1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
48 #include "complaints.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
58 #include "typeprint.h"
61 #include "completer.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
72 #include "filestuff.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
84 #include <sys/types.h>
86 #include <unordered_set>
87 #include <unordered_map>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
112 static const struct objfile_data *dwarf2_objfile_data_key;
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
134 struct name_component
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
141 /* The symbol's index in the symbol and constant pool tables of a
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
149 struct mapped_index_base
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
167 /* Return whether the name at IDX in the symbol table should be
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
174 /* Build the symbol name component sorted vector, if we haven't
176 void build_name_components ();
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
185 /* Prevent deleting/destroying via a base class pointer. */
187 ~mapped_index_base() = default;
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
197 const offset_type name;
198 const offset_type vec;
201 /* Index data format version. */
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
213 bool symbol_name_slot_invalid (offset_type idx) const override
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
219 /* Convenience method to get at the name of the symbol at IDX in the
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
254 /* Attribute name DW_IDX_*. */
257 /* Attribute form DW_FORM_*. */
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
263 std::vector<attr> attr_vec;
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
268 const char *namei_to_name (uint32_t namei) const;
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
276 size_t symbol_name_count () const override
277 { return this->name_count; }
280 /* See dwarf2read.h. */
283 get_dwarf2_per_objfile (struct objfile *objfile)
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
299 /* Default names of the debugging sections. */
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
327 /* List of DWO/DWP sections. */
329 static const struct dwop_section_names
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
360 /* local data types */
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
378 enum dwarf_unit_type unit_type;
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
400 /* The type to which the method is attached, i.e., its parent class. */
403 /* The index of the method in the type's function fieldlists. */
406 /* The index of the method in the fieldlist. */
409 /* The name of the DIE. */
412 /* The DIE associated with this method. */
413 struct die_info *die;
416 /* Internal state when decoding a particular compilation unit. */
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
430 /* Non-zero if base_address has been set. */
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
437 const char *producer = nullptr;
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
471 /* How many compilation units ago was this CU last referenced? */
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
511 struct dwo_unit *dwo_unit = nullptr;
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 unsigned int has_loclist : 1;
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
553 unsigned int producer_is_gcc_lt_4_3 : 1;
554 unsigned int producer_is_icc_lt_14 : 1;
556 /* When set, the file that we're processing is known to have
557 debugging info for C++ namespaces. GCC 3.3.x did not produce
558 this information, but later versions do. */
560 unsigned int processing_has_namespace_info : 1;
562 struct partial_die_info *find_partial_die (sect_offset sect_off);
565 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
566 This includes type_unit_group and quick_file_names. */
568 struct stmt_list_hash
570 /* The DWO unit this table is from or NULL if there is none. */
571 struct dwo_unit *dwo_unit;
573 /* Offset in .debug_line or .debug_line.dwo. */
574 sect_offset line_sect_off;
577 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
578 an object of this type. */
580 struct type_unit_group
582 /* dwarf2read.c's main "handle" on a TU symtab.
583 To simplify things we create an artificial CU that "includes" all the
584 type units using this stmt_list so that the rest of the code still has
585 a "per_cu" handle on the symtab.
586 This PER_CU is recognized by having no section. */
587 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
588 struct dwarf2_per_cu_data per_cu;
590 /* The TUs that share this DW_AT_stmt_list entry.
591 This is added to while parsing type units to build partial symtabs,
592 and is deleted afterwards and not used again. */
593 VEC (sig_type_ptr) *tus;
595 /* The compunit symtab.
596 Type units in a group needn't all be defined in the same source file,
597 so we create an essentially anonymous symtab as the compunit symtab. */
598 struct compunit_symtab *compunit_symtab;
600 /* The data used to construct the hash key. */
601 struct stmt_list_hash hash;
603 /* The number of symtabs from the line header.
604 The value here must match line_header.num_file_names. */
605 unsigned int num_symtabs;
607 /* The symbol tables for this TU (obtained from the files listed in
609 WARNING: The order of entries here must match the order of entries
610 in the line header. After the first TU using this type_unit_group, the
611 line header for the subsequent TUs is recreated from this. This is done
612 because we need to use the same symtabs for each TU using the same
613 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
614 there's no guarantee the line header doesn't have duplicate entries. */
615 struct symtab **symtabs;
618 /* These sections are what may appear in a (real or virtual) DWO file. */
622 struct dwarf2_section_info abbrev;
623 struct dwarf2_section_info line;
624 struct dwarf2_section_info loc;
625 struct dwarf2_section_info loclists;
626 struct dwarf2_section_info macinfo;
627 struct dwarf2_section_info macro;
628 struct dwarf2_section_info str;
629 struct dwarf2_section_info str_offsets;
630 /* In the case of a virtual DWO file, these two are unused. */
631 struct dwarf2_section_info info;
632 VEC (dwarf2_section_info_def) *types;
635 /* CUs/TUs in DWP/DWO files. */
639 /* Backlink to the containing struct dwo_file. */
640 struct dwo_file *dwo_file;
642 /* The "id" that distinguishes this CU/TU.
643 .debug_info calls this "dwo_id", .debug_types calls this "signature".
644 Since signatures came first, we stick with it for consistency. */
647 /* The section this CU/TU lives in, in the DWO file. */
648 struct dwarf2_section_info *section;
650 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
651 sect_offset sect_off;
654 /* For types, offset in the type's DIE of the type defined by this TU. */
655 cu_offset type_offset_in_tu;
658 /* include/dwarf2.h defines the DWP section codes.
659 It defines a max value but it doesn't define a min value, which we
660 use for error checking, so provide one. */
662 enum dwp_v2_section_ids
667 /* Data for one DWO file.
669 This includes virtual DWO files (a virtual DWO file is a DWO file as it
670 appears in a DWP file). DWP files don't really have DWO files per se -
671 comdat folding of types "loses" the DWO file they came from, and from
672 a high level view DWP files appear to contain a mass of random types.
673 However, to maintain consistency with the non-DWP case we pretend DWP
674 files contain virtual DWO files, and we assign each TU with one virtual
675 DWO file (generally based on the line and abbrev section offsets -
676 a heuristic that seems to work in practice). */
680 /* The DW_AT_GNU_dwo_name attribute.
681 For virtual DWO files the name is constructed from the section offsets
682 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
683 from related CU+TUs. */
684 const char *dwo_name;
686 /* The DW_AT_comp_dir attribute. */
687 const char *comp_dir;
689 /* The bfd, when the file is open. Otherwise this is NULL.
690 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
693 /* The sections that make up this DWO file.
694 Remember that for virtual DWO files in DWP V2, these are virtual
695 sections (for lack of a better name). */
696 struct dwo_sections sections;
698 /* The CUs in the file.
699 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
700 an extension to handle LLVM's Link Time Optimization output (where
701 multiple source files may be compiled into a single object/dwo pair). */
704 /* Table of TUs in the file.
705 Each element is a struct dwo_unit. */
709 /* These sections are what may appear in a DWP file. */
713 /* These are used by both DWP version 1 and 2. */
714 struct dwarf2_section_info str;
715 struct dwarf2_section_info cu_index;
716 struct dwarf2_section_info tu_index;
718 /* These are only used by DWP version 2 files.
719 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
720 sections are referenced by section number, and are not recorded here.
721 In DWP version 2 there is at most one copy of all these sections, each
722 section being (effectively) comprised of the concatenation of all of the
723 individual sections that exist in the version 1 format.
724 To keep the code simple we treat each of these concatenated pieces as a
725 section itself (a virtual section?). */
726 struct dwarf2_section_info abbrev;
727 struct dwarf2_section_info info;
728 struct dwarf2_section_info line;
729 struct dwarf2_section_info loc;
730 struct dwarf2_section_info macinfo;
731 struct dwarf2_section_info macro;
732 struct dwarf2_section_info str_offsets;
733 struct dwarf2_section_info types;
736 /* These sections are what may appear in a virtual DWO file in DWP version 1.
737 A virtual DWO file is a DWO file as it appears in a DWP file. */
739 struct virtual_v1_dwo_sections
741 struct dwarf2_section_info abbrev;
742 struct dwarf2_section_info line;
743 struct dwarf2_section_info loc;
744 struct dwarf2_section_info macinfo;
745 struct dwarf2_section_info macro;
746 struct dwarf2_section_info str_offsets;
747 /* Each DWP hash table entry records one CU or one TU.
748 That is recorded here, and copied to dwo_unit.section. */
749 struct dwarf2_section_info info_or_types;
752 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
753 In version 2, the sections of the DWO files are concatenated together
754 and stored in one section of that name. Thus each ELF section contains
755 several "virtual" sections. */
757 struct virtual_v2_dwo_sections
759 bfd_size_type abbrev_offset;
760 bfd_size_type abbrev_size;
762 bfd_size_type line_offset;
763 bfd_size_type line_size;
765 bfd_size_type loc_offset;
766 bfd_size_type loc_size;
768 bfd_size_type macinfo_offset;
769 bfd_size_type macinfo_size;
771 bfd_size_type macro_offset;
772 bfd_size_type macro_size;
774 bfd_size_type str_offsets_offset;
775 bfd_size_type str_offsets_size;
777 /* Each DWP hash table entry records one CU or one TU.
778 That is recorded here, and copied to dwo_unit.section. */
779 bfd_size_type info_or_types_offset;
780 bfd_size_type info_or_types_size;
783 /* Contents of DWP hash tables. */
785 struct dwp_hash_table
787 uint32_t version, nr_columns;
788 uint32_t nr_units, nr_slots;
789 const gdb_byte *hash_table, *unit_table;
794 const gdb_byte *indices;
798 /* This is indexed by column number and gives the id of the section
800 #define MAX_NR_V2_DWO_SECTIONS \
801 (1 /* .debug_info or .debug_types */ \
802 + 1 /* .debug_abbrev */ \
803 + 1 /* .debug_line */ \
804 + 1 /* .debug_loc */ \
805 + 1 /* .debug_str_offsets */ \
806 + 1 /* .debug_macro or .debug_macinfo */)
807 int section_ids[MAX_NR_V2_DWO_SECTIONS];
808 const gdb_byte *offsets;
809 const gdb_byte *sizes;
814 /* Data for one DWP file. */
818 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
820 dbfd (std::move (abfd))
824 /* Name of the file. */
827 /* File format version. */
831 gdb_bfd_ref_ptr dbfd;
833 /* Section info for this file. */
834 struct dwp_sections sections {};
836 /* Table of CUs in the file. */
837 const struct dwp_hash_table *cus = nullptr;
839 /* Table of TUs in the file. */
840 const struct dwp_hash_table *tus = nullptr;
842 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
843 htab_t loaded_cus {};
844 htab_t loaded_tus {};
846 /* Table to map ELF section numbers to their sections.
847 This is only needed for the DWP V1 file format. */
848 unsigned int num_sections = 0;
849 asection **elf_sections = nullptr;
852 /* This represents a '.dwz' file. */
856 dwz_file (gdb_bfd_ref_ptr &&bfd)
857 : dwz_bfd (std::move (bfd))
861 /* A dwz file can only contain a few sections. */
862 struct dwarf2_section_info abbrev {};
863 struct dwarf2_section_info info {};
864 struct dwarf2_section_info str {};
865 struct dwarf2_section_info line {};
866 struct dwarf2_section_info macro {};
867 struct dwarf2_section_info gdb_index {};
868 struct dwarf2_section_info debug_names {};
871 gdb_bfd_ref_ptr dwz_bfd;
873 /* If we loaded the index from an external file, this contains the
874 resources associated to the open file, memory mapping, etc. */
875 std::unique_ptr<index_cache_resource> index_cache_res;
878 /* Struct used to pass misc. parameters to read_die_and_children, et
879 al. which are used for both .debug_info and .debug_types dies.
880 All parameters here are unchanging for the life of the call. This
881 struct exists to abstract away the constant parameters of die reading. */
883 struct die_reader_specs
885 /* The bfd of die_section. */
888 /* The CU of the DIE we are parsing. */
889 struct dwarf2_cu *cu;
891 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
892 struct dwo_file *dwo_file;
894 /* The section the die comes from.
895 This is either .debug_info or .debug_types, or the .dwo variants. */
896 struct dwarf2_section_info *die_section;
898 /* die_section->buffer. */
899 const gdb_byte *buffer;
901 /* The end of the buffer. */
902 const gdb_byte *buffer_end;
904 /* The value of the DW_AT_comp_dir attribute. */
905 const char *comp_dir;
907 /* The abbreviation table to use when reading the DIEs. */
908 struct abbrev_table *abbrev_table;
911 /* Type of function passed to init_cutu_and_read_dies, et.al. */
912 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
913 const gdb_byte *info_ptr,
914 struct die_info *comp_unit_die,
918 /* A 1-based directory index. This is a strong typedef to prevent
919 accidentally using a directory index as a 0-based index into an
921 enum class dir_index : unsigned int {};
923 /* Likewise, a 1-based file name index. */
924 enum class file_name_index : unsigned int {};
928 file_entry () = default;
930 file_entry (const char *name_, dir_index d_index_,
931 unsigned int mod_time_, unsigned int length_)
934 mod_time (mod_time_),
938 /* Return the include directory at D_INDEX stored in LH. Returns
939 NULL if D_INDEX is out of bounds. */
940 const char *include_dir (const line_header *lh) const;
942 /* The file name. Note this is an observing pointer. The memory is
943 owned by debug_line_buffer. */
946 /* The directory index (1-based). */
947 dir_index d_index {};
949 unsigned int mod_time {};
951 unsigned int length {};
953 /* True if referenced by the Line Number Program. */
956 /* The associated symbol table, if any. */
957 struct symtab *symtab {};
960 /* The line number information for a compilation unit (found in the
961 .debug_line section) begins with a "statement program header",
962 which contains the following information. */
969 /* Add an entry to the include directory table. */
970 void add_include_dir (const char *include_dir);
972 /* Add an entry to the file name table. */
973 void add_file_name (const char *name, dir_index d_index,
974 unsigned int mod_time, unsigned int length);
976 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
978 const char *include_dir_at (dir_index index) const
980 /* Convert directory index number (1-based) to vector index
982 size_t vec_index = to_underlying (index) - 1;
984 if (vec_index >= include_dirs.size ())
986 return include_dirs[vec_index];
989 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
991 file_entry *file_name_at (file_name_index index)
993 /* Convert file name index number (1-based) to vector index
995 size_t vec_index = to_underlying (index) - 1;
997 if (vec_index >= file_names.size ())
999 return &file_names[vec_index];
1002 /* Const version of the above. */
1003 const file_entry *file_name_at (unsigned int index) const
1005 if (index >= file_names.size ())
1007 return &file_names[index];
1010 /* Offset of line number information in .debug_line section. */
1011 sect_offset sect_off {};
1013 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1014 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016 unsigned int total_length {};
1017 unsigned short version {};
1018 unsigned int header_length {};
1019 unsigned char minimum_instruction_length {};
1020 unsigned char maximum_ops_per_instruction {};
1021 unsigned char default_is_stmt {};
1023 unsigned char line_range {};
1024 unsigned char opcode_base {};
1026 /* standard_opcode_lengths[i] is the number of operands for the
1027 standard opcode whose value is i. This means that
1028 standard_opcode_lengths[0] is unused, and the last meaningful
1029 element is standard_opcode_lengths[opcode_base - 1]. */
1030 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1032 /* The include_directories table. Note these are observing
1033 pointers. The memory is owned by debug_line_buffer. */
1034 std::vector<const char *> include_dirs;
1036 /* The file_names table. */
1037 std::vector<file_entry> file_names;
1039 /* The start and end of the statement program following this
1040 header. These point into dwarf2_per_objfile->line_buffer. */
1041 const gdb_byte *statement_program_start {}, *statement_program_end {};
1044 typedef std::unique_ptr<line_header> line_header_up;
1047 file_entry::include_dir (const line_header *lh) const
1049 return lh->include_dir_at (d_index);
1052 /* When we construct a partial symbol table entry we only
1053 need this much information. */
1054 struct partial_die_info : public allocate_on_obstack
1056 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1058 /* Disable assign but still keep copy ctor, which is needed
1059 load_partial_dies. */
1060 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1062 /* Adjust the partial die before generating a symbol for it. This
1063 function may set the is_external flag or change the DIE's
1065 void fixup (struct dwarf2_cu *cu);
1067 /* Read a minimal amount of information into the minimal die
1069 const gdb_byte *read (const struct die_reader_specs *reader,
1070 const struct abbrev_info &abbrev,
1071 const gdb_byte *info_ptr);
1073 /* Offset of this DIE. */
1074 const sect_offset sect_off;
1076 /* DWARF-2 tag for this DIE. */
1077 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1079 /* Assorted flags describing the data found in this DIE. */
1080 const unsigned int has_children : 1;
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
1087 unsigned int may_be_inlined : 1;
1089 /* This DIE has been marked DW_AT_main_subprogram. */
1090 unsigned int main_subprogram : 1;
1092 /* Flag set if the SCOPE field of this structure has been
1094 unsigned int scope_set : 1;
1096 /* Flag set if the DIE has a byte_size attribute. */
1097 unsigned int has_byte_size : 1;
1099 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1100 unsigned int has_const_value : 1;
1102 /* Flag set if any of the DIE's children are template arguments. */
1103 unsigned int has_template_arguments : 1;
1105 /* Flag set if fixup has been called on this die. */
1106 unsigned int fixup_called : 1;
1108 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1109 unsigned int is_dwz : 1;
1111 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1112 unsigned int spec_is_dwz : 1;
1114 /* The name of this DIE. Normally the value of DW_AT_name, but
1115 sometimes a default name for unnamed DIEs. */
1116 const char *name = nullptr;
1118 /* The linkage name, if present. */
1119 const char *linkage_name = nullptr;
1121 /* The scope to prepend to our children. This is generally
1122 allocated on the comp_unit_obstack, so will disappear
1123 when this compilation unit leaves the cache. */
1124 const char *scope = nullptr;
1126 /* Some data associated with the partial DIE. The tag determines
1127 which field is live. */
1130 /* The location description associated with this DIE, if any. */
1131 struct dwarf_block *locdesc;
1132 /* The offset of an import, for DW_TAG_imported_unit. */
1133 sect_offset sect_off;
1136 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1137 CORE_ADDR lowpc = 0;
1138 CORE_ADDR highpc = 0;
1140 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1141 DW_AT_sibling, if any. */
1142 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1143 could return DW_AT_sibling values to its caller load_partial_dies. */
1144 const gdb_byte *sibling = nullptr;
1146 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1147 DW_AT_specification (or DW_AT_abstract_origin or
1148 DW_AT_extension). */
1149 sect_offset spec_offset {};
1151 /* Pointers to this DIE's parent, first child, and next sibling,
1153 struct partial_die_info *die_parent = nullptr;
1154 struct partial_die_info *die_child = nullptr;
1155 struct partial_die_info *die_sibling = nullptr;
1157 friend struct partial_die_info *
1158 dwarf2_cu::find_partial_die (sect_offset sect_off);
1161 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1162 partial_die_info (sect_offset sect_off)
1163 : partial_die_info (sect_off, DW_TAG_padding, 0)
1167 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1169 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1174 has_specification = 0;
1177 main_subprogram = 0;
1180 has_const_value = 0;
1181 has_template_arguments = 0;
1188 /* This data structure holds the information of an abbrev. */
1191 unsigned int number; /* number identifying abbrev */
1192 enum dwarf_tag tag; /* dwarf tag */
1193 unsigned short has_children; /* boolean */
1194 unsigned short num_attrs; /* number of attributes */
1195 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1196 struct abbrev_info *next; /* next in chain */
1201 ENUM_BITFIELD(dwarf_attribute) name : 16;
1202 ENUM_BITFIELD(dwarf_form) form : 16;
1204 /* It is valid only if FORM is DW_FORM_implicit_const. */
1205 LONGEST implicit_const;
1208 /* Size of abbrev_table.abbrev_hash_table. */
1209 #define ABBREV_HASH_SIZE 121
1211 /* Top level data structure to contain an abbreviation table. */
1215 explicit abbrev_table (sect_offset off)
1219 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1220 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1223 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1225 /* Allocate space for a struct abbrev_info object in
1227 struct abbrev_info *alloc_abbrev ();
1229 /* Add an abbreviation to the table. */
1230 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1232 /* Look up an abbrev in the table.
1233 Returns NULL if the abbrev is not found. */
1235 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1238 /* Where the abbrev table came from.
1239 This is used as a sanity check when the table is used. */
1240 const sect_offset sect_off;
1242 /* Storage for the abbrev table. */
1243 auto_obstack abbrev_obstack;
1247 /* Hash table of abbrevs.
1248 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1249 It could be statically allocated, but the previous code didn't so we
1251 struct abbrev_info **m_abbrevs;
1254 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1256 /* Attributes have a name and a value. */
1259 ENUM_BITFIELD(dwarf_attribute) name : 16;
1260 ENUM_BITFIELD(dwarf_form) form : 15;
1262 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1263 field should be in u.str (existing only for DW_STRING) but it is kept
1264 here for better struct attribute alignment. */
1265 unsigned int string_is_canonical : 1;
1270 struct dwarf_block *blk;
1279 /* This data structure holds a complete die structure. */
1282 /* DWARF-2 tag for this DIE. */
1283 ENUM_BITFIELD(dwarf_tag) tag : 16;
1285 /* Number of attributes */
1286 unsigned char num_attrs;
1288 /* True if we're presently building the full type name for the
1289 type derived from this DIE. */
1290 unsigned char building_fullname : 1;
1292 /* True if this die is in process. PR 16581. */
1293 unsigned char in_process : 1;
1296 unsigned int abbrev;
1298 /* Offset in .debug_info or .debug_types section. */
1299 sect_offset sect_off;
1301 /* The dies in a compilation unit form an n-ary tree. PARENT
1302 points to this die's parent; CHILD points to the first child of
1303 this node; and all the children of a given node are chained
1304 together via their SIBLING fields. */
1305 struct die_info *child; /* Its first child, if any. */
1306 struct die_info *sibling; /* Its next sibling, if any. */
1307 struct die_info *parent; /* Its parent, if any. */
1309 /* An array of attributes, with NUM_ATTRS elements. There may be
1310 zero, but it's not common and zero-sized arrays are not
1311 sufficiently portable C. */
1312 struct attribute attrs[1];
1315 /* Get at parts of an attribute structure. */
1317 #define DW_STRING(attr) ((attr)->u.str)
1318 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1319 #define DW_UNSND(attr) ((attr)->u.unsnd)
1320 #define DW_BLOCK(attr) ((attr)->u.blk)
1321 #define DW_SND(attr) ((attr)->u.snd)
1322 #define DW_ADDR(attr) ((attr)->u.addr)
1323 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1325 /* Blocks are a bunch of untyped bytes. */
1330 /* Valid only if SIZE is not zero. */
1331 const gdb_byte *data;
1334 #ifndef ATTR_ALLOC_CHUNK
1335 #define ATTR_ALLOC_CHUNK 4
1338 /* Allocate fields for structs, unions and enums in this size. */
1339 #ifndef DW_FIELD_ALLOC_CHUNK
1340 #define DW_FIELD_ALLOC_CHUNK 4
1343 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1344 but this would require a corresponding change in unpack_field_as_long
1346 static int bits_per_byte = 8;
1348 /* When reading a variant or variant part, we track a bit more
1349 information about the field, and store it in an object of this
1352 struct variant_field
1354 /* If we see a DW_TAG_variant, then this will be the discriminant
1356 ULONGEST discriminant_value;
1357 /* If we see a DW_TAG_variant, then this will be set if this is the
1359 bool default_branch;
1360 /* While reading a DW_TAG_variant_part, this will be set if this
1361 field is the discriminant. */
1362 bool is_discriminant;
1367 int accessibility = 0;
1369 /* Extra information to describe a variant or variant part. */
1370 struct variant_field variant {};
1371 struct field field {};
1376 const char *name = nullptr;
1377 std::vector<struct fn_field> fnfields;
1380 /* The routines that read and process dies for a C struct or C++ class
1381 pass lists of data member fields and lists of member function fields
1382 in an instance of a field_info structure, as defined below. */
1385 /* List of data member and baseclasses fields. */
1386 std::vector<struct nextfield> fields;
1387 std::vector<struct nextfield> baseclasses;
1389 /* Number of fields (including baseclasses). */
1392 /* Set if the accesibility of one of the fields is not public. */
1393 int non_public_fields = 0;
1395 /* Member function fieldlist array, contains name of possibly overloaded
1396 member function, number of overloaded member functions and a pointer
1397 to the head of the member function field chain. */
1398 std::vector<struct fnfieldlist> fnfieldlists;
1400 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1401 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1402 std::vector<struct decl_field> typedef_field_list;
1404 /* Nested types defined by this class and the number of elements in this
1406 std::vector<struct decl_field> nested_types_list;
1409 /* One item on the queue of compilation units to read in full symbols
1411 struct dwarf2_queue_item
1413 struct dwarf2_per_cu_data *per_cu;
1414 enum language pretend_language;
1415 struct dwarf2_queue_item *next;
1418 /* The current queue. */
1419 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1421 /* Loaded secondary compilation units are kept in memory until they
1422 have not been referenced for the processing of this many
1423 compilation units. Set this to zero to disable caching. Cache
1424 sizes of up to at least twenty will improve startup time for
1425 typical inter-CU-reference binaries, at an obvious memory cost. */
1426 static int dwarf_max_cache_age = 5;
1428 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1429 struct cmd_list_element *c, const char *value)
1431 fprintf_filtered (file, _("The upper bound on the age of cached "
1432 "DWARF compilation units is %s.\n"),
1436 /* local function prototypes */
1438 static const char *get_section_name (const struct dwarf2_section_info *);
1440 static const char *get_section_file_name (const struct dwarf2_section_info *);
1442 static void dwarf2_find_base_address (struct die_info *die,
1443 struct dwarf2_cu *cu);
1445 static struct partial_symtab *create_partial_symtab
1446 (struct dwarf2_per_cu_data *per_cu, const char *name);
1448 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1449 const gdb_byte *info_ptr,
1450 struct die_info *type_unit_die,
1451 int has_children, void *data);
1453 static void dwarf2_build_psymtabs_hard
1454 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1456 static void scan_partial_symbols (struct partial_die_info *,
1457 CORE_ADDR *, CORE_ADDR *,
1458 int, struct dwarf2_cu *);
1460 static void add_partial_symbol (struct partial_die_info *,
1461 struct dwarf2_cu *);
1463 static void add_partial_namespace (struct partial_die_info *pdi,
1464 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1465 int set_addrmap, struct dwarf2_cu *cu);
1467 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1468 CORE_ADDR *highpc, int set_addrmap,
1469 struct dwarf2_cu *cu);
1471 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1472 struct dwarf2_cu *cu);
1474 static void add_partial_subprogram (struct partial_die_info *pdi,
1475 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1476 int need_pc, struct dwarf2_cu *cu);
1478 static void dwarf2_read_symtab (struct partial_symtab *,
1481 static void psymtab_to_symtab_1 (struct partial_symtab *);
1483 static abbrev_table_up abbrev_table_read_table
1484 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1487 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1489 static struct partial_die_info *load_partial_dies
1490 (const struct die_reader_specs *, const gdb_byte *, int);
1492 static struct partial_die_info *find_partial_die (sect_offset, int,
1493 struct dwarf2_cu *);
1495 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1496 struct attribute *, struct attr_abbrev *,
1499 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1501 static int read_1_signed_byte (bfd *, const gdb_byte *);
1503 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1505 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1507 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1509 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1512 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1514 static LONGEST read_checked_initial_length_and_offset
1515 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1516 unsigned int *, unsigned int *);
1518 static LONGEST read_offset (bfd *, const gdb_byte *,
1519 const struct comp_unit_head *,
1522 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1524 static sect_offset read_abbrev_offset
1525 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1526 struct dwarf2_section_info *, sect_offset);
1528 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1530 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1532 static const char *read_indirect_string
1533 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1534 const struct comp_unit_head *, unsigned int *);
1536 static const char *read_indirect_line_string
1537 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1538 const struct comp_unit_head *, unsigned int *);
1540 static const char *read_indirect_string_at_offset
1541 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1542 LONGEST str_offset);
1544 static const char *read_indirect_string_from_dwz
1545 (struct objfile *objfile, struct dwz_file *, LONGEST);
1547 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1549 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1553 static const char *read_str_index (const struct die_reader_specs *reader,
1554 ULONGEST str_index);
1556 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1558 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1559 struct dwarf2_cu *);
1561 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1564 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1565 struct dwarf2_cu *cu);
1567 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1568 struct dwarf2_cu *cu);
1570 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1572 static struct die_info *die_specification (struct die_info *die,
1573 struct dwarf2_cu **);
1575 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1576 struct dwarf2_cu *cu);
1578 static void dwarf_decode_lines (struct line_header *, const char *,
1579 struct dwarf2_cu *, struct partial_symtab *,
1580 CORE_ADDR, int decode_mapping);
1582 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1585 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1586 const char *, const char *,
1589 static struct symbol *new_symbol (struct die_info *, struct type *,
1590 struct dwarf2_cu *, struct symbol * = NULL);
1592 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1593 struct dwarf2_cu *);
1595 static void dwarf2_const_value_attr (const struct attribute *attr,
1598 struct obstack *obstack,
1599 struct dwarf2_cu *cu, LONGEST *value,
1600 const gdb_byte **bytes,
1601 struct dwarf2_locexpr_baton **baton);
1603 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1605 static int need_gnat_info (struct dwarf2_cu *);
1607 static struct type *die_descriptive_type (struct die_info *,
1608 struct dwarf2_cu *);
1610 static void set_descriptive_type (struct type *, struct die_info *,
1611 struct dwarf2_cu *);
1613 static struct type *die_containing_type (struct die_info *,
1614 struct dwarf2_cu *);
1616 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1617 struct dwarf2_cu *);
1619 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1621 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1623 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1625 static char *typename_concat (struct obstack *obs, const char *prefix,
1626 const char *suffix, int physname,
1627 struct dwarf2_cu *cu);
1629 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1631 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1633 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1635 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1637 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1639 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1641 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1642 struct dwarf2_cu *, struct partial_symtab *);
1644 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1645 values. Keep the items ordered with increasing constraints compliance. */
1648 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1649 PC_BOUNDS_NOT_PRESENT,
1651 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1652 were present but they do not form a valid range of PC addresses. */
1655 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1658 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1662 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1665 struct partial_symtab *);
1667 static void get_scope_pc_bounds (struct die_info *,
1668 CORE_ADDR *, CORE_ADDR *,
1669 struct dwarf2_cu *);
1671 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1672 CORE_ADDR, struct dwarf2_cu *);
1674 static void dwarf2_add_field (struct field_info *, struct die_info *,
1675 struct dwarf2_cu *);
1677 static void dwarf2_attach_fields_to_type (struct field_info *,
1678 struct type *, struct dwarf2_cu *);
1680 static void dwarf2_add_member_fn (struct field_info *,
1681 struct die_info *, struct type *,
1682 struct dwarf2_cu *);
1684 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1686 struct dwarf2_cu *);
1688 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1690 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1692 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1694 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1696 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1698 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1700 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1702 static struct type *read_module_type (struct die_info *die,
1703 struct dwarf2_cu *cu);
1705 static const char *namespace_name (struct die_info *die,
1706 int *is_anonymous, struct dwarf2_cu *);
1708 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1710 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1712 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1713 struct dwarf2_cu *);
1715 static struct die_info *read_die_and_siblings_1
1716 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1719 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1720 const gdb_byte *info_ptr,
1721 const gdb_byte **new_info_ptr,
1722 struct die_info *parent);
1724 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1725 struct die_info **, const gdb_byte *,
1728 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1729 struct die_info **, const gdb_byte *,
1732 static void process_die (struct die_info *, struct dwarf2_cu *);
1734 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1737 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1739 static const char *dwarf2_full_name (const char *name,
1740 struct die_info *die,
1741 struct dwarf2_cu *cu);
1743 static const char *dwarf2_physname (const char *name, struct die_info *die,
1744 struct dwarf2_cu *cu);
1746 static struct die_info *dwarf2_extension (struct die_info *die,
1747 struct dwarf2_cu **);
1749 static const char *dwarf_tag_name (unsigned int);
1751 static const char *dwarf_attr_name (unsigned int);
1753 static const char *dwarf_form_name (unsigned int);
1755 static const char *dwarf_bool_name (unsigned int);
1757 static const char *dwarf_type_encoding_name (unsigned int);
1759 static struct die_info *sibling_die (struct die_info *);
1761 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1763 static void dump_die_for_error (struct die_info *);
1765 static void dump_die_1 (struct ui_file *, int level, int max_level,
1768 /*static*/ void dump_die (struct die_info *, int max_level);
1770 static void store_in_ref_table (struct die_info *,
1771 struct dwarf2_cu *);
1773 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1775 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1777 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1778 const struct attribute *,
1779 struct dwarf2_cu **);
1781 static struct die_info *follow_die_ref (struct die_info *,
1782 const struct attribute *,
1783 struct dwarf2_cu **);
1785 static struct die_info *follow_die_sig (struct die_info *,
1786 const struct attribute *,
1787 struct dwarf2_cu **);
1789 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1790 struct dwarf2_cu *);
1792 static struct type *get_DW_AT_signature_type (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu *);
1796 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1798 static void read_signatured_type (struct signatured_type *);
1800 static int attr_to_dynamic_prop (const struct attribute *attr,
1801 struct die_info *die, struct dwarf2_cu *cu,
1802 struct dynamic_prop *prop);
1804 /* memory allocation interface */
1806 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1808 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1810 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1812 static int attr_form_is_block (const struct attribute *);
1814 static int attr_form_is_section_offset (const struct attribute *);
1816 static int attr_form_is_constant (const struct attribute *);
1818 static int attr_form_is_ref (const struct attribute *);
1820 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1821 struct dwarf2_loclist_baton *baton,
1822 const struct attribute *attr);
1824 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1826 struct dwarf2_cu *cu,
1829 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1830 const gdb_byte *info_ptr,
1831 struct abbrev_info *abbrev);
1833 static hashval_t partial_die_hash (const void *item);
1835 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1837 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1838 (sect_offset sect_off, unsigned int offset_in_dwz,
1839 struct dwarf2_per_objfile *dwarf2_per_objfile);
1841 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1842 struct die_info *comp_unit_die,
1843 enum language pretend_language);
1845 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1847 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1849 static struct type *set_die_type (struct die_info *, struct type *,
1850 struct dwarf2_cu *);
1852 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1854 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1856 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1859 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1862 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1865 static void dwarf2_add_dependence (struct dwarf2_cu *,
1866 struct dwarf2_per_cu_data *);
1868 static void dwarf2_mark (struct dwarf2_cu *);
1870 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1872 static struct type *get_die_type_at_offset (sect_offset,
1873 struct dwarf2_per_cu_data *);
1875 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1877 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1878 enum language pretend_language);
1880 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1882 /* Class, the destructor of which frees all allocated queue entries. This
1883 will only have work to do if an error was thrown while processing the
1884 dwarf. If no error was thrown then the queue entries should have all
1885 been processed, and freed, as we went along. */
1887 class dwarf2_queue_guard
1890 dwarf2_queue_guard () = default;
1892 /* Free any entries remaining on the queue. There should only be
1893 entries left if we hit an error while processing the dwarf. */
1894 ~dwarf2_queue_guard ()
1896 struct dwarf2_queue_item *item, *last;
1898 item = dwarf2_queue;
1901 /* Anything still marked queued is likely to be in an
1902 inconsistent state, so discard it. */
1903 if (item->per_cu->queued)
1905 if (item->per_cu->cu != NULL)
1906 free_one_cached_comp_unit (item->per_cu);
1907 item->per_cu->queued = 0;
1915 dwarf2_queue = dwarf2_queue_tail = NULL;
1919 /* The return type of find_file_and_directory. Note, the enclosed
1920 string pointers are only valid while this object is valid. */
1922 struct file_and_directory
1924 /* The filename. This is never NULL. */
1927 /* The compilation directory. NULL if not known. If we needed to
1928 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1929 points directly to the DW_AT_comp_dir string attribute owned by
1930 the obstack that owns the DIE. */
1931 const char *comp_dir;
1933 /* If we needed to build a new string for comp_dir, this is what
1934 owns the storage. */
1935 std::string comp_dir_storage;
1938 static file_and_directory find_file_and_directory (struct die_info *die,
1939 struct dwarf2_cu *cu);
1941 static char *file_full_name (int file, struct line_header *lh,
1942 const char *comp_dir);
1944 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1945 enum class rcuh_kind { COMPILE, TYPE };
1947 static const gdb_byte *read_and_check_comp_unit_head
1948 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1949 struct comp_unit_head *header,
1950 struct dwarf2_section_info *section,
1951 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1952 rcuh_kind section_kind);
1954 static void init_cutu_and_read_dies
1955 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1956 int use_existing_cu, int keep, bool skip_partial,
1957 die_reader_func_ftype *die_reader_func, void *data);
1959 static void init_cutu_and_read_dies_simple
1960 (struct dwarf2_per_cu_data *this_cu,
1961 die_reader_func_ftype *die_reader_func, void *data);
1963 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1965 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1967 static struct dwo_unit *lookup_dwo_unit_in_dwp
1968 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1969 struct dwp_file *dwp_file, const char *comp_dir,
1970 ULONGEST signature, int is_debug_types);
1972 static struct dwp_file *get_dwp_file
1973 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1975 static struct dwo_unit *lookup_dwo_comp_unit
1976 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1978 static struct dwo_unit *lookup_dwo_type_unit
1979 (struct signatured_type *, const char *, const char *);
1981 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1983 static void free_dwo_file (struct dwo_file *);
1985 /* A unique_ptr helper to free a dwo_file. */
1987 struct dwo_file_deleter
1989 void operator() (struct dwo_file *df) const
1995 /* A unique pointer to a dwo_file. */
1997 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1999 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2001 static void check_producer (struct dwarf2_cu *cu);
2003 static void free_line_header_voidp (void *arg);
2005 /* Various complaints about symbol reading that don't abort the process. */
2008 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2010 complaint (_("statement list doesn't fit in .debug_line section"));
2014 dwarf2_debug_line_missing_file_complaint (void)
2016 complaint (_(".debug_line section has line data without a file"));
2020 dwarf2_debug_line_missing_end_sequence_complaint (void)
2022 complaint (_(".debug_line section has line "
2023 "program sequence without an end"));
2027 dwarf2_complex_location_expr_complaint (void)
2029 complaint (_("location expression too complex"));
2033 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2036 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2041 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2043 complaint (_("debug info runs off end of %s section"
2045 get_section_name (section),
2046 get_section_file_name (section));
2050 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2052 complaint (_("macro debug info contains a "
2053 "malformed macro definition:\n`%s'"),
2058 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2060 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2064 /* Hash function for line_header_hash. */
2067 line_header_hash (const struct line_header *ofs)
2069 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2072 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2075 line_header_hash_voidp (const void *item)
2077 const struct line_header *ofs = (const struct line_header *) item;
2079 return line_header_hash (ofs);
2082 /* Equality function for line_header_hash. */
2085 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2087 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2088 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2090 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2091 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2096 /* Read the given attribute value as an address, taking the attribute's
2097 form into account. */
2100 attr_value_as_address (struct attribute *attr)
2104 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2121 addr = DW_ADDR (attr);
2126 /* See declaration. */
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2133 names = &dwarf2_elf_names;
2135 bfd *obfd = objfile->obfd;
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2141 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2143 dwarf2_per_objfile::~dwarf2_per_objfile ()
2145 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2146 free_cached_comp_units ();
2148 if (quick_file_names_table)
2149 htab_delete (quick_file_names_table);
2151 if (line_header_hash)
2152 htab_delete (line_header_hash);
2154 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2155 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2157 for (signatured_type *sig_type : all_type_units)
2158 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2160 VEC_free (dwarf2_section_info_def, types);
2162 if (dwo_files != NULL)
2163 free_dwo_files (dwo_files, objfile);
2165 /* Everything else should be on the objfile obstack. */
2168 /* See declaration. */
2171 dwarf2_per_objfile::free_cached_comp_units ()
2173 dwarf2_per_cu_data *per_cu = read_in_chain;
2174 dwarf2_per_cu_data **last_chain = &read_in_chain;
2175 while (per_cu != NULL)
2177 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2180 *last_chain = next_cu;
2185 /* A helper class that calls free_cached_comp_units on
2188 class free_cached_comp_units
2192 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2193 : m_per_objfile (per_objfile)
2197 ~free_cached_comp_units ()
2199 m_per_objfile->free_cached_comp_units ();
2202 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2206 dwarf2_per_objfile *m_per_objfile;
2209 /* Try to locate the sections we need for DWARF 2 debugging
2210 information and return true if we have enough to do something.
2211 NAMES points to the dwarf2 section names, or is NULL if the standard
2212 ELF names are used. */
2215 dwarf2_has_info (struct objfile *objfile,
2216 const struct dwarf2_debug_sections *names)
2218 if (objfile->flags & OBJF_READNEVER)
2221 struct dwarf2_per_objfile *dwarf2_per_objfile
2222 = get_dwarf2_per_objfile (objfile);
2224 if (dwarf2_per_objfile == NULL)
2226 /* Initialize per-objfile state. */
2228 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2230 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2232 return (!dwarf2_per_objfile->info.is_virtual
2233 && dwarf2_per_objfile->info.s.section != NULL
2234 && !dwarf2_per_objfile->abbrev.is_virtual
2235 && dwarf2_per_objfile->abbrev.s.section != NULL);
2238 /* Return the containing section of virtual section SECTION. */
2240 static struct dwarf2_section_info *
2241 get_containing_section (const struct dwarf2_section_info *section)
2243 gdb_assert (section->is_virtual);
2244 return section->s.containing_section;
2247 /* Return the bfd owner of SECTION. */
2250 get_section_bfd_owner (const struct dwarf2_section_info *section)
2252 if (section->is_virtual)
2254 section = get_containing_section (section);
2255 gdb_assert (!section->is_virtual);
2257 return section->s.section->owner;
2260 /* Return the bfd section of SECTION.
2261 Returns NULL if the section is not present. */
2264 get_section_bfd_section (const struct dwarf2_section_info *section)
2266 if (section->is_virtual)
2268 section = get_containing_section (section);
2269 gdb_assert (!section->is_virtual);
2271 return section->s.section;
2274 /* Return the name of SECTION. */
2277 get_section_name (const struct dwarf2_section_info *section)
2279 asection *sectp = get_section_bfd_section (section);
2281 gdb_assert (sectp != NULL);
2282 return bfd_section_name (get_section_bfd_owner (section), sectp);
2285 /* Return the name of the file SECTION is in. */
2288 get_section_file_name (const struct dwarf2_section_info *section)
2290 bfd *abfd = get_section_bfd_owner (section);
2292 return bfd_get_filename (abfd);
2295 /* Return the id of SECTION.
2296 Returns 0 if SECTION doesn't exist. */
2299 get_section_id (const struct dwarf2_section_info *section)
2301 asection *sectp = get_section_bfd_section (section);
2308 /* Return the flags of SECTION.
2309 SECTION (or containing section if this is a virtual section) must exist. */
2312 get_section_flags (const struct dwarf2_section_info *section)
2314 asection *sectp = get_section_bfd_section (section);
2316 gdb_assert (sectp != NULL);
2317 return bfd_get_section_flags (sectp->owner, sectp);
2320 /* When loading sections, we look either for uncompressed section or for
2321 compressed section names. */
2324 section_is_p (const char *section_name,
2325 const struct dwarf2_section_names *names)
2327 if (names->normal != NULL
2328 && strcmp (section_name, names->normal) == 0)
2330 if (names->compressed != NULL
2331 && strcmp (section_name, names->compressed) == 0)
2336 /* See declaration. */
2339 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2340 const dwarf2_debug_sections &names)
2342 flagword aflag = bfd_get_section_flags (abfd, sectp);
2344 if ((aflag & SEC_HAS_CONTENTS) == 0)
2347 else if (section_is_p (sectp->name, &names.info))
2349 this->info.s.section = sectp;
2350 this->info.size = bfd_get_section_size (sectp);
2352 else if (section_is_p (sectp->name, &names.abbrev))
2354 this->abbrev.s.section = sectp;
2355 this->abbrev.size = bfd_get_section_size (sectp);
2357 else if (section_is_p (sectp->name, &names.line))
2359 this->line.s.section = sectp;
2360 this->line.size = bfd_get_section_size (sectp);
2362 else if (section_is_p (sectp->name, &names.loc))
2364 this->loc.s.section = sectp;
2365 this->loc.size = bfd_get_section_size (sectp);
2367 else if (section_is_p (sectp->name, &names.loclists))
2369 this->loclists.s.section = sectp;
2370 this->loclists.size = bfd_get_section_size (sectp);
2372 else if (section_is_p (sectp->name, &names.macinfo))
2374 this->macinfo.s.section = sectp;
2375 this->macinfo.size = bfd_get_section_size (sectp);
2377 else if (section_is_p (sectp->name, &names.macro))
2379 this->macro.s.section = sectp;
2380 this->macro.size = bfd_get_section_size (sectp);
2382 else if (section_is_p (sectp->name, &names.str))
2384 this->str.s.section = sectp;
2385 this->str.size = bfd_get_section_size (sectp);
2387 else if (section_is_p (sectp->name, &names.line_str))
2389 this->line_str.s.section = sectp;
2390 this->line_str.size = bfd_get_section_size (sectp);
2392 else if (section_is_p (sectp->name, &names.addr))
2394 this->addr.s.section = sectp;
2395 this->addr.size = bfd_get_section_size (sectp);
2397 else if (section_is_p (sectp->name, &names.frame))
2399 this->frame.s.section = sectp;
2400 this->frame.size = bfd_get_section_size (sectp);
2402 else if (section_is_p (sectp->name, &names.eh_frame))
2404 this->eh_frame.s.section = sectp;
2405 this->eh_frame.size = bfd_get_section_size (sectp);
2407 else if (section_is_p (sectp->name, &names.ranges))
2409 this->ranges.s.section = sectp;
2410 this->ranges.size = bfd_get_section_size (sectp);
2412 else if (section_is_p (sectp->name, &names.rnglists))
2414 this->rnglists.s.section = sectp;
2415 this->rnglists.size = bfd_get_section_size (sectp);
2417 else if (section_is_p (sectp->name, &names.types))
2419 struct dwarf2_section_info type_section;
2421 memset (&type_section, 0, sizeof (type_section));
2422 type_section.s.section = sectp;
2423 type_section.size = bfd_get_section_size (sectp);
2425 VEC_safe_push (dwarf2_section_info_def, this->types,
2428 else if (section_is_p (sectp->name, &names.gdb_index))
2430 this->gdb_index.s.section = sectp;
2431 this->gdb_index.size = bfd_get_section_size (sectp);
2433 else if (section_is_p (sectp->name, &names.debug_names))
2435 this->debug_names.s.section = sectp;
2436 this->debug_names.size = bfd_get_section_size (sectp);
2438 else if (section_is_p (sectp->name, &names.debug_aranges))
2440 this->debug_aranges.s.section = sectp;
2441 this->debug_aranges.size = bfd_get_section_size (sectp);
2444 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2445 && bfd_section_vma (abfd, sectp) == 0)
2446 this->has_section_at_zero = true;
2449 /* A helper function that decides whether a section is empty,
2453 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2455 if (section->is_virtual)
2456 return section->size == 0;
2457 return section->s.section == NULL || section->size == 0;
2460 /* See dwarf2read.h. */
2463 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2467 gdb_byte *buf, *retbuf;
2471 info->buffer = NULL;
2474 if (dwarf2_section_empty_p (info))
2477 sectp = get_section_bfd_section (info);
2479 /* If this is a virtual section we need to read in the real one first. */
2480 if (info->is_virtual)
2482 struct dwarf2_section_info *containing_section =
2483 get_containing_section (info);
2485 gdb_assert (sectp != NULL);
2486 if ((sectp->flags & SEC_RELOC) != 0)
2488 error (_("Dwarf Error: DWP format V2 with relocations is not"
2489 " supported in section %s [in module %s]"),
2490 get_section_name (info), get_section_file_name (info));
2492 dwarf2_read_section (objfile, containing_section);
2493 /* Other code should have already caught virtual sections that don't
2495 gdb_assert (info->virtual_offset + info->size
2496 <= containing_section->size);
2497 /* If the real section is empty or there was a problem reading the
2498 section we shouldn't get here. */
2499 gdb_assert (containing_section->buffer != NULL);
2500 info->buffer = containing_section->buffer + info->virtual_offset;
2504 /* If the section has relocations, we must read it ourselves.
2505 Otherwise we attach it to the BFD. */
2506 if ((sectp->flags & SEC_RELOC) == 0)
2508 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2512 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2515 /* When debugging .o files, we may need to apply relocations; see
2516 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2517 We never compress sections in .o files, so we only need to
2518 try this when the section is not compressed. */
2519 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2522 info->buffer = retbuf;
2526 abfd = get_section_bfd_owner (info);
2527 gdb_assert (abfd != NULL);
2529 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2530 || bfd_bread (buf, info->size, abfd) != info->size)
2532 error (_("Dwarf Error: Can't read DWARF data"
2533 " in section %s [in module %s]"),
2534 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2538 /* A helper function that returns the size of a section in a safe way.
2539 If you are positive that the section has been read before using the
2540 size, then it is safe to refer to the dwarf2_section_info object's
2541 "size" field directly. In other cases, you must call this
2542 function, because for compressed sections the size field is not set
2543 correctly until the section has been read. */
2545 static bfd_size_type
2546 dwarf2_section_size (struct objfile *objfile,
2547 struct dwarf2_section_info *info)
2550 dwarf2_read_section (objfile, info);
2554 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2558 dwarf2_get_section_info (struct objfile *objfile,
2559 enum dwarf2_section_enum sect,
2560 asection **sectp, const gdb_byte **bufp,
2561 bfd_size_type *sizep)
2563 struct dwarf2_per_objfile *data
2564 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2565 dwarf2_objfile_data_key);
2566 struct dwarf2_section_info *info;
2568 /* We may see an objfile without any DWARF, in which case we just
2579 case DWARF2_DEBUG_FRAME:
2580 info = &data->frame;
2582 case DWARF2_EH_FRAME:
2583 info = &data->eh_frame;
2586 gdb_assert_not_reached ("unexpected section");
2589 dwarf2_read_section (objfile, info);
2591 *sectp = get_section_bfd_section (info);
2592 *bufp = info->buffer;
2593 *sizep = info->size;
2596 /* A helper function to find the sections for a .dwz file. */
2599 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2601 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2603 /* Note that we only support the standard ELF names, because .dwz
2604 is ELF-only (at the time of writing). */
2605 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2607 dwz_file->abbrev.s.section = sectp;
2608 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2612 dwz_file->info.s.section = sectp;
2613 dwz_file->info.size = bfd_get_section_size (sectp);
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2617 dwz_file->str.s.section = sectp;
2618 dwz_file->str.size = bfd_get_section_size (sectp);
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2622 dwz_file->line.s.section = sectp;
2623 dwz_file->line.size = bfd_get_section_size (sectp);
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2627 dwz_file->macro.s.section = sectp;
2628 dwz_file->macro.size = bfd_get_section_size (sectp);
2630 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2632 dwz_file->gdb_index.s.section = sectp;
2633 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2635 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2637 dwz_file->debug_names.s.section = sectp;
2638 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2642 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2643 there is no .gnu_debugaltlink section in the file. Error if there
2644 is such a section but the file cannot be found. */
2646 static struct dwz_file *
2647 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2649 const char *filename;
2650 bfd_size_type buildid_len_arg;
2654 if (dwarf2_per_objfile->dwz_file != NULL)
2655 return dwarf2_per_objfile->dwz_file.get ();
2657 bfd_set_error (bfd_error_no_error);
2658 gdb::unique_xmalloc_ptr<char> data
2659 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2660 &buildid_len_arg, &buildid));
2663 if (bfd_get_error () == bfd_error_no_error)
2665 error (_("could not read '.gnu_debugaltlink' section: %s"),
2666 bfd_errmsg (bfd_get_error ()));
2669 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2671 buildid_len = (size_t) buildid_len_arg;
2673 filename = data.get ();
2675 std::string abs_storage;
2676 if (!IS_ABSOLUTE_PATH (filename))
2678 gdb::unique_xmalloc_ptr<char> abs
2679 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2681 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2682 filename = abs_storage.c_str ();
2685 /* First try the file name given in the section. If that doesn't
2686 work, try to use the build-id instead. */
2687 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2688 if (dwz_bfd != NULL)
2690 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2694 if (dwz_bfd == NULL)
2695 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2697 if (dwz_bfd == NULL)
2698 error (_("could not find '.gnu_debugaltlink' file for %s"),
2699 objfile_name (dwarf2_per_objfile->objfile));
2701 std::unique_ptr<struct dwz_file> result
2702 (new struct dwz_file (std::move (dwz_bfd)));
2704 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2708 result->dwz_bfd.get ());
2709 dwarf2_per_objfile->dwz_file = std::move (result);
2710 return dwarf2_per_objfile->dwz_file.get ();
2713 /* DWARF quick_symbols_functions support. */
2715 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2716 unique line tables, so we maintain a separate table of all .debug_line
2717 derived entries to support the sharing.
2718 All the quick functions need is the list of file names. We discard the
2719 line_header when we're done and don't need to record it here. */
2720 struct quick_file_names
2722 /* The data used to construct the hash key. */
2723 struct stmt_list_hash hash;
2725 /* The number of entries in file_names, real_names. */
2726 unsigned int num_file_names;
2728 /* The file names from the line table, after being run through
2730 const char **file_names;
2732 /* The file names from the line table after being run through
2733 gdb_realpath. These are computed lazily. */
2734 const char **real_names;
2737 /* When using the index (and thus not using psymtabs), each CU has an
2738 object of this type. This is used to hold information needed by
2739 the various "quick" methods. */
2740 struct dwarf2_per_cu_quick_data
2742 /* The file table. This can be NULL if there was no file table
2743 or it's currently not read in.
2744 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2745 struct quick_file_names *file_names;
2747 /* The corresponding symbol table. This is NULL if symbols for this
2748 CU have not yet been read. */
2749 struct compunit_symtab *compunit_symtab;
2751 /* A temporary mark bit used when iterating over all CUs in
2752 expand_symtabs_matching. */
2753 unsigned int mark : 1;
2755 /* True if we've tried to read the file table and found there isn't one.
2756 There will be no point in trying to read it again next time. */
2757 unsigned int no_file_data : 1;
2760 /* Utility hash function for a stmt_list_hash. */
2763 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2767 if (stmt_list_hash->dwo_unit != NULL)
2768 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2769 v += to_underlying (stmt_list_hash->line_sect_off);
2773 /* Utility equality function for a stmt_list_hash. */
2776 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2777 const struct stmt_list_hash *rhs)
2779 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2781 if (lhs->dwo_unit != NULL
2782 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return lhs->line_sect_off == rhs->line_sect_off;
2788 /* Hash function for a quick_file_names. */
2791 hash_file_name_entry (const void *e)
2793 const struct quick_file_names *file_data
2794 = (const struct quick_file_names *) e;
2796 return hash_stmt_list_entry (&file_data->hash);
2799 /* Equality function for a quick_file_names. */
2802 eq_file_name_entry (const void *a, const void *b)
2804 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2805 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2807 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2810 /* Delete function for a quick_file_names. */
2813 delete_file_name_entry (void *e)
2815 struct quick_file_names *file_data = (struct quick_file_names *) e;
2818 for (i = 0; i < file_data->num_file_names; ++i)
2820 xfree ((void*) file_data->file_names[i]);
2821 if (file_data->real_names)
2822 xfree ((void*) file_data->real_names[i]);
2825 /* The space for the struct itself lives on objfile_obstack,
2826 so we don't free it here. */
2829 /* Create a quick_file_names hash table. */
2832 create_quick_file_names_table (unsigned int nr_initial_entries)
2834 return htab_create_alloc (nr_initial_entries,
2835 hash_file_name_entry, eq_file_name_entry,
2836 delete_file_name_entry, xcalloc, xfree);
2839 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2840 have to be created afterwards. You should call age_cached_comp_units after
2841 processing PER_CU->CU. dw2_setup must have been already called. */
2844 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2846 if (per_cu->is_debug_types)
2847 load_full_type_unit (per_cu);
2849 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2851 if (per_cu->cu == NULL)
2852 return; /* Dummy CU. */
2854 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2857 /* Read in the symbols for PER_CU. */
2860 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2862 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2864 /* Skip type_unit_groups, reading the type units they contain
2865 is handled elsewhere. */
2866 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 /* The destructor of dwarf2_queue_guard frees any entries left on
2870 the queue. After this point we're guaranteed to leave this function
2871 with the dwarf queue empty. */
2872 dwarf2_queue_guard q_guard;
2874 if (dwarf2_per_objfile->using_index
2875 ? per_cu->v.quick->compunit_symtab == NULL
2876 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2878 queue_comp_unit (per_cu, language_minimal);
2879 load_cu (per_cu, skip_partial);
2881 /* If we just loaded a CU from a DWO, and we're working with an index
2882 that may badly handle TUs, load all the TUs in that DWO as well.
2883 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2884 if (!per_cu->is_debug_types
2885 && per_cu->cu != NULL
2886 && per_cu->cu->dwo_unit != NULL
2887 && dwarf2_per_objfile->index_table != NULL
2888 && dwarf2_per_objfile->index_table->version <= 7
2889 /* DWP files aren't supported yet. */
2890 && get_dwp_file (dwarf2_per_objfile) == NULL)
2891 queue_and_load_all_dwo_tus (per_cu);
2894 process_queue (dwarf2_per_objfile);
2896 /* Age the cache, releasing compilation units that have not
2897 been used recently. */
2898 age_cached_comp_units (dwarf2_per_objfile);
2901 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2902 the objfile from which this CU came. Returns the resulting symbol
2905 static struct compunit_symtab *
2906 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2908 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2910 gdb_assert (dwarf2_per_objfile->using_index);
2911 if (!per_cu->v.quick->compunit_symtab)
2913 free_cached_comp_units freer (dwarf2_per_objfile);
2914 scoped_restore decrementer = increment_reading_symtab ();
2915 dw2_do_instantiate_symtab (per_cu, skip_partial);
2916 process_cu_includes (dwarf2_per_objfile);
2919 return per_cu->v.quick->compunit_symtab;
2922 /* See declaration. */
2924 dwarf2_per_cu_data *
2925 dwarf2_per_objfile::get_cutu (int index)
2927 if (index >= this->all_comp_units.size ())
2929 index -= this->all_comp_units.size ();
2930 gdb_assert (index < this->all_type_units.size ());
2931 return &this->all_type_units[index]->per_cu;
2934 return this->all_comp_units[index];
2937 /* See declaration. */
2939 dwarf2_per_cu_data *
2940 dwarf2_per_objfile::get_cu (int index)
2942 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2944 return this->all_comp_units[index];
2947 /* See declaration. */
2950 dwarf2_per_objfile::get_tu (int index)
2952 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2954 return this->all_type_units[index];
2957 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2958 objfile_obstack, and constructed with the specified field
2961 static dwarf2_per_cu_data *
2962 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2963 struct dwarf2_section_info *section,
2965 sect_offset sect_off, ULONGEST length)
2967 struct objfile *objfile = dwarf2_per_objfile->objfile;
2968 dwarf2_per_cu_data *the_cu
2969 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_data);
2971 the_cu->sect_off = sect_off;
2972 the_cu->length = length;
2973 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2974 the_cu->section = section;
2975 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2976 struct dwarf2_per_cu_quick_data);
2977 the_cu->is_dwz = is_dwz;
2981 /* A helper for create_cus_from_index that handles a given list of
2985 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2986 const gdb_byte *cu_list, offset_type n_elements,
2987 struct dwarf2_section_info *section,
2990 for (offset_type i = 0; i < n_elements; i += 2)
2992 gdb_static_assert (sizeof (ULONGEST) >= 8);
2994 sect_offset sect_off
2995 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2996 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2999 dwarf2_per_cu_data *per_cu
3000 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3002 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3006 /* Read the CU list from the mapped index, and use it to create all
3007 the CU objects for this objfile. */
3010 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3011 const gdb_byte *cu_list, offset_type cu_list_elements,
3012 const gdb_byte *dwz_list, offset_type dwz_elements)
3014 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3015 dwarf2_per_objfile->all_comp_units.reserve
3016 ((cu_list_elements + dwz_elements) / 2);
3018 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3019 &dwarf2_per_objfile->info, 0);
3021 if (dwz_elements == 0)
3024 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3025 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3029 /* Create the signatured type hash table from the index. */
3032 create_signatured_type_table_from_index
3033 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3034 struct dwarf2_section_info *section,
3035 const gdb_byte *bytes,
3036 offset_type elements)
3038 struct objfile *objfile = dwarf2_per_objfile->objfile;
3040 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3041 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3043 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3045 for (offset_type i = 0; i < elements; i += 3)
3047 struct signatured_type *sig_type;
3050 cu_offset type_offset_in_tu;
3052 gdb_static_assert (sizeof (ULONGEST) >= 8);
3053 sect_offset sect_off
3054 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3056 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3058 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3062 struct signatured_type);
3063 sig_type->signature = signature;
3064 sig_type->type_offset_in_tu = type_offset_in_tu;
3065 sig_type->per_cu.is_debug_types = 1;
3066 sig_type->per_cu.section = section;
3067 sig_type->per_cu.sect_off = sect_off;
3068 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3069 sig_type->per_cu.v.quick
3070 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3071 struct dwarf2_per_cu_quick_data);
3073 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3079 dwarf2_per_objfile->signatured_types = sig_types_hash;
3082 /* Create the signatured type hash table from .debug_names. */
3085 create_signatured_type_table_from_debug_names
3086 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3087 const mapped_debug_names &map,
3088 struct dwarf2_section_info *section,
3089 struct dwarf2_section_info *abbrev_section)
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3093 dwarf2_read_section (objfile, section);
3094 dwarf2_read_section (objfile, abbrev_section);
3096 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3097 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3099 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3101 for (uint32_t i = 0; i < map.tu_count; ++i)
3103 struct signatured_type *sig_type;
3106 sect_offset sect_off
3107 = (sect_offset) (extract_unsigned_integer
3108 (map.tu_table_reordered + i * map.offset_size,
3110 map.dwarf5_byte_order));
3112 comp_unit_head cu_header;
3113 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3115 section->buffer + to_underlying (sect_off),
3118 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3119 struct signatured_type);
3120 sig_type->signature = cu_header.signature;
3121 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3122 sig_type->per_cu.is_debug_types = 1;
3123 sig_type->per_cu.section = section;
3124 sig_type->per_cu.sect_off = sect_off;
3125 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3126 sig_type->per_cu.v.quick
3127 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3128 struct dwarf2_per_cu_quick_data);
3130 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3136 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139 /* Read the address map data from the mapped index, and use it to
3140 populate the objfile's psymtabs_addrmap. */
3143 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3144 struct mapped_index *index)
3146 struct objfile *objfile = dwarf2_per_objfile->objfile;
3147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3148 const gdb_byte *iter, *end;
3149 struct addrmap *mutable_map;
3152 auto_obstack temp_obstack;
3154 mutable_map = addrmap_create_mutable (&temp_obstack);
3156 iter = index->address_table.data ();
3157 end = iter + index->address_table.size ();
3159 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3163 ULONGEST hi, lo, cu_index;
3164 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3166 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3168 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3173 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3174 hex_string (lo), hex_string (hi));
3178 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3180 complaint (_(".gdb_index address table has invalid CU number %u"),
3181 (unsigned) cu_index);
3185 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3186 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3187 addrmap_set_empty (mutable_map, lo, hi - 1,
3188 dwarf2_per_objfile->get_cu (cu_index));
3191 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3192 &objfile->objfile_obstack);
3195 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3196 populate the objfile's psymtabs_addrmap. */
3199 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3200 struct dwarf2_section_info *section)
3202 struct objfile *objfile = dwarf2_per_objfile->objfile;
3203 bfd *abfd = objfile->obfd;
3204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3205 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3206 SECT_OFF_TEXT (objfile));
3208 auto_obstack temp_obstack;
3209 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3211 std::unordered_map<sect_offset,
3212 dwarf2_per_cu_data *,
3213 gdb::hash_enum<sect_offset>>
3214 debug_info_offset_to_per_cu;
3215 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3217 const auto insertpair
3218 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3219 if (!insertpair.second)
3221 warning (_("Section .debug_aranges in %s has duplicate "
3222 "debug_info_offset %s, ignoring .debug_aranges."),
3223 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3228 dwarf2_read_section (objfile, section);
3230 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3232 const gdb_byte *addr = section->buffer;
3234 while (addr < section->buffer + section->size)
3236 const gdb_byte *const entry_addr = addr;
3237 unsigned int bytes_read;
3239 const LONGEST entry_length = read_initial_length (abfd, addr,
3243 const gdb_byte *const entry_end = addr + entry_length;
3244 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3245 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3246 if (addr + entry_length > section->buffer + section->size)
3248 warning (_("Section .debug_aranges in %s entry at offset %zu "
3249 "length %s exceeds section length %s, "
3250 "ignoring .debug_aranges."),
3251 objfile_name (objfile), entry_addr - section->buffer,
3252 plongest (bytes_read + entry_length),
3253 pulongest (section->size));
3257 /* The version number. */
3258 const uint16_t version = read_2_bytes (abfd, addr);
3262 warning (_("Section .debug_aranges in %s entry at offset %zu "
3263 "has unsupported version %d, ignoring .debug_aranges."),
3264 objfile_name (objfile), entry_addr - section->buffer,
3269 const uint64_t debug_info_offset
3270 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3271 addr += offset_size;
3272 const auto per_cu_it
3273 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3274 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3276 warning (_("Section .debug_aranges in %s entry at offset %zu "
3277 "debug_info_offset %s does not exists, "
3278 "ignoring .debug_aranges."),
3279 objfile_name (objfile), entry_addr - section->buffer,
3280 pulongest (debug_info_offset));
3283 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3285 const uint8_t address_size = *addr++;
3286 if (address_size < 1 || address_size > 8)
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "address_size %u is invalid, ignoring .debug_aranges."),
3290 objfile_name (objfile), entry_addr - section->buffer,
3295 const uint8_t segment_selector_size = *addr++;
3296 if (segment_selector_size != 0)
3298 warning (_("Section .debug_aranges in %s entry at offset %zu "
3299 "segment_selector_size %u is not supported, "
3300 "ignoring .debug_aranges."),
3301 objfile_name (objfile), entry_addr - section->buffer,
3302 segment_selector_size);
3306 /* Must pad to an alignment boundary that is twice the address
3307 size. It is undocumented by the DWARF standard but GCC does
3309 for (size_t padding = ((-(addr - section->buffer))
3310 & (2 * address_size - 1));
3311 padding > 0; padding--)
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "padding is not zero, ignoring .debug_aranges."),
3316 objfile_name (objfile), entry_addr - section->buffer);
3322 if (addr + 2 * address_size > entry_end)
3324 warning (_("Section .debug_aranges in %s entry at offset %zu "
3325 "address list is not properly terminated, "
3326 "ignoring .debug_aranges."),
3327 objfile_name (objfile), entry_addr - section->buffer);
3330 ULONGEST start = extract_unsigned_integer (addr, address_size,
3332 addr += address_size;
3333 ULONGEST length = extract_unsigned_integer (addr, address_size,
3335 addr += address_size;
3336 if (start == 0 && length == 0)
3338 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3340 /* Symbol was eliminated due to a COMDAT group. */
3343 ULONGEST end = start + length;
3344 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3346 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3348 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3352 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3353 &objfile->objfile_obstack);
3356 /* Find a slot in the mapped index INDEX for the object named NAME.
3357 If NAME is found, set *VEC_OUT to point to the CU vector in the
3358 constant pool and return true. If NAME cannot be found, return
3362 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3363 offset_type **vec_out)
3366 offset_type slot, step;
3367 int (*cmp) (const char *, const char *);
3369 gdb::unique_xmalloc_ptr<char> without_params;
3370 if (current_language->la_language == language_cplus
3371 || current_language->la_language == language_fortran
3372 || current_language->la_language == language_d)
3374 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3377 if (strchr (name, '(') != NULL)
3379 without_params = cp_remove_params (name);
3381 if (without_params != NULL)
3382 name = without_params.get ();
3386 /* Index version 4 did not support case insensitive searches. But the
3387 indices for case insensitive languages are built in lowercase, therefore
3388 simulate our NAME being searched is also lowercased. */
3389 hash = mapped_index_string_hash ((index->version == 4
3390 && case_sensitivity == case_sensitive_off
3391 ? 5 : index->version),
3394 slot = hash & (index->symbol_table.size () - 1);
3395 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3396 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3402 const auto &bucket = index->symbol_table[slot];
3403 if (bucket.name == 0 && bucket.vec == 0)
3406 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3407 if (!cmp (name, str))
3409 *vec_out = (offset_type *) (index->constant_pool
3410 + MAYBE_SWAP (bucket.vec));
3414 slot = (slot + step) & (index->symbol_table.size () - 1);
3418 /* A helper function that reads the .gdb_index from BUFFER and fills
3419 in MAP. FILENAME is the name of the file containing the data;
3420 it is used for error reporting. DEPRECATED_OK is true if it is
3421 ok to use deprecated sections.
3423 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3424 out parameters that are filled in with information about the CU and
3425 TU lists in the section.
3427 Returns true if all went well, false otherwise. */
3430 read_gdb_index_from_buffer (struct objfile *objfile,
3431 const char *filename,
3433 gdb::array_view<const gdb_byte> buffer,
3434 struct mapped_index *map,
3435 const gdb_byte **cu_list,
3436 offset_type *cu_list_elements,
3437 const gdb_byte **types_list,
3438 offset_type *types_list_elements)
3440 const gdb_byte *addr = &buffer[0];
3442 /* Version check. */
3443 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3444 /* Versions earlier than 3 emitted every copy of a psymbol. This
3445 causes the index to behave very poorly for certain requests. Version 3
3446 contained incomplete addrmap. So, it seems better to just ignore such
3450 static int warning_printed = 0;
3451 if (!warning_printed)
3453 warning (_("Skipping obsolete .gdb_index section in %s."),
3455 warning_printed = 1;
3459 /* Index version 4 uses a different hash function than index version
3462 Versions earlier than 6 did not emit psymbols for inlined
3463 functions. Using these files will cause GDB not to be able to
3464 set breakpoints on inlined functions by name, so we ignore these
3465 indices unless the user has done
3466 "set use-deprecated-index-sections on". */
3467 if (version < 6 && !deprecated_ok)
3469 static int warning_printed = 0;
3470 if (!warning_printed)
3473 Skipping deprecated .gdb_index section in %s.\n\
3474 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3475 to use the section anyway."),
3477 warning_printed = 1;
3481 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3482 of the TU (for symbols coming from TUs),
3483 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3484 Plus gold-generated indices can have duplicate entries for global symbols,
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3486 These are just performance bugs, and we can't distinguish gdb-generated
3487 indices from gold-generated ones, so issue no warning here. */
3489 /* Indexes with higher version than the one supported by GDB may be no
3490 longer backward compatible. */
3494 map->version = version;
3496 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3499 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3500 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3504 *types_list = addr + MAYBE_SWAP (metadata[i]);
3505 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3506 - MAYBE_SWAP (metadata[i]))
3510 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3511 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3513 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3517 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3519 = gdb::array_view<mapped_index::symbol_table_slot>
3520 ((mapped_index::symbol_table_slot *) symbol_table,
3521 (mapped_index::symbol_table_slot *) symbol_table_end);
3524 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3529 /* Callback types for dwarf2_read_gdb_index. */
3531 typedef gdb::function_view
3532 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3533 get_gdb_index_contents_ftype;
3534 typedef gdb::function_view
3535 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3536 get_gdb_index_contents_dwz_ftype;
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3542 dwarf2_read_gdb_index
3543 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3544 get_gdb_index_contents_ftype get_gdb_index_contents,
3545 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3547 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3548 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3549 struct dwz_file *dwz;
3550 struct objfile *objfile = dwarf2_per_objfile->objfile;
3552 gdb::array_view<const gdb_byte> main_index_contents
3553 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3555 if (main_index_contents.empty ())
3558 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3559 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3560 use_deprecated_index_sections,
3561 main_index_contents, map.get (), &cu_list,
3562 &cu_list_elements, &types_list,
3563 &types_list_elements))
3566 /* Don't use the index if it's empty. */
3567 if (map->symbol_table.empty ())
3570 /* If there is a .dwz file, read it so we can get its CU list as
3572 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3575 struct mapped_index dwz_map;
3576 const gdb_byte *dwz_types_ignore;
3577 offset_type dwz_types_elements_ignore;
3579 gdb::array_view<const gdb_byte> dwz_index_content
3580 = get_gdb_index_contents_dwz (objfile, dwz);
3582 if (dwz_index_content.empty ())
3585 if (!read_gdb_index_from_buffer (objfile,
3586 bfd_get_filename (dwz->dwz_bfd), 1,
3587 dwz_index_content, &dwz_map,
3588 &dwz_list, &dwz_list_elements,
3590 &dwz_types_elements_ignore))
3592 warning (_("could not read '.gdb_index' section from %s; skipping"),
3593 bfd_get_filename (dwz->dwz_bfd));
3598 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3599 dwz_list, dwz_list_elements);
3601 if (types_list_elements)
3603 struct dwarf2_section_info *section;
3605 /* We can only handle a single .debug_types when we have an
3607 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3610 section = VEC_index (dwarf2_section_info_def,
3611 dwarf2_per_objfile->types, 0);
3613 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3614 types_list, types_list_elements);
3617 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3619 dwarf2_per_objfile->index_table = std::move (map);
3620 dwarf2_per_objfile->using_index = 1;
3621 dwarf2_per_objfile->quick_file_names_table =
3622 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3627 /* die_reader_func for dw2_get_file_names. */
3630 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3631 const gdb_byte *info_ptr,
3632 struct die_info *comp_unit_die,
3636 struct dwarf2_cu *cu = reader->cu;
3637 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3638 struct dwarf2_per_objfile *dwarf2_per_objfile
3639 = cu->per_cu->dwarf2_per_objfile;
3640 struct objfile *objfile = dwarf2_per_objfile->objfile;
3641 struct dwarf2_per_cu_data *lh_cu;
3642 struct attribute *attr;
3645 struct quick_file_names *qfn;
3647 gdb_assert (! this_cu->is_debug_types);
3649 /* Our callers never want to match partial units -- instead they
3650 will match the enclosing full CU. */
3651 if (comp_unit_die->tag == DW_TAG_partial_unit)
3653 this_cu->v.quick->no_file_data = 1;
3661 sect_offset line_offset {};
3663 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3666 struct quick_file_names find_entry;
3668 line_offset = (sect_offset) DW_UNSND (attr);
3670 /* We may have already read in this line header (TU line header sharing).
3671 If we have we're done. */
3672 find_entry.hash.dwo_unit = cu->dwo_unit;
3673 find_entry.hash.line_sect_off = line_offset;
3674 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3675 &find_entry, INSERT);
3678 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3682 lh = dwarf_decode_line_header (line_offset, cu);
3686 lh_cu->v.quick->no_file_data = 1;
3690 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3691 qfn->hash.dwo_unit = cu->dwo_unit;
3692 qfn->hash.line_sect_off = line_offset;
3693 gdb_assert (slot != NULL);
3696 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3698 qfn->num_file_names = lh->file_names.size ();
3700 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3701 for (i = 0; i < lh->file_names.size (); ++i)
3702 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3703 qfn->real_names = NULL;
3705 lh_cu->v.quick->file_names = qfn;
3708 /* A helper for the "quick" functions which attempts to read the line
3709 table for THIS_CU. */
3711 static struct quick_file_names *
3712 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3714 /* This should never be called for TUs. */
3715 gdb_assert (! this_cu->is_debug_types);
3716 /* Nor type unit groups. */
3717 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3719 if (this_cu->v.quick->file_names != NULL)
3720 return this_cu->v.quick->file_names;
3721 /* If we know there is no line data, no point in looking again. */
3722 if (this_cu->v.quick->no_file_data)
3725 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3727 if (this_cu->v.quick->no_file_data)
3729 return this_cu->v.quick->file_names;
3732 /* A helper for the "quick" functions which computes and caches the
3733 real path for a given file name from the line table. */
3736 dw2_get_real_path (struct objfile *objfile,
3737 struct quick_file_names *qfn, int index)
3739 if (qfn->real_names == NULL)
3740 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3741 qfn->num_file_names, const char *);
3743 if (qfn->real_names[index] == NULL)
3744 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3746 return qfn->real_names[index];
3749 static struct symtab *
3750 dw2_find_last_source_symtab (struct objfile *objfile)
3752 struct dwarf2_per_objfile *dwarf2_per_objfile
3753 = get_dwarf2_per_objfile (objfile);
3754 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3755 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3760 return compunit_primary_filetab (cust);
3763 /* Traversal function for dw2_forget_cached_source_info. */
3766 dw2_free_cached_file_names (void **slot, void *info)
3768 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3770 if (file_data->real_names)
3774 for (i = 0; i < file_data->num_file_names; ++i)
3776 xfree ((void*) file_data->real_names[i]);
3777 file_data->real_names[i] = NULL;
3785 dw2_forget_cached_source_info (struct objfile *objfile)
3787 struct dwarf2_per_objfile *dwarf2_per_objfile
3788 = get_dwarf2_per_objfile (objfile);
3790 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3791 dw2_free_cached_file_names, NULL);
3794 /* Helper function for dw2_map_symtabs_matching_filename that expands
3795 the symtabs and calls the iterator. */
3798 dw2_map_expand_apply (struct objfile *objfile,
3799 struct dwarf2_per_cu_data *per_cu,
3800 const char *name, const char *real_path,
3801 gdb::function_view<bool (symtab *)> callback)
3803 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3805 /* Don't visit already-expanded CUs. */
3806 if (per_cu->v.quick->compunit_symtab)
3809 /* This may expand more than one symtab, and we want to iterate over
3811 dw2_instantiate_symtab (per_cu, false);
3813 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3814 last_made, callback);
3817 /* Implementation of the map_symtabs_matching_filename method. */
3820 dw2_map_symtabs_matching_filename
3821 (struct objfile *objfile, const char *name, const char *real_path,
3822 gdb::function_view<bool (symtab *)> callback)
3824 const char *name_basename = lbasename (name);
3825 struct dwarf2_per_objfile *dwarf2_per_objfile
3826 = get_dwarf2_per_objfile (objfile);
3828 /* The rule is CUs specify all the files, including those used by
3829 any TU, so there's no need to scan TUs here. */
3831 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3833 /* We only need to look at symtabs not already expanded. */
3834 if (per_cu->v.quick->compunit_symtab)
3837 quick_file_names *file_data = dw2_get_file_names (per_cu);
3838 if (file_data == NULL)
3841 for (int j = 0; j < file_data->num_file_names; ++j)
3843 const char *this_name = file_data->file_names[j];
3844 const char *this_real_name;
3846 if (compare_filenames_for_search (this_name, name))
3848 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (! basenames_may_differ
3857 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3860 this_real_name = dw2_get_real_path (objfile, file_data, j);
3861 if (compare_filenames_for_search (this_real_name, name))
3863 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3869 if (real_path != NULL)
3871 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3872 gdb_assert (IS_ABSOLUTE_PATH (name));
3873 if (this_real_name != NULL
3874 && FILENAME_CMP (real_path, this_real_name) == 0)
3876 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3888 /* Struct used to manage iterating over all CUs looking for a symbol. */
3890 struct dw2_symtab_iterator
3892 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3893 struct dwarf2_per_objfile *dwarf2_per_objfile;
3894 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3895 int want_specific_block;
3896 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3897 Unused if !WANT_SPECIFIC_BLOCK. */
3899 /* The kind of symbol we're looking for. */
3901 /* The list of CUs from the index entry of the symbol,
3902 or NULL if not found. */
3904 /* The next element in VEC to look at. */
3906 /* The number of elements in VEC, or zero if there is no match. */
3908 /* Have we seen a global version of the symbol?
3909 If so we can ignore all further global instances.
3910 This is to work around gold/15646, inefficient gold-generated
3915 /* Initialize the index symtab iterator ITER.
3916 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3917 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3920 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3921 struct dwarf2_per_objfile *dwarf2_per_objfile,
3922 int want_specific_block,
3927 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3928 iter->want_specific_block = want_specific_block;
3929 iter->block_index = block_index;
3930 iter->domain = domain;
3932 iter->global_seen = 0;
3934 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3936 /* index is NULL if OBJF_READNOW. */
3937 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3938 iter->length = MAYBE_SWAP (*iter->vec);
3946 /* Return the next matching CU or NULL if there are no more. */
3948 static struct dwarf2_per_cu_data *
3949 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3951 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3953 for ( ; iter->next < iter->length; ++iter->next)
3955 offset_type cu_index_and_attrs =
3956 MAYBE_SWAP (iter->vec[iter->next + 1]);
3957 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3958 int want_static = iter->block_index != GLOBAL_BLOCK;
3959 /* This value is only valid for index versions >= 7. */
3960 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3961 gdb_index_symbol_kind symbol_kind =
3962 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3963 /* Only check the symbol attributes if they're present.
3964 Indices prior to version 7 don't record them,
3965 and indices >= 7 may elide them for certain symbols
3966 (gold does this). */
3968 (dwarf2_per_objfile->index_table->version >= 7
3969 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3971 /* Don't crash on bad data. */
3972 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3973 + dwarf2_per_objfile->all_type_units.size ()))
3975 complaint (_(".gdb_index entry has bad CU index"
3977 objfile_name (dwarf2_per_objfile->objfile));
3981 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3983 /* Skip if already read in. */
3984 if (per_cu->v.quick->compunit_symtab)
3987 /* Check static vs global. */
3990 if (iter->want_specific_block
3991 && want_static != is_static)
3993 /* Work around gold/15646. */
3994 if (!is_static && iter->global_seen)
3997 iter->global_seen = 1;
4000 /* Only check the symbol's kind if it has one. */
4003 switch (iter->domain)
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4007 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4008 /* Some types are also in VAR_DOMAIN. */
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4013 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4017 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4032 static struct compunit_symtab *
4033 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4034 const char *name, domain_enum domain)
4036 struct compunit_symtab *stab_best = NULL;
4037 struct dwarf2_per_objfile *dwarf2_per_objfile
4038 = get_dwarf2_per_objfile (objfile);
4040 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4042 struct dw2_symtab_iterator iter;
4043 struct dwarf2_per_cu_data *per_cu;
4045 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4047 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4049 struct symbol *sym, *with_opaque = NULL;
4050 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4051 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4052 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4054 sym = block_find_symbol (block, name, domain,
4055 block_find_non_opaque_type_preferred,
4058 /* Some caution must be observed with overloaded functions
4059 and methods, since the index will not contain any overload
4060 information (but NAME might contain it). */
4063 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4065 if (with_opaque != NULL
4066 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 /* Keep looking through other CUs. */
4076 dw2_print_stats (struct objfile *objfile)
4078 struct dwarf2_per_objfile *dwarf2_per_objfile
4079 = get_dwarf2_per_objfile (objfile);
4080 int total = (dwarf2_per_objfile->all_comp_units.size ()
4081 + dwarf2_per_objfile->all_type_units.size ());
4084 for (int i = 0; i < total; ++i)
4086 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4088 if (!per_cu->v.quick->compunit_symtab)
4091 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4092 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095 /* This dumps minimal information about the index.
4096 It is called via "mt print objfiles".
4097 One use is to verify .gdb_index has been loaded by the
4098 gdb.dwarf2/gdb-index.exp testcase. */
4101 dw2_dump (struct objfile *objfile)
4103 struct dwarf2_per_objfile *dwarf2_per_objfile
4104 = get_dwarf2_per_objfile (objfile);
4106 gdb_assert (dwarf2_per_objfile->using_index);
4107 printf_filtered (".gdb_index:");
4108 if (dwarf2_per_objfile->index_table != NULL)
4110 printf_filtered (" version %d\n",
4111 dwarf2_per_objfile->index_table->version);
4114 printf_filtered (" faked for \"readnow\"\n");
4115 printf_filtered ("\n");
4119 dw2_expand_symtabs_for_function (struct objfile *objfile,
4120 const char *func_name)
4122 struct dwarf2_per_objfile *dwarf2_per_objfile
4123 = get_dwarf2_per_objfile (objfile);
4125 struct dw2_symtab_iterator iter;
4126 struct dwarf2_per_cu_data *per_cu;
4128 /* Note: It doesn't matter what we pass for block_index here. */
4129 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4132 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4133 dw2_instantiate_symtab (per_cu, false);
4138 dw2_expand_all_symtabs (struct objfile *objfile)
4140 struct dwarf2_per_objfile *dwarf2_per_objfile
4141 = get_dwarf2_per_objfile (objfile);
4142 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4143 + dwarf2_per_objfile->all_type_units.size ());
4145 for (int i = 0; i < total_units; ++i)
4147 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4149 /* We don't want to directly expand a partial CU, because if we
4150 read it with the wrong language, then assertion failures can
4151 be triggered later on. See PR symtab/23010. So, tell
4152 dw2_instantiate_symtab to skip partial CUs -- any important
4153 partial CU will be read via DW_TAG_imported_unit anyway. */
4154 dw2_instantiate_symtab (per_cu, true);
4159 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4160 const char *fullname)
4162 struct dwarf2_per_objfile *dwarf2_per_objfile
4163 = get_dwarf2_per_objfile (objfile);
4165 /* We don't need to consider type units here.
4166 This is only called for examining code, e.g. expand_line_sal.
4167 There can be an order of magnitude (or more) more type units
4168 than comp units, and we avoid them if we can. */
4170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4172 /* We only need to look at symtabs not already expanded. */
4173 if (per_cu->v.quick->compunit_symtab)
4176 quick_file_names *file_data = dw2_get_file_names (per_cu);
4177 if (file_data == NULL)
4180 for (int j = 0; j < file_data->num_file_names; ++j)
4182 const char *this_fullname = file_data->file_names[j];
4184 if (filename_cmp (this_fullname, fullname) == 0)
4186 dw2_instantiate_symtab (per_cu, false);
4194 dw2_map_matching_symbols (struct objfile *objfile,
4195 const char * name, domain_enum domain,
4197 int (*callback) (struct block *,
4198 struct symbol *, void *),
4199 void *data, symbol_name_match_type match,
4200 symbol_compare_ftype *ordered_compare)
4202 /* Currently unimplemented; used for Ada. The function can be called if the
4203 current language is Ada for a non-Ada objfile using GNU index. As Ada
4204 does not look for non-Ada symbols this function should just return. */
4207 /* Symbol name matcher for .gdb_index names.
4209 Symbol names in .gdb_index have a few particularities:
4211 - There's no indication of which is the language of each symbol.
4213 Since each language has its own symbol name matching algorithm,
4214 and we don't know which language is the right one, we must match
4215 each symbol against all languages. This would be a potential
4216 performance problem if it were not mitigated by the
4217 mapped_index::name_components lookup table, which significantly
4218 reduces the number of times we need to call into this matcher,
4219 making it a non-issue.
4221 - Symbol names in the index have no overload (parameter)
4222 information. I.e., in C++, "foo(int)" and "foo(long)" both
4223 appear as "foo" in the index, for example.
4225 This means that the lookup names passed to the symbol name
4226 matcher functions must have no parameter information either
4227 because (e.g.) symbol search name "foo" does not match
4228 lookup-name "foo(int)" [while swapping search name for lookup
4231 class gdb_index_symbol_name_matcher
4234 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4235 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4237 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4238 Returns true if any matcher matches. */
4239 bool matches (const char *symbol_name);
4242 /* A reference to the lookup name we're matching against. */
4243 const lookup_name_info &m_lookup_name;
4245 /* A vector holding all the different symbol name matchers, for all
4247 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4250 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4251 (const lookup_name_info &lookup_name)
4252 : m_lookup_name (lookup_name)
4254 /* Prepare the vector of comparison functions upfront, to avoid
4255 doing the same work for each symbol. Care is taken to avoid
4256 matching with the same matcher more than once if/when multiple
4257 languages use the same matcher function. */
4258 auto &matchers = m_symbol_name_matcher_funcs;
4259 matchers.reserve (nr_languages);
4261 matchers.push_back (default_symbol_name_matcher);
4263 for (int i = 0; i < nr_languages; i++)
4265 const language_defn *lang = language_def ((enum language) i);
4266 symbol_name_matcher_ftype *name_matcher
4267 = get_symbol_name_matcher (lang, m_lookup_name);
4269 /* Don't insert the same comparison routine more than once.
4270 Note that we do this linear walk instead of a seemingly
4271 cheaper sorted insert, or use a std::set or something like
4272 that, because relative order of function addresses is not
4273 stable. This is not a problem in practice because the number
4274 of supported languages is low, and the cost here is tiny
4275 compared to the number of searches we'll do afterwards using
4277 if (name_matcher != default_symbol_name_matcher
4278 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4279 == matchers.end ()))
4280 matchers.push_back (name_matcher);
4285 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4287 for (auto matches_name : m_symbol_name_matcher_funcs)
4288 if (matches_name (symbol_name, m_lookup_name, NULL))
4294 /* Starting from a search name, return the string that finds the upper
4295 bound of all strings that start with SEARCH_NAME in a sorted name
4296 list. Returns the empty string to indicate that the upper bound is
4297 the end of the list. */
4300 make_sort_after_prefix_name (const char *search_name)
4302 /* When looking to complete "func", we find the upper bound of all
4303 symbols that start with "func" by looking for where we'd insert
4304 the closest string that would follow "func" in lexicographical
4305 order. Usually, that's "func"-with-last-character-incremented,
4306 i.e. "fund". Mind non-ASCII characters, though. Usually those
4307 will be UTF-8 multi-byte sequences, but we can't be certain.
4308 Especially mind the 0xff character, which is a valid character in
4309 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4310 rule out compilers allowing it in identifiers. Note that
4311 conveniently, strcmp/strcasecmp are specified to compare
4312 characters interpreted as unsigned char. So what we do is treat
4313 the whole string as a base 256 number composed of a sequence of
4314 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4315 to 0, and carries 1 to the following more-significant position.
4316 If the very first character in SEARCH_NAME ends up incremented
4317 and carries/overflows, then the upper bound is the end of the
4318 list. The string after the empty string is also the empty
4321 Some examples of this operation:
4323 SEARCH_NAME => "+1" RESULT
4327 "\xff" "a" "\xff" => "\xff" "b"
4332 Then, with these symbols for example:
4338 completing "func" looks for symbols between "func" and
4339 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4340 which finds "func" and "func1", but not "fund".
4344 funcÿ (Latin1 'ÿ' [0xff])
4348 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4349 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4353 ÿÿ (Latin1 'ÿ' [0xff])
4356 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4357 the end of the list.
4359 std::string after = search_name;
4360 while (!after.empty () && (unsigned char) after.back () == 0xff)
4362 if (!after.empty ())
4363 after.back () = (unsigned char) after.back () + 1;
4367 /* See declaration. */
4369 std::pair<std::vector<name_component>::const_iterator,
4370 std::vector<name_component>::const_iterator>
4371 mapped_index_base::find_name_components_bounds
4372 (const lookup_name_info &lookup_name_without_params) const
4375 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4378 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4380 /* Comparison function object for lower_bound that matches against a
4381 given symbol name. */
4382 auto lookup_compare_lower = [&] (const name_component &elem,
4385 const char *elem_qualified = this->symbol_name_at (elem.idx);
4386 const char *elem_name = elem_qualified + elem.name_offset;
4387 return name_cmp (elem_name, name) < 0;
4390 /* Comparison function object for upper_bound that matches against a
4391 given symbol name. */
4392 auto lookup_compare_upper = [&] (const char *name,
4393 const name_component &elem)
4395 const char *elem_qualified = this->symbol_name_at (elem.idx);
4396 const char *elem_name = elem_qualified + elem.name_offset;
4397 return name_cmp (name, elem_name) < 0;
4400 auto begin = this->name_components.begin ();
4401 auto end = this->name_components.end ();
4403 /* Find the lower bound. */
4406 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4409 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4412 /* Find the upper bound. */
4415 if (lookup_name_without_params.completion_mode ())
4417 /* In completion mode, we want UPPER to point past all
4418 symbols names that have the same prefix. I.e., with
4419 these symbols, and completing "func":
4421 function << lower bound
4423 other_function << upper bound
4425 We find the upper bound by looking for the insertion
4426 point of "func"-with-last-character-incremented,
4428 std::string after = make_sort_after_prefix_name (cplus);
4431 return std::lower_bound (lower, end, after.c_str (),
4432 lookup_compare_lower);
4435 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4438 return {lower, upper};
4441 /* See declaration. */
4444 mapped_index_base::build_name_components ()
4446 if (!this->name_components.empty ())
4449 this->name_components_casing = case_sensitivity;
4451 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4453 /* The code below only knows how to break apart components of C++
4454 symbol names (and other languages that use '::' as
4455 namespace/module separator). If we add support for wild matching
4456 to some language that uses some other operator (E.g., Ada, Go and
4457 D use '.'), then we'll need to try splitting the symbol name
4458 according to that language too. Note that Ada does support wild
4459 matching, but doesn't currently support .gdb_index. */
4460 auto count = this->symbol_name_count ();
4461 for (offset_type idx = 0; idx < count; idx++)
4463 if (this->symbol_name_slot_invalid (idx))
4466 const char *name = this->symbol_name_at (idx);
4468 /* Add each name component to the name component table. */
4469 unsigned int previous_len = 0;
4470 for (unsigned int current_len = cp_find_first_component (name);
4471 name[current_len] != '\0';
4472 current_len += cp_find_first_component (name + current_len))
4474 gdb_assert (name[current_len] == ':');
4475 this->name_components.push_back ({previous_len, idx});
4476 /* Skip the '::'. */
4478 previous_len = current_len;
4480 this->name_components.push_back ({previous_len, idx});
4483 /* Sort name_components elements by name. */
4484 auto name_comp_compare = [&] (const name_component &left,
4485 const name_component &right)
4487 const char *left_qualified = this->symbol_name_at (left.idx);
4488 const char *right_qualified = this->symbol_name_at (right.idx);
4490 const char *left_name = left_qualified + left.name_offset;
4491 const char *right_name = right_qualified + right.name_offset;
4493 return name_cmp (left_name, right_name) < 0;
4496 std::sort (this->name_components.begin (),
4497 this->name_components.end (),
4501 /* Helper for dw2_expand_symtabs_matching that works with a
4502 mapped_index_base instead of the containing objfile. This is split
4503 to a separate function in order to be able to unit test the
4504 name_components matching using a mock mapped_index_base. For each
4505 symbol name that matches, calls MATCH_CALLBACK, passing it the
4506 symbol's index in the mapped_index_base symbol table. */
4509 dw2_expand_symtabs_matching_symbol
4510 (mapped_index_base &index,
4511 const lookup_name_info &lookup_name_in,
4512 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4513 enum search_domain kind,
4514 gdb::function_view<void (offset_type)> match_callback)
4516 lookup_name_info lookup_name_without_params
4517 = lookup_name_in.make_ignore_params ();
4518 gdb_index_symbol_name_matcher lookup_name_matcher
4519 (lookup_name_without_params);
4521 /* Build the symbol name component sorted vector, if we haven't
4523 index.build_name_components ();
4525 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4527 /* Now for each symbol name in range, check to see if we have a name
4528 match, and if so, call the MATCH_CALLBACK callback. */
4530 /* The same symbol may appear more than once in the range though.
4531 E.g., if we're looking for symbols that complete "w", and we have
4532 a symbol named "w1::w2", we'll find the two name components for
4533 that same symbol in the range. To be sure we only call the
4534 callback once per symbol, we first collect the symbol name
4535 indexes that matched in a temporary vector and ignore
4537 std::vector<offset_type> matches;
4538 matches.reserve (std::distance (bounds.first, bounds.second));
4540 for (; bounds.first != bounds.second; ++bounds.first)
4542 const char *qualified = index.symbol_name_at (bounds.first->idx);
4544 if (!lookup_name_matcher.matches (qualified)
4545 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4548 matches.push_back (bounds.first->idx);
4551 std::sort (matches.begin (), matches.end ());
4553 /* Finally call the callback, once per match. */
4555 for (offset_type idx : matches)
4559 match_callback (idx);
4564 /* Above we use a type wider than idx's for 'prev', since 0 and
4565 (offset_type)-1 are both possible values. */
4566 static_assert (sizeof (prev) > sizeof (offset_type), "");
4571 namespace selftests { namespace dw2_expand_symtabs_matching {
4573 /* A mock .gdb_index/.debug_names-like name index table, enough to
4574 exercise dw2_expand_symtabs_matching_symbol, which works with the
4575 mapped_index_base interface. Builds an index from the symbol list
4576 passed as parameter to the constructor. */
4577 class mock_mapped_index : public mapped_index_base
4580 mock_mapped_index (gdb::array_view<const char *> symbols)
4581 : m_symbol_table (symbols)
4584 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4586 /* Return the number of names in the symbol table. */
4587 size_t symbol_name_count () const override
4589 return m_symbol_table.size ();
4592 /* Get the name of the symbol at IDX in the symbol table. */
4593 const char *symbol_name_at (offset_type idx) const override
4595 return m_symbol_table[idx];
4599 gdb::array_view<const char *> m_symbol_table;
4602 /* Convenience function that converts a NULL pointer to a "<null>"
4603 string, to pass to print routines. */
4606 string_or_null (const char *str)
4608 return str != NULL ? str : "<null>";
4611 /* Check if a lookup_name_info built from
4612 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4613 index. EXPECTED_LIST is the list of expected matches, in expected
4614 matching order. If no match expected, then an empty list is
4615 specified. Returns true on success. On failure prints a warning
4616 indicating the file:line that failed, and returns false. */
4619 check_match (const char *file, int line,
4620 mock_mapped_index &mock_index,
4621 const char *name, symbol_name_match_type match_type,
4622 bool completion_mode,
4623 std::initializer_list<const char *> expected_list)
4625 lookup_name_info lookup_name (name, match_type, completion_mode);
4627 bool matched = true;
4629 auto mismatch = [&] (const char *expected_str,
4632 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4633 "expected=\"%s\", got=\"%s\"\n"),
4635 (match_type == symbol_name_match_type::FULL
4637 name, string_or_null (expected_str), string_or_null (got));
4641 auto expected_it = expected_list.begin ();
4642 auto expected_end = expected_list.end ();
4644 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4646 [&] (offset_type idx)
4648 const char *matched_name = mock_index.symbol_name_at (idx);
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4652 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4653 mismatch (expected_str, matched_name);
4656 const char *expected_str
4657 = expected_it == expected_end ? NULL : *expected_it++;
4658 if (expected_str != NULL)
4659 mismatch (expected_str, NULL);
4664 /* The symbols added to the mock mapped_index for testing (in
4666 static const char *test_symbols[] = {
4675 "ns2::tmpl<int>::foo2",
4676 "(anonymous namespace)::A::B::C",
4678 /* These are used to check that the increment-last-char in the
4679 matching algorithm for completion doesn't match "t1_fund" when
4680 completing "t1_func". */
4686 /* A UTF-8 name with multi-byte sequences to make sure that
4687 cp-name-parser understands this as a single identifier ("função"
4688 is "function" in PT). */
4691 /* \377 (0xff) is Latin1 'ÿ'. */
4694 /* \377 (0xff) is Latin1 'ÿ'. */
4698 /* A name with all sorts of complications. Starts with "z" to make
4699 it easier for the completion tests below. */
4700 #define Z_SYM_NAME \
4701 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4702 "::tuple<(anonymous namespace)::ui*, " \
4703 "std::default_delete<(anonymous namespace)::ui>, void>"
4708 /* Returns true if the mapped_index_base::find_name_component_bounds
4709 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4710 in completion mode. */
4713 check_find_bounds_finds (mapped_index_base &index,
4714 const char *search_name,
4715 gdb::array_view<const char *> expected_syms)
4717 lookup_name_info lookup_name (search_name,
4718 symbol_name_match_type::FULL, true);
4720 auto bounds = index.find_name_components_bounds (lookup_name);
4722 size_t distance = std::distance (bounds.first, bounds.second);
4723 if (distance != expected_syms.size ())
4726 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4728 auto nc_elem = bounds.first + exp_elem;
4729 const char *qualified = index.symbol_name_at (nc_elem->idx);
4730 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4737 /* Test the lower-level mapped_index::find_name_component_bounds
4741 test_mapped_index_find_name_component_bounds ()
4743 mock_mapped_index mock_index (test_symbols);
4745 mock_index.build_name_components ();
4747 /* Test the lower-level mapped_index::find_name_component_bounds
4748 method in completion mode. */
4750 static const char *expected_syms[] = {
4755 SELF_CHECK (check_find_bounds_finds (mock_index,
4756 "t1_func", expected_syms));
4759 /* Check that the increment-last-char in the name matching algorithm
4760 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4762 static const char *expected_syms1[] = {
4766 SELF_CHECK (check_find_bounds_finds (mock_index,
4767 "\377", expected_syms1));
4769 static const char *expected_syms2[] = {
4772 SELF_CHECK (check_find_bounds_finds (mock_index,
4773 "\377\377", expected_syms2));
4777 /* Test dw2_expand_symtabs_matching_symbol. */
4780 test_dw2_expand_symtabs_matching_symbol ()
4782 mock_mapped_index mock_index (test_symbols);
4784 /* We let all tests run until the end even if some fails, for debug
4786 bool any_mismatch = false;
4788 /* Create the expected symbols list (an initializer_list). Needed
4789 because lists have commas, and we need to pass them to CHECK,
4790 which is a macro. */
4791 #define EXPECT(...) { __VA_ARGS__ }
4793 /* Wrapper for check_match that passes down the current
4794 __FILE__/__LINE__. */
4795 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4796 any_mismatch |= !check_match (__FILE__, __LINE__, \
4798 NAME, MATCH_TYPE, COMPLETION_MODE, \
4801 /* Identity checks. */
4802 for (const char *sym : test_symbols)
4804 /* Should be able to match all existing symbols. */
4805 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4808 /* Should be able to match all existing symbols with
4810 std::string with_params = std::string (sym) + "(int)";
4811 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 /* Should be able to match all existing symbols with
4815 parameters and qualifiers. */
4816 with_params = std::string (sym) + " ( int ) const";
4817 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4820 /* This should really find sym, but cp-name-parser.y doesn't
4821 know about lvalue/rvalue qualifiers yet. */
4822 with_params = std::string (sym) + " ( int ) &&";
4823 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4827 /* Check that the name matching algorithm for completion doesn't get
4828 confused with Latin1 'ÿ' / 0xff. */
4830 static const char str[] = "\377";
4831 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4832 EXPECT ("\377", "\377\377123"));
4835 /* Check that the increment-last-char in the matching algorithm for
4836 completion doesn't match "t1_fund" when completing "t1_func". */
4838 static const char str[] = "t1_func";
4839 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4840 EXPECT ("t1_func", "t1_func1"));
4843 /* Check that completion mode works at each prefix of the expected
4846 static const char str[] = "function(int)";
4847 size_t len = strlen (str);
4850 for (size_t i = 1; i < len; i++)
4852 lookup.assign (str, i);
4853 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4854 EXPECT ("function"));
4858 /* While "w" is a prefix of both components, the match function
4859 should still only be called once. */
4861 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4863 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4867 /* Same, with a "complicated" symbol. */
4869 static const char str[] = Z_SYM_NAME;
4870 size_t len = strlen (str);
4873 for (size_t i = 1; i < len; i++)
4875 lookup.assign (str, i);
4876 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4877 EXPECT (Z_SYM_NAME));
4881 /* In FULL mode, an incomplete symbol doesn't match. */
4883 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4887 /* A complete symbol with parameters matches any overload, since the
4888 index has no overload info. */
4890 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4891 EXPECT ("std::zfunction", "std::zfunction2"));
4892 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4898 /* Check that whitespace is ignored appropriately. A symbol with a
4899 template argument list. */
4901 static const char expected[] = "ns::foo<int>";
4902 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4904 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4908 /* Check that whitespace is ignored appropriately. A symbol with a
4909 template argument list that includes a pointer. */
4911 static const char expected[] = "ns::foo<char*>";
4912 /* Try both completion and non-completion modes. */
4913 static const bool completion_mode[2] = {false, true};
4914 for (size_t i = 0; i < 2; i++)
4916 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4917 completion_mode[i], EXPECT (expected));
4918 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4919 completion_mode[i], EXPECT (expected));
4921 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4922 completion_mode[i], EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4924 completion_mode[i], EXPECT (expected));
4929 /* Check method qualifiers are ignored. */
4930 static const char expected[] = "ns::foo<char*>";
4931 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4932 symbol_name_match_type::FULL, true, EXPECT (expected));
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("foo < char * > ( int ) const",
4936 symbol_name_match_type::WILD, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) &&",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4941 /* Test lookup names that don't match anything. */
4943 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4946 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4950 /* Some wild matching tests, exercising "(anonymous namespace)",
4951 which should not be confused with a parameter list. */
4953 static const char *syms[] = {
4957 "A :: B :: C ( int )",
4962 for (const char *s : syms)
4964 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4965 EXPECT ("(anonymous namespace)::A::B::C"));
4970 static const char expected[] = "ns2::tmpl<int>::foo2";
4971 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4973 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4977 SELF_CHECK (!any_mismatch);
4986 test_mapped_index_find_name_component_bounds ();
4987 test_dw2_expand_symtabs_matching_symbol ();
4990 }} // namespace selftests::dw2_expand_symtabs_matching
4992 #endif /* GDB_SELF_TEST */
4994 /* If FILE_MATCHER is NULL or if PER_CU has
4995 dwarf2_per_cu_quick_data::MARK set (see
4996 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4997 EXPANSION_NOTIFY on it. */
5000 dw2_expand_symtabs_matching_one
5001 (struct dwarf2_per_cu_data *per_cu,
5002 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5003 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5005 if (file_matcher == NULL || per_cu->v.quick->mark)
5007 bool symtab_was_null
5008 = (per_cu->v.quick->compunit_symtab == NULL);
5010 dw2_instantiate_symtab (per_cu, false);
5012 if (expansion_notify != NULL
5014 && per_cu->v.quick->compunit_symtab != NULL)
5015 expansion_notify (per_cu->v.quick->compunit_symtab);
5019 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5020 matched, to expand corresponding CUs that were marked. IDX is the
5021 index of the symbol name that matched. */
5024 dw2_expand_marked_cus
5025 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5026 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5027 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5030 offset_type *vec, vec_len, vec_idx;
5031 bool global_seen = false;
5032 mapped_index &index = *dwarf2_per_objfile->index_table;
5034 vec = (offset_type *) (index.constant_pool
5035 + MAYBE_SWAP (index.symbol_table[idx].vec));
5036 vec_len = MAYBE_SWAP (vec[0]);
5037 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5039 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5040 /* This value is only valid for index versions >= 7. */
5041 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5042 gdb_index_symbol_kind symbol_kind =
5043 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5044 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5045 /* Only check the symbol attributes if they're present.
5046 Indices prior to version 7 don't record them,
5047 and indices >= 7 may elide them for certain symbols
5048 (gold does this). */
5051 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5053 /* Work around gold/15646. */
5056 if (!is_static && global_seen)
5062 /* Only check the symbol's kind if it has one. */
5067 case VARIABLES_DOMAIN:
5068 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5071 case FUNCTIONS_DOMAIN:
5072 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5076 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5084 /* Don't crash on bad data. */
5085 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5086 + dwarf2_per_objfile->all_type_units.size ()))
5088 complaint (_(".gdb_index entry has bad CU index"
5090 objfile_name (dwarf2_per_objfile->objfile));
5094 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5095 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5100 /* If FILE_MATCHER is non-NULL, set all the
5101 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5102 that match FILE_MATCHER. */
5105 dw_expand_symtabs_matching_file_matcher
5106 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5107 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5109 if (file_matcher == NULL)
5112 objfile *const objfile = dwarf2_per_objfile->objfile;
5114 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5116 NULL, xcalloc, xfree));
5117 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5119 NULL, xcalloc, xfree));
5121 /* The rule is CUs specify all the files, including those used by
5122 any TU, so there's no need to scan TUs here. */
5124 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5128 per_cu->v.quick->mark = 0;
5130 /* We only need to look at symtabs not already expanded. */
5131 if (per_cu->v.quick->compunit_symtab)
5134 quick_file_names *file_data = dw2_get_file_names (per_cu);
5135 if (file_data == NULL)
5138 if (htab_find (visited_not_found.get (), file_data) != NULL)
5140 else if (htab_find (visited_found.get (), file_data) != NULL)
5142 per_cu->v.quick->mark = 1;
5146 for (int j = 0; j < file_data->num_file_names; ++j)
5148 const char *this_real_name;
5150 if (file_matcher (file_data->file_names[j], false))
5152 per_cu->v.quick->mark = 1;
5156 /* Before we invoke realpath, which can get expensive when many
5157 files are involved, do a quick comparison of the basenames. */
5158 if (!basenames_may_differ
5159 && !file_matcher (lbasename (file_data->file_names[j]),
5163 this_real_name = dw2_get_real_path (objfile, file_data, j);
5164 if (file_matcher (this_real_name, false))
5166 per_cu->v.quick->mark = 1;
5171 void **slot = htab_find_slot (per_cu->v.quick->mark
5172 ? visited_found.get ()
5173 : visited_not_found.get (),
5180 dw2_expand_symtabs_matching
5181 (struct objfile *objfile,
5182 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5183 const lookup_name_info &lookup_name,
5184 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5185 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5186 enum search_domain kind)
5188 struct dwarf2_per_objfile *dwarf2_per_objfile
5189 = get_dwarf2_per_objfile (objfile);
5191 /* index_table is NULL if OBJF_READNOW. */
5192 if (!dwarf2_per_objfile->index_table)
5195 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5197 mapped_index &index = *dwarf2_per_objfile->index_table;
5199 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5201 kind, [&] (offset_type idx)
5203 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5204 expansion_notify, kind);
5208 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5211 static struct compunit_symtab *
5212 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5217 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5218 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5221 if (cust->includes == NULL)
5224 for (i = 0; cust->includes[i]; ++i)
5226 struct compunit_symtab *s = cust->includes[i];
5228 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5236 static struct compunit_symtab *
5237 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5238 struct bound_minimal_symbol msymbol,
5240 struct obj_section *section,
5243 struct dwarf2_per_cu_data *data;
5244 struct compunit_symtab *result;
5246 if (!objfile->psymtabs_addrmap)
5249 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5250 SECT_OFF_TEXT (objfile));
5251 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5256 if (warn_if_readin && data->v.quick->compunit_symtab)
5257 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5258 paddress (get_objfile_arch (objfile), pc));
5261 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5264 gdb_assert (result != NULL);
5269 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5270 void *data, int need_fullname)
5272 struct dwarf2_per_objfile *dwarf2_per_objfile
5273 = get_dwarf2_per_objfile (objfile);
5275 if (!dwarf2_per_objfile->filenames_cache)
5277 dwarf2_per_objfile->filenames_cache.emplace ();
5279 htab_up visited (htab_create_alloc (10,
5280 htab_hash_pointer, htab_eq_pointer,
5281 NULL, xcalloc, xfree));
5283 /* The rule is CUs specify all the files, including those used
5284 by any TU, so there's no need to scan TUs here. We can
5285 ignore file names coming from already-expanded CUs. */
5287 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5289 if (per_cu->v.quick->compunit_symtab)
5291 void **slot = htab_find_slot (visited.get (),
5292 per_cu->v.quick->file_names,
5295 *slot = per_cu->v.quick->file_names;
5299 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5301 /* We only need to look at symtabs not already expanded. */
5302 if (per_cu->v.quick->compunit_symtab)
5305 quick_file_names *file_data = dw2_get_file_names (per_cu);
5306 if (file_data == NULL)
5309 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5312 /* Already visited. */
5317 for (int j = 0; j < file_data->num_file_names; ++j)
5319 const char *filename = file_data->file_names[j];
5320 dwarf2_per_objfile->filenames_cache->seen (filename);
5325 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5327 gdb::unique_xmalloc_ptr<char> this_real_name;
5330 this_real_name = gdb_realpath (filename);
5331 (*fun) (filename, this_real_name.get (), data);
5336 dw2_has_symbols (struct objfile *objfile)
5341 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5344 dw2_find_last_source_symtab,
5345 dw2_forget_cached_source_info,
5346 dw2_map_symtabs_matching_filename,
5350 dw2_expand_symtabs_for_function,
5351 dw2_expand_all_symtabs,
5352 dw2_expand_symtabs_with_fullname,
5353 dw2_map_matching_symbols,
5354 dw2_expand_symtabs_matching,
5355 dw2_find_pc_sect_compunit_symtab,
5357 dw2_map_symbol_filenames
5360 /* DWARF-5 debug_names reader. */
5362 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5363 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5365 /* A helper function that reads the .debug_names section in SECTION
5366 and fills in MAP. FILENAME is the name of the file containing the
5367 section; it is used for error reporting.
5369 Returns true if all went well, false otherwise. */
5372 read_debug_names_from_section (struct objfile *objfile,
5373 const char *filename,
5374 struct dwarf2_section_info *section,
5375 mapped_debug_names &map)
5377 if (dwarf2_section_empty_p (section))
5380 /* Older elfutils strip versions could keep the section in the main
5381 executable while splitting it for the separate debug info file. */
5382 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5385 dwarf2_read_section (objfile, section);
5387 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5389 const gdb_byte *addr = section->buffer;
5391 bfd *const abfd = get_section_bfd_owner (section);
5393 unsigned int bytes_read;
5394 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5397 map.dwarf5_is_dwarf64 = bytes_read != 4;
5398 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5399 if (bytes_read + length != section->size)
5401 /* There may be multiple per-CU indices. */
5402 warning (_("Section .debug_names in %s length %s does not match "
5403 "section length %s, ignoring .debug_names."),
5404 filename, plongest (bytes_read + length),
5405 pulongest (section->size));
5409 /* The version number. */
5410 uint16_t version = read_2_bytes (abfd, addr);
5414 warning (_("Section .debug_names in %s has unsupported version %d, "
5415 "ignoring .debug_names."),
5421 uint16_t padding = read_2_bytes (abfd, addr);
5425 warning (_("Section .debug_names in %s has unsupported padding %d, "
5426 "ignoring .debug_names."),
5431 /* comp_unit_count - The number of CUs in the CU list. */
5432 map.cu_count = read_4_bytes (abfd, addr);
5435 /* local_type_unit_count - The number of TUs in the local TU
5437 map.tu_count = read_4_bytes (abfd, addr);
5440 /* foreign_type_unit_count - The number of TUs in the foreign TU
5442 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5444 if (foreign_tu_count != 0)
5446 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5447 "ignoring .debug_names."),
5448 filename, static_cast<unsigned long> (foreign_tu_count));
5452 /* bucket_count - The number of hash buckets in the hash lookup
5454 map.bucket_count = read_4_bytes (abfd, addr);
5457 /* name_count - The number of unique names in the index. */
5458 map.name_count = read_4_bytes (abfd, addr);
5461 /* abbrev_table_size - The size in bytes of the abbreviations
5463 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5466 /* augmentation_string_size - The size in bytes of the augmentation
5467 string. This value is rounded up to a multiple of 4. */
5468 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5470 map.augmentation_is_gdb = ((augmentation_string_size
5471 == sizeof (dwarf5_augmentation))
5472 && memcmp (addr, dwarf5_augmentation,
5473 sizeof (dwarf5_augmentation)) == 0);
5474 augmentation_string_size += (-augmentation_string_size) & 3;
5475 addr += augmentation_string_size;
5478 map.cu_table_reordered = addr;
5479 addr += map.cu_count * map.offset_size;
5481 /* List of Local TUs */
5482 map.tu_table_reordered = addr;
5483 addr += map.tu_count * map.offset_size;
5485 /* Hash Lookup Table */
5486 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5487 addr += map.bucket_count * 4;
5488 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.name_count * 4;
5492 map.name_table_string_offs_reordered = addr;
5493 addr += map.name_count * map.offset_size;
5494 map.name_table_entry_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5497 const gdb_byte *abbrev_table_start = addr;
5500 unsigned int bytes_read;
5501 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5506 const auto insertpair
5507 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5508 if (!insertpair.second)
5510 warning (_("Section .debug_names in %s has duplicate index %s, "
5511 "ignoring .debug_names."),
5512 filename, pulongest (index_num));
5515 mapped_debug_names::index_val &indexval = insertpair.first->second;
5516 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5521 mapped_debug_names::index_val::attr attr;
5522 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5526 if (attr.form == DW_FORM_implicit_const)
5528 attr.implicit_const = read_signed_leb128 (abfd, addr,
5532 if (attr.dw_idx == 0 && attr.form == 0)
5534 indexval.attr_vec.push_back (std::move (attr));
5537 if (addr != abbrev_table_start + abbrev_table_size)
5539 warning (_("Section .debug_names in %s has abbreviation_table "
5540 "of size %zu vs. written as %u, ignoring .debug_names."),
5541 filename, addr - abbrev_table_start, abbrev_table_size);
5544 map.entry_pool = addr;
5549 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5553 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5554 const mapped_debug_names &map,
5555 dwarf2_section_info §ion,
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5568 map.dwarf5_byte_order));
5571 sect_off_next = (sect_offset) section.size;
5574 const ULONGEST length = sect_off_next - sect_off_prev;
5575 dwarf2_per_cu_data *per_cu
5576 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5577 sect_off_prev, length);
5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5580 sect_off_prev = sect_off_next;
5584 /* Read the CU list from the mapped index, and use it to create all
5585 the CU objects for this dwarf2_per_objfile. */
5588 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
5597 false /* is_dwz */);
5599 if (dwz_map.cu_count == 0)
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5607 /* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5611 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
5623 /* Don't use the index if it's empty. */
5624 if (map->name_count == 0)
5627 /* If there is a .dwz file, read it so we can get its CU list as
5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd),
5634 &dwz->debug_names, dwz_map))
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd));
5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5644 if (map->tu_count != 0)
5646 /* We can only handle a single .debug_types when we have an
5648 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5651 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5652 dwarf2_per_objfile->types, 0);
5654 create_signatured_type_table_from_debug_names
5655 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5658 create_addrmap_from_aranges (dwarf2_per_objfile,
5659 &dwarf2_per_objfile->debug_aranges);
5661 dwarf2_per_objfile->debug_names_table = std::move (map);
5662 dwarf2_per_objfile->using_index = 1;
5663 dwarf2_per_objfile->quick_file_names_table =
5664 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5669 /* Type used to manage iterating over all CUs looking for a symbol for
5672 class dw2_debug_names_iterator
5675 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5676 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5677 dw2_debug_names_iterator (const mapped_debug_names &map,
5678 bool want_specific_block,
5679 block_enum block_index, domain_enum domain,
5681 : m_map (map), m_want_specific_block (want_specific_block),
5682 m_block_index (block_index), m_domain (domain),
5683 m_addr (find_vec_in_debug_names (map, name))
5686 dw2_debug_names_iterator (const mapped_debug_names &map,
5687 search_domain search, uint32_t namei)
5690 m_addr (find_vec_in_debug_names (map, namei))
5693 /* Return the next matching CU or NULL if there are no more. */
5694 dwarf2_per_cu_data *next ();
5697 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5702 /* The internalized form of .debug_names. */
5703 const mapped_debug_names &m_map;
5705 /* If true, only look for symbols that match BLOCK_INDEX. */
5706 const bool m_want_specific_block = false;
5708 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5709 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5711 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5713 /* The kind of symbol we're looking for. */
5714 const domain_enum m_domain = UNDEF_DOMAIN;
5715 const search_domain m_search = ALL_DOMAIN;
5717 /* The list of CUs from the index entry of the symbol, or NULL if
5719 const gdb_byte *m_addr;
5723 mapped_debug_names::namei_to_name (uint32_t namei) const
5725 const ULONGEST namei_string_offs
5726 = extract_unsigned_integer ((name_table_string_offs_reordered
5727 + namei * offset_size),
5730 return read_indirect_string_at_offset
5731 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5734 /* Find a slot in .debug_names for the object named NAME. If NAME is
5735 found, return pointer to its pool data. If NAME cannot be found,
5739 dw2_debug_names_iterator::find_vec_in_debug_names
5740 (const mapped_debug_names &map, const char *name)
5742 int (*cmp) (const char *, const char *);
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5751 if (strchr (name, '(') != NULL)
5753 gdb::unique_xmalloc_ptr<char> without_params
5754 = cp_remove_params (name);
5756 if (without_params != NULL)
5758 name = without_params.get();
5763 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5765 const uint32_t full_hash = dwarf5_djb_hash (name);
5767 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5768 (map.bucket_table_reordered
5769 + (full_hash % map.bucket_count)), 4,
5770 map.dwarf5_byte_order);
5774 if (namei >= map.name_count)
5776 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5778 namei, map.name_count,
5779 objfile_name (map.dwarf2_per_objfile->objfile));
5785 const uint32_t namei_full_hash
5786 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5787 (map.hash_table_reordered + namei), 4,
5788 map.dwarf5_byte_order);
5789 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5792 if (full_hash == namei_full_hash)
5794 const char *const namei_string = map.namei_to_name (namei);
5796 #if 0 /* An expensive sanity check. */
5797 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5799 complaint (_("Wrong .debug_names hash for string at index %u "
5801 namei, objfile_name (dwarf2_per_objfile->objfile));
5806 if (cmp (namei_string, name) == 0)
5808 const ULONGEST namei_entry_offs
5809 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5810 + namei * map.offset_size),
5811 map.offset_size, map.dwarf5_byte_order);
5812 return map.entry_pool + namei_entry_offs;
5817 if (namei >= map.name_count)
5823 dw2_debug_names_iterator::find_vec_in_debug_names
5824 (const mapped_debug_names &map, uint32_t namei)
5826 if (namei >= map.name_count)
5828 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5830 namei, map.name_count,
5831 objfile_name (map.dwarf2_per_objfile->objfile));
5835 const ULONGEST namei_entry_offs
5836 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5837 + namei * map.offset_size),
5838 map.offset_size, map.dwarf5_byte_order);
5839 return map.entry_pool + namei_entry_offs;
5842 /* See dw2_debug_names_iterator. */
5844 dwarf2_per_cu_data *
5845 dw2_debug_names_iterator::next ()
5850 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5851 struct objfile *objfile = dwarf2_per_objfile->objfile;
5852 bfd *const abfd = objfile->obfd;
5856 unsigned int bytes_read;
5857 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5858 m_addr += bytes_read;
5862 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5863 if (indexval_it == m_map.abbrev_map.cend ())
5865 complaint (_("Wrong .debug_names undefined abbrev code %s "
5867 pulongest (abbrev), objfile_name (objfile));
5870 const mapped_debug_names::index_val &indexval = indexval_it->second;
5871 bool have_is_static = false;
5873 dwarf2_per_cu_data *per_cu = NULL;
5874 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5879 case DW_FORM_implicit_const:
5880 ull = attr.implicit_const;
5882 case DW_FORM_flag_present:
5886 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5887 m_addr += bytes_read;
5890 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5891 dwarf_form_name (attr.form),
5892 objfile_name (objfile));
5895 switch (attr.dw_idx)
5897 case DW_IDX_compile_unit:
5898 /* Don't crash on bad data. */
5899 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5901 complaint (_(".debug_names entry has bad CU index %s"
5904 objfile_name (dwarf2_per_objfile->objfile));
5907 per_cu = dwarf2_per_objfile->get_cutu (ull);
5909 case DW_IDX_type_unit:
5910 /* Don't crash on bad data. */
5911 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5913 complaint (_(".debug_names entry has bad TU index %s"
5916 objfile_name (dwarf2_per_objfile->objfile));
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5924 have_is_static = true;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5930 have_is_static = true;
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5940 /* Check static vs global. */
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5953 switch (indexval.dwarf_tag)
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5966 switch (indexval.dwarf_tag)
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5976 switch (indexval.dwarf_tag)
5979 case DW_TAG_variable:
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5996 case DW_TAG_variable:
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6005 case DW_TAG_subprogram:
6012 switch (indexval.dwarf_tag)
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6039 /* index is NULL if OBJF_READNOW. */
6042 const auto &map = *mapp;
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6071 /* Keep looking through other CUs. */
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6082 dw2_debug_names_dump (struct objfile *objfile)
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu, false);
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6140 kind, [&] (offset_type namei)
6142 /* The name was matched, now expand corresponding CUs that were
6144 dw2_debug_names_iterator iter (map, kind, namei);
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6161 dw2_debug_names_dump,
6162 dw2_debug_names_expand_symtabs_for_function,
6163 dw2_expand_all_symtabs,
6164 dw2_expand_symtabs_with_fullname,
6165 dw2_map_matching_symbols,
6166 dw2_debug_names_expand_symtabs_matching,
6167 dw2_find_pc_sect_compunit_symtab,
6169 dw2_map_symbol_filenames
6172 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6173 to either a dwarf2_per_objfile or dwz_file object. */
6175 template <typename T>
6176 static gdb::array_view<const gdb_byte>
6177 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6179 dwarf2_section_info *section = §ion_owner->gdb_index;
6181 if (dwarf2_section_empty_p (section))
6184 /* Older elfutils strip versions could keep the section in the main
6185 executable while splitting it for the separate debug info file. */
6186 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6189 dwarf2_read_section (obj, section);
6191 return {section->buffer, section->size};
6194 /* Lookup the index cache for the contents of the index associated to
6197 static gdb::array_view<const gdb_byte>
6198 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6200 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6201 if (build_id == nullptr)
6204 return global_index_cache.lookup_gdb_index (build_id,
6205 &dwarf2_obj->index_cache_res);
6208 /* Same as the above, but for DWZ. */
6210 static gdb::array_view<const gdb_byte>
6211 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6213 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6214 if (build_id == nullptr)
6217 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6220 /* See symfile.h. */
6223 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6225 struct dwarf2_per_objfile *dwarf2_per_objfile
6226 = get_dwarf2_per_objfile (objfile);
6228 /* If we're about to read full symbols, don't bother with the
6229 indices. In this case we also don't care if some other debug
6230 format is making psymtabs, because they are all about to be
6232 if ((objfile->flags & OBJF_READNOW))
6234 dwarf2_per_objfile->using_index = 1;
6235 create_all_comp_units (dwarf2_per_objfile);
6236 create_all_type_units (dwarf2_per_objfile);
6237 dwarf2_per_objfile->quick_file_names_table
6238 = create_quick_file_names_table
6239 (dwarf2_per_objfile->all_comp_units.size ());
6241 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6242 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6244 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6246 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6247 struct dwarf2_per_cu_quick_data);
6250 /* Return 1 so that gdb sees the "quick" functions. However,
6251 these functions will be no-ops because we will have expanded
6253 *index_kind = dw_index_kind::GDB_INDEX;
6257 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6259 *index_kind = dw_index_kind::DEBUG_NAMES;
6263 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6264 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6265 get_gdb_index_contents_from_section<dwz_file>))
6267 *index_kind = dw_index_kind::GDB_INDEX;
6271 /* ... otherwise, try to find the index in the index cache. */
6272 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6273 get_gdb_index_contents_from_cache,
6274 get_gdb_index_contents_from_cache_dwz))
6276 global_index_cache.hit ();
6277 *index_kind = dw_index_kind::GDB_INDEX;
6281 global_index_cache.miss ();
6287 /* Build a partial symbol table. */
6290 dwarf2_build_psymtabs (struct objfile *objfile)
6292 struct dwarf2_per_objfile *dwarf2_per_objfile
6293 = get_dwarf2_per_objfile (objfile);
6295 if (objfile->global_psymbols.capacity () == 0
6296 && objfile->static_psymbols.capacity () == 0)
6297 init_psymbol_list (objfile, 1024);
6301 /* This isn't really ideal: all the data we allocate on the
6302 objfile's obstack is still uselessly kept around. However,
6303 freeing it seems unsafe. */
6304 psymtab_discarder psymtabs (objfile);
6305 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6308 /* (maybe) store an index in the cache. */
6309 global_index_cache.store (dwarf2_per_objfile);
6311 CATCH (except, RETURN_MASK_ERROR)
6313 exception_print (gdb_stderr, except);
6318 /* Return the total length of the CU described by HEADER. */
6321 get_cu_length (const struct comp_unit_head *header)
6323 return header->initial_length_size + header->length;
6326 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6329 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6331 sect_offset bottom = cu_header->sect_off;
6332 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6334 return sect_off >= bottom && sect_off < top;
6337 /* Find the base address of the compilation unit for range lists and
6338 location lists. It will normally be specified by DW_AT_low_pc.
6339 In DWARF-3 draft 4, the base address could be overridden by
6340 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6341 compilation units with discontinuous ranges. */
6344 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6346 struct attribute *attr;
6349 cu->base_address = 0;
6351 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6354 cu->base_address = attr_value_as_address (attr);
6359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6362 cu->base_address = attr_value_as_address (attr);
6368 /* Read in the comp unit header information from the debug_info at info_ptr.
6369 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6370 NOTE: This leaves members offset, first_die_offset to be filled in
6373 static const gdb_byte *
6374 read_comp_unit_head (struct comp_unit_head *cu_header,
6375 const gdb_byte *info_ptr,
6376 struct dwarf2_section_info *section,
6377 rcuh_kind section_kind)
6380 unsigned int bytes_read;
6381 const char *filename = get_section_file_name (section);
6382 bfd *abfd = get_section_bfd_owner (section);
6384 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6385 cu_header->initial_length_size = bytes_read;
6386 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6387 info_ptr += bytes_read;
6388 cu_header->version = read_2_bytes (abfd, info_ptr);
6389 if (cu_header->version < 2 || cu_header->version > 5)
6390 error (_("Dwarf Error: wrong version in compilation unit header "
6391 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6392 cu_header->version, filename);
6394 if (cu_header->version < 5)
6395 switch (section_kind)
6397 case rcuh_kind::COMPILE:
6398 cu_header->unit_type = DW_UT_compile;
6400 case rcuh_kind::TYPE:
6401 cu_header->unit_type = DW_UT_type;
6404 internal_error (__FILE__, __LINE__,
6405 _("read_comp_unit_head: invalid section_kind"));
6409 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6410 (read_1_byte (abfd, info_ptr));
6412 switch (cu_header->unit_type)
6415 if (section_kind != rcuh_kind::COMPILE)
6416 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6417 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6421 section_kind = rcuh_kind::TYPE;
6424 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6425 "(is %d, should be %d or %d) [in module %s]"),
6426 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6429 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6432 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6435 info_ptr += bytes_read;
6436 if (cu_header->version < 5)
6438 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6441 signed_addr = bfd_get_sign_extend_vma (abfd);
6442 if (signed_addr < 0)
6443 internal_error (__FILE__, __LINE__,
6444 _("read_comp_unit_head: dwarf from non elf file"));
6445 cu_header->signed_addr_p = signed_addr;
6447 if (section_kind == rcuh_kind::TYPE)
6449 LONGEST type_offset;
6451 cu_header->signature = read_8_bytes (abfd, info_ptr);
6454 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6455 info_ptr += bytes_read;
6456 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6457 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6458 error (_("Dwarf Error: Too big type_offset in compilation unit "
6459 "header (is %s) [in module %s]"), plongest (type_offset),
6466 /* Helper function that returns the proper abbrev section for
6469 static struct dwarf2_section_info *
6470 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6472 struct dwarf2_section_info *abbrev;
6473 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6475 if (this_cu->is_dwz)
6476 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6478 abbrev = &dwarf2_per_objfile->abbrev;
6483 /* Subroutine of read_and_check_comp_unit_head and
6484 read_and_check_type_unit_head to simplify them.
6485 Perform various error checking on the header. */
6488 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6489 struct comp_unit_head *header,
6490 struct dwarf2_section_info *section,
6491 struct dwarf2_section_info *abbrev_section)
6493 const char *filename = get_section_file_name (section);
6495 if (to_underlying (header->abbrev_sect_off)
6496 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6497 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6498 "(offset %s + 6) [in module %s]"),
6499 sect_offset_str (header->abbrev_sect_off),
6500 sect_offset_str (header->sect_off),
6503 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6504 avoid potential 32-bit overflow. */
6505 if (((ULONGEST) header->sect_off + get_cu_length (header))
6507 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6508 "(offset %s + 0) [in module %s]"),
6509 header->length, sect_offset_str (header->sect_off),
6513 /* Read in a CU/TU header and perform some basic error checking.
6514 The contents of the header are stored in HEADER.
6515 The result is a pointer to the start of the first DIE. */
6517 static const gdb_byte *
6518 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6519 struct comp_unit_head *header,
6520 struct dwarf2_section_info *section,
6521 struct dwarf2_section_info *abbrev_section,
6522 const gdb_byte *info_ptr,
6523 rcuh_kind section_kind)
6525 const gdb_byte *beg_of_comp_unit = info_ptr;
6527 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6529 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6531 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6533 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6539 /* Fetch the abbreviation table offset from a comp or type unit header. */
6542 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6543 struct dwarf2_section_info *section,
6544 sect_offset sect_off)
6546 bfd *abfd = get_section_bfd_owner (section);
6547 const gdb_byte *info_ptr;
6548 unsigned int initial_length_size, offset_size;
6551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6552 info_ptr = section->buffer + to_underlying (sect_off);
6553 read_initial_length (abfd, info_ptr, &initial_length_size);
6554 offset_size = initial_length_size == 4 ? 4 : 8;
6555 info_ptr += initial_length_size;
6557 version = read_2_bytes (abfd, info_ptr);
6561 /* Skip unit type and address size. */
6565 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6568 /* Allocate a new partial symtab for file named NAME and mark this new
6569 partial symtab as being an include of PST. */
6572 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6573 struct objfile *objfile)
6575 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6577 if (!IS_ABSOLUTE_PATH (subpst->filename))
6579 /* It shares objfile->objfile_obstack. */
6580 subpst->dirname = pst->dirname;
6583 subpst->dependencies
6584 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6585 subpst->dependencies[0] = pst;
6586 subpst->number_of_dependencies = 1;
6588 subpst->globals_offset = 0;
6589 subpst->n_global_syms = 0;
6590 subpst->statics_offset = 0;
6591 subpst->n_static_syms = 0;
6592 subpst->compunit_symtab = NULL;
6593 subpst->read_symtab = pst->read_symtab;
6596 /* No private part is necessary for include psymtabs. This property
6597 can be used to differentiate between such include psymtabs and
6598 the regular ones. */
6599 subpst->read_symtab_private = NULL;
6602 /* Read the Line Number Program data and extract the list of files
6603 included by the source file represented by PST. Build an include
6604 partial symtab for each of these included files. */
6607 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6608 struct die_info *die,
6609 struct partial_symtab *pst)
6612 struct attribute *attr;
6614 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6616 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6618 return; /* No linetable, so no includes. */
6620 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6621 that we pass in the raw text_low here; that is ok because we're
6622 only decoding the line table to make include partial symtabs, and
6623 so the addresses aren't really used. */
6624 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6625 pst->raw_text_low (), 1);
6629 hash_signatured_type (const void *item)
6631 const struct signatured_type *sig_type
6632 = (const struct signatured_type *) item;
6634 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6635 return sig_type->signature;
6639 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6641 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6642 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6644 return lhs->signature == rhs->signature;
6647 /* Allocate a hash table for signatured types. */
6650 allocate_signatured_type_table (struct objfile *objfile)
6652 return htab_create_alloc_ex (41,
6653 hash_signatured_type,
6656 &objfile->objfile_obstack,
6657 hashtab_obstack_allocate,
6658 dummy_obstack_deallocate);
6661 /* A helper function to add a signatured type CU to a table. */
6664 add_signatured_type_cu_to_table (void **slot, void *datum)
6666 struct signatured_type *sigt = (struct signatured_type *) *slot;
6667 std::vector<signatured_type *> *all_type_units
6668 = (std::vector<signatured_type *> *) datum;
6670 all_type_units->push_back (sigt);
6675 /* A helper for create_debug_types_hash_table. Read types from SECTION
6676 and fill them into TYPES_HTAB. It will process only type units,
6677 therefore DW_UT_type. */
6680 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6681 struct dwo_file *dwo_file,
6682 dwarf2_section_info *section, htab_t &types_htab,
6683 rcuh_kind section_kind)
6685 struct objfile *objfile = dwarf2_per_objfile->objfile;
6686 struct dwarf2_section_info *abbrev_section;
6688 const gdb_byte *info_ptr, *end_ptr;
6690 abbrev_section = (dwo_file != NULL
6691 ? &dwo_file->sections.abbrev
6692 : &dwarf2_per_objfile->abbrev);
6694 if (dwarf_read_debug)
6695 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6696 get_section_name (section),
6697 get_section_file_name (abbrev_section));
6699 dwarf2_read_section (objfile, section);
6700 info_ptr = section->buffer;
6702 if (info_ptr == NULL)
6705 /* We can't set abfd until now because the section may be empty or
6706 not present, in which case the bfd is unknown. */
6707 abfd = get_section_bfd_owner (section);
6709 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6710 because we don't need to read any dies: the signature is in the
6713 end_ptr = info_ptr + section->size;
6714 while (info_ptr < end_ptr)
6716 struct signatured_type *sig_type;
6717 struct dwo_unit *dwo_tu;
6719 const gdb_byte *ptr = info_ptr;
6720 struct comp_unit_head header;
6721 unsigned int length;
6723 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6725 /* Initialize it due to a false compiler warning. */
6726 header.signature = -1;
6727 header.type_cu_offset_in_tu = (cu_offset) -1;
6729 /* We need to read the type's signature in order to build the hash
6730 table, but we don't need anything else just yet. */
6732 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6733 abbrev_section, ptr, section_kind);
6735 length = get_cu_length (&header);
6737 /* Skip dummy type units. */
6738 if (ptr >= info_ptr + length
6739 || peek_abbrev_code (abfd, ptr) == 0
6740 || header.unit_type != DW_UT_type)
6746 if (types_htab == NULL)
6749 types_htab = allocate_dwo_unit_table (objfile);
6751 types_htab = allocate_signatured_type_table (objfile);
6757 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6759 dwo_tu->dwo_file = dwo_file;
6760 dwo_tu->signature = header.signature;
6761 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6762 dwo_tu->section = section;
6763 dwo_tu->sect_off = sect_off;
6764 dwo_tu->length = length;
6768 /* N.B.: type_offset is not usable if this type uses a DWO file.
6769 The real type_offset is in the DWO file. */
6771 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6772 struct signatured_type);
6773 sig_type->signature = header.signature;
6774 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6775 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6776 sig_type->per_cu.is_debug_types = 1;
6777 sig_type->per_cu.section = section;
6778 sig_type->per_cu.sect_off = sect_off;
6779 sig_type->per_cu.length = length;
6782 slot = htab_find_slot (types_htab,
6783 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6785 gdb_assert (slot != NULL);
6788 sect_offset dup_sect_off;
6792 const struct dwo_unit *dup_tu
6793 = (const struct dwo_unit *) *slot;
6795 dup_sect_off = dup_tu->sect_off;
6799 const struct signatured_type *dup_tu
6800 = (const struct signatured_type *) *slot;
6802 dup_sect_off = dup_tu->per_cu.sect_off;
6805 complaint (_("debug type entry at offset %s is duplicate to"
6806 " the entry at offset %s, signature %s"),
6807 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6808 hex_string (header.signature));
6810 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6812 if (dwarf_read_debug > 1)
6813 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6814 sect_offset_str (sect_off),
6815 hex_string (header.signature));
6821 /* Create the hash table of all entries in the .debug_types
6822 (or .debug_types.dwo) section(s).
6823 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6824 otherwise it is NULL.
6826 The result is a pointer to the hash table or NULL if there are no types.
6828 Note: This function processes DWO files only, not DWP files. */
6831 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6832 struct dwo_file *dwo_file,
6833 VEC (dwarf2_section_info_def) *types,
6837 struct dwarf2_section_info *section;
6839 if (VEC_empty (dwarf2_section_info_def, types))
6843 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6845 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6846 types_htab, rcuh_kind::TYPE);
6849 /* Create the hash table of all entries in the .debug_types section,
6850 and initialize all_type_units.
6851 The result is zero if there is an error (e.g. missing .debug_types section),
6852 otherwise non-zero. */
6855 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6857 htab_t types_htab = NULL;
6859 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6860 &dwarf2_per_objfile->info, types_htab,
6861 rcuh_kind::COMPILE);
6862 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6863 dwarf2_per_objfile->types, types_htab);
6864 if (types_htab == NULL)
6866 dwarf2_per_objfile->signatured_types = NULL;
6870 dwarf2_per_objfile->signatured_types = types_htab;
6872 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6873 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6875 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6876 &dwarf2_per_objfile->all_type_units);
6881 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6882 If SLOT is non-NULL, it is the entry to use in the hash table.
6883 Otherwise we find one. */
6885 static struct signatured_type *
6886 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6891 if (dwarf2_per_objfile->all_type_units.size ()
6892 == dwarf2_per_objfile->all_type_units.capacity ())
6893 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6895 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6896 struct signatured_type);
6898 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6899 sig_type->signature = sig;
6900 sig_type->per_cu.is_debug_types = 1;
6901 if (dwarf2_per_objfile->using_index)
6903 sig_type->per_cu.v.quick =
6904 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6905 struct dwarf2_per_cu_quick_data);
6910 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6913 gdb_assert (*slot == NULL);
6915 /* The rest of sig_type must be filled in by the caller. */
6919 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6920 Fill in SIG_ENTRY with DWO_ENTRY. */
6923 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6924 struct signatured_type *sig_entry,
6925 struct dwo_unit *dwo_entry)
6927 /* Make sure we're not clobbering something we don't expect to. */
6928 gdb_assert (! sig_entry->per_cu.queued);
6929 gdb_assert (sig_entry->per_cu.cu == NULL);
6930 if (dwarf2_per_objfile->using_index)
6932 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6933 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6936 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6937 gdb_assert (sig_entry->signature == dwo_entry->signature);
6938 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6939 gdb_assert (sig_entry->type_unit_group == NULL);
6940 gdb_assert (sig_entry->dwo_unit == NULL);
6942 sig_entry->per_cu.section = dwo_entry->section;
6943 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6944 sig_entry->per_cu.length = dwo_entry->length;
6945 sig_entry->per_cu.reading_dwo_directly = 1;
6946 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6947 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6948 sig_entry->dwo_unit = dwo_entry;
6951 /* Subroutine of lookup_signatured_type.
6952 If we haven't read the TU yet, create the signatured_type data structure
6953 for a TU to be read in directly from a DWO file, bypassing the stub.
6954 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6955 using .gdb_index, then when reading a CU we want to stay in the DWO file
6956 containing that CU. Otherwise we could end up reading several other DWO
6957 files (due to comdat folding) to process the transitive closure of all the
6958 mentioned TUs, and that can be slow. The current DWO file will have every
6959 type signature that it needs.
6960 We only do this for .gdb_index because in the psymtab case we already have
6961 to read all the DWOs to build the type unit groups. */
6963 static struct signatured_type *
6964 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6966 struct dwarf2_per_objfile *dwarf2_per_objfile
6967 = cu->per_cu->dwarf2_per_objfile;
6968 struct objfile *objfile = dwarf2_per_objfile->objfile;
6969 struct dwo_file *dwo_file;
6970 struct dwo_unit find_dwo_entry, *dwo_entry;
6971 struct signatured_type find_sig_entry, *sig_entry;
6974 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6976 /* If TU skeletons have been removed then we may not have read in any
6978 if (dwarf2_per_objfile->signatured_types == NULL)
6980 dwarf2_per_objfile->signatured_types
6981 = allocate_signatured_type_table (objfile);
6984 /* We only ever need to read in one copy of a signatured type.
6985 Use the global signatured_types array to do our own comdat-folding
6986 of types. If this is the first time we're reading this TU, and
6987 the TU has an entry in .gdb_index, replace the recorded data from
6988 .gdb_index with this TU. */
6990 find_sig_entry.signature = sig;
6991 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6992 &find_sig_entry, INSERT);
6993 sig_entry = (struct signatured_type *) *slot;
6995 /* We can get here with the TU already read, *or* in the process of being
6996 read. Don't reassign the global entry to point to this DWO if that's
6997 the case. Also note that if the TU is already being read, it may not
6998 have come from a DWO, the program may be a mix of Fission-compiled
6999 code and non-Fission-compiled code. */
7001 /* Have we already tried to read this TU?
7002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7003 needn't exist in the global table yet). */
7004 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7007 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7008 dwo_unit of the TU itself. */
7009 dwo_file = cu->dwo_unit->dwo_file;
7011 /* Ok, this is the first time we're reading this TU. */
7012 if (dwo_file->tus == NULL)
7014 find_dwo_entry.signature = sig;
7015 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7016 if (dwo_entry == NULL)
7019 /* If the global table doesn't have an entry for this TU, add one. */
7020 if (sig_entry == NULL)
7021 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7023 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7024 sig_entry->per_cu.tu_read = 1;
7028 /* Subroutine of lookup_signatured_type.
7029 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7030 then try the DWP file. If the TU stub (skeleton) has been removed then
7031 it won't be in .gdb_index. */
7033 static struct signatured_type *
7034 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7036 struct dwarf2_per_objfile *dwarf2_per_objfile
7037 = cu->per_cu->dwarf2_per_objfile;
7038 struct objfile *objfile = dwarf2_per_objfile->objfile;
7039 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7040 struct dwo_unit *dwo_entry;
7041 struct signatured_type find_sig_entry, *sig_entry;
7044 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7045 gdb_assert (dwp_file != NULL);
7047 /* If TU skeletons have been removed then we may not have read in any
7049 if (dwarf2_per_objfile->signatured_types == NULL)
7051 dwarf2_per_objfile->signatured_types
7052 = allocate_signatured_type_table (objfile);
7055 find_sig_entry.signature = sig;
7056 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7057 &find_sig_entry, INSERT);
7058 sig_entry = (struct signatured_type *) *slot;
7060 /* Have we already tried to read this TU?
7061 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7062 needn't exist in the global table yet). */
7063 if (sig_entry != NULL)
7066 if (dwp_file->tus == NULL)
7068 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7069 sig, 1 /* is_debug_types */);
7070 if (dwo_entry == NULL)
7073 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7074 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7079 /* Lookup a signature based type for DW_FORM_ref_sig8.
7080 Returns NULL if signature SIG is not present in the table.
7081 It is up to the caller to complain about this. */
7083 static struct signatured_type *
7084 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7086 struct dwarf2_per_objfile *dwarf2_per_objfile
7087 = cu->per_cu->dwarf2_per_objfile;
7090 && dwarf2_per_objfile->using_index)
7092 /* We're in a DWO/DWP file, and we're using .gdb_index.
7093 These cases require special processing. */
7094 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7095 return lookup_dwo_signatured_type (cu, sig);
7097 return lookup_dwp_signatured_type (cu, sig);
7101 struct signatured_type find_entry, *entry;
7103 if (dwarf2_per_objfile->signatured_types == NULL)
7105 find_entry.signature = sig;
7106 entry = ((struct signatured_type *)
7107 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7112 /* Low level DIE reading support. */
7114 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7117 init_cu_die_reader (struct die_reader_specs *reader,
7118 struct dwarf2_cu *cu,
7119 struct dwarf2_section_info *section,
7120 struct dwo_file *dwo_file,
7121 struct abbrev_table *abbrev_table)
7123 gdb_assert (section->readin && section->buffer != NULL);
7124 reader->abfd = get_section_bfd_owner (section);
7126 reader->dwo_file = dwo_file;
7127 reader->die_section = section;
7128 reader->buffer = section->buffer;
7129 reader->buffer_end = section->buffer + section->size;
7130 reader->comp_dir = NULL;
7131 reader->abbrev_table = abbrev_table;
7134 /* Subroutine of init_cutu_and_read_dies to simplify it.
7135 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7136 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7139 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7140 from it to the DIE in the DWO. If NULL we are skipping the stub.
7141 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7142 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7143 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7144 STUB_COMP_DIR may be non-NULL.
7145 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7146 are filled in with the info of the DIE from the DWO file.
7147 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7148 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7149 kept around for at least as long as *RESULT_READER.
7151 The result is non-zero if a valid (non-dummy) DIE was found. */
7154 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7155 struct dwo_unit *dwo_unit,
7156 struct die_info *stub_comp_unit_die,
7157 const char *stub_comp_dir,
7158 struct die_reader_specs *result_reader,
7159 const gdb_byte **result_info_ptr,
7160 struct die_info **result_comp_unit_die,
7161 int *result_has_children,
7162 abbrev_table_up *result_dwo_abbrev_table)
7164 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7165 struct objfile *objfile = dwarf2_per_objfile->objfile;
7166 struct dwarf2_cu *cu = this_cu->cu;
7168 const gdb_byte *begin_info_ptr, *info_ptr;
7169 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7170 int i,num_extra_attrs;
7171 struct dwarf2_section_info *dwo_abbrev_section;
7172 struct attribute *attr;
7173 struct die_info *comp_unit_die;
7175 /* At most one of these may be provided. */
7176 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7178 /* These attributes aren't processed until later:
7179 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7180 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7181 referenced later. However, these attributes are found in the stub
7182 which we won't have later. In order to not impose this complication
7183 on the rest of the code, we read them here and copy them to the
7192 if (stub_comp_unit_die != NULL)
7194 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7196 if (! this_cu->is_debug_types)
7197 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7198 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7199 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7200 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7201 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7203 /* There should be a DW_AT_addr_base attribute here (if needed).
7204 We need the value before we can process DW_FORM_GNU_addr_index. */
7206 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7208 cu->addr_base = DW_UNSND (attr);
7210 /* There should be a DW_AT_ranges_base attribute here (if needed).
7211 We need the value before we can process DW_AT_ranges. */
7212 cu->ranges_base = 0;
7213 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7215 cu->ranges_base = DW_UNSND (attr);
7217 else if (stub_comp_dir != NULL)
7219 /* Reconstruct the comp_dir attribute to simplify the code below. */
7220 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7221 comp_dir->name = DW_AT_comp_dir;
7222 comp_dir->form = DW_FORM_string;
7223 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7224 DW_STRING (comp_dir) = stub_comp_dir;
7227 /* Set up for reading the DWO CU/TU. */
7228 cu->dwo_unit = dwo_unit;
7229 dwarf2_section_info *section = dwo_unit->section;
7230 dwarf2_read_section (objfile, section);
7231 abfd = get_section_bfd_owner (section);
7232 begin_info_ptr = info_ptr = (section->buffer
7233 + to_underlying (dwo_unit->sect_off));
7234 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7236 if (this_cu->is_debug_types)
7238 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7240 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7241 &cu->header, section,
7243 info_ptr, rcuh_kind::TYPE);
7244 /* This is not an assert because it can be caused by bad debug info. */
7245 if (sig_type->signature != cu->header.signature)
7247 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7248 " TU at offset %s [in module %s]"),
7249 hex_string (sig_type->signature),
7250 hex_string (cu->header.signature),
7251 sect_offset_str (dwo_unit->sect_off),
7252 bfd_get_filename (abfd));
7254 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7255 /* For DWOs coming from DWP files, we don't know the CU length
7256 nor the type's offset in the TU until now. */
7257 dwo_unit->length = get_cu_length (&cu->header);
7258 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7260 /* Establish the type offset that can be used to lookup the type.
7261 For DWO files, we don't know it until now. */
7262 sig_type->type_offset_in_section
7263 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7267 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7268 &cu->header, section,
7270 info_ptr, rcuh_kind::COMPILE);
7271 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7272 /* For DWOs coming from DWP files, we don't know the CU length
7274 dwo_unit->length = get_cu_length (&cu->header);
7277 *result_dwo_abbrev_table
7278 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7279 cu->header.abbrev_sect_off);
7280 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7281 result_dwo_abbrev_table->get ());
7283 /* Read in the die, but leave space to copy over the attributes
7284 from the stub. This has the benefit of simplifying the rest of
7285 the code - all the work to maintain the illusion of a single
7286 DW_TAG_{compile,type}_unit DIE is done here. */
7287 num_extra_attrs = ((stmt_list != NULL)
7291 + (comp_dir != NULL));
7292 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7293 result_has_children, num_extra_attrs);
7295 /* Copy over the attributes from the stub to the DIE we just read in. */
7296 comp_unit_die = *result_comp_unit_die;
7297 i = comp_unit_die->num_attrs;
7298 if (stmt_list != NULL)
7299 comp_unit_die->attrs[i++] = *stmt_list;
7301 comp_unit_die->attrs[i++] = *low_pc;
7302 if (high_pc != NULL)
7303 comp_unit_die->attrs[i++] = *high_pc;
7305 comp_unit_die->attrs[i++] = *ranges;
7306 if (comp_dir != NULL)
7307 comp_unit_die->attrs[i++] = *comp_dir;
7308 comp_unit_die->num_attrs += num_extra_attrs;
7310 if (dwarf_die_debug)
7312 fprintf_unfiltered (gdb_stdlog,
7313 "Read die from %s@0x%x of %s:\n",
7314 get_section_name (section),
7315 (unsigned) (begin_info_ptr - section->buffer),
7316 bfd_get_filename (abfd));
7317 dump_die (comp_unit_die, dwarf_die_debug);
7320 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7321 TUs by skipping the stub and going directly to the entry in the DWO file.
7322 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7323 to get it via circuitous means. Blech. */
7324 if (comp_dir != NULL)
7325 result_reader->comp_dir = DW_STRING (comp_dir);
7327 /* Skip dummy compilation units. */
7328 if (info_ptr >= begin_info_ptr + dwo_unit->length
7329 || peek_abbrev_code (abfd, info_ptr) == 0)
7332 *result_info_ptr = info_ptr;
7336 /* Subroutine of init_cutu_and_read_dies to simplify it.
7337 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7338 Returns NULL if the specified DWO unit cannot be found. */
7340 static struct dwo_unit *
7341 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7342 struct die_info *comp_unit_die)
7344 struct dwarf2_cu *cu = this_cu->cu;
7346 struct dwo_unit *dwo_unit;
7347 const char *comp_dir, *dwo_name;
7349 gdb_assert (cu != NULL);
7351 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7352 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7353 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7355 if (this_cu->is_debug_types)
7357 struct signatured_type *sig_type;
7359 /* Since this_cu is the first member of struct signatured_type,
7360 we can go from a pointer to one to a pointer to the other. */
7361 sig_type = (struct signatured_type *) this_cu;
7362 signature = sig_type->signature;
7363 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7367 struct attribute *attr;
7369 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7371 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7373 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7374 signature = DW_UNSND (attr);
7375 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7382 /* Subroutine of init_cutu_and_read_dies to simplify it.
7383 See it for a description of the parameters.
7384 Read a TU directly from a DWO file, bypassing the stub. */
7387 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7388 int use_existing_cu, int keep,
7389 die_reader_func_ftype *die_reader_func,
7392 std::unique_ptr<dwarf2_cu> new_cu;
7393 struct signatured_type *sig_type;
7394 struct die_reader_specs reader;
7395 const gdb_byte *info_ptr;
7396 struct die_info *comp_unit_die;
7398 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7400 /* Verify we can do the following downcast, and that we have the
7402 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7403 sig_type = (struct signatured_type *) this_cu;
7404 gdb_assert (sig_type->dwo_unit != NULL);
7406 if (use_existing_cu && this_cu->cu != NULL)
7408 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7409 /* There's no need to do the rereading_dwo_cu handling that
7410 init_cutu_and_read_dies does since we don't read the stub. */
7414 /* If !use_existing_cu, this_cu->cu must be NULL. */
7415 gdb_assert (this_cu->cu == NULL);
7416 new_cu.reset (new dwarf2_cu (this_cu));
7419 /* A future optimization, if needed, would be to use an existing
7420 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7421 could share abbrev tables. */
7423 /* The abbreviation table used by READER, this must live at least as long as
7425 abbrev_table_up dwo_abbrev_table;
7427 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7428 NULL /* stub_comp_unit_die */,
7429 sig_type->dwo_unit->dwo_file->comp_dir,
7431 &comp_unit_die, &has_children,
7432 &dwo_abbrev_table) == 0)
7438 /* All the "real" work is done here. */
7439 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7441 /* This duplicates the code in init_cutu_and_read_dies,
7442 but the alternative is making the latter more complex.
7443 This function is only for the special case of using DWO files directly:
7444 no point in overly complicating the general case just to handle this. */
7445 if (new_cu != NULL && keep)
7447 /* Link this CU into read_in_chain. */
7448 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7449 dwarf2_per_objfile->read_in_chain = this_cu;
7450 /* The chain owns it now. */
7455 /* Initialize a CU (or TU) and read its DIEs.
7456 If the CU defers to a DWO file, read the DWO file as well.
7458 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7459 Otherwise the table specified in the comp unit header is read in and used.
7460 This is an optimization for when we already have the abbrev table.
7462 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7463 Otherwise, a new CU is allocated with xmalloc.
7465 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7466 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7468 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7469 linker) then DIE_READER_FUNC will not get called. */
7472 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7473 struct abbrev_table *abbrev_table,
7474 int use_existing_cu, int keep,
7476 die_reader_func_ftype *die_reader_func,
7479 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7480 struct objfile *objfile = dwarf2_per_objfile->objfile;
7481 struct dwarf2_section_info *section = this_cu->section;
7482 bfd *abfd = get_section_bfd_owner (section);
7483 struct dwarf2_cu *cu;
7484 const gdb_byte *begin_info_ptr, *info_ptr;
7485 struct die_reader_specs reader;
7486 struct die_info *comp_unit_die;
7488 struct attribute *attr;
7489 struct signatured_type *sig_type = NULL;
7490 struct dwarf2_section_info *abbrev_section;
7491 /* Non-zero if CU currently points to a DWO file and we need to
7492 reread it. When this happens we need to reread the skeleton die
7493 before we can reread the DWO file (this only applies to CUs, not TUs). */
7494 int rereading_dwo_cu = 0;
7496 if (dwarf_die_debug)
7497 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7498 this_cu->is_debug_types ? "type" : "comp",
7499 sect_offset_str (this_cu->sect_off));
7501 if (use_existing_cu)
7504 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7505 file (instead of going through the stub), short-circuit all of this. */
7506 if (this_cu->reading_dwo_directly)
7508 /* Narrow down the scope of possibilities to have to understand. */
7509 gdb_assert (this_cu->is_debug_types);
7510 gdb_assert (abbrev_table == NULL);
7511 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7512 die_reader_func, data);
7516 /* This is cheap if the section is already read in. */
7517 dwarf2_read_section (objfile, section);
7519 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7521 abbrev_section = get_abbrev_section_for_cu (this_cu);
7523 std::unique_ptr<dwarf2_cu> new_cu;
7524 if (use_existing_cu && this_cu->cu != NULL)
7527 /* If this CU is from a DWO file we need to start over, we need to
7528 refetch the attributes from the skeleton CU.
7529 This could be optimized by retrieving those attributes from when we
7530 were here the first time: the previous comp_unit_die was stored in
7531 comp_unit_obstack. But there's no data yet that we need this
7533 if (cu->dwo_unit != NULL)
7534 rereading_dwo_cu = 1;
7538 /* If !use_existing_cu, this_cu->cu must be NULL. */
7539 gdb_assert (this_cu->cu == NULL);
7540 new_cu.reset (new dwarf2_cu (this_cu));
7544 /* Get the header. */
7545 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7547 /* We already have the header, there's no need to read it in again. */
7548 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7552 if (this_cu->is_debug_types)
7554 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7555 &cu->header, section,
7556 abbrev_section, info_ptr,
7559 /* Since per_cu is the first member of struct signatured_type,
7560 we can go from a pointer to one to a pointer to the other. */
7561 sig_type = (struct signatured_type *) this_cu;
7562 gdb_assert (sig_type->signature == cu->header.signature);
7563 gdb_assert (sig_type->type_offset_in_tu
7564 == cu->header.type_cu_offset_in_tu);
7565 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7567 /* LENGTH has not been set yet for type units if we're
7568 using .gdb_index. */
7569 this_cu->length = get_cu_length (&cu->header);
7571 /* Establish the type offset that can be used to lookup the type. */
7572 sig_type->type_offset_in_section =
7573 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7575 this_cu->dwarf_version = cu->header.version;
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7583 rcuh_kind::COMPILE);
7585 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7586 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7587 this_cu->dwarf_version = cu->header.version;
7591 /* Skip dummy compilation units. */
7592 if (info_ptr >= begin_info_ptr + this_cu->length
7593 || peek_abbrev_code (abfd, info_ptr) == 0)
7596 /* If we don't have them yet, read the abbrevs for this compilation unit.
7597 And if we need to read them now, make sure they're freed when we're
7598 done (own the table through ABBREV_TABLE_HOLDER). */
7599 abbrev_table_up abbrev_table_holder;
7600 if (abbrev_table != NULL)
7601 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7605 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7606 cu->header.abbrev_sect_off);
7607 abbrev_table = abbrev_table_holder.get ();
7610 /* Read the top level CU/TU die. */
7611 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7612 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7614 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7617 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7618 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7619 table from the DWO file and pass the ownership over to us. It will be
7620 referenced from READER, so we must make sure to free it after we're done
7623 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7624 DWO CU, that this test will fail (the attribute will not be present). */
7625 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7626 abbrev_table_up dwo_abbrev_table;
7629 struct dwo_unit *dwo_unit;
7630 struct die_info *dwo_comp_unit_die;
7634 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7635 " has children (offset %s) [in module %s]"),
7636 sect_offset_str (this_cu->sect_off),
7637 bfd_get_filename (abfd));
7639 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7640 if (dwo_unit != NULL)
7642 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7643 comp_unit_die, NULL,
7645 &dwo_comp_unit_die, &has_children,
7646 &dwo_abbrev_table) == 0)
7651 comp_unit_die = dwo_comp_unit_die;
7655 /* Yikes, we couldn't find the rest of the DIE, we only have
7656 the stub. A complaint has already been logged. There's
7657 not much more we can do except pass on the stub DIE to
7658 die_reader_func. We don't want to throw an error on bad
7663 /* All of the above is setup for this call. Yikes. */
7664 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7666 /* Done, clean up. */
7667 if (new_cu != NULL && keep)
7669 /* Link this CU into read_in_chain. */
7670 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7671 dwarf2_per_objfile->read_in_chain = this_cu;
7672 /* The chain owns it now. */
7677 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7678 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7679 to have already done the lookup to find the DWO file).
7681 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7682 THIS_CU->is_debug_types, but nothing else.
7684 We fill in THIS_CU->length.
7686 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7687 linker) then DIE_READER_FUNC will not get called.
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU. */
7694 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7695 struct dwo_file *dwo_file,
7696 die_reader_func_ftype *die_reader_func,
7699 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7700 struct objfile *objfile = dwarf2_per_objfile->objfile;
7701 struct dwarf2_section_info *section = this_cu->section;
7702 bfd *abfd = get_section_bfd_owner (section);
7703 struct dwarf2_section_info *abbrev_section;
7704 const gdb_byte *begin_info_ptr, *info_ptr;
7705 struct die_reader_specs reader;
7706 struct die_info *comp_unit_die;
7709 if (dwarf_die_debug)
7710 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7711 this_cu->is_debug_types ? "type" : "comp",
7712 sect_offset_str (this_cu->sect_off));
7714 gdb_assert (this_cu->cu == NULL);
7716 abbrev_section = (dwo_file != NULL
7717 ? &dwo_file->sections.abbrev
7718 : get_abbrev_section_for_cu (this_cu));
7720 /* This is cheap if the section is already read in. */
7721 dwarf2_read_section (objfile, section);
7723 struct dwarf2_cu cu (this_cu);
7725 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7726 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7727 &cu.header, section,
7728 abbrev_section, info_ptr,
7729 (this_cu->is_debug_types
7731 : rcuh_kind::COMPILE));
7733 this_cu->length = get_cu_length (&cu.header);
7735 /* Skip dummy compilation units. */
7736 if (info_ptr >= begin_info_ptr + this_cu->length
7737 || peek_abbrev_code (abfd, info_ptr) == 0)
7740 abbrev_table_up abbrev_table
7741 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7742 cu.header.abbrev_sect_off);
7744 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7745 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7747 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7750 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7751 does not lookup the specified DWO file.
7752 This cannot be used to read DWO files.
7754 THIS_CU->cu is always freed when done.
7755 This is done in order to not leave THIS_CU->cu in a state where we have
7756 to care whether it refers to the "main" CU or the DWO CU.
7757 We can revisit this if the data shows there's a performance issue. */
7760 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7761 die_reader_func_ftype *die_reader_func,
7764 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7767 /* Type Unit Groups.
7769 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7770 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7771 so that all types coming from the same compilation (.o file) are grouped
7772 together. A future step could be to put the types in the same symtab as
7773 the CU the types ultimately came from. */
7776 hash_type_unit_group (const void *item)
7778 const struct type_unit_group *tu_group
7779 = (const struct type_unit_group *) item;
7781 return hash_stmt_list_entry (&tu_group->hash);
7785 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7787 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7788 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7790 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7793 /* Allocate a hash table for type unit groups. */
7796 allocate_type_unit_groups_table (struct objfile *objfile)
7798 return htab_create_alloc_ex (3,
7799 hash_type_unit_group,
7802 &objfile->objfile_obstack,
7803 hashtab_obstack_allocate,
7804 dummy_obstack_deallocate);
7807 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7808 partial symtabs. We combine several TUs per psymtab to not let the size
7809 of any one psymtab grow too big. */
7810 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7813 /* Helper routine for get_type_unit_group.
7814 Create the type_unit_group object used to hold one or more TUs. */
7816 static struct type_unit_group *
7817 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7819 struct dwarf2_per_objfile *dwarf2_per_objfile
7820 = cu->per_cu->dwarf2_per_objfile;
7821 struct objfile *objfile = dwarf2_per_objfile->objfile;
7822 struct dwarf2_per_cu_data *per_cu;
7823 struct type_unit_group *tu_group;
7825 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7826 struct type_unit_group);
7827 per_cu = &tu_group->per_cu;
7828 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7830 if (dwarf2_per_objfile->using_index)
7832 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7833 struct dwarf2_per_cu_quick_data);
7837 unsigned int line_offset = to_underlying (line_offset_struct);
7838 struct partial_symtab *pst;
7841 /* Give the symtab a useful name for debug purposes. */
7842 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7843 name = string_printf ("<type_units_%d>",
7844 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7846 name = string_printf ("<type_units_at_0x%x>", line_offset);
7848 pst = create_partial_symtab (per_cu, name.c_str ());
7852 tu_group->hash.dwo_unit = cu->dwo_unit;
7853 tu_group->hash.line_sect_off = line_offset_struct;
7858 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7859 STMT_LIST is a DW_AT_stmt_list attribute. */
7861 static struct type_unit_group *
7862 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7864 struct dwarf2_per_objfile *dwarf2_per_objfile
7865 = cu->per_cu->dwarf2_per_objfile;
7866 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7867 struct type_unit_group *tu_group;
7869 unsigned int line_offset;
7870 struct type_unit_group type_unit_group_for_lookup;
7872 if (dwarf2_per_objfile->type_unit_groups == NULL)
7874 dwarf2_per_objfile->type_unit_groups =
7875 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7878 /* Do we need to create a new group, or can we use an existing one? */
7882 line_offset = DW_UNSND (stmt_list);
7883 ++tu_stats->nr_symtab_sharers;
7887 /* Ugh, no stmt_list. Rare, but we have to handle it.
7888 We can do various things here like create one group per TU or
7889 spread them over multiple groups to split up the expansion work.
7890 To avoid worst case scenarios (too many groups or too large groups)
7891 we, umm, group them in bunches. */
7892 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7893 | (tu_stats->nr_stmt_less_type_units
7894 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7895 ++tu_stats->nr_stmt_less_type_units;
7898 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7899 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7900 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7901 &type_unit_group_for_lookup, INSERT);
7904 tu_group = (struct type_unit_group *) *slot;
7905 gdb_assert (tu_group != NULL);
7909 sect_offset line_offset_struct = (sect_offset) line_offset;
7910 tu_group = create_type_unit_group (cu, line_offset_struct);
7912 ++tu_stats->nr_symtabs;
7918 /* Partial symbol tables. */
7920 /* Create a psymtab named NAME and assign it to PER_CU.
7922 The caller must fill in the following details:
7923 dirname, textlow, texthigh. */
7925 static struct partial_symtab *
7926 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7928 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7929 struct partial_symtab *pst;
7931 pst = start_psymtab_common (objfile, name, 0,
7932 objfile->global_psymbols,
7933 objfile->static_psymbols);
7935 pst->psymtabs_addrmap_supported = 1;
7937 /* This is the glue that links PST into GDB's symbol API. */
7938 pst->read_symtab_private = per_cu;
7939 pst->read_symtab = dwarf2_read_symtab;
7940 per_cu->v.psymtab = pst;
7945 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7948 struct process_psymtab_comp_unit_data
7950 /* True if we are reading a DW_TAG_partial_unit. */
7952 int want_partial_unit;
7954 /* The "pretend" language that is used if the CU doesn't declare a
7957 enum language pretend_language;
7960 /* die_reader_func for process_psymtab_comp_unit. */
7963 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7964 const gdb_byte *info_ptr,
7965 struct die_info *comp_unit_die,
7969 struct dwarf2_cu *cu = reader->cu;
7970 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7971 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7972 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7974 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7975 struct partial_symtab *pst;
7976 enum pc_bounds_kind cu_bounds_kind;
7977 const char *filename;
7978 struct process_psymtab_comp_unit_data *info
7979 = (struct process_psymtab_comp_unit_data *) data;
7981 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7984 gdb_assert (! per_cu->is_debug_types);
7986 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7988 /* Allocate a new partial symbol table structure. */
7989 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7990 if (filename == NULL)
7993 pst = create_partial_symtab (per_cu, filename);
7995 /* This must be done before calling dwarf2_build_include_psymtabs. */
7996 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7998 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8000 dwarf2_find_base_address (comp_unit_die, cu);
8002 /* Possibly set the default values of LOWPC and HIGHPC from
8004 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8005 &best_highpc, cu, pst);
8006 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8009 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8012 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8014 /* Store the contiguous range if it is not empty; it can be
8015 empty for CUs with no code. */
8016 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8019 /* Check if comp unit has_children.
8020 If so, read the rest of the partial symbols from this comp unit.
8021 If not, there's no more debug_info for this comp unit. */
8024 struct partial_die_info *first_die;
8025 CORE_ADDR lowpc, highpc;
8027 lowpc = ((CORE_ADDR) -1);
8028 highpc = ((CORE_ADDR) 0);
8030 first_die = load_partial_dies (reader, info_ptr, 1);
8032 scan_partial_symbols (first_die, &lowpc, &highpc,
8033 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8035 /* If we didn't find a lowpc, set it to highpc to avoid
8036 complaints from `maint check'. */
8037 if (lowpc == ((CORE_ADDR) -1))
8040 /* If the compilation unit didn't have an explicit address range,
8041 then use the information extracted from its child dies. */
8042 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8045 best_highpc = highpc;
8048 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8049 best_lowpc + baseaddr)
8051 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8052 best_highpc + baseaddr)
8055 end_psymtab_common (objfile, pst);
8057 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8060 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8061 struct dwarf2_per_cu_data *iter;
8063 /* Fill in 'dependencies' here; we fill in 'users' in a
8065 pst->number_of_dependencies = len;
8067 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8069 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8072 pst->dependencies[i] = iter->v.psymtab;
8074 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8077 /* Get the list of files included in the current compilation unit,
8078 and build a psymtab for each of them. */
8079 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8081 if (dwarf_read_debug)
8083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8085 fprintf_unfiltered (gdb_stdlog,
8086 "Psymtab for %s unit @%s: %s - %s"
8087 ", %d global, %d static syms\n",
8088 per_cu->is_debug_types ? "type" : "comp",
8089 sect_offset_str (per_cu->sect_off),
8090 paddress (gdbarch, pst->text_low (objfile)),
8091 paddress (gdbarch, pst->text_high (objfile)),
8092 pst->n_global_syms, pst->n_static_syms);
8096 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8097 Process compilation unit THIS_CU for a psymtab. */
8100 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8101 int want_partial_unit,
8102 enum language pretend_language)
8104 /* If this compilation unit was already read in, free the
8105 cached copy in order to read it in again. This is
8106 necessary because we skipped some symbols when we first
8107 read in the compilation unit (see load_partial_dies).
8108 This problem could be avoided, but the benefit is unclear. */
8109 if (this_cu->cu != NULL)
8110 free_one_cached_comp_unit (this_cu);
8112 if (this_cu->is_debug_types)
8113 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8114 build_type_psymtabs_reader, NULL);
8117 process_psymtab_comp_unit_data info;
8118 info.want_partial_unit = want_partial_unit;
8119 info.pretend_language = pretend_language;
8120 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8121 process_psymtab_comp_unit_reader, &info);
8124 /* Age out any secondary CUs. */
8125 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8128 /* Reader function for build_type_psymtabs. */
8131 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8132 const gdb_byte *info_ptr,
8133 struct die_info *type_unit_die,
8137 struct dwarf2_per_objfile *dwarf2_per_objfile
8138 = reader->cu->per_cu->dwarf2_per_objfile;
8139 struct objfile *objfile = dwarf2_per_objfile->objfile;
8140 struct dwarf2_cu *cu = reader->cu;
8141 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8142 struct signatured_type *sig_type;
8143 struct type_unit_group *tu_group;
8144 struct attribute *attr;
8145 struct partial_die_info *first_die;
8146 CORE_ADDR lowpc, highpc;
8147 struct partial_symtab *pst;
8149 gdb_assert (data == NULL);
8150 gdb_assert (per_cu->is_debug_types);
8151 sig_type = (struct signatured_type *) per_cu;
8156 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8157 tu_group = get_type_unit_group (cu, attr);
8159 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8161 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8162 pst = create_partial_symtab (per_cu, "");
8165 first_die = load_partial_dies (reader, info_ptr, 1);
8167 lowpc = (CORE_ADDR) -1;
8168 highpc = (CORE_ADDR) 0;
8169 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8171 end_psymtab_common (objfile, pst);
8174 /* Struct used to sort TUs by their abbreviation table offset. */
8176 struct tu_abbrev_offset
8178 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8179 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8182 signatured_type *sig_type;
8183 sect_offset abbrev_offset;
8186 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8189 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8190 const struct tu_abbrev_offset &b)
8192 return a.abbrev_offset < b.abbrev_offset;
8195 /* Efficiently read all the type units.
8196 This does the bulk of the work for build_type_psymtabs.
8198 The efficiency is because we sort TUs by the abbrev table they use and
8199 only read each abbrev table once. In one program there are 200K TUs
8200 sharing 8K abbrev tables.
8202 The main purpose of this function is to support building the
8203 dwarf2_per_objfile->type_unit_groups table.
8204 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8205 can collapse the search space by grouping them by stmt_list.
8206 The savings can be significant, in the same program from above the 200K TUs
8207 share 8K stmt_list tables.
8209 FUNC is expected to call get_type_unit_group, which will create the
8210 struct type_unit_group if necessary and add it to
8211 dwarf2_per_objfile->type_unit_groups. */
8214 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8216 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8217 abbrev_table_up abbrev_table;
8218 sect_offset abbrev_offset;
8220 /* It's up to the caller to not call us multiple times. */
8221 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8223 if (dwarf2_per_objfile->all_type_units.empty ())
8226 /* TUs typically share abbrev tables, and there can be way more TUs than
8227 abbrev tables. Sort by abbrev table to reduce the number of times we
8228 read each abbrev table in.
8229 Alternatives are to punt or to maintain a cache of abbrev tables.
8230 This is simpler and efficient enough for now.
8232 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8233 symtab to use). Typically TUs with the same abbrev offset have the same
8234 stmt_list value too so in practice this should work well.
8236 The basic algorithm here is:
8238 sort TUs by abbrev table
8239 for each TU with same abbrev table:
8240 read abbrev table if first user
8241 read TU top level DIE
8242 [IWBN if DWO skeletons had DW_AT_stmt_list]
8245 if (dwarf_read_debug)
8246 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8248 /* Sort in a separate table to maintain the order of all_type_units
8249 for .gdb_index: TU indices directly index all_type_units. */
8250 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8251 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8253 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8254 sorted_by_abbrev.emplace_back
8255 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8256 sig_type->per_cu.section,
8257 sig_type->per_cu.sect_off));
8259 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8260 sort_tu_by_abbrev_offset);
8262 abbrev_offset = (sect_offset) ~(unsigned) 0;
8264 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8266 /* Switch to the next abbrev table if necessary. */
8267 if (abbrev_table == NULL
8268 || tu.abbrev_offset != abbrev_offset)
8270 abbrev_offset = tu.abbrev_offset;
8272 abbrev_table_read_table (dwarf2_per_objfile,
8273 &dwarf2_per_objfile->abbrev,
8275 ++tu_stats->nr_uniq_abbrev_tables;
8278 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8279 0, 0, false, build_type_psymtabs_reader, NULL);
8283 /* Print collected type unit statistics. */
8286 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8288 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8290 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8291 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8292 dwarf2_per_objfile->all_type_units.size ());
8293 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8294 tu_stats->nr_uniq_abbrev_tables);
8295 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8296 tu_stats->nr_symtabs);
8297 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8298 tu_stats->nr_symtab_sharers);
8299 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8300 tu_stats->nr_stmt_less_type_units);
8301 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8302 tu_stats->nr_all_type_units_reallocs);
8305 /* Traversal function for build_type_psymtabs. */
8308 build_type_psymtab_dependencies (void **slot, void *info)
8310 struct dwarf2_per_objfile *dwarf2_per_objfile
8311 = (struct dwarf2_per_objfile *) info;
8312 struct objfile *objfile = dwarf2_per_objfile->objfile;
8313 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8314 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8315 struct partial_symtab *pst = per_cu->v.psymtab;
8316 int len = VEC_length (sig_type_ptr, tu_group->tus);
8317 struct signatured_type *iter;
8320 gdb_assert (len > 0);
8321 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8323 pst->number_of_dependencies = len;
8325 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8327 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8330 gdb_assert (iter->per_cu.is_debug_types);
8331 pst->dependencies[i] = iter->per_cu.v.psymtab;
8332 iter->type_unit_group = tu_group;
8335 VEC_free (sig_type_ptr, tu_group->tus);
8340 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8341 Build partial symbol tables for the .debug_types comp-units. */
8344 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8346 if (! create_all_type_units (dwarf2_per_objfile))
8349 build_type_psymtabs_1 (dwarf2_per_objfile);
8352 /* Traversal function for process_skeletonless_type_unit.
8353 Read a TU in a DWO file and build partial symbols for it. */
8356 process_skeletonless_type_unit (void **slot, void *info)
8358 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8359 struct dwarf2_per_objfile *dwarf2_per_objfile
8360 = (struct dwarf2_per_objfile *) info;
8361 struct signatured_type find_entry, *entry;
8363 /* If this TU doesn't exist in the global table, add it and read it in. */
8365 if (dwarf2_per_objfile->signatured_types == NULL)
8367 dwarf2_per_objfile->signatured_types
8368 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8371 find_entry.signature = dwo_unit->signature;
8372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8374 /* If we've already seen this type there's nothing to do. What's happening
8375 is we're doing our own version of comdat-folding here. */
8379 /* This does the job that create_all_type_units would have done for
8381 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8382 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8385 /* This does the job that build_type_psymtabs_1 would have done. */
8386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8387 build_type_psymtabs_reader, NULL);
8392 /* Traversal function for process_skeletonless_type_units. */
8395 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8399 if (dwo_file->tus != NULL)
8401 htab_traverse_noresize (dwo_file->tus,
8402 process_skeletonless_type_unit, info);
8408 /* Scan all TUs of DWO files, verifying we've processed them.
8409 This is needed in case a TU was emitted without its skeleton.
8410 Note: This can't be done until we know what all the DWO files are. */
8413 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8416 if (get_dwp_file (dwarf2_per_objfile) == NULL
8417 && dwarf2_per_objfile->dwo_files != NULL)
8419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8420 process_dwo_file_for_skeletonless_type_units,
8421 dwarf2_per_objfile);
8425 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8428 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8430 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8432 struct partial_symtab *pst = per_cu->v.psymtab;
8437 for (int j = 0; j < pst->number_of_dependencies; ++j)
8439 /* Set the 'user' field only if it is not already set. */
8440 if (pst->dependencies[j]->user == NULL)
8441 pst->dependencies[j]->user = pst;
8446 /* Build the partial symbol table by doing a quick pass through the
8447 .debug_info and .debug_abbrev sections. */
8450 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8452 struct objfile *objfile = dwarf2_per_objfile->objfile;
8454 if (dwarf_read_debug)
8456 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8457 objfile_name (objfile));
8460 dwarf2_per_objfile->reading_partial_symbols = 1;
8462 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8464 /* Any cached compilation units will be linked by the per-objfile
8465 read_in_chain. Make sure to free them when we're done. */
8466 free_cached_comp_units freer (dwarf2_per_objfile);
8468 build_type_psymtabs (dwarf2_per_objfile);
8470 create_all_comp_units (dwarf2_per_objfile);
8472 /* Create a temporary address map on a temporary obstack. We later
8473 copy this to the final obstack. */
8474 auto_obstack temp_obstack;
8476 scoped_restore save_psymtabs_addrmap
8477 = make_scoped_restore (&objfile->psymtabs_addrmap,
8478 addrmap_create_mutable (&temp_obstack));
8480 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8481 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8483 /* This has to wait until we read the CUs, we need the list of DWOs. */
8484 process_skeletonless_type_units (dwarf2_per_objfile);
8486 /* Now that all TUs have been processed we can fill in the dependencies. */
8487 if (dwarf2_per_objfile->type_unit_groups != NULL)
8489 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8490 build_type_psymtab_dependencies, dwarf2_per_objfile);
8493 if (dwarf_read_debug)
8494 print_tu_stats (dwarf2_per_objfile);
8496 set_partial_user (dwarf2_per_objfile);
8498 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8499 &objfile->objfile_obstack);
8500 /* At this point we want to keep the address map. */
8501 save_psymtabs_addrmap.release ();
8503 if (dwarf_read_debug)
8504 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8505 objfile_name (objfile));
8508 /* die_reader_func for load_partial_comp_unit. */
8511 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8512 const gdb_byte *info_ptr,
8513 struct die_info *comp_unit_die,
8517 struct dwarf2_cu *cu = reader->cu;
8519 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8521 /* Check if comp unit has_children.
8522 If so, read the rest of the partial symbols from this comp unit.
8523 If not, there's no more debug_info for this comp unit. */
8525 load_partial_dies (reader, info_ptr, 0);
8528 /* Load the partial DIEs for a secondary CU into memory.
8529 This is also used when rereading a primary CU with load_all_dies. */
8532 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8534 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8535 load_partial_comp_unit_reader, NULL);
8539 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8540 struct dwarf2_section_info *section,
8541 struct dwarf2_section_info *abbrev_section,
8542 unsigned int is_dwz)
8544 const gdb_byte *info_ptr;
8545 struct objfile *objfile = dwarf2_per_objfile->objfile;
8547 if (dwarf_read_debug)
8548 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8549 get_section_name (section),
8550 get_section_file_name (section));
8552 dwarf2_read_section (objfile, section);
8554 info_ptr = section->buffer;
8556 while (info_ptr < section->buffer + section->size)
8558 struct dwarf2_per_cu_data *this_cu;
8560 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8562 comp_unit_head cu_header;
8563 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8564 abbrev_section, info_ptr,
8565 rcuh_kind::COMPILE);
8567 /* Save the compilation unit for later lookup. */
8568 if (cu_header.unit_type != DW_UT_type)
8570 this_cu = XOBNEW (&objfile->objfile_obstack,
8571 struct dwarf2_per_cu_data);
8572 memset (this_cu, 0, sizeof (*this_cu));
8576 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8577 struct signatured_type);
8578 memset (sig_type, 0, sizeof (*sig_type));
8579 sig_type->signature = cu_header.signature;
8580 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8581 this_cu = &sig_type->per_cu;
8583 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8584 this_cu->sect_off = sect_off;
8585 this_cu->length = cu_header.length + cu_header.initial_length_size;
8586 this_cu->is_dwz = is_dwz;
8587 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8588 this_cu->section = section;
8590 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8592 info_ptr = info_ptr + this_cu->length;
8596 /* Create a list of all compilation units in OBJFILE.
8597 This is only done for -readnow and building partial symtabs. */
8600 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8602 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8603 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8604 &dwarf2_per_objfile->abbrev, 0);
8606 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8608 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8612 /* Process all loaded DIEs for compilation unit CU, starting at
8613 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8614 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8615 DW_AT_ranges). See the comments of add_partial_subprogram on how
8616 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8619 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8620 CORE_ADDR *highpc, int set_addrmap,
8621 struct dwarf2_cu *cu)
8623 struct partial_die_info *pdi;
8625 /* Now, march along the PDI's, descending into ones which have
8626 interesting children but skipping the children of the other ones,
8627 until we reach the end of the compilation unit. */
8635 /* Anonymous namespaces or modules have no name but have interesting
8636 children, so we need to look at them. Ditto for anonymous
8639 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8640 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8641 || pdi->tag == DW_TAG_imported_unit
8642 || pdi->tag == DW_TAG_inlined_subroutine)
8646 case DW_TAG_subprogram:
8647 case DW_TAG_inlined_subroutine:
8648 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8650 case DW_TAG_constant:
8651 case DW_TAG_variable:
8652 case DW_TAG_typedef:
8653 case DW_TAG_union_type:
8654 if (!pdi->is_declaration)
8656 add_partial_symbol (pdi, cu);
8659 case DW_TAG_class_type:
8660 case DW_TAG_interface_type:
8661 case DW_TAG_structure_type:
8662 if (!pdi->is_declaration)
8664 add_partial_symbol (pdi, cu);
8666 if ((cu->language == language_rust
8667 || cu->language == language_cplus) && pdi->has_children)
8668 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8671 case DW_TAG_enumeration_type:
8672 if (!pdi->is_declaration)
8673 add_partial_enumeration (pdi, cu);
8675 case DW_TAG_base_type:
8676 case DW_TAG_subrange_type:
8677 /* File scope base type definitions are added to the partial
8679 add_partial_symbol (pdi, cu);
8681 case DW_TAG_namespace:
8682 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8685 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8687 case DW_TAG_imported_unit:
8689 struct dwarf2_per_cu_data *per_cu;
8691 /* For now we don't handle imported units in type units. */
8692 if (cu->per_cu->is_debug_types)
8694 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8695 " supported in type units [in module %s]"),
8696 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8699 per_cu = dwarf2_find_containing_comp_unit
8700 (pdi->d.sect_off, pdi->is_dwz,
8701 cu->per_cu->dwarf2_per_objfile);
8703 /* Go read the partial unit, if needed. */
8704 if (per_cu->v.psymtab == NULL)
8705 process_psymtab_comp_unit (per_cu, 1, cu->language);
8707 VEC_safe_push (dwarf2_per_cu_ptr,
8708 cu->per_cu->imported_symtabs, per_cu);
8711 case DW_TAG_imported_declaration:
8712 add_partial_symbol (pdi, cu);
8719 /* If the die has a sibling, skip to the sibling. */
8721 pdi = pdi->die_sibling;
8725 /* Functions used to compute the fully scoped name of a partial DIE.
8727 Normally, this is simple. For C++, the parent DIE's fully scoped
8728 name is concatenated with "::" and the partial DIE's name.
8729 Enumerators are an exception; they use the scope of their parent
8730 enumeration type, i.e. the name of the enumeration type is not
8731 prepended to the enumerator.
8733 There are two complexities. One is DW_AT_specification; in this
8734 case "parent" means the parent of the target of the specification,
8735 instead of the direct parent of the DIE. The other is compilers
8736 which do not emit DW_TAG_namespace; in this case we try to guess
8737 the fully qualified name of structure types from their members'
8738 linkage names. This must be done using the DIE's children rather
8739 than the children of any DW_AT_specification target. We only need
8740 to do this for structures at the top level, i.e. if the target of
8741 any DW_AT_specification (if any; otherwise the DIE itself) does not
8744 /* Compute the scope prefix associated with PDI's parent, in
8745 compilation unit CU. The result will be allocated on CU's
8746 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8747 field. NULL is returned if no prefix is necessary. */
8749 partial_die_parent_scope (struct partial_die_info *pdi,
8750 struct dwarf2_cu *cu)
8752 const char *grandparent_scope;
8753 struct partial_die_info *parent, *real_pdi;
8755 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8756 then this means the parent of the specification DIE. */
8759 while (real_pdi->has_specification)
8760 real_pdi = find_partial_die (real_pdi->spec_offset,
8761 real_pdi->spec_is_dwz, cu);
8763 parent = real_pdi->die_parent;
8767 if (parent->scope_set)
8768 return parent->scope;
8772 grandparent_scope = partial_die_parent_scope (parent, cu);
8774 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8775 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8776 Work around this problem here. */
8777 if (cu->language == language_cplus
8778 && parent->tag == DW_TAG_namespace
8779 && strcmp (parent->name, "::") == 0
8780 && grandparent_scope == NULL)
8782 parent->scope = NULL;
8783 parent->scope_set = 1;
8787 if (pdi->tag == DW_TAG_enumerator)
8788 /* Enumerators should not get the name of the enumeration as a prefix. */
8789 parent->scope = grandparent_scope;
8790 else if (parent->tag == DW_TAG_namespace
8791 || parent->tag == DW_TAG_module
8792 || parent->tag == DW_TAG_structure_type
8793 || parent->tag == DW_TAG_class_type
8794 || parent->tag == DW_TAG_interface_type
8795 || parent->tag == DW_TAG_union_type
8796 || parent->tag == DW_TAG_enumeration_type)
8798 if (grandparent_scope == NULL)
8799 parent->scope = parent->name;
8801 parent->scope = typename_concat (&cu->comp_unit_obstack,
8803 parent->name, 0, cu);
8807 /* FIXME drow/2004-04-01: What should we be doing with
8808 function-local names? For partial symbols, we should probably be
8810 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8811 parent->tag, sect_offset_str (pdi->sect_off));
8812 parent->scope = grandparent_scope;
8815 parent->scope_set = 1;
8816 return parent->scope;
8819 /* Return the fully scoped name associated with PDI, from compilation unit
8820 CU. The result will be allocated with malloc. */
8823 partial_die_full_name (struct partial_die_info *pdi,
8824 struct dwarf2_cu *cu)
8826 const char *parent_scope;
8828 /* If this is a template instantiation, we can not work out the
8829 template arguments from partial DIEs. So, unfortunately, we have
8830 to go through the full DIEs. At least any work we do building
8831 types here will be reused if full symbols are loaded later. */
8832 if (pdi->has_template_arguments)
8836 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8838 struct die_info *die;
8839 struct attribute attr;
8840 struct dwarf2_cu *ref_cu = cu;
8842 /* DW_FORM_ref_addr is using section offset. */
8843 attr.name = (enum dwarf_attribute) 0;
8844 attr.form = DW_FORM_ref_addr;
8845 attr.u.unsnd = to_underlying (pdi->sect_off);
8846 die = follow_die_ref (NULL, &attr, &ref_cu);
8848 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8852 parent_scope = partial_die_parent_scope (pdi, cu);
8853 if (parent_scope == NULL)
8856 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8860 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8862 struct dwarf2_per_objfile *dwarf2_per_objfile
8863 = cu->per_cu->dwarf2_per_objfile;
8864 struct objfile *objfile = dwarf2_per_objfile->objfile;
8865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8867 const char *actual_name = NULL;
8869 char *built_actual_name;
8871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8873 built_actual_name = partial_die_full_name (pdi, cu);
8874 if (built_actual_name != NULL)
8875 actual_name = built_actual_name;
8877 if (actual_name == NULL)
8878 actual_name = pdi->name;
8882 case DW_TAG_inlined_subroutine:
8883 case DW_TAG_subprogram:
8884 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8886 if (pdi->is_external || cu->language == language_ada)
8888 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8889 of the global scope. But in Ada, we want to be able to access
8890 nested procedures globally. So all Ada subprograms are stored
8891 in the global scope. */
8892 add_psymbol_to_list (actual_name, strlen (actual_name),
8893 built_actual_name != NULL,
8894 VAR_DOMAIN, LOC_BLOCK,
8895 SECT_OFF_TEXT (objfile),
8896 &objfile->global_psymbols,
8898 cu->language, objfile);
8902 add_psymbol_to_list (actual_name, strlen (actual_name),
8903 built_actual_name != NULL,
8904 VAR_DOMAIN, LOC_BLOCK,
8905 SECT_OFF_TEXT (objfile),
8906 &objfile->static_psymbols,
8907 addr, cu->language, objfile);
8910 if (pdi->main_subprogram && actual_name != NULL)
8911 set_objfile_main_name (objfile, actual_name, cu->language);
8913 case DW_TAG_constant:
8915 std::vector<partial_symbol *> *list;
8917 if (pdi->is_external)
8918 list = &objfile->global_psymbols;
8920 list = &objfile->static_psymbols;
8921 add_psymbol_to_list (actual_name, strlen (actual_name),
8922 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8923 -1, list, 0, cu->language, objfile);
8926 case DW_TAG_variable:
8928 addr = decode_locdesc (pdi->d.locdesc, cu);
8932 && !dwarf2_per_objfile->has_section_at_zero)
8934 /* A global or static variable may also have been stripped
8935 out by the linker if unused, in which case its address
8936 will be nullified; do not add such variables into partial
8937 symbol table then. */
8939 else if (pdi->is_external)
8942 Don't enter into the minimal symbol tables as there is
8943 a minimal symbol table entry from the ELF symbols already.
8944 Enter into partial symbol table if it has a location
8945 descriptor or a type.
8946 If the location descriptor is missing, new_symbol will create
8947 a LOC_UNRESOLVED symbol, the address of the variable will then
8948 be determined from the minimal symbol table whenever the variable
8950 The address for the partial symbol table entry is not
8951 used by GDB, but it comes in handy for debugging partial symbol
8954 if (pdi->d.locdesc || pdi->has_type)
8955 add_psymbol_to_list (actual_name, strlen (actual_name),
8956 built_actual_name != NULL,
8957 VAR_DOMAIN, LOC_STATIC,
8958 SECT_OFF_TEXT (objfile),
8959 &objfile->global_psymbols,
8960 addr, cu->language, objfile);
8964 int has_loc = pdi->d.locdesc != NULL;
8966 /* Static Variable. Skip symbols whose value we cannot know (those
8967 without location descriptors or constant values). */
8968 if (!has_loc && !pdi->has_const_value)
8970 xfree (built_actual_name);
8974 add_psymbol_to_list (actual_name, strlen (actual_name),
8975 built_actual_name != NULL,
8976 VAR_DOMAIN, LOC_STATIC,
8977 SECT_OFF_TEXT (objfile),
8978 &objfile->static_psymbols,
8980 cu->language, objfile);
8983 case DW_TAG_typedef:
8984 case DW_TAG_base_type:
8985 case DW_TAG_subrange_type:
8986 add_psymbol_to_list (actual_name, strlen (actual_name),
8987 built_actual_name != NULL,
8988 VAR_DOMAIN, LOC_TYPEDEF, -1,
8989 &objfile->static_psymbols,
8990 0, cu->language, objfile);
8992 case DW_TAG_imported_declaration:
8993 case DW_TAG_namespace:
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_TYPEDEF, -1,
8997 &objfile->global_psymbols,
8998 0, cu->language, objfile);
9001 add_psymbol_to_list (actual_name, strlen (actual_name),
9002 built_actual_name != NULL,
9003 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9004 &objfile->global_psymbols,
9005 0, cu->language, objfile);
9007 case DW_TAG_class_type:
9008 case DW_TAG_interface_type:
9009 case DW_TAG_structure_type:
9010 case DW_TAG_union_type:
9011 case DW_TAG_enumeration_type:
9012 /* Skip external references. The DWARF standard says in the section
9013 about "Structure, Union, and Class Type Entries": "An incomplete
9014 structure, union or class type is represented by a structure,
9015 union or class entry that does not have a byte size attribute
9016 and that has a DW_AT_declaration attribute." */
9017 if (!pdi->has_byte_size && pdi->is_declaration)
9019 xfree (built_actual_name);
9023 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9024 static vs. global. */
9025 add_psymbol_to_list (actual_name, strlen (actual_name),
9026 built_actual_name != NULL,
9027 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9028 cu->language == language_cplus
9029 ? &objfile->global_psymbols
9030 : &objfile->static_psymbols,
9031 0, cu->language, objfile);
9034 case DW_TAG_enumerator:
9035 add_psymbol_to_list (actual_name, strlen (actual_name),
9036 built_actual_name != NULL,
9037 VAR_DOMAIN, LOC_CONST, -1,
9038 cu->language == language_cplus
9039 ? &objfile->global_psymbols
9040 : &objfile->static_psymbols,
9041 0, cu->language, objfile);
9047 xfree (built_actual_name);
9050 /* Read a partial die corresponding to a namespace; also, add a symbol
9051 corresponding to that namespace to the symbol table. NAMESPACE is
9052 the name of the enclosing namespace. */
9055 add_partial_namespace (struct partial_die_info *pdi,
9056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9057 int set_addrmap, struct dwarf2_cu *cu)
9059 /* Add a symbol for the namespace. */
9061 add_partial_symbol (pdi, cu);
9063 /* Now scan partial symbols in that namespace. */
9065 if (pdi->has_children)
9066 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9069 /* Read a partial die corresponding to a Fortran module. */
9072 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9073 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9075 /* Add a symbol for the namespace. */
9077 add_partial_symbol (pdi, cu);
9079 /* Now scan partial symbols in that module. */
9081 if (pdi->has_children)
9082 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9085 /* Read a partial die corresponding to a subprogram or an inlined
9086 subprogram and create a partial symbol for that subprogram.
9087 When the CU language allows it, this routine also defines a partial
9088 symbol for each nested subprogram that this subprogram contains.
9089 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9090 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9092 PDI may also be a lexical block, in which case we simply search
9093 recursively for subprograms defined inside that lexical block.
9094 Again, this is only performed when the CU language allows this
9095 type of definitions. */
9098 add_partial_subprogram (struct partial_die_info *pdi,
9099 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9100 int set_addrmap, struct dwarf2_cu *cu)
9102 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9104 if (pdi->has_pc_info)
9106 if (pdi->lowpc < *lowpc)
9107 *lowpc = pdi->lowpc;
9108 if (pdi->highpc > *highpc)
9109 *highpc = pdi->highpc;
9112 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9118 baseaddr = ANOFFSET (objfile->section_offsets,
9119 SECT_OFF_TEXT (objfile));
9120 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
9121 pdi->lowpc + baseaddr)
9123 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
9124 pdi->highpc + baseaddr)
9126 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9127 cu->per_cu->v.psymtab);
9131 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9133 if (!pdi->is_declaration)
9134 /* Ignore subprogram DIEs that do not have a name, they are
9135 illegal. Do not emit a complaint at this point, we will
9136 do so when we convert this psymtab into a symtab. */
9138 add_partial_symbol (pdi, cu);
9142 if (! pdi->has_children)
9145 if (cu->language == language_ada)
9147 pdi = pdi->die_child;
9151 if (pdi->tag == DW_TAG_subprogram
9152 || pdi->tag == DW_TAG_inlined_subroutine
9153 || pdi->tag == DW_TAG_lexical_block)
9154 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9155 pdi = pdi->die_sibling;
9160 /* Read a partial die corresponding to an enumeration type. */
9163 add_partial_enumeration (struct partial_die_info *enum_pdi,
9164 struct dwarf2_cu *cu)
9166 struct partial_die_info *pdi;
9168 if (enum_pdi->name != NULL)
9169 add_partial_symbol (enum_pdi, cu);
9171 pdi = enum_pdi->die_child;
9174 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9175 complaint (_("malformed enumerator DIE ignored"));
9177 add_partial_symbol (pdi, cu);
9178 pdi = pdi->die_sibling;
9182 /* Return the initial uleb128 in the die at INFO_PTR. */
9185 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9187 unsigned int bytes_read;
9189 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9192 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9193 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9195 Return the corresponding abbrev, or NULL if the number is zero (indicating
9196 an empty DIE). In either case *BYTES_READ will be set to the length of
9197 the initial number. */
9199 static struct abbrev_info *
9200 peek_die_abbrev (const die_reader_specs &reader,
9201 const gdb_byte *info_ptr, unsigned int *bytes_read)
9203 dwarf2_cu *cu = reader.cu;
9204 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9205 unsigned int abbrev_number
9206 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9208 if (abbrev_number == 0)
9211 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9214 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9215 " at offset %s [in module %s]"),
9216 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9217 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9223 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9224 Returns a pointer to the end of a series of DIEs, terminated by an empty
9225 DIE. Any children of the skipped DIEs will also be skipped. */
9227 static const gdb_byte *
9228 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9232 unsigned int bytes_read;
9233 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9236 return info_ptr + bytes_read;
9238 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9242 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9243 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9244 abbrev corresponding to that skipped uleb128 should be passed in
9245 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9248 static const gdb_byte *
9249 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9250 struct abbrev_info *abbrev)
9252 unsigned int bytes_read;
9253 struct attribute attr;
9254 bfd *abfd = reader->abfd;
9255 struct dwarf2_cu *cu = reader->cu;
9256 const gdb_byte *buffer = reader->buffer;
9257 const gdb_byte *buffer_end = reader->buffer_end;
9258 unsigned int form, i;
9260 for (i = 0; i < abbrev->num_attrs; i++)
9262 /* The only abbrev we care about is DW_AT_sibling. */
9263 if (abbrev->attrs[i].name == DW_AT_sibling)
9265 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9266 if (attr.form == DW_FORM_ref_addr)
9267 complaint (_("ignoring absolute DW_AT_sibling"));
9270 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9271 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9273 if (sibling_ptr < info_ptr)
9274 complaint (_("DW_AT_sibling points backwards"));
9275 else if (sibling_ptr > reader->buffer_end)
9276 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9282 /* If it isn't DW_AT_sibling, skip this attribute. */
9283 form = abbrev->attrs[i].form;
9287 case DW_FORM_ref_addr:
9288 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9289 and later it is offset sized. */
9290 if (cu->header.version == 2)
9291 info_ptr += cu->header.addr_size;
9293 info_ptr += cu->header.offset_size;
9295 case DW_FORM_GNU_ref_alt:
9296 info_ptr += cu->header.offset_size;
9299 info_ptr += cu->header.addr_size;
9306 case DW_FORM_flag_present:
9307 case DW_FORM_implicit_const:
9319 case DW_FORM_ref_sig8:
9322 case DW_FORM_data16:
9325 case DW_FORM_string:
9326 read_direct_string (abfd, info_ptr, &bytes_read);
9327 info_ptr += bytes_read;
9329 case DW_FORM_sec_offset:
9331 case DW_FORM_GNU_strp_alt:
9332 info_ptr += cu->header.offset_size;
9334 case DW_FORM_exprloc:
9336 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9337 info_ptr += bytes_read;
9339 case DW_FORM_block1:
9340 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9342 case DW_FORM_block2:
9343 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9345 case DW_FORM_block4:
9346 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9350 case DW_FORM_ref_udata:
9351 case DW_FORM_GNU_addr_index:
9352 case DW_FORM_GNU_str_index:
9353 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9355 case DW_FORM_indirect:
9356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9357 info_ptr += bytes_read;
9358 /* We need to continue parsing from here, so just go back to
9360 goto skip_attribute;
9363 error (_("Dwarf Error: Cannot handle %s "
9364 "in DWARF reader [in module %s]"),
9365 dwarf_form_name (form),
9366 bfd_get_filename (abfd));
9370 if (abbrev->has_children)
9371 return skip_children (reader, info_ptr);
9376 /* Locate ORIG_PDI's sibling.
9377 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9379 static const gdb_byte *
9380 locate_pdi_sibling (const struct die_reader_specs *reader,
9381 struct partial_die_info *orig_pdi,
9382 const gdb_byte *info_ptr)
9384 /* Do we know the sibling already? */
9386 if (orig_pdi->sibling)
9387 return orig_pdi->sibling;
9389 /* Are there any children to deal with? */
9391 if (!orig_pdi->has_children)
9394 /* Skip the children the long way. */
9396 return skip_children (reader, info_ptr);
9399 /* Expand this partial symbol table into a full symbol table. SELF is
9403 dwarf2_read_symtab (struct partial_symtab *self,
9404 struct objfile *objfile)
9406 struct dwarf2_per_objfile *dwarf2_per_objfile
9407 = get_dwarf2_per_objfile (objfile);
9411 warning (_("bug: psymtab for %s is already read in."),
9418 printf_filtered (_("Reading in symbols for %s..."),
9420 gdb_flush (gdb_stdout);
9423 /* If this psymtab is constructed from a debug-only objfile, the
9424 has_section_at_zero flag will not necessarily be correct. We
9425 can get the correct value for this flag by looking at the data
9426 associated with the (presumably stripped) associated objfile. */
9427 if (objfile->separate_debug_objfile_backlink)
9429 struct dwarf2_per_objfile *dpo_backlink
9430 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9432 dwarf2_per_objfile->has_section_at_zero
9433 = dpo_backlink->has_section_at_zero;
9436 dwarf2_per_objfile->reading_partial_symbols = 0;
9438 psymtab_to_symtab_1 (self);
9440 /* Finish up the debug error message. */
9442 printf_filtered (_("done.\n"));
9445 process_cu_includes (dwarf2_per_objfile);
9448 /* Reading in full CUs. */
9450 /* Add PER_CU to the queue. */
9453 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9454 enum language pretend_language)
9456 struct dwarf2_queue_item *item;
9459 item = XNEW (struct dwarf2_queue_item);
9460 item->per_cu = per_cu;
9461 item->pretend_language = pretend_language;
9464 if (dwarf2_queue == NULL)
9465 dwarf2_queue = item;
9467 dwarf2_queue_tail->next = item;
9469 dwarf2_queue_tail = item;
9472 /* If PER_CU is not yet queued, add it to the queue.
9473 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9475 The result is non-zero if PER_CU was queued, otherwise the result is zero
9476 meaning either PER_CU is already queued or it is already loaded.
9478 N.B. There is an invariant here that if a CU is queued then it is loaded.
9479 The caller is required to load PER_CU if we return non-zero. */
9482 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9483 struct dwarf2_per_cu_data *per_cu,
9484 enum language pretend_language)
9486 /* We may arrive here during partial symbol reading, if we need full
9487 DIEs to process an unusual case (e.g. template arguments). Do
9488 not queue PER_CU, just tell our caller to load its DIEs. */
9489 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9491 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9496 /* Mark the dependence relation so that we don't flush PER_CU
9498 if (dependent_cu != NULL)
9499 dwarf2_add_dependence (dependent_cu, per_cu);
9501 /* If it's already on the queue, we have nothing to do. */
9505 /* If the compilation unit is already loaded, just mark it as
9507 if (per_cu->cu != NULL)
9509 per_cu->cu->last_used = 0;
9513 /* Add it to the queue. */
9514 queue_comp_unit (per_cu, pretend_language);
9519 /* Process the queue. */
9522 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9524 struct dwarf2_queue_item *item, *next_item;
9526 if (dwarf_read_debug)
9528 fprintf_unfiltered (gdb_stdlog,
9529 "Expanding one or more symtabs of objfile %s ...\n",
9530 objfile_name (dwarf2_per_objfile->objfile));
9533 /* The queue starts out with one item, but following a DIE reference
9534 may load a new CU, adding it to the end of the queue. */
9535 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9537 if ((dwarf2_per_objfile->using_index
9538 ? !item->per_cu->v.quick->compunit_symtab
9539 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9540 /* Skip dummy CUs. */
9541 && item->per_cu->cu != NULL)
9543 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9544 unsigned int debug_print_threshold;
9547 if (per_cu->is_debug_types)
9549 struct signatured_type *sig_type =
9550 (struct signatured_type *) per_cu;
9552 sprintf (buf, "TU %s at offset %s",
9553 hex_string (sig_type->signature),
9554 sect_offset_str (per_cu->sect_off));
9555 /* There can be 100s of TUs.
9556 Only print them in verbose mode. */
9557 debug_print_threshold = 2;
9561 sprintf (buf, "CU at offset %s",
9562 sect_offset_str (per_cu->sect_off));
9563 debug_print_threshold = 1;
9566 if (dwarf_read_debug >= debug_print_threshold)
9567 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9569 if (per_cu->is_debug_types)
9570 process_full_type_unit (per_cu, item->pretend_language);
9572 process_full_comp_unit (per_cu, item->pretend_language);
9574 if (dwarf_read_debug >= debug_print_threshold)
9575 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9578 item->per_cu->queued = 0;
9579 next_item = item->next;
9583 dwarf2_queue_tail = NULL;
9585 if (dwarf_read_debug)
9587 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9588 objfile_name (dwarf2_per_objfile->objfile));
9592 /* Read in full symbols for PST, and anything it depends on. */
9595 psymtab_to_symtab_1 (struct partial_symtab *pst)
9597 struct dwarf2_per_cu_data *per_cu;
9603 for (i = 0; i < pst->number_of_dependencies; i++)
9604 if (!pst->dependencies[i]->readin
9605 && pst->dependencies[i]->user == NULL)
9607 /* Inform about additional files that need to be read in. */
9610 /* FIXME: i18n: Need to make this a single string. */
9611 fputs_filtered (" ", gdb_stdout);
9613 fputs_filtered ("and ", gdb_stdout);
9615 printf_filtered ("%s...", pst->dependencies[i]->filename);
9616 wrap_here (""); /* Flush output. */
9617 gdb_flush (gdb_stdout);
9619 psymtab_to_symtab_1 (pst->dependencies[i]);
9622 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9626 /* It's an include file, no symbols to read for it.
9627 Everything is in the parent symtab. */
9632 dw2_do_instantiate_symtab (per_cu, false);
9635 /* Trivial hash function for die_info: the hash value of a DIE
9636 is its offset in .debug_info for this objfile. */
9639 die_hash (const void *item)
9641 const struct die_info *die = (const struct die_info *) item;
9643 return to_underlying (die->sect_off);
9646 /* Trivial comparison function for die_info structures: two DIEs
9647 are equal if they have the same offset. */
9650 die_eq (const void *item_lhs, const void *item_rhs)
9652 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9653 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9655 return die_lhs->sect_off == die_rhs->sect_off;
9658 /* die_reader_func for load_full_comp_unit.
9659 This is identical to read_signatured_type_reader,
9660 but is kept separate for now. */
9663 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9664 const gdb_byte *info_ptr,
9665 struct die_info *comp_unit_die,
9669 struct dwarf2_cu *cu = reader->cu;
9670 enum language *language_ptr = (enum language *) data;
9672 gdb_assert (cu->die_hash == NULL);
9674 htab_create_alloc_ex (cu->header.length / 12,
9678 &cu->comp_unit_obstack,
9679 hashtab_obstack_allocate,
9680 dummy_obstack_deallocate);
9683 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9684 &info_ptr, comp_unit_die);
9685 cu->dies = comp_unit_die;
9686 /* comp_unit_die is not stored in die_hash, no need. */
9688 /* We try not to read any attributes in this function, because not
9689 all CUs needed for references have been loaded yet, and symbol
9690 table processing isn't initialized. But we have to set the CU language,
9691 or we won't be able to build types correctly.
9692 Similarly, if we do not read the producer, we can not apply
9693 producer-specific interpretation. */
9694 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9697 /* Load the DIEs associated with PER_CU into memory. */
9700 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9702 enum language pretend_language)
9704 gdb_assert (! this_cu->is_debug_types);
9706 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9707 load_full_comp_unit_reader, &pretend_language);
9710 /* Add a DIE to the delayed physname list. */
9713 add_to_method_list (struct type *type, int fnfield_index, int index,
9714 const char *name, struct die_info *die,
9715 struct dwarf2_cu *cu)
9717 struct delayed_method_info mi;
9719 mi.fnfield_index = fnfield_index;
9723 cu->method_list.push_back (mi);
9726 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9727 "const" / "volatile". If so, decrements LEN by the length of the
9728 modifier and return true. Otherwise return false. */
9732 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9734 size_t mod_len = sizeof (mod) - 1;
9735 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9743 /* Compute the physnames of any methods on the CU's method list.
9745 The computation of method physnames is delayed in order to avoid the
9746 (bad) condition that one of the method's formal parameters is of an as yet
9750 compute_delayed_physnames (struct dwarf2_cu *cu)
9752 /* Only C++ delays computing physnames. */
9753 if (cu->method_list.empty ())
9755 gdb_assert (cu->language == language_cplus);
9757 for (const delayed_method_info &mi : cu->method_list)
9759 const char *physname;
9760 struct fn_fieldlist *fn_flp
9761 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9762 physname = dwarf2_physname (mi.name, mi.die, cu);
9763 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9764 = physname ? physname : "";
9766 /* Since there's no tag to indicate whether a method is a
9767 const/volatile overload, extract that information out of the
9769 if (physname != NULL)
9771 size_t len = strlen (physname);
9775 if (physname[len] == ')') /* shortcut */
9777 else if (check_modifier (physname, len, " const"))
9778 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9779 else if (check_modifier (physname, len, " volatile"))
9780 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9787 /* The list is no longer needed. */
9788 cu->method_list.clear ();
9791 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9792 the same as all other symbols in LISTHEAD. If a new symbol is added
9793 with a different language, this function asserts. */
9796 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9798 /* Only assert if LISTHEAD already contains symbols of a different
9799 language (dict_create_hashed/insert_symbol_hashed requires that all
9800 symbols in this list are of the same language). */
9801 gdb_assert ((*listhead) == NULL
9802 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9803 == SYMBOL_LANGUAGE (symbol)));
9805 add_symbol_to_list (symbol, listhead);
9808 /* Go objects should be embedded in a DW_TAG_module DIE,
9809 and it's not clear if/how imported objects will appear.
9810 To keep Go support simple until that's worked out,
9811 go back through what we've read and create something usable.
9812 We could do this while processing each DIE, and feels kinda cleaner,
9813 but that way is more invasive.
9814 This is to, for example, allow the user to type "p var" or "b main"
9815 without having to specify the package name, and allow lookups
9816 of module.object to work in contexts that use the expression
9820 fixup_go_packaging (struct dwarf2_cu *cu)
9822 char *package_name = NULL;
9823 struct pending *list;
9826 for (list = *cu->builder->get_global_symbols ();
9830 for (i = 0; i < list->nsyms; ++i)
9832 struct symbol *sym = list->symbol[i];
9834 if (SYMBOL_LANGUAGE (sym) == language_go
9835 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9837 char *this_package_name = go_symbol_package_name (sym);
9839 if (this_package_name == NULL)
9841 if (package_name == NULL)
9842 package_name = this_package_name;
9845 struct objfile *objfile
9846 = cu->per_cu->dwarf2_per_objfile->objfile;
9847 if (strcmp (package_name, this_package_name) != 0)
9848 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9849 (symbol_symtab (sym) != NULL
9850 ? symtab_to_filename_for_display
9851 (symbol_symtab (sym))
9852 : objfile_name (objfile)),
9853 this_package_name, package_name);
9854 xfree (this_package_name);
9860 if (package_name != NULL)
9862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9863 const char *saved_package_name
9864 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9866 strlen (package_name));
9867 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9868 saved_package_name);
9871 sym = allocate_symbol (objfile);
9872 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9873 SYMBOL_SET_NAMES (sym, saved_package_name,
9874 strlen (saved_package_name), 0, objfile);
9875 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9876 e.g., "main" finds the "main" module and not C's main(). */
9877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9878 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9879 SYMBOL_TYPE (sym) = type;
9881 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9883 xfree (package_name);
9887 /* Allocate a fully-qualified name consisting of the two parts on the
9891 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9893 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9896 /* A helper that allocates a struct discriminant_info to attach to a
9899 static struct discriminant_info *
9900 alloc_discriminant_info (struct type *type, int discriminant_index,
9903 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9904 gdb_assert (discriminant_index == -1
9905 || (discriminant_index >= 0
9906 && discriminant_index < TYPE_NFIELDS (type)));
9907 gdb_assert (default_index == -1
9908 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9910 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9912 struct discriminant_info *disc
9913 = ((struct discriminant_info *)
9915 offsetof (struct discriminant_info, discriminants)
9916 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9917 disc->default_index = default_index;
9918 disc->discriminant_index = discriminant_index;
9920 struct dynamic_prop prop;
9921 prop.kind = PROP_UNDEFINED;
9922 prop.data.baton = disc;
9924 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9929 /* Some versions of rustc emitted enums in an unusual way.
9931 Ordinary enums were emitted as unions. The first element of each
9932 structure in the union was named "RUST$ENUM$DISR". This element
9933 held the discriminant.
9935 These versions of Rust also implemented the "non-zero"
9936 optimization. When the enum had two values, and one is empty and
9937 the other holds a pointer that cannot be zero, the pointer is used
9938 as the discriminant, with a zero value meaning the empty variant.
9939 Here, the union's first member is of the form
9940 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9941 where the fieldnos are the indices of the fields that should be
9942 traversed in order to find the field (which may be several fields deep)
9943 and the variantname is the name of the variant of the case when the
9946 This function recognizes whether TYPE is of one of these forms,
9947 and, if so, smashes it to be a variant type. */
9950 quirk_rust_enum (struct type *type, struct objfile *objfile)
9952 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9954 /* We don't need to deal with empty enums. */
9955 if (TYPE_NFIELDS (type) == 0)
9958 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9959 if (TYPE_NFIELDS (type) == 1
9960 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9962 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9964 /* Decode the field name to find the offset of the
9966 ULONGEST bit_offset = 0;
9967 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9968 while (name[0] >= '0' && name[0] <= '9')
9971 unsigned long index = strtoul (name, &tail, 10);
9974 || index >= TYPE_NFIELDS (field_type)
9975 || (TYPE_FIELD_LOC_KIND (field_type, index)
9976 != FIELD_LOC_KIND_BITPOS))
9978 complaint (_("Could not parse Rust enum encoding string \"%s\""
9980 TYPE_FIELD_NAME (type, 0),
9981 objfile_name (objfile));
9986 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9987 field_type = TYPE_FIELD_TYPE (field_type, index);
9990 /* Make a union to hold the variants. */
9991 struct type *union_type = alloc_type (objfile);
9992 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9993 TYPE_NFIELDS (union_type) = 3;
9994 TYPE_FIELDS (union_type)
9995 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9996 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9997 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9999 /* Put the discriminant must at index 0. */
10000 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10001 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10002 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10003 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10005 /* The order of fields doesn't really matter, so put the real
10006 field at index 1 and the data-less field at index 2. */
10007 struct discriminant_info *disc
10008 = alloc_discriminant_info (union_type, 0, 1);
10009 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10010 TYPE_FIELD_NAME (union_type, 1)
10011 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10012 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10013 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10014 TYPE_FIELD_NAME (union_type, 1));
10016 const char *dataless_name
10017 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10019 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10021 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10022 /* NAME points into the original discriminant name, which
10023 already has the correct lifetime. */
10024 TYPE_FIELD_NAME (union_type, 2) = name;
10025 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10026 disc->discriminants[2] = 0;
10028 /* Smash this type to be a structure type. We have to do this
10029 because the type has already been recorded. */
10030 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10031 TYPE_NFIELDS (type) = 1;
10033 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10035 /* Install the variant part. */
10036 TYPE_FIELD_TYPE (type, 0) = union_type;
10037 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10038 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10040 else if (TYPE_NFIELDS (type) == 1)
10042 /* We assume that a union with a single field is a univariant
10044 /* Smash this type to be a structure type. We have to do this
10045 because the type has already been recorded. */
10046 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10048 /* Make a union to hold the variants. */
10049 struct type *union_type = alloc_type (objfile);
10050 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10051 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10052 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10053 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10054 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10056 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (field_type));
10059 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10060 TYPE_NAME (field_type)
10061 = rust_fully_qualify (&objfile->objfile_obstack,
10062 TYPE_NAME (type), variant_name);
10064 /* Install the union in the outer struct type. */
10065 TYPE_NFIELDS (type) = 1;
10067 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10068 TYPE_FIELD_TYPE (type, 0) = union_type;
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10072 alloc_discriminant_info (union_type, -1, 0);
10076 struct type *disr_type = nullptr;
10077 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10079 disr_type = TYPE_FIELD_TYPE (type, i);
10081 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10083 /* All fields of a true enum will be structs. */
10086 else if (TYPE_NFIELDS (disr_type) == 0)
10088 /* Could be data-less variant, so keep going. */
10089 disr_type = nullptr;
10091 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10092 "RUST$ENUM$DISR") != 0)
10094 /* Not a Rust enum. */
10104 /* If we got here without a discriminant, then it's probably
10106 if (disr_type == nullptr)
10109 /* Smash this type to be a structure type. We have to do this
10110 because the type has already been recorded. */
10111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10113 /* Make a union to hold the variants. */
10114 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10115 struct type *union_type = alloc_type (objfile);
10116 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10117 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10118 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10119 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10120 TYPE_FIELDS (union_type)
10121 = (struct field *) TYPE_ZALLOC (union_type,
10122 (TYPE_NFIELDS (union_type)
10123 * sizeof (struct field)));
10125 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10126 TYPE_NFIELDS (type) * sizeof (struct field));
10128 /* Install the discriminant at index 0 in the union. */
10129 TYPE_FIELD (union_type, 0) = *disr_field;
10130 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10131 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10133 /* Install the union in the outer struct type. */
10134 TYPE_FIELD_TYPE (type, 0) = union_type;
10135 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10136 TYPE_NFIELDS (type) = 1;
10138 /* Set the size and offset of the union type. */
10139 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10141 /* We need a way to find the correct discriminant given a
10142 variant name. For convenience we build a map here. */
10143 struct type *enum_type = FIELD_TYPE (*disr_field);
10144 std::unordered_map<std::string, ULONGEST> discriminant_map;
10145 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10147 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10150 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10151 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10155 int n_fields = TYPE_NFIELDS (union_type);
10156 struct discriminant_info *disc
10157 = alloc_discriminant_info (union_type, 0, -1);
10158 /* Skip the discriminant here. */
10159 for (int i = 1; i < n_fields; ++i)
10161 /* Find the final word in the name of this variant's type.
10162 That name can be used to look up the correct
10164 const char *variant_name
10165 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10168 auto iter = discriminant_map.find (variant_name);
10169 if (iter != discriminant_map.end ())
10170 disc->discriminants[i] = iter->second;
10172 /* Remove the discriminant field, if it exists. */
10173 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10174 if (TYPE_NFIELDS (sub_type) > 0)
10176 --TYPE_NFIELDS (sub_type);
10177 ++TYPE_FIELDS (sub_type);
10179 TYPE_FIELD_NAME (union_type, i) = variant_name;
10180 TYPE_NAME (sub_type)
10181 = rust_fully_qualify (&objfile->objfile_obstack,
10182 TYPE_NAME (type), variant_name);
10187 /* Rewrite some Rust unions to be structures with variants parts. */
10190 rust_union_quirks (struct dwarf2_cu *cu)
10192 gdb_assert (cu->language == language_rust);
10193 for (type *type_ : cu->rust_unions)
10194 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10195 /* We don't need this any more. */
10196 cu->rust_unions.clear ();
10199 /* Return the symtab for PER_CU. This works properly regardless of
10200 whether we're using the index or psymtabs. */
10202 static struct compunit_symtab *
10203 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10205 return (per_cu->dwarf2_per_objfile->using_index
10206 ? per_cu->v.quick->compunit_symtab
10207 : per_cu->v.psymtab->compunit_symtab);
10210 /* A helper function for computing the list of all symbol tables
10211 included by PER_CU. */
10214 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10215 htab_t all_children, htab_t all_type_symtabs,
10216 struct dwarf2_per_cu_data *per_cu,
10217 struct compunit_symtab *immediate_parent)
10221 struct compunit_symtab *cust;
10222 struct dwarf2_per_cu_data *iter;
10224 slot = htab_find_slot (all_children, per_cu, INSERT);
10227 /* This inclusion and its children have been processed. */
10232 /* Only add a CU if it has a symbol table. */
10233 cust = get_compunit_symtab (per_cu);
10236 /* If this is a type unit only add its symbol table if we haven't
10237 seen it yet (type unit per_cu's can share symtabs). */
10238 if (per_cu->is_debug_types)
10240 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10244 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10245 if (cust->user == NULL)
10246 cust->user = immediate_parent;
10251 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
10258 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10261 recursively_compute_inclusions (result, all_children,
10262 all_type_symtabs, iter, cust);
10266 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10270 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10272 gdb_assert (! per_cu->is_debug_types);
10274 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10277 struct dwarf2_per_cu_data *per_cu_iter;
10278 struct compunit_symtab *compunit_symtab_iter;
10279 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10280 htab_t all_children, all_type_symtabs;
10281 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10283 /* If we don't have a symtab, we can just skip this case. */
10287 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10288 NULL, xcalloc, xfree);
10289 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10290 NULL, xcalloc, xfree);
10293 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10297 recursively_compute_inclusions (&result_symtabs, all_children,
10298 all_type_symtabs, per_cu_iter,
10302 /* Now we have a transitive closure of all the included symtabs. */
10303 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10305 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10306 struct compunit_symtab *, len + 1);
10308 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10309 compunit_symtab_iter);
10311 cust->includes[ix] = compunit_symtab_iter;
10312 cust->includes[len] = NULL;
10314 VEC_free (compunit_symtab_ptr, result_symtabs);
10315 htab_delete (all_children);
10316 htab_delete (all_type_symtabs);
10320 /* Compute the 'includes' field for the symtabs of all the CUs we just
10324 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10326 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10328 if (! iter->is_debug_types)
10329 compute_compunit_symtab_includes (iter);
10332 dwarf2_per_objfile->just_read_cus.clear ();
10335 /* Generate full symbol information for PER_CU, whose DIEs have
10336 already been loaded into memory. */
10339 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10340 enum language pretend_language)
10342 struct dwarf2_cu *cu = per_cu->cu;
10343 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10344 struct objfile *objfile = dwarf2_per_objfile->objfile;
10345 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10346 CORE_ADDR lowpc, highpc;
10347 struct compunit_symtab *cust;
10348 CORE_ADDR baseaddr;
10349 struct block *static_block;
10352 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10354 /* Clear the list here in case something was left over. */
10355 cu->method_list.clear ();
10357 cu->language = pretend_language;
10358 cu->language_defn = language_def (cu->language);
10360 /* Do line number decoding in read_file_scope () */
10361 process_die (cu->dies, cu);
10363 /* For now fudge the Go package. */
10364 if (cu->language == language_go)
10365 fixup_go_packaging (cu);
10367 /* Now that we have processed all the DIEs in the CU, all the types
10368 should be complete, and it should now be safe to compute all of the
10370 compute_delayed_physnames (cu);
10372 if (cu->language == language_rust)
10373 rust_union_quirks (cu);
10375 /* Some compilers don't define a DW_AT_high_pc attribute for the
10376 compilation unit. If the DW_AT_high_pc is missing, synthesize
10377 it, by scanning the DIE's below the compilation unit. */
10378 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10380 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10381 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10383 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10384 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10385 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10386 addrmap to help ensure it has an accurate map of pc values belonging to
10388 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10390 cust = cu->builder->end_symtab_from_static_block (static_block,
10391 SECT_OFF_TEXT (objfile),
10396 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10398 /* Set symtab language to language from DW_AT_language. If the
10399 compilation is from a C file generated by language preprocessors, do
10400 not set the language if it was already deduced by start_subfile. */
10401 if (!(cu->language == language_c
10402 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10403 COMPUNIT_FILETABS (cust)->language = cu->language;
10405 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10406 produce DW_AT_location with location lists but it can be possibly
10407 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10408 there were bugs in prologue debug info, fixed later in GCC-4.5
10409 by "unwind info for epilogues" patch (which is not directly related).
10411 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10412 needed, it would be wrong due to missing DW_AT_producer there.
10414 Still one can confuse GDB by using non-standard GCC compilation
10415 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10417 if (cu->has_loclist && gcc_4_minor >= 5)
10418 cust->locations_valid = 1;
10420 if (gcc_4_minor >= 5)
10421 cust->epilogue_unwind_valid = 1;
10423 cust->call_site_htab = cu->call_site_htab;
10426 if (dwarf2_per_objfile->using_index)
10427 per_cu->v.quick->compunit_symtab = cust;
10430 struct partial_symtab *pst = per_cu->v.psymtab;
10431 pst->compunit_symtab = cust;
10435 /* Push it for inclusion processing later. */
10436 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10438 /* Not needed any more. */
10439 cu->builder.reset ();
10442 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10443 already been loaded into memory. */
10446 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10447 enum language pretend_language)
10449 struct dwarf2_cu *cu = per_cu->cu;
10450 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10451 struct objfile *objfile = dwarf2_per_objfile->objfile;
10452 struct compunit_symtab *cust;
10453 struct signatured_type *sig_type;
10455 gdb_assert (per_cu->is_debug_types);
10456 sig_type = (struct signatured_type *) per_cu;
10458 /* Clear the list here in case something was left over. */
10459 cu->method_list.clear ();
10461 cu->language = pretend_language;
10462 cu->language_defn = language_def (cu->language);
10464 /* The symbol tables are set up in read_type_unit_scope. */
10465 process_die (cu->dies, cu);
10467 /* For now fudge the Go package. */
10468 if (cu->language == language_go)
10469 fixup_go_packaging (cu);
10471 /* Now that we have processed all the DIEs in the CU, all the types
10472 should be complete, and it should now be safe to compute all of the
10474 compute_delayed_physnames (cu);
10476 if (cu->language == language_rust)
10477 rust_union_quirks (cu);
10479 /* TUs share symbol tables.
10480 If this is the first TU to use this symtab, complete the construction
10481 of it with end_expandable_symtab. Otherwise, complete the addition of
10482 this TU's symbols to the existing symtab. */
10483 if (sig_type->type_unit_group->compunit_symtab == NULL)
10485 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10486 sig_type->type_unit_group->compunit_symtab = cust;
10490 /* Set symtab language to language from DW_AT_language. If the
10491 compilation is from a C file generated by language preprocessors,
10492 do not set the language if it was already deduced by
10494 if (!(cu->language == language_c
10495 && COMPUNIT_FILETABS (cust)->language != language_c))
10496 COMPUNIT_FILETABS (cust)->language = cu->language;
10501 cu->builder->augment_type_symtab ();
10502 cust = sig_type->type_unit_group->compunit_symtab;
10505 if (dwarf2_per_objfile->using_index)
10506 per_cu->v.quick->compunit_symtab = cust;
10509 struct partial_symtab *pst = per_cu->v.psymtab;
10510 pst->compunit_symtab = cust;
10514 /* Not needed any more. */
10515 cu->builder.reset ();
10518 /* Process an imported unit DIE. */
10521 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10523 struct attribute *attr;
10525 /* For now we don't handle imported units in type units. */
10526 if (cu->per_cu->is_debug_types)
10528 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10529 " supported in type units [in module %s]"),
10530 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10533 attr = dwarf2_attr (die, DW_AT_import, cu);
10536 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10537 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10538 dwarf2_per_cu_data *per_cu
10539 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10540 cu->per_cu->dwarf2_per_objfile);
10542 /* If necessary, add it to the queue and load its DIEs. */
10543 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10544 load_full_comp_unit (per_cu, false, cu->language);
10546 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10551 /* RAII object that represents a process_die scope: i.e.,
10552 starts/finishes processing a DIE. */
10553 class process_die_scope
10556 process_die_scope (die_info *die, dwarf2_cu *cu)
10557 : m_die (die), m_cu (cu)
10559 /* We should only be processing DIEs not already in process. */
10560 gdb_assert (!m_die->in_process);
10561 m_die->in_process = true;
10564 ~process_die_scope ()
10566 m_die->in_process = false;
10568 /* If we're done processing the DIE for the CU that owns the line
10569 header, we don't need the line header anymore. */
10570 if (m_cu->line_header_die_owner == m_die)
10572 delete m_cu->line_header;
10573 m_cu->line_header = NULL;
10574 m_cu->line_header_die_owner = NULL;
10583 /* Process a die and its children. */
10586 process_die (struct die_info *die, struct dwarf2_cu *cu)
10588 process_die_scope scope (die, cu);
10592 case DW_TAG_padding:
10594 case DW_TAG_compile_unit:
10595 case DW_TAG_partial_unit:
10596 read_file_scope (die, cu);
10598 case DW_TAG_type_unit:
10599 read_type_unit_scope (die, cu);
10601 case DW_TAG_subprogram:
10602 case DW_TAG_inlined_subroutine:
10603 read_func_scope (die, cu);
10605 case DW_TAG_lexical_block:
10606 case DW_TAG_try_block:
10607 case DW_TAG_catch_block:
10608 read_lexical_block_scope (die, cu);
10610 case DW_TAG_call_site:
10611 case DW_TAG_GNU_call_site:
10612 read_call_site_scope (die, cu);
10614 case DW_TAG_class_type:
10615 case DW_TAG_interface_type:
10616 case DW_TAG_structure_type:
10617 case DW_TAG_union_type:
10618 process_structure_scope (die, cu);
10620 case DW_TAG_enumeration_type:
10621 process_enumeration_scope (die, cu);
10624 /* These dies have a type, but processing them does not create
10625 a symbol or recurse to process the children. Therefore we can
10626 read them on-demand through read_type_die. */
10627 case DW_TAG_subroutine_type:
10628 case DW_TAG_set_type:
10629 case DW_TAG_array_type:
10630 case DW_TAG_pointer_type:
10631 case DW_TAG_ptr_to_member_type:
10632 case DW_TAG_reference_type:
10633 case DW_TAG_rvalue_reference_type:
10634 case DW_TAG_string_type:
10637 case DW_TAG_base_type:
10638 case DW_TAG_subrange_type:
10639 case DW_TAG_typedef:
10640 /* Add a typedef symbol for the type definition, if it has a
10642 new_symbol (die, read_type_die (die, cu), cu);
10644 case DW_TAG_common_block:
10645 read_common_block (die, cu);
10647 case DW_TAG_common_inclusion:
10649 case DW_TAG_namespace:
10650 cu->processing_has_namespace_info = 1;
10651 read_namespace (die, cu);
10653 case DW_TAG_module:
10654 cu->processing_has_namespace_info = 1;
10655 read_module (die, cu);
10657 case DW_TAG_imported_declaration:
10658 cu->processing_has_namespace_info = 1;
10659 if (read_namespace_alias (die, cu))
10661 /* The declaration is not a global namespace alias. */
10662 /* Fall through. */
10663 case DW_TAG_imported_module:
10664 cu->processing_has_namespace_info = 1;
10665 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10666 || cu->language != language_fortran))
10667 complaint (_("Tag '%s' has unexpected children"),
10668 dwarf_tag_name (die->tag));
10669 read_import_statement (die, cu);
10672 case DW_TAG_imported_unit:
10673 process_imported_unit_die (die, cu);
10676 case DW_TAG_variable:
10677 read_variable (die, cu);
10681 new_symbol (die, NULL, cu);
10686 /* DWARF name computation. */
10688 /* A helper function for dwarf2_compute_name which determines whether DIE
10689 needs to have the name of the scope prepended to the name listed in the
10693 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10695 struct attribute *attr;
10699 case DW_TAG_namespace:
10700 case DW_TAG_typedef:
10701 case DW_TAG_class_type:
10702 case DW_TAG_interface_type:
10703 case DW_TAG_structure_type:
10704 case DW_TAG_union_type:
10705 case DW_TAG_enumeration_type:
10706 case DW_TAG_enumerator:
10707 case DW_TAG_subprogram:
10708 case DW_TAG_inlined_subroutine:
10709 case DW_TAG_member:
10710 case DW_TAG_imported_declaration:
10713 case DW_TAG_variable:
10714 case DW_TAG_constant:
10715 /* We only need to prefix "globally" visible variables. These include
10716 any variable marked with DW_AT_external or any variable that
10717 lives in a namespace. [Variables in anonymous namespaces
10718 require prefixing, but they are not DW_AT_external.] */
10720 if (dwarf2_attr (die, DW_AT_specification, cu))
10722 struct dwarf2_cu *spec_cu = cu;
10724 return die_needs_namespace (die_specification (die, &spec_cu),
10728 attr = dwarf2_attr (die, DW_AT_external, cu);
10729 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10730 && die->parent->tag != DW_TAG_module)
10732 /* A variable in a lexical block of some kind does not need a
10733 namespace, even though in C++ such variables may be external
10734 and have a mangled name. */
10735 if (die->parent->tag == DW_TAG_lexical_block
10736 || die->parent->tag == DW_TAG_try_block
10737 || die->parent->tag == DW_TAG_catch_block
10738 || die->parent->tag == DW_TAG_subprogram)
10747 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10748 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10749 defined for the given DIE. */
10751 static struct attribute *
10752 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10754 struct attribute *attr;
10756 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10758 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10763 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10764 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10765 defined for the given DIE. */
10767 static const char *
10768 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10770 const char *linkage_name;
10772 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10773 if (linkage_name == NULL)
10774 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10776 return linkage_name;
10779 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10780 compute the physname for the object, which include a method's:
10781 - formal parameters (C++),
10782 - receiver type (Go),
10784 The term "physname" is a bit confusing.
10785 For C++, for example, it is the demangled name.
10786 For Go, for example, it's the mangled name.
10788 For Ada, return the DIE's linkage name rather than the fully qualified
10789 name. PHYSNAME is ignored..
10791 The result is allocated on the objfile_obstack and canonicalized. */
10793 static const char *
10794 dwarf2_compute_name (const char *name,
10795 struct die_info *die, struct dwarf2_cu *cu,
10798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10801 name = dwarf2_name (die, cu);
10803 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10804 but otherwise compute it by typename_concat inside GDB.
10805 FIXME: Actually this is not really true, or at least not always true.
10806 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10807 Fortran names because there is no mangling standard. So new_symbol
10808 will set the demangled name to the result of dwarf2_full_name, and it is
10809 the demangled name that GDB uses if it exists. */
10810 if (cu->language == language_ada
10811 || (cu->language == language_fortran && physname))
10813 /* For Ada unit, we prefer the linkage name over the name, as
10814 the former contains the exported name, which the user expects
10815 to be able to reference. Ideally, we want the user to be able
10816 to reference this entity using either natural or linkage name,
10817 but we haven't started looking at this enhancement yet. */
10818 const char *linkage_name = dw2_linkage_name (die, cu);
10820 if (linkage_name != NULL)
10821 return linkage_name;
10824 /* These are the only languages we know how to qualify names in. */
10826 && (cu->language == language_cplus
10827 || cu->language == language_fortran || cu->language == language_d
10828 || cu->language == language_rust))
10830 if (die_needs_namespace (die, cu))
10832 const char *prefix;
10833 const char *canonical_name = NULL;
10837 prefix = determine_prefix (die, cu);
10838 if (*prefix != '\0')
10840 char *prefixed_name = typename_concat (NULL, prefix, name,
10843 buf.puts (prefixed_name);
10844 xfree (prefixed_name);
10849 /* Template parameters may be specified in the DIE's DW_AT_name, or
10850 as children with DW_TAG_template_type_param or
10851 DW_TAG_value_type_param. If the latter, add them to the name
10852 here. If the name already has template parameters, then
10853 skip this step; some versions of GCC emit both, and
10854 it is more efficient to use the pre-computed name.
10856 Something to keep in mind about this process: it is very
10857 unlikely, or in some cases downright impossible, to produce
10858 something that will match the mangled name of a function.
10859 If the definition of the function has the same debug info,
10860 we should be able to match up with it anyway. But fallbacks
10861 using the minimal symbol, for instance to find a method
10862 implemented in a stripped copy of libstdc++, will not work.
10863 If we do not have debug info for the definition, we will have to
10864 match them up some other way.
10866 When we do name matching there is a related problem with function
10867 templates; two instantiated function templates are allowed to
10868 differ only by their return types, which we do not add here. */
10870 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10872 struct attribute *attr;
10873 struct die_info *child;
10876 die->building_fullname = 1;
10878 for (child = die->child; child != NULL; child = child->sibling)
10882 const gdb_byte *bytes;
10883 struct dwarf2_locexpr_baton *baton;
10886 if (child->tag != DW_TAG_template_type_param
10887 && child->tag != DW_TAG_template_value_param)
10898 attr = dwarf2_attr (child, DW_AT_type, cu);
10901 complaint (_("template parameter missing DW_AT_type"));
10902 buf.puts ("UNKNOWN_TYPE");
10905 type = die_type (child, cu);
10907 if (child->tag == DW_TAG_template_type_param)
10909 c_print_type (type, "", &buf, -1, 0, cu->language,
10910 &type_print_raw_options);
10914 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10917 complaint (_("template parameter missing "
10918 "DW_AT_const_value"));
10919 buf.puts ("UNKNOWN_VALUE");
10923 dwarf2_const_value_attr (attr, type, name,
10924 &cu->comp_unit_obstack, cu,
10925 &value, &bytes, &baton);
10927 if (TYPE_NOSIGN (type))
10928 /* GDB prints characters as NUMBER 'CHAR'. If that's
10929 changed, this can use value_print instead. */
10930 c_printchar (value, type, &buf);
10933 struct value_print_options opts;
10936 v = dwarf2_evaluate_loc_desc (type, NULL,
10940 else if (bytes != NULL)
10942 v = allocate_value (type);
10943 memcpy (value_contents_writeable (v), bytes,
10944 TYPE_LENGTH (type));
10947 v = value_from_longest (type, value);
10949 /* Specify decimal so that we do not depend on
10951 get_formatted_print_options (&opts, 'd');
10953 value_print (v, &buf, &opts);
10958 die->building_fullname = 0;
10962 /* Close the argument list, with a space if necessary
10963 (nested templates). */
10964 if (!buf.empty () && buf.string ().back () == '>')
10971 /* For C++ methods, append formal parameter type
10972 information, if PHYSNAME. */
10974 if (physname && die->tag == DW_TAG_subprogram
10975 && cu->language == language_cplus)
10977 struct type *type = read_type_die (die, cu);
10979 c_type_print_args (type, &buf, 1, cu->language,
10980 &type_print_raw_options);
10982 if (cu->language == language_cplus)
10984 /* Assume that an artificial first parameter is
10985 "this", but do not crash if it is not. RealView
10986 marks unnamed (and thus unused) parameters as
10987 artificial; there is no way to differentiate
10989 if (TYPE_NFIELDS (type) > 0
10990 && TYPE_FIELD_ARTIFICIAL (type, 0)
10991 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10992 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10994 buf.puts (" const");
10998 const std::string &intermediate_name = buf.string ();
11000 if (cu->language == language_cplus)
11002 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11003 &objfile->per_bfd->storage_obstack);
11005 /* If we only computed INTERMEDIATE_NAME, or if
11006 INTERMEDIATE_NAME is already canonical, then we need to
11007 copy it to the appropriate obstack. */
11008 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11009 name = ((const char *)
11010 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11011 intermediate_name.c_str (),
11012 intermediate_name.length ()));
11014 name = canonical_name;
11021 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11022 If scope qualifiers are appropriate they will be added. The result
11023 will be allocated on the storage_obstack, or NULL if the DIE does
11024 not have a name. NAME may either be from a previous call to
11025 dwarf2_name or NULL.
11027 The output string will be canonicalized (if C++). */
11029 static const char *
11030 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11032 return dwarf2_compute_name (name, die, cu, 0);
11035 /* Construct a physname for the given DIE in CU. NAME may either be
11036 from a previous call to dwarf2_name or NULL. The result will be
11037 allocated on the objfile_objstack or NULL if the DIE does not have a
11040 The output string will be canonicalized (if C++). */
11042 static const char *
11043 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11045 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11046 const char *retval, *mangled = NULL, *canon = NULL;
11049 /* In this case dwarf2_compute_name is just a shortcut not building anything
11051 if (!die_needs_namespace (die, cu))
11052 return dwarf2_compute_name (name, die, cu, 1);
11054 mangled = dw2_linkage_name (die, cu);
11056 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11057 See https://github.com/rust-lang/rust/issues/32925. */
11058 if (cu->language == language_rust && mangled != NULL
11059 && strchr (mangled, '{') != NULL)
11062 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11064 gdb::unique_xmalloc_ptr<char> demangled;
11065 if (mangled != NULL)
11068 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11070 /* Do nothing (do not demangle the symbol name). */
11072 else if (cu->language == language_go)
11074 /* This is a lie, but we already lie to the caller new_symbol.
11075 new_symbol assumes we return the mangled name.
11076 This just undoes that lie until things are cleaned up. */
11080 /* Use DMGL_RET_DROP for C++ template functions to suppress
11081 their return type. It is easier for GDB users to search
11082 for such functions as `name(params)' than `long name(params)'.
11083 In such case the minimal symbol names do not match the full
11084 symbol names but for template functions there is never a need
11085 to look up their definition from their declaration so
11086 the only disadvantage remains the minimal symbol variant
11087 `long name(params)' does not have the proper inferior type. */
11088 demangled.reset (gdb_demangle (mangled,
11089 (DMGL_PARAMS | DMGL_ANSI
11090 | DMGL_RET_DROP)));
11093 canon = demangled.get ();
11101 if (canon == NULL || check_physname)
11103 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11105 if (canon != NULL && strcmp (physname, canon) != 0)
11107 /* It may not mean a bug in GDB. The compiler could also
11108 compute DW_AT_linkage_name incorrectly. But in such case
11109 GDB would need to be bug-to-bug compatible. */
11111 complaint (_("Computed physname <%s> does not match demangled <%s> "
11112 "(from linkage <%s>) - DIE at %s [in module %s]"),
11113 physname, canon, mangled, sect_offset_str (die->sect_off),
11114 objfile_name (objfile));
11116 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11117 is available here - over computed PHYSNAME. It is safer
11118 against both buggy GDB and buggy compilers. */
11132 retval = ((const char *)
11133 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11134 retval, strlen (retval)));
11139 /* Inspect DIE in CU for a namespace alias. If one exists, record
11140 a new symbol for it.
11142 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11145 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11147 struct attribute *attr;
11149 /* If the die does not have a name, this is not a namespace
11151 attr = dwarf2_attr (die, DW_AT_name, cu);
11155 struct die_info *d = die;
11156 struct dwarf2_cu *imported_cu = cu;
11158 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11159 keep inspecting DIEs until we hit the underlying import. */
11160 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11161 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11163 attr = dwarf2_attr (d, DW_AT_import, cu);
11167 d = follow_die_ref (d, attr, &imported_cu);
11168 if (d->tag != DW_TAG_imported_declaration)
11172 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11174 complaint (_("DIE at %s has too many recursively imported "
11175 "declarations"), sect_offset_str (d->sect_off));
11182 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11184 type = get_die_type_at_offset (sect_off, cu->per_cu);
11185 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11187 /* This declaration is a global namespace alias. Add
11188 a symbol for it whose type is the aliased namespace. */
11189 new_symbol (die, type, cu);
11198 /* Return the using directives repository (global or local?) to use in the
11199 current context for CU.
11201 For Ada, imported declarations can materialize renamings, which *may* be
11202 global. However it is impossible (for now?) in DWARF to distinguish
11203 "external" imported declarations and "static" ones. As all imported
11204 declarations seem to be static in all other languages, make them all CU-wide
11205 global only in Ada. */
11207 static struct using_direct **
11208 using_directives (struct dwarf2_cu *cu)
11210 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11211 return cu->builder->get_global_using_directives ();
11213 return cu->builder->get_local_using_directives ();
11216 /* Read the import statement specified by the given die and record it. */
11219 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11221 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11222 struct attribute *import_attr;
11223 struct die_info *imported_die, *child_die;
11224 struct dwarf2_cu *imported_cu;
11225 const char *imported_name;
11226 const char *imported_name_prefix;
11227 const char *canonical_name;
11228 const char *import_alias;
11229 const char *imported_declaration = NULL;
11230 const char *import_prefix;
11231 std::vector<const char *> excludes;
11233 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11234 if (import_attr == NULL)
11236 complaint (_("Tag '%s' has no DW_AT_import"),
11237 dwarf_tag_name (die->tag));
11242 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11243 imported_name = dwarf2_name (imported_die, imported_cu);
11244 if (imported_name == NULL)
11246 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11248 The import in the following code:
11262 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11263 <52> DW_AT_decl_file : 1
11264 <53> DW_AT_decl_line : 6
11265 <54> DW_AT_import : <0x75>
11266 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11267 <59> DW_AT_name : B
11268 <5b> DW_AT_decl_file : 1
11269 <5c> DW_AT_decl_line : 2
11270 <5d> DW_AT_type : <0x6e>
11272 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11273 <76> DW_AT_byte_size : 4
11274 <77> DW_AT_encoding : 5 (signed)
11276 imports the wrong die ( 0x75 instead of 0x58 ).
11277 This case will be ignored until the gcc bug is fixed. */
11281 /* Figure out the local name after import. */
11282 import_alias = dwarf2_name (die, cu);
11284 /* Figure out where the statement is being imported to. */
11285 import_prefix = determine_prefix (die, cu);
11287 /* Figure out what the scope of the imported die is and prepend it
11288 to the name of the imported die. */
11289 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11291 if (imported_die->tag != DW_TAG_namespace
11292 && imported_die->tag != DW_TAG_module)
11294 imported_declaration = imported_name;
11295 canonical_name = imported_name_prefix;
11297 else if (strlen (imported_name_prefix) > 0)
11298 canonical_name = obconcat (&objfile->objfile_obstack,
11299 imported_name_prefix,
11300 (cu->language == language_d ? "." : "::"),
11301 imported_name, (char *) NULL);
11303 canonical_name = imported_name;
11305 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11306 for (child_die = die->child; child_die && child_die->tag;
11307 child_die = sibling_die (child_die))
11309 /* DWARF-4: A Fortran use statement with a “rename list” may be
11310 represented by an imported module entry with an import attribute
11311 referring to the module and owned entries corresponding to those
11312 entities that are renamed as part of being imported. */
11314 if (child_die->tag != DW_TAG_imported_declaration)
11316 complaint (_("child DW_TAG_imported_declaration expected "
11317 "- DIE at %s [in module %s]"),
11318 sect_offset_str (child_die->sect_off),
11319 objfile_name (objfile));
11323 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11324 if (import_attr == NULL)
11326 complaint (_("Tag '%s' has no DW_AT_import"),
11327 dwarf_tag_name (child_die->tag));
11332 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11334 imported_name = dwarf2_name (imported_die, imported_cu);
11335 if (imported_name == NULL)
11337 complaint (_("child DW_TAG_imported_declaration has unknown "
11338 "imported name - DIE at %s [in module %s]"),
11339 sect_offset_str (child_die->sect_off),
11340 objfile_name (objfile));
11344 excludes.push_back (imported_name);
11346 process_die (child_die, cu);
11349 add_using_directive (using_directives (cu),
11353 imported_declaration,
11356 &objfile->objfile_obstack);
11359 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11360 types, but gives them a size of zero. Starting with version 14,
11361 ICC is compatible with GCC. */
11364 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11366 if (!cu->checked_producer)
11367 check_producer (cu);
11369 return cu->producer_is_icc_lt_14;
11372 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11373 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11374 this, it was first present in GCC release 4.3.0. */
11377 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11379 if (!cu->checked_producer)
11380 check_producer (cu);
11382 return cu->producer_is_gcc_lt_4_3;
11385 static file_and_directory
11386 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11388 file_and_directory res;
11390 /* Find the filename. Do not use dwarf2_name here, since the filename
11391 is not a source language identifier. */
11392 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11393 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11395 if (res.comp_dir == NULL
11396 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11397 && IS_ABSOLUTE_PATH (res.name))
11399 res.comp_dir_storage = ldirname (res.name);
11400 if (!res.comp_dir_storage.empty ())
11401 res.comp_dir = res.comp_dir_storage.c_str ();
11403 if (res.comp_dir != NULL)
11405 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11406 directory, get rid of it. */
11407 const char *cp = strchr (res.comp_dir, ':');
11409 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11410 res.comp_dir = cp + 1;
11413 if (res.name == NULL)
11414 res.name = "<unknown>";
11419 /* Handle DW_AT_stmt_list for a compilation unit.
11420 DIE is the DW_TAG_compile_unit die for CU.
11421 COMP_DIR is the compilation directory. LOWPC is passed to
11422 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11425 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11426 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11428 struct dwarf2_per_objfile *dwarf2_per_objfile
11429 = cu->per_cu->dwarf2_per_objfile;
11430 struct objfile *objfile = dwarf2_per_objfile->objfile;
11431 struct attribute *attr;
11432 struct line_header line_header_local;
11433 hashval_t line_header_local_hash;
11435 int decode_mapping;
11437 gdb_assert (! cu->per_cu->is_debug_types);
11439 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11443 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11445 /* The line header hash table is only created if needed (it exists to
11446 prevent redundant reading of the line table for partial_units).
11447 If we're given a partial_unit, we'll need it. If we're given a
11448 compile_unit, then use the line header hash table if it's already
11449 created, but don't create one just yet. */
11451 if (dwarf2_per_objfile->line_header_hash == NULL
11452 && die->tag == DW_TAG_partial_unit)
11454 dwarf2_per_objfile->line_header_hash
11455 = htab_create_alloc_ex (127, line_header_hash_voidp,
11456 line_header_eq_voidp,
11457 free_line_header_voidp,
11458 &objfile->objfile_obstack,
11459 hashtab_obstack_allocate,
11460 dummy_obstack_deallocate);
11463 line_header_local.sect_off = line_offset;
11464 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11465 line_header_local_hash = line_header_hash (&line_header_local);
11466 if (dwarf2_per_objfile->line_header_hash != NULL)
11468 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11469 &line_header_local,
11470 line_header_local_hash, NO_INSERT);
11472 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11473 is not present in *SLOT (since if there is something in *SLOT then
11474 it will be for a partial_unit). */
11475 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11477 gdb_assert (*slot != NULL);
11478 cu->line_header = (struct line_header *) *slot;
11483 /* dwarf_decode_line_header does not yet provide sufficient information.
11484 We always have to call also dwarf_decode_lines for it. */
11485 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11489 cu->line_header = lh.release ();
11490 cu->line_header_die_owner = die;
11492 if (dwarf2_per_objfile->line_header_hash == NULL)
11496 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11497 &line_header_local,
11498 line_header_local_hash, INSERT);
11499 gdb_assert (slot != NULL);
11501 if (slot != NULL && *slot == NULL)
11503 /* This newly decoded line number information unit will be owned
11504 by line_header_hash hash table. */
11505 *slot = cu->line_header;
11506 cu->line_header_die_owner = NULL;
11510 /* We cannot free any current entry in (*slot) as that struct line_header
11511 may be already used by multiple CUs. Create only temporary decoded
11512 line_header for this CU - it may happen at most once for each line
11513 number information unit. And if we're not using line_header_hash
11514 then this is what we want as well. */
11515 gdb_assert (die->tag != DW_TAG_partial_unit);
11517 decode_mapping = (die->tag != DW_TAG_partial_unit);
11518 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11523 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11526 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11528 struct dwarf2_per_objfile *dwarf2_per_objfile
11529 = cu->per_cu->dwarf2_per_objfile;
11530 struct objfile *objfile = dwarf2_per_objfile->objfile;
11531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11532 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11533 CORE_ADDR highpc = ((CORE_ADDR) 0);
11534 struct attribute *attr;
11535 struct die_info *child_die;
11536 CORE_ADDR baseaddr;
11538 prepare_one_comp_unit (cu, die, cu->language);
11539 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11541 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11543 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11544 from finish_block. */
11545 if (lowpc == ((CORE_ADDR) -1))
11547 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11549 file_and_directory fnd = find_file_and_directory (die, cu);
11551 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11552 standardised yet. As a workaround for the language detection we fall
11553 back to the DW_AT_producer string. */
11554 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11555 cu->language = language_opencl;
11557 /* Similar hack for Go. */
11558 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11559 set_cu_language (DW_LANG_Go, cu);
11561 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11563 /* Decode line number information if present. We do this before
11564 processing child DIEs, so that the line header table is available
11565 for DW_AT_decl_file. */
11566 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11568 /* Process all dies in compilation unit. */
11569 if (die->child != NULL)
11571 child_die = die->child;
11572 while (child_die && child_die->tag)
11574 process_die (child_die, cu);
11575 child_die = sibling_die (child_die);
11579 /* Decode macro information, if present. Dwarf 2 macro information
11580 refers to information in the line number info statement program
11581 header, so we can only read it if we've read the header
11583 attr = dwarf2_attr (die, DW_AT_macros, cu);
11585 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11586 if (attr && cu->line_header)
11588 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11589 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11591 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11595 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11596 if (attr && cu->line_header)
11598 unsigned int macro_offset = DW_UNSND (attr);
11600 dwarf_decode_macros (cu, macro_offset, 0);
11605 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11606 Create the set of symtabs used by this TU, or if this TU is sharing
11607 symtabs with another TU and the symtabs have already been created
11608 then restore those symtabs in the line header.
11609 We don't need the pc/line-number mapping for type units. */
11612 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11614 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11615 struct type_unit_group *tu_group;
11617 struct attribute *attr;
11619 struct signatured_type *sig_type;
11621 gdb_assert (per_cu->is_debug_types);
11622 sig_type = (struct signatured_type *) per_cu;
11624 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11626 /* If we're using .gdb_index (includes -readnow) then
11627 per_cu->type_unit_group may not have been set up yet. */
11628 if (sig_type->type_unit_group == NULL)
11629 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11630 tu_group = sig_type->type_unit_group;
11632 /* If we've already processed this stmt_list there's no real need to
11633 do it again, we could fake it and just recreate the part we need
11634 (file name,index -> symtab mapping). If data shows this optimization
11635 is useful we can do it then. */
11636 first_time = tu_group->compunit_symtab == NULL;
11638 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11643 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11644 lh = dwarf_decode_line_header (line_offset, cu);
11649 dwarf2_start_symtab (cu, "", NULL, 0);
11652 gdb_assert (tu_group->symtabs == NULL);
11653 gdb_assert (cu->builder == nullptr);
11654 struct compunit_symtab *cust = tu_group->compunit_symtab;
11655 cu->builder.reset (new struct buildsym_compunit
11656 (COMPUNIT_OBJFILE (cust), "",
11657 COMPUNIT_DIRNAME (cust),
11658 compunit_language (cust),
11664 cu->line_header = lh.release ();
11665 cu->line_header_die_owner = die;
11669 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11671 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11672 still initializing it, and our caller (a few levels up)
11673 process_full_type_unit still needs to know if this is the first
11676 tu_group->num_symtabs = cu->line_header->file_names.size ();
11677 tu_group->symtabs = XNEWVEC (struct symtab *,
11678 cu->line_header->file_names.size ());
11680 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11682 file_entry &fe = cu->line_header->file_names[i];
11684 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11686 if (cu->builder->get_current_subfile ()->symtab == NULL)
11688 /* NOTE: start_subfile will recognize when it's been
11689 passed a file it has already seen. So we can't
11690 assume there's a simple mapping from
11691 cu->line_header->file_names to subfiles, plus
11692 cu->line_header->file_names may contain dups. */
11693 cu->builder->get_current_subfile ()->symtab
11694 = allocate_symtab (cust,
11695 cu->builder->get_current_subfile ()->name);
11698 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11699 tu_group->symtabs[i] = fe.symtab;
11704 gdb_assert (cu->builder == nullptr);
11705 struct compunit_symtab *cust = tu_group->compunit_symtab;
11706 cu->builder.reset (new struct buildsym_compunit
11707 (COMPUNIT_OBJFILE (cust), "",
11708 COMPUNIT_DIRNAME (cust),
11709 compunit_language (cust),
11712 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11714 file_entry &fe = cu->line_header->file_names[i];
11716 fe.symtab = tu_group->symtabs[i];
11720 /* The main symtab is allocated last. Type units don't have DW_AT_name
11721 so they don't have a "real" (so to speak) symtab anyway.
11722 There is later code that will assign the main symtab to all symbols
11723 that don't have one. We need to handle the case of a symbol with a
11724 missing symtab (DW_AT_decl_file) anyway. */
11727 /* Process DW_TAG_type_unit.
11728 For TUs we want to skip the first top level sibling if it's not the
11729 actual type being defined by this TU. In this case the first top
11730 level sibling is there to provide context only. */
11733 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11735 struct die_info *child_die;
11737 prepare_one_comp_unit (cu, die, language_minimal);
11739 /* Initialize (or reinitialize) the machinery for building symtabs.
11740 We do this before processing child DIEs, so that the line header table
11741 is available for DW_AT_decl_file. */
11742 setup_type_unit_groups (die, cu);
11744 if (die->child != NULL)
11746 child_die = die->child;
11747 while (child_die && child_die->tag)
11749 process_die (child_die, cu);
11750 child_die = sibling_die (child_die);
11757 http://gcc.gnu.org/wiki/DebugFission
11758 http://gcc.gnu.org/wiki/DebugFissionDWP
11760 To simplify handling of both DWO files ("object" files with the DWARF info)
11761 and DWP files (a file with the DWOs packaged up into one file), we treat
11762 DWP files as having a collection of virtual DWO files. */
11765 hash_dwo_file (const void *item)
11767 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11770 hash = htab_hash_string (dwo_file->dwo_name);
11771 if (dwo_file->comp_dir != NULL)
11772 hash += htab_hash_string (dwo_file->comp_dir);
11777 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11779 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11780 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11782 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11784 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11785 return lhs->comp_dir == rhs->comp_dir;
11786 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11789 /* Allocate a hash table for DWO files. */
11792 allocate_dwo_file_hash_table (struct objfile *objfile)
11794 return htab_create_alloc_ex (41,
11798 &objfile->objfile_obstack,
11799 hashtab_obstack_allocate,
11800 dummy_obstack_deallocate);
11803 /* Lookup DWO file DWO_NAME. */
11806 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11807 const char *dwo_name,
11808 const char *comp_dir)
11810 struct dwo_file find_entry;
11813 if (dwarf2_per_objfile->dwo_files == NULL)
11814 dwarf2_per_objfile->dwo_files
11815 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11817 memset (&find_entry, 0, sizeof (find_entry));
11818 find_entry.dwo_name = dwo_name;
11819 find_entry.comp_dir = comp_dir;
11820 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11826 hash_dwo_unit (const void *item)
11828 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11830 /* This drops the top 32 bits of the id, but is ok for a hash. */
11831 return dwo_unit->signature;
11835 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11837 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11838 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11840 /* The signature is assumed to be unique within the DWO file.
11841 So while object file CU dwo_id's always have the value zero,
11842 that's OK, assuming each object file DWO file has only one CU,
11843 and that's the rule for now. */
11844 return lhs->signature == rhs->signature;
11847 /* Allocate a hash table for DWO CUs,TUs.
11848 There is one of these tables for each of CUs,TUs for each DWO file. */
11851 allocate_dwo_unit_table (struct objfile *objfile)
11853 /* Start out with a pretty small number.
11854 Generally DWO files contain only one CU and maybe some TUs. */
11855 return htab_create_alloc_ex (3,
11859 &objfile->objfile_obstack,
11860 hashtab_obstack_allocate,
11861 dummy_obstack_deallocate);
11864 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11866 struct create_dwo_cu_data
11868 struct dwo_file *dwo_file;
11869 struct dwo_unit dwo_unit;
11872 /* die_reader_func for create_dwo_cu. */
11875 create_dwo_cu_reader (const struct die_reader_specs *reader,
11876 const gdb_byte *info_ptr,
11877 struct die_info *comp_unit_die,
11881 struct dwarf2_cu *cu = reader->cu;
11882 sect_offset sect_off = cu->per_cu->sect_off;
11883 struct dwarf2_section_info *section = cu->per_cu->section;
11884 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11885 struct dwo_file *dwo_file = data->dwo_file;
11886 struct dwo_unit *dwo_unit = &data->dwo_unit;
11887 struct attribute *attr;
11889 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11892 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11893 " its dwo_id [in module %s]"),
11894 sect_offset_str (sect_off), dwo_file->dwo_name);
11898 dwo_unit->dwo_file = dwo_file;
11899 dwo_unit->signature = DW_UNSND (attr);
11900 dwo_unit->section = section;
11901 dwo_unit->sect_off = sect_off;
11902 dwo_unit->length = cu->per_cu->length;
11904 if (dwarf_read_debug)
11905 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11906 sect_offset_str (sect_off),
11907 hex_string (dwo_unit->signature));
11910 /* Create the dwo_units for the CUs in a DWO_FILE.
11911 Note: This function processes DWO files only, not DWP files. */
11914 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11915 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11918 struct objfile *objfile = dwarf2_per_objfile->objfile;
11919 const gdb_byte *info_ptr, *end_ptr;
11921 dwarf2_read_section (objfile, §ion);
11922 info_ptr = section.buffer;
11924 if (info_ptr == NULL)
11927 if (dwarf_read_debug)
11929 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11930 get_section_name (§ion),
11931 get_section_file_name (§ion));
11934 end_ptr = info_ptr + section.size;
11935 while (info_ptr < end_ptr)
11937 struct dwarf2_per_cu_data per_cu;
11938 struct create_dwo_cu_data create_dwo_cu_data;
11939 struct dwo_unit *dwo_unit;
11941 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11943 memset (&create_dwo_cu_data.dwo_unit, 0,
11944 sizeof (create_dwo_cu_data.dwo_unit));
11945 memset (&per_cu, 0, sizeof (per_cu));
11946 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11947 per_cu.is_debug_types = 0;
11948 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11949 per_cu.section = §ion;
11950 create_dwo_cu_data.dwo_file = &dwo_file;
11952 init_cutu_and_read_dies_no_follow (
11953 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11954 info_ptr += per_cu.length;
11956 // If the unit could not be parsed, skip it.
11957 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11960 if (cus_htab == NULL)
11961 cus_htab = allocate_dwo_unit_table (objfile);
11963 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11964 *dwo_unit = create_dwo_cu_data.dwo_unit;
11965 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11966 gdb_assert (slot != NULL);
11969 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11970 sect_offset dup_sect_off = dup_cu->sect_off;
11972 complaint (_("debug cu entry at offset %s is duplicate to"
11973 " the entry at offset %s, signature %s"),
11974 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11975 hex_string (dwo_unit->signature));
11977 *slot = (void *)dwo_unit;
11981 /* DWP file .debug_{cu,tu}_index section format:
11982 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11986 Both index sections have the same format, and serve to map a 64-bit
11987 signature to a set of section numbers. Each section begins with a header,
11988 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11989 indexes, and a pool of 32-bit section numbers. The index sections will be
11990 aligned at 8-byte boundaries in the file.
11992 The index section header consists of:
11994 V, 32 bit version number
11996 N, 32 bit number of compilation units or type units in the index
11997 M, 32 bit number of slots in the hash table
11999 Numbers are recorded using the byte order of the application binary.
12001 The hash table begins at offset 16 in the section, and consists of an array
12002 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12003 order of the application binary). Unused slots in the hash table are 0.
12004 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12006 The parallel table begins immediately after the hash table
12007 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12008 array of 32-bit indexes (using the byte order of the application binary),
12009 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12010 table contains a 32-bit index into the pool of section numbers. For unused
12011 hash table slots, the corresponding entry in the parallel table will be 0.
12013 The pool of section numbers begins immediately following the hash table
12014 (at offset 16 + 12 * M from the beginning of the section). The pool of
12015 section numbers consists of an array of 32-bit words (using the byte order
12016 of the application binary). Each item in the array is indexed starting
12017 from 0. The hash table entry provides the index of the first section
12018 number in the set. Additional section numbers in the set follow, and the
12019 set is terminated by a 0 entry (section number 0 is not used in ELF).
12021 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12022 section must be the first entry in the set, and the .debug_abbrev.dwo must
12023 be the second entry. Other members of the set may follow in any order.
12029 DWP Version 2 combines all the .debug_info, etc. sections into one,
12030 and the entries in the index tables are now offsets into these sections.
12031 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12034 Index Section Contents:
12036 Hash Table of Signatures dwp_hash_table.hash_table
12037 Parallel Table of Indices dwp_hash_table.unit_table
12038 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12039 Table of Section Sizes dwp_hash_table.v2.sizes
12041 The index section header consists of:
12043 V, 32 bit version number
12044 L, 32 bit number of columns in the table of section offsets
12045 N, 32 bit number of compilation units or type units in the index
12046 M, 32 bit number of slots in the hash table
12048 Numbers are recorded using the byte order of the application binary.
12050 The hash table has the same format as version 1.
12051 The parallel table of indices has the same format as version 1,
12052 except that the entries are origin-1 indices into the table of sections
12053 offsets and the table of section sizes.
12055 The table of offsets begins immediately following the parallel table
12056 (at offset 16 + 12 * M from the beginning of the section). The table is
12057 a two-dimensional array of 32-bit words (using the byte order of the
12058 application binary), with L columns and N+1 rows, in row-major order.
12059 Each row in the array is indexed starting from 0. The first row provides
12060 a key to the remaining rows: each column in this row provides an identifier
12061 for a debug section, and the offsets in the same column of subsequent rows
12062 refer to that section. The section identifiers are:
12064 DW_SECT_INFO 1 .debug_info.dwo
12065 DW_SECT_TYPES 2 .debug_types.dwo
12066 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12067 DW_SECT_LINE 4 .debug_line.dwo
12068 DW_SECT_LOC 5 .debug_loc.dwo
12069 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12070 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12071 DW_SECT_MACRO 8 .debug_macro.dwo
12073 The offsets provided by the CU and TU index sections are the base offsets
12074 for the contributions made by each CU or TU to the corresponding section
12075 in the package file. Each CU and TU header contains an abbrev_offset
12076 field, used to find the abbreviations table for that CU or TU within the
12077 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12078 be interpreted as relative to the base offset given in the index section.
12079 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12080 should be interpreted as relative to the base offset for .debug_line.dwo,
12081 and offsets into other debug sections obtained from DWARF attributes should
12082 also be interpreted as relative to the corresponding base offset.
12084 The table of sizes begins immediately following the table of offsets.
12085 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12086 with L columns and N rows, in row-major order. Each row in the array is
12087 indexed starting from 1 (row 0 is shared by the two tables).
12091 Hash table lookup is handled the same in version 1 and 2:
12093 We assume that N and M will not exceed 2^32 - 1.
12094 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12096 Given a 64-bit compilation unit signature or a type signature S, an entry
12097 in the hash table is located as follows:
12099 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12100 the low-order k bits all set to 1.
12102 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12104 3) If the hash table entry at index H matches the signature, use that
12105 entry. If the hash table entry at index H is unused (all zeroes),
12106 terminate the search: the signature is not present in the table.
12108 4) Let H = (H + H') modulo M. Repeat at Step 3.
12110 Because M > N and H' and M are relatively prime, the search is guaranteed
12111 to stop at an unused slot or find the match. */
12113 /* Create a hash table to map DWO IDs to their CU/TU entry in
12114 .debug_{info,types}.dwo in DWP_FILE.
12115 Returns NULL if there isn't one.
12116 Note: This function processes DWP files only, not DWO files. */
12118 static struct dwp_hash_table *
12119 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12120 struct dwp_file *dwp_file, int is_debug_types)
12122 struct objfile *objfile = dwarf2_per_objfile->objfile;
12123 bfd *dbfd = dwp_file->dbfd.get ();
12124 const gdb_byte *index_ptr, *index_end;
12125 struct dwarf2_section_info *index;
12126 uint32_t version, nr_columns, nr_units, nr_slots;
12127 struct dwp_hash_table *htab;
12129 if (is_debug_types)
12130 index = &dwp_file->sections.tu_index;
12132 index = &dwp_file->sections.cu_index;
12134 if (dwarf2_section_empty_p (index))
12136 dwarf2_read_section (objfile, index);
12138 index_ptr = index->buffer;
12139 index_end = index_ptr + index->size;
12141 version = read_4_bytes (dbfd, index_ptr);
12144 nr_columns = read_4_bytes (dbfd, index_ptr);
12148 nr_units = read_4_bytes (dbfd, index_ptr);
12150 nr_slots = read_4_bytes (dbfd, index_ptr);
12153 if (version != 1 && version != 2)
12155 error (_("Dwarf Error: unsupported DWP file version (%s)"
12156 " [in module %s]"),
12157 pulongest (version), dwp_file->name);
12159 if (nr_slots != (nr_slots & -nr_slots))
12161 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12162 " is not power of 2 [in module %s]"),
12163 pulongest (nr_slots), dwp_file->name);
12166 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12167 htab->version = version;
12168 htab->nr_columns = nr_columns;
12169 htab->nr_units = nr_units;
12170 htab->nr_slots = nr_slots;
12171 htab->hash_table = index_ptr;
12172 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12174 /* Exit early if the table is empty. */
12175 if (nr_slots == 0 || nr_units == 0
12176 || (version == 2 && nr_columns == 0))
12178 /* All must be zero. */
12179 if (nr_slots != 0 || nr_units != 0
12180 || (version == 2 && nr_columns != 0))
12182 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12183 " all zero [in modules %s]"),
12191 htab->section_pool.v1.indices =
12192 htab->unit_table + sizeof (uint32_t) * nr_slots;
12193 /* It's harder to decide whether the section is too small in v1.
12194 V1 is deprecated anyway so we punt. */
12198 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12199 int *ids = htab->section_pool.v2.section_ids;
12200 /* Reverse map for error checking. */
12201 int ids_seen[DW_SECT_MAX + 1];
12204 if (nr_columns < 2)
12206 error (_("Dwarf Error: bad DWP hash table, too few columns"
12207 " in section table [in module %s]"),
12210 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12212 error (_("Dwarf Error: bad DWP hash table, too many columns"
12213 " in section table [in module %s]"),
12216 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12217 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12218 for (i = 0; i < nr_columns; ++i)
12220 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12222 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12224 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12225 " in section table [in module %s]"),
12226 id, dwp_file->name);
12228 if (ids_seen[id] != -1)
12230 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12231 " id %d in section table [in module %s]"),
12232 id, dwp_file->name);
12237 /* Must have exactly one info or types section. */
12238 if (((ids_seen[DW_SECT_INFO] != -1)
12239 + (ids_seen[DW_SECT_TYPES] != -1))
12242 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12243 " DWO info/types section [in module %s]"),
12246 /* Must have an abbrev section. */
12247 if (ids_seen[DW_SECT_ABBREV] == -1)
12249 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12250 " section [in module %s]"),
12253 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12254 htab->section_pool.v2.sizes =
12255 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12256 * nr_units * nr_columns);
12257 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12258 * nr_units * nr_columns))
12261 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12262 " [in module %s]"),
12270 /* Update SECTIONS with the data from SECTP.
12272 This function is like the other "locate" section routines that are
12273 passed to bfd_map_over_sections, but in this context the sections to
12274 read comes from the DWP V1 hash table, not the full ELF section table.
12276 The result is non-zero for success, or zero if an error was found. */
12279 locate_v1_virtual_dwo_sections (asection *sectp,
12280 struct virtual_v1_dwo_sections *sections)
12282 const struct dwop_section_names *names = &dwop_section_names;
12284 if (section_is_p (sectp->name, &names->abbrev_dwo))
12286 /* There can be only one. */
12287 if (sections->abbrev.s.section != NULL)
12289 sections->abbrev.s.section = sectp;
12290 sections->abbrev.size = bfd_get_section_size (sectp);
12292 else if (section_is_p (sectp->name, &names->info_dwo)
12293 || section_is_p (sectp->name, &names->types_dwo))
12295 /* There can be only one. */
12296 if (sections->info_or_types.s.section != NULL)
12298 sections->info_or_types.s.section = sectp;
12299 sections->info_or_types.size = bfd_get_section_size (sectp);
12301 else if (section_is_p (sectp->name, &names->line_dwo))
12303 /* There can be only one. */
12304 if (sections->line.s.section != NULL)
12306 sections->line.s.section = sectp;
12307 sections->line.size = bfd_get_section_size (sectp);
12309 else if (section_is_p (sectp->name, &names->loc_dwo))
12311 /* There can be only one. */
12312 if (sections->loc.s.section != NULL)
12314 sections->loc.s.section = sectp;
12315 sections->loc.size = bfd_get_section_size (sectp);
12317 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12319 /* There can be only one. */
12320 if (sections->macinfo.s.section != NULL)
12322 sections->macinfo.s.section = sectp;
12323 sections->macinfo.size = bfd_get_section_size (sectp);
12325 else if (section_is_p (sectp->name, &names->macro_dwo))
12327 /* There can be only one. */
12328 if (sections->macro.s.section != NULL)
12330 sections->macro.s.section = sectp;
12331 sections->macro.size = bfd_get_section_size (sectp);
12333 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12335 /* There can be only one. */
12336 if (sections->str_offsets.s.section != NULL)
12338 sections->str_offsets.s.section = sectp;
12339 sections->str_offsets.size = bfd_get_section_size (sectp);
12343 /* No other kind of section is valid. */
12350 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12351 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12352 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12353 This is for DWP version 1 files. */
12355 static struct dwo_unit *
12356 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12357 struct dwp_file *dwp_file,
12358 uint32_t unit_index,
12359 const char *comp_dir,
12360 ULONGEST signature, int is_debug_types)
12362 struct objfile *objfile = dwarf2_per_objfile->objfile;
12363 const struct dwp_hash_table *dwp_htab =
12364 is_debug_types ? dwp_file->tus : dwp_file->cus;
12365 bfd *dbfd = dwp_file->dbfd.get ();
12366 const char *kind = is_debug_types ? "TU" : "CU";
12367 struct dwo_file *dwo_file;
12368 struct dwo_unit *dwo_unit;
12369 struct virtual_v1_dwo_sections sections;
12370 void **dwo_file_slot;
12373 gdb_assert (dwp_file->version == 1);
12375 if (dwarf_read_debug)
12377 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12379 pulongest (unit_index), hex_string (signature),
12383 /* Fetch the sections of this DWO unit.
12384 Put a limit on the number of sections we look for so that bad data
12385 doesn't cause us to loop forever. */
12387 #define MAX_NR_V1_DWO_SECTIONS \
12388 (1 /* .debug_info or .debug_types */ \
12389 + 1 /* .debug_abbrev */ \
12390 + 1 /* .debug_line */ \
12391 + 1 /* .debug_loc */ \
12392 + 1 /* .debug_str_offsets */ \
12393 + 1 /* .debug_macro or .debug_macinfo */ \
12394 + 1 /* trailing zero */)
12396 memset (§ions, 0, sizeof (sections));
12398 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12401 uint32_t section_nr =
12402 read_4_bytes (dbfd,
12403 dwp_htab->section_pool.v1.indices
12404 + (unit_index + i) * sizeof (uint32_t));
12406 if (section_nr == 0)
12408 if (section_nr >= dwp_file->num_sections)
12410 error (_("Dwarf Error: bad DWP hash table, section number too large"
12411 " [in module %s]"),
12415 sectp = dwp_file->elf_sections[section_nr];
12416 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12418 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12419 " [in module %s]"),
12425 || dwarf2_section_empty_p (§ions.info_or_types)
12426 || dwarf2_section_empty_p (§ions.abbrev))
12428 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12429 " [in module %s]"),
12432 if (i == MAX_NR_V1_DWO_SECTIONS)
12434 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12435 " [in module %s]"),
12439 /* It's easier for the rest of the code if we fake a struct dwo_file and
12440 have dwo_unit "live" in that. At least for now.
12442 The DWP file can be made up of a random collection of CUs and TUs.
12443 However, for each CU + set of TUs that came from the same original DWO
12444 file, we can combine them back into a virtual DWO file to save space
12445 (fewer struct dwo_file objects to allocate). Remember that for really
12446 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12448 std::string virtual_dwo_name =
12449 string_printf ("virtual-dwo/%d-%d-%d-%d",
12450 get_section_id (§ions.abbrev),
12451 get_section_id (§ions.line),
12452 get_section_id (§ions.loc),
12453 get_section_id (§ions.str_offsets));
12454 /* Can we use an existing virtual DWO file? */
12455 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12456 virtual_dwo_name.c_str (),
12458 /* Create one if necessary. */
12459 if (*dwo_file_slot == NULL)
12461 if (dwarf_read_debug)
12463 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12464 virtual_dwo_name.c_str ());
12466 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12468 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12469 virtual_dwo_name.c_str (),
12470 virtual_dwo_name.size ());
12471 dwo_file->comp_dir = comp_dir;
12472 dwo_file->sections.abbrev = sections.abbrev;
12473 dwo_file->sections.line = sections.line;
12474 dwo_file->sections.loc = sections.loc;
12475 dwo_file->sections.macinfo = sections.macinfo;
12476 dwo_file->sections.macro = sections.macro;
12477 dwo_file->sections.str_offsets = sections.str_offsets;
12478 /* The "str" section is global to the entire DWP file. */
12479 dwo_file->sections.str = dwp_file->sections.str;
12480 /* The info or types section is assigned below to dwo_unit,
12481 there's no need to record it in dwo_file.
12482 Also, we can't simply record type sections in dwo_file because
12483 we record a pointer into the vector in dwo_unit. As we collect more
12484 types we'll grow the vector and eventually have to reallocate space
12485 for it, invalidating all copies of pointers into the previous
12487 *dwo_file_slot = dwo_file;
12491 if (dwarf_read_debug)
12493 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12494 virtual_dwo_name.c_str ());
12496 dwo_file = (struct dwo_file *) *dwo_file_slot;
12499 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12500 dwo_unit->dwo_file = dwo_file;
12501 dwo_unit->signature = signature;
12502 dwo_unit->section =
12503 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12504 *dwo_unit->section = sections.info_or_types;
12505 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12510 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12511 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12512 piece within that section used by a TU/CU, return a virtual section
12513 of just that piece. */
12515 static struct dwarf2_section_info
12516 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12517 struct dwarf2_section_info *section,
12518 bfd_size_type offset, bfd_size_type size)
12520 struct dwarf2_section_info result;
12523 gdb_assert (section != NULL);
12524 gdb_assert (!section->is_virtual);
12526 memset (&result, 0, sizeof (result));
12527 result.s.containing_section = section;
12528 result.is_virtual = 1;
12533 sectp = get_section_bfd_section (section);
12535 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12536 bounds of the real section. This is a pretty-rare event, so just
12537 flag an error (easier) instead of a warning and trying to cope. */
12539 || offset + size > bfd_get_section_size (sectp))
12541 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12542 " in section %s [in module %s]"),
12543 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12544 objfile_name (dwarf2_per_objfile->objfile));
12547 result.virtual_offset = offset;
12548 result.size = size;
12552 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12553 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12554 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12555 This is for DWP version 2 files. */
12557 static struct dwo_unit *
12558 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12559 struct dwp_file *dwp_file,
12560 uint32_t unit_index,
12561 const char *comp_dir,
12562 ULONGEST signature, int is_debug_types)
12564 struct objfile *objfile = dwarf2_per_objfile->objfile;
12565 const struct dwp_hash_table *dwp_htab =
12566 is_debug_types ? dwp_file->tus : dwp_file->cus;
12567 bfd *dbfd = dwp_file->dbfd.get ();
12568 const char *kind = is_debug_types ? "TU" : "CU";
12569 struct dwo_file *dwo_file;
12570 struct dwo_unit *dwo_unit;
12571 struct virtual_v2_dwo_sections sections;
12572 void **dwo_file_slot;
12575 gdb_assert (dwp_file->version == 2);
12577 if (dwarf_read_debug)
12579 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12581 pulongest (unit_index), hex_string (signature),
12585 /* Fetch the section offsets of this DWO unit. */
12587 memset (§ions, 0, sizeof (sections));
12589 for (i = 0; i < dwp_htab->nr_columns; ++i)
12591 uint32_t offset = read_4_bytes (dbfd,
12592 dwp_htab->section_pool.v2.offsets
12593 + (((unit_index - 1) * dwp_htab->nr_columns
12595 * sizeof (uint32_t)));
12596 uint32_t size = read_4_bytes (dbfd,
12597 dwp_htab->section_pool.v2.sizes
12598 + (((unit_index - 1) * dwp_htab->nr_columns
12600 * sizeof (uint32_t)));
12602 switch (dwp_htab->section_pool.v2.section_ids[i])
12605 case DW_SECT_TYPES:
12606 sections.info_or_types_offset = offset;
12607 sections.info_or_types_size = size;
12609 case DW_SECT_ABBREV:
12610 sections.abbrev_offset = offset;
12611 sections.abbrev_size = size;
12614 sections.line_offset = offset;
12615 sections.line_size = size;
12618 sections.loc_offset = offset;
12619 sections.loc_size = size;
12621 case DW_SECT_STR_OFFSETS:
12622 sections.str_offsets_offset = offset;
12623 sections.str_offsets_size = size;
12625 case DW_SECT_MACINFO:
12626 sections.macinfo_offset = offset;
12627 sections.macinfo_size = size;
12629 case DW_SECT_MACRO:
12630 sections.macro_offset = offset;
12631 sections.macro_size = size;
12636 /* It's easier for the rest of the code if we fake a struct dwo_file and
12637 have dwo_unit "live" in that. At least for now.
12639 The DWP file can be made up of a random collection of CUs and TUs.
12640 However, for each CU + set of TUs that came from the same original DWO
12641 file, we can combine them back into a virtual DWO file to save space
12642 (fewer struct dwo_file objects to allocate). Remember that for really
12643 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12645 std::string virtual_dwo_name =
12646 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12647 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12648 (long) (sections.line_size ? sections.line_offset : 0),
12649 (long) (sections.loc_size ? sections.loc_offset : 0),
12650 (long) (sections.str_offsets_size
12651 ? sections.str_offsets_offset : 0));
12652 /* Can we use an existing virtual DWO file? */
12653 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12654 virtual_dwo_name.c_str (),
12656 /* Create one if necessary. */
12657 if (*dwo_file_slot == NULL)
12659 if (dwarf_read_debug)
12661 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12662 virtual_dwo_name.c_str ());
12664 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12666 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12667 virtual_dwo_name.c_str (),
12668 virtual_dwo_name.size ());
12669 dwo_file->comp_dir = comp_dir;
12670 dwo_file->sections.abbrev =
12671 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12672 sections.abbrev_offset, sections.abbrev_size);
12673 dwo_file->sections.line =
12674 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12675 sections.line_offset, sections.line_size);
12676 dwo_file->sections.loc =
12677 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12678 sections.loc_offset, sections.loc_size);
12679 dwo_file->sections.macinfo =
12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12681 sections.macinfo_offset, sections.macinfo_size);
12682 dwo_file->sections.macro =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12684 sections.macro_offset, sections.macro_size);
12685 dwo_file->sections.str_offsets =
12686 create_dwp_v2_section (dwarf2_per_objfile,
12687 &dwp_file->sections.str_offsets,
12688 sections.str_offsets_offset,
12689 sections.str_offsets_size);
12690 /* The "str" section is global to the entire DWP file. */
12691 dwo_file->sections.str = dwp_file->sections.str;
12692 /* The info or types section is assigned below to dwo_unit,
12693 there's no need to record it in dwo_file.
12694 Also, we can't simply record type sections in dwo_file because
12695 we record a pointer into the vector in dwo_unit. As we collect more
12696 types we'll grow the vector and eventually have to reallocate space
12697 for it, invalidating all copies of pointers into the previous
12699 *dwo_file_slot = dwo_file;
12703 if (dwarf_read_debug)
12705 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12706 virtual_dwo_name.c_str ());
12708 dwo_file = (struct dwo_file *) *dwo_file_slot;
12711 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12712 dwo_unit->dwo_file = dwo_file;
12713 dwo_unit->signature = signature;
12714 dwo_unit->section =
12715 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12716 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12718 ? &dwp_file->sections.types
12719 : &dwp_file->sections.info,
12720 sections.info_or_types_offset,
12721 sections.info_or_types_size);
12722 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12727 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12728 Returns NULL if the signature isn't found. */
12730 static struct dwo_unit *
12731 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12732 struct dwp_file *dwp_file, const char *comp_dir,
12733 ULONGEST signature, int is_debug_types)
12735 const struct dwp_hash_table *dwp_htab =
12736 is_debug_types ? dwp_file->tus : dwp_file->cus;
12737 bfd *dbfd = dwp_file->dbfd.get ();
12738 uint32_t mask = dwp_htab->nr_slots - 1;
12739 uint32_t hash = signature & mask;
12740 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12743 struct dwo_unit find_dwo_cu;
12745 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12746 find_dwo_cu.signature = signature;
12747 slot = htab_find_slot (is_debug_types
12748 ? dwp_file->loaded_tus
12749 : dwp_file->loaded_cus,
12750 &find_dwo_cu, INSERT);
12753 return (struct dwo_unit *) *slot;
12755 /* Use a for loop so that we don't loop forever on bad debug info. */
12756 for (i = 0; i < dwp_htab->nr_slots; ++i)
12758 ULONGEST signature_in_table;
12760 signature_in_table =
12761 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12762 if (signature_in_table == signature)
12764 uint32_t unit_index =
12765 read_4_bytes (dbfd,
12766 dwp_htab->unit_table + hash * sizeof (uint32_t));
12768 if (dwp_file->version == 1)
12770 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12771 dwp_file, unit_index,
12772 comp_dir, signature,
12777 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
12779 comp_dir, signature,
12782 return (struct dwo_unit *) *slot;
12784 if (signature_in_table == 0)
12786 hash = (hash + hash2) & mask;
12789 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12790 " [in module %s]"),
12794 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12795 Open the file specified by FILE_NAME and hand it off to BFD for
12796 preliminary analysis. Return a newly initialized bfd *, which
12797 includes a canonicalized copy of FILE_NAME.
12798 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12799 SEARCH_CWD is true if the current directory is to be searched.
12800 It will be searched before debug-file-directory.
12801 If successful, the file is added to the bfd include table of the
12802 objfile's bfd (see gdb_bfd_record_inclusion).
12803 If unable to find/open the file, return NULL.
12804 NOTE: This function is derived from symfile_bfd_open. */
12806 static gdb_bfd_ref_ptr
12807 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12808 const char *file_name, int is_dwp, int search_cwd)
12811 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12812 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12813 to debug_file_directory. */
12814 const char *search_path;
12815 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12817 gdb::unique_xmalloc_ptr<char> search_path_holder;
12820 if (*debug_file_directory != '\0')
12822 search_path_holder.reset (concat (".", dirname_separator_string,
12823 debug_file_directory,
12825 search_path = search_path_holder.get ();
12831 search_path = debug_file_directory;
12833 openp_flags flags = OPF_RETURN_REALPATH;
12835 flags |= OPF_SEARCH_IN_PATH;
12837 gdb::unique_xmalloc_ptr<char> absolute_name;
12838 desc = openp (search_path, flags, file_name,
12839 O_RDONLY | O_BINARY, &absolute_name);
12843 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12845 if (sym_bfd == NULL)
12847 bfd_set_cacheable (sym_bfd.get (), 1);
12849 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12852 /* Success. Record the bfd as having been included by the objfile's bfd.
12853 This is important because things like demangled_names_hash lives in the
12854 objfile's per_bfd space and may have references to things like symbol
12855 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12856 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12861 /* Try to open DWO file FILE_NAME.
12862 COMP_DIR is the DW_AT_comp_dir attribute.
12863 The result is the bfd handle of the file.
12864 If there is a problem finding or opening the file, return NULL.
12865 Upon success, the canonicalized path of the file is stored in the bfd,
12866 same as symfile_bfd_open. */
12868 static gdb_bfd_ref_ptr
12869 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12870 const char *file_name, const char *comp_dir)
12872 if (IS_ABSOLUTE_PATH (file_name))
12873 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12874 0 /*is_dwp*/, 0 /*search_cwd*/);
12876 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12878 if (comp_dir != NULL)
12880 char *path_to_try = concat (comp_dir, SLASH_STRING,
12881 file_name, (char *) NULL);
12883 /* NOTE: If comp_dir is a relative path, this will also try the
12884 search path, which seems useful. */
12885 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12888 1 /*search_cwd*/));
12889 xfree (path_to_try);
12894 /* That didn't work, try debug-file-directory, which, despite its name,
12895 is a list of paths. */
12897 if (*debug_file_directory == '\0')
12900 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12901 0 /*is_dwp*/, 1 /*search_cwd*/);
12904 /* This function is mapped across the sections and remembers the offset and
12905 size of each of the DWO debugging sections we are interested in. */
12908 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12910 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12911 const struct dwop_section_names *names = &dwop_section_names;
12913 if (section_is_p (sectp->name, &names->abbrev_dwo))
12915 dwo_sections->abbrev.s.section = sectp;
12916 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12918 else if (section_is_p (sectp->name, &names->info_dwo))
12920 dwo_sections->info.s.section = sectp;
12921 dwo_sections->info.size = bfd_get_section_size (sectp);
12923 else if (section_is_p (sectp->name, &names->line_dwo))
12925 dwo_sections->line.s.section = sectp;
12926 dwo_sections->line.size = bfd_get_section_size (sectp);
12928 else if (section_is_p (sectp->name, &names->loc_dwo))
12930 dwo_sections->loc.s.section = sectp;
12931 dwo_sections->loc.size = bfd_get_section_size (sectp);
12933 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12935 dwo_sections->macinfo.s.section = sectp;
12936 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12938 else if (section_is_p (sectp->name, &names->macro_dwo))
12940 dwo_sections->macro.s.section = sectp;
12941 dwo_sections->macro.size = bfd_get_section_size (sectp);
12943 else if (section_is_p (sectp->name, &names->str_dwo))
12945 dwo_sections->str.s.section = sectp;
12946 dwo_sections->str.size = bfd_get_section_size (sectp);
12948 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12950 dwo_sections->str_offsets.s.section = sectp;
12951 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12953 else if (section_is_p (sectp->name, &names->types_dwo))
12955 struct dwarf2_section_info type_section;
12957 memset (&type_section, 0, sizeof (type_section));
12958 type_section.s.section = sectp;
12959 type_section.size = bfd_get_section_size (sectp);
12960 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12965 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12966 by PER_CU. This is for the non-DWP case.
12967 The result is NULL if DWO_NAME can't be found. */
12969 static struct dwo_file *
12970 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12971 const char *dwo_name, const char *comp_dir)
12973 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12974 struct objfile *objfile = dwarf2_per_objfile->objfile;
12976 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12979 if (dwarf_read_debug)
12980 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12984 /* We use a unique pointer here, despite the obstack allocation,
12985 because a dwo_file needs some cleanup if it is abandoned. */
12986 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12988 dwo_file->dwo_name = dwo_name;
12989 dwo_file->comp_dir = comp_dir;
12990 dwo_file->dbfd = dbfd.release ();
12992 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12993 &dwo_file->sections);
12995 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12998 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12999 dwo_file->sections.types, dwo_file->tus);
13001 if (dwarf_read_debug)
13002 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13004 return dwo_file.release ();
13007 /* This function is mapped across the sections and remembers the offset and
13008 size of each of the DWP debugging sections common to version 1 and 2 that
13009 we are interested in. */
13012 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13013 void *dwp_file_ptr)
13015 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13016 const struct dwop_section_names *names = &dwop_section_names;
13017 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13019 /* Record the ELF section number for later lookup: this is what the
13020 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13021 gdb_assert (elf_section_nr < dwp_file->num_sections);
13022 dwp_file->elf_sections[elf_section_nr] = sectp;
13024 /* Look for specific sections that we need. */
13025 if (section_is_p (sectp->name, &names->str_dwo))
13027 dwp_file->sections.str.s.section = sectp;
13028 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13030 else if (section_is_p (sectp->name, &names->cu_index))
13032 dwp_file->sections.cu_index.s.section = sectp;
13033 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13035 else if (section_is_p (sectp->name, &names->tu_index))
13037 dwp_file->sections.tu_index.s.section = sectp;
13038 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13042 /* This function is mapped across the sections and remembers the offset and
13043 size of each of the DWP version 2 debugging sections that we are interested
13044 in. This is split into a separate function because we don't know if we
13045 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13048 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13050 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13051 const struct dwop_section_names *names = &dwop_section_names;
13052 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13054 /* Record the ELF section number for later lookup: this is what the
13055 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13056 gdb_assert (elf_section_nr < dwp_file->num_sections);
13057 dwp_file->elf_sections[elf_section_nr] = sectp;
13059 /* Look for specific sections that we need. */
13060 if (section_is_p (sectp->name, &names->abbrev_dwo))
13062 dwp_file->sections.abbrev.s.section = sectp;
13063 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13065 else if (section_is_p (sectp->name, &names->info_dwo))
13067 dwp_file->sections.info.s.section = sectp;
13068 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13070 else if (section_is_p (sectp->name, &names->line_dwo))
13072 dwp_file->sections.line.s.section = sectp;
13073 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13075 else if (section_is_p (sectp->name, &names->loc_dwo))
13077 dwp_file->sections.loc.s.section = sectp;
13078 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13080 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13082 dwp_file->sections.macinfo.s.section = sectp;
13083 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13085 else if (section_is_p (sectp->name, &names->macro_dwo))
13087 dwp_file->sections.macro.s.section = sectp;
13088 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13090 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13092 dwp_file->sections.str_offsets.s.section = sectp;
13093 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13095 else if (section_is_p (sectp->name, &names->types_dwo))
13097 dwp_file->sections.types.s.section = sectp;
13098 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13102 /* Hash function for dwp_file loaded CUs/TUs. */
13105 hash_dwp_loaded_cutus (const void *item)
13107 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13109 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13110 return dwo_unit->signature;
13113 /* Equality function for dwp_file loaded CUs/TUs. */
13116 eq_dwp_loaded_cutus (const void *a, const void *b)
13118 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13119 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13121 return dua->signature == dub->signature;
13124 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13127 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13129 return htab_create_alloc_ex (3,
13130 hash_dwp_loaded_cutus,
13131 eq_dwp_loaded_cutus,
13133 &objfile->objfile_obstack,
13134 hashtab_obstack_allocate,
13135 dummy_obstack_deallocate);
13138 /* Try to open DWP file FILE_NAME.
13139 The result is the bfd handle of the file.
13140 If there is a problem finding or opening the file, return NULL.
13141 Upon success, the canonicalized path of the file is stored in the bfd,
13142 same as symfile_bfd_open. */
13144 static gdb_bfd_ref_ptr
13145 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13146 const char *file_name)
13148 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13150 1 /*search_cwd*/));
13154 /* Work around upstream bug 15652.
13155 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13156 [Whether that's a "bug" is debatable, but it is getting in our way.]
13157 We have no real idea where the dwp file is, because gdb's realpath-ing
13158 of the executable's path may have discarded the needed info.
13159 [IWBN if the dwp file name was recorded in the executable, akin to
13160 .gnu_debuglink, but that doesn't exist yet.]
13161 Strip the directory from FILE_NAME and search again. */
13162 if (*debug_file_directory != '\0')
13164 /* Don't implicitly search the current directory here.
13165 If the user wants to search "." to handle this case,
13166 it must be added to debug-file-directory. */
13167 return try_open_dwop_file (dwarf2_per_objfile,
13168 lbasename (file_name), 1 /*is_dwp*/,
13175 /* Initialize the use of the DWP file for the current objfile.
13176 By convention the name of the DWP file is ${objfile}.dwp.
13177 The result is NULL if it can't be found. */
13179 static std::unique_ptr<struct dwp_file>
13180 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13182 struct objfile *objfile = dwarf2_per_objfile->objfile;
13184 /* Try to find first .dwp for the binary file before any symbolic links
13187 /* If the objfile is a debug file, find the name of the real binary
13188 file and get the name of dwp file from there. */
13189 std::string dwp_name;
13190 if (objfile->separate_debug_objfile_backlink != NULL)
13192 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13193 const char *backlink_basename = lbasename (backlink->original_name);
13195 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13198 dwp_name = objfile->original_name;
13200 dwp_name += ".dwp";
13202 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13204 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13206 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13207 dwp_name = objfile_name (objfile);
13208 dwp_name += ".dwp";
13209 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13214 if (dwarf_read_debug)
13215 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13216 return std::unique_ptr<dwp_file> ();
13219 const char *name = bfd_get_filename (dbfd.get ());
13220 std::unique_ptr<struct dwp_file> dwp_file
13221 (new struct dwp_file (name, std::move (dbfd)));
13223 /* +1: section 0 is unused */
13224 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13225 dwp_file->elf_sections =
13226 OBSTACK_CALLOC (&objfile->objfile_obstack,
13227 dwp_file->num_sections, asection *);
13229 bfd_map_over_sections (dwp_file->dbfd.get (),
13230 dwarf2_locate_common_dwp_sections,
13233 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13236 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13239 /* The DWP file version is stored in the hash table. Oh well. */
13240 if (dwp_file->cus && dwp_file->tus
13241 && dwp_file->cus->version != dwp_file->tus->version)
13243 /* Technically speaking, we should try to limp along, but this is
13244 pretty bizarre. We use pulongest here because that's the established
13245 portability solution (e.g, we cannot use %u for uint32_t). */
13246 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13247 " TU version %s [in DWP file %s]"),
13248 pulongest (dwp_file->cus->version),
13249 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13253 dwp_file->version = dwp_file->cus->version;
13254 else if (dwp_file->tus)
13255 dwp_file->version = dwp_file->tus->version;
13257 dwp_file->version = 2;
13259 if (dwp_file->version == 2)
13260 bfd_map_over_sections (dwp_file->dbfd.get (),
13261 dwarf2_locate_v2_dwp_sections,
13264 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13265 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13267 if (dwarf_read_debug)
13269 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13270 fprintf_unfiltered (gdb_stdlog,
13271 " %s CUs, %s TUs\n",
13272 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13273 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13279 /* Wrapper around open_and_init_dwp_file, only open it once. */
13281 static struct dwp_file *
13282 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13284 if (! dwarf2_per_objfile->dwp_checked)
13286 dwarf2_per_objfile->dwp_file
13287 = open_and_init_dwp_file (dwarf2_per_objfile);
13288 dwarf2_per_objfile->dwp_checked = 1;
13290 return dwarf2_per_objfile->dwp_file.get ();
13293 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13294 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13295 or in the DWP file for the objfile, referenced by THIS_UNIT.
13296 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13297 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13299 This is called, for example, when wanting to read a variable with a
13300 complex location. Therefore we don't want to do file i/o for every call.
13301 Therefore we don't want to look for a DWO file on every call.
13302 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13303 then we check if we've already seen DWO_NAME, and only THEN do we check
13306 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13307 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13309 static struct dwo_unit *
13310 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13311 const char *dwo_name, const char *comp_dir,
13312 ULONGEST signature, int is_debug_types)
13314 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13315 struct objfile *objfile = dwarf2_per_objfile->objfile;
13316 const char *kind = is_debug_types ? "TU" : "CU";
13317 void **dwo_file_slot;
13318 struct dwo_file *dwo_file;
13319 struct dwp_file *dwp_file;
13321 /* First see if there's a DWP file.
13322 If we have a DWP file but didn't find the DWO inside it, don't
13323 look for the original DWO file. It makes gdb behave differently
13324 depending on whether one is debugging in the build tree. */
13326 dwp_file = get_dwp_file (dwarf2_per_objfile);
13327 if (dwp_file != NULL)
13329 const struct dwp_hash_table *dwp_htab =
13330 is_debug_types ? dwp_file->tus : dwp_file->cus;
13332 if (dwp_htab != NULL)
13334 struct dwo_unit *dwo_cutu =
13335 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13336 signature, is_debug_types);
13338 if (dwo_cutu != NULL)
13340 if (dwarf_read_debug)
13342 fprintf_unfiltered (gdb_stdlog,
13343 "Virtual DWO %s %s found: @%s\n",
13344 kind, hex_string (signature),
13345 host_address_to_string (dwo_cutu));
13353 /* No DWP file, look for the DWO file. */
13355 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13356 dwo_name, comp_dir);
13357 if (*dwo_file_slot == NULL)
13359 /* Read in the file and build a table of the CUs/TUs it contains. */
13360 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13362 /* NOTE: This will be NULL if unable to open the file. */
13363 dwo_file = (struct dwo_file *) *dwo_file_slot;
13365 if (dwo_file != NULL)
13367 struct dwo_unit *dwo_cutu = NULL;
13369 if (is_debug_types && dwo_file->tus)
13371 struct dwo_unit find_dwo_cutu;
13373 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13374 find_dwo_cutu.signature = signature;
13376 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13378 else if (!is_debug_types && dwo_file->cus)
13380 struct dwo_unit find_dwo_cutu;
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13388 if (dwo_cutu != NULL)
13390 if (dwarf_read_debug)
13392 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13393 kind, dwo_name, hex_string (signature),
13394 host_address_to_string (dwo_cutu));
13401 /* We didn't find it. This could mean a dwo_id mismatch, or
13402 someone deleted the DWO/DWP file, or the search path isn't set up
13403 correctly to find the file. */
13405 if (dwarf_read_debug)
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13408 kind, dwo_name, hex_string (signature));
13411 /* This is a warning and not a complaint because it can be caused by
13412 pilot error (e.g., user accidentally deleting the DWO). */
13414 /* Print the name of the DWP file if we looked there, helps the user
13415 better diagnose the problem. */
13416 std::string dwp_text;
13418 if (dwp_file != NULL)
13419 dwp_text = string_printf (" [in DWP file %s]",
13420 lbasename (dwp_file->name));
13422 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13423 " [in module %s]"),
13424 kind, dwo_name, hex_string (signature),
13426 this_unit->is_debug_types ? "TU" : "CU",
13427 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13432 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13433 See lookup_dwo_cutu_unit for details. */
13435 static struct dwo_unit *
13436 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13437 const char *dwo_name, const char *comp_dir,
13438 ULONGEST signature)
13440 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13443 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13444 See lookup_dwo_cutu_unit for details. */
13446 static struct dwo_unit *
13447 lookup_dwo_type_unit (struct signatured_type *this_tu,
13448 const char *dwo_name, const char *comp_dir)
13450 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13453 /* Traversal function for queue_and_load_all_dwo_tus. */
13456 queue_and_load_dwo_tu (void **slot, void *info)
13458 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13459 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13460 ULONGEST signature = dwo_unit->signature;
13461 struct signatured_type *sig_type =
13462 lookup_dwo_signatured_type (per_cu->cu, signature);
13464 if (sig_type != NULL)
13466 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13468 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13469 a real dependency of PER_CU on SIG_TYPE. That is detected later
13470 while processing PER_CU. */
13471 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13472 load_full_type_unit (sig_cu);
13473 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13479 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13480 The DWO may have the only definition of the type, though it may not be
13481 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13482 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13485 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13487 struct dwo_unit *dwo_unit;
13488 struct dwo_file *dwo_file;
13490 gdb_assert (!per_cu->is_debug_types);
13491 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13492 gdb_assert (per_cu->cu != NULL);
13494 dwo_unit = per_cu->cu->dwo_unit;
13495 gdb_assert (dwo_unit != NULL);
13497 dwo_file = dwo_unit->dwo_file;
13498 if (dwo_file->tus != NULL)
13499 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13502 /* Free all resources associated with DWO_FILE.
13503 Close the DWO file and munmap the sections. */
13506 free_dwo_file (struct dwo_file *dwo_file)
13508 /* Note: dbfd is NULL for virtual DWO files. */
13509 gdb_bfd_unref (dwo_file->dbfd);
13511 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13514 /* Traversal function for free_dwo_files. */
13517 free_dwo_file_from_slot (void **slot, void *info)
13519 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13521 free_dwo_file (dwo_file);
13526 /* Free all resources associated with DWO_FILES. */
13529 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13531 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13534 /* Read in various DIEs. */
13536 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13537 Inherit only the children of the DW_AT_abstract_origin DIE not being
13538 already referenced by DW_AT_abstract_origin from the children of the
13542 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13544 struct die_info *child_die;
13545 sect_offset *offsetp;
13546 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13547 struct die_info *origin_die;
13548 /* Iterator of the ORIGIN_DIE children. */
13549 struct die_info *origin_child_die;
13550 struct attribute *attr;
13551 struct dwarf2_cu *origin_cu;
13552 struct pending **origin_previous_list_in_scope;
13554 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13558 /* Note that following die references may follow to a die in a
13562 origin_die = follow_die_ref (die, attr, &origin_cu);
13564 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13566 origin_previous_list_in_scope = origin_cu->list_in_scope;
13567 origin_cu->list_in_scope = cu->list_in_scope;
13569 if (die->tag != origin_die->tag
13570 && !(die->tag == DW_TAG_inlined_subroutine
13571 && origin_die->tag == DW_TAG_subprogram))
13572 complaint (_("DIE %s and its abstract origin %s have different tags"),
13573 sect_offset_str (die->sect_off),
13574 sect_offset_str (origin_die->sect_off));
13576 std::vector<sect_offset> offsets;
13578 for (child_die = die->child;
13579 child_die && child_die->tag;
13580 child_die = sibling_die (child_die))
13582 struct die_info *child_origin_die;
13583 struct dwarf2_cu *child_origin_cu;
13585 /* We are trying to process concrete instance entries:
13586 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13587 it's not relevant to our analysis here. i.e. detecting DIEs that are
13588 present in the abstract instance but not referenced in the concrete
13590 if (child_die->tag == DW_TAG_call_site
13591 || child_die->tag == DW_TAG_GNU_call_site)
13594 /* For each CHILD_DIE, find the corresponding child of
13595 ORIGIN_DIE. If there is more than one layer of
13596 DW_AT_abstract_origin, follow them all; there shouldn't be,
13597 but GCC versions at least through 4.4 generate this (GCC PR
13599 child_origin_die = child_die;
13600 child_origin_cu = cu;
13603 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13607 child_origin_die = follow_die_ref (child_origin_die, attr,
13611 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13612 counterpart may exist. */
13613 if (child_origin_die != child_die)
13615 if (child_die->tag != child_origin_die->tag
13616 && !(child_die->tag == DW_TAG_inlined_subroutine
13617 && child_origin_die->tag == DW_TAG_subprogram))
13618 complaint (_("Child DIE %s and its abstract origin %s have "
13620 sect_offset_str (child_die->sect_off),
13621 sect_offset_str (child_origin_die->sect_off));
13622 if (child_origin_die->parent != origin_die)
13623 complaint (_("Child DIE %s and its abstract origin %s have "
13624 "different parents"),
13625 sect_offset_str (child_die->sect_off),
13626 sect_offset_str (child_origin_die->sect_off));
13628 offsets.push_back (child_origin_die->sect_off);
13631 std::sort (offsets.begin (), offsets.end ());
13632 sect_offset *offsets_end = offsets.data () + offsets.size ();
13633 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13634 if (offsetp[-1] == *offsetp)
13635 complaint (_("Multiple children of DIE %s refer "
13636 "to DIE %s as their abstract origin"),
13637 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13639 offsetp = offsets.data ();
13640 origin_child_die = origin_die->child;
13641 while (origin_child_die && origin_child_die->tag)
13643 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13644 while (offsetp < offsets_end
13645 && *offsetp < origin_child_die->sect_off)
13647 if (offsetp >= offsets_end
13648 || *offsetp > origin_child_die->sect_off)
13650 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13651 Check whether we're already processing ORIGIN_CHILD_DIE.
13652 This can happen with mutually referenced abstract_origins.
13654 if (!origin_child_die->in_process)
13655 process_die (origin_child_die, origin_cu);
13657 origin_child_die = sibling_die (origin_child_die);
13659 origin_cu->list_in_scope = origin_previous_list_in_scope;
13663 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13667 struct context_stack *newobj;
13670 struct die_info *child_die;
13671 struct attribute *attr, *call_line, *call_file;
13673 CORE_ADDR baseaddr;
13674 struct block *block;
13675 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13676 std::vector<struct symbol *> template_args;
13677 struct template_symbol *templ_func = NULL;
13681 /* If we do not have call site information, we can't show the
13682 caller of this inlined function. That's too confusing, so
13683 only use the scope for local variables. */
13684 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13685 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13686 if (call_line == NULL || call_file == NULL)
13688 read_lexical_block_scope (die, cu);
13693 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13695 name = dwarf2_name (die, cu);
13697 /* Ignore functions with missing or empty names. These are actually
13698 illegal according to the DWARF standard. */
13701 complaint (_("missing name for subprogram DIE at %s"),
13702 sect_offset_str (die->sect_off));
13706 /* Ignore functions with missing or invalid low and high pc attributes. */
13707 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13708 <= PC_BOUNDS_INVALID)
13710 attr = dwarf2_attr (die, DW_AT_external, cu);
13711 if (!attr || !DW_UNSND (attr))
13712 complaint (_("cannot get low and high bounds "
13713 "for subprogram DIE at %s"),
13714 sect_offset_str (die->sect_off));
13718 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13719 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13721 /* If we have any template arguments, then we must allocate a
13722 different sort of symbol. */
13723 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13725 if (child_die->tag == DW_TAG_template_type_param
13726 || child_die->tag == DW_TAG_template_value_param)
13728 templ_func = allocate_template_symbol (objfile);
13729 templ_func->subclass = SYMBOL_TEMPLATE;
13734 newobj = cu->builder->push_context (0, lowpc);
13735 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13736 (struct symbol *) templ_func);
13738 /* If there is a location expression for DW_AT_frame_base, record
13740 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13742 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13744 /* If there is a location for the static link, record it. */
13745 newobj->static_link = NULL;
13746 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13749 newobj->static_link
13750 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13751 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13754 cu->list_in_scope = cu->builder->get_local_symbols ();
13756 if (die->child != NULL)
13758 child_die = die->child;
13759 while (child_die && child_die->tag)
13761 if (child_die->tag == DW_TAG_template_type_param
13762 || child_die->tag == DW_TAG_template_value_param)
13764 struct symbol *arg = new_symbol (child_die, NULL, cu);
13767 template_args.push_back (arg);
13770 process_die (child_die, cu);
13771 child_die = sibling_die (child_die);
13775 inherit_abstract_dies (die, cu);
13777 /* If we have a DW_AT_specification, we might need to import using
13778 directives from the context of the specification DIE. See the
13779 comment in determine_prefix. */
13780 if (cu->language == language_cplus
13781 && dwarf2_attr (die, DW_AT_specification, cu))
13783 struct dwarf2_cu *spec_cu = cu;
13784 struct die_info *spec_die = die_specification (die, &spec_cu);
13788 child_die = spec_die->child;
13789 while (child_die && child_die->tag)
13791 if (child_die->tag == DW_TAG_imported_module)
13792 process_die (child_die, spec_cu);
13793 child_die = sibling_die (child_die);
13796 /* In some cases, GCC generates specification DIEs that
13797 themselves contain DW_AT_specification attributes. */
13798 spec_die = die_specification (spec_die, &spec_cu);
13802 struct context_stack cstk = cu->builder->pop_context ();
13803 /* Make a block for the local symbols within. */
13804 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13805 cstk.static_link, lowpc, highpc);
13807 /* For C++, set the block's scope. */
13808 if ((cu->language == language_cplus
13809 || cu->language == language_fortran
13810 || cu->language == language_d
13811 || cu->language == language_rust)
13812 && cu->processing_has_namespace_info)
13813 block_set_scope (block, determine_prefix (die, cu),
13814 &objfile->objfile_obstack);
13816 /* If we have address ranges, record them. */
13817 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13819 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13821 /* Attach template arguments to function. */
13822 if (!template_args.empty ())
13824 gdb_assert (templ_func != NULL);
13826 templ_func->n_template_arguments = template_args.size ();
13827 templ_func->template_arguments
13828 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13829 templ_func->n_template_arguments);
13830 memcpy (templ_func->template_arguments,
13831 template_args.data (),
13832 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13834 /* Make sure that the symtab is set on the new symbols. Even
13835 though they don't appear in this symtab directly, other parts
13836 of gdb assume that symbols do, and this is reasonably
13838 for (struct symbol *sym : template_args)
13839 symbol_set_symtab (sym, symbol_symtab (templ_func));
13842 /* In C++, we can have functions nested inside functions (e.g., when
13843 a function declares a class that has methods). This means that
13844 when we finish processing a function scope, we may need to go
13845 back to building a containing block's symbol lists. */
13846 *cu->builder->get_local_symbols () = cstk.locals;
13847 cu->builder->set_local_using_directives (cstk.local_using_directives);
13849 /* If we've finished processing a top-level function, subsequent
13850 symbols go in the file symbol list. */
13851 if (cu->builder->outermost_context_p ())
13852 cu->list_in_scope = cu->builder->get_file_symbols ();
13855 /* Process all the DIES contained within a lexical block scope. Start
13856 a new scope, process the dies, and then close the scope. */
13859 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13861 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13863 CORE_ADDR lowpc, highpc;
13864 struct die_info *child_die;
13865 CORE_ADDR baseaddr;
13867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13869 /* Ignore blocks with missing or invalid low and high pc attributes. */
13870 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13871 as multiple lexical blocks? Handling children in a sane way would
13872 be nasty. Might be easier to properly extend generic blocks to
13873 describe ranges. */
13874 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13876 case PC_BOUNDS_NOT_PRESENT:
13877 /* DW_TAG_lexical_block has no attributes, process its children as if
13878 there was no wrapping by that DW_TAG_lexical_block.
13879 GCC does no longer produces such DWARF since GCC r224161. */
13880 for (child_die = die->child;
13881 child_die != NULL && child_die->tag;
13882 child_die = sibling_die (child_die))
13883 process_die (child_die, cu);
13885 case PC_BOUNDS_INVALID:
13888 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13889 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13891 cu->builder->push_context (0, lowpc);
13892 if (die->child != NULL)
13894 child_die = die->child;
13895 while (child_die && child_die->tag)
13897 process_die (child_die, cu);
13898 child_die = sibling_die (child_die);
13901 inherit_abstract_dies (die, cu);
13902 struct context_stack cstk = cu->builder->pop_context ();
13904 if (*cu->builder->get_local_symbols () != NULL
13905 || (*cu->builder->get_local_using_directives ()) != NULL)
13907 struct block *block
13908 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13909 cstk.start_addr, highpc);
13911 /* Note that recording ranges after traversing children, as we
13912 do here, means that recording a parent's ranges entails
13913 walking across all its children's ranges as they appear in
13914 the address map, which is quadratic behavior.
13916 It would be nicer to record the parent's ranges before
13917 traversing its children, simply overriding whatever you find
13918 there. But since we don't even decide whether to create a
13919 block until after we've traversed its children, that's hard
13921 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13923 *cu->builder->get_local_symbols () = cstk.locals;
13924 cu->builder->set_local_using_directives (cstk.local_using_directives);
13927 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13930 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13934 CORE_ADDR pc, baseaddr;
13935 struct attribute *attr;
13936 struct call_site *call_site, call_site_local;
13939 struct die_info *child_die;
13941 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13943 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13946 /* This was a pre-DWARF-5 GNU extension alias
13947 for DW_AT_call_return_pc. */
13948 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13952 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13953 "DIE %s [in module %s]"),
13954 sect_offset_str (die->sect_off), objfile_name (objfile));
13957 pc = attr_value_as_address (attr) + baseaddr;
13958 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13960 if (cu->call_site_htab == NULL)
13961 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13962 NULL, &objfile->objfile_obstack,
13963 hashtab_obstack_allocate, NULL);
13964 call_site_local.pc = pc;
13965 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13968 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13969 "DIE %s [in module %s]"),
13970 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13971 objfile_name (objfile));
13975 /* Count parameters at the caller. */
13978 for (child_die = die->child; child_die && child_die->tag;
13979 child_die = sibling_die (child_die))
13981 if (child_die->tag != DW_TAG_call_site_parameter
13982 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13984 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13985 "DW_TAG_call_site child DIE %s [in module %s]"),
13986 child_die->tag, sect_offset_str (child_die->sect_off),
13987 objfile_name (objfile));
13995 = ((struct call_site *)
13996 obstack_alloc (&objfile->objfile_obstack,
13997 sizeof (*call_site)
13998 + (sizeof (*call_site->parameter) * (nparams - 1))));
14000 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14001 call_site->pc = pc;
14003 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14004 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14006 struct die_info *func_die;
14008 /* Skip also over DW_TAG_inlined_subroutine. */
14009 for (func_die = die->parent;
14010 func_die && func_die->tag != DW_TAG_subprogram
14011 && func_die->tag != DW_TAG_subroutine_type;
14012 func_die = func_die->parent);
14014 /* DW_AT_call_all_calls is a superset
14015 of DW_AT_call_all_tail_calls. */
14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14022 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14023 not complete. But keep CALL_SITE for look ups via call_site_htab,
14024 both the initial caller containing the real return address PC and
14025 the final callee containing the current PC of a chain of tail
14026 calls do not need to have the tail call list complete. But any
14027 function candidate for a virtual tail call frame searched via
14028 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14029 determined unambiguously. */
14033 struct type *func_type = NULL;
14036 func_type = get_die_type (func_die, cu);
14037 if (func_type != NULL)
14039 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14041 /* Enlist this call site to the function. */
14042 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14043 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14046 complaint (_("Cannot find function owning DW_TAG_call_site "
14047 "DIE %s [in module %s]"),
14048 sect_offset_str (die->sect_off), objfile_name (objfile));
14052 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14054 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14056 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14059 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14060 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14062 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14063 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14064 /* Keep NULL DWARF_BLOCK. */;
14065 else if (attr_form_is_block (attr))
14067 struct dwarf2_locexpr_baton *dlbaton;
14069 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14070 dlbaton->data = DW_BLOCK (attr)->data;
14071 dlbaton->size = DW_BLOCK (attr)->size;
14072 dlbaton->per_cu = cu->per_cu;
14074 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14076 else if (attr_form_is_ref (attr))
14078 struct dwarf2_cu *target_cu = cu;
14079 struct die_info *target_die;
14081 target_die = follow_die_ref (die, attr, &target_cu);
14082 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14083 if (die_is_declaration (target_die, target_cu))
14085 const char *target_physname;
14087 /* Prefer the mangled name; otherwise compute the demangled one. */
14088 target_physname = dw2_linkage_name (target_die, target_cu);
14089 if (target_physname == NULL)
14090 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14091 if (target_physname == NULL)
14092 complaint (_("DW_AT_call_target target DIE has invalid "
14093 "physname, for referencing DIE %s [in module %s]"),
14094 sect_offset_str (die->sect_off), objfile_name (objfile));
14096 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14102 /* DW_AT_entry_pc should be preferred. */
14103 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14104 <= PC_BOUNDS_INVALID)
14105 complaint (_("DW_AT_call_target target DIE has invalid "
14106 "low pc, for referencing DIE %s [in module %s]"),
14107 sect_offset_str (die->sect_off), objfile_name (objfile));
14110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14111 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14116 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14117 "block nor reference, for DIE %s [in module %s]"),
14118 sect_offset_str (die->sect_off), objfile_name (objfile));
14120 call_site->per_cu = cu->per_cu;
14122 for (child_die = die->child;
14123 child_die && child_die->tag;
14124 child_die = sibling_die (child_die))
14126 struct call_site_parameter *parameter;
14127 struct attribute *loc, *origin;
14129 if (child_die->tag != DW_TAG_call_site_parameter
14130 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14132 /* Already printed the complaint above. */
14136 gdb_assert (call_site->parameter_count < nparams);
14137 parameter = &call_site->parameter[call_site->parameter_count];
14139 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14140 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14141 register is contained in DW_AT_call_value. */
14143 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14144 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14145 if (origin == NULL)
14147 /* This was a pre-DWARF-5 GNU extension alias
14148 for DW_AT_call_parameter. */
14149 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14151 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14153 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14155 sect_offset sect_off
14156 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14157 if (!offset_in_cu_p (&cu->header, sect_off))
14159 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14160 binding can be done only inside one CU. Such referenced DIE
14161 therefore cannot be even moved to DW_TAG_partial_unit. */
14162 complaint (_("DW_AT_call_parameter offset is not in CU for "
14163 "DW_TAG_call_site child DIE %s [in module %s]"),
14164 sect_offset_str (child_die->sect_off),
14165 objfile_name (objfile));
14168 parameter->u.param_cu_off
14169 = (cu_offset) (sect_off - cu->header.sect_off);
14171 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14173 complaint (_("No DW_FORM_block* DW_AT_location for "
14174 "DW_TAG_call_site child DIE %s [in module %s]"),
14175 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14180 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14181 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14182 if (parameter->u.dwarf_reg != -1)
14183 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14184 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14185 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14186 ¶meter->u.fb_offset))
14187 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14190 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14191 "for DW_FORM_block* DW_AT_location is supported for "
14192 "DW_TAG_call_site child DIE %s "
14194 sect_offset_str (child_die->sect_off),
14195 objfile_name (objfile));
14200 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14202 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14203 if (!attr_form_is_block (attr))
14205 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14206 "DW_TAG_call_site child DIE %s [in module %s]"),
14207 sect_offset_str (child_die->sect_off),
14208 objfile_name (objfile));
14211 parameter->value = DW_BLOCK (attr)->data;
14212 parameter->value_size = DW_BLOCK (attr)->size;
14214 /* Parameters are not pre-cleared by memset above. */
14215 parameter->data_value = NULL;
14216 parameter->data_value_size = 0;
14217 call_site->parameter_count++;
14219 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14221 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14224 if (!attr_form_is_block (attr))
14225 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
14228 objfile_name (objfile));
14231 parameter->data_value = DW_BLOCK (attr)->data;
14232 parameter->data_value_size = DW_BLOCK (attr)->size;
14238 /* Helper function for read_variable. If DIE represents a virtual
14239 table, then return the type of the concrete object that is
14240 associated with the virtual table. Otherwise, return NULL. */
14242 static struct type *
14243 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14245 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14249 /* Find the type DIE. */
14250 struct die_info *type_die = NULL;
14251 struct dwarf2_cu *type_cu = cu;
14253 if (attr_form_is_ref (attr))
14254 type_die = follow_die_ref (die, attr, &type_cu);
14255 if (type_die == NULL)
14258 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14260 return die_containing_type (type_die, type_cu);
14263 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14266 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14268 struct rust_vtable_symbol *storage = NULL;
14270 if (cu->language == language_rust)
14272 struct type *containing_type = rust_containing_type (die, cu);
14274 if (containing_type != NULL)
14276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14278 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14279 struct rust_vtable_symbol);
14280 initialize_objfile_symbol (storage);
14281 storage->concrete_type = containing_type;
14282 storage->subclass = SYMBOL_RUST_VTABLE;
14286 struct symbol *res = new_symbol (die, NULL, cu, storage);
14287 struct attribute *abstract_origin
14288 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14289 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14290 if (res == NULL && loc && abstract_origin)
14292 /* We have a variable without a name, but with a location and an abstract
14293 origin. This may be a concrete instance of an abstract variable
14294 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14296 struct dwarf2_cu *origin_cu = cu;
14297 struct die_info *origin_die
14298 = follow_die_ref (die, abstract_origin, &origin_cu);
14299 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14300 dpo->abstract_to_concrete[origin_die].push_back (die);
14304 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14305 reading .debug_rnglists.
14306 Callback's type should be:
14307 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14308 Return true if the attributes are present and valid, otherwise,
14311 template <typename Callback>
14313 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14314 Callback &&callback)
14316 struct dwarf2_per_objfile *dwarf2_per_objfile
14317 = cu->per_cu->dwarf2_per_objfile;
14318 struct objfile *objfile = dwarf2_per_objfile->objfile;
14319 bfd *obfd = objfile->obfd;
14320 /* Base address selection entry. */
14323 const gdb_byte *buffer;
14324 CORE_ADDR baseaddr;
14325 bool overflow = false;
14327 found_base = cu->base_known;
14328 base = cu->base_address;
14330 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14331 if (offset >= dwarf2_per_objfile->rnglists.size)
14333 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14337 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14343 /* Initialize it due to a false compiler warning. */
14344 CORE_ADDR range_beginning = 0, range_end = 0;
14345 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14346 + dwarf2_per_objfile->rnglists.size);
14347 unsigned int bytes_read;
14349 if (buffer == buf_end)
14354 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14357 case DW_RLE_end_of_list:
14359 case DW_RLE_base_address:
14360 if (buffer + cu->header.addr_size > buf_end)
14365 base = read_address (obfd, buffer, cu, &bytes_read);
14367 buffer += bytes_read;
14369 case DW_RLE_start_length:
14370 if (buffer + cu->header.addr_size > buf_end)
14375 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14376 buffer += bytes_read;
14377 range_end = (range_beginning
14378 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14379 buffer += bytes_read;
14380 if (buffer > buf_end)
14386 case DW_RLE_offset_pair:
14387 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14394 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14395 buffer += bytes_read;
14396 if (buffer > buf_end)
14402 case DW_RLE_start_end:
14403 if (buffer + 2 * cu->header.addr_size > buf_end)
14408 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14409 buffer += bytes_read;
14410 range_end = read_address (obfd, buffer, cu, &bytes_read);
14411 buffer += bytes_read;
14414 complaint (_("Invalid .debug_rnglists data (no base address)"));
14417 if (rlet == DW_RLE_end_of_list || overflow)
14419 if (rlet == DW_RLE_base_address)
14424 /* We have no valid base address for the ranges
14426 complaint (_("Invalid .debug_rnglists data (no base address)"));
14430 if (range_beginning > range_end)
14432 /* Inverted range entries are invalid. */
14433 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14437 /* Empty range entries have no effect. */
14438 if (range_beginning == range_end)
14441 range_beginning += base;
14444 /* A not-uncommon case of bad debug info.
14445 Don't pollute the addrmap with bad data. */
14446 if (range_beginning + baseaddr == 0
14447 && !dwarf2_per_objfile->has_section_at_zero)
14449 complaint (_(".debug_rnglists entry has start address of zero"
14450 " [in module %s]"), objfile_name (objfile));
14454 callback (range_beginning, range_end);
14459 complaint (_("Offset %d is not terminated "
14460 "for DW_AT_ranges attribute"),
14468 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14469 Callback's type should be:
14470 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14471 Return 1 if the attributes are present and valid, otherwise, return 0. */
14473 template <typename Callback>
14475 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14476 Callback &&callback)
14478 struct dwarf2_per_objfile *dwarf2_per_objfile
14479 = cu->per_cu->dwarf2_per_objfile;
14480 struct objfile *objfile = dwarf2_per_objfile->objfile;
14481 struct comp_unit_head *cu_header = &cu->header;
14482 bfd *obfd = objfile->obfd;
14483 unsigned int addr_size = cu_header->addr_size;
14484 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14485 /* Base address selection entry. */
14488 unsigned int dummy;
14489 const gdb_byte *buffer;
14490 CORE_ADDR baseaddr;
14492 if (cu_header->version >= 5)
14493 return dwarf2_rnglists_process (offset, cu, callback);
14495 found_base = cu->base_known;
14496 base = cu->base_address;
14498 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14499 if (offset >= dwarf2_per_objfile->ranges.size)
14501 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14505 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14507 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14511 CORE_ADDR range_beginning, range_end;
14513 range_beginning = read_address (obfd, buffer, cu, &dummy);
14514 buffer += addr_size;
14515 range_end = read_address (obfd, buffer, cu, &dummy);
14516 buffer += addr_size;
14517 offset += 2 * addr_size;
14519 /* An end of list marker is a pair of zero addresses. */
14520 if (range_beginning == 0 && range_end == 0)
14521 /* Found the end of list entry. */
14524 /* Each base address selection entry is a pair of 2 values.
14525 The first is the largest possible address, the second is
14526 the base address. Check for a base address here. */
14527 if ((range_beginning & mask) == mask)
14529 /* If we found the largest possible address, then we already
14530 have the base address in range_end. */
14538 /* We have no valid base address for the ranges
14540 complaint (_("Invalid .debug_ranges data (no base address)"));
14544 if (range_beginning > range_end)
14546 /* Inverted range entries are invalid. */
14547 complaint (_("Invalid .debug_ranges data (inverted range)"));
14551 /* Empty range entries have no effect. */
14552 if (range_beginning == range_end)
14555 range_beginning += base;
14558 /* A not-uncommon case of bad debug info.
14559 Don't pollute the addrmap with bad data. */
14560 if (range_beginning + baseaddr == 0
14561 && !dwarf2_per_objfile->has_section_at_zero)
14563 complaint (_(".debug_ranges entry has start address of zero"
14564 " [in module %s]"), objfile_name (objfile));
14568 callback (range_beginning, range_end);
14574 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14575 Return 1 if the attributes are present and valid, otherwise, return 0.
14576 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14579 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14580 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14581 struct partial_symtab *ranges_pst)
14583 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14585 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14586 SECT_OFF_TEXT (objfile));
14589 CORE_ADDR high = 0;
14592 retval = dwarf2_ranges_process (offset, cu,
14593 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14595 if (ranges_pst != NULL)
14600 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14601 range_beginning + baseaddr)
14603 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14604 range_end + baseaddr)
14606 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14610 /* FIXME: This is recording everything as a low-high
14611 segment of consecutive addresses. We should have a
14612 data structure for discontiguous block ranges
14616 low = range_beginning;
14622 if (range_beginning < low)
14623 low = range_beginning;
14624 if (range_end > high)
14632 /* If the first entry is an end-of-list marker, the range
14633 describes an empty scope, i.e. no instructions. */
14639 *high_return = high;
14643 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14644 definition for the return value. *LOWPC and *HIGHPC are set iff
14645 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14647 static enum pc_bounds_kind
14648 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14649 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14650 struct partial_symtab *pst)
14652 struct dwarf2_per_objfile *dwarf2_per_objfile
14653 = cu->per_cu->dwarf2_per_objfile;
14654 struct attribute *attr;
14655 struct attribute *attr_high;
14657 CORE_ADDR high = 0;
14658 enum pc_bounds_kind ret;
14660 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14663 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14666 low = attr_value_as_address (attr);
14667 high = attr_value_as_address (attr_high);
14668 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14672 /* Found high w/o low attribute. */
14673 return PC_BOUNDS_INVALID;
14675 /* Found consecutive range of addresses. */
14676 ret = PC_BOUNDS_HIGH_LOW;
14680 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14683 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14684 We take advantage of the fact that DW_AT_ranges does not appear
14685 in DW_TAG_compile_unit of DWO files. */
14686 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14687 unsigned int ranges_offset = (DW_UNSND (attr)
14688 + (need_ranges_base
14692 /* Value of the DW_AT_ranges attribute is the offset in the
14693 .debug_ranges section. */
14694 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14695 return PC_BOUNDS_INVALID;
14696 /* Found discontinuous range of addresses. */
14697 ret = PC_BOUNDS_RANGES;
14700 return PC_BOUNDS_NOT_PRESENT;
14703 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14705 return PC_BOUNDS_INVALID;
14707 /* When using the GNU linker, .gnu.linkonce. sections are used to
14708 eliminate duplicate copies of functions and vtables and such.
14709 The linker will arbitrarily choose one and discard the others.
14710 The AT_*_pc values for such functions refer to local labels in
14711 these sections. If the section from that file was discarded, the
14712 labels are not in the output, so the relocs get a value of 0.
14713 If this is a discarded function, mark the pc bounds as invalid,
14714 so that GDB will ignore it. */
14715 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14716 return PC_BOUNDS_INVALID;
14724 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14725 its low and high PC addresses. Do nothing if these addresses could not
14726 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14727 and HIGHPC to the high address if greater than HIGHPC. */
14730 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14731 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14732 struct dwarf2_cu *cu)
14734 CORE_ADDR low, high;
14735 struct die_info *child = die->child;
14737 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14739 *lowpc = std::min (*lowpc, low);
14740 *highpc = std::max (*highpc, high);
14743 /* If the language does not allow nested subprograms (either inside
14744 subprograms or lexical blocks), we're done. */
14745 if (cu->language != language_ada)
14748 /* Check all the children of the given DIE. If it contains nested
14749 subprograms, then check their pc bounds. Likewise, we need to
14750 check lexical blocks as well, as they may also contain subprogram
14752 while (child && child->tag)
14754 if (child->tag == DW_TAG_subprogram
14755 || child->tag == DW_TAG_lexical_block)
14756 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14757 child = sibling_die (child);
14761 /* Get the low and high pc's represented by the scope DIE, and store
14762 them in *LOWPC and *HIGHPC. If the correct values can't be
14763 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14766 get_scope_pc_bounds (struct die_info *die,
14767 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14768 struct dwarf2_cu *cu)
14770 CORE_ADDR best_low = (CORE_ADDR) -1;
14771 CORE_ADDR best_high = (CORE_ADDR) 0;
14772 CORE_ADDR current_low, current_high;
14774 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14775 >= PC_BOUNDS_RANGES)
14777 best_low = current_low;
14778 best_high = current_high;
14782 struct die_info *child = die->child;
14784 while (child && child->tag)
14786 switch (child->tag) {
14787 case DW_TAG_subprogram:
14788 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14790 case DW_TAG_namespace:
14791 case DW_TAG_module:
14792 /* FIXME: carlton/2004-01-16: Should we do this for
14793 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14794 that current GCC's always emit the DIEs corresponding
14795 to definitions of methods of classes as children of a
14796 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14797 the DIEs giving the declarations, which could be
14798 anywhere). But I don't see any reason why the
14799 standards says that they have to be there. */
14800 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14802 if (current_low != ((CORE_ADDR) -1))
14804 best_low = std::min (best_low, current_low);
14805 best_high = std::max (best_high, current_high);
14813 child = sibling_die (child);
14818 *highpc = best_high;
14821 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14825 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14826 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14828 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14829 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14830 struct attribute *attr;
14831 struct attribute *attr_high;
14833 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14836 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14839 CORE_ADDR low = attr_value_as_address (attr);
14840 CORE_ADDR high = attr_value_as_address (attr_high);
14842 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14845 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14846 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14847 cu->builder->record_block_range (block, low, high - 1);
14851 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14854 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14855 We take advantage of the fact that DW_AT_ranges does not appear
14856 in DW_TAG_compile_unit of DWO files. */
14857 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14859 /* The value of the DW_AT_ranges attribute is the offset of the
14860 address range list in the .debug_ranges section. */
14861 unsigned long offset = (DW_UNSND (attr)
14862 + (need_ranges_base ? cu->ranges_base : 0));
14864 std::vector<blockrange> blockvec;
14865 dwarf2_ranges_process (offset, cu,
14866 [&] (CORE_ADDR start, CORE_ADDR end)
14870 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14871 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14872 cu->builder->record_block_range (block, start, end - 1);
14873 blockvec.emplace_back (start, end);
14876 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14880 /* Check whether the producer field indicates either of GCC < 4.6, or the
14881 Intel C/C++ compiler, and cache the result in CU. */
14884 check_producer (struct dwarf2_cu *cu)
14888 if (cu->producer == NULL)
14890 /* For unknown compilers expect their behavior is DWARF version
14893 GCC started to support .debug_types sections by -gdwarf-4 since
14894 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14895 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14896 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14897 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14899 else if (producer_is_gcc (cu->producer, &major, &minor))
14901 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14902 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14904 else if (producer_is_icc (cu->producer, &major, &minor))
14905 cu->producer_is_icc_lt_14 = major < 14;
14908 /* For other non-GCC compilers, expect their behavior is DWARF version
14912 cu->checked_producer = 1;
14915 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14916 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14917 during 4.6.0 experimental. */
14920 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14922 if (!cu->checked_producer)
14923 check_producer (cu);
14925 return cu->producer_is_gxx_lt_4_6;
14928 /* Return the default accessibility type if it is not overriden by
14929 DW_AT_accessibility. */
14931 static enum dwarf_access_attribute
14932 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14934 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14936 /* The default DWARF 2 accessibility for members is public, the default
14937 accessibility for inheritance is private. */
14939 if (die->tag != DW_TAG_inheritance)
14940 return DW_ACCESS_public;
14942 return DW_ACCESS_private;
14946 /* DWARF 3+ defines the default accessibility a different way. The same
14947 rules apply now for DW_TAG_inheritance as for the members and it only
14948 depends on the container kind. */
14950 if (die->parent->tag == DW_TAG_class_type)
14951 return DW_ACCESS_private;
14953 return DW_ACCESS_public;
14957 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14958 offset. If the attribute was not found return 0, otherwise return
14959 1. If it was found but could not properly be handled, set *OFFSET
14963 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14966 struct attribute *attr;
14968 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14973 /* Note that we do not check for a section offset first here.
14974 This is because DW_AT_data_member_location is new in DWARF 4,
14975 so if we see it, we can assume that a constant form is really
14976 a constant and not a section offset. */
14977 if (attr_form_is_constant (attr))
14978 *offset = dwarf2_get_attr_constant_value (attr, 0);
14979 else if (attr_form_is_section_offset (attr))
14980 dwarf2_complex_location_expr_complaint ();
14981 else if (attr_form_is_block (attr))
14982 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14984 dwarf2_complex_location_expr_complaint ();
14992 /* Add an aggregate field to the field list. */
14995 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14996 struct dwarf2_cu *cu)
14998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15000 struct nextfield *new_field;
15001 struct attribute *attr;
15003 const char *fieldname = "";
15005 if (die->tag == DW_TAG_inheritance)
15007 fip->baseclasses.emplace_back ();
15008 new_field = &fip->baseclasses.back ();
15012 fip->fields.emplace_back ();
15013 new_field = &fip->fields.back ();
15018 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15020 new_field->accessibility = DW_UNSND (attr);
15022 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15023 if (new_field->accessibility != DW_ACCESS_public)
15024 fip->non_public_fields = 1;
15026 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15028 new_field->virtuality = DW_UNSND (attr);
15030 new_field->virtuality = DW_VIRTUALITY_none;
15032 fp = &new_field->field;
15034 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15038 /* Data member other than a C++ static data member. */
15040 /* Get type of field. */
15041 fp->type = die_type (die, cu);
15043 SET_FIELD_BITPOS (*fp, 0);
15045 /* Get bit size of field (zero if none). */
15046 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15049 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15053 FIELD_BITSIZE (*fp) = 0;
15056 /* Get bit offset of field. */
15057 if (handle_data_member_location (die, cu, &offset))
15058 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15059 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15062 if (gdbarch_bits_big_endian (gdbarch))
15064 /* For big endian bits, the DW_AT_bit_offset gives the
15065 additional bit offset from the MSB of the containing
15066 anonymous object to the MSB of the field. We don't
15067 have to do anything special since we don't need to
15068 know the size of the anonymous object. */
15069 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15073 /* For little endian bits, compute the bit offset to the
15074 MSB of the anonymous object, subtract off the number of
15075 bits from the MSB of the field to the MSB of the
15076 object, and then subtract off the number of bits of
15077 the field itself. The result is the bit offset of
15078 the LSB of the field. */
15079 int anonymous_size;
15080 int bit_offset = DW_UNSND (attr);
15082 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15085 /* The size of the anonymous object containing
15086 the bit field is explicit, so use the
15087 indicated size (in bytes). */
15088 anonymous_size = DW_UNSND (attr);
15092 /* The size of the anonymous object containing
15093 the bit field must be inferred from the type
15094 attribute of the data member containing the
15096 anonymous_size = TYPE_LENGTH (fp->type);
15098 SET_FIELD_BITPOS (*fp,
15099 (FIELD_BITPOS (*fp)
15100 + anonymous_size * bits_per_byte
15101 - bit_offset - FIELD_BITSIZE (*fp)));
15104 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15106 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15107 + dwarf2_get_attr_constant_value (attr, 0)));
15109 /* Get name of field. */
15110 fieldname = dwarf2_name (die, cu);
15111 if (fieldname == NULL)
15114 /* The name is already allocated along with this objfile, so we don't
15115 need to duplicate it for the type. */
15116 fp->name = fieldname;
15118 /* Change accessibility for artificial fields (e.g. virtual table
15119 pointer or virtual base class pointer) to private. */
15120 if (dwarf2_attr (die, DW_AT_artificial, cu))
15122 FIELD_ARTIFICIAL (*fp) = 1;
15123 new_field->accessibility = DW_ACCESS_private;
15124 fip->non_public_fields = 1;
15127 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15129 /* C++ static member. */
15131 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15132 is a declaration, but all versions of G++ as of this writing
15133 (so through at least 3.2.1) incorrectly generate
15134 DW_TAG_variable tags. */
15136 const char *physname;
15138 /* Get name of field. */
15139 fieldname = dwarf2_name (die, cu);
15140 if (fieldname == NULL)
15143 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15145 /* Only create a symbol if this is an external value.
15146 new_symbol checks this and puts the value in the global symbol
15147 table, which we want. If it is not external, new_symbol
15148 will try to put the value in cu->list_in_scope which is wrong. */
15149 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15151 /* A static const member, not much different than an enum as far as
15152 we're concerned, except that we can support more types. */
15153 new_symbol (die, NULL, cu);
15156 /* Get physical name. */
15157 physname = dwarf2_physname (fieldname, die, cu);
15159 /* The name is already allocated along with this objfile, so we don't
15160 need to duplicate it for the type. */
15161 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15162 FIELD_TYPE (*fp) = die_type (die, cu);
15163 FIELD_NAME (*fp) = fieldname;
15165 else if (die->tag == DW_TAG_inheritance)
15169 /* C++ base class field. */
15170 if (handle_data_member_location (die, cu, &offset))
15171 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15172 FIELD_BITSIZE (*fp) = 0;
15173 FIELD_TYPE (*fp) = die_type (die, cu);
15174 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15176 else if (die->tag == DW_TAG_variant_part)
15178 /* process_structure_scope will treat this DIE as a union. */
15179 process_structure_scope (die, cu);
15181 /* The variant part is relative to the start of the enclosing
15183 SET_FIELD_BITPOS (*fp, 0);
15184 fp->type = get_die_type (die, cu);
15185 fp->artificial = 1;
15186 fp->name = "<<variant>>";
15188 /* Normally a DW_TAG_variant_part won't have a size, but our
15189 representation requires one, so set it to the maximum of the
15191 if (TYPE_LENGTH (fp->type) == 0)
15194 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15195 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15196 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15197 TYPE_LENGTH (fp->type) = max;
15201 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15204 /* Can the type given by DIE define another type? */
15207 type_can_define_types (const struct die_info *die)
15211 case DW_TAG_typedef:
15212 case DW_TAG_class_type:
15213 case DW_TAG_structure_type:
15214 case DW_TAG_union_type:
15215 case DW_TAG_enumeration_type:
15223 /* Add a type definition defined in the scope of the FIP's class. */
15226 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15227 struct dwarf2_cu *cu)
15229 struct decl_field fp;
15230 memset (&fp, 0, sizeof (fp));
15232 gdb_assert (type_can_define_types (die));
15234 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15235 fp.name = dwarf2_name (die, cu);
15236 fp.type = read_type_die (die, cu);
15238 /* Save accessibility. */
15239 enum dwarf_access_attribute accessibility;
15240 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15242 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15244 accessibility = dwarf2_default_access_attribute (die, cu);
15245 switch (accessibility)
15247 case DW_ACCESS_public:
15248 /* The assumed value if neither private nor protected. */
15250 case DW_ACCESS_private:
15253 case DW_ACCESS_protected:
15254 fp.is_protected = 1;
15257 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15260 if (die->tag == DW_TAG_typedef)
15261 fip->typedef_field_list.push_back (fp);
15263 fip->nested_types_list.push_back (fp);
15266 /* Create the vector of fields, and attach it to the type. */
15269 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15270 struct dwarf2_cu *cu)
15272 int nfields = fip->nfields;
15274 /* Record the field count, allocate space for the array of fields,
15275 and create blank accessibility bitfields if necessary. */
15276 TYPE_NFIELDS (type) = nfields;
15277 TYPE_FIELDS (type) = (struct field *)
15278 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15280 if (fip->non_public_fields && cu->language != language_ada)
15282 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15284 TYPE_FIELD_PRIVATE_BITS (type) =
15285 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15286 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15288 TYPE_FIELD_PROTECTED_BITS (type) =
15289 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15290 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15292 TYPE_FIELD_IGNORE_BITS (type) =
15293 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15294 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15297 /* If the type has baseclasses, allocate and clear a bit vector for
15298 TYPE_FIELD_VIRTUAL_BITS. */
15299 if (!fip->baseclasses.empty () && cu->language != language_ada)
15301 int num_bytes = B_BYTES (fip->baseclasses.size ());
15302 unsigned char *pointer;
15304 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15305 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15306 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15307 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15308 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15311 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15313 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15315 for (int index = 0; index < nfields; ++index)
15317 struct nextfield &field = fip->fields[index];
15319 if (field.variant.is_discriminant)
15320 di->discriminant_index = index;
15321 else if (field.variant.default_branch)
15322 di->default_index = index;
15324 di->discriminants[index] = field.variant.discriminant_value;
15328 /* Copy the saved-up fields into the field vector. */
15329 for (int i = 0; i < nfields; ++i)
15331 struct nextfield &field
15332 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15333 : fip->fields[i - fip->baseclasses.size ()]);
15335 TYPE_FIELD (type, i) = field.field;
15336 switch (field.accessibility)
15338 case DW_ACCESS_private:
15339 if (cu->language != language_ada)
15340 SET_TYPE_FIELD_PRIVATE (type, i);
15343 case DW_ACCESS_protected:
15344 if (cu->language != language_ada)
15345 SET_TYPE_FIELD_PROTECTED (type, i);
15348 case DW_ACCESS_public:
15352 /* Unknown accessibility. Complain and treat it as public. */
15354 complaint (_("unsupported accessibility %d"),
15355 field.accessibility);
15359 if (i < fip->baseclasses.size ())
15361 switch (field.virtuality)
15363 case DW_VIRTUALITY_virtual:
15364 case DW_VIRTUALITY_pure_virtual:
15365 if (cu->language == language_ada)
15366 error (_("unexpected virtuality in component of Ada type"));
15367 SET_TYPE_FIELD_VIRTUAL (type, i);
15374 /* Return true if this member function is a constructor, false
15378 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15380 const char *fieldname;
15381 const char *type_name;
15384 if (die->parent == NULL)
15387 if (die->parent->tag != DW_TAG_structure_type
15388 && die->parent->tag != DW_TAG_union_type
15389 && die->parent->tag != DW_TAG_class_type)
15392 fieldname = dwarf2_name (die, cu);
15393 type_name = dwarf2_name (die->parent, cu);
15394 if (fieldname == NULL || type_name == NULL)
15397 len = strlen (fieldname);
15398 return (strncmp (fieldname, type_name, len) == 0
15399 && (type_name[len] == '\0' || type_name[len] == '<'));
15402 /* Add a member function to the proper fieldlist. */
15405 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15406 struct type *type, struct dwarf2_cu *cu)
15408 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15409 struct attribute *attr;
15411 struct fnfieldlist *flp = nullptr;
15412 struct fn_field *fnp;
15413 const char *fieldname;
15414 struct type *this_type;
15415 enum dwarf_access_attribute accessibility;
15417 if (cu->language == language_ada)
15418 error (_("unexpected member function in Ada type"));
15420 /* Get name of member function. */
15421 fieldname = dwarf2_name (die, cu);
15422 if (fieldname == NULL)
15425 /* Look up member function name in fieldlist. */
15426 for (i = 0; i < fip->fnfieldlists.size (); i++)
15428 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15430 flp = &fip->fnfieldlists[i];
15435 /* Create a new fnfieldlist if necessary. */
15436 if (flp == nullptr)
15438 fip->fnfieldlists.emplace_back ();
15439 flp = &fip->fnfieldlists.back ();
15440 flp->name = fieldname;
15441 i = fip->fnfieldlists.size () - 1;
15444 /* Create a new member function field and add it to the vector of
15446 flp->fnfields.emplace_back ();
15447 fnp = &flp->fnfields.back ();
15449 /* Delay processing of the physname until later. */
15450 if (cu->language == language_cplus)
15451 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15455 const char *physname = dwarf2_physname (fieldname, die, cu);
15456 fnp->physname = physname ? physname : "";
15459 fnp->type = alloc_type (objfile);
15460 this_type = read_type_die (die, cu);
15461 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15463 int nparams = TYPE_NFIELDS (this_type);
15465 /* TYPE is the domain of this method, and THIS_TYPE is the type
15466 of the method itself (TYPE_CODE_METHOD). */
15467 smash_to_method_type (fnp->type, type,
15468 TYPE_TARGET_TYPE (this_type),
15469 TYPE_FIELDS (this_type),
15470 TYPE_NFIELDS (this_type),
15471 TYPE_VARARGS (this_type));
15473 /* Handle static member functions.
15474 Dwarf2 has no clean way to discern C++ static and non-static
15475 member functions. G++ helps GDB by marking the first
15476 parameter for non-static member functions (which is the this
15477 pointer) as artificial. We obtain this information from
15478 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15479 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15480 fnp->voffset = VOFFSET_STATIC;
15483 complaint (_("member function type missing for '%s'"),
15484 dwarf2_full_name (fieldname, die, cu));
15486 /* Get fcontext from DW_AT_containing_type if present. */
15487 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15488 fnp->fcontext = die_containing_type (die, cu);
15490 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15491 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15493 /* Get accessibility. */
15494 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15496 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15498 accessibility = dwarf2_default_access_attribute (die, cu);
15499 switch (accessibility)
15501 case DW_ACCESS_private:
15502 fnp->is_private = 1;
15504 case DW_ACCESS_protected:
15505 fnp->is_protected = 1;
15509 /* Check for artificial methods. */
15510 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15511 if (attr && DW_UNSND (attr) != 0)
15512 fnp->is_artificial = 1;
15514 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15516 /* Get index in virtual function table if it is a virtual member
15517 function. For older versions of GCC, this is an offset in the
15518 appropriate virtual table, as specified by DW_AT_containing_type.
15519 For everyone else, it is an expression to be evaluated relative
15520 to the object address. */
15522 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15525 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15527 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15529 /* Old-style GCC. */
15530 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15532 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15533 || (DW_BLOCK (attr)->size > 1
15534 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15535 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15537 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15538 if ((fnp->voffset % cu->header.addr_size) != 0)
15539 dwarf2_complex_location_expr_complaint ();
15541 fnp->voffset /= cu->header.addr_size;
15545 dwarf2_complex_location_expr_complaint ();
15547 if (!fnp->fcontext)
15549 /* If there is no `this' field and no DW_AT_containing_type,
15550 we cannot actually find a base class context for the
15552 if (TYPE_NFIELDS (this_type) == 0
15553 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15555 complaint (_("cannot determine context for virtual member "
15556 "function \"%s\" (offset %s)"),
15557 fieldname, sect_offset_str (die->sect_off));
15562 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15566 else if (attr_form_is_section_offset (attr))
15568 dwarf2_complex_location_expr_complaint ();
15572 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15578 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15579 if (attr && DW_UNSND (attr))
15581 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15582 complaint (_("Member function \"%s\" (offset %s) is virtual "
15583 "but the vtable offset is not specified"),
15584 fieldname, sect_offset_str (die->sect_off));
15585 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15586 TYPE_CPLUS_DYNAMIC (type) = 1;
15591 /* Create the vector of member function fields, and attach it to the type. */
15594 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15595 struct dwarf2_cu *cu)
15597 if (cu->language == language_ada)
15598 error (_("unexpected member functions in Ada type"));
15600 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15601 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15603 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15605 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15607 struct fnfieldlist &nf = fip->fnfieldlists[i];
15608 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15610 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15611 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15612 fn_flp->fn_fields = (struct fn_field *)
15613 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15615 for (int k = 0; k < nf.fnfields.size (); ++k)
15616 fn_flp->fn_fields[k] = nf.fnfields[k];
15619 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15622 /* Returns non-zero if NAME is the name of a vtable member in CU's
15623 language, zero otherwise. */
15625 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15627 static const char vptr[] = "_vptr";
15629 /* Look for the C++ form of the vtable. */
15630 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15636 /* GCC outputs unnamed structures that are really pointers to member
15637 functions, with the ABI-specified layout. If TYPE describes
15638 such a structure, smash it into a member function type.
15640 GCC shouldn't do this; it should just output pointer to member DIEs.
15641 This is GCC PR debug/28767. */
15644 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15646 struct type *pfn_type, *self_type, *new_type;
15648 /* Check for a structure with no name and two children. */
15649 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15652 /* Check for __pfn and __delta members. */
15653 if (TYPE_FIELD_NAME (type, 0) == NULL
15654 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15655 || TYPE_FIELD_NAME (type, 1) == NULL
15656 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15659 /* Find the type of the method. */
15660 pfn_type = TYPE_FIELD_TYPE (type, 0);
15661 if (pfn_type == NULL
15662 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15663 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15666 /* Look for the "this" argument. */
15667 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15668 if (TYPE_NFIELDS (pfn_type) == 0
15669 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15670 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15673 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15674 new_type = alloc_type (objfile);
15675 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15676 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15677 TYPE_VARARGS (pfn_type));
15678 smash_to_methodptr_type (type, new_type);
15681 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15682 appropriate error checking and issuing complaints if there is a
15686 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15688 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15690 if (attr == nullptr)
15693 if (!attr_form_is_constant (attr))
15695 complaint (_("DW_AT_alignment must have constant form"
15696 " - DIE at %s [in module %s]"),
15697 sect_offset_str (die->sect_off),
15698 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15703 if (attr->form == DW_FORM_sdata)
15705 LONGEST val = DW_SND (attr);
15708 complaint (_("DW_AT_alignment value must not be negative"
15709 " - DIE at %s [in module %s]"),
15710 sect_offset_str (die->sect_off),
15711 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15717 align = DW_UNSND (attr);
15721 complaint (_("DW_AT_alignment value must not be zero"
15722 " - DIE at %s [in module %s]"),
15723 sect_offset_str (die->sect_off),
15724 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15727 if ((align & (align - 1)) != 0)
15729 complaint (_("DW_AT_alignment value must be a power of 2"
15730 " - DIE at %s [in module %s]"),
15731 sect_offset_str (die->sect_off),
15732 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15739 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15740 the alignment for TYPE. */
15743 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15746 if (!set_type_align (type, get_alignment (cu, die)))
15747 complaint (_("DW_AT_alignment value too large"
15748 " - DIE at %s [in module %s]"),
15749 sect_offset_str (die->sect_off),
15750 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15753 /* Called when we find the DIE that starts a structure or union scope
15754 (definition) to create a type for the structure or union. Fill in
15755 the type's name and general properties; the members will not be
15756 processed until process_structure_scope. A symbol table entry for
15757 the type will also not be done until process_structure_scope (assuming
15758 the type has a name).
15760 NOTE: we need to call these functions regardless of whether or not the
15761 DIE has a DW_AT_name attribute, since it might be an anonymous
15762 structure or union. This gets the type entered into our set of
15763 user defined types. */
15765 static struct type *
15766 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15768 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15770 struct attribute *attr;
15773 /* If the definition of this type lives in .debug_types, read that type.
15774 Don't follow DW_AT_specification though, that will take us back up
15775 the chain and we want to go down. */
15776 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15779 type = get_DW_AT_signature_type (die, attr, cu);
15781 /* The type's CU may not be the same as CU.
15782 Ensure TYPE is recorded with CU in die_type_hash. */
15783 return set_die_type (die, type, cu);
15786 type = alloc_type (objfile);
15787 INIT_CPLUS_SPECIFIC (type);
15789 name = dwarf2_name (die, cu);
15792 if (cu->language == language_cplus
15793 || cu->language == language_d
15794 || cu->language == language_rust)
15796 const char *full_name = dwarf2_full_name (name, die, cu);
15798 /* dwarf2_full_name might have already finished building the DIE's
15799 type. If so, there is no need to continue. */
15800 if (get_die_type (die, cu) != NULL)
15801 return get_die_type (die, cu);
15803 TYPE_NAME (type) = full_name;
15807 /* The name is already allocated along with this objfile, so
15808 we don't need to duplicate it for the type. */
15809 TYPE_NAME (type) = name;
15813 if (die->tag == DW_TAG_structure_type)
15815 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15817 else if (die->tag == DW_TAG_union_type)
15819 TYPE_CODE (type) = TYPE_CODE_UNION;
15821 else if (die->tag == DW_TAG_variant_part)
15823 TYPE_CODE (type) = TYPE_CODE_UNION;
15824 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15828 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15831 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15832 TYPE_DECLARED_CLASS (type) = 1;
15834 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15837 if (attr_form_is_constant (attr))
15838 TYPE_LENGTH (type) = DW_UNSND (attr);
15841 /* For the moment, dynamic type sizes are not supported
15842 by GDB's struct type. The actual size is determined
15843 on-demand when resolving the type of a given object,
15844 so set the type's length to zero for now. Otherwise,
15845 we record an expression as the length, and that expression
15846 could lead to a very large value, which could eventually
15847 lead to us trying to allocate that much memory when creating
15848 a value of that type. */
15849 TYPE_LENGTH (type) = 0;
15854 TYPE_LENGTH (type) = 0;
15857 maybe_set_alignment (cu, die, type);
15859 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15861 /* ICC<14 does not output the required DW_AT_declaration on
15862 incomplete types, but gives them a size of zero. */
15863 TYPE_STUB (type) = 1;
15866 TYPE_STUB_SUPPORTED (type) = 1;
15868 if (die_is_declaration (die, cu))
15869 TYPE_STUB (type) = 1;
15870 else if (attr == NULL && die->child == NULL
15871 && producer_is_realview (cu->producer))
15872 /* RealView does not output the required DW_AT_declaration
15873 on incomplete types. */
15874 TYPE_STUB (type) = 1;
15876 /* We need to add the type field to the die immediately so we don't
15877 infinitely recurse when dealing with pointers to the structure
15878 type within the structure itself. */
15879 set_die_type (die, type, cu);
15881 /* set_die_type should be already done. */
15882 set_descriptive_type (type, die, cu);
15887 /* A helper for process_structure_scope that handles a single member
15891 handle_struct_member_die (struct die_info *child_die, struct type *type,
15892 struct field_info *fi,
15893 std::vector<struct symbol *> *template_args,
15894 struct dwarf2_cu *cu)
15896 if (child_die->tag == DW_TAG_member
15897 || child_die->tag == DW_TAG_variable
15898 || child_die->tag == DW_TAG_variant_part)
15900 /* NOTE: carlton/2002-11-05: A C++ static data member
15901 should be a DW_TAG_member that is a declaration, but
15902 all versions of G++ as of this writing (so through at
15903 least 3.2.1) incorrectly generate DW_TAG_variable
15904 tags for them instead. */
15905 dwarf2_add_field (fi, child_die, cu);
15907 else if (child_die->tag == DW_TAG_subprogram)
15909 /* Rust doesn't have member functions in the C++ sense.
15910 However, it does emit ordinary functions as children
15911 of a struct DIE. */
15912 if (cu->language == language_rust)
15913 read_func_scope (child_die, cu);
15916 /* C++ member function. */
15917 dwarf2_add_member_fn (fi, child_die, type, cu);
15920 else if (child_die->tag == DW_TAG_inheritance)
15922 /* C++ base class field. */
15923 dwarf2_add_field (fi, child_die, cu);
15925 else if (type_can_define_types (child_die))
15926 dwarf2_add_type_defn (fi, child_die, cu);
15927 else if (child_die->tag == DW_TAG_template_type_param
15928 || child_die->tag == DW_TAG_template_value_param)
15930 struct symbol *arg = new_symbol (child_die, NULL, cu);
15933 template_args->push_back (arg);
15935 else if (child_die->tag == DW_TAG_variant)
15937 /* In a variant we want to get the discriminant and also add a
15938 field for our sole member child. */
15939 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15941 for (struct die_info *variant_child = child_die->child;
15942 variant_child != NULL;
15943 variant_child = sibling_die (variant_child))
15945 if (variant_child->tag == DW_TAG_member)
15947 handle_struct_member_die (variant_child, type, fi,
15948 template_args, cu);
15949 /* Only handle the one. */
15954 /* We don't handle this but we might as well report it if we see
15956 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15957 complaint (_("DW_AT_discr_list is not supported yet"
15958 " - DIE at %s [in module %s]"),
15959 sect_offset_str (child_die->sect_off),
15960 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15962 /* The first field was just added, so we can stash the
15963 discriminant there. */
15964 gdb_assert (!fi->fields.empty ());
15966 fi->fields.back ().variant.default_branch = true;
15968 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15972 /* Finish creating a structure or union type, including filling in
15973 its members and creating a symbol for it. */
15976 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15978 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15979 struct die_info *child_die;
15982 type = get_die_type (die, cu);
15984 type = read_structure_type (die, cu);
15986 /* When reading a DW_TAG_variant_part, we need to notice when we
15987 read the discriminant member, so we can record it later in the
15988 discriminant_info. */
15989 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15990 sect_offset discr_offset;
15991 bool has_template_parameters = false;
15993 if (is_variant_part)
15995 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15998 /* Maybe it's a univariant form, an extension we support.
15999 In this case arrange not to check the offset. */
16000 is_variant_part = false;
16002 else if (attr_form_is_ref (discr))
16004 struct dwarf2_cu *target_cu = cu;
16005 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16007 discr_offset = target_die->sect_off;
16011 complaint (_("DW_AT_discr does not have DIE reference form"
16012 " - DIE at %s [in module %s]"),
16013 sect_offset_str (die->sect_off),
16014 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16015 is_variant_part = false;
16019 if (die->child != NULL && ! die_is_declaration (die, cu))
16021 struct field_info fi;
16022 std::vector<struct symbol *> template_args;
16024 child_die = die->child;
16026 while (child_die && child_die->tag)
16028 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16030 if (is_variant_part && discr_offset == child_die->sect_off)
16031 fi.fields.back ().variant.is_discriminant = true;
16033 child_die = sibling_die (child_die);
16036 /* Attach template arguments to type. */
16037 if (!template_args.empty ())
16039 has_template_parameters = true;
16040 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16041 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16042 TYPE_TEMPLATE_ARGUMENTS (type)
16043 = XOBNEWVEC (&objfile->objfile_obstack,
16045 TYPE_N_TEMPLATE_ARGUMENTS (type));
16046 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16047 template_args.data (),
16048 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16049 * sizeof (struct symbol *)));
16052 /* Attach fields and member functions to the type. */
16054 dwarf2_attach_fields_to_type (&fi, type, cu);
16055 if (!fi.fnfieldlists.empty ())
16057 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16059 /* Get the type which refers to the base class (possibly this
16060 class itself) which contains the vtable pointer for the current
16061 class from the DW_AT_containing_type attribute. This use of
16062 DW_AT_containing_type is a GNU extension. */
16064 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16066 struct type *t = die_containing_type (die, cu);
16068 set_type_vptr_basetype (type, t);
16073 /* Our own class provides vtbl ptr. */
16074 for (i = TYPE_NFIELDS (t) - 1;
16075 i >= TYPE_N_BASECLASSES (t);
16078 const char *fieldname = TYPE_FIELD_NAME (t, i);
16080 if (is_vtable_name (fieldname, cu))
16082 set_type_vptr_fieldno (type, i);
16087 /* Complain if virtual function table field not found. */
16088 if (i < TYPE_N_BASECLASSES (t))
16089 complaint (_("virtual function table pointer "
16090 "not found when defining class '%s'"),
16091 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16095 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16098 else if (cu->producer
16099 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16101 /* The IBM XLC compiler does not provide direct indication
16102 of the containing type, but the vtable pointer is
16103 always named __vfp. */
16107 for (i = TYPE_NFIELDS (type) - 1;
16108 i >= TYPE_N_BASECLASSES (type);
16111 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16113 set_type_vptr_fieldno (type, i);
16114 set_type_vptr_basetype (type, type);
16121 /* Copy fi.typedef_field_list linked list elements content into the
16122 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16123 if (!fi.typedef_field_list.empty ())
16125 int count = fi.typedef_field_list.size ();
16127 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16128 TYPE_TYPEDEF_FIELD_ARRAY (type)
16129 = ((struct decl_field *)
16131 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16132 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16134 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16135 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16138 /* Copy fi.nested_types_list linked list elements content into the
16139 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16140 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16142 int count = fi.nested_types_list.size ();
16144 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16145 TYPE_NESTED_TYPES_ARRAY (type)
16146 = ((struct decl_field *)
16147 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16148 TYPE_NESTED_TYPES_COUNT (type) = count;
16150 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16151 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16155 quirk_gcc_member_function_pointer (type, objfile);
16156 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16157 cu->rust_unions.push_back (type);
16159 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16160 snapshots) has been known to create a die giving a declaration
16161 for a class that has, as a child, a die giving a definition for a
16162 nested class. So we have to process our children even if the
16163 current die is a declaration. Normally, of course, a declaration
16164 won't have any children at all. */
16166 child_die = die->child;
16168 while (child_die != NULL && child_die->tag)
16170 if (child_die->tag == DW_TAG_member
16171 || child_die->tag == DW_TAG_variable
16172 || child_die->tag == DW_TAG_inheritance
16173 || child_die->tag == DW_TAG_template_value_param
16174 || child_die->tag == DW_TAG_template_type_param)
16179 process_die (child_die, cu);
16181 child_die = sibling_die (child_die);
16184 /* Do not consider external references. According to the DWARF standard,
16185 these DIEs are identified by the fact that they have no byte_size
16186 attribute, and a declaration attribute. */
16187 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16188 || !die_is_declaration (die, cu))
16190 struct symbol *sym = new_symbol (die, type, cu);
16192 if (has_template_parameters)
16194 /* Make sure that the symtab is set on the new symbols.
16195 Even though they don't appear in this symtab directly,
16196 other parts of gdb assume that symbols do, and this is
16197 reasonably true. */
16198 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16199 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16200 symbol_symtab (sym));
16205 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16206 update TYPE using some information only available in DIE's children. */
16209 update_enumeration_type_from_children (struct die_info *die,
16211 struct dwarf2_cu *cu)
16213 struct die_info *child_die;
16214 int unsigned_enum = 1;
16218 auto_obstack obstack;
16220 for (child_die = die->child;
16221 child_die != NULL && child_die->tag;
16222 child_die = sibling_die (child_die))
16224 struct attribute *attr;
16226 const gdb_byte *bytes;
16227 struct dwarf2_locexpr_baton *baton;
16230 if (child_die->tag != DW_TAG_enumerator)
16233 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16237 name = dwarf2_name (child_die, cu);
16239 name = "<anonymous enumerator>";
16241 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16242 &value, &bytes, &baton);
16248 else if ((mask & value) != 0)
16253 /* If we already know that the enum type is neither unsigned, nor
16254 a flag type, no need to look at the rest of the enumerates. */
16255 if (!unsigned_enum && !flag_enum)
16260 TYPE_UNSIGNED (type) = 1;
16262 TYPE_FLAG_ENUM (type) = 1;
16265 /* Given a DW_AT_enumeration_type die, set its type. We do not
16266 complete the type's fields yet, or create any symbols. */
16268 static struct type *
16269 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16271 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16273 struct attribute *attr;
16276 /* If the definition of this type lives in .debug_types, read that type.
16277 Don't follow DW_AT_specification though, that will take us back up
16278 the chain and we want to go down. */
16279 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16282 type = get_DW_AT_signature_type (die, attr, cu);
16284 /* The type's CU may not be the same as CU.
16285 Ensure TYPE is recorded with CU in die_type_hash. */
16286 return set_die_type (die, type, cu);
16289 type = alloc_type (objfile);
16291 TYPE_CODE (type) = TYPE_CODE_ENUM;
16292 name = dwarf2_full_name (NULL, die, cu);
16294 TYPE_NAME (type) = name;
16296 attr = dwarf2_attr (die, DW_AT_type, cu);
16299 struct type *underlying_type = die_type (die, cu);
16301 TYPE_TARGET_TYPE (type) = underlying_type;
16304 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16307 TYPE_LENGTH (type) = DW_UNSND (attr);
16311 TYPE_LENGTH (type) = 0;
16314 maybe_set_alignment (cu, die, type);
16316 /* The enumeration DIE can be incomplete. In Ada, any type can be
16317 declared as private in the package spec, and then defined only
16318 inside the package body. Such types are known as Taft Amendment
16319 Types. When another package uses such a type, an incomplete DIE
16320 may be generated by the compiler. */
16321 if (die_is_declaration (die, cu))
16322 TYPE_STUB (type) = 1;
16324 /* Finish the creation of this type by using the enum's children.
16325 We must call this even when the underlying type has been provided
16326 so that we can determine if we're looking at a "flag" enum. */
16327 update_enumeration_type_from_children (die, type, cu);
16329 /* If this type has an underlying type that is not a stub, then we
16330 may use its attributes. We always use the "unsigned" attribute
16331 in this situation, because ordinarily we guess whether the type
16332 is unsigned -- but the guess can be wrong and the underlying type
16333 can tell us the reality. However, we defer to a local size
16334 attribute if one exists, because this lets the compiler override
16335 the underlying type if needed. */
16336 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16338 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16339 if (TYPE_LENGTH (type) == 0)
16340 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16341 if (TYPE_RAW_ALIGN (type) == 0
16342 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16343 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16346 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16348 return set_die_type (die, type, cu);
16351 /* Given a pointer to a die which begins an enumeration, process all
16352 the dies that define the members of the enumeration, and create the
16353 symbol for the enumeration type.
16355 NOTE: We reverse the order of the element list. */
16358 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16360 struct type *this_type;
16362 this_type = get_die_type (die, cu);
16363 if (this_type == NULL)
16364 this_type = read_enumeration_type (die, cu);
16366 if (die->child != NULL)
16368 struct die_info *child_die;
16369 struct symbol *sym;
16370 struct field *fields = NULL;
16371 int num_fields = 0;
16374 child_die = die->child;
16375 while (child_die && child_die->tag)
16377 if (child_die->tag != DW_TAG_enumerator)
16379 process_die (child_die, cu);
16383 name = dwarf2_name (child_die, cu);
16386 sym = new_symbol (child_die, this_type, cu);
16388 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16390 fields = (struct field *)
16392 (num_fields + DW_FIELD_ALLOC_CHUNK)
16393 * sizeof (struct field));
16396 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16397 FIELD_TYPE (fields[num_fields]) = NULL;
16398 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16399 FIELD_BITSIZE (fields[num_fields]) = 0;
16405 child_die = sibling_die (child_die);
16410 TYPE_NFIELDS (this_type) = num_fields;
16411 TYPE_FIELDS (this_type) = (struct field *)
16412 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16413 memcpy (TYPE_FIELDS (this_type), fields,
16414 sizeof (struct field) * num_fields);
16419 /* If we are reading an enum from a .debug_types unit, and the enum
16420 is a declaration, and the enum is not the signatured type in the
16421 unit, then we do not want to add a symbol for it. Adding a
16422 symbol would in some cases obscure the true definition of the
16423 enum, giving users an incomplete type when the definition is
16424 actually available. Note that we do not want to do this for all
16425 enums which are just declarations, because C++0x allows forward
16426 enum declarations. */
16427 if (cu->per_cu->is_debug_types
16428 && die_is_declaration (die, cu))
16430 struct signatured_type *sig_type;
16432 sig_type = (struct signatured_type *) cu->per_cu;
16433 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16434 if (sig_type->type_offset_in_section != die->sect_off)
16438 new_symbol (die, this_type, cu);
16441 /* Extract all information from a DW_TAG_array_type DIE and put it in
16442 the DIE's type field. For now, this only handles one dimensional
16445 static struct type *
16446 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16448 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16449 struct die_info *child_die;
16451 struct type *element_type, *range_type, *index_type;
16452 struct attribute *attr;
16454 struct dynamic_prop *byte_stride_prop = NULL;
16455 unsigned int bit_stride = 0;
16457 element_type = die_type (die, cu);
16459 /* The die_type call above may have already set the type for this DIE. */
16460 type = get_die_type (die, cu);
16464 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16470 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16471 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16474 complaint (_("unable to read array DW_AT_byte_stride "
16475 " - DIE at %s [in module %s]"),
16476 sect_offset_str (die->sect_off),
16477 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16478 /* Ignore this attribute. We will likely not be able to print
16479 arrays of this type correctly, but there is little we can do
16480 to help if we cannot read the attribute's value. */
16481 byte_stride_prop = NULL;
16485 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16487 bit_stride = DW_UNSND (attr);
16489 /* Irix 6.2 native cc creates array types without children for
16490 arrays with unspecified length. */
16491 if (die->child == NULL)
16493 index_type = objfile_type (objfile)->builtin_int;
16494 range_type = create_static_range_type (NULL, index_type, 0, -1);
16495 type = create_array_type_with_stride (NULL, element_type, range_type,
16496 byte_stride_prop, bit_stride);
16497 return set_die_type (die, type, cu);
16500 std::vector<struct type *> range_types;
16501 child_die = die->child;
16502 while (child_die && child_die->tag)
16504 if (child_die->tag == DW_TAG_subrange_type)
16506 struct type *child_type = read_type_die (child_die, cu);
16508 if (child_type != NULL)
16510 /* The range type was succesfully read. Save it for the
16511 array type creation. */
16512 range_types.push_back (child_type);
16515 child_die = sibling_die (child_die);
16518 /* Dwarf2 dimensions are output from left to right, create the
16519 necessary array types in backwards order. */
16521 type = element_type;
16523 if (read_array_order (die, cu) == DW_ORD_col_major)
16527 while (i < range_types.size ())
16528 type = create_array_type_with_stride (NULL, type, range_types[i++],
16529 byte_stride_prop, bit_stride);
16533 size_t ndim = range_types.size ();
16535 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16536 byte_stride_prop, bit_stride);
16539 /* Understand Dwarf2 support for vector types (like they occur on
16540 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16541 array type. This is not part of the Dwarf2/3 standard yet, but a
16542 custom vendor extension. The main difference between a regular
16543 array and the vector variant is that vectors are passed by value
16545 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16547 make_vector_type (type);
16549 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16550 implementation may choose to implement triple vectors using this
16552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16555 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16556 TYPE_LENGTH (type) = DW_UNSND (attr);
16558 complaint (_("DW_AT_byte_size for array type smaller "
16559 "than the total size of elements"));
16562 name = dwarf2_name (die, cu);
16564 TYPE_NAME (type) = name;
16566 maybe_set_alignment (cu, die, type);
16568 /* Install the type in the die. */
16569 set_die_type (die, type, cu);
16571 /* set_die_type should be already done. */
16572 set_descriptive_type (type, die, cu);
16577 static enum dwarf_array_dim_ordering
16578 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16580 struct attribute *attr;
16582 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16585 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16587 /* GNU F77 is a special case, as at 08/2004 array type info is the
16588 opposite order to the dwarf2 specification, but data is still
16589 laid out as per normal fortran.
16591 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16592 version checking. */
16594 if (cu->language == language_fortran
16595 && cu->producer && strstr (cu->producer, "GNU F77"))
16597 return DW_ORD_row_major;
16600 switch (cu->language_defn->la_array_ordering)
16602 case array_column_major:
16603 return DW_ORD_col_major;
16604 case array_row_major:
16606 return DW_ORD_row_major;
16610 /* Extract all information from a DW_TAG_set_type DIE and put it in
16611 the DIE's type field. */
16613 static struct type *
16614 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16616 struct type *domain_type, *set_type;
16617 struct attribute *attr;
16619 domain_type = die_type (die, cu);
16621 /* The die_type call above may have already set the type for this DIE. */
16622 set_type = get_die_type (die, cu);
16626 set_type = create_set_type (NULL, domain_type);
16628 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16630 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16632 maybe_set_alignment (cu, die, set_type);
16634 return set_die_type (die, set_type, cu);
16637 /* A helper for read_common_block that creates a locexpr baton.
16638 SYM is the symbol which we are marking as computed.
16639 COMMON_DIE is the DIE for the common block.
16640 COMMON_LOC is the location expression attribute for the common
16642 MEMBER_LOC is the location expression attribute for the particular
16643 member of the common block that we are processing.
16644 CU is the CU from which the above come. */
16647 mark_common_block_symbol_computed (struct symbol *sym,
16648 struct die_info *common_die,
16649 struct attribute *common_loc,
16650 struct attribute *member_loc,
16651 struct dwarf2_cu *cu)
16653 struct dwarf2_per_objfile *dwarf2_per_objfile
16654 = cu->per_cu->dwarf2_per_objfile;
16655 struct objfile *objfile = dwarf2_per_objfile->objfile;
16656 struct dwarf2_locexpr_baton *baton;
16658 unsigned int cu_off;
16659 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16660 LONGEST offset = 0;
16662 gdb_assert (common_loc && member_loc);
16663 gdb_assert (attr_form_is_block (common_loc));
16664 gdb_assert (attr_form_is_block (member_loc)
16665 || attr_form_is_constant (member_loc));
16667 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16668 baton->per_cu = cu->per_cu;
16669 gdb_assert (baton->per_cu);
16671 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16673 if (attr_form_is_constant (member_loc))
16675 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16676 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16679 baton->size += DW_BLOCK (member_loc)->size;
16681 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16684 *ptr++ = DW_OP_call4;
16685 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16686 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16689 if (attr_form_is_constant (member_loc))
16691 *ptr++ = DW_OP_addr;
16692 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16693 ptr += cu->header.addr_size;
16697 /* We have to copy the data here, because DW_OP_call4 will only
16698 use a DW_AT_location attribute. */
16699 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16700 ptr += DW_BLOCK (member_loc)->size;
16703 *ptr++ = DW_OP_plus;
16704 gdb_assert (ptr - baton->data == baton->size);
16706 SYMBOL_LOCATION_BATON (sym) = baton;
16707 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16710 /* Create appropriate locally-scoped variables for all the
16711 DW_TAG_common_block entries. Also create a struct common_block
16712 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16713 is used to sepate the common blocks name namespace from regular
16717 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16719 struct attribute *attr;
16721 attr = dwarf2_attr (die, DW_AT_location, cu);
16724 /* Support the .debug_loc offsets. */
16725 if (attr_form_is_block (attr))
16729 else if (attr_form_is_section_offset (attr))
16731 dwarf2_complex_location_expr_complaint ();
16736 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16737 "common block member");
16742 if (die->child != NULL)
16744 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16745 struct die_info *child_die;
16746 size_t n_entries = 0, size;
16747 struct common_block *common_block;
16748 struct symbol *sym;
16750 for (child_die = die->child;
16751 child_die && child_die->tag;
16752 child_die = sibling_die (child_die))
16755 size = (sizeof (struct common_block)
16756 + (n_entries - 1) * sizeof (struct symbol *));
16758 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16760 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16761 common_block->n_entries = 0;
16763 for (child_die = die->child;
16764 child_die && child_die->tag;
16765 child_die = sibling_die (child_die))
16767 /* Create the symbol in the DW_TAG_common_block block in the current
16769 sym = new_symbol (child_die, NULL, cu);
16772 struct attribute *member_loc;
16774 common_block->contents[common_block->n_entries++] = sym;
16776 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16780 /* GDB has handled this for a long time, but it is
16781 not specified by DWARF. It seems to have been
16782 emitted by gfortran at least as recently as:
16783 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16784 complaint (_("Variable in common block has "
16785 "DW_AT_data_member_location "
16786 "- DIE at %s [in module %s]"),
16787 sect_offset_str (child_die->sect_off),
16788 objfile_name (objfile));
16790 if (attr_form_is_section_offset (member_loc))
16791 dwarf2_complex_location_expr_complaint ();
16792 else if (attr_form_is_constant (member_loc)
16793 || attr_form_is_block (member_loc))
16796 mark_common_block_symbol_computed (sym, die, attr,
16800 dwarf2_complex_location_expr_complaint ();
16805 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16806 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16810 /* Create a type for a C++ namespace. */
16812 static struct type *
16813 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16815 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16816 const char *previous_prefix, *name;
16820 /* For extensions, reuse the type of the original namespace. */
16821 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16823 struct die_info *ext_die;
16824 struct dwarf2_cu *ext_cu = cu;
16826 ext_die = dwarf2_extension (die, &ext_cu);
16827 type = read_type_die (ext_die, ext_cu);
16829 /* EXT_CU may not be the same as CU.
16830 Ensure TYPE is recorded with CU in die_type_hash. */
16831 return set_die_type (die, type, cu);
16834 name = namespace_name (die, &is_anonymous, cu);
16836 /* Now build the name of the current namespace. */
16838 previous_prefix = determine_prefix (die, cu);
16839 if (previous_prefix[0] != '\0')
16840 name = typename_concat (&objfile->objfile_obstack,
16841 previous_prefix, name, 0, cu);
16843 /* Create the type. */
16844 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16846 return set_die_type (die, type, cu);
16849 /* Read a namespace scope. */
16852 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16854 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16857 /* Add a symbol associated to this if we haven't seen the namespace
16858 before. Also, add a using directive if it's an anonymous
16861 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16865 type = read_type_die (die, cu);
16866 new_symbol (die, type, cu);
16868 namespace_name (die, &is_anonymous, cu);
16871 const char *previous_prefix = determine_prefix (die, cu);
16873 std::vector<const char *> excludes;
16874 add_using_directive (using_directives (cu),
16875 previous_prefix, TYPE_NAME (type), NULL,
16876 NULL, excludes, 0, &objfile->objfile_obstack);
16880 if (die->child != NULL)
16882 struct die_info *child_die = die->child;
16884 while (child_die && child_die->tag)
16886 process_die (child_die, cu);
16887 child_die = sibling_die (child_die);
16892 /* Read a Fortran module as type. This DIE can be only a declaration used for
16893 imported module. Still we need that type as local Fortran "use ... only"
16894 declaration imports depend on the created type in determine_prefix. */
16896 static struct type *
16897 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16899 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16900 const char *module_name;
16903 module_name = dwarf2_name (die, cu);
16905 complaint (_("DW_TAG_module has no name, offset %s"),
16906 sect_offset_str (die->sect_off));
16907 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16909 return set_die_type (die, type, cu);
16912 /* Read a Fortran module. */
16915 read_module (struct die_info *die, struct dwarf2_cu *cu)
16917 struct die_info *child_die = die->child;
16920 type = read_type_die (die, cu);
16921 new_symbol (die, type, cu);
16923 while (child_die && child_die->tag)
16925 process_die (child_die, cu);
16926 child_die = sibling_die (child_die);
16930 /* Return the name of the namespace represented by DIE. Set
16931 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16934 static const char *
16935 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16937 struct die_info *current_die;
16938 const char *name = NULL;
16940 /* Loop through the extensions until we find a name. */
16942 for (current_die = die;
16943 current_die != NULL;
16944 current_die = dwarf2_extension (die, &cu))
16946 /* We don't use dwarf2_name here so that we can detect the absence
16947 of a name -> anonymous namespace. */
16948 name = dwarf2_string_attr (die, DW_AT_name, cu);
16954 /* Is it an anonymous namespace? */
16956 *is_anonymous = (name == NULL);
16958 name = CP_ANONYMOUS_NAMESPACE_STR;
16963 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16964 the user defined type vector. */
16966 static struct type *
16967 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16969 struct gdbarch *gdbarch
16970 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16971 struct comp_unit_head *cu_header = &cu->header;
16973 struct attribute *attr_byte_size;
16974 struct attribute *attr_address_class;
16975 int byte_size, addr_class;
16976 struct type *target_type;
16978 target_type = die_type (die, cu);
16980 /* The die_type call above may have already set the type for this DIE. */
16981 type = get_die_type (die, cu);
16985 type = lookup_pointer_type (target_type);
16987 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16988 if (attr_byte_size)
16989 byte_size = DW_UNSND (attr_byte_size);
16991 byte_size = cu_header->addr_size;
16993 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16994 if (attr_address_class)
16995 addr_class = DW_UNSND (attr_address_class);
16997 addr_class = DW_ADDR_none;
16999 ULONGEST alignment = get_alignment (cu, die);
17001 /* If the pointer size, alignment, or address class is different
17002 than the default, create a type variant marked as such and set
17003 the length accordingly. */
17004 if (TYPE_LENGTH (type) != byte_size
17005 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17006 && alignment != TYPE_RAW_ALIGN (type))
17007 || addr_class != DW_ADDR_none)
17009 if (gdbarch_address_class_type_flags_p (gdbarch))
17013 type_flags = gdbarch_address_class_type_flags
17014 (gdbarch, byte_size, addr_class);
17015 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17017 type = make_type_with_address_space (type, type_flags);
17019 else if (TYPE_LENGTH (type) != byte_size)
17021 complaint (_("invalid pointer size %d"), byte_size);
17023 else if (TYPE_RAW_ALIGN (type) != alignment)
17025 complaint (_("Invalid DW_AT_alignment"
17026 " - DIE at %s [in module %s]"),
17027 sect_offset_str (die->sect_off),
17028 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17032 /* Should we also complain about unhandled address classes? */
17036 TYPE_LENGTH (type) = byte_size;
17037 set_type_align (type, alignment);
17038 return set_die_type (die, type, cu);
17041 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17042 the user defined type vector. */
17044 static struct type *
17045 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17048 struct type *to_type;
17049 struct type *domain;
17051 to_type = die_type (die, cu);
17052 domain = die_containing_type (die, cu);
17054 /* The calls above may have already set the type for this DIE. */
17055 type = get_die_type (die, cu);
17059 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17060 type = lookup_methodptr_type (to_type);
17061 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17063 struct type *new_type
17064 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17066 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17067 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17068 TYPE_VARARGS (to_type));
17069 type = lookup_methodptr_type (new_type);
17072 type = lookup_memberptr_type (to_type, domain);
17074 return set_die_type (die, type, cu);
17077 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17078 the user defined type vector. */
17080 static struct type *
17081 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17082 enum type_code refcode)
17084 struct comp_unit_head *cu_header = &cu->header;
17085 struct type *type, *target_type;
17086 struct attribute *attr;
17088 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17090 target_type = die_type (die, cu);
17092 /* The die_type call above may have already set the type for this DIE. */
17093 type = get_die_type (die, cu);
17097 type = lookup_reference_type (target_type, refcode);
17098 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17101 TYPE_LENGTH (type) = DW_UNSND (attr);
17105 TYPE_LENGTH (type) = cu_header->addr_size;
17107 maybe_set_alignment (cu, die, type);
17108 return set_die_type (die, type, cu);
17111 /* Add the given cv-qualifiers to the element type of the array. GCC
17112 outputs DWARF type qualifiers that apply to an array, not the
17113 element type. But GDB relies on the array element type to carry
17114 the cv-qualifiers. This mimics section 6.7.3 of the C99
17117 static struct type *
17118 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17119 struct type *base_type, int cnst, int voltl)
17121 struct type *el_type, *inner_array;
17123 base_type = copy_type (base_type);
17124 inner_array = base_type;
17126 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17128 TYPE_TARGET_TYPE (inner_array) =
17129 copy_type (TYPE_TARGET_TYPE (inner_array));
17130 inner_array = TYPE_TARGET_TYPE (inner_array);
17133 el_type = TYPE_TARGET_TYPE (inner_array);
17134 cnst |= TYPE_CONST (el_type);
17135 voltl |= TYPE_VOLATILE (el_type);
17136 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17138 return set_die_type (die, base_type, cu);
17141 static struct type *
17142 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17144 struct type *base_type, *cv_type;
17146 base_type = die_type (die, cu);
17148 /* The die_type call above may have already set the type for this DIE. */
17149 cv_type = get_die_type (die, cu);
17153 /* In case the const qualifier is applied to an array type, the element type
17154 is so qualified, not the array type (section 6.7.3 of C99). */
17155 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17156 return add_array_cv_type (die, cu, base_type, 1, 0);
17158 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17159 return set_die_type (die, cv_type, cu);
17162 static struct type *
17163 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17165 struct type *base_type, *cv_type;
17167 base_type = die_type (die, cu);
17169 /* The die_type call above may have already set the type for this DIE. */
17170 cv_type = get_die_type (die, cu);
17174 /* In case the volatile qualifier is applied to an array type, the
17175 element type is so qualified, not the array type (section 6.7.3
17177 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17178 return add_array_cv_type (die, cu, base_type, 0, 1);
17180 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17181 return set_die_type (die, cv_type, cu);
17184 /* Handle DW_TAG_restrict_type. */
17186 static struct type *
17187 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17189 struct type *base_type, *cv_type;
17191 base_type = die_type (die, cu);
17193 /* The die_type call above may have already set the type for this DIE. */
17194 cv_type = get_die_type (die, cu);
17198 cv_type = make_restrict_type (base_type);
17199 return set_die_type (die, cv_type, cu);
17202 /* Handle DW_TAG_atomic_type. */
17204 static struct type *
17205 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17207 struct type *base_type, *cv_type;
17209 base_type = die_type (die, cu);
17211 /* The die_type call above may have already set the type for this DIE. */
17212 cv_type = get_die_type (die, cu);
17216 cv_type = make_atomic_type (base_type);
17217 return set_die_type (die, cv_type, cu);
17220 /* Extract all information from a DW_TAG_string_type DIE and add to
17221 the user defined type vector. It isn't really a user defined type,
17222 but it behaves like one, with other DIE's using an AT_user_def_type
17223 attribute to reference it. */
17225 static struct type *
17226 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17228 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17230 struct type *type, *range_type, *index_type, *char_type;
17231 struct attribute *attr;
17232 unsigned int length;
17234 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17237 length = DW_UNSND (attr);
17241 /* Check for the DW_AT_byte_size attribute. */
17242 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17245 length = DW_UNSND (attr);
17253 index_type = objfile_type (objfile)->builtin_int;
17254 range_type = create_static_range_type (NULL, index_type, 1, length);
17255 char_type = language_string_char_type (cu->language_defn, gdbarch);
17256 type = create_string_type (NULL, char_type, range_type);
17258 return set_die_type (die, type, cu);
17261 /* Assuming that DIE corresponds to a function, returns nonzero
17262 if the function is prototyped. */
17265 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17267 struct attribute *attr;
17269 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17270 if (attr && (DW_UNSND (attr) != 0))
17273 /* The DWARF standard implies that the DW_AT_prototyped attribute
17274 is only meaninful for C, but the concept also extends to other
17275 languages that allow unprototyped functions (Eg: Objective C).
17276 For all other languages, assume that functions are always
17278 if (cu->language != language_c
17279 && cu->language != language_objc
17280 && cu->language != language_opencl)
17283 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17284 prototyped and unprototyped functions; default to prototyped,
17285 since that is more common in modern code (and RealView warns
17286 about unprototyped functions). */
17287 if (producer_is_realview (cu->producer))
17293 /* Handle DIES due to C code like:
17297 int (*funcp)(int a, long l);
17301 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17303 static struct type *
17304 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17306 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17307 struct type *type; /* Type that this function returns. */
17308 struct type *ftype; /* Function that returns above type. */
17309 struct attribute *attr;
17311 type = die_type (die, cu);
17313 /* The die_type call above may have already set the type for this DIE. */
17314 ftype = get_die_type (die, cu);
17318 ftype = lookup_function_type (type);
17320 if (prototyped_function_p (die, cu))
17321 TYPE_PROTOTYPED (ftype) = 1;
17323 /* Store the calling convention in the type if it's available in
17324 the subroutine die. Otherwise set the calling convention to
17325 the default value DW_CC_normal. */
17326 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17328 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17329 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17330 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17332 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17334 /* Record whether the function returns normally to its caller or not
17335 if the DWARF producer set that information. */
17336 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17337 if (attr && (DW_UNSND (attr) != 0))
17338 TYPE_NO_RETURN (ftype) = 1;
17340 /* We need to add the subroutine type to the die immediately so
17341 we don't infinitely recurse when dealing with parameters
17342 declared as the same subroutine type. */
17343 set_die_type (die, ftype, cu);
17345 if (die->child != NULL)
17347 struct type *void_type = objfile_type (objfile)->builtin_void;
17348 struct die_info *child_die;
17349 int nparams, iparams;
17351 /* Count the number of parameters.
17352 FIXME: GDB currently ignores vararg functions, but knows about
17353 vararg member functions. */
17355 child_die = die->child;
17356 while (child_die && child_die->tag)
17358 if (child_die->tag == DW_TAG_formal_parameter)
17360 else if (child_die->tag == DW_TAG_unspecified_parameters)
17361 TYPE_VARARGS (ftype) = 1;
17362 child_die = sibling_die (child_die);
17365 /* Allocate storage for parameters and fill them in. */
17366 TYPE_NFIELDS (ftype) = nparams;
17367 TYPE_FIELDS (ftype) = (struct field *)
17368 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17370 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17371 even if we error out during the parameters reading below. */
17372 for (iparams = 0; iparams < nparams; iparams++)
17373 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17376 child_die = die->child;
17377 while (child_die && child_die->tag)
17379 if (child_die->tag == DW_TAG_formal_parameter)
17381 struct type *arg_type;
17383 /* DWARF version 2 has no clean way to discern C++
17384 static and non-static member functions. G++ helps
17385 GDB by marking the first parameter for non-static
17386 member functions (which is the this pointer) as
17387 artificial. We pass this information to
17388 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17390 DWARF version 3 added DW_AT_object_pointer, which GCC
17391 4.5 does not yet generate. */
17392 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17394 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17396 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17397 arg_type = die_type (child_die, cu);
17399 /* RealView does not mark THIS as const, which the testsuite
17400 expects. GCC marks THIS as const in method definitions,
17401 but not in the class specifications (GCC PR 43053). */
17402 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17403 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17406 struct dwarf2_cu *arg_cu = cu;
17407 const char *name = dwarf2_name (child_die, cu);
17409 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17412 /* If the compiler emits this, use it. */
17413 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17416 else if (name && strcmp (name, "this") == 0)
17417 /* Function definitions will have the argument names. */
17419 else if (name == NULL && iparams == 0)
17420 /* Declarations may not have the names, so like
17421 elsewhere in GDB, assume an artificial first
17422 argument is "this". */
17426 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17430 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17433 child_die = sibling_die (child_die);
17440 static struct type *
17441 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17443 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17444 const char *name = NULL;
17445 struct type *this_type, *target_type;
17447 name = dwarf2_full_name (NULL, die, cu);
17448 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17449 TYPE_TARGET_STUB (this_type) = 1;
17450 set_die_type (die, this_type, cu);
17451 target_type = die_type (die, cu);
17452 if (target_type != this_type)
17453 TYPE_TARGET_TYPE (this_type) = target_type;
17456 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17457 spec and cause infinite loops in GDB. */
17458 complaint (_("Self-referential DW_TAG_typedef "
17459 "- DIE at %s [in module %s]"),
17460 sect_offset_str (die->sect_off), objfile_name (objfile));
17461 TYPE_TARGET_TYPE (this_type) = NULL;
17466 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17467 (which may be different from NAME) to the architecture back-end to allow
17468 it to guess the correct format if necessary. */
17470 static struct type *
17471 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17472 const char *name_hint)
17474 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17475 const struct floatformat **format;
17478 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17480 type = init_float_type (objfile, bits, name, format);
17482 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17487 /* Find a representation of a given base type and install
17488 it in the TYPE field of the die. */
17490 static struct type *
17491 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17493 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17495 struct attribute *attr;
17496 int encoding = 0, bits = 0;
17499 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17502 encoding = DW_UNSND (attr);
17504 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17507 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17509 name = dwarf2_name (die, cu);
17512 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17517 case DW_ATE_address:
17518 /* Turn DW_ATE_address into a void * pointer. */
17519 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17520 type = init_pointer_type (objfile, bits, name, type);
17522 case DW_ATE_boolean:
17523 type = init_boolean_type (objfile, bits, 1, name);
17525 case DW_ATE_complex_float:
17526 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17527 type = init_complex_type (objfile, name, type);
17529 case DW_ATE_decimal_float:
17530 type = init_decfloat_type (objfile, bits, name);
17533 type = dwarf2_init_float_type (objfile, bits, name, name);
17535 case DW_ATE_signed:
17536 type = init_integer_type (objfile, bits, 0, name);
17538 case DW_ATE_unsigned:
17539 if (cu->language == language_fortran
17541 && startswith (name, "character("))
17542 type = init_character_type (objfile, bits, 1, name);
17544 type = init_integer_type (objfile, bits, 1, name);
17546 case DW_ATE_signed_char:
17547 if (cu->language == language_ada || cu->language == language_m2
17548 || cu->language == language_pascal
17549 || cu->language == language_fortran)
17550 type = init_character_type (objfile, bits, 0, name);
17552 type = init_integer_type (objfile, bits, 0, name);
17554 case DW_ATE_unsigned_char:
17555 if (cu->language == language_ada || cu->language == language_m2
17556 || cu->language == language_pascal
17557 || cu->language == language_fortran
17558 || cu->language == language_rust)
17559 type = init_character_type (objfile, bits, 1, name);
17561 type = init_integer_type (objfile, bits, 1, name);
17565 gdbarch *arch = get_objfile_arch (objfile);
17568 type = builtin_type (arch)->builtin_char16;
17569 else if (bits == 32)
17570 type = builtin_type (arch)->builtin_char32;
17573 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17575 type = init_integer_type (objfile, bits, 1, name);
17577 return set_die_type (die, type, cu);
17582 complaint (_("unsupported DW_AT_encoding: '%s'"),
17583 dwarf_type_encoding_name (encoding));
17584 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17588 if (name && strcmp (name, "char") == 0)
17589 TYPE_NOSIGN (type) = 1;
17591 maybe_set_alignment (cu, die, type);
17593 return set_die_type (die, type, cu);
17596 /* Parse dwarf attribute if it's a block, reference or constant and put the
17597 resulting value of the attribute into struct bound_prop.
17598 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17601 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17602 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17604 struct dwarf2_property_baton *baton;
17605 struct obstack *obstack
17606 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17608 if (attr == NULL || prop == NULL)
17611 if (attr_form_is_block (attr))
17613 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17614 baton->referenced_type = NULL;
17615 baton->locexpr.per_cu = cu->per_cu;
17616 baton->locexpr.size = DW_BLOCK (attr)->size;
17617 baton->locexpr.data = DW_BLOCK (attr)->data;
17618 prop->data.baton = baton;
17619 prop->kind = PROP_LOCEXPR;
17620 gdb_assert (prop->data.baton != NULL);
17622 else if (attr_form_is_ref (attr))
17624 struct dwarf2_cu *target_cu = cu;
17625 struct die_info *target_die;
17626 struct attribute *target_attr;
17628 target_die = follow_die_ref (die, attr, &target_cu);
17629 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17630 if (target_attr == NULL)
17631 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17633 if (target_attr == NULL)
17636 switch (target_attr->name)
17638 case DW_AT_location:
17639 if (attr_form_is_section_offset (target_attr))
17641 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17642 baton->referenced_type = die_type (target_die, target_cu);
17643 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17644 prop->data.baton = baton;
17645 prop->kind = PROP_LOCLIST;
17646 gdb_assert (prop->data.baton != NULL);
17648 else if (attr_form_is_block (target_attr))
17650 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17651 baton->referenced_type = die_type (target_die, target_cu);
17652 baton->locexpr.per_cu = cu->per_cu;
17653 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17654 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17655 prop->data.baton = baton;
17656 prop->kind = PROP_LOCEXPR;
17657 gdb_assert (prop->data.baton != NULL);
17661 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17662 "dynamic property");
17666 case DW_AT_data_member_location:
17670 if (!handle_data_member_location (target_die, target_cu,
17674 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17675 baton->referenced_type = read_type_die (target_die->parent,
17677 baton->offset_info.offset = offset;
17678 baton->offset_info.type = die_type (target_die, target_cu);
17679 prop->data.baton = baton;
17680 prop->kind = PROP_ADDR_OFFSET;
17685 else if (attr_form_is_constant (attr))
17687 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17688 prop->kind = PROP_CONST;
17692 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17693 dwarf2_name (die, cu));
17700 /* Read the given DW_AT_subrange DIE. */
17702 static struct type *
17703 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17705 struct type *base_type, *orig_base_type;
17706 struct type *range_type;
17707 struct attribute *attr;
17708 struct dynamic_prop low, high;
17709 int low_default_is_valid;
17710 int high_bound_is_count = 0;
17712 LONGEST negative_mask;
17714 orig_base_type = die_type (die, cu);
17715 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17716 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17717 creating the range type, but we use the result of check_typedef
17718 when examining properties of the type. */
17719 base_type = check_typedef (orig_base_type);
17721 /* The die_type call above may have already set the type for this DIE. */
17722 range_type = get_die_type (die, cu);
17726 low.kind = PROP_CONST;
17727 high.kind = PROP_CONST;
17728 high.data.const_val = 0;
17730 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17731 omitting DW_AT_lower_bound. */
17732 switch (cu->language)
17735 case language_cplus:
17736 low.data.const_val = 0;
17737 low_default_is_valid = 1;
17739 case language_fortran:
17740 low.data.const_val = 1;
17741 low_default_is_valid = 1;
17744 case language_objc:
17745 case language_rust:
17746 low.data.const_val = 0;
17747 low_default_is_valid = (cu->header.version >= 4);
17751 case language_pascal:
17752 low.data.const_val = 1;
17753 low_default_is_valid = (cu->header.version >= 4);
17756 low.data.const_val = 0;
17757 low_default_is_valid = 0;
17761 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17763 attr_to_dynamic_prop (attr, die, cu, &low);
17764 else if (!low_default_is_valid)
17765 complaint (_("Missing DW_AT_lower_bound "
17766 "- DIE at %s [in module %s]"),
17767 sect_offset_str (die->sect_off),
17768 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17770 struct attribute *attr_ub, *attr_count;
17771 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17772 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17774 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17775 if (attr_to_dynamic_prop (attr, die, cu, &high))
17777 /* If bounds are constant do the final calculation here. */
17778 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17779 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17781 high_bound_is_count = 1;
17785 if (attr_ub != NULL)
17786 complaint (_("Unresolved DW_AT_upper_bound "
17787 "- DIE at %s [in module %s]"),
17788 sect_offset_str (die->sect_off),
17789 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17790 if (attr_count != NULL)
17791 complaint (_("Unresolved DW_AT_count "
17792 "- DIE at %s [in module %s]"),
17793 sect_offset_str (die->sect_off),
17794 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17799 /* Dwarf-2 specifications explicitly allows to create subrange types
17800 without specifying a base type.
17801 In that case, the base type must be set to the type of
17802 the lower bound, upper bound or count, in that order, if any of these
17803 three attributes references an object that has a type.
17804 If no base type is found, the Dwarf-2 specifications say that
17805 a signed integer type of size equal to the size of an address should
17807 For the following C code: `extern char gdb_int [];'
17808 GCC produces an empty range DIE.
17809 FIXME: muller/2010-05-28: Possible references to object for low bound,
17810 high bound or count are not yet handled by this code. */
17811 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17813 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17814 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17815 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17816 struct type *int_type = objfile_type (objfile)->builtin_int;
17818 /* Test "int", "long int", and "long long int" objfile types,
17819 and select the first one having a size above or equal to the
17820 architecture address size. */
17821 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17822 base_type = int_type;
17825 int_type = objfile_type (objfile)->builtin_long;
17826 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17827 base_type = int_type;
17830 int_type = objfile_type (objfile)->builtin_long_long;
17831 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17832 base_type = int_type;
17837 /* Normally, the DWARF producers are expected to use a signed
17838 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17839 But this is unfortunately not always the case, as witnessed
17840 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17841 is used instead. To work around that ambiguity, we treat
17842 the bounds as signed, and thus sign-extend their values, when
17843 the base type is signed. */
17845 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17846 if (low.kind == PROP_CONST
17847 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17848 low.data.const_val |= negative_mask;
17849 if (high.kind == PROP_CONST
17850 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17851 high.data.const_val |= negative_mask;
17853 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17855 if (high_bound_is_count)
17856 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17858 /* Ada expects an empty array on no boundary attributes. */
17859 if (attr == NULL && cu->language != language_ada)
17860 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17862 name = dwarf2_name (die, cu);
17864 TYPE_NAME (range_type) = name;
17866 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17868 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17870 maybe_set_alignment (cu, die, range_type);
17872 set_die_type (die, range_type, cu);
17874 /* set_die_type should be already done. */
17875 set_descriptive_type (range_type, die, cu);
17880 static struct type *
17881 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17885 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17887 TYPE_NAME (type) = dwarf2_name (die, cu);
17889 /* In Ada, an unspecified type is typically used when the description
17890 of the type is defered to a different unit. When encountering
17891 such a type, we treat it as a stub, and try to resolve it later on,
17893 if (cu->language == language_ada)
17894 TYPE_STUB (type) = 1;
17896 return set_die_type (die, type, cu);
17899 /* Read a single die and all its descendents. Set the die's sibling
17900 field to NULL; set other fields in the die correctly, and set all
17901 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17902 location of the info_ptr after reading all of those dies. PARENT
17903 is the parent of the die in question. */
17905 static struct die_info *
17906 read_die_and_children (const struct die_reader_specs *reader,
17907 const gdb_byte *info_ptr,
17908 const gdb_byte **new_info_ptr,
17909 struct die_info *parent)
17911 struct die_info *die;
17912 const gdb_byte *cur_ptr;
17915 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17918 *new_info_ptr = cur_ptr;
17921 store_in_ref_table (die, reader->cu);
17924 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17928 *new_info_ptr = cur_ptr;
17931 die->sibling = NULL;
17932 die->parent = parent;
17936 /* Read a die, all of its descendents, and all of its siblings; set
17937 all of the fields of all of the dies correctly. Arguments are as
17938 in read_die_and_children. */
17940 static struct die_info *
17941 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17942 const gdb_byte *info_ptr,
17943 const gdb_byte **new_info_ptr,
17944 struct die_info *parent)
17946 struct die_info *first_die, *last_sibling;
17947 const gdb_byte *cur_ptr;
17949 cur_ptr = info_ptr;
17950 first_die = last_sibling = NULL;
17954 struct die_info *die
17955 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17959 *new_info_ptr = cur_ptr;
17966 last_sibling->sibling = die;
17968 last_sibling = die;
17972 /* Read a die, all of its descendents, and all of its siblings; set
17973 all of the fields of all of the dies correctly. Arguments are as
17974 in read_die_and_children.
17975 This the main entry point for reading a DIE and all its children. */
17977 static struct die_info *
17978 read_die_and_siblings (const struct die_reader_specs *reader,
17979 const gdb_byte *info_ptr,
17980 const gdb_byte **new_info_ptr,
17981 struct die_info *parent)
17983 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17984 new_info_ptr, parent);
17986 if (dwarf_die_debug)
17988 fprintf_unfiltered (gdb_stdlog,
17989 "Read die from %s@0x%x of %s:\n",
17990 get_section_name (reader->die_section),
17991 (unsigned) (info_ptr - reader->die_section->buffer),
17992 bfd_get_filename (reader->abfd));
17993 dump_die (die, dwarf_die_debug);
17999 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18001 The caller is responsible for filling in the extra attributes
18002 and updating (*DIEP)->num_attrs.
18003 Set DIEP to point to a newly allocated die with its information,
18004 except for its child, sibling, and parent fields.
18005 Set HAS_CHILDREN to tell whether the die has children or not. */
18007 static const gdb_byte *
18008 read_full_die_1 (const struct die_reader_specs *reader,
18009 struct die_info **diep, const gdb_byte *info_ptr,
18010 int *has_children, int num_extra_attrs)
18012 unsigned int abbrev_number, bytes_read, i;
18013 struct abbrev_info *abbrev;
18014 struct die_info *die;
18015 struct dwarf2_cu *cu = reader->cu;
18016 bfd *abfd = reader->abfd;
18018 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18019 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18020 info_ptr += bytes_read;
18021 if (!abbrev_number)
18028 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18030 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18032 bfd_get_filename (abfd));
18034 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18035 die->sect_off = sect_off;
18036 die->tag = abbrev->tag;
18037 die->abbrev = abbrev_number;
18039 /* Make the result usable.
18040 The caller needs to update num_attrs after adding the extra
18042 die->num_attrs = abbrev->num_attrs;
18044 for (i = 0; i < abbrev->num_attrs; ++i)
18045 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18049 *has_children = abbrev->has_children;
18053 /* Read a die and all its attributes.
18054 Set DIEP to point to a newly allocated die with its information,
18055 except for its child, sibling, and parent fields.
18056 Set HAS_CHILDREN to tell whether the die has children or not. */
18058 static const gdb_byte *
18059 read_full_die (const struct die_reader_specs *reader,
18060 struct die_info **diep, const gdb_byte *info_ptr,
18063 const gdb_byte *result;
18065 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18067 if (dwarf_die_debug)
18069 fprintf_unfiltered (gdb_stdlog,
18070 "Read die from %s@0x%x of %s:\n",
18071 get_section_name (reader->die_section),
18072 (unsigned) (info_ptr - reader->die_section->buffer),
18073 bfd_get_filename (reader->abfd));
18074 dump_die (*diep, dwarf_die_debug);
18080 /* Abbreviation tables.
18082 In DWARF version 2, the description of the debugging information is
18083 stored in a separate .debug_abbrev section. Before we read any
18084 dies from a section we read in all abbreviations and install them
18085 in a hash table. */
18087 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18089 struct abbrev_info *
18090 abbrev_table::alloc_abbrev ()
18092 struct abbrev_info *abbrev;
18094 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18095 memset (abbrev, 0, sizeof (struct abbrev_info));
18100 /* Add an abbreviation to the table. */
18103 abbrev_table::add_abbrev (unsigned int abbrev_number,
18104 struct abbrev_info *abbrev)
18106 unsigned int hash_number;
18108 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18109 abbrev->next = m_abbrevs[hash_number];
18110 m_abbrevs[hash_number] = abbrev;
18113 /* Look up an abbrev in the table.
18114 Returns NULL if the abbrev is not found. */
18116 struct abbrev_info *
18117 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18119 unsigned int hash_number;
18120 struct abbrev_info *abbrev;
18122 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18123 abbrev = m_abbrevs[hash_number];
18127 if (abbrev->number == abbrev_number)
18129 abbrev = abbrev->next;
18134 /* Read in an abbrev table. */
18136 static abbrev_table_up
18137 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18138 struct dwarf2_section_info *section,
18139 sect_offset sect_off)
18141 struct objfile *objfile = dwarf2_per_objfile->objfile;
18142 bfd *abfd = get_section_bfd_owner (section);
18143 const gdb_byte *abbrev_ptr;
18144 struct abbrev_info *cur_abbrev;
18145 unsigned int abbrev_number, bytes_read, abbrev_name;
18146 unsigned int abbrev_form;
18147 struct attr_abbrev *cur_attrs;
18148 unsigned int allocated_attrs;
18150 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18152 dwarf2_read_section (objfile, section);
18153 abbrev_ptr = section->buffer + to_underlying (sect_off);
18154 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18155 abbrev_ptr += bytes_read;
18157 allocated_attrs = ATTR_ALLOC_CHUNK;
18158 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18160 /* Loop until we reach an abbrev number of 0. */
18161 while (abbrev_number)
18163 cur_abbrev = abbrev_table->alloc_abbrev ();
18165 /* read in abbrev header */
18166 cur_abbrev->number = abbrev_number;
18168 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18169 abbrev_ptr += bytes_read;
18170 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18173 /* now read in declarations */
18176 LONGEST implicit_const;
18178 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18179 abbrev_ptr += bytes_read;
18180 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18181 abbrev_ptr += bytes_read;
18182 if (abbrev_form == DW_FORM_implicit_const)
18184 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18186 abbrev_ptr += bytes_read;
18190 /* Initialize it due to a false compiler warning. */
18191 implicit_const = -1;
18194 if (abbrev_name == 0)
18197 if (cur_abbrev->num_attrs == allocated_attrs)
18199 allocated_attrs += ATTR_ALLOC_CHUNK;
18201 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18204 cur_attrs[cur_abbrev->num_attrs].name
18205 = (enum dwarf_attribute) abbrev_name;
18206 cur_attrs[cur_abbrev->num_attrs].form
18207 = (enum dwarf_form) abbrev_form;
18208 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18209 ++cur_abbrev->num_attrs;
18212 cur_abbrev->attrs =
18213 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18214 cur_abbrev->num_attrs);
18215 memcpy (cur_abbrev->attrs, cur_attrs,
18216 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18218 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18220 /* Get next abbreviation.
18221 Under Irix6 the abbreviations for a compilation unit are not
18222 always properly terminated with an abbrev number of 0.
18223 Exit loop if we encounter an abbreviation which we have
18224 already read (which means we are about to read the abbreviations
18225 for the next compile unit) or if the end of the abbreviation
18226 table is reached. */
18227 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18229 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18230 abbrev_ptr += bytes_read;
18231 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18236 return abbrev_table;
18239 /* Returns nonzero if TAG represents a type that we might generate a partial
18243 is_type_tag_for_partial (int tag)
18248 /* Some types that would be reasonable to generate partial symbols for,
18249 that we don't at present. */
18250 case DW_TAG_array_type:
18251 case DW_TAG_file_type:
18252 case DW_TAG_ptr_to_member_type:
18253 case DW_TAG_set_type:
18254 case DW_TAG_string_type:
18255 case DW_TAG_subroutine_type:
18257 case DW_TAG_base_type:
18258 case DW_TAG_class_type:
18259 case DW_TAG_interface_type:
18260 case DW_TAG_enumeration_type:
18261 case DW_TAG_structure_type:
18262 case DW_TAG_subrange_type:
18263 case DW_TAG_typedef:
18264 case DW_TAG_union_type:
18271 /* Load all DIEs that are interesting for partial symbols into memory. */
18273 static struct partial_die_info *
18274 load_partial_dies (const struct die_reader_specs *reader,
18275 const gdb_byte *info_ptr, int building_psymtab)
18277 struct dwarf2_cu *cu = reader->cu;
18278 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18279 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18280 unsigned int bytes_read;
18281 unsigned int load_all = 0;
18282 int nesting_level = 1;
18287 gdb_assert (cu->per_cu != NULL);
18288 if (cu->per_cu->load_all_dies)
18292 = htab_create_alloc_ex (cu->header.length / 12,
18296 &cu->comp_unit_obstack,
18297 hashtab_obstack_allocate,
18298 dummy_obstack_deallocate);
18302 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18304 /* A NULL abbrev means the end of a series of children. */
18305 if (abbrev == NULL)
18307 if (--nesting_level == 0)
18310 info_ptr += bytes_read;
18311 last_die = parent_die;
18312 parent_die = parent_die->die_parent;
18316 /* Check for template arguments. We never save these; if
18317 they're seen, we just mark the parent, and go on our way. */
18318 if (parent_die != NULL
18319 && cu->language == language_cplus
18320 && (abbrev->tag == DW_TAG_template_type_param
18321 || abbrev->tag == DW_TAG_template_value_param))
18323 parent_die->has_template_arguments = 1;
18327 /* We don't need a partial DIE for the template argument. */
18328 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18333 /* We only recurse into c++ subprograms looking for template arguments.
18334 Skip their other children. */
18336 && cu->language == language_cplus
18337 && parent_die != NULL
18338 && parent_die->tag == DW_TAG_subprogram)
18340 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18344 /* Check whether this DIE is interesting enough to save. Normally
18345 we would not be interested in members here, but there may be
18346 later variables referencing them via DW_AT_specification (for
18347 static members). */
18349 && !is_type_tag_for_partial (abbrev->tag)
18350 && abbrev->tag != DW_TAG_constant
18351 && abbrev->tag != DW_TAG_enumerator
18352 && abbrev->tag != DW_TAG_subprogram
18353 && abbrev->tag != DW_TAG_inlined_subroutine
18354 && abbrev->tag != DW_TAG_lexical_block
18355 && abbrev->tag != DW_TAG_variable
18356 && abbrev->tag != DW_TAG_namespace
18357 && abbrev->tag != DW_TAG_module
18358 && abbrev->tag != DW_TAG_member
18359 && abbrev->tag != DW_TAG_imported_unit
18360 && abbrev->tag != DW_TAG_imported_declaration)
18362 /* Otherwise we skip to the next sibling, if any. */
18363 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18367 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18370 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18372 /* This two-pass algorithm for processing partial symbols has a
18373 high cost in cache pressure. Thus, handle some simple cases
18374 here which cover the majority of C partial symbols. DIEs
18375 which neither have specification tags in them, nor could have
18376 specification tags elsewhere pointing at them, can simply be
18377 processed and discarded.
18379 This segment is also optional; scan_partial_symbols and
18380 add_partial_symbol will handle these DIEs if we chain
18381 them in normally. When compilers which do not emit large
18382 quantities of duplicate debug information are more common,
18383 this code can probably be removed. */
18385 /* Any complete simple types at the top level (pretty much all
18386 of them, for a language without namespaces), can be processed
18388 if (parent_die == NULL
18389 && pdi.has_specification == 0
18390 && pdi.is_declaration == 0
18391 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18392 || pdi.tag == DW_TAG_base_type
18393 || pdi.tag == DW_TAG_subrange_type))
18395 if (building_psymtab && pdi.name != NULL)
18396 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18397 VAR_DOMAIN, LOC_TYPEDEF, -1,
18398 &objfile->static_psymbols,
18399 0, cu->language, objfile);
18400 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18404 /* The exception for DW_TAG_typedef with has_children above is
18405 a workaround of GCC PR debug/47510. In the case of this complaint
18406 type_name_or_error will error on such types later.
18408 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18409 it could not find the child DIEs referenced later, this is checked
18410 above. In correct DWARF DW_TAG_typedef should have no children. */
18412 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18413 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18414 "- DIE at %s [in module %s]"),
18415 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18417 /* If we're at the second level, and we're an enumerator, and
18418 our parent has no specification (meaning possibly lives in a
18419 namespace elsewhere), then we can add the partial symbol now
18420 instead of queueing it. */
18421 if (pdi.tag == DW_TAG_enumerator
18422 && parent_die != NULL
18423 && parent_die->die_parent == NULL
18424 && parent_die->tag == DW_TAG_enumeration_type
18425 && parent_die->has_specification == 0)
18427 if (pdi.name == NULL)
18428 complaint (_("malformed enumerator DIE ignored"));
18429 else if (building_psymtab)
18430 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18431 VAR_DOMAIN, LOC_CONST, -1,
18432 cu->language == language_cplus
18433 ? &objfile->global_psymbols
18434 : &objfile->static_psymbols,
18435 0, cu->language, objfile);
18437 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18441 struct partial_die_info *part_die
18442 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18444 /* We'll save this DIE so link it in. */
18445 part_die->die_parent = parent_die;
18446 part_die->die_sibling = NULL;
18447 part_die->die_child = NULL;
18449 if (last_die && last_die == parent_die)
18450 last_die->die_child = part_die;
18452 last_die->die_sibling = part_die;
18454 last_die = part_die;
18456 if (first_die == NULL)
18457 first_die = part_die;
18459 /* Maybe add the DIE to the hash table. Not all DIEs that we
18460 find interesting need to be in the hash table, because we
18461 also have the parent/sibling/child chains; only those that we
18462 might refer to by offset later during partial symbol reading.
18464 For now this means things that might have be the target of a
18465 DW_AT_specification, DW_AT_abstract_origin, or
18466 DW_AT_extension. DW_AT_extension will refer only to
18467 namespaces; DW_AT_abstract_origin refers to functions (and
18468 many things under the function DIE, but we do not recurse
18469 into function DIEs during partial symbol reading) and
18470 possibly variables as well; DW_AT_specification refers to
18471 declarations. Declarations ought to have the DW_AT_declaration
18472 flag. It happens that GCC forgets to put it in sometimes, but
18473 only for functions, not for types.
18475 Adding more things than necessary to the hash table is harmless
18476 except for the performance cost. Adding too few will result in
18477 wasted time in find_partial_die, when we reread the compilation
18478 unit with load_all_dies set. */
18481 || abbrev->tag == DW_TAG_constant
18482 || abbrev->tag == DW_TAG_subprogram
18483 || abbrev->tag == DW_TAG_variable
18484 || abbrev->tag == DW_TAG_namespace
18485 || part_die->is_declaration)
18489 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18490 to_underlying (part_die->sect_off),
18495 /* For some DIEs we want to follow their children (if any). For C
18496 we have no reason to follow the children of structures; for other
18497 languages we have to, so that we can get at method physnames
18498 to infer fully qualified class names, for DW_AT_specification,
18499 and for C++ template arguments. For C++, we also look one level
18500 inside functions to find template arguments (if the name of the
18501 function does not already contain the template arguments).
18503 For Ada, we need to scan the children of subprograms and lexical
18504 blocks as well because Ada allows the definition of nested
18505 entities that could be interesting for the debugger, such as
18506 nested subprograms for instance. */
18507 if (last_die->has_children
18509 || last_die->tag == DW_TAG_namespace
18510 || last_die->tag == DW_TAG_module
18511 || last_die->tag == DW_TAG_enumeration_type
18512 || (cu->language == language_cplus
18513 && last_die->tag == DW_TAG_subprogram
18514 && (last_die->name == NULL
18515 || strchr (last_die->name, '<') == NULL))
18516 || (cu->language != language_c
18517 && (last_die->tag == DW_TAG_class_type
18518 || last_die->tag == DW_TAG_interface_type
18519 || last_die->tag == DW_TAG_structure_type
18520 || last_die->tag == DW_TAG_union_type))
18521 || (cu->language == language_ada
18522 && (last_die->tag == DW_TAG_subprogram
18523 || last_die->tag == DW_TAG_lexical_block))))
18526 parent_die = last_die;
18530 /* Otherwise we skip to the next sibling, if any. */
18531 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18533 /* Back to the top, do it again. */
18537 partial_die_info::partial_die_info (sect_offset sect_off_,
18538 struct abbrev_info *abbrev)
18539 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18543 /* Read a minimal amount of information into the minimal die structure.
18544 INFO_PTR should point just after the initial uleb128 of a DIE. */
18547 partial_die_info::read (const struct die_reader_specs *reader,
18548 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18550 struct dwarf2_cu *cu = reader->cu;
18551 struct dwarf2_per_objfile *dwarf2_per_objfile
18552 = cu->per_cu->dwarf2_per_objfile;
18554 int has_low_pc_attr = 0;
18555 int has_high_pc_attr = 0;
18556 int high_pc_relative = 0;
18558 for (i = 0; i < abbrev.num_attrs; ++i)
18560 struct attribute attr;
18562 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18564 /* Store the data if it is of an attribute we want to keep in a
18565 partial symbol table. */
18571 case DW_TAG_compile_unit:
18572 case DW_TAG_partial_unit:
18573 case DW_TAG_type_unit:
18574 /* Compilation units have a DW_AT_name that is a filename, not
18575 a source language identifier. */
18576 case DW_TAG_enumeration_type:
18577 case DW_TAG_enumerator:
18578 /* These tags always have simple identifiers already; no need
18579 to canonicalize them. */
18580 name = DW_STRING (&attr);
18584 struct objfile *objfile = dwarf2_per_objfile->objfile;
18587 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18588 &objfile->per_bfd->storage_obstack);
18593 case DW_AT_linkage_name:
18594 case DW_AT_MIPS_linkage_name:
18595 /* Note that both forms of linkage name might appear. We
18596 assume they will be the same, and we only store the last
18598 if (cu->language == language_ada)
18599 name = DW_STRING (&attr);
18600 linkage_name = DW_STRING (&attr);
18603 has_low_pc_attr = 1;
18604 lowpc = attr_value_as_address (&attr);
18606 case DW_AT_high_pc:
18607 has_high_pc_attr = 1;
18608 highpc = attr_value_as_address (&attr);
18609 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18610 high_pc_relative = 1;
18612 case DW_AT_location:
18613 /* Support the .debug_loc offsets. */
18614 if (attr_form_is_block (&attr))
18616 d.locdesc = DW_BLOCK (&attr);
18618 else if (attr_form_is_section_offset (&attr))
18620 dwarf2_complex_location_expr_complaint ();
18624 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18625 "partial symbol information");
18628 case DW_AT_external:
18629 is_external = DW_UNSND (&attr);
18631 case DW_AT_declaration:
18632 is_declaration = DW_UNSND (&attr);
18637 case DW_AT_abstract_origin:
18638 case DW_AT_specification:
18639 case DW_AT_extension:
18640 has_specification = 1;
18641 spec_offset = dwarf2_get_ref_die_offset (&attr);
18642 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18643 || cu->per_cu->is_dwz);
18645 case DW_AT_sibling:
18646 /* Ignore absolute siblings, they might point outside of
18647 the current compile unit. */
18648 if (attr.form == DW_FORM_ref_addr)
18649 complaint (_("ignoring absolute DW_AT_sibling"));
18652 const gdb_byte *buffer = reader->buffer;
18653 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18654 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18656 if (sibling_ptr < info_ptr)
18657 complaint (_("DW_AT_sibling points backwards"));
18658 else if (sibling_ptr > reader->buffer_end)
18659 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18661 sibling = sibling_ptr;
18664 case DW_AT_byte_size:
18667 case DW_AT_const_value:
18668 has_const_value = 1;
18670 case DW_AT_calling_convention:
18671 /* DWARF doesn't provide a way to identify a program's source-level
18672 entry point. DW_AT_calling_convention attributes are only meant
18673 to describe functions' calling conventions.
18675 However, because it's a necessary piece of information in
18676 Fortran, and before DWARF 4 DW_CC_program was the only
18677 piece of debugging information whose definition refers to
18678 a 'main program' at all, several compilers marked Fortran
18679 main programs with DW_CC_program --- even when those
18680 functions use the standard calling conventions.
18682 Although DWARF now specifies a way to provide this
18683 information, we support this practice for backward
18685 if (DW_UNSND (&attr) == DW_CC_program
18686 && cu->language == language_fortran)
18687 main_subprogram = 1;
18690 if (DW_UNSND (&attr) == DW_INL_inlined
18691 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18692 may_be_inlined = 1;
18696 if (tag == DW_TAG_imported_unit)
18698 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18699 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18700 || cu->per_cu->is_dwz);
18704 case DW_AT_main_subprogram:
18705 main_subprogram = DW_UNSND (&attr);
18713 if (high_pc_relative)
18716 if (has_low_pc_attr && has_high_pc_attr)
18718 /* When using the GNU linker, .gnu.linkonce. sections are used to
18719 eliminate duplicate copies of functions and vtables and such.
18720 The linker will arbitrarily choose one and discard the others.
18721 The AT_*_pc values for such functions refer to local labels in
18722 these sections. If the section from that file was discarded, the
18723 labels are not in the output, so the relocs get a value of 0.
18724 If this is a discarded function, mark the pc bounds as invalid,
18725 so that GDB will ignore it. */
18726 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18728 struct objfile *objfile = dwarf2_per_objfile->objfile;
18729 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18731 complaint (_("DW_AT_low_pc %s is zero "
18732 "for DIE at %s [in module %s]"),
18733 paddress (gdbarch, lowpc),
18734 sect_offset_str (sect_off),
18735 objfile_name (objfile));
18737 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18738 else if (lowpc >= highpc)
18740 struct objfile *objfile = dwarf2_per_objfile->objfile;
18741 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18743 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18744 "for DIE at %s [in module %s]"),
18745 paddress (gdbarch, lowpc),
18746 paddress (gdbarch, highpc),
18747 sect_offset_str (sect_off),
18748 objfile_name (objfile));
18757 /* Find a cached partial DIE at OFFSET in CU. */
18759 struct partial_die_info *
18760 dwarf2_cu::find_partial_die (sect_offset sect_off)
18762 struct partial_die_info *lookup_die = NULL;
18763 struct partial_die_info part_die (sect_off);
18765 lookup_die = ((struct partial_die_info *)
18766 htab_find_with_hash (partial_dies, &part_die,
18767 to_underlying (sect_off)));
18772 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18773 except in the case of .debug_types DIEs which do not reference
18774 outside their CU (they do however referencing other types via
18775 DW_FORM_ref_sig8). */
18777 static struct partial_die_info *
18778 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18780 struct dwarf2_per_objfile *dwarf2_per_objfile
18781 = cu->per_cu->dwarf2_per_objfile;
18782 struct objfile *objfile = dwarf2_per_objfile->objfile;
18783 struct dwarf2_per_cu_data *per_cu = NULL;
18784 struct partial_die_info *pd = NULL;
18786 if (offset_in_dwz == cu->per_cu->is_dwz
18787 && offset_in_cu_p (&cu->header, sect_off))
18789 pd = cu->find_partial_die (sect_off);
18792 /* We missed recording what we needed.
18793 Load all dies and try again. */
18794 per_cu = cu->per_cu;
18798 /* TUs don't reference other CUs/TUs (except via type signatures). */
18799 if (cu->per_cu->is_debug_types)
18801 error (_("Dwarf Error: Type Unit at offset %s contains"
18802 " external reference to offset %s [in module %s].\n"),
18803 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18804 bfd_get_filename (objfile->obfd));
18806 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18807 dwarf2_per_objfile);
18809 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18810 load_partial_comp_unit (per_cu);
18812 per_cu->cu->last_used = 0;
18813 pd = per_cu->cu->find_partial_die (sect_off);
18816 /* If we didn't find it, and not all dies have been loaded,
18817 load them all and try again. */
18819 if (pd == NULL && per_cu->load_all_dies == 0)
18821 per_cu->load_all_dies = 1;
18823 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18824 THIS_CU->cu may already be in use. So we can't just free it and
18825 replace its DIEs with the ones we read in. Instead, we leave those
18826 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18827 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18829 load_partial_comp_unit (per_cu);
18831 pd = per_cu->cu->find_partial_die (sect_off);
18835 internal_error (__FILE__, __LINE__,
18836 _("could not find partial DIE %s "
18837 "in cache [from module %s]\n"),
18838 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18842 /* See if we can figure out if the class lives in a namespace. We do
18843 this by looking for a member function; its demangled name will
18844 contain namespace info, if there is any. */
18847 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18848 struct dwarf2_cu *cu)
18850 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18851 what template types look like, because the demangler
18852 frequently doesn't give the same name as the debug info. We
18853 could fix this by only using the demangled name to get the
18854 prefix (but see comment in read_structure_type). */
18856 struct partial_die_info *real_pdi;
18857 struct partial_die_info *child_pdi;
18859 /* If this DIE (this DIE's specification, if any) has a parent, then
18860 we should not do this. We'll prepend the parent's fully qualified
18861 name when we create the partial symbol. */
18863 real_pdi = struct_pdi;
18864 while (real_pdi->has_specification)
18865 real_pdi = find_partial_die (real_pdi->spec_offset,
18866 real_pdi->spec_is_dwz, cu);
18868 if (real_pdi->die_parent != NULL)
18871 for (child_pdi = struct_pdi->die_child;
18873 child_pdi = child_pdi->die_sibling)
18875 if (child_pdi->tag == DW_TAG_subprogram
18876 && child_pdi->linkage_name != NULL)
18878 char *actual_class_name
18879 = language_class_name_from_physname (cu->language_defn,
18880 child_pdi->linkage_name);
18881 if (actual_class_name != NULL)
18883 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18886 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18888 strlen (actual_class_name)));
18889 xfree (actual_class_name);
18897 partial_die_info::fixup (struct dwarf2_cu *cu)
18899 /* Once we've fixed up a die, there's no point in doing so again.
18900 This also avoids a memory leak if we were to call
18901 guess_partial_die_structure_name multiple times. */
18905 /* If we found a reference attribute and the DIE has no name, try
18906 to find a name in the referred to DIE. */
18908 if (name == NULL && has_specification)
18910 struct partial_die_info *spec_die;
18912 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18914 spec_die->fixup (cu);
18916 if (spec_die->name)
18918 name = spec_die->name;
18920 /* Copy DW_AT_external attribute if it is set. */
18921 if (spec_die->is_external)
18922 is_external = spec_die->is_external;
18926 /* Set default names for some unnamed DIEs. */
18928 if (name == NULL && tag == DW_TAG_namespace)
18929 name = CP_ANONYMOUS_NAMESPACE_STR;
18931 /* If there is no parent die to provide a namespace, and there are
18932 children, see if we can determine the namespace from their linkage
18934 if (cu->language == language_cplus
18935 && !VEC_empty (dwarf2_section_info_def,
18936 cu->per_cu->dwarf2_per_objfile->types)
18937 && die_parent == NULL
18939 && (tag == DW_TAG_class_type
18940 || tag == DW_TAG_structure_type
18941 || tag == DW_TAG_union_type))
18942 guess_partial_die_structure_name (this, cu);
18944 /* GCC might emit a nameless struct or union that has a linkage
18945 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18947 && (tag == DW_TAG_class_type
18948 || tag == DW_TAG_interface_type
18949 || tag == DW_TAG_structure_type
18950 || tag == DW_TAG_union_type)
18951 && linkage_name != NULL)
18955 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18960 /* Strip any leading namespaces/classes, keep only the base name.
18961 DW_AT_name for named DIEs does not contain the prefixes. */
18962 base = strrchr (demangled, ':');
18963 if (base && base > demangled && base[-1] == ':')
18968 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18971 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18972 base, strlen (base)));
18980 /* Read an attribute value described by an attribute form. */
18982 static const gdb_byte *
18983 read_attribute_value (const struct die_reader_specs *reader,
18984 struct attribute *attr, unsigned form,
18985 LONGEST implicit_const, const gdb_byte *info_ptr)
18987 struct dwarf2_cu *cu = reader->cu;
18988 struct dwarf2_per_objfile *dwarf2_per_objfile
18989 = cu->per_cu->dwarf2_per_objfile;
18990 struct objfile *objfile = dwarf2_per_objfile->objfile;
18991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18992 bfd *abfd = reader->abfd;
18993 struct comp_unit_head *cu_header = &cu->header;
18994 unsigned int bytes_read;
18995 struct dwarf_block *blk;
18997 attr->form = (enum dwarf_form) form;
19000 case DW_FORM_ref_addr:
19001 if (cu->header.version == 2)
19002 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19004 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19005 &cu->header, &bytes_read);
19006 info_ptr += bytes_read;
19008 case DW_FORM_GNU_ref_alt:
19009 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19010 info_ptr += bytes_read;
19013 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19014 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19015 info_ptr += bytes_read;
19017 case DW_FORM_block2:
19018 blk = dwarf_alloc_block (cu);
19019 blk->size = read_2_bytes (abfd, info_ptr);
19021 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19022 info_ptr += blk->size;
19023 DW_BLOCK (attr) = blk;
19025 case DW_FORM_block4:
19026 blk = dwarf_alloc_block (cu);
19027 blk->size = read_4_bytes (abfd, info_ptr);
19029 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19030 info_ptr += blk->size;
19031 DW_BLOCK (attr) = blk;
19033 case DW_FORM_data2:
19034 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19037 case DW_FORM_data4:
19038 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19041 case DW_FORM_data8:
19042 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19045 case DW_FORM_data16:
19046 blk = dwarf_alloc_block (cu);
19048 blk->data = read_n_bytes (abfd, info_ptr, 16);
19050 DW_BLOCK (attr) = blk;
19052 case DW_FORM_sec_offset:
19053 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19054 info_ptr += bytes_read;
19056 case DW_FORM_string:
19057 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19058 DW_STRING_IS_CANONICAL (attr) = 0;
19059 info_ptr += bytes_read;
19062 if (!cu->per_cu->is_dwz)
19064 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19065 abfd, info_ptr, cu_header,
19067 DW_STRING_IS_CANONICAL (attr) = 0;
19068 info_ptr += bytes_read;
19072 case DW_FORM_line_strp:
19073 if (!cu->per_cu->is_dwz)
19075 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19077 cu_header, &bytes_read);
19078 DW_STRING_IS_CANONICAL (attr) = 0;
19079 info_ptr += bytes_read;
19083 case DW_FORM_GNU_strp_alt:
19085 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19086 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19089 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19091 DW_STRING_IS_CANONICAL (attr) = 0;
19092 info_ptr += bytes_read;
19095 case DW_FORM_exprloc:
19096 case DW_FORM_block:
19097 blk = dwarf_alloc_block (cu);
19098 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19099 info_ptr += bytes_read;
19100 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19101 info_ptr += blk->size;
19102 DW_BLOCK (attr) = blk;
19104 case DW_FORM_block1:
19105 blk = dwarf_alloc_block (cu);
19106 blk->size = read_1_byte (abfd, info_ptr);
19108 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19109 info_ptr += blk->size;
19110 DW_BLOCK (attr) = blk;
19112 case DW_FORM_data1:
19113 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19117 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19120 case DW_FORM_flag_present:
19121 DW_UNSND (attr) = 1;
19123 case DW_FORM_sdata:
19124 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19125 info_ptr += bytes_read;
19127 case DW_FORM_udata:
19128 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19129 info_ptr += bytes_read;
19132 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19133 + read_1_byte (abfd, info_ptr));
19137 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19138 + read_2_bytes (abfd, info_ptr));
19142 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19143 + read_4_bytes (abfd, info_ptr));
19147 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19148 + read_8_bytes (abfd, info_ptr));
19151 case DW_FORM_ref_sig8:
19152 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19155 case DW_FORM_ref_udata:
19156 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19157 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19158 info_ptr += bytes_read;
19160 case DW_FORM_indirect:
19161 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19162 info_ptr += bytes_read;
19163 if (form == DW_FORM_implicit_const)
19165 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19166 info_ptr += bytes_read;
19168 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19171 case DW_FORM_implicit_const:
19172 DW_SND (attr) = implicit_const;
19174 case DW_FORM_GNU_addr_index:
19175 if (reader->dwo_file == NULL)
19177 /* For now flag a hard error.
19178 Later we can turn this into a complaint. */
19179 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19180 dwarf_form_name (form),
19181 bfd_get_filename (abfd));
19183 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19184 info_ptr += bytes_read;
19186 case DW_FORM_GNU_str_index:
19187 if (reader->dwo_file == NULL)
19189 /* For now flag a hard error.
19190 Later we can turn this into a complaint if warranted. */
19191 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19192 dwarf_form_name (form),
19193 bfd_get_filename (abfd));
19196 ULONGEST str_index =
19197 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19199 DW_STRING (attr) = read_str_index (reader, str_index);
19200 DW_STRING_IS_CANONICAL (attr) = 0;
19201 info_ptr += bytes_read;
19205 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19206 dwarf_form_name (form),
19207 bfd_get_filename (abfd));
19211 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19212 attr->form = DW_FORM_GNU_ref_alt;
19214 /* We have seen instances where the compiler tried to emit a byte
19215 size attribute of -1 which ended up being encoded as an unsigned
19216 0xffffffff. Although 0xffffffff is technically a valid size value,
19217 an object of this size seems pretty unlikely so we can relatively
19218 safely treat these cases as if the size attribute was invalid and
19219 treat them as zero by default. */
19220 if (attr->name == DW_AT_byte_size
19221 && form == DW_FORM_data4
19222 && DW_UNSND (attr) >= 0xffffffff)
19225 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19226 hex_string (DW_UNSND (attr)));
19227 DW_UNSND (attr) = 0;
19233 /* Read an attribute described by an abbreviated attribute. */
19235 static const gdb_byte *
19236 read_attribute (const struct die_reader_specs *reader,
19237 struct attribute *attr, struct attr_abbrev *abbrev,
19238 const gdb_byte *info_ptr)
19240 attr->name = abbrev->name;
19241 return read_attribute_value (reader, attr, abbrev->form,
19242 abbrev->implicit_const, info_ptr);
19245 /* Read dwarf information from a buffer. */
19247 static unsigned int
19248 read_1_byte (bfd *abfd, const gdb_byte *buf)
19250 return bfd_get_8 (abfd, buf);
19254 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19256 return bfd_get_signed_8 (abfd, buf);
19259 static unsigned int
19260 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19262 return bfd_get_16 (abfd, buf);
19266 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19268 return bfd_get_signed_16 (abfd, buf);
19271 static unsigned int
19272 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19274 return bfd_get_32 (abfd, buf);
19278 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19280 return bfd_get_signed_32 (abfd, buf);
19284 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19286 return bfd_get_64 (abfd, buf);
19290 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19291 unsigned int *bytes_read)
19293 struct comp_unit_head *cu_header = &cu->header;
19294 CORE_ADDR retval = 0;
19296 if (cu_header->signed_addr_p)
19298 switch (cu_header->addr_size)
19301 retval = bfd_get_signed_16 (abfd, buf);
19304 retval = bfd_get_signed_32 (abfd, buf);
19307 retval = bfd_get_signed_64 (abfd, buf);
19310 internal_error (__FILE__, __LINE__,
19311 _("read_address: bad switch, signed [in module %s]"),
19312 bfd_get_filename (abfd));
19317 switch (cu_header->addr_size)
19320 retval = bfd_get_16 (abfd, buf);
19323 retval = bfd_get_32 (abfd, buf);
19326 retval = bfd_get_64 (abfd, buf);
19329 internal_error (__FILE__, __LINE__,
19330 _("read_address: bad switch, "
19331 "unsigned [in module %s]"),
19332 bfd_get_filename (abfd));
19336 *bytes_read = cu_header->addr_size;
19340 /* Read the initial length from a section. The (draft) DWARF 3
19341 specification allows the initial length to take up either 4 bytes
19342 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19343 bytes describe the length and all offsets will be 8 bytes in length
19346 An older, non-standard 64-bit format is also handled by this
19347 function. The older format in question stores the initial length
19348 as an 8-byte quantity without an escape value. Lengths greater
19349 than 2^32 aren't very common which means that the initial 4 bytes
19350 is almost always zero. Since a length value of zero doesn't make
19351 sense for the 32-bit format, this initial zero can be considered to
19352 be an escape value which indicates the presence of the older 64-bit
19353 format. As written, the code can't detect (old format) lengths
19354 greater than 4GB. If it becomes necessary to handle lengths
19355 somewhat larger than 4GB, we could allow other small values (such
19356 as the non-sensical values of 1, 2, and 3) to also be used as
19357 escape values indicating the presence of the old format.
19359 The value returned via bytes_read should be used to increment the
19360 relevant pointer after calling read_initial_length().
19362 [ Note: read_initial_length() and read_offset() are based on the
19363 document entitled "DWARF Debugging Information Format", revision
19364 3, draft 8, dated November 19, 2001. This document was obtained
19367 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19369 This document is only a draft and is subject to change. (So beware.)
19371 Details regarding the older, non-standard 64-bit format were
19372 determined empirically by examining 64-bit ELF files produced by
19373 the SGI toolchain on an IRIX 6.5 machine.
19375 - Kevin, July 16, 2002
19379 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19381 LONGEST length = bfd_get_32 (abfd, buf);
19383 if (length == 0xffffffff)
19385 length = bfd_get_64 (abfd, buf + 4);
19388 else if (length == 0)
19390 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19391 length = bfd_get_64 (abfd, buf);
19402 /* Cover function for read_initial_length.
19403 Returns the length of the object at BUF, and stores the size of the
19404 initial length in *BYTES_READ and stores the size that offsets will be in
19406 If the initial length size is not equivalent to that specified in
19407 CU_HEADER then issue a complaint.
19408 This is useful when reading non-comp-unit headers. */
19411 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19412 const struct comp_unit_head *cu_header,
19413 unsigned int *bytes_read,
19414 unsigned int *offset_size)
19416 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19418 gdb_assert (cu_header->initial_length_size == 4
19419 || cu_header->initial_length_size == 8
19420 || cu_header->initial_length_size == 12);
19422 if (cu_header->initial_length_size != *bytes_read)
19423 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19425 *offset_size = (*bytes_read == 4) ? 4 : 8;
19429 /* Read an offset from the data stream. The size of the offset is
19430 given by cu_header->offset_size. */
19433 read_offset (bfd *abfd, const gdb_byte *buf,
19434 const struct comp_unit_head *cu_header,
19435 unsigned int *bytes_read)
19437 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19439 *bytes_read = cu_header->offset_size;
19443 /* Read an offset from the data stream. */
19446 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19448 LONGEST retval = 0;
19450 switch (offset_size)
19453 retval = bfd_get_32 (abfd, buf);
19456 retval = bfd_get_64 (abfd, buf);
19459 internal_error (__FILE__, __LINE__,
19460 _("read_offset_1: bad switch [in module %s]"),
19461 bfd_get_filename (abfd));
19467 static const gdb_byte *
19468 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19470 /* If the size of a host char is 8 bits, we can return a pointer
19471 to the buffer, otherwise we have to copy the data to a buffer
19472 allocated on the temporary obstack. */
19473 gdb_assert (HOST_CHAR_BIT == 8);
19477 static const char *
19478 read_direct_string (bfd *abfd, const gdb_byte *buf,
19479 unsigned int *bytes_read_ptr)
19481 /* If the size of a host char is 8 bits, we can return a pointer
19482 to the string, otherwise we have to copy the string to a buffer
19483 allocated on the temporary obstack. */
19484 gdb_assert (HOST_CHAR_BIT == 8);
19487 *bytes_read_ptr = 1;
19490 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19491 return (const char *) buf;
19494 /* Return pointer to string at section SECT offset STR_OFFSET with error
19495 reporting strings FORM_NAME and SECT_NAME. */
19497 static const char *
19498 read_indirect_string_at_offset_from (struct objfile *objfile,
19499 bfd *abfd, LONGEST str_offset,
19500 struct dwarf2_section_info *sect,
19501 const char *form_name,
19502 const char *sect_name)
19504 dwarf2_read_section (objfile, sect);
19505 if (sect->buffer == NULL)
19506 error (_("%s used without %s section [in module %s]"),
19507 form_name, sect_name, bfd_get_filename (abfd));
19508 if (str_offset >= sect->size)
19509 error (_("%s pointing outside of %s section [in module %s]"),
19510 form_name, sect_name, bfd_get_filename (abfd));
19511 gdb_assert (HOST_CHAR_BIT == 8);
19512 if (sect->buffer[str_offset] == '\0')
19514 return (const char *) (sect->buffer + str_offset);
19517 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19519 static const char *
19520 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19521 bfd *abfd, LONGEST str_offset)
19523 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19525 &dwarf2_per_objfile->str,
19526 "DW_FORM_strp", ".debug_str");
19529 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19531 static const char *
19532 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19533 bfd *abfd, LONGEST str_offset)
19535 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19537 &dwarf2_per_objfile->line_str,
19538 "DW_FORM_line_strp",
19539 ".debug_line_str");
19542 /* Read a string at offset STR_OFFSET in the .debug_str section from
19543 the .dwz file DWZ. Throw an error if the offset is too large. If
19544 the string consists of a single NUL byte, return NULL; otherwise
19545 return a pointer to the string. */
19547 static const char *
19548 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19549 LONGEST str_offset)
19551 dwarf2_read_section (objfile, &dwz->str);
19553 if (dwz->str.buffer == NULL)
19554 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19555 "section [in module %s]"),
19556 bfd_get_filename (dwz->dwz_bfd));
19557 if (str_offset >= dwz->str.size)
19558 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19559 ".debug_str section [in module %s]"),
19560 bfd_get_filename (dwz->dwz_bfd));
19561 gdb_assert (HOST_CHAR_BIT == 8);
19562 if (dwz->str.buffer[str_offset] == '\0')
19564 return (const char *) (dwz->str.buffer + str_offset);
19567 /* Return pointer to string at .debug_str offset as read from BUF.
19568 BUF is assumed to be in a compilation unit described by CU_HEADER.
19569 Return *BYTES_READ_PTR count of bytes read from BUF. */
19571 static const char *
19572 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19573 const gdb_byte *buf,
19574 const struct comp_unit_head *cu_header,
19575 unsigned int *bytes_read_ptr)
19577 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19579 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19582 /* Return pointer to string at .debug_line_str offset as read from BUF.
19583 BUF is assumed to be in a compilation unit described by CU_HEADER.
19584 Return *BYTES_READ_PTR count of bytes read from BUF. */
19586 static const char *
19587 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19588 bfd *abfd, const gdb_byte *buf,
19589 const struct comp_unit_head *cu_header,
19590 unsigned int *bytes_read_ptr)
19592 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19594 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19599 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19600 unsigned int *bytes_read_ptr)
19603 unsigned int num_read;
19605 unsigned char byte;
19612 byte = bfd_get_8 (abfd, buf);
19615 result |= ((ULONGEST) (byte & 127) << shift);
19616 if ((byte & 128) == 0)
19622 *bytes_read_ptr = num_read;
19627 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19628 unsigned int *bytes_read_ptr)
19631 int shift, num_read;
19632 unsigned char byte;
19639 byte = bfd_get_8 (abfd, buf);
19642 result |= ((LONGEST) (byte & 127) << shift);
19644 if ((byte & 128) == 0)
19649 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19650 result |= -(((LONGEST) 1) << shift);
19651 *bytes_read_ptr = num_read;
19655 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19656 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19657 ADDR_SIZE is the size of addresses from the CU header. */
19660 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19661 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19663 struct objfile *objfile = dwarf2_per_objfile->objfile;
19664 bfd *abfd = objfile->obfd;
19665 const gdb_byte *info_ptr;
19667 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19668 if (dwarf2_per_objfile->addr.buffer == NULL)
19669 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19670 objfile_name (objfile));
19671 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19672 error (_("DW_FORM_addr_index pointing outside of "
19673 ".debug_addr section [in module %s]"),
19674 objfile_name (objfile));
19675 info_ptr = (dwarf2_per_objfile->addr.buffer
19676 + addr_base + addr_index * addr_size);
19677 if (addr_size == 4)
19678 return bfd_get_32 (abfd, info_ptr);
19680 return bfd_get_64 (abfd, info_ptr);
19683 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19686 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19688 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19689 cu->addr_base, cu->header.addr_size);
19692 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19695 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19696 unsigned int *bytes_read)
19698 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19699 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19701 return read_addr_index (cu, addr_index);
19704 /* Data structure to pass results from dwarf2_read_addr_index_reader
19705 back to dwarf2_read_addr_index. */
19707 struct dwarf2_read_addr_index_data
19709 ULONGEST addr_base;
19713 /* die_reader_func for dwarf2_read_addr_index. */
19716 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19717 const gdb_byte *info_ptr,
19718 struct die_info *comp_unit_die,
19722 struct dwarf2_cu *cu = reader->cu;
19723 struct dwarf2_read_addr_index_data *aidata =
19724 (struct dwarf2_read_addr_index_data *) data;
19726 aidata->addr_base = cu->addr_base;
19727 aidata->addr_size = cu->header.addr_size;
19730 /* Given an index in .debug_addr, fetch the value.
19731 NOTE: This can be called during dwarf expression evaluation,
19732 long after the debug information has been read, and thus per_cu->cu
19733 may no longer exist. */
19736 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19737 unsigned int addr_index)
19739 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19740 struct dwarf2_cu *cu = per_cu->cu;
19741 ULONGEST addr_base;
19744 /* We need addr_base and addr_size.
19745 If we don't have PER_CU->cu, we have to get it.
19746 Nasty, but the alternative is storing the needed info in PER_CU,
19747 which at this point doesn't seem justified: it's not clear how frequently
19748 it would get used and it would increase the size of every PER_CU.
19749 Entry points like dwarf2_per_cu_addr_size do a similar thing
19750 so we're not in uncharted territory here.
19751 Alas we need to be a bit more complicated as addr_base is contained
19754 We don't need to read the entire CU(/TU).
19755 We just need the header and top level die.
19757 IWBN to use the aging mechanism to let us lazily later discard the CU.
19758 For now we skip this optimization. */
19762 addr_base = cu->addr_base;
19763 addr_size = cu->header.addr_size;
19767 struct dwarf2_read_addr_index_data aidata;
19769 /* Note: We can't use init_cutu_and_read_dies_simple here,
19770 we need addr_base. */
19771 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19772 dwarf2_read_addr_index_reader, &aidata);
19773 addr_base = aidata.addr_base;
19774 addr_size = aidata.addr_size;
19777 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19781 /* Given a DW_FORM_GNU_str_index, fetch the string.
19782 This is only used by the Fission support. */
19784 static const char *
19785 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19787 struct dwarf2_cu *cu = reader->cu;
19788 struct dwarf2_per_objfile *dwarf2_per_objfile
19789 = cu->per_cu->dwarf2_per_objfile;
19790 struct objfile *objfile = dwarf2_per_objfile->objfile;
19791 const char *objf_name = objfile_name (objfile);
19792 bfd *abfd = objfile->obfd;
19793 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19794 struct dwarf2_section_info *str_offsets_section =
19795 &reader->dwo_file->sections.str_offsets;
19796 const gdb_byte *info_ptr;
19797 ULONGEST str_offset;
19798 static const char form_name[] = "DW_FORM_GNU_str_index";
19800 dwarf2_read_section (objfile, str_section);
19801 dwarf2_read_section (objfile, str_offsets_section);
19802 if (str_section->buffer == NULL)
19803 error (_("%s used without .debug_str.dwo section"
19804 " in CU at offset %s [in module %s]"),
19805 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19806 if (str_offsets_section->buffer == NULL)
19807 error (_("%s used without .debug_str_offsets.dwo section"
19808 " in CU at offset %s [in module %s]"),
19809 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19810 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19811 error (_("%s pointing outside of .debug_str_offsets.dwo"
19812 " section in CU at offset %s [in module %s]"),
19813 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19814 info_ptr = (str_offsets_section->buffer
19815 + str_index * cu->header.offset_size);
19816 if (cu->header.offset_size == 4)
19817 str_offset = bfd_get_32 (abfd, info_ptr);
19819 str_offset = bfd_get_64 (abfd, info_ptr);
19820 if (str_offset >= str_section->size)
19821 error (_("Offset from %s pointing outside of"
19822 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19823 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19824 return (const char *) (str_section->buffer + str_offset);
19827 /* Return the length of an LEB128 number in BUF. */
19830 leb128_size (const gdb_byte *buf)
19832 const gdb_byte *begin = buf;
19838 if ((byte & 128) == 0)
19839 return buf - begin;
19844 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19853 cu->language = language_c;
19856 case DW_LANG_C_plus_plus:
19857 case DW_LANG_C_plus_plus_11:
19858 case DW_LANG_C_plus_plus_14:
19859 cu->language = language_cplus;
19862 cu->language = language_d;
19864 case DW_LANG_Fortran77:
19865 case DW_LANG_Fortran90:
19866 case DW_LANG_Fortran95:
19867 case DW_LANG_Fortran03:
19868 case DW_LANG_Fortran08:
19869 cu->language = language_fortran;
19872 cu->language = language_go;
19874 case DW_LANG_Mips_Assembler:
19875 cu->language = language_asm;
19877 case DW_LANG_Ada83:
19878 case DW_LANG_Ada95:
19879 cu->language = language_ada;
19881 case DW_LANG_Modula2:
19882 cu->language = language_m2;
19884 case DW_LANG_Pascal83:
19885 cu->language = language_pascal;
19888 cu->language = language_objc;
19891 case DW_LANG_Rust_old:
19892 cu->language = language_rust;
19894 case DW_LANG_Cobol74:
19895 case DW_LANG_Cobol85:
19897 cu->language = language_minimal;
19900 cu->language_defn = language_def (cu->language);
19903 /* Return the named attribute or NULL if not there. */
19905 static struct attribute *
19906 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19911 struct attribute *spec = NULL;
19913 for (i = 0; i < die->num_attrs; ++i)
19915 if (die->attrs[i].name == name)
19916 return &die->attrs[i];
19917 if (die->attrs[i].name == DW_AT_specification
19918 || die->attrs[i].name == DW_AT_abstract_origin)
19919 spec = &die->attrs[i];
19925 die = follow_die_ref (die, spec, &cu);
19931 /* Return the named attribute or NULL if not there,
19932 but do not follow DW_AT_specification, etc.
19933 This is for use in contexts where we're reading .debug_types dies.
19934 Following DW_AT_specification, DW_AT_abstract_origin will take us
19935 back up the chain, and we want to go down. */
19937 static struct attribute *
19938 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19942 for (i = 0; i < die->num_attrs; ++i)
19943 if (die->attrs[i].name == name)
19944 return &die->attrs[i];
19949 /* Return the string associated with a string-typed attribute, or NULL if it
19950 is either not found or is of an incorrect type. */
19952 static const char *
19953 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19955 struct attribute *attr;
19956 const char *str = NULL;
19958 attr = dwarf2_attr (die, name, cu);
19962 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19963 || attr->form == DW_FORM_string
19964 || attr->form == DW_FORM_GNU_str_index
19965 || attr->form == DW_FORM_GNU_strp_alt)
19966 str = DW_STRING (attr);
19968 complaint (_("string type expected for attribute %s for "
19969 "DIE at %s in module %s"),
19970 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19971 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19977 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19978 and holds a non-zero value. This function should only be used for
19979 DW_FORM_flag or DW_FORM_flag_present attributes. */
19982 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19984 struct attribute *attr = dwarf2_attr (die, name, cu);
19986 return (attr && DW_UNSND (attr));
19990 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19992 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19993 which value is non-zero. However, we have to be careful with
19994 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19995 (via dwarf2_flag_true_p) follows this attribute. So we may
19996 end up accidently finding a declaration attribute that belongs
19997 to a different DIE referenced by the specification attribute,
19998 even though the given DIE does not have a declaration attribute. */
19999 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20000 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20003 /* Return the die giving the specification for DIE, if there is
20004 one. *SPEC_CU is the CU containing DIE on input, and the CU
20005 containing the return value on output. If there is no
20006 specification, but there is an abstract origin, that is
20009 static struct die_info *
20010 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20012 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20015 if (spec_attr == NULL)
20016 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20018 if (spec_attr == NULL)
20021 return follow_die_ref (die, spec_attr, spec_cu);
20024 /* Stub for free_line_header to match void * callback types. */
20027 free_line_header_voidp (void *arg)
20029 struct line_header *lh = (struct line_header *) arg;
20035 line_header::add_include_dir (const char *include_dir)
20037 if (dwarf_line_debug >= 2)
20038 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20039 include_dirs.size () + 1, include_dir);
20041 include_dirs.push_back (include_dir);
20045 line_header::add_file_name (const char *name,
20047 unsigned int mod_time,
20048 unsigned int length)
20050 if (dwarf_line_debug >= 2)
20051 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20052 (unsigned) file_names.size () + 1, name);
20054 file_names.emplace_back (name, d_index, mod_time, length);
20057 /* A convenience function to find the proper .debug_line section for a CU. */
20059 static struct dwarf2_section_info *
20060 get_debug_line_section (struct dwarf2_cu *cu)
20062 struct dwarf2_section_info *section;
20063 struct dwarf2_per_objfile *dwarf2_per_objfile
20064 = cu->per_cu->dwarf2_per_objfile;
20066 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20068 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20069 section = &cu->dwo_unit->dwo_file->sections.line;
20070 else if (cu->per_cu->is_dwz)
20072 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20074 section = &dwz->line;
20077 section = &dwarf2_per_objfile->line;
20082 /* Read directory or file name entry format, starting with byte of
20083 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20084 entries count and the entries themselves in the described entry
20088 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20089 bfd *abfd, const gdb_byte **bufp,
20090 struct line_header *lh,
20091 const struct comp_unit_head *cu_header,
20092 void (*callback) (struct line_header *lh,
20095 unsigned int mod_time,
20096 unsigned int length))
20098 gdb_byte format_count, formati;
20099 ULONGEST data_count, datai;
20100 const gdb_byte *buf = *bufp;
20101 const gdb_byte *format_header_data;
20102 unsigned int bytes_read;
20104 format_count = read_1_byte (abfd, buf);
20106 format_header_data = buf;
20107 for (formati = 0; formati < format_count; formati++)
20109 read_unsigned_leb128 (abfd, buf, &bytes_read);
20111 read_unsigned_leb128 (abfd, buf, &bytes_read);
20115 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20117 for (datai = 0; datai < data_count; datai++)
20119 const gdb_byte *format = format_header_data;
20120 struct file_entry fe;
20122 for (formati = 0; formati < format_count; formati++)
20124 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20125 format += bytes_read;
20127 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20128 format += bytes_read;
20130 gdb::optional<const char *> string;
20131 gdb::optional<unsigned int> uint;
20135 case DW_FORM_string:
20136 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20140 case DW_FORM_line_strp:
20141 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20148 case DW_FORM_data1:
20149 uint.emplace (read_1_byte (abfd, buf));
20153 case DW_FORM_data2:
20154 uint.emplace (read_2_bytes (abfd, buf));
20158 case DW_FORM_data4:
20159 uint.emplace (read_4_bytes (abfd, buf));
20163 case DW_FORM_data8:
20164 uint.emplace (read_8_bytes (abfd, buf));
20168 case DW_FORM_udata:
20169 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20173 case DW_FORM_block:
20174 /* It is valid only for DW_LNCT_timestamp which is ignored by
20179 switch (content_type)
20182 if (string.has_value ())
20185 case DW_LNCT_directory_index:
20186 if (uint.has_value ())
20187 fe.d_index = (dir_index) *uint;
20189 case DW_LNCT_timestamp:
20190 if (uint.has_value ())
20191 fe.mod_time = *uint;
20194 if (uint.has_value ())
20200 complaint (_("Unknown format content type %s"),
20201 pulongest (content_type));
20205 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20211 /* Read the statement program header starting at OFFSET in
20212 .debug_line, or .debug_line.dwo. Return a pointer
20213 to a struct line_header, allocated using xmalloc.
20214 Returns NULL if there is a problem reading the header, e.g., if it
20215 has a version we don't understand.
20217 NOTE: the strings in the include directory and file name tables of
20218 the returned object point into the dwarf line section buffer,
20219 and must not be freed. */
20221 static line_header_up
20222 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20224 const gdb_byte *line_ptr;
20225 unsigned int bytes_read, offset_size;
20227 const char *cur_dir, *cur_file;
20228 struct dwarf2_section_info *section;
20230 struct dwarf2_per_objfile *dwarf2_per_objfile
20231 = cu->per_cu->dwarf2_per_objfile;
20233 section = get_debug_line_section (cu);
20234 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20235 if (section->buffer == NULL)
20237 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20238 complaint (_("missing .debug_line.dwo section"));
20240 complaint (_("missing .debug_line section"));
20244 /* We can't do this until we know the section is non-empty.
20245 Only then do we know we have such a section. */
20246 abfd = get_section_bfd_owner (section);
20248 /* Make sure that at least there's room for the total_length field.
20249 That could be 12 bytes long, but we're just going to fudge that. */
20250 if (to_underlying (sect_off) + 4 >= section->size)
20252 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20256 line_header_up lh (new line_header ());
20258 lh->sect_off = sect_off;
20259 lh->offset_in_dwz = cu->per_cu->is_dwz;
20261 line_ptr = section->buffer + to_underlying (sect_off);
20263 /* Read in the header. */
20265 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20266 &bytes_read, &offset_size);
20267 line_ptr += bytes_read;
20268 if (line_ptr + lh->total_length > (section->buffer + section->size))
20270 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20273 lh->statement_program_end = line_ptr + lh->total_length;
20274 lh->version = read_2_bytes (abfd, line_ptr);
20276 if (lh->version > 5)
20278 /* This is a version we don't understand. The format could have
20279 changed in ways we don't handle properly so just punt. */
20280 complaint (_("unsupported version in .debug_line section"));
20283 if (lh->version >= 5)
20285 gdb_byte segment_selector_size;
20287 /* Skip address size. */
20288 read_1_byte (abfd, line_ptr);
20291 segment_selector_size = read_1_byte (abfd, line_ptr);
20293 if (segment_selector_size != 0)
20295 complaint (_("unsupported segment selector size %u "
20296 "in .debug_line section"),
20297 segment_selector_size);
20301 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20302 line_ptr += offset_size;
20303 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20305 if (lh->version >= 4)
20307 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20311 lh->maximum_ops_per_instruction = 1;
20313 if (lh->maximum_ops_per_instruction == 0)
20315 lh->maximum_ops_per_instruction = 1;
20316 complaint (_("invalid maximum_ops_per_instruction "
20317 "in `.debug_line' section"));
20320 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20322 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20324 lh->line_range = read_1_byte (abfd, line_ptr);
20326 lh->opcode_base = read_1_byte (abfd, line_ptr);
20328 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20330 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20331 for (i = 1; i < lh->opcode_base; ++i)
20333 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20337 if (lh->version >= 5)
20339 /* Read directory table. */
20340 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20342 [] (struct line_header *lh, const char *name,
20343 dir_index d_index, unsigned int mod_time,
20344 unsigned int length)
20346 lh->add_include_dir (name);
20349 /* Read file name table. */
20350 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20352 [] (struct line_header *lh, const char *name,
20353 dir_index d_index, unsigned int mod_time,
20354 unsigned int length)
20356 lh->add_file_name (name, d_index, mod_time, length);
20361 /* Read directory table. */
20362 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20364 line_ptr += bytes_read;
20365 lh->add_include_dir (cur_dir);
20367 line_ptr += bytes_read;
20369 /* Read file name table. */
20370 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20372 unsigned int mod_time, length;
20375 line_ptr += bytes_read;
20376 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20377 line_ptr += bytes_read;
20378 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20379 line_ptr += bytes_read;
20380 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20381 line_ptr += bytes_read;
20383 lh->add_file_name (cur_file, d_index, mod_time, length);
20385 line_ptr += bytes_read;
20387 lh->statement_program_start = line_ptr;
20389 if (line_ptr > (section->buffer + section->size))
20390 complaint (_("line number info header doesn't "
20391 "fit in `.debug_line' section"));
20396 /* Subroutine of dwarf_decode_lines to simplify it.
20397 Return the file name of the psymtab for included file FILE_INDEX
20398 in line header LH of PST.
20399 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20400 If space for the result is malloc'd, *NAME_HOLDER will be set.
20401 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20403 static const char *
20404 psymtab_include_file_name (const struct line_header *lh, int file_index,
20405 const struct partial_symtab *pst,
20406 const char *comp_dir,
20407 gdb::unique_xmalloc_ptr<char> *name_holder)
20409 const file_entry &fe = lh->file_names[file_index];
20410 const char *include_name = fe.name;
20411 const char *include_name_to_compare = include_name;
20412 const char *pst_filename;
20415 const char *dir_name = fe.include_dir (lh);
20417 gdb::unique_xmalloc_ptr<char> hold_compare;
20418 if (!IS_ABSOLUTE_PATH (include_name)
20419 && (dir_name != NULL || comp_dir != NULL))
20421 /* Avoid creating a duplicate psymtab for PST.
20422 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20423 Before we do the comparison, however, we need to account
20424 for DIR_NAME and COMP_DIR.
20425 First prepend dir_name (if non-NULL). If we still don't
20426 have an absolute path prepend comp_dir (if non-NULL).
20427 However, the directory we record in the include-file's
20428 psymtab does not contain COMP_DIR (to match the
20429 corresponding symtab(s)).
20434 bash$ gcc -g ./hello.c
20435 include_name = "hello.c"
20437 DW_AT_comp_dir = comp_dir = "/tmp"
20438 DW_AT_name = "./hello.c"
20442 if (dir_name != NULL)
20444 name_holder->reset (concat (dir_name, SLASH_STRING,
20445 include_name, (char *) NULL));
20446 include_name = name_holder->get ();
20447 include_name_to_compare = include_name;
20449 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20451 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20452 include_name, (char *) NULL));
20453 include_name_to_compare = hold_compare.get ();
20457 pst_filename = pst->filename;
20458 gdb::unique_xmalloc_ptr<char> copied_name;
20459 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20461 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20462 pst_filename, (char *) NULL));
20463 pst_filename = copied_name.get ();
20466 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20470 return include_name;
20473 /* State machine to track the state of the line number program. */
20475 class lnp_state_machine
20478 /* Initialize a machine state for the start of a line number
20480 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20481 bool record_lines_p);
20483 file_entry *current_file ()
20485 /* lh->file_names is 0-based, but the file name numbers in the
20486 statement program are 1-based. */
20487 return m_line_header->file_name_at (m_file);
20490 /* Record the line in the state machine. END_SEQUENCE is true if
20491 we're processing the end of a sequence. */
20492 void record_line (bool end_sequence);
20494 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20495 nop-out rest of the lines in this sequence. */
20496 void check_line_address (struct dwarf2_cu *cu,
20497 const gdb_byte *line_ptr,
20498 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20500 void handle_set_discriminator (unsigned int discriminator)
20502 m_discriminator = discriminator;
20503 m_line_has_non_zero_discriminator |= discriminator != 0;
20506 /* Handle DW_LNE_set_address. */
20507 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20510 address += baseaddr;
20511 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20514 /* Handle DW_LNS_advance_pc. */
20515 void handle_advance_pc (CORE_ADDR adjust);
20517 /* Handle a special opcode. */
20518 void handle_special_opcode (unsigned char op_code);
20520 /* Handle DW_LNS_advance_line. */
20521 void handle_advance_line (int line_delta)
20523 advance_line (line_delta);
20526 /* Handle DW_LNS_set_file. */
20527 void handle_set_file (file_name_index file);
20529 /* Handle DW_LNS_negate_stmt. */
20530 void handle_negate_stmt ()
20532 m_is_stmt = !m_is_stmt;
20535 /* Handle DW_LNS_const_add_pc. */
20536 void handle_const_add_pc ();
20538 /* Handle DW_LNS_fixed_advance_pc. */
20539 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20541 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20545 /* Handle DW_LNS_copy. */
20546 void handle_copy ()
20548 record_line (false);
20549 m_discriminator = 0;
20552 /* Handle DW_LNE_end_sequence. */
20553 void handle_end_sequence ()
20555 m_currently_recording_lines = true;
20559 /* Advance the line by LINE_DELTA. */
20560 void advance_line (int line_delta)
20562 m_line += line_delta;
20564 if (line_delta != 0)
20565 m_line_has_non_zero_discriminator = m_discriminator != 0;
20568 struct dwarf2_cu *m_cu;
20570 gdbarch *m_gdbarch;
20572 /* True if we're recording lines.
20573 Otherwise we're building partial symtabs and are just interested in
20574 finding include files mentioned by the line number program. */
20575 bool m_record_lines_p;
20577 /* The line number header. */
20578 line_header *m_line_header;
20580 /* These are part of the standard DWARF line number state machine,
20581 and initialized according to the DWARF spec. */
20583 unsigned char m_op_index = 0;
20584 /* The line table index (1-based) of the current file. */
20585 file_name_index m_file = (file_name_index) 1;
20586 unsigned int m_line = 1;
20588 /* These are initialized in the constructor. */
20590 CORE_ADDR m_address;
20592 unsigned int m_discriminator;
20594 /* Additional bits of state we need to track. */
20596 /* The last file that we called dwarf2_start_subfile for.
20597 This is only used for TLLs. */
20598 unsigned int m_last_file = 0;
20599 /* The last file a line number was recorded for. */
20600 struct subfile *m_last_subfile = NULL;
20602 /* When true, record the lines we decode. */
20603 bool m_currently_recording_lines = false;
20605 /* The last line number that was recorded, used to coalesce
20606 consecutive entries for the same line. This can happen, for
20607 example, when discriminators are present. PR 17276. */
20608 unsigned int m_last_line = 0;
20609 bool m_line_has_non_zero_discriminator = false;
20613 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20615 CORE_ADDR addr_adj = (((m_op_index + adjust)
20616 / m_line_header->maximum_ops_per_instruction)
20617 * m_line_header->minimum_instruction_length);
20618 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20619 m_op_index = ((m_op_index + adjust)
20620 % m_line_header->maximum_ops_per_instruction);
20624 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20626 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20627 CORE_ADDR addr_adj = (((m_op_index
20628 + (adj_opcode / m_line_header->line_range))
20629 / m_line_header->maximum_ops_per_instruction)
20630 * m_line_header->minimum_instruction_length);
20631 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20632 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20633 % m_line_header->maximum_ops_per_instruction);
20635 int line_delta = (m_line_header->line_base
20636 + (adj_opcode % m_line_header->line_range));
20637 advance_line (line_delta);
20638 record_line (false);
20639 m_discriminator = 0;
20643 lnp_state_machine::handle_set_file (file_name_index file)
20647 const file_entry *fe = current_file ();
20649 dwarf2_debug_line_missing_file_complaint ();
20650 else if (m_record_lines_p)
20652 const char *dir = fe->include_dir (m_line_header);
20654 m_last_subfile = m_cu->builder->get_current_subfile ();
20655 m_line_has_non_zero_discriminator = m_discriminator != 0;
20656 dwarf2_start_subfile (m_cu, fe->name, dir);
20661 lnp_state_machine::handle_const_add_pc ()
20664 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20667 = (((m_op_index + adjust)
20668 / m_line_header->maximum_ops_per_instruction)
20669 * m_line_header->minimum_instruction_length);
20671 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20672 m_op_index = ((m_op_index + adjust)
20673 % m_line_header->maximum_ops_per_instruction);
20676 /* Return non-zero if we should add LINE to the line number table.
20677 LINE is the line to add, LAST_LINE is the last line that was added,
20678 LAST_SUBFILE is the subfile for LAST_LINE.
20679 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20680 had a non-zero discriminator.
20682 We have to be careful in the presence of discriminators.
20683 E.g., for this line:
20685 for (i = 0; i < 100000; i++);
20687 clang can emit four line number entries for that one line,
20688 each with a different discriminator.
20689 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20691 However, we want gdb to coalesce all four entries into one.
20692 Otherwise the user could stepi into the middle of the line and
20693 gdb would get confused about whether the pc really was in the
20694 middle of the line.
20696 Things are further complicated by the fact that two consecutive
20697 line number entries for the same line is a heuristic used by gcc
20698 to denote the end of the prologue. So we can't just discard duplicate
20699 entries, we have to be selective about it. The heuristic we use is
20700 that we only collapse consecutive entries for the same line if at least
20701 one of those entries has a non-zero discriminator. PR 17276.
20703 Note: Addresses in the line number state machine can never go backwards
20704 within one sequence, thus this coalescing is ok. */
20707 dwarf_record_line_p (struct dwarf2_cu *cu,
20708 unsigned int line, unsigned int last_line,
20709 int line_has_non_zero_discriminator,
20710 struct subfile *last_subfile)
20712 if (cu->builder->get_current_subfile () != last_subfile)
20714 if (line != last_line)
20716 /* Same line for the same file that we've seen already.
20717 As a last check, for pr 17276, only record the line if the line
20718 has never had a non-zero discriminator. */
20719 if (!line_has_non_zero_discriminator)
20724 /* Use the CU's builder to record line number LINE beginning at
20725 address ADDRESS in the line table of subfile SUBFILE. */
20728 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20729 unsigned int line, CORE_ADDR address,
20730 struct dwarf2_cu *cu)
20732 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20734 if (dwarf_line_debug)
20736 fprintf_unfiltered (gdb_stdlog,
20737 "Recording line %u, file %s, address %s\n",
20738 line, lbasename (subfile->name),
20739 paddress (gdbarch, address));
20743 cu->builder->record_line (subfile, line, addr);
20746 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20747 Mark the end of a set of line number records.
20748 The arguments are the same as for dwarf_record_line_1.
20749 If SUBFILE is NULL the request is ignored. */
20752 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20753 CORE_ADDR address, struct dwarf2_cu *cu)
20755 if (subfile == NULL)
20758 if (dwarf_line_debug)
20760 fprintf_unfiltered (gdb_stdlog,
20761 "Finishing current line, file %s, address %s\n",
20762 lbasename (subfile->name),
20763 paddress (gdbarch, address));
20766 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20770 lnp_state_machine::record_line (bool end_sequence)
20772 if (dwarf_line_debug)
20774 fprintf_unfiltered (gdb_stdlog,
20775 "Processing actual line %u: file %u,"
20776 " address %s, is_stmt %u, discrim %u\n",
20777 m_line, to_underlying (m_file),
20778 paddress (m_gdbarch, m_address),
20779 m_is_stmt, m_discriminator);
20782 file_entry *fe = current_file ();
20785 dwarf2_debug_line_missing_file_complaint ();
20786 /* For now we ignore lines not starting on an instruction boundary.
20787 But not when processing end_sequence for compatibility with the
20788 previous version of the code. */
20789 else if (m_op_index == 0 || end_sequence)
20791 fe->included_p = 1;
20792 if (m_record_lines_p && m_is_stmt)
20794 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20797 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20798 m_currently_recording_lines ? m_cu : nullptr);
20803 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20804 m_line_has_non_zero_discriminator,
20807 dwarf_record_line_1 (m_gdbarch,
20808 m_cu->builder->get_current_subfile (),
20810 m_currently_recording_lines ? m_cu : nullptr);
20812 m_last_subfile = m_cu->builder->get_current_subfile ();
20813 m_last_line = m_line;
20819 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20820 line_header *lh, bool record_lines_p)
20824 m_record_lines_p = record_lines_p;
20825 m_line_header = lh;
20827 m_currently_recording_lines = true;
20829 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20830 was a line entry for it so that the backend has a chance to adjust it
20831 and also record it in case it needs it. This is currently used by MIPS
20832 code, cf. `mips_adjust_dwarf2_line'. */
20833 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20834 m_is_stmt = lh->default_is_stmt;
20835 m_discriminator = 0;
20839 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20840 const gdb_byte *line_ptr,
20841 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20843 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20844 the pc range of the CU. However, we restrict the test to only ADDRESS
20845 values of zero to preserve GDB's previous behaviour which is to handle
20846 the specific case of a function being GC'd by the linker. */
20848 if (address == 0 && address < unrelocated_lowpc)
20850 /* This line table is for a function which has been
20851 GCd by the linker. Ignore it. PR gdb/12528 */
20853 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20854 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20856 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20857 line_offset, objfile_name (objfile));
20858 m_currently_recording_lines = false;
20859 /* Note: m_currently_recording_lines is left as false until we see
20860 DW_LNE_end_sequence. */
20864 /* Subroutine of dwarf_decode_lines to simplify it.
20865 Process the line number information in LH.
20866 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20867 program in order to set included_p for every referenced header. */
20870 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20871 const int decode_for_pst_p, CORE_ADDR lowpc)
20873 const gdb_byte *line_ptr, *extended_end;
20874 const gdb_byte *line_end;
20875 unsigned int bytes_read, extended_len;
20876 unsigned char op_code, extended_op;
20877 CORE_ADDR baseaddr;
20878 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20879 bfd *abfd = objfile->obfd;
20880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20881 /* True if we're recording line info (as opposed to building partial
20882 symtabs and just interested in finding include files mentioned by
20883 the line number program). */
20884 bool record_lines_p = !decode_for_pst_p;
20886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20888 line_ptr = lh->statement_program_start;
20889 line_end = lh->statement_program_end;
20891 /* Read the statement sequences until there's nothing left. */
20892 while (line_ptr < line_end)
20894 /* The DWARF line number program state machine. Reset the state
20895 machine at the start of each sequence. */
20896 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20897 bool end_sequence = false;
20899 if (record_lines_p)
20901 /* Start a subfile for the current file of the state
20903 const file_entry *fe = state_machine.current_file ();
20906 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20909 /* Decode the table. */
20910 while (line_ptr < line_end && !end_sequence)
20912 op_code = read_1_byte (abfd, line_ptr);
20915 if (op_code >= lh->opcode_base)
20917 /* Special opcode. */
20918 state_machine.handle_special_opcode (op_code);
20920 else switch (op_code)
20922 case DW_LNS_extended_op:
20923 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20925 line_ptr += bytes_read;
20926 extended_end = line_ptr + extended_len;
20927 extended_op = read_1_byte (abfd, line_ptr);
20929 switch (extended_op)
20931 case DW_LNE_end_sequence:
20932 state_machine.handle_end_sequence ();
20933 end_sequence = true;
20935 case DW_LNE_set_address:
20938 = read_address (abfd, line_ptr, cu, &bytes_read);
20939 line_ptr += bytes_read;
20941 state_machine.check_line_address (cu, line_ptr,
20942 lowpc - baseaddr, address);
20943 state_machine.handle_set_address (baseaddr, address);
20946 case DW_LNE_define_file:
20948 const char *cur_file;
20949 unsigned int mod_time, length;
20952 cur_file = read_direct_string (abfd, line_ptr,
20954 line_ptr += bytes_read;
20955 dindex = (dir_index)
20956 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20957 line_ptr += bytes_read;
20959 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20960 line_ptr += bytes_read;
20962 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20963 line_ptr += bytes_read;
20964 lh->add_file_name (cur_file, dindex, mod_time, length);
20967 case DW_LNE_set_discriminator:
20969 /* The discriminator is not interesting to the
20970 debugger; just ignore it. We still need to
20971 check its value though:
20972 if there are consecutive entries for the same
20973 (non-prologue) line we want to coalesce them.
20976 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20977 line_ptr += bytes_read;
20979 state_machine.handle_set_discriminator (discr);
20983 complaint (_("mangled .debug_line section"));
20986 /* Make sure that we parsed the extended op correctly. If e.g.
20987 we expected a different address size than the producer used,
20988 we may have read the wrong number of bytes. */
20989 if (line_ptr != extended_end)
20991 complaint (_("mangled .debug_line section"));
20996 state_machine.handle_copy ();
20998 case DW_LNS_advance_pc:
21001 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21002 line_ptr += bytes_read;
21004 state_machine.handle_advance_pc (adjust);
21007 case DW_LNS_advance_line:
21010 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21011 line_ptr += bytes_read;
21013 state_machine.handle_advance_line (line_delta);
21016 case DW_LNS_set_file:
21018 file_name_index file
21019 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21021 line_ptr += bytes_read;
21023 state_machine.handle_set_file (file);
21026 case DW_LNS_set_column:
21027 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21028 line_ptr += bytes_read;
21030 case DW_LNS_negate_stmt:
21031 state_machine.handle_negate_stmt ();
21033 case DW_LNS_set_basic_block:
21035 /* Add to the address register of the state machine the
21036 address increment value corresponding to special opcode
21037 255. I.e., this value is scaled by the minimum
21038 instruction length since special opcode 255 would have
21039 scaled the increment. */
21040 case DW_LNS_const_add_pc:
21041 state_machine.handle_const_add_pc ();
21043 case DW_LNS_fixed_advance_pc:
21045 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21048 state_machine.handle_fixed_advance_pc (addr_adj);
21053 /* Unknown standard opcode, ignore it. */
21056 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21058 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21059 line_ptr += bytes_read;
21066 dwarf2_debug_line_missing_end_sequence_complaint ();
21068 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21069 in which case we still finish recording the last line). */
21070 state_machine.record_line (true);
21074 /* Decode the Line Number Program (LNP) for the given line_header
21075 structure and CU. The actual information extracted and the type
21076 of structures created from the LNP depends on the value of PST.
21078 1. If PST is NULL, then this procedure uses the data from the program
21079 to create all necessary symbol tables, and their linetables.
21081 2. If PST is not NULL, this procedure reads the program to determine
21082 the list of files included by the unit represented by PST, and
21083 builds all the associated partial symbol tables.
21085 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21086 It is used for relative paths in the line table.
21087 NOTE: When processing partial symtabs (pst != NULL),
21088 comp_dir == pst->dirname.
21090 NOTE: It is important that psymtabs have the same file name (via strcmp)
21091 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21092 symtab we don't use it in the name of the psymtabs we create.
21093 E.g. expand_line_sal requires this when finding psymtabs to expand.
21094 A good testcase for this is mb-inline.exp.
21096 LOWPC is the lowest address in CU (or 0 if not known).
21098 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21099 for its PC<->lines mapping information. Otherwise only the filename
21100 table is read in. */
21103 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21104 struct dwarf2_cu *cu, struct partial_symtab *pst,
21105 CORE_ADDR lowpc, int decode_mapping)
21107 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21108 const int decode_for_pst_p = (pst != NULL);
21110 if (decode_mapping)
21111 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21113 if (decode_for_pst_p)
21117 /* Now that we're done scanning the Line Header Program, we can
21118 create the psymtab of each included file. */
21119 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21120 if (lh->file_names[file_index].included_p == 1)
21122 gdb::unique_xmalloc_ptr<char> name_holder;
21123 const char *include_name =
21124 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21126 if (include_name != NULL)
21127 dwarf2_create_include_psymtab (include_name, pst, objfile);
21132 /* Make sure a symtab is created for every file, even files
21133 which contain only variables (i.e. no code with associated
21135 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21138 for (i = 0; i < lh->file_names.size (); i++)
21140 file_entry &fe = lh->file_names[i];
21142 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21144 if (cu->builder->get_current_subfile ()->symtab == NULL)
21146 cu->builder->get_current_subfile ()->symtab
21147 = allocate_symtab (cust,
21148 cu->builder->get_current_subfile ()->name);
21150 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21155 /* Start a subfile for DWARF. FILENAME is the name of the file and
21156 DIRNAME the name of the source directory which contains FILENAME
21157 or NULL if not known.
21158 This routine tries to keep line numbers from identical absolute and
21159 relative file names in a common subfile.
21161 Using the `list' example from the GDB testsuite, which resides in
21162 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21163 of /srcdir/list0.c yields the following debugging information for list0.c:
21165 DW_AT_name: /srcdir/list0.c
21166 DW_AT_comp_dir: /compdir
21167 files.files[0].name: list0.h
21168 files.files[0].dir: /srcdir
21169 files.files[1].name: list0.c
21170 files.files[1].dir: /srcdir
21172 The line number information for list0.c has to end up in a single
21173 subfile, so that `break /srcdir/list0.c:1' works as expected.
21174 start_subfile will ensure that this happens provided that we pass the
21175 concatenation of files.files[1].dir and files.files[1].name as the
21179 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21180 const char *dirname)
21184 /* In order not to lose the line information directory,
21185 we concatenate it to the filename when it makes sense.
21186 Note that the Dwarf3 standard says (speaking of filenames in line
21187 information): ``The directory index is ignored for file names
21188 that represent full path names''. Thus ignoring dirname in the
21189 `else' branch below isn't an issue. */
21191 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21193 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21197 cu->builder->start_subfile (filename);
21203 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21204 buildsym_compunit constructor. */
21206 static struct compunit_symtab *
21207 dwarf2_start_symtab (struct dwarf2_cu *cu,
21208 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21210 gdb_assert (cu->builder == nullptr);
21212 cu->builder.reset (new struct buildsym_compunit
21213 (cu->per_cu->dwarf2_per_objfile->objfile,
21214 name, comp_dir, cu->language, low_pc));
21216 cu->list_in_scope = cu->builder->get_file_symbols ();
21218 cu->builder->record_debugformat ("DWARF 2");
21219 cu->builder->record_producer (cu->producer);
21221 cu->processing_has_namespace_info = 0;
21223 return cu->builder->get_compunit_symtab ();
21227 var_decode_location (struct attribute *attr, struct symbol *sym,
21228 struct dwarf2_cu *cu)
21230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21231 struct comp_unit_head *cu_header = &cu->header;
21233 /* NOTE drow/2003-01-30: There used to be a comment and some special
21234 code here to turn a symbol with DW_AT_external and a
21235 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21236 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21237 with some versions of binutils) where shared libraries could have
21238 relocations against symbols in their debug information - the
21239 minimal symbol would have the right address, but the debug info
21240 would not. It's no longer necessary, because we will explicitly
21241 apply relocations when we read in the debug information now. */
21243 /* A DW_AT_location attribute with no contents indicates that a
21244 variable has been optimized away. */
21245 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21247 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21251 /* Handle one degenerate form of location expression specially, to
21252 preserve GDB's previous behavior when section offsets are
21253 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21254 then mark this symbol as LOC_STATIC. */
21256 if (attr_form_is_block (attr)
21257 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21258 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21259 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21260 && (DW_BLOCK (attr)->size
21261 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21263 unsigned int dummy;
21265 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21266 SYMBOL_VALUE_ADDRESS (sym) =
21267 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21269 SYMBOL_VALUE_ADDRESS (sym) =
21270 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21271 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21272 fixup_symbol_section (sym, objfile);
21273 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21274 SYMBOL_SECTION (sym));
21278 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21279 expression evaluator, and use LOC_COMPUTED only when necessary
21280 (i.e. when the value of a register or memory location is
21281 referenced, or a thread-local block, etc.). Then again, it might
21282 not be worthwhile. I'm assuming that it isn't unless performance
21283 or memory numbers show me otherwise. */
21285 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21287 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21288 cu->has_loclist = 1;
21291 /* Given a pointer to a DWARF information entry, figure out if we need
21292 to make a symbol table entry for it, and if so, create a new entry
21293 and return a pointer to it.
21294 If TYPE is NULL, determine symbol type from the die, otherwise
21295 used the passed type.
21296 If SPACE is not NULL, use it to hold the new symbol. If it is
21297 NULL, allocate a new symbol on the objfile's obstack. */
21299 static struct symbol *
21300 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21301 struct symbol *space)
21303 struct dwarf2_per_objfile *dwarf2_per_objfile
21304 = cu->per_cu->dwarf2_per_objfile;
21305 struct objfile *objfile = dwarf2_per_objfile->objfile;
21306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21307 struct symbol *sym = NULL;
21309 struct attribute *attr = NULL;
21310 struct attribute *attr2 = NULL;
21311 CORE_ADDR baseaddr;
21312 struct pending **list_to_add = NULL;
21314 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21316 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21318 name = dwarf2_name (die, cu);
21321 const char *linkagename;
21322 int suppress_add = 0;
21327 sym = allocate_symbol (objfile);
21328 OBJSTAT (objfile, n_syms++);
21330 /* Cache this symbol's name and the name's demangled form (if any). */
21331 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21332 linkagename = dwarf2_physname (name, die, cu);
21333 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21335 /* Fortran does not have mangling standard and the mangling does differ
21336 between gfortran, iFort etc. */
21337 if (cu->language == language_fortran
21338 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21339 symbol_set_demangled_name (&(sym->ginfo),
21340 dwarf2_full_name (name, die, cu),
21343 /* Default assumptions.
21344 Use the passed type or decode it from the die. */
21345 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21346 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21348 SYMBOL_TYPE (sym) = type;
21350 SYMBOL_TYPE (sym) = die_type (die, cu);
21351 attr = dwarf2_attr (die,
21352 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21356 SYMBOL_LINE (sym) = DW_UNSND (attr);
21359 attr = dwarf2_attr (die,
21360 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21364 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21365 struct file_entry *fe;
21367 if (cu->line_header != NULL)
21368 fe = cu->line_header->file_name_at (file_index);
21373 complaint (_("file index out of range"));
21375 symbol_set_symtab (sym, fe->symtab);
21381 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21386 addr = attr_value_as_address (attr);
21387 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21388 SYMBOL_VALUE_ADDRESS (sym) = addr;
21390 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21391 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21392 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21393 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21395 case DW_TAG_subprogram:
21396 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21398 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21399 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21400 if ((attr2 && (DW_UNSND (attr2) != 0))
21401 || cu->language == language_ada)
21403 /* Subprograms marked external are stored as a global symbol.
21404 Ada subprograms, whether marked external or not, are always
21405 stored as a global symbol, because we want to be able to
21406 access them globally. For instance, we want to be able
21407 to break on a nested subprogram without having to
21408 specify the context. */
21409 list_to_add = cu->builder->get_global_symbols ();
21413 list_to_add = cu->list_in_scope;
21416 case DW_TAG_inlined_subroutine:
21417 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21419 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21420 SYMBOL_INLINED (sym) = 1;
21421 list_to_add = cu->list_in_scope;
21423 case DW_TAG_template_value_param:
21425 /* Fall through. */
21426 case DW_TAG_constant:
21427 case DW_TAG_variable:
21428 case DW_TAG_member:
21429 /* Compilation with minimal debug info may result in
21430 variables with missing type entries. Change the
21431 misleading `void' type to something sensible. */
21432 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21433 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21435 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21436 /* In the case of DW_TAG_member, we should only be called for
21437 static const members. */
21438 if (die->tag == DW_TAG_member)
21440 /* dwarf2_add_field uses die_is_declaration,
21441 so we do the same. */
21442 gdb_assert (die_is_declaration (die, cu));
21447 dwarf2_const_value (attr, sym, cu);
21448 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21451 if (attr2 && (DW_UNSND (attr2) != 0))
21452 list_to_add = cu->builder->get_global_symbols ();
21454 list_to_add = cu->list_in_scope;
21458 attr = dwarf2_attr (die, DW_AT_location, cu);
21461 var_decode_location (attr, sym, cu);
21462 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21464 /* Fortran explicitly imports any global symbols to the local
21465 scope by DW_TAG_common_block. */
21466 if (cu->language == language_fortran && die->parent
21467 && die->parent->tag == DW_TAG_common_block)
21470 if (SYMBOL_CLASS (sym) == LOC_STATIC
21471 && SYMBOL_VALUE_ADDRESS (sym) == 0
21472 && !dwarf2_per_objfile->has_section_at_zero)
21474 /* When a static variable is eliminated by the linker,
21475 the corresponding debug information is not stripped
21476 out, but the variable address is set to null;
21477 do not add such variables into symbol table. */
21479 else if (attr2 && (DW_UNSND (attr2) != 0))
21481 /* Workaround gfortran PR debug/40040 - it uses
21482 DW_AT_location for variables in -fPIC libraries which may
21483 get overriden by other libraries/executable and get
21484 a different address. Resolve it by the minimal symbol
21485 which may come from inferior's executable using copy
21486 relocation. Make this workaround only for gfortran as for
21487 other compilers GDB cannot guess the minimal symbol
21488 Fortran mangling kind. */
21489 if (cu->language == language_fortran && die->parent
21490 && die->parent->tag == DW_TAG_module
21492 && startswith (cu->producer, "GNU Fortran"))
21493 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21495 /* A variable with DW_AT_external is never static,
21496 but it may be block-scoped. */
21498 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21499 ? cu->builder->get_global_symbols ()
21500 : cu->list_in_scope);
21503 list_to_add = cu->list_in_scope;
21507 /* We do not know the address of this symbol.
21508 If it is an external symbol and we have type information
21509 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21510 The address of the variable will then be determined from
21511 the minimal symbol table whenever the variable is
21513 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21515 /* Fortran explicitly imports any global symbols to the local
21516 scope by DW_TAG_common_block. */
21517 if (cu->language == language_fortran && die->parent
21518 && die->parent->tag == DW_TAG_common_block)
21520 /* SYMBOL_CLASS doesn't matter here because
21521 read_common_block is going to reset it. */
21523 list_to_add = cu->list_in_scope;
21525 else if (attr2 && (DW_UNSND (attr2) != 0)
21526 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21528 /* A variable with DW_AT_external is never static, but it
21529 may be block-scoped. */
21531 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21532 ? cu->builder->get_global_symbols ()
21533 : cu->list_in_scope);
21535 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21537 else if (!die_is_declaration (die, cu))
21539 /* Use the default LOC_OPTIMIZED_OUT class. */
21540 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21542 list_to_add = cu->list_in_scope;
21546 case DW_TAG_formal_parameter:
21548 /* If we are inside a function, mark this as an argument. If
21549 not, we might be looking at an argument to an inlined function
21550 when we do not have enough information to show inlined frames;
21551 pretend it's a local variable in that case so that the user can
21553 struct context_stack *curr
21554 = cu->builder->get_current_context_stack ();
21555 if (curr != nullptr && curr->name != nullptr)
21556 SYMBOL_IS_ARGUMENT (sym) = 1;
21557 attr = dwarf2_attr (die, DW_AT_location, cu);
21560 var_decode_location (attr, sym, cu);
21562 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21565 dwarf2_const_value (attr, sym, cu);
21568 list_to_add = cu->list_in_scope;
21571 case DW_TAG_unspecified_parameters:
21572 /* From varargs functions; gdb doesn't seem to have any
21573 interest in this information, so just ignore it for now.
21576 case DW_TAG_template_type_param:
21578 /* Fall through. */
21579 case DW_TAG_class_type:
21580 case DW_TAG_interface_type:
21581 case DW_TAG_structure_type:
21582 case DW_TAG_union_type:
21583 case DW_TAG_set_type:
21584 case DW_TAG_enumeration_type:
21585 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21586 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21589 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21590 really ever be static objects: otherwise, if you try
21591 to, say, break of a class's method and you're in a file
21592 which doesn't mention that class, it won't work unless
21593 the check for all static symbols in lookup_symbol_aux
21594 saves you. See the OtherFileClass tests in
21595 gdb.c++/namespace.exp. */
21600 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21601 && cu->language == language_cplus
21602 ? cu->builder->get_global_symbols ()
21603 : cu->list_in_scope);
21605 /* The semantics of C++ state that "struct foo {
21606 ... }" also defines a typedef for "foo". */
21607 if (cu->language == language_cplus
21608 || cu->language == language_ada
21609 || cu->language == language_d
21610 || cu->language == language_rust)
21612 /* The symbol's name is already allocated along
21613 with this objfile, so we don't need to
21614 duplicate it for the type. */
21615 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21616 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21621 case DW_TAG_typedef:
21622 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21623 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21624 list_to_add = cu->list_in_scope;
21626 case DW_TAG_base_type:
21627 case DW_TAG_subrange_type:
21628 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21629 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21630 list_to_add = cu->list_in_scope;
21632 case DW_TAG_enumerator:
21633 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21636 dwarf2_const_value (attr, sym, cu);
21639 /* NOTE: carlton/2003-11-10: See comment above in the
21640 DW_TAG_class_type, etc. block. */
21643 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21644 && cu->language == language_cplus
21645 ? cu->builder->get_global_symbols ()
21646 : cu->list_in_scope);
21649 case DW_TAG_imported_declaration:
21650 case DW_TAG_namespace:
21651 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21652 list_to_add = cu->builder->get_global_symbols ();
21654 case DW_TAG_module:
21655 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21656 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21657 list_to_add = cu->builder->get_global_symbols ();
21659 case DW_TAG_common_block:
21660 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21661 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21662 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21665 /* Not a tag we recognize. Hopefully we aren't processing
21666 trash data, but since we must specifically ignore things
21667 we don't recognize, there is nothing else we should do at
21669 complaint (_("unsupported tag: '%s'"),
21670 dwarf_tag_name (die->tag));
21676 sym->hash_next = objfile->template_symbols;
21677 objfile->template_symbols = sym;
21678 list_to_add = NULL;
21681 if (list_to_add != NULL)
21682 dw2_add_symbol_to_list (sym, list_to_add);
21684 /* For the benefit of old versions of GCC, check for anonymous
21685 namespaces based on the demangled name. */
21686 if (!cu->processing_has_namespace_info
21687 && cu->language == language_cplus)
21688 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21693 /* Given an attr with a DW_FORM_dataN value in host byte order,
21694 zero-extend it as appropriate for the symbol's type. The DWARF
21695 standard (v4) is not entirely clear about the meaning of using
21696 DW_FORM_dataN for a constant with a signed type, where the type is
21697 wider than the data. The conclusion of a discussion on the DWARF
21698 list was that this is unspecified. We choose to always zero-extend
21699 because that is the interpretation long in use by GCC. */
21702 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21703 struct dwarf2_cu *cu, LONGEST *value, int bits)
21705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21706 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21707 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21708 LONGEST l = DW_UNSND (attr);
21710 if (bits < sizeof (*value) * 8)
21712 l &= ((LONGEST) 1 << bits) - 1;
21715 else if (bits == sizeof (*value) * 8)
21719 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21720 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21727 /* Read a constant value from an attribute. Either set *VALUE, or if
21728 the value does not fit in *VALUE, set *BYTES - either already
21729 allocated on the objfile obstack, or newly allocated on OBSTACK,
21730 or, set *BATON, if we translated the constant to a location
21734 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21735 const char *name, struct obstack *obstack,
21736 struct dwarf2_cu *cu,
21737 LONGEST *value, const gdb_byte **bytes,
21738 struct dwarf2_locexpr_baton **baton)
21740 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21741 struct comp_unit_head *cu_header = &cu->header;
21742 struct dwarf_block *blk;
21743 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21744 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21750 switch (attr->form)
21753 case DW_FORM_GNU_addr_index:
21757 if (TYPE_LENGTH (type) != cu_header->addr_size)
21758 dwarf2_const_value_length_mismatch_complaint (name,
21759 cu_header->addr_size,
21760 TYPE_LENGTH (type));
21761 /* Symbols of this form are reasonably rare, so we just
21762 piggyback on the existing location code rather than writing
21763 a new implementation of symbol_computed_ops. */
21764 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21765 (*baton)->per_cu = cu->per_cu;
21766 gdb_assert ((*baton)->per_cu);
21768 (*baton)->size = 2 + cu_header->addr_size;
21769 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21770 (*baton)->data = data;
21772 data[0] = DW_OP_addr;
21773 store_unsigned_integer (&data[1], cu_header->addr_size,
21774 byte_order, DW_ADDR (attr));
21775 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21778 case DW_FORM_string:
21780 case DW_FORM_GNU_str_index:
21781 case DW_FORM_GNU_strp_alt:
21782 /* DW_STRING is already allocated on the objfile obstack, point
21784 *bytes = (const gdb_byte *) DW_STRING (attr);
21786 case DW_FORM_block1:
21787 case DW_FORM_block2:
21788 case DW_FORM_block4:
21789 case DW_FORM_block:
21790 case DW_FORM_exprloc:
21791 case DW_FORM_data16:
21792 blk = DW_BLOCK (attr);
21793 if (TYPE_LENGTH (type) != blk->size)
21794 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21795 TYPE_LENGTH (type));
21796 *bytes = blk->data;
21799 /* The DW_AT_const_value attributes are supposed to carry the
21800 symbol's value "represented as it would be on the target
21801 architecture." By the time we get here, it's already been
21802 converted to host endianness, so we just need to sign- or
21803 zero-extend it as appropriate. */
21804 case DW_FORM_data1:
21805 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21807 case DW_FORM_data2:
21808 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21810 case DW_FORM_data4:
21811 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21813 case DW_FORM_data8:
21814 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21817 case DW_FORM_sdata:
21818 case DW_FORM_implicit_const:
21819 *value = DW_SND (attr);
21822 case DW_FORM_udata:
21823 *value = DW_UNSND (attr);
21827 complaint (_("unsupported const value attribute form: '%s'"),
21828 dwarf_form_name (attr->form));
21835 /* Copy constant value from an attribute to a symbol. */
21838 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21839 struct dwarf2_cu *cu)
21841 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21843 const gdb_byte *bytes;
21844 struct dwarf2_locexpr_baton *baton;
21846 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21847 SYMBOL_PRINT_NAME (sym),
21848 &objfile->objfile_obstack, cu,
21849 &value, &bytes, &baton);
21853 SYMBOL_LOCATION_BATON (sym) = baton;
21854 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21856 else if (bytes != NULL)
21858 SYMBOL_VALUE_BYTES (sym) = bytes;
21859 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21863 SYMBOL_VALUE (sym) = value;
21864 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21868 /* Return the type of the die in question using its DW_AT_type attribute. */
21870 static struct type *
21871 die_type (struct die_info *die, struct dwarf2_cu *cu)
21873 struct attribute *type_attr;
21875 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21878 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21879 /* A missing DW_AT_type represents a void type. */
21880 return objfile_type (objfile)->builtin_void;
21883 return lookup_die_type (die, type_attr, cu);
21886 /* True iff CU's producer generates GNAT Ada auxiliary information
21887 that allows to find parallel types through that information instead
21888 of having to do expensive parallel lookups by type name. */
21891 need_gnat_info (struct dwarf2_cu *cu)
21893 /* Assume that the Ada compiler was GNAT, which always produces
21894 the auxiliary information. */
21895 return (cu->language == language_ada);
21898 /* Return the auxiliary type of the die in question using its
21899 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21900 attribute is not present. */
21902 static struct type *
21903 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21905 struct attribute *type_attr;
21907 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21911 return lookup_die_type (die, type_attr, cu);
21914 /* If DIE has a descriptive_type attribute, then set the TYPE's
21915 descriptive type accordingly. */
21918 set_descriptive_type (struct type *type, struct die_info *die,
21919 struct dwarf2_cu *cu)
21921 struct type *descriptive_type = die_descriptive_type (die, cu);
21923 if (descriptive_type)
21925 ALLOCATE_GNAT_AUX_TYPE (type);
21926 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21930 /* Return the containing type of the die in question using its
21931 DW_AT_containing_type attribute. */
21933 static struct type *
21934 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21936 struct attribute *type_attr;
21937 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21939 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21941 error (_("Dwarf Error: Problem turning containing type into gdb type "
21942 "[in module %s]"), objfile_name (objfile));
21944 return lookup_die_type (die, type_attr, cu);
21947 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21949 static struct type *
21950 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21952 struct dwarf2_per_objfile *dwarf2_per_objfile
21953 = cu->per_cu->dwarf2_per_objfile;
21954 struct objfile *objfile = dwarf2_per_objfile->objfile;
21957 std::string message
21958 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21959 objfile_name (objfile),
21960 sect_offset_str (cu->header.sect_off),
21961 sect_offset_str (die->sect_off));
21962 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21963 message.c_str (), message.length ());
21965 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21968 /* Look up the type of DIE in CU using its type attribute ATTR.
21969 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21970 DW_AT_containing_type.
21971 If there is no type substitute an error marker. */
21973 static struct type *
21974 lookup_die_type (struct die_info *die, const struct attribute *attr,
21975 struct dwarf2_cu *cu)
21977 struct dwarf2_per_objfile *dwarf2_per_objfile
21978 = cu->per_cu->dwarf2_per_objfile;
21979 struct objfile *objfile = dwarf2_per_objfile->objfile;
21980 struct type *this_type;
21982 gdb_assert (attr->name == DW_AT_type
21983 || attr->name == DW_AT_GNAT_descriptive_type
21984 || attr->name == DW_AT_containing_type);
21986 /* First see if we have it cached. */
21988 if (attr->form == DW_FORM_GNU_ref_alt)
21990 struct dwarf2_per_cu_data *per_cu;
21991 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21993 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21994 dwarf2_per_objfile);
21995 this_type = get_die_type_at_offset (sect_off, per_cu);
21997 else if (attr_form_is_ref (attr))
21999 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22001 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22003 else if (attr->form == DW_FORM_ref_sig8)
22005 ULONGEST signature = DW_SIGNATURE (attr);
22007 return get_signatured_type (die, signature, cu);
22011 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22012 " at %s [in module %s]"),
22013 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22014 objfile_name (objfile));
22015 return build_error_marker_type (cu, die);
22018 /* If not cached we need to read it in. */
22020 if (this_type == NULL)
22022 struct die_info *type_die = NULL;
22023 struct dwarf2_cu *type_cu = cu;
22025 if (attr_form_is_ref (attr))
22026 type_die = follow_die_ref (die, attr, &type_cu);
22027 if (type_die == NULL)
22028 return build_error_marker_type (cu, die);
22029 /* If we find the type now, it's probably because the type came
22030 from an inter-CU reference and the type's CU got expanded before
22032 this_type = read_type_die (type_die, type_cu);
22035 /* If we still don't have a type use an error marker. */
22037 if (this_type == NULL)
22038 return build_error_marker_type (cu, die);
22043 /* Return the type in DIE, CU.
22044 Returns NULL for invalid types.
22046 This first does a lookup in die_type_hash,
22047 and only reads the die in if necessary.
22049 NOTE: This can be called when reading in partial or full symbols. */
22051 static struct type *
22052 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22054 struct type *this_type;
22056 this_type = get_die_type (die, cu);
22060 return read_type_die_1 (die, cu);
22063 /* Read the type in DIE, CU.
22064 Returns NULL for invalid types. */
22066 static struct type *
22067 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22069 struct type *this_type = NULL;
22073 case DW_TAG_class_type:
22074 case DW_TAG_interface_type:
22075 case DW_TAG_structure_type:
22076 case DW_TAG_union_type:
22077 this_type = read_structure_type (die, cu);
22079 case DW_TAG_enumeration_type:
22080 this_type = read_enumeration_type (die, cu);
22082 case DW_TAG_subprogram:
22083 case DW_TAG_subroutine_type:
22084 case DW_TAG_inlined_subroutine:
22085 this_type = read_subroutine_type (die, cu);
22087 case DW_TAG_array_type:
22088 this_type = read_array_type (die, cu);
22090 case DW_TAG_set_type:
22091 this_type = read_set_type (die, cu);
22093 case DW_TAG_pointer_type:
22094 this_type = read_tag_pointer_type (die, cu);
22096 case DW_TAG_ptr_to_member_type:
22097 this_type = read_tag_ptr_to_member_type (die, cu);
22099 case DW_TAG_reference_type:
22100 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22102 case DW_TAG_rvalue_reference_type:
22103 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22105 case DW_TAG_const_type:
22106 this_type = read_tag_const_type (die, cu);
22108 case DW_TAG_volatile_type:
22109 this_type = read_tag_volatile_type (die, cu);
22111 case DW_TAG_restrict_type:
22112 this_type = read_tag_restrict_type (die, cu);
22114 case DW_TAG_string_type:
22115 this_type = read_tag_string_type (die, cu);
22117 case DW_TAG_typedef:
22118 this_type = read_typedef (die, cu);
22120 case DW_TAG_subrange_type:
22121 this_type = read_subrange_type (die, cu);
22123 case DW_TAG_base_type:
22124 this_type = read_base_type (die, cu);
22126 case DW_TAG_unspecified_type:
22127 this_type = read_unspecified_type (die, cu);
22129 case DW_TAG_namespace:
22130 this_type = read_namespace_type (die, cu);
22132 case DW_TAG_module:
22133 this_type = read_module_type (die, cu);
22135 case DW_TAG_atomic_type:
22136 this_type = read_tag_atomic_type (die, cu);
22139 complaint (_("unexpected tag in read_type_die: '%s'"),
22140 dwarf_tag_name (die->tag));
22147 /* See if we can figure out if the class lives in a namespace. We do
22148 this by looking for a member function; its demangled name will
22149 contain namespace info, if there is any.
22150 Return the computed name or NULL.
22151 Space for the result is allocated on the objfile's obstack.
22152 This is the full-die version of guess_partial_die_structure_name.
22153 In this case we know DIE has no useful parent. */
22156 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22158 struct die_info *spec_die;
22159 struct dwarf2_cu *spec_cu;
22160 struct die_info *child;
22161 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22164 spec_die = die_specification (die, &spec_cu);
22165 if (spec_die != NULL)
22171 for (child = die->child;
22173 child = child->sibling)
22175 if (child->tag == DW_TAG_subprogram)
22177 const char *linkage_name = dw2_linkage_name (child, cu);
22179 if (linkage_name != NULL)
22182 = language_class_name_from_physname (cu->language_defn,
22186 if (actual_name != NULL)
22188 const char *die_name = dwarf2_name (die, cu);
22190 if (die_name != NULL
22191 && strcmp (die_name, actual_name) != 0)
22193 /* Strip off the class name from the full name.
22194 We want the prefix. */
22195 int die_name_len = strlen (die_name);
22196 int actual_name_len = strlen (actual_name);
22198 /* Test for '::' as a sanity check. */
22199 if (actual_name_len > die_name_len + 2
22200 && actual_name[actual_name_len
22201 - die_name_len - 1] == ':')
22202 name = (char *) obstack_copy0 (
22203 &objfile->per_bfd->storage_obstack,
22204 actual_name, actual_name_len - die_name_len - 2);
22207 xfree (actual_name);
22216 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22217 prefix part in such case. See
22218 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22220 static const char *
22221 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22223 struct attribute *attr;
22226 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22227 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22230 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22233 attr = dw2_linkage_name_attr (die, cu);
22234 if (attr == NULL || DW_STRING (attr) == NULL)
22237 /* dwarf2_name had to be already called. */
22238 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22240 /* Strip the base name, keep any leading namespaces/classes. */
22241 base = strrchr (DW_STRING (attr), ':');
22242 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22245 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22246 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22248 &base[-1] - DW_STRING (attr));
22251 /* Return the name of the namespace/class that DIE is defined within,
22252 or "" if we can't tell. The caller should not xfree the result.
22254 For example, if we're within the method foo() in the following
22264 then determine_prefix on foo's die will return "N::C". */
22266 static const char *
22267 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22269 struct dwarf2_per_objfile *dwarf2_per_objfile
22270 = cu->per_cu->dwarf2_per_objfile;
22271 struct die_info *parent, *spec_die;
22272 struct dwarf2_cu *spec_cu;
22273 struct type *parent_type;
22274 const char *retval;
22276 if (cu->language != language_cplus
22277 && cu->language != language_fortran && cu->language != language_d
22278 && cu->language != language_rust)
22281 retval = anonymous_struct_prefix (die, cu);
22285 /* We have to be careful in the presence of DW_AT_specification.
22286 For example, with GCC 3.4, given the code
22290 // Definition of N::foo.
22294 then we'll have a tree of DIEs like this:
22296 1: DW_TAG_compile_unit
22297 2: DW_TAG_namespace // N
22298 3: DW_TAG_subprogram // declaration of N::foo
22299 4: DW_TAG_subprogram // definition of N::foo
22300 DW_AT_specification // refers to die #3
22302 Thus, when processing die #4, we have to pretend that we're in
22303 the context of its DW_AT_specification, namely the contex of die
22306 spec_die = die_specification (die, &spec_cu);
22307 if (spec_die == NULL)
22308 parent = die->parent;
22311 parent = spec_die->parent;
22315 if (parent == NULL)
22317 else if (parent->building_fullname)
22320 const char *parent_name;
22322 /* It has been seen on RealView 2.2 built binaries,
22323 DW_TAG_template_type_param types actually _defined_ as
22324 children of the parent class:
22327 template class <class Enum> Class{};
22328 Class<enum E> class_e;
22330 1: DW_TAG_class_type (Class)
22331 2: DW_TAG_enumeration_type (E)
22332 3: DW_TAG_enumerator (enum1:0)
22333 3: DW_TAG_enumerator (enum2:1)
22335 2: DW_TAG_template_type_param
22336 DW_AT_type DW_FORM_ref_udata (E)
22338 Besides being broken debug info, it can put GDB into an
22339 infinite loop. Consider:
22341 When we're building the full name for Class<E>, we'll start
22342 at Class, and go look over its template type parameters,
22343 finding E. We'll then try to build the full name of E, and
22344 reach here. We're now trying to build the full name of E,
22345 and look over the parent DIE for containing scope. In the
22346 broken case, if we followed the parent DIE of E, we'd again
22347 find Class, and once again go look at its template type
22348 arguments, etc., etc. Simply don't consider such parent die
22349 as source-level parent of this die (it can't be, the language
22350 doesn't allow it), and break the loop here. */
22351 name = dwarf2_name (die, cu);
22352 parent_name = dwarf2_name (parent, cu);
22353 complaint (_("template param type '%s' defined within parent '%s'"),
22354 name ? name : "<unknown>",
22355 parent_name ? parent_name : "<unknown>");
22359 switch (parent->tag)
22361 case DW_TAG_namespace:
22362 parent_type = read_type_die (parent, cu);
22363 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22364 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22365 Work around this problem here. */
22366 if (cu->language == language_cplus
22367 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22369 /* We give a name to even anonymous namespaces. */
22370 return TYPE_NAME (parent_type);
22371 case DW_TAG_class_type:
22372 case DW_TAG_interface_type:
22373 case DW_TAG_structure_type:
22374 case DW_TAG_union_type:
22375 case DW_TAG_module:
22376 parent_type = read_type_die (parent, cu);
22377 if (TYPE_NAME (parent_type) != NULL)
22378 return TYPE_NAME (parent_type);
22380 /* An anonymous structure is only allowed non-static data
22381 members; no typedefs, no member functions, et cetera.
22382 So it does not need a prefix. */
22384 case DW_TAG_compile_unit:
22385 case DW_TAG_partial_unit:
22386 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22387 if (cu->language == language_cplus
22388 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22389 && die->child != NULL
22390 && (die->tag == DW_TAG_class_type
22391 || die->tag == DW_TAG_structure_type
22392 || die->tag == DW_TAG_union_type))
22394 char *name = guess_full_die_structure_name (die, cu);
22399 case DW_TAG_enumeration_type:
22400 parent_type = read_type_die (parent, cu);
22401 if (TYPE_DECLARED_CLASS (parent_type))
22403 if (TYPE_NAME (parent_type) != NULL)
22404 return TYPE_NAME (parent_type);
22407 /* Fall through. */
22409 return determine_prefix (parent, cu);
22413 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22414 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22415 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22416 an obconcat, otherwise allocate storage for the result. The CU argument is
22417 used to determine the language and hence, the appropriate separator. */
22419 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22422 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22423 int physname, struct dwarf2_cu *cu)
22425 const char *lead = "";
22428 if (suffix == NULL || suffix[0] == '\0'
22429 || prefix == NULL || prefix[0] == '\0')
22431 else if (cu->language == language_d)
22433 /* For D, the 'main' function could be defined in any module, but it
22434 should never be prefixed. */
22435 if (strcmp (suffix, "D main") == 0)
22443 else if (cu->language == language_fortran && physname)
22445 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22446 DW_AT_MIPS_linkage_name is preferred and used instead. */
22454 if (prefix == NULL)
22456 if (suffix == NULL)
22463 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22465 strcpy (retval, lead);
22466 strcat (retval, prefix);
22467 strcat (retval, sep);
22468 strcat (retval, suffix);
22473 /* We have an obstack. */
22474 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22478 /* Return sibling of die, NULL if no sibling. */
22480 static struct die_info *
22481 sibling_die (struct die_info *die)
22483 return die->sibling;
22486 /* Get name of a die, return NULL if not found. */
22488 static const char *
22489 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22490 struct obstack *obstack)
22492 if (name && cu->language == language_cplus)
22494 std::string canon_name = cp_canonicalize_string (name);
22496 if (!canon_name.empty ())
22498 if (canon_name != name)
22499 name = (const char *) obstack_copy0 (obstack,
22500 canon_name.c_str (),
22501 canon_name.length ());
22508 /* Get name of a die, return NULL if not found.
22509 Anonymous namespaces are converted to their magic string. */
22511 static const char *
22512 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22514 struct attribute *attr;
22515 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22517 attr = dwarf2_attr (die, DW_AT_name, cu);
22518 if ((!attr || !DW_STRING (attr))
22519 && die->tag != DW_TAG_namespace
22520 && die->tag != DW_TAG_class_type
22521 && die->tag != DW_TAG_interface_type
22522 && die->tag != DW_TAG_structure_type
22523 && die->tag != DW_TAG_union_type)
22528 case DW_TAG_compile_unit:
22529 case DW_TAG_partial_unit:
22530 /* Compilation units have a DW_AT_name that is a filename, not
22531 a source language identifier. */
22532 case DW_TAG_enumeration_type:
22533 case DW_TAG_enumerator:
22534 /* These tags always have simple identifiers already; no need
22535 to canonicalize them. */
22536 return DW_STRING (attr);
22538 case DW_TAG_namespace:
22539 if (attr != NULL && DW_STRING (attr) != NULL)
22540 return DW_STRING (attr);
22541 return CP_ANONYMOUS_NAMESPACE_STR;
22543 case DW_TAG_class_type:
22544 case DW_TAG_interface_type:
22545 case DW_TAG_structure_type:
22546 case DW_TAG_union_type:
22547 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22548 structures or unions. These were of the form "._%d" in GCC 4.1,
22549 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22550 and GCC 4.4. We work around this problem by ignoring these. */
22551 if (attr && DW_STRING (attr)
22552 && (startswith (DW_STRING (attr), "._")
22553 || startswith (DW_STRING (attr), "<anonymous")))
22556 /* GCC might emit a nameless typedef that has a linkage name. See
22557 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22558 if (!attr || DW_STRING (attr) == NULL)
22560 char *demangled = NULL;
22562 attr = dw2_linkage_name_attr (die, cu);
22563 if (attr == NULL || DW_STRING (attr) == NULL)
22566 /* Avoid demangling DW_STRING (attr) the second time on a second
22567 call for the same DIE. */
22568 if (!DW_STRING_IS_CANONICAL (attr))
22569 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22575 /* FIXME: we already did this for the partial symbol... */
22578 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22579 demangled, strlen (demangled)));
22580 DW_STRING_IS_CANONICAL (attr) = 1;
22583 /* Strip any leading namespaces/classes, keep only the base name.
22584 DW_AT_name for named DIEs does not contain the prefixes. */
22585 base = strrchr (DW_STRING (attr), ':');
22586 if (base && base > DW_STRING (attr) && base[-1] == ':')
22589 return DW_STRING (attr);
22598 if (!DW_STRING_IS_CANONICAL (attr))
22601 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22602 &objfile->per_bfd->storage_obstack);
22603 DW_STRING_IS_CANONICAL (attr) = 1;
22605 return DW_STRING (attr);
22608 /* Return the die that this die in an extension of, or NULL if there
22609 is none. *EXT_CU is the CU containing DIE on input, and the CU
22610 containing the return value on output. */
22612 static struct die_info *
22613 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22615 struct attribute *attr;
22617 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22621 return follow_die_ref (die, attr, ext_cu);
22624 /* Convert a DIE tag into its string name. */
22626 static const char *
22627 dwarf_tag_name (unsigned tag)
22629 const char *name = get_DW_TAG_name (tag);
22632 return "DW_TAG_<unknown>";
22637 /* Convert a DWARF attribute code into its string name. */
22639 static const char *
22640 dwarf_attr_name (unsigned attr)
22644 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22645 if (attr == DW_AT_MIPS_fde)
22646 return "DW_AT_MIPS_fde";
22648 if (attr == DW_AT_HP_block_index)
22649 return "DW_AT_HP_block_index";
22652 name = get_DW_AT_name (attr);
22655 return "DW_AT_<unknown>";
22660 /* Convert a DWARF value form code into its string name. */
22662 static const char *
22663 dwarf_form_name (unsigned form)
22665 const char *name = get_DW_FORM_name (form);
22668 return "DW_FORM_<unknown>";
22673 static const char *
22674 dwarf_bool_name (unsigned mybool)
22682 /* Convert a DWARF type code into its string name. */
22684 static const char *
22685 dwarf_type_encoding_name (unsigned enc)
22687 const char *name = get_DW_ATE_name (enc);
22690 return "DW_ATE_<unknown>";
22696 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22700 print_spaces (indent, f);
22701 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22702 dwarf_tag_name (die->tag), die->abbrev,
22703 sect_offset_str (die->sect_off));
22705 if (die->parent != NULL)
22707 print_spaces (indent, f);
22708 fprintf_unfiltered (f, " parent at offset: %s\n",
22709 sect_offset_str (die->parent->sect_off));
22712 print_spaces (indent, f);
22713 fprintf_unfiltered (f, " has children: %s\n",
22714 dwarf_bool_name (die->child != NULL));
22716 print_spaces (indent, f);
22717 fprintf_unfiltered (f, " attributes:\n");
22719 for (i = 0; i < die->num_attrs; ++i)
22721 print_spaces (indent, f);
22722 fprintf_unfiltered (f, " %s (%s) ",
22723 dwarf_attr_name (die->attrs[i].name),
22724 dwarf_form_name (die->attrs[i].form));
22726 switch (die->attrs[i].form)
22729 case DW_FORM_GNU_addr_index:
22730 fprintf_unfiltered (f, "address: ");
22731 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22733 case DW_FORM_block2:
22734 case DW_FORM_block4:
22735 case DW_FORM_block:
22736 case DW_FORM_block1:
22737 fprintf_unfiltered (f, "block: size %s",
22738 pulongest (DW_BLOCK (&die->attrs[i])->size));
22740 case DW_FORM_exprloc:
22741 fprintf_unfiltered (f, "expression: size %s",
22742 pulongest (DW_BLOCK (&die->attrs[i])->size));
22744 case DW_FORM_data16:
22745 fprintf_unfiltered (f, "constant of 16 bytes");
22747 case DW_FORM_ref_addr:
22748 fprintf_unfiltered (f, "ref address: ");
22749 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22751 case DW_FORM_GNU_ref_alt:
22752 fprintf_unfiltered (f, "alt ref address: ");
22753 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22759 case DW_FORM_ref_udata:
22760 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22761 (long) (DW_UNSND (&die->attrs[i])));
22763 case DW_FORM_data1:
22764 case DW_FORM_data2:
22765 case DW_FORM_data4:
22766 case DW_FORM_data8:
22767 case DW_FORM_udata:
22768 case DW_FORM_sdata:
22769 fprintf_unfiltered (f, "constant: %s",
22770 pulongest (DW_UNSND (&die->attrs[i])));
22772 case DW_FORM_sec_offset:
22773 fprintf_unfiltered (f, "section offset: %s",
22774 pulongest (DW_UNSND (&die->attrs[i])));
22776 case DW_FORM_ref_sig8:
22777 fprintf_unfiltered (f, "signature: %s",
22778 hex_string (DW_SIGNATURE (&die->attrs[i])));
22780 case DW_FORM_string:
22782 case DW_FORM_line_strp:
22783 case DW_FORM_GNU_str_index:
22784 case DW_FORM_GNU_strp_alt:
22785 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22786 DW_STRING (&die->attrs[i])
22787 ? DW_STRING (&die->attrs[i]) : "",
22788 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22791 if (DW_UNSND (&die->attrs[i]))
22792 fprintf_unfiltered (f, "flag: TRUE");
22794 fprintf_unfiltered (f, "flag: FALSE");
22796 case DW_FORM_flag_present:
22797 fprintf_unfiltered (f, "flag: TRUE");
22799 case DW_FORM_indirect:
22800 /* The reader will have reduced the indirect form to
22801 the "base form" so this form should not occur. */
22802 fprintf_unfiltered (f,
22803 "unexpected attribute form: DW_FORM_indirect");
22805 case DW_FORM_implicit_const:
22806 fprintf_unfiltered (f, "constant: %s",
22807 plongest (DW_SND (&die->attrs[i])));
22810 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22811 die->attrs[i].form);
22814 fprintf_unfiltered (f, "\n");
22819 dump_die_for_error (struct die_info *die)
22821 dump_die_shallow (gdb_stderr, 0, die);
22825 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22827 int indent = level * 4;
22829 gdb_assert (die != NULL);
22831 if (level >= max_level)
22834 dump_die_shallow (f, indent, die);
22836 if (die->child != NULL)
22838 print_spaces (indent, f);
22839 fprintf_unfiltered (f, " Children:");
22840 if (level + 1 < max_level)
22842 fprintf_unfiltered (f, "\n");
22843 dump_die_1 (f, level + 1, max_level, die->child);
22847 fprintf_unfiltered (f,
22848 " [not printed, max nesting level reached]\n");
22852 if (die->sibling != NULL && level > 0)
22854 dump_die_1 (f, level, max_level, die->sibling);
22858 /* This is called from the pdie macro in gdbinit.in.
22859 It's not static so gcc will keep a copy callable from gdb. */
22862 dump_die (struct die_info *die, int max_level)
22864 dump_die_1 (gdb_stdlog, 0, max_level, die);
22868 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22872 slot = htab_find_slot_with_hash (cu->die_hash, die,
22873 to_underlying (die->sect_off),
22879 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22883 dwarf2_get_ref_die_offset (const struct attribute *attr)
22885 if (attr_form_is_ref (attr))
22886 return (sect_offset) DW_UNSND (attr);
22888 complaint (_("unsupported die ref attribute form: '%s'"),
22889 dwarf_form_name (attr->form));
22893 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22894 * the value held by the attribute is not constant. */
22897 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22899 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22900 return DW_SND (attr);
22901 else if (attr->form == DW_FORM_udata
22902 || attr->form == DW_FORM_data1
22903 || attr->form == DW_FORM_data2
22904 || attr->form == DW_FORM_data4
22905 || attr->form == DW_FORM_data8)
22906 return DW_UNSND (attr);
22909 /* For DW_FORM_data16 see attr_form_is_constant. */
22910 complaint (_("Attribute value is not a constant (%s)"),
22911 dwarf_form_name (attr->form));
22912 return default_value;
22916 /* Follow reference or signature attribute ATTR of SRC_DIE.
22917 On entry *REF_CU is the CU of SRC_DIE.
22918 On exit *REF_CU is the CU of the result. */
22920 static struct die_info *
22921 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22922 struct dwarf2_cu **ref_cu)
22924 struct die_info *die;
22926 if (attr_form_is_ref (attr))
22927 die = follow_die_ref (src_die, attr, ref_cu);
22928 else if (attr->form == DW_FORM_ref_sig8)
22929 die = follow_die_sig (src_die, attr, ref_cu);
22932 dump_die_for_error (src_die);
22933 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22934 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22940 /* Follow reference OFFSET.
22941 On entry *REF_CU is the CU of the source die referencing OFFSET.
22942 On exit *REF_CU is the CU of the result.
22943 Returns NULL if OFFSET is invalid. */
22945 static struct die_info *
22946 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22947 struct dwarf2_cu **ref_cu)
22949 struct die_info temp_die;
22950 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22951 struct dwarf2_per_objfile *dwarf2_per_objfile
22952 = cu->per_cu->dwarf2_per_objfile;
22954 gdb_assert (cu->per_cu != NULL);
22958 if (cu->per_cu->is_debug_types)
22960 /* .debug_types CUs cannot reference anything outside their CU.
22961 If they need to, they have to reference a signatured type via
22962 DW_FORM_ref_sig8. */
22963 if (!offset_in_cu_p (&cu->header, sect_off))
22966 else if (offset_in_dwz != cu->per_cu->is_dwz
22967 || !offset_in_cu_p (&cu->header, sect_off))
22969 struct dwarf2_per_cu_data *per_cu;
22971 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22972 dwarf2_per_objfile);
22974 /* If necessary, add it to the queue and load its DIEs. */
22975 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22976 load_full_comp_unit (per_cu, false, cu->language);
22978 target_cu = per_cu->cu;
22980 else if (cu->dies == NULL)
22982 /* We're loading full DIEs during partial symbol reading. */
22983 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22984 load_full_comp_unit (cu->per_cu, false, language_minimal);
22987 *ref_cu = target_cu;
22988 temp_die.sect_off = sect_off;
22989 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22991 to_underlying (sect_off));
22994 /* Follow reference attribute ATTR of SRC_DIE.
22995 On entry *REF_CU is the CU of SRC_DIE.
22996 On exit *REF_CU is the CU of the result. */
22998 static struct die_info *
22999 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23000 struct dwarf2_cu **ref_cu)
23002 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23003 struct dwarf2_cu *cu = *ref_cu;
23004 struct die_info *die;
23006 die = follow_die_offset (sect_off,
23007 (attr->form == DW_FORM_GNU_ref_alt
23008 || cu->per_cu->is_dwz),
23011 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23012 "at %s [in module %s]"),
23013 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23014 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23019 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23020 Returned value is intended for DW_OP_call*. Returned
23021 dwarf2_locexpr_baton->data has lifetime of
23022 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23024 struct dwarf2_locexpr_baton
23025 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23026 struct dwarf2_per_cu_data *per_cu,
23027 CORE_ADDR (*get_frame_pc) (void *baton),
23028 void *baton, bool resolve_abstract_p)
23030 struct dwarf2_cu *cu;
23031 struct die_info *die;
23032 struct attribute *attr;
23033 struct dwarf2_locexpr_baton retval;
23034 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23035 struct objfile *objfile = dwarf2_per_objfile->objfile;
23037 if (per_cu->cu == NULL)
23038 load_cu (per_cu, false);
23042 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23043 Instead just throw an error, not much else we can do. */
23044 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23045 sect_offset_str (sect_off), objfile_name (objfile));
23048 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23050 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23051 sect_offset_str (sect_off), objfile_name (objfile));
23053 attr = dwarf2_attr (die, DW_AT_location, cu);
23054 if (!attr && resolve_abstract_p
23055 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23056 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23058 CORE_ADDR pc = (*get_frame_pc) (baton);
23060 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23063 || cand->parent->tag != DW_TAG_subprogram)
23066 CORE_ADDR pc_low, pc_high;
23067 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23068 if (pc_low == ((CORE_ADDR) -1)
23069 || !(pc_low <= pc && pc < pc_high))
23073 attr = dwarf2_attr (die, DW_AT_location, cu);
23080 /* DWARF: "If there is no such attribute, then there is no effect.".
23081 DATA is ignored if SIZE is 0. */
23083 retval.data = NULL;
23086 else if (attr_form_is_section_offset (attr))
23088 struct dwarf2_loclist_baton loclist_baton;
23089 CORE_ADDR pc = (*get_frame_pc) (baton);
23092 fill_in_loclist_baton (cu, &loclist_baton, attr);
23094 retval.data = dwarf2_find_location_expression (&loclist_baton,
23096 retval.size = size;
23100 if (!attr_form_is_block (attr))
23101 error (_("Dwarf Error: DIE at %s referenced in module %s "
23102 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23103 sect_offset_str (sect_off), objfile_name (objfile));
23105 retval.data = DW_BLOCK (attr)->data;
23106 retval.size = DW_BLOCK (attr)->size;
23108 retval.per_cu = cu->per_cu;
23110 age_cached_comp_units (dwarf2_per_objfile);
23115 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23118 struct dwarf2_locexpr_baton
23119 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23120 struct dwarf2_per_cu_data *per_cu,
23121 CORE_ADDR (*get_frame_pc) (void *baton),
23124 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23126 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23129 /* Write a constant of a given type as target-ordered bytes into
23132 static const gdb_byte *
23133 write_constant_as_bytes (struct obstack *obstack,
23134 enum bfd_endian byte_order,
23141 *len = TYPE_LENGTH (type);
23142 result = (gdb_byte *) obstack_alloc (obstack, *len);
23143 store_unsigned_integer (result, *len, byte_order, value);
23148 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23149 pointer to the constant bytes and set LEN to the length of the
23150 data. If memory is needed, allocate it on OBSTACK. If the DIE
23151 does not have a DW_AT_const_value, return NULL. */
23154 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23155 struct dwarf2_per_cu_data *per_cu,
23156 struct obstack *obstack,
23159 struct dwarf2_cu *cu;
23160 struct die_info *die;
23161 struct attribute *attr;
23162 const gdb_byte *result = NULL;
23165 enum bfd_endian byte_order;
23166 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23168 if (per_cu->cu == NULL)
23169 load_cu (per_cu, false);
23173 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23174 Instead just throw an error, not much else we can do. */
23175 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23176 sect_offset_str (sect_off), objfile_name (objfile));
23179 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23181 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23182 sect_offset_str (sect_off), objfile_name (objfile));
23184 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23188 byte_order = (bfd_big_endian (objfile->obfd)
23189 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23191 switch (attr->form)
23194 case DW_FORM_GNU_addr_index:
23198 *len = cu->header.addr_size;
23199 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23200 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23204 case DW_FORM_string:
23206 case DW_FORM_GNU_str_index:
23207 case DW_FORM_GNU_strp_alt:
23208 /* DW_STRING is already allocated on the objfile obstack, point
23210 result = (const gdb_byte *) DW_STRING (attr);
23211 *len = strlen (DW_STRING (attr));
23213 case DW_FORM_block1:
23214 case DW_FORM_block2:
23215 case DW_FORM_block4:
23216 case DW_FORM_block:
23217 case DW_FORM_exprloc:
23218 case DW_FORM_data16:
23219 result = DW_BLOCK (attr)->data;
23220 *len = DW_BLOCK (attr)->size;
23223 /* The DW_AT_const_value attributes are supposed to carry the
23224 symbol's value "represented as it would be on the target
23225 architecture." By the time we get here, it's already been
23226 converted to host endianness, so we just need to sign- or
23227 zero-extend it as appropriate. */
23228 case DW_FORM_data1:
23229 type = die_type (die, cu);
23230 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23231 if (result == NULL)
23232 result = write_constant_as_bytes (obstack, byte_order,
23235 case DW_FORM_data2:
23236 type = die_type (die, cu);
23237 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23238 if (result == NULL)
23239 result = write_constant_as_bytes (obstack, byte_order,
23242 case DW_FORM_data4:
23243 type = die_type (die, cu);
23244 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23245 if (result == NULL)
23246 result = write_constant_as_bytes (obstack, byte_order,
23249 case DW_FORM_data8:
23250 type = die_type (die, cu);
23251 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23252 if (result == NULL)
23253 result = write_constant_as_bytes (obstack, byte_order,
23257 case DW_FORM_sdata:
23258 case DW_FORM_implicit_const:
23259 type = die_type (die, cu);
23260 result = write_constant_as_bytes (obstack, byte_order,
23261 type, DW_SND (attr), len);
23264 case DW_FORM_udata:
23265 type = die_type (die, cu);
23266 result = write_constant_as_bytes (obstack, byte_order,
23267 type, DW_UNSND (attr), len);
23271 complaint (_("unsupported const value attribute form: '%s'"),
23272 dwarf_form_name (attr->form));
23279 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23280 valid type for this die is found. */
23283 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23284 struct dwarf2_per_cu_data *per_cu)
23286 struct dwarf2_cu *cu;
23287 struct die_info *die;
23289 if (per_cu->cu == NULL)
23290 load_cu (per_cu, false);
23295 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23299 return die_type (die, cu);
23302 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23306 dwarf2_get_die_type (cu_offset die_offset,
23307 struct dwarf2_per_cu_data *per_cu)
23309 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23310 return get_die_type_at_offset (die_offset_sect, per_cu);
23313 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23314 On entry *REF_CU is the CU of SRC_DIE.
23315 On exit *REF_CU is the CU of the result.
23316 Returns NULL if the referenced DIE isn't found. */
23318 static struct die_info *
23319 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23320 struct dwarf2_cu **ref_cu)
23322 struct die_info temp_die;
23323 struct dwarf2_cu *sig_cu;
23324 struct die_info *die;
23326 /* While it might be nice to assert sig_type->type == NULL here,
23327 we can get here for DW_AT_imported_declaration where we need
23328 the DIE not the type. */
23330 /* If necessary, add it to the queue and load its DIEs. */
23332 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23333 read_signatured_type (sig_type);
23335 sig_cu = sig_type->per_cu.cu;
23336 gdb_assert (sig_cu != NULL);
23337 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23338 temp_die.sect_off = sig_type->type_offset_in_section;
23339 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23340 to_underlying (temp_die.sect_off));
23343 struct dwarf2_per_objfile *dwarf2_per_objfile
23344 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23346 /* For .gdb_index version 7 keep track of included TUs.
23347 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23348 if (dwarf2_per_objfile->index_table != NULL
23349 && dwarf2_per_objfile->index_table->version <= 7)
23351 VEC_safe_push (dwarf2_per_cu_ptr,
23352 (*ref_cu)->per_cu->imported_symtabs,
23363 /* Follow signatured type referenced by ATTR in SRC_DIE.
23364 On entry *REF_CU is the CU of SRC_DIE.
23365 On exit *REF_CU is the CU of the result.
23366 The result is the DIE of the type.
23367 If the referenced type cannot be found an error is thrown. */
23369 static struct die_info *
23370 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23371 struct dwarf2_cu **ref_cu)
23373 ULONGEST signature = DW_SIGNATURE (attr);
23374 struct signatured_type *sig_type;
23375 struct die_info *die;
23377 gdb_assert (attr->form == DW_FORM_ref_sig8);
23379 sig_type = lookup_signatured_type (*ref_cu, signature);
23380 /* sig_type will be NULL if the signatured type is missing from
23382 if (sig_type == NULL)
23384 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23385 " from DIE at %s [in module %s]"),
23386 hex_string (signature), sect_offset_str (src_die->sect_off),
23387 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23390 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23393 dump_die_for_error (src_die);
23394 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23395 " from DIE at %s [in module %s]"),
23396 hex_string (signature), sect_offset_str (src_die->sect_off),
23397 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23403 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23404 reading in and processing the type unit if necessary. */
23406 static struct type *
23407 get_signatured_type (struct die_info *die, ULONGEST signature,
23408 struct dwarf2_cu *cu)
23410 struct dwarf2_per_objfile *dwarf2_per_objfile
23411 = cu->per_cu->dwarf2_per_objfile;
23412 struct signatured_type *sig_type;
23413 struct dwarf2_cu *type_cu;
23414 struct die_info *type_die;
23417 sig_type = lookup_signatured_type (cu, signature);
23418 /* sig_type will be NULL if the signatured type is missing from
23420 if (sig_type == NULL)
23422 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23423 " from DIE at %s [in module %s]"),
23424 hex_string (signature), sect_offset_str (die->sect_off),
23425 objfile_name (dwarf2_per_objfile->objfile));
23426 return build_error_marker_type (cu, die);
23429 /* If we already know the type we're done. */
23430 if (sig_type->type != NULL)
23431 return sig_type->type;
23434 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23435 if (type_die != NULL)
23437 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23438 is created. This is important, for example, because for c++ classes
23439 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23440 type = read_type_die (type_die, type_cu);
23443 complaint (_("Dwarf Error: Cannot build signatured type %s"
23444 " referenced from DIE at %s [in module %s]"),
23445 hex_string (signature), sect_offset_str (die->sect_off),
23446 objfile_name (dwarf2_per_objfile->objfile));
23447 type = build_error_marker_type (cu, die);
23452 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23453 " from DIE at %s [in module %s]"),
23454 hex_string (signature), sect_offset_str (die->sect_off),
23455 objfile_name (dwarf2_per_objfile->objfile));
23456 type = build_error_marker_type (cu, die);
23458 sig_type->type = type;
23463 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23464 reading in and processing the type unit if necessary. */
23466 static struct type *
23467 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23468 struct dwarf2_cu *cu) /* ARI: editCase function */
23470 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23471 if (attr_form_is_ref (attr))
23473 struct dwarf2_cu *type_cu = cu;
23474 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23476 return read_type_die (type_die, type_cu);
23478 else if (attr->form == DW_FORM_ref_sig8)
23480 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23484 struct dwarf2_per_objfile *dwarf2_per_objfile
23485 = cu->per_cu->dwarf2_per_objfile;
23487 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23488 " at %s [in module %s]"),
23489 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23490 objfile_name (dwarf2_per_objfile->objfile));
23491 return build_error_marker_type (cu, die);
23495 /* Load the DIEs associated with type unit PER_CU into memory. */
23498 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23500 struct signatured_type *sig_type;
23502 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23503 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23505 /* We have the per_cu, but we need the signatured_type.
23506 Fortunately this is an easy translation. */
23507 gdb_assert (per_cu->is_debug_types);
23508 sig_type = (struct signatured_type *) per_cu;
23510 gdb_assert (per_cu->cu == NULL);
23512 read_signatured_type (sig_type);
23514 gdb_assert (per_cu->cu != NULL);
23517 /* die_reader_func for read_signatured_type.
23518 This is identical to load_full_comp_unit_reader,
23519 but is kept separate for now. */
23522 read_signatured_type_reader (const struct die_reader_specs *reader,
23523 const gdb_byte *info_ptr,
23524 struct die_info *comp_unit_die,
23528 struct dwarf2_cu *cu = reader->cu;
23530 gdb_assert (cu->die_hash == NULL);
23532 htab_create_alloc_ex (cu->header.length / 12,
23536 &cu->comp_unit_obstack,
23537 hashtab_obstack_allocate,
23538 dummy_obstack_deallocate);
23541 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23542 &info_ptr, comp_unit_die);
23543 cu->dies = comp_unit_die;
23544 /* comp_unit_die is not stored in die_hash, no need. */
23546 /* We try not to read any attributes in this function, because not
23547 all CUs needed for references have been loaded yet, and symbol
23548 table processing isn't initialized. But we have to set the CU language,
23549 or we won't be able to build types correctly.
23550 Similarly, if we do not read the producer, we can not apply
23551 producer-specific interpretation. */
23552 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23555 /* Read in a signatured type and build its CU and DIEs.
23556 If the type is a stub for the real type in a DWO file,
23557 read in the real type from the DWO file as well. */
23560 read_signatured_type (struct signatured_type *sig_type)
23562 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23564 gdb_assert (per_cu->is_debug_types);
23565 gdb_assert (per_cu->cu == NULL);
23567 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23568 read_signatured_type_reader, NULL);
23569 sig_type->per_cu.tu_read = 1;
23572 /* Decode simple location descriptions.
23573 Given a pointer to a dwarf block that defines a location, compute
23574 the location and return the value.
23576 NOTE drow/2003-11-18: This function is called in two situations
23577 now: for the address of static or global variables (partial symbols
23578 only) and for offsets into structures which are expected to be
23579 (more or less) constant. The partial symbol case should go away,
23580 and only the constant case should remain. That will let this
23581 function complain more accurately. A few special modes are allowed
23582 without complaint for global variables (for instance, global
23583 register values and thread-local values).
23585 A location description containing no operations indicates that the
23586 object is optimized out. The return value is 0 for that case.
23587 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23588 callers will only want a very basic result and this can become a
23591 Note that stack[0] is unused except as a default error return. */
23594 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23596 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23598 size_t size = blk->size;
23599 const gdb_byte *data = blk->data;
23600 CORE_ADDR stack[64];
23602 unsigned int bytes_read, unsnd;
23608 stack[++stacki] = 0;
23647 stack[++stacki] = op - DW_OP_lit0;
23682 stack[++stacki] = op - DW_OP_reg0;
23684 dwarf2_complex_location_expr_complaint ();
23688 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23690 stack[++stacki] = unsnd;
23692 dwarf2_complex_location_expr_complaint ();
23696 stack[++stacki] = read_address (objfile->obfd, &data[i],
23701 case DW_OP_const1u:
23702 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23706 case DW_OP_const1s:
23707 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23711 case DW_OP_const2u:
23712 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23716 case DW_OP_const2s:
23717 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23721 case DW_OP_const4u:
23722 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23726 case DW_OP_const4s:
23727 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23731 case DW_OP_const8u:
23732 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23737 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23743 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23748 stack[stacki + 1] = stack[stacki];
23753 stack[stacki - 1] += stack[stacki];
23757 case DW_OP_plus_uconst:
23758 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23764 stack[stacki - 1] -= stack[stacki];
23769 /* If we're not the last op, then we definitely can't encode
23770 this using GDB's address_class enum. This is valid for partial
23771 global symbols, although the variable's address will be bogus
23774 dwarf2_complex_location_expr_complaint ();
23777 case DW_OP_GNU_push_tls_address:
23778 case DW_OP_form_tls_address:
23779 /* The top of the stack has the offset from the beginning
23780 of the thread control block at which the variable is located. */
23781 /* Nothing should follow this operator, so the top of stack would
23783 /* This is valid for partial global symbols, but the variable's
23784 address will be bogus in the psymtab. Make it always at least
23785 non-zero to not look as a variable garbage collected by linker
23786 which have DW_OP_addr 0. */
23788 dwarf2_complex_location_expr_complaint ();
23792 case DW_OP_GNU_uninit:
23795 case DW_OP_GNU_addr_index:
23796 case DW_OP_GNU_const_index:
23797 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23804 const char *name = get_DW_OP_name (op);
23807 complaint (_("unsupported stack op: '%s'"),
23810 complaint (_("unsupported stack op: '%02x'"),
23814 return (stack[stacki]);
23817 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23818 outside of the allocated space. Also enforce minimum>0. */
23819 if (stacki >= ARRAY_SIZE (stack) - 1)
23821 complaint (_("location description stack overflow"));
23827 complaint (_("location description stack underflow"));
23831 return (stack[stacki]);
23834 /* memory allocation interface */
23836 static struct dwarf_block *
23837 dwarf_alloc_block (struct dwarf2_cu *cu)
23839 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23842 static struct die_info *
23843 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23845 struct die_info *die;
23846 size_t size = sizeof (struct die_info);
23849 size += (num_attrs - 1) * sizeof (struct attribute);
23851 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23852 memset (die, 0, sizeof (struct die_info));
23857 /* Macro support. */
23859 /* Return file name relative to the compilation directory of file number I in
23860 *LH's file name table. The result is allocated using xmalloc; the caller is
23861 responsible for freeing it. */
23864 file_file_name (int file, struct line_header *lh)
23866 /* Is the file number a valid index into the line header's file name
23867 table? Remember that file numbers start with one, not zero. */
23868 if (1 <= file && file <= lh->file_names.size ())
23870 const file_entry &fe = lh->file_names[file - 1];
23872 if (!IS_ABSOLUTE_PATH (fe.name))
23874 const char *dir = fe.include_dir (lh);
23876 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23878 return xstrdup (fe.name);
23882 /* The compiler produced a bogus file number. We can at least
23883 record the macro definitions made in the file, even if we
23884 won't be able to find the file by name. */
23885 char fake_name[80];
23887 xsnprintf (fake_name, sizeof (fake_name),
23888 "<bad macro file number %d>", file);
23890 complaint (_("bad file number in macro information (%d)"),
23893 return xstrdup (fake_name);
23897 /* Return the full name of file number I in *LH's file name table.
23898 Use COMP_DIR as the name of the current directory of the
23899 compilation. The result is allocated using xmalloc; the caller is
23900 responsible for freeing it. */
23902 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23904 /* Is the file number a valid index into the line header's file name
23905 table? Remember that file numbers start with one, not zero. */
23906 if (1 <= file && file <= lh->file_names.size ())
23908 char *relative = file_file_name (file, lh);
23910 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23912 return reconcat (relative, comp_dir, SLASH_STRING,
23913 relative, (char *) NULL);
23916 return file_file_name (file, lh);
23920 static struct macro_source_file *
23921 macro_start_file (struct dwarf2_cu *cu,
23922 int file, int line,
23923 struct macro_source_file *current_file,
23924 struct line_header *lh)
23926 /* File name relative to the compilation directory of this source file. */
23927 char *file_name = file_file_name (file, lh);
23929 if (! current_file)
23931 /* Note: We don't create a macro table for this compilation unit
23932 at all until we actually get a filename. */
23933 struct macro_table *macro_table = cu->builder->get_macro_table ();
23935 /* If we have no current file, then this must be the start_file
23936 directive for the compilation unit's main source file. */
23937 current_file = macro_set_main (macro_table, file_name);
23938 macro_define_special (macro_table);
23941 current_file = macro_include (current_file, line, file_name);
23945 return current_file;
23948 static const char *
23949 consume_improper_spaces (const char *p, const char *body)
23953 complaint (_("macro definition contains spaces "
23954 "in formal argument list:\n`%s'"),
23966 parse_macro_definition (struct macro_source_file *file, int line,
23971 /* The body string takes one of two forms. For object-like macro
23972 definitions, it should be:
23974 <macro name> " " <definition>
23976 For function-like macro definitions, it should be:
23978 <macro name> "() " <definition>
23980 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23982 Spaces may appear only where explicitly indicated, and in the
23985 The Dwarf 2 spec says that an object-like macro's name is always
23986 followed by a space, but versions of GCC around March 2002 omit
23987 the space when the macro's definition is the empty string.
23989 The Dwarf 2 spec says that there should be no spaces between the
23990 formal arguments in a function-like macro's formal argument list,
23991 but versions of GCC around March 2002 include spaces after the
23995 /* Find the extent of the macro name. The macro name is terminated
23996 by either a space or null character (for an object-like macro) or
23997 an opening paren (for a function-like macro). */
23998 for (p = body; *p; p++)
23999 if (*p == ' ' || *p == '(')
24002 if (*p == ' ' || *p == '\0')
24004 /* It's an object-like macro. */
24005 int name_len = p - body;
24006 char *name = savestring (body, name_len);
24007 const char *replacement;
24010 replacement = body + name_len + 1;
24013 dwarf2_macro_malformed_definition_complaint (body);
24014 replacement = body + name_len;
24017 macro_define_object (file, line, name, replacement);
24021 else if (*p == '(')
24023 /* It's a function-like macro. */
24024 char *name = savestring (body, p - body);
24027 char **argv = XNEWVEC (char *, argv_size);
24031 p = consume_improper_spaces (p, body);
24033 /* Parse the formal argument list. */
24034 while (*p && *p != ')')
24036 /* Find the extent of the current argument name. */
24037 const char *arg_start = p;
24039 while (*p && *p != ',' && *p != ')' && *p != ' ')
24042 if (! *p || p == arg_start)
24043 dwarf2_macro_malformed_definition_complaint (body);
24046 /* Make sure argv has room for the new argument. */
24047 if (argc >= argv_size)
24050 argv = XRESIZEVEC (char *, argv, argv_size);
24053 argv[argc++] = savestring (arg_start, p - arg_start);
24056 p = consume_improper_spaces (p, body);
24058 /* Consume the comma, if present. */
24063 p = consume_improper_spaces (p, body);
24072 /* Perfectly formed definition, no complaints. */
24073 macro_define_function (file, line, name,
24074 argc, (const char **) argv,
24076 else if (*p == '\0')
24078 /* Complain, but do define it. */
24079 dwarf2_macro_malformed_definition_complaint (body);
24080 macro_define_function (file, line, name,
24081 argc, (const char **) argv,
24085 /* Just complain. */
24086 dwarf2_macro_malformed_definition_complaint (body);
24089 /* Just complain. */
24090 dwarf2_macro_malformed_definition_complaint (body);
24096 for (i = 0; i < argc; i++)
24102 dwarf2_macro_malformed_definition_complaint (body);
24105 /* Skip some bytes from BYTES according to the form given in FORM.
24106 Returns the new pointer. */
24108 static const gdb_byte *
24109 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24110 enum dwarf_form form,
24111 unsigned int offset_size,
24112 struct dwarf2_section_info *section)
24114 unsigned int bytes_read;
24118 case DW_FORM_data1:
24123 case DW_FORM_data2:
24127 case DW_FORM_data4:
24131 case DW_FORM_data8:
24135 case DW_FORM_data16:
24139 case DW_FORM_string:
24140 read_direct_string (abfd, bytes, &bytes_read);
24141 bytes += bytes_read;
24144 case DW_FORM_sec_offset:
24146 case DW_FORM_GNU_strp_alt:
24147 bytes += offset_size;
24150 case DW_FORM_block:
24151 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24152 bytes += bytes_read;
24155 case DW_FORM_block1:
24156 bytes += 1 + read_1_byte (abfd, bytes);
24158 case DW_FORM_block2:
24159 bytes += 2 + read_2_bytes (abfd, bytes);
24161 case DW_FORM_block4:
24162 bytes += 4 + read_4_bytes (abfd, bytes);
24165 case DW_FORM_sdata:
24166 case DW_FORM_udata:
24167 case DW_FORM_GNU_addr_index:
24168 case DW_FORM_GNU_str_index:
24169 bytes = gdb_skip_leb128 (bytes, buffer_end);
24172 dwarf2_section_buffer_overflow_complaint (section);
24177 case DW_FORM_implicit_const:
24182 complaint (_("invalid form 0x%x in `%s'"),
24183 form, get_section_name (section));
24191 /* A helper for dwarf_decode_macros that handles skipping an unknown
24192 opcode. Returns an updated pointer to the macro data buffer; or,
24193 on error, issues a complaint and returns NULL. */
24195 static const gdb_byte *
24196 skip_unknown_opcode (unsigned int opcode,
24197 const gdb_byte **opcode_definitions,
24198 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24200 unsigned int offset_size,
24201 struct dwarf2_section_info *section)
24203 unsigned int bytes_read, i;
24205 const gdb_byte *defn;
24207 if (opcode_definitions[opcode] == NULL)
24209 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24214 defn = opcode_definitions[opcode];
24215 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24216 defn += bytes_read;
24218 for (i = 0; i < arg; ++i)
24220 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24221 (enum dwarf_form) defn[i], offset_size,
24223 if (mac_ptr == NULL)
24225 /* skip_form_bytes already issued the complaint. */
24233 /* A helper function which parses the header of a macro section.
24234 If the macro section is the extended (for now called "GNU") type,
24235 then this updates *OFFSET_SIZE. Returns a pointer to just after
24236 the header, or issues a complaint and returns NULL on error. */
24238 static const gdb_byte *
24239 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24241 const gdb_byte *mac_ptr,
24242 unsigned int *offset_size,
24243 int section_is_gnu)
24245 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24247 if (section_is_gnu)
24249 unsigned int version, flags;
24251 version = read_2_bytes (abfd, mac_ptr);
24252 if (version != 4 && version != 5)
24254 complaint (_("unrecognized version `%d' in .debug_macro section"),
24260 flags = read_1_byte (abfd, mac_ptr);
24262 *offset_size = (flags & 1) ? 8 : 4;
24264 if ((flags & 2) != 0)
24265 /* We don't need the line table offset. */
24266 mac_ptr += *offset_size;
24268 /* Vendor opcode descriptions. */
24269 if ((flags & 4) != 0)
24271 unsigned int i, count;
24273 count = read_1_byte (abfd, mac_ptr);
24275 for (i = 0; i < count; ++i)
24277 unsigned int opcode, bytes_read;
24280 opcode = read_1_byte (abfd, mac_ptr);
24282 opcode_definitions[opcode] = mac_ptr;
24283 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24284 mac_ptr += bytes_read;
24293 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24294 including DW_MACRO_import. */
24297 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24299 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24300 struct macro_source_file *current_file,
24301 struct line_header *lh,
24302 struct dwarf2_section_info *section,
24303 int section_is_gnu, int section_is_dwz,
24304 unsigned int offset_size,
24305 htab_t include_hash)
24307 struct dwarf2_per_objfile *dwarf2_per_objfile
24308 = cu->per_cu->dwarf2_per_objfile;
24309 struct objfile *objfile = dwarf2_per_objfile->objfile;
24310 enum dwarf_macro_record_type macinfo_type;
24311 int at_commandline;
24312 const gdb_byte *opcode_definitions[256];
24314 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24315 &offset_size, section_is_gnu);
24316 if (mac_ptr == NULL)
24318 /* We already issued a complaint. */
24322 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24323 GDB is still reading the definitions from command line. First
24324 DW_MACINFO_start_file will need to be ignored as it was already executed
24325 to create CURRENT_FILE for the main source holding also the command line
24326 definitions. On first met DW_MACINFO_start_file this flag is reset to
24327 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24329 at_commandline = 1;
24333 /* Do we at least have room for a macinfo type byte? */
24334 if (mac_ptr >= mac_end)
24336 dwarf2_section_buffer_overflow_complaint (section);
24340 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24343 /* Note that we rely on the fact that the corresponding GNU and
24344 DWARF constants are the same. */
24346 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24347 switch (macinfo_type)
24349 /* A zero macinfo type indicates the end of the macro
24354 case DW_MACRO_define:
24355 case DW_MACRO_undef:
24356 case DW_MACRO_define_strp:
24357 case DW_MACRO_undef_strp:
24358 case DW_MACRO_define_sup:
24359 case DW_MACRO_undef_sup:
24361 unsigned int bytes_read;
24366 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24367 mac_ptr += bytes_read;
24369 if (macinfo_type == DW_MACRO_define
24370 || macinfo_type == DW_MACRO_undef)
24372 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24373 mac_ptr += bytes_read;
24377 LONGEST str_offset;
24379 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24380 mac_ptr += offset_size;
24382 if (macinfo_type == DW_MACRO_define_sup
24383 || macinfo_type == DW_MACRO_undef_sup
24386 struct dwz_file *dwz
24387 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24389 body = read_indirect_string_from_dwz (objfile,
24393 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24397 is_define = (macinfo_type == DW_MACRO_define
24398 || macinfo_type == DW_MACRO_define_strp
24399 || macinfo_type == DW_MACRO_define_sup);
24400 if (! current_file)
24402 /* DWARF violation as no main source is present. */
24403 complaint (_("debug info with no main source gives macro %s "
24405 is_define ? _("definition") : _("undefinition"),
24409 if ((line == 0 && !at_commandline)
24410 || (line != 0 && at_commandline))
24411 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24412 at_commandline ? _("command-line") : _("in-file"),
24413 is_define ? _("definition") : _("undefinition"),
24414 line == 0 ? _("zero") : _("non-zero"), line, body);
24417 parse_macro_definition (current_file, line, body);
24420 gdb_assert (macinfo_type == DW_MACRO_undef
24421 || macinfo_type == DW_MACRO_undef_strp
24422 || macinfo_type == DW_MACRO_undef_sup);
24423 macro_undef (current_file, line, body);
24428 case DW_MACRO_start_file:
24430 unsigned int bytes_read;
24433 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24434 mac_ptr += bytes_read;
24435 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24436 mac_ptr += bytes_read;
24438 if ((line == 0 && !at_commandline)
24439 || (line != 0 && at_commandline))
24440 complaint (_("debug info gives source %d included "
24441 "from %s at %s line %d"),
24442 file, at_commandline ? _("command-line") : _("file"),
24443 line == 0 ? _("zero") : _("non-zero"), line);
24445 if (at_commandline)
24447 /* This DW_MACRO_start_file was executed in the
24449 at_commandline = 0;
24452 current_file = macro_start_file (cu, file, line, current_file,
24457 case DW_MACRO_end_file:
24458 if (! current_file)
24459 complaint (_("macro debug info has an unmatched "
24460 "`close_file' directive"));
24463 current_file = current_file->included_by;
24464 if (! current_file)
24466 enum dwarf_macro_record_type next_type;
24468 /* GCC circa March 2002 doesn't produce the zero
24469 type byte marking the end of the compilation
24470 unit. Complain if it's not there, but exit no
24473 /* Do we at least have room for a macinfo type byte? */
24474 if (mac_ptr >= mac_end)
24476 dwarf2_section_buffer_overflow_complaint (section);
24480 /* We don't increment mac_ptr here, so this is just
24483 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24485 if (next_type != 0)
24486 complaint (_("no terminating 0-type entry for "
24487 "macros in `.debug_macinfo' section"));
24494 case DW_MACRO_import:
24495 case DW_MACRO_import_sup:
24499 bfd *include_bfd = abfd;
24500 struct dwarf2_section_info *include_section = section;
24501 const gdb_byte *include_mac_end = mac_end;
24502 int is_dwz = section_is_dwz;
24503 const gdb_byte *new_mac_ptr;
24505 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24506 mac_ptr += offset_size;
24508 if (macinfo_type == DW_MACRO_import_sup)
24510 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24512 dwarf2_read_section (objfile, &dwz->macro);
24514 include_section = &dwz->macro;
24515 include_bfd = get_section_bfd_owner (include_section);
24516 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24520 new_mac_ptr = include_section->buffer + offset;
24521 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24525 /* This has actually happened; see
24526 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24527 complaint (_("recursive DW_MACRO_import in "
24528 ".debug_macro section"));
24532 *slot = (void *) new_mac_ptr;
24534 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24535 include_mac_end, current_file, lh,
24536 section, section_is_gnu, is_dwz,
24537 offset_size, include_hash);
24539 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24544 case DW_MACINFO_vendor_ext:
24545 if (!section_is_gnu)
24547 unsigned int bytes_read;
24549 /* This reads the constant, but since we don't recognize
24550 any vendor extensions, we ignore it. */
24551 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24552 mac_ptr += bytes_read;
24553 read_direct_string (abfd, mac_ptr, &bytes_read);
24554 mac_ptr += bytes_read;
24556 /* We don't recognize any vendor extensions. */
24562 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24563 mac_ptr, mac_end, abfd, offset_size,
24565 if (mac_ptr == NULL)
24570 } while (macinfo_type != 0);
24574 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24575 int section_is_gnu)
24577 struct dwarf2_per_objfile *dwarf2_per_objfile
24578 = cu->per_cu->dwarf2_per_objfile;
24579 struct objfile *objfile = dwarf2_per_objfile->objfile;
24580 struct line_header *lh = cu->line_header;
24582 const gdb_byte *mac_ptr, *mac_end;
24583 struct macro_source_file *current_file = 0;
24584 enum dwarf_macro_record_type macinfo_type;
24585 unsigned int offset_size = cu->header.offset_size;
24586 const gdb_byte *opcode_definitions[256];
24588 struct dwarf2_section_info *section;
24589 const char *section_name;
24591 if (cu->dwo_unit != NULL)
24593 if (section_is_gnu)
24595 section = &cu->dwo_unit->dwo_file->sections.macro;
24596 section_name = ".debug_macro.dwo";
24600 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24601 section_name = ".debug_macinfo.dwo";
24606 if (section_is_gnu)
24608 section = &dwarf2_per_objfile->macro;
24609 section_name = ".debug_macro";
24613 section = &dwarf2_per_objfile->macinfo;
24614 section_name = ".debug_macinfo";
24618 dwarf2_read_section (objfile, section);
24619 if (section->buffer == NULL)
24621 complaint (_("missing %s section"), section_name);
24624 abfd = get_section_bfd_owner (section);
24626 /* First pass: Find the name of the base filename.
24627 This filename is needed in order to process all macros whose definition
24628 (or undefinition) comes from the command line. These macros are defined
24629 before the first DW_MACINFO_start_file entry, and yet still need to be
24630 associated to the base file.
24632 To determine the base file name, we scan the macro definitions until we
24633 reach the first DW_MACINFO_start_file entry. We then initialize
24634 CURRENT_FILE accordingly so that any macro definition found before the
24635 first DW_MACINFO_start_file can still be associated to the base file. */
24637 mac_ptr = section->buffer + offset;
24638 mac_end = section->buffer + section->size;
24640 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24641 &offset_size, section_is_gnu);
24642 if (mac_ptr == NULL)
24644 /* We already issued a complaint. */
24650 /* Do we at least have room for a macinfo type byte? */
24651 if (mac_ptr >= mac_end)
24653 /* Complaint is printed during the second pass as GDB will probably
24654 stop the first pass earlier upon finding
24655 DW_MACINFO_start_file. */
24659 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24662 /* Note that we rely on the fact that the corresponding GNU and
24663 DWARF constants are the same. */
24665 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24666 switch (macinfo_type)
24668 /* A zero macinfo type indicates the end of the macro
24673 case DW_MACRO_define:
24674 case DW_MACRO_undef:
24675 /* Only skip the data by MAC_PTR. */
24677 unsigned int bytes_read;
24679 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24680 mac_ptr += bytes_read;
24681 read_direct_string (abfd, mac_ptr, &bytes_read);
24682 mac_ptr += bytes_read;
24686 case DW_MACRO_start_file:
24688 unsigned int bytes_read;
24691 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24692 mac_ptr += bytes_read;
24693 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24694 mac_ptr += bytes_read;
24696 current_file = macro_start_file (cu, file, line, current_file, lh);
24700 case DW_MACRO_end_file:
24701 /* No data to skip by MAC_PTR. */
24704 case DW_MACRO_define_strp:
24705 case DW_MACRO_undef_strp:
24706 case DW_MACRO_define_sup:
24707 case DW_MACRO_undef_sup:
24709 unsigned int bytes_read;
24711 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24712 mac_ptr += bytes_read;
24713 mac_ptr += offset_size;
24717 case DW_MACRO_import:
24718 case DW_MACRO_import_sup:
24719 /* Note that, according to the spec, a transparent include
24720 chain cannot call DW_MACRO_start_file. So, we can just
24721 skip this opcode. */
24722 mac_ptr += offset_size;
24725 case DW_MACINFO_vendor_ext:
24726 /* Only skip the data by MAC_PTR. */
24727 if (!section_is_gnu)
24729 unsigned int bytes_read;
24731 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24732 mac_ptr += bytes_read;
24733 read_direct_string (abfd, mac_ptr, &bytes_read);
24734 mac_ptr += bytes_read;
24739 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24740 mac_ptr, mac_end, abfd, offset_size,
24742 if (mac_ptr == NULL)
24747 } while (macinfo_type != 0 && current_file == NULL);
24749 /* Second pass: Process all entries.
24751 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24752 command-line macro definitions/undefinitions. This flag is unset when we
24753 reach the first DW_MACINFO_start_file entry. */
24755 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24757 NULL, xcalloc, xfree));
24758 mac_ptr = section->buffer + offset;
24759 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24760 *slot = (void *) mac_ptr;
24761 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24762 current_file, lh, section,
24763 section_is_gnu, 0, offset_size,
24764 include_hash.get ());
24767 /* Check if the attribute's form is a DW_FORM_block*
24768 if so return true else false. */
24771 attr_form_is_block (const struct attribute *attr)
24773 return (attr == NULL ? 0 :
24774 attr->form == DW_FORM_block1
24775 || attr->form == DW_FORM_block2
24776 || attr->form == DW_FORM_block4
24777 || attr->form == DW_FORM_block
24778 || attr->form == DW_FORM_exprloc);
24781 /* Return non-zero if ATTR's value is a section offset --- classes
24782 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24783 You may use DW_UNSND (attr) to retrieve such offsets.
24785 Section 7.5.4, "Attribute Encodings", explains that no attribute
24786 may have a value that belongs to more than one of these classes; it
24787 would be ambiguous if we did, because we use the same forms for all
24791 attr_form_is_section_offset (const struct attribute *attr)
24793 return (attr->form == DW_FORM_data4
24794 || attr->form == DW_FORM_data8
24795 || attr->form == DW_FORM_sec_offset);
24798 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24799 zero otherwise. When this function returns true, you can apply
24800 dwarf2_get_attr_constant_value to it.
24802 However, note that for some attributes you must check
24803 attr_form_is_section_offset before using this test. DW_FORM_data4
24804 and DW_FORM_data8 are members of both the constant class, and of
24805 the classes that contain offsets into other debug sections
24806 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24807 that, if an attribute's can be either a constant or one of the
24808 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24809 taken as section offsets, not constants.
24811 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24812 cannot handle that. */
24815 attr_form_is_constant (const struct attribute *attr)
24817 switch (attr->form)
24819 case DW_FORM_sdata:
24820 case DW_FORM_udata:
24821 case DW_FORM_data1:
24822 case DW_FORM_data2:
24823 case DW_FORM_data4:
24824 case DW_FORM_data8:
24825 case DW_FORM_implicit_const:
24833 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24834 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24837 attr_form_is_ref (const struct attribute *attr)
24839 switch (attr->form)
24841 case DW_FORM_ref_addr:
24846 case DW_FORM_ref_udata:
24847 case DW_FORM_GNU_ref_alt:
24854 /* Return the .debug_loc section to use for CU.
24855 For DWO files use .debug_loc.dwo. */
24857 static struct dwarf2_section_info *
24858 cu_debug_loc_section (struct dwarf2_cu *cu)
24860 struct dwarf2_per_objfile *dwarf2_per_objfile
24861 = cu->per_cu->dwarf2_per_objfile;
24865 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24867 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
24869 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24870 : &dwarf2_per_objfile->loc);
24873 /* A helper function that fills in a dwarf2_loclist_baton. */
24876 fill_in_loclist_baton (struct dwarf2_cu *cu,
24877 struct dwarf2_loclist_baton *baton,
24878 const struct attribute *attr)
24880 struct dwarf2_per_objfile *dwarf2_per_objfile
24881 = cu->per_cu->dwarf2_per_objfile;
24882 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24884 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24886 baton->per_cu = cu->per_cu;
24887 gdb_assert (baton->per_cu);
24888 /* We don't know how long the location list is, but make sure we
24889 don't run off the edge of the section. */
24890 baton->size = section->size - DW_UNSND (attr);
24891 baton->data = section->buffer + DW_UNSND (attr);
24892 baton->base_address = cu->base_address;
24893 baton->from_dwo = cu->dwo_unit != NULL;
24897 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24898 struct dwarf2_cu *cu, int is_block)
24900 struct dwarf2_per_objfile *dwarf2_per_objfile
24901 = cu->per_cu->dwarf2_per_objfile;
24902 struct objfile *objfile = dwarf2_per_objfile->objfile;
24903 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24905 if (attr_form_is_section_offset (attr)
24906 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24907 the section. If so, fall through to the complaint in the
24909 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24911 struct dwarf2_loclist_baton *baton;
24913 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24915 fill_in_loclist_baton (cu, baton, attr);
24917 if (cu->base_known == 0)
24918 complaint (_("Location list used without "
24919 "specifying the CU base address."));
24921 SYMBOL_ACLASS_INDEX (sym) = (is_block
24922 ? dwarf2_loclist_block_index
24923 : dwarf2_loclist_index);
24924 SYMBOL_LOCATION_BATON (sym) = baton;
24928 struct dwarf2_locexpr_baton *baton;
24930 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24931 baton->per_cu = cu->per_cu;
24932 gdb_assert (baton->per_cu);
24934 if (attr_form_is_block (attr))
24936 /* Note that we're just copying the block's data pointer
24937 here, not the actual data. We're still pointing into the
24938 info_buffer for SYM's objfile; right now we never release
24939 that buffer, but when we do clean up properly this may
24941 baton->size = DW_BLOCK (attr)->size;
24942 baton->data = DW_BLOCK (attr)->data;
24946 dwarf2_invalid_attrib_class_complaint ("location description",
24947 SYMBOL_NATURAL_NAME (sym));
24951 SYMBOL_ACLASS_INDEX (sym) = (is_block
24952 ? dwarf2_locexpr_block_index
24953 : dwarf2_locexpr_index);
24954 SYMBOL_LOCATION_BATON (sym) = baton;
24958 /* Return the OBJFILE associated with the compilation unit CU. If CU
24959 came from a separate debuginfo file, then the master objfile is
24963 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24965 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24967 /* Return the master objfile, so that we can report and look up the
24968 correct file containing this variable. */
24969 if (objfile->separate_debug_objfile_backlink)
24970 objfile = objfile->separate_debug_objfile_backlink;
24975 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24976 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24977 CU_HEADERP first. */
24979 static const struct comp_unit_head *
24980 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24981 struct dwarf2_per_cu_data *per_cu)
24983 const gdb_byte *info_ptr;
24986 return &per_cu->cu->header;
24988 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24990 memset (cu_headerp, 0, sizeof (*cu_headerp));
24991 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24992 rcuh_kind::COMPILE);
24997 /* Return the address size given in the compilation unit header for CU. */
25000 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25002 struct comp_unit_head cu_header_local;
25003 const struct comp_unit_head *cu_headerp;
25005 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25007 return cu_headerp->addr_size;
25010 /* Return the offset size given in the compilation unit header for CU. */
25013 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25015 struct comp_unit_head cu_header_local;
25016 const struct comp_unit_head *cu_headerp;
25018 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25020 return cu_headerp->offset_size;
25023 /* See its dwarf2loc.h declaration. */
25026 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25028 struct comp_unit_head cu_header_local;
25029 const struct comp_unit_head *cu_headerp;
25031 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25033 if (cu_headerp->version == 2)
25034 return cu_headerp->addr_size;
25036 return cu_headerp->offset_size;
25039 /* Return the text offset of the CU. The returned offset comes from
25040 this CU's objfile. If this objfile came from a separate debuginfo
25041 file, then the offset may be different from the corresponding
25042 offset in the parent objfile. */
25045 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25047 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25049 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25052 /* Return DWARF version number of PER_CU. */
25055 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25057 return per_cu->dwarf_version;
25060 /* Locate the .debug_info compilation unit from CU's objfile which contains
25061 the DIE at OFFSET. Raises an error on failure. */
25063 static struct dwarf2_per_cu_data *
25064 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25065 unsigned int offset_in_dwz,
25066 struct dwarf2_per_objfile *dwarf2_per_objfile)
25068 struct dwarf2_per_cu_data *this_cu;
25070 const sect_offset *cu_off;
25073 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25076 struct dwarf2_per_cu_data *mid_cu;
25077 int mid = low + (high - low) / 2;
25079 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25080 cu_off = &mid_cu->sect_off;
25081 if (mid_cu->is_dwz > offset_in_dwz
25082 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25087 gdb_assert (low == high);
25088 this_cu = dwarf2_per_objfile->all_comp_units[low];
25089 cu_off = &this_cu->sect_off;
25090 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25092 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25093 error (_("Dwarf Error: could not find partial DIE containing "
25094 "offset %s [in module %s]"),
25095 sect_offset_str (sect_off),
25096 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25098 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25100 return dwarf2_per_objfile->all_comp_units[low-1];
25104 this_cu = dwarf2_per_objfile->all_comp_units[low];
25105 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25106 && sect_off >= this_cu->sect_off + this_cu->length)
25107 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25108 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25113 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25115 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25116 : per_cu (per_cu_),
25119 checked_producer (0),
25120 producer_is_gxx_lt_4_6 (0),
25121 producer_is_gcc_lt_4_3 (0),
25122 producer_is_icc_lt_14 (0),
25123 processing_has_namespace_info (0)
25128 /* Destroy a dwarf2_cu. */
25130 dwarf2_cu::~dwarf2_cu ()
25135 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25138 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25139 enum language pretend_language)
25141 struct attribute *attr;
25143 /* Set the language we're debugging. */
25144 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25146 set_cu_language (DW_UNSND (attr), cu);
25149 cu->language = pretend_language;
25150 cu->language_defn = language_def (cu->language);
25153 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25156 /* Increase the age counter on each cached compilation unit, and free
25157 any that are too old. */
25160 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25162 struct dwarf2_per_cu_data *per_cu, **last_chain;
25164 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25165 per_cu = dwarf2_per_objfile->read_in_chain;
25166 while (per_cu != NULL)
25168 per_cu->cu->last_used ++;
25169 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25170 dwarf2_mark (per_cu->cu);
25171 per_cu = per_cu->cu->read_in_chain;
25174 per_cu = dwarf2_per_objfile->read_in_chain;
25175 last_chain = &dwarf2_per_objfile->read_in_chain;
25176 while (per_cu != NULL)
25178 struct dwarf2_per_cu_data *next_cu;
25180 next_cu = per_cu->cu->read_in_chain;
25182 if (!per_cu->cu->mark)
25185 *last_chain = next_cu;
25188 last_chain = &per_cu->cu->read_in_chain;
25194 /* Remove a single compilation unit from the cache. */
25197 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25199 struct dwarf2_per_cu_data *per_cu, **last_chain;
25200 struct dwarf2_per_objfile *dwarf2_per_objfile
25201 = target_per_cu->dwarf2_per_objfile;
25203 per_cu = dwarf2_per_objfile->read_in_chain;
25204 last_chain = &dwarf2_per_objfile->read_in_chain;
25205 while (per_cu != NULL)
25207 struct dwarf2_per_cu_data *next_cu;
25209 next_cu = per_cu->cu->read_in_chain;
25211 if (per_cu == target_per_cu)
25215 *last_chain = next_cu;
25219 last_chain = &per_cu->cu->read_in_chain;
25225 /* Cleanup function for the dwarf2_per_objfile data. */
25228 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25230 struct dwarf2_per_objfile *dwarf2_per_objfile
25231 = static_cast<struct dwarf2_per_objfile *> (datum);
25233 delete dwarf2_per_objfile;
25236 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25237 We store these in a hash table separate from the DIEs, and preserve them
25238 when the DIEs are flushed out of cache.
25240 The CU "per_cu" pointer is needed because offset alone is not enough to
25241 uniquely identify the type. A file may have multiple .debug_types sections,
25242 or the type may come from a DWO file. Furthermore, while it's more logical
25243 to use per_cu->section+offset, with Fission the section with the data is in
25244 the DWO file but we don't know that section at the point we need it.
25245 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25246 because we can enter the lookup routine, get_die_type_at_offset, from
25247 outside this file, and thus won't necessarily have PER_CU->cu.
25248 Fortunately, PER_CU is stable for the life of the objfile. */
25250 struct dwarf2_per_cu_offset_and_type
25252 const struct dwarf2_per_cu_data *per_cu;
25253 sect_offset sect_off;
25257 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25260 per_cu_offset_and_type_hash (const void *item)
25262 const struct dwarf2_per_cu_offset_and_type *ofs
25263 = (const struct dwarf2_per_cu_offset_and_type *) item;
25265 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25268 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25271 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25273 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25274 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25275 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25276 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25278 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25279 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25282 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25283 table if necessary. For convenience, return TYPE.
25285 The DIEs reading must have careful ordering to:
25286 * Not cause infite loops trying to read in DIEs as a prerequisite for
25287 reading current DIE.
25288 * Not trying to dereference contents of still incompletely read in types
25289 while reading in other DIEs.
25290 * Enable referencing still incompletely read in types just by a pointer to
25291 the type without accessing its fields.
25293 Therefore caller should follow these rules:
25294 * Try to fetch any prerequisite types we may need to build this DIE type
25295 before building the type and calling set_die_type.
25296 * After building type call set_die_type for current DIE as soon as
25297 possible before fetching more types to complete the current type.
25298 * Make the type as complete as possible before fetching more types. */
25300 static struct type *
25301 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25303 struct dwarf2_per_objfile *dwarf2_per_objfile
25304 = cu->per_cu->dwarf2_per_objfile;
25305 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25306 struct objfile *objfile = dwarf2_per_objfile->objfile;
25307 struct attribute *attr;
25308 struct dynamic_prop prop;
25310 /* For Ada types, make sure that the gnat-specific data is always
25311 initialized (if not already set). There are a few types where
25312 we should not be doing so, because the type-specific area is
25313 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25314 where the type-specific area is used to store the floatformat).
25315 But this is not a problem, because the gnat-specific information
25316 is actually not needed for these types. */
25317 if (need_gnat_info (cu)
25318 && TYPE_CODE (type) != TYPE_CODE_FUNC
25319 && TYPE_CODE (type) != TYPE_CODE_FLT
25320 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25321 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25322 && TYPE_CODE (type) != TYPE_CODE_METHOD
25323 && !HAVE_GNAT_AUX_INFO (type))
25324 INIT_GNAT_SPECIFIC (type);
25326 /* Read DW_AT_allocated and set in type. */
25327 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25328 if (attr_form_is_block (attr))
25330 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25331 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25333 else if (attr != NULL)
25335 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25336 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25337 sect_offset_str (die->sect_off));
25340 /* Read DW_AT_associated and set in type. */
25341 attr = dwarf2_attr (die, DW_AT_associated, cu);
25342 if (attr_form_is_block (attr))
25344 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25345 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25347 else if (attr != NULL)
25349 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25350 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25351 sect_offset_str (die->sect_off));
25354 /* Read DW_AT_data_location and set in type. */
25355 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25356 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25357 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25359 if (dwarf2_per_objfile->die_type_hash == NULL)
25361 dwarf2_per_objfile->die_type_hash =
25362 htab_create_alloc_ex (127,
25363 per_cu_offset_and_type_hash,
25364 per_cu_offset_and_type_eq,
25366 &objfile->objfile_obstack,
25367 hashtab_obstack_allocate,
25368 dummy_obstack_deallocate);
25371 ofs.per_cu = cu->per_cu;
25372 ofs.sect_off = die->sect_off;
25374 slot = (struct dwarf2_per_cu_offset_and_type **)
25375 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25377 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25378 sect_offset_str (die->sect_off));
25379 *slot = XOBNEW (&objfile->objfile_obstack,
25380 struct dwarf2_per_cu_offset_and_type);
25385 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25386 or return NULL if the die does not have a saved type. */
25388 static struct type *
25389 get_die_type_at_offset (sect_offset sect_off,
25390 struct dwarf2_per_cu_data *per_cu)
25392 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25393 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25395 if (dwarf2_per_objfile->die_type_hash == NULL)
25398 ofs.per_cu = per_cu;
25399 ofs.sect_off = sect_off;
25400 slot = ((struct dwarf2_per_cu_offset_and_type *)
25401 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25408 /* Look up the type for DIE in CU in die_type_hash,
25409 or return NULL if DIE does not have a saved type. */
25411 static struct type *
25412 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25414 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25417 /* Add a dependence relationship from CU to REF_PER_CU. */
25420 dwarf2_add_dependence (struct dwarf2_cu *cu,
25421 struct dwarf2_per_cu_data *ref_per_cu)
25425 if (cu->dependencies == NULL)
25427 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25428 NULL, &cu->comp_unit_obstack,
25429 hashtab_obstack_allocate,
25430 dummy_obstack_deallocate);
25432 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25434 *slot = ref_per_cu;
25437 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25438 Set the mark field in every compilation unit in the
25439 cache that we must keep because we are keeping CU. */
25442 dwarf2_mark_helper (void **slot, void *data)
25444 struct dwarf2_per_cu_data *per_cu;
25446 per_cu = (struct dwarf2_per_cu_data *) *slot;
25448 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25449 reading of the chain. As such dependencies remain valid it is not much
25450 useful to track and undo them during QUIT cleanups. */
25451 if (per_cu->cu == NULL)
25454 if (per_cu->cu->mark)
25456 per_cu->cu->mark = 1;
25458 if (per_cu->cu->dependencies != NULL)
25459 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25464 /* Set the mark field in CU and in every other compilation unit in the
25465 cache that we must keep because we are keeping CU. */
25468 dwarf2_mark (struct dwarf2_cu *cu)
25473 if (cu->dependencies != NULL)
25474 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25478 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25482 per_cu->cu->mark = 0;
25483 per_cu = per_cu->cu->read_in_chain;
25487 /* Trivial hash function for partial_die_info: the hash value of a DIE
25488 is its offset in .debug_info for this objfile. */
25491 partial_die_hash (const void *item)
25493 const struct partial_die_info *part_die
25494 = (const struct partial_die_info *) item;
25496 return to_underlying (part_die->sect_off);
25499 /* Trivial comparison function for partial_die_info structures: two DIEs
25500 are equal if they have the same offset. */
25503 partial_die_eq (const void *item_lhs, const void *item_rhs)
25505 const struct partial_die_info *part_die_lhs
25506 = (const struct partial_die_info *) item_lhs;
25507 const struct partial_die_info *part_die_rhs
25508 = (const struct partial_die_info *) item_rhs;
25510 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25513 struct cmd_list_element *set_dwarf_cmdlist;
25514 struct cmd_list_element *show_dwarf_cmdlist;
25517 set_dwarf_cmd (const char *args, int from_tty)
25519 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25524 show_dwarf_cmd (const char *args, int from_tty)
25526 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25529 int dwarf_always_disassemble;
25532 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25533 struct cmd_list_element *c, const char *value)
25535 fprintf_filtered (file,
25536 _("Whether to always disassemble "
25537 "DWARF expressions is %s.\n"),
25542 show_check_physname (struct ui_file *file, int from_tty,
25543 struct cmd_list_element *c, const char *value)
25545 fprintf_filtered (file,
25546 _("Whether to check \"physname\" is %s.\n"),
25551 _initialize_dwarf2_read (void)
25553 dwarf2_objfile_data_key
25554 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25556 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25557 Set DWARF specific variables.\n\
25558 Configure DWARF variables such as the cache size"),
25559 &set_dwarf_cmdlist, "maintenance set dwarf ",
25560 0/*allow-unknown*/, &maintenance_set_cmdlist);
25562 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25563 Show DWARF specific variables\n\
25564 Show DWARF variables such as the cache size"),
25565 &show_dwarf_cmdlist, "maintenance show dwarf ",
25566 0/*allow-unknown*/, &maintenance_show_cmdlist);
25568 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25569 &dwarf_max_cache_age, _("\
25570 Set the upper bound on the age of cached DWARF compilation units."), _("\
25571 Show the upper bound on the age of cached DWARF compilation units."), _("\
25572 A higher limit means that cached compilation units will be stored\n\
25573 in memory longer, and more total memory will be used. Zero disables\n\
25574 caching, which can slow down startup."),
25576 show_dwarf_max_cache_age,
25577 &set_dwarf_cmdlist,
25578 &show_dwarf_cmdlist);
25580 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25581 &dwarf_always_disassemble, _("\
25582 Set whether `info address' always disassembles DWARF expressions."), _("\
25583 Show whether `info address' always disassembles DWARF expressions."), _("\
25584 When enabled, DWARF expressions are always printed in an assembly-like\n\
25585 syntax. When disabled, expressions will be printed in a more\n\
25586 conversational style, when possible."),
25588 show_dwarf_always_disassemble,
25589 &set_dwarf_cmdlist,
25590 &show_dwarf_cmdlist);
25592 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25593 Set debugging of the DWARF reader."), _("\
25594 Show debugging of the DWARF reader."), _("\
25595 When enabled (non-zero), debugging messages are printed during DWARF\n\
25596 reading and symtab expansion. A value of 1 (one) provides basic\n\
25597 information. A value greater than 1 provides more verbose information."),
25600 &setdebuglist, &showdebuglist);
25602 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25603 Set debugging of the DWARF DIE reader."), _("\
25604 Show debugging of the DWARF DIE reader."), _("\
25605 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25606 The value is the maximum depth to print."),
25609 &setdebuglist, &showdebuglist);
25611 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25612 Set debugging of the dwarf line reader."), _("\
25613 Show debugging of the dwarf line reader."), _("\
25614 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25615 A value of 1 (one) provides basic information.\n\
25616 A value greater than 1 provides more verbose information."),
25619 &setdebuglist, &showdebuglist);
25621 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25622 Set cross-checking of \"physname\" code against demangler."), _("\
25623 Show cross-checking of \"physname\" code against demangler."), _("\
25624 When enabled, GDB's internal \"physname\" code is checked against\n\
25626 NULL, show_check_physname,
25627 &setdebuglist, &showdebuglist);
25629 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25630 no_class, &use_deprecated_index_sections, _("\
25631 Set whether to use deprecated gdb_index sections."), _("\
25632 Show whether to use deprecated gdb_index sections."), _("\
25633 When enabled, deprecated .gdb_index sections are used anyway.\n\
25634 Normally they are ignored either because of a missing feature or\n\
25635 performance issue.\n\
25636 Warning: This option must be enabled before gdb reads the file."),
25639 &setlist, &showlist);
25641 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25642 &dwarf2_locexpr_funcs);
25643 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25644 &dwarf2_loclist_funcs);
25646 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25647 &dwarf2_block_frame_base_locexpr_funcs);
25648 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25649 &dwarf2_block_frame_base_loclist_funcs);
25652 selftests::register_test ("dw2_expand_symtabs_matching",
25653 selftests::dw2_expand_symtabs_matching::run_test);