type->signature;
4466 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4468 const struct signatured_type *lhs = item_lhs;
4469 const struct signatured_type *rhs = item_rhs;
4471 return lhs->signature == rhs->signature;
4474 /* Allocate a hash table for signatured types. */
4477 allocate_signatured_type_table (struct objfile *objfile)
4479 return htab_create_alloc_ex (41,
4480 hash_signatured_type,
4483 &objfile->objfile_obstack,
4484 hashtab_obstack_allocate,
4485 dummy_obstack_deallocate);
4488 /* A helper function to add a signatured type CU to a table. */
4491 add_signatured_type_cu_to_table (void **slot, void *datum)
4493 struct signatured_type *sigt = *slot;
4494 struct signatured_type ***datap = datum;
4502 /* Create the hash table of all entries in the .debug_types
4503 (or .debug_types.dwo) section(s).
4504 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4505 otherwise it is NULL.
4507 The result is a pointer to the hash table or NULL if there are no types.
4509 Note: This function processes DWO files only, not DWP files. */
4512 create_debug_types_hash_table (struct dwo_file *dwo_file,
4513 VEC (dwarf2_section_info_def) *types)
4515 struct objfile *objfile = dwarf2_per_objfile->objfile;
4516 htab_t types_htab = NULL;
4518 struct dwarf2_section_info *section;
4519 struct dwarf2_section_info *abbrev_section;
4521 if (VEC_empty (dwarf2_section_info_def, types))
4524 abbrev_section = (dwo_file != NULL
4525 ? &dwo_file->sections.abbrev
4526 : &dwarf2_per_objfile->abbrev);
4528 if (dwarf2_read_debug)
4529 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4530 dwo_file ? ".dwo" : "",
4531 get_section_file_name (abbrev_section));
4534 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4538 const gdb_byte *info_ptr, *end_ptr;
4540 dwarf2_read_section (objfile, section);
4541 info_ptr = section->buffer;
4543 if (info_ptr == NULL)
4546 /* We can't set abfd until now because the section may be empty or
4547 not present, in which case the bfd is unknown. */
4548 abfd = get_section_bfd_owner (section);
4550 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4551 because we don't need to read any dies: the signature is in the
4554 end_ptr = info_ptr + section->size;
4555 while (info_ptr < end_ptr)
4558 cu_offset type_offset_in_tu;
4560 struct signatured_type *sig_type;
4561 struct dwo_unit *dwo_tu;
4563 const gdb_byte *ptr = info_ptr;
4564 struct comp_unit_head header;
4565 unsigned int length;
4567 offset.sect_off = ptr - section->buffer;
4569 /* We need to read the type's signature in order to build the hash
4570 table, but we don't need anything else just yet. */
4572 ptr = read_and_check_type_unit_head (&header, section,
4573 abbrev_section, ptr,
4574 &signature, &type_offset_in_tu);
4576 length = get_cu_length (&header);
4578 /* Skip dummy type units. */
4579 if (ptr >= info_ptr + length
4580 || peek_abbrev_code (abfd, ptr) == 0)
4586 if (types_htab == NULL)
4589 types_htab = allocate_dwo_unit_table (objfile);
4591 types_htab = allocate_signatured_type_table (objfile);
4597 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4599 dwo_tu->dwo_file = dwo_file;
4600 dwo_tu->signature = signature;
4601 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4602 dwo_tu->section = section;
4603 dwo_tu->offset = offset;
4604 dwo_tu->length = length;
4608 /* N.B.: type_offset is not usable if this type uses a DWO file.
4609 The real type_offset is in the DWO file. */
4611 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4612 struct signatured_type);
4613 sig_type->signature = signature;
4614 sig_type->type_offset_in_tu = type_offset_in_tu;
4615 sig_type->per_cu.objfile = objfile;
4616 sig_type->per_cu.is_debug_types = 1;
4617 sig_type->per_cu.section = section;
4618 sig_type->per_cu.offset = offset;
4619 sig_type->per_cu.length = length;
4622 slot = htab_find_slot (types_htab,
4623 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4625 gdb_assert (slot != NULL);
4628 sect_offset dup_offset;
4632 const struct dwo_unit *dup_tu = *slot;
4634 dup_offset = dup_tu->offset;
4638 const struct signatured_type *dup_tu = *slot;
4640 dup_offset = dup_tu->per_cu.offset;
4643 complaint (&symfile_complaints,
4644 _("debug type entry at offset 0x%x is duplicate to"
4645 " the entry at offset 0x%x, signature %s"),
4646 offset.sect_off, dup_offset.sect_off,
4647 hex_string (signature));
4649 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4651 if (dwarf2_read_debug > 1)
4652 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4654 hex_string (signature));
4663 /* Create the hash table of all entries in the .debug_types section,
4664 and initialize all_type_units.
4665 The result is zero if there is an error (e.g. missing .debug_types section),
4666 otherwise non-zero. */
4669 create_all_type_units (struct objfile *objfile)
4672 struct signatured_type **iter;
4674 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4675 if (types_htab == NULL)
4677 dwarf2_per_objfile->signatured_types = NULL;
4681 dwarf2_per_objfile->signatured_types = types_htab;
4683 dwarf2_per_objfile->n_type_units
4684 = dwarf2_per_objfile->n_allocated_type_units
4685 = htab_elements (types_htab);
4686 dwarf2_per_objfile->all_type_units
4687 = xmalloc (dwarf2_per_objfile->n_type_units
4688 * sizeof (struct signatured_type *));
4689 iter = &dwarf2_per_objfile->all_type_units[0];
4690 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4691 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4692 == dwarf2_per_objfile->n_type_units);
4697 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4698 If SLOT is non-NULL, it is the entry to use in the hash table.
4699 Otherwise we find one. */
4701 static struct signatured_type *
4702 add_type_unit (ULONGEST sig, void **slot)
4704 struct objfile *objfile = dwarf2_per_objfile->objfile;
4705 int n_type_units = dwarf2_per_objfile->n_type_units;
4706 struct signatured_type *sig_type;
4708 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4710 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4712 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4713 dwarf2_per_objfile->n_allocated_type_units = 1;
4714 dwarf2_per_objfile->n_allocated_type_units *= 2;
4715 dwarf2_per_objfile->all_type_units
4716 = xrealloc (dwarf2_per_objfile->all_type_units,
4717 dwarf2_per_objfile->n_allocated_type_units
4718 * sizeof (struct signatured_type *));
4719 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4721 dwarf2_per_objfile->n_type_units = n_type_units;
4723 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4724 struct signatured_type);
4725 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4726 sig_type->signature = sig;
4727 sig_type->per_cu.is_debug_types = 1;
4728 if (dwarf2_per_objfile->using_index)
4730 sig_type->per_cu.v.quick =
4731 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4732 struct dwarf2_per_cu_quick_data);
4737 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4740 gdb_assert (*slot == NULL);
4742 /* The rest of sig_type must be filled in by the caller. */
4746 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4747 Fill in SIG_ENTRY with DWO_ENTRY. */
4750 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4751 struct signatured_type *sig_entry,
4752 struct dwo_unit *dwo_entry)
4754 /* Make sure we're not clobbering something we don't expect to. */
4755 gdb_assert (! sig_entry->per_cu.queued);
4756 gdb_assert (sig_entry->per_cu.cu == NULL);
4757 if (dwarf2_per_objfile->using_index)
4759 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4760 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4763 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4764 gdb_assert (sig_entry->signature == dwo_entry->signature);
4765 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4766 gdb_assert (sig_entry->type_unit_group == NULL);
4767 gdb_assert (sig_entry->dwo_unit == NULL);
4769 sig_entry->per_cu.section = dwo_entry->section;
4770 sig_entry->per_cu.offset = dwo_entry->offset;
4771 sig_entry->per_cu.length = dwo_entry->length;
4772 sig_entry->per_cu.reading_dwo_directly = 1;
4773 sig_entry->per_cu.objfile = objfile;
4774 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4775 sig_entry->dwo_unit = dwo_entry;
4778 /* Subroutine of lookup_signatured_type.
4779 If we haven't read the TU yet, create the signatured_type data structure
4780 for a TU to be read in directly from a DWO file, bypassing the stub.
4781 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4782 using .gdb_index, then when reading a CU we want to stay in the DWO file
4783 containing that CU. Otherwise we could end up reading several other DWO
4784 files (due to comdat folding) to process the transitive closure of all the
4785 mentioned TUs, and that can be slow. The current DWO file will have every
4786 type signature that it needs.
4787 We only do this for .gdb_index because in the psymtab case we already have
4788 to read all the DWOs to build the type unit groups. */
4790 static struct signatured_type *
4791 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4793 struct objfile *objfile = dwarf2_per_objfile->objfile;
4794 struct dwo_file *dwo_file;
4795 struct dwo_unit find_dwo_entry, *dwo_entry;
4796 struct signatured_type find_sig_entry, *sig_entry;
4799 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4801 /* If TU skeletons have been removed then we may not have read in any
4803 if (dwarf2_per_objfile->signatured_types == NULL)
4805 dwarf2_per_objfile->signatured_types
4806 = allocate_signatured_type_table (objfile);
4809 /* We only ever need to read in one copy of a signatured type.
4810 Use the global signatured_types array to do our own comdat-folding
4811 of types. If this is the first time we're reading this TU, and
4812 the TU has an entry in .gdb_index, replace the recorded data from
4813 .gdb_index with this TU. */
4815 find_sig_entry.signature = sig;
4816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4817 &find_sig_entry, INSERT);
4820 /* We can get here with the TU already read, *or* in the process of being
4821 read. Don't reassign the global entry to point to this DWO if that's
4822 the case. Also note that if the TU is already being read, it may not
4823 have come from a DWO, the program may be a mix of Fission-compiled
4824 code and non-Fission-compiled code. */
4826 /* Have we already tried to read this TU?
4827 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4828 needn't exist in the global table yet). */
4829 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4832 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4833 dwo_unit of the TU itself. */
4834 dwo_file = cu->dwo_unit->dwo_file;
4836 /* Ok, this is the first time we're reading this TU. */
4837 if (dwo_file->tus == NULL)
4839 find_dwo_entry.signature = sig;
4840 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4841 if (dwo_entry == NULL)
4844 /* If the global table doesn't have an entry for this TU, add one. */
4845 if (sig_entry == NULL)
4846 sig_entry = add_type_unit (sig, slot);
4848 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4849 sig_entry->per_cu.tu_read = 1;
4853 /* Subroutine of lookup_signatured_type.
4854 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4855 then try the DWP file. If the TU stub (skeleton) has been removed then
4856 it won't be in .gdb_index. */
4858 static struct signatured_type *
4859 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4861 struct objfile *objfile = dwarf2_per_objfile->objfile;
4862 struct dwp_file *dwp_file = get_dwp_file ();
4863 struct dwo_unit *dwo_entry;
4864 struct signatured_type find_sig_entry, *sig_entry;
4867 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4868 gdb_assert (dwp_file != NULL);
4870 /* If TU skeletons have been removed then we may not have read in any
4872 if (dwarf2_per_objfile->signatured_types == NULL)
4874 dwarf2_per_objfile->signatured_types
4875 = allocate_signatured_type_table (objfile);
4878 find_sig_entry.signature = sig;
4879 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4880 &find_sig_entry, INSERT);
4883 /* Have we already tried to read this TU?
4884 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4885 needn't exist in the global table yet). */
4886 if (sig_entry != NULL)
4889 if (dwp_file->tus == NULL)
4891 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4892 sig, 1 /* is_debug_types */);
4893 if (dwo_entry == NULL)
4896 sig_entry = add_type_unit (sig, slot);
4897 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4902 /* Lookup a signature based type for DW_FORM_ref_sig8.
4903 Returns NULL if signature SIG is not present in the table.
4904 It is up to the caller to complain about this. */
4906 static struct signatured_type *
4907 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4910 && dwarf2_per_objfile->using_index)
4912 /* We're in a DWO/DWP file, and we're using .gdb_index.
4913 These cases require special processing. */
4914 if (get_dwp_file () == NULL)
4915 return lookup_dwo_signatured_type (cu, sig);
4917 return lookup_dwp_signatured_type (cu, sig);
4921 struct signatured_type find_entry, *entry;
4923 if (dwarf2_per_objfile->signatured_types == NULL)
4925 find_entry.signature = sig;
4926 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4931 /* Low level DIE reading support. */
4933 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4936 init_cu_die_reader (struct die_reader_specs *reader,
4937 struct dwarf2_cu *cu,
4938 struct dwarf2_section_info *section,
4939 struct dwo_file *dwo_file)
4941 gdb_assert (section->readin && section->buffer != NULL);
4942 reader->abfd = get_section_bfd_owner (section);
4944 reader->dwo_file = dwo_file;
4945 reader->die_section = section;
4946 reader->buffer = section->buffer;
4947 reader->buffer_end = section->buffer + section->size;
4948 reader->comp_dir = NULL;
4951 /* Subroutine of init_cutu_and_read_dies to simplify it.
4952 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4953 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4956 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4957 from it to the DIE in the DWO. If NULL we are skipping the stub.
4958 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4959 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4960 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4961 STUB_COMP_DIR may be non-NULL.
4962 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4963 are filled in with the info of the DIE from the DWO file.
4964 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4965 provided an abbrev table to use.
4966 The result is non-zero if a valid (non-dummy) DIE was found. */
4969 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4970 struct dwo_unit *dwo_unit,
4971 int abbrev_table_provided,
4972 struct die_info *stub_comp_unit_die,
4973 const char *stub_comp_dir,
4974 struct die_reader_specs *result_reader,
4975 const gdb_byte **result_info_ptr,
4976 struct die_info **result_comp_unit_die,
4977 int *result_has_children)
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwarf2_cu *cu = this_cu->cu;
4981 struct dwarf2_section_info *section;
4983 const gdb_byte *begin_info_ptr, *info_ptr;
4984 ULONGEST signature; /* Or dwo_id. */
4985 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4986 int i,num_extra_attrs;
4987 struct dwarf2_section_info *dwo_abbrev_section;
4988 struct attribute *attr;
4989 struct die_info *comp_unit_die;
4991 /* At most one of these may be provided. */
4992 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4994 /* These attributes aren't processed until later:
4995 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4996 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4997 referenced later. However, these attributes are found in the stub
4998 which we won't have later. In order to not impose this complication
4999 on the rest of the code, we read them here and copy them to the
5008 if (stub_comp_unit_die != NULL)
5010 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5012 if (! this_cu->is_debug_types)
5013 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5014 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5015 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5016 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5017 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5019 /* There should be a DW_AT_addr_base attribute here (if needed).
5020 We need the value before we can process DW_FORM_GNU_addr_index. */
5022 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5024 cu->addr_base = DW_UNSND (attr);
5026 /* There should be a DW_AT_ranges_base attribute here (if needed).
5027 We need the value before we can process DW_AT_ranges. */
5028 cu->ranges_base = 0;
5029 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5031 cu->ranges_base = DW_UNSND (attr);
5033 else if (stub_comp_dir != NULL)
5035 /* Reconstruct the comp_dir attribute to simplify the code below. */
5036 comp_dir = (struct attribute *)
5037 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5038 comp_dir->name = DW_AT_comp_dir;
5039 comp_dir->form = DW_FORM_string;
5040 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5041 DW_STRING (comp_dir) = stub_comp_dir;
5044 /* Set up for reading the DWO CU/TU. */
5045 cu->dwo_unit = dwo_unit;
5046 section = dwo_unit->section;
5047 dwarf2_read_section (objfile, section);
5048 abfd = get_section_bfd_owner (section);
5049 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5050 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5051 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5053 if (this_cu->is_debug_types)
5055 ULONGEST header_signature;
5056 cu_offset type_offset_in_tu;
5057 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5059 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5063 &type_offset_in_tu);
5064 /* This is not an assert because it can be caused by bad debug info. */
5065 if (sig_type->signature != header_signature)
5067 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5068 " TU at offset 0x%x [in module %s]"),
5069 hex_string (sig_type->signature),
5070 hex_string (header_signature),
5071 dwo_unit->offset.sect_off,
5072 bfd_get_filename (abfd));
5074 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5075 /* For DWOs coming from DWP files, we don't know the CU length
5076 nor the type's offset in the TU until now. */
5077 dwo_unit->length = get_cu_length (&cu->header);
5078 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5080 /* Establish the type offset that can be used to lookup the type.
5081 For DWO files, we don't know it until now. */
5082 sig_type->type_offset_in_section.sect_off =
5083 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5087 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5090 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5091 /* For DWOs coming from DWP files, we don't know the CU length
5093 dwo_unit->length = get_cu_length (&cu->header);
5096 /* Replace the CU's original abbrev table with the DWO's.
5097 Reminder: We can't read the abbrev table until we've read the header. */
5098 if (abbrev_table_provided)
5100 /* Don't free the provided abbrev table, the caller of
5101 init_cutu_and_read_dies owns it. */
5102 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5103 /* Ensure the DWO abbrev table gets freed. */
5104 make_cleanup (dwarf2_free_abbrev_table, cu);
5108 dwarf2_free_abbrev_table (cu);
5109 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5110 /* Leave any existing abbrev table cleanup as is. */
5113 /* Read in the die, but leave space to copy over the attributes
5114 from the stub. This has the benefit of simplifying the rest of
5115 the code - all the work to maintain the illusion of a single
5116 DW_TAG_{compile,type}_unit DIE is done here. */
5117 num_extra_attrs = ((stmt_list != NULL)
5121 + (comp_dir != NULL));
5122 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5123 result_has_children, num_extra_attrs);
5125 /* Copy over the attributes from the stub to the DIE we just read in. */
5126 comp_unit_die = *result_comp_unit_die;
5127 i = comp_unit_die->num_attrs;
5128 if (stmt_list != NULL)
5129 comp_unit_die->attrs[i++] = *stmt_list;
5131 comp_unit_die->attrs[i++] = *low_pc;
5132 if (high_pc != NULL)
5133 comp_unit_die->attrs[i++] = *high_pc;
5135 comp_unit_die->attrs[i++] = *ranges;
5136 if (comp_dir != NULL)
5137 comp_unit_die->attrs[i++] = *comp_dir;
5138 comp_unit_die->num_attrs += num_extra_attrs;
5140 if (dwarf2_die_debug)
5142 fprintf_unfiltered (gdb_stdlog,
5143 "Read die from %s@0x%x of %s:\n",
5144 get_section_name (section),
5145 (unsigned) (begin_info_ptr - section->buffer),
5146 bfd_get_filename (abfd));
5147 dump_die (comp_unit_die, dwarf2_die_debug);
5150 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5151 TUs by skipping the stub and going directly to the entry in the DWO file.
5152 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5153 to get it via circuitous means. Blech. */
5154 if (comp_dir != NULL)
5155 result_reader->comp_dir = DW_STRING (comp_dir);
5157 /* Skip dummy compilation units. */
5158 if (info_ptr >= begin_info_ptr + dwo_unit->length
5159 || peek_abbrev_code (abfd, info_ptr) == 0)
5162 *result_info_ptr = info_ptr;
5166 /* Subroutine of init_cutu_and_read_dies to simplify it.
5167 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5168 Returns NULL if the specified DWO unit cannot be found. */
5170 static struct dwo_unit *
5171 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5172 struct die_info *comp_unit_die)
5174 struct dwarf2_cu *cu = this_cu->cu;
5175 struct attribute *attr;
5177 struct dwo_unit *dwo_unit;
5178 const char *comp_dir, *dwo_name;
5180 gdb_assert (cu != NULL);
5182 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5183 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5184 gdb_assert (attr != NULL);
5185 dwo_name = DW_STRING (attr);
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5189 comp_dir = DW_STRING (attr);
5191 if (this_cu->is_debug_types)
5193 struct signatured_type *sig_type;
5195 /* Since this_cu is the first member of struct signatured_type,
5196 we can go from a pointer to one to a pointer to the other. */
5197 sig_type = (struct signatured_type *) this_cu;
5198 signature = sig_type->signature;
5199 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5203 struct attribute *attr;
5205 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5207 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5209 dwo_name, objfile_name (this_cu->objfile));
5210 signature = DW_UNSND (attr);
5211 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5218 /* Subroutine of init_cutu_and_read_dies to simplify it.
5219 See it for a description of the parameters.
5220 Read a TU directly from a DWO file, bypassing the stub.
5222 Note: This function could be a little bit simpler if we shared cleanups
5223 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5224 to do, so we keep this function self-contained. Or we could move this
5225 into our caller, but it's complex enough already. */
5228 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5229 int use_existing_cu, int keep,
5230 die_reader_func_ftype *die_reader_func,
5233 struct dwarf2_cu *cu;
5234 struct signatured_type *sig_type;
5235 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5236 struct die_reader_specs reader;
5237 const gdb_byte *info_ptr;
5238 struct die_info *comp_unit_die;
5241 /* Verify we can do the following downcast, and that we have the
5243 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5244 sig_type = (struct signatured_type *) this_cu;
5245 gdb_assert (sig_type->dwo_unit != NULL);
5247 cleanups = make_cleanup (null_cleanup, NULL);
5249 if (use_existing_cu && this_cu->cu != NULL)
5251 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5253 /* There's no need to do the rereading_dwo_cu handling that
5254 init_cutu_and_read_dies does since we don't read the stub. */
5258 /* If !use_existing_cu, this_cu->cu must be NULL. */
5259 gdb_assert (this_cu->cu == NULL);
5260 cu = xmalloc (sizeof (*cu));
5261 init_one_comp_unit (cu, this_cu);
5262 /* If an error occurs while loading, release our storage. */
5263 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5266 /* A future optimization, if needed, would be to use an existing
5267 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5268 could share abbrev tables. */
5270 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5271 0 /* abbrev_table_provided */,
5272 NULL /* stub_comp_unit_die */,
5273 sig_type->dwo_unit->dwo_file->comp_dir,
5275 &comp_unit_die, &has_children) == 0)
5278 do_cleanups (cleanups);
5282 /* All the "real" work is done here. */
5283 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5285 /* This duplicates the code in init_cutu_and_read_dies,
5286 but the alternative is making the latter more complex.
5287 This function is only for the special case of using DWO files directly:
5288 no point in overly complicating the general case just to handle this. */
5289 if (free_cu_cleanup != NULL)
5293 /* We've successfully allocated this compilation unit. Let our
5294 caller clean it up when finished with it. */
5295 discard_cleanups (free_cu_cleanup);
5297 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5298 So we have to manually free the abbrev table. */
5299 dwarf2_free_abbrev_table (cu);
5301 /* Link this CU into read_in_chain. */
5302 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5303 dwarf2_per_objfile->read_in_chain = this_cu;
5306 do_cleanups (free_cu_cleanup);
5309 do_cleanups (cleanups);
5312 /* Initialize a CU (or TU) and read its DIEs.
5313 If the CU defers to a DWO file, read the DWO file as well.
5315 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5316 Otherwise the table specified in the comp unit header is read in and used.
5317 This is an optimization for when we already have the abbrev table.
5319 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5320 Otherwise, a new CU is allocated with xmalloc.
5322 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5323 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5325 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5326 linker) then DIE_READER_FUNC will not get called. */
5329 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5330 struct abbrev_table *abbrev_table,
5331 int use_existing_cu, int keep,
5332 die_reader_func_ftype *die_reader_func,
5335 struct objfile *objfile = dwarf2_per_objfile->objfile;
5336 struct dwarf2_section_info *section = this_cu->section;
5337 bfd *abfd = get_section_bfd_owner (section);
5338 struct dwarf2_cu *cu;
5339 const gdb_byte *begin_info_ptr, *info_ptr;
5340 struct die_reader_specs reader;
5341 struct die_info *comp_unit_die;
5343 struct attribute *attr;
5344 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5345 struct signatured_type *sig_type = NULL;
5346 struct dwarf2_section_info *abbrev_section;
5347 /* Non-zero if CU currently points to a DWO file and we need to
5348 reread it. When this happens we need to reread the skeleton die
5349 before we can reread the DWO file (this only applies to CUs, not TUs). */
5350 int rereading_dwo_cu = 0;
5352 if (dwarf2_die_debug)
5353 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5354 this_cu->is_debug_types ? "type" : "comp",
5355 this_cu->offset.sect_off);
5357 if (use_existing_cu)
5360 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5361 file (instead of going through the stub), short-circuit all of this. */
5362 if (this_cu->reading_dwo_directly)
5364 /* Narrow down the scope of possibilities to have to understand. */
5365 gdb_assert (this_cu->is_debug_types);
5366 gdb_assert (abbrev_table == NULL);
5367 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5368 die_reader_func, data);
5372 cleanups = make_cleanup (null_cleanup, NULL);
5374 /* This is cheap if the section is already read in. */
5375 dwarf2_read_section (objfile, section);
5377 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5379 abbrev_section = get_abbrev_section_for_cu (this_cu);
5381 if (use_existing_cu && this_cu->cu != NULL)
5384 /* If this CU is from a DWO file we need to start over, we need to
5385 refetch the attributes from the skeleton CU.
5386 This could be optimized by retrieving those attributes from when we
5387 were here the first time: the previous comp_unit_die was stored in
5388 comp_unit_obstack. But there's no data yet that we need this
5390 if (cu->dwo_unit != NULL)
5391 rereading_dwo_cu = 1;
5395 /* If !use_existing_cu, this_cu->cu must be NULL. */
5396 gdb_assert (this_cu->cu == NULL);
5397 cu = xmalloc (sizeof (*cu));
5398 init_one_comp_unit (cu, this_cu);
5399 /* If an error occurs while loading, release our storage. */
5400 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5403 /* Get the header. */
5404 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5406 /* We already have the header, there's no need to read it in again. */
5407 info_ptr += cu->header.first_die_offset.cu_off;
5411 if (this_cu->is_debug_types)
5414 cu_offset type_offset_in_tu;
5416 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5417 abbrev_section, info_ptr,
5419 &type_offset_in_tu);
5421 /* Since per_cu is the first member of struct signatured_type,
5422 we can go from a pointer to one to a pointer to the other. */
5423 sig_type = (struct signatured_type *) this_cu;
5424 gdb_assert (sig_type->signature == signature);
5425 gdb_assert (sig_type->type_offset_in_tu.cu_off
5426 == type_offset_in_tu.cu_off);
5427 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5429 /* LENGTH has not been set yet for type units if we're
5430 using .gdb_index. */
5431 this_cu->length = get_cu_length (&cu->header);
5433 /* Establish the type offset that can be used to lookup the type. */
5434 sig_type->type_offset_in_section.sect_off =
5435 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5439 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5443 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5444 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5448 /* Skip dummy compilation units. */
5449 if (info_ptr >= begin_info_ptr + this_cu->length
5450 || peek_abbrev_code (abfd, info_ptr) == 0)
5452 do_cleanups (cleanups);
5456 /* If we don't have them yet, read the abbrevs for this compilation unit.
5457 And if we need to read them now, make sure they're freed when we're
5458 done. Note that it's important that if the CU had an abbrev table
5459 on entry we don't free it when we're done: Somewhere up the call stack
5460 it may be in use. */
5461 if (abbrev_table != NULL)
5463 gdb_assert (cu->abbrev_table == NULL);
5464 gdb_assert (cu->header.abbrev_offset.sect_off
5465 == abbrev_table->offset.sect_off);
5466 cu->abbrev_table = abbrev_table;
5468 else if (cu->abbrev_table == NULL)
5470 dwarf2_read_abbrevs (cu, abbrev_section);
5471 make_cleanup (dwarf2_free_abbrev_table, cu);
5473 else if (rereading_dwo_cu)
5475 dwarf2_free_abbrev_table (cu);
5476 dwarf2_read_abbrevs (cu, abbrev_section);
5479 /* Read the top level CU/TU die. */
5480 init_cu_die_reader (&reader, cu, section, NULL);
5481 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5483 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5485 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5486 DWO CU, that this test will fail (the attribute will not be present). */
5487 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5490 struct dwo_unit *dwo_unit;
5491 struct die_info *dwo_comp_unit_die;
5495 complaint (&symfile_complaints,
5496 _("compilation unit with DW_AT_GNU_dwo_name"
5497 " has children (offset 0x%x) [in module %s]"),
5498 this_cu->offset.sect_off, bfd_get_filename (abfd));
5500 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5501 if (dwo_unit != NULL)
5503 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5504 abbrev_table != NULL,
5505 comp_unit_die, NULL,
5507 &dwo_comp_unit_die, &has_children) == 0)
5510 do_cleanups (cleanups);
5513 comp_unit_die = dwo_comp_unit_die;
5517 /* Yikes, we couldn't find the rest of the DIE, we only have
5518 the stub. A complaint has already been logged. There's
5519 not much more we can do except pass on the stub DIE to
5520 die_reader_func. We don't want to throw an error on bad
5525 /* All of the above is setup for this call. Yikes. */
5526 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5528 /* Done, clean up. */
5529 if (free_cu_cleanup != NULL)
5533 /* We've successfully allocated this compilation unit. Let our
5534 caller clean it up when finished with it. */
5535 discard_cleanups (free_cu_cleanup);
5537 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5538 So we have to manually free the abbrev table. */
5539 dwarf2_free_abbrev_table (cu);
5541 /* Link this CU into read_in_chain. */
5542 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5543 dwarf2_per_objfile->read_in_chain = this_cu;
5546 do_cleanups (free_cu_cleanup);
5549 do_cleanups (cleanups);
5552 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5553 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5554 to have already done the lookup to find the DWO file).
5556 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5557 THIS_CU->is_debug_types, but nothing else.
5559 We fill in THIS_CU->length.
5561 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5562 linker) then DIE_READER_FUNC will not get called.
5564 THIS_CU->cu is always freed when done.
5565 This is done in order to not leave THIS_CU->cu in a state where we have
5566 to care whether it refers to the "main" CU or the DWO CU. */
5569 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5570 struct dwo_file *dwo_file,
5571 die_reader_func_ftype *die_reader_func,
5574 struct objfile *objfile = dwarf2_per_objfile->objfile;
5575 struct dwarf2_section_info *section = this_cu->section;
5576 bfd *abfd = get_section_bfd_owner (section);
5577 struct dwarf2_section_info *abbrev_section;
5578 struct dwarf2_cu cu;
5579 const gdb_byte *begin_info_ptr, *info_ptr;
5580 struct die_reader_specs reader;
5581 struct cleanup *cleanups;
5582 struct die_info *comp_unit_die;
5585 if (dwarf2_die_debug)
5586 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5587 this_cu->is_debug_types ? "type" : "comp",
5588 this_cu->offset.sect_off);
5590 gdb_assert (this_cu->cu == NULL);
5592 abbrev_section = (dwo_file != NULL
5593 ? &dwo_file->sections.abbrev
5594 : get_abbrev_section_for_cu (this_cu));
5596 /* This is cheap if the section is already read in. */
5597 dwarf2_read_section (objfile, section);
5599 init_one_comp_unit (&cu, this_cu);
5601 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5603 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5604 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5605 abbrev_section, info_ptr,
5606 this_cu->is_debug_types);
5608 this_cu->length = get_cu_length (&cu.header);
5610 /* Skip dummy compilation units. */
5611 if (info_ptr >= begin_info_ptr + this_cu->length
5612 || peek_abbrev_code (abfd, info_ptr) == 0)
5614 do_cleanups (cleanups);
5618 dwarf2_read_abbrevs (&cu, abbrev_section);
5619 make_cleanup (dwarf2_free_abbrev_table, &cu);
5621 init_cu_die_reader (&reader, &cu, section, dwo_file);
5622 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5624 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5626 do_cleanups (cleanups);
5629 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5630 does not lookup the specified DWO file.
5631 This cannot be used to read DWO files.
5633 THIS_CU->cu is always freed when done.
5634 This is done in order to not leave THIS_CU->cu in a state where we have
5635 to care whether it refers to the "main" CU or the DWO CU.
5636 We can revisit this if the data shows there's a performance issue. */
5639 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5640 die_reader_func_ftype *die_reader_func,
5643 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5646 /* Type Unit Groups.
5648 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5649 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5650 so that all types coming from the same compilation (.o file) are grouped
5651 together. A future step could be to put the types in the same symtab as
5652 the CU the types ultimately came from. */
5655 hash_type_unit_group (const void *item)
5657 const struct type_unit_group *tu_group = item;
5659 return hash_stmt_list_entry (&tu_group->hash);
5663 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5665 const struct type_unit_group *lhs = item_lhs;
5666 const struct type_unit_group *rhs = item_rhs;
5668 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5671 /* Allocate a hash table for type unit groups. */
5674 allocate_type_unit_groups_table (void)
5676 return htab_create_alloc_ex (3,
5677 hash_type_unit_group,
5680 &dwarf2_per_objfile->objfile->objfile_obstack,
5681 hashtab_obstack_allocate,
5682 dummy_obstack_deallocate);
5685 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5686 partial symtabs. We combine several TUs per psymtab to not let the size
5687 of any one psymtab grow too big. */
5688 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5689 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5691 /* Helper routine for get_type_unit_group.
5692 Create the type_unit_group object used to hold one or more TUs. */
5694 static struct type_unit_group *
5695 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5697 struct objfile *objfile = dwarf2_per_objfile->objfile;
5698 struct dwarf2_per_cu_data *per_cu;
5699 struct type_unit_group *tu_group;
5701 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5702 struct type_unit_group);
5703 per_cu = &tu_group->per_cu;
5704 per_cu->objfile = objfile;
5706 if (dwarf2_per_objfile->using_index)
5708 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5709 struct dwarf2_per_cu_quick_data);
5713 unsigned int line_offset = line_offset_struct.sect_off;
5714 struct partial_symtab *pst;
5717 /* Give the symtab a useful name for debug purposes. */
5718 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5719 name = xstrprintf ("<type_units_%d>",
5720 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5722 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5724 pst = create_partial_symtab (per_cu, name);
5730 tu_group->hash.dwo_unit = cu->dwo_unit;
5731 tu_group->hash.line_offset = line_offset_struct;
5736 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5737 STMT_LIST is a DW_AT_stmt_list attribute. */
5739 static struct type_unit_group *
5740 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5742 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5743 struct type_unit_group *tu_group;
5745 unsigned int line_offset;
5746 struct type_unit_group type_unit_group_for_lookup;
5748 if (dwarf2_per_objfile->type_unit_groups == NULL)
5750 dwarf2_per_objfile->type_unit_groups =
5751 allocate_type_unit_groups_table ();
5754 /* Do we need to create a new group, or can we use an existing one? */
5758 line_offset = DW_UNSND (stmt_list);
5759 ++tu_stats->nr_symtab_sharers;
5763 /* Ugh, no stmt_list. Rare, but we have to handle it.
5764 We can do various things here like create one group per TU or
5765 spread them over multiple groups to split up the expansion work.
5766 To avoid worst case scenarios (too many groups or too large groups)
5767 we, umm, group them in bunches. */
5768 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5769 | (tu_stats->nr_stmt_less_type_units
5770 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5771 ++tu_stats->nr_stmt_less_type_units;
5774 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5775 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5776 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5777 &type_unit_group_for_lookup, INSERT);
5781 gdb_assert (tu_group != NULL);
5785 sect_offset line_offset_struct;
5787 line_offset_struct.sect_off = line_offset;
5788 tu_group = create_type_unit_group (cu, line_offset_struct);
5790 ++tu_stats->nr_symtabs;
5796 /* Partial symbol tables. */
5798 /* Create a psymtab named NAME and assign it to PER_CU.
5800 The caller must fill in the following details:
5801 dirname, textlow, texthigh. */
5803 static struct partial_symtab *
5804 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5806 struct objfile *objfile = per_cu->objfile;
5807 struct partial_symtab *pst;
5809 pst = start_psymtab_common (objfile, objfile->section_offsets,
5811 objfile->global_psymbols.next,
5812 objfile->static_psymbols.next);
5814 pst->psymtabs_addrmap_supported = 1;
5816 /* This is the glue that links PST into GDB's symbol API. */
5817 pst->read_symtab_private = per_cu;
5818 pst->read_symtab = dwarf2_read_symtab;
5819 per_cu->v.psymtab = pst;
5824 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5827 struct process_psymtab_comp_unit_data
5829 /* True if we are reading a DW_TAG_partial_unit. */
5831 int want_partial_unit;
5833 /* The "pretend" language that is used if the CU doesn't declare a
5836 enum language pretend_language;
5839 /* die_reader_func for process_psymtab_comp_unit. */
5842 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5843 const gdb_byte *info_ptr,
5844 struct die_info *comp_unit_die,
5848 struct dwarf2_cu *cu = reader->cu;
5849 struct objfile *objfile = cu->objfile;
5850 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5851 struct attribute *attr;
5853 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5854 struct partial_symtab *pst;
5856 const char *filename;
5857 struct process_psymtab_comp_unit_data *info = data;
5859 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5862 gdb_assert (! per_cu->is_debug_types);
5864 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5866 cu->list_in_scope = &file_symbols;
5868 /* Allocate a new partial symbol table structure. */
5869 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5870 if (attr == NULL || !DW_STRING (attr))
5873 filename = DW_STRING (attr);
5875 pst = create_partial_symtab (per_cu, filename);
5877 /* This must be done before calling dwarf2_build_include_psymtabs. */
5878 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5880 pst->dirname = DW_STRING (attr);
5882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5884 dwarf2_find_base_address (comp_unit_die, cu);
5886 /* Possibly set the default values of LOWPC and HIGHPC from
5888 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5889 &best_highpc, cu, pst);
5890 if (has_pc_info == 1 && best_lowpc < best_highpc)
5891 /* Store the contiguous range if it is not empty; it can be empty for
5892 CUs with no code. */
5893 addrmap_set_empty (objfile->psymtabs_addrmap,
5894 best_lowpc + baseaddr,
5895 best_highpc + baseaddr - 1, pst);
5897 /* Check if comp unit has_children.
5898 If so, read the rest of the partial symbols from this comp unit.
5899 If not, there's no more debug_info for this comp unit. */
5902 struct partial_die_info *first_die;
5903 CORE_ADDR lowpc, highpc;
5905 lowpc = ((CORE_ADDR) -1);
5906 highpc = ((CORE_ADDR) 0);
5908 first_die = load_partial_dies (reader, info_ptr, 1);
5910 scan_partial_symbols (first_die, &lowpc, &highpc,
5913 /* If we didn't find a lowpc, set it to highpc to avoid
5914 complaints from `maint check'. */
5915 if (lowpc == ((CORE_ADDR) -1))
5918 /* If the compilation unit didn't have an explicit address range,
5919 then use the information extracted from its child dies. */
5923 best_highpc = highpc;
5926 pst->textlow = best_lowpc + baseaddr;
5927 pst->texthigh = best_highpc + baseaddr;
5929 pst->n_global_syms = objfile->global_psymbols.next -
5930 (objfile->global_psymbols.list + pst->globals_offset);
5931 pst->n_static_syms = objfile->static_psymbols.next -
5932 (objfile->static_psymbols.list + pst->statics_offset);
5933 sort_pst_symbols (objfile, pst);
5935 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5938 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5939 struct dwarf2_per_cu_data *iter;
5941 /* Fill in 'dependencies' here; we fill in 'users' in a
5943 pst->number_of_dependencies = len;
5944 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5945 len * sizeof (struct symtab *));
5947 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5950 pst->dependencies[i] = iter->v.psymtab;
5952 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5955 /* Get the list of files included in the current compilation unit,
5956 and build a psymtab for each of them. */
5957 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5959 if (dwarf2_read_debug)
5961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5963 fprintf_unfiltered (gdb_stdlog,
5964 "Psymtab for %s unit @0x%x: %s - %s"
5965 ", %d global, %d static syms\n",
5966 per_cu->is_debug_types ? "type" : "comp",
5967 per_cu->offset.sect_off,
5968 paddress (gdbarch, pst->textlow),
5969 paddress (gdbarch, pst->texthigh),
5970 pst->n_global_syms, pst->n_static_syms);
5974 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5975 Process compilation unit THIS_CU for a psymtab. */
5978 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5979 int want_partial_unit,
5980 enum language pretend_language)
5982 struct process_psymtab_comp_unit_data info;
5984 /* If this compilation unit was already read in, free the
5985 cached copy in order to read it in again. This is
5986 necessary because we skipped some symbols when we first
5987 read in the compilation unit (see load_partial_dies).
5988 This problem could be avoided, but the benefit is unclear. */
5989 if (this_cu->cu != NULL)
5990 free_one_cached_comp_unit (this_cu);
5992 gdb_assert (! this_cu->is_debug_types);
5993 info.want_partial_unit = want_partial_unit;
5994 info.pretend_language = pretend_language;
5995 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5996 process_psymtab_comp_unit_reader,
5999 /* Age out any secondary CUs. */
6000 age_cached_comp_units ();
6003 /* Reader function for build_type_psymtabs. */
6006 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6007 const gdb_byte *info_ptr,
6008 struct die_info *type_unit_die,
6012 struct objfile *objfile = dwarf2_per_objfile->objfile;
6013 struct dwarf2_cu *cu = reader->cu;
6014 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6015 struct signatured_type *sig_type;
6016 struct type_unit_group *tu_group;
6017 struct attribute *attr;
6018 struct partial_die_info *first_die;
6019 CORE_ADDR lowpc, highpc;
6020 struct partial_symtab *pst;
6022 gdb_assert (data == NULL);
6023 gdb_assert (per_cu->is_debug_types);
6024 sig_type = (struct signatured_type *) per_cu;
6029 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6030 tu_group = get_type_unit_group (cu, attr);
6032 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6034 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6035 cu->list_in_scope = &file_symbols;
6036 pst = create_partial_symtab (per_cu, "");
6039 first_die = load_partial_dies (reader, info_ptr, 1);
6041 lowpc = (CORE_ADDR) -1;
6042 highpc = (CORE_ADDR) 0;
6043 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6045 pst->n_global_syms = objfile->global_psymbols.next -
6046 (objfile->global_psymbols.list + pst->globals_offset);
6047 pst->n_static_syms = objfile->static_psymbols.next -
6048 (objfile->static_psymbols.list + pst->statics_offset);
6049 sort_pst_symbols (objfile, pst);
6052 /* Struct used to sort TUs by their abbreviation table offset. */
6054 struct tu_abbrev_offset
6056 struct signatured_type *sig_type;
6057 sect_offset abbrev_offset;
6060 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6063 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6065 const struct tu_abbrev_offset * const *a = ap;
6066 const struct tu_abbrev_offset * const *b = bp;
6067 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6068 unsigned int boff = (*b)->abbrev_offset.sect_off;
6070 return (aoff > boff) - (aoff < boff);
6073 /* Efficiently read all the type units.
6074 This does the bulk of the work for build_type_psymtabs.
6076 The efficiency is because we sort TUs by the abbrev table they use and
6077 only read each abbrev table once. In one program there are 200K TUs
6078 sharing 8K abbrev tables.
6080 The main purpose of this function is to support building the
6081 dwarf2_per_objfile->type_unit_groups table.
6082 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6083 can collapse the search space by grouping them by stmt_list.
6084 The savings can be significant, in the same program from above the 200K TUs
6085 share 8K stmt_list tables.
6087 FUNC is expected to call get_type_unit_group, which will create the
6088 struct type_unit_group if necessary and add it to
6089 dwarf2_per_objfile->type_unit_groups. */
6092 build_type_psymtabs_1 (void)
6094 struct objfile *objfile = dwarf2_per_objfile->objfile;
6095 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6096 struct cleanup *cleanups;
6097 struct abbrev_table *abbrev_table;
6098 sect_offset abbrev_offset;
6099 struct tu_abbrev_offset *sorted_by_abbrev;
6100 struct type_unit_group **iter;
6103 /* It's up to the caller to not call us multiple times. */
6104 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6106 if (dwarf2_per_objfile->n_type_units == 0)
6109 /* TUs typically share abbrev tables, and there can be way more TUs than
6110 abbrev tables. Sort by abbrev table to reduce the number of times we
6111 read each abbrev table in.
6112 Alternatives are to punt or to maintain a cache of abbrev tables.
6113 This is simpler and efficient enough for now.
6115 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6116 symtab to use). Typically TUs with the same abbrev offset have the same
6117 stmt_list value too so in practice this should work well.
6119 The basic algorithm here is:
6121 sort TUs by abbrev table
6122 for each TU with same abbrev table:
6123 read abbrev table if first user
6124 read TU top level DIE
6125 [IWBN if DWO skeletons had DW_AT_stmt_list]
6128 if (dwarf2_read_debug)
6129 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6131 /* Sort in a separate table to maintain the order of all_type_units
6132 for .gdb_index: TU indices directly index all_type_units. */
6133 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6134 dwarf2_per_objfile->n_type_units);
6135 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6137 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6139 sorted_by_abbrev[i].sig_type = sig_type;
6140 sorted_by_abbrev[i].abbrev_offset =
6141 read_abbrev_offset (sig_type->per_cu.section,
6142 sig_type->per_cu.offset);
6144 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6145 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6146 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6148 abbrev_offset.sect_off = ~(unsigned) 0;
6149 abbrev_table = NULL;
6150 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6152 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6154 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6156 /* Switch to the next abbrev table if necessary. */
6157 if (abbrev_table == NULL
6158 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6160 if (abbrev_table != NULL)
6162 abbrev_table_free (abbrev_table);
6163 /* Reset to NULL in case abbrev_table_read_table throws
6164 an error: abbrev_table_free_cleanup will get called. */
6165 abbrev_table = NULL;
6167 abbrev_offset = tu->abbrev_offset;
6169 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6171 ++tu_stats->nr_uniq_abbrev_tables;
6174 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6175 build_type_psymtabs_reader, NULL);
6178 do_cleanups (cleanups);
6181 /* Print collected type unit statistics. */
6184 print_tu_stats (void)
6186 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6188 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6189 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6190 dwarf2_per_objfile->n_type_units);
6191 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6192 tu_stats->nr_uniq_abbrev_tables);
6193 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6194 tu_stats->nr_symtabs);
6195 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6196 tu_stats->nr_symtab_sharers);
6197 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6198 tu_stats->nr_stmt_less_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6200 tu_stats->nr_all_type_units_reallocs);
6203 /* Traversal function for build_type_psymtabs. */
6206 build_type_psymtab_dependencies (void **slot, void *info)
6208 struct objfile *objfile = dwarf2_per_objfile->objfile;
6209 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6210 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6211 struct partial_symtab *pst = per_cu->v.psymtab;
6212 int len = VEC_length (sig_type_ptr, tu_group->tus);
6213 struct signatured_type *iter;
6216 gdb_assert (len > 0);
6217 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6219 pst->number_of_dependencies = len;
6220 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6221 len * sizeof (struct psymtab *));
6223 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6226 gdb_assert (iter->per_cu.is_debug_types);
6227 pst->dependencies[i] = iter->per_cu.v.psymtab;
6228 iter->type_unit_group = tu_group;
6231 VEC_free (sig_type_ptr, tu_group->tus);
6236 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6237 Build partial symbol tables for the .debug_types comp-units. */
6240 build_type_psymtabs (struct objfile *objfile)
6242 if (! create_all_type_units (objfile))
6245 build_type_psymtabs_1 ();
6248 /* Traversal function for process_skeletonless_type_unit.
6249 Read a TU in a DWO file and build partial symbols for it. */
6252 process_skeletonless_type_unit (void **slot, void *info)
6254 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6255 struct objfile *objfile = info;
6256 struct signatured_type find_entry, *entry;
6258 /* If this TU doesn't exist in the global table, add it and read it in. */
6260 if (dwarf2_per_objfile->signatured_types == NULL)
6262 dwarf2_per_objfile->signatured_types
6263 = allocate_signatured_type_table (objfile);
6266 find_entry.signature = dwo_unit->signature;
6267 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6269 /* If we've already seen this type there's nothing to do. What's happening
6270 is we're doing our own version of comdat-folding here. */
6274 /* This does the job that create_all_type_units would have done for
6276 entry = add_type_unit (dwo_unit->signature, slot);
6277 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6280 /* This does the job that build_type_psymtabs_1 would have done. */
6281 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6282 build_type_psymtabs_reader, NULL);
6287 /* Traversal function for process_skeletonless_type_units. */
6290 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6292 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6294 if (dwo_file->tus != NULL)
6296 htab_traverse_noresize (dwo_file->tus,
6297 process_skeletonless_type_unit, info);
6303 /* Scan all TUs of DWO files, verifying we've processed them.
6304 This is needed in case a TU was emitted without its skeleton.
6305 Note: This can't be done until we know what all the DWO files are. */
6308 process_skeletonless_type_units (struct objfile *objfile)
6310 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6311 if (get_dwp_file () == NULL
6312 && dwarf2_per_objfile->dwo_files != NULL)
6314 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6315 process_dwo_file_for_skeletonless_type_units,
6320 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6323 psymtabs_addrmap_cleanup (void *o)
6325 struct objfile *objfile = o;
6327 objfile->psymtabs_addrmap = NULL;
6330 /* Compute the 'user' field for each psymtab in OBJFILE. */
6333 set_partial_user (struct objfile *objfile)
6337 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6339 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6340 struct partial_symtab *pst = per_cu->v.psymtab;
6346 for (j = 0; j < pst->number_of_dependencies; ++j)
6348 /* Set the 'user' field only if it is not already set. */
6349 if (pst->dependencies[j]->user == NULL)
6350 pst->dependencies[j]->user = pst;
6355 /* Build the partial symbol table by doing a quick pass through the
6356 .debug_info and .debug_abbrev sections. */
6359 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6361 struct cleanup *back_to, *addrmap_cleanup;
6362 struct obstack temp_obstack;
6365 if (dwarf2_read_debug)
6367 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6368 objfile_name (objfile));
6371 dwarf2_per_objfile->reading_partial_symbols = 1;
6373 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6375 /* Any cached compilation units will be linked by the per-objfile
6376 read_in_chain. Make sure to free them when we're done. */
6377 back_to = make_cleanup (free_cached_comp_units, NULL);
6379 build_type_psymtabs (objfile);
6381 create_all_comp_units (objfile);
6383 /* Create a temporary address map on a temporary obstack. We later
6384 copy this to the final obstack. */
6385 obstack_init (&temp_obstack);
6386 make_cleanup_obstack_free (&temp_obstack);
6387 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6388 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6390 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6392 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6394 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6397 /* This has to wait until we read the CUs, we need the list of DWOs. */
6398 process_skeletonless_type_units (objfile);
6400 /* Now that all TUs have been processed we can fill in the dependencies. */
6401 if (dwarf2_per_objfile->type_unit_groups != NULL)
6403 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6404 build_type_psymtab_dependencies, NULL);
6407 if (dwarf2_read_debug)
6410 set_partial_user (objfile);
6412 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6413 &objfile->objfile_obstack);
6414 discard_cleanups (addrmap_cleanup);
6416 do_cleanups (back_to);
6418 if (dwarf2_read_debug)
6419 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6420 objfile_name (objfile));
6423 /* die_reader_func for load_partial_comp_unit. */
6426 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6427 const gdb_byte *info_ptr,
6428 struct die_info *comp_unit_die,
6432 struct dwarf2_cu *cu = reader->cu;
6434 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6436 /* Check if comp unit has_children.
6437 If so, read the rest of the partial symbols from this comp unit.
6438 If not, there's no more debug_info for this comp unit. */
6440 load_partial_dies (reader, info_ptr, 0);
6443 /* Load the partial DIEs for a secondary CU into memory.
6444 This is also used when rereading a primary CU with load_all_dies. */
6447 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6449 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6450 load_partial_comp_unit_reader, NULL);
6454 read_comp_units_from_section (struct objfile *objfile,
6455 struct dwarf2_section_info *section,
6456 unsigned int is_dwz,
6459 struct dwarf2_per_cu_data ***all_comp_units)
6461 const gdb_byte *info_ptr;
6462 bfd *abfd = get_section_bfd_owner (section);
6464 if (dwarf2_read_debug)
6465 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6466 get_section_name (section),
6467 get_section_file_name (section));
6469 dwarf2_read_section (objfile, section);
6471 info_ptr = section->buffer;
6473 while (info_ptr < section->buffer + section->size)
6475 unsigned int length, initial_length_size;
6476 struct dwarf2_per_cu_data *this_cu;
6479 offset.sect_off = info_ptr - section->buffer;
6481 /* Read just enough information to find out where the next
6482 compilation unit is. */
6483 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6485 /* Save the compilation unit for later lookup. */
6486 this_cu = obstack_alloc (&objfile->objfile_obstack,
6487 sizeof (struct dwarf2_per_cu_data));
6488 memset (this_cu, 0, sizeof (*this_cu));
6489 this_cu->offset = offset;
6490 this_cu->length = length + initial_length_size;
6491 this_cu->is_dwz = is_dwz;
6492 this_cu->objfile = objfile;
6493 this_cu->section = section;
6495 if (*n_comp_units == *n_allocated)
6498 *all_comp_units = xrealloc (*all_comp_units,
6500 * sizeof (struct dwarf2_per_cu_data *));
6502 (*all_comp_units)[*n_comp_units] = this_cu;
6505 info_ptr = info_ptr + this_cu->length;
6509 /* Create a list of all compilation units in OBJFILE.
6510 This is only done for -readnow and building partial symtabs. */
6513 create_all_comp_units (struct objfile *objfile)
6517 struct dwarf2_per_cu_data **all_comp_units;
6518 struct dwz_file *dwz;
6522 all_comp_units = xmalloc (n_allocated
6523 * sizeof (struct dwarf2_per_cu_data *));
6525 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6526 &n_allocated, &n_comp_units, &all_comp_units);
6528 dwz = dwarf2_get_dwz_file ();
6530 read_comp_units_from_section (objfile, &dwz->info, 1,
6531 &n_allocated, &n_comp_units,
6534 dwarf2_per_objfile->all_comp_units
6535 = obstack_alloc (&objfile->objfile_obstack,
6536 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6537 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6538 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6539 xfree (all_comp_units);
6540 dwarf2_per_objfile->n_comp_units = n_comp_units;
6543 /* Process all loaded DIEs for compilation unit CU, starting at
6544 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6545 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6546 DW_AT_ranges). See the comments of add_partial_subprogram on how
6547 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6550 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6551 CORE_ADDR *highpc, int set_addrmap,
6552 struct dwarf2_cu *cu)
6554 struct partial_die_info *pdi;
6556 /* Now, march along the PDI's, descending into ones which have
6557 interesting children but skipping the children of the other ones,
6558 until we reach the end of the compilation unit. */
6564 fixup_partial_die (pdi, cu);
6566 /* Anonymous namespaces or modules have no name but have interesting
6567 children, so we need to look at them. Ditto for anonymous
6570 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6571 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6572 || pdi->tag == DW_TAG_imported_unit)
6576 case DW_TAG_subprogram:
6577 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6579 case DW_TAG_constant:
6580 case DW_TAG_variable:
6581 case DW_TAG_typedef:
6582 case DW_TAG_union_type:
6583 if (!pdi->is_declaration)
6585 add_partial_symbol (pdi, cu);
6588 case DW_TAG_class_type:
6589 case DW_TAG_interface_type:
6590 case DW_TAG_structure_type:
6591 if (!pdi->is_declaration)
6593 add_partial_symbol (pdi, cu);
6596 case DW_TAG_enumeration_type:
6597 if (!pdi->is_declaration)
6598 add_partial_enumeration (pdi, cu);
6600 case DW_TAG_base_type:
6601 case DW_TAG_subrange_type:
6602 /* File scope base type definitions are added to the partial
6604 add_partial_symbol (pdi, cu);
6606 case DW_TAG_namespace:
6607 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6610 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6612 case DW_TAG_imported_unit:
6614 struct dwarf2_per_cu_data *per_cu;
6616 /* For now we don't handle imported units in type units. */
6617 if (cu->per_cu->is_debug_types)
6619 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6620 " supported in type units [in module %s]"),
6621 objfile_name (cu->objfile));
6624 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6628 /* Go read the partial unit, if needed. */
6629 if (per_cu->v.psymtab == NULL)
6630 process_psymtab_comp_unit (per_cu, 1, cu->language);
6632 VEC_safe_push (dwarf2_per_cu_ptr,
6633 cu->per_cu->imported_symtabs, per_cu);
6636 case DW_TAG_imported_declaration:
6637 add_partial_symbol (pdi, cu);
6644 /* If the die has a sibling, skip to the sibling. */
6646 pdi = pdi->die_sibling;
6650 /* Functions used to compute the fully scoped name of a partial DIE.
6652 Normally, this is simple. For C++, the parent DIE's fully scoped
6653 name is concatenated with "::" and the partial DIE's name. For
6654 Java, the same thing occurs except that "." is used instead of "::".
6655 Enumerators are an exception; they use the scope of their parent
6656 enumeration type, i.e. the name of the enumeration type is not
6657 prepended to the enumerator.
6659 There are two complexities. One is DW_AT_specification; in this
6660 case "parent" means the parent of the target of the specification,
6661 instead of the direct parent of the DIE. The other is compilers
6662 which do not emit DW_TAG_namespace; in this case we try to guess
6663 the fully qualified name of structure types from their members'
6664 linkage names. This must be done using the DIE's children rather
6665 than the children of any DW_AT_specification target. We only need
6666 to do this for structures at the top level, i.e. if the target of
6667 any DW_AT_specification (if any; otherwise the DIE itself) does not
6670 /* Compute the scope prefix associated with PDI's parent, in
6671 compilation unit CU. The result will be allocated on CU's
6672 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6673 field. NULL is returned if no prefix is necessary. */
6675 partial_die_parent_scope (struct partial_die_info *pdi,
6676 struct dwarf2_cu *cu)
6678 const char *grandparent_scope;
6679 struct partial_die_info *parent, *real_pdi;
6681 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6682 then this means the parent of the specification DIE. */
6685 while (real_pdi->has_specification)
6686 real_pdi = find_partial_die (real_pdi->spec_offset,
6687 real_pdi->spec_is_dwz, cu);
6689 parent = real_pdi->die_parent;
6693 if (parent->scope_set)
6694 return parent->scope;
6696 fixup_partial_die (parent, cu);
6698 grandparent_scope = partial_die_parent_scope (parent, cu);
6700 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6701 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6702 Work around this problem here. */
6703 if (cu->language == language_cplus
6704 && parent->tag == DW_TAG_namespace
6705 && strcmp (parent->name, "::") == 0
6706 && grandparent_scope == NULL)
6708 parent->scope = NULL;
6709 parent->scope_set = 1;
6713 if (pdi->tag == DW_TAG_enumerator)
6714 /* Enumerators should not get the name of the enumeration as a prefix. */
6715 parent->scope = grandparent_scope;
6716 else if (parent->tag == DW_TAG_namespace
6717 || parent->tag == DW_TAG_module
6718 || parent->tag == DW_TAG_structure_type
6719 || parent->tag == DW_TAG_class_type
6720 || parent->tag == DW_TAG_interface_type
6721 || parent->tag == DW_TAG_union_type
6722 || parent->tag == DW_TAG_enumeration_type)
6724 if (grandparent_scope == NULL)
6725 parent->scope = parent->name;
6727 parent->scope = typename_concat (&cu->comp_unit_obstack,
6729 parent->name, 0, cu);
6733 /* FIXME drow/2004-04-01: What should we be doing with
6734 function-local names? For partial symbols, we should probably be
6736 complaint (&symfile_complaints,
6737 _("unhandled containing DIE tag %d for DIE at %d"),
6738 parent->tag, pdi->offset.sect_off);
6739 parent->scope = grandparent_scope;
6742 parent->scope_set = 1;
6743 return parent->scope;
6746 /* Return the fully scoped name associated with PDI, from compilation unit
6747 CU. The result will be allocated with malloc. */
6750 partial_die_full_name (struct partial_die_info *pdi,
6751 struct dwarf2_cu *cu)
6753 const char *parent_scope;
6755 /* If this is a template instantiation, we can not work out the
6756 template arguments from partial DIEs. So, unfortunately, we have
6757 to go through the full DIEs. At least any work we do building
6758 types here will be reused if full symbols are loaded later. */
6759 if (pdi->has_template_arguments)
6761 fixup_partial_die (pdi, cu);
6763 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6765 struct die_info *die;
6766 struct attribute attr;
6767 struct dwarf2_cu *ref_cu = cu;
6769 /* DW_FORM_ref_addr is using section offset. */
6771 attr.form = DW_FORM_ref_addr;
6772 attr.u.unsnd = pdi->offset.sect_off;
6773 die = follow_die_ref (NULL, &attr, &ref_cu);
6775 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6779 parent_scope = partial_die_parent_scope (pdi, cu);
6780 if (parent_scope == NULL)
6783 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6787 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6789 struct objfile *objfile = cu->objfile;
6791 const char *actual_name = NULL;
6793 char *built_actual_name;
6795 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6797 built_actual_name = partial_die_full_name (pdi, cu);
6798 if (built_actual_name != NULL)
6799 actual_name = built_actual_name;
6801 if (actual_name == NULL)
6802 actual_name = pdi->name;
6806 case DW_TAG_subprogram:
6807 if (pdi->is_external || cu->language == language_ada)
6809 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6810 of the global scope. But in Ada, we want to be able to access
6811 nested procedures globally. So all Ada subprograms are stored
6812 in the global scope. */
6813 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6814 mst_text, objfile); */
6815 add_psymbol_to_list (actual_name, strlen (actual_name),
6816 built_actual_name != NULL,
6817 VAR_DOMAIN, LOC_BLOCK,
6818 &objfile->global_psymbols,
6819 0, pdi->lowpc + baseaddr,
6820 cu->language, objfile);
6824 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6825 mst_file_text, objfile); */
6826 add_psymbol_to_list (actual_name, strlen (actual_name),
6827 built_actual_name != NULL,
6828 VAR_DOMAIN, LOC_BLOCK,
6829 &objfile->static_psymbols,
6830 0, pdi->lowpc + baseaddr,
6831 cu->language, objfile);
6834 case DW_TAG_constant:
6836 struct psymbol_allocation_list *list;
6838 if (pdi->is_external)
6839 list = &objfile->global_psymbols;
6841 list = &objfile->static_psymbols;
6842 add_psymbol_to_list (actual_name, strlen (actual_name),
6843 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6844 list, 0, 0, cu->language, objfile);
6847 case DW_TAG_variable:
6849 addr = decode_locdesc (pdi->d.locdesc, cu);
6853 && !dwarf2_per_objfile->has_section_at_zero)
6855 /* A global or static variable may also have been stripped
6856 out by the linker if unused, in which case its address
6857 will be nullified; do not add such variables into partial
6858 symbol table then. */
6860 else if (pdi->is_external)
6863 Don't enter into the minimal symbol tables as there is
6864 a minimal symbol table entry from the ELF symbols already.
6865 Enter into partial symbol table if it has a location
6866 descriptor or a type.
6867 If the location descriptor is missing, new_symbol will create
6868 a LOC_UNRESOLVED symbol, the address of the variable will then
6869 be determined from the minimal symbol table whenever the variable
6871 The address for the partial symbol table entry is not
6872 used by GDB, but it comes in handy for debugging partial symbol
6875 if (pdi->d.locdesc || pdi->has_type)
6876 add_psymbol_to_list (actual_name, strlen (actual_name),
6877 built_actual_name != NULL,
6878 VAR_DOMAIN, LOC_STATIC,
6879 &objfile->global_psymbols,
6881 cu->language, objfile);
6885 /* Static Variable. Skip symbols without location descriptors. */
6886 if (pdi->d.locdesc == NULL)
6888 xfree (built_actual_name);
6891 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6892 mst_file_data, objfile); */
6893 add_psymbol_to_list (actual_name, strlen (actual_name),
6894 built_actual_name != NULL,
6895 VAR_DOMAIN, LOC_STATIC,
6896 &objfile->static_psymbols,
6898 cu->language, objfile);
6901 case DW_TAG_typedef:
6902 case DW_TAG_base_type:
6903 case DW_TAG_subrange_type:
6904 add_psymbol_to_list (actual_name, strlen (actual_name),
6905 built_actual_name != NULL,
6906 VAR_DOMAIN, LOC_TYPEDEF,
6907 &objfile->static_psymbols,
6908 0, (CORE_ADDR) 0, cu->language, objfile);
6910 case DW_TAG_imported_declaration:
6911 case DW_TAG_namespace:
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
6913 built_actual_name != NULL,
6914 VAR_DOMAIN, LOC_TYPEDEF,
6915 &objfile->global_psymbols,
6916 0, (CORE_ADDR) 0, cu->language, objfile);
6919 add_psymbol_to_list (actual_name, strlen (actual_name),
6920 built_actual_name != NULL,
6921 MODULE_DOMAIN, LOC_TYPEDEF,
6922 &objfile->global_psymbols,
6923 0, (CORE_ADDR) 0, cu->language, objfile);
6925 case DW_TAG_class_type:
6926 case DW_TAG_interface_type:
6927 case DW_TAG_structure_type:
6928 case DW_TAG_union_type:
6929 case DW_TAG_enumeration_type:
6930 /* Skip external references. The DWARF standard says in the section
6931 about "Structure, Union, and Class Type Entries": "An incomplete
6932 structure, union or class type is represented by a structure,
6933 union or class entry that does not have a byte size attribute
6934 and that has a DW_AT_declaration attribute." */
6935 if (!pdi->has_byte_size && pdi->is_declaration)
6937 xfree (built_actual_name);
6941 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6942 static vs. global. */
6943 add_psymbol_to_list (actual_name, strlen (actual_name),
6944 built_actual_name != NULL,
6945 STRUCT_DOMAIN, LOC_TYPEDEF,
6946 (cu->language == language_cplus
6947 || cu->language == language_java)
6948 ? &objfile->global_psymbols
6949 : &objfile->static_psymbols,
6950 0, (CORE_ADDR) 0, cu->language, objfile);
6953 case DW_TAG_enumerator:
6954 add_psymbol_to_list (actual_name, strlen (actual_name),
6955 built_actual_name != NULL,
6956 VAR_DOMAIN, LOC_CONST,
6957 (cu->language == language_cplus
6958 || cu->language == language_java)
6959 ? &objfile->global_psymbols
6960 : &objfile->static_psymbols,
6961 0, (CORE_ADDR) 0, cu->language, objfile);
6967 xfree (built_actual_name);
6970 /* Read a partial die corresponding to a namespace; also, add a symbol
6971 corresponding to that namespace to the symbol table. NAMESPACE is
6972 the name of the enclosing namespace. */
6975 add_partial_namespace (struct partial_die_info *pdi,
6976 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6977 int set_addrmap, struct dwarf2_cu *cu)
6979 /* Add a symbol for the namespace. */
6981 add_partial_symbol (pdi, cu);
6983 /* Now scan partial symbols in that namespace. */
6985 if (pdi->has_children)
6986 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
6989 /* Read a partial die corresponding to a Fortran module. */
6992 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6993 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
6995 /* Add a symbol for the namespace. */
6997 add_partial_symbol (pdi, cu);
6999 /* Now scan partial symbols in that module. */
7001 if (pdi->has_children)
7002 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7005 /* Read a partial die corresponding to a subprogram and create a partial
7006 symbol for that subprogram. When the CU language allows it, this
7007 routine also defines a partial symbol for each nested subprogram
7008 that this subprogram contains. If SET_ADDRMAP is true, record the
7009 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7010 and highest PC values found in PDI.
7012 PDI may also be a lexical block, in which case we simply search
7013 recursively for subprograms defined inside that lexical block.
7014 Again, this is only performed when the CU language allows this
7015 type of definitions. */
7018 add_partial_subprogram (struct partial_die_info *pdi,
7019 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7020 int set_addrmap, struct dwarf2_cu *cu)
7022 if (pdi->tag == DW_TAG_subprogram)
7024 if (pdi->has_pc_info)
7026 if (pdi->lowpc < *lowpc)
7027 *lowpc = pdi->lowpc;
7028 if (pdi->highpc > *highpc)
7029 *highpc = pdi->highpc;
7033 struct objfile *objfile = cu->objfile;
7035 baseaddr = ANOFFSET (objfile->section_offsets,
7036 SECT_OFF_TEXT (objfile));
7037 addrmap_set_empty (objfile->psymtabs_addrmap,
7038 pdi->lowpc + baseaddr,
7039 pdi->highpc - 1 + baseaddr,
7040 cu->per_cu->v.psymtab);
7044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7046 if (!pdi->is_declaration)
7047 /* Ignore subprogram DIEs that do not have a name, they are
7048 illegal. Do not emit a complaint at this point, we will
7049 do so when we convert this psymtab into a symtab. */
7051 add_partial_symbol (pdi, cu);
7055 if (! pdi->has_children)
7058 if (cu->language == language_ada)
7060 pdi = pdi->die_child;
7063 fixup_partial_die (pdi, cu);
7064 if (pdi->tag == DW_TAG_subprogram
7065 || pdi->tag == DW_TAG_lexical_block)
7066 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7067 pdi = pdi->die_sibling;
7072 /* Read a partial die corresponding to an enumeration type. */
7075 add_partial_enumeration (struct partial_die_info *enum_pdi,
7076 struct dwarf2_cu *cu)
7078 struct partial_die_info *pdi;
7080 if (enum_pdi->name != NULL)
7081 add_partial_symbol (enum_pdi, cu);
7083 pdi = enum_pdi->die_child;
7086 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7087 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7089 add_partial_symbol (pdi, cu);
7090 pdi = pdi->die_sibling;
7094 /* Return the initial uleb128 in the die at INFO_PTR. */
7097 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7099 unsigned int bytes_read;
7101 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7104 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7105 Return the corresponding abbrev, or NULL if the number is zero (indicating
7106 an empty DIE). In either case *BYTES_READ will be set to the length of
7107 the initial number. */
7109 static struct abbrev_info *
7110 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7111 struct dwarf2_cu *cu)
7113 bfd *abfd = cu->objfile->obfd;
7114 unsigned int abbrev_number;
7115 struct abbrev_info *abbrev;
7117 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7119 if (abbrev_number == 0)
7122 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7125 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7126 abbrev_number, bfd_get_filename (abfd));
7132 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7133 Returns a pointer to the end of a series of DIEs, terminated by an empty
7134 DIE. Any children of the skipped DIEs will also be skipped. */
7136 static const gdb_byte *
7137 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7139 struct dwarf2_cu *cu = reader->cu;
7140 struct abbrev_info *abbrev;
7141 unsigned int bytes_read;
7145 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7147 return info_ptr + bytes_read;
7149 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7153 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7154 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7155 abbrev corresponding to that skipped uleb128 should be passed in
7156 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7159 static const gdb_byte *
7160 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7161 struct abbrev_info *abbrev)
7163 unsigned int bytes_read;
7164 struct attribute attr;
7165 bfd *abfd = reader->abfd;
7166 struct dwarf2_cu *cu = reader->cu;
7167 const gdb_byte *buffer = reader->buffer;
7168 const gdb_byte *buffer_end = reader->buffer_end;
7169 const gdb_byte *start_info_ptr = info_ptr;
7170 unsigned int form, i;
7172 for (i = 0; i < abbrev->num_attrs; i++)
7174 /* The only abbrev we care about is DW_AT_sibling. */
7175 if (abbrev->attrs[i].name == DW_AT_sibling)
7177 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7178 if (attr.form == DW_FORM_ref_addr)
7179 complaint (&symfile_complaints,
7180 _("ignoring absolute DW_AT_sibling"));
7183 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7184 const gdb_byte *sibling_ptr = buffer + off;
7186 if (sibling_ptr < info_ptr)
7187 complaint (&symfile_complaints,
7188 _("DW_AT_sibling points backwards"));
7189 else if (sibling_ptr > reader->buffer_end)
7190 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7196 /* If it isn't DW_AT_sibling, skip this attribute. */
7197 form = abbrev->attrs[i].form;
7201 case DW_FORM_ref_addr:
7202 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7203 and later it is offset sized. */
7204 if (cu->header.version == 2)
7205 info_ptr += cu->header.addr_size;
7207 info_ptr += cu->header.offset_size;
7209 case DW_FORM_GNU_ref_alt:
7210 info_ptr += cu->header.offset_size;
7213 info_ptr += cu->header.addr_size;
7220 case DW_FORM_flag_present:
7232 case DW_FORM_ref_sig8:
7235 case DW_FORM_string:
7236 read_direct_string (abfd, info_ptr, &bytes_read);
7237 info_ptr += bytes_read;
7239 case DW_FORM_sec_offset:
7241 case DW_FORM_GNU_strp_alt:
7242 info_ptr += cu->header.offset_size;
7244 case DW_FORM_exprloc:
7246 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7247 info_ptr += bytes_read;
7249 case DW_FORM_block1:
7250 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7252 case DW_FORM_block2:
7253 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7255 case DW_FORM_block4:
7256 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7260 case DW_FORM_ref_udata:
7261 case DW_FORM_GNU_addr_index:
7262 case DW_FORM_GNU_str_index:
7263 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7265 case DW_FORM_indirect:
7266 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7267 info_ptr += bytes_read;
7268 /* We need to continue parsing from here, so just go back to
7270 goto skip_attribute;
7273 error (_("Dwarf Error: Cannot handle %s "
7274 "in DWARF reader [in module %s]"),
7275 dwarf_form_name (form),
7276 bfd_get_filename (abfd));
7280 if (abbrev->has_children)
7281 return skip_children (reader, info_ptr);
7286 /* Locate ORIG_PDI's sibling.
7287 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7289 static const gdb_byte *
7290 locate_pdi_sibling (const struct die_reader_specs *reader,
7291 struct partial_die_info *orig_pdi,
7292 const gdb_byte *info_ptr)
7294 /* Do we know the sibling already? */
7296 if (orig_pdi->sibling)
7297 return orig_pdi->sibling;
7299 /* Are there any children to deal with? */
7301 if (!orig_pdi->has_children)
7304 /* Skip the children the long way. */
7306 return skip_children (reader, info_ptr);
7309 /* Expand this partial symbol table into a full symbol table. SELF is
7313 dwarf2_read_symtab (struct partial_symtab *self,
7314 struct objfile *objfile)
7318 warning (_("bug: psymtab for %s is already read in."),
7325 printf_filtered (_("Reading in symbols for %s..."),
7327 gdb_flush (gdb_stdout);
7330 /* Restore our global data. */
7331 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7333 /* If this psymtab is constructed from a debug-only objfile, the
7334 has_section_at_zero flag will not necessarily be correct. We
7335 can get the correct value for this flag by looking at the data
7336 associated with the (presumably stripped) associated objfile. */
7337 if (objfile->separate_debug_objfile_backlink)
7339 struct dwarf2_per_objfile *dpo_backlink
7340 = objfile_data (objfile->separate_debug_objfile_backlink,
7341 dwarf2_objfile_data_key);
7343 dwarf2_per_objfile->has_section_at_zero
7344 = dpo_backlink->has_section_at_zero;
7347 dwarf2_per_objfile->reading_partial_symbols = 0;
7349 psymtab_to_symtab_1 (self);
7351 /* Finish up the debug error message. */
7353 printf_filtered (_("done.\n"));
7356 process_cu_includes ();
7359 /* Reading in full CUs. */
7361 /* Add PER_CU to the queue. */
7364 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7365 enum language pretend_language)
7367 struct dwarf2_queue_item *item;
7370 item = xmalloc (sizeof (*item));
7371 item->per_cu = per_cu;
7372 item->pretend_language = pretend_language;
7375 if (dwarf2_queue == NULL)
7376 dwarf2_queue = item;
7378 dwarf2_queue_tail->next = item;
7380 dwarf2_queue_tail = item;
7383 /* If PER_CU is not yet queued, add it to the queue.
7384 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7386 The result is non-zero if PER_CU was queued, otherwise the result is zero
7387 meaning either PER_CU is already queued or it is already loaded.
7389 N.B. There is an invariant here that if a CU is queued then it is loaded.
7390 The caller is required to load PER_CU if we return non-zero. */
7393 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7394 struct dwarf2_per_cu_data *per_cu,
7395 enum language pretend_language)
7397 /* We may arrive here during partial symbol reading, if we need full
7398 DIEs to process an unusual case (e.g. template arguments). Do
7399 not queue PER_CU, just tell our caller to load its DIEs. */
7400 if (dwarf2_per_objfile->reading_partial_symbols)
7402 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7407 /* Mark the dependence relation so that we don't flush PER_CU
7409 if (dependent_cu != NULL)
7410 dwarf2_add_dependence (dependent_cu, per_cu);
7412 /* If it's already on the queue, we have nothing to do. */
7416 /* If the compilation unit is already loaded, just mark it as
7418 if (per_cu->cu != NULL)
7420 per_cu->cu->last_used = 0;
7424 /* Add it to the queue. */
7425 queue_comp_unit (per_cu, pretend_language);
7430 /* Process the queue. */
7433 process_queue (void)
7435 struct dwarf2_queue_item *item, *next_item;
7437 if (dwarf2_read_debug)
7439 fprintf_unfiltered (gdb_stdlog,
7440 "Expanding one or more symtabs of objfile %s ...\n",
7441 objfile_name (dwarf2_per_objfile->objfile));
7444 /* The queue starts out with one item, but following a DIE reference
7445 may load a new CU, adding it to the end of the queue. */
7446 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7448 if (dwarf2_per_objfile->using_index
7449 ? !item->per_cu->v.quick->symtab
7450 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7452 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7453 unsigned int debug_print_threshold;
7456 if (per_cu->is_debug_types)
7458 struct signatured_type *sig_type =
7459 (struct signatured_type *) per_cu;
7461 sprintf (buf, "TU %s at offset 0x%x",
7462 hex_string (sig_type->signature),
7463 per_cu->offset.sect_off);
7464 /* There can be 100s of TUs.
7465 Only print them in verbose mode. */
7466 debug_print_threshold = 2;
7470 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7471 debug_print_threshold = 1;
7474 if (dwarf2_read_debug >= debug_print_threshold)
7475 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7477 if (per_cu->is_debug_types)
7478 process_full_type_unit (per_cu, item->pretend_language);
7480 process_full_comp_unit (per_cu, item->pretend_language);
7482 if (dwarf2_read_debug >= debug_print_threshold)
7483 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7486 item->per_cu->queued = 0;
7487 next_item = item->next;
7491 dwarf2_queue_tail = NULL;
7493 if (dwarf2_read_debug)
7495 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7496 objfile_name (dwarf2_per_objfile->objfile));
7500 /* Free all allocated queue entries. This function only releases anything if
7501 an error was thrown; if the queue was processed then it would have been
7502 freed as we went along. */
7505 dwarf2_release_queue (void *dummy)
7507 struct dwarf2_queue_item *item, *last;
7509 item = dwarf2_queue;
7512 /* Anything still marked queued is likely to be in an
7513 inconsistent state, so discard it. */
7514 if (item->per_cu->queued)
7516 if (item->per_cu->cu != NULL)
7517 free_one_cached_comp_unit (item->per_cu);
7518 item->per_cu->queued = 0;
7526 dwarf2_queue = dwarf2_queue_tail = NULL;
7529 /* Read in full symbols for PST, and anything it depends on. */
7532 psymtab_to_symtab_1 (struct partial_symtab *pst)
7534 struct dwarf2_per_cu_data *per_cu;
7540 for (i = 0; i < pst->number_of_dependencies; i++)
7541 if (!pst->dependencies[i]->readin
7542 && pst->dependencies[i]->user == NULL)
7544 /* Inform about additional files that need to be read in. */
7547 /* FIXME: i18n: Need to make this a single string. */
7548 fputs_filtered (" ", gdb_stdout);
7550 fputs_filtered ("and ", gdb_stdout);
7552 printf_filtered ("%s...", pst->dependencies[i]->filename);
7553 wrap_here (""); /* Flush output. */
7554 gdb_flush (gdb_stdout);
7556 psymtab_to_symtab_1 (pst->dependencies[i]);
7559 per_cu = pst->read_symtab_private;
7563 /* It's an include file, no symbols to read for it.
7564 Everything is in the parent symtab. */
7569 dw2_do_instantiate_symtab (per_cu);
7572 /* Trivial hash function for die_info: the hash value of a DIE
7573 is its offset in .debug_info for this objfile. */
7576 die_hash (const void *item)
7578 const struct die_info *die = item;
7580 return die->offset.sect_off;
7583 /* Trivial comparison function for die_info structures: two DIEs
7584 are equal if they have the same offset. */
7587 die_eq (const void *item_lhs, const void *item_rhs)
7589 const struct die_info *die_lhs = item_lhs;
7590 const struct die_info *die_rhs = item_rhs;
7592 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7595 /* die_reader_func for load_full_comp_unit.
7596 This is identical to read_signatured_type_reader,
7597 but is kept separate for now. */
7600 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7601 const gdb_byte *info_ptr,
7602 struct die_info *comp_unit_die,
7606 struct dwarf2_cu *cu = reader->cu;
7607 enum language *language_ptr = data;
7609 gdb_assert (cu->die_hash == NULL);
7611 htab_create_alloc_ex (cu->header.length / 12,
7615 &cu->comp_unit_obstack,
7616 hashtab_obstack_allocate,
7617 dummy_obstack_deallocate);
7620 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7621 &info_ptr, comp_unit_die);
7622 cu->dies = comp_unit_die;
7623 /* comp_unit_die is not stored in die_hash, no need. */
7625 /* We try not to read any attributes in this function, because not
7626 all CUs needed for references have been loaded yet, and symbol
7627 table processing isn't initialized. But we have to set the CU language,
7628 or we won't be able to build types correctly.
7629 Similarly, if we do not read the producer, we can not apply
7630 producer-specific interpretation. */
7631 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7634 /* Load the DIEs associated with PER_CU into memory. */
7637 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7638 enum language pretend_language)
7640 gdb_assert (! this_cu->is_debug_types);
7642 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7643 load_full_comp_unit_reader, &pretend_language);
7646 /* Add a DIE to the delayed physname list. */
7649 add_to_method_list (struct type *type, int fnfield_index, int index,
7650 const char *name, struct die_info *die,
7651 struct dwarf2_cu *cu)
7653 struct delayed_method_info mi;
7655 mi.fnfield_index = fnfield_index;
7659 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7662 /* A cleanup for freeing the delayed method list. */
7665 free_delayed_list (void *ptr)
7667 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7668 if (cu->method_list != NULL)
7670 VEC_free (delayed_method_info, cu->method_list);
7671 cu->method_list = NULL;
7675 /* Compute the physnames of any methods on the CU's method list.
7677 The computation of method physnames is delayed in order to avoid the
7678 (bad) condition that one of the method's formal parameters is of an as yet
7682 compute_delayed_physnames (struct dwarf2_cu *cu)
7685 struct delayed_method_info *mi;
7686 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7688 const char *physname;
7689 struct fn_fieldlist *fn_flp
7690 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7691 physname = dwarf2_physname (mi->name, mi->die, cu);
7692 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7696 /* Go objects should be embedded in a DW_TAG_module DIE,
7697 and it's not clear if/how imported objects will appear.
7698 To keep Go support simple until that's worked out,
7699 go back through what we've read and create something usable.
7700 We could do this while processing each DIE, and feels kinda cleaner,
7701 but that way is more invasive.
7702 This is to, for example, allow the user to type "p var" or "b main"
7703 without having to specify the package name, and allow lookups
7704 of module.object to work in contexts that use the expression
7708 fixup_go_packaging (struct dwarf2_cu *cu)
7710 char *package_name = NULL;
7711 struct pending *list;
7714 for (list = global_symbols; list != NULL; list = list->next)
7716 for (i = 0; i < list->nsyms; ++i)
7718 struct symbol *sym = list->symbol[i];
7720 if (SYMBOL_LANGUAGE (sym) == language_go
7721 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7723 char *this_package_name = go_symbol_package_name (sym);
7725 if (this_package_name == NULL)
7727 if (package_name == NULL)
7728 package_name = this_package_name;
7731 if (strcmp (package_name, this_package_name) != 0)
7732 complaint (&symfile_complaints,
7733 _("Symtab %s has objects from two different Go packages: %s and %s"),
7734 (SYMBOL_SYMTAB (sym)
7735 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7736 : objfile_name (cu->objfile)),
7737 this_package_name, package_name);
7738 xfree (this_package_name);
7744 if (package_name != NULL)
7746 struct objfile *objfile = cu->objfile;
7747 const char *saved_package_name
7748 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7750 strlen (package_name));
7751 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7752 saved_package_name, objfile);
7755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7757 sym = allocate_symbol (objfile);
7758 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7759 SYMBOL_SET_NAMES (sym, saved_package_name,
7760 strlen (saved_package_name), 0, objfile);
7761 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7762 e.g., "main" finds the "main" module and not C's main(). */
7763 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7764 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7765 SYMBOL_TYPE (sym) = type;
7767 add_symbol_to_list (sym, &global_symbols);
7769 xfree (package_name);
7773 /* Return the symtab for PER_CU. This works properly regardless of
7774 whether we're using the index or psymtabs. */
7776 static struct symtab *
7777 get_symtab (struct dwarf2_per_cu_data *per_cu)
7779 return (dwarf2_per_objfile->using_index
7780 ? per_cu->v.quick->symtab
7781 : per_cu->v.psymtab->symtab);
7784 /* A helper function for computing the list of all symbol tables
7785 included by PER_CU. */
7788 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7789 htab_t all_children, htab_t all_type_symtabs,
7790 struct dwarf2_per_cu_data *per_cu,
7791 struct symtab *immediate_parent)
7795 struct symtab *symtab;
7796 struct dwarf2_per_cu_data *iter;
7798 slot = htab_find_slot (all_children, per_cu, INSERT);
7801 /* This inclusion and its children have been processed. */
7806 /* Only add a CU if it has a symbol table. */
7807 symtab = get_symtab (per_cu);
7810 /* If this is a type unit only add its symbol table if we haven't
7811 seen it yet (type unit per_cu's can share symtabs). */
7812 if (per_cu->is_debug_types)
7814 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7818 VEC_safe_push (symtab_ptr, *result, symtab);
7819 if (symtab->user == NULL)
7820 symtab->user = immediate_parent;
7825 VEC_safe_push (symtab_ptr, *result, symtab);
7826 if (symtab->user == NULL)
7827 symtab->user = immediate_parent;
7832 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7835 recursively_compute_inclusions (result, all_children,
7836 all_type_symtabs, iter, symtab);
7840 /* Compute the symtab 'includes' fields for the symtab related to
7844 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7846 gdb_assert (! per_cu->is_debug_types);
7848 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7851 struct dwarf2_per_cu_data *per_cu_iter;
7852 struct symtab *symtab_iter;
7853 VEC (symtab_ptr) *result_symtabs = NULL;
7854 htab_t all_children, all_type_symtabs;
7855 struct symtab *symtab = get_symtab (per_cu);
7857 /* If we don't have a symtab, we can just skip this case. */
7861 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7862 NULL, xcalloc, xfree);
7863 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7864 NULL, xcalloc, xfree);
7867 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7871 recursively_compute_inclusions (&result_symtabs, all_children,
7872 all_type_symtabs, per_cu_iter,
7876 /* Now we have a transitive closure of all the included symtabs. */
7877 len = VEC_length (symtab_ptr, result_symtabs);
7879 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7880 (len + 1) * sizeof (struct symtab *));
7882 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7884 symtab->includes[ix] = symtab_iter;
7885 symtab->includes[len] = NULL;
7887 VEC_free (symtab_ptr, result_symtabs);
7888 htab_delete (all_children);
7889 htab_delete (all_type_symtabs);
7893 /* Compute the 'includes' field for the symtabs of all the CUs we just
7897 process_cu_includes (void)
7900 struct dwarf2_per_cu_data *iter;
7903 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7907 if (! iter->is_debug_types)
7908 compute_symtab_includes (iter);
7911 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7914 /* Generate full symbol information for PER_CU, whose DIEs have
7915 already been loaded into memory. */
7918 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7919 enum language pretend_language)
7921 struct dwarf2_cu *cu = per_cu->cu;
7922 struct objfile *objfile = per_cu->objfile;
7923 CORE_ADDR lowpc, highpc;
7924 struct symtab *symtab;
7925 struct cleanup *back_to, *delayed_list_cleanup;
7927 struct block *static_block;
7929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7932 back_to = make_cleanup (really_free_pendings, NULL);
7933 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7935 cu->list_in_scope = &file_symbols;
7937 cu->language = pretend_language;
7938 cu->language_defn = language_def (cu->language);
7940 /* Do line number decoding in read_file_scope () */
7941 process_die (cu->dies, cu);
7943 /* For now fudge the Go package. */
7944 if (cu->language == language_go)
7945 fixup_go_packaging (cu);
7947 /* Now that we have processed all the DIEs in the CU, all the types
7948 should be complete, and it should now be safe to compute all of the
7950 compute_delayed_physnames (cu);
7951 do_cleanups (delayed_list_cleanup);
7953 /* Some compilers don't define a DW_AT_high_pc attribute for the
7954 compilation unit. If the DW_AT_high_pc is missing, synthesize
7955 it, by scanning the DIE's below the compilation unit. */
7956 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7959 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7961 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7962 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7963 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7964 addrmap to help ensure it has an accurate map of pc values belonging to
7966 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7968 symtab = end_symtab_from_static_block (static_block, objfile,
7969 SECT_OFF_TEXT (objfile), 0);
7973 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7975 /* Set symtab language to language from DW_AT_language. If the
7976 compilation is from a C file generated by language preprocessors, do
7977 not set the language if it was already deduced by start_subfile. */
7978 if (!(cu->language == language_c && symtab->language != language_c))
7979 symtab->language = cu->language;
7981 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7982 produce DW_AT_location with location lists but it can be possibly
7983 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7984 there were bugs in prologue debug info, fixed later in GCC-4.5
7985 by "unwind info for epilogues" patch (which is not directly related).
7987 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7988 needed, it would be wrong due to missing DW_AT_producer there.
7990 Still one can confuse GDB by using non-standard GCC compilation
7991 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7993 if (cu->has_loclist && gcc_4_minor >= 5)
7994 symtab->locations_valid = 1;
7996 if (gcc_4_minor >= 5)
7997 symtab->epilogue_unwind_valid = 1;
7999 symtab->call_site_htab = cu->call_site_htab;
8002 if (dwarf2_per_objfile->using_index)
8003 per_cu->v.quick->symtab = symtab;
8006 struct partial_symtab *pst = per_cu->v.psymtab;
8007 pst->symtab = symtab;
8011 /* Push it for inclusion processing later. */
8012 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8014 do_cleanups (back_to);
8017 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8018 already been loaded into memory. */
8021 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8022 enum language pretend_language)
8024 struct dwarf2_cu *cu = per_cu->cu;
8025 struct objfile *objfile = per_cu->objfile;
8026 struct symtab *symtab;
8027 struct cleanup *back_to, *delayed_list_cleanup;
8028 struct signatured_type *sig_type;
8030 gdb_assert (per_cu->is_debug_types);
8031 sig_type = (struct signatured_type *) per_cu;
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8037 cu->list_in_scope = &file_symbols;
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8042 /* The symbol tables are set up in read_type_unit_scope. */
8043 process_die (cu->dies, cu);
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8055 /* TUs share symbol tables.
8056 If this is the first TU to use this symtab, complete the construction
8057 of it with end_expandable_symtab. Otherwise, complete the addition of
8058 this TU's symbols to the existing symtab. */
8059 if (sig_type->type_unit_group->primary_symtab == NULL)
8061 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8062 sig_type->type_unit_group->primary_symtab = symtab;
8066 /* Set symtab language to language from DW_AT_language. If the
8067 compilation is from a C file generated by language preprocessors,
8068 do not set the language if it was already deduced by
8070 if (!(cu->language == language_c && symtab->language != language_c))
8071 symtab->language = cu->language;
8076 augment_type_symtab (objfile,
8077 sig_type->type_unit_group->primary_symtab);
8078 symtab = sig_type->type_unit_group->primary_symtab;
8081 if (dwarf2_per_objfile->using_index)
8082 per_cu->v.quick->symtab = symtab;
8085 struct partial_symtab *pst = per_cu->v.psymtab;
8086 pst->symtab = symtab;
8090 do_cleanups (back_to);
8093 /* Process an imported unit DIE. */
8096 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8098 struct attribute *attr;
8100 /* For now we don't handle imported units in type units. */
8101 if (cu->per_cu->is_debug_types)
8103 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8104 " supported in type units [in module %s]"),
8105 objfile_name (cu->objfile));
8108 attr = dwarf2_attr (die, DW_AT_import, cu);
8111 struct dwarf2_per_cu_data *per_cu;
8112 struct symtab *imported_symtab;
8116 offset = dwarf2_get_ref_die_offset (attr);
8117 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8118 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8120 /* If necessary, add it to the queue and load its DIEs. */
8121 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8122 load_full_comp_unit (per_cu, cu->language);
8124 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8129 /* Reset the in_process bit of a die. */
8132 reset_die_in_process (void *arg)
8134 struct die_info *die = arg;
8136 die->in_process = 0;
8139 /* Process a die and its children. */
8142 process_die (struct die_info *die, struct dwarf2_cu *cu)
8144 struct cleanup *in_process;
8146 /* We should only be processing those not already in process. */
8147 gdb_assert (!die->in_process);
8149 die->in_process = 1;
8150 in_process = make_cleanup (reset_die_in_process,die);
8154 case DW_TAG_padding:
8156 case DW_TAG_compile_unit:
8157 case DW_TAG_partial_unit:
8158 read_file_scope (die, cu);
8160 case DW_TAG_type_unit:
8161 read_type_unit_scope (die, cu);
8163 case DW_TAG_subprogram:
8164 case DW_TAG_inlined_subroutine:
8165 read_func_scope (die, cu);
8167 case DW_TAG_lexical_block:
8168 case DW_TAG_try_block:
8169 case DW_TAG_catch_block:
8170 read_lexical_block_scope (die, cu);
8172 case DW_TAG_GNU_call_site:
8173 read_call_site_scope (die, cu);
8175 case DW_TAG_class_type:
8176 case DW_TAG_interface_type:
8177 case DW_TAG_structure_type:
8178 case DW_TAG_union_type:
8179 process_structure_scope (die, cu);
8181 case DW_TAG_enumeration_type:
8182 process_enumeration_scope (die, cu);
8185 /* These dies have a type, but processing them does not create
8186 a symbol or recurse to process the children. Therefore we can
8187 read them on-demand through read_type_die. */
8188 case DW_TAG_subroutine_type:
8189 case DW_TAG_set_type:
8190 case DW_TAG_array_type:
8191 case DW_TAG_pointer_type:
8192 case DW_TAG_ptr_to_member_type:
8193 case DW_TAG_reference_type:
8194 case DW_TAG_string_type:
8197 case DW_TAG_base_type:
8198 case DW_TAG_subrange_type:
8199 case DW_TAG_typedef:
8200 /* Add a typedef symbol for the type definition, if it has a
8202 new_symbol (die, read_type_die (die, cu), cu);
8204 case DW_TAG_common_block:
8205 read_common_block (die, cu);
8207 case DW_TAG_common_inclusion:
8209 case DW_TAG_namespace:
8210 cu->processing_has_namespace_info = 1;
8211 read_namespace (die, cu);
8214 cu->processing_has_namespace_info = 1;
8215 read_module (die, cu);
8217 case DW_TAG_imported_declaration:
8218 cu->processing_has_namespace_info = 1;
8219 if (read_namespace_alias (die, cu))
8221 /* The declaration is not a global namespace alias: fall through. */
8222 case DW_TAG_imported_module:
8223 cu->processing_has_namespace_info = 1;
8224 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8225 || cu->language != language_fortran))
8226 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8227 dwarf_tag_name (die->tag));
8228 read_import_statement (die, cu);
8231 case DW_TAG_imported_unit:
8232 process_imported_unit_die (die, cu);
8236 new_symbol (die, NULL, cu);
8240 do_cleanups (in_process);
8243 /* DWARF name computation. */
8245 /* A helper function for dwarf2_compute_name which determines whether DIE
8246 needs to have the name of the scope prepended to the name listed in the
8250 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8252 struct attribute *attr;
8256 case DW_TAG_namespace:
8257 case DW_TAG_typedef:
8258 case DW_TAG_class_type:
8259 case DW_TAG_interface_type:
8260 case DW_TAG_structure_type:
8261 case DW_TAG_union_type:
8262 case DW_TAG_enumeration_type:
8263 case DW_TAG_enumerator:
8264 case DW_TAG_subprogram:
8266 case DW_TAG_imported_declaration:
8269 case DW_TAG_variable:
8270 case DW_TAG_constant:
8271 /* We only need to prefix "globally" visible variables. These include
8272 any variable marked with DW_AT_external or any variable that
8273 lives in a namespace. [Variables in anonymous namespaces
8274 require prefixing, but they are not DW_AT_external.] */
8276 if (dwarf2_attr (die, DW_AT_specification, cu))
8278 struct dwarf2_cu *spec_cu = cu;
8280 return die_needs_namespace (die_specification (die, &spec_cu),
8284 attr = dwarf2_attr (die, DW_AT_external, cu);
8285 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8286 && die->parent->tag != DW_TAG_module)
8288 /* A variable in a lexical block of some kind does not need a
8289 namespace, even though in C++ such variables may be external
8290 and have a mangled name. */
8291 if (die->parent->tag == DW_TAG_lexical_block
8292 || die->parent->tag == DW_TAG_try_block
8293 || die->parent->tag == DW_TAG_catch_block
8294 || die->parent->tag == DW_TAG_subprogram)
8303 /* Retrieve the last character from a mem_file. */
8306 do_ui_file_peek_last (void *object, const char *buffer, long length)
8308 char *last_char_p = (char *) object;
8311 *last_char_p = buffer[length - 1];
8314 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8315 compute the physname for the object, which include a method's:
8316 - formal parameters (C++/Java),
8317 - receiver type (Go),
8318 - return type (Java).
8320 The term "physname" is a bit confusing.
8321 For C++, for example, it is the demangled name.
8322 For Go, for example, it's the mangled name.
8324 For Ada, return the DIE's linkage name rather than the fully qualified
8325 name. PHYSNAME is ignored..
8327 The result is allocated on the objfile_obstack and canonicalized. */
8330 dwarf2_compute_name (const char *name,
8331 struct die_info *die, struct dwarf2_cu *cu,
8334 struct objfile *objfile = cu->objfile;
8337 name = dwarf2_name (die, cu);
8339 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8340 compute it by typename_concat inside GDB. */
8341 if (cu->language == language_ada
8342 || (cu->language == language_fortran && physname))
8344 /* For Ada unit, we prefer the linkage name over the name, as
8345 the former contains the exported name, which the user expects
8346 to be able to reference. Ideally, we want the user to be able
8347 to reference this entity using either natural or linkage name,
8348 but we haven't started looking at this enhancement yet. */
8349 struct attribute *attr;
8351 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8353 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8354 if (attr && DW_STRING (attr))
8355 return DW_STRING (attr);
8358 /* These are the only languages we know how to qualify names in. */
8360 && (cu->language == language_cplus || cu->language == language_java
8361 || cu->language == language_fortran))
8363 if (die_needs_namespace (die, cu))
8367 struct ui_file *buf;
8368 char *intermediate_name;
8369 const char *canonical_name = NULL;
8371 prefix = determine_prefix (die, cu);
8372 buf = mem_fileopen ();
8373 if (*prefix != '\0')
8375 char *prefixed_name = typename_concat (NULL, prefix, name,
8378 fputs_unfiltered (prefixed_name, buf);
8379 xfree (prefixed_name);
8382 fputs_unfiltered (name, buf);
8384 /* Template parameters may be specified in the DIE's DW_AT_name, or
8385 as children with DW_TAG_template_type_param or
8386 DW_TAG_value_type_param. If the latter, add them to the name
8387 here. If the name already has template parameters, then
8388 skip this step; some versions of GCC emit both, and
8389 it is more efficient to use the pre-computed name.
8391 Something to keep in mind about this process: it is very
8392 unlikely, or in some cases downright impossible, to produce
8393 something that will match the mangled name of a function.
8394 If the definition of the function has the same debug info,
8395 we should be able to match up with it anyway. But fallbacks
8396 using the minimal symbol, for instance to find a method
8397 implemented in a stripped copy of libstdc++, will not work.
8398 If we do not have debug info for the definition, we will have to
8399 match them up some other way.
8401 When we do name matching there is a related problem with function
8402 templates; two instantiated function templates are allowed to
8403 differ only by their return types, which we do not add here. */
8405 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8407 struct attribute *attr;
8408 struct die_info *child;
8411 die->building_fullname = 1;
8413 for (child = die->child; child != NULL; child = child->sibling)
8417 const gdb_byte *bytes;
8418 struct dwarf2_locexpr_baton *baton;
8421 if (child->tag != DW_TAG_template_type_param
8422 && child->tag != DW_TAG_template_value_param)
8427 fputs_unfiltered ("<", buf);
8431 fputs_unfiltered (", ", buf);
8433 attr = dwarf2_attr (child, DW_AT_type, cu);
8436 complaint (&symfile_complaints,
8437 _("template parameter missing DW_AT_type"));
8438 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8441 type = die_type (child, cu);
8443 if (child->tag == DW_TAG_template_type_param)
8445 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8449 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8452 complaint (&symfile_complaints,
8453 _("template parameter missing "
8454 "DW_AT_const_value"));
8455 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8459 dwarf2_const_value_attr (attr, type, name,
8460 &cu->comp_unit_obstack, cu,
8461 &value, &bytes, &baton);
8463 if (TYPE_NOSIGN (type))
8464 /* GDB prints characters as NUMBER 'CHAR'. If that's
8465 changed, this can use value_print instead. */
8466 c_printchar (value, type, buf);
8469 struct value_print_options opts;
8472 v = dwarf2_evaluate_loc_desc (type, NULL,
8476 else if (bytes != NULL)
8478 v = allocate_value (type);
8479 memcpy (value_contents_writeable (v), bytes,
8480 TYPE_LENGTH (type));
8483 v = value_from_longest (type, value);
8485 /* Specify decimal so that we do not depend on
8487 get_formatted_print_options (&opts, 'd');
8489 value_print (v, buf, &opts);
8495 die->building_fullname = 0;
8499 /* Close the argument list, with a space if necessary
8500 (nested templates). */
8501 char last_char = '\0';
8502 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8503 if (last_char == '>')
8504 fputs_unfiltered (" >", buf);
8506 fputs_unfiltered (">", buf);
8510 /* For Java and C++ methods, append formal parameter type
8511 information, if PHYSNAME. */
8513 if (physname && die->tag == DW_TAG_subprogram
8514 && (cu->language == language_cplus
8515 || cu->language == language_java))
8517 struct type *type = read_type_die (die, cu);
8519 c_type_print_args (type, buf, 1, cu->language,
8520 &type_print_raw_options);
8522 if (cu->language == language_java)
8524 /* For java, we must append the return type to method
8526 if (die->tag == DW_TAG_subprogram)
8527 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8528 0, 0, &type_print_raw_options);
8530 else if (cu->language == language_cplus)
8532 /* Assume that an artificial first parameter is
8533 "this", but do not crash if it is not. RealView
8534 marks unnamed (and thus unused) parameters as
8535 artificial; there is no way to differentiate
8537 if (TYPE_NFIELDS (type) > 0
8538 && TYPE_FIELD_ARTIFICIAL (type, 0)
8539 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8540 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8542 fputs_unfiltered (" const", buf);
8546 intermediate_name = ui_file_xstrdup (buf, &length);
8547 ui_file_delete (buf);
8549 if (cu->language == language_cplus)
8551 = dwarf2_canonicalize_name (intermediate_name, cu,
8552 &objfile->per_bfd->storage_obstack);
8554 /* If we only computed INTERMEDIATE_NAME, or if
8555 INTERMEDIATE_NAME is already canonical, then we need to
8556 copy it to the appropriate obstack. */
8557 if (canonical_name == NULL || canonical_name == intermediate_name)
8558 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8560 strlen (intermediate_name));
8562 name = canonical_name;
8564 xfree (intermediate_name);
8571 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8572 If scope qualifiers are appropriate they will be added. The result
8573 will be allocated on the storage_obstack, or NULL if the DIE does
8574 not have a name. NAME may either be from a previous call to
8575 dwarf2_name or NULL.
8577 The output string will be canonicalized (if C++/Java). */
8580 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8582 return dwarf2_compute_name (name, die, cu, 0);
8585 /* Construct a physname for the given DIE in CU. NAME may either be
8586 from a previous call to dwarf2_name or NULL. The result will be
8587 allocated on the objfile_objstack or NULL if the DIE does not have a
8590 The output string will be canonicalized (if C++/Java). */
8593 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8595 struct objfile *objfile = cu->objfile;
8596 struct attribute *attr;
8597 const char *retval, *mangled = NULL, *canon = NULL;
8598 struct cleanup *back_to;
8601 /* In this case dwarf2_compute_name is just a shortcut not building anything
8603 if (!die_needs_namespace (die, cu))
8604 return dwarf2_compute_name (name, die, cu, 1);
8606 back_to = make_cleanup (null_cleanup, NULL);
8608 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8610 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8612 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8614 if (attr && DW_STRING (attr))
8618 mangled = DW_STRING (attr);
8620 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8621 type. It is easier for GDB users to search for such functions as
8622 `name(params)' than `long name(params)'. In such case the minimal
8623 symbol names do not match the full symbol names but for template
8624 functions there is never a need to look up their definition from their
8625 declaration so the only disadvantage remains the minimal symbol
8626 variant `long name(params)' does not have the proper inferior type.
8629 if (cu->language == language_go)
8631 /* This is a lie, but we already lie to the caller new_symbol_full.
8632 new_symbol_full assumes we return the mangled name.
8633 This just undoes that lie until things are cleaned up. */
8638 demangled = gdb_demangle (mangled,
8639 (DMGL_PARAMS | DMGL_ANSI
8640 | (cu->language == language_java
8641 ? DMGL_JAVA | DMGL_RET_POSTFIX
8646 make_cleanup (xfree, demangled);
8656 if (canon == NULL || check_physname)
8658 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8660 if (canon != NULL && strcmp (physname, canon) != 0)
8662 /* It may not mean a bug in GDB. The compiler could also
8663 compute DW_AT_linkage_name incorrectly. But in such case
8664 GDB would need to be bug-to-bug compatible. */
8666 complaint (&symfile_complaints,
8667 _("Computed physname <%s> does not match demangled <%s> "
8668 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8669 physname, canon, mangled, die->offset.sect_off,
8670 objfile_name (objfile));
8672 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8673 is available here - over computed PHYSNAME. It is safer
8674 against both buggy GDB and buggy compilers. */
8688 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8689 retval, strlen (retval));
8691 do_cleanups (back_to);
8695 /* Inspect DIE in CU for a namespace alias. If one exists, record
8696 a new symbol for it.
8698 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8701 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8703 struct attribute *attr;
8705 /* If the die does not have a name, this is not a namespace
8707 attr = dwarf2_attr (die, DW_AT_name, cu);
8711 struct die_info *d = die;
8712 struct dwarf2_cu *imported_cu = cu;
8714 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8715 keep inspecting DIEs until we hit the underlying import. */
8716 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8717 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8719 attr = dwarf2_attr (d, DW_AT_import, cu);
8723 d = follow_die_ref (d, attr, &imported_cu);
8724 if (d->tag != DW_TAG_imported_declaration)
8728 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8730 complaint (&symfile_complaints,
8731 _("DIE at 0x%x has too many recursively imported "
8732 "declarations"), d->offset.sect_off);
8739 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8741 type = get_die_type_at_offset (offset, cu->per_cu);
8742 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8744 /* This declaration is a global namespace alias. Add
8745 a symbol for it whose type is the aliased namespace. */
8746 new_symbol (die, type, cu);
8755 /* Read the import statement specified by the given die and record it. */
8758 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8760 struct objfile *objfile = cu->objfile;
8761 struct attribute *import_attr;
8762 struct die_info *imported_die, *child_die;
8763 struct dwarf2_cu *imported_cu;
8764 const char *imported_name;
8765 const char *imported_name_prefix;
8766 const char *canonical_name;
8767 const char *import_alias;
8768 const char *imported_declaration = NULL;
8769 const char *import_prefix;
8770 VEC (const_char_ptr) *excludes = NULL;
8771 struct cleanup *cleanups;
8773 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8774 if (import_attr == NULL)
8776 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8777 dwarf_tag_name (die->tag));
8782 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8783 imported_name = dwarf2_name (imported_die, imported_cu);
8784 if (imported_name == NULL)
8786 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8788 The import in the following code:
8802 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8803 <52> DW_AT_decl_file : 1
8804 <53> DW_AT_decl_line : 6
8805 <54> DW_AT_import : <0x75>
8806 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8808 <5b> DW_AT_decl_file : 1
8809 <5c> DW_AT_decl_line : 2
8810 <5d> DW_AT_type : <0x6e>
8812 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8813 <76> DW_AT_byte_size : 4
8814 <77> DW_AT_encoding : 5 (signed)
8816 imports the wrong die ( 0x75 instead of 0x58 ).
8817 This case will be ignored until the gcc bug is fixed. */
8821 /* Figure out the local name after import. */
8822 import_alias = dwarf2_name (die, cu);
8824 /* Figure out where the statement is being imported to. */
8825 import_prefix = determine_prefix (die, cu);
8827 /* Figure out what the scope of the imported die is and prepend it
8828 to the name of the imported die. */
8829 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8831 if (imported_die->tag != DW_TAG_namespace
8832 && imported_die->tag != DW_TAG_module)
8834 imported_declaration = imported_name;
8835 canonical_name = imported_name_prefix;
8837 else if (strlen (imported_name_prefix) > 0)
8838 canonical_name = obconcat (&objfile->objfile_obstack,
8839 imported_name_prefix, "::", imported_name,
8842 canonical_name = imported_name;
8844 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8846 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8847 for (child_die = die->child; child_die && child_die->tag;
8848 child_die = sibling_die (child_die))
8850 /* DWARF-4: A Fortran use statement with a “rename list” may be
8851 represented by an imported module entry with an import attribute
8852 referring to the module and owned entries corresponding to those
8853 entities that are renamed as part of being imported. */
8855 if (child_die->tag != DW_TAG_imported_declaration)
8857 complaint (&symfile_complaints,
8858 _("child DW_TAG_imported_declaration expected "
8859 "- DIE at 0x%x [in module %s]"),
8860 child_die->offset.sect_off, objfile_name (objfile));
8864 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8865 if (import_attr == NULL)
8867 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8868 dwarf_tag_name (child_die->tag));
8873 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8875 imported_name = dwarf2_name (imported_die, imported_cu);
8876 if (imported_name == NULL)
8878 complaint (&symfile_complaints,
8879 _("child DW_TAG_imported_declaration has unknown "
8880 "imported name - DIE at 0x%x [in module %s]"),
8881 child_die->offset.sect_off, objfile_name (objfile));
8885 VEC_safe_push (const_char_ptr, excludes, imported_name);
8887 process_die (child_die, cu);
8890 cp_add_using_directive (import_prefix,
8893 imported_declaration,
8896 &objfile->objfile_obstack);
8898 do_cleanups (cleanups);
8901 /* Cleanup function for handle_DW_AT_stmt_list. */
8904 free_cu_line_header (void *arg)
8906 struct dwarf2_cu *cu = arg;
8908 free_line_header (cu->line_header);
8909 cu->line_header = NULL;
8912 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8913 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8914 this, it was first present in GCC release 4.3.0. */
8917 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8919 if (!cu->checked_producer)
8920 check_producer (cu);
8922 return cu->producer_is_gcc_lt_4_3;
8926 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8927 const char **name, const char **comp_dir)
8929 struct attribute *attr;
8934 /* Find the filename. Do not use dwarf2_name here, since the filename
8935 is not a source language identifier. */
8936 attr = dwarf2_attr (die, DW_AT_name, cu);
8939 *name = DW_STRING (attr);
8942 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8944 *comp_dir = DW_STRING (attr);
8945 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8946 && IS_ABSOLUTE_PATH (*name))
8948 char *d = ldirname (*name);
8952 make_cleanup (xfree, d);
8954 if (*comp_dir != NULL)
8956 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8957 directory, get rid of it. */
8958 char *cp = strchr (*comp_dir, ':');
8960 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8965 *name = "<unknown>";
8968 /* Handle DW_AT_stmt_list for a compilation unit.
8969 DIE is the DW_TAG_compile_unit die for CU.
8970 COMP_DIR is the compilation directory. */
8973 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8974 const char *comp_dir) /* ARI: editCase function */
8976 struct attribute *attr;
8978 gdb_assert (! cu->per_cu->is_debug_types);
8980 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8983 unsigned int line_offset = DW_UNSND (attr);
8984 struct line_header *line_header
8985 = dwarf_decode_line_header (line_offset, cu);
8989 cu->line_header = line_header;
8990 make_cleanup (free_cu_line_header, cu);
8991 dwarf_decode_lines (line_header, comp_dir, cu, NULL);
8996 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8999 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9001 struct objfile *objfile = dwarf2_per_objfile->objfile;
9002 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9003 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9004 CORE_ADDR highpc = ((CORE_ADDR) 0);
9005 struct attribute *attr;
9006 const char *name = NULL;
9007 const char *comp_dir = NULL;
9008 struct die_info *child_die;
9009 bfd *abfd = objfile->obfd;
9012 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9014 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9016 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9017 from finish_block. */
9018 if (lowpc == ((CORE_ADDR) -1))
9023 find_file_and_directory (die, cu, &name, &comp_dir);
9025 prepare_one_comp_unit (cu, die, cu->language);
9027 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9028 standardised yet. As a workaround for the language detection we fall
9029 back to the DW_AT_producer string. */
9030 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9031 cu->language = language_opencl;
9033 /* Similar hack for Go. */
9034 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9035 set_cu_language (DW_LANG_Go, cu);
9037 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9039 /* Decode line number information if present. We do this before
9040 processing child DIEs, so that the line header table is available
9041 for DW_AT_decl_file. */
9042 handle_DW_AT_stmt_list (die, cu, comp_dir);
9044 /* Process all dies in compilation unit. */
9045 if (die->child != NULL)
9047 child_die = die->child;
9048 while (child_die && child_die->tag)
9050 process_die (child_die, cu);
9051 child_die = sibling_die (child_die);
9055 /* Decode macro information, if present. Dwarf 2 macro information
9056 refers to information in the line number info statement program
9057 header, so we can only read it if we've read the header
9059 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9060 if (attr && cu->line_header)
9062 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9063 complaint (&symfile_complaints,
9064 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9066 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9070 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9071 if (attr && cu->line_header)
9073 unsigned int macro_offset = DW_UNSND (attr);
9075 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9079 do_cleanups (back_to);
9082 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9083 Create the set of symtabs used by this TU, or if this TU is sharing
9084 symtabs with another TU and the symtabs have already been created
9085 then restore those symtabs in the line header.
9086 We don't need the pc/line-number mapping for type units. */
9089 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9091 struct objfile *objfile = dwarf2_per_objfile->objfile;
9092 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9093 struct type_unit_group *tu_group;
9095 struct line_header *lh;
9096 struct attribute *attr;
9097 unsigned int i, line_offset;
9098 struct signatured_type *sig_type;
9100 gdb_assert (per_cu->is_debug_types);
9101 sig_type = (struct signatured_type *) per_cu;
9103 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9105 /* If we're using .gdb_index (includes -readnow) then
9106 per_cu->type_unit_group may not have been set up yet. */
9107 if (sig_type->type_unit_group == NULL)
9108 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9109 tu_group = sig_type->type_unit_group;
9111 /* If we've already processed this stmt_list there's no real need to
9112 do it again, we could fake it and just recreate the part we need
9113 (file name,index -> symtab mapping). If data shows this optimization
9114 is useful we can do it then. */
9115 first_time = tu_group->primary_symtab == NULL;
9117 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9122 line_offset = DW_UNSND (attr);
9123 lh = dwarf_decode_line_header (line_offset, cu);
9128 dwarf2_start_symtab (cu, "", NULL, 0);
9131 gdb_assert (tu_group->symtabs == NULL);
9134 /* Note: The primary symtab will get allocated at the end. */
9138 cu->line_header = lh;
9139 make_cleanup (free_cu_line_header, cu);
9143 dwarf2_start_symtab (cu, "", NULL, 0);
9145 tu_group->num_symtabs = lh->num_file_names;
9146 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9148 for (i = 0; i < lh->num_file_names; ++i)
9150 const char *dir = NULL;
9151 struct file_entry *fe = &lh->file_names[i];
9154 dir = lh->include_dirs[fe->dir_index - 1];
9155 dwarf2_start_subfile (fe->name, dir, NULL);
9157 /* Note: We don't have to watch for the main subfile here, type units
9158 don't have DW_AT_name. */
9160 if (current_subfile->symtab == NULL)
9162 /* NOTE: start_subfile will recognize when it's been passed
9163 a file it has already seen. So we can't assume there's a
9164 simple mapping from lh->file_names to subfiles,
9165 lh->file_names may contain dups. */
9166 current_subfile->symtab = allocate_symtab (current_subfile->name,
9170 fe->symtab = current_subfile->symtab;
9171 tu_group->symtabs[i] = fe->symtab;
9178 for (i = 0; i < lh->num_file_names; ++i)
9180 struct file_entry *fe = &lh->file_names[i];
9182 fe->symtab = tu_group->symtabs[i];
9186 /* The main symtab is allocated last. Type units don't have DW_AT_name
9187 so they don't have a "real" (so to speak) symtab anyway.
9188 There is later code that will assign the main symtab to all symbols
9189 that don't have one. We need to handle the case of a symbol with a
9190 missing symtab (DW_AT_decl_file) anyway. */
9193 /* Process DW_TAG_type_unit.
9194 For TUs we want to skip the first top level sibling if it's not the
9195 actual type being defined by this TU. In this case the first top
9196 level sibling is there to provide context only. */
9199 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9201 struct die_info *child_die;
9203 prepare_one_comp_unit (cu, die, language_minimal);
9205 /* Initialize (or reinitialize) the machinery for building symtabs.
9206 We do this before processing child DIEs, so that the line header table
9207 is available for DW_AT_decl_file. */
9208 setup_type_unit_groups (die, cu);
9210 if (die->child != NULL)
9212 child_die = die->child;
9213 while (child_die && child_die->tag)
9215 process_die (child_die, cu);
9216 child_die = sibling_die (child_die);
9223 http://gcc.gnu.org/wiki/DebugFission
9224 http://gcc.gnu.org/wiki/DebugFissionDWP
9226 To simplify handling of both DWO files ("object" files with the DWARF info)
9227 and DWP files (a file with the DWOs packaged up into one file), we treat
9228 DWP files as having a collection of virtual DWO files. */
9231 hash_dwo_file (const void *item)
9233 const struct dwo_file *dwo_file = item;
9236 hash = htab_hash_string (dwo_file->dwo_name);
9237 if (dwo_file->comp_dir != NULL)
9238 hash += htab_hash_string (dwo_file->comp_dir);
9243 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9245 const struct dwo_file *lhs = item_lhs;
9246 const struct dwo_file *rhs = item_rhs;
9248 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9250 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9251 return lhs->comp_dir == rhs->comp_dir;
9252 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9255 /* Allocate a hash table for DWO files. */
9258 allocate_dwo_file_hash_table (void)
9260 struct objfile *objfile = dwarf2_per_objfile->objfile;
9262 return htab_create_alloc_ex (41,
9266 &objfile->objfile_obstack,
9267 hashtab_obstack_allocate,
9268 dummy_obstack_deallocate);
9271 /* Lookup DWO file DWO_NAME. */
9274 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9276 struct dwo_file find_entry;
9279 if (dwarf2_per_objfile->dwo_files == NULL)
9280 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9282 memset (&find_entry, 0, sizeof (find_entry));
9283 find_entry.dwo_name = dwo_name;
9284 find_entry.comp_dir = comp_dir;
9285 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9291 hash_dwo_unit (const void *item)
9293 const struct dwo_unit *dwo_unit = item;
9295 /* This drops the top 32 bits of the id, but is ok for a hash. */
9296 return dwo_unit->signature;
9300 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9302 const struct dwo_unit *lhs = item_lhs;
9303 const struct dwo_unit *rhs = item_rhs;
9305 /* The signature is assumed to be unique within the DWO file.
9306 So while object file CU dwo_id's always have the value zero,
9307 that's OK, assuming each object file DWO file has only one CU,
9308 and that's the rule for now. */
9309 return lhs->signature == rhs->signature;
9312 /* Allocate a hash table for DWO CUs,TUs.
9313 There is one of these tables for each of CUs,TUs for each DWO file. */
9316 allocate_dwo_unit_table (struct objfile *objfile)
9318 /* Start out with a pretty small number.
9319 Generally DWO files contain only one CU and maybe some TUs. */
9320 return htab_create_alloc_ex (3,
9324 &objfile->objfile_obstack,
9325 hashtab_obstack_allocate,
9326 dummy_obstack_deallocate);
9329 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9331 struct create_dwo_cu_data
9333 struct dwo_file *dwo_file;
9334 struct dwo_unit dwo_unit;
9337 /* die_reader_func for create_dwo_cu. */
9340 create_dwo_cu_reader (const struct die_reader_specs *reader,
9341 const gdb_byte *info_ptr,
9342 struct die_info *comp_unit_die,
9346 struct dwarf2_cu *cu = reader->cu;
9347 struct objfile *objfile = dwarf2_per_objfile->objfile;
9348 sect_offset offset = cu->per_cu->offset;
9349 struct dwarf2_section_info *section = cu->per_cu->section;
9350 struct create_dwo_cu_data *data = datap;
9351 struct dwo_file *dwo_file = data->dwo_file;
9352 struct dwo_unit *dwo_unit = &data->dwo_unit;
9353 struct attribute *attr;
9355 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9358 complaint (&symfile_complaints,
9359 _("Dwarf Error: debug entry at offset 0x%x is missing"
9360 " its dwo_id [in module %s]"),
9361 offset.sect_off, dwo_file->dwo_name);
9365 dwo_unit->dwo_file = dwo_file;
9366 dwo_unit->signature = DW_UNSND (attr);
9367 dwo_unit->section = section;
9368 dwo_unit->offset = offset;
9369 dwo_unit->length = cu->per_cu->length;
9371 if (dwarf2_read_debug)
9372 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9373 offset.sect_off, hex_string (dwo_unit->signature));
9376 /* Create the dwo_unit for the lone CU in DWO_FILE.
9377 Note: This function processes DWO files only, not DWP files. */
9379 static struct dwo_unit *
9380 create_dwo_cu (struct dwo_file *dwo_file)
9382 struct objfile *objfile = dwarf2_per_objfile->objfile;
9383 struct dwarf2_section_info *section = &dwo_file->sections.info;
9386 const gdb_byte *info_ptr, *end_ptr;
9387 struct create_dwo_cu_data create_dwo_cu_data;
9388 struct dwo_unit *dwo_unit;
9390 dwarf2_read_section (objfile, section);
9391 info_ptr = section->buffer;
9393 if (info_ptr == NULL)
9396 /* We can't set abfd until now because the section may be empty or
9397 not present, in which case section->asection will be NULL. */
9398 abfd = get_section_bfd_owner (section);
9400 if (dwarf2_read_debug)
9402 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9403 get_section_name (section),
9404 get_section_file_name (section));
9407 create_dwo_cu_data.dwo_file = dwo_file;
9410 end_ptr = info_ptr + section->size;
9411 while (info_ptr < end_ptr)
9413 struct dwarf2_per_cu_data per_cu;
9415 memset (&create_dwo_cu_data.dwo_unit, 0,
9416 sizeof (create_dwo_cu_data.dwo_unit));
9417 memset (&per_cu, 0, sizeof (per_cu));
9418 per_cu.objfile = objfile;
9419 per_cu.is_debug_types = 0;
9420 per_cu.offset.sect_off = info_ptr - section->buffer;
9421 per_cu.section = section;
9423 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9424 create_dwo_cu_reader,
9425 &create_dwo_cu_data);
9427 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9429 /* If we've already found one, complain. We only support one
9430 because having more than one requires hacking the dwo_name of
9431 each to match, which is highly unlikely to happen. */
9432 if (dwo_unit != NULL)
9434 complaint (&symfile_complaints,
9435 _("Multiple CUs in DWO file %s [in module %s]"),
9436 dwo_file->dwo_name, objfile_name (objfile));
9440 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9441 *dwo_unit = create_dwo_cu_data.dwo_unit;
9444 info_ptr += per_cu.length;
9450 /* DWP file .debug_{cu,tu}_index section format:
9451 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9455 Both index sections have the same format, and serve to map a 64-bit
9456 signature to a set of section numbers. Each section begins with a header,
9457 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9458 indexes, and a pool of 32-bit section numbers. The index sections will be
9459 aligned at 8-byte boundaries in the file.
9461 The index section header consists of:
9463 V, 32 bit version number
9465 N, 32 bit number of compilation units or type units in the index
9466 M, 32 bit number of slots in the hash table
9468 Numbers are recorded using the byte order of the application binary.
9470 The hash table begins at offset 16 in the section, and consists of an array
9471 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9472 order of the application binary). Unused slots in the hash table are 0.
9473 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9475 The parallel table begins immediately after the hash table
9476 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9477 array of 32-bit indexes (using the byte order of the application binary),
9478 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9479 table contains a 32-bit index into the pool of section numbers. For unused
9480 hash table slots, the corresponding entry in the parallel table will be 0.
9482 The pool of section numbers begins immediately following the hash table
9483 (at offset 16 + 12 * M from the beginning of the section). The pool of
9484 section numbers consists of an array of 32-bit words (using the byte order
9485 of the application binary). Each item in the array is indexed starting
9486 from 0. The hash table entry provides the index of the first section
9487 number in the set. Additional section numbers in the set follow, and the
9488 set is terminated by a 0 entry (section number 0 is not used in ELF).
9490 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9491 section must be the first entry in the set, and the .debug_abbrev.dwo must
9492 be the second entry. Other members of the set may follow in any order.
9498 DWP Version 2 combines all the .debug_info, etc. sections into one,
9499 and the entries in the index tables are now offsets into these sections.
9500 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9503 Index Section Contents:
9505 Hash Table of Signatures dwp_hash_table.hash_table
9506 Parallel Table of Indices dwp_hash_table.unit_table
9507 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9508 Table of Section Sizes dwp_hash_table.v2.sizes
9510 The index section header consists of:
9512 V, 32 bit version number
9513 L, 32 bit number of columns in the table of section offsets
9514 N, 32 bit number of compilation units or type units in the index
9515 M, 32 bit number of slots in the hash table
9517 Numbers are recorded using the byte order of the application binary.
9519 The hash table has the same format as version 1.
9520 The parallel table of indices has the same format as version 1,
9521 except that the entries are origin-1 indices into the table of sections
9522 offsets and the table of section sizes.
9524 The table of offsets begins immediately following the parallel table
9525 (at offset 16 + 12 * M from the beginning of the section). The table is
9526 a two-dimensional array of 32-bit words (using the byte order of the
9527 application binary), with L columns and N+1 rows, in row-major order.
9528 Each row in the array is indexed starting from 0. The first row provides
9529 a key to the remaining rows: each column in this row provides an identifier
9530 for a debug section, and the offsets in the same column of subsequent rows
9531 refer to that section. The section identifiers are:
9533 DW_SECT_INFO 1 .debug_info.dwo
9534 DW_SECT_TYPES 2 .debug_types.dwo
9535 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9536 DW_SECT_LINE 4 .debug_line.dwo
9537 DW_SECT_LOC 5 .debug_loc.dwo
9538 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9539 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9540 DW_SECT_MACRO 8 .debug_macro.dwo
9542 The offsets provided by the CU and TU index sections are the base offsets
9543 for the contributions made by each CU or TU to the corresponding section
9544 in the package file. Each CU and TU header contains an abbrev_offset
9545 field, used to find the abbreviations table for that CU or TU within the
9546 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9547 be interpreted as relative to the base offset given in the index section.
9548 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9549 should be interpreted as relative to the base offset for .debug_line.dwo,
9550 and offsets into other debug sections obtained from DWARF attributes should
9551 also be interpreted as relative to the corresponding base offset.
9553 The table of sizes begins immediately following the table of offsets.
9554 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9555 with L columns and N rows, in row-major order. Each row in the array is
9556 indexed starting from 1 (row 0 is shared by the two tables).
9560 Hash table lookup is handled the same in version 1 and 2:
9562 We assume that N and M will not exceed 2^32 - 1.
9563 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9565 Given a 64-bit compilation unit signature or a type signature S, an entry
9566 in the hash table is located as follows:
9568 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9569 the low-order k bits all set to 1.
9571 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9573 3) If the hash table entry at index H matches the signature, use that
9574 entry. If the hash table entry at index H is unused (all zeroes),
9575 terminate the search: the signature is not present in the table.
9577 4) Let H = (H + H') modulo M. Repeat at Step 3.
9579 Because M > N and H' and M are relatively prime, the search is guaranteed
9580 to stop at an unused slot or find the match. */
9582 /* Create a hash table to map DWO IDs to their CU/TU entry in
9583 .debug_{info,types}.dwo in DWP_FILE.
9584 Returns NULL if there isn't one.
9585 Note: This function processes DWP files only, not DWO files. */
9587 static struct dwp_hash_table *
9588 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9590 struct objfile *objfile = dwarf2_per_objfile->objfile;
9591 bfd *dbfd = dwp_file->dbfd;
9592 const gdb_byte *index_ptr, *index_end;
9593 struct dwarf2_section_info *index;
9594 uint32_t version, nr_columns, nr_units, nr_slots;
9595 struct dwp_hash_table *htab;
9598 index = &dwp_file->sections.tu_index;
9600 index = &dwp_file->sections.cu_index;
9602 if (dwarf2_section_empty_p (index))
9604 dwarf2_read_section (objfile, index);
9606 index_ptr = index->buffer;
9607 index_end = index_ptr + index->size;
9609 version = read_4_bytes (dbfd, index_ptr);
9612 nr_columns = read_4_bytes (dbfd, index_ptr);
9616 nr_units = read_4_bytes (dbfd, index_ptr);
9618 nr_slots = read_4_bytes (dbfd, index_ptr);
9621 if (version != 1 && version != 2)
9623 error (_("Dwarf Error: unsupported DWP file version (%s)"
9625 pulongest (version), dwp_file->name);
9627 if (nr_slots != (nr_slots & -nr_slots))
9629 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9630 " is not power of 2 [in module %s]"),
9631 pulongest (nr_slots), dwp_file->name);
9634 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9635 htab->version = version;
9636 htab->nr_columns = nr_columns;
9637 htab->nr_units = nr_units;
9638 htab->nr_slots = nr_slots;
9639 htab->hash_table = index_ptr;
9640 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9642 /* Exit early if the table is empty. */
9643 if (nr_slots == 0 || nr_units == 0
9644 || (version == 2 && nr_columns == 0))
9646 /* All must be zero. */
9647 if (nr_slots != 0 || nr_units != 0
9648 || (version == 2 && nr_columns != 0))
9650 complaint (&symfile_complaints,
9651 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9652 " all zero [in modules %s]"),
9660 htab->section_pool.v1.indices =
9661 htab->unit_table + sizeof (uint32_t) * nr_slots;
9662 /* It's harder to decide whether the section is too small in v1.
9663 V1 is deprecated anyway so we punt. */
9667 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9668 int *ids = htab->section_pool.v2.section_ids;
9669 /* Reverse map for error checking. */
9670 int ids_seen[DW_SECT_MAX + 1];
9675 error (_("Dwarf Error: bad DWP hash table, too few columns"
9676 " in section table [in module %s]"),
9679 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9681 error (_("Dwarf Error: bad DWP hash table, too many columns"
9682 " in section table [in module %s]"),
9685 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9686 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9687 for (i = 0; i < nr_columns; ++i)
9689 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9691 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9693 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9694 " in section table [in module %s]"),
9695 id, dwp_file->name);
9697 if (ids_seen[id] != -1)
9699 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9700 " id %d in section table [in module %s]"),
9701 id, dwp_file->name);
9706 /* Must have exactly one info or types section. */
9707 if (((ids_seen[DW_SECT_INFO] != -1)
9708 + (ids_seen[DW_SECT_TYPES] != -1))
9711 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9712 " DWO info/types section [in module %s]"),
9715 /* Must have an abbrev section. */
9716 if (ids_seen[DW_SECT_ABBREV] == -1)
9718 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9719 " section [in module %s]"),
9722 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9723 htab->section_pool.v2.sizes =
9724 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9725 * nr_units * nr_columns);
9726 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9727 * nr_units * nr_columns))
9730 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9739 /* Update SECTIONS with the data from SECTP.
9741 This function is like the other "locate" section routines that are
9742 passed to bfd_map_over_sections, but in this context the sections to
9743 read comes from the DWP V1 hash table, not the full ELF section table.
9745 The result is non-zero for success, or zero if an error was found. */
9748 locate_v1_virtual_dwo_sections (asection *sectp,
9749 struct virtual_v1_dwo_sections *sections)
9751 const struct dwop_section_names *names = &dwop_section_names;
9753 if (section_is_p (sectp->name, &names->abbrev_dwo))
9755 /* There can be only one. */
9756 if (sections->abbrev.s.asection != NULL)
9758 sections->abbrev.s.asection = sectp;
9759 sections->abbrev.size = bfd_get_section_size (sectp);
9761 else if (section_is_p (sectp->name, &names->info_dwo)
9762 || section_is_p (sectp->name, &names->types_dwo))
9764 /* There can be only one. */
9765 if (sections->info_or_types.s.asection != NULL)
9767 sections->info_or_types.s.asection = sectp;
9768 sections->info_or_types.size = bfd_get_section_size (sectp);
9770 else if (section_is_p (sectp->name, &names->line_dwo))
9772 /* There can be only one. */
9773 if (sections->line.s.asection != NULL)
9775 sections->line.s.asection = sectp;
9776 sections->line.size = bfd_get_section_size (sectp);
9778 else if (section_is_p (sectp->name, &names->loc_dwo))
9780 /* There can be only one. */
9781 if (sections->loc.s.asection != NULL)
9783 sections->loc.s.asection = sectp;
9784 sections->loc.size = bfd_get_section_size (sectp);
9786 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9788 /* There can be only one. */
9789 if (sections->macinfo.s.asection != NULL)
9791 sections->macinfo.s.asection = sectp;
9792 sections->macinfo.size = bfd_get_section_size (sectp);
9794 else if (section_is_p (sectp->name, &names->macro_dwo))
9796 /* There can be only one. */
9797 if (sections->macro.s.asection != NULL)
9799 sections->macro.s.asection = sectp;
9800 sections->macro.size = bfd_get_section_size (sectp);
9802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9804 /* There can be only one. */
9805 if (sections->str_offsets.s.asection != NULL)
9807 sections->str_offsets.s.asection = sectp;
9808 sections->str_offsets.size = bfd_get_section_size (sectp);
9812 /* No other kind of section is valid. */
9819 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9820 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9821 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9822 This is for DWP version 1 files. */
9824 static struct dwo_unit *
9825 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9826 uint32_t unit_index,
9827 const char *comp_dir,
9828 ULONGEST signature, int is_debug_types)
9830 struct objfile *objfile = dwarf2_per_objfile->objfile;
9831 const struct dwp_hash_table *dwp_htab =
9832 is_debug_types ? dwp_file->tus : dwp_file->cus;
9833 bfd *dbfd = dwp_file->dbfd;
9834 const char *kind = is_debug_types ? "TU" : "CU";
9835 struct dwo_file *dwo_file;
9836 struct dwo_unit *dwo_unit;
9837 struct virtual_v1_dwo_sections sections;
9838 void **dwo_file_slot;
9839 char *virtual_dwo_name;
9840 struct dwarf2_section_info *cutu;
9841 struct cleanup *cleanups;
9844 gdb_assert (dwp_file->version == 1);
9846 if (dwarf2_read_debug)
9848 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9850 pulongest (unit_index), hex_string (signature),
9854 /* Fetch the sections of this DWO unit.
9855 Put a limit on the number of sections we look for so that bad data
9856 doesn't cause us to loop forever. */
9858 #define MAX_NR_V1_DWO_SECTIONS \
9859 (1 /* .debug_info or .debug_types */ \
9860 + 1 /* .debug_abbrev */ \
9861 + 1 /* .debug_line */ \
9862 + 1 /* .debug_loc */ \
9863 + 1 /* .debug_str_offsets */ \
9864 + 1 /* .debug_macro or .debug_macinfo */ \
9865 + 1 /* trailing zero */)
9867 memset (§ions, 0, sizeof (sections));
9868 cleanups = make_cleanup (null_cleanup, 0);
9870 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9873 uint32_t section_nr =
9875 dwp_htab->section_pool.v1.indices
9876 + (unit_index + i) * sizeof (uint32_t));
9878 if (section_nr == 0)
9880 if (section_nr >= dwp_file->num_sections)
9882 error (_("Dwarf Error: bad DWP hash table, section number too large"
9887 sectp = dwp_file->elf_sections[section_nr];
9888 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
9890 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9897 || dwarf2_section_empty_p (§ions.info_or_types)
9898 || dwarf2_section_empty_p (§ions.abbrev))
9900 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9904 if (i == MAX_NR_V1_DWO_SECTIONS)
9906 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9911 /* It's easier for the rest of the code if we fake a struct dwo_file and
9912 have dwo_unit "live" in that. At least for now.
9914 The DWP file can be made up of a random collection of CUs and TUs.
9915 However, for each CU + set of TUs that came from the same original DWO
9916 file, we can combine them back into a virtual DWO file to save space
9917 (fewer struct dwo_file objects to allocate). Remember that for really
9918 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9921 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9922 get_section_id (§ions.abbrev),
9923 get_section_id (§ions.line),
9924 get_section_id (§ions.loc),
9925 get_section_id (§ions.str_offsets));
9926 make_cleanup (xfree, virtual_dwo_name);
9927 /* Can we use an existing virtual DWO file? */
9928 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9929 /* Create one if necessary. */
9930 if (*dwo_file_slot == NULL)
9932 if (dwarf2_read_debug)
9934 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9937 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9938 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9940 strlen (virtual_dwo_name));
9941 dwo_file->comp_dir = comp_dir;
9942 dwo_file->sections.abbrev = sections.abbrev;
9943 dwo_file->sections.line = sections.line;
9944 dwo_file->sections.loc = sections.loc;
9945 dwo_file->sections.macinfo = sections.macinfo;
9946 dwo_file->sections.macro = sections.macro;
9947 dwo_file->sections.str_offsets = sections.str_offsets;
9948 /* The "str" section is global to the entire DWP file. */
9949 dwo_file->sections.str = dwp_file->sections.str;
9950 /* The info or types section is assigned below to dwo_unit,
9951 there's no need to record it in dwo_file.
9952 Also, we can't simply record type sections in dwo_file because
9953 we record a pointer into the vector in dwo_unit. As we collect more
9954 types we'll grow the vector and eventually have to reallocate space
9955 for it, invalidating all copies of pointers into the previous
9957 *dwo_file_slot = dwo_file;
9961 if (dwarf2_read_debug)
9963 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9966 dwo_file = *dwo_file_slot;
9968 do_cleanups (cleanups);
9970 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9971 dwo_unit->dwo_file = dwo_file;
9972 dwo_unit->signature = signature;
9973 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9974 sizeof (struct dwarf2_section_info));
9975 *dwo_unit->section = sections.info_or_types;
9976 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9981 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9982 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9983 piece within that section used by a TU/CU, return a virtual section
9984 of just that piece. */
9986 static struct dwarf2_section_info
9987 create_dwp_v2_section (struct dwarf2_section_info *section,
9988 bfd_size_type offset, bfd_size_type size)
9990 struct dwarf2_section_info result;
9993 gdb_assert (section != NULL);
9994 gdb_assert (!section->is_virtual);
9996 memset (&result, 0, sizeof (result));
9997 result.s.containing_section = section;
9998 result.is_virtual = 1;
10003 sectp = get_section_bfd_section (section);
10005 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10006 bounds of the real section. This is a pretty-rare event, so just
10007 flag an error (easier) instead of a warning and trying to cope. */
10009 || offset + size > bfd_get_section_size (sectp))
10011 bfd *abfd = sectp->owner;
10013 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10014 " in section %s [in module %s]"),
10015 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10016 objfile_name (dwarf2_per_objfile->objfile));
10019 result.virtual_offset = offset;
10020 result.size = size;
10024 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10025 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10026 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10027 This is for DWP version 2 files. */
10029 static struct dwo_unit *
10030 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10031 uint32_t unit_index,
10032 const char *comp_dir,
10033 ULONGEST signature, int is_debug_types)
10035 struct objfile *objfile = dwarf2_per_objfile->objfile;
10036 const struct dwp_hash_table *dwp_htab =
10037 is_debug_types ? dwp_file->tus : dwp_file->cus;
10038 bfd *dbfd = dwp_file->dbfd;
10039 const char *kind = is_debug_types ? "TU" : "CU";
10040 struct dwo_file *dwo_file;
10041 struct dwo_unit *dwo_unit;
10042 struct virtual_v2_dwo_sections sections;
10043 void **dwo_file_slot;
10044 char *virtual_dwo_name;
10045 struct dwarf2_section_info *cutu;
10046 struct cleanup *cleanups;
10049 gdb_assert (dwp_file->version == 2);
10051 if (dwarf2_read_debug)
10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10055 pulongest (unit_index), hex_string (signature),
10059 /* Fetch the section offsets of this DWO unit. */
10061 memset (§ions, 0, sizeof (sections));
10062 cleanups = make_cleanup (null_cleanup, 0);
10064 for (i = 0; i < dwp_htab->nr_columns; ++i)
10066 uint32_t offset = read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v2.offsets
10068 + (((unit_index - 1) * dwp_htab->nr_columns
10070 * sizeof (uint32_t)));
10071 uint32_t size = read_4_bytes (dbfd,
10072 dwp_htab->section_pool.v2.sizes
10073 + (((unit_index - 1) * dwp_htab->nr_columns
10075 * sizeof (uint32_t)));
10077 switch (dwp_htab->section_pool.v2.section_ids[i])
10080 case DW_SECT_TYPES:
10081 sections.info_or_types_offset = offset;
10082 sections.info_or_types_size = size;
10084 case DW_SECT_ABBREV:
10085 sections.abbrev_offset = offset;
10086 sections.abbrev_size = size;
10089 sections.line_offset = offset;
10090 sections.line_size = size;
10093 sections.loc_offset = offset;
10094 sections.loc_size = size;
10096 case DW_SECT_STR_OFFSETS:
10097 sections.str_offsets_offset = offset;
10098 sections.str_offsets_size = size;
10100 case DW_SECT_MACINFO:
10101 sections.macinfo_offset = offset;
10102 sections.macinfo_size = size;
10104 case DW_SECT_MACRO:
10105 sections.macro_offset = offset;
10106 sections.macro_size = size;
10111 /* It's easier for the rest of the code if we fake a struct dwo_file and
10112 have dwo_unit "live" in that. At least for now.
10114 The DWP file can be made up of a random collection of CUs and TUs.
10115 However, for each CU + set of TUs that came from the same original DWO
10116 file, we can combine them back into a virtual DWO file to save space
10117 (fewer struct dwo_file objects to allocate). Remember that for really
10118 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10121 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10122 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10123 (long) (sections.line_size ? sections.line_offset : 0),
10124 (long) (sections.loc_size ? sections.loc_offset : 0),
10125 (long) (sections.str_offsets_size
10126 ? sections.str_offsets_offset : 0));
10127 make_cleanup (xfree, virtual_dwo_name);
10128 /* Can we use an existing virtual DWO file? */
10129 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10130 /* Create one if necessary. */
10131 if (*dwo_file_slot == NULL)
10133 if (dwarf2_read_debug)
10135 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10138 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10139 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10141 strlen (virtual_dwo_name));
10142 dwo_file->comp_dir = comp_dir;
10143 dwo_file->sections.abbrev =
10144 create_dwp_v2_section (&dwp_file->sections.abbrev,
10145 sections.abbrev_offset, sections.abbrev_size);
10146 dwo_file->sections.line =
10147 create_dwp_v2_section (&dwp_file->sections.line,
10148 sections.line_offset, sections.line_size);
10149 dwo_file->sections.loc =
10150 create_dwp_v2_section (&dwp_file->sections.loc,
10151 sections.loc_offset, sections.loc_size);
10152 dwo_file->sections.macinfo =
10153 create_dwp_v2_section (&dwp_file->sections.macinfo,
10154 sections.macinfo_offset, sections.macinfo_size);
10155 dwo_file->sections.macro =
10156 create_dwp_v2_section (&dwp_file->sections.macro,
10157 sections.macro_offset, sections.macro_size);
10158 dwo_file->sections.str_offsets =
10159 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10160 sections.str_offsets_offset,
10161 sections.str_offsets_size);
10162 /* The "str" section is global to the entire DWP file. */
10163 dwo_file->sections.str = dwp_file->sections.str;
10164 /* The info or types section is assigned below to dwo_unit,
10165 there's no need to record it in dwo_file.
10166 Also, we can't simply record type sections in dwo_file because
10167 we record a pointer into the vector in dwo_unit. As we collect more
10168 types we'll grow the vector and eventually have to reallocate space
10169 for it, invalidating all copies of pointers into the previous
10171 *dwo_file_slot = dwo_file;
10175 if (dwarf2_read_debug)
10177 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10180 dwo_file = *dwo_file_slot;
10182 do_cleanups (cleanups);
10184 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10185 dwo_unit->dwo_file = dwo_file;
10186 dwo_unit->signature = signature;
10187 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10188 sizeof (struct dwarf2_section_info));
10189 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10190 ? &dwp_file->sections.types
10191 : &dwp_file->sections.info,
10192 sections.info_or_types_offset,
10193 sections.info_or_types_size);
10194 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10199 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10200 Returns NULL if the signature isn't found. */
10202 static struct dwo_unit *
10203 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10204 ULONGEST signature, int is_debug_types)
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 uint32_t mask = dwp_htab->nr_slots - 1;
10210 uint32_t hash = signature & mask;
10211 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10214 struct dwo_unit find_dwo_cu, *dwo_cu;
10216 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10217 find_dwo_cu.signature = signature;
10218 slot = htab_find_slot (is_debug_types
10219 ? dwp_file->loaded_tus
10220 : dwp_file->loaded_cus,
10221 &find_dwo_cu, INSERT);
10226 /* Use a for loop so that we don't loop forever on bad debug info. */
10227 for (i = 0; i < dwp_htab->nr_slots; ++i)
10229 ULONGEST signature_in_table;
10231 signature_in_table =
10232 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10233 if (signature_in_table == signature)
10235 uint32_t unit_index =
10236 read_4_bytes (dbfd,
10237 dwp_htab->unit_table + hash * sizeof (uint32_t));
10239 if (dwp_file->version == 1)
10241 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10242 comp_dir, signature,
10247 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10248 comp_dir, signature,
10253 if (signature_in_table == 0)
10255 hash = (hash + hash2) & mask;
10258 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10259 " [in module %s]"),
10263 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10264 Open the file specified by FILE_NAME and hand it off to BFD for
10265 preliminary analysis. Return a newly initialized bfd *, which
10266 includes a canonicalized copy of FILE_NAME.
10267 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10268 SEARCH_CWD is true if the current directory is to be searched.
10269 It will be searched before debug-file-directory.
10270 If successful, the file is added to the bfd include table of the
10271 objfile's bfd (see gdb_bfd_record_inclusion).
10272 If unable to find/open the file, return NULL.
10273 NOTE: This function is derived from symfile_bfd_open. */
10276 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10280 char *absolute_name;
10281 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10282 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10283 to debug_file_directory. */
10285 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10289 if (*debug_file_directory != '\0')
10290 search_path = concat (".", dirname_separator_string,
10291 debug_file_directory, NULL);
10293 search_path = xstrdup (".");
10296 search_path = xstrdup (debug_file_directory);
10298 flags = OPF_RETURN_REALPATH;
10300 flags |= OPF_SEARCH_IN_PATH;
10301 desc = openp (search_path, flags, file_name,
10302 O_RDONLY | O_BINARY, &absolute_name);
10303 xfree (search_path);
10307 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10308 xfree (absolute_name);
10309 if (sym_bfd == NULL)
10311 bfd_set_cacheable (sym_bfd, 1);
10313 if (!bfd_check_format (sym_bfd, bfd_object))
10315 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10319 /* Success. Record the bfd as having been included by the objfile's bfd.
10320 This is important because things like demangled_names_hash lives in the
10321 objfile's per_bfd space and may have references to things like symbol
10322 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10323 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10328 /* Try to open DWO file FILE_NAME.
10329 COMP_DIR is the DW_AT_comp_dir attribute.
10330 The result is the bfd handle of the file.
10331 If there is a problem finding or opening the file, return NULL.
10332 Upon success, the canonicalized path of the file is stored in the bfd,
10333 same as symfile_bfd_open. */
10336 open_dwo_file (const char *file_name, const char *comp_dir)
10340 if (IS_ABSOLUTE_PATH (file_name))
10341 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10343 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10345 if (comp_dir != NULL)
10347 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10349 /* NOTE: If comp_dir is a relative path, this will also try the
10350 search path, which seems useful. */
10351 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10352 xfree (path_to_try);
10357 /* That didn't work, try debug-file-directory, which, despite its name,
10358 is a list of paths. */
10360 if (*debug_file_directory == '\0')
10363 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10366 /* This function is mapped across the sections and remembers the offset and
10367 size of each of the DWO debugging sections we are interested in. */
10370 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10372 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10373 const struct dwop_section_names *names = &dwop_section_names;
10375 if (section_is_p (sectp->name, &names->abbrev_dwo))
10377 dwo_sections->abbrev.s.asection = sectp;
10378 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10380 else if (section_is_p (sectp->name, &names->info_dwo))
10382 dwo_sections->info.s.asection = sectp;
10383 dwo_sections->info.size = bfd_get_section_size (sectp);
10385 else if (section_is_p (sectp->name, &names->line_dwo))
10387 dwo_sections->line.s.asection = sectp;
10388 dwo_sections->line.size = bfd_get_section_size (sectp);
10390 else if (section_is_p (sectp->name, &names->loc_dwo))
10392 dwo_sections->loc.s.asection = sectp;
10393 dwo_sections->loc.size = bfd_get_section_size (sectp);
10395 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10397 dwo_sections->macinfo.s.asection = sectp;
10398 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10400 else if (section_is_p (sectp->name, &names->macro_dwo))
10402 dwo_sections->macro.s.asection = sectp;
10403 dwo_sections->macro.size = bfd_get_section_size (sectp);
10405 else if (section_is_p (sectp->name, &names->str_dwo))
10407 dwo_sections->str.s.asection = sectp;
10408 dwo_sections->str.size = bfd_get_section_size (sectp);
10410 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10412 dwo_sections->str_offsets.s.asection = sectp;
10413 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10415 else if (section_is_p (sectp->name, &names->types_dwo))
10417 struct dwarf2_section_info type_section;
10419 memset (&type_section, 0, sizeof (type_section));
10420 type_section.s.asection = sectp;
10421 type_section.size = bfd_get_section_size (sectp);
10422 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10427 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10428 by PER_CU. This is for the non-DWP case.
10429 The result is NULL if DWO_NAME can't be found. */
10431 static struct dwo_file *
10432 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10433 const char *dwo_name, const char *comp_dir)
10435 struct objfile *objfile = dwarf2_per_objfile->objfile;
10436 struct dwo_file *dwo_file;
10438 struct cleanup *cleanups;
10440 dbfd = open_dwo_file (dwo_name, comp_dir);
10443 if (dwarf2_read_debug)
10444 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10447 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10448 dwo_file->dwo_name = dwo_name;
10449 dwo_file->comp_dir = comp_dir;
10450 dwo_file->dbfd = dbfd;
10452 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10454 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10456 dwo_file->cu = create_dwo_cu (dwo_file);
10458 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10459 dwo_file->sections.types);
10461 discard_cleanups (cleanups);
10463 if (dwarf2_read_debug)
10464 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10469 /* This function is mapped across the sections and remembers the offset and
10470 size of each of the DWP debugging sections common to version 1 and 2 that
10471 we are interested in. */
10474 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10475 void *dwp_file_ptr)
10477 struct dwp_file *dwp_file = dwp_file_ptr;
10478 const struct dwop_section_names *names = &dwop_section_names;
10479 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10481 /* Record the ELF section number for later lookup: this is what the
10482 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10483 gdb_assert (elf_section_nr < dwp_file->num_sections);
10484 dwp_file->elf_sections[elf_section_nr] = sectp;
10486 /* Look for specific sections that we need. */
10487 if (section_is_p (sectp->name, &names->str_dwo))
10489 dwp_file->sections.str.s.asection = sectp;
10490 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10492 else if (section_is_p (sectp->name, &names->cu_index))
10494 dwp_file->sections.cu_index.s.asection = sectp;
10495 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10497 else if (section_is_p (sectp->name, &names->tu_index))
10499 dwp_file->sections.tu_index.s.asection = sectp;
10500 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10504 /* This function is mapped across the sections and remembers the offset and
10505 size of each of the DWP version 2 debugging sections that we are interested
10506 in. This is split into a separate function because we don't know if we
10507 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10510 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10512 struct dwp_file *dwp_file = dwp_file_ptr;
10513 const struct dwop_section_names *names = &dwop_section_names;
10514 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10516 /* Record the ELF section number for later lookup: this is what the
10517 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10518 gdb_assert (elf_section_nr < dwp_file->num_sections);
10519 dwp_file->elf_sections[elf_section_nr] = sectp;
10521 /* Look for specific sections that we need. */
10522 if (section_is_p (sectp->name, &names->abbrev_dwo))
10524 dwp_file->sections.abbrev.s.asection = sectp;
10525 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10527 else if (section_is_p (sectp->name, &names->info_dwo))
10529 dwp_file->sections.info.s.asection = sectp;
10530 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10532 else if (section_is_p (sectp->name, &names->line_dwo))
10534 dwp_file->sections.line.s.asection = sectp;
10535 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10537 else if (section_is_p (sectp->name, &names->loc_dwo))
10539 dwp_file->sections.loc.s.asection = sectp;
10540 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10542 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10544 dwp_file->sections.macinfo.s.asection = sectp;
10545 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10547 else if (section_is_p (sectp->name, &names->macro_dwo))
10549 dwp_file->sections.macro.s.asection = sectp;
10550 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10552 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10554 dwp_file->sections.str_offsets.s.asection = sectp;
10555 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10557 else if (section_is_p (sectp->name, &names->types_dwo))
10559 dwp_file->sections.types.s.asection = sectp;
10560 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10564 /* Hash function for dwp_file loaded CUs/TUs. */
10567 hash_dwp_loaded_cutus (const void *item)
10569 const struct dwo_unit *dwo_unit = item;
10571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10572 return dwo_unit->signature;
10575 /* Equality function for dwp_file loaded CUs/TUs. */
10578 eq_dwp_loaded_cutus (const void *a, const void *b)
10580 const struct dwo_unit *dua = a;
10581 const struct dwo_unit *dub = b;
10583 return dua->signature == dub->signature;
10586 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10589 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10591 return htab_create_alloc_ex (3,
10592 hash_dwp_loaded_cutus,
10593 eq_dwp_loaded_cutus,
10595 &objfile->objfile_obstack,
10596 hashtab_obstack_allocate,
10597 dummy_obstack_deallocate);
10600 /* Try to open DWP file FILE_NAME.
10601 The result is the bfd handle of the file.
10602 If there is a problem finding or opening the file, return NULL.
10603 Upon success, the canonicalized path of the file is stored in the bfd,
10604 same as symfile_bfd_open. */
10607 open_dwp_file (const char *file_name)
10611 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10615 /* Work around upstream bug 15652.
10616 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10617 [Whether that's a "bug" is debatable, but it is getting in our way.]
10618 We have no real idea where the dwp file is, because gdb's realpath-ing
10619 of the executable's path may have discarded the needed info.
10620 [IWBN if the dwp file name was recorded in the executable, akin to
10621 .gnu_debuglink, but that doesn't exist yet.]
10622 Strip the directory from FILE_NAME and search again. */
10623 if (*debug_file_directory != '\0')
10625 /* Don't implicitly search the current directory here.
10626 If the user wants to search "." to handle this case,
10627 it must be added to debug-file-directory. */
10628 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10635 /* Initialize the use of the DWP file for the current objfile.
10636 By convention the name of the DWP file is ${objfile}.dwp.
10637 The result is NULL if it can't be found. */
10639 static struct dwp_file *
10640 open_and_init_dwp_file (void)
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
10643 struct dwp_file *dwp_file;
10646 struct cleanup *cleanups;
10648 /* Try to find first .dwp for the binary file before any symbolic links
10650 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10651 cleanups = make_cleanup (xfree, dwp_name);
10653 dbfd = open_dwp_file (dwp_name);
10655 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10657 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10658 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10659 make_cleanup (xfree, dwp_name);
10660 dbfd = open_dwp_file (dwp_name);
10665 if (dwarf2_read_debug)
10666 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10667 do_cleanups (cleanups);
10670 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10671 dwp_file->name = bfd_get_filename (dbfd);
10672 dwp_file->dbfd = dbfd;
10673 do_cleanups (cleanups);
10675 /* +1: section 0 is unused */
10676 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10677 dwp_file->elf_sections =
10678 OBSTACK_CALLOC (&objfile->objfile_obstack,
10679 dwp_file->num_sections, asection *);
10681 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10683 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10685 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10687 /* The DWP file version is stored in the hash table. Oh well. */
10688 if (dwp_file->cus->version != dwp_file->tus->version)
10690 /* Technically speaking, we should try to limp along, but this is
10691 pretty bizarre. We use pulongest here because that's the established
10692 portability solution (e.g, we cannot use %u for uint32_t). */
10693 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10694 " TU version %s [in DWP file %s]"),
10695 pulongest (dwp_file->cus->version),
10696 pulongest (dwp_file->tus->version), dwp_name);
10698 dwp_file->version = dwp_file->cus->version;
10700 if (dwp_file->version == 2)
10701 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10703 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10704 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10706 if (dwarf2_read_debug)
10708 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10709 fprintf_unfiltered (gdb_stdlog,
10710 " %s CUs, %s TUs\n",
10711 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10712 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10718 /* Wrapper around open_and_init_dwp_file, only open it once. */
10720 static struct dwp_file *
10721 get_dwp_file (void)
10723 if (! dwarf2_per_objfile->dwp_checked)
10725 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10726 dwarf2_per_objfile->dwp_checked = 1;
10728 return dwarf2_per_objfile->dwp_file;
10731 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10732 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10733 or in the DWP file for the objfile, referenced by THIS_UNIT.
10734 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10735 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10737 This is called, for example, when wanting to read a variable with a
10738 complex location. Therefore we don't want to do file i/o for every call.
10739 Therefore we don't want to look for a DWO file on every call.
10740 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10741 then we check if we've already seen DWO_NAME, and only THEN do we check
10744 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10745 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10747 static struct dwo_unit *
10748 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10749 const char *dwo_name, const char *comp_dir,
10750 ULONGEST signature, int is_debug_types)
10752 struct objfile *objfile = dwarf2_per_objfile->objfile;
10753 const char *kind = is_debug_types ? "TU" : "CU";
10754 void **dwo_file_slot;
10755 struct dwo_file *dwo_file;
10756 struct dwp_file *dwp_file;
10758 /* First see if there's a DWP file.
10759 If we have a DWP file but didn't find the DWO inside it, don't
10760 look for the original DWO file. It makes gdb behave differently
10761 depending on whether one is debugging in the build tree. */
10763 dwp_file = get_dwp_file ();
10764 if (dwp_file != NULL)
10766 const struct dwp_hash_table *dwp_htab =
10767 is_debug_types ? dwp_file->tus : dwp_file->cus;
10769 if (dwp_htab != NULL)
10771 struct dwo_unit *dwo_cutu =
10772 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10773 signature, is_debug_types);
10775 if (dwo_cutu != NULL)
10777 if (dwarf2_read_debug)
10779 fprintf_unfiltered (gdb_stdlog,
10780 "Virtual DWO %s %s found: @%s\n",
10781 kind, hex_string (signature),
10782 host_address_to_string (dwo_cutu));
10790 /* No DWP file, look for the DWO file. */
10792 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10793 if (*dwo_file_slot == NULL)
10795 /* Read in the file and build a table of the CUs/TUs it contains. */
10796 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10798 /* NOTE: This will be NULL if unable to open the file. */
10799 dwo_file = *dwo_file_slot;
10801 if (dwo_file != NULL)
10803 struct dwo_unit *dwo_cutu = NULL;
10805 if (is_debug_types && dwo_file->tus)
10807 struct dwo_unit find_dwo_cutu;
10809 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10810 find_dwo_cutu.signature = signature;
10811 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10813 else if (!is_debug_types && dwo_file->cu)
10815 if (signature == dwo_file->cu->signature)
10816 dwo_cutu = dwo_file->cu;
10819 if (dwo_cutu != NULL)
10821 if (dwarf2_read_debug)
10823 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10824 kind, dwo_name, hex_string (signature),
10825 host_address_to_string (dwo_cutu));
10832 /* We didn't find it. This could mean a dwo_id mismatch, or
10833 someone deleted the DWO/DWP file, or the search path isn't set up
10834 correctly to find the file. */
10836 if (dwarf2_read_debug)
10838 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10839 kind, dwo_name, hex_string (signature));
10842 /* This is a warning and not a complaint because it can be caused by
10843 pilot error (e.g., user accidentally deleting the DWO). */
10845 /* Print the name of the DWP file if we looked there, helps the user
10846 better diagnose the problem. */
10847 char *dwp_text = NULL;
10848 struct cleanup *cleanups;
10850 if (dwp_file != NULL)
10851 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10852 cleanups = make_cleanup (xfree, dwp_text);
10854 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10855 " [in module %s]"),
10856 kind, dwo_name, hex_string (signature),
10857 dwp_text != NULL ? dwp_text : "",
10858 this_unit->is_debug_types ? "TU" : "CU",
10859 this_unit->offset.sect_off, objfile_name (objfile));
10861 do_cleanups (cleanups);
10866 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10867 See lookup_dwo_cutu_unit for details. */
10869 static struct dwo_unit *
10870 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10871 const char *dwo_name, const char *comp_dir,
10872 ULONGEST signature)
10874 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10877 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10878 See lookup_dwo_cutu_unit for details. */
10880 static struct dwo_unit *
10881 lookup_dwo_type_unit (struct signatured_type *this_tu,
10882 const char *dwo_name, const char *comp_dir)
10884 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10887 /* Traversal function for queue_and_load_all_dwo_tus. */
10890 queue_and_load_dwo_tu (void **slot, void *info)
10892 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10893 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10894 ULONGEST signature = dwo_unit->signature;
10895 struct signatured_type *sig_type =
10896 lookup_dwo_signatured_type (per_cu->cu, signature);
10898 if (sig_type != NULL)
10900 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10902 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10903 a real dependency of PER_CU on SIG_TYPE. That is detected later
10904 while processing PER_CU. */
10905 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10906 load_full_type_unit (sig_cu);
10907 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10913 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10914 The DWO may have the only definition of the type, though it may not be
10915 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10916 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10919 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10921 struct dwo_unit *dwo_unit;
10922 struct dwo_file *dwo_file;
10924 gdb_assert (!per_cu->is_debug_types);
10925 gdb_assert (get_dwp_file () == NULL);
10926 gdb_assert (per_cu->cu != NULL);
10928 dwo_unit = per_cu->cu->dwo_unit;
10929 gdb_assert (dwo_unit != NULL);
10931 dwo_file = dwo_unit->dwo_file;
10932 if (dwo_file->tus != NULL)
10933 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10936 /* Free all resources associated with DWO_FILE.
10937 Close the DWO file and munmap the sections.
10938 All memory should be on the objfile obstack. */
10941 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10944 struct dwarf2_section_info *section;
10946 /* Note: dbfd is NULL for virtual DWO files. */
10947 gdb_bfd_unref (dwo_file->dbfd);
10949 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10952 /* Wrapper for free_dwo_file for use in cleanups. */
10955 free_dwo_file_cleanup (void *arg)
10957 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10958 struct objfile *objfile = dwarf2_per_objfile->objfile;
10960 free_dwo_file (dwo_file, objfile);
10963 /* Traversal function for free_dwo_files. */
10966 free_dwo_file_from_slot (void **slot, void *info)
10968 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10969 struct objfile *objfile = (struct objfile *) info;
10971 free_dwo_file (dwo_file, objfile);
10976 /* Free all resources associated with DWO_FILES. */
10979 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10981 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10984 /* Read in various DIEs. */
10986 /* qsort helper for inherit_abstract_dies. */
10989 unsigned_int_compar (const void *ap, const void *bp)
10991 unsigned int a = *(unsigned int *) ap;
10992 unsigned int b = *(unsigned int *) bp;
10994 return (a > b) - (b > a);
10997 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10998 Inherit only the children of the DW_AT_abstract_origin DIE not being
10999 already referenced by DW_AT_abstract_origin from the children of the
11003 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11005 struct die_info *child_die;
11006 unsigned die_children_count;
11007 /* CU offsets which were referenced by children of the current DIE. */
11008 sect_offset *offsets;
11009 sect_offset *offsets_end, *offsetp;
11010 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11011 struct die_info *origin_die;
11012 /* Iterator of the ORIGIN_DIE children. */
11013 struct die_info *origin_child_die;
11014 struct cleanup *cleanups;
11015 struct attribute *attr;
11016 struct dwarf2_cu *origin_cu;
11017 struct pending **origin_previous_list_in_scope;
11019 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11023 /* Note that following die references may follow to a die in a
11027 origin_die = follow_die_ref (die, attr, &origin_cu);
11029 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11031 origin_previous_list_in_scope = origin_cu->list_in_scope;
11032 origin_cu->list_in_scope = cu->list_in_scope;
11034 if (die->tag != origin_die->tag
11035 && !(die->tag == DW_TAG_inlined_subroutine
11036 && origin_die->tag == DW_TAG_subprogram))
11037 complaint (&symfile_complaints,
11038 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11039 die->offset.sect_off, origin_die->offset.sect_off);
11041 child_die = die->child;
11042 die_children_count = 0;
11043 while (child_die && child_die->tag)
11045 child_die = sibling_die (child_die);
11046 die_children_count++;
11048 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11049 cleanups = make_cleanup (xfree, offsets);
11051 offsets_end = offsets;
11052 child_die = die->child;
11053 while (child_die && child_die->tag)
11055 /* For each CHILD_DIE, find the corresponding child of
11056 ORIGIN_DIE. If there is more than one layer of
11057 DW_AT_abstract_origin, follow them all; there shouldn't be,
11058 but GCC versions at least through 4.4 generate this (GCC PR
11060 struct die_info *child_origin_die = child_die;
11061 struct dwarf2_cu *child_origin_cu = cu;
11065 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11069 child_origin_die = follow_die_ref (child_origin_die, attr,
11073 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11074 counterpart may exist. */
11075 if (child_origin_die != child_die)
11077 if (child_die->tag != child_origin_die->tag
11078 && !(child_die->tag == DW_TAG_inlined_subroutine
11079 && child_origin_die->tag == DW_TAG_subprogram))
11080 complaint (&symfile_complaints,
11081 _("Child DIE 0x%x and its abstract origin 0x%x have "
11082 "different tags"), child_die->offset.sect_off,
11083 child_origin_die->offset.sect_off);
11084 if (child_origin_die->parent != origin_die)
11085 complaint (&symfile_complaints,
11086 _("Child DIE 0x%x and its abstract origin 0x%x have "
11087 "different parents"), child_die->offset.sect_off,
11088 child_origin_die->offset.sect_off);
11090 *offsets_end++ = child_origin_die->offset;
11092 child_die = sibling_die (child_die);
11094 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11095 unsigned_int_compar);
11096 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11097 if (offsetp[-1].sect_off == offsetp->sect_off)
11098 complaint (&symfile_complaints,
11099 _("Multiple children of DIE 0x%x refer "
11100 "to DIE 0x%x as their abstract origin"),
11101 die->offset.sect_off, offsetp->sect_off);
11104 origin_child_die = origin_die->child;
11105 while (origin_child_die && origin_child_die->tag)
11107 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11108 while (offsetp < offsets_end
11109 && offsetp->sect_off < origin_child_die->offset.sect_off)
11111 if (offsetp >= offsets_end
11112 || offsetp->sect_off > origin_child_die->offset.sect_off)
11114 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11115 Check whether we're already processing ORIGIN_CHILD_DIE.
11116 This can happen with mutually referenced abstract_origins.
11118 if (!origin_child_die->in_process)
11119 process_die (origin_child_die, origin_cu);
11121 origin_child_die = sibling_die (origin_child_die);
11123 origin_cu->list_in_scope = origin_previous_list_in_scope;
11125 do_cleanups (cleanups);
11129 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11131 struct objfile *objfile = cu->objfile;
11132 struct context_stack *new;
11135 struct die_info *child_die;
11136 struct attribute *attr, *call_line, *call_file;
11138 CORE_ADDR baseaddr;
11139 struct block *block;
11140 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11141 VEC (symbolp) *template_args = NULL;
11142 struct template_symbol *templ_func = NULL;
11146 /* If we do not have call site information, we can't show the
11147 caller of this inlined function. That's too confusing, so
11148 only use the scope for local variables. */
11149 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11150 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11151 if (call_line == NULL || call_file == NULL)
11153 read_lexical_block_scope (die, cu);
11158 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11160 name = dwarf2_name (die, cu);
11162 /* Ignore functions with missing or empty names. These are actually
11163 illegal according to the DWARF standard. */
11166 complaint (&symfile_complaints,
11167 _("missing name for subprogram DIE at %d"),
11168 die->offset.sect_off);
11172 /* Ignore functions with missing or invalid low and high pc attributes. */
11173 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11175 attr = dwarf2_attr (die, DW_AT_external, cu);
11176 if (!attr || !DW_UNSND (attr))
11177 complaint (&symfile_complaints,
11178 _("cannot get low and high bounds "
11179 "for subprogram DIE at %d"),
11180 die->offset.sect_off);
11185 highpc += baseaddr;
11187 /* If we have any template arguments, then we must allocate a
11188 different sort of symbol. */
11189 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11191 if (child_die->tag == DW_TAG_template_type_param
11192 || child_die->tag == DW_TAG_template_value_param)
11194 templ_func = allocate_template_symbol (objfile);
11195 templ_func->base.is_cplus_template_function = 1;
11200 new = push_context (0, lowpc);
11201 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11202 (struct symbol *) templ_func);
11204 /* If there is a location expression for DW_AT_frame_base, record
11206 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11208 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11210 cu->list_in_scope = &local_symbols;
11212 if (die->child != NULL)
11214 child_die = die->child;
11215 while (child_die && child_die->tag)
11217 if (child_die->tag == DW_TAG_template_type_param
11218 || child_die->tag == DW_TAG_template_value_param)
11220 struct symbol *arg = new_symbol (child_die, NULL, cu);
11223 VEC_safe_push (symbolp, template_args, arg);
11226 process_die (child_die, cu);
11227 child_die = sibling_die (child_die);
11231 inherit_abstract_dies (die, cu);
11233 /* If we have a DW_AT_specification, we might need to import using
11234 directives from the context of the specification DIE. See the
11235 comment in determine_prefix. */
11236 if (cu->language == language_cplus
11237 && dwarf2_attr (die, DW_AT_specification, cu))
11239 struct dwarf2_cu *spec_cu = cu;
11240 struct die_info *spec_die = die_specification (die, &spec_cu);
11244 child_die = spec_die->child;
11245 while (child_die && child_die->tag)
11247 if (child_die->tag == DW_TAG_imported_module)
11248 process_die (child_die, spec_cu);
11249 child_die = sibling_die (child_die);
11252 /* In some cases, GCC generates specification DIEs that
11253 themselves contain DW_AT_specification attributes. */
11254 spec_die = die_specification (spec_die, &spec_cu);
11258 new = pop_context ();
11259 /* Make a block for the local symbols within. */
11260 block = finish_block (new->name, &local_symbols, new->old_blocks,
11261 lowpc, highpc, objfile);
11263 /* For C++, set the block's scope. */
11264 if ((cu->language == language_cplus || cu->language == language_fortran)
11265 && cu->processing_has_namespace_info)
11266 block_set_scope (block, determine_prefix (die, cu),
11267 &objfile->objfile_obstack);
11269 /* If we have address ranges, record them. */
11270 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11272 /* Attach template arguments to function. */
11273 if (! VEC_empty (symbolp, template_args))
11275 gdb_assert (templ_func != NULL);
11277 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11278 templ_func->template_arguments
11279 = obstack_alloc (&objfile->objfile_obstack,
11280 (templ_func->n_template_arguments
11281 * sizeof (struct symbol *)));
11282 memcpy (templ_func->template_arguments,
11283 VEC_address (symbolp, template_args),
11284 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11285 VEC_free (symbolp, template_args);
11288 /* In C++, we can have functions nested inside functions (e.g., when
11289 a function declares a class that has methods). This means that
11290 when we finish processing a function scope, we may need to go
11291 back to building a containing block's symbol lists. */
11292 local_symbols = new->locals;
11293 using_directives = new->using_directives;
11295 /* If we've finished processing a top-level function, subsequent
11296 symbols go in the file symbol list. */
11297 if (outermost_context_p ())
11298 cu->list_in_scope = &file_symbols;
11301 /* Process all the DIES contained within a lexical block scope. Start
11302 a new scope, process the dies, and then close the scope. */
11305 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11307 struct objfile *objfile = cu->objfile;
11308 struct context_stack *new;
11309 CORE_ADDR lowpc, highpc;
11310 struct die_info *child_die;
11311 CORE_ADDR baseaddr;
11313 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11315 /* Ignore blocks with missing or invalid low and high pc attributes. */
11316 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11317 as multiple lexical blocks? Handling children in a sane way would
11318 be nasty. Might be easier to properly extend generic blocks to
11319 describe ranges. */
11320 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11323 highpc += baseaddr;
11325 push_context (0, lowpc);
11326 if (die->child != NULL)
11328 child_die = die->child;
11329 while (child_die && child_die->tag)
11331 process_die (child_die, cu);
11332 child_die = sibling_die (child_die);
11335 new = pop_context ();
11337 if (local_symbols != NULL || using_directives != NULL)
11339 struct block *block
11340 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11343 /* Note that recording ranges after traversing children, as we
11344 do here, means that recording a parent's ranges entails
11345 walking across all its children's ranges as they appear in
11346 the address map, which is quadratic behavior.
11348 It would be nicer to record the parent's ranges before
11349 traversing its children, simply overriding whatever you find
11350 there. But since we don't even decide whether to create a
11351 block until after we've traversed its children, that's hard
11353 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11355 local_symbols = new->locals;
11356 using_directives = new->using_directives;
11359 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11362 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11364 struct objfile *objfile = cu->objfile;
11365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11366 CORE_ADDR pc, baseaddr;
11367 struct attribute *attr;
11368 struct call_site *call_site, call_site_local;
11371 struct die_info *child_die;
11373 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11375 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11378 complaint (&symfile_complaints,
11379 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11380 "DIE 0x%x [in module %s]"),
11381 die->offset.sect_off, objfile_name (objfile));
11384 pc = attr_value_as_address (attr) + baseaddr;
11386 if (cu->call_site_htab == NULL)
11387 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11388 NULL, &objfile->objfile_obstack,
11389 hashtab_obstack_allocate, NULL);
11390 call_site_local.pc = pc;
11391 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11394 complaint (&symfile_complaints,
11395 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11396 "DIE 0x%x [in module %s]"),
11397 paddress (gdbarch, pc), die->offset.sect_off,
11398 objfile_name (objfile));
11402 /* Count parameters at the caller. */
11405 for (child_die = die->child; child_die && child_die->tag;
11406 child_die = sibling_die (child_die))
11408 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11410 complaint (&symfile_complaints,
11411 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11412 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11413 child_die->tag, child_die->offset.sect_off,
11414 objfile_name (objfile));
11421 call_site = obstack_alloc (&objfile->objfile_obstack,
11422 (sizeof (*call_site)
11423 + (sizeof (*call_site->parameter)
11424 * (nparams - 1))));
11426 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11427 call_site->pc = pc;
11429 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11431 struct die_info *func_die;
11433 /* Skip also over DW_TAG_inlined_subroutine. */
11434 for (func_die = die->parent;
11435 func_die && func_die->tag != DW_TAG_subprogram
11436 && func_die->tag != DW_TAG_subroutine_type;
11437 func_die = func_die->parent);
11439 /* DW_AT_GNU_all_call_sites is a superset
11440 of DW_AT_GNU_all_tail_call_sites. */
11442 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11443 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11445 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11446 not complete. But keep CALL_SITE for look ups via call_site_htab,
11447 both the initial caller containing the real return address PC and
11448 the final callee containing the current PC of a chain of tail
11449 calls do not need to have the tail call list complete. But any
11450 function candidate for a virtual tail call frame searched via
11451 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11452 determined unambiguously. */
11456 struct type *func_type = NULL;
11459 func_type = get_die_type (func_die, cu);
11460 if (func_type != NULL)
11462 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11464 /* Enlist this call site to the function. */
11465 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11466 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11469 complaint (&symfile_complaints,
11470 _("Cannot find function owning DW_TAG_GNU_call_site "
11471 "DIE 0x%x [in module %s]"),
11472 die->offset.sect_off, objfile_name (objfile));
11476 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11478 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11479 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11480 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11481 /* Keep NULL DWARF_BLOCK. */;
11482 else if (attr_form_is_block (attr))
11484 struct dwarf2_locexpr_baton *dlbaton;
11486 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11487 dlbaton->data = DW_BLOCK (attr)->data;
11488 dlbaton->size = DW_BLOCK (attr)->size;
11489 dlbaton->per_cu = cu->per_cu;
11491 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11493 else if (attr_form_is_ref (attr))
11495 struct dwarf2_cu *target_cu = cu;
11496 struct die_info *target_die;
11498 target_die = follow_die_ref (die, attr, &target_cu);
11499 gdb_assert (target_cu->objfile == objfile);
11500 if (die_is_declaration (target_die, target_cu))
11502 const char *target_physname = NULL;
11503 struct attribute *target_attr;
11505 /* Prefer the mangled name; otherwise compute the demangled one. */
11506 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11507 if (target_attr == NULL)
11508 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11510 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11511 target_physname = DW_STRING (target_attr);
11513 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11514 if (target_physname == NULL)
11515 complaint (&symfile_complaints,
11516 _("DW_AT_GNU_call_site_target target DIE has invalid "
11517 "physname, for referencing DIE 0x%x [in module %s]"),
11518 die->offset.sect_off, objfile_name (objfile));
11520 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11526 /* DW_AT_entry_pc should be preferred. */
11527 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11528 complaint (&symfile_complaints,
11529 _("DW_AT_GNU_call_site_target target DIE has invalid "
11530 "low pc, for referencing DIE 0x%x [in module %s]"),
11531 die->offset.sect_off, objfile_name (objfile));
11533 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11537 complaint (&symfile_complaints,
11538 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11539 "block nor reference, for DIE 0x%x [in module %s]"),
11540 die->offset.sect_off, objfile_name (objfile));
11542 call_site->per_cu = cu->per_cu;
11544 for (child_die = die->child;
11545 child_die && child_die->tag;
11546 child_die = sibling_die (child_die))
11548 struct call_site_parameter *parameter;
11549 struct attribute *loc, *origin;
11551 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11553 /* Already printed the complaint above. */
11557 gdb_assert (call_site->parameter_count < nparams);
11558 parameter = &call_site->parameter[call_site->parameter_count];
11560 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11561 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11562 register is contained in DW_AT_GNU_call_site_value. */
11564 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11565 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11566 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11568 sect_offset offset;
11570 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11571 offset = dwarf2_get_ref_die_offset (origin);
11572 if (!offset_in_cu_p (&cu->header, offset))
11574 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11575 binding can be done only inside one CU. Such referenced DIE
11576 therefore cannot be even moved to DW_TAG_partial_unit. */
11577 complaint (&symfile_complaints,
11578 _("DW_AT_abstract_origin offset is not in CU for "
11579 "DW_TAG_GNU_call_site child DIE 0x%x "
11581 child_die->offset.sect_off, objfile_name (objfile));
11584 parameter->u.param_offset.cu_off = (offset.sect_off
11585 - cu->header.offset.sect_off);
11587 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11589 complaint (&symfile_complaints,
11590 _("No DW_FORM_block* DW_AT_location for "
11591 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11592 child_die->offset.sect_off, objfile_name (objfile));
11597 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11598 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11599 if (parameter->u.dwarf_reg != -1)
11600 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11601 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11602 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11603 ¶meter->u.fb_offset))
11604 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11607 complaint (&symfile_complaints,
11608 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11609 "for DW_FORM_block* DW_AT_location is supported for "
11610 "DW_TAG_GNU_call_site child DIE 0x%x "
11612 child_die->offset.sect_off, objfile_name (objfile));
11617 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11618 if (!attr_form_is_block (attr))
11620 complaint (&symfile_complaints,
11621 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11622 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11623 child_die->offset.sect_off, objfile_name (objfile));
11626 parameter->value = DW_BLOCK (attr)->data;
11627 parameter->value_size = DW_BLOCK (attr)->size;
11629 /* Parameters are not pre-cleared by memset above. */
11630 parameter->data_value = NULL;
11631 parameter->data_value_size = 0;
11632 call_site->parameter_count++;
11634 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11637 if (!attr_form_is_block (attr))
11638 complaint (&symfile_complaints,
11639 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11640 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11641 child_die->offset.sect_off, objfile_name (objfile));
11644 parameter->data_value = DW_BLOCK (attr)->data;
11645 parameter->data_value_size = DW_BLOCK (attr)->size;
11651 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11652 Return 1 if the attributes are present and valid, otherwise, return 0.
11653 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11656 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11657 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11658 struct partial_symtab *ranges_pst)
11660 struct objfile *objfile = cu->objfile;
11661 struct comp_unit_head *cu_header = &cu->header;
11662 bfd *obfd = objfile->obfd;
11663 unsigned int addr_size = cu_header->addr_size;
11664 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11665 /* Base address selection entry. */
11668 unsigned int dummy;
11669 const gdb_byte *buffer;
11673 CORE_ADDR high = 0;
11674 CORE_ADDR baseaddr;
11676 found_base = cu->base_known;
11677 base = cu->base_address;
11679 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11680 if (offset >= dwarf2_per_objfile->ranges.size)
11682 complaint (&symfile_complaints,
11683 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11687 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11689 /* Read in the largest possible address. */
11690 marker = read_address (obfd, buffer, cu, &dummy);
11691 if ((marker & mask) == mask)
11693 /* If we found the largest possible address, then
11694 read the base address. */
11695 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11696 buffer += 2 * addr_size;
11697 offset += 2 * addr_size;
11703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11707 CORE_ADDR range_beginning, range_end;
11709 range_beginning = read_address (obfd, buffer, cu, &dummy);
11710 buffer += addr_size;
11711 range_end = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 offset += 2 * addr_size;
11715 /* An end of list marker is a pair of zero addresses. */
11716 if (range_beginning == 0 && range_end == 0)
11717 /* Found the end of list entry. */
11720 /* Each base address selection entry is a pair of 2 values.
11721 The first is the largest possible address, the second is
11722 the base address. Check for a base address here. */
11723 if ((range_beginning & mask) == mask)
11725 /* If we found the largest possible address, then
11726 read the base address. */
11727 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11734 /* We have no valid base address for the ranges
11736 complaint (&symfile_complaints,
11737 _("Invalid .debug_ranges data (no base address)"));
11741 if (range_beginning > range_end)
11743 /* Inverted range entries are invalid. */
11744 complaint (&symfile_complaints,
11745 _("Invalid .debug_ranges data (inverted range)"));
11749 /* Empty range entries have no effect. */
11750 if (range_beginning == range_end)
11753 range_beginning += base;
11756 /* A not-uncommon case of bad debug info.
11757 Don't pollute the addrmap with bad data. */
11758 if (range_beginning + baseaddr == 0
11759 && !dwarf2_per_objfile->has_section_at_zero)
11761 complaint (&symfile_complaints,
11762 _(".debug_ranges entry has start address of zero"
11763 " [in module %s]"), objfile_name (objfile));
11767 if (ranges_pst != NULL)
11768 addrmap_set_empty (objfile->psymtabs_addrmap,
11769 range_beginning + baseaddr,
11770 range_end - 1 + baseaddr,
11773 /* FIXME: This is recording everything as a low-high
11774 segment of consecutive addresses. We should have a
11775 data structure for discontiguous block ranges
11779 low = range_beginning;
11785 if (range_beginning < low)
11786 low = range_beginning;
11787 if (range_end > high)
11793 /* If the first entry is an end-of-list marker, the range
11794 describes an empty scope, i.e. no instructions. */
11800 *high_return = high;
11804 /* Get low and high pc attributes from a die. Return 1 if the attributes
11805 are present and valid, otherwise, return 0. Return -1 if the range is
11806 discontinuous, i.e. derived from DW_AT_ranges information. */
11809 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11810 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11811 struct partial_symtab *pst)
11813 struct attribute *attr;
11814 struct attribute *attr_high;
11816 CORE_ADDR high = 0;
11819 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11822 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11825 low = attr_value_as_address (attr);
11826 high = attr_value_as_address (attr_high);
11827 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11831 /* Found high w/o low attribute. */
11834 /* Found consecutive range of addresses. */
11839 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11842 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11843 We take advantage of the fact that DW_AT_ranges does not appear
11844 in DW_TAG_compile_unit of DWO files. */
11845 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11846 unsigned int ranges_offset = (DW_UNSND (attr)
11847 + (need_ranges_base
11851 /* Value of the DW_AT_ranges attribute is the offset in the
11852 .debug_ranges section. */
11853 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11855 /* Found discontinuous range of addresses. */
11860 /* read_partial_die has also the strict LOW < HIGH requirement. */
11864 /* When using the GNU linker, .gnu.linkonce. sections are used to
11865 eliminate duplicate copies of functions and vtables and such.
11866 The linker will arbitrarily choose one and discard the others.
11867 The AT_*_pc values for such functions refer to local labels in
11868 these sections. If the section from that file was discarded, the
11869 labels are not in the output, so the relocs get a value of 0.
11870 If this is a discarded function, mark the pc bounds as invalid,
11871 so that GDB will ignore it. */
11872 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11881 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11882 its low and high PC addresses. Do nothing if these addresses could not
11883 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11884 and HIGHPC to the high address if greater than HIGHPC. */
11887 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11888 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11889 struct dwarf2_cu *cu)
11891 CORE_ADDR low, high;
11892 struct die_info *child = die->child;
11894 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11896 *lowpc = min (*lowpc, low);
11897 *highpc = max (*highpc, high);
11900 /* If the language does not allow nested subprograms (either inside
11901 subprograms or lexical blocks), we're done. */
11902 if (cu->language != language_ada)
11905 /* Check all the children of the given DIE. If it contains nested
11906 subprograms, then check their pc bounds. Likewise, we need to
11907 check lexical blocks as well, as they may also contain subprogram
11909 while (child && child->tag)
11911 if (child->tag == DW_TAG_subprogram
11912 || child->tag == DW_TAG_lexical_block)
11913 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11914 child = sibling_die (child);
11918 /* Get the low and high pc's represented by the scope DIE, and store
11919 them in *LOWPC and *HIGHPC. If the correct values can't be
11920 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11923 get_scope_pc_bounds (struct die_info *die,
11924 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11925 struct dwarf2_cu *cu)
11927 CORE_ADDR best_low = (CORE_ADDR) -1;
11928 CORE_ADDR best_high = (CORE_ADDR) 0;
11929 CORE_ADDR current_low, current_high;
11931 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
11933 best_low = current_low;
11934 best_high = current_high;
11938 struct die_info *child = die->child;
11940 while (child && child->tag)
11942 switch (child->tag) {
11943 case DW_TAG_subprogram:
11944 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11946 case DW_TAG_namespace:
11947 case DW_TAG_module:
11948 /* FIXME: carlton/2004-01-16: Should we do this for
11949 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11950 that current GCC's always emit the DIEs corresponding
11951 to definitions of methods of classes as children of a
11952 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11953 the DIEs giving the declarations, which could be
11954 anywhere). But I don't see any reason why the
11955 standards says that they have to be there. */
11956 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
11958 if (current_low != ((CORE_ADDR) -1))
11960 best_low = min (best_low, current_low);
11961 best_high = max (best_high, current_high);
11969 child = sibling_die (child);
11974 *highpc = best_high;
11977 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11981 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11982 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11984 struct objfile *objfile = cu->objfile;
11985 struct attribute *attr;
11986 struct attribute *attr_high;
11988 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11991 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11994 CORE_ADDR low = attr_value_as_address (attr);
11995 CORE_ADDR high = attr_value_as_address (attr_high);
11997 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12000 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12004 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12007 bfd *obfd = objfile->obfd;
12008 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12009 We take advantage of the fact that DW_AT_ranges does not appear
12010 in DW_TAG_compile_unit of DWO files. */
12011 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12013 /* The value of the DW_AT_ranges attribute is the offset of the
12014 address range list in the .debug_ranges section. */
12015 unsigned long offset = (DW_UNSND (attr)
12016 + (need_ranges_base ? cu->ranges_base : 0));
12017 const gdb_byte *buffer;
12019 /* For some target architectures, but not others, the
12020 read_address function sign-extends the addresses it returns.
12021 To recognize base address selection entries, we need a
12023 unsigned int addr_size = cu->header.addr_size;
12024 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12026 /* The base address, to which the next pair is relative. Note
12027 that this 'base' is a DWARF concept: most entries in a range
12028 list are relative, to reduce the number of relocs against the
12029 debugging information. This is separate from this function's
12030 'baseaddr' argument, which GDB uses to relocate debugging
12031 information from a shared library based on the address at
12032 which the library was loaded. */
12033 CORE_ADDR base = cu->base_address;
12034 int base_known = cu->base_known;
12036 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12037 if (offset >= dwarf2_per_objfile->ranges.size)
12039 complaint (&symfile_complaints,
12040 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12044 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12048 unsigned int bytes_read;
12049 CORE_ADDR start, end;
12051 start = read_address (obfd, buffer, cu, &bytes_read);
12052 buffer += bytes_read;
12053 end = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12056 /* Did we find the end of the range list? */
12057 if (start == 0 && end == 0)
12060 /* Did we find a base address selection entry? */
12061 else if ((start & base_select_mask) == base_select_mask)
12067 /* We found an ordinary address range. */
12072 complaint (&symfile_complaints,
12073 _("Invalid .debug_ranges data "
12074 "(no base address)"));
12080 /* Inverted range entries are invalid. */
12081 complaint (&symfile_complaints,
12082 _("Invalid .debug_ranges data "
12083 "(inverted range)"));
12087 /* Empty range entries have no effect. */
12091 start += base + baseaddr;
12092 end += base + baseaddr;
12094 /* A not-uncommon case of bad debug info.
12095 Don't pollute the addrmap with bad data. */
12096 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12098 complaint (&symfile_complaints,
12099 _(".debug_ranges entry has start address of zero"
12100 " [in module %s]"), objfile_name (objfile));
12104 record_block_range (block, start, end - 1);
12110 /* Check whether the producer field indicates either of GCC < 4.6, or the
12111 Intel C/C++ compiler, and cache the result in CU. */
12114 check_producer (struct dwarf2_cu *cu)
12117 int major, minor, release;
12119 if (cu->producer == NULL)
12121 /* For unknown compilers expect their behavior is DWARF version
12124 GCC started to support .debug_types sections by -gdwarf-4 since
12125 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12126 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12127 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12128 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12130 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12132 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12134 cs = &cu->producer[strlen ("GNU ")];
12135 while (*cs && !isdigit (*cs))
12137 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12139 /* Not recognized as GCC. */
12143 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12144 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12147 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12148 cu->producer_is_icc = 1;
12151 /* For other non-GCC compilers, expect their behavior is DWARF version
12155 cu->checked_producer = 1;
12158 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12159 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12160 during 4.6.0 experimental. */
12163 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12165 if (!cu->checked_producer)
12166 check_producer (cu);
12168 return cu->producer_is_gxx_lt_4_6;
12171 /* Return the default accessibility type if it is not overriden by
12172 DW_AT_accessibility. */
12174 static enum dwarf_access_attribute
12175 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12177 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12179 /* The default DWARF 2 accessibility for members is public, the default
12180 accessibility for inheritance is private. */
12182 if (die->tag != DW_TAG_inheritance)
12183 return DW_ACCESS_public;
12185 return DW_ACCESS_private;
12189 /* DWARF 3+ defines the default accessibility a different way. The same
12190 rules apply now for DW_TAG_inheritance as for the members and it only
12191 depends on the container kind. */
12193 if (die->parent->tag == DW_TAG_class_type)
12194 return DW_ACCESS_private;
12196 return DW_ACCESS_public;
12200 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12201 offset. If the attribute was not found return 0, otherwise return
12202 1. If it was found but could not properly be handled, set *OFFSET
12206 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12209 struct attribute *attr;
12211 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12216 /* Note that we do not check for a section offset first here.
12217 This is because DW_AT_data_member_location is new in DWARF 4,
12218 so if we see it, we can assume that a constant form is really
12219 a constant and not a section offset. */
12220 if (attr_form_is_constant (attr))
12221 *offset = dwarf2_get_attr_constant_value (attr, 0);
12222 else if (attr_form_is_section_offset (attr))
12223 dwarf2_complex_location_expr_complaint ();
12224 else if (attr_form_is_block (attr))
12225 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12227 dwarf2_complex_location_expr_complaint ();
12235 /* Add an aggregate field to the field list. */
12238 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12239 struct dwarf2_cu *cu)
12241 struct objfile *objfile = cu->objfile;
12242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12243 struct nextfield *new_field;
12244 struct attribute *attr;
12246 const char *fieldname = "";
12248 /* Allocate a new field list entry and link it in. */
12249 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12250 make_cleanup (xfree, new_field);
12251 memset (new_field, 0, sizeof (struct nextfield));
12253 if (die->tag == DW_TAG_inheritance)
12255 new_field->next = fip->baseclasses;
12256 fip->baseclasses = new_field;
12260 new_field->next = fip->fields;
12261 fip->fields = new_field;
12265 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12267 new_field->accessibility = DW_UNSND (attr);
12269 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12270 if (new_field->accessibility != DW_ACCESS_public)
12271 fip->non_public_fields = 1;
12273 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12275 new_field->virtuality = DW_UNSND (attr);
12277 new_field->virtuality = DW_VIRTUALITY_none;
12279 fp = &new_field->field;
12281 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12285 /* Data member other than a C++ static data member. */
12287 /* Get type of field. */
12288 fp->type = die_type (die, cu);
12290 SET_FIELD_BITPOS (*fp, 0);
12292 /* Get bit size of field (zero if none). */
12293 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12296 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12300 FIELD_BITSIZE (*fp) = 0;
12303 /* Get bit offset of field. */
12304 if (handle_data_member_location (die, cu, &offset))
12305 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12306 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12309 if (gdbarch_bits_big_endian (gdbarch))
12311 /* For big endian bits, the DW_AT_bit_offset gives the
12312 additional bit offset from the MSB of the containing
12313 anonymous object to the MSB of the field. We don't
12314 have to do anything special since we don't need to
12315 know the size of the anonymous object. */
12316 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12320 /* For little endian bits, compute the bit offset to the
12321 MSB of the anonymous object, subtract off the number of
12322 bits from the MSB of the field to the MSB of the
12323 object, and then subtract off the number of bits of
12324 the field itself. The result is the bit offset of
12325 the LSB of the field. */
12326 int anonymous_size;
12327 int bit_offset = DW_UNSND (attr);
12329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12332 /* The size of the anonymous object containing
12333 the bit field is explicit, so use the
12334 indicated size (in bytes). */
12335 anonymous_size = DW_UNSND (attr);
12339 /* The size of the anonymous object containing
12340 the bit field must be inferred from the type
12341 attribute of the data member containing the
12343 anonymous_size = TYPE_LENGTH (fp->type);
12345 SET_FIELD_BITPOS (*fp,
12346 (FIELD_BITPOS (*fp)
12347 + anonymous_size * bits_per_byte
12348 - bit_offset - FIELD_BITSIZE (*fp)));
12352 /* Get name of field. */
12353 fieldname = dwarf2_name (die, cu);
12354 if (fieldname == NULL)
12357 /* The name is already allocated along with this objfile, so we don't
12358 need to duplicate it for the type. */
12359 fp->name = fieldname;
12361 /* Change accessibility for artificial fields (e.g. virtual table
12362 pointer or virtual base class pointer) to private. */
12363 if (dwarf2_attr (die, DW_AT_artificial, cu))
12365 FIELD_ARTIFICIAL (*fp) = 1;
12366 new_field->accessibility = DW_ACCESS_private;
12367 fip->non_public_fields = 1;
12370 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12372 /* C++ static member. */
12374 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12375 is a declaration, but all versions of G++ as of this writing
12376 (so through at least 3.2.1) incorrectly generate
12377 DW_TAG_variable tags. */
12379 const char *physname;
12381 /* Get name of field. */
12382 fieldname = dwarf2_name (die, cu);
12383 if (fieldname == NULL)
12386 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12388 /* Only create a symbol if this is an external value.
12389 new_symbol checks this and puts the value in the global symbol
12390 table, which we want. If it is not external, new_symbol
12391 will try to put the value in cu->list_in_scope which is wrong. */
12392 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12394 /* A static const member, not much different than an enum as far as
12395 we're concerned, except that we can support more types. */
12396 new_symbol (die, NULL, cu);
12399 /* Get physical name. */
12400 physname = dwarf2_physname (fieldname, die, cu);
12402 /* The name is already allocated along with this objfile, so we don't
12403 need to duplicate it for the type. */
12404 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12405 FIELD_TYPE (*fp) = die_type (die, cu);
12406 FIELD_NAME (*fp) = fieldname;
12408 else if (die->tag == DW_TAG_inheritance)
12412 /* C++ base class field. */
12413 if (handle_data_member_location (die, cu, &offset))
12414 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12415 FIELD_BITSIZE (*fp) = 0;
12416 FIELD_TYPE (*fp) = die_type (die, cu);
12417 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12418 fip->nbaseclasses++;
12422 /* Add a typedef defined in the scope of the FIP's class. */
12425 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12426 struct dwarf2_cu *cu)
12428 struct objfile *objfile = cu->objfile;
12429 struct typedef_field_list *new_field;
12430 struct attribute *attr;
12431 struct typedef_field *fp;
12432 char *fieldname = "";
12434 /* Allocate a new field list entry and link it in. */
12435 new_field = xzalloc (sizeof (*new_field));
12436 make_cleanup (xfree, new_field);
12438 gdb_assert (die->tag == DW_TAG_typedef);
12440 fp = &new_field->field;
12442 /* Get name of field. */
12443 fp->name = dwarf2_name (die, cu);
12444 if (fp->name == NULL)
12447 fp->type = read_type_die (die, cu);
12449 new_field->next = fip->typedef_field_list;
12450 fip->typedef_field_list = new_field;
12451 fip->typedef_field_list_count++;
12454 /* Create the vector of fields, and attach it to the type. */
12457 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12458 struct dwarf2_cu *cu)
12460 int nfields = fip->nfields;
12462 /* Record the field count, allocate space for the array of fields,
12463 and create blank accessibility bitfields if necessary. */
12464 TYPE_NFIELDS (type) = nfields;
12465 TYPE_FIELDS (type) = (struct field *)
12466 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12467 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12469 if (fip->non_public_fields && cu->language != language_ada)
12471 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12473 TYPE_FIELD_PRIVATE_BITS (type) =
12474 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12475 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12477 TYPE_FIELD_PROTECTED_BITS (type) =
12478 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12479 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12481 TYPE_FIELD_IGNORE_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12486 /* If the type has baseclasses, allocate and clear a bit vector for
12487 TYPE_FIELD_VIRTUAL_BITS. */
12488 if (fip->nbaseclasses && cu->language != language_ada)
12490 int num_bytes = B_BYTES (fip->nbaseclasses);
12491 unsigned char *pointer;
12493 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12494 pointer = TYPE_ALLOC (type, num_bytes);
12495 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12496 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12497 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12500 /* Copy the saved-up fields into the field vector. Start from the head of
12501 the list, adding to the tail of the field array, so that they end up in
12502 the same order in the array in which they were added to the list. */
12503 while (nfields-- > 0)
12505 struct nextfield *fieldp;
12509 fieldp = fip->fields;
12510 fip->fields = fieldp->next;
12514 fieldp = fip->baseclasses;
12515 fip->baseclasses = fieldp->next;
12518 TYPE_FIELD (type, nfields) = fieldp->field;
12519 switch (fieldp->accessibility)
12521 case DW_ACCESS_private:
12522 if (cu->language != language_ada)
12523 SET_TYPE_FIELD_PRIVATE (type, nfields);
12526 case DW_ACCESS_protected:
12527 if (cu->language != language_ada)
12528 SET_TYPE_FIELD_PROTECTED (type, nfields);
12531 case DW_ACCESS_public:
12535 /* Unknown accessibility. Complain and treat it as public. */
12537 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12538 fieldp->accessibility);
12542 if (nfields < fip->nbaseclasses)
12544 switch (fieldp->virtuality)
12546 case DW_VIRTUALITY_virtual:
12547 case DW_VIRTUALITY_pure_virtual:
12548 if (cu->language == language_ada)
12549 error (_("unexpected virtuality in component of Ada type"));
12550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12557 /* Return true if this member function is a constructor, false
12561 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12563 const char *fieldname;
12564 const char *typename;
12567 if (die->parent == NULL)
12570 if (die->parent->tag != DW_TAG_structure_type
12571 && die->parent->tag != DW_TAG_union_type
12572 && die->parent->tag != DW_TAG_class_type)
12575 fieldname = dwarf2_name (die, cu);
12576 typename = dwarf2_name (die->parent, cu);
12577 if (fieldname == NULL || typename == NULL)
12580 len = strlen (fieldname);
12581 return (strncmp (fieldname, typename, len) == 0
12582 && (typename[len] == '\0' || typename[len] == '<'));
12585 /* Add a member function to the proper fieldlist. */
12588 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12589 struct type *type, struct dwarf2_cu *cu)
12591 struct objfile *objfile = cu->objfile;
12592 struct attribute *attr;
12593 struct fnfieldlist *flp;
12595 struct fn_field *fnp;
12596 const char *fieldname;
12597 struct nextfnfield *new_fnfield;
12598 struct type *this_type;
12599 enum dwarf_access_attribute accessibility;
12601 if (cu->language == language_ada)
12602 error (_("unexpected member function in Ada type"));
12604 /* Get name of member function. */
12605 fieldname = dwarf2_name (die, cu);
12606 if (fieldname == NULL)
12609 /* Look up member function name in fieldlist. */
12610 for (i = 0; i < fip->nfnfields; i++)
12612 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12616 /* Create new list element if necessary. */
12617 if (i < fip->nfnfields)
12618 flp = &fip->fnfieldlists[i];
12621 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12623 fip->fnfieldlists = (struct fnfieldlist *)
12624 xrealloc (fip->fnfieldlists,
12625 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12626 * sizeof (struct fnfieldlist));
12627 if (fip->nfnfields == 0)
12628 make_cleanup (free_current_contents, &fip->fnfieldlists);
12630 flp = &fip->fnfieldlists[fip->nfnfields];
12631 flp->name = fieldname;
12634 i = fip->nfnfields++;
12637 /* Create a new member function field and chain it to the field list
12639 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12640 make_cleanup (xfree, new_fnfield);
12641 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12642 new_fnfield->next = flp->head;
12643 flp->head = new_fnfield;
12646 /* Fill in the member function field info. */
12647 fnp = &new_fnfield->fnfield;
12649 /* Delay processing of the physname until later. */
12650 if (cu->language == language_cplus || cu->language == language_java)
12652 add_to_method_list (type, i, flp->length - 1, fieldname,
12657 const char *physname = dwarf2_physname (fieldname, die, cu);
12658 fnp->physname = physname ? physname : "";
12661 fnp->type = alloc_type (objfile);
12662 this_type = read_type_die (die, cu);
12663 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12665 int nparams = TYPE_NFIELDS (this_type);
12667 /* TYPE is the domain of this method, and THIS_TYPE is the type
12668 of the method itself (TYPE_CODE_METHOD). */
12669 smash_to_method_type (fnp->type, type,
12670 TYPE_TARGET_TYPE (this_type),
12671 TYPE_FIELDS (this_type),
12672 TYPE_NFIELDS (this_type),
12673 TYPE_VARARGS (this_type));
12675 /* Handle static member functions.
12676 Dwarf2 has no clean way to discern C++ static and non-static
12677 member functions. G++ helps GDB by marking the first
12678 parameter for non-static member functions (which is the this
12679 pointer) as artificial. We obtain this information from
12680 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12681 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12682 fnp->voffset = VOFFSET_STATIC;
12685 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12686 dwarf2_full_name (fieldname, die, cu));
12688 /* Get fcontext from DW_AT_containing_type if present. */
12689 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12690 fnp->fcontext = die_containing_type (die, cu);
12692 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12693 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12695 /* Get accessibility. */
12696 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12698 accessibility = DW_UNSND (attr);
12700 accessibility = dwarf2_default_access_attribute (die, cu);
12701 switch (accessibility)
12703 case DW_ACCESS_private:
12704 fnp->is_private = 1;
12706 case DW_ACCESS_protected:
12707 fnp->is_protected = 1;
12711 /* Check for artificial methods. */
12712 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12713 if (attr && DW_UNSND (attr) != 0)
12714 fnp->is_artificial = 1;
12716 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12718 /* Get index in virtual function table if it is a virtual member
12719 function. For older versions of GCC, this is an offset in the
12720 appropriate virtual table, as specified by DW_AT_containing_type.
12721 For everyone else, it is an expression to be evaluated relative
12722 to the object address. */
12724 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12727 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12729 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12731 /* Old-style GCC. */
12732 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12734 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12735 || (DW_BLOCK (attr)->size > 1
12736 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12737 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12739 struct dwarf_block blk;
12742 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12744 blk.size = DW_BLOCK (attr)->size - offset;
12745 blk.data = DW_BLOCK (attr)->data + offset;
12746 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12747 if ((fnp->voffset % cu->header.addr_size) != 0)
12748 dwarf2_complex_location_expr_complaint ();
12750 fnp->voffset /= cu->header.addr_size;
12754 dwarf2_complex_location_expr_complaint ();
12756 if (!fnp->fcontext)
12757 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12759 else if (attr_form_is_section_offset (attr))
12761 dwarf2_complex_location_expr_complaint ();
12765 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12771 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12772 if (attr && DW_UNSND (attr))
12774 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12775 complaint (&symfile_complaints,
12776 _("Member function \"%s\" (offset %d) is virtual "
12777 "but the vtable offset is not specified"),
12778 fieldname, die->offset.sect_off);
12779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12780 TYPE_CPLUS_DYNAMIC (type) = 1;
12785 /* Create the vector of member function fields, and attach it to the type. */
12788 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12789 struct dwarf2_cu *cu)
12791 struct fnfieldlist *flp;
12794 if (cu->language == language_ada)
12795 error (_("unexpected member functions in Ada type"));
12797 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12798 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12799 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12801 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12803 struct nextfnfield *nfp = flp->head;
12804 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12807 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12808 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12809 fn_flp->fn_fields = (struct fn_field *)
12810 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12811 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12812 fn_flp->fn_fields[k] = nfp->fnfield;
12815 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12818 /* Returns non-zero if NAME is the name of a vtable member in CU's
12819 language, zero otherwise. */
12821 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12823 static const char vptr[] = "_vptr";
12824 static const char vtable[] = "vtable";
12826 /* Look for the C++ and Java forms of the vtable. */
12827 if ((cu->language == language_java
12828 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12829 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12830 && is_cplus_marker (name[sizeof (vptr) - 1])))
12836 /* GCC outputs unnamed structures that are really pointers to member
12837 functions, with the ABI-specified layout. If TYPE describes
12838 such a structure, smash it into a member function type.
12840 GCC shouldn't do this; it should just output pointer to member DIEs.
12841 This is GCC PR debug/28767. */
12844 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12846 struct type *pfn_type, *domain_type, *new_type;
12848 /* Check for a structure with no name and two children. */
12849 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12852 /* Check for __pfn and __delta members. */
12853 if (TYPE_FIELD_NAME (type, 0) == NULL
12854 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12855 || TYPE_FIELD_NAME (type, 1) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12859 /* Find the type of the method. */
12860 pfn_type = TYPE_FIELD_TYPE (type, 0);
12861 if (pfn_type == NULL
12862 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12863 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12866 /* Look for the "this" argument. */
12867 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12868 if (TYPE_NFIELDS (pfn_type) == 0
12869 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12870 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12873 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12874 new_type = alloc_type (objfile);
12875 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12876 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12877 TYPE_VARARGS (pfn_type));
12878 smash_to_methodptr_type (type, new_type);
12881 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12885 producer_is_icc (struct dwarf2_cu *cu)
12887 if (!cu->checked_producer)
12888 check_producer (cu);
12890 return cu->producer_is_icc;
12893 /* Called when we find the DIE that starts a structure or union scope
12894 (definition) to create a type for the structure or union. Fill in
12895 the type's name and general properties; the members will not be
12896 processed until process_structure_scope. A symbol table entry for
12897 the type will also not be done until process_structure_scope (assuming
12898 the type has a name).
12900 NOTE: we need to call these functions regardless of whether or not the
12901 DIE has a DW_AT_name attribute, since it might be an anonymous
12902 structure or union. This gets the type entered into our set of
12903 user defined types. */
12905 static struct type *
12906 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12908 struct objfile *objfile = cu->objfile;
12910 struct attribute *attr;
12913 /* If the definition of this type lives in .debug_types, read that type.
12914 Don't follow DW_AT_specification though, that will take us back up
12915 the chain and we want to go down. */
12916 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12919 type = get_DW_AT_signature_type (die, attr, cu);
12921 /* The type's CU may not be the same as CU.
12922 Ensure TYPE is recorded with CU in die_type_hash. */
12923 return set_die_type (die, type, cu);
12926 type = alloc_type (objfile);
12927 INIT_CPLUS_SPECIFIC (type);
12929 name = dwarf2_name (die, cu);
12932 if (cu->language == language_cplus
12933 || cu->language == language_java)
12935 const char *full_name = dwarf2_full_name (name, die, cu);
12937 /* dwarf2_full_name might have already finished building the DIE's
12938 type. If so, there is no need to continue. */
12939 if (get_die_type (die, cu) != NULL)
12940 return get_die_type (die, cu);
12942 TYPE_TAG_NAME (type) = full_name;
12943 if (die->tag == DW_TAG_structure_type
12944 || die->tag == DW_TAG_class_type)
12945 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12949 /* The name is already allocated along with this objfile, so
12950 we don't need to duplicate it for the type. */
12951 TYPE_TAG_NAME (type) = name;
12952 if (die->tag == DW_TAG_class_type)
12953 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12957 if (die->tag == DW_TAG_structure_type)
12959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12961 else if (die->tag == DW_TAG_union_type)
12963 TYPE_CODE (type) = TYPE_CODE_UNION;
12967 TYPE_CODE (type) = TYPE_CODE_CLASS;
12970 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12971 TYPE_DECLARED_CLASS (type) = 1;
12973 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12976 TYPE_LENGTH (type) = DW_UNSND (attr);
12980 TYPE_LENGTH (type) = 0;
12983 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12985 /* ICC does not output the required DW_AT_declaration
12986 on incomplete types, but gives them a size of zero. */
12987 TYPE_STUB (type) = 1;
12990 TYPE_STUB_SUPPORTED (type) = 1;
12992 if (die_is_declaration (die, cu))
12993 TYPE_STUB (type) = 1;
12994 else if (attr == NULL && die->child == NULL
12995 && producer_is_realview (cu->producer))
12996 /* RealView does not output the required DW_AT_declaration
12997 on incomplete types. */
12998 TYPE_STUB (type) = 1;
13000 /* We need to add the type field to the die immediately so we don't
13001 infinitely recurse when dealing with pointers to the structure
13002 type within the structure itself. */
13003 set_die_type (die, type, cu);
13005 /* set_die_type should be already done. */
13006 set_descriptive_type (type, die, cu);
13011 /* Finish creating a structure or union type, including filling in
13012 its members and creating a symbol for it. */
13015 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13017 struct objfile *objfile = cu->objfile;
13018 struct die_info *child_die = die->child;
13021 type = get_die_type (die, cu);
13023 type = read_structure_type (die, cu);
13025 if (die->child != NULL && ! die_is_declaration (die, cu))
13027 struct field_info fi;
13028 struct die_info *child_die;
13029 VEC (symbolp) *template_args = NULL;
13030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13032 memset (&fi, 0, sizeof (struct field_info));
13034 child_die = die->child;
13036 while (child_die && child_die->tag)
13038 if (child_die->tag == DW_TAG_member
13039 || child_die->tag == DW_TAG_variable)
13041 /* NOTE: carlton/2002-11-05: A C++ static data member
13042 should be a DW_TAG_member that is a declaration, but
13043 all versions of G++ as of this writing (so through at
13044 least 3.2.1) incorrectly generate DW_TAG_variable
13045 tags for them instead. */
13046 dwarf2_add_field (&fi, child_die, cu);
13048 else if (child_die->tag == DW_TAG_subprogram)
13050 /* C++ member function. */
13051 dwarf2_add_member_fn (&fi, child_die, type, cu);
13053 else if (child_die->tag == DW_TAG_inheritance)
13055 /* C++ base class field. */
13056 dwarf2_add_field (&fi, child_die, cu);
13058 else if (child_die->tag == DW_TAG_typedef)
13059 dwarf2_add_typedef (&fi, child_die, cu);
13060 else if (child_die->tag == DW_TAG_template_type_param
13061 || child_die->tag == DW_TAG_template_value_param)
13063 struct symbol *arg = new_symbol (child_die, NULL, cu);
13066 VEC_safe_push (symbolp, template_args, arg);
13069 child_die = sibling_die (child_die);
13072 /* Attach template arguments to type. */
13073 if (! VEC_empty (symbolp, template_args))
13075 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13076 TYPE_N_TEMPLATE_ARGUMENTS (type)
13077 = VEC_length (symbolp, template_args);
13078 TYPE_TEMPLATE_ARGUMENTS (type)
13079 = obstack_alloc (&objfile->objfile_obstack,
13080 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13081 * sizeof (struct symbol *)));
13082 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13083 VEC_address (symbolp, template_args),
13084 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13085 * sizeof (struct symbol *)));
13086 VEC_free (symbolp, template_args);
13089 /* Attach fields and member functions to the type. */
13091 dwarf2_attach_fields_to_type (&fi, type, cu);
13094 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13096 /* Get the type which refers to the base class (possibly this
13097 class itself) which contains the vtable pointer for the current
13098 class from the DW_AT_containing_type attribute. This use of
13099 DW_AT_containing_type is a GNU extension. */
13101 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13103 struct type *t = die_containing_type (die, cu);
13105 TYPE_VPTR_BASETYPE (type) = t;
13110 /* Our own class provides vtbl ptr. */
13111 for (i = TYPE_NFIELDS (t) - 1;
13112 i >= TYPE_N_BASECLASSES (t);
13115 const char *fieldname = TYPE_FIELD_NAME (t, i);
13117 if (is_vtable_name (fieldname, cu))
13119 TYPE_VPTR_FIELDNO (type) = i;
13124 /* Complain if virtual function table field not found. */
13125 if (i < TYPE_N_BASECLASSES (t))
13126 complaint (&symfile_complaints,
13127 _("virtual function table pointer "
13128 "not found when defining class '%s'"),
13129 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13134 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13137 else if (cu->producer
13138 && strncmp (cu->producer,
13139 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13141 /* The IBM XLC compiler does not provide direct indication
13142 of the containing type, but the vtable pointer is
13143 always named __vfp. */
13147 for (i = TYPE_NFIELDS (type) - 1;
13148 i >= TYPE_N_BASECLASSES (type);
13151 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13153 TYPE_VPTR_FIELDNO (type) = i;
13154 TYPE_VPTR_BASETYPE (type) = type;
13161 /* Copy fi.typedef_field_list linked list elements content into the
13162 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13163 if (fi.typedef_field_list)
13165 int i = fi.typedef_field_list_count;
13167 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13168 TYPE_TYPEDEF_FIELD_ARRAY (type)
13169 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13170 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13172 /* Reverse the list order to keep the debug info elements order. */
13175 struct typedef_field *dest, *src;
13177 dest = &TYPE_TYPEDEF_FIELD (type, i);
13178 src = &fi.typedef_field_list->field;
13179 fi.typedef_field_list = fi.typedef_field_list->next;
13184 do_cleanups (back_to);
13186 if (HAVE_CPLUS_STRUCT (type))
13187 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13190 quirk_gcc_member_function_pointer (type, objfile);
13192 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13193 snapshots) has been known to create a die giving a declaration
13194 for a class that has, as a child, a die giving a definition for a
13195 nested class. So we have to process our children even if the
13196 current die is a declaration. Normally, of course, a declaration
13197 won't have any children at all. */
13199 while (child_die != NULL && child_die->tag)
13201 if (child_die->tag == DW_TAG_member
13202 || child_die->tag == DW_TAG_variable
13203 || child_die->tag == DW_TAG_inheritance
13204 || child_die->tag == DW_TAG_template_value_param
13205 || child_die->tag == DW_TAG_template_type_param)
13210 process_die (child_die, cu);
13212 child_die = sibling_die (child_die);
13215 /* Do not consider external references. According to the DWARF standard,
13216 these DIEs are identified by the fact that they have no byte_size
13217 attribute, and a declaration attribute. */
13218 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13219 || !die_is_declaration (die, cu))
13220 new_symbol (die, type, cu);
13223 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13224 update TYPE using some information only available in DIE's children. */
13227 update_enumeration_type_from_children (struct die_info *die,
13229 struct dwarf2_cu *cu)
13231 struct obstack obstack;
13232 struct die_info *child_die = die->child;
13233 int unsigned_enum = 1;
13236 struct cleanup *old_chain;
13238 obstack_init (&obstack);
13239 old_chain = make_cleanup_obstack_free (&obstack);
13241 while (child_die != NULL && child_die->tag)
13243 struct attribute *attr;
13245 const gdb_byte *bytes;
13246 struct dwarf2_locexpr_baton *baton;
13248 if (child_die->tag != DW_TAG_enumerator)
13251 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13255 name = dwarf2_name (child_die, cu);
13257 name = "<anonymous enumerator>";
13259 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13260 &value, &bytes, &baton);
13266 else if ((mask & value) != 0)
13271 /* If we already know that the enum type is neither unsigned, nor
13272 a flag type, no need to look at the rest of the enumerates. */
13273 if (!unsigned_enum && !flag_enum)
13275 child_die = sibling_die (child_die);
13279 TYPE_UNSIGNED (type) = 1;
13281 TYPE_FLAG_ENUM (type) = 1;
13283 do_cleanups (old_chain);
13286 /* Given a DW_AT_enumeration_type die, set its type. We do not
13287 complete the type's fields yet, or create any symbols. */
13289 static struct type *
13290 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13292 struct objfile *objfile = cu->objfile;
13294 struct attribute *attr;
13297 /* If the definition of this type lives in .debug_types, read that type.
13298 Don't follow DW_AT_specification though, that will take us back up
13299 the chain and we want to go down. */
13300 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13303 type = get_DW_AT_signature_type (die, attr, cu);
13305 /* The type's CU may not be the same as CU.
13306 Ensure TYPE is recorded with CU in die_type_hash. */
13307 return set_die_type (die, type, cu);
13310 type = alloc_type (objfile);
13312 TYPE_CODE (type) = TYPE_CODE_ENUM;
13313 name = dwarf2_full_name (NULL, die, cu);
13315 TYPE_TAG_NAME (type) = name;
13317 attr = dwarf2_attr (die, DW_AT_type, cu);
13320 struct type *underlying_type = die_type (die, cu);
13322 TYPE_TARGET_TYPE (type) = underlying_type;
13325 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13328 TYPE_LENGTH (type) = DW_UNSND (attr);
13332 TYPE_LENGTH (type) = 0;
13335 /* The enumeration DIE can be incomplete. In Ada, any type can be
13336 declared as private in the package spec, and then defined only
13337 inside the package body. Such types are known as Taft Amendment
13338 Types. When another package uses such a type, an incomplete DIE
13339 may be generated by the compiler. */
13340 if (die_is_declaration (die, cu))
13341 TYPE_STUB (type) = 1;
13343 /* Finish the creation of this type by using the enum's children.
13344 We must call this even when the underlying type has been provided
13345 so that we can determine if we're looking at a "flag" enum. */
13346 update_enumeration_type_from_children (die, type, cu);
13348 /* If this type has an underlying type that is not a stub, then we
13349 may use its attributes. We always use the "unsigned" attribute
13350 in this situation, because ordinarily we guess whether the type
13351 is unsigned -- but the guess can be wrong and the underlying type
13352 can tell us the reality. However, we defer to a local size
13353 attribute if one exists, because this lets the compiler override
13354 the underlying type if needed. */
13355 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13357 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13358 if (TYPE_LENGTH (type) == 0)
13359 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13362 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13364 return set_die_type (die, type, cu);
13367 /* Given a pointer to a die which begins an enumeration, process all
13368 the dies that define the members of the enumeration, and create the
13369 symbol for the enumeration type.
13371 NOTE: We reverse the order of the element list. */
13374 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13376 struct type *this_type;
13378 this_type = get_die_type (die, cu);
13379 if (this_type == NULL)
13380 this_type = read_enumeration_type (die, cu);
13382 if (die->child != NULL)
13384 struct die_info *child_die;
13385 struct symbol *sym;
13386 struct field *fields = NULL;
13387 int num_fields = 0;
13390 child_die = die->child;
13391 while (child_die && child_die->tag)
13393 if (child_die->tag != DW_TAG_enumerator)
13395 process_die (child_die, cu);
13399 name = dwarf2_name (child_die, cu);
13402 sym = new_symbol (child_die, this_type, cu);
13404 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13406 fields = (struct field *)
13408 (num_fields + DW_FIELD_ALLOC_CHUNK)
13409 * sizeof (struct field));
13412 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13413 FIELD_TYPE (fields[num_fields]) = NULL;
13414 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13415 FIELD_BITSIZE (fields[num_fields]) = 0;
13421 child_die = sibling_die (child_die);
13426 TYPE_NFIELDS (this_type) = num_fields;
13427 TYPE_FIELDS (this_type) = (struct field *)
13428 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13429 memcpy (TYPE_FIELDS (this_type), fields,
13430 sizeof (struct field) * num_fields);
13435 /* If we are reading an enum from a .debug_types unit, and the enum
13436 is a declaration, and the enum is not the signatured type in the
13437 unit, then we do not want to add a symbol for it. Adding a
13438 symbol would in some cases obscure the true definition of the
13439 enum, giving users an incomplete type when the definition is
13440 actually available. Note that we do not want to do this for all
13441 enums which are just declarations, because C++0x allows forward
13442 enum declarations. */
13443 if (cu->per_cu->is_debug_types
13444 && die_is_declaration (die, cu))
13446 struct signatured_type *sig_type;
13448 sig_type = (struct signatured_type *) cu->per_cu;
13449 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13450 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13454 new_symbol (die, this_type, cu);
13457 /* Extract all information from a DW_TAG_array_type DIE and put it in
13458 the DIE's type field. For now, this only handles one dimensional
13461 static struct type *
13462 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13464 struct objfile *objfile = cu->objfile;
13465 struct die_info *child_die;
13467 struct type *element_type, *range_type, *index_type;
13468 struct type **range_types = NULL;
13469 struct attribute *attr;
13471 struct cleanup *back_to;
13473 unsigned int bit_stride = 0;
13475 element_type = die_type (die, cu);
13477 /* The die_type call above may have already set the type for this DIE. */
13478 type = get_die_type (die, cu);
13482 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13484 bit_stride = DW_UNSND (attr) * 8;
13486 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13488 bit_stride = DW_UNSND (attr);
13490 /* Irix 6.2 native cc creates array types without children for
13491 arrays with unspecified length. */
13492 if (die->child == NULL)
13494 index_type = objfile_type (objfile)->builtin_int;
13495 range_type = create_static_range_type (NULL, index_type, 0, -1);
13496 type = create_array_type_with_stride (NULL, element_type, range_type,
13498 return set_die_type (die, type, cu);
13501 back_to = make_cleanup (null_cleanup, NULL);
13502 child_die = die->child;
13503 while (child_die && child_die->tag)
13505 if (child_die->tag == DW_TAG_subrange_type)
13507 struct type *child_type = read_type_die (child_die, cu);
13509 if (child_type != NULL)
13511 /* The range type was succesfully read. Save it for the
13512 array type creation. */
13513 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13515 range_types = (struct type **)
13516 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13517 * sizeof (struct type *));
13519 make_cleanup (free_current_contents, &range_types);
13521 range_types[ndim++] = child_type;
13524 child_die = sibling_die (child_die);
13527 /* Dwarf2 dimensions are output from left to right, create the
13528 necessary array types in backwards order. */
13530 type = element_type;
13532 if (read_array_order (die, cu) == DW_ORD_col_major)
13537 type = create_array_type_with_stride (NULL, type, range_types[i++],
13543 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13547 /* Understand Dwarf2 support for vector types (like they occur on
13548 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13549 array type. This is not part of the Dwarf2/3 standard yet, but a
13550 custom vendor extension. The main difference between a regular
13551 array and the vector variant is that vectors are passed by value
13553 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13555 make_vector_type (type);
13557 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13558 implementation may choose to implement triple vectors using this
13560 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13563 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13564 TYPE_LENGTH (type) = DW_UNSND (attr);
13566 complaint (&symfile_complaints,
13567 _("DW_AT_byte_size for array type smaller "
13568 "than the total size of elements"));
13571 name = dwarf2_name (die, cu);
13573 TYPE_NAME (type) = name;
13575 /* Install the type in the die. */
13576 set_die_type (die, type, cu);
13578 /* set_die_type should be already done. */
13579 set_descriptive_type (type, die, cu);
13581 do_cleanups (back_to);
13586 static enum dwarf_array_dim_ordering
13587 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13589 struct attribute *attr;
13591 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13593 if (attr) return DW_SND (attr);
13595 /* GNU F77 is a special case, as at 08/2004 array type info is the
13596 opposite order to the dwarf2 specification, but data is still
13597 laid out as per normal fortran.
13599 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13600 version checking. */
13602 if (cu->language == language_fortran
13603 && cu->producer && strstr (cu->producer, "GNU F77"))
13605 return DW_ORD_row_major;
13608 switch (cu->language_defn->la_array_ordering)
13610 case array_column_major:
13611 return DW_ORD_col_major;
13612 case array_row_major:
13614 return DW_ORD_row_major;
13618 /* Extract all information from a DW_TAG_set_type DIE and put it in
13619 the DIE's type field. */
13621 static struct type *
13622 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13624 struct type *domain_type, *set_type;
13625 struct attribute *attr;
13627 domain_type = die_type (die, cu);
13629 /* The die_type call above may have already set the type for this DIE. */
13630 set_type = get_die_type (die, cu);
13634 set_type = create_set_type (NULL, domain_type);
13636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13638 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13640 return set_die_type (die, set_type, cu);
13643 /* A helper for read_common_block that creates a locexpr baton.
13644 SYM is the symbol which we are marking as computed.
13645 COMMON_DIE is the DIE for the common block.
13646 COMMON_LOC is the location expression attribute for the common
13648 MEMBER_LOC is the location expression attribute for the particular
13649 member of the common block that we are processing.
13650 CU is the CU from which the above come. */
13653 mark_common_block_symbol_computed (struct symbol *sym,
13654 struct die_info *common_die,
13655 struct attribute *common_loc,
13656 struct attribute *member_loc,
13657 struct dwarf2_cu *cu)
13659 struct objfile *objfile = dwarf2_per_objfile->objfile;
13660 struct dwarf2_locexpr_baton *baton;
13662 unsigned int cu_off;
13663 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13664 LONGEST offset = 0;
13666 gdb_assert (common_loc && member_loc);
13667 gdb_assert (attr_form_is_block (common_loc));
13668 gdb_assert (attr_form_is_block (member_loc)
13669 || attr_form_is_constant (member_loc));
13671 baton = obstack_alloc (&objfile->objfile_obstack,
13672 sizeof (struct dwarf2_locexpr_baton));
13673 baton->per_cu = cu->per_cu;
13674 gdb_assert (baton->per_cu);
13676 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13678 if (attr_form_is_constant (member_loc))
13680 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13681 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13684 baton->size += DW_BLOCK (member_loc)->size;
13686 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13689 *ptr++ = DW_OP_call4;
13690 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13691 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13694 if (attr_form_is_constant (member_loc))
13696 *ptr++ = DW_OP_addr;
13697 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13698 ptr += cu->header.addr_size;
13702 /* We have to copy the data here, because DW_OP_call4 will only
13703 use a DW_AT_location attribute. */
13704 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13705 ptr += DW_BLOCK (member_loc)->size;
13708 *ptr++ = DW_OP_plus;
13709 gdb_assert (ptr - baton->data == baton->size);
13711 SYMBOL_LOCATION_BATON (sym) = baton;
13712 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13715 /* Create appropriate locally-scoped variables for all the
13716 DW_TAG_common_block entries. Also create a struct common_block
13717 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13718 is used to sepate the common blocks name namespace from regular
13722 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13724 struct attribute *attr;
13726 attr = dwarf2_attr (die, DW_AT_location, cu);
13729 /* Support the .debug_loc offsets. */
13730 if (attr_form_is_block (attr))
13734 else if (attr_form_is_section_offset (attr))
13736 dwarf2_complex_location_expr_complaint ();
13741 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13742 "common block member");
13747 if (die->child != NULL)
13749 struct objfile *objfile = cu->objfile;
13750 struct die_info *child_die;
13751 size_t n_entries = 0, size;
13752 struct common_block *common_block;
13753 struct symbol *sym;
13755 for (child_die = die->child;
13756 child_die && child_die->tag;
13757 child_die = sibling_die (child_die))
13760 size = (sizeof (struct common_block)
13761 + (n_entries - 1) * sizeof (struct symbol *));
13762 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13763 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13764 common_block->n_entries = 0;
13766 for (child_die = die->child;
13767 child_die && child_die->tag;
13768 child_die = sibling_die (child_die))
13770 /* Create the symbol in the DW_TAG_common_block block in the current
13772 sym = new_symbol (child_die, NULL, cu);
13775 struct attribute *member_loc;
13777 common_block->contents[common_block->n_entries++] = sym;
13779 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13783 /* GDB has handled this for a long time, but it is
13784 not specified by DWARF. It seems to have been
13785 emitted by gfortran at least as recently as:
13786 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13787 complaint (&symfile_complaints,
13788 _("Variable in common block has "
13789 "DW_AT_data_member_location "
13790 "- DIE at 0x%x [in module %s]"),
13791 child_die->offset.sect_off,
13792 objfile_name (cu->objfile));
13794 if (attr_form_is_section_offset (member_loc))
13795 dwarf2_complex_location_expr_complaint ();
13796 else if (attr_form_is_constant (member_loc)
13797 || attr_form_is_block (member_loc))
13800 mark_common_block_symbol_computed (sym, die, attr,
13804 dwarf2_complex_location_expr_complaint ();
13809 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13810 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13814 /* Create a type for a C++ namespace. */
13816 static struct type *
13817 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13819 struct objfile *objfile = cu->objfile;
13820 const char *previous_prefix, *name;
13824 /* For extensions, reuse the type of the original namespace. */
13825 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13827 struct die_info *ext_die;
13828 struct dwarf2_cu *ext_cu = cu;
13830 ext_die = dwarf2_extension (die, &ext_cu);
13831 type = read_type_die (ext_die, ext_cu);
13833 /* EXT_CU may not be the same as CU.
13834 Ensure TYPE is recorded with CU in die_type_hash. */
13835 return set_die_type (die, type, cu);
13838 name = namespace_name (die, &is_anonymous, cu);
13840 /* Now build the name of the current namespace. */
13842 previous_prefix = determine_prefix (die, cu);
13843 if (previous_prefix[0] != '\0')
13844 name = typename_concat (&objfile->objfile_obstack,
13845 previous_prefix, name, 0, cu);
13847 /* Create the type. */
13848 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13850 TYPE_NAME (type) = name;
13851 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13853 return set_die_type (die, type, cu);
13856 /* Read a C++ namespace. */
13859 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13861 struct objfile *objfile = cu->objfile;
13864 /* Add a symbol associated to this if we haven't seen the namespace
13865 before. Also, add a using directive if it's an anonymous
13868 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13872 type = read_type_die (die, cu);
13873 new_symbol (die, type, cu);
13875 namespace_name (die, &is_anonymous, cu);
13878 const char *previous_prefix = determine_prefix (die, cu);
13880 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13881 NULL, NULL, 0, &objfile->objfile_obstack);
13885 if (die->child != NULL)
13887 struct die_info *child_die = die->child;
13889 while (child_die && child_die->tag)
13891 process_die (child_die, cu);
13892 child_die = sibling_die (child_die);
13897 /* Read a Fortran module as type. This DIE can be only a declaration used for
13898 imported module. Still we need that type as local Fortran "use ... only"
13899 declaration imports depend on the created type in determine_prefix. */
13901 static struct type *
13902 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13904 struct objfile *objfile = cu->objfile;
13905 const char *module_name;
13908 module_name = dwarf2_name (die, cu);
13910 complaint (&symfile_complaints,
13911 _("DW_TAG_module has no name, offset 0x%x"),
13912 die->offset.sect_off);
13913 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13915 /* determine_prefix uses TYPE_TAG_NAME. */
13916 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13918 return set_die_type (die, type, cu);
13921 /* Read a Fortran module. */
13924 read_module (struct die_info *die, struct dwarf2_cu *cu)
13926 struct die_info *child_die = die->child;
13929 type = read_type_die (die, cu);
13930 new_symbol (die, type, cu);
13932 while (child_die && child_die->tag)
13934 process_die (child_die, cu);
13935 child_die = sibling_die (child_die);
13939 /* Return the name of the namespace represented by DIE. Set
13940 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13943 static const char *
13944 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13946 struct die_info *current_die;
13947 const char *name = NULL;
13949 /* Loop through the extensions until we find a name. */
13951 for (current_die = die;
13952 current_die != NULL;
13953 current_die = dwarf2_extension (die, &cu))
13955 name = dwarf2_name (current_die, cu);
13960 /* Is it an anonymous namespace? */
13962 *is_anonymous = (name == NULL);
13964 name = CP_ANONYMOUS_NAMESPACE_STR;
13969 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13970 the user defined type vector. */
13972 static struct type *
13973 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13975 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13976 struct comp_unit_head *cu_header = &cu->header;
13978 struct attribute *attr_byte_size;
13979 struct attribute *attr_address_class;
13980 int byte_size, addr_class;
13981 struct type *target_type;
13983 target_type = die_type (die, cu);
13985 /* The die_type call above may have already set the type for this DIE. */
13986 type = get_die_type (die, cu);
13990 type = lookup_pointer_type (target_type);
13992 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13993 if (attr_byte_size)
13994 byte_size = DW_UNSND (attr_byte_size);
13996 byte_size = cu_header->addr_size;
13998 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13999 if (attr_address_class)
14000 addr_class = DW_UNSND (attr_address_class);
14002 addr_class = DW_ADDR_none;
14004 /* If the pointer size or address class is different than the
14005 default, create a type variant marked as such and set the
14006 length accordingly. */
14007 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14009 if (gdbarch_address_class_type_flags_p (gdbarch))
14013 type_flags = gdbarch_address_class_type_flags
14014 (gdbarch, byte_size, addr_class);
14015 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14017 type = make_type_with_address_space (type, type_flags);
14019 else if (TYPE_LENGTH (type) != byte_size)
14021 complaint (&symfile_complaints,
14022 _("invalid pointer size %d"), byte_size);
14026 /* Should we also complain about unhandled address classes? */
14030 TYPE_LENGTH (type) = byte_size;
14031 return set_die_type (die, type, cu);
14034 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14035 the user defined type vector. */
14037 static struct type *
14038 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14041 struct type *to_type;
14042 struct type *domain;
14044 to_type = die_type (die, cu);
14045 domain = die_containing_type (die, cu);
14047 /* The calls above may have already set the type for this DIE. */
14048 type = get_die_type (die, cu);
14052 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14053 type = lookup_methodptr_type (to_type);
14054 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14056 struct type *new_type = alloc_type (cu->objfile);
14058 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14059 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14060 TYPE_VARARGS (to_type));
14061 type = lookup_methodptr_type (new_type);
14064 type = lookup_memberptr_type (to_type, domain);
14066 return set_die_type (die, type, cu);
14069 /* Extract all information from a DW_TAG_reference_type DIE and add to
14070 the user defined type vector. */
14072 static struct type *
14073 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14075 struct comp_unit_head *cu_header = &cu->header;
14076 struct type *type, *target_type;
14077 struct attribute *attr;
14079 target_type = die_type (die, cu);
14081 /* The die_type call above may have already set the type for this DIE. */
14082 type = get_die_type (die, cu);
14086 type = lookup_reference_type (target_type);
14087 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14090 TYPE_LENGTH (type) = DW_UNSND (attr);
14094 TYPE_LENGTH (type) = cu_header->addr_size;
14096 return set_die_type (die, type, cu);
14099 /* Add the given cv-qualifiers to the element type of the array. GCC
14100 outputs DWARF type qualifiers that apply to an array, not the
14101 element type. But GDB relies on the array element type to carry
14102 the cv-qualifiers. This mimics section 6.7.3 of the C99
14105 static struct type *
14106 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14107 struct type *base_type, int cnst, int voltl)
14109 struct type *el_type, *inner_array;
14111 base_type = copy_type (base_type);
14112 inner_array = base_type;
14114 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14116 TYPE_TARGET_TYPE (inner_array) =
14117 copy_type (TYPE_TARGET_TYPE (inner_array));
14118 inner_array = TYPE_TARGET_TYPE (inner_array);
14121 el_type = TYPE_TARGET_TYPE (inner_array);
14122 cnst |= TYPE_CONST (el_type);
14123 voltl |= TYPE_VOLATILE (el_type);
14124 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14126 return set_die_type (die, base_type, cu);
14129 static struct type *
14130 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14132 struct type *base_type, *cv_type;
14134 base_type = die_type (die, cu);
14136 /* The die_type call above may have already set the type for this DIE. */
14137 cv_type = get_die_type (die, cu);
14141 /* In case the const qualifier is applied to an array type, the element type
14142 is so qualified, not the array type (section 6.7.3 of C99). */
14143 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14144 return add_array_cv_type (die, cu, base_type, 1, 0);
14146 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14147 return set_die_type (die, cv_type, cu);
14150 static struct type *
14151 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14153 struct type *base_type, *cv_type;
14155 base_type = die_type (die, cu);
14157 /* The die_type call above may have already set the type for this DIE. */
14158 cv_type = get_die_type (die, cu);
14162 /* In case the volatile qualifier is applied to an array type, the
14163 element type is so qualified, not the array type (section 6.7.3
14165 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14166 return add_array_cv_type (die, cu, base_type, 0, 1);
14168 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14169 return set_die_type (die, cv_type, cu);
14172 /* Handle DW_TAG_restrict_type. */
14174 static struct type *
14175 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14177 struct type *base_type, *cv_type;
14179 base_type = die_type (die, cu);
14181 /* The die_type call above may have already set the type for this DIE. */
14182 cv_type = get_die_type (die, cu);
14186 cv_type = make_restrict_type (base_type);
14187 return set_die_type (die, cv_type, cu);
14190 /* Extract all information from a DW_TAG_string_type DIE and add to
14191 the user defined type vector. It isn't really a user defined type,
14192 but it behaves like one, with other DIE's using an AT_user_def_type
14193 attribute to reference it. */
14195 static struct type *
14196 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14198 struct objfile *objfile = cu->objfile;
14199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14200 struct type *type, *range_type, *index_type, *char_type;
14201 struct attribute *attr;
14202 unsigned int length;
14204 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14207 length = DW_UNSND (attr);
14211 /* Check for the DW_AT_byte_size attribute. */
14212 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14215 length = DW_UNSND (attr);
14223 index_type = objfile_type (objfile)->builtin_int;
14224 range_type = create_static_range_type (NULL, index_type, 1, length);
14225 char_type = language_string_char_type (cu->language_defn, gdbarch);
14226 type = create_string_type (NULL, char_type, range_type);
14228 return set_die_type (die, type, cu);
14231 /* Assuming that DIE corresponds to a function, returns nonzero
14232 if the function is prototyped. */
14235 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14237 struct attribute *attr;
14239 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14240 if (attr && (DW_UNSND (attr) != 0))
14243 /* The DWARF standard implies that the DW_AT_prototyped attribute
14244 is only meaninful for C, but the concept also extends to other
14245 languages that allow unprototyped functions (Eg: Objective C).
14246 For all other languages, assume that functions are always
14248 if (cu->language != language_c
14249 && cu->language != language_objc
14250 && cu->language != language_opencl)
14253 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14254 prototyped and unprototyped functions; default to prototyped,
14255 since that is more common in modern code (and RealView warns
14256 about unprototyped functions). */
14257 if (producer_is_realview (cu->producer))
14263 /* Handle DIES due to C code like:
14267 int (*funcp)(int a, long l);
14271 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14273 static struct type *
14274 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14276 struct objfile *objfile = cu->objfile;
14277 struct type *type; /* Type that this function returns. */
14278 struct type *ftype; /* Function that returns above type. */
14279 struct attribute *attr;
14281 type = die_type (die, cu);
14283 /* The die_type call above may have already set the type for this DIE. */
14284 ftype = get_die_type (die, cu);
14288 ftype = lookup_function_type (type);
14290 if (prototyped_function_p (die, cu))
14291 TYPE_PROTOTYPED (ftype) = 1;
14293 /* Store the calling convention in the type if it's available in
14294 the subroutine die. Otherwise set the calling convention to
14295 the default value DW_CC_normal. */
14296 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14298 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14299 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14300 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14304 /* We need to add the subroutine type to the die immediately so
14305 we don't infinitely recurse when dealing with parameters
14306 declared as the same subroutine type. */
14307 set_die_type (die, ftype, cu);
14309 if (die->child != NULL)
14311 struct type *void_type = objfile_type (objfile)->builtin_void;
14312 struct die_info *child_die;
14313 int nparams, iparams;
14315 /* Count the number of parameters.
14316 FIXME: GDB currently ignores vararg functions, but knows about
14317 vararg member functions. */
14319 child_die = die->child;
14320 while (child_die && child_die->tag)
14322 if (child_die->tag == DW_TAG_formal_parameter)
14324 else if (child_die->tag == DW_TAG_unspecified_parameters)
14325 TYPE_VARARGS (ftype) = 1;
14326 child_die = sibling_die (child_die);
14329 /* Allocate storage for parameters and fill them in. */
14330 TYPE_NFIELDS (ftype) = nparams;
14331 TYPE_FIELDS (ftype) = (struct field *)
14332 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14334 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14335 even if we error out during the parameters reading below. */
14336 for (iparams = 0; iparams < nparams; iparams++)
14337 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14340 child_die = die->child;
14341 while (child_die && child_die->tag)
14343 if (child_die->tag == DW_TAG_formal_parameter)
14345 struct type *arg_type;
14347 /* DWARF version 2 has no clean way to discern C++
14348 static and non-static member functions. G++ helps
14349 GDB by marking the first parameter for non-static
14350 member functions (which is the this pointer) as
14351 artificial. We pass this information to
14352 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14354 DWARF version 3 added DW_AT_object_pointer, which GCC
14355 4.5 does not yet generate. */
14356 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14358 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14361 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14363 /* GCC/43521: In java, the formal parameter
14364 "this" is sometimes not marked with DW_AT_artificial. */
14365 if (cu->language == language_java)
14367 const char *name = dwarf2_name (child_die, cu);
14369 if (name && !strcmp (name, "this"))
14370 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14373 arg_type = die_type (child_die, cu);
14375 /* RealView does not mark THIS as const, which the testsuite
14376 expects. GCC marks THIS as const in method definitions,
14377 but not in the class specifications (GCC PR 43053). */
14378 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14379 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14382 struct dwarf2_cu *arg_cu = cu;
14383 const char *name = dwarf2_name (child_die, cu);
14385 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14388 /* If the compiler emits this, use it. */
14389 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14392 else if (name && strcmp (name, "this") == 0)
14393 /* Function definitions will have the argument names. */
14395 else if (name == NULL && iparams == 0)
14396 /* Declarations may not have the names, so like
14397 elsewhere in GDB, assume an artificial first
14398 argument is "this". */
14402 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14406 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14409 child_die = sibling_die (child_die);
14416 static struct type *
14417 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14419 struct objfile *objfile = cu->objfile;
14420 const char *name = NULL;
14421 struct type *this_type, *target_type;
14423 name = dwarf2_full_name (NULL, die, cu);
14424 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14425 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14426 TYPE_NAME (this_type) = name;
14427 set_die_type (die, this_type, cu);
14428 target_type = die_type (die, cu);
14429 if (target_type != this_type)
14430 TYPE_TARGET_TYPE (this_type) = target_type;
14433 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14434 spec and cause infinite loops in GDB. */
14435 complaint (&symfile_complaints,
14436 _("Self-referential DW_TAG_typedef "
14437 "- DIE at 0x%x [in module %s]"),
14438 die->offset.sect_off, objfile_name (objfile));
14439 TYPE_TARGET_TYPE (this_type) = NULL;
14444 /* Find a representation of a given base type and install
14445 it in the TYPE field of the die. */
14447 static struct type *
14448 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14450 struct objfile *objfile = cu->objfile;
14452 struct attribute *attr;
14453 int encoding = 0, size = 0;
14455 enum type_code code = TYPE_CODE_INT;
14456 int type_flags = 0;
14457 struct type *target_type = NULL;
14459 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14462 encoding = DW_UNSND (attr);
14464 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14467 size = DW_UNSND (attr);
14469 name = dwarf2_name (die, cu);
14472 complaint (&symfile_complaints,
14473 _("DW_AT_name missing from DW_TAG_base_type"));
14478 case DW_ATE_address:
14479 /* Turn DW_ATE_address into a void * pointer. */
14480 code = TYPE_CODE_PTR;
14481 type_flags |= TYPE_FLAG_UNSIGNED;
14482 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14484 case DW_ATE_boolean:
14485 code = TYPE_CODE_BOOL;
14486 type_flags |= TYPE_FLAG_UNSIGNED;
14488 case DW_ATE_complex_float:
14489 code = TYPE_CODE_COMPLEX;
14490 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14492 case DW_ATE_decimal_float:
14493 code = TYPE_CODE_DECFLOAT;
14496 code = TYPE_CODE_FLT;
14498 case DW_ATE_signed:
14500 case DW_ATE_unsigned:
14501 type_flags |= TYPE_FLAG_UNSIGNED;
14502 if (cu->language == language_fortran
14504 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14505 code = TYPE_CODE_CHAR;
14507 case DW_ATE_signed_char:
14508 if (cu->language == language_ada || cu->language == language_m2
14509 || cu->language == language_pascal
14510 || cu->language == language_fortran)
14511 code = TYPE_CODE_CHAR;
14513 case DW_ATE_unsigned_char:
14514 if (cu->language == language_ada || cu->language == language_m2
14515 || cu->language == language_pascal
14516 || cu->language == language_fortran)
14517 code = TYPE_CODE_CHAR;
14518 type_flags |= TYPE_FLAG_UNSIGNED;
14521 /* We just treat this as an integer and then recognize the
14522 type by name elsewhere. */
14526 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14527 dwarf_type_encoding_name (encoding));
14531 type = init_type (code, size, type_flags, NULL, objfile);
14532 TYPE_NAME (type) = name;
14533 TYPE_TARGET_TYPE (type) = target_type;
14535 if (name && strcmp (name, "char") == 0)
14536 TYPE_NOSIGN (type) = 1;
14538 return set_die_type (die, type, cu);
14541 /* Parse dwarf attribute if it's a block, reference or constant and put the
14542 resulting value of the attribute into struct bound_prop.
14543 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14546 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14547 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14549 struct dwarf2_property_baton *baton;
14550 struct obstack *obstack = &cu->objfile->objfile_obstack;
14552 if (attr == NULL || prop == NULL)
14555 if (attr_form_is_block (attr))
14557 baton = obstack_alloc (obstack, sizeof (*baton));
14558 baton->referenced_type = NULL;
14559 baton->locexpr.per_cu = cu->per_cu;
14560 baton->locexpr.size = DW_BLOCK (attr)->size;
14561 baton->locexpr.data = DW_BLOCK (attr)->data;
14562 prop->data.baton = baton;
14563 prop->kind = PROP_LOCEXPR;
14564 gdb_assert (prop->data.baton != NULL);
14566 else if (attr_form_is_ref (attr))
14568 struct dwarf2_cu *target_cu = cu;
14569 struct die_info *target_die;
14570 struct attribute *target_attr;
14572 target_die = follow_die_ref (die, attr, &target_cu);
14573 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14574 if (target_attr == NULL)
14577 if (attr_form_is_section_offset (target_attr))
14579 baton = obstack_alloc (obstack, sizeof (*baton));
14580 baton->referenced_type = die_type (target_die, target_cu);
14581 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14582 prop->data.baton = baton;
14583 prop->kind = PROP_LOCLIST;
14584 gdb_assert (prop->data.baton != NULL);
14586 else if (attr_form_is_block (target_attr))
14588 baton = obstack_alloc (obstack, sizeof (*baton));
14589 baton->referenced_type = die_type (target_die, target_cu);
14590 baton->locexpr.per_cu = cu->per_cu;
14591 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14592 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14593 prop->data.baton = baton;
14594 prop->kind = PROP_LOCEXPR;
14595 gdb_assert (prop->data.baton != NULL);
14599 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14600 "dynamic property");
14604 else if (attr_form_is_constant (attr))
14606 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14607 prop->kind = PROP_CONST;
14611 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14612 dwarf2_name (die, cu));
14619 /* Read the given DW_AT_subrange DIE. */
14621 static struct type *
14622 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14624 struct type *base_type, *orig_base_type;
14625 struct type *range_type;
14626 struct attribute *attr;
14627 struct dynamic_prop low, high;
14628 int low_default_is_valid;
14629 int high_bound_is_count = 0;
14631 LONGEST negative_mask;
14633 orig_base_type = die_type (die, cu);
14634 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14635 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14636 creating the range type, but we use the result of check_typedef
14637 when examining properties of the type. */
14638 base_type = check_typedef (orig_base_type);
14640 /* The die_type call above may have already set the type for this DIE. */
14641 range_type = get_die_type (die, cu);
14645 low.kind = PROP_CONST;
14646 high.kind = PROP_CONST;
14647 high.data.const_val = 0;
14649 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14650 omitting DW_AT_lower_bound. */
14651 switch (cu->language)
14654 case language_cplus:
14655 low.data.const_val = 0;
14656 low_default_is_valid = 1;
14658 case language_fortran:
14659 low.data.const_val = 1;
14660 low_default_is_valid = 1;
14663 case language_java:
14664 case language_objc:
14665 low.data.const_val = 0;
14666 low_default_is_valid = (cu->header.version >= 4);
14670 case language_pascal:
14671 low.data.const_val = 1;
14672 low_default_is_valid = (cu->header.version >= 4);
14675 low.data.const_val = 0;
14676 low_default_is_valid = 0;
14680 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14682 attr_to_dynamic_prop (attr, die, cu, &low);
14683 else if (!low_default_is_valid)
14684 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14685 "- DIE at 0x%x [in module %s]"),
14686 die->offset.sect_off, objfile_name (cu->objfile));
14688 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14689 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14691 attr = dwarf2_attr (die, DW_AT_count, cu);
14692 if (attr_to_dynamic_prop (attr, die, cu, &high))
14694 /* If bounds are constant do the final calculation here. */
14695 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14696 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14698 high_bound_is_count = 1;
14702 /* Dwarf-2 specifications explicitly allows to create subrange types
14703 without specifying a base type.
14704 In that case, the base type must be set to the type of
14705 the lower bound, upper bound or count, in that order, if any of these
14706 three attributes references an object that has a type.
14707 If no base type is found, the Dwarf-2 specifications say that
14708 a signed integer type of size equal to the size of an address should
14710 For the following C code: `extern char gdb_int [];'
14711 GCC produces an empty range DIE.
14712 FIXME: muller/2010-05-28: Possible references to object for low bound,
14713 high bound or count are not yet handled by this code. */
14714 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14716 struct objfile *objfile = cu->objfile;
14717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14718 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14719 struct type *int_type = objfile_type (objfile)->builtin_int;
14721 /* Test "int", "long int", and "long long int" objfile types,
14722 and select the first one having a size above or equal to the
14723 architecture address size. */
14724 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14725 base_type = int_type;
14728 int_type = objfile_type (objfile)->builtin_long;
14729 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14730 base_type = int_type;
14733 int_type = objfile_type (objfile)->builtin_long_long;
14734 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14735 base_type = int_type;
14740 /* Normally, the DWARF producers are expected to use a signed
14741 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14742 But this is unfortunately not always the case, as witnessed
14743 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14744 is used instead. To work around that ambiguity, we treat
14745 the bounds as signed, and thus sign-extend their values, when
14746 the base type is signed. */
14748 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14749 if (low.kind == PROP_CONST
14750 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14751 low.data.const_val |= negative_mask;
14752 if (high.kind == PROP_CONST
14753 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14754 high.data.const_val |= negative_mask;
14756 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14758 if (high_bound_is_count)
14759 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14761 /* Ada expects an empty array on no boundary attributes. */
14762 if (attr == NULL && cu->language != language_ada)
14763 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14765 name = dwarf2_name (die, cu);
14767 TYPE_NAME (range_type) = name;
14769 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14771 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14773 set_die_type (die, range_type, cu);
14775 /* set_die_type should be already done. */
14776 set_descriptive_type (range_type, die, cu);
14781 static struct type *
14782 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14786 /* For now, we only support the C meaning of an unspecified type: void. */
14788 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14789 TYPE_NAME (type) = dwarf2_name (die, cu);
14791 return set_die_type (die, type, cu);
14794 /* Read a single die and all its descendents. Set the die's sibling
14795 field to NULL; set other fields in the die correctly, and set all
14796 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14797 location of the info_ptr after reading all of those dies. PARENT
14798 is the parent of the die in question. */
14800 static struct die_info *
14801 read_die_and_children (const struct die_reader_specs *reader,
14802 const gdb_byte *info_ptr,
14803 const gdb_byte **new_info_ptr,
14804 struct die_info *parent)
14806 struct die_info *die;
14807 const gdb_byte *cur_ptr;
14810 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14813 *new_info_ptr = cur_ptr;
14816 store_in_ref_table (die, reader->cu);
14819 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14823 *new_info_ptr = cur_ptr;
14826 die->sibling = NULL;
14827 die->parent = parent;
14831 /* Read a die, all of its descendents, and all of its siblings; set
14832 all of the fields of all of the dies correctly. Arguments are as
14833 in read_die_and_children. */
14835 static struct die_info *
14836 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14837 const gdb_byte *info_ptr,
14838 const gdb_byte **new_info_ptr,
14839 struct die_info *parent)
14841 struct die_info *first_die, *last_sibling;
14842 const gdb_byte *cur_ptr;
14844 cur_ptr = info_ptr;
14845 first_die = last_sibling = NULL;
14849 struct die_info *die
14850 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14854 *new_info_ptr = cur_ptr;
14861 last_sibling->sibling = die;
14863 last_sibling = die;
14867 /* Read a die, all of its descendents, and all of its siblings; set
14868 all of the fields of all of the dies correctly. Arguments are as
14869 in read_die_and_children.
14870 This the main entry point for reading a DIE and all its children. */
14872 static struct die_info *
14873 read_die_and_siblings (const struct die_reader_specs *reader,
14874 const gdb_byte *info_ptr,
14875 const gdb_byte **new_info_ptr,
14876 struct die_info *parent)
14878 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14879 new_info_ptr, parent);
14881 if (dwarf2_die_debug)
14883 fprintf_unfiltered (gdb_stdlog,
14884 "Read die from %s@0x%x of %s:\n",
14885 get_section_name (reader->die_section),
14886 (unsigned) (info_ptr - reader->die_section->buffer),
14887 bfd_get_filename (reader->abfd));
14888 dump_die (die, dwarf2_die_debug);
14894 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14896 The caller is responsible for filling in the extra attributes
14897 and updating (*DIEP)->num_attrs.
14898 Set DIEP to point to a newly allocated die with its information,
14899 except for its child, sibling, and parent fields.
14900 Set HAS_CHILDREN to tell whether the die has children or not. */
14902 static const gdb_byte *
14903 read_full_die_1 (const struct die_reader_specs *reader,
14904 struct die_info **diep, const gdb_byte *info_ptr,
14905 int *has_children, int num_extra_attrs)
14907 unsigned int abbrev_number, bytes_read, i;
14908 sect_offset offset;
14909 struct abbrev_info *abbrev;
14910 struct die_info *die;
14911 struct dwarf2_cu *cu = reader->cu;
14912 bfd *abfd = reader->abfd;
14914 offset.sect_off = info_ptr - reader->buffer;
14915 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14916 info_ptr += bytes_read;
14917 if (!abbrev_number)
14924 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14926 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14928 bfd_get_filename (abfd));
14930 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14931 die->offset = offset;
14932 die->tag = abbrev->tag;
14933 die->abbrev = abbrev_number;
14935 /* Make the result usable.
14936 The caller needs to update num_attrs after adding the extra
14938 die->num_attrs = abbrev->num_attrs;
14940 for (i = 0; i < abbrev->num_attrs; ++i)
14941 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14945 *has_children = abbrev->has_children;
14949 /* Read a die and all its attributes.
14950 Set DIEP to point to a newly allocated die with its information,
14951 except for its child, sibling, and parent fields.
14952 Set HAS_CHILDREN to tell whether the die has children or not. */
14954 static const gdb_byte *
14955 read_full_die (const struct die_reader_specs *reader,
14956 struct die_info **diep, const gdb_byte *info_ptr,
14959 const gdb_byte *result;
14961 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14963 if (dwarf2_die_debug)
14965 fprintf_unfiltered (gdb_stdlog,
14966 "Read die from %s@0x%x of %s:\n",
14967 get_section_name (reader->die_section),
14968 (unsigned) (info_ptr - reader->die_section->buffer),
14969 bfd_get_filename (reader->abfd));
14970 dump_die (*diep, dwarf2_die_debug);
14976 /* Abbreviation tables.
14978 In DWARF version 2, the description of the debugging information is
14979 stored in a separate .debug_abbrev section. Before we read any
14980 dies from a section we read in all abbreviations and install them
14981 in a hash table. */
14983 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14985 static struct abbrev_info *
14986 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14988 struct abbrev_info *abbrev;
14990 abbrev = (struct abbrev_info *)
14991 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14992 memset (abbrev, 0, sizeof (struct abbrev_info));
14996 /* Add an abbreviation to the table. */
14999 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15000 unsigned int abbrev_number,
15001 struct abbrev_info *abbrev)
15003 unsigned int hash_number;
15005 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15006 abbrev->next = abbrev_table->abbrevs[hash_number];
15007 abbrev_table->abbrevs[hash_number] = abbrev;
15010 /* Look up an abbrev in the table.
15011 Returns NULL if the abbrev is not found. */
15013 static struct abbrev_info *
15014 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15015 unsigned int abbrev_number)
15017 unsigned int hash_number;
15018 struct abbrev_info *abbrev;
15020 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15021 abbrev = abbrev_table->abbrevs[hash_number];
15025 if (abbrev->number == abbrev_number)
15027 abbrev = abbrev->next;
15032 /* Read in an abbrev table. */
15034 static struct abbrev_table *
15035 abbrev_table_read_table (struct dwarf2_section_info *section,
15036 sect_offset offset)
15038 struct objfile *objfile = dwarf2_per_objfile->objfile;
15039 bfd *abfd = get_section_bfd_owner (section);
15040 struct abbrev_table *abbrev_table;
15041 const gdb_byte *abbrev_ptr;
15042 struct abbrev_info *cur_abbrev;
15043 unsigned int abbrev_number, bytes_read, abbrev_name;
15044 unsigned int abbrev_form;
15045 struct attr_abbrev *cur_attrs;
15046 unsigned int allocated_attrs;
15048 abbrev_table = XNEW (struct abbrev_table);
15049 abbrev_table->offset = offset;
15050 obstack_init (&abbrev_table->abbrev_obstack);
15051 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15053 * sizeof (struct abbrev_info *)));
15054 memset (abbrev_table->abbrevs, 0,
15055 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15057 dwarf2_read_section (objfile, section);
15058 abbrev_ptr = section->buffer + offset.sect_off;
15059 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15060 abbrev_ptr += bytes_read;
15062 allocated_attrs = ATTR_ALLOC_CHUNK;
15063 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15065 /* Loop until we reach an abbrev number of 0. */
15066 while (abbrev_number)
15068 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15070 /* read in abbrev header */
15071 cur_abbrev->number = abbrev_number;
15072 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15073 abbrev_ptr += bytes_read;
15074 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15077 /* now read in declarations */
15078 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15079 abbrev_ptr += bytes_read;
15080 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 while (abbrev_name)
15084 if (cur_abbrev->num_attrs == allocated_attrs)
15086 allocated_attrs += ATTR_ALLOC_CHUNK;
15088 = xrealloc (cur_attrs, (allocated_attrs
15089 * sizeof (struct attr_abbrev)));
15092 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15093 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15094 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15095 abbrev_ptr += bytes_read;
15096 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15100 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15101 (cur_abbrev->num_attrs
15102 * sizeof (struct attr_abbrev)));
15103 memcpy (cur_abbrev->attrs, cur_attrs,
15104 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15106 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15108 /* Get next abbreviation.
15109 Under Irix6 the abbreviations for a compilation unit are not
15110 always properly terminated with an abbrev number of 0.
15111 Exit loop if we encounter an abbreviation which we have
15112 already read (which means we are about to read the abbreviations
15113 for the next compile unit) or if the end of the abbreviation
15114 table is reached. */
15115 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15117 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15118 abbrev_ptr += bytes_read;
15119 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15124 return abbrev_table;
15127 /* Free the resources held by ABBREV_TABLE. */
15130 abbrev_table_free (struct abbrev_table *abbrev_table)
15132 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15133 xfree (abbrev_table);
15136 /* Same as abbrev_table_free but as a cleanup.
15137 We pass in a pointer to the pointer to the table so that we can
15138 set the pointer to NULL when we're done. It also simplifies
15139 build_type_psymtabs_1. */
15142 abbrev_table_free_cleanup (void *table_ptr)
15144 struct abbrev_table **abbrev_table_ptr = table_ptr;
15146 if (*abbrev_table_ptr != NULL)
15147 abbrev_table_free (*abbrev_table_ptr);
15148 *abbrev_table_ptr = NULL;
15151 /* Read the abbrev table for CU from ABBREV_SECTION. */
15154 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15155 struct dwarf2_section_info *abbrev_section)
15158 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15161 /* Release the memory used by the abbrev table for a compilation unit. */
15164 dwarf2_free_abbrev_table (void *ptr_to_cu)
15166 struct dwarf2_cu *cu = ptr_to_cu;
15168 if (cu->abbrev_table != NULL)
15169 abbrev_table_free (cu->abbrev_table);
15170 /* Set this to NULL so that we SEGV if we try to read it later,
15171 and also because free_comp_unit verifies this is NULL. */
15172 cu->abbrev_table = NULL;
15175 /* Returns nonzero if TAG represents a type that we might generate a partial
15179 is_type_tag_for_partial (int tag)
15184 /* Some types that would be reasonable to generate partial symbols for,
15185 that we don't at present. */
15186 case DW_TAG_array_type:
15187 case DW_TAG_file_type:
15188 case DW_TAG_ptr_to_member_type:
15189 case DW_TAG_set_type:
15190 case DW_TAG_string_type:
15191 case DW_TAG_subroutine_type:
15193 case DW_TAG_base_type:
15194 case DW_TAG_class_type:
15195 case DW_TAG_interface_type:
15196 case DW_TAG_enumeration_type:
15197 case DW_TAG_structure_type:
15198 case DW_TAG_subrange_type:
15199 case DW_TAG_typedef:
15200 case DW_TAG_union_type:
15207 /* Load all DIEs that are interesting for partial symbols into memory. */
15209 static struct partial_die_info *
15210 load_partial_dies (const struct die_reader_specs *reader,
15211 const gdb_byte *info_ptr, int building_psymtab)
15213 struct dwarf2_cu *cu = reader->cu;
15214 struct objfile *objfile = cu->objfile;
15215 struct partial_die_info *part_die;
15216 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15217 struct abbrev_info *abbrev;
15218 unsigned int bytes_read;
15219 unsigned int load_all = 0;
15220 int nesting_level = 1;
15225 gdb_assert (cu->per_cu != NULL);
15226 if (cu->per_cu->load_all_dies)
15230 = htab_create_alloc_ex (cu->header.length / 12,
15234 &cu->comp_unit_obstack,
15235 hashtab_obstack_allocate,
15236 dummy_obstack_deallocate);
15238 part_die = obstack_alloc (&cu->comp_unit_obstack,
15239 sizeof (struct partial_die_info));
15243 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15245 /* A NULL abbrev means the end of a series of children. */
15246 if (abbrev == NULL)
15248 if (--nesting_level == 0)
15250 /* PART_DIE was probably the last thing allocated on the
15251 comp_unit_obstack, so we could call obstack_free
15252 here. We don't do that because the waste is small,
15253 and will be cleaned up when we're done with this
15254 compilation unit. This way, we're also more robust
15255 against other users of the comp_unit_obstack. */
15258 info_ptr += bytes_read;
15259 last_die = parent_die;
15260 parent_die = parent_die->die_parent;
15264 /* Check for template arguments. We never save these; if
15265 they're seen, we just mark the parent, and go on our way. */
15266 if (parent_die != NULL
15267 && cu->language == language_cplus
15268 && (abbrev->tag == DW_TAG_template_type_param
15269 || abbrev->tag == DW_TAG_template_value_param))
15271 parent_die->has_template_arguments = 1;
15275 /* We don't need a partial DIE for the template argument. */
15276 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15281 /* We only recurse into c++ subprograms looking for template arguments.
15282 Skip their other children. */
15284 && cu->language == language_cplus
15285 && parent_die != NULL
15286 && parent_die->tag == DW_TAG_subprogram)
15288 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15292 /* Check whether this DIE is interesting enough to save. Normally
15293 we would not be interested in members here, but there may be
15294 later variables referencing them via DW_AT_specification (for
15295 static members). */
15297 && !is_type_tag_for_partial (abbrev->tag)
15298 && abbrev->tag != DW_TAG_constant
15299 && abbrev->tag != DW_TAG_enumerator
15300 && abbrev->tag != DW_TAG_subprogram
15301 && abbrev->tag != DW_TAG_lexical_block
15302 && abbrev->tag != DW_TAG_variable
15303 && abbrev->tag != DW_TAG_namespace
15304 && abbrev->tag != DW_TAG_module
15305 && abbrev->tag != DW_TAG_member
15306 && abbrev->tag != DW_TAG_imported_unit
15307 && abbrev->tag != DW_TAG_imported_declaration)
15309 /* Otherwise we skip to the next sibling, if any. */
15310 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15314 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15317 /* This two-pass algorithm for processing partial symbols has a
15318 high cost in cache pressure. Thus, handle some simple cases
15319 here which cover the majority of C partial symbols. DIEs
15320 which neither have specification tags in them, nor could have
15321 specification tags elsewhere pointing at them, can simply be
15322 processed and discarded.
15324 This segment is also optional; scan_partial_symbols and
15325 add_partial_symbol will handle these DIEs if we chain
15326 them in normally. When compilers which do not emit large
15327 quantities of duplicate debug information are more common,
15328 this code can probably be removed. */
15330 /* Any complete simple types at the top level (pretty much all
15331 of them, for a language without namespaces), can be processed
15333 if (parent_die == NULL
15334 && part_die->has_specification == 0
15335 && part_die->is_declaration == 0
15336 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15337 || part_die->tag == DW_TAG_base_type
15338 || part_die->tag == DW_TAG_subrange_type))
15340 if (building_psymtab && part_die->name != NULL)
15341 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15342 VAR_DOMAIN, LOC_TYPEDEF,
15343 &objfile->static_psymbols,
15344 0, (CORE_ADDR) 0, cu->language, objfile);
15345 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15349 /* The exception for DW_TAG_typedef with has_children above is
15350 a workaround of GCC PR debug/47510. In the case of this complaint
15351 type_name_no_tag_or_error will error on such types later.
15353 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15354 it could not find the child DIEs referenced later, this is checked
15355 above. In correct DWARF DW_TAG_typedef should have no children. */
15357 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15358 complaint (&symfile_complaints,
15359 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15360 "- DIE at 0x%x [in module %s]"),
15361 part_die->offset.sect_off, objfile_name (objfile));
15363 /* If we're at the second level, and we're an enumerator, and
15364 our parent has no specification (meaning possibly lives in a
15365 namespace elsewhere), then we can add the partial symbol now
15366 instead of queueing it. */
15367 if (part_die->tag == DW_TAG_enumerator
15368 && parent_die != NULL
15369 && parent_die->die_parent == NULL
15370 && parent_die->tag == DW_TAG_enumeration_type
15371 && parent_die->has_specification == 0)
15373 if (part_die->name == NULL)
15374 complaint (&symfile_complaints,
15375 _("malformed enumerator DIE ignored"));
15376 else if (building_psymtab)
15377 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15378 VAR_DOMAIN, LOC_CONST,
15379 (cu->language == language_cplus
15380 || cu->language == language_java)
15381 ? &objfile->global_psymbols
15382 : &objfile->static_psymbols,
15383 0, (CORE_ADDR) 0, cu->language, objfile);
15385 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15389 /* We'll save this DIE so link it in. */
15390 part_die->die_parent = parent_die;
15391 part_die->die_sibling = NULL;
15392 part_die->die_child = NULL;
15394 if (last_die && last_die == parent_die)
15395 last_die->die_child = part_die;
15397 last_die->die_sibling = part_die;
15399 last_die = part_die;
15401 if (first_die == NULL)
15402 first_die = part_die;
15404 /* Maybe add the DIE to the hash table. Not all DIEs that we
15405 find interesting need to be in the hash table, because we
15406 also have the parent/sibling/child chains; only those that we
15407 might refer to by offset later during partial symbol reading.
15409 For now this means things that might have be the target of a
15410 DW_AT_specification, DW_AT_abstract_origin, or
15411 DW_AT_extension. DW_AT_extension will refer only to
15412 namespaces; DW_AT_abstract_origin refers to functions (and
15413 many things under the function DIE, but we do not recurse
15414 into function DIEs during partial symbol reading) and
15415 possibly variables as well; DW_AT_specification refers to
15416 declarations. Declarations ought to have the DW_AT_declaration
15417 flag. It happens that GCC forgets to put it in sometimes, but
15418 only for functions, not for types.
15420 Adding more things than necessary to the hash table is harmless
15421 except for the performance cost. Adding too few will result in
15422 wasted time in find_partial_die, when we reread the compilation
15423 unit with load_all_dies set. */
15426 || abbrev->tag == DW_TAG_constant
15427 || abbrev->tag == DW_TAG_subprogram
15428 || abbrev->tag == DW_TAG_variable
15429 || abbrev->tag == DW_TAG_namespace
15430 || part_die->is_declaration)
15434 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15435 part_die->offset.sect_off, INSERT);
15439 part_die = obstack_alloc (&cu->comp_unit_obstack,
15440 sizeof (struct partial_die_info));
15442 /* For some DIEs we want to follow their children (if any). For C
15443 we have no reason to follow the children of structures; for other
15444 languages we have to, so that we can get at method physnames
15445 to infer fully qualified class names, for DW_AT_specification,
15446 and for C++ template arguments. For C++, we also look one level
15447 inside functions to find template arguments (if the name of the
15448 function does not already contain the template arguments).
15450 For Ada, we need to scan the children of subprograms and lexical
15451 blocks as well because Ada allows the definition of nested
15452 entities that could be interesting for the debugger, such as
15453 nested subprograms for instance. */
15454 if (last_die->has_children
15456 || last_die->tag == DW_TAG_namespace
15457 || last_die->tag == DW_TAG_module
15458 || last_die->tag == DW_TAG_enumeration_type
15459 || (cu->language == language_cplus
15460 && last_die->tag == DW_TAG_subprogram
15461 && (last_die->name == NULL
15462 || strchr (last_die->name, '<') == NULL))
15463 || (cu->language != language_c
15464 && (last_die->tag == DW_TAG_class_type
15465 || last_die->tag == DW_TAG_interface_type
15466 || last_die->tag == DW_TAG_structure_type
15467 || last_die->tag == DW_TAG_union_type))
15468 || (cu->language == language_ada
15469 && (last_die->tag == DW_TAG_subprogram
15470 || last_die->tag == DW_TAG_lexical_block))))
15473 parent_die = last_die;
15477 /* Otherwise we skip to the next sibling, if any. */
15478 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15480 /* Back to the top, do it again. */
15484 /* Read a minimal amount of information into the minimal die structure. */
15486 static const gdb_byte *
15487 read_partial_die (const struct die_reader_specs *reader,
15488 struct partial_die_info *part_die,
15489 struct abbrev_info *abbrev, unsigned int abbrev_len,
15490 const gdb_byte *info_ptr)
15492 struct dwarf2_cu *cu = reader->cu;
15493 struct objfile *objfile = cu->objfile;
15494 const gdb_byte *buffer = reader->buffer;
15496 struct attribute attr;
15497 int has_low_pc_attr = 0;
15498 int has_high_pc_attr = 0;
15499 int high_pc_relative = 0;
15501 memset (part_die, 0, sizeof (struct partial_die_info));
15503 part_die->offset.sect_off = info_ptr - buffer;
15505 info_ptr += abbrev_len;
15507 if (abbrev == NULL)
15510 part_die->tag = abbrev->tag;
15511 part_die->has_children = abbrev->has_children;
15513 for (i = 0; i < abbrev->num_attrs; ++i)
15515 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15517 /* Store the data if it is of an attribute we want to keep in a
15518 partial symbol table. */
15522 switch (part_die->tag)
15524 case DW_TAG_compile_unit:
15525 case DW_TAG_partial_unit:
15526 case DW_TAG_type_unit:
15527 /* Compilation units have a DW_AT_name that is a filename, not
15528 a source language identifier. */
15529 case DW_TAG_enumeration_type:
15530 case DW_TAG_enumerator:
15531 /* These tags always have simple identifiers already; no need
15532 to canonicalize them. */
15533 part_die->name = DW_STRING (&attr);
15537 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15538 &objfile->per_bfd->storage_obstack);
15542 case DW_AT_linkage_name:
15543 case DW_AT_MIPS_linkage_name:
15544 /* Note that both forms of linkage name might appear. We
15545 assume they will be the same, and we only store the last
15547 if (cu->language == language_ada)
15548 part_die->name = DW_STRING (&attr);
15549 part_die->linkage_name = DW_STRING (&attr);
15552 has_low_pc_attr = 1;
15553 part_die->lowpc = attr_value_as_address (&attr);
15555 case DW_AT_high_pc:
15556 has_high_pc_attr = 1;
15557 part_die->highpc = attr_value_as_address (&attr);
15558 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15559 high_pc_relative = 1;
15561 case DW_AT_location:
15562 /* Support the .debug_loc offsets. */
15563 if (attr_form_is_block (&attr))
15565 part_die->d.locdesc = DW_BLOCK (&attr);
15567 else if (attr_form_is_section_offset (&attr))
15569 dwarf2_complex_location_expr_complaint ();
15573 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15574 "partial symbol information");
15577 case DW_AT_external:
15578 part_die->is_external = DW_UNSND (&attr);
15580 case DW_AT_declaration:
15581 part_die->is_declaration = DW_UNSND (&attr);
15584 part_die->has_type = 1;
15586 case DW_AT_abstract_origin:
15587 case DW_AT_specification:
15588 case DW_AT_extension:
15589 part_die->has_specification = 1;
15590 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15591 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15592 || cu->per_cu->is_dwz);
15594 case DW_AT_sibling:
15595 /* Ignore absolute siblings, they might point outside of
15596 the current compile unit. */
15597 if (attr.form == DW_FORM_ref_addr)
15598 complaint (&symfile_complaints,
15599 _("ignoring absolute DW_AT_sibling"));
15602 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15603 const gdb_byte *sibling_ptr = buffer + off;
15605 if (sibling_ptr < info_ptr)
15606 complaint (&symfile_complaints,
15607 _("DW_AT_sibling points backwards"));
15608 else if (sibling_ptr > reader->buffer_end)
15609 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15611 part_die->sibling = sibling_ptr;
15614 case DW_AT_byte_size:
15615 part_die->has_byte_size = 1;
15617 case DW_AT_calling_convention:
15618 /* DWARF doesn't provide a way to identify a program's source-level
15619 entry point. DW_AT_calling_convention attributes are only meant
15620 to describe functions' calling conventions.
15622 However, because it's a necessary piece of information in
15623 Fortran, and because DW_CC_program is the only piece of debugging
15624 information whose definition refers to a 'main program' at all,
15625 several compilers have begun marking Fortran main programs with
15626 DW_CC_program --- even when those functions use the standard
15627 calling conventions.
15629 So until DWARF specifies a way to provide this information and
15630 compilers pick up the new representation, we'll support this
15632 if (DW_UNSND (&attr) == DW_CC_program
15633 && cu->language == language_fortran)
15634 set_objfile_main_name (objfile, part_die->name, language_fortran);
15637 if (DW_UNSND (&attr) == DW_INL_inlined
15638 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15639 part_die->may_be_inlined = 1;
15643 if (part_die->tag == DW_TAG_imported_unit)
15645 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15646 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15647 || cu->per_cu->is_dwz);
15656 if (high_pc_relative)
15657 part_die->highpc += part_die->lowpc;
15659 if (has_low_pc_attr && has_high_pc_attr)
15661 /* When using the GNU linker, .gnu.linkonce. sections are used to
15662 eliminate duplicate copies of functions and vtables and such.
15663 The linker will arbitrarily choose one and discard the others.
15664 The AT_*_pc values for such functions refer to local labels in
15665 these sections. If the section from that file was discarded, the
15666 labels are not in the output, so the relocs get a value of 0.
15667 If this is a discarded function, mark the pc bounds as invalid,
15668 so that GDB will ignore it. */
15669 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15671 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15673 complaint (&symfile_complaints,
15674 _("DW_AT_low_pc %s is zero "
15675 "for DIE at 0x%x [in module %s]"),
15676 paddress (gdbarch, part_die->lowpc),
15677 part_die->offset.sect_off, objfile_name (objfile));
15679 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15680 else if (part_die->lowpc >= part_die->highpc)
15682 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15684 complaint (&symfile_complaints,
15685 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15686 "for DIE at 0x%x [in module %s]"),
15687 paddress (gdbarch, part_die->lowpc),
15688 paddress (gdbarch, part_die->highpc),
15689 part_die->offset.sect_off, objfile_name (objfile));
15692 part_die->has_pc_info = 1;
15698 /* Find a cached partial DIE at OFFSET in CU. */
15700 static struct partial_die_info *
15701 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15703 struct partial_die_info *lookup_die = NULL;
15704 struct partial_die_info part_die;
15706 part_die.offset = offset;
15707 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15713 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15714 except in the case of .debug_types DIEs which do not reference
15715 outside their CU (they do however referencing other types via
15716 DW_FORM_ref_sig8). */
15718 static struct partial_die_info *
15719 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15721 struct objfile *objfile = cu->objfile;
15722 struct dwarf2_per_cu_data *per_cu = NULL;
15723 struct partial_die_info *pd = NULL;
15725 if (offset_in_dwz == cu->per_cu->is_dwz
15726 && offset_in_cu_p (&cu->header, offset))
15728 pd = find_partial_die_in_comp_unit (offset, cu);
15731 /* We missed recording what we needed.
15732 Load all dies and try again. */
15733 per_cu = cu->per_cu;
15737 /* TUs don't reference other CUs/TUs (except via type signatures). */
15738 if (cu->per_cu->is_debug_types)
15740 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15741 " external reference to offset 0x%lx [in module %s].\n"),
15742 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15743 bfd_get_filename (objfile->obfd));
15745 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15748 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15749 load_partial_comp_unit (per_cu);
15751 per_cu->cu->last_used = 0;
15752 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15755 /* If we didn't find it, and not all dies have been loaded,
15756 load them all and try again. */
15758 if (pd == NULL && per_cu->load_all_dies == 0)
15760 per_cu->load_all_dies = 1;
15762 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15763 THIS_CU->cu may already be in use. So we can't just free it and
15764 replace its DIEs with the ones we read in. Instead, we leave those
15765 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15766 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15768 load_partial_comp_unit (per_cu);
15770 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15774 internal_error (__FILE__, __LINE__,
15775 _("could not find partial DIE 0x%x "
15776 "in cache [from module %s]\n"),
15777 offset.sect_off, bfd_get_filename (objfile->obfd));
15781 /* See if we can figure out if the class lives in a namespace. We do
15782 this by looking for a member function; its demangled name will
15783 contain namespace info, if there is any. */
15786 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15787 struct dwarf2_cu *cu)
15789 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15790 what template types look like, because the demangler
15791 frequently doesn't give the same name as the debug info. We
15792 could fix this by only using the demangled name to get the
15793 prefix (but see comment in read_structure_type). */
15795 struct partial_die_info *real_pdi;
15796 struct partial_die_info *child_pdi;
15798 /* If this DIE (this DIE's specification, if any) has a parent, then
15799 we should not do this. We'll prepend the parent's fully qualified
15800 name when we create the partial symbol. */
15802 real_pdi = struct_pdi;
15803 while (real_pdi->has_specification)
15804 real_pdi = find_partial_die (real_pdi->spec_offset,
15805 real_pdi->spec_is_dwz, cu);
15807 if (real_pdi->die_parent != NULL)
15810 for (child_pdi = struct_pdi->die_child;
15812 child_pdi = child_pdi->die_sibling)
15814 if (child_pdi->tag == DW_TAG_subprogram
15815 && child_pdi->linkage_name != NULL)
15817 char *actual_class_name
15818 = language_class_name_from_physname (cu->language_defn,
15819 child_pdi->linkage_name);
15820 if (actual_class_name != NULL)
15823 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15825 strlen (actual_class_name));
15826 xfree (actual_class_name);
15833 /* Adjust PART_DIE before generating a symbol for it. This function
15834 may set the is_external flag or change the DIE's name. */
15837 fixup_partial_die (struct partial_die_info *part_die,
15838 struct dwarf2_cu *cu)
15840 /* Once we've fixed up a die, there's no point in doing so again.
15841 This also avoids a memory leak if we were to call
15842 guess_partial_die_structure_name multiple times. */
15843 if (part_die->fixup_called)
15846 /* If we found a reference attribute and the DIE has no name, try
15847 to find a name in the referred to DIE. */
15849 if (part_die->name == NULL && part_die->has_specification)
15851 struct partial_die_info *spec_die;
15853 spec_die = find_partial_die (part_die->spec_offset,
15854 part_die->spec_is_dwz, cu);
15856 fixup_partial_die (spec_die, cu);
15858 if (spec_die->name)
15860 part_die->name = spec_die->name;
15862 /* Copy DW_AT_external attribute if it is set. */
15863 if (spec_die->is_external)
15864 part_die->is_external = spec_die->is_external;
15868 /* Set default names for some unnamed DIEs. */
15870 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15871 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15873 /* If there is no parent die to provide a namespace, and there are
15874 children, see if we can determine the namespace from their linkage
15876 if (cu->language == language_cplus
15877 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15878 && part_die->die_parent == NULL
15879 && part_die->has_children
15880 && (part_die->tag == DW_TAG_class_type
15881 || part_die->tag == DW_TAG_structure_type
15882 || part_die->tag == DW_TAG_union_type))
15883 guess_partial_die_structure_name (part_die, cu);
15885 /* GCC might emit a nameless struct or union that has a linkage
15886 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15887 if (part_die->name == NULL
15888 && (part_die->tag == DW_TAG_class_type
15889 || part_die->tag == DW_TAG_interface_type
15890 || part_die->tag == DW_TAG_structure_type
15891 || part_die->tag == DW_TAG_union_type)
15892 && part_die->linkage_name != NULL)
15896 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15901 /* Strip any leading namespaces/classes, keep only the base name.
15902 DW_AT_name for named DIEs does not contain the prefixes. */
15903 base = strrchr (demangled, ':');
15904 if (base && base > demangled && base[-1] == ':')
15910 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15911 base, strlen (base));
15916 part_die->fixup_called = 1;
15919 /* Read an attribute value described by an attribute form. */
15921 static const gdb_byte *
15922 read_attribute_value (const struct die_reader_specs *reader,
15923 struct attribute *attr, unsigned form,
15924 const gdb_byte *info_ptr)
15926 struct dwarf2_cu *cu = reader->cu;
15927 bfd *abfd = reader->abfd;
15928 struct comp_unit_head *cu_header = &cu->header;
15929 unsigned int bytes_read;
15930 struct dwarf_block *blk;
15935 case DW_FORM_ref_addr:
15936 if (cu->header.version == 2)
15937 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15939 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15940 &cu->header, &bytes_read);
15941 info_ptr += bytes_read;
15943 case DW_FORM_GNU_ref_alt:
15944 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15945 info_ptr += bytes_read;
15948 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15949 info_ptr += bytes_read;
15951 case DW_FORM_block2:
15952 blk = dwarf_alloc_block (cu);
15953 blk->size = read_2_bytes (abfd, info_ptr);
15955 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15956 info_ptr += blk->size;
15957 DW_BLOCK (attr) = blk;
15959 case DW_FORM_block4:
15960 blk = dwarf_alloc_block (cu);
15961 blk->size = read_4_bytes (abfd, info_ptr);
15963 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15964 info_ptr += blk->size;
15965 DW_BLOCK (attr) = blk;
15967 case DW_FORM_data2:
15968 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15971 case DW_FORM_data4:
15972 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15975 case DW_FORM_data8:
15976 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15979 case DW_FORM_sec_offset:
15980 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15981 info_ptr += bytes_read;
15983 case DW_FORM_string:
15984 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15985 DW_STRING_IS_CANONICAL (attr) = 0;
15986 info_ptr += bytes_read;
15989 if (!cu->per_cu->is_dwz)
15991 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15993 DW_STRING_IS_CANONICAL (attr) = 0;
15994 info_ptr += bytes_read;
15998 case DW_FORM_GNU_strp_alt:
16000 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16001 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16004 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16005 DW_STRING_IS_CANONICAL (attr) = 0;
16006 info_ptr += bytes_read;
16009 case DW_FORM_exprloc:
16010 case DW_FORM_block:
16011 blk = dwarf_alloc_block (cu);
16012 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16013 info_ptr += bytes_read;
16014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16015 info_ptr += blk->size;
16016 DW_BLOCK (attr) = blk;
16018 case DW_FORM_block1:
16019 blk = dwarf_alloc_block (cu);
16020 blk->size = read_1_byte (abfd, info_ptr);
16022 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16023 info_ptr += blk->size;
16024 DW_BLOCK (attr) = blk;
16026 case DW_FORM_data1:
16027 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16031 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16034 case DW_FORM_flag_present:
16035 DW_UNSND (attr) = 1;
16037 case DW_FORM_sdata:
16038 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16039 info_ptr += bytes_read;
16041 case DW_FORM_udata:
16042 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16043 info_ptr += bytes_read;
16046 DW_UNSND (attr) = (cu->header.offset.sect_off
16047 + read_1_byte (abfd, info_ptr));
16051 DW_UNSND (attr) = (cu->header.offset.sect_off
16052 + read_2_bytes (abfd, info_ptr));
16056 DW_UNSND (attr) = (cu->header.offset.sect_off
16057 + read_4_bytes (abfd, info_ptr));
16061 DW_UNSND (attr) = (cu->header.offset.sect_off
16062 + read_8_bytes (abfd, info_ptr));
16065 case DW_FORM_ref_sig8:
16066 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16069 case DW_FORM_ref_udata:
16070 DW_UNSND (attr) = (cu->header.offset.sect_off
16071 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16072 info_ptr += bytes_read;
16074 case DW_FORM_indirect:
16075 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16076 info_ptr += bytes_read;
16077 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16079 case DW_FORM_GNU_addr_index:
16080 if (reader->dwo_file == NULL)
16082 /* For now flag a hard error.
16083 Later we can turn this into a complaint. */
16084 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16085 dwarf_form_name (form),
16086 bfd_get_filename (abfd));
16088 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16089 info_ptr += bytes_read;
16091 case DW_FORM_GNU_str_index:
16092 if (reader->dwo_file == NULL)
16094 /* For now flag a hard error.
16095 Later we can turn this into a complaint if warranted. */
16096 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16097 dwarf_form_name (form),
16098 bfd_get_filename (abfd));
16101 ULONGEST str_index =
16102 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16104 DW_STRING (attr) = read_str_index (reader, str_index);
16105 DW_STRING_IS_CANONICAL (attr) = 0;
16106 info_ptr += bytes_read;
16110 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16111 dwarf_form_name (form),
16112 bfd_get_filename (abfd));
16116 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16117 attr->form = DW_FORM_GNU_ref_alt;
16119 /* We have seen instances where the compiler tried to emit a byte
16120 size attribute of -1 which ended up being encoded as an unsigned
16121 0xffffffff. Although 0xffffffff is technically a valid size value,
16122 an object of this size seems pretty unlikely so we can relatively
16123 safely treat these cases as if the size attribute was invalid and
16124 treat them as zero by default. */
16125 if (attr->name == DW_AT_byte_size
16126 && form == DW_FORM_data4
16127 && DW_UNSND (attr) >= 0xffffffff)
16130 (&symfile_complaints,
16131 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16132 hex_string (DW_UNSND (attr)));
16133 DW_UNSND (attr) = 0;
16139 /* Read an attribute described by an abbreviated attribute. */
16141 static const gdb_byte *
16142 read_attribute (const struct die_reader_specs *reader,
16143 struct attribute *attr, struct attr_abbrev *abbrev,
16144 const gdb_byte *info_ptr)
16146 attr->name = abbrev->name;
16147 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16150 /* Read dwarf information from a buffer. */
16152 static unsigned int
16153 read_1_byte (bfd *abfd, const gdb_byte *buf)
16155 return bfd_get_8 (abfd, buf);
16159 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16161 return bfd_get_signed_8 (abfd, buf);
16164 static unsigned int
16165 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16167 return bfd_get_16 (abfd, buf);
16171 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16173 return bfd_get_signed_16 (abfd, buf);
16176 static unsigned int
16177 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16179 return bfd_get_32 (abfd, buf);
16183 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16185 return bfd_get_signed_32 (abfd, buf);
16189 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16191 return bfd_get_64 (abfd, buf);
16195 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16196 unsigned int *bytes_read)
16198 struct comp_unit_head *cu_header = &cu->header;
16199 CORE_ADDR retval = 0;
16201 if (cu_header->signed_addr_p)
16203 switch (cu_header->addr_size)
16206 retval = bfd_get_signed_16 (abfd, buf);
16209 retval = bfd_get_signed_32 (abfd, buf);
16212 retval = bfd_get_signed_64 (abfd, buf);
16215 internal_error (__FILE__, __LINE__,
16216 _("read_address: bad switch, signed [in module %s]"),
16217 bfd_get_filename (abfd));
16222 switch (cu_header->addr_size)
16225 retval = bfd_get_16 (abfd, buf);
16228 retval = bfd_get_32 (abfd, buf);
16231 retval = bfd_get_64 (abfd, buf);
16234 internal_error (__FILE__, __LINE__,
16235 _("read_address: bad switch, "
16236 "unsigned [in module %s]"),
16237 bfd_get_filename (abfd));
16241 *bytes_read = cu_header->addr_size;
16245 /* Read the initial length from a section. The (draft) DWARF 3
16246 specification allows the initial length to take up either 4 bytes
16247 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16248 bytes describe the length and all offsets will be 8 bytes in length
16251 An older, non-standard 64-bit format is also handled by this
16252 function. The older format in question stores the initial length
16253 as an 8-byte quantity without an escape value. Lengths greater
16254 than 2^32 aren't very common which means that the initial 4 bytes
16255 is almost always zero. Since a length value of zero doesn't make
16256 sense for the 32-bit format, this initial zero can be considered to
16257 be an escape value which indicates the presence of the older 64-bit
16258 format. As written, the code can't detect (old format) lengths
16259 greater than 4GB. If it becomes necessary to handle lengths
16260 somewhat larger than 4GB, we could allow other small values (such
16261 as the non-sensical values of 1, 2, and 3) to also be used as
16262 escape values indicating the presence of the old format.
16264 The value returned via bytes_read should be used to increment the
16265 relevant pointer after calling read_initial_length().
16267 [ Note: read_initial_length() and read_offset() are based on the
16268 document entitled "DWARF Debugging Information Format", revision
16269 3, draft 8, dated November 19, 2001. This document was obtained
16272 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16274 This document is only a draft and is subject to change. (So beware.)
16276 Details regarding the older, non-standard 64-bit format were
16277 determined empirically by examining 64-bit ELF files produced by
16278 the SGI toolchain on an IRIX 6.5 machine.
16280 - Kevin, July 16, 2002
16284 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16286 LONGEST length = bfd_get_32 (abfd, buf);
16288 if (length == 0xffffffff)
16290 length = bfd_get_64 (abfd, buf + 4);
16293 else if (length == 0)
16295 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16296 length = bfd_get_64 (abfd, buf);
16307 /* Cover function for read_initial_length.
16308 Returns the length of the object at BUF, and stores the size of the
16309 initial length in *BYTES_READ and stores the size that offsets will be in
16311 If the initial length size is not equivalent to that specified in
16312 CU_HEADER then issue a complaint.
16313 This is useful when reading non-comp-unit headers. */
16316 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16317 const struct comp_unit_head *cu_header,
16318 unsigned int *bytes_read,
16319 unsigned int *offset_size)
16321 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16323 gdb_assert (cu_header->initial_length_size == 4
16324 || cu_header->initial_length_size == 8
16325 || cu_header->initial_length_size == 12);
16327 if (cu_header->initial_length_size != *bytes_read)
16328 complaint (&symfile_complaints,
16329 _("intermixed 32-bit and 64-bit DWARF sections"));
16331 *offset_size = (*bytes_read == 4) ? 4 : 8;
16335 /* Read an offset from the data stream. The size of the offset is
16336 given by cu_header->offset_size. */
16339 read_offset (bfd *abfd, const gdb_byte *buf,
16340 const struct comp_unit_head *cu_header,
16341 unsigned int *bytes_read)
16343 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16345 *bytes_read = cu_header->offset_size;
16349 /* Read an offset from the data stream. */
16352 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16354 LONGEST retval = 0;
16356 switch (offset_size)
16359 retval = bfd_get_32 (abfd, buf);
16362 retval = bfd_get_64 (abfd, buf);
16365 internal_error (__FILE__, __LINE__,
16366 _("read_offset_1: bad switch [in module %s]"),
16367 bfd_get_filename (abfd));
16373 static const gdb_byte *
16374 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16376 /* If the size of a host char is 8 bits, we can return a pointer
16377 to the buffer, otherwise we have to copy the data to a buffer
16378 allocated on the temporary obstack. */
16379 gdb_assert (HOST_CHAR_BIT == 8);
16383 static const char *
16384 read_direct_string (bfd *abfd, const gdb_byte *buf,
16385 unsigned int *bytes_read_ptr)
16387 /* If the size of a host char is 8 bits, we can return a pointer
16388 to the string, otherwise we have to copy the string to a buffer
16389 allocated on the temporary obstack. */
16390 gdb_assert (HOST_CHAR_BIT == 8);
16393 *bytes_read_ptr = 1;
16396 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16397 return (const char *) buf;
16400 static const char *
16401 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16403 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16404 if (dwarf2_per_objfile->str.buffer == NULL)
16405 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16406 bfd_get_filename (abfd));
16407 if (str_offset >= dwarf2_per_objfile->str.size)
16408 error (_("DW_FORM_strp pointing outside of "
16409 ".debug_str section [in module %s]"),
16410 bfd_get_filename (abfd));
16411 gdb_assert (HOST_CHAR_BIT == 8);
16412 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16414 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16417 /* Read a string at offset STR_OFFSET in the .debug_str section from
16418 the .dwz file DWZ. Throw an error if the offset is too large. If
16419 the string consists of a single NUL byte, return NULL; otherwise
16420 return a pointer to the string. */
16422 static const char *
16423 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16425 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16427 if (dwz->str.buffer == NULL)
16428 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16429 "section [in module %s]"),
16430 bfd_get_filename (dwz->dwz_bfd));
16431 if (str_offset >= dwz->str.size)
16432 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16433 ".debug_str section [in module %s]"),
16434 bfd_get_filename (dwz->dwz_bfd));
16435 gdb_assert (HOST_CHAR_BIT == 8);
16436 if (dwz->str.buffer[str_offset] == '\0')
16438 return (const char *) (dwz->str.buffer + str_offset);
16441 static const char *
16442 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16443 const struct comp_unit_head *cu_header,
16444 unsigned int *bytes_read_ptr)
16446 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16448 return read_indirect_string_at_offset (abfd, str_offset);
16452 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16453 unsigned int *bytes_read_ptr)
16456 unsigned int num_read;
16458 unsigned char byte;
16466 byte = bfd_get_8 (abfd, buf);
16469 result |= ((ULONGEST) (byte & 127) << shift);
16470 if ((byte & 128) == 0)
16476 *bytes_read_ptr = num_read;
16481 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16482 unsigned int *bytes_read_ptr)
16485 int i, shift, num_read;
16486 unsigned char byte;
16494 byte = bfd_get_8 (abfd, buf);
16497 result |= ((LONGEST) (byte & 127) << shift);
16499 if ((byte & 128) == 0)
16504 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16505 result |= -(((LONGEST) 1) << shift);
16506 *bytes_read_ptr = num_read;
16510 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16511 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16512 ADDR_SIZE is the size of addresses from the CU header. */
16515 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16517 struct objfile *objfile = dwarf2_per_objfile->objfile;
16518 bfd *abfd = objfile->obfd;
16519 const gdb_byte *info_ptr;
16521 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16522 if (dwarf2_per_objfile->addr.buffer == NULL)
16523 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16524 objfile_name (objfile));
16525 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16526 error (_("DW_FORM_addr_index pointing outside of "
16527 ".debug_addr section [in module %s]"),
16528 objfile_name (objfile));
16529 info_ptr = (dwarf2_per_objfile->addr.buffer
16530 + addr_base + addr_index * addr_size);
16531 if (addr_size == 4)
16532 return bfd_get_32 (abfd, info_ptr);
16534 return bfd_get_64 (abfd, info_ptr);
16537 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16540 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16542 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16545 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16548 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16549 unsigned int *bytes_read)
16551 bfd *abfd = cu->objfile->obfd;
16552 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16554 return read_addr_index (cu, addr_index);
16557 /* Data structure to pass results from dwarf2_read_addr_index_reader
16558 back to dwarf2_read_addr_index. */
16560 struct dwarf2_read_addr_index_data
16562 ULONGEST addr_base;
16566 /* die_reader_func for dwarf2_read_addr_index. */
16569 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16570 const gdb_byte *info_ptr,
16571 struct die_info *comp_unit_die,
16575 struct dwarf2_cu *cu = reader->cu;
16576 struct dwarf2_read_addr_index_data *aidata =
16577 (struct dwarf2_read_addr_index_data *) data;
16579 aidata->addr_base = cu->addr_base;
16580 aidata->addr_size = cu->header.addr_size;
16583 /* Given an index in .debug_addr, fetch the value.
16584 NOTE: This can be called during dwarf expression evaluation,
16585 long after the debug information has been read, and thus per_cu->cu
16586 may no longer exist. */
16589 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16590 unsigned int addr_index)
16592 struct objfile *objfile = per_cu->objfile;
16593 struct dwarf2_cu *cu = per_cu->cu;
16594 ULONGEST addr_base;
16597 /* This is intended to be called from outside this file. */
16598 dw2_setup (objfile);
16600 /* We need addr_base and addr_size.
16601 If we don't have PER_CU->cu, we have to get it.
16602 Nasty, but the alternative is storing the needed info in PER_CU,
16603 which at this point doesn't seem justified: it's not clear how frequently
16604 it would get used and it would increase the size of every PER_CU.
16605 Entry points like dwarf2_per_cu_addr_size do a similar thing
16606 so we're not in uncharted territory here.
16607 Alas we need to be a bit more complicated as addr_base is contained
16610 We don't need to read the entire CU(/TU).
16611 We just need the header and top level die.
16613 IWBN to use the aging mechanism to let us lazily later discard the CU.
16614 For now we skip this optimization. */
16618 addr_base = cu->addr_base;
16619 addr_size = cu->header.addr_size;
16623 struct dwarf2_read_addr_index_data aidata;
16625 /* Note: We can't use init_cutu_and_read_dies_simple here,
16626 we need addr_base. */
16627 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16628 dwarf2_read_addr_index_reader, &aidata);
16629 addr_base = aidata.addr_base;
16630 addr_size = aidata.addr_size;
16633 return read_addr_index_1 (addr_index, addr_base, addr_size);
16636 /* Given a DW_FORM_GNU_str_index, fetch the string.
16637 This is only used by the Fission support. */
16639 static const char *
16640 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16642 struct objfile *objfile = dwarf2_per_objfile->objfile;
16643 const char *objf_name = objfile_name (objfile);
16644 bfd *abfd = objfile->obfd;
16645 struct dwarf2_cu *cu = reader->cu;
16646 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16647 struct dwarf2_section_info *str_offsets_section =
16648 &reader->dwo_file->sections.str_offsets;
16649 const gdb_byte *info_ptr;
16650 ULONGEST str_offset;
16651 static const char form_name[] = "DW_FORM_GNU_str_index";
16653 dwarf2_read_section (objfile, str_section);
16654 dwarf2_read_section (objfile, str_offsets_section);
16655 if (str_section->buffer == NULL)
16656 error (_("%s used without .debug_str.dwo section"
16657 " in CU at offset 0x%lx [in module %s]"),
16658 form_name, (long) cu->header.offset.sect_off, objf_name);
16659 if (str_offsets_section->buffer == NULL)
16660 error (_("%s used without .debug_str_offsets.dwo section"
16661 " in CU at offset 0x%lx [in module %s]"),
16662 form_name, (long) cu->header.offset.sect_off, objf_name);
16663 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16664 error (_("%s pointing outside of .debug_str_offsets.dwo"
16665 " section in CU at offset 0x%lx [in module %s]"),
16666 form_name, (long) cu->header.offset.sect_off, objf_name);
16667 info_ptr = (str_offsets_section->buffer
16668 + str_index * cu->header.offset_size);
16669 if (cu->header.offset_size == 4)
16670 str_offset = bfd_get_32 (abfd, info_ptr);
16672 str_offset = bfd_get_64 (abfd, info_ptr);
16673 if (str_offset >= str_section->size)
16674 error (_("Offset from %s pointing outside of"
16675 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16676 form_name, (long) cu->header.offset.sect_off, objf_name);
16677 return (const char *) (str_section->buffer + str_offset);
16680 /* Return the length of an LEB128 number in BUF. */
16683 leb128_size (const gdb_byte *buf)
16685 const gdb_byte *begin = buf;
16691 if ((byte & 128) == 0)
16692 return buf - begin;
16697 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16705 cu->language = language_c;
16707 case DW_LANG_C_plus_plus:
16708 cu->language = language_cplus;
16711 cu->language = language_d;
16713 case DW_LANG_Fortran77:
16714 case DW_LANG_Fortran90:
16715 case DW_LANG_Fortran95:
16716 cu->language = language_fortran;
16719 cu->language = language_go;
16721 case DW_LANG_Mips_Assembler:
16722 cu->language = language_asm;
16725 cu->language = language_java;
16727 case DW_LANG_Ada83:
16728 case DW_LANG_Ada95:
16729 cu->language = language_ada;
16731 case DW_LANG_Modula2:
16732 cu->language = language_m2;
16734 case DW_LANG_Pascal83:
16735 cu->language = language_pascal;
16738 cu->language = language_objc;
16740 case DW_LANG_Cobol74:
16741 case DW_LANG_Cobol85:
16743 cu->language = language_minimal;
16746 cu->language_defn = language_def (cu->language);
16749 /* Return the named attribute or NULL if not there. */
16751 static struct attribute *
16752 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16757 struct attribute *spec = NULL;
16759 for (i = 0; i < die->num_attrs; ++i)
16761 if (die->attrs[i].name == name)
16762 return &die->attrs[i];
16763 if (die->attrs[i].name == DW_AT_specification
16764 || die->attrs[i].name == DW_AT_abstract_origin)
16765 spec = &die->attrs[i];
16771 die = follow_die_ref (die, spec, &cu);
16777 /* Return the named attribute or NULL if not there,
16778 but do not follow DW_AT_specification, etc.
16779 This is for use in contexts where we're reading .debug_types dies.
16780 Following DW_AT_specification, DW_AT_abstract_origin will take us
16781 back up the chain, and we want to go down. */
16783 static struct attribute *
16784 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16788 for (i = 0; i < die->num_attrs; ++i)
16789 if (die->attrs[i].name == name)
16790 return &die->attrs[i];
16795 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16796 and holds a non-zero value. This function should only be used for
16797 DW_FORM_flag or DW_FORM_flag_present attributes. */
16800 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16802 struct attribute *attr = dwarf2_attr (die, name, cu);
16804 return (attr && DW_UNSND (attr));
16808 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16810 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16811 which value is non-zero. However, we have to be careful with
16812 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16813 (via dwarf2_flag_true_p) follows this attribute. So we may
16814 end up accidently finding a declaration attribute that belongs
16815 to a different DIE referenced by the specification attribute,
16816 even though the given DIE does not have a declaration attribute. */
16817 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16818 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16821 /* Return the die giving the specification for DIE, if there is
16822 one. *SPEC_CU is the CU containing DIE on input, and the CU
16823 containing the return value on output. If there is no
16824 specification, but there is an abstract origin, that is
16827 static struct die_info *
16828 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16830 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16833 if (spec_attr == NULL)
16834 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16836 if (spec_attr == NULL)
16839 return follow_die_ref (die, spec_attr, spec_cu);
16842 /* Free the line_header structure *LH, and any arrays and strings it
16844 NOTE: This is also used as a "cleanup" function. */
16847 free_line_header (struct line_header *lh)
16849 if (lh->standard_opcode_lengths)
16850 xfree (lh->standard_opcode_lengths);
16852 /* Remember that all the lh->file_names[i].name pointers are
16853 pointers into debug_line_buffer, and don't need to be freed. */
16854 if (lh->file_names)
16855 xfree (lh->file_names);
16857 /* Similarly for the include directory names. */
16858 if (lh->include_dirs)
16859 xfree (lh->include_dirs);
16864 /* Add an entry to LH's include directory table. */
16867 add_include_dir (struct line_header *lh, const char *include_dir)
16869 /* Grow the array if necessary. */
16870 if (lh->include_dirs_size == 0)
16872 lh->include_dirs_size = 1; /* for testing */
16873 lh->include_dirs = xmalloc (lh->include_dirs_size
16874 * sizeof (*lh->include_dirs));
16876 else if (lh->num_include_dirs >= lh->include_dirs_size)
16878 lh->include_dirs_size *= 2;
16879 lh->include_dirs = xrealloc (lh->include_dirs,
16880 (lh->include_dirs_size
16881 * sizeof (*lh->include_dirs)));
16884 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16887 /* Add an entry to LH's file name table. */
16890 add_file_name (struct line_header *lh,
16892 unsigned int dir_index,
16893 unsigned int mod_time,
16894 unsigned int length)
16896 struct file_entry *fe;
16898 /* Grow the array if necessary. */
16899 if (lh->file_names_size == 0)
16901 lh->file_names_size = 1; /* for testing */
16902 lh->file_names = xmalloc (lh->file_names_size
16903 * sizeof (*lh->file_names));
16905 else if (lh->num_file_names >= lh->file_names_size)
16907 lh->file_names_size *= 2;
16908 lh->file_names = xrealloc (lh->file_names,
16909 (lh->file_names_size
16910 * sizeof (*lh->file_names)));
16913 fe = &lh->file_names[lh->num_file_names++];
16915 fe->dir_index = dir_index;
16916 fe->mod_time = mod_time;
16917 fe->length = length;
16918 fe->included_p = 0;
16922 /* A convenience function to find the proper .debug_line section for a
16925 static struct dwarf2_section_info *
16926 get_debug_line_section (struct dwarf2_cu *cu)
16928 struct dwarf2_section_info *section;
16930 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16932 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16933 section = &cu->dwo_unit->dwo_file->sections.line;
16934 else if (cu->per_cu->is_dwz)
16936 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16938 section = &dwz->line;
16941 section = &dwarf2_per_objfile->line;
16946 /* Read the statement program header starting at OFFSET in
16947 .debug_line, or .debug_line.dwo. Return a pointer
16948 to a struct line_header, allocated using xmalloc.
16950 NOTE: the strings in the include directory and file name tables of
16951 the returned object point into the dwarf line section buffer,
16952 and must not be freed. */
16954 static struct line_header *
16955 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16957 struct cleanup *back_to;
16958 struct line_header *lh;
16959 const gdb_byte *line_ptr;
16960 unsigned int bytes_read, offset_size;
16962 const char *cur_dir, *cur_file;
16963 struct dwarf2_section_info *section;
16966 section = get_debug_line_section (cu);
16967 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16968 if (section->buffer == NULL)
16970 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16971 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16973 complaint (&symfile_complaints, _("missing .debug_line section"));
16977 /* We can't do this until we know the section is non-empty.
16978 Only then do we know we have such a section. */
16979 abfd = get_section_bfd_owner (section);
16981 /* Make sure that at least there's room for the total_length field.
16982 That could be 12 bytes long, but we're just going to fudge that. */
16983 if (offset + 4 >= section->size)
16985 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16989 lh = xmalloc (sizeof (*lh));
16990 memset (lh, 0, sizeof (*lh));
16991 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16994 line_ptr = section->buffer + offset;
16996 /* Read in the header. */
16998 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16999 &bytes_read, &offset_size);
17000 line_ptr += bytes_read;
17001 if (line_ptr + lh->total_length > (section->buffer + section->size))
17003 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17004 do_cleanups (back_to);
17007 lh->statement_program_end = line_ptr + lh->total_length;
17008 lh->version = read_2_bytes (abfd, line_ptr);
17010 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17011 line_ptr += offset_size;
17012 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17014 if (lh->version >= 4)
17016 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17020 lh->maximum_ops_per_instruction = 1;
17022 if (lh->maximum_ops_per_instruction == 0)
17024 lh->maximum_ops_per_instruction = 1;
17025 complaint (&symfile_complaints,
17026 _("invalid maximum_ops_per_instruction "
17027 "in `.debug_line' section"));
17030 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17032 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17034 lh->line_range = read_1_byte (abfd, line_ptr);
17036 lh->opcode_base = read_1_byte (abfd, line_ptr);
17038 lh->standard_opcode_lengths
17039 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17041 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17042 for (i = 1; i < lh->opcode_base; ++i)
17044 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17048 /* Read directory table. */
17049 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17051 line_ptr += bytes_read;
17052 add_include_dir (lh, cur_dir);
17054 line_ptr += bytes_read;
17056 /* Read file name table. */
17057 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17059 unsigned int dir_index, mod_time, length;
17061 line_ptr += bytes_read;
17062 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17063 line_ptr += bytes_read;
17064 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17069 add_file_name (lh, cur_file, dir_index, mod_time, length);
17071 line_ptr += bytes_read;
17072 lh->statement_program_start = line_ptr;
17074 if (line_ptr > (section->buffer + section->size))
17075 complaint (&symfile_complaints,
17076 _("line number info header doesn't "
17077 "fit in `.debug_line' section"));
17079 discard_cleanups (back_to);
17083 /* Subroutine of dwarf_decode_lines to simplify it.
17084 Return the file name of the psymtab for included file FILE_INDEX
17085 in line header LH of PST.
17086 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17087 If space for the result is malloc'd, it will be freed by a cleanup.
17088 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17090 The function creates dangling cleanup registration. */
17092 static const char *
17093 psymtab_include_file_name (const struct line_header *lh, int file_index,
17094 const struct partial_symtab *pst,
17095 const char *comp_dir)
17097 const struct file_entry fe = lh->file_names [file_index];
17098 const char *include_name = fe.name;
17099 const char *include_name_to_compare = include_name;
17100 const char *dir_name = NULL;
17101 const char *pst_filename;
17102 char *copied_name = NULL;
17106 dir_name = lh->include_dirs[fe.dir_index - 1];
17108 if (!IS_ABSOLUTE_PATH (include_name)
17109 && (dir_name != NULL || comp_dir != NULL))
17111 /* Avoid creating a duplicate psymtab for PST.
17112 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17113 Before we do the comparison, however, we need to account
17114 for DIR_NAME and COMP_DIR.
17115 First prepend dir_name (if non-NULL). If we still don't
17116 have an absolute path prepend comp_dir (if non-NULL).
17117 However, the directory we record in the include-file's
17118 psymtab does not contain COMP_DIR (to match the
17119 corresponding symtab(s)).
17124 bash$ gcc -g ./hello.c
17125 include_name = "hello.c"
17127 DW_AT_comp_dir = comp_dir = "/tmp"
17128 DW_AT_name = "./hello.c"
17132 if (dir_name != NULL)
17134 char *tem = concat (dir_name, SLASH_STRING,
17135 include_name, (char *)NULL);
17137 make_cleanup (xfree, tem);
17138 include_name = tem;
17139 include_name_to_compare = include_name;
17141 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17143 char *tem = concat (comp_dir, SLASH_STRING,
17144 include_name, (char *)NULL);
17146 make_cleanup (xfree, tem);
17147 include_name_to_compare = tem;
17151 pst_filename = pst->filename;
17152 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17154 copied_name = concat (pst->dirname, SLASH_STRING,
17155 pst_filename, (char *)NULL);
17156 pst_filename = copied_name;
17159 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17161 if (copied_name != NULL)
17162 xfree (copied_name);
17166 return include_name;
17169 /* Ignore this record_line request. */
17172 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17177 /* Return non-zero if we should add LINE to the line number table.
17178 LINE is the line to add, LAST_LINE is the last line that was added,
17179 LAST_SUBFILE is the subfile for LAST_LINE.
17180 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17181 had a non-zero discriminator.
17183 We have to be careful in the presence of discriminators.
17184 E.g., for this line:
17186 for (i = 0; i < 100000; i++);
17188 clang can emit four line number entries for that one line,
17189 each with a different discriminator.
17190 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17192 However, we want gdb to coalesce all four entries into one.
17193 Otherwise the user could stepi into the middle of the line and
17194 gdb would get confused about whether the pc really was in the
17195 middle of the line.
17197 Things are further complicated by the fact that two consecutive
17198 line number entries for the same line is a heuristic used by gcc
17199 to denote the end of the prologue. So we can't just discard duplicate
17200 entries, we have to be selective about it. The heuristic we use is
17201 that we only collapse consecutive entries for the same line if at least
17202 one of those entries has a non-zero discriminator. PR 17276.
17204 Note: Addresses in the line number state machine can never go backwards
17205 within one sequence, thus this coalescing is ok. */
17208 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17209 int line_has_non_zero_discriminator,
17210 struct subfile *last_subfile)
17212 if (current_subfile != last_subfile)
17214 if (line != last_line)
17216 /* Same line for the same file that we've seen already.
17217 As a last check, for pr 17276, only record the line if the line
17218 has never had a non-zero discriminator. */
17219 if (!line_has_non_zero_discriminator)
17224 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17225 in the line table of subfile SUBFILE. */
17228 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17229 unsigned int line, CORE_ADDR address,
17230 record_line_ftype p_record_line)
17232 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17234 (*p_record_line) (subfile, line, addr);
17237 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17238 Mark the end of a set of line number records.
17239 The arguments are the same as for dwarf_record_line.
17240 If SUBFILE is NULL the request is ignored. */
17243 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17244 CORE_ADDR address, record_line_ftype p_record_line)
17246 if (subfile != NULL)
17247 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17250 /* Subroutine of dwarf_decode_lines to simplify it.
17251 Process the line number information in LH. */
17254 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17255 struct dwarf2_cu *cu, const int decode_for_pst_p)
17257 const gdb_byte *line_ptr, *extended_end;
17258 const gdb_byte *line_end;
17259 unsigned int bytes_read, extended_len;
17260 unsigned char op_code, extended_op;
17261 CORE_ADDR baseaddr;
17262 struct objfile *objfile = cu->objfile;
17263 bfd *abfd = objfile->obfd;
17264 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17265 struct subfile *last_subfile = NULL;
17266 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17269 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17271 line_ptr = lh->statement_program_start;
17272 line_end = lh->statement_program_end;
17274 /* Read the statement sequences until there's nothing left. */
17275 while (line_ptr < line_end)
17277 /* state machine registers */
17278 CORE_ADDR address = 0;
17279 unsigned int file = 1;
17280 unsigned int line = 1;
17281 int is_stmt = lh->default_is_stmt;
17282 int end_sequence = 0;
17283 unsigned char op_index = 0;
17284 unsigned int discriminator = 0;
17285 /* The last line number that was recorded, used to coalesce
17286 consecutive entries for the same line. This can happen, for
17287 example, when discriminators are present. PR 17276. */
17288 unsigned int last_line = 0;
17289 int line_has_non_zero_discriminator = 0;
17291 if (!decode_for_pst_p && lh->num_file_names >= file)
17293 /* Start a subfile for the current file of the state machine. */
17294 /* lh->include_dirs and lh->file_names are 0-based, but the
17295 directory and file name numbers in the statement program
17297 struct file_entry *fe = &lh->file_names[file - 1];
17298 const char *dir = NULL;
17301 dir = lh->include_dirs[fe->dir_index - 1];
17303 dwarf2_start_subfile (fe->name, dir, comp_dir);
17306 /* Decode the table. */
17307 while (!end_sequence)
17309 op_code = read_1_byte (abfd, line_ptr);
17311 if (line_ptr > line_end)
17313 dwarf2_debug_line_missing_end_sequence_complaint ();
17317 if (op_code >= lh->opcode_base)
17319 /* Special opcode. */
17320 unsigned char adj_opcode;
17323 adj_opcode = op_code - lh->opcode_base;
17324 address += (((op_index + (adj_opcode / lh->line_range))
17325 / lh->maximum_ops_per_instruction)
17326 * lh->minimum_instruction_length);
17327 op_index = ((op_index + (adj_opcode / lh->line_range))
17328 % lh->maximum_ops_per_instruction);
17329 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17330 line += line_delta;
17331 if (line_delta != 0)
17332 line_has_non_zero_discriminator = discriminator != 0;
17333 if (lh->num_file_names < file || file == 0)
17334 dwarf2_debug_line_missing_file_complaint ();
17335 /* For now we ignore lines not starting on an
17336 instruction boundary. */
17337 else if (op_index == 0)
17339 lh->file_names[file - 1].included_p = 1;
17340 if (!decode_for_pst_p && is_stmt)
17342 if (last_subfile != current_subfile)
17344 dwarf_finish_line (gdbarch, last_subfile,
17345 address, p_record_line);
17347 if (dwarf_record_line_p (line, last_line,
17348 line_has_non_zero_discriminator,
17351 dwarf_record_line (gdbarch, current_subfile,
17352 line, address, p_record_line);
17354 last_subfile = current_subfile;
17360 else switch (op_code)
17362 case DW_LNS_extended_op:
17363 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17365 line_ptr += bytes_read;
17366 extended_end = line_ptr + extended_len;
17367 extended_op = read_1_byte (abfd, line_ptr);
17369 switch (extended_op)
17371 case DW_LNE_end_sequence:
17372 p_record_line = record_line;
17375 case DW_LNE_set_address:
17376 address = read_address (abfd, line_ptr, cu, &bytes_read);
17378 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17380 /* This line table is for a function which has been
17381 GCd by the linker. Ignore it. PR gdb/12528 */
17384 = line_ptr - get_debug_line_section (cu)->buffer;
17386 complaint (&symfile_complaints,
17387 _(".debug_line address at offset 0x%lx is 0 "
17389 line_offset, objfile_name (objfile));
17390 p_record_line = noop_record_line;
17391 /* Note: p_record_line is left as noop_record_line
17392 until we see DW_LNE_end_sequence. */
17396 line_ptr += bytes_read;
17397 address += baseaddr;
17399 case DW_LNE_define_file:
17401 const char *cur_file;
17402 unsigned int dir_index, mod_time, length;
17404 cur_file = read_direct_string (abfd, line_ptr,
17406 line_ptr += bytes_read;
17408 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17409 line_ptr += bytes_read;
17411 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17412 line_ptr += bytes_read;
17414 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17415 line_ptr += bytes_read;
17416 add_file_name (lh, cur_file, dir_index, mod_time, length);
17419 case DW_LNE_set_discriminator:
17420 /* The discriminator is not interesting to the debugger;
17421 just ignore it. We still need to check its value though:
17422 if there are consecutive entries for the same
17423 (non-prologue) line we want to coalesce them.
17425 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17427 line_has_non_zero_discriminator |= discriminator != 0;
17428 line_ptr += bytes_read;
17431 complaint (&symfile_complaints,
17432 _("mangled .debug_line section"));
17435 /* Make sure that we parsed the extended op correctly. If e.g.
17436 we expected a different address size than the producer used,
17437 we may have read the wrong number of bytes. */
17438 if (line_ptr != extended_end)
17440 complaint (&symfile_complaints,
17441 _("mangled .debug_line section"));
17446 if (lh->num_file_names < file || file == 0)
17447 dwarf2_debug_line_missing_file_complaint ();
17450 lh->file_names[file - 1].included_p = 1;
17451 if (!decode_for_pst_p && is_stmt)
17453 if (last_subfile != current_subfile)
17455 dwarf_finish_line (gdbarch, last_subfile,
17456 address, p_record_line);
17458 if (dwarf_record_line_p (line, last_line,
17459 line_has_non_zero_discriminator,
17462 dwarf_record_line (gdbarch, current_subfile,
17463 line, address, p_record_line);
17465 last_subfile = current_subfile;
17471 case DW_LNS_advance_pc:
17474 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17476 address += (((op_index + adjust)
17477 / lh->maximum_ops_per_instruction)
17478 * lh->minimum_instruction_length);
17479 op_index = ((op_index + adjust)
17480 % lh->maximum_ops_per_instruction);
17481 line_ptr += bytes_read;
17484 case DW_LNS_advance_line:
17487 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17489 line += line_delta;
17490 if (line_delta != 0)
17491 line_has_non_zero_discriminator = discriminator != 0;
17492 line_ptr += bytes_read;
17495 case DW_LNS_set_file:
17497 /* The arrays lh->include_dirs and lh->file_names are
17498 0-based, but the directory and file name numbers in
17499 the statement program are 1-based. */
17500 struct file_entry *fe;
17501 const char *dir = NULL;
17503 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17504 line_ptr += bytes_read;
17505 if (lh->num_file_names < file || file == 0)
17506 dwarf2_debug_line_missing_file_complaint ();
17509 fe = &lh->file_names[file - 1];
17511 dir = lh->include_dirs[fe->dir_index - 1];
17512 if (!decode_for_pst_p)
17514 last_subfile = current_subfile;
17515 line_has_non_zero_discriminator = discriminator != 0;
17516 dwarf2_start_subfile (fe->name, dir, comp_dir);
17521 case DW_LNS_set_column:
17522 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17523 line_ptr += bytes_read;
17525 case DW_LNS_negate_stmt:
17526 is_stmt = (!is_stmt);
17528 case DW_LNS_set_basic_block:
17530 /* Add to the address register of the state machine the
17531 address increment value corresponding to special opcode
17532 255. I.e., this value is scaled by the minimum
17533 instruction length since special opcode 255 would have
17534 scaled the increment. */
17535 case DW_LNS_const_add_pc:
17537 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17539 address += (((op_index + adjust)
17540 / lh->maximum_ops_per_instruction)
17541 * lh->minimum_instruction_length);
17542 op_index = ((op_index + adjust)
17543 % lh->maximum_ops_per_instruction);
17546 case DW_LNS_fixed_advance_pc:
17547 address += read_2_bytes (abfd, line_ptr);
17553 /* Unknown standard opcode, ignore it. */
17556 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17558 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17559 line_ptr += bytes_read;
17564 if (lh->num_file_names < file || file == 0)
17565 dwarf2_debug_line_missing_file_complaint ();
17568 lh->file_names[file - 1].included_p = 1;
17569 if (!decode_for_pst_p)
17571 dwarf_finish_line (gdbarch, current_subfile, address,
17578 /* Decode the Line Number Program (LNP) for the given line_header
17579 structure and CU. The actual information extracted and the type
17580 of structures created from the LNP depends on the value of PST.
17582 1. If PST is NULL, then this procedure uses the data from the program
17583 to create all necessary symbol tables, and their linetables.
17585 2. If PST is not NULL, this procedure reads the program to determine
17586 the list of files included by the unit represented by PST, and
17587 builds all the associated partial symbol tables.
17589 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17590 It is used for relative paths in the line table.
17591 NOTE: When processing partial symtabs (pst != NULL),
17592 comp_dir == pst->dirname.
17594 NOTE: It is important that psymtabs have the same file name (via strcmp)
17595 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17596 symtab we don't use it in the name of the psymtabs we create.
17597 E.g. expand_line_sal requires this when finding psymtabs to expand.
17598 A good testcase for this is mb-inline.exp. */
17601 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17602 struct dwarf2_cu *cu, struct partial_symtab *pst)
17604 struct objfile *objfile = cu->objfile;
17605 const int decode_for_pst_p = (pst != NULL);
17606 struct subfile *first_subfile = current_subfile;
17608 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p);
17610 if (decode_for_pst_p)
17614 /* Now that we're done scanning the Line Header Program, we can
17615 create the psymtab of each included file. */
17616 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17617 if (lh->file_names[file_index].included_p == 1)
17619 const char *include_name =
17620 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17621 if (include_name != NULL)
17622 dwarf2_create_include_psymtab (include_name, pst, objfile);
17627 /* Make sure a symtab is created for every file, even files
17628 which contain only variables (i.e. no code with associated
17632 for (i = 0; i < lh->num_file_names; i++)
17634 const char *dir = NULL;
17635 struct file_entry *fe;
17637 fe = &lh->file_names[i];
17639 dir = lh->include_dirs[fe->dir_index - 1];
17640 dwarf2_start_subfile (fe->name, dir, comp_dir);
17642 /* Skip the main file; we don't need it, and it must be
17643 allocated last, so that it will show up before the
17644 non-primary symtabs in the objfile's symtab list. */
17645 if (current_subfile == first_subfile)
17648 if (current_subfile->symtab == NULL)
17649 current_subfile->symtab = allocate_symtab (current_subfile->name,
17651 fe->symtab = current_subfile->symtab;
17656 /* Start a subfile for DWARF. FILENAME is the name of the file and
17657 DIRNAME the name of the source directory which contains FILENAME
17658 or NULL if not known. COMP_DIR is the compilation directory for the
17659 linetable's compilation unit or NULL if not known.
17660 This routine tries to keep line numbers from identical absolute and
17661 relative file names in a common subfile.
17663 Using the `list' example from the GDB testsuite, which resides in
17664 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17665 of /srcdir/list0.c yields the following debugging information for list0.c:
17667 DW_AT_name: /srcdir/list0.c
17668 DW_AT_comp_dir: /compdir
17669 files.files[0].name: list0.h
17670 files.files[0].dir: /srcdir
17671 files.files[1].name: list0.c
17672 files.files[1].dir: /srcdir
17674 The line number information for list0.c has to end up in a single
17675 subfile, so that `break /srcdir/list0.c:1' works as expected.
17676 start_subfile will ensure that this happens provided that we pass the
17677 concatenation of files.files[1].dir and files.files[1].name as the
17681 dwarf2_start_subfile (const char *filename, const char *dirname,
17682 const char *comp_dir)
17686 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17687 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17688 second argument to start_subfile. To be consistent, we do the
17689 same here. In order not to lose the line information directory,
17690 we concatenate it to the filename when it makes sense.
17691 Note that the Dwarf3 standard says (speaking of filenames in line
17692 information): ``The directory index is ignored for file names
17693 that represent full path names''. Thus ignoring dirname in the
17694 `else' branch below isn't an issue. */
17696 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17698 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17702 start_subfile (filename, comp_dir);
17708 /* Start a symtab for DWARF.
17709 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17712 dwarf2_start_symtab (struct dwarf2_cu *cu,
17713 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17715 start_symtab (name, comp_dir, low_pc);
17716 record_debugformat ("DWARF 2");
17717 record_producer (cu->producer);
17719 /* We assume that we're processing GCC output. */
17720 processing_gcc_compilation = 2;
17722 cu->processing_has_namespace_info = 0;
17726 var_decode_location (struct attribute *attr, struct symbol *sym,
17727 struct dwarf2_cu *cu)
17729 struct objfile *objfile = cu->objfile;
17730 struct comp_unit_head *cu_header = &cu->header;
17732 /* NOTE drow/2003-01-30: There used to be a comment and some special
17733 code here to turn a symbol with DW_AT_external and a
17734 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17735 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17736 with some versions of binutils) where shared libraries could have
17737 relocations against symbols in their debug information - the
17738 minimal symbol would have the right address, but the debug info
17739 would not. It's no longer necessary, because we will explicitly
17740 apply relocations when we read in the debug information now. */
17742 /* A DW_AT_location attribute with no contents indicates that a
17743 variable has been optimized away. */
17744 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17746 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17750 /* Handle one degenerate form of location expression specially, to
17751 preserve GDB's previous behavior when section offsets are
17752 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17753 then mark this symbol as LOC_STATIC. */
17755 if (attr_form_is_block (attr)
17756 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17757 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17758 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17759 && (DW_BLOCK (attr)->size
17760 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17762 unsigned int dummy;
17764 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17765 SYMBOL_VALUE_ADDRESS (sym) =
17766 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17768 SYMBOL_VALUE_ADDRESS (sym) =
17769 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17770 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17771 fixup_symbol_section (sym, objfile);
17772 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17773 SYMBOL_SECTION (sym));
17777 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17778 expression evaluator, and use LOC_COMPUTED only when necessary
17779 (i.e. when the value of a register or memory location is
17780 referenced, or a thread-local block, etc.). Then again, it might
17781 not be worthwhile. I'm assuming that it isn't unless performance
17782 or memory numbers show me otherwise. */
17784 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17786 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17787 cu->has_loclist = 1;
17790 /* Given a pointer to a DWARF information entry, figure out if we need
17791 to make a symbol table entry for it, and if so, create a new entry
17792 and return a pointer to it.
17793 If TYPE is NULL, determine symbol type from the die, otherwise
17794 used the passed type.
17795 If SPACE is not NULL, use it to hold the new symbol. If it is
17796 NULL, allocate a new symbol on the objfile's obstack. */
17798 static struct symbol *
17799 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17800 struct symbol *space)
17802 struct objfile *objfile = cu->objfile;
17803 struct symbol *sym = NULL;
17805 struct attribute *attr = NULL;
17806 struct attribute *attr2 = NULL;
17807 CORE_ADDR baseaddr;
17808 struct pending **list_to_add = NULL;
17810 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17812 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17814 name = dwarf2_name (die, cu);
17817 const char *linkagename;
17818 int suppress_add = 0;
17823 sym = allocate_symbol (objfile);
17824 OBJSTAT (objfile, n_syms++);
17826 /* Cache this symbol's name and the name's demangled form (if any). */
17827 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17828 linkagename = dwarf2_physname (name, die, cu);
17829 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17831 /* Fortran does not have mangling standard and the mangling does differ
17832 between gfortran, iFort etc. */
17833 if (cu->language == language_fortran
17834 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17835 symbol_set_demangled_name (&(sym->ginfo),
17836 dwarf2_full_name (name, die, cu),
17839 /* Default assumptions.
17840 Use the passed type or decode it from the die. */
17841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17842 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17844 SYMBOL_TYPE (sym) = type;
17846 SYMBOL_TYPE (sym) = die_type (die, cu);
17847 attr = dwarf2_attr (die,
17848 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17852 SYMBOL_LINE (sym) = DW_UNSND (attr);
17855 attr = dwarf2_attr (die,
17856 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17860 int file_index = DW_UNSND (attr);
17862 if (cu->line_header == NULL
17863 || file_index > cu->line_header->num_file_names)
17864 complaint (&symfile_complaints,
17865 _("file index out of range"));
17866 else if (file_index > 0)
17868 struct file_entry *fe;
17870 fe = &cu->line_header->file_names[file_index - 1];
17871 SYMBOL_SYMTAB (sym) = fe->symtab;
17878 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17880 SYMBOL_VALUE_ADDRESS (sym)
17881 = attr_value_as_address (attr) + baseaddr;
17882 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17883 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17884 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17885 add_symbol_to_list (sym, cu->list_in_scope);
17887 case DW_TAG_subprogram:
17888 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17890 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17891 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17892 if ((attr2 && (DW_UNSND (attr2) != 0))
17893 || cu->language == language_ada)
17895 /* Subprograms marked external are stored as a global symbol.
17896 Ada subprograms, whether marked external or not, are always
17897 stored as a global symbol, because we want to be able to
17898 access them globally. For instance, we want to be able
17899 to break on a nested subprogram without having to
17900 specify the context. */
17901 list_to_add = &global_symbols;
17905 list_to_add = cu->list_in_scope;
17908 case DW_TAG_inlined_subroutine:
17909 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17911 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17912 SYMBOL_INLINED (sym) = 1;
17913 list_to_add = cu->list_in_scope;
17915 case DW_TAG_template_value_param:
17917 /* Fall through. */
17918 case DW_TAG_constant:
17919 case DW_TAG_variable:
17920 case DW_TAG_member:
17921 /* Compilation with minimal debug info may result in
17922 variables with missing type entries. Change the
17923 misleading `void' type to something sensible. */
17924 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17926 = objfile_type (objfile)->nodebug_data_symbol;
17928 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17929 /* In the case of DW_TAG_member, we should only be called for
17930 static const members. */
17931 if (die->tag == DW_TAG_member)
17933 /* dwarf2_add_field uses die_is_declaration,
17934 so we do the same. */
17935 gdb_assert (die_is_declaration (die, cu));
17940 dwarf2_const_value (attr, sym, cu);
17941 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17944 if (attr2 && (DW_UNSND (attr2) != 0))
17945 list_to_add = &global_symbols;
17947 list_to_add = cu->list_in_scope;
17951 attr = dwarf2_attr (die, DW_AT_location, cu);
17954 var_decode_location (attr, sym, cu);
17955 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17957 /* Fortran explicitly imports any global symbols to the local
17958 scope by DW_TAG_common_block. */
17959 if (cu->language == language_fortran && die->parent
17960 && die->parent->tag == DW_TAG_common_block)
17963 if (SYMBOL_CLASS (sym) == LOC_STATIC
17964 && SYMBOL_VALUE_ADDRESS (sym) == 0
17965 && !dwarf2_per_objfile->has_section_at_zero)
17967 /* When a static variable is eliminated by the linker,
17968 the corresponding debug information is not stripped
17969 out, but the variable address is set to null;
17970 do not add such variables into symbol table. */
17972 else if (attr2 && (DW_UNSND (attr2) != 0))
17974 /* Workaround gfortran PR debug/40040 - it uses
17975 DW_AT_location for variables in -fPIC libraries which may
17976 get overriden by other libraries/executable and get
17977 a different address. Resolve it by the minimal symbol
17978 which may come from inferior's executable using copy
17979 relocation. Make this workaround only for gfortran as for
17980 other compilers GDB cannot guess the minimal symbol
17981 Fortran mangling kind. */
17982 if (cu->language == language_fortran && die->parent
17983 && die->parent->tag == DW_TAG_module
17985 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17986 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17988 /* A variable with DW_AT_external is never static,
17989 but it may be block-scoped. */
17990 list_to_add = (cu->list_in_scope == &file_symbols
17991 ? &global_symbols : cu->list_in_scope);
17994 list_to_add = cu->list_in_scope;
17998 /* We do not know the address of this symbol.
17999 If it is an external symbol and we have type information
18000 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18001 The address of the variable will then be determined from
18002 the minimal symbol table whenever the variable is
18004 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18006 /* Fortran explicitly imports any global symbols to the local
18007 scope by DW_TAG_common_block. */
18008 if (cu->language == language_fortran && die->parent
18009 && die->parent->tag == DW_TAG_common_block)
18011 /* SYMBOL_CLASS doesn't matter here because
18012 read_common_block is going to reset it. */
18014 list_to_add = cu->list_in_scope;
18016 else if (attr2 && (DW_UNSND (attr2) != 0)
18017 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18019 /* A variable with DW_AT_external is never static, but it
18020 may be block-scoped. */
18021 list_to_add = (cu->list_in_scope == &file_symbols
18022 ? &global_symbols : cu->list_in_scope);
18024 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18026 else if (!die_is_declaration (die, cu))
18028 /* Use the default LOC_OPTIMIZED_OUT class. */
18029 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18031 list_to_add = cu->list_in_scope;
18035 case DW_TAG_formal_parameter:
18036 /* If we are inside a function, mark this as an argument. If
18037 not, we might be looking at an argument to an inlined function
18038 when we do not have enough information to show inlined frames;
18039 pretend it's a local variable in that case so that the user can
18041 if (context_stack_depth > 0
18042 && context_stack[context_stack_depth - 1].name != NULL)
18043 SYMBOL_IS_ARGUMENT (sym) = 1;
18044 attr = dwarf2_attr (die, DW_AT_location, cu);
18047 var_decode_location (attr, sym, cu);
18049 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18052 dwarf2_const_value (attr, sym, cu);
18055 list_to_add = cu->list_in_scope;
18057 case DW_TAG_unspecified_parameters:
18058 /* From varargs functions; gdb doesn't seem to have any
18059 interest in this information, so just ignore it for now.
18062 case DW_TAG_template_type_param:
18064 /* Fall through. */
18065 case DW_TAG_class_type:
18066 case DW_TAG_interface_type:
18067 case DW_TAG_structure_type:
18068 case DW_TAG_union_type:
18069 case DW_TAG_set_type:
18070 case DW_TAG_enumeration_type:
18071 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18072 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18075 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18076 really ever be static objects: otherwise, if you try
18077 to, say, break of a class's method and you're in a file
18078 which doesn't mention that class, it won't work unless
18079 the check for all static symbols in lookup_symbol_aux
18080 saves you. See the OtherFileClass tests in
18081 gdb.c++/namespace.exp. */
18085 list_to_add = (cu->list_in_scope == &file_symbols
18086 && (cu->language == language_cplus
18087 || cu->language == language_java)
18088 ? &global_symbols : cu->list_in_scope);
18090 /* The semantics of C++ state that "struct foo {
18091 ... }" also defines a typedef for "foo". A Java
18092 class declaration also defines a typedef for the
18094 if (cu->language == language_cplus
18095 || cu->language == language_java
18096 || cu->language == language_ada)
18098 /* The symbol's name is already allocated along
18099 with this objfile, so we don't need to
18100 duplicate it for the type. */
18101 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18102 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18107 case DW_TAG_typedef:
18108 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18110 list_to_add = cu->list_in_scope;
18112 case DW_TAG_base_type:
18113 case DW_TAG_subrange_type:
18114 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18115 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18116 list_to_add = cu->list_in_scope;
18118 case DW_TAG_enumerator:
18119 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18122 dwarf2_const_value (attr, sym, cu);
18125 /* NOTE: carlton/2003-11-10: See comment above in the
18126 DW_TAG_class_type, etc. block. */
18128 list_to_add = (cu->list_in_scope == &file_symbols
18129 && (cu->language == language_cplus
18130 || cu->language == language_java)
18131 ? &global_symbols : cu->list_in_scope);
18134 case DW_TAG_imported_declaration:
18135 case DW_TAG_namespace:
18136 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18137 list_to_add = &global_symbols;
18139 case DW_TAG_module:
18140 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18141 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18142 list_to_add = &global_symbols;
18144 case DW_TAG_common_block:
18145 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18146 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18147 add_symbol_to_list (sym, cu->list_in_scope);
18150 /* Not a tag we recognize. Hopefully we aren't processing
18151 trash data, but since we must specifically ignore things
18152 we don't recognize, there is nothing else we should do at
18154 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18155 dwarf_tag_name (die->tag));
18161 sym->hash_next = objfile->template_symbols;
18162 objfile->template_symbols = sym;
18163 list_to_add = NULL;
18166 if (list_to_add != NULL)
18167 add_symbol_to_list (sym, list_to_add);
18169 /* For the benefit of old versions of GCC, check for anonymous
18170 namespaces based on the demangled name. */
18171 if (!cu->processing_has_namespace_info
18172 && cu->language == language_cplus)
18173 cp_scan_for_anonymous_namespaces (sym, objfile);
18178 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18180 static struct symbol *
18181 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18183 return new_symbol_full (die, type, cu, NULL);
18186 /* Given an attr with a DW_FORM_dataN value in host byte order,
18187 zero-extend it as appropriate for the symbol's type. The DWARF
18188 standard (v4) is not entirely clear about the meaning of using
18189 DW_FORM_dataN for a constant with a signed type, where the type is
18190 wider than the data. The conclusion of a discussion on the DWARF
18191 list was that this is unspecified. We choose to always zero-extend
18192 because that is the interpretation long in use by GCC. */
18195 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18196 struct dwarf2_cu *cu, LONGEST *value, int bits)
18198 struct objfile *objfile = cu->objfile;
18199 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18200 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18201 LONGEST l = DW_UNSND (attr);
18203 if (bits < sizeof (*value) * 8)
18205 l &= ((LONGEST) 1 << bits) - 1;
18208 else if (bits == sizeof (*value) * 8)
18212 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18213 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18220 /* Read a constant value from an attribute. Either set *VALUE, or if
18221 the value does not fit in *VALUE, set *BYTES - either already
18222 allocated on the objfile obstack, or newly allocated on OBSTACK,
18223 or, set *BATON, if we translated the constant to a location
18227 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18228 const char *name, struct obstack *obstack,
18229 struct dwarf2_cu *cu,
18230 LONGEST *value, const gdb_byte **bytes,
18231 struct dwarf2_locexpr_baton **baton)
18233 struct objfile *objfile = cu->objfile;
18234 struct comp_unit_head *cu_header = &cu->header;
18235 struct dwarf_block *blk;
18236 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18237 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18243 switch (attr->form)
18246 case DW_FORM_GNU_addr_index:
18250 if (TYPE_LENGTH (type) != cu_header->addr_size)
18251 dwarf2_const_value_length_mismatch_complaint (name,
18252 cu_header->addr_size,
18253 TYPE_LENGTH (type));
18254 /* Symbols of this form are reasonably rare, so we just
18255 piggyback on the existing location code rather than writing
18256 a new implementation of symbol_computed_ops. */
18257 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18258 (*baton)->per_cu = cu->per_cu;
18259 gdb_assert ((*baton)->per_cu);
18261 (*baton)->size = 2 + cu_header->addr_size;
18262 data = obstack_alloc (obstack, (*baton)->size);
18263 (*baton)->data = data;
18265 data[0] = DW_OP_addr;
18266 store_unsigned_integer (&data[1], cu_header->addr_size,
18267 byte_order, DW_ADDR (attr));
18268 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18271 case DW_FORM_string:
18273 case DW_FORM_GNU_str_index:
18274 case DW_FORM_GNU_strp_alt:
18275 /* DW_STRING is already allocated on the objfile obstack, point
18277 *bytes = (const gdb_byte *) DW_STRING (attr);
18279 case DW_FORM_block1:
18280 case DW_FORM_block2:
18281 case DW_FORM_block4:
18282 case DW_FORM_block:
18283 case DW_FORM_exprloc:
18284 blk = DW_BLOCK (attr);
18285 if (TYPE_LENGTH (type) != blk->size)
18286 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18287 TYPE_LENGTH (type));
18288 *bytes = blk->data;
18291 /* The DW_AT_const_value attributes are supposed to carry the
18292 symbol's value "represented as it would be on the target
18293 architecture." By the time we get here, it's already been
18294 converted to host endianness, so we just need to sign- or
18295 zero-extend it as appropriate. */
18296 case DW_FORM_data1:
18297 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18299 case DW_FORM_data2:
18300 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18302 case DW_FORM_data4:
18303 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18305 case DW_FORM_data8:
18306 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18309 case DW_FORM_sdata:
18310 *value = DW_SND (attr);
18313 case DW_FORM_udata:
18314 *value = DW_UNSND (attr);
18318 complaint (&symfile_complaints,
18319 _("unsupported const value attribute form: '%s'"),
18320 dwarf_form_name (attr->form));
18327 /* Copy constant value from an attribute to a symbol. */
18330 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18331 struct dwarf2_cu *cu)
18333 struct objfile *objfile = cu->objfile;
18334 struct comp_unit_head *cu_header = &cu->header;
18336 const gdb_byte *bytes;
18337 struct dwarf2_locexpr_baton *baton;
18339 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18340 SYMBOL_PRINT_NAME (sym),
18341 &objfile->objfile_obstack, cu,
18342 &value, &bytes, &baton);
18346 SYMBOL_LOCATION_BATON (sym) = baton;
18347 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18349 else if (bytes != NULL)
18351 SYMBOL_VALUE_BYTES (sym) = bytes;
18352 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18356 SYMBOL_VALUE (sym) = value;
18357 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18361 /* Return the type of the die in question using its DW_AT_type attribute. */
18363 static struct type *
18364 die_type (struct die_info *die, struct dwarf2_cu *cu)
18366 struct attribute *type_attr;
18368 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18371 /* A missing DW_AT_type represents a void type. */
18372 return objfile_type (cu->objfile)->builtin_void;
18375 return lookup_die_type (die, type_attr, cu);
18378 /* True iff CU's producer generates GNAT Ada auxiliary information
18379 that allows to find parallel types through that information instead
18380 of having to do expensive parallel lookups by type name. */
18383 need_gnat_info (struct dwarf2_cu *cu)
18385 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18386 of GNAT produces this auxiliary information, without any indication
18387 that it is produced. Part of enhancing the FSF version of GNAT
18388 to produce that information will be to put in place an indicator
18389 that we can use in order to determine whether the descriptive type
18390 info is available or not. One suggestion that has been made is
18391 to use a new attribute, attached to the CU die. For now, assume
18392 that the descriptive type info is not available. */
18396 /* Return the auxiliary type of the die in question using its
18397 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18398 attribute is not present. */
18400 static struct type *
18401 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18403 struct attribute *type_attr;
18405 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18409 return lookup_die_type (die, type_attr, cu);
18412 /* If DIE has a descriptive_type attribute, then set the TYPE's
18413 descriptive type accordingly. */
18416 set_descriptive_type (struct type *type, struct die_info *die,
18417 struct dwarf2_cu *cu)
18419 struct type *descriptive_type = die_descriptive_type (die, cu);
18421 if (descriptive_type)
18423 ALLOCATE_GNAT_AUX_TYPE (type);
18424 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18428 /* Return the containing type of the die in question using its
18429 DW_AT_containing_type attribute. */
18431 static struct type *
18432 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18434 struct attribute *type_attr;
18436 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18438 error (_("Dwarf Error: Problem turning containing type into gdb type "
18439 "[in module %s]"), objfile_name (cu->objfile));
18441 return lookup_die_type (die, type_attr, cu);
18444 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18446 static struct type *
18447 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18449 struct objfile *objfile = dwarf2_per_objfile->objfile;
18450 char *message, *saved;
18452 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18453 objfile_name (objfile),
18454 cu->header.offset.sect_off,
18455 die->offset.sect_off);
18456 saved = obstack_copy0 (&objfile->objfile_obstack,
18457 message, strlen (message));
18460 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18463 /* Look up the type of DIE in CU using its type attribute ATTR.
18464 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18465 DW_AT_containing_type.
18466 If there is no type substitute an error marker. */
18468 static struct type *
18469 lookup_die_type (struct die_info *die, const struct attribute *attr,
18470 struct dwarf2_cu *cu)
18472 struct objfile *objfile = cu->objfile;
18473 struct type *this_type;
18475 gdb_assert (attr->name == DW_AT_type
18476 || attr->name == DW_AT_GNAT_descriptive_type
18477 || attr->name == DW_AT_containing_type);
18479 /* First see if we have it cached. */
18481 if (attr->form == DW_FORM_GNU_ref_alt)
18483 struct dwarf2_per_cu_data *per_cu;
18484 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18486 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18487 this_type = get_die_type_at_offset (offset, per_cu);
18489 else if (attr_form_is_ref (attr))
18491 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18493 this_type = get_die_type_at_offset (offset, cu->per_cu);
18495 else if (attr->form == DW_FORM_ref_sig8)
18497 ULONGEST signature = DW_SIGNATURE (attr);
18499 return get_signatured_type (die, signature, cu);
18503 complaint (&symfile_complaints,
18504 _("Dwarf Error: Bad type attribute %s in DIE"
18505 " at 0x%x [in module %s]"),
18506 dwarf_attr_name (attr->name), die->offset.sect_off,
18507 objfile_name (objfile));
18508 return build_error_marker_type (cu, die);
18511 /* If not cached we need to read it in. */
18513 if (this_type == NULL)
18515 struct die_info *type_die = NULL;
18516 struct dwarf2_cu *type_cu = cu;
18518 if (attr_form_is_ref (attr))
18519 type_die = follow_die_ref (die, attr, &type_cu);
18520 if (type_die == NULL)
18521 return build_error_marker_type (cu, die);
18522 /* If we find the type now, it's probably because the type came
18523 from an inter-CU reference and the type's CU got expanded before
18525 this_type = read_type_die (type_die, type_cu);
18528 /* If we still don't have a type use an error marker. */
18530 if (this_type == NULL)
18531 return build_error_marker_type (cu, die);
18536 /* Return the type in DIE, CU.
18537 Returns NULL for invalid types.
18539 This first does a lookup in die_type_hash,
18540 and only reads the die in if necessary.
18542 NOTE: This can be called when reading in partial or full symbols. */
18544 static struct type *
18545 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18547 struct type *this_type;
18549 this_type = get_die_type (die, cu);
18553 return read_type_die_1 (die, cu);
18556 /* Read the type in DIE, CU.
18557 Returns NULL for invalid types. */
18559 static struct type *
18560 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18562 struct type *this_type = NULL;
18566 case DW_TAG_class_type:
18567 case DW_TAG_interface_type:
18568 case DW_TAG_structure_type:
18569 case DW_TAG_union_type:
18570 this_type = read_structure_type (die, cu);
18572 case DW_TAG_enumeration_type:
18573 this_type = read_enumeration_type (die, cu);
18575 case DW_TAG_subprogram:
18576 case DW_TAG_subroutine_type:
18577 case DW_TAG_inlined_subroutine:
18578 this_type = read_subroutine_type (die, cu);
18580 case DW_TAG_array_type:
18581 this_type = read_array_type (die, cu);
18583 case DW_TAG_set_type:
18584 this_type = read_set_type (die, cu);
18586 case DW_TAG_pointer_type:
18587 this_type = read_tag_pointer_type (die, cu);
18589 case DW_TAG_ptr_to_member_type:
18590 this_type = read_tag_ptr_to_member_type (die, cu);
18592 case DW_TAG_reference_type:
18593 this_type = read_tag_reference_type (die, cu);
18595 case DW_TAG_const_type:
18596 this_type = read_tag_const_type (die, cu);
18598 case DW_TAG_volatile_type:
18599 this_type = read_tag_volatile_type (die, cu);
18601 case DW_TAG_restrict_type:
18602 this_type = read_tag_restrict_type (die, cu);
18604 case DW_TAG_string_type:
18605 this_type = read_tag_string_type (die, cu);
18607 case DW_TAG_typedef:
18608 this_type = read_typedef (die, cu);
18610 case DW_TAG_subrange_type:
18611 this_type = read_subrange_type (die, cu);
18613 case DW_TAG_base_type:
18614 this_type = read_base_type (die, cu);
18616 case DW_TAG_unspecified_type:
18617 this_type = read_unspecified_type (die, cu);
18619 case DW_TAG_namespace:
18620 this_type = read_namespace_type (die, cu);
18622 case DW_TAG_module:
18623 this_type = read_module_type (die, cu);
18626 complaint (&symfile_complaints,
18627 _("unexpected tag in read_type_die: '%s'"),
18628 dwarf_tag_name (die->tag));
18635 /* See if we can figure out if the class lives in a namespace. We do
18636 this by looking for a member function; its demangled name will
18637 contain namespace info, if there is any.
18638 Return the computed name or NULL.
18639 Space for the result is allocated on the objfile's obstack.
18640 This is the full-die version of guess_partial_die_structure_name.
18641 In this case we know DIE has no useful parent. */
18644 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18646 struct die_info *spec_die;
18647 struct dwarf2_cu *spec_cu;
18648 struct die_info *child;
18651 spec_die = die_specification (die, &spec_cu);
18652 if (spec_die != NULL)
18658 for (child = die->child;
18660 child = child->sibling)
18662 if (child->tag == DW_TAG_subprogram)
18664 struct attribute *attr;
18666 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18668 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18672 = language_class_name_from_physname (cu->language_defn,
18676 if (actual_name != NULL)
18678 const char *die_name = dwarf2_name (die, cu);
18680 if (die_name != NULL
18681 && strcmp (die_name, actual_name) != 0)
18683 /* Strip off the class name from the full name.
18684 We want the prefix. */
18685 int die_name_len = strlen (die_name);
18686 int actual_name_len = strlen (actual_name);
18688 /* Test for '::' as a sanity check. */
18689 if (actual_name_len > die_name_len + 2
18690 && actual_name[actual_name_len
18691 - die_name_len - 1] == ':')
18693 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18695 actual_name_len - die_name_len - 2);
18698 xfree (actual_name);
18707 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18708 prefix part in such case. See
18709 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18712 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18714 struct attribute *attr;
18717 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18718 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18721 attr = dwarf2_attr (die, DW_AT_name, cu);
18722 if (attr != NULL && DW_STRING (attr) != NULL)
18725 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18727 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18728 if (attr == NULL || DW_STRING (attr) == NULL)
18731 /* dwarf2_name had to be already called. */
18732 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18734 /* Strip the base name, keep any leading namespaces/classes. */
18735 base = strrchr (DW_STRING (attr), ':');
18736 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18739 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18740 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18743 /* Return the name of the namespace/class that DIE is defined within,
18744 or "" if we can't tell. The caller should not xfree the result.
18746 For example, if we're within the method foo() in the following
18756 then determine_prefix on foo's die will return "N::C". */
18758 static const char *
18759 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18761 struct die_info *parent, *spec_die;
18762 struct dwarf2_cu *spec_cu;
18763 struct type *parent_type;
18766 if (cu->language != language_cplus && cu->language != language_java
18767 && cu->language != language_fortran)
18770 retval = anonymous_struct_prefix (die, cu);
18774 /* We have to be careful in the presence of DW_AT_specification.
18775 For example, with GCC 3.4, given the code
18779 // Definition of N::foo.
18783 then we'll have a tree of DIEs like this:
18785 1: DW_TAG_compile_unit
18786 2: DW_TAG_namespace // N
18787 3: DW_TAG_subprogram // declaration of N::foo
18788 4: DW_TAG_subprogram // definition of N::foo
18789 DW_AT_specification // refers to die #3
18791 Thus, when processing die #4, we have to pretend that we're in
18792 the context of its DW_AT_specification, namely the contex of die
18795 spec_die = die_specification (die, &spec_cu);
18796 if (spec_die == NULL)
18797 parent = die->parent;
18800 parent = spec_die->parent;
18804 if (parent == NULL)
18806 else if (parent->building_fullname)
18809 const char *parent_name;
18811 /* It has been seen on RealView 2.2 built binaries,
18812 DW_TAG_template_type_param types actually _defined_ as
18813 children of the parent class:
18816 template class <class Enum> Class{};
18817 Class<enum E> class_e;
18819 1: DW_TAG_class_type (Class)
18820 2: DW_TAG_enumeration_type (E)
18821 3: DW_TAG_enumerator (enum1:0)
18822 3: DW_TAG_enumerator (enum2:1)
18824 2: DW_TAG_template_type_param
18825 DW_AT_type DW_FORM_ref_udata (E)
18827 Besides being broken debug info, it can put GDB into an
18828 infinite loop. Consider:
18830 When we're building the full name for Class<E>, we'll start
18831 at Class, and go look over its template type parameters,
18832 finding E. We'll then try to build the full name of E, and
18833 reach here. We're now trying to build the full name of E,
18834 and look over the parent DIE for containing scope. In the
18835 broken case, if we followed the parent DIE of E, we'd again
18836 find Class, and once again go look at its template type
18837 arguments, etc., etc. Simply don't consider such parent die
18838 as source-level parent of this die (it can't be, the language
18839 doesn't allow it), and break the loop here. */
18840 name = dwarf2_name (die, cu);
18841 parent_name = dwarf2_name (parent, cu);
18842 complaint (&symfile_complaints,
18843 _("template param type '%s' defined within parent '%s'"),
18844 name ? name : "<unknown>",
18845 parent_name ? parent_name : "<unknown>");
18849 switch (parent->tag)
18851 case DW_TAG_namespace:
18852 parent_type = read_type_die (parent, cu);
18853 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18854 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18855 Work around this problem here. */
18856 if (cu->language == language_cplus
18857 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18859 /* We give a name to even anonymous namespaces. */
18860 return TYPE_TAG_NAME (parent_type);
18861 case DW_TAG_class_type:
18862 case DW_TAG_interface_type:
18863 case DW_TAG_structure_type:
18864 case DW_TAG_union_type:
18865 case DW_TAG_module:
18866 parent_type = read_type_die (parent, cu);
18867 if (TYPE_TAG_NAME (parent_type) != NULL)
18868 return TYPE_TAG_NAME (parent_type);
18870 /* An anonymous structure is only allowed non-static data
18871 members; no typedefs, no member functions, et cetera.
18872 So it does not need a prefix. */
18874 case DW_TAG_compile_unit:
18875 case DW_TAG_partial_unit:
18876 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18877 if (cu->language == language_cplus
18878 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18879 && die->child != NULL
18880 && (die->tag == DW_TAG_class_type
18881 || die->tag == DW_TAG_structure_type
18882 || die->tag == DW_TAG_union_type))
18884 char *name = guess_full_die_structure_name (die, cu);
18889 case DW_TAG_enumeration_type:
18890 parent_type = read_type_die (parent, cu);
18891 if (TYPE_DECLARED_CLASS (parent_type))
18893 if (TYPE_TAG_NAME (parent_type) != NULL)
18894 return TYPE_TAG_NAME (parent_type);
18897 /* Fall through. */
18899 return determine_prefix (parent, cu);
18903 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18904 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18905 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18906 an obconcat, otherwise allocate storage for the result. The CU argument is
18907 used to determine the language and hence, the appropriate separator. */
18909 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18912 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18913 int physname, struct dwarf2_cu *cu)
18915 const char *lead = "";
18918 if (suffix == NULL || suffix[0] == '\0'
18919 || prefix == NULL || prefix[0] == '\0')
18921 else if (cu->language == language_java)
18923 else if (cu->language == language_fortran && physname)
18925 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18926 DW_AT_MIPS_linkage_name is preferred and used instead. */
18934 if (prefix == NULL)
18936 if (suffix == NULL)
18942 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18944 strcpy (retval, lead);
18945 strcat (retval, prefix);
18946 strcat (retval, sep);
18947 strcat (retval, suffix);
18952 /* We have an obstack. */
18953 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18957 /* Return sibling of die, NULL if no sibling. */
18959 static struct die_info *
18960 sibling_die (struct die_info *die)
18962 return die->sibling;
18965 /* Get name of a die, return NULL if not found. */
18967 static const char *
18968 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18969 struct obstack *obstack)
18971 if (name && cu->language == language_cplus)
18973 char *canon_name = cp_canonicalize_string (name);
18975 if (canon_name != NULL)
18977 if (strcmp (canon_name, name) != 0)
18978 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18979 xfree (canon_name);
18986 /* Get name of a die, return NULL if not found. */
18988 static const char *
18989 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18991 struct attribute *attr;
18993 attr = dwarf2_attr (die, DW_AT_name, cu);
18994 if ((!attr || !DW_STRING (attr))
18995 && die->tag != DW_TAG_class_type
18996 && die->tag != DW_TAG_interface_type
18997 && die->tag != DW_TAG_structure_type
18998 && die->tag != DW_TAG_union_type)
19003 case DW_TAG_compile_unit:
19004 case DW_TAG_partial_unit:
19005 /* Compilation units have a DW_AT_name that is a filename, not
19006 a source language identifier. */
19007 case DW_TAG_enumeration_type:
19008 case DW_TAG_enumerator:
19009 /* These tags always have simple identifiers already; no need
19010 to canonicalize them. */
19011 return DW_STRING (attr);
19013 case DW_TAG_subprogram:
19014 /* Java constructors will all be named "<init>", so return
19015 the class name when we see this special case. */
19016 if (cu->language == language_java
19017 && DW_STRING (attr) != NULL
19018 && strcmp (DW_STRING (attr), "<init>") == 0)
19020 struct dwarf2_cu *spec_cu = cu;
19021 struct die_info *spec_die;
19023 /* GCJ will output '<init>' for Java constructor names.
19024 For this special case, return the name of the parent class. */
19026 /* GCJ may output subprogram DIEs with AT_specification set.
19027 If so, use the name of the specified DIE. */
19028 spec_die = die_specification (die, &spec_cu);
19029 if (spec_die != NULL)
19030 return dwarf2_name (spec_die, spec_cu);
19035 if (die->tag == DW_TAG_class_type)
19036 return dwarf2_name (die, cu);
19038 while (die->tag != DW_TAG_compile_unit
19039 && die->tag != DW_TAG_partial_unit);
19043 case DW_TAG_class_type:
19044 case DW_TAG_interface_type:
19045 case DW_TAG_structure_type:
19046 case DW_TAG_union_type:
19047 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19048 structures or unions. These were of the form "._%d" in GCC 4.1,
19049 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19050 and GCC 4.4. We work around this problem by ignoring these. */
19051 if (attr && DW_STRING (attr)
19052 && (strncmp (DW_STRING (attr), "._", 2) == 0
19053 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19056 /* GCC might emit a nameless typedef that has a linkage name. See
19057 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19058 if (!attr || DW_STRING (attr) == NULL)
19060 char *demangled = NULL;
19062 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19064 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19066 if (attr == NULL || DW_STRING (attr) == NULL)
19069 /* Avoid demangling DW_STRING (attr) the second time on a second
19070 call for the same DIE. */
19071 if (!DW_STRING_IS_CANONICAL (attr))
19072 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19078 /* FIXME: we already did this for the partial symbol... */
19080 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19081 demangled, strlen (demangled));
19082 DW_STRING_IS_CANONICAL (attr) = 1;
19085 /* Strip any leading namespaces/classes, keep only the base name.
19086 DW_AT_name for named DIEs does not contain the prefixes. */
19087 base = strrchr (DW_STRING (attr), ':');
19088 if (base && base > DW_STRING (attr) && base[-1] == ':')
19091 return DW_STRING (attr);
19100 if (!DW_STRING_IS_CANONICAL (attr))
19103 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19104 &cu->objfile->per_bfd->storage_obstack);
19105 DW_STRING_IS_CANONICAL (attr) = 1;
19107 return DW_STRING (attr);
19110 /* Return the die that this die in an extension of, or NULL if there
19111 is none. *EXT_CU is the CU containing DIE on input, and the CU
19112 containing the return value on output. */
19114 static struct die_info *
19115 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19117 struct attribute *attr;
19119 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19123 return follow_die_ref (die, attr, ext_cu);
19126 /* Convert a DIE tag into its string name. */
19128 static const char *
19129 dwarf_tag_name (unsigned tag)
19131 const char *name = get_DW_TAG_name (tag);
19134 return "DW_TAG_<unknown>";
19139 /* Convert a DWARF attribute code into its string name. */
19141 static const char *
19142 dwarf_attr_name (unsigned attr)
19146 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19147 if (attr == DW_AT_MIPS_fde)
19148 return "DW_AT_MIPS_fde";
19150 if (attr == DW_AT_HP_block_index)
19151 return "DW_AT_HP_block_index";
19154 name = get_DW_AT_name (attr);
19157 return "DW_AT_<unknown>";
19162 /* Convert a DWARF value form code into its string name. */
19164 static const char *
19165 dwarf_form_name (unsigned form)
19167 const char *name = get_DW_FORM_name (form);
19170 return "DW_FORM_<unknown>";
19176 dwarf_bool_name (unsigned mybool)
19184 /* Convert a DWARF type code into its string name. */
19186 static const char *
19187 dwarf_type_encoding_name (unsigned enc)
19189 const char *name = get_DW_ATE_name (enc);
19192 return "DW_ATE_<unknown>";
19198 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19202 print_spaces (indent, f);
19203 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19204 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19206 if (die->parent != NULL)
19208 print_spaces (indent, f);
19209 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19210 die->parent->offset.sect_off);
19213 print_spaces (indent, f);
19214 fprintf_unfiltered (f, " has children: %s\n",
19215 dwarf_bool_name (die->child != NULL));
19217 print_spaces (indent, f);
19218 fprintf_unfiltered (f, " attributes:\n");
19220 for (i = 0; i < die->num_attrs; ++i)
19222 print_spaces (indent, f);
19223 fprintf_unfiltered (f, " %s (%s) ",
19224 dwarf_attr_name (die->attrs[i].name),
19225 dwarf_form_name (die->attrs[i].form));
19227 switch (die->attrs[i].form)
19230 case DW_FORM_GNU_addr_index:
19231 fprintf_unfiltered (f, "address: ");
19232 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19234 case DW_FORM_block2:
19235 case DW_FORM_block4:
19236 case DW_FORM_block:
19237 case DW_FORM_block1:
19238 fprintf_unfiltered (f, "block: size %s",
19239 pulongest (DW_BLOCK (&die->attrs[i])->size));
19241 case DW_FORM_exprloc:
19242 fprintf_unfiltered (f, "expression: size %s",
19243 pulongest (DW_BLOCK (&die->attrs[i])->size));
19245 case DW_FORM_ref_addr:
19246 fprintf_unfiltered (f, "ref address: ");
19247 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19249 case DW_FORM_GNU_ref_alt:
19250 fprintf_unfiltered (f, "alt ref address: ");
19251 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19257 case DW_FORM_ref_udata:
19258 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19259 (long) (DW_UNSND (&die->attrs[i])));
19261 case DW_FORM_data1:
19262 case DW_FORM_data2:
19263 case DW_FORM_data4:
19264 case DW_FORM_data8:
19265 case DW_FORM_udata:
19266 case DW_FORM_sdata:
19267 fprintf_unfiltered (f, "constant: %s",
19268 pulongest (DW_UNSND (&die->attrs[i])));
19270 case DW_FORM_sec_offset:
19271 fprintf_unfiltered (f, "section offset: %s",
19272 pulongest (DW_UNSND (&die->attrs[i])));
19274 case DW_FORM_ref_sig8:
19275 fprintf_unfiltered (f, "signature: %s",
19276 hex_string (DW_SIGNATURE (&die->attrs[i])));
19278 case DW_FORM_string:
19280 case DW_FORM_GNU_str_index:
19281 case DW_FORM_GNU_strp_alt:
19282 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19283 DW_STRING (&die->attrs[i])
19284 ? DW_STRING (&die->attrs[i]) : "",
19285 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19288 if (DW_UNSND (&die->attrs[i]))
19289 fprintf_unfiltered (f, "flag: TRUE");
19291 fprintf_unfiltered (f, "flag: FALSE");
19293 case DW_FORM_flag_present:
19294 fprintf_unfiltered (f, "flag: TRUE");
19296 case DW_FORM_indirect:
19297 /* The reader will have reduced the indirect form to
19298 the "base form" so this form should not occur. */
19299 fprintf_unfiltered (f,
19300 "unexpected attribute form: DW_FORM_indirect");
19303 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19304 die->attrs[i].form);
19307 fprintf_unfiltered (f, "\n");
19312 dump_die_for_error (struct die_info *die)
19314 dump_die_shallow (gdb_stderr, 0, die);
19318 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19320 int indent = level * 4;
19322 gdb_assert (die != NULL);
19324 if (level >= max_level)
19327 dump_die_shallow (f, indent, die);
19329 if (die->child != NULL)
19331 print_spaces (indent, f);
19332 fprintf_unfiltered (f, " Children:");
19333 if (level + 1 < max_level)
19335 fprintf_unfiltered (f, "\n");
19336 dump_die_1 (f, level + 1, max_level, die->child);
19340 fprintf_unfiltered (f,
19341 " [not printed, max nesting level reached]\n");
19345 if (die->sibling != NULL && level > 0)
19347 dump_die_1 (f, level, max_level, die->sibling);
19351 /* This is called from the pdie macro in gdbinit.in.
19352 It's not static so gcc will keep a copy callable from gdb. */
19355 dump_die (struct die_info *die, int max_level)
19357 dump_die_1 (gdb_stdlog, 0, max_level, die);
19361 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19365 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19371 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19375 dwarf2_get_ref_die_offset (const struct attribute *attr)
19377 sect_offset retval = { DW_UNSND (attr) };
19379 if (attr_form_is_ref (attr))
19382 retval.sect_off = 0;
19383 complaint (&symfile_complaints,
19384 _("unsupported die ref attribute form: '%s'"),
19385 dwarf_form_name (attr->form));
19389 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19390 * the value held by the attribute is not constant. */
19393 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19395 if (attr->form == DW_FORM_sdata)
19396 return DW_SND (attr);
19397 else if (attr->form == DW_FORM_udata
19398 || attr->form == DW_FORM_data1
19399 || attr->form == DW_FORM_data2
19400 || attr->form == DW_FORM_data4
19401 || attr->form == DW_FORM_data8)
19402 return DW_UNSND (attr);
19405 complaint (&symfile_complaints,
19406 _("Attribute value is not a constant (%s)"),
19407 dwarf_form_name (attr->form));
19408 return default_value;
19412 /* Follow reference or signature attribute ATTR of SRC_DIE.
19413 On entry *REF_CU is the CU of SRC_DIE.
19414 On exit *REF_CU is the CU of the result. */
19416 static struct die_info *
19417 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19418 struct dwarf2_cu **ref_cu)
19420 struct die_info *die;
19422 if (attr_form_is_ref (attr))
19423 die = follow_die_ref (src_die, attr, ref_cu);
19424 else if (attr->form == DW_FORM_ref_sig8)
19425 die = follow_die_sig (src_die, attr, ref_cu);
19428 dump_die_for_error (src_die);
19429 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19430 objfile_name ((*ref_cu)->objfile));
19436 /* Follow reference OFFSET.
19437 On entry *REF_CU is the CU of the source die referencing OFFSET.
19438 On exit *REF_CU is the CU of the result.
19439 Returns NULL if OFFSET is invalid. */
19441 static struct die_info *
19442 follow_die_offset (sect_offset offset, int offset_in_dwz,
19443 struct dwarf2_cu **ref_cu)
19445 struct die_info temp_die;
19446 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19448 gdb_assert (cu->per_cu != NULL);
19452 if (cu->per_cu->is_debug_types)
19454 /* .debug_types CUs cannot reference anything outside their CU.
19455 If they need to, they have to reference a signatured type via
19456 DW_FORM_ref_sig8. */
19457 if (! offset_in_cu_p (&cu->header, offset))
19460 else if (offset_in_dwz != cu->per_cu->is_dwz
19461 || ! offset_in_cu_p (&cu->header, offset))
19463 struct dwarf2_per_cu_data *per_cu;
19465 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19468 /* If necessary, add it to the queue and load its DIEs. */
19469 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19470 load_full_comp_unit (per_cu, cu->language);
19472 target_cu = per_cu->cu;
19474 else if (cu->dies == NULL)
19476 /* We're loading full DIEs during partial symbol reading. */
19477 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19478 load_full_comp_unit (cu->per_cu, language_minimal);
19481 *ref_cu = target_cu;
19482 temp_die.offset = offset;
19483 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19486 /* Follow reference attribute ATTR of SRC_DIE.
19487 On entry *REF_CU is the CU of SRC_DIE.
19488 On exit *REF_CU is the CU of the result. */
19490 static struct die_info *
19491 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19492 struct dwarf2_cu **ref_cu)
19494 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19495 struct dwarf2_cu *cu = *ref_cu;
19496 struct die_info *die;
19498 die = follow_die_offset (offset,
19499 (attr->form == DW_FORM_GNU_ref_alt
19500 || cu->per_cu->is_dwz),
19503 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19504 "at 0x%x [in module %s]"),
19505 offset.sect_off, src_die->offset.sect_off,
19506 objfile_name (cu->objfile));
19511 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19512 Returned value is intended for DW_OP_call*. Returned
19513 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19515 struct dwarf2_locexpr_baton
19516 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19517 struct dwarf2_per_cu_data *per_cu,
19518 CORE_ADDR (*get_frame_pc) (void *baton),
19521 struct dwarf2_cu *cu;
19522 struct die_info *die;
19523 struct attribute *attr;
19524 struct dwarf2_locexpr_baton retval;
19526 dw2_setup (per_cu->objfile);
19528 if (per_cu->cu == NULL)
19532 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19534 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19535 offset.sect_off, objfile_name (per_cu->objfile));
19537 attr = dwarf2_attr (die, DW_AT_location, cu);
19540 /* DWARF: "If there is no such attribute, then there is no effect.".
19541 DATA is ignored if SIZE is 0. */
19543 retval.data = NULL;
19546 else if (attr_form_is_section_offset (attr))
19548 struct dwarf2_loclist_baton loclist_baton;
19549 CORE_ADDR pc = (*get_frame_pc) (baton);
19552 fill_in_loclist_baton (cu, &loclist_baton, attr);
19554 retval.data = dwarf2_find_location_expression (&loclist_baton,
19556 retval.size = size;
19560 if (!attr_form_is_block (attr))
19561 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19562 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19563 offset.sect_off, objfile_name (per_cu->objfile));
19565 retval.data = DW_BLOCK (attr)->data;
19566 retval.size = DW_BLOCK (attr)->size;
19568 retval.per_cu = cu->per_cu;
19570 age_cached_comp_units ();
19575 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19578 struct dwarf2_locexpr_baton
19579 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19580 struct dwarf2_per_cu_data *per_cu,
19581 CORE_ADDR (*get_frame_pc) (void *baton),
19584 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19586 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19589 /* Write a constant of a given type as target-ordered bytes into
19592 static const gdb_byte *
19593 write_constant_as_bytes (struct obstack *obstack,
19594 enum bfd_endian byte_order,
19601 *len = TYPE_LENGTH (type);
19602 result = obstack_alloc (obstack, *len);
19603 store_unsigned_integer (result, *len, byte_order, value);
19608 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19609 pointer to the constant bytes and set LEN to the length of the
19610 data. If memory is needed, allocate it on OBSTACK. If the DIE
19611 does not have a DW_AT_const_value, return NULL. */
19614 dwarf2_fetch_constant_bytes (sect_offset offset,
19615 struct dwarf2_per_cu_data *per_cu,
19616 struct obstack *obstack,
19619 struct dwarf2_cu *cu;
19620 struct die_info *die;
19621 struct attribute *attr;
19622 const gdb_byte *result = NULL;
19625 enum bfd_endian byte_order;
19627 dw2_setup (per_cu->objfile);
19629 if (per_cu->cu == NULL)
19633 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19635 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19636 offset.sect_off, objfile_name (per_cu->objfile));
19639 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19643 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19644 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19646 switch (attr->form)
19649 case DW_FORM_GNU_addr_index:
19653 *len = cu->header.addr_size;
19654 tem = obstack_alloc (obstack, *len);
19655 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19659 case DW_FORM_string:
19661 case DW_FORM_GNU_str_index:
19662 case DW_FORM_GNU_strp_alt:
19663 /* DW_STRING is already allocated on the objfile obstack, point
19665 result = (const gdb_byte *) DW_STRING (attr);
19666 *len = strlen (DW_STRING (attr));
19668 case DW_FORM_block1:
19669 case DW_FORM_block2:
19670 case DW_FORM_block4:
19671 case DW_FORM_block:
19672 case DW_FORM_exprloc:
19673 result = DW_BLOCK (attr)->data;
19674 *len = DW_BLOCK (attr)->size;
19677 /* The DW_AT_const_value attributes are supposed to carry the
19678 symbol's value "represented as it would be on the target
19679 architecture." By the time we get here, it's already been
19680 converted to host endianness, so we just need to sign- or
19681 zero-extend it as appropriate. */
19682 case DW_FORM_data1:
19683 type = die_type (die, cu);
19684 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19685 if (result == NULL)
19686 result = write_constant_as_bytes (obstack, byte_order,
19689 case DW_FORM_data2:
19690 type = die_type (die, cu);
19691 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19692 if (result == NULL)
19693 result = write_constant_as_bytes (obstack, byte_order,
19696 case DW_FORM_data4:
19697 type = die_type (die, cu);
19698 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19699 if (result == NULL)
19700 result = write_constant_as_bytes (obstack, byte_order,
19703 case DW_FORM_data8:
19704 type = die_type (die, cu);
19705 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19706 if (result == NULL)
19707 result = write_constant_as_bytes (obstack, byte_order,
19711 case DW_FORM_sdata:
19712 type = die_type (die, cu);
19713 result = write_constant_as_bytes (obstack, byte_order,
19714 type, DW_SND (attr), len);
19717 case DW_FORM_udata:
19718 type = die_type (die, cu);
19719 result = write_constant_as_bytes (obstack, byte_order,
19720 type, DW_UNSND (attr), len);
19724 complaint (&symfile_complaints,
19725 _("unsupported const value attribute form: '%s'"),
19726 dwarf_form_name (attr->form));
19733 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19737 dwarf2_get_die_type (cu_offset die_offset,
19738 struct dwarf2_per_cu_data *per_cu)
19740 sect_offset die_offset_sect;
19742 dw2_setup (per_cu->objfile);
19744 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19745 return get_die_type_at_offset (die_offset_sect, per_cu);
19748 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19749 On entry *REF_CU is the CU of SRC_DIE.
19750 On exit *REF_CU is the CU of the result.
19751 Returns NULL if the referenced DIE isn't found. */
19753 static struct die_info *
19754 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19755 struct dwarf2_cu **ref_cu)
19757 struct objfile *objfile = (*ref_cu)->objfile;
19758 struct die_info temp_die;
19759 struct dwarf2_cu *sig_cu;
19760 struct die_info *die;
19762 /* While it might be nice to assert sig_type->type == NULL here,
19763 we can get here for DW_AT_imported_declaration where we need
19764 the DIE not the type. */
19766 /* If necessary, add it to the queue and load its DIEs. */
19768 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19769 read_signatured_type (sig_type);
19771 sig_cu = sig_type->per_cu.cu;
19772 gdb_assert (sig_cu != NULL);
19773 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19774 temp_die.offset = sig_type->type_offset_in_section;
19775 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19776 temp_die.offset.sect_off);
19779 /* For .gdb_index version 7 keep track of included TUs.
19780 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19781 if (dwarf2_per_objfile->index_table != NULL
19782 && dwarf2_per_objfile->index_table->version <= 7)
19784 VEC_safe_push (dwarf2_per_cu_ptr,
19785 (*ref_cu)->per_cu->imported_symtabs,
19796 /* Follow signatured type referenced by ATTR in SRC_DIE.
19797 On entry *REF_CU is the CU of SRC_DIE.
19798 On exit *REF_CU is the CU of the result.
19799 The result is the DIE of the type.
19800 If the referenced type cannot be found an error is thrown. */
19802 static struct die_info *
19803 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19804 struct dwarf2_cu **ref_cu)
19806 ULONGEST signature = DW_SIGNATURE (attr);
19807 struct signatured_type *sig_type;
19808 struct die_info *die;
19810 gdb_assert (attr->form == DW_FORM_ref_sig8);
19812 sig_type = lookup_signatured_type (*ref_cu, signature);
19813 /* sig_type will be NULL if the signatured type is missing from
19815 if (sig_type == NULL)
19817 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19818 " from DIE at 0x%x [in module %s]"),
19819 hex_string (signature), src_die->offset.sect_off,
19820 objfile_name ((*ref_cu)->objfile));
19823 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19826 dump_die_for_error (src_die);
19827 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19828 " from DIE at 0x%x [in module %s]"),
19829 hex_string (signature), src_die->offset.sect_off,
19830 objfile_name ((*ref_cu)->objfile));
19836 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19837 reading in and processing the type unit if necessary. */
19839 static struct type *
19840 get_signatured_type (struct die_info *die, ULONGEST signature,
19841 struct dwarf2_cu *cu)
19843 struct signatured_type *sig_type;
19844 struct dwarf2_cu *type_cu;
19845 struct die_info *type_die;
19848 sig_type = lookup_signatured_type (cu, signature);
19849 /* sig_type will be NULL if the signatured type is missing from
19851 if (sig_type == NULL)
19853 complaint (&symfile_complaints,
19854 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19855 " from DIE at 0x%x [in module %s]"),
19856 hex_string (signature), die->offset.sect_off,
19857 objfile_name (dwarf2_per_objfile->objfile));
19858 return build_error_marker_type (cu, die);
19861 /* If we already know the type we're done. */
19862 if (sig_type->type != NULL)
19863 return sig_type->type;
19866 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19867 if (type_die != NULL)
19869 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19870 is created. This is important, for example, because for c++ classes
19871 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19872 type = read_type_die (type_die, type_cu);
19875 complaint (&symfile_complaints,
19876 _("Dwarf Error: Cannot build signatured type %s"
19877 " referenced from DIE at 0x%x [in module %s]"),
19878 hex_string (signature), die->offset.sect_off,
19879 objfile_name (dwarf2_per_objfile->objfile));
19880 type = build_error_marker_type (cu, die);
19885 complaint (&symfile_complaints,
19886 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19887 " from DIE at 0x%x [in module %s]"),
19888 hex_string (signature), die->offset.sect_off,
19889 objfile_name (dwarf2_per_objfile->objfile));
19890 type = build_error_marker_type (cu, die);
19892 sig_type->type = type;
19897 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19898 reading in and processing the type unit if necessary. */
19900 static struct type *
19901 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19902 struct dwarf2_cu *cu) /* ARI: editCase function */
19904 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19905 if (attr_form_is_ref (attr))
19907 struct dwarf2_cu *type_cu = cu;
19908 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19910 return read_type_die (type_die, type_cu);
19912 else if (attr->form == DW_FORM_ref_sig8)
19914 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19918 complaint (&symfile_complaints,
19919 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19920 " at 0x%x [in module %s]"),
19921 dwarf_form_name (attr->form), die->offset.sect_off,
19922 objfile_name (dwarf2_per_objfile->objfile));
19923 return build_error_marker_type (cu, die);
19927 /* Load the DIEs associated with type unit PER_CU into memory. */
19930 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19932 struct signatured_type *sig_type;
19934 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19935 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19937 /* We have the per_cu, but we need the signatured_type.
19938 Fortunately this is an easy translation. */
19939 gdb_assert (per_cu->is_debug_types);
19940 sig_type = (struct signatured_type *) per_cu;
19942 gdb_assert (per_cu->cu == NULL);
19944 read_signatured_type (sig_type);
19946 gdb_assert (per_cu->cu != NULL);
19949 /* die_reader_func for read_signatured_type.
19950 This is identical to load_full_comp_unit_reader,
19951 but is kept separate for now. */
19954 read_signatured_type_reader (const struct die_reader_specs *reader,
19955 const gdb_byte *info_ptr,
19956 struct die_info *comp_unit_die,
19960 struct dwarf2_cu *cu = reader->cu;
19962 gdb_assert (cu->die_hash == NULL);
19964 htab_create_alloc_ex (cu->header.length / 12,
19968 &cu->comp_unit_obstack,
19969 hashtab_obstack_allocate,
19970 dummy_obstack_deallocate);
19973 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19974 &info_ptr, comp_unit_die);
19975 cu->dies = comp_unit_die;
19976 /* comp_unit_die is not stored in die_hash, no need. */
19978 /* We try not to read any attributes in this function, because not
19979 all CUs needed for references have been loaded yet, and symbol
19980 table processing isn't initialized. But we have to set the CU language,
19981 or we won't be able to build types correctly.
19982 Similarly, if we do not read the producer, we can not apply
19983 producer-specific interpretation. */
19984 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19987 /* Read in a signatured type and build its CU and DIEs.
19988 If the type is a stub for the real type in a DWO file,
19989 read in the real type from the DWO file as well. */
19992 read_signatured_type (struct signatured_type *sig_type)
19994 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19996 gdb_assert (per_cu->is_debug_types);
19997 gdb_assert (per_cu->cu == NULL);
19999 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20000 read_signatured_type_reader, NULL);
20001 sig_type->per_cu.tu_read = 1;
20004 /* Decode simple location descriptions.
20005 Given a pointer to a dwarf block that defines a location, compute
20006 the location and return the value.
20008 NOTE drow/2003-11-18: This function is called in two situations
20009 now: for the address of static or global variables (partial symbols
20010 only) and for offsets into structures which are expected to be
20011 (more or less) constant. The partial symbol case should go away,
20012 and only the constant case should remain. That will let this
20013 function complain more accurately. A few special modes are allowed
20014 without complaint for global variables (for instance, global
20015 register values and thread-local values).
20017 A location description containing no operations indicates that the
20018 object is optimized out. The return value is 0 for that case.
20019 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20020 callers will only want a very basic result and this can become a
20023 Note that stack[0] is unused except as a default error return. */
20026 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20028 struct objfile *objfile = cu->objfile;
20030 size_t size = blk->size;
20031 const gdb_byte *data = blk->data;
20032 CORE_ADDR stack[64];
20034 unsigned int bytes_read, unsnd;
20040 stack[++stacki] = 0;
20079 stack[++stacki] = op - DW_OP_lit0;
20114 stack[++stacki] = op - DW_OP_reg0;
20116 dwarf2_complex_location_expr_complaint ();
20120 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20122 stack[++stacki] = unsnd;
20124 dwarf2_complex_location_expr_complaint ();
20128 stack[++stacki] = read_address (objfile->obfd, &data[i],
20133 case DW_OP_const1u:
20134 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20138 case DW_OP_const1s:
20139 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20143 case DW_OP_const2u:
20144 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20148 case DW_OP_const2s:
20149 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20153 case DW_OP_const4u:
20154 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20158 case DW_OP_const4s:
20159 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20163 case DW_OP_const8u:
20164 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20169 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20175 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20180 stack[stacki + 1] = stack[stacki];
20185 stack[stacki - 1] += stack[stacki];
20189 case DW_OP_plus_uconst:
20190 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20196 stack[stacki - 1] -= stack[stacki];
20201 /* If we're not the last op, then we definitely can't encode
20202 this using GDB's address_class enum. This is valid for partial
20203 global symbols, although the variable's address will be bogus
20206 dwarf2_complex_location_expr_complaint ();
20209 case DW_OP_GNU_push_tls_address:
20210 /* The top of the stack has the offset from the beginning
20211 of the thread control block at which the variable is located. */
20212 /* Nothing should follow this operator, so the top of stack would
20214 /* This is valid for partial global symbols, but the variable's
20215 address will be bogus in the psymtab. Make it always at least
20216 non-zero to not look as a variable garbage collected by linker
20217 which have DW_OP_addr 0. */
20219 dwarf2_complex_location_expr_complaint ();
20223 case DW_OP_GNU_uninit:
20226 case DW_OP_GNU_addr_index:
20227 case DW_OP_GNU_const_index:
20228 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20235 const char *name = get_DW_OP_name (op);
20238 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20241 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20245 return (stack[stacki]);
20248 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20249 outside of the allocated space. Also enforce minimum>0. */
20250 if (stacki >= ARRAY_SIZE (stack) - 1)
20252 complaint (&symfile_complaints,
20253 _("location description stack overflow"));
20259 complaint (&symfile_complaints,
20260 _("location description stack underflow"));
20264 return (stack[stacki]);
20267 /* memory allocation interface */
20269 static struct dwarf_block *
20270 dwarf_alloc_block (struct dwarf2_cu *cu)
20272 struct dwarf_block *blk;
20274 blk = (struct dwarf_block *)
20275 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20279 static struct die_info *
20280 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20282 struct die_info *die;
20283 size_t size = sizeof (struct die_info);
20286 size += (num_attrs - 1) * sizeof (struct attribute);
20288 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20289 memset (die, 0, sizeof (struct die_info));
20294 /* Macro support. */
20296 /* Return file name relative to the compilation directory of file number I in
20297 *LH's file name table. The result is allocated using xmalloc; the caller is
20298 responsible for freeing it. */
20301 file_file_name (int file, struct line_header *lh)
20303 /* Is the file number a valid index into the line header's file name
20304 table? Remember that file numbers start with one, not zero. */
20305 if (1 <= file && file <= lh->num_file_names)
20307 struct file_entry *fe = &lh->file_names[file - 1];
20309 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20310 return xstrdup (fe->name);
20311 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20316 /* The compiler produced a bogus file number. We can at least
20317 record the macro definitions made in the file, even if we
20318 won't be able to find the file by name. */
20319 char fake_name[80];
20321 xsnprintf (fake_name, sizeof (fake_name),
20322 "<bad macro file number %d>", file);
20324 complaint (&symfile_complaints,
20325 _("bad file number in macro information (%d)"),
20328 return xstrdup (fake_name);
20332 /* Return the full name of file number I in *LH's file name table.
20333 Use COMP_DIR as the name of the current directory of the
20334 compilation. The result is allocated using xmalloc; the caller is
20335 responsible for freeing it. */
20337 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20339 /* Is the file number a valid index into the line header's file name
20340 table? Remember that file numbers start with one, not zero. */
20341 if (1 <= file && file <= lh->num_file_names)
20343 char *relative = file_file_name (file, lh);
20345 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20347 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20350 return file_file_name (file, lh);
20354 static struct macro_source_file *
20355 macro_start_file (int file, int line,
20356 struct macro_source_file *current_file,
20357 const char *comp_dir,
20358 struct line_header *lh, struct objfile *objfile)
20360 /* File name relative to the compilation directory of this source file. */
20361 char *file_name = file_file_name (file, lh);
20363 if (! current_file)
20365 /* Note: We don't create a macro table for this compilation unit
20366 at all until we actually get a filename. */
20367 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20369 /* If we have no current file, then this must be the start_file
20370 directive for the compilation unit's main source file. */
20371 current_file = macro_set_main (macro_table, file_name);
20372 macro_define_special (macro_table);
20375 current_file = macro_include (current_file, line, file_name);
20379 return current_file;
20383 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20384 followed by a null byte. */
20386 copy_string (const char *buf, int len)
20388 char *s = xmalloc (len + 1);
20390 memcpy (s, buf, len);
20396 static const char *
20397 consume_improper_spaces (const char *p, const char *body)
20401 complaint (&symfile_complaints,
20402 _("macro definition contains spaces "
20403 "in formal argument list:\n`%s'"),
20415 parse_macro_definition (struct macro_source_file *file, int line,
20420 /* The body string takes one of two forms. For object-like macro
20421 definitions, it should be:
20423 <macro name> " " <definition>
20425 For function-like macro definitions, it should be:
20427 <macro name> "() " <definition>
20429 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20431 Spaces may appear only where explicitly indicated, and in the
20434 The Dwarf 2 spec says that an object-like macro's name is always
20435 followed by a space, but versions of GCC around March 2002 omit
20436 the space when the macro's definition is the empty string.
20438 The Dwarf 2 spec says that there should be no spaces between the
20439 formal arguments in a function-like macro's formal argument list,
20440 but versions of GCC around March 2002 include spaces after the
20444 /* Find the extent of the macro name. The macro name is terminated
20445 by either a space or null character (for an object-like macro) or
20446 an opening paren (for a function-like macro). */
20447 for (p = body; *p; p++)
20448 if (*p == ' ' || *p == '(')
20451 if (*p == ' ' || *p == '\0')
20453 /* It's an object-like macro. */
20454 int name_len = p - body;
20455 char *name = copy_string (body, name_len);
20456 const char *replacement;
20459 replacement = body + name_len + 1;
20462 dwarf2_macro_malformed_definition_complaint (body);
20463 replacement = body + name_len;
20466 macro_define_object (file, line, name, replacement);
20470 else if (*p == '(')
20472 /* It's a function-like macro. */
20473 char *name = copy_string (body, p - body);
20476 char **argv = xmalloc (argv_size * sizeof (*argv));
20480 p = consume_improper_spaces (p, body);
20482 /* Parse the formal argument list. */
20483 while (*p && *p != ')')
20485 /* Find the extent of the current argument name. */
20486 const char *arg_start = p;
20488 while (*p && *p != ',' && *p != ')' && *p != ' ')
20491 if (! *p || p == arg_start)
20492 dwarf2_macro_malformed_definition_complaint (body);
20495 /* Make sure argv has room for the new argument. */
20496 if (argc >= argv_size)
20499 argv = xrealloc (argv, argv_size * sizeof (*argv));
20502 argv[argc++] = copy_string (arg_start, p - arg_start);
20505 p = consume_improper_spaces (p, body);
20507 /* Consume the comma, if present. */
20512 p = consume_improper_spaces (p, body);
20521 /* Perfectly formed definition, no complaints. */
20522 macro_define_function (file, line, name,
20523 argc, (const char **) argv,
20525 else if (*p == '\0')
20527 /* Complain, but do define it. */
20528 dwarf2_macro_malformed_definition_complaint (body);
20529 macro_define_function (file, line, name,
20530 argc, (const char **) argv,
20534 /* Just complain. */
20535 dwarf2_macro_malformed_definition_complaint (body);
20538 /* Just complain. */
20539 dwarf2_macro_malformed_definition_complaint (body);
20545 for (i = 0; i < argc; i++)
20551 dwarf2_macro_malformed_definition_complaint (body);
20554 /* Skip some bytes from BYTES according to the form given in FORM.
20555 Returns the new pointer. */
20557 static const gdb_byte *
20558 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20559 enum dwarf_form form,
20560 unsigned int offset_size,
20561 struct dwarf2_section_info *section)
20563 unsigned int bytes_read;
20567 case DW_FORM_data1:
20572 case DW_FORM_data2:
20576 case DW_FORM_data4:
20580 case DW_FORM_data8:
20584 case DW_FORM_string:
20585 read_direct_string (abfd, bytes, &bytes_read);
20586 bytes += bytes_read;
20589 case DW_FORM_sec_offset:
20591 case DW_FORM_GNU_strp_alt:
20592 bytes += offset_size;
20595 case DW_FORM_block:
20596 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20597 bytes += bytes_read;
20600 case DW_FORM_block1:
20601 bytes += 1 + read_1_byte (abfd, bytes);
20603 case DW_FORM_block2:
20604 bytes += 2 + read_2_bytes (abfd, bytes);
20606 case DW_FORM_block4:
20607 bytes += 4 + read_4_bytes (abfd, bytes);
20610 case DW_FORM_sdata:
20611 case DW_FORM_udata:
20612 case DW_FORM_GNU_addr_index:
20613 case DW_FORM_GNU_str_index:
20614 bytes = gdb_skip_leb128 (bytes, buffer_end);
20617 dwarf2_section_buffer_overflow_complaint (section);
20625 complaint (&symfile_complaints,
20626 _("invalid form 0x%x in `%s'"),
20627 form, get_section_name (section));
20635 /* A helper for dwarf_decode_macros that handles skipping an unknown
20636 opcode. Returns an updated pointer to the macro data buffer; or,
20637 on error, issues a complaint and returns NULL. */
20639 static const gdb_byte *
20640 skip_unknown_opcode (unsigned int opcode,
20641 const gdb_byte **opcode_definitions,
20642 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20644 unsigned int offset_size,
20645 struct dwarf2_section_info *section)
20647 unsigned int bytes_read, i;
20649 const gdb_byte *defn;
20651 if (opcode_definitions[opcode] == NULL)
20653 complaint (&symfile_complaints,
20654 _("unrecognized DW_MACFINO opcode 0x%x"),
20659 defn = opcode_definitions[opcode];
20660 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20661 defn += bytes_read;
20663 for (i = 0; i < arg; ++i)
20665 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20667 if (mac_ptr == NULL)
20669 /* skip_form_bytes already issued the complaint. */
20677 /* A helper function which parses the header of a macro section.
20678 If the macro section is the extended (for now called "GNU") type,
20679 then this updates *OFFSET_SIZE. Returns a pointer to just after
20680 the header, or issues a complaint and returns NULL on error. */
20682 static const gdb_byte *
20683 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20685 const gdb_byte *mac_ptr,
20686 unsigned int *offset_size,
20687 int section_is_gnu)
20689 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20691 if (section_is_gnu)
20693 unsigned int version, flags;
20695 version = read_2_bytes (abfd, mac_ptr);
20698 complaint (&symfile_complaints,
20699 _("unrecognized version `%d' in .debug_macro section"),
20705 flags = read_1_byte (abfd, mac_ptr);
20707 *offset_size = (flags & 1) ? 8 : 4;
20709 if ((flags & 2) != 0)
20710 /* We don't need the line table offset. */
20711 mac_ptr += *offset_size;
20713 /* Vendor opcode descriptions. */
20714 if ((flags & 4) != 0)
20716 unsigned int i, count;
20718 count = read_1_byte (abfd, mac_ptr);
20720 for (i = 0; i < count; ++i)
20722 unsigned int opcode, bytes_read;
20725 opcode = read_1_byte (abfd, mac_ptr);
20727 opcode_definitions[opcode] = mac_ptr;
20728 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20729 mac_ptr += bytes_read;
20738 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20739 including DW_MACRO_GNU_transparent_include. */
20742 dwarf_decode_macro_bytes (bfd *abfd,
20743 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20744 struct macro_source_file *current_file,
20745 struct line_header *lh, const char *comp_dir,
20746 struct dwarf2_section_info *section,
20747 int section_is_gnu, int section_is_dwz,
20748 unsigned int offset_size,
20749 struct objfile *objfile,
20750 htab_t include_hash)
20752 enum dwarf_macro_record_type macinfo_type;
20753 int at_commandline;
20754 const gdb_byte *opcode_definitions[256];
20756 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20757 &offset_size, section_is_gnu);
20758 if (mac_ptr == NULL)
20760 /* We already issued a complaint. */
20764 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20765 GDB is still reading the definitions from command line. First
20766 DW_MACINFO_start_file will need to be ignored as it was already executed
20767 to create CURRENT_FILE for the main source holding also the command line
20768 definitions. On first met DW_MACINFO_start_file this flag is reset to
20769 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20771 at_commandline = 1;
20775 /* Do we at least have room for a macinfo type byte? */
20776 if (mac_ptr >= mac_end)
20778 dwarf2_section_buffer_overflow_complaint (section);
20782 macinfo_type = read_1_byte (abfd, mac_ptr);
20785 /* Note that we rely on the fact that the corresponding GNU and
20786 DWARF constants are the same. */
20787 switch (macinfo_type)
20789 /* A zero macinfo type indicates the end of the macro
20794 case DW_MACRO_GNU_define:
20795 case DW_MACRO_GNU_undef:
20796 case DW_MACRO_GNU_define_indirect:
20797 case DW_MACRO_GNU_undef_indirect:
20798 case DW_MACRO_GNU_define_indirect_alt:
20799 case DW_MACRO_GNU_undef_indirect_alt:
20801 unsigned int bytes_read;
20806 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20807 mac_ptr += bytes_read;
20809 if (macinfo_type == DW_MACRO_GNU_define
20810 || macinfo_type == DW_MACRO_GNU_undef)
20812 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20813 mac_ptr += bytes_read;
20817 LONGEST str_offset;
20819 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20820 mac_ptr += offset_size;
20822 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20823 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20826 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20828 body = read_indirect_string_from_dwz (dwz, str_offset);
20831 body = read_indirect_string_at_offset (abfd, str_offset);
20834 is_define = (macinfo_type == DW_MACRO_GNU_define
20835 || macinfo_type == DW_MACRO_GNU_define_indirect
20836 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20837 if (! current_file)
20839 /* DWARF violation as no main source is present. */
20840 complaint (&symfile_complaints,
20841 _("debug info with no main source gives macro %s "
20843 is_define ? _("definition") : _("undefinition"),
20847 if ((line == 0 && !at_commandline)
20848 || (line != 0 && at_commandline))
20849 complaint (&symfile_complaints,
20850 _("debug info gives %s macro %s with %s line %d: %s"),
20851 at_commandline ? _("command-line") : _("in-file"),
20852 is_define ? _("definition") : _("undefinition"),
20853 line == 0 ? _("zero") : _("non-zero"), line, body);
20856 parse_macro_definition (current_file, line, body);
20859 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20860 || macinfo_type == DW_MACRO_GNU_undef_indirect
20861 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20862 macro_undef (current_file, line, body);
20867 case DW_MACRO_GNU_start_file:
20869 unsigned int bytes_read;
20872 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20873 mac_ptr += bytes_read;
20874 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20875 mac_ptr += bytes_read;
20877 if ((line == 0 && !at_commandline)
20878 || (line != 0 && at_commandline))
20879 complaint (&symfile_complaints,
20880 _("debug info gives source %d included "
20881 "from %s at %s line %d"),
20882 file, at_commandline ? _("command-line") : _("file"),
20883 line == 0 ? _("zero") : _("non-zero"), line);
20885 if (at_commandline)
20887 /* This DW_MACRO_GNU_start_file was executed in the
20889 at_commandline = 0;
20892 current_file = macro_start_file (file, line,
20893 current_file, comp_dir,
20898 case DW_MACRO_GNU_end_file:
20899 if (! current_file)
20900 complaint (&symfile_complaints,
20901 _("macro debug info has an unmatched "
20902 "`close_file' directive"));
20905 current_file = current_file->included_by;
20906 if (! current_file)
20908 enum dwarf_macro_record_type next_type;
20910 /* GCC circa March 2002 doesn't produce the zero
20911 type byte marking the end of the compilation
20912 unit. Complain if it's not there, but exit no
20915 /* Do we at least have room for a macinfo type byte? */
20916 if (mac_ptr >= mac_end)
20918 dwarf2_section_buffer_overflow_complaint (section);
20922 /* We don't increment mac_ptr here, so this is just
20924 next_type = read_1_byte (abfd, mac_ptr);
20925 if (next_type != 0)
20926 complaint (&symfile_complaints,
20927 _("no terminating 0-type entry for "
20928 "macros in `.debug_macinfo' section"));
20935 case DW_MACRO_GNU_transparent_include:
20936 case DW_MACRO_GNU_transparent_include_alt:
20940 bfd *include_bfd = abfd;
20941 struct dwarf2_section_info *include_section = section;
20942 struct dwarf2_section_info alt_section;
20943 const gdb_byte *include_mac_end = mac_end;
20944 int is_dwz = section_is_dwz;
20945 const gdb_byte *new_mac_ptr;
20947 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20948 mac_ptr += offset_size;
20950 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20952 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20954 dwarf2_read_section (dwarf2_per_objfile->objfile,
20957 include_section = &dwz->macro;
20958 include_bfd = get_section_bfd_owner (include_section);
20959 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20963 new_mac_ptr = include_section->buffer + offset;
20964 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20968 /* This has actually happened; see
20969 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20970 complaint (&symfile_complaints,
20971 _("recursive DW_MACRO_GNU_transparent_include in "
20972 ".debug_macro section"));
20976 *slot = (void *) new_mac_ptr;
20978 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20979 include_mac_end, current_file,
20981 section, section_is_gnu, is_dwz,
20982 offset_size, objfile, include_hash);
20984 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20989 case DW_MACINFO_vendor_ext:
20990 if (!section_is_gnu)
20992 unsigned int bytes_read;
20995 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20996 mac_ptr += bytes_read;
20997 read_direct_string (abfd, mac_ptr, &bytes_read);
20998 mac_ptr += bytes_read;
21000 /* We don't recognize any vendor extensions. */
21006 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21007 mac_ptr, mac_end, abfd, offset_size,
21009 if (mac_ptr == NULL)
21013 } while (macinfo_type != 0);
21017 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21018 const char *comp_dir, int section_is_gnu)
21020 struct objfile *objfile = dwarf2_per_objfile->objfile;
21021 struct line_header *lh = cu->line_header;
21023 const gdb_byte *mac_ptr, *mac_end;
21024 struct macro_source_file *current_file = 0;
21025 enum dwarf_macro_record_type macinfo_type;
21026 unsigned int offset_size = cu->header.offset_size;
21027 const gdb_byte *opcode_definitions[256];
21028 struct cleanup *cleanup;
21029 htab_t include_hash;
21031 struct dwarf2_section_info *section;
21032 const char *section_name;
21034 if (cu->dwo_unit != NULL)
21036 if (section_is_gnu)
21038 section = &cu->dwo_unit->dwo_file->sections.macro;
21039 section_name = ".debug_macro.dwo";
21043 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21044 section_name = ".debug_macinfo.dwo";
21049 if (section_is_gnu)
21051 section = &dwarf2_per_objfile->macro;
21052 section_name = ".debug_macro";
21056 section = &dwarf2_per_objfile->macinfo;
21057 section_name = ".debug_macinfo";
21061 dwarf2_read_section (objfile, section);
21062 if (section->buffer == NULL)
21064 complaint (&symfile_complaints, _("missing %s section"), section_name);
21067 abfd = get_section_bfd_owner (section);
21069 /* First pass: Find the name of the base filename.
21070 This filename is needed in order to process all macros whose definition
21071 (or undefinition) comes from the command line. These macros are defined
21072 before the first DW_MACINFO_start_file entry, and yet still need to be
21073 associated to the base file.
21075 To determine the base file name, we scan the macro definitions until we
21076 reach the first DW_MACINFO_start_file entry. We then initialize
21077 CURRENT_FILE accordingly so that any macro definition found before the
21078 first DW_MACINFO_start_file can still be associated to the base file. */
21080 mac_ptr = section->buffer + offset;
21081 mac_end = section->buffer + section->size;
21083 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21084 &offset_size, section_is_gnu);
21085 if (mac_ptr == NULL)
21087 /* We already issued a complaint. */
21093 /* Do we at least have room for a macinfo type byte? */
21094 if (mac_ptr >= mac_end)
21096 /* Complaint is printed during the second pass as GDB will probably
21097 stop the first pass earlier upon finding
21098 DW_MACINFO_start_file. */
21102 macinfo_type = read_1_byte (abfd, mac_ptr);
21105 /* Note that we rely on the fact that the corresponding GNU and
21106 DWARF constants are the same. */
21107 switch (macinfo_type)
21109 /* A zero macinfo type indicates the end of the macro
21114 case DW_MACRO_GNU_define:
21115 case DW_MACRO_GNU_undef:
21116 /* Only skip the data by MAC_PTR. */
21118 unsigned int bytes_read;
21120 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21121 mac_ptr += bytes_read;
21122 read_direct_string (abfd, mac_ptr, &bytes_read);
21123 mac_ptr += bytes_read;
21127 case DW_MACRO_GNU_start_file:
21129 unsigned int bytes_read;
21132 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21133 mac_ptr += bytes_read;
21134 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21135 mac_ptr += bytes_read;
21137 current_file = macro_start_file (file, line, current_file,
21138 comp_dir, lh, objfile);
21142 case DW_MACRO_GNU_end_file:
21143 /* No data to skip by MAC_PTR. */
21146 case DW_MACRO_GNU_define_indirect:
21147 case DW_MACRO_GNU_undef_indirect:
21148 case DW_MACRO_GNU_define_indirect_alt:
21149 case DW_MACRO_GNU_undef_indirect_alt:
21151 unsigned int bytes_read;
21153 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21154 mac_ptr += bytes_read;
21155 mac_ptr += offset_size;
21159 case DW_MACRO_GNU_transparent_include:
21160 case DW_MACRO_GNU_transparent_include_alt:
21161 /* Note that, according to the spec, a transparent include
21162 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21163 skip this opcode. */
21164 mac_ptr += offset_size;
21167 case DW_MACINFO_vendor_ext:
21168 /* Only skip the data by MAC_PTR. */
21169 if (!section_is_gnu)
21171 unsigned int bytes_read;
21173 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21174 mac_ptr += bytes_read;
21175 read_direct_string (abfd, mac_ptr, &bytes_read);
21176 mac_ptr += bytes_read;
21181 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21182 mac_ptr, mac_end, abfd, offset_size,
21184 if (mac_ptr == NULL)
21188 } while (macinfo_type != 0 && current_file == NULL);
21190 /* Second pass: Process all entries.
21192 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21193 command-line macro definitions/undefinitions. This flag is unset when we
21194 reach the first DW_MACINFO_start_file entry. */
21196 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21197 NULL, xcalloc, xfree);
21198 cleanup = make_cleanup_htab_delete (include_hash);
21199 mac_ptr = section->buffer + offset;
21200 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21201 *slot = (void *) mac_ptr;
21202 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21203 current_file, lh, comp_dir, section,
21205 offset_size, objfile, include_hash);
21206 do_cleanups (cleanup);
21209 /* Check if the attribute's form is a DW_FORM_block*
21210 if so return true else false. */
21213 attr_form_is_block (const struct attribute *attr)
21215 return (attr == NULL ? 0 :
21216 attr->form == DW_FORM_block1
21217 || attr->form == DW_FORM_block2
21218 || attr->form == DW_FORM_block4
21219 || attr->form == DW_FORM_block
21220 || attr->form == DW_FORM_exprloc);
21223 /* Return non-zero if ATTR's value is a section offset --- classes
21224 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21225 You may use DW_UNSND (attr) to retrieve such offsets.
21227 Section 7.5.4, "Attribute Encodings", explains that no attribute
21228 may have a value that belongs to more than one of these classes; it
21229 would be ambiguous if we did, because we use the same forms for all
21233 attr_form_is_section_offset (const struct attribute *attr)
21235 return (attr->form == DW_FORM_data4
21236 || attr->form == DW_FORM_data8
21237 || attr->form == DW_FORM_sec_offset);
21240 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21241 zero otherwise. When this function returns true, you can apply
21242 dwarf2_get_attr_constant_value to it.
21244 However, note that for some attributes you must check
21245 attr_form_is_section_offset before using this test. DW_FORM_data4
21246 and DW_FORM_data8 are members of both the constant class, and of
21247 the classes that contain offsets into other debug sections
21248 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21249 that, if an attribute's can be either a constant or one of the
21250 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21251 taken as section offsets, not constants. */
21254 attr_form_is_constant (const struct attribute *attr)
21256 switch (attr->form)
21258 case DW_FORM_sdata:
21259 case DW_FORM_udata:
21260 case DW_FORM_data1:
21261 case DW_FORM_data2:
21262 case DW_FORM_data4:
21263 case DW_FORM_data8:
21271 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21272 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21275 attr_form_is_ref (const struct attribute *attr)
21277 switch (attr->form)
21279 case DW_FORM_ref_addr:
21284 case DW_FORM_ref_udata:
21285 case DW_FORM_GNU_ref_alt:
21292 /* Return the .debug_loc section to use for CU.
21293 For DWO files use .debug_loc.dwo. */
21295 static struct dwarf2_section_info *
21296 cu_debug_loc_section (struct dwarf2_cu *cu)
21299 return &cu->dwo_unit->dwo_file->sections.loc;
21300 return &dwarf2_per_objfile->loc;
21303 /* A helper function that fills in a dwarf2_loclist_baton. */
21306 fill_in_loclist_baton (struct dwarf2_cu *cu,
21307 struct dwarf2_loclist_baton *baton,
21308 const struct attribute *attr)
21310 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21312 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21314 baton->per_cu = cu->per_cu;
21315 gdb_assert (baton->per_cu);
21316 /* We don't know how long the location list is, but make sure we
21317 don't run off the edge of the section. */
21318 baton->size = section->size - DW_UNSND (attr);
21319 baton->data = section->buffer + DW_UNSND (attr);
21320 baton->base_address = cu->base_address;
21321 baton->from_dwo = cu->dwo_unit != NULL;
21325 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21326 struct dwarf2_cu *cu, int is_block)
21328 struct objfile *objfile = dwarf2_per_objfile->objfile;
21329 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21331 if (attr_form_is_section_offset (attr)
21332 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21333 the section. If so, fall through to the complaint in the
21335 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21337 struct dwarf2_loclist_baton *baton;
21339 baton = obstack_alloc (&objfile->objfile_obstack,
21340 sizeof (struct dwarf2_loclist_baton));
21342 fill_in_loclist_baton (cu, baton, attr);
21344 if (cu->base_known == 0)
21345 complaint (&symfile_complaints,
21346 _("Location list used without "
21347 "specifying the CU base address."));
21349 SYMBOL_ACLASS_INDEX (sym) = (is_block
21350 ? dwarf2_loclist_block_index
21351 : dwarf2_loclist_index);
21352 SYMBOL_LOCATION_BATON (sym) = baton;
21356 struct dwarf2_locexpr_baton *baton;
21358 baton = obstack_alloc (&objfile->objfile_obstack,
21359 sizeof (struct dwarf2_locexpr_baton));
21360 baton->per_cu = cu->per_cu;
21361 gdb_assert (baton->per_cu);
21363 if (attr_form_is_block (attr))
21365 /* Note that we're just copying the block's data pointer
21366 here, not the actual data. We're still pointing into the
21367 info_buffer for SYM's objfile; right now we never release
21368 that buffer, but when we do clean up properly this may
21370 baton->size = DW_BLOCK (attr)->size;
21371 baton->data = DW_BLOCK (attr)->data;
21375 dwarf2_invalid_attrib_class_complaint ("location description",
21376 SYMBOL_NATURAL_NAME (sym));
21380 SYMBOL_ACLASS_INDEX (sym) = (is_block
21381 ? dwarf2_locexpr_block_index
21382 : dwarf2_locexpr_index);
21383 SYMBOL_LOCATION_BATON (sym) = baton;
21387 /* Return the OBJFILE associated with the compilation unit CU. If CU
21388 came from a separate debuginfo file, then the master objfile is
21392 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21394 struct objfile *objfile = per_cu->objfile;
21396 /* Return the master objfile, so that we can report and look up the
21397 correct file containing this variable. */
21398 if (objfile->separate_debug_objfile_backlink)
21399 objfile = objfile->separate_debug_objfile_backlink;
21404 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21405 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21406 CU_HEADERP first. */
21408 static const struct comp_unit_head *
21409 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21410 struct dwarf2_per_cu_data *per_cu)
21412 const gdb_byte *info_ptr;
21415 return &per_cu->cu->header;
21417 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21419 memset (cu_headerp, 0, sizeof (*cu_headerp));
21420 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21425 /* Return the address size given in the compilation unit header for CU. */
21428 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21430 struct comp_unit_head cu_header_local;
21431 const struct comp_unit_head *cu_headerp;
21433 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21435 return cu_headerp->addr_size;
21438 /* Return the offset size given in the compilation unit header for CU. */
21441 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21443 struct comp_unit_head cu_header_local;
21444 const struct comp_unit_head *cu_headerp;
21446 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21448 return cu_headerp->offset_size;
21451 /* See its dwarf2loc.h declaration. */
21454 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21456 struct comp_unit_head cu_header_local;
21457 const struct comp_unit_head *cu_headerp;
21459 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21461 if (cu_headerp->version == 2)
21462 return cu_headerp->addr_size;
21464 return cu_headerp->offset_size;
21467 /* Return the text offset of the CU. The returned offset comes from
21468 this CU's objfile. If this objfile came from a separate debuginfo
21469 file, then the offset may be different from the corresponding
21470 offset in the parent objfile. */
21473 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21475 struct objfile *objfile = per_cu->objfile;
21477 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21480 /* Locate the .debug_info compilation unit from CU's objfile which contains
21481 the DIE at OFFSET. Raises an error on failure. */
21483 static struct dwarf2_per_cu_data *
21484 dwarf2_find_containing_comp_unit (sect_offset offset,
21485 unsigned int offset_in_dwz,
21486 struct objfile *objfile)
21488 struct dwarf2_per_cu_data *this_cu;
21490 const sect_offset *cu_off;
21493 high = dwarf2_per_objfile->n_comp_units - 1;
21496 struct dwarf2_per_cu_data *mid_cu;
21497 int mid = low + (high - low) / 2;
21499 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21500 cu_off = &mid_cu->offset;
21501 if (mid_cu->is_dwz > offset_in_dwz
21502 || (mid_cu->is_dwz == offset_in_dwz
21503 && cu_off->sect_off >= offset.sect_off))
21508 gdb_assert (low == high);
21509 this_cu = dwarf2_per_objfile->all_comp_units[low];
21510 cu_off = &this_cu->offset;
21511 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21513 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21514 error (_("Dwarf Error: could not find partial DIE containing "
21515 "offset 0x%lx [in module %s]"),
21516 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21518 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21519 <= offset.sect_off);
21520 return dwarf2_per_objfile->all_comp_units[low-1];
21524 this_cu = dwarf2_per_objfile->all_comp_units[low];
21525 if (low == dwarf2_per_objfile->n_comp_units - 1
21526 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21527 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21528 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21533 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21536 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21538 memset (cu, 0, sizeof (*cu));
21540 cu->per_cu = per_cu;
21541 cu->objfile = per_cu->objfile;
21542 obstack_init (&cu->comp_unit_obstack);
21545 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21548 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21549 enum language pretend_language)
21551 struct attribute *attr;
21553 /* Set the language we're debugging. */
21554 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21556 set_cu_language (DW_UNSND (attr), cu);
21559 cu->language = pretend_language;
21560 cu->language_defn = language_def (cu->language);
21563 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21565 cu->producer = DW_STRING (attr);
21568 /* Release one cached compilation unit, CU. We unlink it from the tree
21569 of compilation units, but we don't remove it from the read_in_chain;
21570 the caller is responsible for that.
21571 NOTE: DATA is a void * because this function is also used as a
21572 cleanup routine. */
21575 free_heap_comp_unit (void *data)
21577 struct dwarf2_cu *cu = data;
21579 gdb_assert (cu->per_cu != NULL);
21580 cu->per_cu->cu = NULL;
21583 obstack_free (&cu->comp_unit_obstack, NULL);
21588 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21589 when we're finished with it. We can't free the pointer itself, but be
21590 sure to unlink it from the cache. Also release any associated storage. */
21593 free_stack_comp_unit (void *data)
21595 struct dwarf2_cu *cu = data;
21597 gdb_assert (cu->per_cu != NULL);
21598 cu->per_cu->cu = NULL;
21601 obstack_free (&cu->comp_unit_obstack, NULL);
21602 cu->partial_dies = NULL;
21605 /* Free all cached compilation units. */
21608 free_cached_comp_units (void *data)
21610 struct dwarf2_per_cu_data *per_cu, **last_chain;
21612 per_cu = dwarf2_per_objfile->read_in_chain;
21613 last_chain = &dwarf2_per_objfile->read_in_chain;
21614 while (per_cu != NULL)
21616 struct dwarf2_per_cu_data *next_cu;
21618 next_cu = per_cu->cu->read_in_chain;
21620 free_heap_comp_unit (per_cu->cu);
21621 *last_chain = next_cu;
21627 /* Increase the age counter on each cached compilation unit, and free
21628 any that are too old. */
21631 age_cached_comp_units (void)
21633 struct dwarf2_per_cu_data *per_cu, **last_chain;
21635 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21636 per_cu = dwarf2_per_objfile->read_in_chain;
21637 while (per_cu != NULL)
21639 per_cu->cu->last_used ++;
21640 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21641 dwarf2_mark (per_cu->cu);
21642 per_cu = per_cu->cu->read_in_chain;
21645 per_cu = dwarf2_per_objfile->read_in_chain;
21646 last_chain = &dwarf2_per_objfile->read_in_chain;
21647 while (per_cu != NULL)
21649 struct dwarf2_per_cu_data *next_cu;
21651 next_cu = per_cu->cu->read_in_chain;
21653 if (!per_cu->cu->mark)
21655 free_heap_comp_unit (per_cu->cu);
21656 *last_chain = next_cu;
21659 last_chain = &per_cu->cu->read_in_chain;
21665 /* Remove a single compilation unit from the cache. */
21668 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21670 struct dwarf2_per_cu_data *per_cu, **last_chain;
21672 per_cu = dwarf2_per_objfile->read_in_chain;
21673 last_chain = &dwarf2_per_objfile->read_in_chain;
21674 while (per_cu != NULL)
21676 struct dwarf2_per_cu_data *next_cu;
21678 next_cu = per_cu->cu->read_in_chain;
21680 if (per_cu == target_per_cu)
21682 free_heap_comp_unit (per_cu->cu);
21684 *last_chain = next_cu;
21688 last_chain = &per_cu->cu->read_in_chain;
21694 /* Release all extra memory associated with OBJFILE. */
21697 dwarf2_free_objfile (struct objfile *objfile)
21699 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21701 if (dwarf2_per_objfile == NULL)
21704 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21705 free_cached_comp_units (NULL);
21707 if (dwarf2_per_objfile->quick_file_names_table)
21708 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21710 /* Everything else should be on the objfile obstack. */
21713 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21714 We store these in a hash table separate from the DIEs, and preserve them
21715 when the DIEs are flushed out of cache.
21717 The CU "per_cu" pointer is needed because offset alone is not enough to
21718 uniquely identify the type. A file may have multiple .debug_types sections,
21719 or the type may come from a DWO file. Furthermore, while it's more logical
21720 to use per_cu->section+offset, with Fission the section with the data is in
21721 the DWO file but we don't know that section at the point we need it.
21722 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21723 because we can enter the lookup routine, get_die_type_at_offset, from
21724 outside this file, and thus won't necessarily have PER_CU->cu.
21725 Fortunately, PER_CU is stable for the life of the objfile. */
21727 struct dwarf2_per_cu_offset_and_type
21729 const struct dwarf2_per_cu_data *per_cu;
21730 sect_offset offset;
21734 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21737 per_cu_offset_and_type_hash (const void *item)
21739 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21741 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21744 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21747 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21749 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21750 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21752 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21753 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21756 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21757 table if necessary. For convenience, return TYPE.
21759 The DIEs reading must have careful ordering to:
21760 * Not cause infite loops trying to read in DIEs as a prerequisite for
21761 reading current DIE.
21762 * Not trying to dereference contents of still incompletely read in types
21763 while reading in other DIEs.
21764 * Enable referencing still incompletely read in types just by a pointer to
21765 the type without accessing its fields.
21767 Therefore caller should follow these rules:
21768 * Try to fetch any prerequisite types we may need to build this DIE type
21769 before building the type and calling set_die_type.
21770 * After building type call set_die_type for current DIE as soon as
21771 possible before fetching more types to complete the current type.
21772 * Make the type as complete as possible before fetching more types. */
21774 static struct type *
21775 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21777 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21778 struct objfile *objfile = cu->objfile;
21779 struct attribute *attr;
21780 struct dynamic_prop prop;
21782 /* For Ada types, make sure that the gnat-specific data is always
21783 initialized (if not already set). There are a few types where
21784 we should not be doing so, because the type-specific area is
21785 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21786 where the type-specific area is used to store the floatformat).
21787 But this is not a problem, because the gnat-specific information
21788 is actually not needed for these types. */
21789 if (need_gnat_info (cu)
21790 && TYPE_CODE (type) != TYPE_CODE_FUNC
21791 && TYPE_CODE (type) != TYPE_CODE_FLT
21792 && !HAVE_GNAT_AUX_INFO (type))
21793 INIT_GNAT_SPECIFIC (type);
21795 /* Read DW_AT_data_location and set in type. */
21796 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21797 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21799 TYPE_DATA_LOCATION (type)
21800 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21801 *TYPE_DATA_LOCATION (type) = prop;
21804 if (dwarf2_per_objfile->die_type_hash == NULL)
21806 dwarf2_per_objfile->die_type_hash =
21807 htab_create_alloc_ex (127,
21808 per_cu_offset_and_type_hash,
21809 per_cu_offset_and_type_eq,
21811 &objfile->objfile_obstack,
21812 hashtab_obstack_allocate,
21813 dummy_obstack_deallocate);
21816 ofs.per_cu = cu->per_cu;
21817 ofs.offset = die->offset;
21819 slot = (struct dwarf2_per_cu_offset_and_type **)
21820 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21822 complaint (&symfile_complaints,
21823 _("A problem internal to GDB: DIE 0x%x has type already set"),
21824 die->offset.sect_off);
21825 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21830 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21831 or return NULL if the die does not have a saved type. */
21833 static struct type *
21834 get_die_type_at_offset (sect_offset offset,
21835 struct dwarf2_per_cu_data *per_cu)
21837 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21839 if (dwarf2_per_objfile->die_type_hash == NULL)
21842 ofs.per_cu = per_cu;
21843 ofs.offset = offset;
21844 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21851 /* Look up the type for DIE in CU in die_type_hash,
21852 or return NULL if DIE does not have a saved type. */
21854 static struct type *
21855 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21857 return get_die_type_at_offset (die->offset, cu->per_cu);
21860 /* Add a dependence relationship from CU to REF_PER_CU. */
21863 dwarf2_add_dependence (struct dwarf2_cu *cu,
21864 struct dwarf2_per_cu_data *ref_per_cu)
21868 if (cu->dependencies == NULL)
21870 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21871 NULL, &cu->comp_unit_obstack,
21872 hashtab_obstack_allocate,
21873 dummy_obstack_deallocate);
21875 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21877 *slot = ref_per_cu;
21880 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21881 Set the mark field in every compilation unit in the
21882 cache that we must keep because we are keeping CU. */
21885 dwarf2_mark_helper (void **slot, void *data)
21887 struct dwarf2_per_cu_data *per_cu;
21889 per_cu = (struct dwarf2_per_cu_data *) *slot;
21891 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21892 reading of the chain. As such dependencies remain valid it is not much
21893 useful to track and undo them during QUIT cleanups. */
21894 if (per_cu->cu == NULL)
21897 if (per_cu->cu->mark)
21899 per_cu->cu->mark = 1;
21901 if (per_cu->cu->dependencies != NULL)
21902 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21907 /* Set the mark field in CU and in every other compilation unit in the
21908 cache that we must keep because we are keeping CU. */
21911 dwarf2_mark (struct dwarf2_cu *cu)
21916 if (cu->dependencies != NULL)
21917 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21921 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21925 per_cu->cu->mark = 0;
21926 per_cu = per_cu->cu->read_in_chain;
21930 /* Trivial hash function for partial_die_info: the hash value of a DIE
21931 is its offset in .debug_info for this objfile. */
21934 partial_die_hash (const void *item)
21936 const struct partial_die_info *part_die = item;
21938 return part_die->offset.sect_off;
21941 /* Trivial comparison function for partial_die_info structures: two DIEs
21942 are equal if they have the same offset. */
21945 partial_die_eq (const void *item_lhs, const void *item_rhs)
21947 const struct partial_die_info *part_die_lhs = item_lhs;
21948 const struct partial_die_info *part_die_rhs = item_rhs;
21950 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21953 static struct cmd_list_element *set_dwarf2_cmdlist;
21954 static struct cmd_list_element *show_dwarf2_cmdlist;
21957 set_dwarf2_cmd (char *args, int from_tty)
21959 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21964 show_dwarf2_cmd (char *args, int from_tty)
21966 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21969 /* Free data associated with OBJFILE, if necessary. */
21972 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21974 struct dwarf2_per_objfile *data = d;
21977 /* Make sure we don't accidentally use dwarf2_per_objfile while
21979 dwarf2_per_objfile = NULL;
21981 for (ix = 0; ix < data->n_comp_units; ++ix)
21982 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21984 for (ix = 0; ix < data->n_type_units; ++ix)
21985 VEC_free (dwarf2_per_cu_ptr,
21986 data->all_type_units[ix]->per_cu.imported_symtabs);
21987 xfree (data->all_type_units);
21989 VEC_free (dwarf2_section_info_def, data->types);
21991 if (data->dwo_files)
21992 free_dwo_files (data->dwo_files, objfile);
21993 if (data->dwp_file)
21994 gdb_bfd_unref (data->dwp_file->dbfd);
21996 if (data->dwz_file && data->dwz_file->dwz_bfd)
21997 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22001 /* The "save gdb-index" command. */
22003 /* The contents of the hash table we create when building the string
22005 struct strtab_entry
22007 offset_type offset;
22011 /* Hash function for a strtab_entry.
22013 Function is used only during write_hash_table so no index format backward
22014 compatibility is needed. */
22017 hash_strtab_entry (const void *e)
22019 const struct strtab_entry *entry = e;
22020 return mapped_index_string_hash (INT_MAX, entry->str);
22023 /* Equality function for a strtab_entry. */
22026 eq_strtab_entry (const void *a, const void *b)
22028 const struct strtab_entry *ea = a;
22029 const struct strtab_entry *eb = b;
22030 return !strcmp (ea->str, eb->str);
22033 /* Create a strtab_entry hash table. */
22036 create_strtab (void)
22038 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22039 xfree, xcalloc, xfree);
22042 /* Add a string to the constant pool. Return the string's offset in
22046 add_string (htab_t table, struct obstack *cpool, const char *str)
22049 struct strtab_entry entry;
22050 struct strtab_entry *result;
22053 slot = htab_find_slot (table, &entry, INSERT);
22058 result = XNEW (struct strtab_entry);
22059 result->offset = obstack_object_size (cpool);
22061 obstack_grow_str0 (cpool, str);
22064 return result->offset;
22067 /* An entry in the symbol table. */
22068 struct symtab_index_entry
22070 /* The name of the symbol. */
22072 /* The offset of the name in the constant pool. */
22073 offset_type index_offset;
22074 /* A sorted vector of the indices of all the CUs that hold an object
22076 VEC (offset_type) *cu_indices;
22079 /* The symbol table. This is a power-of-2-sized hash table. */
22080 struct mapped_symtab
22082 offset_type n_elements;
22084 struct symtab_index_entry **data;
22087 /* Hash function for a symtab_index_entry. */
22090 hash_symtab_entry (const void *e)
22092 const struct symtab_index_entry *entry = e;
22093 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22094 sizeof (offset_type) * VEC_length (offset_type,
22095 entry->cu_indices),
22099 /* Equality function for a symtab_index_entry. */
22102 eq_symtab_entry (const void *a, const void *b)
22104 const struct symtab_index_entry *ea = a;
22105 const struct symtab_index_entry *eb = b;
22106 int len = VEC_length (offset_type, ea->cu_indices);
22107 if (len != VEC_length (offset_type, eb->cu_indices))
22109 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22110 VEC_address (offset_type, eb->cu_indices),
22111 sizeof (offset_type) * len);
22114 /* Destroy a symtab_index_entry. */
22117 delete_symtab_entry (void *p)
22119 struct symtab_index_entry *entry = p;
22120 VEC_free (offset_type, entry->cu_indices);
22124 /* Create a hash table holding symtab_index_entry objects. */
22127 create_symbol_hash_table (void)
22129 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22130 delete_symtab_entry, xcalloc, xfree);
22133 /* Create a new mapped symtab object. */
22135 static struct mapped_symtab *
22136 create_mapped_symtab (void)
22138 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22139 symtab->n_elements = 0;
22140 symtab->size = 1024;
22141 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22145 /* Destroy a mapped_symtab. */
22148 cleanup_mapped_symtab (void *p)
22150 struct mapped_symtab *symtab = p;
22151 /* The contents of the array are freed when the other hash table is
22153 xfree (symtab->data);
22157 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22160 Function is used only during write_hash_table so no index format backward
22161 compatibility is needed. */
22163 static struct symtab_index_entry **
22164 find_slot (struct mapped_symtab *symtab, const char *name)
22166 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22168 index = hash & (symtab->size - 1);
22169 step = ((hash * 17) & (symtab->size - 1)) | 1;
22173 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22174 return &symtab->data[index];
22175 index = (index + step) & (symtab->size - 1);
22179 /* Expand SYMTAB's hash table. */
22182 hash_expand (struct mapped_symtab *symtab)
22184 offset_type old_size = symtab->size;
22186 struct symtab_index_entry **old_entries = symtab->data;
22189 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22191 for (i = 0; i < old_size; ++i)
22193 if (old_entries[i])
22195 struct symtab_index_entry **slot = find_slot (symtab,
22196 old_entries[i]->name);
22197 *slot = old_entries[i];
22201 xfree (old_entries);
22204 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22205 CU_INDEX is the index of the CU in which the symbol appears.
22206 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22209 add_index_entry (struct mapped_symtab *symtab, const char *name,
22210 int is_static, gdb_index_symbol_kind kind,
22211 offset_type cu_index)
22213 struct symtab_index_entry **slot;
22214 offset_type cu_index_and_attrs;
22216 ++symtab->n_elements;
22217 if (4 * symtab->n_elements / 3 >= symtab->size)
22218 hash_expand (symtab);
22220 slot = find_slot (symtab, name);
22223 *slot = XNEW (struct symtab_index_entry);
22224 (*slot)->name = name;
22225 /* index_offset is set later. */
22226 (*slot)->cu_indices = NULL;
22229 cu_index_and_attrs = 0;
22230 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22231 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22232 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22234 /* We don't want to record an index value twice as we want to avoid the
22236 We process all global symbols and then all static symbols
22237 (which would allow us to avoid the duplication by only having to check
22238 the last entry pushed), but a symbol could have multiple kinds in one CU.
22239 To keep things simple we don't worry about the duplication here and
22240 sort and uniqufy the list after we've processed all symbols. */
22241 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22244 /* qsort helper routine for uniquify_cu_indices. */
22247 offset_type_compare (const void *ap, const void *bp)
22249 offset_type a = *(offset_type *) ap;
22250 offset_type b = *(offset_type *) bp;
22252 return (a > b) - (b > a);
22255 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22258 uniquify_cu_indices (struct mapped_symtab *symtab)
22262 for (i = 0; i < symtab->size; ++i)
22264 struct symtab_index_entry *entry = symtab->data[i];
22267 && entry->cu_indices != NULL)
22269 unsigned int next_to_insert, next_to_check;
22270 offset_type last_value;
22272 qsort (VEC_address (offset_type, entry->cu_indices),
22273 VEC_length (offset_type, entry->cu_indices),
22274 sizeof (offset_type), offset_type_compare);
22276 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22277 next_to_insert = 1;
22278 for (next_to_check = 1;
22279 next_to_check < VEC_length (offset_type, entry->cu_indices);
22282 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22285 last_value = VEC_index (offset_type, entry->cu_indices,
22287 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22292 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22297 /* Add a vector of indices to the constant pool. */
22300 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22301 struct symtab_index_entry *entry)
22305 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22308 offset_type len = VEC_length (offset_type, entry->cu_indices);
22309 offset_type val = MAYBE_SWAP (len);
22314 entry->index_offset = obstack_object_size (cpool);
22316 obstack_grow (cpool, &val, sizeof (val));
22318 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22321 val = MAYBE_SWAP (iter);
22322 obstack_grow (cpool, &val, sizeof (val));
22327 struct symtab_index_entry *old_entry = *slot;
22328 entry->index_offset = old_entry->index_offset;
22331 return entry->index_offset;
22334 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22335 constant pool entries going into the obstack CPOOL. */
22338 write_hash_table (struct mapped_symtab *symtab,
22339 struct obstack *output, struct obstack *cpool)
22342 htab_t symbol_hash_table;
22345 symbol_hash_table = create_symbol_hash_table ();
22346 str_table = create_strtab ();
22348 /* We add all the index vectors to the constant pool first, to
22349 ensure alignment is ok. */
22350 for (i = 0; i < symtab->size; ++i)
22352 if (symtab->data[i])
22353 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22356 /* Now write out the hash table. */
22357 for (i = 0; i < symtab->size; ++i)
22359 offset_type str_off, vec_off;
22361 if (symtab->data[i])
22363 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22364 vec_off = symtab->data[i]->index_offset;
22368 /* While 0 is a valid constant pool index, it is not valid
22369 to have 0 for both offsets. */
22374 str_off = MAYBE_SWAP (str_off);
22375 vec_off = MAYBE_SWAP (vec_off);
22377 obstack_grow (output, &str_off, sizeof (str_off));
22378 obstack_grow (output, &vec_off, sizeof (vec_off));
22381 htab_delete (str_table);
22382 htab_delete (symbol_hash_table);
22385 /* Struct to map psymtab to CU index in the index file. */
22386 struct psymtab_cu_index_map
22388 struct partial_symtab *psymtab;
22389 unsigned int cu_index;
22393 hash_psymtab_cu_index (const void *item)
22395 const struct psymtab_cu_index_map *map = item;
22397 return htab_hash_pointer (map->psymtab);
22401 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22403 const struct psymtab_cu_index_map *lhs = item_lhs;
22404 const struct psymtab_cu_index_map *rhs = item_rhs;
22406 return lhs->psymtab == rhs->psymtab;
22409 /* Helper struct for building the address table. */
22410 struct addrmap_index_data
22412 struct objfile *objfile;
22413 struct obstack *addr_obstack;
22414 htab_t cu_index_htab;
22416 /* Non-zero if the previous_* fields are valid.
22417 We can't write an entry until we see the next entry (since it is only then
22418 that we know the end of the entry). */
22419 int previous_valid;
22420 /* Index of the CU in the table of all CUs in the index file. */
22421 unsigned int previous_cu_index;
22422 /* Start address of the CU. */
22423 CORE_ADDR previous_cu_start;
22426 /* Write an address entry to OBSTACK. */
22429 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22430 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22432 offset_type cu_index_to_write;
22434 CORE_ADDR baseaddr;
22436 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22438 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22439 obstack_grow (obstack, addr, 8);
22440 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22441 obstack_grow (obstack, addr, 8);
22442 cu_index_to_write = MAYBE_SWAP (cu_index);
22443 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22446 /* Worker function for traversing an addrmap to build the address table. */
22449 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22451 struct addrmap_index_data *data = datap;
22452 struct partial_symtab *pst = obj;
22454 if (data->previous_valid)
22455 add_address_entry (data->objfile, data->addr_obstack,
22456 data->previous_cu_start, start_addr,
22457 data->previous_cu_index);
22459 data->previous_cu_start = start_addr;
22462 struct psymtab_cu_index_map find_map, *map;
22463 find_map.psymtab = pst;
22464 map = htab_find (data->cu_index_htab, &find_map);
22465 gdb_assert (map != NULL);
22466 data->previous_cu_index = map->cu_index;
22467 data->previous_valid = 1;
22470 data->previous_valid = 0;
22475 /* Write OBJFILE's address map to OBSTACK.
22476 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22477 in the index file. */
22480 write_address_map (struct objfile *objfile, struct obstack *obstack,
22481 htab_t cu_index_htab)
22483 struct addrmap_index_data addrmap_index_data;
22485 /* When writing the address table, we have to cope with the fact that
22486 the addrmap iterator only provides the start of a region; we have to
22487 wait until the next invocation to get the start of the next region. */
22489 addrmap_index_data.objfile = objfile;
22490 addrmap_index_data.addr_obstack = obstack;
22491 addrmap_index_data.cu_index_htab = cu_index_htab;
22492 addrmap_index_data.previous_valid = 0;
22494 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22495 &addrmap_index_data);
22497 /* It's highly unlikely the last entry (end address = 0xff...ff)
22498 is valid, but we should still handle it.
22499 The end address is recorded as the start of the next region, but that
22500 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22502 if (addrmap_index_data.previous_valid)
22503 add_address_entry (objfile, obstack,
22504 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22505 addrmap_index_data.previous_cu_index);
22508 /* Return the symbol kind of PSYM. */
22510 static gdb_index_symbol_kind
22511 symbol_kind (struct partial_symbol *psym)
22513 domain_enum domain = PSYMBOL_DOMAIN (psym);
22514 enum address_class aclass = PSYMBOL_CLASS (psym);
22522 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22524 return GDB_INDEX_SYMBOL_KIND_TYPE;
22526 case LOC_CONST_BYTES:
22527 case LOC_OPTIMIZED_OUT:
22529 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22531 /* Note: It's currently impossible to recognize psyms as enum values
22532 short of reading the type info. For now punt. */
22533 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22535 /* There are other LOC_FOO values that one might want to classify
22536 as variables, but dwarf2read.c doesn't currently use them. */
22537 return GDB_INDEX_SYMBOL_KIND_OTHER;
22539 case STRUCT_DOMAIN:
22540 return GDB_INDEX_SYMBOL_KIND_TYPE;
22542 return GDB_INDEX_SYMBOL_KIND_OTHER;
22546 /* Add a list of partial symbols to SYMTAB. */
22549 write_psymbols (struct mapped_symtab *symtab,
22551 struct partial_symbol **psymp,
22553 offset_type cu_index,
22556 for (; count-- > 0; ++psymp)
22558 struct partial_symbol *psym = *psymp;
22561 if (SYMBOL_LANGUAGE (psym) == language_ada)
22562 error (_("Ada is not currently supported by the index"));
22564 /* Only add a given psymbol once. */
22565 slot = htab_find_slot (psyms_seen, psym, INSERT);
22568 gdb_index_symbol_kind kind = symbol_kind (psym);
22571 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22572 is_static, kind, cu_index);
22577 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22578 exception if there is an error. */
22581 write_obstack (FILE *file, struct obstack *obstack)
22583 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22585 != obstack_object_size (obstack))
22586 error (_("couldn't data write to file"));
22589 /* Unlink a file if the argument is not NULL. */
22592 unlink_if_set (void *p)
22594 char **filename = p;
22596 unlink (*filename);
22599 /* A helper struct used when iterating over debug_types. */
22600 struct signatured_type_index_data
22602 struct objfile *objfile;
22603 struct mapped_symtab *symtab;
22604 struct obstack *types_list;
22609 /* A helper function that writes a single signatured_type to an
22613 write_one_signatured_type (void **slot, void *d)
22615 struct signatured_type_index_data *info = d;
22616 struct signatured_type *entry = (struct signatured_type *) *slot;
22617 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22620 write_psymbols (info->symtab,
22622 info->objfile->global_psymbols.list
22623 + psymtab->globals_offset,
22624 psymtab->n_global_syms, info->cu_index,
22626 write_psymbols (info->symtab,
22628 info->objfile->static_psymbols.list
22629 + psymtab->statics_offset,
22630 psymtab->n_static_syms, info->cu_index,
22633 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22634 entry->per_cu.offset.sect_off);
22635 obstack_grow (info->types_list, val, 8);
22636 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22637 entry->type_offset_in_tu.cu_off);
22638 obstack_grow (info->types_list, val, 8);
22639 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22640 obstack_grow (info->types_list, val, 8);
22647 /* Recurse into all "included" dependencies and write their symbols as
22648 if they appeared in this psymtab. */
22651 recursively_write_psymbols (struct objfile *objfile,
22652 struct partial_symtab *psymtab,
22653 struct mapped_symtab *symtab,
22655 offset_type cu_index)
22659 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22660 if (psymtab->dependencies[i]->user != NULL)
22661 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22662 symtab, psyms_seen, cu_index);
22664 write_psymbols (symtab,
22666 objfile->global_psymbols.list + psymtab->globals_offset,
22667 psymtab->n_global_syms, cu_index,
22669 write_psymbols (symtab,
22671 objfile->static_psymbols.list + psymtab->statics_offset,
22672 psymtab->n_static_syms, cu_index,
22676 /* Create an index file for OBJFILE in the directory DIR. */
22679 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22681 struct cleanup *cleanup;
22682 char *filename, *cleanup_filename;
22683 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22684 struct obstack cu_list, types_cu_list;
22687 struct mapped_symtab *symtab;
22688 offset_type val, size_of_contents, total_len;
22691 htab_t cu_index_htab;
22692 struct psymtab_cu_index_map *psymtab_cu_index_map;
22694 if (dwarf2_per_objfile->using_index)
22695 error (_("Cannot use an index to create the index"));
22697 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22698 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22700 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22703 if (stat (objfile_name (objfile), &st) < 0)
22704 perror_with_name (objfile_name (objfile));
22706 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22707 INDEX_SUFFIX, (char *) NULL);
22708 cleanup = make_cleanup (xfree, filename);
22710 out_file = gdb_fopen_cloexec (filename, "wb");
22712 error (_("Can't open `%s' for writing"), filename);
22714 cleanup_filename = filename;
22715 make_cleanup (unlink_if_set, &cleanup_filename);
22717 symtab = create_mapped_symtab ();
22718 make_cleanup (cleanup_mapped_symtab, symtab);
22720 obstack_init (&addr_obstack);
22721 make_cleanup_obstack_free (&addr_obstack);
22723 obstack_init (&cu_list);
22724 make_cleanup_obstack_free (&cu_list);
22726 obstack_init (&types_cu_list);
22727 make_cleanup_obstack_free (&types_cu_list);
22729 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22730 NULL, xcalloc, xfree);
22731 make_cleanup_htab_delete (psyms_seen);
22733 /* While we're scanning CU's create a table that maps a psymtab pointer
22734 (which is what addrmap records) to its index (which is what is recorded
22735 in the index file). This will later be needed to write the address
22737 cu_index_htab = htab_create_alloc (100,
22738 hash_psymtab_cu_index,
22739 eq_psymtab_cu_index,
22740 NULL, xcalloc, xfree);
22741 make_cleanup_htab_delete (cu_index_htab);
22742 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22743 xmalloc (sizeof (struct psymtab_cu_index_map)
22744 * dwarf2_per_objfile->n_comp_units);
22745 make_cleanup (xfree, psymtab_cu_index_map);
22747 /* The CU list is already sorted, so we don't need to do additional
22748 work here. Also, the debug_types entries do not appear in
22749 all_comp_units, but only in their own hash table. */
22750 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22752 struct dwarf2_per_cu_data *per_cu
22753 = dwarf2_per_objfile->all_comp_units[i];
22754 struct partial_symtab *psymtab = per_cu->v.psymtab;
22756 struct psymtab_cu_index_map *map;
22759 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22760 It may be referenced from a local scope but in such case it does not
22761 need to be present in .gdb_index. */
22762 if (psymtab == NULL)
22765 if (psymtab->user == NULL)
22766 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22768 map = &psymtab_cu_index_map[i];
22769 map->psymtab = psymtab;
22771 slot = htab_find_slot (cu_index_htab, map, INSERT);
22772 gdb_assert (slot != NULL);
22773 gdb_assert (*slot == NULL);
22776 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22777 per_cu->offset.sect_off);
22778 obstack_grow (&cu_list, val, 8);
22779 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22780 obstack_grow (&cu_list, val, 8);
22783 /* Dump the address map. */
22784 write_address_map (objfile, &addr_obstack, cu_index_htab);
22786 /* Write out the .debug_type entries, if any. */
22787 if (dwarf2_per_objfile->signatured_types)
22789 struct signatured_type_index_data sig_data;
22791 sig_data.objfile = objfile;
22792 sig_data.symtab = symtab;
22793 sig_data.types_list = &types_cu_list;
22794 sig_data.psyms_seen = psyms_seen;
22795 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22796 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22797 write_one_signatured_type, &sig_data);
22800 /* Now that we've processed all symbols we can shrink their cu_indices
22802 uniquify_cu_indices (symtab);
22804 obstack_init (&constant_pool);
22805 make_cleanup_obstack_free (&constant_pool);
22806 obstack_init (&symtab_obstack);
22807 make_cleanup_obstack_free (&symtab_obstack);
22808 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22810 obstack_init (&contents);
22811 make_cleanup_obstack_free (&contents);
22812 size_of_contents = 6 * sizeof (offset_type);
22813 total_len = size_of_contents;
22815 /* The version number. */
22816 val = MAYBE_SWAP (8);
22817 obstack_grow (&contents, &val, sizeof (val));
22819 /* The offset of the CU list from the start of the file. */
22820 val = MAYBE_SWAP (total_len);
22821 obstack_grow (&contents, &val, sizeof (val));
22822 total_len += obstack_object_size (&cu_list);
22824 /* The offset of the types CU list from the start of the file. */
22825 val = MAYBE_SWAP (total_len);
22826 obstack_grow (&contents, &val, sizeof (val));
22827 total_len += obstack_object_size (&types_cu_list);
22829 /* The offset of the address table from the start of the file. */
22830 val = MAYBE_SWAP (total_len);
22831 obstack_grow (&contents, &val, sizeof (val));
22832 total_len += obstack_object_size (&addr_obstack);
22834 /* The offset of the symbol table from the start of the file. */
22835 val = MAYBE_SWAP (total_len);
22836 obstack_grow (&contents, &val, sizeof (val));
22837 total_len += obstack_object_size (&symtab_obstack);
22839 /* The offset of the constant pool from the start of the file. */
22840 val = MAYBE_SWAP (total_len);
22841 obstack_grow (&contents, &val, sizeof (val));
22842 total_len += obstack_object_size (&constant_pool);
22844 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22846 write_obstack (out_file, &contents);
22847 write_obstack (out_file, &cu_list);
22848 write_obstack (out_file, &types_cu_list);
22849 write_obstack (out_file, &addr_obstack);
22850 write_obstack (out_file, &symtab_obstack);
22851 write_obstack (out_file, &constant_pool);
22855 /* We want to keep the file, so we set cleanup_filename to NULL
22856 here. See unlink_if_set. */
22857 cleanup_filename = NULL;
22859 do_cleanups (cleanup);
22862 /* Implementation of the `save gdb-index' command.
22864 Note that the file format used by this command is documented in the
22865 GDB manual. Any changes here must be documented there. */
22868 save_gdb_index_command (char *arg, int from_tty)
22870 struct objfile *objfile;
22873 error (_("usage: save gdb-index DIRECTORY"));
22875 ALL_OBJFILES (objfile)
22879 /* If the objfile does not correspond to an actual file, skip it. */
22880 if (stat (objfile_name (objfile), &st) < 0)
22883 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22884 if (dwarf2_per_objfile)
22886 volatile struct gdb_exception except;
22888 TRY_CATCH (except, RETURN_MASK_ERROR)
22890 write_psymtabs_to_index (objfile, arg);
22892 if (except.reason < 0)
22893 exception_fprintf (gdb_stderr, except,
22894 _("Error while writing index for `%s': "),
22895 objfile_name (objfile));
22902 int dwarf2_always_disassemble;
22905 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22906 struct cmd_list_element *c, const char *value)
22908 fprintf_filtered (file,
22909 _("Whether to always disassemble "
22910 "DWARF expressions is %s.\n"),
22915 show_check_physname (struct ui_file *file, int from_tty,
22916 struct cmd_list_element *c, const char *value)
22918 fprintf_filtered (file,
22919 _("Whether to check \"physname\" is %s.\n"),
22923 void _initialize_dwarf2_read (void);
22926 _initialize_dwarf2_read (void)
22928 struct cmd_list_element *c;
22930 dwarf2_objfile_data_key
22931 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22933 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22934 Set DWARF 2 specific variables.\n\
22935 Configure DWARF 2 variables such as the cache size"),
22936 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22937 0/*allow-unknown*/, &maintenance_set_cmdlist);
22939 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22940 Show DWARF 2 specific variables\n\
22941 Show DWARF 2 variables such as the cache size"),
22942 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22943 0/*allow-unknown*/, &maintenance_show_cmdlist);
22945 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22946 &dwarf2_max_cache_age, _("\
22947 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22948 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22949 A higher limit means that cached compilation units will be stored\n\
22950 in memory longer, and more total memory will be used. Zero disables\n\
22951 caching, which can slow down startup."),
22953 show_dwarf2_max_cache_age,
22954 &set_dwarf2_cmdlist,
22955 &show_dwarf2_cmdlist);
22957 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22958 &dwarf2_always_disassemble, _("\
22959 Set whether `info address' always disassembles DWARF expressions."), _("\
22960 Show whether `info address' always disassembles DWARF expressions."), _("\
22961 When enabled, DWARF expressions are always printed in an assembly-like\n\
22962 syntax. When disabled, expressions will be printed in a more\n\
22963 conversational style, when possible."),
22965 show_dwarf2_always_disassemble,
22966 &set_dwarf2_cmdlist,
22967 &show_dwarf2_cmdlist);
22969 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22970 Set debugging of the dwarf2 reader."), _("\
22971 Show debugging of the dwarf2 reader."), _("\
22972 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22973 reading and symtab expansion. A value of 1 (one) provides basic\n\
22974 information. A value greater than 1 provides more verbose information."),
22977 &setdebuglist, &showdebuglist);
22979 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22980 Set debugging of the dwarf2 DIE reader."), _("\
22981 Show debugging of the dwarf2 DIE reader."), _("\
22982 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22983 The value is the maximum depth to print."),
22986 &setdebuglist, &showdebuglist);
22988 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22989 Set cross-checking of \"physname\" code against demangler."), _("\
22990 Show cross-checking of \"physname\" code against demangler."), _("\
22991 When enabled, GDB's internal \"physname\" code is checked against\n\
22993 NULL, show_check_physname,
22994 &setdebuglist, &showdebuglist);
22996 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22997 no_class, &use_deprecated_index_sections, _("\
22998 Set whether to use deprecated gdb_index sections."), _("\
22999 Show whether to use deprecated gdb_index sections."), _("\
23000 When enabled, deprecated .gdb_index sections are used anyway.\n\
23001 Normally they are ignored either because of a missing feature or\n\
23002 performance issue.\n\
23003 Warning: This option must be enabled before gdb reads the file."),
23006 &setlist, &showlist);
23008 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23010 Save a gdb-index file.\n\
23011 Usage: save gdb-index DIRECTORY"),
23013 set_cmd_completer (c, filename_completer);
23015 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23016 &dwarf2_locexpr_funcs);
23017 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23018 &dwarf2_loclist_funcs);
23020 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23021 &dwarf2_block_frame_base_locexpr_funcs);
23022 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23023 &dwarf2_block_frame_base_loclist_funcs);