1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
48 #include "complaints.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
58 #include "typeprint.h"
61 #include "completer.h"
62 #include "common/vec.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
72 #include "common/filestuff.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
84 #include <sys/types.h>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "common/selftest.h"
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
112 static const struct objfile_data *dwarf2_objfile_data_key;
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
134 struct name_component
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
141 /* The symbol's index in the symbol and constant pool tables of a
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
149 struct mapped_index_base
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
167 /* Return whether the name at IDX in the symbol table should be
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
174 /* Build the symbol name component sorted vector, if we haven't
176 void build_name_components ();
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
185 /* Prevent deleting/destroying via a base class pointer. */
187 ~mapped_index_base() = default;
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
197 const offset_type name;
198 const offset_type vec;
201 /* Index data format version. */
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
213 bool symbol_name_slot_invalid (offset_type idx) const override
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
219 /* Convenience method to get at the name of the symbol at IDX in the
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
254 /* Attribute name DW_IDX_*. */
257 /* Attribute form DW_FORM_*. */
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
263 std::vector<attr> attr_vec;
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
268 const char *namei_to_name (uint32_t namei) const;
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
276 size_t symbol_name_count () const override
277 { return this->name_count; }
280 /* See dwarf2read.h. */
283 get_dwarf2_per_objfile (struct objfile *objfile)
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
299 /* Default names of the debugging sections. */
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
327 /* List of DWO/DWP sections. */
329 static const struct dwop_section_names
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
360 /* local data types */
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
378 enum dwarf_unit_type unit_type;
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
400 /* The type to which the method is attached, i.e., its parent class. */
403 /* The index of the method in the type's function fieldlists. */
406 /* The index of the method in the fieldlist. */
409 /* The name of the DIE. */
412 /* The DIE associated with this method. */
413 struct die_info *die;
416 /* Internal state when decoding a particular compilation unit. */
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
424 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
425 Create the set of symtabs used by this TU, or if this TU is sharing
426 symtabs with another TU and the symtabs have already been created
427 then restore those symtabs in the line header.
428 We don't need the pc/line-number mapping for type units. */
429 void setup_type_unit_groups (struct die_info *die);
431 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
432 buildsym_compunit constructor. */
433 struct compunit_symtab *start_symtab (const char *name,
434 const char *comp_dir,
437 /* Reset the builder. */
438 void reset_builder () { m_builder.reset (); }
440 /* The header of the compilation unit. */
441 struct comp_unit_head header {};
443 /* Base address of this compilation unit. */
444 CORE_ADDR base_address = 0;
446 /* Non-zero if base_address has been set. */
449 /* The language we are debugging. */
450 enum language language = language_unknown;
451 const struct language_defn *language_defn = nullptr;
453 const char *producer = nullptr;
456 /* The symtab builder for this CU. This is only non-NULL when full
457 symbols are being read. */
458 std::unique_ptr<buildsym_compunit> m_builder;
461 /* The generic symbol table building routines have separate lists for
462 file scope symbols and all all other scopes (local scopes). So
463 we need to select the right one to pass to add_symbol_to_list().
464 We do it by keeping a pointer to the correct list in list_in_scope.
466 FIXME: The original dwarf code just treated the file scope as the
467 first local scope, and all other local scopes as nested local
468 scopes, and worked fine. Check to see if we really need to
469 distinguish these in buildsym.c. */
470 struct pending **list_in_scope = nullptr;
472 /* Hash table holding all the loaded partial DIEs
473 with partial_die->offset.SECT_OFF as hash. */
474 htab_t partial_dies = nullptr;
476 /* Storage for things with the same lifetime as this read-in compilation
477 unit, including partial DIEs. */
478 auto_obstack comp_unit_obstack;
480 /* When multiple dwarf2_cu structures are living in memory, this field
481 chains them all together, so that they can be released efficiently.
482 We will probably also want a generation counter so that most-recently-used
483 compilation units are cached... */
484 struct dwarf2_per_cu_data *read_in_chain = nullptr;
486 /* Backlink to our per_cu entry. */
487 struct dwarf2_per_cu_data *per_cu;
489 /* How many compilation units ago was this CU last referenced? */
492 /* A hash table of DIE cu_offset for following references with
493 die_info->offset.sect_off as hash. */
494 htab_t die_hash = nullptr;
496 /* Full DIEs if read in. */
497 struct die_info *dies = nullptr;
499 /* A set of pointers to dwarf2_per_cu_data objects for compilation
500 units referenced by this one. Only set during full symbol processing;
501 partial symbol tables do not have dependencies. */
502 htab_t dependencies = nullptr;
504 /* Header data from the line table, during full symbol processing. */
505 struct line_header *line_header = nullptr;
506 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
507 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
508 this is the DW_TAG_compile_unit die for this CU. We'll hold on
509 to the line header as long as this DIE is being processed. See
510 process_die_scope. */
511 die_info *line_header_die_owner = nullptr;
513 /* A list of methods which need to have physnames computed
514 after all type information has been read. */
515 std::vector<delayed_method_info> method_list;
517 /* To be copied to symtab->call_site_htab. */
518 htab_t call_site_htab = nullptr;
520 /* Non-NULL if this CU came from a DWO file.
521 There is an invariant here that is important to remember:
522 Except for attributes copied from the top level DIE in the "main"
523 (or "stub") file in preparation for reading the DWO file
524 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
525 Either there isn't a DWO file (in which case this is NULL and the point
526 is moot), or there is and either we're not going to read it (in which
527 case this is NULL) or there is and we are reading it (in which case this
529 struct dwo_unit *dwo_unit = nullptr;
531 /* The DW_AT_addr_base attribute if present, zero otherwise
532 (zero is a valid value though).
533 Note this value comes from the Fission stub CU/TU's DIE. */
534 ULONGEST addr_base = 0;
536 /* The DW_AT_ranges_base attribute if present, zero otherwise
537 (zero is a valid value though).
538 Note this value comes from the Fission stub CU/TU's DIE.
539 Also note that the value is zero in the non-DWO case so this value can
540 be used without needing to know whether DWO files are in use or not.
541 N.B. This does not apply to DW_AT_ranges appearing in
542 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
543 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
544 DW_AT_ranges_base *would* have to be applied, and we'd have to care
545 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
546 ULONGEST ranges_base = 0;
548 /* When reading debug info generated by older versions of rustc, we
549 have to rewrite some union types to be struct types with a
550 variant part. This rewriting must be done after the CU is fully
551 read in, because otherwise at the point of rewriting some struct
552 type might not have been fully processed. So, we keep a list of
553 all such types here and process them after expansion. */
554 std::vector<struct type *> rust_unions;
556 /* Mark used when releasing cached dies. */
559 /* This CU references .debug_loc. See the symtab->locations_valid field.
560 This test is imperfect as there may exist optimized debug code not using
561 any location list and still facing inlining issues if handled as
562 unoptimized code. For a future better test see GCC PR other/32998. */
563 bool has_loclist : 1;
565 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
566 if all the producer_is_* fields are valid. This information is cached
567 because profiling CU expansion showed excessive time spent in
568 producer_is_gxx_lt_4_6. */
569 bool checked_producer : 1;
570 bool producer_is_gxx_lt_4_6 : 1;
571 bool producer_is_gcc_lt_4_3 : 1;
572 bool producer_is_icc : 1;
573 bool producer_is_icc_lt_14 : 1;
574 bool producer_is_codewarrior : 1;
576 /* When true, the file that we're processing is known to have
577 debugging info for C++ namespaces. GCC 3.3.x did not produce
578 this information, but later versions do. */
580 bool processing_has_namespace_info : 1;
582 struct partial_die_info *find_partial_die (sect_offset sect_off);
584 /* If this CU was inherited by another CU (via specification,
585 abstract_origin, etc), this is the ancestor CU. */
588 /* Get the buildsym_compunit for this CU. */
589 buildsym_compunit *get_builder ()
591 /* If this CU has a builder associated with it, use that. */
592 if (m_builder != nullptr)
593 return m_builder.get ();
595 /* Otherwise, search ancestors for a valid builder. */
596 if (ancestor != nullptr)
597 return ancestor->get_builder ();
603 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
604 This includes type_unit_group and quick_file_names. */
606 struct stmt_list_hash
608 /* The DWO unit this table is from or NULL if there is none. */
609 struct dwo_unit *dwo_unit;
611 /* Offset in .debug_line or .debug_line.dwo. */
612 sect_offset line_sect_off;
615 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
616 an object of this type. */
618 struct type_unit_group
620 /* dwarf2read.c's main "handle" on a TU symtab.
621 To simplify things we create an artificial CU that "includes" all the
622 type units using this stmt_list so that the rest of the code still has
623 a "per_cu" handle on the symtab.
624 This PER_CU is recognized by having no section. */
625 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
626 struct dwarf2_per_cu_data per_cu;
628 /* The TUs that share this DW_AT_stmt_list entry.
629 This is added to while parsing type units to build partial symtabs,
630 and is deleted afterwards and not used again. */
631 VEC (sig_type_ptr) *tus;
633 /* The compunit symtab.
634 Type units in a group needn't all be defined in the same source file,
635 so we create an essentially anonymous symtab as the compunit symtab. */
636 struct compunit_symtab *compunit_symtab;
638 /* The data used to construct the hash key. */
639 struct stmt_list_hash hash;
641 /* The number of symtabs from the line header.
642 The value here must match line_header.num_file_names. */
643 unsigned int num_symtabs;
645 /* The symbol tables for this TU (obtained from the files listed in
647 WARNING: The order of entries here must match the order of entries
648 in the line header. After the first TU using this type_unit_group, the
649 line header for the subsequent TUs is recreated from this. This is done
650 because we need to use the same symtabs for each TU using the same
651 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
652 there's no guarantee the line header doesn't have duplicate entries. */
653 struct symtab **symtabs;
656 /* These sections are what may appear in a (real or virtual) DWO file. */
660 struct dwarf2_section_info abbrev;
661 struct dwarf2_section_info line;
662 struct dwarf2_section_info loc;
663 struct dwarf2_section_info loclists;
664 struct dwarf2_section_info macinfo;
665 struct dwarf2_section_info macro;
666 struct dwarf2_section_info str;
667 struct dwarf2_section_info str_offsets;
668 /* In the case of a virtual DWO file, these two are unused. */
669 struct dwarf2_section_info info;
670 VEC (dwarf2_section_info_def) *types;
673 /* CUs/TUs in DWP/DWO files. */
677 /* Backlink to the containing struct dwo_file. */
678 struct dwo_file *dwo_file;
680 /* The "id" that distinguishes this CU/TU.
681 .debug_info calls this "dwo_id", .debug_types calls this "signature".
682 Since signatures came first, we stick with it for consistency. */
685 /* The section this CU/TU lives in, in the DWO file. */
686 struct dwarf2_section_info *section;
688 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
689 sect_offset sect_off;
692 /* For types, offset in the type's DIE of the type defined by this TU. */
693 cu_offset type_offset_in_tu;
696 /* include/dwarf2.h defines the DWP section codes.
697 It defines a max value but it doesn't define a min value, which we
698 use for error checking, so provide one. */
700 enum dwp_v2_section_ids
705 /* Data for one DWO file.
707 This includes virtual DWO files (a virtual DWO file is a DWO file as it
708 appears in a DWP file). DWP files don't really have DWO files per se -
709 comdat folding of types "loses" the DWO file they came from, and from
710 a high level view DWP files appear to contain a mass of random types.
711 However, to maintain consistency with the non-DWP case we pretend DWP
712 files contain virtual DWO files, and we assign each TU with one virtual
713 DWO file (generally based on the line and abbrev section offsets -
714 a heuristic that seems to work in practice). */
718 /* The DW_AT_GNU_dwo_name attribute.
719 For virtual DWO files the name is constructed from the section offsets
720 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
721 from related CU+TUs. */
722 const char *dwo_name;
724 /* The DW_AT_comp_dir attribute. */
725 const char *comp_dir;
727 /* The bfd, when the file is open. Otherwise this is NULL.
728 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
731 /* The sections that make up this DWO file.
732 Remember that for virtual DWO files in DWP V2, these are virtual
733 sections (for lack of a better name). */
734 struct dwo_sections sections;
736 /* The CUs in the file.
737 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
738 an extension to handle LLVM's Link Time Optimization output (where
739 multiple source files may be compiled into a single object/dwo pair). */
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
747 /* These sections are what may appear in a DWP file. */
751 /* These are used by both DWP version 1 and 2. */
752 struct dwarf2_section_info str;
753 struct dwarf2_section_info cu_index;
754 struct dwarf2_section_info tu_index;
756 /* These are only used by DWP version 2 files.
757 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
758 sections are referenced by section number, and are not recorded here.
759 In DWP version 2 there is at most one copy of all these sections, each
760 section being (effectively) comprised of the concatenation of all of the
761 individual sections that exist in the version 1 format.
762 To keep the code simple we treat each of these concatenated pieces as a
763 section itself (a virtual section?). */
764 struct dwarf2_section_info abbrev;
765 struct dwarf2_section_info info;
766 struct dwarf2_section_info line;
767 struct dwarf2_section_info loc;
768 struct dwarf2_section_info macinfo;
769 struct dwarf2_section_info macro;
770 struct dwarf2_section_info str_offsets;
771 struct dwarf2_section_info types;
774 /* These sections are what may appear in a virtual DWO file in DWP version 1.
775 A virtual DWO file is a DWO file as it appears in a DWP file. */
777 struct virtual_v1_dwo_sections
779 struct dwarf2_section_info abbrev;
780 struct dwarf2_section_info line;
781 struct dwarf2_section_info loc;
782 struct dwarf2_section_info macinfo;
783 struct dwarf2_section_info macro;
784 struct dwarf2_section_info str_offsets;
785 /* Each DWP hash table entry records one CU or one TU.
786 That is recorded here, and copied to dwo_unit.section. */
787 struct dwarf2_section_info info_or_types;
790 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
791 In version 2, the sections of the DWO files are concatenated together
792 and stored in one section of that name. Thus each ELF section contains
793 several "virtual" sections. */
795 struct virtual_v2_dwo_sections
797 bfd_size_type abbrev_offset;
798 bfd_size_type abbrev_size;
800 bfd_size_type line_offset;
801 bfd_size_type line_size;
803 bfd_size_type loc_offset;
804 bfd_size_type loc_size;
806 bfd_size_type macinfo_offset;
807 bfd_size_type macinfo_size;
809 bfd_size_type macro_offset;
810 bfd_size_type macro_size;
812 bfd_size_type str_offsets_offset;
813 bfd_size_type str_offsets_size;
815 /* Each DWP hash table entry records one CU or one TU.
816 That is recorded here, and copied to dwo_unit.section. */
817 bfd_size_type info_or_types_offset;
818 bfd_size_type info_or_types_size;
821 /* Contents of DWP hash tables. */
823 struct dwp_hash_table
825 uint32_t version, nr_columns;
826 uint32_t nr_units, nr_slots;
827 const gdb_byte *hash_table, *unit_table;
832 const gdb_byte *indices;
836 /* This is indexed by column number and gives the id of the section
838 #define MAX_NR_V2_DWO_SECTIONS \
839 (1 /* .debug_info or .debug_types */ \
840 + 1 /* .debug_abbrev */ \
841 + 1 /* .debug_line */ \
842 + 1 /* .debug_loc */ \
843 + 1 /* .debug_str_offsets */ \
844 + 1 /* .debug_macro or .debug_macinfo */)
845 int section_ids[MAX_NR_V2_DWO_SECTIONS];
846 const gdb_byte *offsets;
847 const gdb_byte *sizes;
852 /* Data for one DWP file. */
856 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
858 dbfd (std::move (abfd))
862 /* Name of the file. */
865 /* File format version. */
869 gdb_bfd_ref_ptr dbfd;
871 /* Section info for this file. */
872 struct dwp_sections sections {};
874 /* Table of CUs in the file. */
875 const struct dwp_hash_table *cus = nullptr;
877 /* Table of TUs in the file. */
878 const struct dwp_hash_table *tus = nullptr;
880 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
881 htab_t loaded_cus {};
882 htab_t loaded_tus {};
884 /* Table to map ELF section numbers to their sections.
885 This is only needed for the DWP V1 file format. */
886 unsigned int num_sections = 0;
887 asection **elf_sections = nullptr;
890 /* This represents a '.dwz' file. */
894 dwz_file (gdb_bfd_ref_ptr &&bfd)
895 : dwz_bfd (std::move (bfd))
899 /* A dwz file can only contain a few sections. */
900 struct dwarf2_section_info abbrev {};
901 struct dwarf2_section_info info {};
902 struct dwarf2_section_info str {};
903 struct dwarf2_section_info line {};
904 struct dwarf2_section_info macro {};
905 struct dwarf2_section_info gdb_index {};
906 struct dwarf2_section_info debug_names {};
909 gdb_bfd_ref_ptr dwz_bfd;
911 /* If we loaded the index from an external file, this contains the
912 resources associated to the open file, memory mapping, etc. */
913 std::unique_ptr<index_cache_resource> index_cache_res;
916 /* Struct used to pass misc. parameters to read_die_and_children, et
917 al. which are used for both .debug_info and .debug_types dies.
918 All parameters here are unchanging for the life of the call. This
919 struct exists to abstract away the constant parameters of die reading. */
921 struct die_reader_specs
923 /* The bfd of die_section. */
926 /* The CU of the DIE we are parsing. */
927 struct dwarf2_cu *cu;
929 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
930 struct dwo_file *dwo_file;
932 /* The section the die comes from.
933 This is either .debug_info or .debug_types, or the .dwo variants. */
934 struct dwarf2_section_info *die_section;
936 /* die_section->buffer. */
937 const gdb_byte *buffer;
939 /* The end of the buffer. */
940 const gdb_byte *buffer_end;
942 /* The value of the DW_AT_comp_dir attribute. */
943 const char *comp_dir;
945 /* The abbreviation table to use when reading the DIEs. */
946 struct abbrev_table *abbrev_table;
949 /* Type of function passed to init_cutu_and_read_dies, et.al. */
950 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
951 const gdb_byte *info_ptr,
952 struct die_info *comp_unit_die,
956 /* A 1-based directory index. This is a strong typedef to prevent
957 accidentally using a directory index as a 0-based index into an
959 enum class dir_index : unsigned int {};
961 /* Likewise, a 1-based file name index. */
962 enum class file_name_index : unsigned int {};
966 file_entry () = default;
968 file_entry (const char *name_, dir_index d_index_,
969 unsigned int mod_time_, unsigned int length_)
972 mod_time (mod_time_),
976 /* Return the include directory at D_INDEX stored in LH. Returns
977 NULL if D_INDEX is out of bounds. */
978 const char *include_dir (const line_header *lh) const;
980 /* The file name. Note this is an observing pointer. The memory is
981 owned by debug_line_buffer. */
984 /* The directory index (1-based). */
985 dir_index d_index {};
987 unsigned int mod_time {};
989 unsigned int length {};
991 /* True if referenced by the Line Number Program. */
994 /* The associated symbol table, if any. */
995 struct symtab *symtab {};
998 /* The line number information for a compilation unit (found in the
999 .debug_line section) begins with a "statement program header",
1000 which contains the following information. */
1007 /* Add an entry to the include directory table. */
1008 void add_include_dir (const char *include_dir);
1010 /* Add an entry to the file name table. */
1011 void add_file_name (const char *name, dir_index d_index,
1012 unsigned int mod_time, unsigned int length);
1014 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1015 is out of bounds. */
1016 const char *include_dir_at (dir_index index) const
1018 /* Convert directory index number (1-based) to vector index
1020 size_t vec_index = to_underlying (index) - 1;
1022 if (vec_index >= include_dirs.size ())
1024 return include_dirs[vec_index];
1027 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1028 is out of bounds. */
1029 file_entry *file_name_at (file_name_index index)
1031 /* Convert file name index number (1-based) to vector index
1033 size_t vec_index = to_underlying (index) - 1;
1035 if (vec_index >= file_names.size ())
1037 return &file_names[vec_index];
1040 /* Const version of the above. */
1041 const file_entry *file_name_at (unsigned int index) const
1043 if (index >= file_names.size ())
1045 return &file_names[index];
1048 /* Offset of line number information in .debug_line section. */
1049 sect_offset sect_off {};
1051 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1052 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1054 unsigned int total_length {};
1055 unsigned short version {};
1056 unsigned int header_length {};
1057 unsigned char minimum_instruction_length {};
1058 unsigned char maximum_ops_per_instruction {};
1059 unsigned char default_is_stmt {};
1061 unsigned char line_range {};
1062 unsigned char opcode_base {};
1064 /* standard_opcode_lengths[i] is the number of operands for the
1065 standard opcode whose value is i. This means that
1066 standard_opcode_lengths[0] is unused, and the last meaningful
1067 element is standard_opcode_lengths[opcode_base - 1]. */
1068 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1070 /* The include_directories table. Note these are observing
1071 pointers. The memory is owned by debug_line_buffer. */
1072 std::vector<const char *> include_dirs;
1074 /* The file_names table. */
1075 std::vector<file_entry> file_names;
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start {}, *statement_program_end {};
1082 typedef std::unique_ptr<line_header> line_header_up;
1085 file_entry::include_dir (const line_header *lh) const
1087 return lh->include_dir_at (d_index);
1090 /* When we construct a partial symbol table entry we only
1091 need this much information. */
1092 struct partial_die_info : public allocate_on_obstack
1094 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1096 /* Disable assign but still keep copy ctor, which is needed
1097 load_partial_dies. */
1098 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1100 /* Adjust the partial die before generating a symbol for it. This
1101 function may set the is_external flag or change the DIE's
1103 void fixup (struct dwarf2_cu *cu);
1105 /* Read a minimal amount of information into the minimal die
1107 const gdb_byte *read (const struct die_reader_specs *reader,
1108 const struct abbrev_info &abbrev,
1109 const gdb_byte *info_ptr);
1111 /* Offset of this DIE. */
1112 const sect_offset sect_off;
1114 /* DWARF-2 tag for this DIE. */
1115 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1117 /* Assorted flags describing the data found in this DIE. */
1118 const unsigned int has_children : 1;
1120 unsigned int is_external : 1;
1121 unsigned int is_declaration : 1;
1122 unsigned int has_type : 1;
1123 unsigned int has_specification : 1;
1124 unsigned int has_pc_info : 1;
1125 unsigned int may_be_inlined : 1;
1127 /* This DIE has been marked DW_AT_main_subprogram. */
1128 unsigned int main_subprogram : 1;
1130 /* Flag set if the SCOPE field of this structure has been
1132 unsigned int scope_set : 1;
1134 /* Flag set if the DIE has a byte_size attribute. */
1135 unsigned int has_byte_size : 1;
1137 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1138 unsigned int has_const_value : 1;
1140 /* Flag set if any of the DIE's children are template arguments. */
1141 unsigned int has_template_arguments : 1;
1143 /* Flag set if fixup has been called on this die. */
1144 unsigned int fixup_called : 1;
1146 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1147 unsigned int is_dwz : 1;
1149 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1150 unsigned int spec_is_dwz : 1;
1152 /* The name of this DIE. Normally the value of DW_AT_name, but
1153 sometimes a default name for unnamed DIEs. */
1154 const char *name = nullptr;
1156 /* The linkage name, if present. */
1157 const char *linkage_name = nullptr;
1159 /* The scope to prepend to our children. This is generally
1160 allocated on the comp_unit_obstack, so will disappear
1161 when this compilation unit leaves the cache. */
1162 const char *scope = nullptr;
1164 /* Some data associated with the partial DIE. The tag determines
1165 which field is live. */
1168 /* The location description associated with this DIE, if any. */
1169 struct dwarf_block *locdesc;
1170 /* The offset of an import, for DW_TAG_imported_unit. */
1171 sect_offset sect_off;
1174 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1175 CORE_ADDR lowpc = 0;
1176 CORE_ADDR highpc = 0;
1178 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1179 DW_AT_sibling, if any. */
1180 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1181 could return DW_AT_sibling values to its caller load_partial_dies. */
1182 const gdb_byte *sibling = nullptr;
1184 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1185 DW_AT_specification (or DW_AT_abstract_origin or
1186 DW_AT_extension). */
1187 sect_offset spec_offset {};
1189 /* Pointers to this DIE's parent, first child, and next sibling,
1191 struct partial_die_info *die_parent = nullptr;
1192 struct partial_die_info *die_child = nullptr;
1193 struct partial_die_info *die_sibling = nullptr;
1195 friend struct partial_die_info *
1196 dwarf2_cu::find_partial_die (sect_offset sect_off);
1199 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1200 partial_die_info (sect_offset sect_off)
1201 : partial_die_info (sect_off, DW_TAG_padding, 0)
1205 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1207 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1212 has_specification = 0;
1215 main_subprogram = 0;
1218 has_const_value = 0;
1219 has_template_arguments = 0;
1226 /* This data structure holds the information of an abbrev. */
1229 unsigned int number; /* number identifying abbrev */
1230 enum dwarf_tag tag; /* dwarf tag */
1231 unsigned short has_children; /* boolean */
1232 unsigned short num_attrs; /* number of attributes */
1233 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1234 struct abbrev_info *next; /* next in chain */
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 16;
1242 /* It is valid only if FORM is DW_FORM_implicit_const. */
1243 LONGEST implicit_const;
1246 /* Size of abbrev_table.abbrev_hash_table. */
1247 #define ABBREV_HASH_SIZE 121
1249 /* Top level data structure to contain an abbreviation table. */
1253 explicit abbrev_table (sect_offset off)
1257 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1258 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1261 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1263 /* Allocate space for a struct abbrev_info object in
1265 struct abbrev_info *alloc_abbrev ();
1267 /* Add an abbreviation to the table. */
1268 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1270 /* Look up an abbrev in the table.
1271 Returns NULL if the abbrev is not found. */
1273 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1276 /* Where the abbrev table came from.
1277 This is used as a sanity check when the table is used. */
1278 const sect_offset sect_off;
1280 /* Storage for the abbrev table. */
1281 auto_obstack abbrev_obstack;
1285 /* Hash table of abbrevs.
1286 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1287 It could be statically allocated, but the previous code didn't so we
1289 struct abbrev_info **m_abbrevs;
1292 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1294 /* Attributes have a name and a value. */
1297 ENUM_BITFIELD(dwarf_attribute) name : 16;
1298 ENUM_BITFIELD(dwarf_form) form : 15;
1300 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1301 field should be in u.str (existing only for DW_STRING) but it is kept
1302 here for better struct attribute alignment. */
1303 unsigned int string_is_canonical : 1;
1308 struct dwarf_block *blk;
1317 /* This data structure holds a complete die structure. */
1320 /* DWARF-2 tag for this DIE. */
1321 ENUM_BITFIELD(dwarf_tag) tag : 16;
1323 /* Number of attributes */
1324 unsigned char num_attrs;
1326 /* True if we're presently building the full type name for the
1327 type derived from this DIE. */
1328 unsigned char building_fullname : 1;
1330 /* True if this die is in process. PR 16581. */
1331 unsigned char in_process : 1;
1334 unsigned int abbrev;
1336 /* Offset in .debug_info or .debug_types section. */
1337 sect_offset sect_off;
1339 /* The dies in a compilation unit form an n-ary tree. PARENT
1340 points to this die's parent; CHILD points to the first child of
1341 this node; and all the children of a given node are chained
1342 together via their SIBLING fields. */
1343 struct die_info *child; /* Its first child, if any. */
1344 struct die_info *sibling; /* Its next sibling, if any. */
1345 struct die_info *parent; /* Its parent, if any. */
1347 /* An array of attributes, with NUM_ATTRS elements. There may be
1348 zero, but it's not common and zero-sized arrays are not
1349 sufficiently portable C. */
1350 struct attribute attrs[1];
1353 /* Get at parts of an attribute structure. */
1355 #define DW_STRING(attr) ((attr)->u.str)
1356 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1357 #define DW_UNSND(attr) ((attr)->u.unsnd)
1358 #define DW_BLOCK(attr) ((attr)->u.blk)
1359 #define DW_SND(attr) ((attr)->u.snd)
1360 #define DW_ADDR(attr) ((attr)->u.addr)
1361 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1363 /* Blocks are a bunch of untyped bytes. */
1368 /* Valid only if SIZE is not zero. */
1369 const gdb_byte *data;
1372 #ifndef ATTR_ALLOC_CHUNK
1373 #define ATTR_ALLOC_CHUNK 4
1376 /* Allocate fields for structs, unions and enums in this size. */
1377 #ifndef DW_FIELD_ALLOC_CHUNK
1378 #define DW_FIELD_ALLOC_CHUNK 4
1381 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1382 but this would require a corresponding change in unpack_field_as_long
1384 static int bits_per_byte = 8;
1386 /* When reading a variant or variant part, we track a bit more
1387 information about the field, and store it in an object of this
1390 struct variant_field
1392 /* If we see a DW_TAG_variant, then this will be the discriminant
1394 ULONGEST discriminant_value;
1395 /* If we see a DW_TAG_variant, then this will be set if this is the
1397 bool default_branch;
1398 /* While reading a DW_TAG_variant_part, this will be set if this
1399 field is the discriminant. */
1400 bool is_discriminant;
1405 int accessibility = 0;
1407 /* Extra information to describe a variant or variant part. */
1408 struct variant_field variant {};
1409 struct field field {};
1414 const char *name = nullptr;
1415 std::vector<struct fn_field> fnfields;
1418 /* The routines that read and process dies for a C struct or C++ class
1419 pass lists of data member fields and lists of member function fields
1420 in an instance of a field_info structure, as defined below. */
1423 /* List of data member and baseclasses fields. */
1424 std::vector<struct nextfield> fields;
1425 std::vector<struct nextfield> baseclasses;
1427 /* Number of fields (including baseclasses). */
1430 /* Set if the accesibility of one of the fields is not public. */
1431 int non_public_fields = 0;
1433 /* Member function fieldlist array, contains name of possibly overloaded
1434 member function, number of overloaded member functions and a pointer
1435 to the head of the member function field chain. */
1436 std::vector<struct fnfieldlist> fnfieldlists;
1438 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1439 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1440 std::vector<struct decl_field> typedef_field_list;
1442 /* Nested types defined by this class and the number of elements in this
1444 std::vector<struct decl_field> nested_types_list;
1447 /* One item on the queue of compilation units to read in full symbols
1449 struct dwarf2_queue_item
1451 struct dwarf2_per_cu_data *per_cu;
1452 enum language pretend_language;
1453 struct dwarf2_queue_item *next;
1456 /* The current queue. */
1457 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1459 /* Loaded secondary compilation units are kept in memory until they
1460 have not been referenced for the processing of this many
1461 compilation units. Set this to zero to disable caching. Cache
1462 sizes of up to at least twenty will improve startup time for
1463 typical inter-CU-reference binaries, at an obvious memory cost. */
1464 static int dwarf_max_cache_age = 5;
1466 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1467 struct cmd_list_element *c, const char *value)
1469 fprintf_filtered (file, _("The upper bound on the age of cached "
1470 "DWARF compilation units is %s.\n"),
1474 /* local function prototypes */
1476 static const char *get_section_name (const struct dwarf2_section_info *);
1478 static const char *get_section_file_name (const struct dwarf2_section_info *);
1480 static void dwarf2_find_base_address (struct die_info *die,
1481 struct dwarf2_cu *cu);
1483 static struct partial_symtab *create_partial_symtab
1484 (struct dwarf2_per_cu_data *per_cu, const char *name);
1486 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1487 const gdb_byte *info_ptr,
1488 struct die_info *type_unit_die,
1489 int has_children, void *data);
1491 static void dwarf2_build_psymtabs_hard
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1494 static void scan_partial_symbols (struct partial_die_info *,
1495 CORE_ADDR *, CORE_ADDR *,
1496 int, struct dwarf2_cu *);
1498 static void add_partial_symbol (struct partial_die_info *,
1499 struct dwarf2_cu *);
1501 static void add_partial_namespace (struct partial_die_info *pdi,
1502 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1503 int set_addrmap, struct dwarf2_cu *cu);
1505 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1506 CORE_ADDR *highpc, int set_addrmap,
1507 struct dwarf2_cu *cu);
1509 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1510 struct dwarf2_cu *cu);
1512 static void add_partial_subprogram (struct partial_die_info *pdi,
1513 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1514 int need_pc, struct dwarf2_cu *cu);
1516 static void dwarf2_read_symtab (struct partial_symtab *,
1519 static void psymtab_to_symtab_1 (struct partial_symtab *);
1521 static abbrev_table_up abbrev_table_read_table
1522 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1525 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1527 static struct partial_die_info *load_partial_dies
1528 (const struct die_reader_specs *, const gdb_byte *, int);
1530 static struct partial_die_info *find_partial_die (sect_offset, int,
1531 struct dwarf2_cu *);
1533 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1534 struct attribute *, struct attr_abbrev *,
1537 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1539 static int read_1_signed_byte (bfd *, const gdb_byte *);
1541 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1639 static int need_gnat_info (struct dwarf2_cu *);
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1699 struct partial_symtab *);
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1720 struct dwarf2_cu *);
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1783 static const char *dwarf_tag_name (unsigned int);
1785 static const char *dwarf_attr_name (unsigned int);
1787 static const char *dwarf_form_name (unsigned int);
1789 static const char *dwarf_bool_name (unsigned int);
1791 static const char *dwarf_type_encoding_name (unsigned int);
1793 static struct die_info *sibling_die (struct die_info *);
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1797 static void dump_die_for_error (struct die_info *);
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1832 static void read_signatured_type (struct signatured_type *);
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1838 /* memory allocation interface */
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1846 static int attr_form_is_block (const struct attribute *);
1848 static int attr_form_is_section_offset (const struct attribute *);
1850 static int attr_form_is_constant (const struct attribute *);
1852 static int attr_form_is_ref (const struct attribute *);
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1860 struct dwarf2_cu *cu,
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1867 static hashval_t partial_die_hash (const void *item);
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1902 static void dwarf2_mark (struct dwarf2_cu *);
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1921 class dwarf2_queue_guard
1924 dwarf2_queue_guard () = default;
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1930 struct dwarf2_queue_item *item, *last;
1932 item = dwarf2_queue;
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1956 struct file_and_directory
1958 /* The filename. This is never NULL. */
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2017 static void free_dwo_file (struct dwo_file *);
2019 /* A unique_ptr helper to free a dwo_file. */
2021 struct dwo_file_deleter
2023 void operator() (struct dwo_file *df) const
2029 /* A unique pointer to a dwo_file. */
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2035 static void check_producer (struct dwarf2_cu *cu);
2037 static void free_line_header_voidp (void *arg);
2039 /* Various complaints about symbol reading that don't abort the process. */
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2048 dwarf2_debug_line_missing_file_complaint (void)
2050 complaint (_(".debug_line section has line data without a file"));
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2061 dwarf2_complex_location_expr_complaint (void)
2063 complaint (_("location expression too complex"));
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2077 complaint (_("debug info runs off end of %s section"
2079 get_section_name (section),
2080 get_section_file_name (section));
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2098 /* Hash function for line_header_hash. */
2101 line_header_hash (const struct line_header *ofs)
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2109 line_header_hash_voidp (const void *item)
2111 const struct line_header *ofs = (const struct line_header *) item;
2113 return line_header_hash (ofs);
2116 /* Equality function for line_header_hash. */
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2134 attr_value_as_address (struct attribute *attr)
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2140 /* Aside from a few clearly defined exceptions, attributes that
2141 contain an address must always be in DW_FORM_addr form.
2142 Unfortunately, some compilers happen to be violating this
2143 requirement by encoding addresses using other forms, such
2144 as DW_FORM_data4 for example. For those broken compilers,
2145 we try to do our best, without any guarantee of success,
2146 to interpret the address correctly. It would also be nice
2147 to generate a complaint, but that would require us to maintain
2148 a list of legitimate cases where a non-address form is allowed,
2149 as well as update callers to pass in at least the CU's DWARF
2150 version. This is more overhead than what we're willing to
2151 expand for a pretty rare case. */
2152 addr = DW_UNSND (attr);
2155 addr = DW_ADDR (attr);
2160 /* See declaration. */
2162 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2163 const dwarf2_debug_sections *names)
2164 : objfile (objfile_)
2167 names = &dwarf2_elf_names;
2169 bfd *obfd = objfile->obfd;
2171 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2172 locate_sections (obfd, sec, *names);
2175 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2177 dwarf2_per_objfile::~dwarf2_per_objfile ()
2179 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2180 free_cached_comp_units ();
2182 if (quick_file_names_table)
2183 htab_delete (quick_file_names_table);
2185 if (line_header_hash)
2186 htab_delete (line_header_hash);
2188 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2189 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2191 for (signatured_type *sig_type : all_type_units)
2192 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2194 VEC_free (dwarf2_section_info_def, types);
2196 if (dwo_files != NULL)
2197 free_dwo_files (dwo_files, objfile);
2199 /* Everything else should be on the objfile obstack. */
2202 /* See declaration. */
2205 dwarf2_per_objfile::free_cached_comp_units ()
2207 dwarf2_per_cu_data *per_cu = read_in_chain;
2208 dwarf2_per_cu_data **last_chain = &read_in_chain;
2209 while (per_cu != NULL)
2211 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2214 *last_chain = next_cu;
2219 /* A helper class that calls free_cached_comp_units on
2222 class free_cached_comp_units
2226 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2227 : m_per_objfile (per_objfile)
2231 ~free_cached_comp_units ()
2233 m_per_objfile->free_cached_comp_units ();
2236 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2240 dwarf2_per_objfile *m_per_objfile;
2243 /* Try to locate the sections we need for DWARF 2 debugging
2244 information and return true if we have enough to do something.
2245 NAMES points to the dwarf2 section names, or is NULL if the standard
2246 ELF names are used. */
2249 dwarf2_has_info (struct objfile *objfile,
2250 const struct dwarf2_debug_sections *names)
2252 if (objfile->flags & OBJF_READNEVER)
2255 struct dwarf2_per_objfile *dwarf2_per_objfile
2256 = get_dwarf2_per_objfile (objfile);
2258 if (dwarf2_per_objfile == NULL)
2260 /* Initialize per-objfile state. */
2262 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2264 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2266 return (!dwarf2_per_objfile->info.is_virtual
2267 && dwarf2_per_objfile->info.s.section != NULL
2268 && !dwarf2_per_objfile->abbrev.is_virtual
2269 && dwarf2_per_objfile->abbrev.s.section != NULL);
2272 /* Return the containing section of virtual section SECTION. */
2274 static struct dwarf2_section_info *
2275 get_containing_section (const struct dwarf2_section_info *section)
2277 gdb_assert (section->is_virtual);
2278 return section->s.containing_section;
2281 /* Return the bfd owner of SECTION. */
2284 get_section_bfd_owner (const struct dwarf2_section_info *section)
2286 if (section->is_virtual)
2288 section = get_containing_section (section);
2289 gdb_assert (!section->is_virtual);
2291 return section->s.section->owner;
2294 /* Return the bfd section of SECTION.
2295 Returns NULL if the section is not present. */
2298 get_section_bfd_section (const struct dwarf2_section_info *section)
2300 if (section->is_virtual)
2302 section = get_containing_section (section);
2303 gdb_assert (!section->is_virtual);
2305 return section->s.section;
2308 /* Return the name of SECTION. */
2311 get_section_name (const struct dwarf2_section_info *section)
2313 asection *sectp = get_section_bfd_section (section);
2315 gdb_assert (sectp != NULL);
2316 return bfd_section_name (get_section_bfd_owner (section), sectp);
2319 /* Return the name of the file SECTION is in. */
2322 get_section_file_name (const struct dwarf2_section_info *section)
2324 bfd *abfd = get_section_bfd_owner (section);
2326 return bfd_get_filename (abfd);
2329 /* Return the id of SECTION.
2330 Returns 0 if SECTION doesn't exist. */
2333 get_section_id (const struct dwarf2_section_info *section)
2335 asection *sectp = get_section_bfd_section (section);
2342 /* Return the flags of SECTION.
2343 SECTION (or containing section if this is a virtual section) must exist. */
2346 get_section_flags (const struct dwarf2_section_info *section)
2348 asection *sectp = get_section_bfd_section (section);
2350 gdb_assert (sectp != NULL);
2351 return bfd_get_section_flags (sectp->owner, sectp);
2354 /* When loading sections, we look either for uncompressed section or for
2355 compressed section names. */
2358 section_is_p (const char *section_name,
2359 const struct dwarf2_section_names *names)
2361 if (names->normal != NULL
2362 && strcmp (section_name, names->normal) == 0)
2364 if (names->compressed != NULL
2365 && strcmp (section_name, names->compressed) == 0)
2370 /* See declaration. */
2373 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2374 const dwarf2_debug_sections &names)
2376 flagword aflag = bfd_get_section_flags (abfd, sectp);
2378 if ((aflag & SEC_HAS_CONTENTS) == 0)
2381 else if (section_is_p (sectp->name, &names.info))
2383 this->info.s.section = sectp;
2384 this->info.size = bfd_get_section_size (sectp);
2386 else if (section_is_p (sectp->name, &names.abbrev))
2388 this->abbrev.s.section = sectp;
2389 this->abbrev.size = bfd_get_section_size (sectp);
2391 else if (section_is_p (sectp->name, &names.line))
2393 this->line.s.section = sectp;
2394 this->line.size = bfd_get_section_size (sectp);
2396 else if (section_is_p (sectp->name, &names.loc))
2398 this->loc.s.section = sectp;
2399 this->loc.size = bfd_get_section_size (sectp);
2401 else if (section_is_p (sectp->name, &names.loclists))
2403 this->loclists.s.section = sectp;
2404 this->loclists.size = bfd_get_section_size (sectp);
2406 else if (section_is_p (sectp->name, &names.macinfo))
2408 this->macinfo.s.section = sectp;
2409 this->macinfo.size = bfd_get_section_size (sectp);
2411 else if (section_is_p (sectp->name, &names.macro))
2413 this->macro.s.section = sectp;
2414 this->macro.size = bfd_get_section_size (sectp);
2416 else if (section_is_p (sectp->name, &names.str))
2418 this->str.s.section = sectp;
2419 this->str.size = bfd_get_section_size (sectp);
2421 else if (section_is_p (sectp->name, &names.line_str))
2423 this->line_str.s.section = sectp;
2424 this->line_str.size = bfd_get_section_size (sectp);
2426 else if (section_is_p (sectp->name, &names.addr))
2428 this->addr.s.section = sectp;
2429 this->addr.size = bfd_get_section_size (sectp);
2431 else if (section_is_p (sectp->name, &names.frame))
2433 this->frame.s.section = sectp;
2434 this->frame.size = bfd_get_section_size (sectp);
2436 else if (section_is_p (sectp->name, &names.eh_frame))
2438 this->eh_frame.s.section = sectp;
2439 this->eh_frame.size = bfd_get_section_size (sectp);
2441 else if (section_is_p (sectp->name, &names.ranges))
2443 this->ranges.s.section = sectp;
2444 this->ranges.size = bfd_get_section_size (sectp);
2446 else if (section_is_p (sectp->name, &names.rnglists))
2448 this->rnglists.s.section = sectp;
2449 this->rnglists.size = bfd_get_section_size (sectp);
2451 else if (section_is_p (sectp->name, &names.types))
2453 struct dwarf2_section_info type_section;
2455 memset (&type_section, 0, sizeof (type_section));
2456 type_section.s.section = sectp;
2457 type_section.size = bfd_get_section_size (sectp);
2459 VEC_safe_push (dwarf2_section_info_def, this->types,
2462 else if (section_is_p (sectp->name, &names.gdb_index))
2464 this->gdb_index.s.section = sectp;
2465 this->gdb_index.size = bfd_get_section_size (sectp);
2467 else if (section_is_p (sectp->name, &names.debug_names))
2469 this->debug_names.s.section = sectp;
2470 this->debug_names.size = bfd_get_section_size (sectp);
2472 else if (section_is_p (sectp->name, &names.debug_aranges))
2474 this->debug_aranges.s.section = sectp;
2475 this->debug_aranges.size = bfd_get_section_size (sectp);
2478 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2479 && bfd_section_vma (abfd, sectp) == 0)
2480 this->has_section_at_zero = true;
2483 /* A helper function that decides whether a section is empty,
2487 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2489 if (section->is_virtual)
2490 return section->size == 0;
2491 return section->s.section == NULL || section->size == 0;
2494 /* See dwarf2read.h. */
2497 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2501 gdb_byte *buf, *retbuf;
2505 info->buffer = NULL;
2508 if (dwarf2_section_empty_p (info))
2511 sectp = get_section_bfd_section (info);
2513 /* If this is a virtual section we need to read in the real one first. */
2514 if (info->is_virtual)
2516 struct dwarf2_section_info *containing_section =
2517 get_containing_section (info);
2519 gdb_assert (sectp != NULL);
2520 if ((sectp->flags & SEC_RELOC) != 0)
2522 error (_("Dwarf Error: DWP format V2 with relocations is not"
2523 " supported in section %s [in module %s]"),
2524 get_section_name (info), get_section_file_name (info));
2526 dwarf2_read_section (objfile, containing_section);
2527 /* Other code should have already caught virtual sections that don't
2529 gdb_assert (info->virtual_offset + info->size
2530 <= containing_section->size);
2531 /* If the real section is empty or there was a problem reading the
2532 section we shouldn't get here. */
2533 gdb_assert (containing_section->buffer != NULL);
2534 info->buffer = containing_section->buffer + info->virtual_offset;
2538 /* If the section has relocations, we must read it ourselves.
2539 Otherwise we attach it to the BFD. */
2540 if ((sectp->flags & SEC_RELOC) == 0)
2542 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2546 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2549 /* When debugging .o files, we may need to apply relocations; see
2550 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2551 We never compress sections in .o files, so we only need to
2552 try this when the section is not compressed. */
2553 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2556 info->buffer = retbuf;
2560 abfd = get_section_bfd_owner (info);
2561 gdb_assert (abfd != NULL);
2563 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2564 || bfd_bread (buf, info->size, abfd) != info->size)
2566 error (_("Dwarf Error: Can't read DWARF data"
2567 " in section %s [in module %s]"),
2568 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2572 /* A helper function that returns the size of a section in a safe way.
2573 If you are positive that the section has been read before using the
2574 size, then it is safe to refer to the dwarf2_section_info object's
2575 "size" field directly. In other cases, you must call this
2576 function, because for compressed sections the size field is not set
2577 correctly until the section has been read. */
2579 static bfd_size_type
2580 dwarf2_section_size (struct objfile *objfile,
2581 struct dwarf2_section_info *info)
2584 dwarf2_read_section (objfile, info);
2588 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2592 dwarf2_get_section_info (struct objfile *objfile,
2593 enum dwarf2_section_enum sect,
2594 asection **sectp, const gdb_byte **bufp,
2595 bfd_size_type *sizep)
2597 struct dwarf2_per_objfile *data
2598 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2599 dwarf2_objfile_data_key);
2600 struct dwarf2_section_info *info;
2602 /* We may see an objfile without any DWARF, in which case we just
2613 case DWARF2_DEBUG_FRAME:
2614 info = &data->frame;
2616 case DWARF2_EH_FRAME:
2617 info = &data->eh_frame;
2620 gdb_assert_not_reached ("unexpected section");
2623 dwarf2_read_section (objfile, info);
2625 *sectp = get_section_bfd_section (info);
2626 *bufp = info->buffer;
2627 *sizep = info->size;
2630 /* A helper function to find the sections for a .dwz file. */
2633 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2635 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2637 /* Note that we only support the standard ELF names, because .dwz
2638 is ELF-only (at the time of writing). */
2639 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2641 dwz_file->abbrev.s.section = sectp;
2642 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2646 dwz_file->info.s.section = sectp;
2647 dwz_file->info.size = bfd_get_section_size (sectp);
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2651 dwz_file->str.s.section = sectp;
2652 dwz_file->str.size = bfd_get_section_size (sectp);
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2656 dwz_file->line.s.section = sectp;
2657 dwz_file->line.size = bfd_get_section_size (sectp);
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2661 dwz_file->macro.s.section = sectp;
2662 dwz_file->macro.size = bfd_get_section_size (sectp);
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2666 dwz_file->gdb_index.s.section = sectp;
2667 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2671 dwz_file->debug_names.s.section = sectp;
2672 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2676 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
2680 static struct dwz_file *
2681 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2683 const char *filename;
2684 bfd_size_type buildid_len_arg;
2688 if (dwarf2_per_objfile->dwz_file != NULL)
2689 return dwarf2_per_objfile->dwz_file.get ();
2691 bfd_set_error (bfd_error_no_error);
2692 gdb::unique_xmalloc_ptr<char> data
2693 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2694 &buildid_len_arg, &buildid));
2697 if (bfd_get_error () == bfd_error_no_error)
2699 error (_("could not read '.gnu_debugaltlink' section: %s"),
2700 bfd_errmsg (bfd_get_error ()));
2703 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2705 buildid_len = (size_t) buildid_len_arg;
2707 filename = data.get ();
2709 std::string abs_storage;
2710 if (!IS_ABSOLUTE_PATH (filename))
2712 gdb::unique_xmalloc_ptr<char> abs
2713 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2715 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2716 filename = abs_storage.c_str ();
2719 /* First try the file name given in the section. If that doesn't
2720 work, try to use the build-id instead. */
2721 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2722 if (dwz_bfd != NULL)
2724 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2725 dwz_bfd.reset (nullptr);
2728 if (dwz_bfd == NULL)
2729 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2731 if (dwz_bfd == NULL)
2732 error (_("could not find '.gnu_debugaltlink' file for %s"),
2733 objfile_name (dwarf2_per_objfile->objfile));
2735 std::unique_ptr<struct dwz_file> result
2736 (new struct dwz_file (std::move (dwz_bfd)));
2738 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2741 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2742 result->dwz_bfd.get ());
2743 dwarf2_per_objfile->dwz_file = std::move (result);
2744 return dwarf2_per_objfile->dwz_file.get ();
2747 /* DWARF quick_symbols_functions support. */
2749 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2750 unique line tables, so we maintain a separate table of all .debug_line
2751 derived entries to support the sharing.
2752 All the quick functions need is the list of file names. We discard the
2753 line_header when we're done and don't need to record it here. */
2754 struct quick_file_names
2756 /* The data used to construct the hash key. */
2757 struct stmt_list_hash hash;
2759 /* The number of entries in file_names, real_names. */
2760 unsigned int num_file_names;
2762 /* The file names from the line table, after being run through
2764 const char **file_names;
2766 /* The file names from the line table after being run through
2767 gdb_realpath. These are computed lazily. */
2768 const char **real_names;
2771 /* When using the index (and thus not using psymtabs), each CU has an
2772 object of this type. This is used to hold information needed by
2773 the various "quick" methods. */
2774 struct dwarf2_per_cu_quick_data
2776 /* The file table. This can be NULL if there was no file table
2777 or it's currently not read in.
2778 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2779 struct quick_file_names *file_names;
2781 /* The corresponding symbol table. This is NULL if symbols for this
2782 CU have not yet been read. */
2783 struct compunit_symtab *compunit_symtab;
2785 /* A temporary mark bit used when iterating over all CUs in
2786 expand_symtabs_matching. */
2787 unsigned int mark : 1;
2789 /* True if we've tried to read the file table and found there isn't one.
2790 There will be no point in trying to read it again next time. */
2791 unsigned int no_file_data : 1;
2794 /* Utility hash function for a stmt_list_hash. */
2797 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2801 if (stmt_list_hash->dwo_unit != NULL)
2802 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2803 v += to_underlying (stmt_list_hash->line_sect_off);
2807 /* Utility equality function for a stmt_list_hash. */
2810 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2811 const struct stmt_list_hash *rhs)
2813 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2815 if (lhs->dwo_unit != NULL
2816 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2819 return lhs->line_sect_off == rhs->line_sect_off;
2822 /* Hash function for a quick_file_names. */
2825 hash_file_name_entry (const void *e)
2827 const struct quick_file_names *file_data
2828 = (const struct quick_file_names *) e;
2830 return hash_stmt_list_entry (&file_data->hash);
2833 /* Equality function for a quick_file_names. */
2836 eq_file_name_entry (const void *a, const void *b)
2838 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2839 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2841 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2844 /* Delete function for a quick_file_names. */
2847 delete_file_name_entry (void *e)
2849 struct quick_file_names *file_data = (struct quick_file_names *) e;
2852 for (i = 0; i < file_data->num_file_names; ++i)
2854 xfree ((void*) file_data->file_names[i]);
2855 if (file_data->real_names)
2856 xfree ((void*) file_data->real_names[i]);
2859 /* The space for the struct itself lives on objfile_obstack,
2860 so we don't free it here. */
2863 /* Create a quick_file_names hash table. */
2866 create_quick_file_names_table (unsigned int nr_initial_entries)
2868 return htab_create_alloc (nr_initial_entries,
2869 hash_file_name_entry, eq_file_name_entry,
2870 delete_file_name_entry, xcalloc, xfree);
2873 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2874 have to be created afterwards. You should call age_cached_comp_units after
2875 processing PER_CU->CU. dw2_setup must have been already called. */
2878 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2880 if (per_cu->is_debug_types)
2881 load_full_type_unit (per_cu);
2883 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2885 if (per_cu->cu == NULL)
2886 return; /* Dummy CU. */
2888 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2891 /* Read in the symbols for PER_CU. */
2894 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2898 /* Skip type_unit_groups, reading the type units they contain
2899 is handled elsewhere. */
2900 if (IS_TYPE_UNIT_GROUP (per_cu))
2903 /* The destructor of dwarf2_queue_guard frees any entries left on
2904 the queue. After this point we're guaranteed to leave this function
2905 with the dwarf queue empty. */
2906 dwarf2_queue_guard q_guard;
2908 if (dwarf2_per_objfile->using_index
2909 ? per_cu->v.quick->compunit_symtab == NULL
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu, skip_partial);
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
2919 && per_cu->cu != NULL
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file (dwarf2_per_objfile) == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
2928 process_queue (dwarf2_per_objfile);
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units (dwarf2_per_objfile);
2935 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2936 the objfile from which this CU came. Returns the resulting symbol
2939 static struct compunit_symtab *
2940 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2942 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2944 gdb_assert (dwarf2_per_objfile->using_index);
2945 if (!per_cu->v.quick->compunit_symtab)
2947 free_cached_comp_units freer (dwarf2_per_objfile);
2948 scoped_restore decrementer = increment_reading_symtab ();
2949 dw2_do_instantiate_symtab (per_cu, skip_partial);
2950 process_cu_includes (dwarf2_per_objfile);
2953 return per_cu->v.quick->compunit_symtab;
2956 /* See declaration. */
2958 dwarf2_per_cu_data *
2959 dwarf2_per_objfile::get_cutu (int index)
2961 if (index >= this->all_comp_units.size ())
2963 index -= this->all_comp_units.size ();
2964 gdb_assert (index < this->all_type_units.size ());
2965 return &this->all_type_units[index]->per_cu;
2968 return this->all_comp_units[index];
2971 /* See declaration. */
2973 dwarf2_per_cu_data *
2974 dwarf2_per_objfile::get_cu (int index)
2976 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2978 return this->all_comp_units[index];
2981 /* See declaration. */
2984 dwarf2_per_objfile::get_tu (int index)
2986 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2988 return this->all_type_units[index];
2991 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2992 objfile_obstack, and constructed with the specified field
2995 static dwarf2_per_cu_data *
2996 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2997 struct dwarf2_section_info *section,
2999 sect_offset sect_off, ULONGEST length)
3001 struct objfile *objfile = dwarf2_per_objfile->objfile;
3002 dwarf2_per_cu_data *the_cu
3003 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3004 struct dwarf2_per_cu_data);
3005 the_cu->sect_off = sect_off;
3006 the_cu->length = length;
3007 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3008 the_cu->section = section;
3009 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3010 struct dwarf2_per_cu_quick_data);
3011 the_cu->is_dwz = is_dwz;
3015 /* A helper for create_cus_from_index that handles a given list of
3019 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3020 const gdb_byte *cu_list, offset_type n_elements,
3021 struct dwarf2_section_info *section,
3024 for (offset_type i = 0; i < n_elements; i += 2)
3026 gdb_static_assert (sizeof (ULONGEST) >= 8);
3028 sect_offset sect_off
3029 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3030 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3033 dwarf2_per_cu_data *per_cu
3034 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3036 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3040 /* Read the CU list from the mapped index, and use it to create all
3041 the CU objects for this objfile. */
3044 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3045 const gdb_byte *cu_list, offset_type cu_list_elements,
3046 const gdb_byte *dwz_list, offset_type dwz_elements)
3048 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3049 dwarf2_per_objfile->all_comp_units.reserve
3050 ((cu_list_elements + dwz_elements) / 2);
3052 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3053 &dwarf2_per_objfile->info, 0);
3055 if (dwz_elements == 0)
3058 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3059 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3063 /* Create the signatured type hash table from the index. */
3066 create_signatured_type_table_from_index
3067 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3068 struct dwarf2_section_info *section,
3069 const gdb_byte *bytes,
3070 offset_type elements)
3072 struct objfile *objfile = dwarf2_per_objfile->objfile;
3074 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3075 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3077 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3079 for (offset_type i = 0; i < elements; i += 3)
3081 struct signatured_type *sig_type;
3084 cu_offset type_offset_in_tu;
3086 gdb_static_assert (sizeof (ULONGEST) >= 8);
3087 sect_offset sect_off
3088 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3090 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3092 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3095 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3096 struct signatured_type);
3097 sig_type->signature = signature;
3098 sig_type->type_offset_in_tu = type_offset_in_tu;
3099 sig_type->per_cu.is_debug_types = 1;
3100 sig_type->per_cu.section = section;
3101 sig_type->per_cu.sect_off = sect_off;
3102 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3103 sig_type->per_cu.v.quick
3104 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3105 struct dwarf2_per_cu_quick_data);
3107 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3110 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3113 dwarf2_per_objfile->signatured_types = sig_types_hash;
3116 /* Create the signatured type hash table from .debug_names. */
3119 create_signatured_type_table_from_debug_names
3120 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3121 const mapped_debug_names &map,
3122 struct dwarf2_section_info *section,
3123 struct dwarf2_section_info *abbrev_section)
3125 struct objfile *objfile = dwarf2_per_objfile->objfile;
3127 dwarf2_read_section (objfile, section);
3128 dwarf2_read_section (objfile, abbrev_section);
3130 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3131 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3133 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3135 for (uint32_t i = 0; i < map.tu_count; ++i)
3137 struct signatured_type *sig_type;
3140 sect_offset sect_off
3141 = (sect_offset) (extract_unsigned_integer
3142 (map.tu_table_reordered + i * map.offset_size,
3144 map.dwarf5_byte_order));
3146 comp_unit_head cu_header;
3147 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3149 section->buffer + to_underlying (sect_off),
3152 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3153 struct signatured_type);
3154 sig_type->signature = cu_header.signature;
3155 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3156 sig_type->per_cu.is_debug_types = 1;
3157 sig_type->per_cu.section = section;
3158 sig_type->per_cu.sect_off = sect_off;
3159 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3160 sig_type->per_cu.v.quick
3161 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3162 struct dwarf2_per_cu_quick_data);
3164 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3167 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3170 dwarf2_per_objfile->signatured_types = sig_types_hash;
3173 /* Read the address map data from the mapped index, and use it to
3174 populate the objfile's psymtabs_addrmap. */
3177 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3178 struct mapped_index *index)
3180 struct objfile *objfile = dwarf2_per_objfile->objfile;
3181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3182 const gdb_byte *iter, *end;
3183 struct addrmap *mutable_map;
3186 auto_obstack temp_obstack;
3188 mutable_map = addrmap_create_mutable (&temp_obstack);
3190 iter = index->address_table.data ();
3191 end = iter + index->address_table.size ();
3193 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3197 ULONGEST hi, lo, cu_index;
3198 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3200 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3202 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3207 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3208 hex_string (lo), hex_string (hi));
3212 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3214 complaint (_(".gdb_index address table has invalid CU number %u"),
3215 (unsigned) cu_index);
3219 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3220 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3221 addrmap_set_empty (mutable_map, lo, hi - 1,
3222 dwarf2_per_objfile->get_cu (cu_index));
3225 objfile->partial_symtabs->psymtabs_addrmap
3226 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3229 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3230 populate the objfile's psymtabs_addrmap. */
3233 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3234 struct dwarf2_section_info *section)
3236 struct objfile *objfile = dwarf2_per_objfile->objfile;
3237 bfd *abfd = objfile->obfd;
3238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3239 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3240 SECT_OFF_TEXT (objfile));
3242 auto_obstack temp_obstack;
3243 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3245 std::unordered_map<sect_offset,
3246 dwarf2_per_cu_data *,
3247 gdb::hash_enum<sect_offset>>
3248 debug_info_offset_to_per_cu;
3249 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3251 const auto insertpair
3252 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3253 if (!insertpair.second)
3255 warning (_("Section .debug_aranges in %s has duplicate "
3256 "debug_info_offset %s, ignoring .debug_aranges."),
3257 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3262 dwarf2_read_section (objfile, section);
3264 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3266 const gdb_byte *addr = section->buffer;
3268 while (addr < section->buffer + section->size)
3270 const gdb_byte *const entry_addr = addr;
3271 unsigned int bytes_read;
3273 const LONGEST entry_length = read_initial_length (abfd, addr,
3277 const gdb_byte *const entry_end = addr + entry_length;
3278 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3279 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3280 if (addr + entry_length > section->buffer + section->size)
3282 warning (_("Section .debug_aranges in %s entry at offset %zu "
3283 "length %s exceeds section length %s, "
3284 "ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 plongest (bytes_read + entry_length),
3287 pulongest (section->size));
3291 /* The version number. */
3292 const uint16_t version = read_2_bytes (abfd, addr);
3296 warning (_("Section .debug_aranges in %s entry at offset %zu "
3297 "has unsupported version %d, ignoring .debug_aranges."),
3298 objfile_name (objfile), entry_addr - section->buffer,
3303 const uint64_t debug_info_offset
3304 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3305 addr += offset_size;
3306 const auto per_cu_it
3307 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3308 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "debug_info_offset %s does not exists, "
3312 "ignoring .debug_aranges."),
3313 objfile_name (objfile), entry_addr - section->buffer,
3314 pulongest (debug_info_offset));
3317 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3319 const uint8_t address_size = *addr++;
3320 if (address_size < 1 || address_size > 8)
3322 warning (_("Section .debug_aranges in %s entry at offset %zu "
3323 "address_size %u is invalid, ignoring .debug_aranges."),
3324 objfile_name (objfile), entry_addr - section->buffer,
3329 const uint8_t segment_selector_size = *addr++;
3330 if (segment_selector_size != 0)
3332 warning (_("Section .debug_aranges in %s entry at offset %zu "
3333 "segment_selector_size %u is not supported, "
3334 "ignoring .debug_aranges."),
3335 objfile_name (objfile), entry_addr - section->buffer,
3336 segment_selector_size);
3340 /* Must pad to an alignment boundary that is twice the address
3341 size. It is undocumented by the DWARF standard but GCC does
3343 for (size_t padding = ((-(addr - section->buffer))
3344 & (2 * address_size - 1));
3345 padding > 0; padding--)
3348 warning (_("Section .debug_aranges in %s entry at offset %zu "
3349 "padding is not zero, ignoring .debug_aranges."),
3350 objfile_name (objfile), entry_addr - section->buffer);
3356 if (addr + 2 * address_size > entry_end)
3358 warning (_("Section .debug_aranges in %s entry at offset %zu "
3359 "address list is not properly terminated, "
3360 "ignoring .debug_aranges."),
3361 objfile_name (objfile), entry_addr - section->buffer);
3364 ULONGEST start = extract_unsigned_integer (addr, address_size,
3366 addr += address_size;
3367 ULONGEST length = extract_unsigned_integer (addr, address_size,
3369 addr += address_size;
3370 if (start == 0 && length == 0)
3372 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3374 /* Symbol was eliminated due to a COMDAT group. */
3377 ULONGEST end = start + length;
3378 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3380 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3382 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3386 objfile->partial_symtabs->psymtabs_addrmap
3387 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3390 /* Find a slot in the mapped index INDEX for the object named NAME.
3391 If NAME is found, set *VEC_OUT to point to the CU vector in the
3392 constant pool and return true. If NAME cannot be found, return
3396 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3397 offset_type **vec_out)
3400 offset_type slot, step;
3401 int (*cmp) (const char *, const char *);
3403 gdb::unique_xmalloc_ptr<char> without_params;
3404 if (current_language->la_language == language_cplus
3405 || current_language->la_language == language_fortran
3406 || current_language->la_language == language_d)
3408 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3411 if (strchr (name, '(') != NULL)
3413 without_params = cp_remove_params (name);
3415 if (without_params != NULL)
3416 name = without_params.get ();
3420 /* Index version 4 did not support case insensitive searches. But the
3421 indices for case insensitive languages are built in lowercase, therefore
3422 simulate our NAME being searched is also lowercased. */
3423 hash = mapped_index_string_hash ((index->version == 4
3424 && case_sensitivity == case_sensitive_off
3425 ? 5 : index->version),
3428 slot = hash & (index->symbol_table.size () - 1);
3429 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3430 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3436 const auto &bucket = index->symbol_table[slot];
3437 if (bucket.name == 0 && bucket.vec == 0)
3440 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3441 if (!cmp (name, str))
3443 *vec_out = (offset_type *) (index->constant_pool
3444 + MAYBE_SWAP (bucket.vec));
3448 slot = (slot + step) & (index->symbol_table.size () - 1);
3452 /* A helper function that reads the .gdb_index from BUFFER and fills
3453 in MAP. FILENAME is the name of the file containing the data;
3454 it is used for error reporting. DEPRECATED_OK is true if it is
3455 ok to use deprecated sections.
3457 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3458 out parameters that are filled in with information about the CU and
3459 TU lists in the section.
3461 Returns true if all went well, false otherwise. */
3464 read_gdb_index_from_buffer (struct objfile *objfile,
3465 const char *filename,
3467 gdb::array_view<const gdb_byte> buffer,
3468 struct mapped_index *map,
3469 const gdb_byte **cu_list,
3470 offset_type *cu_list_elements,
3471 const gdb_byte **types_list,
3472 offset_type *types_list_elements)
3474 const gdb_byte *addr = &buffer[0];
3476 /* Version check. */
3477 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3478 /* Versions earlier than 3 emitted every copy of a psymbol. This
3479 causes the index to behave very poorly for certain requests. Version 3
3480 contained incomplete addrmap. So, it seems better to just ignore such
3484 static int warning_printed = 0;
3485 if (!warning_printed)
3487 warning (_("Skipping obsolete .gdb_index section in %s."),
3489 warning_printed = 1;
3493 /* Index version 4 uses a different hash function than index version
3496 Versions earlier than 6 did not emit psymbols for inlined
3497 functions. Using these files will cause GDB not to be able to
3498 set breakpoints on inlined functions by name, so we ignore these
3499 indices unless the user has done
3500 "set use-deprecated-index-sections on". */
3501 if (version < 6 && !deprecated_ok)
3503 static int warning_printed = 0;
3504 if (!warning_printed)
3507 Skipping deprecated .gdb_index section in %s.\n\
3508 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3509 to use the section anyway."),
3511 warning_printed = 1;
3515 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3516 of the TU (for symbols coming from TUs),
3517 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3518 Plus gold-generated indices can have duplicate entries for global symbols,
3519 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3520 These are just performance bugs, and we can't distinguish gdb-generated
3521 indices from gold-generated ones, so issue no warning here. */
3523 /* Indexes with higher version than the one supported by GDB may be no
3524 longer backward compatible. */
3528 map->version = version;
3530 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3533 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3534 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3538 *types_list = addr + MAYBE_SWAP (metadata[i]);
3539 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3540 - MAYBE_SWAP (metadata[i]))
3544 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3545 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3550 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3551 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3553 = gdb::array_view<mapped_index::symbol_table_slot>
3554 ((mapped_index::symbol_table_slot *) symbol_table,
3555 (mapped_index::symbol_table_slot *) symbol_table_end);
3558 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3563 /* Callback types for dwarf2_read_gdb_index. */
3565 typedef gdb::function_view
3566 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3567 get_gdb_index_contents_ftype;
3568 typedef gdb::function_view
3569 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3570 get_gdb_index_contents_dwz_ftype;
3572 /* Read .gdb_index. If everything went ok, initialize the "quick"
3573 elements of all the CUs and return 1. Otherwise, return 0. */
3576 dwarf2_read_gdb_index
3577 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3578 get_gdb_index_contents_ftype get_gdb_index_contents,
3579 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3581 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3582 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3583 struct dwz_file *dwz;
3584 struct objfile *objfile = dwarf2_per_objfile->objfile;
3586 gdb::array_view<const gdb_byte> main_index_contents
3587 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3589 if (main_index_contents.empty ())
3592 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3593 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3594 use_deprecated_index_sections,
3595 main_index_contents, map.get (), &cu_list,
3596 &cu_list_elements, &types_list,
3597 &types_list_elements))
3600 /* Don't use the index if it's empty. */
3601 if (map->symbol_table.empty ())
3604 /* If there is a .dwz file, read it so we can get its CU list as
3606 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3609 struct mapped_index dwz_map;
3610 const gdb_byte *dwz_types_ignore;
3611 offset_type dwz_types_elements_ignore;
3613 gdb::array_view<const gdb_byte> dwz_index_content
3614 = get_gdb_index_contents_dwz (objfile, dwz);
3616 if (dwz_index_content.empty ())
3619 if (!read_gdb_index_from_buffer (objfile,
3620 bfd_get_filename (dwz->dwz_bfd), 1,
3621 dwz_index_content, &dwz_map,
3622 &dwz_list, &dwz_list_elements,
3624 &dwz_types_elements_ignore))
3626 warning (_("could not read '.gdb_index' section from %s; skipping"),
3627 bfd_get_filename (dwz->dwz_bfd));
3632 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3633 dwz_list, dwz_list_elements);
3635 if (types_list_elements)
3637 struct dwarf2_section_info *section;
3639 /* We can only handle a single .debug_types when we have an
3641 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3644 section = VEC_index (dwarf2_section_info_def,
3645 dwarf2_per_objfile->types, 0);
3647 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3648 types_list, types_list_elements);
3651 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3653 dwarf2_per_objfile->index_table = std::move (map);
3654 dwarf2_per_objfile->using_index = 1;
3655 dwarf2_per_objfile->quick_file_names_table =
3656 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3661 /* die_reader_func for dw2_get_file_names. */
3664 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3665 const gdb_byte *info_ptr,
3666 struct die_info *comp_unit_die,
3670 struct dwarf2_cu *cu = reader->cu;
3671 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3672 struct dwarf2_per_objfile *dwarf2_per_objfile
3673 = cu->per_cu->dwarf2_per_objfile;
3674 struct objfile *objfile = dwarf2_per_objfile->objfile;
3675 struct dwarf2_per_cu_data *lh_cu;
3676 struct attribute *attr;
3679 struct quick_file_names *qfn;
3681 gdb_assert (! this_cu->is_debug_types);
3683 /* Our callers never want to match partial units -- instead they
3684 will match the enclosing full CU. */
3685 if (comp_unit_die->tag == DW_TAG_partial_unit)
3687 this_cu->v.quick->no_file_data = 1;
3695 sect_offset line_offset {};
3697 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3700 struct quick_file_names find_entry;
3702 line_offset = (sect_offset) DW_UNSND (attr);
3704 /* We may have already read in this line header (TU line header sharing).
3705 If we have we're done. */
3706 find_entry.hash.dwo_unit = cu->dwo_unit;
3707 find_entry.hash.line_sect_off = line_offset;
3708 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3709 &find_entry, INSERT);
3712 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3716 lh = dwarf_decode_line_header (line_offset, cu);
3720 lh_cu->v.quick->no_file_data = 1;
3724 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3725 qfn->hash.dwo_unit = cu->dwo_unit;
3726 qfn->hash.line_sect_off = line_offset;
3727 gdb_assert (slot != NULL);
3730 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3732 qfn->num_file_names = lh->file_names.size ();
3734 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3735 for (i = 0; i < lh->file_names.size (); ++i)
3736 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3737 qfn->real_names = NULL;
3739 lh_cu->v.quick->file_names = qfn;
3742 /* A helper for the "quick" functions which attempts to read the line
3743 table for THIS_CU. */
3745 static struct quick_file_names *
3746 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3748 /* This should never be called for TUs. */
3749 gdb_assert (! this_cu->is_debug_types);
3750 /* Nor type unit groups. */
3751 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3753 if (this_cu->v.quick->file_names != NULL)
3754 return this_cu->v.quick->file_names;
3755 /* If we know there is no line data, no point in looking again. */
3756 if (this_cu->v.quick->no_file_data)
3759 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3761 if (this_cu->v.quick->no_file_data)
3763 return this_cu->v.quick->file_names;
3766 /* A helper for the "quick" functions which computes and caches the
3767 real path for a given file name from the line table. */
3770 dw2_get_real_path (struct objfile *objfile,
3771 struct quick_file_names *qfn, int index)
3773 if (qfn->real_names == NULL)
3774 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3775 qfn->num_file_names, const char *);
3777 if (qfn->real_names[index] == NULL)
3778 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3780 return qfn->real_names[index];
3783 static struct symtab *
3784 dw2_find_last_source_symtab (struct objfile *objfile)
3786 struct dwarf2_per_objfile *dwarf2_per_objfile
3787 = get_dwarf2_per_objfile (objfile);
3788 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3789 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3794 return compunit_primary_filetab (cust);
3797 /* Traversal function for dw2_forget_cached_source_info. */
3800 dw2_free_cached_file_names (void **slot, void *info)
3802 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3804 if (file_data->real_names)
3808 for (i = 0; i < file_data->num_file_names; ++i)
3810 xfree ((void*) file_data->real_names[i]);
3811 file_data->real_names[i] = NULL;
3819 dw2_forget_cached_source_info (struct objfile *objfile)
3821 struct dwarf2_per_objfile *dwarf2_per_objfile
3822 = get_dwarf2_per_objfile (objfile);
3824 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3825 dw2_free_cached_file_names, NULL);
3828 /* Helper function for dw2_map_symtabs_matching_filename that expands
3829 the symtabs and calls the iterator. */
3832 dw2_map_expand_apply (struct objfile *objfile,
3833 struct dwarf2_per_cu_data *per_cu,
3834 const char *name, const char *real_path,
3835 gdb::function_view<bool (symtab *)> callback)
3837 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3839 /* Don't visit already-expanded CUs. */
3840 if (per_cu->v.quick->compunit_symtab)
3843 /* This may expand more than one symtab, and we want to iterate over
3845 dw2_instantiate_symtab (per_cu, false);
3847 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3848 last_made, callback);
3851 /* Implementation of the map_symtabs_matching_filename method. */
3854 dw2_map_symtabs_matching_filename
3855 (struct objfile *objfile, const char *name, const char *real_path,
3856 gdb::function_view<bool (symtab *)> callback)
3858 const char *name_basename = lbasename (name);
3859 struct dwarf2_per_objfile *dwarf2_per_objfile
3860 = get_dwarf2_per_objfile (objfile);
3862 /* The rule is CUs specify all the files, including those used by
3863 any TU, so there's no need to scan TUs here. */
3865 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3867 /* We only need to look at symtabs not already expanded. */
3868 if (per_cu->v.quick->compunit_symtab)
3871 quick_file_names *file_data = dw2_get_file_names (per_cu);
3872 if (file_data == NULL)
3875 for (int j = 0; j < file_data->num_file_names; ++j)
3877 const char *this_name = file_data->file_names[j];
3878 const char *this_real_name;
3880 if (compare_filenames_for_search (this_name, name))
3882 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3888 /* Before we invoke realpath, which can get expensive when many
3889 files are involved, do a quick comparison of the basenames. */
3890 if (! basenames_may_differ
3891 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3894 this_real_name = dw2_get_real_path (objfile, file_data, j);
3895 if (compare_filenames_for_search (this_real_name, name))
3897 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3903 if (real_path != NULL)
3905 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3906 gdb_assert (IS_ABSOLUTE_PATH (name));
3907 if (this_real_name != NULL
3908 && FILENAME_CMP (real_path, this_real_name) == 0)
3910 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3922 /* Struct used to manage iterating over all CUs looking for a symbol. */
3924 struct dw2_symtab_iterator
3926 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3927 struct dwarf2_per_objfile *dwarf2_per_objfile;
3928 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3929 int want_specific_block;
3930 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3931 Unused if !WANT_SPECIFIC_BLOCK. */
3933 /* The kind of symbol we're looking for. */
3935 /* The list of CUs from the index entry of the symbol,
3936 or NULL if not found. */
3938 /* The next element in VEC to look at. */
3940 /* The number of elements in VEC, or zero if there is no match. */
3942 /* Have we seen a global version of the symbol?
3943 If so we can ignore all further global instances.
3944 This is to work around gold/15646, inefficient gold-generated
3949 /* Initialize the index symtab iterator ITER.
3950 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3951 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3954 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3955 struct dwarf2_per_objfile *dwarf2_per_objfile,
3956 int want_specific_block,
3961 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3962 iter->want_specific_block = want_specific_block;
3963 iter->block_index = block_index;
3964 iter->domain = domain;
3966 iter->global_seen = 0;
3968 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3970 /* index is NULL if OBJF_READNOW. */
3971 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3972 iter->length = MAYBE_SWAP (*iter->vec);
3980 /* Return the next matching CU or NULL if there are no more. */
3982 static struct dwarf2_per_cu_data *
3983 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3985 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3987 for ( ; iter->next < iter->length; ++iter->next)
3989 offset_type cu_index_and_attrs =
3990 MAYBE_SWAP (iter->vec[iter->next + 1]);
3991 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3992 int want_static = iter->block_index != GLOBAL_BLOCK;
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 /* Only check the symbol attributes if they're present.
3998 Indices prior to version 7 don't record them,
3999 and indices >= 7 may elide them for certain symbols
4000 (gold does this). */
4002 (dwarf2_per_objfile->index_table->version >= 7
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4007 + dwarf2_per_objfile->all_type_units.size ()))
4009 complaint (_(".gdb_index entry has bad CU index"
4011 objfile_name (dwarf2_per_objfile->objfile));
4015 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4017 /* Skip if already read in. */
4018 if (per_cu->v.quick->compunit_symtab)
4021 /* Check static vs global. */
4024 if (iter->want_specific_block
4025 && want_static != is_static)
4027 /* Work around gold/15646. */
4028 if (!is_static && iter->global_seen)
4031 iter->global_seen = 1;
4034 /* Only check the symbol's kind if it has one. */
4037 switch (iter->domain)
4040 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4041 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4042 /* Some types are also in VAR_DOMAIN. */
4043 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4047 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4051 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4066 static struct compunit_symtab *
4067 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4068 const char *name, domain_enum domain)
4070 struct compunit_symtab *stab_best = NULL;
4071 struct dwarf2_per_objfile *dwarf2_per_objfile
4072 = get_dwarf2_per_objfile (objfile);
4074 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4076 struct dw2_symtab_iterator iter;
4077 struct dwarf2_per_cu_data *per_cu;
4079 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4081 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4083 struct symbol *sym, *with_opaque = NULL;
4084 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4085 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4086 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4088 sym = block_find_symbol (block, name, domain,
4089 block_find_non_opaque_type_preferred,
4092 /* Some caution must be observed with overloaded functions
4093 and methods, since the index will not contain any overload
4094 information (but NAME might contain it). */
4097 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4099 if (with_opaque != NULL
4100 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4103 /* Keep looking through other CUs. */
4110 dw2_print_stats (struct objfile *objfile)
4112 struct dwarf2_per_objfile *dwarf2_per_objfile
4113 = get_dwarf2_per_objfile (objfile);
4114 int total = (dwarf2_per_objfile->all_comp_units.size ()
4115 + dwarf2_per_objfile->all_type_units.size ());
4118 for (int i = 0; i < total; ++i)
4120 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4122 if (!per_cu->v.quick->compunit_symtab)
4125 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4126 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4129 /* This dumps minimal information about the index.
4130 It is called via "mt print objfiles".
4131 One use is to verify .gdb_index has been loaded by the
4132 gdb.dwarf2/gdb-index.exp testcase. */
4135 dw2_dump (struct objfile *objfile)
4137 struct dwarf2_per_objfile *dwarf2_per_objfile
4138 = get_dwarf2_per_objfile (objfile);
4140 gdb_assert (dwarf2_per_objfile->using_index);
4141 printf_filtered (".gdb_index:");
4142 if (dwarf2_per_objfile->index_table != NULL)
4144 printf_filtered (" version %d\n",
4145 dwarf2_per_objfile->index_table->version);
4148 printf_filtered (" faked for \"readnow\"\n");
4149 printf_filtered ("\n");
4153 dw2_expand_symtabs_for_function (struct objfile *objfile,
4154 const char *func_name)
4156 struct dwarf2_per_objfile *dwarf2_per_objfile
4157 = get_dwarf2_per_objfile (objfile);
4159 struct dw2_symtab_iterator iter;
4160 struct dwarf2_per_cu_data *per_cu;
4162 /* Note: It doesn't matter what we pass for block_index here. */
4163 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4166 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4167 dw2_instantiate_symtab (per_cu, false);
4172 dw2_expand_all_symtabs (struct objfile *objfile)
4174 struct dwarf2_per_objfile *dwarf2_per_objfile
4175 = get_dwarf2_per_objfile (objfile);
4176 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4177 + dwarf2_per_objfile->all_type_units.size ());
4179 for (int i = 0; i < total_units; ++i)
4181 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4183 /* We don't want to directly expand a partial CU, because if we
4184 read it with the wrong language, then assertion failures can
4185 be triggered later on. See PR symtab/23010. So, tell
4186 dw2_instantiate_symtab to skip partial CUs -- any important
4187 partial CU will be read via DW_TAG_imported_unit anyway. */
4188 dw2_instantiate_symtab (per_cu, true);
4193 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4194 const char *fullname)
4196 struct dwarf2_per_objfile *dwarf2_per_objfile
4197 = get_dwarf2_per_objfile (objfile);
4199 /* We don't need to consider type units here.
4200 This is only called for examining code, e.g. expand_line_sal.
4201 There can be an order of magnitude (or more) more type units
4202 than comp units, and we avoid them if we can. */
4204 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4206 /* We only need to look at symtabs not already expanded. */
4207 if (per_cu->v.quick->compunit_symtab)
4210 quick_file_names *file_data = dw2_get_file_names (per_cu);
4211 if (file_data == NULL)
4214 for (int j = 0; j < file_data->num_file_names; ++j)
4216 const char *this_fullname = file_data->file_names[j];
4218 if (filename_cmp (this_fullname, fullname) == 0)
4220 dw2_instantiate_symtab (per_cu, false);
4228 dw2_map_matching_symbols (struct objfile *objfile,
4229 const char * name, domain_enum domain,
4231 int (*callback) (struct block *,
4232 struct symbol *, void *),
4233 void *data, symbol_name_match_type match,
4234 symbol_compare_ftype *ordered_compare)
4236 /* Currently unimplemented; used for Ada. The function can be called if the
4237 current language is Ada for a non-Ada objfile using GNU index. As Ada
4238 does not look for non-Ada symbols this function should just return. */
4241 /* Symbol name matcher for .gdb_index names.
4243 Symbol names in .gdb_index have a few particularities:
4245 - There's no indication of which is the language of each symbol.
4247 Since each language has its own symbol name matching algorithm,
4248 and we don't know which language is the right one, we must match
4249 each symbol against all languages. This would be a potential
4250 performance problem if it were not mitigated by the
4251 mapped_index::name_components lookup table, which significantly
4252 reduces the number of times we need to call into this matcher,
4253 making it a non-issue.
4255 - Symbol names in the index have no overload (parameter)
4256 information. I.e., in C++, "foo(int)" and "foo(long)" both
4257 appear as "foo" in the index, for example.
4259 This means that the lookup names passed to the symbol name
4260 matcher functions must have no parameter information either
4261 because (e.g.) symbol search name "foo" does not match
4262 lookup-name "foo(int)" [while swapping search name for lookup
4265 class gdb_index_symbol_name_matcher
4268 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4269 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4271 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4272 Returns true if any matcher matches. */
4273 bool matches (const char *symbol_name);
4276 /* A reference to the lookup name we're matching against. */
4277 const lookup_name_info &m_lookup_name;
4279 /* A vector holding all the different symbol name matchers, for all
4281 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4284 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4285 (const lookup_name_info &lookup_name)
4286 : m_lookup_name (lookup_name)
4288 /* Prepare the vector of comparison functions upfront, to avoid
4289 doing the same work for each symbol. Care is taken to avoid
4290 matching with the same matcher more than once if/when multiple
4291 languages use the same matcher function. */
4292 auto &matchers = m_symbol_name_matcher_funcs;
4293 matchers.reserve (nr_languages);
4295 matchers.push_back (default_symbol_name_matcher);
4297 for (int i = 0; i < nr_languages; i++)
4299 const language_defn *lang = language_def ((enum language) i);
4300 symbol_name_matcher_ftype *name_matcher
4301 = get_symbol_name_matcher (lang, m_lookup_name);
4303 /* Don't insert the same comparison routine more than once.
4304 Note that we do this linear walk instead of a seemingly
4305 cheaper sorted insert, or use a std::set or something like
4306 that, because relative order of function addresses is not
4307 stable. This is not a problem in practice because the number
4308 of supported languages is low, and the cost here is tiny
4309 compared to the number of searches we'll do afterwards using
4311 if (name_matcher != default_symbol_name_matcher
4312 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4313 == matchers.end ()))
4314 matchers.push_back (name_matcher);
4319 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4321 for (auto matches_name : m_symbol_name_matcher_funcs)
4322 if (matches_name (symbol_name, m_lookup_name, NULL))
4328 /* Starting from a search name, return the string that finds the upper
4329 bound of all strings that start with SEARCH_NAME in a sorted name
4330 list. Returns the empty string to indicate that the upper bound is
4331 the end of the list. */
4334 make_sort_after_prefix_name (const char *search_name)
4336 /* When looking to complete "func", we find the upper bound of all
4337 symbols that start with "func" by looking for where we'd insert
4338 the closest string that would follow "func" in lexicographical
4339 order. Usually, that's "func"-with-last-character-incremented,
4340 i.e. "fund". Mind non-ASCII characters, though. Usually those
4341 will be UTF-8 multi-byte sequences, but we can't be certain.
4342 Especially mind the 0xff character, which is a valid character in
4343 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4344 rule out compilers allowing it in identifiers. Note that
4345 conveniently, strcmp/strcasecmp are specified to compare
4346 characters interpreted as unsigned char. So what we do is treat
4347 the whole string as a base 256 number composed of a sequence of
4348 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4349 to 0, and carries 1 to the following more-significant position.
4350 If the very first character in SEARCH_NAME ends up incremented
4351 and carries/overflows, then the upper bound is the end of the
4352 list. The string after the empty string is also the empty
4355 Some examples of this operation:
4357 SEARCH_NAME => "+1" RESULT
4361 "\xff" "a" "\xff" => "\xff" "b"
4366 Then, with these symbols for example:
4372 completing "func" looks for symbols between "func" and
4373 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4374 which finds "func" and "func1", but not "fund".
4378 funcÿ (Latin1 'ÿ' [0xff])
4382 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4383 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4387 ÿÿ (Latin1 'ÿ' [0xff])
4390 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4391 the end of the list.
4393 std::string after = search_name;
4394 while (!after.empty () && (unsigned char) after.back () == 0xff)
4396 if (!after.empty ())
4397 after.back () = (unsigned char) after.back () + 1;
4401 /* See declaration. */
4403 std::pair<std::vector<name_component>::const_iterator,
4404 std::vector<name_component>::const_iterator>
4405 mapped_index_base::find_name_components_bounds
4406 (const lookup_name_info &lookup_name_without_params) const
4409 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4412 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4414 /* Comparison function object for lower_bound that matches against a
4415 given symbol name. */
4416 auto lookup_compare_lower = [&] (const name_component &elem,
4419 const char *elem_qualified = this->symbol_name_at (elem.idx);
4420 const char *elem_name = elem_qualified + elem.name_offset;
4421 return name_cmp (elem_name, name) < 0;
4424 /* Comparison function object for upper_bound that matches against a
4425 given symbol name. */
4426 auto lookup_compare_upper = [&] (const char *name,
4427 const name_component &elem)
4429 const char *elem_qualified = this->symbol_name_at (elem.idx);
4430 const char *elem_name = elem_qualified + elem.name_offset;
4431 return name_cmp (name, elem_name) < 0;
4434 auto begin = this->name_components.begin ();
4435 auto end = this->name_components.end ();
4437 /* Find the lower bound. */
4440 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4443 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4446 /* Find the upper bound. */
4449 if (lookup_name_without_params.completion_mode ())
4451 /* In completion mode, we want UPPER to point past all
4452 symbols names that have the same prefix. I.e., with
4453 these symbols, and completing "func":
4455 function << lower bound
4457 other_function << upper bound
4459 We find the upper bound by looking for the insertion
4460 point of "func"-with-last-character-incremented,
4462 std::string after = make_sort_after_prefix_name (cplus);
4465 return std::lower_bound (lower, end, after.c_str (),
4466 lookup_compare_lower);
4469 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4472 return {lower, upper};
4475 /* See declaration. */
4478 mapped_index_base::build_name_components ()
4480 if (!this->name_components.empty ())
4483 this->name_components_casing = case_sensitivity;
4485 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4487 /* The code below only knows how to break apart components of C++
4488 symbol names (and other languages that use '::' as
4489 namespace/module separator). If we add support for wild matching
4490 to some language that uses some other operator (E.g., Ada, Go and
4491 D use '.'), then we'll need to try splitting the symbol name
4492 according to that language too. Note that Ada does support wild
4493 matching, but doesn't currently support .gdb_index. */
4494 auto count = this->symbol_name_count ();
4495 for (offset_type idx = 0; idx < count; idx++)
4497 if (this->symbol_name_slot_invalid (idx))
4500 const char *name = this->symbol_name_at (idx);
4502 /* Add each name component to the name component table. */
4503 unsigned int previous_len = 0;
4504 for (unsigned int current_len = cp_find_first_component (name);
4505 name[current_len] != '\0';
4506 current_len += cp_find_first_component (name + current_len))
4508 gdb_assert (name[current_len] == ':');
4509 this->name_components.push_back ({previous_len, idx});
4510 /* Skip the '::'. */
4512 previous_len = current_len;
4514 this->name_components.push_back ({previous_len, idx});
4517 /* Sort name_components elements by name. */
4518 auto name_comp_compare = [&] (const name_component &left,
4519 const name_component &right)
4521 const char *left_qualified = this->symbol_name_at (left.idx);
4522 const char *right_qualified = this->symbol_name_at (right.idx);
4524 const char *left_name = left_qualified + left.name_offset;
4525 const char *right_name = right_qualified + right.name_offset;
4527 return name_cmp (left_name, right_name) < 0;
4530 std::sort (this->name_components.begin (),
4531 this->name_components.end (),
4535 /* Helper for dw2_expand_symtabs_matching that works with a
4536 mapped_index_base instead of the containing objfile. This is split
4537 to a separate function in order to be able to unit test the
4538 name_components matching using a mock mapped_index_base. For each
4539 symbol name that matches, calls MATCH_CALLBACK, passing it the
4540 symbol's index in the mapped_index_base symbol table. */
4543 dw2_expand_symtabs_matching_symbol
4544 (mapped_index_base &index,
4545 const lookup_name_info &lookup_name_in,
4546 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4547 enum search_domain kind,
4548 gdb::function_view<void (offset_type)> match_callback)
4550 lookup_name_info lookup_name_without_params
4551 = lookup_name_in.make_ignore_params ();
4552 gdb_index_symbol_name_matcher lookup_name_matcher
4553 (lookup_name_without_params);
4555 /* Build the symbol name component sorted vector, if we haven't
4557 index.build_name_components ();
4559 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4561 /* Now for each symbol name in range, check to see if we have a name
4562 match, and if so, call the MATCH_CALLBACK callback. */
4564 /* The same symbol may appear more than once in the range though.
4565 E.g., if we're looking for symbols that complete "w", and we have
4566 a symbol named "w1::w2", we'll find the two name components for
4567 that same symbol in the range. To be sure we only call the
4568 callback once per symbol, we first collect the symbol name
4569 indexes that matched in a temporary vector and ignore
4571 std::vector<offset_type> matches;
4572 matches.reserve (std::distance (bounds.first, bounds.second));
4574 for (; bounds.first != bounds.second; ++bounds.first)
4576 const char *qualified = index.symbol_name_at (bounds.first->idx);
4578 if (!lookup_name_matcher.matches (qualified)
4579 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4582 matches.push_back (bounds.first->idx);
4585 std::sort (matches.begin (), matches.end ());
4587 /* Finally call the callback, once per match. */
4589 for (offset_type idx : matches)
4593 match_callback (idx);
4598 /* Above we use a type wider than idx's for 'prev', since 0 and
4599 (offset_type)-1 are both possible values. */
4600 static_assert (sizeof (prev) > sizeof (offset_type), "");
4605 namespace selftests { namespace dw2_expand_symtabs_matching {
4607 /* A mock .gdb_index/.debug_names-like name index table, enough to
4608 exercise dw2_expand_symtabs_matching_symbol, which works with the
4609 mapped_index_base interface. Builds an index from the symbol list
4610 passed as parameter to the constructor. */
4611 class mock_mapped_index : public mapped_index_base
4614 mock_mapped_index (gdb::array_view<const char *> symbols)
4615 : m_symbol_table (symbols)
4618 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4620 /* Return the number of names in the symbol table. */
4621 size_t symbol_name_count () const override
4623 return m_symbol_table.size ();
4626 /* Get the name of the symbol at IDX in the symbol table. */
4627 const char *symbol_name_at (offset_type idx) const override
4629 return m_symbol_table[idx];
4633 gdb::array_view<const char *> m_symbol_table;
4636 /* Convenience function that converts a NULL pointer to a "<null>"
4637 string, to pass to print routines. */
4640 string_or_null (const char *str)
4642 return str != NULL ? str : "<null>";
4645 /* Check if a lookup_name_info built from
4646 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4647 index. EXPECTED_LIST is the list of expected matches, in expected
4648 matching order. If no match expected, then an empty list is
4649 specified. Returns true on success. On failure prints a warning
4650 indicating the file:line that failed, and returns false. */
4653 check_match (const char *file, int line,
4654 mock_mapped_index &mock_index,
4655 const char *name, symbol_name_match_type match_type,
4656 bool completion_mode,
4657 std::initializer_list<const char *> expected_list)
4659 lookup_name_info lookup_name (name, match_type, completion_mode);
4661 bool matched = true;
4663 auto mismatch = [&] (const char *expected_str,
4666 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4667 "expected=\"%s\", got=\"%s\"\n"),
4669 (match_type == symbol_name_match_type::FULL
4671 name, string_or_null (expected_str), string_or_null (got));
4675 auto expected_it = expected_list.begin ();
4676 auto expected_end = expected_list.end ();
4678 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4680 [&] (offset_type idx)
4682 const char *matched_name = mock_index.symbol_name_at (idx);
4683 const char *expected_str
4684 = expected_it == expected_end ? NULL : *expected_it++;
4686 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4687 mismatch (expected_str, matched_name);
4690 const char *expected_str
4691 = expected_it == expected_end ? NULL : *expected_it++;
4692 if (expected_str != NULL)
4693 mismatch (expected_str, NULL);
4698 /* The symbols added to the mock mapped_index for testing (in
4700 static const char *test_symbols[] = {
4709 "ns2::tmpl<int>::foo2",
4710 "(anonymous namespace)::A::B::C",
4712 /* These are used to check that the increment-last-char in the
4713 matching algorithm for completion doesn't match "t1_fund" when
4714 completing "t1_func". */
4720 /* A UTF-8 name with multi-byte sequences to make sure that
4721 cp-name-parser understands this as a single identifier ("função"
4722 is "function" in PT). */
4725 /* \377 (0xff) is Latin1 'ÿ'. */
4728 /* \377 (0xff) is Latin1 'ÿ'. */
4732 /* A name with all sorts of complications. Starts with "z" to make
4733 it easier for the completion tests below. */
4734 #define Z_SYM_NAME \
4735 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4736 "::tuple<(anonymous namespace)::ui*, " \
4737 "std::default_delete<(anonymous namespace)::ui>, void>"
4742 /* Returns true if the mapped_index_base::find_name_component_bounds
4743 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4744 in completion mode. */
4747 check_find_bounds_finds (mapped_index_base &index,
4748 const char *search_name,
4749 gdb::array_view<const char *> expected_syms)
4751 lookup_name_info lookup_name (search_name,
4752 symbol_name_match_type::FULL, true);
4754 auto bounds = index.find_name_components_bounds (lookup_name);
4756 size_t distance = std::distance (bounds.first, bounds.second);
4757 if (distance != expected_syms.size ())
4760 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4762 auto nc_elem = bounds.first + exp_elem;
4763 const char *qualified = index.symbol_name_at (nc_elem->idx);
4764 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4771 /* Test the lower-level mapped_index::find_name_component_bounds
4775 test_mapped_index_find_name_component_bounds ()
4777 mock_mapped_index mock_index (test_symbols);
4779 mock_index.build_name_components ();
4781 /* Test the lower-level mapped_index::find_name_component_bounds
4782 method in completion mode. */
4784 static const char *expected_syms[] = {
4789 SELF_CHECK (check_find_bounds_finds (mock_index,
4790 "t1_func", expected_syms));
4793 /* Check that the increment-last-char in the name matching algorithm
4794 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4796 static const char *expected_syms1[] = {
4800 SELF_CHECK (check_find_bounds_finds (mock_index,
4801 "\377", expected_syms1));
4803 static const char *expected_syms2[] = {
4806 SELF_CHECK (check_find_bounds_finds (mock_index,
4807 "\377\377", expected_syms2));
4811 /* Test dw2_expand_symtabs_matching_symbol. */
4814 test_dw2_expand_symtabs_matching_symbol ()
4816 mock_mapped_index mock_index (test_symbols);
4818 /* We let all tests run until the end even if some fails, for debug
4820 bool any_mismatch = false;
4822 /* Create the expected symbols list (an initializer_list). Needed
4823 because lists have commas, and we need to pass them to CHECK,
4824 which is a macro. */
4825 #define EXPECT(...) { __VA_ARGS__ }
4827 /* Wrapper for check_match that passes down the current
4828 __FILE__/__LINE__. */
4829 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4830 any_mismatch |= !check_match (__FILE__, __LINE__, \
4832 NAME, MATCH_TYPE, COMPLETION_MODE, \
4835 /* Identity checks. */
4836 for (const char *sym : test_symbols)
4838 /* Should be able to match all existing symbols. */
4839 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4842 /* Should be able to match all existing symbols with
4844 std::string with_params = std::string (sym) + "(int)";
4845 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4848 /* Should be able to match all existing symbols with
4849 parameters and qualifiers. */
4850 with_params = std::string (sym) + " ( int ) const";
4851 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4854 /* This should really find sym, but cp-name-parser.y doesn't
4855 know about lvalue/rvalue qualifiers yet. */
4856 with_params = std::string (sym) + " ( int ) &&";
4857 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4861 /* Check that the name matching algorithm for completion doesn't get
4862 confused with Latin1 'ÿ' / 0xff. */
4864 static const char str[] = "\377";
4865 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4866 EXPECT ("\377", "\377\377123"));
4869 /* Check that the increment-last-char in the matching algorithm for
4870 completion doesn't match "t1_fund" when completing "t1_func". */
4872 static const char str[] = "t1_func";
4873 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4874 EXPECT ("t1_func", "t1_func1"));
4877 /* Check that completion mode works at each prefix of the expected
4880 static const char str[] = "function(int)";
4881 size_t len = strlen (str);
4884 for (size_t i = 1; i < len; i++)
4886 lookup.assign (str, i);
4887 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4888 EXPECT ("function"));
4892 /* While "w" is a prefix of both components, the match function
4893 should still only be called once. */
4895 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4897 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4901 /* Same, with a "complicated" symbol. */
4903 static const char str[] = Z_SYM_NAME;
4904 size_t len = strlen (str);
4907 for (size_t i = 1; i < len; i++)
4909 lookup.assign (str, i);
4910 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4911 EXPECT (Z_SYM_NAME));
4915 /* In FULL mode, an incomplete symbol doesn't match. */
4917 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4921 /* A complete symbol with parameters matches any overload, since the
4922 index has no overload info. */
4924 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4925 EXPECT ("std::zfunction", "std::zfunction2"));
4926 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4927 EXPECT ("std::zfunction", "std::zfunction2"));
4928 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4929 EXPECT ("std::zfunction", "std::zfunction2"));
4932 /* Check that whitespace is ignored appropriately. A symbol with a
4933 template argument list. */
4935 static const char expected[] = "ns::foo<int>";
4936 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4938 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4942 /* Check that whitespace is ignored appropriately. A symbol with a
4943 template argument list that includes a pointer. */
4945 static const char expected[] = "ns::foo<char*>";
4946 /* Try both completion and non-completion modes. */
4947 static const bool completion_mode[2] = {false, true};
4948 for (size_t i = 0; i < 2; i++)
4950 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4955 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4956 completion_mode[i], EXPECT (expected));
4957 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4958 completion_mode[i], EXPECT (expected));
4963 /* Check method qualifiers are ignored. */
4964 static const char expected[] = "ns::foo<char*>";
4965 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4966 symbol_name_match_type::FULL, true, EXPECT (expected));
4967 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4968 symbol_name_match_type::FULL, true, EXPECT (expected));
4969 CHECK_MATCH ("foo < char * > ( int ) const",
4970 symbol_name_match_type::WILD, true, EXPECT (expected));
4971 CHECK_MATCH ("foo < char * > ( int ) &&",
4972 symbol_name_match_type::WILD, true, EXPECT (expected));
4975 /* Test lookup names that don't match anything. */
4977 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4980 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4984 /* Some wild matching tests, exercising "(anonymous namespace)",
4985 which should not be confused with a parameter list. */
4987 static const char *syms[] = {
4991 "A :: B :: C ( int )",
4996 for (const char *s : syms)
4998 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4999 EXPECT ("(anonymous namespace)::A::B::C"));
5004 static const char expected[] = "ns2::tmpl<int>::foo2";
5005 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5007 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5011 SELF_CHECK (!any_mismatch);
5020 test_mapped_index_find_name_component_bounds ();
5021 test_dw2_expand_symtabs_matching_symbol ();
5024 }} // namespace selftests::dw2_expand_symtabs_matching
5026 #endif /* GDB_SELF_TEST */
5028 /* If FILE_MATCHER is NULL or if PER_CU has
5029 dwarf2_per_cu_quick_data::MARK set (see
5030 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5031 EXPANSION_NOTIFY on it. */
5034 dw2_expand_symtabs_matching_one
5035 (struct dwarf2_per_cu_data *per_cu,
5036 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5037 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5039 if (file_matcher == NULL || per_cu->v.quick->mark)
5041 bool symtab_was_null
5042 = (per_cu->v.quick->compunit_symtab == NULL);
5044 dw2_instantiate_symtab (per_cu, false);
5046 if (expansion_notify != NULL
5048 && per_cu->v.quick->compunit_symtab != NULL)
5049 expansion_notify (per_cu->v.quick->compunit_symtab);
5053 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5054 matched, to expand corresponding CUs that were marked. IDX is the
5055 index of the symbol name that matched. */
5058 dw2_expand_marked_cus
5059 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5060 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5061 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5064 offset_type *vec, vec_len, vec_idx;
5065 bool global_seen = false;
5066 mapped_index &index = *dwarf2_per_objfile->index_table;
5068 vec = (offset_type *) (index.constant_pool
5069 + MAYBE_SWAP (index.symbol_table[idx].vec));
5070 vec_len = MAYBE_SWAP (vec[0]);
5071 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5073 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5074 /* This value is only valid for index versions >= 7. */
5075 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5076 gdb_index_symbol_kind symbol_kind =
5077 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5078 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5079 /* Only check the symbol attributes if they're present.
5080 Indices prior to version 7 don't record them,
5081 and indices >= 7 may elide them for certain symbols
5082 (gold does this). */
5085 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5087 /* Work around gold/15646. */
5090 if (!is_static && global_seen)
5096 /* Only check the symbol's kind if it has one. */
5101 case VARIABLES_DOMAIN:
5102 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5105 case FUNCTIONS_DOMAIN:
5106 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5110 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5118 /* Don't crash on bad data. */
5119 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5120 + dwarf2_per_objfile->all_type_units.size ()))
5122 complaint (_(".gdb_index entry has bad CU index"
5124 objfile_name (dwarf2_per_objfile->objfile));
5128 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5129 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5134 /* If FILE_MATCHER is non-NULL, set all the
5135 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5136 that match FILE_MATCHER. */
5139 dw_expand_symtabs_matching_file_matcher
5140 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5141 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5143 if (file_matcher == NULL)
5146 objfile *const objfile = dwarf2_per_objfile->objfile;
5148 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5150 NULL, xcalloc, xfree));
5151 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5153 NULL, xcalloc, xfree));
5155 /* The rule is CUs specify all the files, including those used by
5156 any TU, so there's no need to scan TUs here. */
5158 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5162 per_cu->v.quick->mark = 0;
5164 /* We only need to look at symtabs not already expanded. */
5165 if (per_cu->v.quick->compunit_symtab)
5168 quick_file_names *file_data = dw2_get_file_names (per_cu);
5169 if (file_data == NULL)
5172 if (htab_find (visited_not_found.get (), file_data) != NULL)
5174 else if (htab_find (visited_found.get (), file_data) != NULL)
5176 per_cu->v.quick->mark = 1;
5180 for (int j = 0; j < file_data->num_file_names; ++j)
5182 const char *this_real_name;
5184 if (file_matcher (file_data->file_names[j], false))
5186 per_cu->v.quick->mark = 1;
5190 /* Before we invoke realpath, which can get expensive when many
5191 files are involved, do a quick comparison of the basenames. */
5192 if (!basenames_may_differ
5193 && !file_matcher (lbasename (file_data->file_names[j]),
5197 this_real_name = dw2_get_real_path (objfile, file_data, j);
5198 if (file_matcher (this_real_name, false))
5200 per_cu->v.quick->mark = 1;
5205 void **slot = htab_find_slot (per_cu->v.quick->mark
5206 ? visited_found.get ()
5207 : visited_not_found.get (),
5214 dw2_expand_symtabs_matching
5215 (struct objfile *objfile,
5216 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5217 const lookup_name_info &lookup_name,
5218 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5219 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5220 enum search_domain kind)
5222 struct dwarf2_per_objfile *dwarf2_per_objfile
5223 = get_dwarf2_per_objfile (objfile);
5225 /* index_table is NULL if OBJF_READNOW. */
5226 if (!dwarf2_per_objfile->index_table)
5229 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5231 mapped_index &index = *dwarf2_per_objfile->index_table;
5233 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5235 kind, [&] (offset_type idx)
5237 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5238 expansion_notify, kind);
5242 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5245 static struct compunit_symtab *
5246 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5251 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5252 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5255 if (cust->includes == NULL)
5258 for (i = 0; cust->includes[i]; ++i)
5260 struct compunit_symtab *s = cust->includes[i];
5262 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5270 static struct compunit_symtab *
5271 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5272 struct bound_minimal_symbol msymbol,
5274 struct obj_section *section,
5277 struct dwarf2_per_cu_data *data;
5278 struct compunit_symtab *result;
5280 if (!objfile->partial_symtabs->psymtabs_addrmap)
5283 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5284 SECT_OFF_TEXT (objfile));
5285 data = (struct dwarf2_per_cu_data *) addrmap_find
5286 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5290 if (warn_if_readin && data->v.quick->compunit_symtab)
5291 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5292 paddress (get_objfile_arch (objfile), pc));
5295 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5298 gdb_assert (result != NULL);
5303 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5304 void *data, int need_fullname)
5306 struct dwarf2_per_objfile *dwarf2_per_objfile
5307 = get_dwarf2_per_objfile (objfile);
5309 if (!dwarf2_per_objfile->filenames_cache)
5311 dwarf2_per_objfile->filenames_cache.emplace ();
5313 htab_up visited (htab_create_alloc (10,
5314 htab_hash_pointer, htab_eq_pointer,
5315 NULL, xcalloc, xfree));
5317 /* The rule is CUs specify all the files, including those used
5318 by any TU, so there's no need to scan TUs here. We can
5319 ignore file names coming from already-expanded CUs. */
5321 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5323 if (per_cu->v.quick->compunit_symtab)
5325 void **slot = htab_find_slot (visited.get (),
5326 per_cu->v.quick->file_names,
5329 *slot = per_cu->v.quick->file_names;
5333 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5335 /* We only need to look at symtabs not already expanded. */
5336 if (per_cu->v.quick->compunit_symtab)
5339 quick_file_names *file_data = dw2_get_file_names (per_cu);
5340 if (file_data == NULL)
5343 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5346 /* Already visited. */
5351 for (int j = 0; j < file_data->num_file_names; ++j)
5353 const char *filename = file_data->file_names[j];
5354 dwarf2_per_objfile->filenames_cache->seen (filename);
5359 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5361 gdb::unique_xmalloc_ptr<char> this_real_name;
5364 this_real_name = gdb_realpath (filename);
5365 (*fun) (filename, this_real_name.get (), data);
5370 dw2_has_symbols (struct objfile *objfile)
5375 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5378 dw2_find_last_source_symtab,
5379 dw2_forget_cached_source_info,
5380 dw2_map_symtabs_matching_filename,
5384 dw2_expand_symtabs_for_function,
5385 dw2_expand_all_symtabs,
5386 dw2_expand_symtabs_with_fullname,
5387 dw2_map_matching_symbols,
5388 dw2_expand_symtabs_matching,
5389 dw2_find_pc_sect_compunit_symtab,
5391 dw2_map_symbol_filenames
5394 /* DWARF-5 debug_names reader. */
5396 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5397 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5399 /* A helper function that reads the .debug_names section in SECTION
5400 and fills in MAP. FILENAME is the name of the file containing the
5401 section; it is used for error reporting.
5403 Returns true if all went well, false otherwise. */
5406 read_debug_names_from_section (struct objfile *objfile,
5407 const char *filename,
5408 struct dwarf2_section_info *section,
5409 mapped_debug_names &map)
5411 if (dwarf2_section_empty_p (section))
5414 /* Older elfutils strip versions could keep the section in the main
5415 executable while splitting it for the separate debug info file. */
5416 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5419 dwarf2_read_section (objfile, section);
5421 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5423 const gdb_byte *addr = section->buffer;
5425 bfd *const abfd = get_section_bfd_owner (section);
5427 unsigned int bytes_read;
5428 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5431 map.dwarf5_is_dwarf64 = bytes_read != 4;
5432 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5433 if (bytes_read + length != section->size)
5435 /* There may be multiple per-CU indices. */
5436 warning (_("Section .debug_names in %s length %s does not match "
5437 "section length %s, ignoring .debug_names."),
5438 filename, plongest (bytes_read + length),
5439 pulongest (section->size));
5443 /* The version number. */
5444 uint16_t version = read_2_bytes (abfd, addr);
5448 warning (_("Section .debug_names in %s has unsupported version %d, "
5449 "ignoring .debug_names."),
5455 uint16_t padding = read_2_bytes (abfd, addr);
5459 warning (_("Section .debug_names in %s has unsupported padding %d, "
5460 "ignoring .debug_names."),
5465 /* comp_unit_count - The number of CUs in the CU list. */
5466 map.cu_count = read_4_bytes (abfd, addr);
5469 /* local_type_unit_count - The number of TUs in the local TU
5471 map.tu_count = read_4_bytes (abfd, addr);
5474 /* foreign_type_unit_count - The number of TUs in the foreign TU
5476 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5478 if (foreign_tu_count != 0)
5480 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5481 "ignoring .debug_names."),
5482 filename, static_cast<unsigned long> (foreign_tu_count));
5486 /* bucket_count - The number of hash buckets in the hash lookup
5488 map.bucket_count = read_4_bytes (abfd, addr);
5491 /* name_count - The number of unique names in the index. */
5492 map.name_count = read_4_bytes (abfd, addr);
5495 /* abbrev_table_size - The size in bytes of the abbreviations
5497 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5500 /* augmentation_string_size - The size in bytes of the augmentation
5501 string. This value is rounded up to a multiple of 4. */
5502 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5504 map.augmentation_is_gdb = ((augmentation_string_size
5505 == sizeof (dwarf5_augmentation))
5506 && memcmp (addr, dwarf5_augmentation,
5507 sizeof (dwarf5_augmentation)) == 0);
5508 augmentation_string_size += (-augmentation_string_size) & 3;
5509 addr += augmentation_string_size;
5512 map.cu_table_reordered = addr;
5513 addr += map.cu_count * map.offset_size;
5515 /* List of Local TUs */
5516 map.tu_table_reordered = addr;
5517 addr += map.tu_count * map.offset_size;
5519 /* Hash Lookup Table */
5520 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5521 addr += map.bucket_count * 4;
5522 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5523 addr += map.name_count * 4;
5526 map.name_table_string_offs_reordered = addr;
5527 addr += map.name_count * map.offset_size;
5528 map.name_table_entry_offs_reordered = addr;
5529 addr += map.name_count * map.offset_size;
5531 const gdb_byte *abbrev_table_start = addr;
5534 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5539 const auto insertpair
5540 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5541 if (!insertpair.second)
5543 warning (_("Section .debug_names in %s has duplicate index %s, "
5544 "ignoring .debug_names."),
5545 filename, pulongest (index_num));
5548 mapped_debug_names::index_val &indexval = insertpair.first->second;
5549 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5554 mapped_debug_names::index_val::attr attr;
5555 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5557 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5559 if (attr.form == DW_FORM_implicit_const)
5561 attr.implicit_const = read_signed_leb128 (abfd, addr,
5565 if (attr.dw_idx == 0 && attr.form == 0)
5567 indexval.attr_vec.push_back (std::move (attr));
5570 if (addr != abbrev_table_start + abbrev_table_size)
5572 warning (_("Section .debug_names in %s has abbreviation_table "
5573 "of size %zu vs. written as %u, ignoring .debug_names."),
5574 filename, addr - abbrev_table_start, abbrev_table_size);
5577 map.entry_pool = addr;
5582 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5586 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5587 const mapped_debug_names &map,
5588 dwarf2_section_info §ion,
5591 sect_offset sect_off_prev;
5592 for (uint32_t i = 0; i <= map.cu_count; ++i)
5594 sect_offset sect_off_next;
5595 if (i < map.cu_count)
5598 = (sect_offset) (extract_unsigned_integer
5599 (map.cu_table_reordered + i * map.offset_size,
5601 map.dwarf5_byte_order));
5604 sect_off_next = (sect_offset) section.size;
5607 const ULONGEST length = sect_off_next - sect_off_prev;
5608 dwarf2_per_cu_data *per_cu
5609 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5610 sect_off_prev, length);
5611 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5613 sect_off_prev = sect_off_next;
5617 /* Read the CU list from the mapped index, and use it to create all
5618 the CU objects for this dwarf2_per_objfile. */
5621 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5622 const mapped_debug_names &map,
5623 const mapped_debug_names &dwz_map)
5625 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5626 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5628 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5629 dwarf2_per_objfile->info,
5630 false /* is_dwz */);
5632 if (dwz_map.cu_count == 0)
5635 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5636 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5640 /* Read .debug_names. If everything went ok, initialize the "quick"
5641 elements of all the CUs and return true. Otherwise, return false. */
5644 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5646 std::unique_ptr<mapped_debug_names> map
5647 (new mapped_debug_names (dwarf2_per_objfile));
5648 mapped_debug_names dwz_map (dwarf2_per_objfile);
5649 struct objfile *objfile = dwarf2_per_objfile->objfile;
5651 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5652 &dwarf2_per_objfile->debug_names,
5656 /* Don't use the index if it's empty. */
5657 if (map->name_count == 0)
5660 /* If there is a .dwz file, read it so we can get its CU list as
5662 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5665 if (!read_debug_names_from_section (objfile,
5666 bfd_get_filename (dwz->dwz_bfd),
5667 &dwz->debug_names, dwz_map))
5669 warning (_("could not read '.debug_names' section from %s; skipping"),
5670 bfd_get_filename (dwz->dwz_bfd));
5675 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5677 if (map->tu_count != 0)
5679 /* We can only handle a single .debug_types when we have an
5681 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5684 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5685 dwarf2_per_objfile->types, 0);
5687 create_signatured_type_table_from_debug_names
5688 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5691 create_addrmap_from_aranges (dwarf2_per_objfile,
5692 &dwarf2_per_objfile->debug_aranges);
5694 dwarf2_per_objfile->debug_names_table = std::move (map);
5695 dwarf2_per_objfile->using_index = 1;
5696 dwarf2_per_objfile->quick_file_names_table =
5697 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5702 /* Type used to manage iterating over all CUs looking for a symbol for
5705 class dw2_debug_names_iterator
5708 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5709 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5710 dw2_debug_names_iterator (const mapped_debug_names &map,
5711 bool want_specific_block,
5712 block_enum block_index, domain_enum domain,
5714 : m_map (map), m_want_specific_block (want_specific_block),
5715 m_block_index (block_index), m_domain (domain),
5716 m_addr (find_vec_in_debug_names (map, name))
5719 dw2_debug_names_iterator (const mapped_debug_names &map,
5720 search_domain search, uint32_t namei)
5723 m_addr (find_vec_in_debug_names (map, namei))
5726 /* Return the next matching CU or NULL if there are no more. */
5727 dwarf2_per_cu_data *next ();
5730 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5732 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5735 /* The internalized form of .debug_names. */
5736 const mapped_debug_names &m_map;
5738 /* If true, only look for symbols that match BLOCK_INDEX. */
5739 const bool m_want_specific_block = false;
5741 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5742 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5744 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5746 /* The kind of symbol we're looking for. */
5747 const domain_enum m_domain = UNDEF_DOMAIN;
5748 const search_domain m_search = ALL_DOMAIN;
5750 /* The list of CUs from the index entry of the symbol, or NULL if
5752 const gdb_byte *m_addr;
5756 mapped_debug_names::namei_to_name (uint32_t namei) const
5758 const ULONGEST namei_string_offs
5759 = extract_unsigned_integer ((name_table_string_offs_reordered
5760 + namei * offset_size),
5763 return read_indirect_string_at_offset
5764 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5767 /* Find a slot in .debug_names for the object named NAME. If NAME is
5768 found, return pointer to its pool data. If NAME cannot be found,
5772 dw2_debug_names_iterator::find_vec_in_debug_names
5773 (const mapped_debug_names &map, const char *name)
5775 int (*cmp) (const char *, const char *);
5777 if (current_language->la_language == language_cplus
5778 || current_language->la_language == language_fortran
5779 || current_language->la_language == language_d)
5781 /* NAME is already canonical. Drop any qualifiers as
5782 .debug_names does not contain any. */
5784 if (strchr (name, '(') != NULL)
5786 gdb::unique_xmalloc_ptr<char> without_params
5787 = cp_remove_params (name);
5789 if (without_params != NULL)
5791 name = without_params.get();
5796 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5798 const uint32_t full_hash = dwarf5_djb_hash (name);
5800 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5801 (map.bucket_table_reordered
5802 + (full_hash % map.bucket_count)), 4,
5803 map.dwarf5_byte_order);
5807 if (namei >= map.name_count)
5809 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5811 namei, map.name_count,
5812 objfile_name (map.dwarf2_per_objfile->objfile));
5818 const uint32_t namei_full_hash
5819 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5820 (map.hash_table_reordered + namei), 4,
5821 map.dwarf5_byte_order);
5822 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5825 if (full_hash == namei_full_hash)
5827 const char *const namei_string = map.namei_to_name (namei);
5829 #if 0 /* An expensive sanity check. */
5830 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5832 complaint (_("Wrong .debug_names hash for string at index %u "
5834 namei, objfile_name (dwarf2_per_objfile->objfile));
5839 if (cmp (namei_string, name) == 0)
5841 const ULONGEST namei_entry_offs
5842 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5843 + namei * map.offset_size),
5844 map.offset_size, map.dwarf5_byte_order);
5845 return map.entry_pool + namei_entry_offs;
5850 if (namei >= map.name_count)
5856 dw2_debug_names_iterator::find_vec_in_debug_names
5857 (const mapped_debug_names &map, uint32_t namei)
5859 if (namei >= map.name_count)
5861 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5863 namei, map.name_count,
5864 objfile_name (map.dwarf2_per_objfile->objfile));
5868 const ULONGEST namei_entry_offs
5869 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5870 + namei * map.offset_size),
5871 map.offset_size, map.dwarf5_byte_order);
5872 return map.entry_pool + namei_entry_offs;
5875 /* See dw2_debug_names_iterator. */
5877 dwarf2_per_cu_data *
5878 dw2_debug_names_iterator::next ()
5883 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5884 struct objfile *objfile = dwarf2_per_objfile->objfile;
5885 bfd *const abfd = objfile->obfd;
5889 unsigned int bytes_read;
5890 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5891 m_addr += bytes_read;
5895 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5896 if (indexval_it == m_map.abbrev_map.cend ())
5898 complaint (_("Wrong .debug_names undefined abbrev code %s "
5900 pulongest (abbrev), objfile_name (objfile));
5903 const mapped_debug_names::index_val &indexval = indexval_it->second;
5904 bool have_is_static = false;
5906 dwarf2_per_cu_data *per_cu = NULL;
5907 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5912 case DW_FORM_implicit_const:
5913 ull = attr.implicit_const;
5915 case DW_FORM_flag_present:
5919 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5920 m_addr += bytes_read;
5923 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5924 dwarf_form_name (attr.form),
5925 objfile_name (objfile));
5928 switch (attr.dw_idx)
5930 case DW_IDX_compile_unit:
5931 /* Don't crash on bad data. */
5932 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5934 complaint (_(".debug_names entry has bad CU index %s"
5937 objfile_name (dwarf2_per_objfile->objfile));
5940 per_cu = dwarf2_per_objfile->get_cutu (ull);
5942 case DW_IDX_type_unit:
5943 /* Don't crash on bad data. */
5944 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5946 complaint (_(".debug_names entry has bad TU index %s"
5949 objfile_name (dwarf2_per_objfile->objfile));
5952 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5954 case DW_IDX_GNU_internal:
5955 if (!m_map.augmentation_is_gdb)
5957 have_is_static = true;
5960 case DW_IDX_GNU_external:
5961 if (!m_map.augmentation_is_gdb)
5963 have_is_static = true;
5969 /* Skip if already read in. */
5970 if (per_cu->v.quick->compunit_symtab)
5973 /* Check static vs global. */
5976 const bool want_static = m_block_index != GLOBAL_BLOCK;
5977 if (m_want_specific_block && want_static != is_static)
5981 /* Match dw2_symtab_iter_next, symbol_kind
5982 and debug_names::psymbol_tag. */
5986 switch (indexval.dwarf_tag)
5988 case DW_TAG_variable:
5989 case DW_TAG_subprogram:
5990 /* Some types are also in VAR_DOMAIN. */
5991 case DW_TAG_typedef:
5992 case DW_TAG_structure_type:
5999 switch (indexval.dwarf_tag)
6001 case DW_TAG_typedef:
6002 case DW_TAG_structure_type:
6009 switch (indexval.dwarf_tag)
6012 case DW_TAG_variable:
6022 /* Match dw2_expand_symtabs_matching, symbol_kind and
6023 debug_names::psymbol_tag. */
6026 case VARIABLES_DOMAIN:
6027 switch (indexval.dwarf_tag)
6029 case DW_TAG_variable:
6035 case FUNCTIONS_DOMAIN:
6036 switch (indexval.dwarf_tag)
6038 case DW_TAG_subprogram:
6045 switch (indexval.dwarf_tag)
6047 case DW_TAG_typedef:
6048 case DW_TAG_structure_type:
6061 static struct compunit_symtab *
6062 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6063 const char *name, domain_enum domain)
6065 const block_enum block_index = static_cast<block_enum> (block_index_int);
6066 struct dwarf2_per_objfile *dwarf2_per_objfile
6067 = get_dwarf2_per_objfile (objfile);
6069 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6072 /* index is NULL if OBJF_READNOW. */
6075 const auto &map = *mapp;
6077 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6078 block_index, domain, name);
6080 struct compunit_symtab *stab_best = NULL;
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6084 struct symbol *sym, *with_opaque = NULL;
6085 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6086 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6087 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6089 sym = block_find_symbol (block, name, domain,
6090 block_find_non_opaque_type_preferred,
6093 /* Some caution must be observed with overloaded functions and
6094 methods, since the index will not contain any overload
6095 information (but NAME might contain it). */
6098 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6100 if (with_opaque != NULL
6101 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6104 /* Keep looking through other CUs. */
6110 /* This dumps minimal information about .debug_names. It is called
6111 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6112 uses this to verify that .debug_names has been loaded. */
6115 dw2_debug_names_dump (struct objfile *objfile)
6117 struct dwarf2_per_objfile *dwarf2_per_objfile
6118 = get_dwarf2_per_objfile (objfile);
6120 gdb_assert (dwarf2_per_objfile->using_index);
6121 printf_filtered (".debug_names:");
6122 if (dwarf2_per_objfile->debug_names_table)
6123 printf_filtered (" exists\n");
6125 printf_filtered (" faked for \"readnow\"\n");
6126 printf_filtered ("\n");
6130 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6131 const char *func_name)
6133 struct dwarf2_per_objfile *dwarf2_per_objfile
6134 = get_dwarf2_per_objfile (objfile);
6136 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6137 if (dwarf2_per_objfile->debug_names_table)
6139 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6141 /* Note: It doesn't matter what we pass for block_index here. */
6142 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6143 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6145 struct dwarf2_per_cu_data *per_cu;
6146 while ((per_cu = iter.next ()) != NULL)
6147 dw2_instantiate_symtab (per_cu, false);
6152 dw2_debug_names_expand_symtabs_matching
6153 (struct objfile *objfile,
6154 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6155 const lookup_name_info &lookup_name,
6156 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6157 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6158 enum search_domain kind)
6160 struct dwarf2_per_objfile *dwarf2_per_objfile
6161 = get_dwarf2_per_objfile (objfile);
6163 /* debug_names_table is NULL if OBJF_READNOW. */
6164 if (!dwarf2_per_objfile->debug_names_table)
6167 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6169 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6171 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6173 kind, [&] (offset_type namei)
6175 /* The name was matched, now expand corresponding CUs that were
6177 dw2_debug_names_iterator iter (map, kind, namei);
6179 struct dwarf2_per_cu_data *per_cu;
6180 while ((per_cu = iter.next ()) != NULL)
6181 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6186 const struct quick_symbol_functions dwarf2_debug_names_functions =
6189 dw2_find_last_source_symtab,
6190 dw2_forget_cached_source_info,
6191 dw2_map_symtabs_matching_filename,
6192 dw2_debug_names_lookup_symbol,
6194 dw2_debug_names_dump,
6195 dw2_debug_names_expand_symtabs_for_function,
6196 dw2_expand_all_symtabs,
6197 dw2_expand_symtabs_with_fullname,
6198 dw2_map_matching_symbols,
6199 dw2_debug_names_expand_symtabs_matching,
6200 dw2_find_pc_sect_compunit_symtab,
6202 dw2_map_symbol_filenames
6205 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6206 to either a dwarf2_per_objfile or dwz_file object. */
6208 template <typename T>
6209 static gdb::array_view<const gdb_byte>
6210 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6212 dwarf2_section_info *section = §ion_owner->gdb_index;
6214 if (dwarf2_section_empty_p (section))
6217 /* Older elfutils strip versions could keep the section in the main
6218 executable while splitting it for the separate debug info file. */
6219 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6222 dwarf2_read_section (obj, section);
6224 /* dwarf2_section_info::size is a bfd_size_type, while
6225 gdb::array_view works with size_t. On 32-bit hosts, with
6226 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6227 is 32-bit. So we need an explicit narrowing conversion here.
6228 This is fine, because it's impossible to allocate or mmap an
6229 array/buffer larger than what size_t can represent. */
6230 return gdb::make_array_view (section->buffer, section->size);
6233 /* Lookup the index cache for the contents of the index associated to
6236 static gdb::array_view<const gdb_byte>
6237 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6239 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6240 if (build_id == nullptr)
6243 return global_index_cache.lookup_gdb_index (build_id,
6244 &dwarf2_obj->index_cache_res);
6247 /* Same as the above, but for DWZ. */
6249 static gdb::array_view<const gdb_byte>
6250 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6252 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6253 if (build_id == nullptr)
6256 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6259 /* See symfile.h. */
6262 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6264 struct dwarf2_per_objfile *dwarf2_per_objfile
6265 = get_dwarf2_per_objfile (objfile);
6267 /* If we're about to read full symbols, don't bother with the
6268 indices. In this case we also don't care if some other debug
6269 format is making psymtabs, because they are all about to be
6271 if ((objfile->flags & OBJF_READNOW))
6273 dwarf2_per_objfile->using_index = 1;
6274 create_all_comp_units (dwarf2_per_objfile);
6275 create_all_type_units (dwarf2_per_objfile);
6276 dwarf2_per_objfile->quick_file_names_table
6277 = create_quick_file_names_table
6278 (dwarf2_per_objfile->all_comp_units.size ());
6280 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6281 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6283 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6285 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6286 struct dwarf2_per_cu_quick_data);
6289 /* Return 1 so that gdb sees the "quick" functions. However,
6290 these functions will be no-ops because we will have expanded
6292 *index_kind = dw_index_kind::GDB_INDEX;
6296 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6298 *index_kind = dw_index_kind::DEBUG_NAMES;
6302 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6303 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6304 get_gdb_index_contents_from_section<dwz_file>))
6306 *index_kind = dw_index_kind::GDB_INDEX;
6310 /* ... otherwise, try to find the index in the index cache. */
6311 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6312 get_gdb_index_contents_from_cache,
6313 get_gdb_index_contents_from_cache_dwz))
6315 global_index_cache.hit ();
6316 *index_kind = dw_index_kind::GDB_INDEX;
6320 global_index_cache.miss ();
6326 /* Build a partial symbol table. */
6329 dwarf2_build_psymtabs (struct objfile *objfile)
6331 struct dwarf2_per_objfile *dwarf2_per_objfile
6332 = get_dwarf2_per_objfile (objfile);
6334 init_psymbol_list (objfile, 1024);
6338 /* This isn't really ideal: all the data we allocate on the
6339 objfile's obstack is still uselessly kept around. However,
6340 freeing it seems unsafe. */
6341 psymtab_discarder psymtabs (objfile);
6342 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6345 /* (maybe) store an index in the cache. */
6346 global_index_cache.store (dwarf2_per_objfile);
6348 CATCH (except, RETURN_MASK_ERROR)
6350 exception_print (gdb_stderr, except);
6355 /* Return the total length of the CU described by HEADER. */
6358 get_cu_length (const struct comp_unit_head *header)
6360 return header->initial_length_size + header->length;
6363 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6366 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6368 sect_offset bottom = cu_header->sect_off;
6369 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6371 return sect_off >= bottom && sect_off < top;
6374 /* Find the base address of the compilation unit for range lists and
6375 location lists. It will normally be specified by DW_AT_low_pc.
6376 In DWARF-3 draft 4, the base address could be overridden by
6377 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6378 compilation units with discontinuous ranges. */
6381 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6383 struct attribute *attr;
6386 cu->base_address = 0;
6388 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6391 cu->base_address = attr_value_as_address (attr);
6396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6399 cu->base_address = attr_value_as_address (attr);
6405 /* Read in the comp unit header information from the debug_info at info_ptr.
6406 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6407 NOTE: This leaves members offset, first_die_offset to be filled in
6410 static const gdb_byte *
6411 read_comp_unit_head (struct comp_unit_head *cu_header,
6412 const gdb_byte *info_ptr,
6413 struct dwarf2_section_info *section,
6414 rcuh_kind section_kind)
6417 unsigned int bytes_read;
6418 const char *filename = get_section_file_name (section);
6419 bfd *abfd = get_section_bfd_owner (section);
6421 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6422 cu_header->initial_length_size = bytes_read;
6423 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6424 info_ptr += bytes_read;
6425 cu_header->version = read_2_bytes (abfd, info_ptr);
6426 if (cu_header->version < 2 || cu_header->version > 5)
6427 error (_("Dwarf Error: wrong version in compilation unit header "
6428 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6429 cu_header->version, filename);
6431 if (cu_header->version < 5)
6432 switch (section_kind)
6434 case rcuh_kind::COMPILE:
6435 cu_header->unit_type = DW_UT_compile;
6437 case rcuh_kind::TYPE:
6438 cu_header->unit_type = DW_UT_type;
6441 internal_error (__FILE__, __LINE__,
6442 _("read_comp_unit_head: invalid section_kind"));
6446 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6447 (read_1_byte (abfd, info_ptr));
6449 switch (cu_header->unit_type)
6452 if (section_kind != rcuh_kind::COMPILE)
6453 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6454 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6458 section_kind = rcuh_kind::TYPE;
6461 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6462 "(is %d, should be %d or %d) [in module %s]"),
6463 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6466 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6469 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6472 info_ptr += bytes_read;
6473 if (cu_header->version < 5)
6475 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6478 signed_addr = bfd_get_sign_extend_vma (abfd);
6479 if (signed_addr < 0)
6480 internal_error (__FILE__, __LINE__,
6481 _("read_comp_unit_head: dwarf from non elf file"));
6482 cu_header->signed_addr_p = signed_addr;
6484 if (section_kind == rcuh_kind::TYPE)
6486 LONGEST type_offset;
6488 cu_header->signature = read_8_bytes (abfd, info_ptr);
6491 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6492 info_ptr += bytes_read;
6493 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6494 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6495 error (_("Dwarf Error: Too big type_offset in compilation unit "
6496 "header (is %s) [in module %s]"), plongest (type_offset),
6503 /* Helper function that returns the proper abbrev section for
6506 static struct dwarf2_section_info *
6507 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6509 struct dwarf2_section_info *abbrev;
6510 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6512 if (this_cu->is_dwz)
6513 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6515 abbrev = &dwarf2_per_objfile->abbrev;
6520 /* Subroutine of read_and_check_comp_unit_head and
6521 read_and_check_type_unit_head to simplify them.
6522 Perform various error checking on the header. */
6525 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6526 struct comp_unit_head *header,
6527 struct dwarf2_section_info *section,
6528 struct dwarf2_section_info *abbrev_section)
6530 const char *filename = get_section_file_name (section);
6532 if (to_underlying (header->abbrev_sect_off)
6533 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6534 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6535 "(offset %s + 6) [in module %s]"),
6536 sect_offset_str (header->abbrev_sect_off),
6537 sect_offset_str (header->sect_off),
6540 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6541 avoid potential 32-bit overflow. */
6542 if (((ULONGEST) header->sect_off + get_cu_length (header))
6544 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6545 "(offset %s + 0) [in module %s]"),
6546 header->length, sect_offset_str (header->sect_off),
6550 /* Read in a CU/TU header and perform some basic error checking.
6551 The contents of the header are stored in HEADER.
6552 The result is a pointer to the start of the first DIE. */
6554 static const gdb_byte *
6555 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6556 struct comp_unit_head *header,
6557 struct dwarf2_section_info *section,
6558 struct dwarf2_section_info *abbrev_section,
6559 const gdb_byte *info_ptr,
6560 rcuh_kind section_kind)
6562 const gdb_byte *beg_of_comp_unit = info_ptr;
6564 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6566 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6568 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6570 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6576 /* Fetch the abbreviation table offset from a comp or type unit header. */
6579 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6580 struct dwarf2_section_info *section,
6581 sect_offset sect_off)
6583 bfd *abfd = get_section_bfd_owner (section);
6584 const gdb_byte *info_ptr;
6585 unsigned int initial_length_size, offset_size;
6588 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6589 info_ptr = section->buffer + to_underlying (sect_off);
6590 read_initial_length (abfd, info_ptr, &initial_length_size);
6591 offset_size = initial_length_size == 4 ? 4 : 8;
6592 info_ptr += initial_length_size;
6594 version = read_2_bytes (abfd, info_ptr);
6598 /* Skip unit type and address size. */
6602 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6605 /* Allocate a new partial symtab for file named NAME and mark this new
6606 partial symtab as being an include of PST. */
6609 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6610 struct objfile *objfile)
6612 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6614 if (!IS_ABSOLUTE_PATH (subpst->filename))
6616 /* It shares objfile->objfile_obstack. */
6617 subpst->dirname = pst->dirname;
6620 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6621 subpst->dependencies[0] = pst;
6622 subpst->number_of_dependencies = 1;
6624 subpst->read_symtab = pst->read_symtab;
6626 /* No private part is necessary for include psymtabs. This property
6627 can be used to differentiate between such include psymtabs and
6628 the regular ones. */
6629 subpst->read_symtab_private = NULL;
6632 /* Read the Line Number Program data and extract the list of files
6633 included by the source file represented by PST. Build an include
6634 partial symtab for each of these included files. */
6637 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6638 struct die_info *die,
6639 struct partial_symtab *pst)
6642 struct attribute *attr;
6644 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6646 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6648 return; /* No linetable, so no includes. */
6650 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6651 that we pass in the raw text_low here; that is ok because we're
6652 only decoding the line table to make include partial symtabs, and
6653 so the addresses aren't really used. */
6654 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6655 pst->raw_text_low (), 1);
6659 hash_signatured_type (const void *item)
6661 const struct signatured_type *sig_type
6662 = (const struct signatured_type *) item;
6664 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6665 return sig_type->signature;
6669 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6671 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6672 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6674 return lhs->signature == rhs->signature;
6677 /* Allocate a hash table for signatured types. */
6680 allocate_signatured_type_table (struct objfile *objfile)
6682 return htab_create_alloc_ex (41,
6683 hash_signatured_type,
6686 &objfile->objfile_obstack,
6687 hashtab_obstack_allocate,
6688 dummy_obstack_deallocate);
6691 /* A helper function to add a signatured type CU to a table. */
6694 add_signatured_type_cu_to_table (void **slot, void *datum)
6696 struct signatured_type *sigt = (struct signatured_type *) *slot;
6697 std::vector<signatured_type *> *all_type_units
6698 = (std::vector<signatured_type *> *) datum;
6700 all_type_units->push_back (sigt);
6705 /* A helper for create_debug_types_hash_table. Read types from SECTION
6706 and fill them into TYPES_HTAB. It will process only type units,
6707 therefore DW_UT_type. */
6710 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6711 struct dwo_file *dwo_file,
6712 dwarf2_section_info *section, htab_t &types_htab,
6713 rcuh_kind section_kind)
6715 struct objfile *objfile = dwarf2_per_objfile->objfile;
6716 struct dwarf2_section_info *abbrev_section;
6718 const gdb_byte *info_ptr, *end_ptr;
6720 abbrev_section = (dwo_file != NULL
6721 ? &dwo_file->sections.abbrev
6722 : &dwarf2_per_objfile->abbrev);
6724 if (dwarf_read_debug)
6725 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6726 get_section_name (section),
6727 get_section_file_name (abbrev_section));
6729 dwarf2_read_section (objfile, section);
6730 info_ptr = section->buffer;
6732 if (info_ptr == NULL)
6735 /* We can't set abfd until now because the section may be empty or
6736 not present, in which case the bfd is unknown. */
6737 abfd = get_section_bfd_owner (section);
6739 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6740 because we don't need to read any dies: the signature is in the
6743 end_ptr = info_ptr + section->size;
6744 while (info_ptr < end_ptr)
6746 struct signatured_type *sig_type;
6747 struct dwo_unit *dwo_tu;
6749 const gdb_byte *ptr = info_ptr;
6750 struct comp_unit_head header;
6751 unsigned int length;
6753 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6755 /* Initialize it due to a false compiler warning. */
6756 header.signature = -1;
6757 header.type_cu_offset_in_tu = (cu_offset) -1;
6759 /* We need to read the type's signature in order to build the hash
6760 table, but we don't need anything else just yet. */
6762 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6763 abbrev_section, ptr, section_kind);
6765 length = get_cu_length (&header);
6767 /* Skip dummy type units. */
6768 if (ptr >= info_ptr + length
6769 || peek_abbrev_code (abfd, ptr) == 0
6770 || header.unit_type != DW_UT_type)
6776 if (types_htab == NULL)
6779 types_htab = allocate_dwo_unit_table (objfile);
6781 types_htab = allocate_signatured_type_table (objfile);
6787 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6789 dwo_tu->dwo_file = dwo_file;
6790 dwo_tu->signature = header.signature;
6791 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6792 dwo_tu->section = section;
6793 dwo_tu->sect_off = sect_off;
6794 dwo_tu->length = length;
6798 /* N.B.: type_offset is not usable if this type uses a DWO file.
6799 The real type_offset is in the DWO file. */
6801 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6802 struct signatured_type);
6803 sig_type->signature = header.signature;
6804 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6805 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6806 sig_type->per_cu.is_debug_types = 1;
6807 sig_type->per_cu.section = section;
6808 sig_type->per_cu.sect_off = sect_off;
6809 sig_type->per_cu.length = length;
6812 slot = htab_find_slot (types_htab,
6813 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6815 gdb_assert (slot != NULL);
6818 sect_offset dup_sect_off;
6822 const struct dwo_unit *dup_tu
6823 = (const struct dwo_unit *) *slot;
6825 dup_sect_off = dup_tu->sect_off;
6829 const struct signatured_type *dup_tu
6830 = (const struct signatured_type *) *slot;
6832 dup_sect_off = dup_tu->per_cu.sect_off;
6835 complaint (_("debug type entry at offset %s is duplicate to"
6836 " the entry at offset %s, signature %s"),
6837 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6838 hex_string (header.signature));
6840 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6842 if (dwarf_read_debug > 1)
6843 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6844 sect_offset_str (sect_off),
6845 hex_string (header.signature));
6851 /* Create the hash table of all entries in the .debug_types
6852 (or .debug_types.dwo) section(s).
6853 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6854 otherwise it is NULL.
6856 The result is a pointer to the hash table or NULL if there are no types.
6858 Note: This function processes DWO files only, not DWP files. */
6861 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct dwo_file *dwo_file,
6863 VEC (dwarf2_section_info_def) *types,
6867 struct dwarf2_section_info *section;
6869 if (VEC_empty (dwarf2_section_info_def, types))
6873 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6875 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6876 types_htab, rcuh_kind::TYPE);
6879 /* Create the hash table of all entries in the .debug_types section,
6880 and initialize all_type_units.
6881 The result is zero if there is an error (e.g. missing .debug_types section),
6882 otherwise non-zero. */
6885 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6887 htab_t types_htab = NULL;
6889 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6890 &dwarf2_per_objfile->info, types_htab,
6891 rcuh_kind::COMPILE);
6892 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6893 dwarf2_per_objfile->types, types_htab);
6894 if (types_htab == NULL)
6896 dwarf2_per_objfile->signatured_types = NULL;
6900 dwarf2_per_objfile->signatured_types = types_htab;
6902 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6903 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6905 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6906 &dwarf2_per_objfile->all_type_units);
6911 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6912 If SLOT is non-NULL, it is the entry to use in the hash table.
6913 Otherwise we find one. */
6915 static struct signatured_type *
6916 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6919 struct objfile *objfile = dwarf2_per_objfile->objfile;
6921 if (dwarf2_per_objfile->all_type_units.size ()
6922 == dwarf2_per_objfile->all_type_units.capacity ())
6923 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6925 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6926 struct signatured_type);
6928 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6929 sig_type->signature = sig;
6930 sig_type->per_cu.is_debug_types = 1;
6931 if (dwarf2_per_objfile->using_index)
6933 sig_type->per_cu.v.quick =
6934 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6935 struct dwarf2_per_cu_quick_data);
6940 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6943 gdb_assert (*slot == NULL);
6945 /* The rest of sig_type must be filled in by the caller. */
6949 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6950 Fill in SIG_ENTRY with DWO_ENTRY. */
6953 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6954 struct signatured_type *sig_entry,
6955 struct dwo_unit *dwo_entry)
6957 /* Make sure we're not clobbering something we don't expect to. */
6958 gdb_assert (! sig_entry->per_cu.queued);
6959 gdb_assert (sig_entry->per_cu.cu == NULL);
6960 if (dwarf2_per_objfile->using_index)
6962 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6963 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6966 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6967 gdb_assert (sig_entry->signature == dwo_entry->signature);
6968 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6969 gdb_assert (sig_entry->type_unit_group == NULL);
6970 gdb_assert (sig_entry->dwo_unit == NULL);
6972 sig_entry->per_cu.section = dwo_entry->section;
6973 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6974 sig_entry->per_cu.length = dwo_entry->length;
6975 sig_entry->per_cu.reading_dwo_directly = 1;
6976 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6977 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6978 sig_entry->dwo_unit = dwo_entry;
6981 /* Subroutine of lookup_signatured_type.
6982 If we haven't read the TU yet, create the signatured_type data structure
6983 for a TU to be read in directly from a DWO file, bypassing the stub.
6984 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6985 using .gdb_index, then when reading a CU we want to stay in the DWO file
6986 containing that CU. Otherwise we could end up reading several other DWO
6987 files (due to comdat folding) to process the transitive closure of all the
6988 mentioned TUs, and that can be slow. The current DWO file will have every
6989 type signature that it needs.
6990 We only do this for .gdb_index because in the psymtab case we already have
6991 to read all the DWOs to build the type unit groups. */
6993 static struct signatured_type *
6994 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6996 struct dwarf2_per_objfile *dwarf2_per_objfile
6997 = cu->per_cu->dwarf2_per_objfile;
6998 struct objfile *objfile = dwarf2_per_objfile->objfile;
6999 struct dwo_file *dwo_file;
7000 struct dwo_unit find_dwo_entry, *dwo_entry;
7001 struct signatured_type find_sig_entry, *sig_entry;
7004 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7006 /* If TU skeletons have been removed then we may not have read in any
7008 if (dwarf2_per_objfile->signatured_types == NULL)
7010 dwarf2_per_objfile->signatured_types
7011 = allocate_signatured_type_table (objfile);
7014 /* We only ever need to read in one copy of a signatured type.
7015 Use the global signatured_types array to do our own comdat-folding
7016 of types. If this is the first time we're reading this TU, and
7017 the TU has an entry in .gdb_index, replace the recorded data from
7018 .gdb_index with this TU. */
7020 find_sig_entry.signature = sig;
7021 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7022 &find_sig_entry, INSERT);
7023 sig_entry = (struct signatured_type *) *slot;
7025 /* We can get here with the TU already read, *or* in the process of being
7026 read. Don't reassign the global entry to point to this DWO if that's
7027 the case. Also note that if the TU is already being read, it may not
7028 have come from a DWO, the program may be a mix of Fission-compiled
7029 code and non-Fission-compiled code. */
7031 /* Have we already tried to read this TU?
7032 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7033 needn't exist in the global table yet). */
7034 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7037 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7038 dwo_unit of the TU itself. */
7039 dwo_file = cu->dwo_unit->dwo_file;
7041 /* Ok, this is the first time we're reading this TU. */
7042 if (dwo_file->tus == NULL)
7044 find_dwo_entry.signature = sig;
7045 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7046 if (dwo_entry == NULL)
7049 /* If the global table doesn't have an entry for this TU, add one. */
7050 if (sig_entry == NULL)
7051 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7053 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7054 sig_entry->per_cu.tu_read = 1;
7058 /* Subroutine of lookup_signatured_type.
7059 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7060 then try the DWP file. If the TU stub (skeleton) has been removed then
7061 it won't be in .gdb_index. */
7063 static struct signatured_type *
7064 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7066 struct dwarf2_per_objfile *dwarf2_per_objfile
7067 = cu->per_cu->dwarf2_per_objfile;
7068 struct objfile *objfile = dwarf2_per_objfile->objfile;
7069 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7070 struct dwo_unit *dwo_entry;
7071 struct signatured_type find_sig_entry, *sig_entry;
7074 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7075 gdb_assert (dwp_file != NULL);
7077 /* If TU skeletons have been removed then we may not have read in any
7079 if (dwarf2_per_objfile->signatured_types == NULL)
7081 dwarf2_per_objfile->signatured_types
7082 = allocate_signatured_type_table (objfile);
7085 find_sig_entry.signature = sig;
7086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7087 &find_sig_entry, INSERT);
7088 sig_entry = (struct signatured_type *) *slot;
7090 /* Have we already tried to read this TU?
7091 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7092 needn't exist in the global table yet). */
7093 if (sig_entry != NULL)
7096 if (dwp_file->tus == NULL)
7098 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7099 sig, 1 /* is_debug_types */);
7100 if (dwo_entry == NULL)
7103 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7104 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7109 /* Lookup a signature based type for DW_FORM_ref_sig8.
7110 Returns NULL if signature SIG is not present in the table.
7111 It is up to the caller to complain about this. */
7113 static struct signatured_type *
7114 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7116 struct dwarf2_per_objfile *dwarf2_per_objfile
7117 = cu->per_cu->dwarf2_per_objfile;
7120 && dwarf2_per_objfile->using_index)
7122 /* We're in a DWO/DWP file, and we're using .gdb_index.
7123 These cases require special processing. */
7124 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7125 return lookup_dwo_signatured_type (cu, sig);
7127 return lookup_dwp_signatured_type (cu, sig);
7131 struct signatured_type find_entry, *entry;
7133 if (dwarf2_per_objfile->signatured_types == NULL)
7135 find_entry.signature = sig;
7136 entry = ((struct signatured_type *)
7137 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7142 /* Low level DIE reading support. */
7144 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7147 init_cu_die_reader (struct die_reader_specs *reader,
7148 struct dwarf2_cu *cu,
7149 struct dwarf2_section_info *section,
7150 struct dwo_file *dwo_file,
7151 struct abbrev_table *abbrev_table)
7153 gdb_assert (section->readin && section->buffer != NULL);
7154 reader->abfd = get_section_bfd_owner (section);
7156 reader->dwo_file = dwo_file;
7157 reader->die_section = section;
7158 reader->buffer = section->buffer;
7159 reader->buffer_end = section->buffer + section->size;
7160 reader->comp_dir = NULL;
7161 reader->abbrev_table = abbrev_table;
7164 /* Subroutine of init_cutu_and_read_dies to simplify it.
7165 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7166 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7169 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7170 from it to the DIE in the DWO. If NULL we are skipping the stub.
7171 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7172 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7173 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7174 STUB_COMP_DIR may be non-NULL.
7175 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7176 are filled in with the info of the DIE from the DWO file.
7177 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7178 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7179 kept around for at least as long as *RESULT_READER.
7181 The result is non-zero if a valid (non-dummy) DIE was found. */
7184 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7185 struct dwo_unit *dwo_unit,
7186 struct die_info *stub_comp_unit_die,
7187 const char *stub_comp_dir,
7188 struct die_reader_specs *result_reader,
7189 const gdb_byte **result_info_ptr,
7190 struct die_info **result_comp_unit_die,
7191 int *result_has_children,
7192 abbrev_table_up *result_dwo_abbrev_table)
7194 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7195 struct objfile *objfile = dwarf2_per_objfile->objfile;
7196 struct dwarf2_cu *cu = this_cu->cu;
7198 const gdb_byte *begin_info_ptr, *info_ptr;
7199 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7200 int i,num_extra_attrs;
7201 struct dwarf2_section_info *dwo_abbrev_section;
7202 struct attribute *attr;
7203 struct die_info *comp_unit_die;
7205 /* At most one of these may be provided. */
7206 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7208 /* These attributes aren't processed until later:
7209 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7210 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7211 referenced later. However, these attributes are found in the stub
7212 which we won't have later. In order to not impose this complication
7213 on the rest of the code, we read them here and copy them to the
7222 if (stub_comp_unit_die != NULL)
7224 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7226 if (! this_cu->is_debug_types)
7227 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7228 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7229 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7230 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7231 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7233 /* There should be a DW_AT_addr_base attribute here (if needed).
7234 We need the value before we can process DW_FORM_GNU_addr_index. */
7236 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7238 cu->addr_base = DW_UNSND (attr);
7240 /* There should be a DW_AT_ranges_base attribute here (if needed).
7241 We need the value before we can process DW_AT_ranges. */
7242 cu->ranges_base = 0;
7243 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7245 cu->ranges_base = DW_UNSND (attr);
7247 else if (stub_comp_dir != NULL)
7249 /* Reconstruct the comp_dir attribute to simplify the code below. */
7250 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7251 comp_dir->name = DW_AT_comp_dir;
7252 comp_dir->form = DW_FORM_string;
7253 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7254 DW_STRING (comp_dir) = stub_comp_dir;
7257 /* Set up for reading the DWO CU/TU. */
7258 cu->dwo_unit = dwo_unit;
7259 dwarf2_section_info *section = dwo_unit->section;
7260 dwarf2_read_section (objfile, section);
7261 abfd = get_section_bfd_owner (section);
7262 begin_info_ptr = info_ptr = (section->buffer
7263 + to_underlying (dwo_unit->sect_off));
7264 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7266 if (this_cu->is_debug_types)
7268 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7270 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7271 &cu->header, section,
7273 info_ptr, rcuh_kind::TYPE);
7274 /* This is not an assert because it can be caused by bad debug info. */
7275 if (sig_type->signature != cu->header.signature)
7277 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7278 " TU at offset %s [in module %s]"),
7279 hex_string (sig_type->signature),
7280 hex_string (cu->header.signature),
7281 sect_offset_str (dwo_unit->sect_off),
7282 bfd_get_filename (abfd));
7284 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7285 /* For DWOs coming from DWP files, we don't know the CU length
7286 nor the type's offset in the TU until now. */
7287 dwo_unit->length = get_cu_length (&cu->header);
7288 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7290 /* Establish the type offset that can be used to lookup the type.
7291 For DWO files, we don't know it until now. */
7292 sig_type->type_offset_in_section
7293 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7297 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7298 &cu->header, section,
7300 info_ptr, rcuh_kind::COMPILE);
7301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7302 /* For DWOs coming from DWP files, we don't know the CU length
7304 dwo_unit->length = get_cu_length (&cu->header);
7307 *result_dwo_abbrev_table
7308 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7309 cu->header.abbrev_sect_off);
7310 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7311 result_dwo_abbrev_table->get ());
7313 /* Read in the die, but leave space to copy over the attributes
7314 from the stub. This has the benefit of simplifying the rest of
7315 the code - all the work to maintain the illusion of a single
7316 DW_TAG_{compile,type}_unit DIE is done here. */
7317 num_extra_attrs = ((stmt_list != NULL)
7321 + (comp_dir != NULL));
7322 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7323 result_has_children, num_extra_attrs);
7325 /* Copy over the attributes from the stub to the DIE we just read in. */
7326 comp_unit_die = *result_comp_unit_die;
7327 i = comp_unit_die->num_attrs;
7328 if (stmt_list != NULL)
7329 comp_unit_die->attrs[i++] = *stmt_list;
7331 comp_unit_die->attrs[i++] = *low_pc;
7332 if (high_pc != NULL)
7333 comp_unit_die->attrs[i++] = *high_pc;
7335 comp_unit_die->attrs[i++] = *ranges;
7336 if (comp_dir != NULL)
7337 comp_unit_die->attrs[i++] = *comp_dir;
7338 comp_unit_die->num_attrs += num_extra_attrs;
7340 if (dwarf_die_debug)
7342 fprintf_unfiltered (gdb_stdlog,
7343 "Read die from %s@0x%x of %s:\n",
7344 get_section_name (section),
7345 (unsigned) (begin_info_ptr - section->buffer),
7346 bfd_get_filename (abfd));
7347 dump_die (comp_unit_die, dwarf_die_debug);
7350 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7351 TUs by skipping the stub and going directly to the entry in the DWO file.
7352 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7353 to get it via circuitous means. Blech. */
7354 if (comp_dir != NULL)
7355 result_reader->comp_dir = DW_STRING (comp_dir);
7357 /* Skip dummy compilation units. */
7358 if (info_ptr >= begin_info_ptr + dwo_unit->length
7359 || peek_abbrev_code (abfd, info_ptr) == 0)
7362 *result_info_ptr = info_ptr;
7366 /* Subroutine of init_cutu_and_read_dies to simplify it.
7367 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7368 Returns NULL if the specified DWO unit cannot be found. */
7370 static struct dwo_unit *
7371 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7372 struct die_info *comp_unit_die)
7374 struct dwarf2_cu *cu = this_cu->cu;
7376 struct dwo_unit *dwo_unit;
7377 const char *comp_dir, *dwo_name;
7379 gdb_assert (cu != NULL);
7381 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7382 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7383 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7385 if (this_cu->is_debug_types)
7387 struct signatured_type *sig_type;
7389 /* Since this_cu is the first member of struct signatured_type,
7390 we can go from a pointer to one to a pointer to the other. */
7391 sig_type = (struct signatured_type *) this_cu;
7392 signature = sig_type->signature;
7393 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7397 struct attribute *attr;
7399 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7401 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7403 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7404 signature = DW_UNSND (attr);
7405 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7412 /* Subroutine of init_cutu_and_read_dies to simplify it.
7413 See it for a description of the parameters.
7414 Read a TU directly from a DWO file, bypassing the stub. */
7417 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7418 int use_existing_cu, int keep,
7419 die_reader_func_ftype *die_reader_func,
7422 std::unique_ptr<dwarf2_cu> new_cu;
7423 struct signatured_type *sig_type;
7424 struct die_reader_specs reader;
7425 const gdb_byte *info_ptr;
7426 struct die_info *comp_unit_die;
7428 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7430 /* Verify we can do the following downcast, and that we have the
7432 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7433 sig_type = (struct signatured_type *) this_cu;
7434 gdb_assert (sig_type->dwo_unit != NULL);
7436 if (use_existing_cu && this_cu->cu != NULL)
7438 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7439 /* There's no need to do the rereading_dwo_cu handling that
7440 init_cutu_and_read_dies does since we don't read the stub. */
7444 /* If !use_existing_cu, this_cu->cu must be NULL. */
7445 gdb_assert (this_cu->cu == NULL);
7446 new_cu.reset (new dwarf2_cu (this_cu));
7449 /* A future optimization, if needed, would be to use an existing
7450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7451 could share abbrev tables. */
7453 /* The abbreviation table used by READER, this must live at least as long as
7455 abbrev_table_up dwo_abbrev_table;
7457 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7458 NULL /* stub_comp_unit_die */,
7459 sig_type->dwo_unit->dwo_file->comp_dir,
7461 &comp_unit_die, &has_children,
7462 &dwo_abbrev_table) == 0)
7468 /* All the "real" work is done here. */
7469 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7471 /* This duplicates the code in init_cutu_and_read_dies,
7472 but the alternative is making the latter more complex.
7473 This function is only for the special case of using DWO files directly:
7474 no point in overly complicating the general case just to handle this. */
7475 if (new_cu != NULL && keep)
7477 /* Link this CU into read_in_chain. */
7478 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7479 dwarf2_per_objfile->read_in_chain = this_cu;
7480 /* The chain owns it now. */
7485 /* Initialize a CU (or TU) and read its DIEs.
7486 If the CU defers to a DWO file, read the DWO file as well.
7488 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7489 Otherwise the table specified in the comp unit header is read in and used.
7490 This is an optimization for when we already have the abbrev table.
7492 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7493 Otherwise, a new CU is allocated with xmalloc.
7495 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7496 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7498 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7499 linker) then DIE_READER_FUNC will not get called. */
7502 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7503 struct abbrev_table *abbrev_table,
7504 int use_existing_cu, int keep,
7506 die_reader_func_ftype *die_reader_func,
7509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7510 struct objfile *objfile = dwarf2_per_objfile->objfile;
7511 struct dwarf2_section_info *section = this_cu->section;
7512 bfd *abfd = get_section_bfd_owner (section);
7513 struct dwarf2_cu *cu;
7514 const gdb_byte *begin_info_ptr, *info_ptr;
7515 struct die_reader_specs reader;
7516 struct die_info *comp_unit_die;
7518 struct attribute *attr;
7519 struct signatured_type *sig_type = NULL;
7520 struct dwarf2_section_info *abbrev_section;
7521 /* Non-zero if CU currently points to a DWO file and we need to
7522 reread it. When this happens we need to reread the skeleton die
7523 before we can reread the DWO file (this only applies to CUs, not TUs). */
7524 int rereading_dwo_cu = 0;
7526 if (dwarf_die_debug)
7527 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7528 this_cu->is_debug_types ? "type" : "comp",
7529 sect_offset_str (this_cu->sect_off));
7531 if (use_existing_cu)
7534 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7535 file (instead of going through the stub), short-circuit all of this. */
7536 if (this_cu->reading_dwo_directly)
7538 /* Narrow down the scope of possibilities to have to understand. */
7539 gdb_assert (this_cu->is_debug_types);
7540 gdb_assert (abbrev_table == NULL);
7541 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7542 die_reader_func, data);
7546 /* This is cheap if the section is already read in. */
7547 dwarf2_read_section (objfile, section);
7549 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7551 abbrev_section = get_abbrev_section_for_cu (this_cu);
7553 std::unique_ptr<dwarf2_cu> new_cu;
7554 if (use_existing_cu && this_cu->cu != NULL)
7557 /* If this CU is from a DWO file we need to start over, we need to
7558 refetch the attributes from the skeleton CU.
7559 This could be optimized by retrieving those attributes from when we
7560 were here the first time: the previous comp_unit_die was stored in
7561 comp_unit_obstack. But there's no data yet that we need this
7563 if (cu->dwo_unit != NULL)
7564 rereading_dwo_cu = 1;
7568 /* If !use_existing_cu, this_cu->cu must be NULL. */
7569 gdb_assert (this_cu->cu == NULL);
7570 new_cu.reset (new dwarf2_cu (this_cu));
7574 /* Get the header. */
7575 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7577 /* We already have the header, there's no need to read it in again. */
7578 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7582 if (this_cu->is_debug_types)
7584 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7585 &cu->header, section,
7586 abbrev_section, info_ptr,
7589 /* Since per_cu is the first member of struct signatured_type,
7590 we can go from a pointer to one to a pointer to the other. */
7591 sig_type = (struct signatured_type *) this_cu;
7592 gdb_assert (sig_type->signature == cu->header.signature);
7593 gdb_assert (sig_type->type_offset_in_tu
7594 == cu->header.type_cu_offset_in_tu);
7595 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7597 /* LENGTH has not been set yet for type units if we're
7598 using .gdb_index. */
7599 this_cu->length = get_cu_length (&cu->header);
7601 /* Establish the type offset that can be used to lookup the type. */
7602 sig_type->type_offset_in_section =
7603 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7605 this_cu->dwarf_version = cu->header.version;
7609 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7610 &cu->header, section,
7613 rcuh_kind::COMPILE);
7615 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7616 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7617 this_cu->dwarf_version = cu->header.version;
7621 /* Skip dummy compilation units. */
7622 if (info_ptr >= begin_info_ptr + this_cu->length
7623 || peek_abbrev_code (abfd, info_ptr) == 0)
7626 /* If we don't have them yet, read the abbrevs for this compilation unit.
7627 And if we need to read them now, make sure they're freed when we're
7628 done (own the table through ABBREV_TABLE_HOLDER). */
7629 abbrev_table_up abbrev_table_holder;
7630 if (abbrev_table != NULL)
7631 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7635 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7636 cu->header.abbrev_sect_off);
7637 abbrev_table = abbrev_table_holder.get ();
7640 /* Read the top level CU/TU die. */
7641 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7642 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7644 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7647 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7648 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7649 table from the DWO file and pass the ownership over to us. It will be
7650 referenced from READER, so we must make sure to free it after we're done
7653 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7654 DWO CU, that this test will fail (the attribute will not be present). */
7655 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7656 abbrev_table_up dwo_abbrev_table;
7659 struct dwo_unit *dwo_unit;
7660 struct die_info *dwo_comp_unit_die;
7664 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7665 " has children (offset %s) [in module %s]"),
7666 sect_offset_str (this_cu->sect_off),
7667 bfd_get_filename (abfd));
7669 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7670 if (dwo_unit != NULL)
7672 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7673 comp_unit_die, NULL,
7675 &dwo_comp_unit_die, &has_children,
7676 &dwo_abbrev_table) == 0)
7681 comp_unit_die = dwo_comp_unit_die;
7685 /* Yikes, we couldn't find the rest of the DIE, we only have
7686 the stub. A complaint has already been logged. There's
7687 not much more we can do except pass on the stub DIE to
7688 die_reader_func. We don't want to throw an error on bad
7693 /* All of the above is setup for this call. Yikes. */
7694 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7696 /* Done, clean up. */
7697 if (new_cu != NULL && keep)
7699 /* Link this CU into read_in_chain. */
7700 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7701 dwarf2_per_objfile->read_in_chain = this_cu;
7702 /* The chain owns it now. */
7707 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7708 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7709 to have already done the lookup to find the DWO file).
7711 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7712 THIS_CU->is_debug_types, but nothing else.
7714 We fill in THIS_CU->length.
7716 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7717 linker) then DIE_READER_FUNC will not get called.
7719 THIS_CU->cu is always freed when done.
7720 This is done in order to not leave THIS_CU->cu in a state where we have
7721 to care whether it refers to the "main" CU or the DWO CU. */
7724 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7725 struct dwo_file *dwo_file,
7726 die_reader_func_ftype *die_reader_func,
7729 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7730 struct objfile *objfile = dwarf2_per_objfile->objfile;
7731 struct dwarf2_section_info *section = this_cu->section;
7732 bfd *abfd = get_section_bfd_owner (section);
7733 struct dwarf2_section_info *abbrev_section;
7734 const gdb_byte *begin_info_ptr, *info_ptr;
7735 struct die_reader_specs reader;
7736 struct die_info *comp_unit_die;
7739 if (dwarf_die_debug)
7740 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7741 this_cu->is_debug_types ? "type" : "comp",
7742 sect_offset_str (this_cu->sect_off));
7744 gdb_assert (this_cu->cu == NULL);
7746 abbrev_section = (dwo_file != NULL
7747 ? &dwo_file->sections.abbrev
7748 : get_abbrev_section_for_cu (this_cu));
7750 /* This is cheap if the section is already read in. */
7751 dwarf2_read_section (objfile, section);
7753 struct dwarf2_cu cu (this_cu);
7755 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7756 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7757 &cu.header, section,
7758 abbrev_section, info_ptr,
7759 (this_cu->is_debug_types
7761 : rcuh_kind::COMPILE));
7763 this_cu->length = get_cu_length (&cu.header);
7765 /* Skip dummy compilation units. */
7766 if (info_ptr >= begin_info_ptr + this_cu->length
7767 || peek_abbrev_code (abfd, info_ptr) == 0)
7770 abbrev_table_up abbrev_table
7771 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7772 cu.header.abbrev_sect_off);
7774 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7775 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7777 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7780 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7781 does not lookup the specified DWO file.
7782 This cannot be used to read DWO files.
7784 THIS_CU->cu is always freed when done.
7785 This is done in order to not leave THIS_CU->cu in a state where we have
7786 to care whether it refers to the "main" CU or the DWO CU.
7787 We can revisit this if the data shows there's a performance issue. */
7790 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7791 die_reader_func_ftype *die_reader_func,
7794 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7797 /* Type Unit Groups.
7799 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7800 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7801 so that all types coming from the same compilation (.o file) are grouped
7802 together. A future step could be to put the types in the same symtab as
7803 the CU the types ultimately came from. */
7806 hash_type_unit_group (const void *item)
7808 const struct type_unit_group *tu_group
7809 = (const struct type_unit_group *) item;
7811 return hash_stmt_list_entry (&tu_group->hash);
7815 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7817 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7818 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7820 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7823 /* Allocate a hash table for type unit groups. */
7826 allocate_type_unit_groups_table (struct objfile *objfile)
7828 return htab_create_alloc_ex (3,
7829 hash_type_unit_group,
7832 &objfile->objfile_obstack,
7833 hashtab_obstack_allocate,
7834 dummy_obstack_deallocate);
7837 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7838 partial symtabs. We combine several TUs per psymtab to not let the size
7839 of any one psymtab grow too big. */
7840 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7841 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7843 /* Helper routine for get_type_unit_group.
7844 Create the type_unit_group object used to hold one or more TUs. */
7846 static struct type_unit_group *
7847 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7849 struct dwarf2_per_objfile *dwarf2_per_objfile
7850 = cu->per_cu->dwarf2_per_objfile;
7851 struct objfile *objfile = dwarf2_per_objfile->objfile;
7852 struct dwarf2_per_cu_data *per_cu;
7853 struct type_unit_group *tu_group;
7855 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7856 struct type_unit_group);
7857 per_cu = &tu_group->per_cu;
7858 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7860 if (dwarf2_per_objfile->using_index)
7862 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7863 struct dwarf2_per_cu_quick_data);
7867 unsigned int line_offset = to_underlying (line_offset_struct);
7868 struct partial_symtab *pst;
7871 /* Give the symtab a useful name for debug purposes. */
7872 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7873 name = string_printf ("<type_units_%d>",
7874 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7876 name = string_printf ("<type_units_at_0x%x>", line_offset);
7878 pst = create_partial_symtab (per_cu, name.c_str ());
7882 tu_group->hash.dwo_unit = cu->dwo_unit;
7883 tu_group->hash.line_sect_off = line_offset_struct;
7888 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7889 STMT_LIST is a DW_AT_stmt_list attribute. */
7891 static struct type_unit_group *
7892 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7894 struct dwarf2_per_objfile *dwarf2_per_objfile
7895 = cu->per_cu->dwarf2_per_objfile;
7896 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7897 struct type_unit_group *tu_group;
7899 unsigned int line_offset;
7900 struct type_unit_group type_unit_group_for_lookup;
7902 if (dwarf2_per_objfile->type_unit_groups == NULL)
7904 dwarf2_per_objfile->type_unit_groups =
7905 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7908 /* Do we need to create a new group, or can we use an existing one? */
7912 line_offset = DW_UNSND (stmt_list);
7913 ++tu_stats->nr_symtab_sharers;
7917 /* Ugh, no stmt_list. Rare, but we have to handle it.
7918 We can do various things here like create one group per TU or
7919 spread them over multiple groups to split up the expansion work.
7920 To avoid worst case scenarios (too many groups or too large groups)
7921 we, umm, group them in bunches. */
7922 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7923 | (tu_stats->nr_stmt_less_type_units
7924 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7925 ++tu_stats->nr_stmt_less_type_units;
7928 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7929 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7930 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7931 &type_unit_group_for_lookup, INSERT);
7934 tu_group = (struct type_unit_group *) *slot;
7935 gdb_assert (tu_group != NULL);
7939 sect_offset line_offset_struct = (sect_offset) line_offset;
7940 tu_group = create_type_unit_group (cu, line_offset_struct);
7942 ++tu_stats->nr_symtabs;
7948 /* Partial symbol tables. */
7950 /* Create a psymtab named NAME and assign it to PER_CU.
7952 The caller must fill in the following details:
7953 dirname, textlow, texthigh. */
7955 static struct partial_symtab *
7956 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7958 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7959 struct partial_symtab *pst;
7961 pst = start_psymtab_common (objfile, name, 0);
7963 pst->psymtabs_addrmap_supported = 1;
7965 /* This is the glue that links PST into GDB's symbol API. */
7966 pst->read_symtab_private = per_cu;
7967 pst->read_symtab = dwarf2_read_symtab;
7968 per_cu->v.psymtab = pst;
7973 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7976 struct process_psymtab_comp_unit_data
7978 /* True if we are reading a DW_TAG_partial_unit. */
7980 int want_partial_unit;
7982 /* The "pretend" language that is used if the CU doesn't declare a
7985 enum language pretend_language;
7988 /* die_reader_func for process_psymtab_comp_unit. */
7991 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7992 const gdb_byte *info_ptr,
7993 struct die_info *comp_unit_die,
7997 struct dwarf2_cu *cu = reader->cu;
7998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8000 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8002 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8003 struct partial_symtab *pst;
8004 enum pc_bounds_kind cu_bounds_kind;
8005 const char *filename;
8006 struct process_psymtab_comp_unit_data *info
8007 = (struct process_psymtab_comp_unit_data *) data;
8009 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8012 gdb_assert (! per_cu->is_debug_types);
8014 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8016 /* Allocate a new partial symbol table structure. */
8017 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8018 if (filename == NULL)
8021 pst = create_partial_symtab (per_cu, filename);
8023 /* This must be done before calling dwarf2_build_include_psymtabs. */
8024 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8028 dwarf2_find_base_address (comp_unit_die, cu);
8030 /* Possibly set the default values of LOWPC and HIGHPC from
8032 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8033 &best_highpc, cu, pst);
8034 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8037 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8040 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8042 /* Store the contiguous range if it is not empty; it can be
8043 empty for CUs with no code. */
8044 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8048 /* Check if comp unit has_children.
8049 If so, read the rest of the partial symbols from this comp unit.
8050 If not, there's no more debug_info for this comp unit. */
8053 struct partial_die_info *first_die;
8054 CORE_ADDR lowpc, highpc;
8056 lowpc = ((CORE_ADDR) -1);
8057 highpc = ((CORE_ADDR) 0);
8059 first_die = load_partial_dies (reader, info_ptr, 1);
8061 scan_partial_symbols (first_die, &lowpc, &highpc,
8062 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8064 /* If we didn't find a lowpc, set it to highpc to avoid
8065 complaints from `maint check'. */
8066 if (lowpc == ((CORE_ADDR) -1))
8069 /* If the compilation unit didn't have an explicit address range,
8070 then use the information extracted from its child dies. */
8071 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8074 best_highpc = highpc;
8077 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8078 best_lowpc + baseaddr)
8080 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8081 best_highpc + baseaddr)
8084 end_psymtab_common (objfile, pst);
8086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8090 struct dwarf2_per_cu_data *iter;
8092 /* Fill in 'dependencies' here; we fill in 'users' in a
8094 pst->number_of_dependencies = len;
8096 = objfile->partial_symtabs->allocate_dependencies (len);
8098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8101 pst->dependencies[i] = iter->v.psymtab;
8103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8106 /* Get the list of files included in the current compilation unit,
8107 and build a psymtab for each of them. */
8108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8110 if (dwarf_read_debug)
8111 fprintf_unfiltered (gdb_stdlog,
8112 "Psymtab for %s unit @%s: %s - %s"
8113 ", %d global, %d static syms\n",
8114 per_cu->is_debug_types ? "type" : "comp",
8115 sect_offset_str (per_cu->sect_off),
8116 paddress (gdbarch, pst->text_low (objfile)),
8117 paddress (gdbarch, pst->text_high (objfile)),
8118 pst->n_global_syms, pst->n_static_syms);
8121 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8122 Process compilation unit THIS_CU for a psymtab. */
8125 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8126 int want_partial_unit,
8127 enum language pretend_language)
8129 /* If this compilation unit was already read in, free the
8130 cached copy in order to read it in again. This is
8131 necessary because we skipped some symbols when we first
8132 read in the compilation unit (see load_partial_dies).
8133 This problem could be avoided, but the benefit is unclear. */
8134 if (this_cu->cu != NULL)
8135 free_one_cached_comp_unit (this_cu);
8137 if (this_cu->is_debug_types)
8138 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8139 build_type_psymtabs_reader, NULL);
8142 process_psymtab_comp_unit_data info;
8143 info.want_partial_unit = want_partial_unit;
8144 info.pretend_language = pretend_language;
8145 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8146 process_psymtab_comp_unit_reader, &info);
8149 /* Age out any secondary CUs. */
8150 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8153 /* Reader function for build_type_psymtabs. */
8156 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8157 const gdb_byte *info_ptr,
8158 struct die_info *type_unit_die,
8162 struct dwarf2_per_objfile *dwarf2_per_objfile
8163 = reader->cu->per_cu->dwarf2_per_objfile;
8164 struct objfile *objfile = dwarf2_per_objfile->objfile;
8165 struct dwarf2_cu *cu = reader->cu;
8166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8167 struct signatured_type *sig_type;
8168 struct type_unit_group *tu_group;
8169 struct attribute *attr;
8170 struct partial_die_info *first_die;
8171 CORE_ADDR lowpc, highpc;
8172 struct partial_symtab *pst;
8174 gdb_assert (data == NULL);
8175 gdb_assert (per_cu->is_debug_types);
8176 sig_type = (struct signatured_type *) per_cu;
8181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8182 tu_group = get_type_unit_group (cu, attr);
8184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8187 pst = create_partial_symtab (per_cu, "");
8190 first_die = load_partial_dies (reader, info_ptr, 1);
8192 lowpc = (CORE_ADDR) -1;
8193 highpc = (CORE_ADDR) 0;
8194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8196 end_psymtab_common (objfile, pst);
8199 /* Struct used to sort TUs by their abbreviation table offset. */
8201 struct tu_abbrev_offset
8203 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8204 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8207 signatured_type *sig_type;
8208 sect_offset abbrev_offset;
8211 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8214 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8215 const struct tu_abbrev_offset &b)
8217 return a.abbrev_offset < b.abbrev_offset;
8220 /* Efficiently read all the type units.
8221 This does the bulk of the work for build_type_psymtabs.
8223 The efficiency is because we sort TUs by the abbrev table they use and
8224 only read each abbrev table once. In one program there are 200K TUs
8225 sharing 8K abbrev tables.
8227 The main purpose of this function is to support building the
8228 dwarf2_per_objfile->type_unit_groups table.
8229 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8230 can collapse the search space by grouping them by stmt_list.
8231 The savings can be significant, in the same program from above the 200K TUs
8232 share 8K stmt_list tables.
8234 FUNC is expected to call get_type_unit_group, which will create the
8235 struct type_unit_group if necessary and add it to
8236 dwarf2_per_objfile->type_unit_groups. */
8239 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242 abbrev_table_up abbrev_table;
8243 sect_offset abbrev_offset;
8245 /* It's up to the caller to not call us multiple times. */
8246 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8248 if (dwarf2_per_objfile->all_type_units.empty ())
8251 /* TUs typically share abbrev tables, and there can be way more TUs than
8252 abbrev tables. Sort by abbrev table to reduce the number of times we
8253 read each abbrev table in.
8254 Alternatives are to punt or to maintain a cache of abbrev tables.
8255 This is simpler and efficient enough for now.
8257 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8258 symtab to use). Typically TUs with the same abbrev offset have the same
8259 stmt_list value too so in practice this should work well.
8261 The basic algorithm here is:
8263 sort TUs by abbrev table
8264 for each TU with same abbrev table:
8265 read abbrev table if first user
8266 read TU top level DIE
8267 [IWBN if DWO skeletons had DW_AT_stmt_list]
8270 if (dwarf_read_debug)
8271 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8273 /* Sort in a separate table to maintain the order of all_type_units
8274 for .gdb_index: TU indices directly index all_type_units. */
8275 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8276 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8278 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8279 sorted_by_abbrev.emplace_back
8280 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8281 sig_type->per_cu.section,
8282 sig_type->per_cu.sect_off));
8284 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8285 sort_tu_by_abbrev_offset);
8287 abbrev_offset = (sect_offset) ~(unsigned) 0;
8289 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8291 /* Switch to the next abbrev table if necessary. */
8292 if (abbrev_table == NULL
8293 || tu.abbrev_offset != abbrev_offset)
8295 abbrev_offset = tu.abbrev_offset;
8297 abbrev_table_read_table (dwarf2_per_objfile,
8298 &dwarf2_per_objfile->abbrev,
8300 ++tu_stats->nr_uniq_abbrev_tables;
8303 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8304 0, 0, false, build_type_psymtabs_reader, NULL);
8308 /* Print collected type unit statistics. */
8311 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8313 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8315 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8316 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8317 dwarf2_per_objfile->all_type_units.size ());
8318 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8319 tu_stats->nr_uniq_abbrev_tables);
8320 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8321 tu_stats->nr_symtabs);
8322 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8323 tu_stats->nr_symtab_sharers);
8324 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8325 tu_stats->nr_stmt_less_type_units);
8326 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8327 tu_stats->nr_all_type_units_reallocs);
8330 /* Traversal function for build_type_psymtabs. */
8333 build_type_psymtab_dependencies (void **slot, void *info)
8335 struct dwarf2_per_objfile *dwarf2_per_objfile
8336 = (struct dwarf2_per_objfile *) info;
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8339 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8340 struct partial_symtab *pst = per_cu->v.psymtab;
8341 int len = VEC_length (sig_type_ptr, tu_group->tus);
8342 struct signatured_type *iter;
8345 gdb_assert (len > 0);
8346 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8348 pst->number_of_dependencies = len;
8349 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8351 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8354 gdb_assert (iter->per_cu.is_debug_types);
8355 pst->dependencies[i] = iter->per_cu.v.psymtab;
8356 iter->type_unit_group = tu_group;
8359 VEC_free (sig_type_ptr, tu_group->tus);
8364 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8365 Build partial symbol tables for the .debug_types comp-units. */
8368 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8370 if (! create_all_type_units (dwarf2_per_objfile))
8373 build_type_psymtabs_1 (dwarf2_per_objfile);
8376 /* Traversal function for process_skeletonless_type_unit.
8377 Read a TU in a DWO file and build partial symbols for it. */
8380 process_skeletonless_type_unit (void **slot, void *info)
8382 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8383 struct dwarf2_per_objfile *dwarf2_per_objfile
8384 = (struct dwarf2_per_objfile *) info;
8385 struct signatured_type find_entry, *entry;
8387 /* If this TU doesn't exist in the global table, add it and read it in. */
8389 if (dwarf2_per_objfile->signatured_types == NULL)
8391 dwarf2_per_objfile->signatured_types
8392 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8395 find_entry.signature = dwo_unit->signature;
8396 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8398 /* If we've already seen this type there's nothing to do. What's happening
8399 is we're doing our own version of comdat-folding here. */
8403 /* This does the job that create_all_type_units would have done for
8405 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8406 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8409 /* This does the job that build_type_psymtabs_1 would have done. */
8410 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8411 build_type_psymtabs_reader, NULL);
8416 /* Traversal function for process_skeletonless_type_units. */
8419 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8421 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8423 if (dwo_file->tus != NULL)
8425 htab_traverse_noresize (dwo_file->tus,
8426 process_skeletonless_type_unit, info);
8432 /* Scan all TUs of DWO files, verifying we've processed them.
8433 This is needed in case a TU was emitted without its skeleton.
8434 Note: This can't be done until we know what all the DWO files are. */
8437 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8439 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8440 if (get_dwp_file (dwarf2_per_objfile) == NULL
8441 && dwarf2_per_objfile->dwo_files != NULL)
8443 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8444 process_dwo_file_for_skeletonless_type_units,
8445 dwarf2_per_objfile);
8449 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8452 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8454 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8456 struct partial_symtab *pst = per_cu->v.psymtab;
8461 for (int j = 0; j < pst->number_of_dependencies; ++j)
8463 /* Set the 'user' field only if it is not already set. */
8464 if (pst->dependencies[j]->user == NULL)
8465 pst->dependencies[j]->user = pst;
8470 /* Build the partial symbol table by doing a quick pass through the
8471 .debug_info and .debug_abbrev sections. */
8474 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8476 struct objfile *objfile = dwarf2_per_objfile->objfile;
8478 if (dwarf_read_debug)
8480 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8481 objfile_name (objfile));
8484 dwarf2_per_objfile->reading_partial_symbols = 1;
8486 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8488 /* Any cached compilation units will be linked by the per-objfile
8489 read_in_chain. Make sure to free them when we're done. */
8490 free_cached_comp_units freer (dwarf2_per_objfile);
8492 build_type_psymtabs (dwarf2_per_objfile);
8494 create_all_comp_units (dwarf2_per_objfile);
8496 /* Create a temporary address map on a temporary obstack. We later
8497 copy this to the final obstack. */
8498 auto_obstack temp_obstack;
8500 scoped_restore save_psymtabs_addrmap
8501 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8502 addrmap_create_mutable (&temp_obstack));
8504 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8505 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8507 /* This has to wait until we read the CUs, we need the list of DWOs. */
8508 process_skeletonless_type_units (dwarf2_per_objfile);
8510 /* Now that all TUs have been processed we can fill in the dependencies. */
8511 if (dwarf2_per_objfile->type_unit_groups != NULL)
8513 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8514 build_type_psymtab_dependencies, dwarf2_per_objfile);
8517 if (dwarf_read_debug)
8518 print_tu_stats (dwarf2_per_objfile);
8520 set_partial_user (dwarf2_per_objfile);
8522 objfile->partial_symtabs->psymtabs_addrmap
8523 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8524 objfile->partial_symtabs->obstack ());
8525 /* At this point we want to keep the address map. */
8526 save_psymtabs_addrmap.release ();
8528 if (dwarf_read_debug)
8529 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8530 objfile_name (objfile));
8533 /* die_reader_func for load_partial_comp_unit. */
8536 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8537 const gdb_byte *info_ptr,
8538 struct die_info *comp_unit_die,
8542 struct dwarf2_cu *cu = reader->cu;
8544 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8546 /* Check if comp unit has_children.
8547 If so, read the rest of the partial symbols from this comp unit.
8548 If not, there's no more debug_info for this comp unit. */
8550 load_partial_dies (reader, info_ptr, 0);
8553 /* Load the partial DIEs for a secondary CU into memory.
8554 This is also used when rereading a primary CU with load_all_dies. */
8557 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8559 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8560 load_partial_comp_unit_reader, NULL);
8564 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8565 struct dwarf2_section_info *section,
8566 struct dwarf2_section_info *abbrev_section,
8567 unsigned int is_dwz)
8569 const gdb_byte *info_ptr;
8570 struct objfile *objfile = dwarf2_per_objfile->objfile;
8572 if (dwarf_read_debug)
8573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8574 get_section_name (section),
8575 get_section_file_name (section));
8577 dwarf2_read_section (objfile, section);
8579 info_ptr = section->buffer;
8581 while (info_ptr < section->buffer + section->size)
8583 struct dwarf2_per_cu_data *this_cu;
8585 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8587 comp_unit_head cu_header;
8588 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8589 abbrev_section, info_ptr,
8590 rcuh_kind::COMPILE);
8592 /* Save the compilation unit for later lookup. */
8593 if (cu_header.unit_type != DW_UT_type)
8595 this_cu = XOBNEW (&objfile->objfile_obstack,
8596 struct dwarf2_per_cu_data);
8597 memset (this_cu, 0, sizeof (*this_cu));
8601 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8602 struct signatured_type);
8603 memset (sig_type, 0, sizeof (*sig_type));
8604 sig_type->signature = cu_header.signature;
8605 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8606 this_cu = &sig_type->per_cu;
8608 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8609 this_cu->sect_off = sect_off;
8610 this_cu->length = cu_header.length + cu_header.initial_length_size;
8611 this_cu->is_dwz = is_dwz;
8612 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8613 this_cu->section = section;
8615 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8617 info_ptr = info_ptr + this_cu->length;
8621 /* Create a list of all compilation units in OBJFILE.
8622 This is only done for -readnow and building partial symtabs. */
8625 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8627 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8629 &dwarf2_per_objfile->abbrev, 0);
8631 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8633 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8637 /* Process all loaded DIEs for compilation unit CU, starting at
8638 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8639 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8640 DW_AT_ranges). See the comments of add_partial_subprogram on how
8641 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8644 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8645 CORE_ADDR *highpc, int set_addrmap,
8646 struct dwarf2_cu *cu)
8648 struct partial_die_info *pdi;
8650 /* Now, march along the PDI's, descending into ones which have
8651 interesting children but skipping the children of the other ones,
8652 until we reach the end of the compilation unit. */
8660 /* Anonymous namespaces or modules have no name but have interesting
8661 children, so we need to look at them. Ditto for anonymous
8664 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8665 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8666 || pdi->tag == DW_TAG_imported_unit
8667 || pdi->tag == DW_TAG_inlined_subroutine)
8671 case DW_TAG_subprogram:
8672 case DW_TAG_inlined_subroutine:
8673 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8675 case DW_TAG_constant:
8676 case DW_TAG_variable:
8677 case DW_TAG_typedef:
8678 case DW_TAG_union_type:
8679 if (!pdi->is_declaration)
8681 add_partial_symbol (pdi, cu);
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 if (!pdi->is_declaration)
8689 add_partial_symbol (pdi, cu);
8691 if ((cu->language == language_rust
8692 || cu->language == language_cplus) && pdi->has_children)
8693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8696 case DW_TAG_enumeration_type:
8697 if (!pdi->is_declaration)
8698 add_partial_enumeration (pdi, cu);
8700 case DW_TAG_base_type:
8701 case DW_TAG_subrange_type:
8702 /* File scope base type definitions are added to the partial
8704 add_partial_symbol (pdi, cu);
8706 case DW_TAG_namespace:
8707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8712 case DW_TAG_imported_unit:
8714 struct dwarf2_per_cu_data *per_cu;
8716 /* For now we don't handle imported units in type units. */
8717 if (cu->per_cu->is_debug_types)
8719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8720 " supported in type units [in module %s]"),
8721 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8724 per_cu = dwarf2_find_containing_comp_unit
8725 (pdi->d.sect_off, pdi->is_dwz,
8726 cu->per_cu->dwarf2_per_objfile);
8728 /* Go read the partial unit, if needed. */
8729 if (per_cu->v.psymtab == NULL)
8730 process_psymtab_comp_unit (per_cu, 1, cu->language);
8732 VEC_safe_push (dwarf2_per_cu_ptr,
8733 cu->per_cu->imported_symtabs, per_cu);
8736 case DW_TAG_imported_declaration:
8737 add_partial_symbol (pdi, cu);
8744 /* If the die has a sibling, skip to the sibling. */
8746 pdi = pdi->die_sibling;
8750 /* Functions used to compute the fully scoped name of a partial DIE.
8752 Normally, this is simple. For C++, the parent DIE's fully scoped
8753 name is concatenated with "::" and the partial DIE's name.
8754 Enumerators are an exception; they use the scope of their parent
8755 enumeration type, i.e. the name of the enumeration type is not
8756 prepended to the enumerator.
8758 There are two complexities. One is DW_AT_specification; in this
8759 case "parent" means the parent of the target of the specification,
8760 instead of the direct parent of the DIE. The other is compilers
8761 which do not emit DW_TAG_namespace; in this case we try to guess
8762 the fully qualified name of structure types from their members'
8763 linkage names. This must be done using the DIE's children rather
8764 than the children of any DW_AT_specification target. We only need
8765 to do this for structures at the top level, i.e. if the target of
8766 any DW_AT_specification (if any; otherwise the DIE itself) does not
8769 /* Compute the scope prefix associated with PDI's parent, in
8770 compilation unit CU. The result will be allocated on CU's
8771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8772 field. NULL is returned if no prefix is necessary. */
8774 partial_die_parent_scope (struct partial_die_info *pdi,
8775 struct dwarf2_cu *cu)
8777 const char *grandparent_scope;
8778 struct partial_die_info *parent, *real_pdi;
8780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8781 then this means the parent of the specification DIE. */
8784 while (real_pdi->has_specification)
8785 real_pdi = find_partial_die (real_pdi->spec_offset,
8786 real_pdi->spec_is_dwz, cu);
8788 parent = real_pdi->die_parent;
8792 if (parent->scope_set)
8793 return parent->scope;
8797 grandparent_scope = partial_die_parent_scope (parent, cu);
8799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8801 Work around this problem here. */
8802 if (cu->language == language_cplus
8803 && parent->tag == DW_TAG_namespace
8804 && strcmp (parent->name, "::") == 0
8805 && grandparent_scope == NULL)
8807 parent->scope = NULL;
8808 parent->scope_set = 1;
8812 if (pdi->tag == DW_TAG_enumerator)
8813 /* Enumerators should not get the name of the enumeration as a prefix. */
8814 parent->scope = grandparent_scope;
8815 else if (parent->tag == DW_TAG_namespace
8816 || parent->tag == DW_TAG_module
8817 || parent->tag == DW_TAG_structure_type
8818 || parent->tag == DW_TAG_class_type
8819 || parent->tag == DW_TAG_interface_type
8820 || parent->tag == DW_TAG_union_type
8821 || parent->tag == DW_TAG_enumeration_type)
8823 if (grandparent_scope == NULL)
8824 parent->scope = parent->name;
8826 parent->scope = typename_concat (&cu->comp_unit_obstack,
8828 parent->name, 0, cu);
8832 /* FIXME drow/2004-04-01: What should we be doing with
8833 function-local names? For partial symbols, we should probably be
8835 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8836 parent->tag, sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8840 parent->scope_set = 1;
8841 return parent->scope;
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8851 const char *parent_scope;
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8892 const char *actual_name = NULL;
8894 char *built_actual_name;
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8911 if (pdi->is_external || cu->language == language_ada)
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8923 cu->language, objfile);
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8946 case DW_TAG_variable:
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8952 && !dwarf2_per_objfile->has_section_at_zero)
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8959 else if (pdi->is_external)
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8984 int has_loc = pdi->d.locdesc != NULL;
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8990 xfree (built_actual_name);
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
9000 cu->language, objfile);
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9024 psymbol_placement::GLOBAL,
9025 0, cu->language, objfile);
9027 case DW_TAG_class_type:
9028 case DW_TAG_interface_type:
9029 case DW_TAG_structure_type:
9030 case DW_TAG_union_type:
9031 case DW_TAG_enumeration_type:
9032 /* Skip external references. The DWARF standard says in the section
9033 about "Structure, Union, and Class Type Entries": "An incomplete
9034 structure, union or class type is represented by a structure,
9035 union or class entry that does not have a byte size attribute
9036 and that has a DW_AT_declaration attribute." */
9037 if (!pdi->has_byte_size && pdi->is_declaration)
9039 xfree (built_actual_name);
9043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9044 static vs. global. */
9045 add_psymbol_to_list (actual_name, strlen (actual_name),
9046 built_actual_name != NULL,
9047 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9048 cu->language == language_cplus
9049 ? psymbol_placement::GLOBAL
9050 : psymbol_placement::STATIC,
9051 0, cu->language, objfile);
9054 case DW_TAG_enumerator:
9055 add_psymbol_to_list (actual_name, strlen (actual_name),
9056 built_actual_name != NULL,
9057 VAR_DOMAIN, LOC_CONST, -1,
9058 cu->language == language_cplus
9059 ? psymbol_placement::GLOBAL
9060 : psymbol_placement::STATIC,
9061 0, cu->language, objfile);
9067 xfree (built_actual_name);
9070 /* Read a partial die corresponding to a namespace; also, add a symbol
9071 corresponding to that namespace to the symbol table. NAMESPACE is
9072 the name of the enclosing namespace. */
9075 add_partial_namespace (struct partial_die_info *pdi,
9076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9077 int set_addrmap, struct dwarf2_cu *cu)
9079 /* Add a symbol for the namespace. */
9081 add_partial_symbol (pdi, cu);
9083 /* Now scan partial symbols in that namespace. */
9085 if (pdi->has_children)
9086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9089 /* Read a partial die corresponding to a Fortran module. */
9092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9095 /* Add a symbol for the namespace. */
9097 add_partial_symbol (pdi, cu);
9099 /* Now scan partial symbols in that module. */
9101 if (pdi->has_children)
9102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9105 /* Read a partial die corresponding to a subprogram or an inlined
9106 subprogram and create a partial symbol for that subprogram.
9107 When the CU language allows it, this routine also defines a partial
9108 symbol for each nested subprogram that this subprogram contains.
9109 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9110 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9112 PDI may also be a lexical block, in which case we simply search
9113 recursively for subprograms defined inside that lexical block.
9114 Again, this is only performed when the CU language allows this
9115 type of definitions. */
9118 add_partial_subprogram (struct partial_die_info *pdi,
9119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9120 int set_addrmap, struct dwarf2_cu *cu)
9122 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9124 if (pdi->has_pc_info)
9126 if (pdi->lowpc < *lowpc)
9127 *lowpc = pdi->lowpc;
9128 if (pdi->highpc > *highpc)
9129 *highpc = pdi->highpc;
9132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9135 CORE_ADDR this_highpc;
9136 CORE_ADDR this_lowpc;
9138 baseaddr = ANOFFSET (objfile->section_offsets,
9139 SECT_OFF_TEXT (objfile));
9141 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9142 pdi->lowpc + baseaddr)
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->highpc + baseaddr)
9148 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9149 this_lowpc, this_highpc - 1,
9150 cu->per_cu->v.psymtab);
9154 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9156 if (!pdi->is_declaration)
9157 /* Ignore subprogram DIEs that do not have a name, they are
9158 illegal. Do not emit a complaint at this point, we will
9159 do so when we convert this psymtab into a symtab. */
9161 add_partial_symbol (pdi, cu);
9165 if (! pdi->has_children)
9168 if (cu->language == language_ada)
9170 pdi = pdi->die_child;
9174 if (pdi->tag == DW_TAG_subprogram
9175 || pdi->tag == DW_TAG_inlined_subroutine
9176 || pdi->tag == DW_TAG_lexical_block)
9177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9178 pdi = pdi->die_sibling;
9183 /* Read a partial die corresponding to an enumeration type. */
9186 add_partial_enumeration (struct partial_die_info *enum_pdi,
9187 struct dwarf2_cu *cu)
9189 struct partial_die_info *pdi;
9191 if (enum_pdi->name != NULL)
9192 add_partial_symbol (enum_pdi, cu);
9194 pdi = enum_pdi->die_child;
9197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9198 complaint (_("malformed enumerator DIE ignored"));
9200 add_partial_symbol (pdi, cu);
9201 pdi = pdi->die_sibling;
9205 /* Return the initial uleb128 in the die at INFO_PTR. */
9208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9210 unsigned int bytes_read;
9212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9216 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9218 Return the corresponding abbrev, or NULL if the number is zero (indicating
9219 an empty DIE). In either case *BYTES_READ will be set to the length of
9220 the initial number. */
9222 static struct abbrev_info *
9223 peek_die_abbrev (const die_reader_specs &reader,
9224 const gdb_byte *info_ptr, unsigned int *bytes_read)
9226 dwarf2_cu *cu = reader.cu;
9227 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9228 unsigned int abbrev_number
9229 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9231 if (abbrev_number == 0)
9234 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9237 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9238 " at offset %s [in module %s]"),
9239 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9240 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9247 Returns a pointer to the end of a series of DIEs, terminated by an empty
9248 DIE. Any children of the skipped DIEs will also be skipped. */
9250 static const gdb_byte *
9251 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9255 unsigned int bytes_read;
9256 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9259 return info_ptr + bytes_read;
9261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9265 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9267 abbrev corresponding to that skipped uleb128 should be passed in
9268 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9271 static const gdb_byte *
9272 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9273 struct abbrev_info *abbrev)
9275 unsigned int bytes_read;
9276 struct attribute attr;
9277 bfd *abfd = reader->abfd;
9278 struct dwarf2_cu *cu = reader->cu;
9279 const gdb_byte *buffer = reader->buffer;
9280 const gdb_byte *buffer_end = reader->buffer_end;
9281 unsigned int form, i;
9283 for (i = 0; i < abbrev->num_attrs; i++)
9285 /* The only abbrev we care about is DW_AT_sibling. */
9286 if (abbrev->attrs[i].name == DW_AT_sibling)
9288 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9289 if (attr.form == DW_FORM_ref_addr)
9290 complaint (_("ignoring absolute DW_AT_sibling"));
9293 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9294 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9296 if (sibling_ptr < info_ptr)
9297 complaint (_("DW_AT_sibling points backwards"));
9298 else if (sibling_ptr > reader->buffer_end)
9299 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9305 /* If it isn't DW_AT_sibling, skip this attribute. */
9306 form = abbrev->attrs[i].form;
9310 case DW_FORM_ref_addr:
9311 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9312 and later it is offset sized. */
9313 if (cu->header.version == 2)
9314 info_ptr += cu->header.addr_size;
9316 info_ptr += cu->header.offset_size;
9318 case DW_FORM_GNU_ref_alt:
9319 info_ptr += cu->header.offset_size;
9322 info_ptr += cu->header.addr_size;
9329 case DW_FORM_flag_present:
9330 case DW_FORM_implicit_const:
9342 case DW_FORM_ref_sig8:
9345 case DW_FORM_data16:
9348 case DW_FORM_string:
9349 read_direct_string (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9352 case DW_FORM_sec_offset:
9354 case DW_FORM_GNU_strp_alt:
9355 info_ptr += cu->header.offset_size;
9357 case DW_FORM_exprloc:
9359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9362 case DW_FORM_block1:
9363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9365 case DW_FORM_block2:
9366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9368 case DW_FORM_block4:
9369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9373 case DW_FORM_ref_udata:
9374 case DW_FORM_GNU_addr_index:
9375 case DW_FORM_GNU_str_index:
9376 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9378 case DW_FORM_indirect:
9379 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9380 info_ptr += bytes_read;
9381 /* We need to continue parsing from here, so just go back to
9383 goto skip_attribute;
9386 error (_("Dwarf Error: Cannot handle %s "
9387 "in DWARF reader [in module %s]"),
9388 dwarf_form_name (form),
9389 bfd_get_filename (abfd));
9393 if (abbrev->has_children)
9394 return skip_children (reader, info_ptr);
9399 /* Locate ORIG_PDI's sibling.
9400 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9402 static const gdb_byte *
9403 locate_pdi_sibling (const struct die_reader_specs *reader,
9404 struct partial_die_info *orig_pdi,
9405 const gdb_byte *info_ptr)
9407 /* Do we know the sibling already? */
9409 if (orig_pdi->sibling)
9410 return orig_pdi->sibling;
9412 /* Are there any children to deal with? */
9414 if (!orig_pdi->has_children)
9417 /* Skip the children the long way. */
9419 return skip_children (reader, info_ptr);
9422 /* Expand this partial symbol table into a full symbol table. SELF is
9426 dwarf2_read_symtab (struct partial_symtab *self,
9427 struct objfile *objfile)
9429 struct dwarf2_per_objfile *dwarf2_per_objfile
9430 = get_dwarf2_per_objfile (objfile);
9434 warning (_("bug: psymtab for %s is already read in."),
9441 printf_filtered (_("Reading in symbols for %s..."),
9443 gdb_flush (gdb_stdout);
9446 /* If this psymtab is constructed from a debug-only objfile, the
9447 has_section_at_zero flag will not necessarily be correct. We
9448 can get the correct value for this flag by looking at the data
9449 associated with the (presumably stripped) associated objfile. */
9450 if (objfile->separate_debug_objfile_backlink)
9452 struct dwarf2_per_objfile *dpo_backlink
9453 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9455 dwarf2_per_objfile->has_section_at_zero
9456 = dpo_backlink->has_section_at_zero;
9459 dwarf2_per_objfile->reading_partial_symbols = 0;
9461 psymtab_to_symtab_1 (self);
9463 /* Finish up the debug error message. */
9465 printf_filtered (_("done.\n"));
9468 process_cu_includes (dwarf2_per_objfile);
9471 /* Reading in full CUs. */
9473 /* Add PER_CU to the queue. */
9476 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9477 enum language pretend_language)
9479 struct dwarf2_queue_item *item;
9482 item = XNEW (struct dwarf2_queue_item);
9483 item->per_cu = per_cu;
9484 item->pretend_language = pretend_language;
9487 if (dwarf2_queue == NULL)
9488 dwarf2_queue = item;
9490 dwarf2_queue_tail->next = item;
9492 dwarf2_queue_tail = item;
9495 /* If PER_CU is not yet queued, add it to the queue.
9496 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9498 The result is non-zero if PER_CU was queued, otherwise the result is zero
9499 meaning either PER_CU is already queued or it is already loaded.
9501 N.B. There is an invariant here that if a CU is queued then it is loaded.
9502 The caller is required to load PER_CU if we return non-zero. */
9505 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9506 struct dwarf2_per_cu_data *per_cu,
9507 enum language pretend_language)
9509 /* We may arrive here during partial symbol reading, if we need full
9510 DIEs to process an unusual case (e.g. template arguments). Do
9511 not queue PER_CU, just tell our caller to load its DIEs. */
9512 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9514 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9519 /* Mark the dependence relation so that we don't flush PER_CU
9521 if (dependent_cu != NULL)
9522 dwarf2_add_dependence (dependent_cu, per_cu);
9524 /* If it's already on the queue, we have nothing to do. */
9528 /* If the compilation unit is already loaded, just mark it as
9530 if (per_cu->cu != NULL)
9532 per_cu->cu->last_used = 0;
9536 /* Add it to the queue. */
9537 queue_comp_unit (per_cu, pretend_language);
9542 /* Process the queue. */
9545 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9547 struct dwarf2_queue_item *item, *next_item;
9549 if (dwarf_read_debug)
9551 fprintf_unfiltered (gdb_stdlog,
9552 "Expanding one or more symtabs of objfile %s ...\n",
9553 objfile_name (dwarf2_per_objfile->objfile));
9556 /* The queue starts out with one item, but following a DIE reference
9557 may load a new CU, adding it to the end of the queue. */
9558 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9560 if ((dwarf2_per_objfile->using_index
9561 ? !item->per_cu->v.quick->compunit_symtab
9562 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9563 /* Skip dummy CUs. */
9564 && item->per_cu->cu != NULL)
9566 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9567 unsigned int debug_print_threshold;
9570 if (per_cu->is_debug_types)
9572 struct signatured_type *sig_type =
9573 (struct signatured_type *) per_cu;
9575 sprintf (buf, "TU %s at offset %s",
9576 hex_string (sig_type->signature),
9577 sect_offset_str (per_cu->sect_off));
9578 /* There can be 100s of TUs.
9579 Only print them in verbose mode. */
9580 debug_print_threshold = 2;
9584 sprintf (buf, "CU at offset %s",
9585 sect_offset_str (per_cu->sect_off));
9586 debug_print_threshold = 1;
9589 if (dwarf_read_debug >= debug_print_threshold)
9590 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9592 if (per_cu->is_debug_types)
9593 process_full_type_unit (per_cu, item->pretend_language);
9595 process_full_comp_unit (per_cu, item->pretend_language);
9597 if (dwarf_read_debug >= debug_print_threshold)
9598 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9601 item->per_cu->queued = 0;
9602 next_item = item->next;
9606 dwarf2_queue_tail = NULL;
9608 if (dwarf_read_debug)
9610 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9611 objfile_name (dwarf2_per_objfile->objfile));
9615 /* Read in full symbols for PST, and anything it depends on. */
9618 psymtab_to_symtab_1 (struct partial_symtab *pst)
9620 struct dwarf2_per_cu_data *per_cu;
9626 for (i = 0; i < pst->number_of_dependencies; i++)
9627 if (!pst->dependencies[i]->readin
9628 && pst->dependencies[i]->user == NULL)
9630 /* Inform about additional files that need to be read in. */
9633 /* FIXME: i18n: Need to make this a single string. */
9634 fputs_filtered (" ", gdb_stdout);
9636 fputs_filtered ("and ", gdb_stdout);
9638 printf_filtered ("%s...", pst->dependencies[i]->filename);
9639 wrap_here (""); /* Flush output. */
9640 gdb_flush (gdb_stdout);
9642 psymtab_to_symtab_1 (pst->dependencies[i]);
9645 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9649 /* It's an include file, no symbols to read for it.
9650 Everything is in the parent symtab. */
9655 dw2_do_instantiate_symtab (per_cu, false);
9658 /* Trivial hash function for die_info: the hash value of a DIE
9659 is its offset in .debug_info for this objfile. */
9662 die_hash (const void *item)
9664 const struct die_info *die = (const struct die_info *) item;
9666 return to_underlying (die->sect_off);
9669 /* Trivial comparison function for die_info structures: two DIEs
9670 are equal if they have the same offset. */
9673 die_eq (const void *item_lhs, const void *item_rhs)
9675 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9676 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9678 return die_lhs->sect_off == die_rhs->sect_off;
9681 /* die_reader_func for load_full_comp_unit.
9682 This is identical to read_signatured_type_reader,
9683 but is kept separate for now. */
9686 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9687 const gdb_byte *info_ptr,
9688 struct die_info *comp_unit_die,
9692 struct dwarf2_cu *cu = reader->cu;
9693 enum language *language_ptr = (enum language *) data;
9695 gdb_assert (cu->die_hash == NULL);
9697 htab_create_alloc_ex (cu->header.length / 12,
9701 &cu->comp_unit_obstack,
9702 hashtab_obstack_allocate,
9703 dummy_obstack_deallocate);
9706 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9707 &info_ptr, comp_unit_die);
9708 cu->dies = comp_unit_die;
9709 /* comp_unit_die is not stored in die_hash, no need. */
9711 /* We try not to read any attributes in this function, because not
9712 all CUs needed for references have been loaded yet, and symbol
9713 table processing isn't initialized. But we have to set the CU language,
9714 or we won't be able to build types correctly.
9715 Similarly, if we do not read the producer, we can not apply
9716 producer-specific interpretation. */
9717 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9720 /* Load the DIEs associated with PER_CU into memory. */
9723 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9725 enum language pretend_language)
9727 gdb_assert (! this_cu->is_debug_types);
9729 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9730 load_full_comp_unit_reader, &pretend_language);
9733 /* Add a DIE to the delayed physname list. */
9736 add_to_method_list (struct type *type, int fnfield_index, int index,
9737 const char *name, struct die_info *die,
9738 struct dwarf2_cu *cu)
9740 struct delayed_method_info mi;
9742 mi.fnfield_index = fnfield_index;
9746 cu->method_list.push_back (mi);
9749 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9750 "const" / "volatile". If so, decrements LEN by the length of the
9751 modifier and return true. Otherwise return false. */
9755 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9757 size_t mod_len = sizeof (mod) - 1;
9758 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9766 /* Compute the physnames of any methods on the CU's method list.
9768 The computation of method physnames is delayed in order to avoid the
9769 (bad) condition that one of the method's formal parameters is of an as yet
9773 compute_delayed_physnames (struct dwarf2_cu *cu)
9775 /* Only C++ delays computing physnames. */
9776 if (cu->method_list.empty ())
9778 gdb_assert (cu->language == language_cplus);
9780 for (const delayed_method_info &mi : cu->method_list)
9782 const char *physname;
9783 struct fn_fieldlist *fn_flp
9784 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9785 physname = dwarf2_physname (mi.name, mi.die, cu);
9786 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9787 = physname ? physname : "";
9789 /* Since there's no tag to indicate whether a method is a
9790 const/volatile overload, extract that information out of the
9792 if (physname != NULL)
9794 size_t len = strlen (physname);
9798 if (physname[len] == ')') /* shortcut */
9800 else if (check_modifier (physname, len, " const"))
9801 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9802 else if (check_modifier (physname, len, " volatile"))
9803 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9810 /* The list is no longer needed. */
9811 cu->method_list.clear ();
9814 /* Go objects should be embedded in a DW_TAG_module DIE,
9815 and it's not clear if/how imported objects will appear.
9816 To keep Go support simple until that's worked out,
9817 go back through what we've read and create something usable.
9818 We could do this while processing each DIE, and feels kinda cleaner,
9819 but that way is more invasive.
9820 This is to, for example, allow the user to type "p var" or "b main"
9821 without having to specify the package name, and allow lookups
9822 of module.object to work in contexts that use the expression
9826 fixup_go_packaging (struct dwarf2_cu *cu)
9828 char *package_name = NULL;
9829 struct pending *list;
9832 for (list = *cu->get_builder ()->get_global_symbols ();
9836 for (i = 0; i < list->nsyms; ++i)
9838 struct symbol *sym = list->symbol[i];
9840 if (SYMBOL_LANGUAGE (sym) == language_go
9841 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9843 char *this_package_name = go_symbol_package_name (sym);
9845 if (this_package_name == NULL)
9847 if (package_name == NULL)
9848 package_name = this_package_name;
9851 struct objfile *objfile
9852 = cu->per_cu->dwarf2_per_objfile->objfile;
9853 if (strcmp (package_name, this_package_name) != 0)
9854 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9855 (symbol_symtab (sym) != NULL
9856 ? symtab_to_filename_for_display
9857 (symbol_symtab (sym))
9858 : objfile_name (objfile)),
9859 this_package_name, package_name);
9860 xfree (this_package_name);
9866 if (package_name != NULL)
9868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9869 const char *saved_package_name
9870 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9872 strlen (package_name));
9873 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9874 saved_package_name);
9877 sym = allocate_symbol (objfile);
9878 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9879 SYMBOL_SET_NAMES (sym, saved_package_name,
9880 strlen (saved_package_name), 0, objfile);
9881 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9882 e.g., "main" finds the "main" module and not C's main(). */
9883 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9884 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9885 SYMBOL_TYPE (sym) = type;
9887 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9889 xfree (package_name);
9893 /* Allocate a fully-qualified name consisting of the two parts on the
9897 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9899 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9902 /* A helper that allocates a struct discriminant_info to attach to a
9905 static struct discriminant_info *
9906 alloc_discriminant_info (struct type *type, int discriminant_index,
9909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9910 gdb_assert (discriminant_index == -1
9911 || (discriminant_index >= 0
9912 && discriminant_index < TYPE_NFIELDS (type)));
9913 gdb_assert (default_index == -1
9914 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9916 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9918 struct discriminant_info *disc
9919 = ((struct discriminant_info *)
9921 offsetof (struct discriminant_info, discriminants)
9922 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9923 disc->default_index = default_index;
9924 disc->discriminant_index = discriminant_index;
9926 struct dynamic_prop prop;
9927 prop.kind = PROP_UNDEFINED;
9928 prop.data.baton = disc;
9930 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9935 /* Some versions of rustc emitted enums in an unusual way.
9937 Ordinary enums were emitted as unions. The first element of each
9938 structure in the union was named "RUST$ENUM$DISR". This element
9939 held the discriminant.
9941 These versions of Rust also implemented the "non-zero"
9942 optimization. When the enum had two values, and one is empty and
9943 the other holds a pointer that cannot be zero, the pointer is used
9944 as the discriminant, with a zero value meaning the empty variant.
9945 Here, the union's first member is of the form
9946 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9947 where the fieldnos are the indices of the fields that should be
9948 traversed in order to find the field (which may be several fields deep)
9949 and the variantname is the name of the variant of the case when the
9952 This function recognizes whether TYPE is of one of these forms,
9953 and, if so, smashes it to be a variant type. */
9956 quirk_rust_enum (struct type *type, struct objfile *objfile)
9958 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9960 /* We don't need to deal with empty enums. */
9961 if (TYPE_NFIELDS (type) == 0)
9964 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9965 if (TYPE_NFIELDS (type) == 1
9966 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9968 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9970 /* Decode the field name to find the offset of the
9972 ULONGEST bit_offset = 0;
9973 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9974 while (name[0] >= '0' && name[0] <= '9')
9977 unsigned long index = strtoul (name, &tail, 10);
9980 || index >= TYPE_NFIELDS (field_type)
9981 || (TYPE_FIELD_LOC_KIND (field_type, index)
9982 != FIELD_LOC_KIND_BITPOS))
9984 complaint (_("Could not parse Rust enum encoding string \"%s\""
9986 TYPE_FIELD_NAME (type, 0),
9987 objfile_name (objfile));
9992 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9993 field_type = TYPE_FIELD_TYPE (field_type, index);
9996 /* Make a union to hold the variants. */
9997 struct type *union_type = alloc_type (objfile);
9998 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9999 TYPE_NFIELDS (union_type) = 3;
10000 TYPE_FIELDS (union_type)
10001 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10002 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10003 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10005 /* Put the discriminant must at index 0. */
10006 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10007 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10008 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10009 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10011 /* The order of fields doesn't really matter, so put the real
10012 field at index 1 and the data-less field at index 2. */
10013 struct discriminant_info *disc
10014 = alloc_discriminant_info (union_type, 0, 1);
10015 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10016 TYPE_FIELD_NAME (union_type, 1)
10017 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10018 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10019 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10020 TYPE_FIELD_NAME (union_type, 1));
10022 const char *dataless_name
10023 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10025 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10027 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10028 /* NAME points into the original discriminant name, which
10029 already has the correct lifetime. */
10030 TYPE_FIELD_NAME (union_type, 2) = name;
10031 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10032 disc->discriminants[2] = 0;
10034 /* Smash this type to be a structure type. We have to do this
10035 because the type has already been recorded. */
10036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10037 TYPE_NFIELDS (type) = 1;
10039 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10041 /* Install the variant part. */
10042 TYPE_FIELD_TYPE (type, 0) = union_type;
10043 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10044 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10046 else if (TYPE_NFIELDS (type) == 1)
10048 /* We assume that a union with a single field is a univariant
10050 /* Smash this type to be a structure type. We have to do this
10051 because the type has already been recorded. */
10052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10054 /* Make a union to hold the variants. */
10055 struct type *union_type = alloc_type (objfile);
10056 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10057 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10058 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10059 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10060 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10062 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10063 const char *variant_name
10064 = rust_last_path_segment (TYPE_NAME (field_type));
10065 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10066 TYPE_NAME (field_type)
10067 = rust_fully_qualify (&objfile->objfile_obstack,
10068 TYPE_NAME (type), variant_name);
10070 /* Install the union in the outer struct type. */
10071 TYPE_NFIELDS (type) = 1;
10073 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10074 TYPE_FIELD_TYPE (type, 0) = union_type;
10075 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10076 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10078 alloc_discriminant_info (union_type, -1, 0);
10082 struct type *disr_type = nullptr;
10083 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10085 disr_type = TYPE_FIELD_TYPE (type, i);
10087 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10089 /* All fields of a true enum will be structs. */
10092 else if (TYPE_NFIELDS (disr_type) == 0)
10094 /* Could be data-less variant, so keep going. */
10095 disr_type = nullptr;
10097 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10098 "RUST$ENUM$DISR") != 0)
10100 /* Not a Rust enum. */
10110 /* If we got here without a discriminant, then it's probably
10112 if (disr_type == nullptr)
10115 /* Smash this type to be a structure type. We have to do this
10116 because the type has already been recorded. */
10117 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10119 /* Make a union to hold the variants. */
10120 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10121 struct type *union_type = alloc_type (objfile);
10122 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10123 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10124 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10125 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10126 TYPE_FIELDS (union_type)
10127 = (struct field *) TYPE_ZALLOC (union_type,
10128 (TYPE_NFIELDS (union_type)
10129 * sizeof (struct field)));
10131 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10132 TYPE_NFIELDS (type) * sizeof (struct field));
10134 /* Install the discriminant at index 0 in the union. */
10135 TYPE_FIELD (union_type, 0) = *disr_field;
10136 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10137 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10139 /* Install the union in the outer struct type. */
10140 TYPE_FIELD_TYPE (type, 0) = union_type;
10141 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10142 TYPE_NFIELDS (type) = 1;
10144 /* Set the size and offset of the union type. */
10145 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10147 /* We need a way to find the correct discriminant given a
10148 variant name. For convenience we build a map here. */
10149 struct type *enum_type = FIELD_TYPE (*disr_field);
10150 std::unordered_map<std::string, ULONGEST> discriminant_map;
10151 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10153 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10156 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10157 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10161 int n_fields = TYPE_NFIELDS (union_type);
10162 struct discriminant_info *disc
10163 = alloc_discriminant_info (union_type, 0, -1);
10164 /* Skip the discriminant here. */
10165 for (int i = 1; i < n_fields; ++i)
10167 /* Find the final word in the name of this variant's type.
10168 That name can be used to look up the correct
10170 const char *variant_name
10171 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10174 auto iter = discriminant_map.find (variant_name);
10175 if (iter != discriminant_map.end ())
10176 disc->discriminants[i] = iter->second;
10178 /* Remove the discriminant field, if it exists. */
10179 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10180 if (TYPE_NFIELDS (sub_type) > 0)
10182 --TYPE_NFIELDS (sub_type);
10183 ++TYPE_FIELDS (sub_type);
10185 TYPE_FIELD_NAME (union_type, i) = variant_name;
10186 TYPE_NAME (sub_type)
10187 = rust_fully_qualify (&objfile->objfile_obstack,
10188 TYPE_NAME (type), variant_name);
10193 /* Rewrite some Rust unions to be structures with variants parts. */
10196 rust_union_quirks (struct dwarf2_cu *cu)
10198 gdb_assert (cu->language == language_rust);
10199 for (type *type_ : cu->rust_unions)
10200 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10201 /* We don't need this any more. */
10202 cu->rust_unions.clear ();
10205 /* Return the symtab for PER_CU. This works properly regardless of
10206 whether we're using the index or psymtabs. */
10208 static struct compunit_symtab *
10209 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10211 return (per_cu->dwarf2_per_objfile->using_index
10212 ? per_cu->v.quick->compunit_symtab
10213 : per_cu->v.psymtab->compunit_symtab);
10216 /* A helper function for computing the list of all symbol tables
10217 included by PER_CU. */
10220 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10221 htab_t all_children, htab_t all_type_symtabs,
10222 struct dwarf2_per_cu_data *per_cu,
10223 struct compunit_symtab *immediate_parent)
10227 struct compunit_symtab *cust;
10228 struct dwarf2_per_cu_data *iter;
10230 slot = htab_find_slot (all_children, per_cu, INSERT);
10233 /* This inclusion and its children have been processed. */
10238 /* Only add a CU if it has a symbol table. */
10239 cust = get_compunit_symtab (per_cu);
10242 /* If this is a type unit only add its symbol table if we haven't
10243 seen it yet (type unit per_cu's can share symtabs). */
10244 if (per_cu->is_debug_types)
10246 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10250 result->push_back (cust);
10251 if (cust->user == NULL)
10252 cust->user = immediate_parent;
10257 result->push_back (cust);
10258 if (cust->user == NULL)
10259 cust->user = immediate_parent;
10264 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10267 recursively_compute_inclusions (result, all_children,
10268 all_type_symtabs, iter, cust);
10272 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10276 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10278 gdb_assert (! per_cu->is_debug_types);
10280 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10283 struct dwarf2_per_cu_data *per_cu_iter;
10284 std::vector<compunit_symtab *> result_symtabs;
10285 htab_t all_children, all_type_symtabs;
10286 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10288 /* If we don't have a symtab, we can just skip this case. */
10292 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10293 NULL, xcalloc, xfree);
10294 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10295 NULL, xcalloc, xfree);
10298 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10302 recursively_compute_inclusions (&result_symtabs, all_children,
10303 all_type_symtabs, per_cu_iter,
10307 /* Now we have a transitive closure of all the included symtabs. */
10308 len = result_symtabs.size ();
10310 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10311 struct compunit_symtab *, len + 1);
10312 memcpy (cust->includes, result_symtabs.data (),
10313 len * sizeof (compunit_symtab *));
10314 cust->includes[len] = NULL;
10316 htab_delete (all_children);
10317 htab_delete (all_type_symtabs);
10321 /* Compute the 'includes' field for the symtabs of all the CUs we just
10325 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10327 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10329 if (! iter->is_debug_types)
10330 compute_compunit_symtab_includes (iter);
10333 dwarf2_per_objfile->just_read_cus.clear ();
10336 /* Generate full symbol information for PER_CU, whose DIEs have
10337 already been loaded into memory. */
10340 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10341 enum language pretend_language)
10343 struct dwarf2_cu *cu = per_cu->cu;
10344 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10345 struct objfile *objfile = dwarf2_per_objfile->objfile;
10346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10347 CORE_ADDR lowpc, highpc;
10348 struct compunit_symtab *cust;
10349 CORE_ADDR baseaddr;
10350 struct block *static_block;
10353 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
10358 cu->language = pretend_language;
10359 cu->language_defn = language_def (cu->language);
10361 /* Do line number decoding in read_file_scope () */
10362 process_die (cu->dies, cu);
10364 /* For now fudge the Go package. */
10365 if (cu->language == language_go)
10366 fixup_go_packaging (cu);
10368 /* Now that we have processed all the DIEs in the CU, all the types
10369 should be complete, and it should now be safe to compute all of the
10371 compute_delayed_physnames (cu);
10373 if (cu->language == language_rust)
10374 rust_union_quirks (cu);
10376 /* Some compilers don't define a DW_AT_high_pc attribute for the
10377 compilation unit. If the DW_AT_high_pc is missing, synthesize
10378 it, by scanning the DIE's below the compilation unit. */
10379 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10381 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10382 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10384 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10385 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10386 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10387 addrmap to help ensure it has an accurate map of pc values belonging to
10389 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10391 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10392 SECT_OFF_TEXT (objfile),
10397 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10399 /* Set symtab language to language from DW_AT_language. If the
10400 compilation is from a C file generated by language preprocessors, do
10401 not set the language if it was already deduced by start_subfile. */
10402 if (!(cu->language == language_c
10403 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10404 COMPUNIT_FILETABS (cust)->language = cu->language;
10406 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10407 produce DW_AT_location with location lists but it can be possibly
10408 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10409 there were bugs in prologue debug info, fixed later in GCC-4.5
10410 by "unwind info for epilogues" patch (which is not directly related).
10412 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10413 needed, it would be wrong due to missing DW_AT_producer there.
10415 Still one can confuse GDB by using non-standard GCC compilation
10416 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10418 if (cu->has_loclist && gcc_4_minor >= 5)
10419 cust->locations_valid = 1;
10421 if (gcc_4_minor >= 5)
10422 cust->epilogue_unwind_valid = 1;
10424 cust->call_site_htab = cu->call_site_htab;
10427 if (dwarf2_per_objfile->using_index)
10428 per_cu->v.quick->compunit_symtab = cust;
10431 struct partial_symtab *pst = per_cu->v.psymtab;
10432 pst->compunit_symtab = cust;
10436 /* Push it for inclusion processing later. */
10437 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10439 /* Not needed any more. */
10440 cu->reset_builder ();
10443 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10444 already been loaded into memory. */
10447 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10448 enum language pretend_language)
10450 struct dwarf2_cu *cu = per_cu->cu;
10451 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10452 struct objfile *objfile = dwarf2_per_objfile->objfile;
10453 struct compunit_symtab *cust;
10454 struct signatured_type *sig_type;
10456 gdb_assert (per_cu->is_debug_types);
10457 sig_type = (struct signatured_type *) per_cu;
10459 /* Clear the list here in case something was left over. */
10460 cu->method_list.clear ();
10462 cu->language = pretend_language;
10463 cu->language_defn = language_def (cu->language);
10465 /* The symbol tables are set up in read_type_unit_scope. */
10466 process_die (cu->dies, cu);
10468 /* For now fudge the Go package. */
10469 if (cu->language == language_go)
10470 fixup_go_packaging (cu);
10472 /* Now that we have processed all the DIEs in the CU, all the types
10473 should be complete, and it should now be safe to compute all of the
10475 compute_delayed_physnames (cu);
10477 if (cu->language == language_rust)
10478 rust_union_quirks (cu);
10480 /* TUs share symbol tables.
10481 If this is the first TU to use this symtab, complete the construction
10482 of it with end_expandable_symtab. Otherwise, complete the addition of
10483 this TU's symbols to the existing symtab. */
10484 if (sig_type->type_unit_group->compunit_symtab == NULL)
10486 buildsym_compunit *builder = cu->get_builder ();
10487 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10488 sig_type->type_unit_group->compunit_symtab = cust;
10492 /* Set symtab language to language from DW_AT_language. If the
10493 compilation is from a C file generated by language preprocessors,
10494 do not set the language if it was already deduced by
10496 if (!(cu->language == language_c
10497 && COMPUNIT_FILETABS (cust)->language != language_c))
10498 COMPUNIT_FILETABS (cust)->language = cu->language;
10503 cu->get_builder ()->augment_type_symtab ();
10504 cust = sig_type->type_unit_group->compunit_symtab;
10507 if (dwarf2_per_objfile->using_index)
10508 per_cu->v.quick->compunit_symtab = cust;
10511 struct partial_symtab *pst = per_cu->v.psymtab;
10512 pst->compunit_symtab = cust;
10516 /* Not needed any more. */
10517 cu->reset_builder ();
10520 /* Process an imported unit DIE. */
10523 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10525 struct attribute *attr;
10527 /* For now we don't handle imported units in type units. */
10528 if (cu->per_cu->is_debug_types)
10530 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10531 " supported in type units [in module %s]"),
10532 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10535 attr = dwarf2_attr (die, DW_AT_import, cu);
10538 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10539 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10540 dwarf2_per_cu_data *per_cu
10541 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10542 cu->per_cu->dwarf2_per_objfile);
10544 /* If necessary, add it to the queue and load its DIEs. */
10545 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10546 load_full_comp_unit (per_cu, false, cu->language);
10548 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10553 /* RAII object that represents a process_die scope: i.e.,
10554 starts/finishes processing a DIE. */
10555 class process_die_scope
10558 process_die_scope (die_info *die, dwarf2_cu *cu)
10559 : m_die (die), m_cu (cu)
10561 /* We should only be processing DIEs not already in process. */
10562 gdb_assert (!m_die->in_process);
10563 m_die->in_process = true;
10566 ~process_die_scope ()
10568 m_die->in_process = false;
10570 /* If we're done processing the DIE for the CU that owns the line
10571 header, we don't need the line header anymore. */
10572 if (m_cu->line_header_die_owner == m_die)
10574 delete m_cu->line_header;
10575 m_cu->line_header = NULL;
10576 m_cu->line_header_die_owner = NULL;
10585 /* Process a die and its children. */
10588 process_die (struct die_info *die, struct dwarf2_cu *cu)
10590 process_die_scope scope (die, cu);
10594 case DW_TAG_padding:
10596 case DW_TAG_compile_unit:
10597 case DW_TAG_partial_unit:
10598 read_file_scope (die, cu);
10600 case DW_TAG_type_unit:
10601 read_type_unit_scope (die, cu);
10603 case DW_TAG_subprogram:
10604 case DW_TAG_inlined_subroutine:
10605 read_func_scope (die, cu);
10607 case DW_TAG_lexical_block:
10608 case DW_TAG_try_block:
10609 case DW_TAG_catch_block:
10610 read_lexical_block_scope (die, cu);
10612 case DW_TAG_call_site:
10613 case DW_TAG_GNU_call_site:
10614 read_call_site_scope (die, cu);
10616 case DW_TAG_class_type:
10617 case DW_TAG_interface_type:
10618 case DW_TAG_structure_type:
10619 case DW_TAG_union_type:
10620 process_structure_scope (die, cu);
10622 case DW_TAG_enumeration_type:
10623 process_enumeration_scope (die, cu);
10626 /* These dies have a type, but processing them does not create
10627 a symbol or recurse to process the children. Therefore we can
10628 read them on-demand through read_type_die. */
10629 case DW_TAG_subroutine_type:
10630 case DW_TAG_set_type:
10631 case DW_TAG_array_type:
10632 case DW_TAG_pointer_type:
10633 case DW_TAG_ptr_to_member_type:
10634 case DW_TAG_reference_type:
10635 case DW_TAG_rvalue_reference_type:
10636 case DW_TAG_string_type:
10639 case DW_TAG_base_type:
10640 case DW_TAG_subrange_type:
10641 case DW_TAG_typedef:
10642 /* Add a typedef symbol for the type definition, if it has a
10644 new_symbol (die, read_type_die (die, cu), cu);
10646 case DW_TAG_common_block:
10647 read_common_block (die, cu);
10649 case DW_TAG_common_inclusion:
10651 case DW_TAG_namespace:
10652 cu->processing_has_namespace_info = true;
10653 read_namespace (die, cu);
10655 case DW_TAG_module:
10656 cu->processing_has_namespace_info = true;
10657 read_module (die, cu);
10659 case DW_TAG_imported_declaration:
10660 cu->processing_has_namespace_info = true;
10661 if (read_namespace_alias (die, cu))
10663 /* The declaration is not a global namespace alias. */
10664 /* Fall through. */
10665 case DW_TAG_imported_module:
10666 cu->processing_has_namespace_info = true;
10667 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10668 || cu->language != language_fortran))
10669 complaint (_("Tag '%s' has unexpected children"),
10670 dwarf_tag_name (die->tag));
10671 read_import_statement (die, cu);
10674 case DW_TAG_imported_unit:
10675 process_imported_unit_die (die, cu);
10678 case DW_TAG_variable:
10679 read_variable (die, cu);
10683 new_symbol (die, NULL, cu);
10688 /* DWARF name computation. */
10690 /* A helper function for dwarf2_compute_name which determines whether DIE
10691 needs to have the name of the scope prepended to the name listed in the
10695 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10697 struct attribute *attr;
10701 case DW_TAG_namespace:
10702 case DW_TAG_typedef:
10703 case DW_TAG_class_type:
10704 case DW_TAG_interface_type:
10705 case DW_TAG_structure_type:
10706 case DW_TAG_union_type:
10707 case DW_TAG_enumeration_type:
10708 case DW_TAG_enumerator:
10709 case DW_TAG_subprogram:
10710 case DW_TAG_inlined_subroutine:
10711 case DW_TAG_member:
10712 case DW_TAG_imported_declaration:
10715 case DW_TAG_variable:
10716 case DW_TAG_constant:
10717 /* We only need to prefix "globally" visible variables. These include
10718 any variable marked with DW_AT_external or any variable that
10719 lives in a namespace. [Variables in anonymous namespaces
10720 require prefixing, but they are not DW_AT_external.] */
10722 if (dwarf2_attr (die, DW_AT_specification, cu))
10724 struct dwarf2_cu *spec_cu = cu;
10726 return die_needs_namespace (die_specification (die, &spec_cu),
10730 attr = dwarf2_attr (die, DW_AT_external, cu);
10731 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10732 && die->parent->tag != DW_TAG_module)
10734 /* A variable in a lexical block of some kind does not need a
10735 namespace, even though in C++ such variables may be external
10736 and have a mangled name. */
10737 if (die->parent->tag == DW_TAG_lexical_block
10738 || die->parent->tag == DW_TAG_try_block
10739 || die->parent->tag == DW_TAG_catch_block
10740 || die->parent->tag == DW_TAG_subprogram)
10749 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10750 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10751 defined for the given DIE. */
10753 static struct attribute *
10754 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10756 struct attribute *attr;
10758 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10760 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10765 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10766 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10767 defined for the given DIE. */
10769 static const char *
10770 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10772 const char *linkage_name;
10774 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10775 if (linkage_name == NULL)
10776 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10778 return linkage_name;
10781 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10782 compute the physname for the object, which include a method's:
10783 - formal parameters (C++),
10784 - receiver type (Go),
10786 The term "physname" is a bit confusing.
10787 For C++, for example, it is the demangled name.
10788 For Go, for example, it's the mangled name.
10790 For Ada, return the DIE's linkage name rather than the fully qualified
10791 name. PHYSNAME is ignored..
10793 The result is allocated on the objfile_obstack and canonicalized. */
10795 static const char *
10796 dwarf2_compute_name (const char *name,
10797 struct die_info *die, struct dwarf2_cu *cu,
10800 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10803 name = dwarf2_name (die, cu);
10805 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10806 but otherwise compute it by typename_concat inside GDB.
10807 FIXME: Actually this is not really true, or at least not always true.
10808 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10809 Fortran names because there is no mangling standard. So new_symbol
10810 will set the demangled name to the result of dwarf2_full_name, and it is
10811 the demangled name that GDB uses if it exists. */
10812 if (cu->language == language_ada
10813 || (cu->language == language_fortran && physname))
10815 /* For Ada unit, we prefer the linkage name over the name, as
10816 the former contains the exported name, which the user expects
10817 to be able to reference. Ideally, we want the user to be able
10818 to reference this entity using either natural or linkage name,
10819 but we haven't started looking at this enhancement yet. */
10820 const char *linkage_name = dw2_linkage_name (die, cu);
10822 if (linkage_name != NULL)
10823 return linkage_name;
10826 /* These are the only languages we know how to qualify names in. */
10828 && (cu->language == language_cplus
10829 || cu->language == language_fortran || cu->language == language_d
10830 || cu->language == language_rust))
10832 if (die_needs_namespace (die, cu))
10834 const char *prefix;
10835 const char *canonical_name = NULL;
10839 prefix = determine_prefix (die, cu);
10840 if (*prefix != '\0')
10842 char *prefixed_name = typename_concat (NULL, prefix, name,
10845 buf.puts (prefixed_name);
10846 xfree (prefixed_name);
10851 /* Template parameters may be specified in the DIE's DW_AT_name, or
10852 as children with DW_TAG_template_type_param or
10853 DW_TAG_value_type_param. If the latter, add them to the name
10854 here. If the name already has template parameters, then
10855 skip this step; some versions of GCC emit both, and
10856 it is more efficient to use the pre-computed name.
10858 Something to keep in mind about this process: it is very
10859 unlikely, or in some cases downright impossible, to produce
10860 something that will match the mangled name of a function.
10861 If the definition of the function has the same debug info,
10862 we should be able to match up with it anyway. But fallbacks
10863 using the minimal symbol, for instance to find a method
10864 implemented in a stripped copy of libstdc++, will not work.
10865 If we do not have debug info for the definition, we will have to
10866 match them up some other way.
10868 When we do name matching there is a related problem with function
10869 templates; two instantiated function templates are allowed to
10870 differ only by their return types, which we do not add here. */
10872 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10874 struct attribute *attr;
10875 struct die_info *child;
10878 die->building_fullname = 1;
10880 for (child = die->child; child != NULL; child = child->sibling)
10884 const gdb_byte *bytes;
10885 struct dwarf2_locexpr_baton *baton;
10888 if (child->tag != DW_TAG_template_type_param
10889 && child->tag != DW_TAG_template_value_param)
10900 attr = dwarf2_attr (child, DW_AT_type, cu);
10903 complaint (_("template parameter missing DW_AT_type"));
10904 buf.puts ("UNKNOWN_TYPE");
10907 type = die_type (child, cu);
10909 if (child->tag == DW_TAG_template_type_param)
10911 c_print_type (type, "", &buf, -1, 0, cu->language,
10912 &type_print_raw_options);
10916 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10919 complaint (_("template parameter missing "
10920 "DW_AT_const_value"));
10921 buf.puts ("UNKNOWN_VALUE");
10925 dwarf2_const_value_attr (attr, type, name,
10926 &cu->comp_unit_obstack, cu,
10927 &value, &bytes, &baton);
10929 if (TYPE_NOSIGN (type))
10930 /* GDB prints characters as NUMBER 'CHAR'. If that's
10931 changed, this can use value_print instead. */
10932 c_printchar (value, type, &buf);
10935 struct value_print_options opts;
10938 v = dwarf2_evaluate_loc_desc (type, NULL,
10942 else if (bytes != NULL)
10944 v = allocate_value (type);
10945 memcpy (value_contents_writeable (v), bytes,
10946 TYPE_LENGTH (type));
10949 v = value_from_longest (type, value);
10951 /* Specify decimal so that we do not depend on
10953 get_formatted_print_options (&opts, 'd');
10955 value_print (v, &buf, &opts);
10960 die->building_fullname = 0;
10964 /* Close the argument list, with a space if necessary
10965 (nested templates). */
10966 if (!buf.empty () && buf.string ().back () == '>')
10973 /* For C++ methods, append formal parameter type
10974 information, if PHYSNAME. */
10976 if (physname && die->tag == DW_TAG_subprogram
10977 && cu->language == language_cplus)
10979 struct type *type = read_type_die (die, cu);
10981 c_type_print_args (type, &buf, 1, cu->language,
10982 &type_print_raw_options);
10984 if (cu->language == language_cplus)
10986 /* Assume that an artificial first parameter is
10987 "this", but do not crash if it is not. RealView
10988 marks unnamed (and thus unused) parameters as
10989 artificial; there is no way to differentiate
10991 if (TYPE_NFIELDS (type) > 0
10992 && TYPE_FIELD_ARTIFICIAL (type, 0)
10993 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10994 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10996 buf.puts (" const");
11000 const std::string &intermediate_name = buf.string ();
11002 if (cu->language == language_cplus)
11004 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11005 &objfile->per_bfd->storage_obstack);
11007 /* If we only computed INTERMEDIATE_NAME, or if
11008 INTERMEDIATE_NAME is already canonical, then we need to
11009 copy it to the appropriate obstack. */
11010 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11011 name = ((const char *)
11012 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11013 intermediate_name.c_str (),
11014 intermediate_name.length ()));
11016 name = canonical_name;
11023 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11024 If scope qualifiers are appropriate they will be added. The result
11025 will be allocated on the storage_obstack, or NULL if the DIE does
11026 not have a name. NAME may either be from a previous call to
11027 dwarf2_name or NULL.
11029 The output string will be canonicalized (if C++). */
11031 static const char *
11032 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11034 return dwarf2_compute_name (name, die, cu, 0);
11037 /* Construct a physname for the given DIE in CU. NAME may either be
11038 from a previous call to dwarf2_name or NULL. The result will be
11039 allocated on the objfile_objstack or NULL if the DIE does not have a
11042 The output string will be canonicalized (if C++). */
11044 static const char *
11045 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11047 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11048 const char *retval, *mangled = NULL, *canon = NULL;
11051 /* In this case dwarf2_compute_name is just a shortcut not building anything
11053 if (!die_needs_namespace (die, cu))
11054 return dwarf2_compute_name (name, die, cu, 1);
11056 mangled = dw2_linkage_name (die, cu);
11058 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11059 See https://github.com/rust-lang/rust/issues/32925. */
11060 if (cu->language == language_rust && mangled != NULL
11061 && strchr (mangled, '{') != NULL)
11064 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11066 gdb::unique_xmalloc_ptr<char> demangled;
11067 if (mangled != NULL)
11070 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11072 /* Do nothing (do not demangle the symbol name). */
11074 else if (cu->language == language_go)
11076 /* This is a lie, but we already lie to the caller new_symbol.
11077 new_symbol assumes we return the mangled name.
11078 This just undoes that lie until things are cleaned up. */
11082 /* Use DMGL_RET_DROP for C++ template functions to suppress
11083 their return type. It is easier for GDB users to search
11084 for such functions as `name(params)' than `long name(params)'.
11085 In such case the minimal symbol names do not match the full
11086 symbol names but for template functions there is never a need
11087 to look up their definition from their declaration so
11088 the only disadvantage remains the minimal symbol variant
11089 `long name(params)' does not have the proper inferior type. */
11090 demangled.reset (gdb_demangle (mangled,
11091 (DMGL_PARAMS | DMGL_ANSI
11092 | DMGL_RET_DROP)));
11095 canon = demangled.get ();
11103 if (canon == NULL || check_physname)
11105 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11107 if (canon != NULL && strcmp (physname, canon) != 0)
11109 /* It may not mean a bug in GDB. The compiler could also
11110 compute DW_AT_linkage_name incorrectly. But in such case
11111 GDB would need to be bug-to-bug compatible. */
11113 complaint (_("Computed physname <%s> does not match demangled <%s> "
11114 "(from linkage <%s>) - DIE at %s [in module %s]"),
11115 physname, canon, mangled, sect_offset_str (die->sect_off),
11116 objfile_name (objfile));
11118 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11119 is available here - over computed PHYSNAME. It is safer
11120 against both buggy GDB and buggy compilers. */
11134 retval = ((const char *)
11135 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11136 retval, strlen (retval)));
11141 /* Inspect DIE in CU for a namespace alias. If one exists, record
11142 a new symbol for it.
11144 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11147 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11149 struct attribute *attr;
11151 /* If the die does not have a name, this is not a namespace
11153 attr = dwarf2_attr (die, DW_AT_name, cu);
11157 struct die_info *d = die;
11158 struct dwarf2_cu *imported_cu = cu;
11160 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11161 keep inspecting DIEs until we hit the underlying import. */
11162 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11163 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11165 attr = dwarf2_attr (d, DW_AT_import, cu);
11169 d = follow_die_ref (d, attr, &imported_cu);
11170 if (d->tag != DW_TAG_imported_declaration)
11174 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11176 complaint (_("DIE at %s has too many recursively imported "
11177 "declarations"), sect_offset_str (d->sect_off));
11184 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11186 type = get_die_type_at_offset (sect_off, cu->per_cu);
11187 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11189 /* This declaration is a global namespace alias. Add
11190 a symbol for it whose type is the aliased namespace. */
11191 new_symbol (die, type, cu);
11200 /* Return the using directives repository (global or local?) to use in the
11201 current context for CU.
11203 For Ada, imported declarations can materialize renamings, which *may* be
11204 global. However it is impossible (for now?) in DWARF to distinguish
11205 "external" imported declarations and "static" ones. As all imported
11206 declarations seem to be static in all other languages, make them all CU-wide
11207 global only in Ada. */
11209 static struct using_direct **
11210 using_directives (struct dwarf2_cu *cu)
11212 if (cu->language == language_ada
11213 && cu->get_builder ()->outermost_context_p ())
11214 return cu->get_builder ()->get_global_using_directives ();
11216 return cu->get_builder ()->get_local_using_directives ();
11219 /* Read the import statement specified by the given die and record it. */
11222 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11224 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11225 struct attribute *import_attr;
11226 struct die_info *imported_die, *child_die;
11227 struct dwarf2_cu *imported_cu;
11228 const char *imported_name;
11229 const char *imported_name_prefix;
11230 const char *canonical_name;
11231 const char *import_alias;
11232 const char *imported_declaration = NULL;
11233 const char *import_prefix;
11234 std::vector<const char *> excludes;
11236 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11237 if (import_attr == NULL)
11239 complaint (_("Tag '%s' has no DW_AT_import"),
11240 dwarf_tag_name (die->tag));
11245 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11246 imported_name = dwarf2_name (imported_die, imported_cu);
11247 if (imported_name == NULL)
11249 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11251 The import in the following code:
11265 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11266 <52> DW_AT_decl_file : 1
11267 <53> DW_AT_decl_line : 6
11268 <54> DW_AT_import : <0x75>
11269 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11270 <59> DW_AT_name : B
11271 <5b> DW_AT_decl_file : 1
11272 <5c> DW_AT_decl_line : 2
11273 <5d> DW_AT_type : <0x6e>
11275 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11276 <76> DW_AT_byte_size : 4
11277 <77> DW_AT_encoding : 5 (signed)
11279 imports the wrong die ( 0x75 instead of 0x58 ).
11280 This case will be ignored until the gcc bug is fixed. */
11284 /* Figure out the local name after import. */
11285 import_alias = dwarf2_name (die, cu);
11287 /* Figure out where the statement is being imported to. */
11288 import_prefix = determine_prefix (die, cu);
11290 /* Figure out what the scope of the imported die is and prepend it
11291 to the name of the imported die. */
11292 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11294 if (imported_die->tag != DW_TAG_namespace
11295 && imported_die->tag != DW_TAG_module)
11297 imported_declaration = imported_name;
11298 canonical_name = imported_name_prefix;
11300 else if (strlen (imported_name_prefix) > 0)
11301 canonical_name = obconcat (&objfile->objfile_obstack,
11302 imported_name_prefix,
11303 (cu->language == language_d ? "." : "::"),
11304 imported_name, (char *) NULL);
11306 canonical_name = imported_name;
11308 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11309 for (child_die = die->child; child_die && child_die->tag;
11310 child_die = sibling_die (child_die))
11312 /* DWARF-4: A Fortran use statement with a “rename list” may be
11313 represented by an imported module entry with an import attribute
11314 referring to the module and owned entries corresponding to those
11315 entities that are renamed as part of being imported. */
11317 if (child_die->tag != DW_TAG_imported_declaration)
11319 complaint (_("child DW_TAG_imported_declaration expected "
11320 "- DIE at %s [in module %s]"),
11321 sect_offset_str (child_die->sect_off),
11322 objfile_name (objfile));
11326 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11327 if (import_attr == NULL)
11329 complaint (_("Tag '%s' has no DW_AT_import"),
11330 dwarf_tag_name (child_die->tag));
11335 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11337 imported_name = dwarf2_name (imported_die, imported_cu);
11338 if (imported_name == NULL)
11340 complaint (_("child DW_TAG_imported_declaration has unknown "
11341 "imported name - DIE at %s [in module %s]"),
11342 sect_offset_str (child_die->sect_off),
11343 objfile_name (objfile));
11347 excludes.push_back (imported_name);
11349 process_die (child_die, cu);
11352 add_using_directive (using_directives (cu),
11356 imported_declaration,
11359 &objfile->objfile_obstack);
11362 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11363 types, but gives them a size of zero. Starting with version 14,
11364 ICC is compatible with GCC. */
11367 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11369 if (!cu->checked_producer)
11370 check_producer (cu);
11372 return cu->producer_is_icc_lt_14;
11375 /* ICC generates a DW_AT_type for C void functions. This was observed on
11376 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11377 which says that void functions should not have a DW_AT_type. */
11380 producer_is_icc (struct dwarf2_cu *cu)
11382 if (!cu->checked_producer)
11383 check_producer (cu);
11385 return cu->producer_is_icc;
11388 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11389 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11390 this, it was first present in GCC release 4.3.0. */
11393 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11395 if (!cu->checked_producer)
11396 check_producer (cu);
11398 return cu->producer_is_gcc_lt_4_3;
11401 static file_and_directory
11402 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11404 file_and_directory res;
11406 /* Find the filename. Do not use dwarf2_name here, since the filename
11407 is not a source language identifier. */
11408 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11409 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11411 if (res.comp_dir == NULL
11412 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11413 && IS_ABSOLUTE_PATH (res.name))
11415 res.comp_dir_storage = ldirname (res.name);
11416 if (!res.comp_dir_storage.empty ())
11417 res.comp_dir = res.comp_dir_storage.c_str ();
11419 if (res.comp_dir != NULL)
11421 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11422 directory, get rid of it. */
11423 const char *cp = strchr (res.comp_dir, ':');
11425 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11426 res.comp_dir = cp + 1;
11429 if (res.name == NULL)
11430 res.name = "<unknown>";
11435 /* Handle DW_AT_stmt_list for a compilation unit.
11436 DIE is the DW_TAG_compile_unit die for CU.
11437 COMP_DIR is the compilation directory. LOWPC is passed to
11438 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11441 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11442 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11444 struct dwarf2_per_objfile *dwarf2_per_objfile
11445 = cu->per_cu->dwarf2_per_objfile;
11446 struct objfile *objfile = dwarf2_per_objfile->objfile;
11447 struct attribute *attr;
11448 struct line_header line_header_local;
11449 hashval_t line_header_local_hash;
11451 int decode_mapping;
11453 gdb_assert (! cu->per_cu->is_debug_types);
11455 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11459 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11461 /* The line header hash table is only created if needed (it exists to
11462 prevent redundant reading of the line table for partial_units).
11463 If we're given a partial_unit, we'll need it. If we're given a
11464 compile_unit, then use the line header hash table if it's already
11465 created, but don't create one just yet. */
11467 if (dwarf2_per_objfile->line_header_hash == NULL
11468 && die->tag == DW_TAG_partial_unit)
11470 dwarf2_per_objfile->line_header_hash
11471 = htab_create_alloc_ex (127, line_header_hash_voidp,
11472 line_header_eq_voidp,
11473 free_line_header_voidp,
11474 &objfile->objfile_obstack,
11475 hashtab_obstack_allocate,
11476 dummy_obstack_deallocate);
11479 line_header_local.sect_off = line_offset;
11480 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11481 line_header_local_hash = line_header_hash (&line_header_local);
11482 if (dwarf2_per_objfile->line_header_hash != NULL)
11484 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11485 &line_header_local,
11486 line_header_local_hash, NO_INSERT);
11488 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11489 is not present in *SLOT (since if there is something in *SLOT then
11490 it will be for a partial_unit). */
11491 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11493 gdb_assert (*slot != NULL);
11494 cu->line_header = (struct line_header *) *slot;
11499 /* dwarf_decode_line_header does not yet provide sufficient information.
11500 We always have to call also dwarf_decode_lines for it. */
11501 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11505 cu->line_header = lh.release ();
11506 cu->line_header_die_owner = die;
11508 if (dwarf2_per_objfile->line_header_hash == NULL)
11512 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11513 &line_header_local,
11514 line_header_local_hash, INSERT);
11515 gdb_assert (slot != NULL);
11517 if (slot != NULL && *slot == NULL)
11519 /* This newly decoded line number information unit will be owned
11520 by line_header_hash hash table. */
11521 *slot = cu->line_header;
11522 cu->line_header_die_owner = NULL;
11526 /* We cannot free any current entry in (*slot) as that struct line_header
11527 may be already used by multiple CUs. Create only temporary decoded
11528 line_header for this CU - it may happen at most once for each line
11529 number information unit. And if we're not using line_header_hash
11530 then this is what we want as well. */
11531 gdb_assert (die->tag != DW_TAG_partial_unit);
11533 decode_mapping = (die->tag != DW_TAG_partial_unit);
11534 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11539 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11542 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11544 struct dwarf2_per_objfile *dwarf2_per_objfile
11545 = cu->per_cu->dwarf2_per_objfile;
11546 struct objfile *objfile = dwarf2_per_objfile->objfile;
11547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11548 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11549 CORE_ADDR highpc = ((CORE_ADDR) 0);
11550 struct attribute *attr;
11551 struct die_info *child_die;
11552 CORE_ADDR baseaddr;
11554 prepare_one_comp_unit (cu, die, cu->language);
11555 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11557 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11559 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11560 from finish_block. */
11561 if (lowpc == ((CORE_ADDR) -1))
11563 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11565 file_and_directory fnd = find_file_and_directory (die, cu);
11567 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11568 standardised yet. As a workaround for the language detection we fall
11569 back to the DW_AT_producer string. */
11570 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11571 cu->language = language_opencl;
11573 /* Similar hack for Go. */
11574 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11575 set_cu_language (DW_LANG_Go, cu);
11577 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11579 /* Decode line number information if present. We do this before
11580 processing child DIEs, so that the line header table is available
11581 for DW_AT_decl_file. */
11582 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11584 /* Process all dies in compilation unit. */
11585 if (die->child != NULL)
11587 child_die = die->child;
11588 while (child_die && child_die->tag)
11590 process_die (child_die, cu);
11591 child_die = sibling_die (child_die);
11595 /* Decode macro information, if present. Dwarf 2 macro information
11596 refers to information in the line number info statement program
11597 header, so we can only read it if we've read the header
11599 attr = dwarf2_attr (die, DW_AT_macros, cu);
11601 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11602 if (attr && cu->line_header)
11604 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11605 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11607 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11611 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11612 if (attr && cu->line_header)
11614 unsigned int macro_offset = DW_UNSND (attr);
11616 dwarf_decode_macros (cu, macro_offset, 0);
11622 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11624 struct type_unit_group *tu_group;
11626 struct attribute *attr;
11628 struct signatured_type *sig_type;
11630 gdb_assert (per_cu->is_debug_types);
11631 sig_type = (struct signatured_type *) per_cu;
11633 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11635 /* If we're using .gdb_index (includes -readnow) then
11636 per_cu->type_unit_group may not have been set up yet. */
11637 if (sig_type->type_unit_group == NULL)
11638 sig_type->type_unit_group = get_type_unit_group (this, attr);
11639 tu_group = sig_type->type_unit_group;
11641 /* If we've already processed this stmt_list there's no real need to
11642 do it again, we could fake it and just recreate the part we need
11643 (file name,index -> symtab mapping). If data shows this optimization
11644 is useful we can do it then. */
11645 first_time = tu_group->compunit_symtab == NULL;
11647 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11652 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11653 lh = dwarf_decode_line_header (line_offset, this);
11658 start_symtab ("", NULL, 0);
11661 gdb_assert (tu_group->symtabs == NULL);
11662 gdb_assert (m_builder == nullptr);
11663 struct compunit_symtab *cust = tu_group->compunit_symtab;
11664 m_builder.reset (new struct buildsym_compunit
11665 (COMPUNIT_OBJFILE (cust), "",
11666 COMPUNIT_DIRNAME (cust),
11667 compunit_language (cust),
11673 line_header = lh.release ();
11674 line_header_die_owner = die;
11678 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11680 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11681 still initializing it, and our caller (a few levels up)
11682 process_full_type_unit still needs to know if this is the first
11685 tu_group->num_symtabs = line_header->file_names.size ();
11686 tu_group->symtabs = XNEWVEC (struct symtab *,
11687 line_header->file_names.size ());
11689 for (i = 0; i < line_header->file_names.size (); ++i)
11691 file_entry &fe = line_header->file_names[i];
11693 dwarf2_start_subfile (this, fe.name,
11694 fe.include_dir (line_header));
11695 buildsym_compunit *b = get_builder ();
11696 if (b->get_current_subfile ()->symtab == NULL)
11698 /* NOTE: start_subfile will recognize when it's been
11699 passed a file it has already seen. So we can't
11700 assume there's a simple mapping from
11701 cu->line_header->file_names to subfiles, plus
11702 cu->line_header->file_names may contain dups. */
11703 b->get_current_subfile ()->symtab
11704 = allocate_symtab (cust, b->get_current_subfile ()->name);
11707 fe.symtab = b->get_current_subfile ()->symtab;
11708 tu_group->symtabs[i] = fe.symtab;
11713 gdb_assert (m_builder == nullptr);
11714 struct compunit_symtab *cust = tu_group->compunit_symtab;
11715 m_builder.reset (new struct buildsym_compunit
11716 (COMPUNIT_OBJFILE (cust), "",
11717 COMPUNIT_DIRNAME (cust),
11718 compunit_language (cust),
11721 for (i = 0; i < line_header->file_names.size (); ++i)
11723 file_entry &fe = line_header->file_names[i];
11725 fe.symtab = tu_group->symtabs[i];
11729 /* The main symtab is allocated last. Type units don't have DW_AT_name
11730 so they don't have a "real" (so to speak) symtab anyway.
11731 There is later code that will assign the main symtab to all symbols
11732 that don't have one. We need to handle the case of a symbol with a
11733 missing symtab (DW_AT_decl_file) anyway. */
11736 /* Process DW_TAG_type_unit.
11737 For TUs we want to skip the first top level sibling if it's not the
11738 actual type being defined by this TU. In this case the first top
11739 level sibling is there to provide context only. */
11742 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11744 struct die_info *child_die;
11746 prepare_one_comp_unit (cu, die, language_minimal);
11748 /* Initialize (or reinitialize) the machinery for building symtabs.
11749 We do this before processing child DIEs, so that the line header table
11750 is available for DW_AT_decl_file. */
11751 cu->setup_type_unit_groups (die);
11753 if (die->child != NULL)
11755 child_die = die->child;
11756 while (child_die && child_die->tag)
11758 process_die (child_die, cu);
11759 child_die = sibling_die (child_die);
11766 http://gcc.gnu.org/wiki/DebugFission
11767 http://gcc.gnu.org/wiki/DebugFissionDWP
11769 To simplify handling of both DWO files ("object" files with the DWARF info)
11770 and DWP files (a file with the DWOs packaged up into one file), we treat
11771 DWP files as having a collection of virtual DWO files. */
11774 hash_dwo_file (const void *item)
11776 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11779 hash = htab_hash_string (dwo_file->dwo_name);
11780 if (dwo_file->comp_dir != NULL)
11781 hash += htab_hash_string (dwo_file->comp_dir);
11786 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11788 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11789 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11791 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11793 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11794 return lhs->comp_dir == rhs->comp_dir;
11795 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11798 /* Allocate a hash table for DWO files. */
11801 allocate_dwo_file_hash_table (struct objfile *objfile)
11803 return htab_create_alloc_ex (41,
11807 &objfile->objfile_obstack,
11808 hashtab_obstack_allocate,
11809 dummy_obstack_deallocate);
11812 /* Lookup DWO file DWO_NAME. */
11815 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11816 const char *dwo_name,
11817 const char *comp_dir)
11819 struct dwo_file find_entry;
11822 if (dwarf2_per_objfile->dwo_files == NULL)
11823 dwarf2_per_objfile->dwo_files
11824 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11826 memset (&find_entry, 0, sizeof (find_entry));
11827 find_entry.dwo_name = dwo_name;
11828 find_entry.comp_dir = comp_dir;
11829 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11835 hash_dwo_unit (const void *item)
11837 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11839 /* This drops the top 32 bits of the id, but is ok for a hash. */
11840 return dwo_unit->signature;
11844 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11846 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11847 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11849 /* The signature is assumed to be unique within the DWO file.
11850 So while object file CU dwo_id's always have the value zero,
11851 that's OK, assuming each object file DWO file has only one CU,
11852 and that's the rule for now. */
11853 return lhs->signature == rhs->signature;
11856 /* Allocate a hash table for DWO CUs,TUs.
11857 There is one of these tables for each of CUs,TUs for each DWO file. */
11860 allocate_dwo_unit_table (struct objfile *objfile)
11862 /* Start out with a pretty small number.
11863 Generally DWO files contain only one CU and maybe some TUs. */
11864 return htab_create_alloc_ex (3,
11868 &objfile->objfile_obstack,
11869 hashtab_obstack_allocate,
11870 dummy_obstack_deallocate);
11873 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11875 struct create_dwo_cu_data
11877 struct dwo_file *dwo_file;
11878 struct dwo_unit dwo_unit;
11881 /* die_reader_func for create_dwo_cu. */
11884 create_dwo_cu_reader (const struct die_reader_specs *reader,
11885 const gdb_byte *info_ptr,
11886 struct die_info *comp_unit_die,
11890 struct dwarf2_cu *cu = reader->cu;
11891 sect_offset sect_off = cu->per_cu->sect_off;
11892 struct dwarf2_section_info *section = cu->per_cu->section;
11893 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11894 struct dwo_file *dwo_file = data->dwo_file;
11895 struct dwo_unit *dwo_unit = &data->dwo_unit;
11896 struct attribute *attr;
11898 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11901 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11902 " its dwo_id [in module %s]"),
11903 sect_offset_str (sect_off), dwo_file->dwo_name);
11907 dwo_unit->dwo_file = dwo_file;
11908 dwo_unit->signature = DW_UNSND (attr);
11909 dwo_unit->section = section;
11910 dwo_unit->sect_off = sect_off;
11911 dwo_unit->length = cu->per_cu->length;
11913 if (dwarf_read_debug)
11914 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11915 sect_offset_str (sect_off),
11916 hex_string (dwo_unit->signature));
11919 /* Create the dwo_units for the CUs in a DWO_FILE.
11920 Note: This function processes DWO files only, not DWP files. */
11923 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11924 struct dwo_file &dwo_file, dwarf2_section_info §ion,
11927 struct objfile *objfile = dwarf2_per_objfile->objfile;
11928 const gdb_byte *info_ptr, *end_ptr;
11930 dwarf2_read_section (objfile, §ion);
11931 info_ptr = section.buffer;
11933 if (info_ptr == NULL)
11936 if (dwarf_read_debug)
11938 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11939 get_section_name (§ion),
11940 get_section_file_name (§ion));
11943 end_ptr = info_ptr + section.size;
11944 while (info_ptr < end_ptr)
11946 struct dwarf2_per_cu_data per_cu;
11947 struct create_dwo_cu_data create_dwo_cu_data;
11948 struct dwo_unit *dwo_unit;
11950 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11952 memset (&create_dwo_cu_data.dwo_unit, 0,
11953 sizeof (create_dwo_cu_data.dwo_unit));
11954 memset (&per_cu, 0, sizeof (per_cu));
11955 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11956 per_cu.is_debug_types = 0;
11957 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11958 per_cu.section = §ion;
11959 create_dwo_cu_data.dwo_file = &dwo_file;
11961 init_cutu_and_read_dies_no_follow (
11962 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11963 info_ptr += per_cu.length;
11965 // If the unit could not be parsed, skip it.
11966 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11969 if (cus_htab == NULL)
11970 cus_htab = allocate_dwo_unit_table (objfile);
11972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11973 *dwo_unit = create_dwo_cu_data.dwo_unit;
11974 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11975 gdb_assert (slot != NULL);
11978 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11979 sect_offset dup_sect_off = dup_cu->sect_off;
11981 complaint (_("debug cu entry at offset %s is duplicate to"
11982 " the entry at offset %s, signature %s"),
11983 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11984 hex_string (dwo_unit->signature));
11986 *slot = (void *)dwo_unit;
11990 /* DWP file .debug_{cu,tu}_index section format:
11991 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11995 Both index sections have the same format, and serve to map a 64-bit
11996 signature to a set of section numbers. Each section begins with a header,
11997 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11998 indexes, and a pool of 32-bit section numbers. The index sections will be
11999 aligned at 8-byte boundaries in the file.
12001 The index section header consists of:
12003 V, 32 bit version number
12005 N, 32 bit number of compilation units or type units in the index
12006 M, 32 bit number of slots in the hash table
12008 Numbers are recorded using the byte order of the application binary.
12010 The hash table begins at offset 16 in the section, and consists of an array
12011 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12012 order of the application binary). Unused slots in the hash table are 0.
12013 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12015 The parallel table begins immediately after the hash table
12016 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12017 array of 32-bit indexes (using the byte order of the application binary),
12018 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12019 table contains a 32-bit index into the pool of section numbers. For unused
12020 hash table slots, the corresponding entry in the parallel table will be 0.
12022 The pool of section numbers begins immediately following the hash table
12023 (at offset 16 + 12 * M from the beginning of the section). The pool of
12024 section numbers consists of an array of 32-bit words (using the byte order
12025 of the application binary). Each item in the array is indexed starting
12026 from 0. The hash table entry provides the index of the first section
12027 number in the set. Additional section numbers in the set follow, and the
12028 set is terminated by a 0 entry (section number 0 is not used in ELF).
12030 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12031 section must be the first entry in the set, and the .debug_abbrev.dwo must
12032 be the second entry. Other members of the set may follow in any order.
12038 DWP Version 2 combines all the .debug_info, etc. sections into one,
12039 and the entries in the index tables are now offsets into these sections.
12040 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12043 Index Section Contents:
12045 Hash Table of Signatures dwp_hash_table.hash_table
12046 Parallel Table of Indices dwp_hash_table.unit_table
12047 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12048 Table of Section Sizes dwp_hash_table.v2.sizes
12050 The index section header consists of:
12052 V, 32 bit version number
12053 L, 32 bit number of columns in the table of section offsets
12054 N, 32 bit number of compilation units or type units in the index
12055 M, 32 bit number of slots in the hash table
12057 Numbers are recorded using the byte order of the application binary.
12059 The hash table has the same format as version 1.
12060 The parallel table of indices has the same format as version 1,
12061 except that the entries are origin-1 indices into the table of sections
12062 offsets and the table of section sizes.
12064 The table of offsets begins immediately following the parallel table
12065 (at offset 16 + 12 * M from the beginning of the section). The table is
12066 a two-dimensional array of 32-bit words (using the byte order of the
12067 application binary), with L columns and N+1 rows, in row-major order.
12068 Each row in the array is indexed starting from 0. The first row provides
12069 a key to the remaining rows: each column in this row provides an identifier
12070 for a debug section, and the offsets in the same column of subsequent rows
12071 refer to that section. The section identifiers are:
12073 DW_SECT_INFO 1 .debug_info.dwo
12074 DW_SECT_TYPES 2 .debug_types.dwo
12075 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12076 DW_SECT_LINE 4 .debug_line.dwo
12077 DW_SECT_LOC 5 .debug_loc.dwo
12078 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12079 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12080 DW_SECT_MACRO 8 .debug_macro.dwo
12082 The offsets provided by the CU and TU index sections are the base offsets
12083 for the contributions made by each CU or TU to the corresponding section
12084 in the package file. Each CU and TU header contains an abbrev_offset
12085 field, used to find the abbreviations table for that CU or TU within the
12086 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12087 be interpreted as relative to the base offset given in the index section.
12088 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12089 should be interpreted as relative to the base offset for .debug_line.dwo,
12090 and offsets into other debug sections obtained from DWARF attributes should
12091 also be interpreted as relative to the corresponding base offset.
12093 The table of sizes begins immediately following the table of offsets.
12094 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12095 with L columns and N rows, in row-major order. Each row in the array is
12096 indexed starting from 1 (row 0 is shared by the two tables).
12100 Hash table lookup is handled the same in version 1 and 2:
12102 We assume that N and M will not exceed 2^32 - 1.
12103 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12105 Given a 64-bit compilation unit signature or a type signature S, an entry
12106 in the hash table is located as follows:
12108 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12109 the low-order k bits all set to 1.
12111 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12113 3) If the hash table entry at index H matches the signature, use that
12114 entry. If the hash table entry at index H is unused (all zeroes),
12115 terminate the search: the signature is not present in the table.
12117 4) Let H = (H + H') modulo M. Repeat at Step 3.
12119 Because M > N and H' and M are relatively prime, the search is guaranteed
12120 to stop at an unused slot or find the match. */
12122 /* Create a hash table to map DWO IDs to their CU/TU entry in
12123 .debug_{info,types}.dwo in DWP_FILE.
12124 Returns NULL if there isn't one.
12125 Note: This function processes DWP files only, not DWO files. */
12127 static struct dwp_hash_table *
12128 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12129 struct dwp_file *dwp_file, int is_debug_types)
12131 struct objfile *objfile = dwarf2_per_objfile->objfile;
12132 bfd *dbfd = dwp_file->dbfd.get ();
12133 const gdb_byte *index_ptr, *index_end;
12134 struct dwarf2_section_info *index;
12135 uint32_t version, nr_columns, nr_units, nr_slots;
12136 struct dwp_hash_table *htab;
12138 if (is_debug_types)
12139 index = &dwp_file->sections.tu_index;
12141 index = &dwp_file->sections.cu_index;
12143 if (dwarf2_section_empty_p (index))
12145 dwarf2_read_section (objfile, index);
12147 index_ptr = index->buffer;
12148 index_end = index_ptr + index->size;
12150 version = read_4_bytes (dbfd, index_ptr);
12153 nr_columns = read_4_bytes (dbfd, index_ptr);
12157 nr_units = read_4_bytes (dbfd, index_ptr);
12159 nr_slots = read_4_bytes (dbfd, index_ptr);
12162 if (version != 1 && version != 2)
12164 error (_("Dwarf Error: unsupported DWP file version (%s)"
12165 " [in module %s]"),
12166 pulongest (version), dwp_file->name);
12168 if (nr_slots != (nr_slots & -nr_slots))
12170 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12171 " is not power of 2 [in module %s]"),
12172 pulongest (nr_slots), dwp_file->name);
12175 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12176 htab->version = version;
12177 htab->nr_columns = nr_columns;
12178 htab->nr_units = nr_units;
12179 htab->nr_slots = nr_slots;
12180 htab->hash_table = index_ptr;
12181 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12183 /* Exit early if the table is empty. */
12184 if (nr_slots == 0 || nr_units == 0
12185 || (version == 2 && nr_columns == 0))
12187 /* All must be zero. */
12188 if (nr_slots != 0 || nr_units != 0
12189 || (version == 2 && nr_columns != 0))
12191 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12192 " all zero [in modules %s]"),
12200 htab->section_pool.v1.indices =
12201 htab->unit_table + sizeof (uint32_t) * nr_slots;
12202 /* It's harder to decide whether the section is too small in v1.
12203 V1 is deprecated anyway so we punt. */
12207 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12208 int *ids = htab->section_pool.v2.section_ids;
12209 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12210 /* Reverse map for error checking. */
12211 int ids_seen[DW_SECT_MAX + 1];
12214 if (nr_columns < 2)
12216 error (_("Dwarf Error: bad DWP hash table, too few columns"
12217 " in section table [in module %s]"),
12220 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12222 error (_("Dwarf Error: bad DWP hash table, too many columns"
12223 " in section table [in module %s]"),
12226 memset (ids, 255, sizeof_ids);
12227 memset (ids_seen, 255, sizeof (ids_seen));
12228 for (i = 0; i < nr_columns; ++i)
12230 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12232 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12234 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12235 " in section table [in module %s]"),
12236 id, dwp_file->name);
12238 if (ids_seen[id] != -1)
12240 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12241 " id %d in section table [in module %s]"),
12242 id, dwp_file->name);
12247 /* Must have exactly one info or types section. */
12248 if (((ids_seen[DW_SECT_INFO] != -1)
12249 + (ids_seen[DW_SECT_TYPES] != -1))
12252 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12253 " DWO info/types section [in module %s]"),
12256 /* Must have an abbrev section. */
12257 if (ids_seen[DW_SECT_ABBREV] == -1)
12259 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12260 " section [in module %s]"),
12263 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12264 htab->section_pool.v2.sizes =
12265 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12266 * nr_units * nr_columns);
12267 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12268 * nr_units * nr_columns))
12271 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12272 " [in module %s]"),
12280 /* Update SECTIONS with the data from SECTP.
12282 This function is like the other "locate" section routines that are
12283 passed to bfd_map_over_sections, but in this context the sections to
12284 read comes from the DWP V1 hash table, not the full ELF section table.
12286 The result is non-zero for success, or zero if an error was found. */
12289 locate_v1_virtual_dwo_sections (asection *sectp,
12290 struct virtual_v1_dwo_sections *sections)
12292 const struct dwop_section_names *names = &dwop_section_names;
12294 if (section_is_p (sectp->name, &names->abbrev_dwo))
12296 /* There can be only one. */
12297 if (sections->abbrev.s.section != NULL)
12299 sections->abbrev.s.section = sectp;
12300 sections->abbrev.size = bfd_get_section_size (sectp);
12302 else if (section_is_p (sectp->name, &names->info_dwo)
12303 || section_is_p (sectp->name, &names->types_dwo))
12305 /* There can be only one. */
12306 if (sections->info_or_types.s.section != NULL)
12308 sections->info_or_types.s.section = sectp;
12309 sections->info_or_types.size = bfd_get_section_size (sectp);
12311 else if (section_is_p (sectp->name, &names->line_dwo))
12313 /* There can be only one. */
12314 if (sections->line.s.section != NULL)
12316 sections->line.s.section = sectp;
12317 sections->line.size = bfd_get_section_size (sectp);
12319 else if (section_is_p (sectp->name, &names->loc_dwo))
12321 /* There can be only one. */
12322 if (sections->loc.s.section != NULL)
12324 sections->loc.s.section = sectp;
12325 sections->loc.size = bfd_get_section_size (sectp);
12327 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12329 /* There can be only one. */
12330 if (sections->macinfo.s.section != NULL)
12332 sections->macinfo.s.section = sectp;
12333 sections->macinfo.size = bfd_get_section_size (sectp);
12335 else if (section_is_p (sectp->name, &names->macro_dwo))
12337 /* There can be only one. */
12338 if (sections->macro.s.section != NULL)
12340 sections->macro.s.section = sectp;
12341 sections->macro.size = bfd_get_section_size (sectp);
12343 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12345 /* There can be only one. */
12346 if (sections->str_offsets.s.section != NULL)
12348 sections->str_offsets.s.section = sectp;
12349 sections->str_offsets.size = bfd_get_section_size (sectp);
12353 /* No other kind of section is valid. */
12360 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12361 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12362 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12363 This is for DWP version 1 files. */
12365 static struct dwo_unit *
12366 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12367 struct dwp_file *dwp_file,
12368 uint32_t unit_index,
12369 const char *comp_dir,
12370 ULONGEST signature, int is_debug_types)
12372 struct objfile *objfile = dwarf2_per_objfile->objfile;
12373 const struct dwp_hash_table *dwp_htab =
12374 is_debug_types ? dwp_file->tus : dwp_file->cus;
12375 bfd *dbfd = dwp_file->dbfd.get ();
12376 const char *kind = is_debug_types ? "TU" : "CU";
12377 struct dwo_file *dwo_file;
12378 struct dwo_unit *dwo_unit;
12379 struct virtual_v1_dwo_sections sections;
12380 void **dwo_file_slot;
12383 gdb_assert (dwp_file->version == 1);
12385 if (dwarf_read_debug)
12387 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12389 pulongest (unit_index), hex_string (signature),
12393 /* Fetch the sections of this DWO unit.
12394 Put a limit on the number of sections we look for so that bad data
12395 doesn't cause us to loop forever. */
12397 #define MAX_NR_V1_DWO_SECTIONS \
12398 (1 /* .debug_info or .debug_types */ \
12399 + 1 /* .debug_abbrev */ \
12400 + 1 /* .debug_line */ \
12401 + 1 /* .debug_loc */ \
12402 + 1 /* .debug_str_offsets */ \
12403 + 1 /* .debug_macro or .debug_macinfo */ \
12404 + 1 /* trailing zero */)
12406 memset (§ions, 0, sizeof (sections));
12408 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12411 uint32_t section_nr =
12412 read_4_bytes (dbfd,
12413 dwp_htab->section_pool.v1.indices
12414 + (unit_index + i) * sizeof (uint32_t));
12416 if (section_nr == 0)
12418 if (section_nr >= dwp_file->num_sections)
12420 error (_("Dwarf Error: bad DWP hash table, section number too large"
12421 " [in module %s]"),
12425 sectp = dwp_file->elf_sections[section_nr];
12426 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12428 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12429 " [in module %s]"),
12435 || dwarf2_section_empty_p (§ions.info_or_types)
12436 || dwarf2_section_empty_p (§ions.abbrev))
12438 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12439 " [in module %s]"),
12442 if (i == MAX_NR_V1_DWO_SECTIONS)
12444 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12445 " [in module %s]"),
12449 /* It's easier for the rest of the code if we fake a struct dwo_file and
12450 have dwo_unit "live" in that. At least for now.
12452 The DWP file can be made up of a random collection of CUs and TUs.
12453 However, for each CU + set of TUs that came from the same original DWO
12454 file, we can combine them back into a virtual DWO file to save space
12455 (fewer struct dwo_file objects to allocate). Remember that for really
12456 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12458 std::string virtual_dwo_name =
12459 string_printf ("virtual-dwo/%d-%d-%d-%d",
12460 get_section_id (§ions.abbrev),
12461 get_section_id (§ions.line),
12462 get_section_id (§ions.loc),
12463 get_section_id (§ions.str_offsets));
12464 /* Can we use an existing virtual DWO file? */
12465 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12466 virtual_dwo_name.c_str (),
12468 /* Create one if necessary. */
12469 if (*dwo_file_slot == NULL)
12471 if (dwarf_read_debug)
12473 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12474 virtual_dwo_name.c_str ());
12476 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12478 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12479 virtual_dwo_name.c_str (),
12480 virtual_dwo_name.size ());
12481 dwo_file->comp_dir = comp_dir;
12482 dwo_file->sections.abbrev = sections.abbrev;
12483 dwo_file->sections.line = sections.line;
12484 dwo_file->sections.loc = sections.loc;
12485 dwo_file->sections.macinfo = sections.macinfo;
12486 dwo_file->sections.macro = sections.macro;
12487 dwo_file->sections.str_offsets = sections.str_offsets;
12488 /* The "str" section is global to the entire DWP file. */
12489 dwo_file->sections.str = dwp_file->sections.str;
12490 /* The info or types section is assigned below to dwo_unit,
12491 there's no need to record it in dwo_file.
12492 Also, we can't simply record type sections in dwo_file because
12493 we record a pointer into the vector in dwo_unit. As we collect more
12494 types we'll grow the vector and eventually have to reallocate space
12495 for it, invalidating all copies of pointers into the previous
12497 *dwo_file_slot = dwo_file;
12501 if (dwarf_read_debug)
12503 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12504 virtual_dwo_name.c_str ());
12506 dwo_file = (struct dwo_file *) *dwo_file_slot;
12509 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12510 dwo_unit->dwo_file = dwo_file;
12511 dwo_unit->signature = signature;
12512 dwo_unit->section =
12513 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12514 *dwo_unit->section = sections.info_or_types;
12515 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12520 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12521 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12522 piece within that section used by a TU/CU, return a virtual section
12523 of just that piece. */
12525 static struct dwarf2_section_info
12526 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12527 struct dwarf2_section_info *section,
12528 bfd_size_type offset, bfd_size_type size)
12530 struct dwarf2_section_info result;
12533 gdb_assert (section != NULL);
12534 gdb_assert (!section->is_virtual);
12536 memset (&result, 0, sizeof (result));
12537 result.s.containing_section = section;
12538 result.is_virtual = 1;
12543 sectp = get_section_bfd_section (section);
12545 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12546 bounds of the real section. This is a pretty-rare event, so just
12547 flag an error (easier) instead of a warning and trying to cope. */
12549 || offset + size > bfd_get_section_size (sectp))
12551 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12552 " in section %s [in module %s]"),
12553 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12554 objfile_name (dwarf2_per_objfile->objfile));
12557 result.virtual_offset = offset;
12558 result.size = size;
12562 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12563 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12564 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12565 This is for DWP version 2 files. */
12567 static struct dwo_unit *
12568 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12569 struct dwp_file *dwp_file,
12570 uint32_t unit_index,
12571 const char *comp_dir,
12572 ULONGEST signature, int is_debug_types)
12574 struct objfile *objfile = dwarf2_per_objfile->objfile;
12575 const struct dwp_hash_table *dwp_htab =
12576 is_debug_types ? dwp_file->tus : dwp_file->cus;
12577 bfd *dbfd = dwp_file->dbfd.get ();
12578 const char *kind = is_debug_types ? "TU" : "CU";
12579 struct dwo_file *dwo_file;
12580 struct dwo_unit *dwo_unit;
12581 struct virtual_v2_dwo_sections sections;
12582 void **dwo_file_slot;
12585 gdb_assert (dwp_file->version == 2);
12587 if (dwarf_read_debug)
12589 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12591 pulongest (unit_index), hex_string (signature),
12595 /* Fetch the section offsets of this DWO unit. */
12597 memset (§ions, 0, sizeof (sections));
12599 for (i = 0; i < dwp_htab->nr_columns; ++i)
12601 uint32_t offset = read_4_bytes (dbfd,
12602 dwp_htab->section_pool.v2.offsets
12603 + (((unit_index - 1) * dwp_htab->nr_columns
12605 * sizeof (uint32_t)));
12606 uint32_t size = read_4_bytes (dbfd,
12607 dwp_htab->section_pool.v2.sizes
12608 + (((unit_index - 1) * dwp_htab->nr_columns
12610 * sizeof (uint32_t)));
12612 switch (dwp_htab->section_pool.v2.section_ids[i])
12615 case DW_SECT_TYPES:
12616 sections.info_or_types_offset = offset;
12617 sections.info_or_types_size = size;
12619 case DW_SECT_ABBREV:
12620 sections.abbrev_offset = offset;
12621 sections.abbrev_size = size;
12624 sections.line_offset = offset;
12625 sections.line_size = size;
12628 sections.loc_offset = offset;
12629 sections.loc_size = size;
12631 case DW_SECT_STR_OFFSETS:
12632 sections.str_offsets_offset = offset;
12633 sections.str_offsets_size = size;
12635 case DW_SECT_MACINFO:
12636 sections.macinfo_offset = offset;
12637 sections.macinfo_size = size;
12639 case DW_SECT_MACRO:
12640 sections.macro_offset = offset;
12641 sections.macro_size = size;
12646 /* It's easier for the rest of the code if we fake a struct dwo_file and
12647 have dwo_unit "live" in that. At least for now.
12649 The DWP file can be made up of a random collection of CUs and TUs.
12650 However, for each CU + set of TUs that came from the same original DWO
12651 file, we can combine them back into a virtual DWO file to save space
12652 (fewer struct dwo_file objects to allocate). Remember that for really
12653 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12655 std::string virtual_dwo_name =
12656 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12657 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12658 (long) (sections.line_size ? sections.line_offset : 0),
12659 (long) (sections.loc_size ? sections.loc_offset : 0),
12660 (long) (sections.str_offsets_size
12661 ? sections.str_offsets_offset : 0));
12662 /* Can we use an existing virtual DWO file? */
12663 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12664 virtual_dwo_name.c_str (),
12666 /* Create one if necessary. */
12667 if (*dwo_file_slot == NULL)
12669 if (dwarf_read_debug)
12671 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12672 virtual_dwo_name.c_str ());
12674 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12676 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12677 virtual_dwo_name.c_str (),
12678 virtual_dwo_name.size ());
12679 dwo_file->comp_dir = comp_dir;
12680 dwo_file->sections.abbrev =
12681 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12682 sections.abbrev_offset, sections.abbrev_size);
12683 dwo_file->sections.line =
12684 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12685 sections.line_offset, sections.line_size);
12686 dwo_file->sections.loc =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12688 sections.loc_offset, sections.loc_size);
12689 dwo_file->sections.macinfo =
12690 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12691 sections.macinfo_offset, sections.macinfo_size);
12692 dwo_file->sections.macro =
12693 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12694 sections.macro_offset, sections.macro_size);
12695 dwo_file->sections.str_offsets =
12696 create_dwp_v2_section (dwarf2_per_objfile,
12697 &dwp_file->sections.str_offsets,
12698 sections.str_offsets_offset,
12699 sections.str_offsets_size);
12700 /* The "str" section is global to the entire DWP file. */
12701 dwo_file->sections.str = dwp_file->sections.str;
12702 /* The info or types section is assigned below to dwo_unit,
12703 there's no need to record it in dwo_file.
12704 Also, we can't simply record type sections in dwo_file because
12705 we record a pointer into the vector in dwo_unit. As we collect more
12706 types we'll grow the vector and eventually have to reallocate space
12707 for it, invalidating all copies of pointers into the previous
12709 *dwo_file_slot = dwo_file;
12713 if (dwarf_read_debug)
12715 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12716 virtual_dwo_name.c_str ());
12718 dwo_file = (struct dwo_file *) *dwo_file_slot;
12721 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12722 dwo_unit->dwo_file = dwo_file;
12723 dwo_unit->signature = signature;
12724 dwo_unit->section =
12725 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12726 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12728 ? &dwp_file->sections.types
12729 : &dwp_file->sections.info,
12730 sections.info_or_types_offset,
12731 sections.info_or_types_size);
12732 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12737 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12738 Returns NULL if the signature isn't found. */
12740 static struct dwo_unit *
12741 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12742 struct dwp_file *dwp_file, const char *comp_dir,
12743 ULONGEST signature, int is_debug_types)
12745 const struct dwp_hash_table *dwp_htab =
12746 is_debug_types ? dwp_file->tus : dwp_file->cus;
12747 bfd *dbfd = dwp_file->dbfd.get ();
12748 uint32_t mask = dwp_htab->nr_slots - 1;
12749 uint32_t hash = signature & mask;
12750 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12753 struct dwo_unit find_dwo_cu;
12755 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12756 find_dwo_cu.signature = signature;
12757 slot = htab_find_slot (is_debug_types
12758 ? dwp_file->loaded_tus
12759 : dwp_file->loaded_cus,
12760 &find_dwo_cu, INSERT);
12763 return (struct dwo_unit *) *slot;
12765 /* Use a for loop so that we don't loop forever on bad debug info. */
12766 for (i = 0; i < dwp_htab->nr_slots; ++i)
12768 ULONGEST signature_in_table;
12770 signature_in_table =
12771 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12772 if (signature_in_table == signature)
12774 uint32_t unit_index =
12775 read_4_bytes (dbfd,
12776 dwp_htab->unit_table + hash * sizeof (uint32_t));
12778 if (dwp_file->version == 1)
12780 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12781 dwp_file, unit_index,
12782 comp_dir, signature,
12787 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12788 dwp_file, unit_index,
12789 comp_dir, signature,
12792 return (struct dwo_unit *) *slot;
12794 if (signature_in_table == 0)
12796 hash = (hash + hash2) & mask;
12799 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12800 " [in module %s]"),
12804 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12805 Open the file specified by FILE_NAME and hand it off to BFD for
12806 preliminary analysis. Return a newly initialized bfd *, which
12807 includes a canonicalized copy of FILE_NAME.
12808 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12809 SEARCH_CWD is true if the current directory is to be searched.
12810 It will be searched before debug-file-directory.
12811 If successful, the file is added to the bfd include table of the
12812 objfile's bfd (see gdb_bfd_record_inclusion).
12813 If unable to find/open the file, return NULL.
12814 NOTE: This function is derived from symfile_bfd_open. */
12816 static gdb_bfd_ref_ptr
12817 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12818 const char *file_name, int is_dwp, int search_cwd)
12821 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12822 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12823 to debug_file_directory. */
12824 const char *search_path;
12825 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12827 gdb::unique_xmalloc_ptr<char> search_path_holder;
12830 if (*debug_file_directory != '\0')
12832 search_path_holder.reset (concat (".", dirname_separator_string,
12833 debug_file_directory,
12835 search_path = search_path_holder.get ();
12841 search_path = debug_file_directory;
12843 openp_flags flags = OPF_RETURN_REALPATH;
12845 flags |= OPF_SEARCH_IN_PATH;
12847 gdb::unique_xmalloc_ptr<char> absolute_name;
12848 desc = openp (search_path, flags, file_name,
12849 O_RDONLY | O_BINARY, &absolute_name);
12853 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12855 if (sym_bfd == NULL)
12857 bfd_set_cacheable (sym_bfd.get (), 1);
12859 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12862 /* Success. Record the bfd as having been included by the objfile's bfd.
12863 This is important because things like demangled_names_hash lives in the
12864 objfile's per_bfd space and may have references to things like symbol
12865 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12866 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12871 /* Try to open DWO file FILE_NAME.
12872 COMP_DIR is the DW_AT_comp_dir attribute.
12873 The result is the bfd handle of the file.
12874 If there is a problem finding or opening the file, return NULL.
12875 Upon success, the canonicalized path of the file is stored in the bfd,
12876 same as symfile_bfd_open. */
12878 static gdb_bfd_ref_ptr
12879 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12880 const char *file_name, const char *comp_dir)
12882 if (IS_ABSOLUTE_PATH (file_name))
12883 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12884 0 /*is_dwp*/, 0 /*search_cwd*/);
12886 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12888 if (comp_dir != NULL)
12890 char *path_to_try = concat (comp_dir, SLASH_STRING,
12891 file_name, (char *) NULL);
12893 /* NOTE: If comp_dir is a relative path, this will also try the
12894 search path, which seems useful. */
12895 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12898 1 /*search_cwd*/));
12899 xfree (path_to_try);
12904 /* That didn't work, try debug-file-directory, which, despite its name,
12905 is a list of paths. */
12907 if (*debug_file_directory == '\0')
12910 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12911 0 /*is_dwp*/, 1 /*search_cwd*/);
12914 /* This function is mapped across the sections and remembers the offset and
12915 size of each of the DWO debugging sections we are interested in. */
12918 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12920 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12921 const struct dwop_section_names *names = &dwop_section_names;
12923 if (section_is_p (sectp->name, &names->abbrev_dwo))
12925 dwo_sections->abbrev.s.section = sectp;
12926 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12928 else if (section_is_p (sectp->name, &names->info_dwo))
12930 dwo_sections->info.s.section = sectp;
12931 dwo_sections->info.size = bfd_get_section_size (sectp);
12933 else if (section_is_p (sectp->name, &names->line_dwo))
12935 dwo_sections->line.s.section = sectp;
12936 dwo_sections->line.size = bfd_get_section_size (sectp);
12938 else if (section_is_p (sectp->name, &names->loc_dwo))
12940 dwo_sections->loc.s.section = sectp;
12941 dwo_sections->loc.size = bfd_get_section_size (sectp);
12943 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12945 dwo_sections->macinfo.s.section = sectp;
12946 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12948 else if (section_is_p (sectp->name, &names->macro_dwo))
12950 dwo_sections->macro.s.section = sectp;
12951 dwo_sections->macro.size = bfd_get_section_size (sectp);
12953 else if (section_is_p (sectp->name, &names->str_dwo))
12955 dwo_sections->str.s.section = sectp;
12956 dwo_sections->str.size = bfd_get_section_size (sectp);
12958 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12960 dwo_sections->str_offsets.s.section = sectp;
12961 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12963 else if (section_is_p (sectp->name, &names->types_dwo))
12965 struct dwarf2_section_info type_section;
12967 memset (&type_section, 0, sizeof (type_section));
12968 type_section.s.section = sectp;
12969 type_section.size = bfd_get_section_size (sectp);
12970 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12975 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12976 by PER_CU. This is for the non-DWP case.
12977 The result is NULL if DWO_NAME can't be found. */
12979 static struct dwo_file *
12980 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12981 const char *dwo_name, const char *comp_dir)
12983 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12984 struct objfile *objfile = dwarf2_per_objfile->objfile;
12986 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12989 if (dwarf_read_debug)
12990 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12994 /* We use a unique pointer here, despite the obstack allocation,
12995 because a dwo_file needs some cleanup if it is abandoned. */
12996 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12998 dwo_file->dwo_name = dwo_name;
12999 dwo_file->comp_dir = comp_dir;
13000 dwo_file->dbfd = dbfd.release ();
13002 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13003 &dwo_file->sections);
13005 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13008 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13009 dwo_file->sections.types, dwo_file->tus);
13011 if (dwarf_read_debug)
13012 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13014 return dwo_file.release ();
13017 /* This function is mapped across the sections and remembers the offset and
13018 size of each of the DWP debugging sections common to version 1 and 2 that
13019 we are interested in. */
13022 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13023 void *dwp_file_ptr)
13025 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13026 const struct dwop_section_names *names = &dwop_section_names;
13027 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13029 /* Record the ELF section number for later lookup: this is what the
13030 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13031 gdb_assert (elf_section_nr < dwp_file->num_sections);
13032 dwp_file->elf_sections[elf_section_nr] = sectp;
13034 /* Look for specific sections that we need. */
13035 if (section_is_p (sectp->name, &names->str_dwo))
13037 dwp_file->sections.str.s.section = sectp;
13038 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13040 else if (section_is_p (sectp->name, &names->cu_index))
13042 dwp_file->sections.cu_index.s.section = sectp;
13043 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13045 else if (section_is_p (sectp->name, &names->tu_index))
13047 dwp_file->sections.tu_index.s.section = sectp;
13048 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13052 /* This function is mapped across the sections and remembers the offset and
13053 size of each of the DWP version 2 debugging sections that we are interested
13054 in. This is split into a separate function because we don't know if we
13055 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13058 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13060 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13061 const struct dwop_section_names *names = &dwop_section_names;
13062 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13064 /* Record the ELF section number for later lookup: this is what the
13065 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13066 gdb_assert (elf_section_nr < dwp_file->num_sections);
13067 dwp_file->elf_sections[elf_section_nr] = sectp;
13069 /* Look for specific sections that we need. */
13070 if (section_is_p (sectp->name, &names->abbrev_dwo))
13072 dwp_file->sections.abbrev.s.section = sectp;
13073 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13075 else if (section_is_p (sectp->name, &names->info_dwo))
13077 dwp_file->sections.info.s.section = sectp;
13078 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13080 else if (section_is_p (sectp->name, &names->line_dwo))
13082 dwp_file->sections.line.s.section = sectp;
13083 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13085 else if (section_is_p (sectp->name, &names->loc_dwo))
13087 dwp_file->sections.loc.s.section = sectp;
13088 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13090 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13092 dwp_file->sections.macinfo.s.section = sectp;
13093 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13095 else if (section_is_p (sectp->name, &names->macro_dwo))
13097 dwp_file->sections.macro.s.section = sectp;
13098 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13100 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13102 dwp_file->sections.str_offsets.s.section = sectp;
13103 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13105 else if (section_is_p (sectp->name, &names->types_dwo))
13107 dwp_file->sections.types.s.section = sectp;
13108 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13112 /* Hash function for dwp_file loaded CUs/TUs. */
13115 hash_dwp_loaded_cutus (const void *item)
13117 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13119 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13120 return dwo_unit->signature;
13123 /* Equality function for dwp_file loaded CUs/TUs. */
13126 eq_dwp_loaded_cutus (const void *a, const void *b)
13128 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13129 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13131 return dua->signature == dub->signature;
13134 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13137 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13139 return htab_create_alloc_ex (3,
13140 hash_dwp_loaded_cutus,
13141 eq_dwp_loaded_cutus,
13143 &objfile->objfile_obstack,
13144 hashtab_obstack_allocate,
13145 dummy_obstack_deallocate);
13148 /* Try to open DWP file FILE_NAME.
13149 The result is the bfd handle of the file.
13150 If there is a problem finding or opening the file, return NULL.
13151 Upon success, the canonicalized path of the file is stored in the bfd,
13152 same as symfile_bfd_open. */
13154 static gdb_bfd_ref_ptr
13155 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13156 const char *file_name)
13158 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13160 1 /*search_cwd*/));
13164 /* Work around upstream bug 15652.
13165 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13166 [Whether that's a "bug" is debatable, but it is getting in our way.]
13167 We have no real idea where the dwp file is, because gdb's realpath-ing
13168 of the executable's path may have discarded the needed info.
13169 [IWBN if the dwp file name was recorded in the executable, akin to
13170 .gnu_debuglink, but that doesn't exist yet.]
13171 Strip the directory from FILE_NAME and search again. */
13172 if (*debug_file_directory != '\0')
13174 /* Don't implicitly search the current directory here.
13175 If the user wants to search "." to handle this case,
13176 it must be added to debug-file-directory. */
13177 return try_open_dwop_file (dwarf2_per_objfile,
13178 lbasename (file_name), 1 /*is_dwp*/,
13185 /* Initialize the use of the DWP file for the current objfile.
13186 By convention the name of the DWP file is ${objfile}.dwp.
13187 The result is NULL if it can't be found. */
13189 static std::unique_ptr<struct dwp_file>
13190 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13192 struct objfile *objfile = dwarf2_per_objfile->objfile;
13194 /* Try to find first .dwp for the binary file before any symbolic links
13197 /* If the objfile is a debug file, find the name of the real binary
13198 file and get the name of dwp file from there. */
13199 std::string dwp_name;
13200 if (objfile->separate_debug_objfile_backlink != NULL)
13202 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13203 const char *backlink_basename = lbasename (backlink->original_name);
13205 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13208 dwp_name = objfile->original_name;
13210 dwp_name += ".dwp";
13212 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13214 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13216 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13217 dwp_name = objfile_name (objfile);
13218 dwp_name += ".dwp";
13219 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13224 if (dwarf_read_debug)
13225 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13226 return std::unique_ptr<dwp_file> ();
13229 const char *name = bfd_get_filename (dbfd.get ());
13230 std::unique_ptr<struct dwp_file> dwp_file
13231 (new struct dwp_file (name, std::move (dbfd)));
13233 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13234 dwp_file->elf_sections =
13235 OBSTACK_CALLOC (&objfile->objfile_obstack,
13236 dwp_file->num_sections, asection *);
13238 bfd_map_over_sections (dwp_file->dbfd.get (),
13239 dwarf2_locate_common_dwp_sections,
13242 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13245 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13248 /* The DWP file version is stored in the hash table. Oh well. */
13249 if (dwp_file->cus && dwp_file->tus
13250 && dwp_file->cus->version != dwp_file->tus->version)
13252 /* Technically speaking, we should try to limp along, but this is
13253 pretty bizarre. We use pulongest here because that's the established
13254 portability solution (e.g, we cannot use %u for uint32_t). */
13255 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13256 " TU version %s [in DWP file %s]"),
13257 pulongest (dwp_file->cus->version),
13258 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13262 dwp_file->version = dwp_file->cus->version;
13263 else if (dwp_file->tus)
13264 dwp_file->version = dwp_file->tus->version;
13266 dwp_file->version = 2;
13268 if (dwp_file->version == 2)
13269 bfd_map_over_sections (dwp_file->dbfd.get (),
13270 dwarf2_locate_v2_dwp_sections,
13273 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13274 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13276 if (dwarf_read_debug)
13278 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13279 fprintf_unfiltered (gdb_stdlog,
13280 " %s CUs, %s TUs\n",
13281 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13282 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13288 /* Wrapper around open_and_init_dwp_file, only open it once. */
13290 static struct dwp_file *
13291 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13293 if (! dwarf2_per_objfile->dwp_checked)
13295 dwarf2_per_objfile->dwp_file
13296 = open_and_init_dwp_file (dwarf2_per_objfile);
13297 dwarf2_per_objfile->dwp_checked = 1;
13299 return dwarf2_per_objfile->dwp_file.get ();
13302 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13303 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13304 or in the DWP file for the objfile, referenced by THIS_UNIT.
13305 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13306 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13308 This is called, for example, when wanting to read a variable with a
13309 complex location. Therefore we don't want to do file i/o for every call.
13310 Therefore we don't want to look for a DWO file on every call.
13311 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13312 then we check if we've already seen DWO_NAME, and only THEN do we check
13315 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13316 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13318 static struct dwo_unit *
13319 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13320 const char *dwo_name, const char *comp_dir,
13321 ULONGEST signature, int is_debug_types)
13323 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13324 struct objfile *objfile = dwarf2_per_objfile->objfile;
13325 const char *kind = is_debug_types ? "TU" : "CU";
13326 void **dwo_file_slot;
13327 struct dwo_file *dwo_file;
13328 struct dwp_file *dwp_file;
13330 /* First see if there's a DWP file.
13331 If we have a DWP file but didn't find the DWO inside it, don't
13332 look for the original DWO file. It makes gdb behave differently
13333 depending on whether one is debugging in the build tree. */
13335 dwp_file = get_dwp_file (dwarf2_per_objfile);
13336 if (dwp_file != NULL)
13338 const struct dwp_hash_table *dwp_htab =
13339 is_debug_types ? dwp_file->tus : dwp_file->cus;
13341 if (dwp_htab != NULL)
13343 struct dwo_unit *dwo_cutu =
13344 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13345 signature, is_debug_types);
13347 if (dwo_cutu != NULL)
13349 if (dwarf_read_debug)
13351 fprintf_unfiltered (gdb_stdlog,
13352 "Virtual DWO %s %s found: @%s\n",
13353 kind, hex_string (signature),
13354 host_address_to_string (dwo_cutu));
13362 /* No DWP file, look for the DWO file. */
13364 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13365 dwo_name, comp_dir);
13366 if (*dwo_file_slot == NULL)
13368 /* Read in the file and build a table of the CUs/TUs it contains. */
13369 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13371 /* NOTE: This will be NULL if unable to open the file. */
13372 dwo_file = (struct dwo_file *) *dwo_file_slot;
13374 if (dwo_file != NULL)
13376 struct dwo_unit *dwo_cutu = NULL;
13378 if (is_debug_types && dwo_file->tus)
13380 struct dwo_unit find_dwo_cutu;
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13385 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13387 else if (!is_debug_types && dwo_file->cus)
13389 struct dwo_unit find_dwo_cutu;
13391 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13392 find_dwo_cutu.signature = signature;
13393 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13397 if (dwo_cutu != NULL)
13399 if (dwarf_read_debug)
13401 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13402 kind, dwo_name, hex_string (signature),
13403 host_address_to_string (dwo_cutu));
13410 /* We didn't find it. This could mean a dwo_id mismatch, or
13411 someone deleted the DWO/DWP file, or the search path isn't set up
13412 correctly to find the file. */
13414 if (dwarf_read_debug)
13416 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13417 kind, dwo_name, hex_string (signature));
13420 /* This is a warning and not a complaint because it can be caused by
13421 pilot error (e.g., user accidentally deleting the DWO). */
13423 /* Print the name of the DWP file if we looked there, helps the user
13424 better diagnose the problem. */
13425 std::string dwp_text;
13427 if (dwp_file != NULL)
13428 dwp_text = string_printf (" [in DWP file %s]",
13429 lbasename (dwp_file->name));
13431 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13432 " [in module %s]"),
13433 kind, dwo_name, hex_string (signature),
13435 this_unit->is_debug_types ? "TU" : "CU",
13436 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13441 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13442 See lookup_dwo_cutu_unit for details. */
13444 static struct dwo_unit *
13445 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13446 const char *dwo_name, const char *comp_dir,
13447 ULONGEST signature)
13449 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13452 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13453 See lookup_dwo_cutu_unit for details. */
13455 static struct dwo_unit *
13456 lookup_dwo_type_unit (struct signatured_type *this_tu,
13457 const char *dwo_name, const char *comp_dir)
13459 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13462 /* Traversal function for queue_and_load_all_dwo_tus. */
13465 queue_and_load_dwo_tu (void **slot, void *info)
13467 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13468 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13469 ULONGEST signature = dwo_unit->signature;
13470 struct signatured_type *sig_type =
13471 lookup_dwo_signatured_type (per_cu->cu, signature);
13473 if (sig_type != NULL)
13475 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13477 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13478 a real dependency of PER_CU on SIG_TYPE. That is detected later
13479 while processing PER_CU. */
13480 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13481 load_full_type_unit (sig_cu);
13482 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13488 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13489 The DWO may have the only definition of the type, though it may not be
13490 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13494 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13496 struct dwo_unit *dwo_unit;
13497 struct dwo_file *dwo_file;
13499 gdb_assert (!per_cu->is_debug_types);
13500 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13501 gdb_assert (per_cu->cu != NULL);
13503 dwo_unit = per_cu->cu->dwo_unit;
13504 gdb_assert (dwo_unit != NULL);
13506 dwo_file = dwo_unit->dwo_file;
13507 if (dwo_file->tus != NULL)
13508 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13511 /* Free all resources associated with DWO_FILE.
13512 Close the DWO file and munmap the sections. */
13515 free_dwo_file (struct dwo_file *dwo_file)
13517 /* Note: dbfd is NULL for virtual DWO files. */
13518 gdb_bfd_unref (dwo_file->dbfd);
13520 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13523 /* Traversal function for free_dwo_files. */
13526 free_dwo_file_from_slot (void **slot, void *info)
13528 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13530 free_dwo_file (dwo_file);
13535 /* Free all resources associated with DWO_FILES. */
13538 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13540 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13543 /* Read in various DIEs. */
13545 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13546 Inherit only the children of the DW_AT_abstract_origin DIE not being
13547 already referenced by DW_AT_abstract_origin from the children of the
13551 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13553 struct die_info *child_die;
13554 sect_offset *offsetp;
13555 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13556 struct die_info *origin_die;
13557 /* Iterator of the ORIGIN_DIE children. */
13558 struct die_info *origin_child_die;
13559 struct attribute *attr;
13560 struct dwarf2_cu *origin_cu;
13561 struct pending **origin_previous_list_in_scope;
13563 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13567 /* Note that following die references may follow to a die in a
13571 origin_die = follow_die_ref (die, attr, &origin_cu);
13573 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13575 origin_previous_list_in_scope = origin_cu->list_in_scope;
13576 origin_cu->list_in_scope = cu->list_in_scope;
13578 if (die->tag != origin_die->tag
13579 && !(die->tag == DW_TAG_inlined_subroutine
13580 && origin_die->tag == DW_TAG_subprogram))
13581 complaint (_("DIE %s and its abstract origin %s have different tags"),
13582 sect_offset_str (die->sect_off),
13583 sect_offset_str (origin_die->sect_off));
13585 std::vector<sect_offset> offsets;
13587 for (child_die = die->child;
13588 child_die && child_die->tag;
13589 child_die = sibling_die (child_die))
13591 struct die_info *child_origin_die;
13592 struct dwarf2_cu *child_origin_cu;
13594 /* We are trying to process concrete instance entries:
13595 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13596 it's not relevant to our analysis here. i.e. detecting DIEs that are
13597 present in the abstract instance but not referenced in the concrete
13599 if (child_die->tag == DW_TAG_call_site
13600 || child_die->tag == DW_TAG_GNU_call_site)
13603 /* For each CHILD_DIE, find the corresponding child of
13604 ORIGIN_DIE. If there is more than one layer of
13605 DW_AT_abstract_origin, follow them all; there shouldn't be,
13606 but GCC versions at least through 4.4 generate this (GCC PR
13608 child_origin_die = child_die;
13609 child_origin_cu = cu;
13612 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13616 child_origin_die = follow_die_ref (child_origin_die, attr,
13620 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13621 counterpart may exist. */
13622 if (child_origin_die != child_die)
13624 if (child_die->tag != child_origin_die->tag
13625 && !(child_die->tag == DW_TAG_inlined_subroutine
13626 && child_origin_die->tag == DW_TAG_subprogram))
13627 complaint (_("Child DIE %s and its abstract origin %s have "
13629 sect_offset_str (child_die->sect_off),
13630 sect_offset_str (child_origin_die->sect_off));
13631 if (child_origin_die->parent != origin_die)
13632 complaint (_("Child DIE %s and its abstract origin %s have "
13633 "different parents"),
13634 sect_offset_str (child_die->sect_off),
13635 sect_offset_str (child_origin_die->sect_off));
13637 offsets.push_back (child_origin_die->sect_off);
13640 std::sort (offsets.begin (), offsets.end ());
13641 sect_offset *offsets_end = offsets.data () + offsets.size ();
13642 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13643 if (offsetp[-1] == *offsetp)
13644 complaint (_("Multiple children of DIE %s refer "
13645 "to DIE %s as their abstract origin"),
13646 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13648 offsetp = offsets.data ();
13649 origin_child_die = origin_die->child;
13650 while (origin_child_die && origin_child_die->tag)
13652 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13653 while (offsetp < offsets_end
13654 && *offsetp < origin_child_die->sect_off)
13656 if (offsetp >= offsets_end
13657 || *offsetp > origin_child_die->sect_off)
13659 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13660 Check whether we're already processing ORIGIN_CHILD_DIE.
13661 This can happen with mutually referenced abstract_origins.
13663 if (!origin_child_die->in_process)
13664 process_die (origin_child_die, origin_cu);
13666 origin_child_die = sibling_die (origin_child_die);
13668 origin_cu->list_in_scope = origin_previous_list_in_scope;
13672 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13674 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13675 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13676 struct context_stack *newobj;
13679 struct die_info *child_die;
13680 struct attribute *attr, *call_line, *call_file;
13682 CORE_ADDR baseaddr;
13683 struct block *block;
13684 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13685 std::vector<struct symbol *> template_args;
13686 struct template_symbol *templ_func = NULL;
13690 /* If we do not have call site information, we can't show the
13691 caller of this inlined function. That's too confusing, so
13692 only use the scope for local variables. */
13693 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13694 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13695 if (call_line == NULL || call_file == NULL)
13697 read_lexical_block_scope (die, cu);
13702 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13704 name = dwarf2_name (die, cu);
13706 /* Ignore functions with missing or empty names. These are actually
13707 illegal according to the DWARF standard. */
13710 complaint (_("missing name for subprogram DIE at %s"),
13711 sect_offset_str (die->sect_off));
13715 /* Ignore functions with missing or invalid low and high pc attributes. */
13716 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13717 <= PC_BOUNDS_INVALID)
13719 attr = dwarf2_attr (die, DW_AT_external, cu);
13720 if (!attr || !DW_UNSND (attr))
13721 complaint (_("cannot get low and high bounds "
13722 "for subprogram DIE at %s"),
13723 sect_offset_str (die->sect_off));
13727 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13728 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13730 /* If we have any template arguments, then we must allocate a
13731 different sort of symbol. */
13732 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13734 if (child_die->tag == DW_TAG_template_type_param
13735 || child_die->tag == DW_TAG_template_value_param)
13737 templ_func = allocate_template_symbol (objfile);
13738 templ_func->subclass = SYMBOL_TEMPLATE;
13743 newobj = cu->get_builder ()->push_context (0, lowpc);
13744 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13745 (struct symbol *) templ_func);
13747 /* If there is a location expression for DW_AT_frame_base, record
13749 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13751 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13753 /* If there is a location for the static link, record it. */
13754 newobj->static_link = NULL;
13755 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13758 newobj->static_link
13759 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13760 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13763 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13765 if (die->child != NULL)
13767 child_die = die->child;
13768 while (child_die && child_die->tag)
13770 if (child_die->tag == DW_TAG_template_type_param
13771 || child_die->tag == DW_TAG_template_value_param)
13773 struct symbol *arg = new_symbol (child_die, NULL, cu);
13776 template_args.push_back (arg);
13779 process_die (child_die, cu);
13780 child_die = sibling_die (child_die);
13784 inherit_abstract_dies (die, cu);
13786 /* If we have a DW_AT_specification, we might need to import using
13787 directives from the context of the specification DIE. See the
13788 comment in determine_prefix. */
13789 if (cu->language == language_cplus
13790 && dwarf2_attr (die, DW_AT_specification, cu))
13792 struct dwarf2_cu *spec_cu = cu;
13793 struct die_info *spec_die = die_specification (die, &spec_cu);
13797 child_die = spec_die->child;
13798 while (child_die && child_die->tag)
13800 if (child_die->tag == DW_TAG_imported_module)
13801 process_die (child_die, spec_cu);
13802 child_die = sibling_die (child_die);
13805 /* In some cases, GCC generates specification DIEs that
13806 themselves contain DW_AT_specification attributes. */
13807 spec_die = die_specification (spec_die, &spec_cu);
13811 struct context_stack cstk = cu->get_builder ()->pop_context ();
13812 /* Make a block for the local symbols within. */
13813 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13814 cstk.static_link, lowpc, highpc);
13816 /* For C++, set the block's scope. */
13817 if ((cu->language == language_cplus
13818 || cu->language == language_fortran
13819 || cu->language == language_d
13820 || cu->language == language_rust)
13821 && cu->processing_has_namespace_info)
13822 block_set_scope (block, determine_prefix (die, cu),
13823 &objfile->objfile_obstack);
13825 /* If we have address ranges, record them. */
13826 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13828 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13830 /* Attach template arguments to function. */
13831 if (!template_args.empty ())
13833 gdb_assert (templ_func != NULL);
13835 templ_func->n_template_arguments = template_args.size ();
13836 templ_func->template_arguments
13837 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13838 templ_func->n_template_arguments);
13839 memcpy (templ_func->template_arguments,
13840 template_args.data (),
13841 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13843 /* Make sure that the symtab is set on the new symbols. Even
13844 though they don't appear in this symtab directly, other parts
13845 of gdb assume that symbols do, and this is reasonably
13847 for (symbol *sym : template_args)
13848 symbol_set_symtab (sym, symbol_symtab (templ_func));
13851 /* In C++, we can have functions nested inside functions (e.g., when
13852 a function declares a class that has methods). This means that
13853 when we finish processing a function scope, we may need to go
13854 back to building a containing block's symbol lists. */
13855 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13856 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13858 /* If we've finished processing a top-level function, subsequent
13859 symbols go in the file symbol list. */
13860 if (cu->get_builder ()->outermost_context_p ())
13861 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13864 /* Process all the DIES contained within a lexical block scope. Start
13865 a new scope, process the dies, and then close the scope. */
13868 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13872 CORE_ADDR lowpc, highpc;
13873 struct die_info *child_die;
13874 CORE_ADDR baseaddr;
13876 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13878 /* Ignore blocks with missing or invalid low and high pc attributes. */
13879 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13880 as multiple lexical blocks? Handling children in a sane way would
13881 be nasty. Might be easier to properly extend generic blocks to
13882 describe ranges. */
13883 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13885 case PC_BOUNDS_NOT_PRESENT:
13886 /* DW_TAG_lexical_block has no attributes, process its children as if
13887 there was no wrapping by that DW_TAG_lexical_block.
13888 GCC does no longer produces such DWARF since GCC r224161. */
13889 for (child_die = die->child;
13890 child_die != NULL && child_die->tag;
13891 child_die = sibling_die (child_die))
13892 process_die (child_die, cu);
13894 case PC_BOUNDS_INVALID:
13897 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13898 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13900 cu->get_builder ()->push_context (0, lowpc);
13901 if (die->child != NULL)
13903 child_die = die->child;
13904 while (child_die && child_die->tag)
13906 process_die (child_die, cu);
13907 child_die = sibling_die (child_die);
13910 inherit_abstract_dies (die, cu);
13911 struct context_stack cstk = cu->get_builder ()->pop_context ();
13913 if (*cu->get_builder ()->get_local_symbols () != NULL
13914 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13916 struct block *block
13917 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13918 cstk.start_addr, highpc);
13920 /* Note that recording ranges after traversing children, as we
13921 do here, means that recording a parent's ranges entails
13922 walking across all its children's ranges as they appear in
13923 the address map, which is quadratic behavior.
13925 It would be nicer to record the parent's ranges before
13926 traversing its children, simply overriding whatever you find
13927 there. But since we don't even decide whether to create a
13928 block until after we've traversed its children, that's hard
13930 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13932 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13933 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13936 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13939 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13943 CORE_ADDR pc, baseaddr;
13944 struct attribute *attr;
13945 struct call_site *call_site, call_site_local;
13948 struct die_info *child_die;
13950 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13952 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13955 /* This was a pre-DWARF-5 GNU extension alias
13956 for DW_AT_call_return_pc. */
13957 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13961 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13962 "DIE %s [in module %s]"),
13963 sect_offset_str (die->sect_off), objfile_name (objfile));
13966 pc = attr_value_as_address (attr) + baseaddr;
13967 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13969 if (cu->call_site_htab == NULL)
13970 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13971 NULL, &objfile->objfile_obstack,
13972 hashtab_obstack_allocate, NULL);
13973 call_site_local.pc = pc;
13974 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13977 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13978 "DIE %s [in module %s]"),
13979 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13980 objfile_name (objfile));
13984 /* Count parameters at the caller. */
13987 for (child_die = die->child; child_die && child_die->tag;
13988 child_die = sibling_die (child_die))
13990 if (child_die->tag != DW_TAG_call_site_parameter
13991 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13993 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13994 "DW_TAG_call_site child DIE %s [in module %s]"),
13995 child_die->tag, sect_offset_str (child_die->sect_off),
13996 objfile_name (objfile));
14004 = ((struct call_site *)
14005 obstack_alloc (&objfile->objfile_obstack,
14006 sizeof (*call_site)
14007 + (sizeof (*call_site->parameter) * (nparams - 1))));
14009 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14010 call_site->pc = pc;
14012 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14013 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14015 struct die_info *func_die;
14017 /* Skip also over DW_TAG_inlined_subroutine. */
14018 for (func_die = die->parent;
14019 func_die && func_die->tag != DW_TAG_subprogram
14020 && func_die->tag != DW_TAG_subroutine_type;
14021 func_die = func_die->parent);
14023 /* DW_AT_call_all_calls is a superset
14024 of DW_AT_call_all_tail_calls. */
14026 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14027 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14031 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14032 not complete. But keep CALL_SITE for look ups via call_site_htab,
14033 both the initial caller containing the real return address PC and
14034 the final callee containing the current PC of a chain of tail
14035 calls do not need to have the tail call list complete. But any
14036 function candidate for a virtual tail call frame searched via
14037 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14038 determined unambiguously. */
14042 struct type *func_type = NULL;
14045 func_type = get_die_type (func_die, cu);
14046 if (func_type != NULL)
14048 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14050 /* Enlist this call site to the function. */
14051 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14052 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14055 complaint (_("Cannot find function owning DW_TAG_call_site "
14056 "DIE %s [in module %s]"),
14057 sect_offset_str (die->sect_off), objfile_name (objfile));
14061 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14063 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14065 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14068 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14069 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14071 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14072 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14073 /* Keep NULL DWARF_BLOCK. */;
14074 else if (attr_form_is_block (attr))
14076 struct dwarf2_locexpr_baton *dlbaton;
14078 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14079 dlbaton->data = DW_BLOCK (attr)->data;
14080 dlbaton->size = DW_BLOCK (attr)->size;
14081 dlbaton->per_cu = cu->per_cu;
14083 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14085 else if (attr_form_is_ref (attr))
14087 struct dwarf2_cu *target_cu = cu;
14088 struct die_info *target_die;
14090 target_die = follow_die_ref (die, attr, &target_cu);
14091 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14092 if (die_is_declaration (target_die, target_cu))
14094 const char *target_physname;
14096 /* Prefer the mangled name; otherwise compute the demangled one. */
14097 target_physname = dw2_linkage_name (target_die, target_cu);
14098 if (target_physname == NULL)
14099 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14100 if (target_physname == NULL)
14101 complaint (_("DW_AT_call_target target DIE has invalid "
14102 "physname, for referencing DIE %s [in module %s]"),
14103 sect_offset_str (die->sect_off), objfile_name (objfile));
14105 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14111 /* DW_AT_entry_pc should be preferred. */
14112 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14113 <= PC_BOUNDS_INVALID)
14114 complaint (_("DW_AT_call_target target DIE has invalid "
14115 "low pc, for referencing DIE %s [in module %s]"),
14116 sect_offset_str (die->sect_off), objfile_name (objfile));
14119 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14120 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14125 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14126 "block nor reference, for DIE %s [in module %s]"),
14127 sect_offset_str (die->sect_off), objfile_name (objfile));
14129 call_site->per_cu = cu->per_cu;
14131 for (child_die = die->child;
14132 child_die && child_die->tag;
14133 child_die = sibling_die (child_die))
14135 struct call_site_parameter *parameter;
14136 struct attribute *loc, *origin;
14138 if (child_die->tag != DW_TAG_call_site_parameter
14139 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14141 /* Already printed the complaint above. */
14145 gdb_assert (call_site->parameter_count < nparams);
14146 parameter = &call_site->parameter[call_site->parameter_count];
14148 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14149 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14150 register is contained in DW_AT_call_value. */
14152 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14153 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14154 if (origin == NULL)
14156 /* This was a pre-DWARF-5 GNU extension alias
14157 for DW_AT_call_parameter. */
14158 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14160 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14162 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14164 sect_offset sect_off
14165 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14166 if (!offset_in_cu_p (&cu->header, sect_off))
14168 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14169 binding can be done only inside one CU. Such referenced DIE
14170 therefore cannot be even moved to DW_TAG_partial_unit. */
14171 complaint (_("DW_AT_call_parameter offset is not in CU for "
14172 "DW_TAG_call_site child DIE %s [in module %s]"),
14173 sect_offset_str (child_die->sect_off),
14174 objfile_name (objfile));
14177 parameter->u.param_cu_off
14178 = (cu_offset) (sect_off - cu->header.sect_off);
14180 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14182 complaint (_("No DW_FORM_block* DW_AT_location for "
14183 "DW_TAG_call_site child DIE %s [in module %s]"),
14184 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14189 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14190 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14191 if (parameter->u.dwarf_reg != -1)
14192 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14193 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14194 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14195 ¶meter->u.fb_offset))
14196 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14199 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14200 "for DW_FORM_block* DW_AT_location is supported for "
14201 "DW_TAG_call_site child DIE %s "
14203 sect_offset_str (child_die->sect_off),
14204 objfile_name (objfile));
14209 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14211 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14212 if (!attr_form_is_block (attr))
14214 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14215 "DW_TAG_call_site child DIE %s [in module %s]"),
14216 sect_offset_str (child_die->sect_off),
14217 objfile_name (objfile));
14220 parameter->value = DW_BLOCK (attr)->data;
14221 parameter->value_size = DW_BLOCK (attr)->size;
14223 /* Parameters are not pre-cleared by memset above. */
14224 parameter->data_value = NULL;
14225 parameter->data_value_size = 0;
14226 call_site->parameter_count++;
14228 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14230 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14233 if (!attr_form_is_block (attr))
14234 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14235 "DW_TAG_call_site child DIE %s [in module %s]"),
14236 sect_offset_str (child_die->sect_off),
14237 objfile_name (objfile));
14240 parameter->data_value = DW_BLOCK (attr)->data;
14241 parameter->data_value_size = DW_BLOCK (attr)->size;
14247 /* Helper function for read_variable. If DIE represents a virtual
14248 table, then return the type of the concrete object that is
14249 associated with the virtual table. Otherwise, return NULL. */
14251 static struct type *
14252 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14254 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14258 /* Find the type DIE. */
14259 struct die_info *type_die = NULL;
14260 struct dwarf2_cu *type_cu = cu;
14262 if (attr_form_is_ref (attr))
14263 type_die = follow_die_ref (die, attr, &type_cu);
14264 if (type_die == NULL)
14267 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14269 return die_containing_type (type_die, type_cu);
14272 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14275 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14277 struct rust_vtable_symbol *storage = NULL;
14279 if (cu->language == language_rust)
14281 struct type *containing_type = rust_containing_type (die, cu);
14283 if (containing_type != NULL)
14285 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14287 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14288 struct rust_vtable_symbol);
14289 initialize_objfile_symbol (storage);
14290 storage->concrete_type = containing_type;
14291 storage->subclass = SYMBOL_RUST_VTABLE;
14295 struct symbol *res = new_symbol (die, NULL, cu, storage);
14296 struct attribute *abstract_origin
14297 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14298 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14299 if (res == NULL && loc && abstract_origin)
14301 /* We have a variable without a name, but with a location and an abstract
14302 origin. This may be a concrete instance of an abstract variable
14303 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14305 struct dwarf2_cu *origin_cu = cu;
14306 struct die_info *origin_die
14307 = follow_die_ref (die, abstract_origin, &origin_cu);
14308 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14309 dpo->abstract_to_concrete[origin_die].push_back (die);
14313 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14314 reading .debug_rnglists.
14315 Callback's type should be:
14316 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14317 Return true if the attributes are present and valid, otherwise,
14320 template <typename Callback>
14322 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14323 Callback &&callback)
14325 struct dwarf2_per_objfile *dwarf2_per_objfile
14326 = cu->per_cu->dwarf2_per_objfile;
14327 struct objfile *objfile = dwarf2_per_objfile->objfile;
14328 bfd *obfd = objfile->obfd;
14329 /* Base address selection entry. */
14332 const gdb_byte *buffer;
14333 CORE_ADDR baseaddr;
14334 bool overflow = false;
14336 found_base = cu->base_known;
14337 base = cu->base_address;
14339 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14340 if (offset >= dwarf2_per_objfile->rnglists.size)
14342 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14346 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14348 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14352 /* Initialize it due to a false compiler warning. */
14353 CORE_ADDR range_beginning = 0, range_end = 0;
14354 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14355 + dwarf2_per_objfile->rnglists.size);
14356 unsigned int bytes_read;
14358 if (buffer == buf_end)
14363 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14366 case DW_RLE_end_of_list:
14368 case DW_RLE_base_address:
14369 if (buffer + cu->header.addr_size > buf_end)
14374 base = read_address (obfd, buffer, cu, &bytes_read);
14376 buffer += bytes_read;
14378 case DW_RLE_start_length:
14379 if (buffer + cu->header.addr_size > buf_end)
14384 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14385 buffer += bytes_read;
14386 range_end = (range_beginning
14387 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14395 case DW_RLE_offset_pair:
14396 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14397 buffer += bytes_read;
14398 if (buffer > buf_end)
14403 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14404 buffer += bytes_read;
14405 if (buffer > buf_end)
14411 case DW_RLE_start_end:
14412 if (buffer + 2 * cu->header.addr_size > buf_end)
14417 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14418 buffer += bytes_read;
14419 range_end = read_address (obfd, buffer, cu, &bytes_read);
14420 buffer += bytes_read;
14423 complaint (_("Invalid .debug_rnglists data (no base address)"));
14426 if (rlet == DW_RLE_end_of_list || overflow)
14428 if (rlet == DW_RLE_base_address)
14433 /* We have no valid base address for the ranges
14435 complaint (_("Invalid .debug_rnglists data (no base address)"));
14439 if (range_beginning > range_end)
14441 /* Inverted range entries are invalid. */
14442 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14446 /* Empty range entries have no effect. */
14447 if (range_beginning == range_end)
14450 range_beginning += base;
14453 /* A not-uncommon case of bad debug info.
14454 Don't pollute the addrmap with bad data. */
14455 if (range_beginning + baseaddr == 0
14456 && !dwarf2_per_objfile->has_section_at_zero)
14458 complaint (_(".debug_rnglists entry has start address of zero"
14459 " [in module %s]"), objfile_name (objfile));
14463 callback (range_beginning, range_end);
14468 complaint (_("Offset %d is not terminated "
14469 "for DW_AT_ranges attribute"),
14477 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14478 Callback's type should be:
14479 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14480 Return 1 if the attributes are present and valid, otherwise, return 0. */
14482 template <typename Callback>
14484 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14485 Callback &&callback)
14487 struct dwarf2_per_objfile *dwarf2_per_objfile
14488 = cu->per_cu->dwarf2_per_objfile;
14489 struct objfile *objfile = dwarf2_per_objfile->objfile;
14490 struct comp_unit_head *cu_header = &cu->header;
14491 bfd *obfd = objfile->obfd;
14492 unsigned int addr_size = cu_header->addr_size;
14493 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14494 /* Base address selection entry. */
14497 unsigned int dummy;
14498 const gdb_byte *buffer;
14499 CORE_ADDR baseaddr;
14501 if (cu_header->version >= 5)
14502 return dwarf2_rnglists_process (offset, cu, callback);
14504 found_base = cu->base_known;
14505 base = cu->base_address;
14507 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14508 if (offset >= dwarf2_per_objfile->ranges.size)
14510 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14514 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14516 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14520 CORE_ADDR range_beginning, range_end;
14522 range_beginning = read_address (obfd, buffer, cu, &dummy);
14523 buffer += addr_size;
14524 range_end = read_address (obfd, buffer, cu, &dummy);
14525 buffer += addr_size;
14526 offset += 2 * addr_size;
14528 /* An end of list marker is a pair of zero addresses. */
14529 if (range_beginning == 0 && range_end == 0)
14530 /* Found the end of list entry. */
14533 /* Each base address selection entry is a pair of 2 values.
14534 The first is the largest possible address, the second is
14535 the base address. Check for a base address here. */
14536 if ((range_beginning & mask) == mask)
14538 /* If we found the largest possible address, then we already
14539 have the base address in range_end. */
14547 /* We have no valid base address for the ranges
14549 complaint (_("Invalid .debug_ranges data (no base address)"));
14553 if (range_beginning > range_end)
14555 /* Inverted range entries are invalid. */
14556 complaint (_("Invalid .debug_ranges data (inverted range)"));
14560 /* Empty range entries have no effect. */
14561 if (range_beginning == range_end)
14564 range_beginning += base;
14567 /* A not-uncommon case of bad debug info.
14568 Don't pollute the addrmap with bad data. */
14569 if (range_beginning + baseaddr == 0
14570 && !dwarf2_per_objfile->has_section_at_zero)
14572 complaint (_(".debug_ranges entry has start address of zero"
14573 " [in module %s]"), objfile_name (objfile));
14577 callback (range_beginning, range_end);
14583 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14584 Return 1 if the attributes are present and valid, otherwise, return 0.
14585 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14588 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14589 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14590 struct partial_symtab *ranges_pst)
14592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14593 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14594 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14595 SECT_OFF_TEXT (objfile));
14598 CORE_ADDR high = 0;
14601 retval = dwarf2_ranges_process (offset, cu,
14602 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14604 if (ranges_pst != NULL)
14609 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14610 range_beginning + baseaddr)
14612 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14613 range_end + baseaddr)
14615 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14616 lowpc, highpc - 1, ranges_pst);
14619 /* FIXME: This is recording everything as a low-high
14620 segment of consecutive addresses. We should have a
14621 data structure for discontiguous block ranges
14625 low = range_beginning;
14631 if (range_beginning < low)
14632 low = range_beginning;
14633 if (range_end > high)
14641 /* If the first entry is an end-of-list marker, the range
14642 describes an empty scope, i.e. no instructions. */
14648 *high_return = high;
14652 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14653 definition for the return value. *LOWPC and *HIGHPC are set iff
14654 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14656 static enum pc_bounds_kind
14657 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14658 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14659 struct partial_symtab *pst)
14661 struct dwarf2_per_objfile *dwarf2_per_objfile
14662 = cu->per_cu->dwarf2_per_objfile;
14663 struct attribute *attr;
14664 struct attribute *attr_high;
14666 CORE_ADDR high = 0;
14667 enum pc_bounds_kind ret;
14669 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14672 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14675 low = attr_value_as_address (attr);
14676 high = attr_value_as_address (attr_high);
14677 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14681 /* Found high w/o low attribute. */
14682 return PC_BOUNDS_INVALID;
14684 /* Found consecutive range of addresses. */
14685 ret = PC_BOUNDS_HIGH_LOW;
14689 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14692 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14693 We take advantage of the fact that DW_AT_ranges does not appear
14694 in DW_TAG_compile_unit of DWO files. */
14695 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14696 unsigned int ranges_offset = (DW_UNSND (attr)
14697 + (need_ranges_base
14701 /* Value of the DW_AT_ranges attribute is the offset in the
14702 .debug_ranges section. */
14703 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14704 return PC_BOUNDS_INVALID;
14705 /* Found discontinuous range of addresses. */
14706 ret = PC_BOUNDS_RANGES;
14709 return PC_BOUNDS_NOT_PRESENT;
14712 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14714 return PC_BOUNDS_INVALID;
14716 /* When using the GNU linker, .gnu.linkonce. sections are used to
14717 eliminate duplicate copies of functions and vtables and such.
14718 The linker will arbitrarily choose one and discard the others.
14719 The AT_*_pc values for such functions refer to local labels in
14720 these sections. If the section from that file was discarded, the
14721 labels are not in the output, so the relocs get a value of 0.
14722 If this is a discarded function, mark the pc bounds as invalid,
14723 so that GDB will ignore it. */
14724 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14725 return PC_BOUNDS_INVALID;
14733 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14734 its low and high PC addresses. Do nothing if these addresses could not
14735 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14736 and HIGHPC to the high address if greater than HIGHPC. */
14739 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14740 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14741 struct dwarf2_cu *cu)
14743 CORE_ADDR low, high;
14744 struct die_info *child = die->child;
14746 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14748 *lowpc = std::min (*lowpc, low);
14749 *highpc = std::max (*highpc, high);
14752 /* If the language does not allow nested subprograms (either inside
14753 subprograms or lexical blocks), we're done. */
14754 if (cu->language != language_ada)
14757 /* Check all the children of the given DIE. If it contains nested
14758 subprograms, then check their pc bounds. Likewise, we need to
14759 check lexical blocks as well, as they may also contain subprogram
14761 while (child && child->tag)
14763 if (child->tag == DW_TAG_subprogram
14764 || child->tag == DW_TAG_lexical_block)
14765 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14766 child = sibling_die (child);
14770 /* Get the low and high pc's represented by the scope DIE, and store
14771 them in *LOWPC and *HIGHPC. If the correct values can't be
14772 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14775 get_scope_pc_bounds (struct die_info *die,
14776 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14777 struct dwarf2_cu *cu)
14779 CORE_ADDR best_low = (CORE_ADDR) -1;
14780 CORE_ADDR best_high = (CORE_ADDR) 0;
14781 CORE_ADDR current_low, current_high;
14783 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14784 >= PC_BOUNDS_RANGES)
14786 best_low = current_low;
14787 best_high = current_high;
14791 struct die_info *child = die->child;
14793 while (child && child->tag)
14795 switch (child->tag) {
14796 case DW_TAG_subprogram:
14797 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14799 case DW_TAG_namespace:
14800 case DW_TAG_module:
14801 /* FIXME: carlton/2004-01-16: Should we do this for
14802 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14803 that current GCC's always emit the DIEs corresponding
14804 to definitions of methods of classes as children of a
14805 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14806 the DIEs giving the declarations, which could be
14807 anywhere). But I don't see any reason why the
14808 standards says that they have to be there. */
14809 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14811 if (current_low != ((CORE_ADDR) -1))
14813 best_low = std::min (best_low, current_low);
14814 best_high = std::max (best_high, current_high);
14822 child = sibling_die (child);
14827 *highpc = best_high;
14830 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14834 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14835 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14838 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14839 struct attribute *attr;
14840 struct attribute *attr_high;
14842 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14845 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14848 CORE_ADDR low = attr_value_as_address (attr);
14849 CORE_ADDR high = attr_value_as_address (attr_high);
14851 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14854 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14855 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14856 cu->get_builder ()->record_block_range (block, low, high - 1);
14860 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14863 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14864 We take advantage of the fact that DW_AT_ranges does not appear
14865 in DW_TAG_compile_unit of DWO files. */
14866 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14868 /* The value of the DW_AT_ranges attribute is the offset of the
14869 address range list in the .debug_ranges section. */
14870 unsigned long offset = (DW_UNSND (attr)
14871 + (need_ranges_base ? cu->ranges_base : 0));
14873 std::vector<blockrange> blockvec;
14874 dwarf2_ranges_process (offset, cu,
14875 [&] (CORE_ADDR start, CORE_ADDR end)
14879 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14880 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14881 cu->get_builder ()->record_block_range (block, start, end - 1);
14882 blockvec.emplace_back (start, end);
14885 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14889 /* Check whether the producer field indicates either of GCC < 4.6, or the
14890 Intel C/C++ compiler, and cache the result in CU. */
14893 check_producer (struct dwarf2_cu *cu)
14897 if (cu->producer == NULL)
14899 /* For unknown compilers expect their behavior is DWARF version
14902 GCC started to support .debug_types sections by -gdwarf-4 since
14903 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14904 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14905 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14906 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14908 else if (producer_is_gcc (cu->producer, &major, &minor))
14910 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14911 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14913 else if (producer_is_icc (cu->producer, &major, &minor))
14915 cu->producer_is_icc = true;
14916 cu->producer_is_icc_lt_14 = major < 14;
14918 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14919 cu->producer_is_codewarrior = true;
14922 /* For other non-GCC compilers, expect their behavior is DWARF version
14926 cu->checked_producer = true;
14929 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14930 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14931 during 4.6.0 experimental. */
14934 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14936 if (!cu->checked_producer)
14937 check_producer (cu);
14939 return cu->producer_is_gxx_lt_4_6;
14943 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14944 with incorrect is_stmt attributes. */
14947 producer_is_codewarrior (struct dwarf2_cu *cu)
14949 if (!cu->checked_producer)
14950 check_producer (cu);
14952 return cu->producer_is_codewarrior;
14955 /* Return the default accessibility type if it is not overriden by
14956 DW_AT_accessibility. */
14958 static enum dwarf_access_attribute
14959 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14961 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14963 /* The default DWARF 2 accessibility for members is public, the default
14964 accessibility for inheritance is private. */
14966 if (die->tag != DW_TAG_inheritance)
14967 return DW_ACCESS_public;
14969 return DW_ACCESS_private;
14973 /* DWARF 3+ defines the default accessibility a different way. The same
14974 rules apply now for DW_TAG_inheritance as for the members and it only
14975 depends on the container kind. */
14977 if (die->parent->tag == DW_TAG_class_type)
14978 return DW_ACCESS_private;
14980 return DW_ACCESS_public;
14984 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14985 offset. If the attribute was not found return 0, otherwise return
14986 1. If it was found but could not properly be handled, set *OFFSET
14990 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14993 struct attribute *attr;
14995 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15000 /* Note that we do not check for a section offset first here.
15001 This is because DW_AT_data_member_location is new in DWARF 4,
15002 so if we see it, we can assume that a constant form is really
15003 a constant and not a section offset. */
15004 if (attr_form_is_constant (attr))
15005 *offset = dwarf2_get_attr_constant_value (attr, 0);
15006 else if (attr_form_is_section_offset (attr))
15007 dwarf2_complex_location_expr_complaint ();
15008 else if (attr_form_is_block (attr))
15009 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15011 dwarf2_complex_location_expr_complaint ();
15019 /* Add an aggregate field to the field list. */
15022 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15023 struct dwarf2_cu *cu)
15025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15026 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15027 struct nextfield *new_field;
15028 struct attribute *attr;
15030 const char *fieldname = "";
15032 if (die->tag == DW_TAG_inheritance)
15034 fip->baseclasses.emplace_back ();
15035 new_field = &fip->baseclasses.back ();
15039 fip->fields.emplace_back ();
15040 new_field = &fip->fields.back ();
15045 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15047 new_field->accessibility = DW_UNSND (attr);
15049 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15050 if (new_field->accessibility != DW_ACCESS_public)
15051 fip->non_public_fields = 1;
15053 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15055 new_field->virtuality = DW_UNSND (attr);
15057 new_field->virtuality = DW_VIRTUALITY_none;
15059 fp = &new_field->field;
15061 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15065 /* Data member other than a C++ static data member. */
15067 /* Get type of field. */
15068 fp->type = die_type (die, cu);
15070 SET_FIELD_BITPOS (*fp, 0);
15072 /* Get bit size of field (zero if none). */
15073 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15076 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15080 FIELD_BITSIZE (*fp) = 0;
15083 /* Get bit offset of field. */
15084 if (handle_data_member_location (die, cu, &offset))
15085 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15086 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15089 if (gdbarch_bits_big_endian (gdbarch))
15091 /* For big endian bits, the DW_AT_bit_offset gives the
15092 additional bit offset from the MSB of the containing
15093 anonymous object to the MSB of the field. We don't
15094 have to do anything special since we don't need to
15095 know the size of the anonymous object. */
15096 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15100 /* For little endian bits, compute the bit offset to the
15101 MSB of the anonymous object, subtract off the number of
15102 bits from the MSB of the field to the MSB of the
15103 object, and then subtract off the number of bits of
15104 the field itself. The result is the bit offset of
15105 the LSB of the field. */
15106 int anonymous_size;
15107 int bit_offset = DW_UNSND (attr);
15109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15112 /* The size of the anonymous object containing
15113 the bit field is explicit, so use the
15114 indicated size (in bytes). */
15115 anonymous_size = DW_UNSND (attr);
15119 /* The size of the anonymous object containing
15120 the bit field must be inferred from the type
15121 attribute of the data member containing the
15123 anonymous_size = TYPE_LENGTH (fp->type);
15125 SET_FIELD_BITPOS (*fp,
15126 (FIELD_BITPOS (*fp)
15127 + anonymous_size * bits_per_byte
15128 - bit_offset - FIELD_BITSIZE (*fp)));
15131 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15133 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15134 + dwarf2_get_attr_constant_value (attr, 0)));
15136 /* Get name of field. */
15137 fieldname = dwarf2_name (die, cu);
15138 if (fieldname == NULL)
15141 /* The name is already allocated along with this objfile, so we don't
15142 need to duplicate it for the type. */
15143 fp->name = fieldname;
15145 /* Change accessibility for artificial fields (e.g. virtual table
15146 pointer or virtual base class pointer) to private. */
15147 if (dwarf2_attr (die, DW_AT_artificial, cu))
15149 FIELD_ARTIFICIAL (*fp) = 1;
15150 new_field->accessibility = DW_ACCESS_private;
15151 fip->non_public_fields = 1;
15154 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15156 /* C++ static member. */
15158 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15159 is a declaration, but all versions of G++ as of this writing
15160 (so through at least 3.2.1) incorrectly generate
15161 DW_TAG_variable tags. */
15163 const char *physname;
15165 /* Get name of field. */
15166 fieldname = dwarf2_name (die, cu);
15167 if (fieldname == NULL)
15170 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15172 /* Only create a symbol if this is an external value.
15173 new_symbol checks this and puts the value in the global symbol
15174 table, which we want. If it is not external, new_symbol
15175 will try to put the value in cu->list_in_scope which is wrong. */
15176 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15178 /* A static const member, not much different than an enum as far as
15179 we're concerned, except that we can support more types. */
15180 new_symbol (die, NULL, cu);
15183 /* Get physical name. */
15184 physname = dwarf2_physname (fieldname, die, cu);
15186 /* The name is already allocated along with this objfile, so we don't
15187 need to duplicate it for the type. */
15188 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15189 FIELD_TYPE (*fp) = die_type (die, cu);
15190 FIELD_NAME (*fp) = fieldname;
15192 else if (die->tag == DW_TAG_inheritance)
15196 /* C++ base class field. */
15197 if (handle_data_member_location (die, cu, &offset))
15198 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15199 FIELD_BITSIZE (*fp) = 0;
15200 FIELD_TYPE (*fp) = die_type (die, cu);
15201 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15203 else if (die->tag == DW_TAG_variant_part)
15205 /* process_structure_scope will treat this DIE as a union. */
15206 process_structure_scope (die, cu);
15208 /* The variant part is relative to the start of the enclosing
15210 SET_FIELD_BITPOS (*fp, 0);
15211 fp->type = get_die_type (die, cu);
15212 fp->artificial = 1;
15213 fp->name = "<<variant>>";
15215 /* Normally a DW_TAG_variant_part won't have a size, but our
15216 representation requires one, so set it to the maximum of the
15218 if (TYPE_LENGTH (fp->type) == 0)
15221 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15222 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15223 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15224 TYPE_LENGTH (fp->type) = max;
15228 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15231 /* Can the type given by DIE define another type? */
15234 type_can_define_types (const struct die_info *die)
15238 case DW_TAG_typedef:
15239 case DW_TAG_class_type:
15240 case DW_TAG_structure_type:
15241 case DW_TAG_union_type:
15242 case DW_TAG_enumeration_type:
15250 /* Add a type definition defined in the scope of the FIP's class. */
15253 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15254 struct dwarf2_cu *cu)
15256 struct decl_field fp;
15257 memset (&fp, 0, sizeof (fp));
15259 gdb_assert (type_can_define_types (die));
15261 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15262 fp.name = dwarf2_name (die, cu);
15263 fp.type = read_type_die (die, cu);
15265 /* Save accessibility. */
15266 enum dwarf_access_attribute accessibility;
15267 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15269 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15271 accessibility = dwarf2_default_access_attribute (die, cu);
15272 switch (accessibility)
15274 case DW_ACCESS_public:
15275 /* The assumed value if neither private nor protected. */
15277 case DW_ACCESS_private:
15280 case DW_ACCESS_protected:
15281 fp.is_protected = 1;
15284 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15287 if (die->tag == DW_TAG_typedef)
15288 fip->typedef_field_list.push_back (fp);
15290 fip->nested_types_list.push_back (fp);
15293 /* Create the vector of fields, and attach it to the type. */
15296 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15297 struct dwarf2_cu *cu)
15299 int nfields = fip->nfields;
15301 /* Record the field count, allocate space for the array of fields,
15302 and create blank accessibility bitfields if necessary. */
15303 TYPE_NFIELDS (type) = nfields;
15304 TYPE_FIELDS (type) = (struct field *)
15305 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15307 if (fip->non_public_fields && cu->language != language_ada)
15309 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15311 TYPE_FIELD_PRIVATE_BITS (type) =
15312 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15313 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15315 TYPE_FIELD_PROTECTED_BITS (type) =
15316 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15317 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15319 TYPE_FIELD_IGNORE_BITS (type) =
15320 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15321 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15324 /* If the type has baseclasses, allocate and clear a bit vector for
15325 TYPE_FIELD_VIRTUAL_BITS. */
15326 if (!fip->baseclasses.empty () && cu->language != language_ada)
15328 int num_bytes = B_BYTES (fip->baseclasses.size ());
15329 unsigned char *pointer;
15331 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15332 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15333 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15334 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15335 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15338 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15340 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15342 for (int index = 0; index < nfields; ++index)
15344 struct nextfield &field = fip->fields[index];
15346 if (field.variant.is_discriminant)
15347 di->discriminant_index = index;
15348 else if (field.variant.default_branch)
15349 di->default_index = index;
15351 di->discriminants[index] = field.variant.discriminant_value;
15355 /* Copy the saved-up fields into the field vector. */
15356 for (int i = 0; i < nfields; ++i)
15358 struct nextfield &field
15359 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15360 : fip->fields[i - fip->baseclasses.size ()]);
15362 TYPE_FIELD (type, i) = field.field;
15363 switch (field.accessibility)
15365 case DW_ACCESS_private:
15366 if (cu->language != language_ada)
15367 SET_TYPE_FIELD_PRIVATE (type, i);
15370 case DW_ACCESS_protected:
15371 if (cu->language != language_ada)
15372 SET_TYPE_FIELD_PROTECTED (type, i);
15375 case DW_ACCESS_public:
15379 /* Unknown accessibility. Complain and treat it as public. */
15381 complaint (_("unsupported accessibility %d"),
15382 field.accessibility);
15386 if (i < fip->baseclasses.size ())
15388 switch (field.virtuality)
15390 case DW_VIRTUALITY_virtual:
15391 case DW_VIRTUALITY_pure_virtual:
15392 if (cu->language == language_ada)
15393 error (_("unexpected virtuality in component of Ada type"));
15394 SET_TYPE_FIELD_VIRTUAL (type, i);
15401 /* Return true if this member function is a constructor, false
15405 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15407 const char *fieldname;
15408 const char *type_name;
15411 if (die->parent == NULL)
15414 if (die->parent->tag != DW_TAG_structure_type
15415 && die->parent->tag != DW_TAG_union_type
15416 && die->parent->tag != DW_TAG_class_type)
15419 fieldname = dwarf2_name (die, cu);
15420 type_name = dwarf2_name (die->parent, cu);
15421 if (fieldname == NULL || type_name == NULL)
15424 len = strlen (fieldname);
15425 return (strncmp (fieldname, type_name, len) == 0
15426 && (type_name[len] == '\0' || type_name[len] == '<'));
15429 /* Add a member function to the proper fieldlist. */
15432 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15433 struct type *type, struct dwarf2_cu *cu)
15435 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15436 struct attribute *attr;
15438 struct fnfieldlist *flp = nullptr;
15439 struct fn_field *fnp;
15440 const char *fieldname;
15441 struct type *this_type;
15442 enum dwarf_access_attribute accessibility;
15444 if (cu->language == language_ada)
15445 error (_("unexpected member function in Ada type"));
15447 /* Get name of member function. */
15448 fieldname = dwarf2_name (die, cu);
15449 if (fieldname == NULL)
15452 /* Look up member function name in fieldlist. */
15453 for (i = 0; i < fip->fnfieldlists.size (); i++)
15455 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15457 flp = &fip->fnfieldlists[i];
15462 /* Create a new fnfieldlist if necessary. */
15463 if (flp == nullptr)
15465 fip->fnfieldlists.emplace_back ();
15466 flp = &fip->fnfieldlists.back ();
15467 flp->name = fieldname;
15468 i = fip->fnfieldlists.size () - 1;
15471 /* Create a new member function field and add it to the vector of
15473 flp->fnfields.emplace_back ();
15474 fnp = &flp->fnfields.back ();
15476 /* Delay processing of the physname until later. */
15477 if (cu->language == language_cplus)
15478 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15482 const char *physname = dwarf2_physname (fieldname, die, cu);
15483 fnp->physname = physname ? physname : "";
15486 fnp->type = alloc_type (objfile);
15487 this_type = read_type_die (die, cu);
15488 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15490 int nparams = TYPE_NFIELDS (this_type);
15492 /* TYPE is the domain of this method, and THIS_TYPE is the type
15493 of the method itself (TYPE_CODE_METHOD). */
15494 smash_to_method_type (fnp->type, type,
15495 TYPE_TARGET_TYPE (this_type),
15496 TYPE_FIELDS (this_type),
15497 TYPE_NFIELDS (this_type),
15498 TYPE_VARARGS (this_type));
15500 /* Handle static member functions.
15501 Dwarf2 has no clean way to discern C++ static and non-static
15502 member functions. G++ helps GDB by marking the first
15503 parameter for non-static member functions (which is the this
15504 pointer) as artificial. We obtain this information from
15505 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15506 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15507 fnp->voffset = VOFFSET_STATIC;
15510 complaint (_("member function type missing for '%s'"),
15511 dwarf2_full_name (fieldname, die, cu));
15513 /* Get fcontext from DW_AT_containing_type if present. */
15514 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15515 fnp->fcontext = die_containing_type (die, cu);
15517 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15518 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15520 /* Get accessibility. */
15521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15523 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15525 accessibility = dwarf2_default_access_attribute (die, cu);
15526 switch (accessibility)
15528 case DW_ACCESS_private:
15529 fnp->is_private = 1;
15531 case DW_ACCESS_protected:
15532 fnp->is_protected = 1;
15536 /* Check for artificial methods. */
15537 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15538 if (attr && DW_UNSND (attr) != 0)
15539 fnp->is_artificial = 1;
15541 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15543 /* Get index in virtual function table if it is a virtual member
15544 function. For older versions of GCC, this is an offset in the
15545 appropriate virtual table, as specified by DW_AT_containing_type.
15546 For everyone else, it is an expression to be evaluated relative
15547 to the object address. */
15549 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15552 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15554 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15556 /* Old-style GCC. */
15557 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15559 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15560 || (DW_BLOCK (attr)->size > 1
15561 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15562 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15564 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15565 if ((fnp->voffset % cu->header.addr_size) != 0)
15566 dwarf2_complex_location_expr_complaint ();
15568 fnp->voffset /= cu->header.addr_size;
15572 dwarf2_complex_location_expr_complaint ();
15574 if (!fnp->fcontext)
15576 /* If there is no `this' field and no DW_AT_containing_type,
15577 we cannot actually find a base class context for the
15579 if (TYPE_NFIELDS (this_type) == 0
15580 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15582 complaint (_("cannot determine context for virtual member "
15583 "function \"%s\" (offset %s)"),
15584 fieldname, sect_offset_str (die->sect_off));
15589 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15593 else if (attr_form_is_section_offset (attr))
15595 dwarf2_complex_location_expr_complaint ();
15599 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15605 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15606 if (attr && DW_UNSND (attr))
15608 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15609 complaint (_("Member function \"%s\" (offset %s) is virtual "
15610 "but the vtable offset is not specified"),
15611 fieldname, sect_offset_str (die->sect_off));
15612 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15613 TYPE_CPLUS_DYNAMIC (type) = 1;
15618 /* Create the vector of member function fields, and attach it to the type. */
15621 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15622 struct dwarf2_cu *cu)
15624 if (cu->language == language_ada)
15625 error (_("unexpected member functions in Ada type"));
15627 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15628 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15630 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15632 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15634 struct fnfieldlist &nf = fip->fnfieldlists[i];
15635 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15637 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15638 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15639 fn_flp->fn_fields = (struct fn_field *)
15640 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15642 for (int k = 0; k < nf.fnfields.size (); ++k)
15643 fn_flp->fn_fields[k] = nf.fnfields[k];
15646 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15649 /* Returns non-zero if NAME is the name of a vtable member in CU's
15650 language, zero otherwise. */
15652 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15654 static const char vptr[] = "_vptr";
15656 /* Look for the C++ form of the vtable. */
15657 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15663 /* GCC outputs unnamed structures that are really pointers to member
15664 functions, with the ABI-specified layout. If TYPE describes
15665 such a structure, smash it into a member function type.
15667 GCC shouldn't do this; it should just output pointer to member DIEs.
15668 This is GCC PR debug/28767. */
15671 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15673 struct type *pfn_type, *self_type, *new_type;
15675 /* Check for a structure with no name and two children. */
15676 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15679 /* Check for __pfn and __delta members. */
15680 if (TYPE_FIELD_NAME (type, 0) == NULL
15681 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15682 || TYPE_FIELD_NAME (type, 1) == NULL
15683 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15686 /* Find the type of the method. */
15687 pfn_type = TYPE_FIELD_TYPE (type, 0);
15688 if (pfn_type == NULL
15689 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15690 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15693 /* Look for the "this" argument. */
15694 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15695 if (TYPE_NFIELDS (pfn_type) == 0
15696 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15697 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15700 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15701 new_type = alloc_type (objfile);
15702 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15703 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15704 TYPE_VARARGS (pfn_type));
15705 smash_to_methodptr_type (type, new_type);
15708 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15709 appropriate error checking and issuing complaints if there is a
15713 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15715 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15717 if (attr == nullptr)
15720 if (!attr_form_is_constant (attr))
15722 complaint (_("DW_AT_alignment must have constant form"
15723 " - DIE at %s [in module %s]"),
15724 sect_offset_str (die->sect_off),
15725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15730 if (attr->form == DW_FORM_sdata)
15732 LONGEST val = DW_SND (attr);
15735 complaint (_("DW_AT_alignment value must not be negative"
15736 " - DIE at %s [in module %s]"),
15737 sect_offset_str (die->sect_off),
15738 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15744 align = DW_UNSND (attr);
15748 complaint (_("DW_AT_alignment value must not be zero"
15749 " - DIE at %s [in module %s]"),
15750 sect_offset_str (die->sect_off),
15751 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15754 if ((align & (align - 1)) != 0)
15756 complaint (_("DW_AT_alignment value must be a power of 2"
15757 " - DIE at %s [in module %s]"),
15758 sect_offset_str (die->sect_off),
15759 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15766 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15767 the alignment for TYPE. */
15770 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15773 if (!set_type_align (type, get_alignment (cu, die)))
15774 complaint (_("DW_AT_alignment value too large"
15775 " - DIE at %s [in module %s]"),
15776 sect_offset_str (die->sect_off),
15777 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15780 /* Called when we find the DIE that starts a structure or union scope
15781 (definition) to create a type for the structure or union. Fill in
15782 the type's name and general properties; the members will not be
15783 processed until process_structure_scope. A symbol table entry for
15784 the type will also not be done until process_structure_scope (assuming
15785 the type has a name).
15787 NOTE: we need to call these functions regardless of whether or not the
15788 DIE has a DW_AT_name attribute, since it might be an anonymous
15789 structure or union. This gets the type entered into our set of
15790 user defined types. */
15792 static struct type *
15793 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15795 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15797 struct attribute *attr;
15800 /* If the definition of this type lives in .debug_types, read that type.
15801 Don't follow DW_AT_specification though, that will take us back up
15802 the chain and we want to go down. */
15803 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15806 type = get_DW_AT_signature_type (die, attr, cu);
15808 /* The type's CU may not be the same as CU.
15809 Ensure TYPE is recorded with CU in die_type_hash. */
15810 return set_die_type (die, type, cu);
15813 type = alloc_type (objfile);
15814 INIT_CPLUS_SPECIFIC (type);
15816 name = dwarf2_name (die, cu);
15819 if (cu->language == language_cplus
15820 || cu->language == language_d
15821 || cu->language == language_rust)
15823 const char *full_name = dwarf2_full_name (name, die, cu);
15825 /* dwarf2_full_name might have already finished building the DIE's
15826 type. If so, there is no need to continue. */
15827 if (get_die_type (die, cu) != NULL)
15828 return get_die_type (die, cu);
15830 TYPE_NAME (type) = full_name;
15834 /* The name is already allocated along with this objfile, so
15835 we don't need to duplicate it for the type. */
15836 TYPE_NAME (type) = name;
15840 if (die->tag == DW_TAG_structure_type)
15842 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15844 else if (die->tag == DW_TAG_union_type)
15846 TYPE_CODE (type) = TYPE_CODE_UNION;
15848 else if (die->tag == DW_TAG_variant_part)
15850 TYPE_CODE (type) = TYPE_CODE_UNION;
15851 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15855 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15858 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15859 TYPE_DECLARED_CLASS (type) = 1;
15861 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15864 if (attr_form_is_constant (attr))
15865 TYPE_LENGTH (type) = DW_UNSND (attr);
15868 /* For the moment, dynamic type sizes are not supported
15869 by GDB's struct type. The actual size is determined
15870 on-demand when resolving the type of a given object,
15871 so set the type's length to zero for now. Otherwise,
15872 we record an expression as the length, and that expression
15873 could lead to a very large value, which could eventually
15874 lead to us trying to allocate that much memory when creating
15875 a value of that type. */
15876 TYPE_LENGTH (type) = 0;
15881 TYPE_LENGTH (type) = 0;
15884 maybe_set_alignment (cu, die, type);
15886 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15888 /* ICC<14 does not output the required DW_AT_declaration on
15889 incomplete types, but gives them a size of zero. */
15890 TYPE_STUB (type) = 1;
15893 TYPE_STUB_SUPPORTED (type) = 1;
15895 if (die_is_declaration (die, cu))
15896 TYPE_STUB (type) = 1;
15897 else if (attr == NULL && die->child == NULL
15898 && producer_is_realview (cu->producer))
15899 /* RealView does not output the required DW_AT_declaration
15900 on incomplete types. */
15901 TYPE_STUB (type) = 1;
15903 /* We need to add the type field to the die immediately so we don't
15904 infinitely recurse when dealing with pointers to the structure
15905 type within the structure itself. */
15906 set_die_type (die, type, cu);
15908 /* set_die_type should be already done. */
15909 set_descriptive_type (type, die, cu);
15914 /* A helper for process_structure_scope that handles a single member
15918 handle_struct_member_die (struct die_info *child_die, struct type *type,
15919 struct field_info *fi,
15920 std::vector<struct symbol *> *template_args,
15921 struct dwarf2_cu *cu)
15923 if (child_die->tag == DW_TAG_member
15924 || child_die->tag == DW_TAG_variable
15925 || child_die->tag == DW_TAG_variant_part)
15927 /* NOTE: carlton/2002-11-05: A C++ static data member
15928 should be a DW_TAG_member that is a declaration, but
15929 all versions of G++ as of this writing (so through at
15930 least 3.2.1) incorrectly generate DW_TAG_variable
15931 tags for them instead. */
15932 dwarf2_add_field (fi, child_die, cu);
15934 else if (child_die->tag == DW_TAG_subprogram)
15936 /* Rust doesn't have member functions in the C++ sense.
15937 However, it does emit ordinary functions as children
15938 of a struct DIE. */
15939 if (cu->language == language_rust)
15940 read_func_scope (child_die, cu);
15943 /* C++ member function. */
15944 dwarf2_add_member_fn (fi, child_die, type, cu);
15947 else if (child_die->tag == DW_TAG_inheritance)
15949 /* C++ base class field. */
15950 dwarf2_add_field (fi, child_die, cu);
15952 else if (type_can_define_types (child_die))
15953 dwarf2_add_type_defn (fi, child_die, cu);
15954 else if (child_die->tag == DW_TAG_template_type_param
15955 || child_die->tag == DW_TAG_template_value_param)
15957 struct symbol *arg = new_symbol (child_die, NULL, cu);
15960 template_args->push_back (arg);
15962 else if (child_die->tag == DW_TAG_variant)
15964 /* In a variant we want to get the discriminant and also add a
15965 field for our sole member child. */
15966 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15968 for (struct die_info *variant_child = child_die->child;
15969 variant_child != NULL;
15970 variant_child = sibling_die (variant_child))
15972 if (variant_child->tag == DW_TAG_member)
15974 handle_struct_member_die (variant_child, type, fi,
15975 template_args, cu);
15976 /* Only handle the one. */
15981 /* We don't handle this but we might as well report it if we see
15983 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15984 complaint (_("DW_AT_discr_list is not supported yet"
15985 " - DIE at %s [in module %s]"),
15986 sect_offset_str (child_die->sect_off),
15987 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15989 /* The first field was just added, so we can stash the
15990 discriminant there. */
15991 gdb_assert (!fi->fields.empty ());
15993 fi->fields.back ().variant.default_branch = true;
15995 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15999 /* Finish creating a structure or union type, including filling in
16000 its members and creating a symbol for it. */
16003 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16005 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16006 struct die_info *child_die;
16009 type = get_die_type (die, cu);
16011 type = read_structure_type (die, cu);
16013 /* When reading a DW_TAG_variant_part, we need to notice when we
16014 read the discriminant member, so we can record it later in the
16015 discriminant_info. */
16016 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16017 sect_offset discr_offset;
16018 bool has_template_parameters = false;
16020 if (is_variant_part)
16022 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16025 /* Maybe it's a univariant form, an extension we support.
16026 In this case arrange not to check the offset. */
16027 is_variant_part = false;
16029 else if (attr_form_is_ref (discr))
16031 struct dwarf2_cu *target_cu = cu;
16032 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16034 discr_offset = target_die->sect_off;
16038 complaint (_("DW_AT_discr does not have DIE reference form"
16039 " - DIE at %s [in module %s]"),
16040 sect_offset_str (die->sect_off),
16041 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16042 is_variant_part = false;
16046 if (die->child != NULL && ! die_is_declaration (die, cu))
16048 struct field_info fi;
16049 std::vector<struct symbol *> template_args;
16051 child_die = die->child;
16053 while (child_die && child_die->tag)
16055 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16057 if (is_variant_part && discr_offset == child_die->sect_off)
16058 fi.fields.back ().variant.is_discriminant = true;
16060 child_die = sibling_die (child_die);
16063 /* Attach template arguments to type. */
16064 if (!template_args.empty ())
16066 has_template_parameters = true;
16067 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16068 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16069 TYPE_TEMPLATE_ARGUMENTS (type)
16070 = XOBNEWVEC (&objfile->objfile_obstack,
16072 TYPE_N_TEMPLATE_ARGUMENTS (type));
16073 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16074 template_args.data (),
16075 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16076 * sizeof (struct symbol *)));
16079 /* Attach fields and member functions to the type. */
16081 dwarf2_attach_fields_to_type (&fi, type, cu);
16082 if (!fi.fnfieldlists.empty ())
16084 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16086 /* Get the type which refers to the base class (possibly this
16087 class itself) which contains the vtable pointer for the current
16088 class from the DW_AT_containing_type attribute. This use of
16089 DW_AT_containing_type is a GNU extension. */
16091 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16093 struct type *t = die_containing_type (die, cu);
16095 set_type_vptr_basetype (type, t);
16100 /* Our own class provides vtbl ptr. */
16101 for (i = TYPE_NFIELDS (t) - 1;
16102 i >= TYPE_N_BASECLASSES (t);
16105 const char *fieldname = TYPE_FIELD_NAME (t, i);
16107 if (is_vtable_name (fieldname, cu))
16109 set_type_vptr_fieldno (type, i);
16114 /* Complain if virtual function table field not found. */
16115 if (i < TYPE_N_BASECLASSES (t))
16116 complaint (_("virtual function table pointer "
16117 "not found when defining class '%s'"),
16118 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16122 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16125 else if (cu->producer
16126 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16128 /* The IBM XLC compiler does not provide direct indication
16129 of the containing type, but the vtable pointer is
16130 always named __vfp. */
16134 for (i = TYPE_NFIELDS (type) - 1;
16135 i >= TYPE_N_BASECLASSES (type);
16138 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16140 set_type_vptr_fieldno (type, i);
16141 set_type_vptr_basetype (type, type);
16148 /* Copy fi.typedef_field_list linked list elements content into the
16149 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16150 if (!fi.typedef_field_list.empty ())
16152 int count = fi.typedef_field_list.size ();
16154 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16155 TYPE_TYPEDEF_FIELD_ARRAY (type)
16156 = ((struct decl_field *)
16158 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16159 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16161 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16162 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16165 /* Copy fi.nested_types_list linked list elements content into the
16166 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16167 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16169 int count = fi.nested_types_list.size ();
16171 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16172 TYPE_NESTED_TYPES_ARRAY (type)
16173 = ((struct decl_field *)
16174 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16175 TYPE_NESTED_TYPES_COUNT (type) = count;
16177 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16178 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16182 quirk_gcc_member_function_pointer (type, objfile);
16183 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16184 cu->rust_unions.push_back (type);
16186 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16187 snapshots) has been known to create a die giving a declaration
16188 for a class that has, as a child, a die giving a definition for a
16189 nested class. So we have to process our children even if the
16190 current die is a declaration. Normally, of course, a declaration
16191 won't have any children at all. */
16193 child_die = die->child;
16195 while (child_die != NULL && child_die->tag)
16197 if (child_die->tag == DW_TAG_member
16198 || child_die->tag == DW_TAG_variable
16199 || child_die->tag == DW_TAG_inheritance
16200 || child_die->tag == DW_TAG_template_value_param
16201 || child_die->tag == DW_TAG_template_type_param)
16206 process_die (child_die, cu);
16208 child_die = sibling_die (child_die);
16211 /* Do not consider external references. According to the DWARF standard,
16212 these DIEs are identified by the fact that they have no byte_size
16213 attribute, and a declaration attribute. */
16214 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16215 || !die_is_declaration (die, cu))
16217 struct symbol *sym = new_symbol (die, type, cu);
16219 if (has_template_parameters)
16221 struct symtab *symtab;
16222 if (sym != nullptr)
16223 symtab = symbol_symtab (sym);
16224 else if (cu->line_header != nullptr)
16226 /* Any related symtab will do. */
16228 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16233 complaint (_("could not find suitable "
16234 "symtab for template parameter"
16235 " - DIE at %s [in module %s]"),
16236 sect_offset_str (die->sect_off),
16237 objfile_name (objfile));
16240 if (symtab != nullptr)
16242 /* Make sure that the symtab is set on the new symbols.
16243 Even though they don't appear in this symtab directly,
16244 other parts of gdb assume that symbols do, and this is
16245 reasonably true. */
16246 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16247 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16253 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16254 update TYPE using some information only available in DIE's children. */
16257 update_enumeration_type_from_children (struct die_info *die,
16259 struct dwarf2_cu *cu)
16261 struct die_info *child_die;
16262 int unsigned_enum = 1;
16266 auto_obstack obstack;
16268 for (child_die = die->child;
16269 child_die != NULL && child_die->tag;
16270 child_die = sibling_die (child_die))
16272 struct attribute *attr;
16274 const gdb_byte *bytes;
16275 struct dwarf2_locexpr_baton *baton;
16278 if (child_die->tag != DW_TAG_enumerator)
16281 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16285 name = dwarf2_name (child_die, cu);
16287 name = "<anonymous enumerator>";
16289 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16290 &value, &bytes, &baton);
16296 else if ((mask & value) != 0)
16301 /* If we already know that the enum type is neither unsigned, nor
16302 a flag type, no need to look at the rest of the enumerates. */
16303 if (!unsigned_enum && !flag_enum)
16308 TYPE_UNSIGNED (type) = 1;
16310 TYPE_FLAG_ENUM (type) = 1;
16313 /* Given a DW_AT_enumeration_type die, set its type. We do not
16314 complete the type's fields yet, or create any symbols. */
16316 static struct type *
16317 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16319 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16321 struct attribute *attr;
16324 /* If the definition of this type lives in .debug_types, read that type.
16325 Don't follow DW_AT_specification though, that will take us back up
16326 the chain and we want to go down. */
16327 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16330 type = get_DW_AT_signature_type (die, attr, cu);
16332 /* The type's CU may not be the same as CU.
16333 Ensure TYPE is recorded with CU in die_type_hash. */
16334 return set_die_type (die, type, cu);
16337 type = alloc_type (objfile);
16339 TYPE_CODE (type) = TYPE_CODE_ENUM;
16340 name = dwarf2_full_name (NULL, die, cu);
16342 TYPE_NAME (type) = name;
16344 attr = dwarf2_attr (die, DW_AT_type, cu);
16347 struct type *underlying_type = die_type (die, cu);
16349 TYPE_TARGET_TYPE (type) = underlying_type;
16352 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16355 TYPE_LENGTH (type) = DW_UNSND (attr);
16359 TYPE_LENGTH (type) = 0;
16362 maybe_set_alignment (cu, die, type);
16364 /* The enumeration DIE can be incomplete. In Ada, any type can be
16365 declared as private in the package spec, and then defined only
16366 inside the package body. Such types are known as Taft Amendment
16367 Types. When another package uses such a type, an incomplete DIE
16368 may be generated by the compiler. */
16369 if (die_is_declaration (die, cu))
16370 TYPE_STUB (type) = 1;
16372 /* Finish the creation of this type by using the enum's children.
16373 We must call this even when the underlying type has been provided
16374 so that we can determine if we're looking at a "flag" enum. */
16375 update_enumeration_type_from_children (die, type, cu);
16377 /* If this type has an underlying type that is not a stub, then we
16378 may use its attributes. We always use the "unsigned" attribute
16379 in this situation, because ordinarily we guess whether the type
16380 is unsigned -- but the guess can be wrong and the underlying type
16381 can tell us the reality. However, we defer to a local size
16382 attribute if one exists, because this lets the compiler override
16383 the underlying type if needed. */
16384 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16386 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16387 if (TYPE_LENGTH (type) == 0)
16388 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16389 if (TYPE_RAW_ALIGN (type) == 0
16390 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16391 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16394 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16396 return set_die_type (die, type, cu);
16399 /* Given a pointer to a die which begins an enumeration, process all
16400 the dies that define the members of the enumeration, and create the
16401 symbol for the enumeration type.
16403 NOTE: We reverse the order of the element list. */
16406 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16408 struct type *this_type;
16410 this_type = get_die_type (die, cu);
16411 if (this_type == NULL)
16412 this_type = read_enumeration_type (die, cu);
16414 if (die->child != NULL)
16416 struct die_info *child_die;
16417 struct symbol *sym;
16418 struct field *fields = NULL;
16419 int num_fields = 0;
16422 child_die = die->child;
16423 while (child_die && child_die->tag)
16425 if (child_die->tag != DW_TAG_enumerator)
16427 process_die (child_die, cu);
16431 name = dwarf2_name (child_die, cu);
16434 sym = new_symbol (child_die, this_type, cu);
16436 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16438 fields = (struct field *)
16440 (num_fields + DW_FIELD_ALLOC_CHUNK)
16441 * sizeof (struct field));
16444 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16445 FIELD_TYPE (fields[num_fields]) = NULL;
16446 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16447 FIELD_BITSIZE (fields[num_fields]) = 0;
16453 child_die = sibling_die (child_die);
16458 TYPE_NFIELDS (this_type) = num_fields;
16459 TYPE_FIELDS (this_type) = (struct field *)
16460 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16461 memcpy (TYPE_FIELDS (this_type), fields,
16462 sizeof (struct field) * num_fields);
16467 /* If we are reading an enum from a .debug_types unit, and the enum
16468 is a declaration, and the enum is not the signatured type in the
16469 unit, then we do not want to add a symbol for it. Adding a
16470 symbol would in some cases obscure the true definition of the
16471 enum, giving users an incomplete type when the definition is
16472 actually available. Note that we do not want to do this for all
16473 enums which are just declarations, because C++0x allows forward
16474 enum declarations. */
16475 if (cu->per_cu->is_debug_types
16476 && die_is_declaration (die, cu))
16478 struct signatured_type *sig_type;
16480 sig_type = (struct signatured_type *) cu->per_cu;
16481 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16482 if (sig_type->type_offset_in_section != die->sect_off)
16486 new_symbol (die, this_type, cu);
16489 /* Extract all information from a DW_TAG_array_type DIE and put it in
16490 the DIE's type field. For now, this only handles one dimensional
16493 static struct type *
16494 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16496 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16497 struct die_info *child_die;
16499 struct type *element_type, *range_type, *index_type;
16500 struct attribute *attr;
16502 struct dynamic_prop *byte_stride_prop = NULL;
16503 unsigned int bit_stride = 0;
16505 element_type = die_type (die, cu);
16507 /* The die_type call above may have already set the type for this DIE. */
16508 type = get_die_type (die, cu);
16512 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16518 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16519 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16522 complaint (_("unable to read array DW_AT_byte_stride "
16523 " - DIE at %s [in module %s]"),
16524 sect_offset_str (die->sect_off),
16525 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16526 /* Ignore this attribute. We will likely not be able to print
16527 arrays of this type correctly, but there is little we can do
16528 to help if we cannot read the attribute's value. */
16529 byte_stride_prop = NULL;
16533 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16535 bit_stride = DW_UNSND (attr);
16537 /* Irix 6.2 native cc creates array types without children for
16538 arrays with unspecified length. */
16539 if (die->child == NULL)
16541 index_type = objfile_type (objfile)->builtin_int;
16542 range_type = create_static_range_type (NULL, index_type, 0, -1);
16543 type = create_array_type_with_stride (NULL, element_type, range_type,
16544 byte_stride_prop, bit_stride);
16545 return set_die_type (die, type, cu);
16548 std::vector<struct type *> range_types;
16549 child_die = die->child;
16550 while (child_die && child_die->tag)
16552 if (child_die->tag == DW_TAG_subrange_type)
16554 struct type *child_type = read_type_die (child_die, cu);
16556 if (child_type != NULL)
16558 /* The range type was succesfully read. Save it for the
16559 array type creation. */
16560 range_types.push_back (child_type);
16563 child_die = sibling_die (child_die);
16566 /* Dwarf2 dimensions are output from left to right, create the
16567 necessary array types in backwards order. */
16569 type = element_type;
16571 if (read_array_order (die, cu) == DW_ORD_col_major)
16575 while (i < range_types.size ())
16576 type = create_array_type_with_stride (NULL, type, range_types[i++],
16577 byte_stride_prop, bit_stride);
16581 size_t ndim = range_types.size ();
16583 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16584 byte_stride_prop, bit_stride);
16587 /* Understand Dwarf2 support for vector types (like they occur on
16588 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16589 array type. This is not part of the Dwarf2/3 standard yet, but a
16590 custom vendor extension. The main difference between a regular
16591 array and the vector variant is that vectors are passed by value
16593 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16595 make_vector_type (type);
16597 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16598 implementation may choose to implement triple vectors using this
16600 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16603 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16604 TYPE_LENGTH (type) = DW_UNSND (attr);
16606 complaint (_("DW_AT_byte_size for array type smaller "
16607 "than the total size of elements"));
16610 name = dwarf2_name (die, cu);
16612 TYPE_NAME (type) = name;
16614 maybe_set_alignment (cu, die, type);
16616 /* Install the type in the die. */
16617 set_die_type (die, type, cu);
16619 /* set_die_type should be already done. */
16620 set_descriptive_type (type, die, cu);
16625 static enum dwarf_array_dim_ordering
16626 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16628 struct attribute *attr;
16630 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16633 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16635 /* GNU F77 is a special case, as at 08/2004 array type info is the
16636 opposite order to the dwarf2 specification, but data is still
16637 laid out as per normal fortran.
16639 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16640 version checking. */
16642 if (cu->language == language_fortran
16643 && cu->producer && strstr (cu->producer, "GNU F77"))
16645 return DW_ORD_row_major;
16648 switch (cu->language_defn->la_array_ordering)
16650 case array_column_major:
16651 return DW_ORD_col_major;
16652 case array_row_major:
16654 return DW_ORD_row_major;
16658 /* Extract all information from a DW_TAG_set_type DIE and put it in
16659 the DIE's type field. */
16661 static struct type *
16662 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16664 struct type *domain_type, *set_type;
16665 struct attribute *attr;
16667 domain_type = die_type (die, cu);
16669 /* The die_type call above may have already set the type for this DIE. */
16670 set_type = get_die_type (die, cu);
16674 set_type = create_set_type (NULL, domain_type);
16676 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16678 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16680 maybe_set_alignment (cu, die, set_type);
16682 return set_die_type (die, set_type, cu);
16685 /* A helper for read_common_block that creates a locexpr baton.
16686 SYM is the symbol which we are marking as computed.
16687 COMMON_DIE is the DIE for the common block.
16688 COMMON_LOC is the location expression attribute for the common
16690 MEMBER_LOC is the location expression attribute for the particular
16691 member of the common block that we are processing.
16692 CU is the CU from which the above come. */
16695 mark_common_block_symbol_computed (struct symbol *sym,
16696 struct die_info *common_die,
16697 struct attribute *common_loc,
16698 struct attribute *member_loc,
16699 struct dwarf2_cu *cu)
16701 struct dwarf2_per_objfile *dwarf2_per_objfile
16702 = cu->per_cu->dwarf2_per_objfile;
16703 struct objfile *objfile = dwarf2_per_objfile->objfile;
16704 struct dwarf2_locexpr_baton *baton;
16706 unsigned int cu_off;
16707 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16708 LONGEST offset = 0;
16710 gdb_assert (common_loc && member_loc);
16711 gdb_assert (attr_form_is_block (common_loc));
16712 gdb_assert (attr_form_is_block (member_loc)
16713 || attr_form_is_constant (member_loc));
16715 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16716 baton->per_cu = cu->per_cu;
16717 gdb_assert (baton->per_cu);
16719 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16721 if (attr_form_is_constant (member_loc))
16723 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16724 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16727 baton->size += DW_BLOCK (member_loc)->size;
16729 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16732 *ptr++ = DW_OP_call4;
16733 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16734 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16737 if (attr_form_is_constant (member_loc))
16739 *ptr++ = DW_OP_addr;
16740 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16741 ptr += cu->header.addr_size;
16745 /* We have to copy the data here, because DW_OP_call4 will only
16746 use a DW_AT_location attribute. */
16747 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16748 ptr += DW_BLOCK (member_loc)->size;
16751 *ptr++ = DW_OP_plus;
16752 gdb_assert (ptr - baton->data == baton->size);
16754 SYMBOL_LOCATION_BATON (sym) = baton;
16755 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16758 /* Create appropriate locally-scoped variables for all the
16759 DW_TAG_common_block entries. Also create a struct common_block
16760 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16761 is used to sepate the common blocks name namespace from regular
16765 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16767 struct attribute *attr;
16769 attr = dwarf2_attr (die, DW_AT_location, cu);
16772 /* Support the .debug_loc offsets. */
16773 if (attr_form_is_block (attr))
16777 else if (attr_form_is_section_offset (attr))
16779 dwarf2_complex_location_expr_complaint ();
16784 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16785 "common block member");
16790 if (die->child != NULL)
16792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16793 struct die_info *child_die;
16794 size_t n_entries = 0, size;
16795 struct common_block *common_block;
16796 struct symbol *sym;
16798 for (child_die = die->child;
16799 child_die && child_die->tag;
16800 child_die = sibling_die (child_die))
16803 size = (sizeof (struct common_block)
16804 + (n_entries - 1) * sizeof (struct symbol *));
16806 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16808 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16809 common_block->n_entries = 0;
16811 for (child_die = die->child;
16812 child_die && child_die->tag;
16813 child_die = sibling_die (child_die))
16815 /* Create the symbol in the DW_TAG_common_block block in the current
16817 sym = new_symbol (child_die, NULL, cu);
16820 struct attribute *member_loc;
16822 common_block->contents[common_block->n_entries++] = sym;
16824 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16828 /* GDB has handled this for a long time, but it is
16829 not specified by DWARF. It seems to have been
16830 emitted by gfortran at least as recently as:
16831 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16832 complaint (_("Variable in common block has "
16833 "DW_AT_data_member_location "
16834 "- DIE at %s [in module %s]"),
16835 sect_offset_str (child_die->sect_off),
16836 objfile_name (objfile));
16838 if (attr_form_is_section_offset (member_loc))
16839 dwarf2_complex_location_expr_complaint ();
16840 else if (attr_form_is_constant (member_loc)
16841 || attr_form_is_block (member_loc))
16844 mark_common_block_symbol_computed (sym, die, attr,
16848 dwarf2_complex_location_expr_complaint ();
16853 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16854 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16858 /* Create a type for a C++ namespace. */
16860 static struct type *
16861 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16863 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16864 const char *previous_prefix, *name;
16868 /* For extensions, reuse the type of the original namespace. */
16869 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16871 struct die_info *ext_die;
16872 struct dwarf2_cu *ext_cu = cu;
16874 ext_die = dwarf2_extension (die, &ext_cu);
16875 type = read_type_die (ext_die, ext_cu);
16877 /* EXT_CU may not be the same as CU.
16878 Ensure TYPE is recorded with CU in die_type_hash. */
16879 return set_die_type (die, type, cu);
16882 name = namespace_name (die, &is_anonymous, cu);
16884 /* Now build the name of the current namespace. */
16886 previous_prefix = determine_prefix (die, cu);
16887 if (previous_prefix[0] != '\0')
16888 name = typename_concat (&objfile->objfile_obstack,
16889 previous_prefix, name, 0, cu);
16891 /* Create the type. */
16892 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16894 return set_die_type (die, type, cu);
16897 /* Read a namespace scope. */
16900 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16902 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16905 /* Add a symbol associated to this if we haven't seen the namespace
16906 before. Also, add a using directive if it's an anonymous
16909 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16913 type = read_type_die (die, cu);
16914 new_symbol (die, type, cu);
16916 namespace_name (die, &is_anonymous, cu);
16919 const char *previous_prefix = determine_prefix (die, cu);
16921 std::vector<const char *> excludes;
16922 add_using_directive (using_directives (cu),
16923 previous_prefix, TYPE_NAME (type), NULL,
16924 NULL, excludes, 0, &objfile->objfile_obstack);
16928 if (die->child != NULL)
16930 struct die_info *child_die = die->child;
16932 while (child_die && child_die->tag)
16934 process_die (child_die, cu);
16935 child_die = sibling_die (child_die);
16940 /* Read a Fortran module as type. This DIE can be only a declaration used for
16941 imported module. Still we need that type as local Fortran "use ... only"
16942 declaration imports depend on the created type in determine_prefix. */
16944 static struct type *
16945 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16948 const char *module_name;
16951 module_name = dwarf2_name (die, cu);
16953 complaint (_("DW_TAG_module has no name, offset %s"),
16954 sect_offset_str (die->sect_off));
16955 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16957 return set_die_type (die, type, cu);
16960 /* Read a Fortran module. */
16963 read_module (struct die_info *die, struct dwarf2_cu *cu)
16965 struct die_info *child_die = die->child;
16968 type = read_type_die (die, cu);
16969 new_symbol (die, type, cu);
16971 while (child_die && child_die->tag)
16973 process_die (child_die, cu);
16974 child_die = sibling_die (child_die);
16978 /* Return the name of the namespace represented by DIE. Set
16979 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16982 static const char *
16983 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16985 struct die_info *current_die;
16986 const char *name = NULL;
16988 /* Loop through the extensions until we find a name. */
16990 for (current_die = die;
16991 current_die != NULL;
16992 current_die = dwarf2_extension (die, &cu))
16994 /* We don't use dwarf2_name here so that we can detect the absence
16995 of a name -> anonymous namespace. */
16996 name = dwarf2_string_attr (die, DW_AT_name, cu);
17002 /* Is it an anonymous namespace? */
17004 *is_anonymous = (name == NULL);
17006 name = CP_ANONYMOUS_NAMESPACE_STR;
17011 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17012 the user defined type vector. */
17014 static struct type *
17015 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17017 struct gdbarch *gdbarch
17018 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17019 struct comp_unit_head *cu_header = &cu->header;
17021 struct attribute *attr_byte_size;
17022 struct attribute *attr_address_class;
17023 int byte_size, addr_class;
17024 struct type *target_type;
17026 target_type = die_type (die, cu);
17028 /* The die_type call above may have already set the type for this DIE. */
17029 type = get_die_type (die, cu);
17033 type = lookup_pointer_type (target_type);
17035 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17036 if (attr_byte_size)
17037 byte_size = DW_UNSND (attr_byte_size);
17039 byte_size = cu_header->addr_size;
17041 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17042 if (attr_address_class)
17043 addr_class = DW_UNSND (attr_address_class);
17045 addr_class = DW_ADDR_none;
17047 ULONGEST alignment = get_alignment (cu, die);
17049 /* If the pointer size, alignment, or address class is different
17050 than the default, create a type variant marked as such and set
17051 the length accordingly. */
17052 if (TYPE_LENGTH (type) != byte_size
17053 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17054 && alignment != TYPE_RAW_ALIGN (type))
17055 || addr_class != DW_ADDR_none)
17057 if (gdbarch_address_class_type_flags_p (gdbarch))
17061 type_flags = gdbarch_address_class_type_flags
17062 (gdbarch, byte_size, addr_class);
17063 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17065 type = make_type_with_address_space (type, type_flags);
17067 else if (TYPE_LENGTH (type) != byte_size)
17069 complaint (_("invalid pointer size %d"), byte_size);
17071 else if (TYPE_RAW_ALIGN (type) != alignment)
17073 complaint (_("Invalid DW_AT_alignment"
17074 " - DIE at %s [in module %s]"),
17075 sect_offset_str (die->sect_off),
17076 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17080 /* Should we also complain about unhandled address classes? */
17084 TYPE_LENGTH (type) = byte_size;
17085 set_type_align (type, alignment);
17086 return set_die_type (die, type, cu);
17089 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17090 the user defined type vector. */
17092 static struct type *
17093 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17096 struct type *to_type;
17097 struct type *domain;
17099 to_type = die_type (die, cu);
17100 domain = die_containing_type (die, cu);
17102 /* The calls above may have already set the type for this DIE. */
17103 type = get_die_type (die, cu);
17107 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17108 type = lookup_methodptr_type (to_type);
17109 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17111 struct type *new_type
17112 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17114 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17115 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17116 TYPE_VARARGS (to_type));
17117 type = lookup_methodptr_type (new_type);
17120 type = lookup_memberptr_type (to_type, domain);
17122 return set_die_type (die, type, cu);
17125 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17126 the user defined type vector. */
17128 static struct type *
17129 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17130 enum type_code refcode)
17132 struct comp_unit_head *cu_header = &cu->header;
17133 struct type *type, *target_type;
17134 struct attribute *attr;
17136 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17138 target_type = die_type (die, cu);
17140 /* The die_type call above may have already set the type for this DIE. */
17141 type = get_die_type (die, cu);
17145 type = lookup_reference_type (target_type, refcode);
17146 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17149 TYPE_LENGTH (type) = DW_UNSND (attr);
17153 TYPE_LENGTH (type) = cu_header->addr_size;
17155 maybe_set_alignment (cu, die, type);
17156 return set_die_type (die, type, cu);
17159 /* Add the given cv-qualifiers to the element type of the array. GCC
17160 outputs DWARF type qualifiers that apply to an array, not the
17161 element type. But GDB relies on the array element type to carry
17162 the cv-qualifiers. This mimics section 6.7.3 of the C99
17165 static struct type *
17166 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17167 struct type *base_type, int cnst, int voltl)
17169 struct type *el_type, *inner_array;
17171 base_type = copy_type (base_type);
17172 inner_array = base_type;
17174 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17176 TYPE_TARGET_TYPE (inner_array) =
17177 copy_type (TYPE_TARGET_TYPE (inner_array));
17178 inner_array = TYPE_TARGET_TYPE (inner_array);
17181 el_type = TYPE_TARGET_TYPE (inner_array);
17182 cnst |= TYPE_CONST (el_type);
17183 voltl |= TYPE_VOLATILE (el_type);
17184 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17186 return set_die_type (die, base_type, cu);
17189 static struct type *
17190 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17192 struct type *base_type, *cv_type;
17194 base_type = die_type (die, cu);
17196 /* The die_type call above may have already set the type for this DIE. */
17197 cv_type = get_die_type (die, cu);
17201 /* In case the const qualifier is applied to an array type, the element type
17202 is so qualified, not the array type (section 6.7.3 of C99). */
17203 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17204 return add_array_cv_type (die, cu, base_type, 1, 0);
17206 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17207 return set_die_type (die, cv_type, cu);
17210 static struct type *
17211 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17213 struct type *base_type, *cv_type;
17215 base_type = die_type (die, cu);
17217 /* The die_type call above may have already set the type for this DIE. */
17218 cv_type = get_die_type (die, cu);
17222 /* In case the volatile qualifier is applied to an array type, the
17223 element type is so qualified, not the array type (section 6.7.3
17225 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17226 return add_array_cv_type (die, cu, base_type, 0, 1);
17228 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17229 return set_die_type (die, cv_type, cu);
17232 /* Handle DW_TAG_restrict_type. */
17234 static struct type *
17235 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17237 struct type *base_type, *cv_type;
17239 base_type = die_type (die, cu);
17241 /* The die_type call above may have already set the type for this DIE. */
17242 cv_type = get_die_type (die, cu);
17246 cv_type = make_restrict_type (base_type);
17247 return set_die_type (die, cv_type, cu);
17250 /* Handle DW_TAG_atomic_type. */
17252 static struct type *
17253 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17255 struct type *base_type, *cv_type;
17257 base_type = die_type (die, cu);
17259 /* The die_type call above may have already set the type for this DIE. */
17260 cv_type = get_die_type (die, cu);
17264 cv_type = make_atomic_type (base_type);
17265 return set_die_type (die, cv_type, cu);
17268 /* Extract all information from a DW_TAG_string_type DIE and add to
17269 the user defined type vector. It isn't really a user defined type,
17270 but it behaves like one, with other DIE's using an AT_user_def_type
17271 attribute to reference it. */
17273 static struct type *
17274 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17278 struct type *type, *range_type, *index_type, *char_type;
17279 struct attribute *attr;
17280 unsigned int length;
17282 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17285 length = DW_UNSND (attr);
17289 /* Check for the DW_AT_byte_size attribute. */
17290 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17293 length = DW_UNSND (attr);
17301 index_type = objfile_type (objfile)->builtin_int;
17302 range_type = create_static_range_type (NULL, index_type, 1, length);
17303 char_type = language_string_char_type (cu->language_defn, gdbarch);
17304 type = create_string_type (NULL, char_type, range_type);
17306 return set_die_type (die, type, cu);
17309 /* Assuming that DIE corresponds to a function, returns nonzero
17310 if the function is prototyped. */
17313 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17315 struct attribute *attr;
17317 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17318 if (attr && (DW_UNSND (attr) != 0))
17321 /* The DWARF standard implies that the DW_AT_prototyped attribute
17322 is only meaninful for C, but the concept also extends to other
17323 languages that allow unprototyped functions (Eg: Objective C).
17324 For all other languages, assume that functions are always
17326 if (cu->language != language_c
17327 && cu->language != language_objc
17328 && cu->language != language_opencl)
17331 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17332 prototyped and unprototyped functions; default to prototyped,
17333 since that is more common in modern code (and RealView warns
17334 about unprototyped functions). */
17335 if (producer_is_realview (cu->producer))
17341 /* Handle DIES due to C code like:
17345 int (*funcp)(int a, long l);
17349 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17351 static struct type *
17352 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17354 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17355 struct type *type; /* Type that this function returns. */
17356 struct type *ftype; /* Function that returns above type. */
17357 struct attribute *attr;
17359 type = die_type (die, cu);
17361 /* The die_type call above may have already set the type for this DIE. */
17362 ftype = get_die_type (die, cu);
17366 ftype = lookup_function_type (type);
17368 if (prototyped_function_p (die, cu))
17369 TYPE_PROTOTYPED (ftype) = 1;
17371 /* Store the calling convention in the type if it's available in
17372 the subroutine die. Otherwise set the calling convention to
17373 the default value DW_CC_normal. */
17374 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17376 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17377 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17378 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17380 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17382 /* Record whether the function returns normally to its caller or not
17383 if the DWARF producer set that information. */
17384 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17385 if (attr && (DW_UNSND (attr) != 0))
17386 TYPE_NO_RETURN (ftype) = 1;
17388 /* We need to add the subroutine type to the die immediately so
17389 we don't infinitely recurse when dealing with parameters
17390 declared as the same subroutine type. */
17391 set_die_type (die, ftype, cu);
17393 if (die->child != NULL)
17395 struct type *void_type = objfile_type (objfile)->builtin_void;
17396 struct die_info *child_die;
17397 int nparams, iparams;
17399 /* Count the number of parameters.
17400 FIXME: GDB currently ignores vararg functions, but knows about
17401 vararg member functions. */
17403 child_die = die->child;
17404 while (child_die && child_die->tag)
17406 if (child_die->tag == DW_TAG_formal_parameter)
17408 else if (child_die->tag == DW_TAG_unspecified_parameters)
17409 TYPE_VARARGS (ftype) = 1;
17410 child_die = sibling_die (child_die);
17413 /* Allocate storage for parameters and fill them in. */
17414 TYPE_NFIELDS (ftype) = nparams;
17415 TYPE_FIELDS (ftype) = (struct field *)
17416 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17418 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17419 even if we error out during the parameters reading below. */
17420 for (iparams = 0; iparams < nparams; iparams++)
17421 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17424 child_die = die->child;
17425 while (child_die && child_die->tag)
17427 if (child_die->tag == DW_TAG_formal_parameter)
17429 struct type *arg_type;
17431 /* DWARF version 2 has no clean way to discern C++
17432 static and non-static member functions. G++ helps
17433 GDB by marking the first parameter for non-static
17434 member functions (which is the this pointer) as
17435 artificial. We pass this information to
17436 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17438 DWARF version 3 added DW_AT_object_pointer, which GCC
17439 4.5 does not yet generate. */
17440 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17442 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17444 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17445 arg_type = die_type (child_die, cu);
17447 /* RealView does not mark THIS as const, which the testsuite
17448 expects. GCC marks THIS as const in method definitions,
17449 but not in the class specifications (GCC PR 43053). */
17450 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17451 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17454 struct dwarf2_cu *arg_cu = cu;
17455 const char *name = dwarf2_name (child_die, cu);
17457 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17460 /* If the compiler emits this, use it. */
17461 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17464 else if (name && strcmp (name, "this") == 0)
17465 /* Function definitions will have the argument names. */
17467 else if (name == NULL && iparams == 0)
17468 /* Declarations may not have the names, so like
17469 elsewhere in GDB, assume an artificial first
17470 argument is "this". */
17474 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17478 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17481 child_die = sibling_die (child_die);
17488 static struct type *
17489 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17491 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17492 const char *name = NULL;
17493 struct type *this_type, *target_type;
17495 name = dwarf2_full_name (NULL, die, cu);
17496 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17497 TYPE_TARGET_STUB (this_type) = 1;
17498 set_die_type (die, this_type, cu);
17499 target_type = die_type (die, cu);
17500 if (target_type != this_type)
17501 TYPE_TARGET_TYPE (this_type) = target_type;
17504 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17505 spec and cause infinite loops in GDB. */
17506 complaint (_("Self-referential DW_TAG_typedef "
17507 "- DIE at %s [in module %s]"),
17508 sect_offset_str (die->sect_off), objfile_name (objfile));
17509 TYPE_TARGET_TYPE (this_type) = NULL;
17514 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17515 (which may be different from NAME) to the architecture back-end to allow
17516 it to guess the correct format if necessary. */
17518 static struct type *
17519 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17520 const char *name_hint)
17522 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17523 const struct floatformat **format;
17526 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17528 type = init_float_type (objfile, bits, name, format);
17530 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17535 /* Allocate an integer type of size BITS and name NAME. */
17537 static struct type *
17538 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17539 int bits, int unsigned_p, const char *name)
17543 /* Versions of Intel's C Compiler generate an integer type called "void"
17544 instead of using DW_TAG_unspecified_type. This has been seen on
17545 at least versions 14, 17, and 18. */
17546 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17547 && strcmp (name, "void") == 0)
17548 type = objfile_type (objfile)->builtin_void;
17550 type = init_integer_type (objfile, bits, unsigned_p, name);
17555 /* Find a representation of a given base type and install
17556 it in the TYPE field of the die. */
17558 static struct type *
17559 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17561 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17563 struct attribute *attr;
17564 int encoding = 0, bits = 0;
17567 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17570 encoding = DW_UNSND (attr);
17572 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17575 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17577 name = dwarf2_name (die, cu);
17580 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17585 case DW_ATE_address:
17586 /* Turn DW_ATE_address into a void * pointer. */
17587 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17588 type = init_pointer_type (objfile, bits, name, type);
17590 case DW_ATE_boolean:
17591 type = init_boolean_type (objfile, bits, 1, name);
17593 case DW_ATE_complex_float:
17594 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17595 type = init_complex_type (objfile, name, type);
17597 case DW_ATE_decimal_float:
17598 type = init_decfloat_type (objfile, bits, name);
17601 type = dwarf2_init_float_type (objfile, bits, name, name);
17603 case DW_ATE_signed:
17604 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17606 case DW_ATE_unsigned:
17607 if (cu->language == language_fortran
17609 && startswith (name, "character("))
17610 type = init_character_type (objfile, bits, 1, name);
17612 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17614 case DW_ATE_signed_char:
17615 if (cu->language == language_ada || cu->language == language_m2
17616 || cu->language == language_pascal
17617 || cu->language == language_fortran)
17618 type = init_character_type (objfile, bits, 0, name);
17620 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17622 case DW_ATE_unsigned_char:
17623 if (cu->language == language_ada || cu->language == language_m2
17624 || cu->language == language_pascal
17625 || cu->language == language_fortran
17626 || cu->language == language_rust)
17627 type = init_character_type (objfile, bits, 1, name);
17629 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17633 gdbarch *arch = get_objfile_arch (objfile);
17636 type = builtin_type (arch)->builtin_char16;
17637 else if (bits == 32)
17638 type = builtin_type (arch)->builtin_char32;
17641 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17643 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17645 return set_die_type (die, type, cu);
17650 complaint (_("unsupported DW_AT_encoding: '%s'"),
17651 dwarf_type_encoding_name (encoding));
17652 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17656 if (name && strcmp (name, "char") == 0)
17657 TYPE_NOSIGN (type) = 1;
17659 maybe_set_alignment (cu, die, type);
17661 return set_die_type (die, type, cu);
17664 /* Parse dwarf attribute if it's a block, reference or constant and put the
17665 resulting value of the attribute into struct bound_prop.
17666 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17669 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17670 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17672 struct dwarf2_property_baton *baton;
17673 struct obstack *obstack
17674 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17676 if (attr == NULL || prop == NULL)
17679 if (attr_form_is_block (attr))
17681 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17682 baton->referenced_type = NULL;
17683 baton->locexpr.per_cu = cu->per_cu;
17684 baton->locexpr.size = DW_BLOCK (attr)->size;
17685 baton->locexpr.data = DW_BLOCK (attr)->data;
17686 prop->data.baton = baton;
17687 prop->kind = PROP_LOCEXPR;
17688 gdb_assert (prop->data.baton != NULL);
17690 else if (attr_form_is_ref (attr))
17692 struct dwarf2_cu *target_cu = cu;
17693 struct die_info *target_die;
17694 struct attribute *target_attr;
17696 target_die = follow_die_ref (die, attr, &target_cu);
17697 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17698 if (target_attr == NULL)
17699 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17701 if (target_attr == NULL)
17704 switch (target_attr->name)
17706 case DW_AT_location:
17707 if (attr_form_is_section_offset (target_attr))
17709 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17710 baton->referenced_type = die_type (target_die, target_cu);
17711 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17712 prop->data.baton = baton;
17713 prop->kind = PROP_LOCLIST;
17714 gdb_assert (prop->data.baton != NULL);
17716 else if (attr_form_is_block (target_attr))
17718 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17719 baton->referenced_type = die_type (target_die, target_cu);
17720 baton->locexpr.per_cu = cu->per_cu;
17721 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17722 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17723 prop->data.baton = baton;
17724 prop->kind = PROP_LOCEXPR;
17725 gdb_assert (prop->data.baton != NULL);
17729 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17730 "dynamic property");
17734 case DW_AT_data_member_location:
17738 if (!handle_data_member_location (target_die, target_cu,
17742 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17743 baton->referenced_type = read_type_die (target_die->parent,
17745 baton->offset_info.offset = offset;
17746 baton->offset_info.type = die_type (target_die, target_cu);
17747 prop->data.baton = baton;
17748 prop->kind = PROP_ADDR_OFFSET;
17753 else if (attr_form_is_constant (attr))
17755 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17756 prop->kind = PROP_CONST;
17760 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17761 dwarf2_name (die, cu));
17768 /* Read the given DW_AT_subrange DIE. */
17770 static struct type *
17771 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17773 struct type *base_type, *orig_base_type;
17774 struct type *range_type;
17775 struct attribute *attr;
17776 struct dynamic_prop low, high;
17777 int low_default_is_valid;
17778 int high_bound_is_count = 0;
17780 ULONGEST negative_mask;
17782 orig_base_type = die_type (die, cu);
17783 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17784 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17785 creating the range type, but we use the result of check_typedef
17786 when examining properties of the type. */
17787 base_type = check_typedef (orig_base_type);
17789 /* The die_type call above may have already set the type for this DIE. */
17790 range_type = get_die_type (die, cu);
17794 low.kind = PROP_CONST;
17795 high.kind = PROP_CONST;
17796 high.data.const_val = 0;
17798 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17799 omitting DW_AT_lower_bound. */
17800 switch (cu->language)
17803 case language_cplus:
17804 low.data.const_val = 0;
17805 low_default_is_valid = 1;
17807 case language_fortran:
17808 low.data.const_val = 1;
17809 low_default_is_valid = 1;
17812 case language_objc:
17813 case language_rust:
17814 low.data.const_val = 0;
17815 low_default_is_valid = (cu->header.version >= 4);
17819 case language_pascal:
17820 low.data.const_val = 1;
17821 low_default_is_valid = (cu->header.version >= 4);
17824 low.data.const_val = 0;
17825 low_default_is_valid = 0;
17829 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17831 attr_to_dynamic_prop (attr, die, cu, &low);
17832 else if (!low_default_is_valid)
17833 complaint (_("Missing DW_AT_lower_bound "
17834 "- DIE at %s [in module %s]"),
17835 sect_offset_str (die->sect_off),
17836 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17838 struct attribute *attr_ub, *attr_count;
17839 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17840 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17842 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17843 if (attr_to_dynamic_prop (attr, die, cu, &high))
17845 /* If bounds are constant do the final calculation here. */
17846 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17847 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17849 high_bound_is_count = 1;
17853 if (attr_ub != NULL)
17854 complaint (_("Unresolved DW_AT_upper_bound "
17855 "- DIE at %s [in module %s]"),
17856 sect_offset_str (die->sect_off),
17857 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17858 if (attr_count != NULL)
17859 complaint (_("Unresolved DW_AT_count "
17860 "- DIE at %s [in module %s]"),
17861 sect_offset_str (die->sect_off),
17862 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17867 /* Dwarf-2 specifications explicitly allows to create subrange types
17868 without specifying a base type.
17869 In that case, the base type must be set to the type of
17870 the lower bound, upper bound or count, in that order, if any of these
17871 three attributes references an object that has a type.
17872 If no base type is found, the Dwarf-2 specifications say that
17873 a signed integer type of size equal to the size of an address should
17875 For the following C code: `extern char gdb_int [];'
17876 GCC produces an empty range DIE.
17877 FIXME: muller/2010-05-28: Possible references to object for low bound,
17878 high bound or count are not yet handled by this code. */
17879 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17883 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17884 struct type *int_type = objfile_type (objfile)->builtin_int;
17886 /* Test "int", "long int", and "long long int" objfile types,
17887 and select the first one having a size above or equal to the
17888 architecture address size. */
17889 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17890 base_type = int_type;
17893 int_type = objfile_type (objfile)->builtin_long;
17894 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17895 base_type = int_type;
17898 int_type = objfile_type (objfile)->builtin_long_long;
17899 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17900 base_type = int_type;
17905 /* Normally, the DWARF producers are expected to use a signed
17906 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17907 But this is unfortunately not always the case, as witnessed
17908 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17909 is used instead. To work around that ambiguity, we treat
17910 the bounds as signed, and thus sign-extend their values, when
17911 the base type is signed. */
17913 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17914 if (low.kind == PROP_CONST
17915 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17916 low.data.const_val |= negative_mask;
17917 if (high.kind == PROP_CONST
17918 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17919 high.data.const_val |= negative_mask;
17921 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17923 if (high_bound_is_count)
17924 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17926 /* Ada expects an empty array on no boundary attributes. */
17927 if (attr == NULL && cu->language != language_ada)
17928 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17930 name = dwarf2_name (die, cu);
17932 TYPE_NAME (range_type) = name;
17934 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17936 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17938 maybe_set_alignment (cu, die, range_type);
17940 set_die_type (die, range_type, cu);
17942 /* set_die_type should be already done. */
17943 set_descriptive_type (range_type, die, cu);
17948 static struct type *
17949 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17953 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17955 TYPE_NAME (type) = dwarf2_name (die, cu);
17957 /* In Ada, an unspecified type is typically used when the description
17958 of the type is defered to a different unit. When encountering
17959 such a type, we treat it as a stub, and try to resolve it later on,
17961 if (cu->language == language_ada)
17962 TYPE_STUB (type) = 1;
17964 return set_die_type (die, type, cu);
17967 /* Read a single die and all its descendents. Set the die's sibling
17968 field to NULL; set other fields in the die correctly, and set all
17969 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17970 location of the info_ptr after reading all of those dies. PARENT
17971 is the parent of the die in question. */
17973 static struct die_info *
17974 read_die_and_children (const struct die_reader_specs *reader,
17975 const gdb_byte *info_ptr,
17976 const gdb_byte **new_info_ptr,
17977 struct die_info *parent)
17979 struct die_info *die;
17980 const gdb_byte *cur_ptr;
17983 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17986 *new_info_ptr = cur_ptr;
17989 store_in_ref_table (die, reader->cu);
17992 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17996 *new_info_ptr = cur_ptr;
17999 die->sibling = NULL;
18000 die->parent = parent;
18004 /* Read a die, all of its descendents, and all of its siblings; set
18005 all of the fields of all of the dies correctly. Arguments are as
18006 in read_die_and_children. */
18008 static struct die_info *
18009 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18010 const gdb_byte *info_ptr,
18011 const gdb_byte **new_info_ptr,
18012 struct die_info *parent)
18014 struct die_info *first_die, *last_sibling;
18015 const gdb_byte *cur_ptr;
18017 cur_ptr = info_ptr;
18018 first_die = last_sibling = NULL;
18022 struct die_info *die
18023 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18027 *new_info_ptr = cur_ptr;
18034 last_sibling->sibling = die;
18036 last_sibling = die;
18040 /* Read a die, all of its descendents, and all of its siblings; set
18041 all of the fields of all of the dies correctly. Arguments are as
18042 in read_die_and_children.
18043 This the main entry point for reading a DIE and all its children. */
18045 static struct die_info *
18046 read_die_and_siblings (const struct die_reader_specs *reader,
18047 const gdb_byte *info_ptr,
18048 const gdb_byte **new_info_ptr,
18049 struct die_info *parent)
18051 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18052 new_info_ptr, parent);
18054 if (dwarf_die_debug)
18056 fprintf_unfiltered (gdb_stdlog,
18057 "Read die from %s@0x%x of %s:\n",
18058 get_section_name (reader->die_section),
18059 (unsigned) (info_ptr - reader->die_section->buffer),
18060 bfd_get_filename (reader->abfd));
18061 dump_die (die, dwarf_die_debug);
18067 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18069 The caller is responsible for filling in the extra attributes
18070 and updating (*DIEP)->num_attrs.
18071 Set DIEP to point to a newly allocated die with its information,
18072 except for its child, sibling, and parent fields.
18073 Set HAS_CHILDREN to tell whether the die has children or not. */
18075 static const gdb_byte *
18076 read_full_die_1 (const struct die_reader_specs *reader,
18077 struct die_info **diep, const gdb_byte *info_ptr,
18078 int *has_children, int num_extra_attrs)
18080 unsigned int abbrev_number, bytes_read, i;
18081 struct abbrev_info *abbrev;
18082 struct die_info *die;
18083 struct dwarf2_cu *cu = reader->cu;
18084 bfd *abfd = reader->abfd;
18086 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18087 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18088 info_ptr += bytes_read;
18089 if (!abbrev_number)
18096 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18098 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18100 bfd_get_filename (abfd));
18102 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18103 die->sect_off = sect_off;
18104 die->tag = abbrev->tag;
18105 die->abbrev = abbrev_number;
18107 /* Make the result usable.
18108 The caller needs to update num_attrs after adding the extra
18110 die->num_attrs = abbrev->num_attrs;
18112 for (i = 0; i < abbrev->num_attrs; ++i)
18113 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18117 *has_children = abbrev->has_children;
18121 /* Read a die and all its attributes.
18122 Set DIEP to point to a newly allocated die with its information,
18123 except for its child, sibling, and parent fields.
18124 Set HAS_CHILDREN to tell whether the die has children or not. */
18126 static const gdb_byte *
18127 read_full_die (const struct die_reader_specs *reader,
18128 struct die_info **diep, const gdb_byte *info_ptr,
18131 const gdb_byte *result;
18133 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18135 if (dwarf_die_debug)
18137 fprintf_unfiltered (gdb_stdlog,
18138 "Read die from %s@0x%x of %s:\n",
18139 get_section_name (reader->die_section),
18140 (unsigned) (info_ptr - reader->die_section->buffer),
18141 bfd_get_filename (reader->abfd));
18142 dump_die (*diep, dwarf_die_debug);
18148 /* Abbreviation tables.
18150 In DWARF version 2, the description of the debugging information is
18151 stored in a separate .debug_abbrev section. Before we read any
18152 dies from a section we read in all abbreviations and install them
18153 in a hash table. */
18155 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18157 struct abbrev_info *
18158 abbrev_table::alloc_abbrev ()
18160 struct abbrev_info *abbrev;
18162 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18163 memset (abbrev, 0, sizeof (struct abbrev_info));
18168 /* Add an abbreviation to the table. */
18171 abbrev_table::add_abbrev (unsigned int abbrev_number,
18172 struct abbrev_info *abbrev)
18174 unsigned int hash_number;
18176 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18177 abbrev->next = m_abbrevs[hash_number];
18178 m_abbrevs[hash_number] = abbrev;
18181 /* Look up an abbrev in the table.
18182 Returns NULL if the abbrev is not found. */
18184 struct abbrev_info *
18185 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18187 unsigned int hash_number;
18188 struct abbrev_info *abbrev;
18190 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18191 abbrev = m_abbrevs[hash_number];
18195 if (abbrev->number == abbrev_number)
18197 abbrev = abbrev->next;
18202 /* Read in an abbrev table. */
18204 static abbrev_table_up
18205 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18206 struct dwarf2_section_info *section,
18207 sect_offset sect_off)
18209 struct objfile *objfile = dwarf2_per_objfile->objfile;
18210 bfd *abfd = get_section_bfd_owner (section);
18211 const gdb_byte *abbrev_ptr;
18212 struct abbrev_info *cur_abbrev;
18213 unsigned int abbrev_number, bytes_read, abbrev_name;
18214 unsigned int abbrev_form;
18215 struct attr_abbrev *cur_attrs;
18216 unsigned int allocated_attrs;
18218 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18220 dwarf2_read_section (objfile, section);
18221 abbrev_ptr = section->buffer + to_underlying (sect_off);
18222 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18223 abbrev_ptr += bytes_read;
18225 allocated_attrs = ATTR_ALLOC_CHUNK;
18226 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18228 /* Loop until we reach an abbrev number of 0. */
18229 while (abbrev_number)
18231 cur_abbrev = abbrev_table->alloc_abbrev ();
18233 /* read in abbrev header */
18234 cur_abbrev->number = abbrev_number;
18236 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18237 abbrev_ptr += bytes_read;
18238 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18241 /* now read in declarations */
18244 LONGEST implicit_const;
18246 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18247 abbrev_ptr += bytes_read;
18248 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18249 abbrev_ptr += bytes_read;
18250 if (abbrev_form == DW_FORM_implicit_const)
18252 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18254 abbrev_ptr += bytes_read;
18258 /* Initialize it due to a false compiler warning. */
18259 implicit_const = -1;
18262 if (abbrev_name == 0)
18265 if (cur_abbrev->num_attrs == allocated_attrs)
18267 allocated_attrs += ATTR_ALLOC_CHUNK;
18269 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18272 cur_attrs[cur_abbrev->num_attrs].name
18273 = (enum dwarf_attribute) abbrev_name;
18274 cur_attrs[cur_abbrev->num_attrs].form
18275 = (enum dwarf_form) abbrev_form;
18276 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18277 ++cur_abbrev->num_attrs;
18280 cur_abbrev->attrs =
18281 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18282 cur_abbrev->num_attrs);
18283 memcpy (cur_abbrev->attrs, cur_attrs,
18284 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18286 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18288 /* Get next abbreviation.
18289 Under Irix6 the abbreviations for a compilation unit are not
18290 always properly terminated with an abbrev number of 0.
18291 Exit loop if we encounter an abbreviation which we have
18292 already read (which means we are about to read the abbreviations
18293 for the next compile unit) or if the end of the abbreviation
18294 table is reached. */
18295 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18297 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18298 abbrev_ptr += bytes_read;
18299 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18304 return abbrev_table;
18307 /* Returns nonzero if TAG represents a type that we might generate a partial
18311 is_type_tag_for_partial (int tag)
18316 /* Some types that would be reasonable to generate partial symbols for,
18317 that we don't at present. */
18318 case DW_TAG_array_type:
18319 case DW_TAG_file_type:
18320 case DW_TAG_ptr_to_member_type:
18321 case DW_TAG_set_type:
18322 case DW_TAG_string_type:
18323 case DW_TAG_subroutine_type:
18325 case DW_TAG_base_type:
18326 case DW_TAG_class_type:
18327 case DW_TAG_interface_type:
18328 case DW_TAG_enumeration_type:
18329 case DW_TAG_structure_type:
18330 case DW_TAG_subrange_type:
18331 case DW_TAG_typedef:
18332 case DW_TAG_union_type:
18339 /* Load all DIEs that are interesting for partial symbols into memory. */
18341 static struct partial_die_info *
18342 load_partial_dies (const struct die_reader_specs *reader,
18343 const gdb_byte *info_ptr, int building_psymtab)
18345 struct dwarf2_cu *cu = reader->cu;
18346 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18347 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18348 unsigned int bytes_read;
18349 unsigned int load_all = 0;
18350 int nesting_level = 1;
18355 gdb_assert (cu->per_cu != NULL);
18356 if (cu->per_cu->load_all_dies)
18360 = htab_create_alloc_ex (cu->header.length / 12,
18364 &cu->comp_unit_obstack,
18365 hashtab_obstack_allocate,
18366 dummy_obstack_deallocate);
18370 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18372 /* A NULL abbrev means the end of a series of children. */
18373 if (abbrev == NULL)
18375 if (--nesting_level == 0)
18378 info_ptr += bytes_read;
18379 last_die = parent_die;
18380 parent_die = parent_die->die_parent;
18384 /* Check for template arguments. We never save these; if
18385 they're seen, we just mark the parent, and go on our way. */
18386 if (parent_die != NULL
18387 && cu->language == language_cplus
18388 && (abbrev->tag == DW_TAG_template_type_param
18389 || abbrev->tag == DW_TAG_template_value_param))
18391 parent_die->has_template_arguments = 1;
18395 /* We don't need a partial DIE for the template argument. */
18396 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18401 /* We only recurse into c++ subprograms looking for template arguments.
18402 Skip their other children. */
18404 && cu->language == language_cplus
18405 && parent_die != NULL
18406 && parent_die->tag == DW_TAG_subprogram)
18408 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18412 /* Check whether this DIE is interesting enough to save. Normally
18413 we would not be interested in members here, but there may be
18414 later variables referencing them via DW_AT_specification (for
18415 static members). */
18417 && !is_type_tag_for_partial (abbrev->tag)
18418 && abbrev->tag != DW_TAG_constant
18419 && abbrev->tag != DW_TAG_enumerator
18420 && abbrev->tag != DW_TAG_subprogram
18421 && abbrev->tag != DW_TAG_inlined_subroutine
18422 && abbrev->tag != DW_TAG_lexical_block
18423 && abbrev->tag != DW_TAG_variable
18424 && abbrev->tag != DW_TAG_namespace
18425 && abbrev->tag != DW_TAG_module
18426 && abbrev->tag != DW_TAG_member
18427 && abbrev->tag != DW_TAG_imported_unit
18428 && abbrev->tag != DW_TAG_imported_declaration)
18430 /* Otherwise we skip to the next sibling, if any. */
18431 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18435 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18438 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18440 /* This two-pass algorithm for processing partial symbols has a
18441 high cost in cache pressure. Thus, handle some simple cases
18442 here which cover the majority of C partial symbols. DIEs
18443 which neither have specification tags in them, nor could have
18444 specification tags elsewhere pointing at them, can simply be
18445 processed and discarded.
18447 This segment is also optional; scan_partial_symbols and
18448 add_partial_symbol will handle these DIEs if we chain
18449 them in normally. When compilers which do not emit large
18450 quantities of duplicate debug information are more common,
18451 this code can probably be removed. */
18453 /* Any complete simple types at the top level (pretty much all
18454 of them, for a language without namespaces), can be processed
18456 if (parent_die == NULL
18457 && pdi.has_specification == 0
18458 && pdi.is_declaration == 0
18459 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18460 || pdi.tag == DW_TAG_base_type
18461 || pdi.tag == DW_TAG_subrange_type))
18463 if (building_psymtab && pdi.name != NULL)
18464 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18465 VAR_DOMAIN, LOC_TYPEDEF, -1,
18466 psymbol_placement::STATIC,
18467 0, cu->language, objfile);
18468 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18472 /* The exception for DW_TAG_typedef with has_children above is
18473 a workaround of GCC PR debug/47510. In the case of this complaint
18474 type_name_or_error will error on such types later.
18476 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18477 it could not find the child DIEs referenced later, this is checked
18478 above. In correct DWARF DW_TAG_typedef should have no children. */
18480 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18481 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18482 "- DIE at %s [in module %s]"),
18483 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18485 /* If we're at the second level, and we're an enumerator, and
18486 our parent has no specification (meaning possibly lives in a
18487 namespace elsewhere), then we can add the partial symbol now
18488 instead of queueing it. */
18489 if (pdi.tag == DW_TAG_enumerator
18490 && parent_die != NULL
18491 && parent_die->die_parent == NULL
18492 && parent_die->tag == DW_TAG_enumeration_type
18493 && parent_die->has_specification == 0)
18495 if (pdi.name == NULL)
18496 complaint (_("malformed enumerator DIE ignored"));
18497 else if (building_psymtab)
18498 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18499 VAR_DOMAIN, LOC_CONST, -1,
18500 cu->language == language_cplus
18501 ? psymbol_placement::GLOBAL
18502 : psymbol_placement::STATIC,
18503 0, cu->language, objfile);
18505 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18509 struct partial_die_info *part_die
18510 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18512 /* We'll save this DIE so link it in. */
18513 part_die->die_parent = parent_die;
18514 part_die->die_sibling = NULL;
18515 part_die->die_child = NULL;
18517 if (last_die && last_die == parent_die)
18518 last_die->die_child = part_die;
18520 last_die->die_sibling = part_die;
18522 last_die = part_die;
18524 if (first_die == NULL)
18525 first_die = part_die;
18527 /* Maybe add the DIE to the hash table. Not all DIEs that we
18528 find interesting need to be in the hash table, because we
18529 also have the parent/sibling/child chains; only those that we
18530 might refer to by offset later during partial symbol reading.
18532 For now this means things that might have be the target of a
18533 DW_AT_specification, DW_AT_abstract_origin, or
18534 DW_AT_extension. DW_AT_extension will refer only to
18535 namespaces; DW_AT_abstract_origin refers to functions (and
18536 many things under the function DIE, but we do not recurse
18537 into function DIEs during partial symbol reading) and
18538 possibly variables as well; DW_AT_specification refers to
18539 declarations. Declarations ought to have the DW_AT_declaration
18540 flag. It happens that GCC forgets to put it in sometimes, but
18541 only for functions, not for types.
18543 Adding more things than necessary to the hash table is harmless
18544 except for the performance cost. Adding too few will result in
18545 wasted time in find_partial_die, when we reread the compilation
18546 unit with load_all_dies set. */
18549 || abbrev->tag == DW_TAG_constant
18550 || abbrev->tag == DW_TAG_subprogram
18551 || abbrev->tag == DW_TAG_variable
18552 || abbrev->tag == DW_TAG_namespace
18553 || part_die->is_declaration)
18557 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18558 to_underlying (part_die->sect_off),
18563 /* For some DIEs we want to follow their children (if any). For C
18564 we have no reason to follow the children of structures; for other
18565 languages we have to, so that we can get at method physnames
18566 to infer fully qualified class names, for DW_AT_specification,
18567 and for C++ template arguments. For C++, we also look one level
18568 inside functions to find template arguments (if the name of the
18569 function does not already contain the template arguments).
18571 For Ada, we need to scan the children of subprograms and lexical
18572 blocks as well because Ada allows the definition of nested
18573 entities that could be interesting for the debugger, such as
18574 nested subprograms for instance. */
18575 if (last_die->has_children
18577 || last_die->tag == DW_TAG_namespace
18578 || last_die->tag == DW_TAG_module
18579 || last_die->tag == DW_TAG_enumeration_type
18580 || (cu->language == language_cplus
18581 && last_die->tag == DW_TAG_subprogram
18582 && (last_die->name == NULL
18583 || strchr (last_die->name, '<') == NULL))
18584 || (cu->language != language_c
18585 && (last_die->tag == DW_TAG_class_type
18586 || last_die->tag == DW_TAG_interface_type
18587 || last_die->tag == DW_TAG_structure_type
18588 || last_die->tag == DW_TAG_union_type))
18589 || (cu->language == language_ada
18590 && (last_die->tag == DW_TAG_subprogram
18591 || last_die->tag == DW_TAG_lexical_block))))
18594 parent_die = last_die;
18598 /* Otherwise we skip to the next sibling, if any. */
18599 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18601 /* Back to the top, do it again. */
18605 partial_die_info::partial_die_info (sect_offset sect_off_,
18606 struct abbrev_info *abbrev)
18607 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18611 /* Read a minimal amount of information into the minimal die structure.
18612 INFO_PTR should point just after the initial uleb128 of a DIE. */
18615 partial_die_info::read (const struct die_reader_specs *reader,
18616 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18618 struct dwarf2_cu *cu = reader->cu;
18619 struct dwarf2_per_objfile *dwarf2_per_objfile
18620 = cu->per_cu->dwarf2_per_objfile;
18622 int has_low_pc_attr = 0;
18623 int has_high_pc_attr = 0;
18624 int high_pc_relative = 0;
18626 for (i = 0; i < abbrev.num_attrs; ++i)
18628 struct attribute attr;
18630 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18632 /* Store the data if it is of an attribute we want to keep in a
18633 partial symbol table. */
18639 case DW_TAG_compile_unit:
18640 case DW_TAG_partial_unit:
18641 case DW_TAG_type_unit:
18642 /* Compilation units have a DW_AT_name that is a filename, not
18643 a source language identifier. */
18644 case DW_TAG_enumeration_type:
18645 case DW_TAG_enumerator:
18646 /* These tags always have simple identifiers already; no need
18647 to canonicalize them. */
18648 name = DW_STRING (&attr);
18652 struct objfile *objfile = dwarf2_per_objfile->objfile;
18655 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18656 &objfile->per_bfd->storage_obstack);
18661 case DW_AT_linkage_name:
18662 case DW_AT_MIPS_linkage_name:
18663 /* Note that both forms of linkage name might appear. We
18664 assume they will be the same, and we only store the last
18666 if (cu->language == language_ada)
18667 name = DW_STRING (&attr);
18668 linkage_name = DW_STRING (&attr);
18671 has_low_pc_attr = 1;
18672 lowpc = attr_value_as_address (&attr);
18674 case DW_AT_high_pc:
18675 has_high_pc_attr = 1;
18676 highpc = attr_value_as_address (&attr);
18677 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18678 high_pc_relative = 1;
18680 case DW_AT_location:
18681 /* Support the .debug_loc offsets. */
18682 if (attr_form_is_block (&attr))
18684 d.locdesc = DW_BLOCK (&attr);
18686 else if (attr_form_is_section_offset (&attr))
18688 dwarf2_complex_location_expr_complaint ();
18692 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18693 "partial symbol information");
18696 case DW_AT_external:
18697 is_external = DW_UNSND (&attr);
18699 case DW_AT_declaration:
18700 is_declaration = DW_UNSND (&attr);
18705 case DW_AT_abstract_origin:
18706 case DW_AT_specification:
18707 case DW_AT_extension:
18708 has_specification = 1;
18709 spec_offset = dwarf2_get_ref_die_offset (&attr);
18710 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18711 || cu->per_cu->is_dwz);
18713 case DW_AT_sibling:
18714 /* Ignore absolute siblings, they might point outside of
18715 the current compile unit. */
18716 if (attr.form == DW_FORM_ref_addr)
18717 complaint (_("ignoring absolute DW_AT_sibling"));
18720 const gdb_byte *buffer = reader->buffer;
18721 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18722 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18724 if (sibling_ptr < info_ptr)
18725 complaint (_("DW_AT_sibling points backwards"));
18726 else if (sibling_ptr > reader->buffer_end)
18727 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18729 sibling = sibling_ptr;
18732 case DW_AT_byte_size:
18735 case DW_AT_const_value:
18736 has_const_value = 1;
18738 case DW_AT_calling_convention:
18739 /* DWARF doesn't provide a way to identify a program's source-level
18740 entry point. DW_AT_calling_convention attributes are only meant
18741 to describe functions' calling conventions.
18743 However, because it's a necessary piece of information in
18744 Fortran, and before DWARF 4 DW_CC_program was the only
18745 piece of debugging information whose definition refers to
18746 a 'main program' at all, several compilers marked Fortran
18747 main programs with DW_CC_program --- even when those
18748 functions use the standard calling conventions.
18750 Although DWARF now specifies a way to provide this
18751 information, we support this practice for backward
18753 if (DW_UNSND (&attr) == DW_CC_program
18754 && cu->language == language_fortran)
18755 main_subprogram = 1;
18758 if (DW_UNSND (&attr) == DW_INL_inlined
18759 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18760 may_be_inlined = 1;
18764 if (tag == DW_TAG_imported_unit)
18766 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18767 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18768 || cu->per_cu->is_dwz);
18772 case DW_AT_main_subprogram:
18773 main_subprogram = DW_UNSND (&attr);
18781 if (high_pc_relative)
18784 if (has_low_pc_attr && has_high_pc_attr)
18786 /* When using the GNU linker, .gnu.linkonce. sections are used to
18787 eliminate duplicate copies of functions and vtables and such.
18788 The linker will arbitrarily choose one and discard the others.
18789 The AT_*_pc values for such functions refer to local labels in
18790 these sections. If the section from that file was discarded, the
18791 labels are not in the output, so the relocs get a value of 0.
18792 If this is a discarded function, mark the pc bounds as invalid,
18793 so that GDB will ignore it. */
18794 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18796 struct objfile *objfile = dwarf2_per_objfile->objfile;
18797 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18799 complaint (_("DW_AT_low_pc %s is zero "
18800 "for DIE at %s [in module %s]"),
18801 paddress (gdbarch, lowpc),
18802 sect_offset_str (sect_off),
18803 objfile_name (objfile));
18805 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18806 else if (lowpc >= highpc)
18808 struct objfile *objfile = dwarf2_per_objfile->objfile;
18809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18811 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18812 "for DIE at %s [in module %s]"),
18813 paddress (gdbarch, lowpc),
18814 paddress (gdbarch, highpc),
18815 sect_offset_str (sect_off),
18816 objfile_name (objfile));
18825 /* Find a cached partial DIE at OFFSET in CU. */
18827 struct partial_die_info *
18828 dwarf2_cu::find_partial_die (sect_offset sect_off)
18830 struct partial_die_info *lookup_die = NULL;
18831 struct partial_die_info part_die (sect_off);
18833 lookup_die = ((struct partial_die_info *)
18834 htab_find_with_hash (partial_dies, &part_die,
18835 to_underlying (sect_off)));
18840 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18841 except in the case of .debug_types DIEs which do not reference
18842 outside their CU (they do however referencing other types via
18843 DW_FORM_ref_sig8). */
18845 static struct partial_die_info *
18846 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18848 struct dwarf2_per_objfile *dwarf2_per_objfile
18849 = cu->per_cu->dwarf2_per_objfile;
18850 struct objfile *objfile = dwarf2_per_objfile->objfile;
18851 struct dwarf2_per_cu_data *per_cu = NULL;
18852 struct partial_die_info *pd = NULL;
18854 if (offset_in_dwz == cu->per_cu->is_dwz
18855 && offset_in_cu_p (&cu->header, sect_off))
18857 pd = cu->find_partial_die (sect_off);
18860 /* We missed recording what we needed.
18861 Load all dies and try again. */
18862 per_cu = cu->per_cu;
18866 /* TUs don't reference other CUs/TUs (except via type signatures). */
18867 if (cu->per_cu->is_debug_types)
18869 error (_("Dwarf Error: Type Unit at offset %s contains"
18870 " external reference to offset %s [in module %s].\n"),
18871 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18872 bfd_get_filename (objfile->obfd));
18874 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18875 dwarf2_per_objfile);
18877 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18878 load_partial_comp_unit (per_cu);
18880 per_cu->cu->last_used = 0;
18881 pd = per_cu->cu->find_partial_die (sect_off);
18884 /* If we didn't find it, and not all dies have been loaded,
18885 load them all and try again. */
18887 if (pd == NULL && per_cu->load_all_dies == 0)
18889 per_cu->load_all_dies = 1;
18891 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18892 THIS_CU->cu may already be in use. So we can't just free it and
18893 replace its DIEs with the ones we read in. Instead, we leave those
18894 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18895 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18897 load_partial_comp_unit (per_cu);
18899 pd = per_cu->cu->find_partial_die (sect_off);
18903 internal_error (__FILE__, __LINE__,
18904 _("could not find partial DIE %s "
18905 "in cache [from module %s]\n"),
18906 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18910 /* See if we can figure out if the class lives in a namespace. We do
18911 this by looking for a member function; its demangled name will
18912 contain namespace info, if there is any. */
18915 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18916 struct dwarf2_cu *cu)
18918 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18919 what template types look like, because the demangler
18920 frequently doesn't give the same name as the debug info. We
18921 could fix this by only using the demangled name to get the
18922 prefix (but see comment in read_structure_type). */
18924 struct partial_die_info *real_pdi;
18925 struct partial_die_info *child_pdi;
18927 /* If this DIE (this DIE's specification, if any) has a parent, then
18928 we should not do this. We'll prepend the parent's fully qualified
18929 name when we create the partial symbol. */
18931 real_pdi = struct_pdi;
18932 while (real_pdi->has_specification)
18933 real_pdi = find_partial_die (real_pdi->spec_offset,
18934 real_pdi->spec_is_dwz, cu);
18936 if (real_pdi->die_parent != NULL)
18939 for (child_pdi = struct_pdi->die_child;
18941 child_pdi = child_pdi->die_sibling)
18943 if (child_pdi->tag == DW_TAG_subprogram
18944 && child_pdi->linkage_name != NULL)
18946 char *actual_class_name
18947 = language_class_name_from_physname (cu->language_defn,
18948 child_pdi->linkage_name);
18949 if (actual_class_name != NULL)
18951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18954 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18956 strlen (actual_class_name)));
18957 xfree (actual_class_name);
18965 partial_die_info::fixup (struct dwarf2_cu *cu)
18967 /* Once we've fixed up a die, there's no point in doing so again.
18968 This also avoids a memory leak if we were to call
18969 guess_partial_die_structure_name multiple times. */
18973 /* If we found a reference attribute and the DIE has no name, try
18974 to find a name in the referred to DIE. */
18976 if (name == NULL && has_specification)
18978 struct partial_die_info *spec_die;
18980 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18982 spec_die->fixup (cu);
18984 if (spec_die->name)
18986 name = spec_die->name;
18988 /* Copy DW_AT_external attribute if it is set. */
18989 if (spec_die->is_external)
18990 is_external = spec_die->is_external;
18994 /* Set default names for some unnamed DIEs. */
18996 if (name == NULL && tag == DW_TAG_namespace)
18997 name = CP_ANONYMOUS_NAMESPACE_STR;
18999 /* If there is no parent die to provide a namespace, and there are
19000 children, see if we can determine the namespace from their linkage
19002 if (cu->language == language_cplus
19003 && !VEC_empty (dwarf2_section_info_def,
19004 cu->per_cu->dwarf2_per_objfile->types)
19005 && die_parent == NULL
19007 && (tag == DW_TAG_class_type
19008 || tag == DW_TAG_structure_type
19009 || tag == DW_TAG_union_type))
19010 guess_partial_die_structure_name (this, cu);
19012 /* GCC might emit a nameless struct or union that has a linkage
19013 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19015 && (tag == DW_TAG_class_type
19016 || tag == DW_TAG_interface_type
19017 || tag == DW_TAG_structure_type
19018 || tag == DW_TAG_union_type)
19019 && linkage_name != NULL)
19023 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19028 /* Strip any leading namespaces/classes, keep only the base name.
19029 DW_AT_name for named DIEs does not contain the prefixes. */
19030 base = strrchr (demangled, ':');
19031 if (base && base > demangled && base[-1] == ':')
19036 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19039 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19040 base, strlen (base)));
19048 /* Read an attribute value described by an attribute form. */
19050 static const gdb_byte *
19051 read_attribute_value (const struct die_reader_specs *reader,
19052 struct attribute *attr, unsigned form,
19053 LONGEST implicit_const, const gdb_byte *info_ptr)
19055 struct dwarf2_cu *cu = reader->cu;
19056 struct dwarf2_per_objfile *dwarf2_per_objfile
19057 = cu->per_cu->dwarf2_per_objfile;
19058 struct objfile *objfile = dwarf2_per_objfile->objfile;
19059 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19060 bfd *abfd = reader->abfd;
19061 struct comp_unit_head *cu_header = &cu->header;
19062 unsigned int bytes_read;
19063 struct dwarf_block *blk;
19065 attr->form = (enum dwarf_form) form;
19068 case DW_FORM_ref_addr:
19069 if (cu->header.version == 2)
19070 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19072 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19073 &cu->header, &bytes_read);
19074 info_ptr += bytes_read;
19076 case DW_FORM_GNU_ref_alt:
19077 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19078 info_ptr += bytes_read;
19081 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19082 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19083 info_ptr += bytes_read;
19085 case DW_FORM_block2:
19086 blk = dwarf_alloc_block (cu);
19087 blk->size = read_2_bytes (abfd, info_ptr);
19089 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19090 info_ptr += blk->size;
19091 DW_BLOCK (attr) = blk;
19093 case DW_FORM_block4:
19094 blk = dwarf_alloc_block (cu);
19095 blk->size = read_4_bytes (abfd, info_ptr);
19097 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19098 info_ptr += blk->size;
19099 DW_BLOCK (attr) = blk;
19101 case DW_FORM_data2:
19102 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19105 case DW_FORM_data4:
19106 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19109 case DW_FORM_data8:
19110 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19113 case DW_FORM_data16:
19114 blk = dwarf_alloc_block (cu);
19116 blk->data = read_n_bytes (abfd, info_ptr, 16);
19118 DW_BLOCK (attr) = blk;
19120 case DW_FORM_sec_offset:
19121 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19122 info_ptr += bytes_read;
19124 case DW_FORM_string:
19125 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19126 DW_STRING_IS_CANONICAL (attr) = 0;
19127 info_ptr += bytes_read;
19130 if (!cu->per_cu->is_dwz)
19132 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19133 abfd, info_ptr, cu_header,
19135 DW_STRING_IS_CANONICAL (attr) = 0;
19136 info_ptr += bytes_read;
19140 case DW_FORM_line_strp:
19141 if (!cu->per_cu->is_dwz)
19143 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19145 cu_header, &bytes_read);
19146 DW_STRING_IS_CANONICAL (attr) = 0;
19147 info_ptr += bytes_read;
19151 case DW_FORM_GNU_strp_alt:
19153 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19154 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19157 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19159 DW_STRING_IS_CANONICAL (attr) = 0;
19160 info_ptr += bytes_read;
19163 case DW_FORM_exprloc:
19164 case DW_FORM_block:
19165 blk = dwarf_alloc_block (cu);
19166 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19167 info_ptr += bytes_read;
19168 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19169 info_ptr += blk->size;
19170 DW_BLOCK (attr) = blk;
19172 case DW_FORM_block1:
19173 blk = dwarf_alloc_block (cu);
19174 blk->size = read_1_byte (abfd, info_ptr);
19176 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19177 info_ptr += blk->size;
19178 DW_BLOCK (attr) = blk;
19180 case DW_FORM_data1:
19181 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19185 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19188 case DW_FORM_flag_present:
19189 DW_UNSND (attr) = 1;
19191 case DW_FORM_sdata:
19192 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19193 info_ptr += bytes_read;
19195 case DW_FORM_udata:
19196 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19197 info_ptr += bytes_read;
19200 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19201 + read_1_byte (abfd, info_ptr));
19205 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19206 + read_2_bytes (abfd, info_ptr));
19210 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19211 + read_4_bytes (abfd, info_ptr));
19215 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19216 + read_8_bytes (abfd, info_ptr));
19219 case DW_FORM_ref_sig8:
19220 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19223 case DW_FORM_ref_udata:
19224 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19225 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19226 info_ptr += bytes_read;
19228 case DW_FORM_indirect:
19229 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19230 info_ptr += bytes_read;
19231 if (form == DW_FORM_implicit_const)
19233 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19234 info_ptr += bytes_read;
19236 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19239 case DW_FORM_implicit_const:
19240 DW_SND (attr) = implicit_const;
19242 case DW_FORM_GNU_addr_index:
19243 if (reader->dwo_file == NULL)
19245 /* For now flag a hard error.
19246 Later we can turn this into a complaint. */
19247 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19248 dwarf_form_name (form),
19249 bfd_get_filename (abfd));
19251 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19252 info_ptr += bytes_read;
19254 case DW_FORM_GNU_str_index:
19255 if (reader->dwo_file == NULL)
19257 /* For now flag a hard error.
19258 Later we can turn this into a complaint if warranted. */
19259 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19260 dwarf_form_name (form),
19261 bfd_get_filename (abfd));
19264 ULONGEST str_index =
19265 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19267 DW_STRING (attr) = read_str_index (reader, str_index);
19268 DW_STRING_IS_CANONICAL (attr) = 0;
19269 info_ptr += bytes_read;
19273 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19274 dwarf_form_name (form),
19275 bfd_get_filename (abfd));
19279 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19280 attr->form = DW_FORM_GNU_ref_alt;
19282 /* We have seen instances where the compiler tried to emit a byte
19283 size attribute of -1 which ended up being encoded as an unsigned
19284 0xffffffff. Although 0xffffffff is technically a valid size value,
19285 an object of this size seems pretty unlikely so we can relatively
19286 safely treat these cases as if the size attribute was invalid and
19287 treat them as zero by default. */
19288 if (attr->name == DW_AT_byte_size
19289 && form == DW_FORM_data4
19290 && DW_UNSND (attr) >= 0xffffffff)
19293 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19294 hex_string (DW_UNSND (attr)));
19295 DW_UNSND (attr) = 0;
19301 /* Read an attribute described by an abbreviated attribute. */
19303 static const gdb_byte *
19304 read_attribute (const struct die_reader_specs *reader,
19305 struct attribute *attr, struct attr_abbrev *abbrev,
19306 const gdb_byte *info_ptr)
19308 attr->name = abbrev->name;
19309 return read_attribute_value (reader, attr, abbrev->form,
19310 abbrev->implicit_const, info_ptr);
19313 /* Read dwarf information from a buffer. */
19315 static unsigned int
19316 read_1_byte (bfd *abfd, const gdb_byte *buf)
19318 return bfd_get_8 (abfd, buf);
19322 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19324 return bfd_get_signed_8 (abfd, buf);
19327 static unsigned int
19328 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19330 return bfd_get_16 (abfd, buf);
19334 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19336 return bfd_get_signed_16 (abfd, buf);
19339 static unsigned int
19340 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19342 return bfd_get_32 (abfd, buf);
19346 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19348 return bfd_get_signed_32 (abfd, buf);
19352 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19354 return bfd_get_64 (abfd, buf);
19358 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19359 unsigned int *bytes_read)
19361 struct comp_unit_head *cu_header = &cu->header;
19362 CORE_ADDR retval = 0;
19364 if (cu_header->signed_addr_p)
19366 switch (cu_header->addr_size)
19369 retval = bfd_get_signed_16 (abfd, buf);
19372 retval = bfd_get_signed_32 (abfd, buf);
19375 retval = bfd_get_signed_64 (abfd, buf);
19378 internal_error (__FILE__, __LINE__,
19379 _("read_address: bad switch, signed [in module %s]"),
19380 bfd_get_filename (abfd));
19385 switch (cu_header->addr_size)
19388 retval = bfd_get_16 (abfd, buf);
19391 retval = bfd_get_32 (abfd, buf);
19394 retval = bfd_get_64 (abfd, buf);
19397 internal_error (__FILE__, __LINE__,
19398 _("read_address: bad switch, "
19399 "unsigned [in module %s]"),
19400 bfd_get_filename (abfd));
19404 *bytes_read = cu_header->addr_size;
19408 /* Read the initial length from a section. The (draft) DWARF 3
19409 specification allows the initial length to take up either 4 bytes
19410 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19411 bytes describe the length and all offsets will be 8 bytes in length
19414 An older, non-standard 64-bit format is also handled by this
19415 function. The older format in question stores the initial length
19416 as an 8-byte quantity without an escape value. Lengths greater
19417 than 2^32 aren't very common which means that the initial 4 bytes
19418 is almost always zero. Since a length value of zero doesn't make
19419 sense for the 32-bit format, this initial zero can be considered to
19420 be an escape value which indicates the presence of the older 64-bit
19421 format. As written, the code can't detect (old format) lengths
19422 greater than 4GB. If it becomes necessary to handle lengths
19423 somewhat larger than 4GB, we could allow other small values (such
19424 as the non-sensical values of 1, 2, and 3) to also be used as
19425 escape values indicating the presence of the old format.
19427 The value returned via bytes_read should be used to increment the
19428 relevant pointer after calling read_initial_length().
19430 [ Note: read_initial_length() and read_offset() are based on the
19431 document entitled "DWARF Debugging Information Format", revision
19432 3, draft 8, dated November 19, 2001. This document was obtained
19435 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19437 This document is only a draft and is subject to change. (So beware.)
19439 Details regarding the older, non-standard 64-bit format were
19440 determined empirically by examining 64-bit ELF files produced by
19441 the SGI toolchain on an IRIX 6.5 machine.
19443 - Kevin, July 16, 2002
19447 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19449 LONGEST length = bfd_get_32 (abfd, buf);
19451 if (length == 0xffffffff)
19453 length = bfd_get_64 (abfd, buf + 4);
19456 else if (length == 0)
19458 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19459 length = bfd_get_64 (abfd, buf);
19470 /* Cover function for read_initial_length.
19471 Returns the length of the object at BUF, and stores the size of the
19472 initial length in *BYTES_READ and stores the size that offsets will be in
19474 If the initial length size is not equivalent to that specified in
19475 CU_HEADER then issue a complaint.
19476 This is useful when reading non-comp-unit headers. */
19479 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19480 const struct comp_unit_head *cu_header,
19481 unsigned int *bytes_read,
19482 unsigned int *offset_size)
19484 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19486 gdb_assert (cu_header->initial_length_size == 4
19487 || cu_header->initial_length_size == 8
19488 || cu_header->initial_length_size == 12);
19490 if (cu_header->initial_length_size != *bytes_read)
19491 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19493 *offset_size = (*bytes_read == 4) ? 4 : 8;
19497 /* Read an offset from the data stream. The size of the offset is
19498 given by cu_header->offset_size. */
19501 read_offset (bfd *abfd, const gdb_byte *buf,
19502 const struct comp_unit_head *cu_header,
19503 unsigned int *bytes_read)
19505 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19507 *bytes_read = cu_header->offset_size;
19511 /* Read an offset from the data stream. */
19514 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19516 LONGEST retval = 0;
19518 switch (offset_size)
19521 retval = bfd_get_32 (abfd, buf);
19524 retval = bfd_get_64 (abfd, buf);
19527 internal_error (__FILE__, __LINE__,
19528 _("read_offset_1: bad switch [in module %s]"),
19529 bfd_get_filename (abfd));
19535 static const gdb_byte *
19536 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19538 /* If the size of a host char is 8 bits, we can return a pointer
19539 to the buffer, otherwise we have to copy the data to a buffer
19540 allocated on the temporary obstack. */
19541 gdb_assert (HOST_CHAR_BIT == 8);
19545 static const char *
19546 read_direct_string (bfd *abfd, const gdb_byte *buf,
19547 unsigned int *bytes_read_ptr)
19549 /* If the size of a host char is 8 bits, we can return a pointer
19550 to the string, otherwise we have to copy the string to a buffer
19551 allocated on the temporary obstack. */
19552 gdb_assert (HOST_CHAR_BIT == 8);
19555 *bytes_read_ptr = 1;
19558 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19559 return (const char *) buf;
19562 /* Return pointer to string at section SECT offset STR_OFFSET with error
19563 reporting strings FORM_NAME and SECT_NAME. */
19565 static const char *
19566 read_indirect_string_at_offset_from (struct objfile *objfile,
19567 bfd *abfd, LONGEST str_offset,
19568 struct dwarf2_section_info *sect,
19569 const char *form_name,
19570 const char *sect_name)
19572 dwarf2_read_section (objfile, sect);
19573 if (sect->buffer == NULL)
19574 error (_("%s used without %s section [in module %s]"),
19575 form_name, sect_name, bfd_get_filename (abfd));
19576 if (str_offset >= sect->size)
19577 error (_("%s pointing outside of %s section [in module %s]"),
19578 form_name, sect_name, bfd_get_filename (abfd));
19579 gdb_assert (HOST_CHAR_BIT == 8);
19580 if (sect->buffer[str_offset] == '\0')
19582 return (const char *) (sect->buffer + str_offset);
19585 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19587 static const char *
19588 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19589 bfd *abfd, LONGEST str_offset)
19591 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19593 &dwarf2_per_objfile->str,
19594 "DW_FORM_strp", ".debug_str");
19597 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19599 static const char *
19600 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19601 bfd *abfd, LONGEST str_offset)
19603 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19605 &dwarf2_per_objfile->line_str,
19606 "DW_FORM_line_strp",
19607 ".debug_line_str");
19610 /* Read a string at offset STR_OFFSET in the .debug_str section from
19611 the .dwz file DWZ. Throw an error if the offset is too large. If
19612 the string consists of a single NUL byte, return NULL; otherwise
19613 return a pointer to the string. */
19615 static const char *
19616 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19617 LONGEST str_offset)
19619 dwarf2_read_section (objfile, &dwz->str);
19621 if (dwz->str.buffer == NULL)
19622 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19623 "section [in module %s]"),
19624 bfd_get_filename (dwz->dwz_bfd));
19625 if (str_offset >= dwz->str.size)
19626 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19627 ".debug_str section [in module %s]"),
19628 bfd_get_filename (dwz->dwz_bfd));
19629 gdb_assert (HOST_CHAR_BIT == 8);
19630 if (dwz->str.buffer[str_offset] == '\0')
19632 return (const char *) (dwz->str.buffer + str_offset);
19635 /* Return pointer to string at .debug_str offset as read from BUF.
19636 BUF is assumed to be in a compilation unit described by CU_HEADER.
19637 Return *BYTES_READ_PTR count of bytes read from BUF. */
19639 static const char *
19640 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19641 const gdb_byte *buf,
19642 const struct comp_unit_head *cu_header,
19643 unsigned int *bytes_read_ptr)
19645 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19647 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19650 /* Return pointer to string at .debug_line_str offset as read from BUF.
19651 BUF is assumed to be in a compilation unit described by CU_HEADER.
19652 Return *BYTES_READ_PTR count of bytes read from BUF. */
19654 static const char *
19655 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19656 bfd *abfd, const gdb_byte *buf,
19657 const struct comp_unit_head *cu_header,
19658 unsigned int *bytes_read_ptr)
19660 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19662 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19667 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19668 unsigned int *bytes_read_ptr)
19671 unsigned int num_read;
19673 unsigned char byte;
19680 byte = bfd_get_8 (abfd, buf);
19683 result |= ((ULONGEST) (byte & 127) << shift);
19684 if ((byte & 128) == 0)
19690 *bytes_read_ptr = num_read;
19695 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19696 unsigned int *bytes_read_ptr)
19699 int shift, num_read;
19700 unsigned char byte;
19707 byte = bfd_get_8 (abfd, buf);
19710 result |= ((ULONGEST) (byte & 127) << shift);
19712 if ((byte & 128) == 0)
19717 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19718 result |= -(((ULONGEST) 1) << shift);
19719 *bytes_read_ptr = num_read;
19723 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19724 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19725 ADDR_SIZE is the size of addresses from the CU header. */
19728 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19729 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19731 struct objfile *objfile = dwarf2_per_objfile->objfile;
19732 bfd *abfd = objfile->obfd;
19733 const gdb_byte *info_ptr;
19735 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19736 if (dwarf2_per_objfile->addr.buffer == NULL)
19737 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19738 objfile_name (objfile));
19739 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19740 error (_("DW_FORM_addr_index pointing outside of "
19741 ".debug_addr section [in module %s]"),
19742 objfile_name (objfile));
19743 info_ptr = (dwarf2_per_objfile->addr.buffer
19744 + addr_base + addr_index * addr_size);
19745 if (addr_size == 4)
19746 return bfd_get_32 (abfd, info_ptr);
19748 return bfd_get_64 (abfd, info_ptr);
19751 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19754 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19756 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19757 cu->addr_base, cu->header.addr_size);
19760 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19763 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19764 unsigned int *bytes_read)
19766 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19767 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19769 return read_addr_index (cu, addr_index);
19772 /* Data structure to pass results from dwarf2_read_addr_index_reader
19773 back to dwarf2_read_addr_index. */
19775 struct dwarf2_read_addr_index_data
19777 ULONGEST addr_base;
19781 /* die_reader_func for dwarf2_read_addr_index. */
19784 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19785 const gdb_byte *info_ptr,
19786 struct die_info *comp_unit_die,
19790 struct dwarf2_cu *cu = reader->cu;
19791 struct dwarf2_read_addr_index_data *aidata =
19792 (struct dwarf2_read_addr_index_data *) data;
19794 aidata->addr_base = cu->addr_base;
19795 aidata->addr_size = cu->header.addr_size;
19798 /* Given an index in .debug_addr, fetch the value.
19799 NOTE: This can be called during dwarf expression evaluation,
19800 long after the debug information has been read, and thus per_cu->cu
19801 may no longer exist. */
19804 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19805 unsigned int addr_index)
19807 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19808 struct dwarf2_cu *cu = per_cu->cu;
19809 ULONGEST addr_base;
19812 /* We need addr_base and addr_size.
19813 If we don't have PER_CU->cu, we have to get it.
19814 Nasty, but the alternative is storing the needed info in PER_CU,
19815 which at this point doesn't seem justified: it's not clear how frequently
19816 it would get used and it would increase the size of every PER_CU.
19817 Entry points like dwarf2_per_cu_addr_size do a similar thing
19818 so we're not in uncharted territory here.
19819 Alas we need to be a bit more complicated as addr_base is contained
19822 We don't need to read the entire CU(/TU).
19823 We just need the header and top level die.
19825 IWBN to use the aging mechanism to let us lazily later discard the CU.
19826 For now we skip this optimization. */
19830 addr_base = cu->addr_base;
19831 addr_size = cu->header.addr_size;
19835 struct dwarf2_read_addr_index_data aidata;
19837 /* Note: We can't use init_cutu_and_read_dies_simple here,
19838 we need addr_base. */
19839 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19840 dwarf2_read_addr_index_reader, &aidata);
19841 addr_base = aidata.addr_base;
19842 addr_size = aidata.addr_size;
19845 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19849 /* Given a DW_FORM_GNU_str_index, fetch the string.
19850 This is only used by the Fission support. */
19852 static const char *
19853 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19855 struct dwarf2_cu *cu = reader->cu;
19856 struct dwarf2_per_objfile *dwarf2_per_objfile
19857 = cu->per_cu->dwarf2_per_objfile;
19858 struct objfile *objfile = dwarf2_per_objfile->objfile;
19859 const char *objf_name = objfile_name (objfile);
19860 bfd *abfd = objfile->obfd;
19861 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19862 struct dwarf2_section_info *str_offsets_section =
19863 &reader->dwo_file->sections.str_offsets;
19864 const gdb_byte *info_ptr;
19865 ULONGEST str_offset;
19866 static const char form_name[] = "DW_FORM_GNU_str_index";
19868 dwarf2_read_section (objfile, str_section);
19869 dwarf2_read_section (objfile, str_offsets_section);
19870 if (str_section->buffer == NULL)
19871 error (_("%s used without .debug_str.dwo section"
19872 " in CU at offset %s [in module %s]"),
19873 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19874 if (str_offsets_section->buffer == NULL)
19875 error (_("%s used without .debug_str_offsets.dwo section"
19876 " in CU at offset %s [in module %s]"),
19877 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19878 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19879 error (_("%s pointing outside of .debug_str_offsets.dwo"
19880 " section in CU at offset %s [in module %s]"),
19881 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19882 info_ptr = (str_offsets_section->buffer
19883 + str_index * cu->header.offset_size);
19884 if (cu->header.offset_size == 4)
19885 str_offset = bfd_get_32 (abfd, info_ptr);
19887 str_offset = bfd_get_64 (abfd, info_ptr);
19888 if (str_offset >= str_section->size)
19889 error (_("Offset from %s pointing outside of"
19890 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19891 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19892 return (const char *) (str_section->buffer + str_offset);
19895 /* Return the length of an LEB128 number in BUF. */
19898 leb128_size (const gdb_byte *buf)
19900 const gdb_byte *begin = buf;
19906 if ((byte & 128) == 0)
19907 return buf - begin;
19912 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19921 cu->language = language_c;
19924 case DW_LANG_C_plus_plus:
19925 case DW_LANG_C_plus_plus_11:
19926 case DW_LANG_C_plus_plus_14:
19927 cu->language = language_cplus;
19930 cu->language = language_d;
19932 case DW_LANG_Fortran77:
19933 case DW_LANG_Fortran90:
19934 case DW_LANG_Fortran95:
19935 case DW_LANG_Fortran03:
19936 case DW_LANG_Fortran08:
19937 cu->language = language_fortran;
19940 cu->language = language_go;
19942 case DW_LANG_Mips_Assembler:
19943 cu->language = language_asm;
19945 case DW_LANG_Ada83:
19946 case DW_LANG_Ada95:
19947 cu->language = language_ada;
19949 case DW_LANG_Modula2:
19950 cu->language = language_m2;
19952 case DW_LANG_Pascal83:
19953 cu->language = language_pascal;
19956 cu->language = language_objc;
19959 case DW_LANG_Rust_old:
19960 cu->language = language_rust;
19962 case DW_LANG_Cobol74:
19963 case DW_LANG_Cobol85:
19965 cu->language = language_minimal;
19968 cu->language_defn = language_def (cu->language);
19971 /* Return the named attribute or NULL if not there. */
19973 static struct attribute *
19974 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19979 struct attribute *spec = NULL;
19981 for (i = 0; i < die->num_attrs; ++i)
19983 if (die->attrs[i].name == name)
19984 return &die->attrs[i];
19985 if (die->attrs[i].name == DW_AT_specification
19986 || die->attrs[i].name == DW_AT_abstract_origin)
19987 spec = &die->attrs[i];
19993 die = follow_die_ref (die, spec, &cu);
19999 /* Return the named attribute or NULL if not there,
20000 but do not follow DW_AT_specification, etc.
20001 This is for use in contexts where we're reading .debug_types dies.
20002 Following DW_AT_specification, DW_AT_abstract_origin will take us
20003 back up the chain, and we want to go down. */
20005 static struct attribute *
20006 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20010 for (i = 0; i < die->num_attrs; ++i)
20011 if (die->attrs[i].name == name)
20012 return &die->attrs[i];
20017 /* Return the string associated with a string-typed attribute, or NULL if it
20018 is either not found or is of an incorrect type. */
20020 static const char *
20021 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20023 struct attribute *attr;
20024 const char *str = NULL;
20026 attr = dwarf2_attr (die, name, cu);
20030 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20031 || attr->form == DW_FORM_string
20032 || attr->form == DW_FORM_GNU_str_index
20033 || attr->form == DW_FORM_GNU_strp_alt)
20034 str = DW_STRING (attr);
20036 complaint (_("string type expected for attribute %s for "
20037 "DIE at %s in module %s"),
20038 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20039 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20045 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20046 and holds a non-zero value. This function should only be used for
20047 DW_FORM_flag or DW_FORM_flag_present attributes. */
20050 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20052 struct attribute *attr = dwarf2_attr (die, name, cu);
20054 return (attr && DW_UNSND (attr));
20058 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20060 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20061 which value is non-zero. However, we have to be careful with
20062 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20063 (via dwarf2_flag_true_p) follows this attribute. So we may
20064 end up accidently finding a declaration attribute that belongs
20065 to a different DIE referenced by the specification attribute,
20066 even though the given DIE does not have a declaration attribute. */
20067 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20068 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20071 /* Return the die giving the specification for DIE, if there is
20072 one. *SPEC_CU is the CU containing DIE on input, and the CU
20073 containing the return value on output. If there is no
20074 specification, but there is an abstract origin, that is
20077 static struct die_info *
20078 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20080 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20083 if (spec_attr == NULL)
20084 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20086 if (spec_attr == NULL)
20089 return follow_die_ref (die, spec_attr, spec_cu);
20092 /* Stub for free_line_header to match void * callback types. */
20095 free_line_header_voidp (void *arg)
20097 struct line_header *lh = (struct line_header *) arg;
20103 line_header::add_include_dir (const char *include_dir)
20105 if (dwarf_line_debug >= 2)
20106 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20107 include_dirs.size () + 1, include_dir);
20109 include_dirs.push_back (include_dir);
20113 line_header::add_file_name (const char *name,
20115 unsigned int mod_time,
20116 unsigned int length)
20118 if (dwarf_line_debug >= 2)
20119 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20120 (unsigned) file_names.size () + 1, name);
20122 file_names.emplace_back (name, d_index, mod_time, length);
20125 /* A convenience function to find the proper .debug_line section for a CU. */
20127 static struct dwarf2_section_info *
20128 get_debug_line_section (struct dwarf2_cu *cu)
20130 struct dwarf2_section_info *section;
20131 struct dwarf2_per_objfile *dwarf2_per_objfile
20132 = cu->per_cu->dwarf2_per_objfile;
20134 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20136 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20137 section = &cu->dwo_unit->dwo_file->sections.line;
20138 else if (cu->per_cu->is_dwz)
20140 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20142 section = &dwz->line;
20145 section = &dwarf2_per_objfile->line;
20150 /* Read directory or file name entry format, starting with byte of
20151 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20152 entries count and the entries themselves in the described entry
20156 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20157 bfd *abfd, const gdb_byte **bufp,
20158 struct line_header *lh,
20159 const struct comp_unit_head *cu_header,
20160 void (*callback) (struct line_header *lh,
20163 unsigned int mod_time,
20164 unsigned int length))
20166 gdb_byte format_count, formati;
20167 ULONGEST data_count, datai;
20168 const gdb_byte *buf = *bufp;
20169 const gdb_byte *format_header_data;
20170 unsigned int bytes_read;
20172 format_count = read_1_byte (abfd, buf);
20174 format_header_data = buf;
20175 for (formati = 0; formati < format_count; formati++)
20177 read_unsigned_leb128 (abfd, buf, &bytes_read);
20179 read_unsigned_leb128 (abfd, buf, &bytes_read);
20183 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20185 for (datai = 0; datai < data_count; datai++)
20187 const gdb_byte *format = format_header_data;
20188 struct file_entry fe;
20190 for (formati = 0; formati < format_count; formati++)
20192 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20193 format += bytes_read;
20195 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20196 format += bytes_read;
20198 gdb::optional<const char *> string;
20199 gdb::optional<unsigned int> uint;
20203 case DW_FORM_string:
20204 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20208 case DW_FORM_line_strp:
20209 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20216 case DW_FORM_data1:
20217 uint.emplace (read_1_byte (abfd, buf));
20221 case DW_FORM_data2:
20222 uint.emplace (read_2_bytes (abfd, buf));
20226 case DW_FORM_data4:
20227 uint.emplace (read_4_bytes (abfd, buf));
20231 case DW_FORM_data8:
20232 uint.emplace (read_8_bytes (abfd, buf));
20236 case DW_FORM_udata:
20237 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20241 case DW_FORM_block:
20242 /* It is valid only for DW_LNCT_timestamp which is ignored by
20247 switch (content_type)
20250 if (string.has_value ())
20253 case DW_LNCT_directory_index:
20254 if (uint.has_value ())
20255 fe.d_index = (dir_index) *uint;
20257 case DW_LNCT_timestamp:
20258 if (uint.has_value ())
20259 fe.mod_time = *uint;
20262 if (uint.has_value ())
20268 complaint (_("Unknown format content type %s"),
20269 pulongest (content_type));
20273 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20279 /* Read the statement program header starting at OFFSET in
20280 .debug_line, or .debug_line.dwo. Return a pointer
20281 to a struct line_header, allocated using xmalloc.
20282 Returns NULL if there is a problem reading the header, e.g., if it
20283 has a version we don't understand.
20285 NOTE: the strings in the include directory and file name tables of
20286 the returned object point into the dwarf line section buffer,
20287 and must not be freed. */
20289 static line_header_up
20290 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20292 const gdb_byte *line_ptr;
20293 unsigned int bytes_read, offset_size;
20295 const char *cur_dir, *cur_file;
20296 struct dwarf2_section_info *section;
20298 struct dwarf2_per_objfile *dwarf2_per_objfile
20299 = cu->per_cu->dwarf2_per_objfile;
20301 section = get_debug_line_section (cu);
20302 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20303 if (section->buffer == NULL)
20305 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20306 complaint (_("missing .debug_line.dwo section"));
20308 complaint (_("missing .debug_line section"));
20312 /* We can't do this until we know the section is non-empty.
20313 Only then do we know we have such a section. */
20314 abfd = get_section_bfd_owner (section);
20316 /* Make sure that at least there's room for the total_length field.
20317 That could be 12 bytes long, but we're just going to fudge that. */
20318 if (to_underlying (sect_off) + 4 >= section->size)
20320 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20324 line_header_up lh (new line_header ());
20326 lh->sect_off = sect_off;
20327 lh->offset_in_dwz = cu->per_cu->is_dwz;
20329 line_ptr = section->buffer + to_underlying (sect_off);
20331 /* Read in the header. */
20333 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20334 &bytes_read, &offset_size);
20335 line_ptr += bytes_read;
20336 if (line_ptr + lh->total_length > (section->buffer + section->size))
20338 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20341 lh->statement_program_end = line_ptr + lh->total_length;
20342 lh->version = read_2_bytes (abfd, line_ptr);
20344 if (lh->version > 5)
20346 /* This is a version we don't understand. The format could have
20347 changed in ways we don't handle properly so just punt. */
20348 complaint (_("unsupported version in .debug_line section"));
20351 if (lh->version >= 5)
20353 gdb_byte segment_selector_size;
20355 /* Skip address size. */
20356 read_1_byte (abfd, line_ptr);
20359 segment_selector_size = read_1_byte (abfd, line_ptr);
20361 if (segment_selector_size != 0)
20363 complaint (_("unsupported segment selector size %u "
20364 "in .debug_line section"),
20365 segment_selector_size);
20369 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20370 line_ptr += offset_size;
20371 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20373 if (lh->version >= 4)
20375 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20379 lh->maximum_ops_per_instruction = 1;
20381 if (lh->maximum_ops_per_instruction == 0)
20383 lh->maximum_ops_per_instruction = 1;
20384 complaint (_("invalid maximum_ops_per_instruction "
20385 "in `.debug_line' section"));
20388 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20390 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20392 lh->line_range = read_1_byte (abfd, line_ptr);
20394 lh->opcode_base = read_1_byte (abfd, line_ptr);
20396 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20398 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20399 for (i = 1; i < lh->opcode_base; ++i)
20401 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20405 if (lh->version >= 5)
20407 /* Read directory table. */
20408 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20410 [] (struct line_header *header, const char *name,
20411 dir_index d_index, unsigned int mod_time,
20412 unsigned int length)
20414 header->add_include_dir (name);
20417 /* Read file name table. */
20418 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20420 [] (struct line_header *header, const char *name,
20421 dir_index d_index, unsigned int mod_time,
20422 unsigned int length)
20424 header->add_file_name (name, d_index, mod_time, length);
20429 /* Read directory table. */
20430 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20432 line_ptr += bytes_read;
20433 lh->add_include_dir (cur_dir);
20435 line_ptr += bytes_read;
20437 /* Read file name table. */
20438 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20440 unsigned int mod_time, length;
20443 line_ptr += bytes_read;
20444 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20445 line_ptr += bytes_read;
20446 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20447 line_ptr += bytes_read;
20448 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20449 line_ptr += bytes_read;
20451 lh->add_file_name (cur_file, d_index, mod_time, length);
20453 line_ptr += bytes_read;
20455 lh->statement_program_start = line_ptr;
20457 if (line_ptr > (section->buffer + section->size))
20458 complaint (_("line number info header doesn't "
20459 "fit in `.debug_line' section"));
20464 /* Subroutine of dwarf_decode_lines to simplify it.
20465 Return the file name of the psymtab for included file FILE_INDEX
20466 in line header LH of PST.
20467 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20468 If space for the result is malloc'd, *NAME_HOLDER will be set.
20469 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20471 static const char *
20472 psymtab_include_file_name (const struct line_header *lh, int file_index,
20473 const struct partial_symtab *pst,
20474 const char *comp_dir,
20475 gdb::unique_xmalloc_ptr<char> *name_holder)
20477 const file_entry &fe = lh->file_names[file_index];
20478 const char *include_name = fe.name;
20479 const char *include_name_to_compare = include_name;
20480 const char *pst_filename;
20483 const char *dir_name = fe.include_dir (lh);
20485 gdb::unique_xmalloc_ptr<char> hold_compare;
20486 if (!IS_ABSOLUTE_PATH (include_name)
20487 && (dir_name != NULL || comp_dir != NULL))
20489 /* Avoid creating a duplicate psymtab for PST.
20490 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20491 Before we do the comparison, however, we need to account
20492 for DIR_NAME and COMP_DIR.
20493 First prepend dir_name (if non-NULL). If we still don't
20494 have an absolute path prepend comp_dir (if non-NULL).
20495 However, the directory we record in the include-file's
20496 psymtab does not contain COMP_DIR (to match the
20497 corresponding symtab(s)).
20502 bash$ gcc -g ./hello.c
20503 include_name = "hello.c"
20505 DW_AT_comp_dir = comp_dir = "/tmp"
20506 DW_AT_name = "./hello.c"
20510 if (dir_name != NULL)
20512 name_holder->reset (concat (dir_name, SLASH_STRING,
20513 include_name, (char *) NULL));
20514 include_name = name_holder->get ();
20515 include_name_to_compare = include_name;
20517 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20519 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20520 include_name, (char *) NULL));
20521 include_name_to_compare = hold_compare.get ();
20525 pst_filename = pst->filename;
20526 gdb::unique_xmalloc_ptr<char> copied_name;
20527 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20529 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20530 pst_filename, (char *) NULL));
20531 pst_filename = copied_name.get ();
20534 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20538 return include_name;
20541 /* State machine to track the state of the line number program. */
20543 class lnp_state_machine
20546 /* Initialize a machine state for the start of a line number
20548 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20549 bool record_lines_p);
20551 file_entry *current_file ()
20553 /* lh->file_names is 0-based, but the file name numbers in the
20554 statement program are 1-based. */
20555 return m_line_header->file_name_at (m_file);
20558 /* Record the line in the state machine. END_SEQUENCE is true if
20559 we're processing the end of a sequence. */
20560 void record_line (bool end_sequence);
20562 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20563 nop-out rest of the lines in this sequence. */
20564 void check_line_address (struct dwarf2_cu *cu,
20565 const gdb_byte *line_ptr,
20566 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20568 void handle_set_discriminator (unsigned int discriminator)
20570 m_discriminator = discriminator;
20571 m_line_has_non_zero_discriminator |= discriminator != 0;
20574 /* Handle DW_LNE_set_address. */
20575 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20578 address += baseaddr;
20579 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20582 /* Handle DW_LNS_advance_pc. */
20583 void handle_advance_pc (CORE_ADDR adjust);
20585 /* Handle a special opcode. */
20586 void handle_special_opcode (unsigned char op_code);
20588 /* Handle DW_LNS_advance_line. */
20589 void handle_advance_line (int line_delta)
20591 advance_line (line_delta);
20594 /* Handle DW_LNS_set_file. */
20595 void handle_set_file (file_name_index file);
20597 /* Handle DW_LNS_negate_stmt. */
20598 void handle_negate_stmt ()
20600 m_is_stmt = !m_is_stmt;
20603 /* Handle DW_LNS_const_add_pc. */
20604 void handle_const_add_pc ();
20606 /* Handle DW_LNS_fixed_advance_pc. */
20607 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20609 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20613 /* Handle DW_LNS_copy. */
20614 void handle_copy ()
20616 record_line (false);
20617 m_discriminator = 0;
20620 /* Handle DW_LNE_end_sequence. */
20621 void handle_end_sequence ()
20623 m_currently_recording_lines = true;
20627 /* Advance the line by LINE_DELTA. */
20628 void advance_line (int line_delta)
20630 m_line += line_delta;
20632 if (line_delta != 0)
20633 m_line_has_non_zero_discriminator = m_discriminator != 0;
20636 struct dwarf2_cu *m_cu;
20638 gdbarch *m_gdbarch;
20640 /* True if we're recording lines.
20641 Otherwise we're building partial symtabs and are just interested in
20642 finding include files mentioned by the line number program. */
20643 bool m_record_lines_p;
20645 /* The line number header. */
20646 line_header *m_line_header;
20648 /* These are part of the standard DWARF line number state machine,
20649 and initialized according to the DWARF spec. */
20651 unsigned char m_op_index = 0;
20652 /* The line table index (1-based) of the current file. */
20653 file_name_index m_file = (file_name_index) 1;
20654 unsigned int m_line = 1;
20656 /* These are initialized in the constructor. */
20658 CORE_ADDR m_address;
20660 unsigned int m_discriminator;
20662 /* Additional bits of state we need to track. */
20664 /* The last file that we called dwarf2_start_subfile for.
20665 This is only used for TLLs. */
20666 unsigned int m_last_file = 0;
20667 /* The last file a line number was recorded for. */
20668 struct subfile *m_last_subfile = NULL;
20670 /* When true, record the lines we decode. */
20671 bool m_currently_recording_lines = false;
20673 /* The last line number that was recorded, used to coalesce
20674 consecutive entries for the same line. This can happen, for
20675 example, when discriminators are present. PR 17276. */
20676 unsigned int m_last_line = 0;
20677 bool m_line_has_non_zero_discriminator = false;
20681 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20683 CORE_ADDR addr_adj = (((m_op_index + adjust)
20684 / m_line_header->maximum_ops_per_instruction)
20685 * m_line_header->minimum_instruction_length);
20686 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20687 m_op_index = ((m_op_index + adjust)
20688 % m_line_header->maximum_ops_per_instruction);
20692 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20694 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20695 CORE_ADDR addr_adj = (((m_op_index
20696 + (adj_opcode / m_line_header->line_range))
20697 / m_line_header->maximum_ops_per_instruction)
20698 * m_line_header->minimum_instruction_length);
20699 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20700 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20701 % m_line_header->maximum_ops_per_instruction);
20703 int line_delta = (m_line_header->line_base
20704 + (adj_opcode % m_line_header->line_range));
20705 advance_line (line_delta);
20706 record_line (false);
20707 m_discriminator = 0;
20711 lnp_state_machine::handle_set_file (file_name_index file)
20715 const file_entry *fe = current_file ();
20717 dwarf2_debug_line_missing_file_complaint ();
20718 else if (m_record_lines_p)
20720 const char *dir = fe->include_dir (m_line_header);
20722 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20723 m_line_has_non_zero_discriminator = m_discriminator != 0;
20724 dwarf2_start_subfile (m_cu, fe->name, dir);
20729 lnp_state_machine::handle_const_add_pc ()
20732 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20735 = (((m_op_index + adjust)
20736 / m_line_header->maximum_ops_per_instruction)
20737 * m_line_header->minimum_instruction_length);
20739 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20740 m_op_index = ((m_op_index + adjust)
20741 % m_line_header->maximum_ops_per_instruction);
20744 /* Return non-zero if we should add LINE to the line number table.
20745 LINE is the line to add, LAST_LINE is the last line that was added,
20746 LAST_SUBFILE is the subfile for LAST_LINE.
20747 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20748 had a non-zero discriminator.
20750 We have to be careful in the presence of discriminators.
20751 E.g., for this line:
20753 for (i = 0; i < 100000; i++);
20755 clang can emit four line number entries for that one line,
20756 each with a different discriminator.
20757 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20759 However, we want gdb to coalesce all four entries into one.
20760 Otherwise the user could stepi into the middle of the line and
20761 gdb would get confused about whether the pc really was in the
20762 middle of the line.
20764 Things are further complicated by the fact that two consecutive
20765 line number entries for the same line is a heuristic used by gcc
20766 to denote the end of the prologue. So we can't just discard duplicate
20767 entries, we have to be selective about it. The heuristic we use is
20768 that we only collapse consecutive entries for the same line if at least
20769 one of those entries has a non-zero discriminator. PR 17276.
20771 Note: Addresses in the line number state machine can never go backwards
20772 within one sequence, thus this coalescing is ok. */
20775 dwarf_record_line_p (struct dwarf2_cu *cu,
20776 unsigned int line, unsigned int last_line,
20777 int line_has_non_zero_discriminator,
20778 struct subfile *last_subfile)
20780 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20782 if (line != last_line)
20784 /* Same line for the same file that we've seen already.
20785 As a last check, for pr 17276, only record the line if the line
20786 has never had a non-zero discriminator. */
20787 if (!line_has_non_zero_discriminator)
20792 /* Use the CU's builder to record line number LINE beginning at
20793 address ADDRESS in the line table of subfile SUBFILE. */
20796 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20797 unsigned int line, CORE_ADDR address,
20798 struct dwarf2_cu *cu)
20800 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20802 if (dwarf_line_debug)
20804 fprintf_unfiltered (gdb_stdlog,
20805 "Recording line %u, file %s, address %s\n",
20806 line, lbasename (subfile->name),
20807 paddress (gdbarch, address));
20811 cu->get_builder ()->record_line (subfile, line, addr);
20814 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20815 Mark the end of a set of line number records.
20816 The arguments are the same as for dwarf_record_line_1.
20817 If SUBFILE is NULL the request is ignored. */
20820 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20821 CORE_ADDR address, struct dwarf2_cu *cu)
20823 if (subfile == NULL)
20826 if (dwarf_line_debug)
20828 fprintf_unfiltered (gdb_stdlog,
20829 "Finishing current line, file %s, address %s\n",
20830 lbasename (subfile->name),
20831 paddress (gdbarch, address));
20834 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20838 lnp_state_machine::record_line (bool end_sequence)
20840 if (dwarf_line_debug)
20842 fprintf_unfiltered (gdb_stdlog,
20843 "Processing actual line %u: file %u,"
20844 " address %s, is_stmt %u, discrim %u\n",
20845 m_line, to_underlying (m_file),
20846 paddress (m_gdbarch, m_address),
20847 m_is_stmt, m_discriminator);
20850 file_entry *fe = current_file ();
20853 dwarf2_debug_line_missing_file_complaint ();
20854 /* For now we ignore lines not starting on an instruction boundary.
20855 But not when processing end_sequence for compatibility with the
20856 previous version of the code. */
20857 else if (m_op_index == 0 || end_sequence)
20859 fe->included_p = 1;
20860 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20862 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20865 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20866 m_currently_recording_lines ? m_cu : nullptr);
20871 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20872 m_line_has_non_zero_discriminator,
20875 buildsym_compunit *builder = m_cu->get_builder ();
20876 dwarf_record_line_1 (m_gdbarch,
20877 builder->get_current_subfile (),
20879 m_currently_recording_lines ? m_cu : nullptr);
20881 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20882 m_last_line = m_line;
20888 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20889 line_header *lh, bool record_lines_p)
20893 m_record_lines_p = record_lines_p;
20894 m_line_header = lh;
20896 m_currently_recording_lines = true;
20898 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20899 was a line entry for it so that the backend has a chance to adjust it
20900 and also record it in case it needs it. This is currently used by MIPS
20901 code, cf. `mips_adjust_dwarf2_line'. */
20902 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20903 m_is_stmt = lh->default_is_stmt;
20904 m_discriminator = 0;
20908 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20909 const gdb_byte *line_ptr,
20910 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20912 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20913 the pc range of the CU. However, we restrict the test to only ADDRESS
20914 values of zero to preserve GDB's previous behaviour which is to handle
20915 the specific case of a function being GC'd by the linker. */
20917 if (address == 0 && address < unrelocated_lowpc)
20919 /* This line table is for a function which has been
20920 GCd by the linker. Ignore it. PR gdb/12528 */
20922 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20923 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20925 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20926 line_offset, objfile_name (objfile));
20927 m_currently_recording_lines = false;
20928 /* Note: m_currently_recording_lines is left as false until we see
20929 DW_LNE_end_sequence. */
20933 /* Subroutine of dwarf_decode_lines to simplify it.
20934 Process the line number information in LH.
20935 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20936 program in order to set included_p for every referenced header. */
20939 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20940 const int decode_for_pst_p, CORE_ADDR lowpc)
20942 const gdb_byte *line_ptr, *extended_end;
20943 const gdb_byte *line_end;
20944 unsigned int bytes_read, extended_len;
20945 unsigned char op_code, extended_op;
20946 CORE_ADDR baseaddr;
20947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20948 bfd *abfd = objfile->obfd;
20949 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20950 /* True if we're recording line info (as opposed to building partial
20951 symtabs and just interested in finding include files mentioned by
20952 the line number program). */
20953 bool record_lines_p = !decode_for_pst_p;
20955 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20957 line_ptr = lh->statement_program_start;
20958 line_end = lh->statement_program_end;
20960 /* Read the statement sequences until there's nothing left. */
20961 while (line_ptr < line_end)
20963 /* The DWARF line number program state machine. Reset the state
20964 machine at the start of each sequence. */
20965 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20966 bool end_sequence = false;
20968 if (record_lines_p)
20970 /* Start a subfile for the current file of the state
20972 const file_entry *fe = state_machine.current_file ();
20975 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20978 /* Decode the table. */
20979 while (line_ptr < line_end && !end_sequence)
20981 op_code = read_1_byte (abfd, line_ptr);
20984 if (op_code >= lh->opcode_base)
20986 /* Special opcode. */
20987 state_machine.handle_special_opcode (op_code);
20989 else switch (op_code)
20991 case DW_LNS_extended_op:
20992 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20994 line_ptr += bytes_read;
20995 extended_end = line_ptr + extended_len;
20996 extended_op = read_1_byte (abfd, line_ptr);
20998 switch (extended_op)
21000 case DW_LNE_end_sequence:
21001 state_machine.handle_end_sequence ();
21002 end_sequence = true;
21004 case DW_LNE_set_address:
21007 = read_address (abfd, line_ptr, cu, &bytes_read);
21008 line_ptr += bytes_read;
21010 state_machine.check_line_address (cu, line_ptr,
21011 lowpc - baseaddr, address);
21012 state_machine.handle_set_address (baseaddr, address);
21015 case DW_LNE_define_file:
21017 const char *cur_file;
21018 unsigned int mod_time, length;
21021 cur_file = read_direct_string (abfd, line_ptr,
21023 line_ptr += bytes_read;
21024 dindex = (dir_index)
21025 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21026 line_ptr += bytes_read;
21028 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21029 line_ptr += bytes_read;
21031 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21032 line_ptr += bytes_read;
21033 lh->add_file_name (cur_file, dindex, mod_time, length);
21036 case DW_LNE_set_discriminator:
21038 /* The discriminator is not interesting to the
21039 debugger; just ignore it. We still need to
21040 check its value though:
21041 if there are consecutive entries for the same
21042 (non-prologue) line we want to coalesce them.
21045 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21046 line_ptr += bytes_read;
21048 state_machine.handle_set_discriminator (discr);
21052 complaint (_("mangled .debug_line section"));
21055 /* Make sure that we parsed the extended op correctly. If e.g.
21056 we expected a different address size than the producer used,
21057 we may have read the wrong number of bytes. */
21058 if (line_ptr != extended_end)
21060 complaint (_("mangled .debug_line section"));
21065 state_machine.handle_copy ();
21067 case DW_LNS_advance_pc:
21070 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21071 line_ptr += bytes_read;
21073 state_machine.handle_advance_pc (adjust);
21076 case DW_LNS_advance_line:
21079 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21080 line_ptr += bytes_read;
21082 state_machine.handle_advance_line (line_delta);
21085 case DW_LNS_set_file:
21087 file_name_index file
21088 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21090 line_ptr += bytes_read;
21092 state_machine.handle_set_file (file);
21095 case DW_LNS_set_column:
21096 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21097 line_ptr += bytes_read;
21099 case DW_LNS_negate_stmt:
21100 state_machine.handle_negate_stmt ();
21102 case DW_LNS_set_basic_block:
21104 /* Add to the address register of the state machine the
21105 address increment value corresponding to special opcode
21106 255. I.e., this value is scaled by the minimum
21107 instruction length since special opcode 255 would have
21108 scaled the increment. */
21109 case DW_LNS_const_add_pc:
21110 state_machine.handle_const_add_pc ();
21112 case DW_LNS_fixed_advance_pc:
21114 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21117 state_machine.handle_fixed_advance_pc (addr_adj);
21122 /* Unknown standard opcode, ignore it. */
21125 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21127 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21128 line_ptr += bytes_read;
21135 dwarf2_debug_line_missing_end_sequence_complaint ();
21137 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21138 in which case we still finish recording the last line). */
21139 state_machine.record_line (true);
21143 /* Decode the Line Number Program (LNP) for the given line_header
21144 structure and CU. The actual information extracted and the type
21145 of structures created from the LNP depends on the value of PST.
21147 1. If PST is NULL, then this procedure uses the data from the program
21148 to create all necessary symbol tables, and their linetables.
21150 2. If PST is not NULL, this procedure reads the program to determine
21151 the list of files included by the unit represented by PST, and
21152 builds all the associated partial symbol tables.
21154 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21155 It is used for relative paths in the line table.
21156 NOTE: When processing partial symtabs (pst != NULL),
21157 comp_dir == pst->dirname.
21159 NOTE: It is important that psymtabs have the same file name (via strcmp)
21160 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21161 symtab we don't use it in the name of the psymtabs we create.
21162 E.g. expand_line_sal requires this when finding psymtabs to expand.
21163 A good testcase for this is mb-inline.exp.
21165 LOWPC is the lowest address in CU (or 0 if not known).
21167 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21168 for its PC<->lines mapping information. Otherwise only the filename
21169 table is read in. */
21172 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21173 struct dwarf2_cu *cu, struct partial_symtab *pst,
21174 CORE_ADDR lowpc, int decode_mapping)
21176 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21177 const int decode_for_pst_p = (pst != NULL);
21179 if (decode_mapping)
21180 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21182 if (decode_for_pst_p)
21186 /* Now that we're done scanning the Line Header Program, we can
21187 create the psymtab of each included file. */
21188 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21189 if (lh->file_names[file_index].included_p == 1)
21191 gdb::unique_xmalloc_ptr<char> name_holder;
21192 const char *include_name =
21193 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21195 if (include_name != NULL)
21196 dwarf2_create_include_psymtab (include_name, pst, objfile);
21201 /* Make sure a symtab is created for every file, even files
21202 which contain only variables (i.e. no code with associated
21204 buildsym_compunit *builder = cu->get_builder ();
21205 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21208 for (i = 0; i < lh->file_names.size (); i++)
21210 file_entry &fe = lh->file_names[i];
21212 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21214 if (builder->get_current_subfile ()->symtab == NULL)
21216 builder->get_current_subfile ()->symtab
21217 = allocate_symtab (cust,
21218 builder->get_current_subfile ()->name);
21220 fe.symtab = builder->get_current_subfile ()->symtab;
21225 /* Start a subfile for DWARF. FILENAME is the name of the file and
21226 DIRNAME the name of the source directory which contains FILENAME
21227 or NULL if not known.
21228 This routine tries to keep line numbers from identical absolute and
21229 relative file names in a common subfile.
21231 Using the `list' example from the GDB testsuite, which resides in
21232 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21233 of /srcdir/list0.c yields the following debugging information for list0.c:
21235 DW_AT_name: /srcdir/list0.c
21236 DW_AT_comp_dir: /compdir
21237 files.files[0].name: list0.h
21238 files.files[0].dir: /srcdir
21239 files.files[1].name: list0.c
21240 files.files[1].dir: /srcdir
21242 The line number information for list0.c has to end up in a single
21243 subfile, so that `break /srcdir/list0.c:1' works as expected.
21244 start_subfile will ensure that this happens provided that we pass the
21245 concatenation of files.files[1].dir and files.files[1].name as the
21249 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21250 const char *dirname)
21254 /* In order not to lose the line information directory,
21255 we concatenate it to the filename when it makes sense.
21256 Note that the Dwarf3 standard says (speaking of filenames in line
21257 information): ``The directory index is ignored for file names
21258 that represent full path names''. Thus ignoring dirname in the
21259 `else' branch below isn't an issue. */
21261 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21263 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21267 cu->get_builder ()->start_subfile (filename);
21273 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21274 buildsym_compunit constructor. */
21276 struct compunit_symtab *
21277 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21280 gdb_assert (m_builder == nullptr);
21282 m_builder.reset (new struct buildsym_compunit
21283 (per_cu->dwarf2_per_objfile->objfile,
21284 name, comp_dir, language, low_pc));
21286 list_in_scope = get_builder ()->get_file_symbols ();
21288 get_builder ()->record_debugformat ("DWARF 2");
21289 get_builder ()->record_producer (producer);
21291 processing_has_namespace_info = false;
21293 return get_builder ()->get_compunit_symtab ();
21297 var_decode_location (struct attribute *attr, struct symbol *sym,
21298 struct dwarf2_cu *cu)
21300 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21301 struct comp_unit_head *cu_header = &cu->header;
21303 /* NOTE drow/2003-01-30: There used to be a comment and some special
21304 code here to turn a symbol with DW_AT_external and a
21305 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21306 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21307 with some versions of binutils) where shared libraries could have
21308 relocations against symbols in their debug information - the
21309 minimal symbol would have the right address, but the debug info
21310 would not. It's no longer necessary, because we will explicitly
21311 apply relocations when we read in the debug information now. */
21313 /* A DW_AT_location attribute with no contents indicates that a
21314 variable has been optimized away. */
21315 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21317 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21321 /* Handle one degenerate form of location expression specially, to
21322 preserve GDB's previous behavior when section offsets are
21323 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21324 then mark this symbol as LOC_STATIC. */
21326 if (attr_form_is_block (attr)
21327 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21328 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21329 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21330 && (DW_BLOCK (attr)->size
21331 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21333 unsigned int dummy;
21335 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21336 SYMBOL_VALUE_ADDRESS (sym) =
21337 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21339 SYMBOL_VALUE_ADDRESS (sym) =
21340 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21341 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21342 fixup_symbol_section (sym, objfile);
21343 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21344 SYMBOL_SECTION (sym));
21348 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21349 expression evaluator, and use LOC_COMPUTED only when necessary
21350 (i.e. when the value of a register or memory location is
21351 referenced, or a thread-local block, etc.). Then again, it might
21352 not be worthwhile. I'm assuming that it isn't unless performance
21353 or memory numbers show me otherwise. */
21355 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21357 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21358 cu->has_loclist = true;
21361 /* Given a pointer to a DWARF information entry, figure out if we need
21362 to make a symbol table entry for it, and if so, create a new entry
21363 and return a pointer to it.
21364 If TYPE is NULL, determine symbol type from the die, otherwise
21365 used the passed type.
21366 If SPACE is not NULL, use it to hold the new symbol. If it is
21367 NULL, allocate a new symbol on the objfile's obstack. */
21369 static struct symbol *
21370 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21371 struct symbol *space)
21373 struct dwarf2_per_objfile *dwarf2_per_objfile
21374 = cu->per_cu->dwarf2_per_objfile;
21375 struct objfile *objfile = dwarf2_per_objfile->objfile;
21376 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21377 struct symbol *sym = NULL;
21379 struct attribute *attr = NULL;
21380 struct attribute *attr2 = NULL;
21381 CORE_ADDR baseaddr;
21382 struct pending **list_to_add = NULL;
21384 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21386 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21388 name = dwarf2_name (die, cu);
21391 const char *linkagename;
21392 int suppress_add = 0;
21397 sym = allocate_symbol (objfile);
21398 OBJSTAT (objfile, n_syms++);
21400 /* Cache this symbol's name and the name's demangled form (if any). */
21401 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21402 linkagename = dwarf2_physname (name, die, cu);
21403 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21405 /* Fortran does not have mangling standard and the mangling does differ
21406 between gfortran, iFort etc. */
21407 if (cu->language == language_fortran
21408 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21409 symbol_set_demangled_name (&(sym->ginfo),
21410 dwarf2_full_name (name, die, cu),
21413 /* Default assumptions.
21414 Use the passed type or decode it from the die. */
21415 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21416 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21418 SYMBOL_TYPE (sym) = type;
21420 SYMBOL_TYPE (sym) = die_type (die, cu);
21421 attr = dwarf2_attr (die,
21422 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21426 SYMBOL_LINE (sym) = DW_UNSND (attr);
21429 attr = dwarf2_attr (die,
21430 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21434 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21435 struct file_entry *fe;
21437 if (cu->line_header != NULL)
21438 fe = cu->line_header->file_name_at (file_index);
21443 complaint (_("file index out of range"));
21445 symbol_set_symtab (sym, fe->symtab);
21451 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21456 addr = attr_value_as_address (attr);
21457 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21458 SYMBOL_VALUE_ADDRESS (sym) = addr;
21460 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21461 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21462 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21463 add_symbol_to_list (sym, cu->list_in_scope);
21465 case DW_TAG_subprogram:
21466 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21468 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21469 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21470 if ((attr2 && (DW_UNSND (attr2) != 0))
21471 || cu->language == language_ada)
21473 /* Subprograms marked external are stored as a global symbol.
21474 Ada subprograms, whether marked external or not, are always
21475 stored as a global symbol, because we want to be able to
21476 access them globally. For instance, we want to be able
21477 to break on a nested subprogram without having to
21478 specify the context. */
21479 list_to_add = cu->get_builder ()->get_global_symbols ();
21483 list_to_add = cu->list_in_scope;
21486 case DW_TAG_inlined_subroutine:
21487 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21489 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21490 SYMBOL_INLINED (sym) = 1;
21491 list_to_add = cu->list_in_scope;
21493 case DW_TAG_template_value_param:
21495 /* Fall through. */
21496 case DW_TAG_constant:
21497 case DW_TAG_variable:
21498 case DW_TAG_member:
21499 /* Compilation with minimal debug info may result in
21500 variables with missing type entries. Change the
21501 misleading `void' type to something sensible. */
21502 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21503 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21505 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21506 /* In the case of DW_TAG_member, we should only be called for
21507 static const members. */
21508 if (die->tag == DW_TAG_member)
21510 /* dwarf2_add_field uses die_is_declaration,
21511 so we do the same. */
21512 gdb_assert (die_is_declaration (die, cu));
21517 dwarf2_const_value (attr, sym, cu);
21518 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21521 if (attr2 && (DW_UNSND (attr2) != 0))
21522 list_to_add = cu->get_builder ()->get_global_symbols ();
21524 list_to_add = cu->list_in_scope;
21528 attr = dwarf2_attr (die, DW_AT_location, cu);
21531 var_decode_location (attr, sym, cu);
21532 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21534 /* Fortran explicitly imports any global symbols to the local
21535 scope by DW_TAG_common_block. */
21536 if (cu->language == language_fortran && die->parent
21537 && die->parent->tag == DW_TAG_common_block)
21540 if (SYMBOL_CLASS (sym) == LOC_STATIC
21541 && SYMBOL_VALUE_ADDRESS (sym) == 0
21542 && !dwarf2_per_objfile->has_section_at_zero)
21544 /* When a static variable is eliminated by the linker,
21545 the corresponding debug information is not stripped
21546 out, but the variable address is set to null;
21547 do not add such variables into symbol table. */
21549 else if (attr2 && (DW_UNSND (attr2) != 0))
21551 /* Workaround gfortran PR debug/40040 - it uses
21552 DW_AT_location for variables in -fPIC libraries which may
21553 get overriden by other libraries/executable and get
21554 a different address. Resolve it by the minimal symbol
21555 which may come from inferior's executable using copy
21556 relocation. Make this workaround only for gfortran as for
21557 other compilers GDB cannot guess the minimal symbol
21558 Fortran mangling kind. */
21559 if (cu->language == language_fortran && die->parent
21560 && die->parent->tag == DW_TAG_module
21562 && startswith (cu->producer, "GNU Fortran"))
21563 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21565 /* A variable with DW_AT_external is never static,
21566 but it may be block-scoped. */
21568 = ((cu->list_in_scope
21569 == cu->get_builder ()->get_file_symbols ())
21570 ? cu->get_builder ()->get_global_symbols ()
21571 : cu->list_in_scope);
21574 list_to_add = cu->list_in_scope;
21578 /* We do not know the address of this symbol.
21579 If it is an external symbol and we have type information
21580 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21581 The address of the variable will then be determined from
21582 the minimal symbol table whenever the variable is
21584 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21586 /* Fortran explicitly imports any global symbols to the local
21587 scope by DW_TAG_common_block. */
21588 if (cu->language == language_fortran && die->parent
21589 && die->parent->tag == DW_TAG_common_block)
21591 /* SYMBOL_CLASS doesn't matter here because
21592 read_common_block is going to reset it. */
21594 list_to_add = cu->list_in_scope;
21596 else if (attr2 && (DW_UNSND (attr2) != 0)
21597 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21599 /* A variable with DW_AT_external is never static, but it
21600 may be block-scoped. */
21602 = ((cu->list_in_scope
21603 == cu->get_builder ()->get_file_symbols ())
21604 ? cu->get_builder ()->get_global_symbols ()
21605 : cu->list_in_scope);
21607 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21609 else if (!die_is_declaration (die, cu))
21611 /* Use the default LOC_OPTIMIZED_OUT class. */
21612 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21614 list_to_add = cu->list_in_scope;
21618 case DW_TAG_formal_parameter:
21620 /* If we are inside a function, mark this as an argument. If
21621 not, we might be looking at an argument to an inlined function
21622 when we do not have enough information to show inlined frames;
21623 pretend it's a local variable in that case so that the user can
21625 struct context_stack *curr
21626 = cu->get_builder ()->get_current_context_stack ();
21627 if (curr != nullptr && curr->name != nullptr)
21628 SYMBOL_IS_ARGUMENT (sym) = 1;
21629 attr = dwarf2_attr (die, DW_AT_location, cu);
21632 var_decode_location (attr, sym, cu);
21634 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21637 dwarf2_const_value (attr, sym, cu);
21640 list_to_add = cu->list_in_scope;
21643 case DW_TAG_unspecified_parameters:
21644 /* From varargs functions; gdb doesn't seem to have any
21645 interest in this information, so just ignore it for now.
21648 case DW_TAG_template_type_param:
21650 /* Fall through. */
21651 case DW_TAG_class_type:
21652 case DW_TAG_interface_type:
21653 case DW_TAG_structure_type:
21654 case DW_TAG_union_type:
21655 case DW_TAG_set_type:
21656 case DW_TAG_enumeration_type:
21657 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21658 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21661 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21662 really ever be static objects: otherwise, if you try
21663 to, say, break of a class's method and you're in a file
21664 which doesn't mention that class, it won't work unless
21665 the check for all static symbols in lookup_symbol_aux
21666 saves you. See the OtherFileClass tests in
21667 gdb.c++/namespace.exp. */
21671 buildsym_compunit *builder = cu->get_builder ();
21673 = (cu->list_in_scope == builder->get_file_symbols ()
21674 && cu->language == language_cplus
21675 ? builder->get_global_symbols ()
21676 : cu->list_in_scope);
21678 /* The semantics of C++ state that "struct foo {
21679 ... }" also defines a typedef for "foo". */
21680 if (cu->language == language_cplus
21681 || cu->language == language_ada
21682 || cu->language == language_d
21683 || cu->language == language_rust)
21685 /* The symbol's name is already allocated along
21686 with this objfile, so we don't need to
21687 duplicate it for the type. */
21688 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21689 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21694 case DW_TAG_typedef:
21695 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21696 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21697 list_to_add = cu->list_in_scope;
21699 case DW_TAG_base_type:
21700 case DW_TAG_subrange_type:
21701 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21702 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21703 list_to_add = cu->list_in_scope;
21705 case DW_TAG_enumerator:
21706 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21709 dwarf2_const_value (attr, sym, cu);
21712 /* NOTE: carlton/2003-11-10: See comment above in the
21713 DW_TAG_class_type, etc. block. */
21716 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21717 && cu->language == language_cplus
21718 ? cu->get_builder ()->get_global_symbols ()
21719 : cu->list_in_scope);
21722 case DW_TAG_imported_declaration:
21723 case DW_TAG_namespace:
21724 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21725 list_to_add = cu->get_builder ()->get_global_symbols ();
21727 case DW_TAG_module:
21728 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21729 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21730 list_to_add = cu->get_builder ()->get_global_symbols ();
21732 case DW_TAG_common_block:
21733 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21734 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21735 add_symbol_to_list (sym, cu->list_in_scope);
21738 /* Not a tag we recognize. Hopefully we aren't processing
21739 trash data, but since we must specifically ignore things
21740 we don't recognize, there is nothing else we should do at
21742 complaint (_("unsupported tag: '%s'"),
21743 dwarf_tag_name (die->tag));
21749 sym->hash_next = objfile->template_symbols;
21750 objfile->template_symbols = sym;
21751 list_to_add = NULL;
21754 if (list_to_add != NULL)
21755 add_symbol_to_list (sym, list_to_add);
21757 /* For the benefit of old versions of GCC, check for anonymous
21758 namespaces based on the demangled name. */
21759 if (!cu->processing_has_namespace_info
21760 && cu->language == language_cplus)
21761 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21766 /* Given an attr with a DW_FORM_dataN value in host byte order,
21767 zero-extend it as appropriate for the symbol's type. The DWARF
21768 standard (v4) is not entirely clear about the meaning of using
21769 DW_FORM_dataN for a constant with a signed type, where the type is
21770 wider than the data. The conclusion of a discussion on the DWARF
21771 list was that this is unspecified. We choose to always zero-extend
21772 because that is the interpretation long in use by GCC. */
21775 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21776 struct dwarf2_cu *cu, LONGEST *value, int bits)
21778 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21779 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21780 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21781 LONGEST l = DW_UNSND (attr);
21783 if (bits < sizeof (*value) * 8)
21785 l &= ((LONGEST) 1 << bits) - 1;
21788 else if (bits == sizeof (*value) * 8)
21792 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21793 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21800 /* Read a constant value from an attribute. Either set *VALUE, or if
21801 the value does not fit in *VALUE, set *BYTES - either already
21802 allocated on the objfile obstack, or newly allocated on OBSTACK,
21803 or, set *BATON, if we translated the constant to a location
21807 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21808 const char *name, struct obstack *obstack,
21809 struct dwarf2_cu *cu,
21810 LONGEST *value, const gdb_byte **bytes,
21811 struct dwarf2_locexpr_baton **baton)
21813 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21814 struct comp_unit_head *cu_header = &cu->header;
21815 struct dwarf_block *blk;
21816 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21817 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21823 switch (attr->form)
21826 case DW_FORM_GNU_addr_index:
21830 if (TYPE_LENGTH (type) != cu_header->addr_size)
21831 dwarf2_const_value_length_mismatch_complaint (name,
21832 cu_header->addr_size,
21833 TYPE_LENGTH (type));
21834 /* Symbols of this form are reasonably rare, so we just
21835 piggyback on the existing location code rather than writing
21836 a new implementation of symbol_computed_ops. */
21837 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21838 (*baton)->per_cu = cu->per_cu;
21839 gdb_assert ((*baton)->per_cu);
21841 (*baton)->size = 2 + cu_header->addr_size;
21842 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21843 (*baton)->data = data;
21845 data[0] = DW_OP_addr;
21846 store_unsigned_integer (&data[1], cu_header->addr_size,
21847 byte_order, DW_ADDR (attr));
21848 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21851 case DW_FORM_string:
21853 case DW_FORM_GNU_str_index:
21854 case DW_FORM_GNU_strp_alt:
21855 /* DW_STRING is already allocated on the objfile obstack, point
21857 *bytes = (const gdb_byte *) DW_STRING (attr);
21859 case DW_FORM_block1:
21860 case DW_FORM_block2:
21861 case DW_FORM_block4:
21862 case DW_FORM_block:
21863 case DW_FORM_exprloc:
21864 case DW_FORM_data16:
21865 blk = DW_BLOCK (attr);
21866 if (TYPE_LENGTH (type) != blk->size)
21867 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21868 TYPE_LENGTH (type));
21869 *bytes = blk->data;
21872 /* The DW_AT_const_value attributes are supposed to carry the
21873 symbol's value "represented as it would be on the target
21874 architecture." By the time we get here, it's already been
21875 converted to host endianness, so we just need to sign- or
21876 zero-extend it as appropriate. */
21877 case DW_FORM_data1:
21878 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21880 case DW_FORM_data2:
21881 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21883 case DW_FORM_data4:
21884 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21886 case DW_FORM_data8:
21887 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21890 case DW_FORM_sdata:
21891 case DW_FORM_implicit_const:
21892 *value = DW_SND (attr);
21895 case DW_FORM_udata:
21896 *value = DW_UNSND (attr);
21900 complaint (_("unsupported const value attribute form: '%s'"),
21901 dwarf_form_name (attr->form));
21908 /* Copy constant value from an attribute to a symbol. */
21911 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21912 struct dwarf2_cu *cu)
21914 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21916 const gdb_byte *bytes;
21917 struct dwarf2_locexpr_baton *baton;
21919 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21920 SYMBOL_PRINT_NAME (sym),
21921 &objfile->objfile_obstack, cu,
21922 &value, &bytes, &baton);
21926 SYMBOL_LOCATION_BATON (sym) = baton;
21927 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21929 else if (bytes != NULL)
21931 SYMBOL_VALUE_BYTES (sym) = bytes;
21932 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21936 SYMBOL_VALUE (sym) = value;
21937 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21941 /* Return the type of the die in question using its DW_AT_type attribute. */
21943 static struct type *
21944 die_type (struct die_info *die, struct dwarf2_cu *cu)
21946 struct attribute *type_attr;
21948 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21952 /* A missing DW_AT_type represents a void type. */
21953 return objfile_type (objfile)->builtin_void;
21956 return lookup_die_type (die, type_attr, cu);
21959 /* True iff CU's producer generates GNAT Ada auxiliary information
21960 that allows to find parallel types through that information instead
21961 of having to do expensive parallel lookups by type name. */
21964 need_gnat_info (struct dwarf2_cu *cu)
21966 /* Assume that the Ada compiler was GNAT, which always produces
21967 the auxiliary information. */
21968 return (cu->language == language_ada);
21971 /* Return the auxiliary type of the die in question using its
21972 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21973 attribute is not present. */
21975 static struct type *
21976 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21978 struct attribute *type_attr;
21980 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21984 return lookup_die_type (die, type_attr, cu);
21987 /* If DIE has a descriptive_type attribute, then set the TYPE's
21988 descriptive type accordingly. */
21991 set_descriptive_type (struct type *type, struct die_info *die,
21992 struct dwarf2_cu *cu)
21994 struct type *descriptive_type = die_descriptive_type (die, cu);
21996 if (descriptive_type)
21998 ALLOCATE_GNAT_AUX_TYPE (type);
21999 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22003 /* Return the containing type of the die in question using its
22004 DW_AT_containing_type attribute. */
22006 static struct type *
22007 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22009 struct attribute *type_attr;
22010 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22012 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22014 error (_("Dwarf Error: Problem turning containing type into gdb type "
22015 "[in module %s]"), objfile_name (objfile));
22017 return lookup_die_type (die, type_attr, cu);
22020 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22022 static struct type *
22023 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22025 struct dwarf2_per_objfile *dwarf2_per_objfile
22026 = cu->per_cu->dwarf2_per_objfile;
22027 struct objfile *objfile = dwarf2_per_objfile->objfile;
22030 std::string message
22031 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22032 objfile_name (objfile),
22033 sect_offset_str (cu->header.sect_off),
22034 sect_offset_str (die->sect_off));
22035 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22036 message.c_str (), message.length ());
22038 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22041 /* Look up the type of DIE in CU using its type attribute ATTR.
22042 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22043 DW_AT_containing_type.
22044 If there is no type substitute an error marker. */
22046 static struct type *
22047 lookup_die_type (struct die_info *die, const struct attribute *attr,
22048 struct dwarf2_cu *cu)
22050 struct dwarf2_per_objfile *dwarf2_per_objfile
22051 = cu->per_cu->dwarf2_per_objfile;
22052 struct objfile *objfile = dwarf2_per_objfile->objfile;
22053 struct type *this_type;
22055 gdb_assert (attr->name == DW_AT_type
22056 || attr->name == DW_AT_GNAT_descriptive_type
22057 || attr->name == DW_AT_containing_type);
22059 /* First see if we have it cached. */
22061 if (attr->form == DW_FORM_GNU_ref_alt)
22063 struct dwarf2_per_cu_data *per_cu;
22064 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22066 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22067 dwarf2_per_objfile);
22068 this_type = get_die_type_at_offset (sect_off, per_cu);
22070 else if (attr_form_is_ref (attr))
22072 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22074 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22076 else if (attr->form == DW_FORM_ref_sig8)
22078 ULONGEST signature = DW_SIGNATURE (attr);
22080 return get_signatured_type (die, signature, cu);
22084 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22085 " at %s [in module %s]"),
22086 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22087 objfile_name (objfile));
22088 return build_error_marker_type (cu, die);
22091 /* If not cached we need to read it in. */
22093 if (this_type == NULL)
22095 struct die_info *type_die = NULL;
22096 struct dwarf2_cu *type_cu = cu;
22098 if (attr_form_is_ref (attr))
22099 type_die = follow_die_ref (die, attr, &type_cu);
22100 if (type_die == NULL)
22101 return build_error_marker_type (cu, die);
22102 /* If we find the type now, it's probably because the type came
22103 from an inter-CU reference and the type's CU got expanded before
22105 this_type = read_type_die (type_die, type_cu);
22108 /* If we still don't have a type use an error marker. */
22110 if (this_type == NULL)
22111 return build_error_marker_type (cu, die);
22116 /* Return the type in DIE, CU.
22117 Returns NULL for invalid types.
22119 This first does a lookup in die_type_hash,
22120 and only reads the die in if necessary.
22122 NOTE: This can be called when reading in partial or full symbols. */
22124 static struct type *
22125 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22127 struct type *this_type;
22129 this_type = get_die_type (die, cu);
22133 return read_type_die_1 (die, cu);
22136 /* Read the type in DIE, CU.
22137 Returns NULL for invalid types. */
22139 static struct type *
22140 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22142 struct type *this_type = NULL;
22146 case DW_TAG_class_type:
22147 case DW_TAG_interface_type:
22148 case DW_TAG_structure_type:
22149 case DW_TAG_union_type:
22150 this_type = read_structure_type (die, cu);
22152 case DW_TAG_enumeration_type:
22153 this_type = read_enumeration_type (die, cu);
22155 case DW_TAG_subprogram:
22156 case DW_TAG_subroutine_type:
22157 case DW_TAG_inlined_subroutine:
22158 this_type = read_subroutine_type (die, cu);
22160 case DW_TAG_array_type:
22161 this_type = read_array_type (die, cu);
22163 case DW_TAG_set_type:
22164 this_type = read_set_type (die, cu);
22166 case DW_TAG_pointer_type:
22167 this_type = read_tag_pointer_type (die, cu);
22169 case DW_TAG_ptr_to_member_type:
22170 this_type = read_tag_ptr_to_member_type (die, cu);
22172 case DW_TAG_reference_type:
22173 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22175 case DW_TAG_rvalue_reference_type:
22176 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22178 case DW_TAG_const_type:
22179 this_type = read_tag_const_type (die, cu);
22181 case DW_TAG_volatile_type:
22182 this_type = read_tag_volatile_type (die, cu);
22184 case DW_TAG_restrict_type:
22185 this_type = read_tag_restrict_type (die, cu);
22187 case DW_TAG_string_type:
22188 this_type = read_tag_string_type (die, cu);
22190 case DW_TAG_typedef:
22191 this_type = read_typedef (die, cu);
22193 case DW_TAG_subrange_type:
22194 this_type = read_subrange_type (die, cu);
22196 case DW_TAG_base_type:
22197 this_type = read_base_type (die, cu);
22199 case DW_TAG_unspecified_type:
22200 this_type = read_unspecified_type (die, cu);
22202 case DW_TAG_namespace:
22203 this_type = read_namespace_type (die, cu);
22205 case DW_TAG_module:
22206 this_type = read_module_type (die, cu);
22208 case DW_TAG_atomic_type:
22209 this_type = read_tag_atomic_type (die, cu);
22212 complaint (_("unexpected tag in read_type_die: '%s'"),
22213 dwarf_tag_name (die->tag));
22220 /* See if we can figure out if the class lives in a namespace. We do
22221 this by looking for a member function; its demangled name will
22222 contain namespace info, if there is any.
22223 Return the computed name or NULL.
22224 Space for the result is allocated on the objfile's obstack.
22225 This is the full-die version of guess_partial_die_structure_name.
22226 In this case we know DIE has no useful parent. */
22229 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22231 struct die_info *spec_die;
22232 struct dwarf2_cu *spec_cu;
22233 struct die_info *child;
22234 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22237 spec_die = die_specification (die, &spec_cu);
22238 if (spec_die != NULL)
22244 for (child = die->child;
22246 child = child->sibling)
22248 if (child->tag == DW_TAG_subprogram)
22250 const char *linkage_name = dw2_linkage_name (child, cu);
22252 if (linkage_name != NULL)
22255 = language_class_name_from_physname (cu->language_defn,
22259 if (actual_name != NULL)
22261 const char *die_name = dwarf2_name (die, cu);
22263 if (die_name != NULL
22264 && strcmp (die_name, actual_name) != 0)
22266 /* Strip off the class name from the full name.
22267 We want the prefix. */
22268 int die_name_len = strlen (die_name);
22269 int actual_name_len = strlen (actual_name);
22271 /* Test for '::' as a sanity check. */
22272 if (actual_name_len > die_name_len + 2
22273 && actual_name[actual_name_len
22274 - die_name_len - 1] == ':')
22275 name = (char *) obstack_copy0 (
22276 &objfile->per_bfd->storage_obstack,
22277 actual_name, actual_name_len - die_name_len - 2);
22280 xfree (actual_name);
22289 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22290 prefix part in such case. See
22291 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22293 static const char *
22294 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22296 struct attribute *attr;
22299 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22300 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22303 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22306 attr = dw2_linkage_name_attr (die, cu);
22307 if (attr == NULL || DW_STRING (attr) == NULL)
22310 /* dwarf2_name had to be already called. */
22311 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22313 /* Strip the base name, keep any leading namespaces/classes. */
22314 base = strrchr (DW_STRING (attr), ':');
22315 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22318 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22319 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22321 &base[-1] - DW_STRING (attr));
22324 /* Return the name of the namespace/class that DIE is defined within,
22325 or "" if we can't tell. The caller should not xfree the result.
22327 For example, if we're within the method foo() in the following
22337 then determine_prefix on foo's die will return "N::C". */
22339 static const char *
22340 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22342 struct dwarf2_per_objfile *dwarf2_per_objfile
22343 = cu->per_cu->dwarf2_per_objfile;
22344 struct die_info *parent, *spec_die;
22345 struct dwarf2_cu *spec_cu;
22346 struct type *parent_type;
22347 const char *retval;
22349 if (cu->language != language_cplus
22350 && cu->language != language_fortran && cu->language != language_d
22351 && cu->language != language_rust)
22354 retval = anonymous_struct_prefix (die, cu);
22358 /* We have to be careful in the presence of DW_AT_specification.
22359 For example, with GCC 3.4, given the code
22363 // Definition of N::foo.
22367 then we'll have a tree of DIEs like this:
22369 1: DW_TAG_compile_unit
22370 2: DW_TAG_namespace // N
22371 3: DW_TAG_subprogram // declaration of N::foo
22372 4: DW_TAG_subprogram // definition of N::foo
22373 DW_AT_specification // refers to die #3
22375 Thus, when processing die #4, we have to pretend that we're in
22376 the context of its DW_AT_specification, namely the contex of die
22379 spec_die = die_specification (die, &spec_cu);
22380 if (spec_die == NULL)
22381 parent = die->parent;
22384 parent = spec_die->parent;
22388 if (parent == NULL)
22390 else if (parent->building_fullname)
22393 const char *parent_name;
22395 /* It has been seen on RealView 2.2 built binaries,
22396 DW_TAG_template_type_param types actually _defined_ as
22397 children of the parent class:
22400 template class <class Enum> Class{};
22401 Class<enum E> class_e;
22403 1: DW_TAG_class_type (Class)
22404 2: DW_TAG_enumeration_type (E)
22405 3: DW_TAG_enumerator (enum1:0)
22406 3: DW_TAG_enumerator (enum2:1)
22408 2: DW_TAG_template_type_param
22409 DW_AT_type DW_FORM_ref_udata (E)
22411 Besides being broken debug info, it can put GDB into an
22412 infinite loop. Consider:
22414 When we're building the full name for Class<E>, we'll start
22415 at Class, and go look over its template type parameters,
22416 finding E. We'll then try to build the full name of E, and
22417 reach here. We're now trying to build the full name of E,
22418 and look over the parent DIE for containing scope. In the
22419 broken case, if we followed the parent DIE of E, we'd again
22420 find Class, and once again go look at its template type
22421 arguments, etc., etc. Simply don't consider such parent die
22422 as source-level parent of this die (it can't be, the language
22423 doesn't allow it), and break the loop here. */
22424 name = dwarf2_name (die, cu);
22425 parent_name = dwarf2_name (parent, cu);
22426 complaint (_("template param type '%s' defined within parent '%s'"),
22427 name ? name : "<unknown>",
22428 parent_name ? parent_name : "<unknown>");
22432 switch (parent->tag)
22434 case DW_TAG_namespace:
22435 parent_type = read_type_die (parent, cu);
22436 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22437 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22438 Work around this problem here. */
22439 if (cu->language == language_cplus
22440 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22442 /* We give a name to even anonymous namespaces. */
22443 return TYPE_NAME (parent_type);
22444 case DW_TAG_class_type:
22445 case DW_TAG_interface_type:
22446 case DW_TAG_structure_type:
22447 case DW_TAG_union_type:
22448 case DW_TAG_module:
22449 parent_type = read_type_die (parent, cu);
22450 if (TYPE_NAME (parent_type) != NULL)
22451 return TYPE_NAME (parent_type);
22453 /* An anonymous structure is only allowed non-static data
22454 members; no typedefs, no member functions, et cetera.
22455 So it does not need a prefix. */
22457 case DW_TAG_compile_unit:
22458 case DW_TAG_partial_unit:
22459 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22460 if (cu->language == language_cplus
22461 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22462 && die->child != NULL
22463 && (die->tag == DW_TAG_class_type
22464 || die->tag == DW_TAG_structure_type
22465 || die->tag == DW_TAG_union_type))
22467 char *name = guess_full_die_structure_name (die, cu);
22472 case DW_TAG_enumeration_type:
22473 parent_type = read_type_die (parent, cu);
22474 if (TYPE_DECLARED_CLASS (parent_type))
22476 if (TYPE_NAME (parent_type) != NULL)
22477 return TYPE_NAME (parent_type);
22480 /* Fall through. */
22482 return determine_prefix (parent, cu);
22486 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22487 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22488 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22489 an obconcat, otherwise allocate storage for the result. The CU argument is
22490 used to determine the language and hence, the appropriate separator. */
22492 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22495 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22496 int physname, struct dwarf2_cu *cu)
22498 const char *lead = "";
22501 if (suffix == NULL || suffix[0] == '\0'
22502 || prefix == NULL || prefix[0] == '\0')
22504 else if (cu->language == language_d)
22506 /* For D, the 'main' function could be defined in any module, but it
22507 should never be prefixed. */
22508 if (strcmp (suffix, "D main") == 0)
22516 else if (cu->language == language_fortran && physname)
22518 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22519 DW_AT_MIPS_linkage_name is preferred and used instead. */
22527 if (prefix == NULL)
22529 if (suffix == NULL)
22536 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22538 strcpy (retval, lead);
22539 strcat (retval, prefix);
22540 strcat (retval, sep);
22541 strcat (retval, suffix);
22546 /* We have an obstack. */
22547 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22551 /* Return sibling of die, NULL if no sibling. */
22553 static struct die_info *
22554 sibling_die (struct die_info *die)
22556 return die->sibling;
22559 /* Get name of a die, return NULL if not found. */
22561 static const char *
22562 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22563 struct obstack *obstack)
22565 if (name && cu->language == language_cplus)
22567 std::string canon_name = cp_canonicalize_string (name);
22569 if (!canon_name.empty ())
22571 if (canon_name != name)
22572 name = (const char *) obstack_copy0 (obstack,
22573 canon_name.c_str (),
22574 canon_name.length ());
22581 /* Get name of a die, return NULL if not found.
22582 Anonymous namespaces are converted to their magic string. */
22584 static const char *
22585 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22587 struct attribute *attr;
22588 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22590 attr = dwarf2_attr (die, DW_AT_name, cu);
22591 if ((!attr || !DW_STRING (attr))
22592 && die->tag != DW_TAG_namespace
22593 && die->tag != DW_TAG_class_type
22594 && die->tag != DW_TAG_interface_type
22595 && die->tag != DW_TAG_structure_type
22596 && die->tag != DW_TAG_union_type)
22601 case DW_TAG_compile_unit:
22602 case DW_TAG_partial_unit:
22603 /* Compilation units have a DW_AT_name that is a filename, not
22604 a source language identifier. */
22605 case DW_TAG_enumeration_type:
22606 case DW_TAG_enumerator:
22607 /* These tags always have simple identifiers already; no need
22608 to canonicalize them. */
22609 return DW_STRING (attr);
22611 case DW_TAG_namespace:
22612 if (attr != NULL && DW_STRING (attr) != NULL)
22613 return DW_STRING (attr);
22614 return CP_ANONYMOUS_NAMESPACE_STR;
22616 case DW_TAG_class_type:
22617 case DW_TAG_interface_type:
22618 case DW_TAG_structure_type:
22619 case DW_TAG_union_type:
22620 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22621 structures or unions. These were of the form "._%d" in GCC 4.1,
22622 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22623 and GCC 4.4. We work around this problem by ignoring these. */
22624 if (attr && DW_STRING (attr)
22625 && (startswith (DW_STRING (attr), "._")
22626 || startswith (DW_STRING (attr), "<anonymous")))
22629 /* GCC might emit a nameless typedef that has a linkage name. See
22630 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22631 if (!attr || DW_STRING (attr) == NULL)
22633 char *demangled = NULL;
22635 attr = dw2_linkage_name_attr (die, cu);
22636 if (attr == NULL || DW_STRING (attr) == NULL)
22639 /* Avoid demangling DW_STRING (attr) the second time on a second
22640 call for the same DIE. */
22641 if (!DW_STRING_IS_CANONICAL (attr))
22642 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22648 /* FIXME: we already did this for the partial symbol... */
22651 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22652 demangled, strlen (demangled)));
22653 DW_STRING_IS_CANONICAL (attr) = 1;
22656 /* Strip any leading namespaces/classes, keep only the base name.
22657 DW_AT_name for named DIEs does not contain the prefixes. */
22658 base = strrchr (DW_STRING (attr), ':');
22659 if (base && base > DW_STRING (attr) && base[-1] == ':')
22662 return DW_STRING (attr);
22671 if (!DW_STRING_IS_CANONICAL (attr))
22674 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22675 &objfile->per_bfd->storage_obstack);
22676 DW_STRING_IS_CANONICAL (attr) = 1;
22678 return DW_STRING (attr);
22681 /* Return the die that this die in an extension of, or NULL if there
22682 is none. *EXT_CU is the CU containing DIE on input, and the CU
22683 containing the return value on output. */
22685 static struct die_info *
22686 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22688 struct attribute *attr;
22690 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22694 return follow_die_ref (die, attr, ext_cu);
22697 /* Convert a DIE tag into its string name. */
22699 static const char *
22700 dwarf_tag_name (unsigned tag)
22702 const char *name = get_DW_TAG_name (tag);
22705 return "DW_TAG_<unknown>";
22710 /* Convert a DWARF attribute code into its string name. */
22712 static const char *
22713 dwarf_attr_name (unsigned attr)
22717 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22718 if (attr == DW_AT_MIPS_fde)
22719 return "DW_AT_MIPS_fde";
22721 if (attr == DW_AT_HP_block_index)
22722 return "DW_AT_HP_block_index";
22725 name = get_DW_AT_name (attr);
22728 return "DW_AT_<unknown>";
22733 /* Convert a DWARF value form code into its string name. */
22735 static const char *
22736 dwarf_form_name (unsigned form)
22738 const char *name = get_DW_FORM_name (form);
22741 return "DW_FORM_<unknown>";
22746 static const char *
22747 dwarf_bool_name (unsigned mybool)
22755 /* Convert a DWARF type code into its string name. */
22757 static const char *
22758 dwarf_type_encoding_name (unsigned enc)
22760 const char *name = get_DW_ATE_name (enc);
22763 return "DW_ATE_<unknown>";
22769 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22773 print_spaces (indent, f);
22774 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22775 dwarf_tag_name (die->tag), die->abbrev,
22776 sect_offset_str (die->sect_off));
22778 if (die->parent != NULL)
22780 print_spaces (indent, f);
22781 fprintf_unfiltered (f, " parent at offset: %s\n",
22782 sect_offset_str (die->parent->sect_off));
22785 print_spaces (indent, f);
22786 fprintf_unfiltered (f, " has children: %s\n",
22787 dwarf_bool_name (die->child != NULL));
22789 print_spaces (indent, f);
22790 fprintf_unfiltered (f, " attributes:\n");
22792 for (i = 0; i < die->num_attrs; ++i)
22794 print_spaces (indent, f);
22795 fprintf_unfiltered (f, " %s (%s) ",
22796 dwarf_attr_name (die->attrs[i].name),
22797 dwarf_form_name (die->attrs[i].form));
22799 switch (die->attrs[i].form)
22802 case DW_FORM_GNU_addr_index:
22803 fprintf_unfiltered (f, "address: ");
22804 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22806 case DW_FORM_block2:
22807 case DW_FORM_block4:
22808 case DW_FORM_block:
22809 case DW_FORM_block1:
22810 fprintf_unfiltered (f, "block: size %s",
22811 pulongest (DW_BLOCK (&die->attrs[i])->size));
22813 case DW_FORM_exprloc:
22814 fprintf_unfiltered (f, "expression: size %s",
22815 pulongest (DW_BLOCK (&die->attrs[i])->size));
22817 case DW_FORM_data16:
22818 fprintf_unfiltered (f, "constant of 16 bytes");
22820 case DW_FORM_ref_addr:
22821 fprintf_unfiltered (f, "ref address: ");
22822 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22824 case DW_FORM_GNU_ref_alt:
22825 fprintf_unfiltered (f, "alt ref address: ");
22826 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22832 case DW_FORM_ref_udata:
22833 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22834 (long) (DW_UNSND (&die->attrs[i])));
22836 case DW_FORM_data1:
22837 case DW_FORM_data2:
22838 case DW_FORM_data4:
22839 case DW_FORM_data8:
22840 case DW_FORM_udata:
22841 case DW_FORM_sdata:
22842 fprintf_unfiltered (f, "constant: %s",
22843 pulongest (DW_UNSND (&die->attrs[i])));
22845 case DW_FORM_sec_offset:
22846 fprintf_unfiltered (f, "section offset: %s",
22847 pulongest (DW_UNSND (&die->attrs[i])));
22849 case DW_FORM_ref_sig8:
22850 fprintf_unfiltered (f, "signature: %s",
22851 hex_string (DW_SIGNATURE (&die->attrs[i])));
22853 case DW_FORM_string:
22855 case DW_FORM_line_strp:
22856 case DW_FORM_GNU_str_index:
22857 case DW_FORM_GNU_strp_alt:
22858 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22859 DW_STRING (&die->attrs[i])
22860 ? DW_STRING (&die->attrs[i]) : "",
22861 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22864 if (DW_UNSND (&die->attrs[i]))
22865 fprintf_unfiltered (f, "flag: TRUE");
22867 fprintf_unfiltered (f, "flag: FALSE");
22869 case DW_FORM_flag_present:
22870 fprintf_unfiltered (f, "flag: TRUE");
22872 case DW_FORM_indirect:
22873 /* The reader will have reduced the indirect form to
22874 the "base form" so this form should not occur. */
22875 fprintf_unfiltered (f,
22876 "unexpected attribute form: DW_FORM_indirect");
22878 case DW_FORM_implicit_const:
22879 fprintf_unfiltered (f, "constant: %s",
22880 plongest (DW_SND (&die->attrs[i])));
22883 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22884 die->attrs[i].form);
22887 fprintf_unfiltered (f, "\n");
22892 dump_die_for_error (struct die_info *die)
22894 dump_die_shallow (gdb_stderr, 0, die);
22898 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22900 int indent = level * 4;
22902 gdb_assert (die != NULL);
22904 if (level >= max_level)
22907 dump_die_shallow (f, indent, die);
22909 if (die->child != NULL)
22911 print_spaces (indent, f);
22912 fprintf_unfiltered (f, " Children:");
22913 if (level + 1 < max_level)
22915 fprintf_unfiltered (f, "\n");
22916 dump_die_1 (f, level + 1, max_level, die->child);
22920 fprintf_unfiltered (f,
22921 " [not printed, max nesting level reached]\n");
22925 if (die->sibling != NULL && level > 0)
22927 dump_die_1 (f, level, max_level, die->sibling);
22931 /* This is called from the pdie macro in gdbinit.in.
22932 It's not static so gcc will keep a copy callable from gdb. */
22935 dump_die (struct die_info *die, int max_level)
22937 dump_die_1 (gdb_stdlog, 0, max_level, die);
22941 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22945 slot = htab_find_slot_with_hash (cu->die_hash, die,
22946 to_underlying (die->sect_off),
22952 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22956 dwarf2_get_ref_die_offset (const struct attribute *attr)
22958 if (attr_form_is_ref (attr))
22959 return (sect_offset) DW_UNSND (attr);
22961 complaint (_("unsupported die ref attribute form: '%s'"),
22962 dwarf_form_name (attr->form));
22966 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22967 * the value held by the attribute is not constant. */
22970 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22972 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22973 return DW_SND (attr);
22974 else if (attr->form == DW_FORM_udata
22975 || attr->form == DW_FORM_data1
22976 || attr->form == DW_FORM_data2
22977 || attr->form == DW_FORM_data4
22978 || attr->form == DW_FORM_data8)
22979 return DW_UNSND (attr);
22982 /* For DW_FORM_data16 see attr_form_is_constant. */
22983 complaint (_("Attribute value is not a constant (%s)"),
22984 dwarf_form_name (attr->form));
22985 return default_value;
22989 /* Follow reference or signature attribute ATTR of SRC_DIE.
22990 On entry *REF_CU is the CU of SRC_DIE.
22991 On exit *REF_CU is the CU of the result. */
22993 static struct die_info *
22994 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22995 struct dwarf2_cu **ref_cu)
22997 struct die_info *die;
22999 if (attr_form_is_ref (attr))
23000 die = follow_die_ref (src_die, attr, ref_cu);
23001 else if (attr->form == DW_FORM_ref_sig8)
23002 die = follow_die_sig (src_die, attr, ref_cu);
23005 dump_die_for_error (src_die);
23006 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23007 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23013 /* Follow reference OFFSET.
23014 On entry *REF_CU is the CU of the source die referencing OFFSET.
23015 On exit *REF_CU is the CU of the result.
23016 Returns NULL if OFFSET is invalid. */
23018 static struct die_info *
23019 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23020 struct dwarf2_cu **ref_cu)
23022 struct die_info temp_die;
23023 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23024 struct dwarf2_per_objfile *dwarf2_per_objfile
23025 = cu->per_cu->dwarf2_per_objfile;
23027 gdb_assert (cu->per_cu != NULL);
23031 if (cu->per_cu->is_debug_types)
23033 /* .debug_types CUs cannot reference anything outside their CU.
23034 If they need to, they have to reference a signatured type via
23035 DW_FORM_ref_sig8. */
23036 if (!offset_in_cu_p (&cu->header, sect_off))
23039 else if (offset_in_dwz != cu->per_cu->is_dwz
23040 || !offset_in_cu_p (&cu->header, sect_off))
23042 struct dwarf2_per_cu_data *per_cu;
23044 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23045 dwarf2_per_objfile);
23047 /* If necessary, add it to the queue and load its DIEs. */
23048 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23049 load_full_comp_unit (per_cu, false, cu->language);
23051 target_cu = per_cu->cu;
23053 else if (cu->dies == NULL)
23055 /* We're loading full DIEs during partial symbol reading. */
23056 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23057 load_full_comp_unit (cu->per_cu, false, language_minimal);
23060 *ref_cu = target_cu;
23061 temp_die.sect_off = sect_off;
23063 if (target_cu != cu)
23064 target_cu->ancestor = cu;
23066 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23068 to_underlying (sect_off));
23071 /* Follow reference attribute ATTR of SRC_DIE.
23072 On entry *REF_CU is the CU of SRC_DIE.
23073 On exit *REF_CU is the CU of the result. */
23075 static struct die_info *
23076 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23077 struct dwarf2_cu **ref_cu)
23079 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23080 struct dwarf2_cu *cu = *ref_cu;
23081 struct die_info *die;
23083 die = follow_die_offset (sect_off,
23084 (attr->form == DW_FORM_GNU_ref_alt
23085 || cu->per_cu->is_dwz),
23088 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23089 "at %s [in module %s]"),
23090 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23091 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23096 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23097 Returned value is intended for DW_OP_call*. Returned
23098 dwarf2_locexpr_baton->data has lifetime of
23099 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23101 struct dwarf2_locexpr_baton
23102 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23103 struct dwarf2_per_cu_data *per_cu,
23104 CORE_ADDR (*get_frame_pc) (void *baton),
23105 void *baton, bool resolve_abstract_p)
23107 struct dwarf2_cu *cu;
23108 struct die_info *die;
23109 struct attribute *attr;
23110 struct dwarf2_locexpr_baton retval;
23111 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23112 struct objfile *objfile = dwarf2_per_objfile->objfile;
23114 if (per_cu->cu == NULL)
23115 load_cu (per_cu, false);
23119 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23120 Instead just throw an error, not much else we can do. */
23121 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23122 sect_offset_str (sect_off), objfile_name (objfile));
23125 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23127 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23128 sect_offset_str (sect_off), objfile_name (objfile));
23130 attr = dwarf2_attr (die, DW_AT_location, cu);
23131 if (!attr && resolve_abstract_p
23132 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23133 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23135 CORE_ADDR pc = (*get_frame_pc) (baton);
23137 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23140 || cand->parent->tag != DW_TAG_subprogram)
23143 CORE_ADDR pc_low, pc_high;
23144 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23145 if (pc_low == ((CORE_ADDR) -1)
23146 || !(pc_low <= pc && pc < pc_high))
23150 attr = dwarf2_attr (die, DW_AT_location, cu);
23157 /* DWARF: "If there is no such attribute, then there is no effect.".
23158 DATA is ignored if SIZE is 0. */
23160 retval.data = NULL;
23163 else if (attr_form_is_section_offset (attr))
23165 struct dwarf2_loclist_baton loclist_baton;
23166 CORE_ADDR pc = (*get_frame_pc) (baton);
23169 fill_in_loclist_baton (cu, &loclist_baton, attr);
23171 retval.data = dwarf2_find_location_expression (&loclist_baton,
23173 retval.size = size;
23177 if (!attr_form_is_block (attr))
23178 error (_("Dwarf Error: DIE at %s referenced in module %s "
23179 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23180 sect_offset_str (sect_off), objfile_name (objfile));
23182 retval.data = DW_BLOCK (attr)->data;
23183 retval.size = DW_BLOCK (attr)->size;
23185 retval.per_cu = cu->per_cu;
23187 age_cached_comp_units (dwarf2_per_objfile);
23192 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23195 struct dwarf2_locexpr_baton
23196 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23197 struct dwarf2_per_cu_data *per_cu,
23198 CORE_ADDR (*get_frame_pc) (void *baton),
23201 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23203 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23206 /* Write a constant of a given type as target-ordered bytes into
23209 static const gdb_byte *
23210 write_constant_as_bytes (struct obstack *obstack,
23211 enum bfd_endian byte_order,
23218 *len = TYPE_LENGTH (type);
23219 result = (gdb_byte *) obstack_alloc (obstack, *len);
23220 store_unsigned_integer (result, *len, byte_order, value);
23225 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23226 pointer to the constant bytes and set LEN to the length of the
23227 data. If memory is needed, allocate it on OBSTACK. If the DIE
23228 does not have a DW_AT_const_value, return NULL. */
23231 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23232 struct dwarf2_per_cu_data *per_cu,
23233 struct obstack *obstack,
23236 struct dwarf2_cu *cu;
23237 struct die_info *die;
23238 struct attribute *attr;
23239 const gdb_byte *result = NULL;
23242 enum bfd_endian byte_order;
23243 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23245 if (per_cu->cu == NULL)
23246 load_cu (per_cu, false);
23250 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23251 Instead just throw an error, not much else we can do. */
23252 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23253 sect_offset_str (sect_off), objfile_name (objfile));
23256 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23258 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23259 sect_offset_str (sect_off), objfile_name (objfile));
23261 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23265 byte_order = (bfd_big_endian (objfile->obfd)
23266 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23268 switch (attr->form)
23271 case DW_FORM_GNU_addr_index:
23275 *len = cu->header.addr_size;
23276 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23277 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23281 case DW_FORM_string:
23283 case DW_FORM_GNU_str_index:
23284 case DW_FORM_GNU_strp_alt:
23285 /* DW_STRING is already allocated on the objfile obstack, point
23287 result = (const gdb_byte *) DW_STRING (attr);
23288 *len = strlen (DW_STRING (attr));
23290 case DW_FORM_block1:
23291 case DW_FORM_block2:
23292 case DW_FORM_block4:
23293 case DW_FORM_block:
23294 case DW_FORM_exprloc:
23295 case DW_FORM_data16:
23296 result = DW_BLOCK (attr)->data;
23297 *len = DW_BLOCK (attr)->size;
23300 /* The DW_AT_const_value attributes are supposed to carry the
23301 symbol's value "represented as it would be on the target
23302 architecture." By the time we get here, it's already been
23303 converted to host endianness, so we just need to sign- or
23304 zero-extend it as appropriate. */
23305 case DW_FORM_data1:
23306 type = die_type (die, cu);
23307 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23308 if (result == NULL)
23309 result = write_constant_as_bytes (obstack, byte_order,
23312 case DW_FORM_data2:
23313 type = die_type (die, cu);
23314 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23315 if (result == NULL)
23316 result = write_constant_as_bytes (obstack, byte_order,
23319 case DW_FORM_data4:
23320 type = die_type (die, cu);
23321 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23322 if (result == NULL)
23323 result = write_constant_as_bytes (obstack, byte_order,
23326 case DW_FORM_data8:
23327 type = die_type (die, cu);
23328 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23329 if (result == NULL)
23330 result = write_constant_as_bytes (obstack, byte_order,
23334 case DW_FORM_sdata:
23335 case DW_FORM_implicit_const:
23336 type = die_type (die, cu);
23337 result = write_constant_as_bytes (obstack, byte_order,
23338 type, DW_SND (attr), len);
23341 case DW_FORM_udata:
23342 type = die_type (die, cu);
23343 result = write_constant_as_bytes (obstack, byte_order,
23344 type, DW_UNSND (attr), len);
23348 complaint (_("unsupported const value attribute form: '%s'"),
23349 dwarf_form_name (attr->form));
23356 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23357 valid type for this die is found. */
23360 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23361 struct dwarf2_per_cu_data *per_cu)
23363 struct dwarf2_cu *cu;
23364 struct die_info *die;
23366 if (per_cu->cu == NULL)
23367 load_cu (per_cu, false);
23372 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23376 return die_type (die, cu);
23379 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23383 dwarf2_get_die_type (cu_offset die_offset,
23384 struct dwarf2_per_cu_data *per_cu)
23386 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23387 return get_die_type_at_offset (die_offset_sect, per_cu);
23390 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23391 On entry *REF_CU is the CU of SRC_DIE.
23392 On exit *REF_CU is the CU of the result.
23393 Returns NULL if the referenced DIE isn't found. */
23395 static struct die_info *
23396 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23397 struct dwarf2_cu **ref_cu)
23399 struct die_info temp_die;
23400 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23401 struct die_info *die;
23403 /* While it might be nice to assert sig_type->type == NULL here,
23404 we can get here for DW_AT_imported_declaration where we need
23405 the DIE not the type. */
23407 /* If necessary, add it to the queue and load its DIEs. */
23409 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23410 read_signatured_type (sig_type);
23412 sig_cu = sig_type->per_cu.cu;
23413 gdb_assert (sig_cu != NULL);
23414 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23415 temp_die.sect_off = sig_type->type_offset_in_section;
23416 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23417 to_underlying (temp_die.sect_off));
23420 struct dwarf2_per_objfile *dwarf2_per_objfile
23421 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23423 /* For .gdb_index version 7 keep track of included TUs.
23424 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23425 if (dwarf2_per_objfile->index_table != NULL
23426 && dwarf2_per_objfile->index_table->version <= 7)
23428 VEC_safe_push (dwarf2_per_cu_ptr,
23429 (*ref_cu)->per_cu->imported_symtabs,
23435 sig_cu->ancestor = cu;
23443 /* Follow signatured type referenced by ATTR in SRC_DIE.
23444 On entry *REF_CU is the CU of SRC_DIE.
23445 On exit *REF_CU is the CU of the result.
23446 The result is the DIE of the type.
23447 If the referenced type cannot be found an error is thrown. */
23449 static struct die_info *
23450 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23451 struct dwarf2_cu **ref_cu)
23453 ULONGEST signature = DW_SIGNATURE (attr);
23454 struct signatured_type *sig_type;
23455 struct die_info *die;
23457 gdb_assert (attr->form == DW_FORM_ref_sig8);
23459 sig_type = lookup_signatured_type (*ref_cu, signature);
23460 /* sig_type will be NULL if the signatured type is missing from
23462 if (sig_type == NULL)
23464 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23465 " from DIE at %s [in module %s]"),
23466 hex_string (signature), sect_offset_str (src_die->sect_off),
23467 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23470 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23473 dump_die_for_error (src_die);
23474 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23475 " from DIE at %s [in module %s]"),
23476 hex_string (signature), sect_offset_str (src_die->sect_off),
23477 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23483 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23484 reading in and processing the type unit if necessary. */
23486 static struct type *
23487 get_signatured_type (struct die_info *die, ULONGEST signature,
23488 struct dwarf2_cu *cu)
23490 struct dwarf2_per_objfile *dwarf2_per_objfile
23491 = cu->per_cu->dwarf2_per_objfile;
23492 struct signatured_type *sig_type;
23493 struct dwarf2_cu *type_cu;
23494 struct die_info *type_die;
23497 sig_type = lookup_signatured_type (cu, signature);
23498 /* sig_type will be NULL if the signatured type is missing from
23500 if (sig_type == NULL)
23502 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23503 " from DIE at %s [in module %s]"),
23504 hex_string (signature), sect_offset_str (die->sect_off),
23505 objfile_name (dwarf2_per_objfile->objfile));
23506 return build_error_marker_type (cu, die);
23509 /* If we already know the type we're done. */
23510 if (sig_type->type != NULL)
23511 return sig_type->type;
23514 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23515 if (type_die != NULL)
23517 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23518 is created. This is important, for example, because for c++ classes
23519 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23520 type = read_type_die (type_die, type_cu);
23523 complaint (_("Dwarf Error: Cannot build signatured type %s"
23524 " referenced from DIE at %s [in module %s]"),
23525 hex_string (signature), sect_offset_str (die->sect_off),
23526 objfile_name (dwarf2_per_objfile->objfile));
23527 type = build_error_marker_type (cu, die);
23532 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23533 " from DIE at %s [in module %s]"),
23534 hex_string (signature), sect_offset_str (die->sect_off),
23535 objfile_name (dwarf2_per_objfile->objfile));
23536 type = build_error_marker_type (cu, die);
23538 sig_type->type = type;
23543 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23544 reading in and processing the type unit if necessary. */
23546 static struct type *
23547 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23548 struct dwarf2_cu *cu) /* ARI: editCase function */
23550 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23551 if (attr_form_is_ref (attr))
23553 struct dwarf2_cu *type_cu = cu;
23554 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23556 return read_type_die (type_die, type_cu);
23558 else if (attr->form == DW_FORM_ref_sig8)
23560 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23564 struct dwarf2_per_objfile *dwarf2_per_objfile
23565 = cu->per_cu->dwarf2_per_objfile;
23567 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23568 " at %s [in module %s]"),
23569 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23570 objfile_name (dwarf2_per_objfile->objfile));
23571 return build_error_marker_type (cu, die);
23575 /* Load the DIEs associated with type unit PER_CU into memory. */
23578 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23580 struct signatured_type *sig_type;
23582 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23583 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23585 /* We have the per_cu, but we need the signatured_type.
23586 Fortunately this is an easy translation. */
23587 gdb_assert (per_cu->is_debug_types);
23588 sig_type = (struct signatured_type *) per_cu;
23590 gdb_assert (per_cu->cu == NULL);
23592 read_signatured_type (sig_type);
23594 gdb_assert (per_cu->cu != NULL);
23597 /* die_reader_func for read_signatured_type.
23598 This is identical to load_full_comp_unit_reader,
23599 but is kept separate for now. */
23602 read_signatured_type_reader (const struct die_reader_specs *reader,
23603 const gdb_byte *info_ptr,
23604 struct die_info *comp_unit_die,
23608 struct dwarf2_cu *cu = reader->cu;
23610 gdb_assert (cu->die_hash == NULL);
23612 htab_create_alloc_ex (cu->header.length / 12,
23616 &cu->comp_unit_obstack,
23617 hashtab_obstack_allocate,
23618 dummy_obstack_deallocate);
23621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23622 &info_ptr, comp_unit_die);
23623 cu->dies = comp_unit_die;
23624 /* comp_unit_die is not stored in die_hash, no need. */
23626 /* We try not to read any attributes in this function, because not
23627 all CUs needed for references have been loaded yet, and symbol
23628 table processing isn't initialized. But we have to set the CU language,
23629 or we won't be able to build types correctly.
23630 Similarly, if we do not read the producer, we can not apply
23631 producer-specific interpretation. */
23632 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23635 /* Read in a signatured type and build its CU and DIEs.
23636 If the type is a stub for the real type in a DWO file,
23637 read in the real type from the DWO file as well. */
23640 read_signatured_type (struct signatured_type *sig_type)
23642 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23644 gdb_assert (per_cu->is_debug_types);
23645 gdb_assert (per_cu->cu == NULL);
23647 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23648 read_signatured_type_reader, NULL);
23649 sig_type->per_cu.tu_read = 1;
23652 /* Decode simple location descriptions.
23653 Given a pointer to a dwarf block that defines a location, compute
23654 the location and return the value.
23656 NOTE drow/2003-11-18: This function is called in two situations
23657 now: for the address of static or global variables (partial symbols
23658 only) and for offsets into structures which are expected to be
23659 (more or less) constant. The partial symbol case should go away,
23660 and only the constant case should remain. That will let this
23661 function complain more accurately. A few special modes are allowed
23662 without complaint for global variables (for instance, global
23663 register values and thread-local values).
23665 A location description containing no operations indicates that the
23666 object is optimized out. The return value is 0 for that case.
23667 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23668 callers will only want a very basic result and this can become a
23671 Note that stack[0] is unused except as a default error return. */
23674 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23676 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23678 size_t size = blk->size;
23679 const gdb_byte *data = blk->data;
23680 CORE_ADDR stack[64];
23682 unsigned int bytes_read, unsnd;
23688 stack[++stacki] = 0;
23727 stack[++stacki] = op - DW_OP_lit0;
23762 stack[++stacki] = op - DW_OP_reg0;
23764 dwarf2_complex_location_expr_complaint ();
23768 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23770 stack[++stacki] = unsnd;
23772 dwarf2_complex_location_expr_complaint ();
23776 stack[++stacki] = read_address (objfile->obfd, &data[i],
23781 case DW_OP_const1u:
23782 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23786 case DW_OP_const1s:
23787 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23791 case DW_OP_const2u:
23792 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23796 case DW_OP_const2s:
23797 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23801 case DW_OP_const4u:
23802 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23806 case DW_OP_const4s:
23807 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23811 case DW_OP_const8u:
23812 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23817 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23823 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23828 stack[stacki + 1] = stack[stacki];
23833 stack[stacki - 1] += stack[stacki];
23837 case DW_OP_plus_uconst:
23838 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23844 stack[stacki - 1] -= stack[stacki];
23849 /* If we're not the last op, then we definitely can't encode
23850 this using GDB's address_class enum. This is valid for partial
23851 global symbols, although the variable's address will be bogus
23854 dwarf2_complex_location_expr_complaint ();
23857 case DW_OP_GNU_push_tls_address:
23858 case DW_OP_form_tls_address:
23859 /* The top of the stack has the offset from the beginning
23860 of the thread control block at which the variable is located. */
23861 /* Nothing should follow this operator, so the top of stack would
23863 /* This is valid for partial global symbols, but the variable's
23864 address will be bogus in the psymtab. Make it always at least
23865 non-zero to not look as a variable garbage collected by linker
23866 which have DW_OP_addr 0. */
23868 dwarf2_complex_location_expr_complaint ();
23872 case DW_OP_GNU_uninit:
23875 case DW_OP_GNU_addr_index:
23876 case DW_OP_GNU_const_index:
23877 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23884 const char *name = get_DW_OP_name (op);
23887 complaint (_("unsupported stack op: '%s'"),
23890 complaint (_("unsupported stack op: '%02x'"),
23894 return (stack[stacki]);
23897 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23898 outside of the allocated space. Also enforce minimum>0. */
23899 if (stacki >= ARRAY_SIZE (stack) - 1)
23901 complaint (_("location description stack overflow"));
23907 complaint (_("location description stack underflow"));
23911 return (stack[stacki]);
23914 /* memory allocation interface */
23916 static struct dwarf_block *
23917 dwarf_alloc_block (struct dwarf2_cu *cu)
23919 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23922 static struct die_info *
23923 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23925 struct die_info *die;
23926 size_t size = sizeof (struct die_info);
23929 size += (num_attrs - 1) * sizeof (struct attribute);
23931 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23932 memset (die, 0, sizeof (struct die_info));
23937 /* Macro support. */
23939 /* Return file name relative to the compilation directory of file number I in
23940 *LH's file name table. The result is allocated using xmalloc; the caller is
23941 responsible for freeing it. */
23944 file_file_name (int file, struct line_header *lh)
23946 /* Is the file number a valid index into the line header's file name
23947 table? Remember that file numbers start with one, not zero. */
23948 if (1 <= file && file <= lh->file_names.size ())
23950 const file_entry &fe = lh->file_names[file - 1];
23952 if (!IS_ABSOLUTE_PATH (fe.name))
23954 const char *dir = fe.include_dir (lh);
23956 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23958 return xstrdup (fe.name);
23962 /* The compiler produced a bogus file number. We can at least
23963 record the macro definitions made in the file, even if we
23964 won't be able to find the file by name. */
23965 char fake_name[80];
23967 xsnprintf (fake_name, sizeof (fake_name),
23968 "<bad macro file number %d>", file);
23970 complaint (_("bad file number in macro information (%d)"),
23973 return xstrdup (fake_name);
23977 /* Return the full name of file number I in *LH's file name table.
23978 Use COMP_DIR as the name of the current directory of the
23979 compilation. The result is allocated using xmalloc; the caller is
23980 responsible for freeing it. */
23982 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23984 /* Is the file number a valid index into the line header's file name
23985 table? Remember that file numbers start with one, not zero. */
23986 if (1 <= file && file <= lh->file_names.size ())
23988 char *relative = file_file_name (file, lh);
23990 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23992 return reconcat (relative, comp_dir, SLASH_STRING,
23993 relative, (char *) NULL);
23996 return file_file_name (file, lh);
24000 static struct macro_source_file *
24001 macro_start_file (struct dwarf2_cu *cu,
24002 int file, int line,
24003 struct macro_source_file *current_file,
24004 struct line_header *lh)
24006 /* File name relative to the compilation directory of this source file. */
24007 char *file_name = file_file_name (file, lh);
24009 if (! current_file)
24011 /* Note: We don't create a macro table for this compilation unit
24012 at all until we actually get a filename. */
24013 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24015 /* If we have no current file, then this must be the start_file
24016 directive for the compilation unit's main source file. */
24017 current_file = macro_set_main (macro_table, file_name);
24018 macro_define_special (macro_table);
24021 current_file = macro_include (current_file, line, file_name);
24025 return current_file;
24028 static const char *
24029 consume_improper_spaces (const char *p, const char *body)
24033 complaint (_("macro definition contains spaces "
24034 "in formal argument list:\n`%s'"),
24046 parse_macro_definition (struct macro_source_file *file, int line,
24051 /* The body string takes one of two forms. For object-like macro
24052 definitions, it should be:
24054 <macro name> " " <definition>
24056 For function-like macro definitions, it should be:
24058 <macro name> "() " <definition>
24060 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24062 Spaces may appear only where explicitly indicated, and in the
24065 The Dwarf 2 spec says that an object-like macro's name is always
24066 followed by a space, but versions of GCC around March 2002 omit
24067 the space when the macro's definition is the empty string.
24069 The Dwarf 2 spec says that there should be no spaces between the
24070 formal arguments in a function-like macro's formal argument list,
24071 but versions of GCC around March 2002 include spaces after the
24075 /* Find the extent of the macro name. The macro name is terminated
24076 by either a space or null character (for an object-like macro) or
24077 an opening paren (for a function-like macro). */
24078 for (p = body; *p; p++)
24079 if (*p == ' ' || *p == '(')
24082 if (*p == ' ' || *p == '\0')
24084 /* It's an object-like macro. */
24085 int name_len = p - body;
24086 char *name = savestring (body, name_len);
24087 const char *replacement;
24090 replacement = body + name_len + 1;
24093 dwarf2_macro_malformed_definition_complaint (body);
24094 replacement = body + name_len;
24097 macro_define_object (file, line, name, replacement);
24101 else if (*p == '(')
24103 /* It's a function-like macro. */
24104 char *name = savestring (body, p - body);
24107 char **argv = XNEWVEC (char *, argv_size);
24111 p = consume_improper_spaces (p, body);
24113 /* Parse the formal argument list. */
24114 while (*p && *p != ')')
24116 /* Find the extent of the current argument name. */
24117 const char *arg_start = p;
24119 while (*p && *p != ',' && *p != ')' && *p != ' ')
24122 if (! *p || p == arg_start)
24123 dwarf2_macro_malformed_definition_complaint (body);
24126 /* Make sure argv has room for the new argument. */
24127 if (argc >= argv_size)
24130 argv = XRESIZEVEC (char *, argv, argv_size);
24133 argv[argc++] = savestring (arg_start, p - arg_start);
24136 p = consume_improper_spaces (p, body);
24138 /* Consume the comma, if present. */
24143 p = consume_improper_spaces (p, body);
24152 /* Perfectly formed definition, no complaints. */
24153 macro_define_function (file, line, name,
24154 argc, (const char **) argv,
24156 else if (*p == '\0')
24158 /* Complain, but do define it. */
24159 dwarf2_macro_malformed_definition_complaint (body);
24160 macro_define_function (file, line, name,
24161 argc, (const char **) argv,
24165 /* Just complain. */
24166 dwarf2_macro_malformed_definition_complaint (body);
24169 /* Just complain. */
24170 dwarf2_macro_malformed_definition_complaint (body);
24176 for (i = 0; i < argc; i++)
24182 dwarf2_macro_malformed_definition_complaint (body);
24185 /* Skip some bytes from BYTES according to the form given in FORM.
24186 Returns the new pointer. */
24188 static const gdb_byte *
24189 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24190 enum dwarf_form form,
24191 unsigned int offset_size,
24192 struct dwarf2_section_info *section)
24194 unsigned int bytes_read;
24198 case DW_FORM_data1:
24203 case DW_FORM_data2:
24207 case DW_FORM_data4:
24211 case DW_FORM_data8:
24215 case DW_FORM_data16:
24219 case DW_FORM_string:
24220 read_direct_string (abfd, bytes, &bytes_read);
24221 bytes += bytes_read;
24224 case DW_FORM_sec_offset:
24226 case DW_FORM_GNU_strp_alt:
24227 bytes += offset_size;
24230 case DW_FORM_block:
24231 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24232 bytes += bytes_read;
24235 case DW_FORM_block1:
24236 bytes += 1 + read_1_byte (abfd, bytes);
24238 case DW_FORM_block2:
24239 bytes += 2 + read_2_bytes (abfd, bytes);
24241 case DW_FORM_block4:
24242 bytes += 4 + read_4_bytes (abfd, bytes);
24245 case DW_FORM_sdata:
24246 case DW_FORM_udata:
24247 case DW_FORM_GNU_addr_index:
24248 case DW_FORM_GNU_str_index:
24249 bytes = gdb_skip_leb128 (bytes, buffer_end);
24252 dwarf2_section_buffer_overflow_complaint (section);
24257 case DW_FORM_implicit_const:
24262 complaint (_("invalid form 0x%x in `%s'"),
24263 form, get_section_name (section));
24271 /* A helper for dwarf_decode_macros that handles skipping an unknown
24272 opcode. Returns an updated pointer to the macro data buffer; or,
24273 on error, issues a complaint and returns NULL. */
24275 static const gdb_byte *
24276 skip_unknown_opcode (unsigned int opcode,
24277 const gdb_byte **opcode_definitions,
24278 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24280 unsigned int offset_size,
24281 struct dwarf2_section_info *section)
24283 unsigned int bytes_read, i;
24285 const gdb_byte *defn;
24287 if (opcode_definitions[opcode] == NULL)
24289 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24294 defn = opcode_definitions[opcode];
24295 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24296 defn += bytes_read;
24298 for (i = 0; i < arg; ++i)
24300 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24301 (enum dwarf_form) defn[i], offset_size,
24303 if (mac_ptr == NULL)
24305 /* skip_form_bytes already issued the complaint. */
24313 /* A helper function which parses the header of a macro section.
24314 If the macro section is the extended (for now called "GNU") type,
24315 then this updates *OFFSET_SIZE. Returns a pointer to just after
24316 the header, or issues a complaint and returns NULL on error. */
24318 static const gdb_byte *
24319 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24321 const gdb_byte *mac_ptr,
24322 unsigned int *offset_size,
24323 int section_is_gnu)
24325 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24327 if (section_is_gnu)
24329 unsigned int version, flags;
24331 version = read_2_bytes (abfd, mac_ptr);
24332 if (version != 4 && version != 5)
24334 complaint (_("unrecognized version `%d' in .debug_macro section"),
24340 flags = read_1_byte (abfd, mac_ptr);
24342 *offset_size = (flags & 1) ? 8 : 4;
24344 if ((flags & 2) != 0)
24345 /* We don't need the line table offset. */
24346 mac_ptr += *offset_size;
24348 /* Vendor opcode descriptions. */
24349 if ((flags & 4) != 0)
24351 unsigned int i, count;
24353 count = read_1_byte (abfd, mac_ptr);
24355 for (i = 0; i < count; ++i)
24357 unsigned int opcode, bytes_read;
24360 opcode = read_1_byte (abfd, mac_ptr);
24362 opcode_definitions[opcode] = mac_ptr;
24363 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24364 mac_ptr += bytes_read;
24373 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24374 including DW_MACRO_import. */
24377 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24379 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24380 struct macro_source_file *current_file,
24381 struct line_header *lh,
24382 struct dwarf2_section_info *section,
24383 int section_is_gnu, int section_is_dwz,
24384 unsigned int offset_size,
24385 htab_t include_hash)
24387 struct dwarf2_per_objfile *dwarf2_per_objfile
24388 = cu->per_cu->dwarf2_per_objfile;
24389 struct objfile *objfile = dwarf2_per_objfile->objfile;
24390 enum dwarf_macro_record_type macinfo_type;
24391 int at_commandline;
24392 const gdb_byte *opcode_definitions[256];
24394 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24395 &offset_size, section_is_gnu);
24396 if (mac_ptr == NULL)
24398 /* We already issued a complaint. */
24402 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24403 GDB is still reading the definitions from command line. First
24404 DW_MACINFO_start_file will need to be ignored as it was already executed
24405 to create CURRENT_FILE for the main source holding also the command line
24406 definitions. On first met DW_MACINFO_start_file this flag is reset to
24407 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24409 at_commandline = 1;
24413 /* Do we at least have room for a macinfo type byte? */
24414 if (mac_ptr >= mac_end)
24416 dwarf2_section_buffer_overflow_complaint (section);
24420 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24423 /* Note that we rely on the fact that the corresponding GNU and
24424 DWARF constants are the same. */
24426 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24427 switch (macinfo_type)
24429 /* A zero macinfo type indicates the end of the macro
24434 case DW_MACRO_define:
24435 case DW_MACRO_undef:
24436 case DW_MACRO_define_strp:
24437 case DW_MACRO_undef_strp:
24438 case DW_MACRO_define_sup:
24439 case DW_MACRO_undef_sup:
24441 unsigned int bytes_read;
24446 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24447 mac_ptr += bytes_read;
24449 if (macinfo_type == DW_MACRO_define
24450 || macinfo_type == DW_MACRO_undef)
24452 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24453 mac_ptr += bytes_read;
24457 LONGEST str_offset;
24459 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24460 mac_ptr += offset_size;
24462 if (macinfo_type == DW_MACRO_define_sup
24463 || macinfo_type == DW_MACRO_undef_sup
24466 struct dwz_file *dwz
24467 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24469 body = read_indirect_string_from_dwz (objfile,
24473 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24477 is_define = (macinfo_type == DW_MACRO_define
24478 || macinfo_type == DW_MACRO_define_strp
24479 || macinfo_type == DW_MACRO_define_sup);
24480 if (! current_file)
24482 /* DWARF violation as no main source is present. */
24483 complaint (_("debug info with no main source gives macro %s "
24485 is_define ? _("definition") : _("undefinition"),
24489 if ((line == 0 && !at_commandline)
24490 || (line != 0 && at_commandline))
24491 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24492 at_commandline ? _("command-line") : _("in-file"),
24493 is_define ? _("definition") : _("undefinition"),
24494 line == 0 ? _("zero") : _("non-zero"), line, body);
24497 parse_macro_definition (current_file, line, body);
24500 gdb_assert (macinfo_type == DW_MACRO_undef
24501 || macinfo_type == DW_MACRO_undef_strp
24502 || macinfo_type == DW_MACRO_undef_sup);
24503 macro_undef (current_file, line, body);
24508 case DW_MACRO_start_file:
24510 unsigned int bytes_read;
24513 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24514 mac_ptr += bytes_read;
24515 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24516 mac_ptr += bytes_read;
24518 if ((line == 0 && !at_commandline)
24519 || (line != 0 && at_commandline))
24520 complaint (_("debug info gives source %d included "
24521 "from %s at %s line %d"),
24522 file, at_commandline ? _("command-line") : _("file"),
24523 line == 0 ? _("zero") : _("non-zero"), line);
24525 if (at_commandline)
24527 /* This DW_MACRO_start_file was executed in the
24529 at_commandline = 0;
24532 current_file = macro_start_file (cu, file, line, current_file,
24537 case DW_MACRO_end_file:
24538 if (! current_file)
24539 complaint (_("macro debug info has an unmatched "
24540 "`close_file' directive"));
24543 current_file = current_file->included_by;
24544 if (! current_file)
24546 enum dwarf_macro_record_type next_type;
24548 /* GCC circa March 2002 doesn't produce the zero
24549 type byte marking the end of the compilation
24550 unit. Complain if it's not there, but exit no
24553 /* Do we at least have room for a macinfo type byte? */
24554 if (mac_ptr >= mac_end)
24556 dwarf2_section_buffer_overflow_complaint (section);
24560 /* We don't increment mac_ptr here, so this is just
24563 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24565 if (next_type != 0)
24566 complaint (_("no terminating 0-type entry for "
24567 "macros in `.debug_macinfo' section"));
24574 case DW_MACRO_import:
24575 case DW_MACRO_import_sup:
24579 bfd *include_bfd = abfd;
24580 struct dwarf2_section_info *include_section = section;
24581 const gdb_byte *include_mac_end = mac_end;
24582 int is_dwz = section_is_dwz;
24583 const gdb_byte *new_mac_ptr;
24585 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24586 mac_ptr += offset_size;
24588 if (macinfo_type == DW_MACRO_import_sup)
24590 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24592 dwarf2_read_section (objfile, &dwz->macro);
24594 include_section = &dwz->macro;
24595 include_bfd = get_section_bfd_owner (include_section);
24596 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24600 new_mac_ptr = include_section->buffer + offset;
24601 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24605 /* This has actually happened; see
24606 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24607 complaint (_("recursive DW_MACRO_import in "
24608 ".debug_macro section"));
24612 *slot = (void *) new_mac_ptr;
24614 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24615 include_mac_end, current_file, lh,
24616 section, section_is_gnu, is_dwz,
24617 offset_size, include_hash);
24619 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24624 case DW_MACINFO_vendor_ext:
24625 if (!section_is_gnu)
24627 unsigned int bytes_read;
24629 /* This reads the constant, but since we don't recognize
24630 any vendor extensions, we ignore it. */
24631 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24632 mac_ptr += bytes_read;
24633 read_direct_string (abfd, mac_ptr, &bytes_read);
24634 mac_ptr += bytes_read;
24636 /* We don't recognize any vendor extensions. */
24642 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24643 mac_ptr, mac_end, abfd, offset_size,
24645 if (mac_ptr == NULL)
24650 } while (macinfo_type != 0);
24654 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24655 int section_is_gnu)
24657 struct dwarf2_per_objfile *dwarf2_per_objfile
24658 = cu->per_cu->dwarf2_per_objfile;
24659 struct objfile *objfile = dwarf2_per_objfile->objfile;
24660 struct line_header *lh = cu->line_header;
24662 const gdb_byte *mac_ptr, *mac_end;
24663 struct macro_source_file *current_file = 0;
24664 enum dwarf_macro_record_type macinfo_type;
24665 unsigned int offset_size = cu->header.offset_size;
24666 const gdb_byte *opcode_definitions[256];
24668 struct dwarf2_section_info *section;
24669 const char *section_name;
24671 if (cu->dwo_unit != NULL)
24673 if (section_is_gnu)
24675 section = &cu->dwo_unit->dwo_file->sections.macro;
24676 section_name = ".debug_macro.dwo";
24680 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24681 section_name = ".debug_macinfo.dwo";
24686 if (section_is_gnu)
24688 section = &dwarf2_per_objfile->macro;
24689 section_name = ".debug_macro";
24693 section = &dwarf2_per_objfile->macinfo;
24694 section_name = ".debug_macinfo";
24698 dwarf2_read_section (objfile, section);
24699 if (section->buffer == NULL)
24701 complaint (_("missing %s section"), section_name);
24704 abfd = get_section_bfd_owner (section);
24706 /* First pass: Find the name of the base filename.
24707 This filename is needed in order to process all macros whose definition
24708 (or undefinition) comes from the command line. These macros are defined
24709 before the first DW_MACINFO_start_file entry, and yet still need to be
24710 associated to the base file.
24712 To determine the base file name, we scan the macro definitions until we
24713 reach the first DW_MACINFO_start_file entry. We then initialize
24714 CURRENT_FILE accordingly so that any macro definition found before the
24715 first DW_MACINFO_start_file can still be associated to the base file. */
24717 mac_ptr = section->buffer + offset;
24718 mac_end = section->buffer + section->size;
24720 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24721 &offset_size, section_is_gnu);
24722 if (mac_ptr == NULL)
24724 /* We already issued a complaint. */
24730 /* Do we at least have room for a macinfo type byte? */
24731 if (mac_ptr >= mac_end)
24733 /* Complaint is printed during the second pass as GDB will probably
24734 stop the first pass earlier upon finding
24735 DW_MACINFO_start_file. */
24739 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24742 /* Note that we rely on the fact that the corresponding GNU and
24743 DWARF constants are the same. */
24745 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24746 switch (macinfo_type)
24748 /* A zero macinfo type indicates the end of the macro
24753 case DW_MACRO_define:
24754 case DW_MACRO_undef:
24755 /* Only skip the data by MAC_PTR. */
24757 unsigned int bytes_read;
24759 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24760 mac_ptr += bytes_read;
24761 read_direct_string (abfd, mac_ptr, &bytes_read);
24762 mac_ptr += bytes_read;
24766 case DW_MACRO_start_file:
24768 unsigned int bytes_read;
24771 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24772 mac_ptr += bytes_read;
24773 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24774 mac_ptr += bytes_read;
24776 current_file = macro_start_file (cu, file, line, current_file, lh);
24780 case DW_MACRO_end_file:
24781 /* No data to skip by MAC_PTR. */
24784 case DW_MACRO_define_strp:
24785 case DW_MACRO_undef_strp:
24786 case DW_MACRO_define_sup:
24787 case DW_MACRO_undef_sup:
24789 unsigned int bytes_read;
24791 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24792 mac_ptr += bytes_read;
24793 mac_ptr += offset_size;
24797 case DW_MACRO_import:
24798 case DW_MACRO_import_sup:
24799 /* Note that, according to the spec, a transparent include
24800 chain cannot call DW_MACRO_start_file. So, we can just
24801 skip this opcode. */
24802 mac_ptr += offset_size;
24805 case DW_MACINFO_vendor_ext:
24806 /* Only skip the data by MAC_PTR. */
24807 if (!section_is_gnu)
24809 unsigned int bytes_read;
24811 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24812 mac_ptr += bytes_read;
24813 read_direct_string (abfd, mac_ptr, &bytes_read);
24814 mac_ptr += bytes_read;
24819 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24820 mac_ptr, mac_end, abfd, offset_size,
24822 if (mac_ptr == NULL)
24827 } while (macinfo_type != 0 && current_file == NULL);
24829 /* Second pass: Process all entries.
24831 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24832 command-line macro definitions/undefinitions. This flag is unset when we
24833 reach the first DW_MACINFO_start_file entry. */
24835 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24837 NULL, xcalloc, xfree));
24838 mac_ptr = section->buffer + offset;
24839 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24840 *slot = (void *) mac_ptr;
24841 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24842 current_file, lh, section,
24843 section_is_gnu, 0, offset_size,
24844 include_hash.get ());
24847 /* Check if the attribute's form is a DW_FORM_block*
24848 if so return true else false. */
24851 attr_form_is_block (const struct attribute *attr)
24853 return (attr == NULL ? 0 :
24854 attr->form == DW_FORM_block1
24855 || attr->form == DW_FORM_block2
24856 || attr->form == DW_FORM_block4
24857 || attr->form == DW_FORM_block
24858 || attr->form == DW_FORM_exprloc);
24861 /* Return non-zero if ATTR's value is a section offset --- classes
24862 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24863 You may use DW_UNSND (attr) to retrieve such offsets.
24865 Section 7.5.4, "Attribute Encodings", explains that no attribute
24866 may have a value that belongs to more than one of these classes; it
24867 would be ambiguous if we did, because we use the same forms for all
24871 attr_form_is_section_offset (const struct attribute *attr)
24873 return (attr->form == DW_FORM_data4
24874 || attr->form == DW_FORM_data8
24875 || attr->form == DW_FORM_sec_offset);
24878 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24879 zero otherwise. When this function returns true, you can apply
24880 dwarf2_get_attr_constant_value to it.
24882 However, note that for some attributes you must check
24883 attr_form_is_section_offset before using this test. DW_FORM_data4
24884 and DW_FORM_data8 are members of both the constant class, and of
24885 the classes that contain offsets into other debug sections
24886 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24887 that, if an attribute's can be either a constant or one of the
24888 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24889 taken as section offsets, not constants.
24891 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24892 cannot handle that. */
24895 attr_form_is_constant (const struct attribute *attr)
24897 switch (attr->form)
24899 case DW_FORM_sdata:
24900 case DW_FORM_udata:
24901 case DW_FORM_data1:
24902 case DW_FORM_data2:
24903 case DW_FORM_data4:
24904 case DW_FORM_data8:
24905 case DW_FORM_implicit_const:
24913 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24914 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24917 attr_form_is_ref (const struct attribute *attr)
24919 switch (attr->form)
24921 case DW_FORM_ref_addr:
24926 case DW_FORM_ref_udata:
24927 case DW_FORM_GNU_ref_alt:
24934 /* Return the .debug_loc section to use for CU.
24935 For DWO files use .debug_loc.dwo. */
24937 static struct dwarf2_section_info *
24938 cu_debug_loc_section (struct dwarf2_cu *cu)
24940 struct dwarf2_per_objfile *dwarf2_per_objfile
24941 = cu->per_cu->dwarf2_per_objfile;
24945 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24947 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
24949 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24950 : &dwarf2_per_objfile->loc);
24953 /* A helper function that fills in a dwarf2_loclist_baton. */
24956 fill_in_loclist_baton (struct dwarf2_cu *cu,
24957 struct dwarf2_loclist_baton *baton,
24958 const struct attribute *attr)
24960 struct dwarf2_per_objfile *dwarf2_per_objfile
24961 = cu->per_cu->dwarf2_per_objfile;
24962 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24964 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24966 baton->per_cu = cu->per_cu;
24967 gdb_assert (baton->per_cu);
24968 /* We don't know how long the location list is, but make sure we
24969 don't run off the edge of the section. */
24970 baton->size = section->size - DW_UNSND (attr);
24971 baton->data = section->buffer + DW_UNSND (attr);
24972 baton->base_address = cu->base_address;
24973 baton->from_dwo = cu->dwo_unit != NULL;
24977 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24978 struct dwarf2_cu *cu, int is_block)
24980 struct dwarf2_per_objfile *dwarf2_per_objfile
24981 = cu->per_cu->dwarf2_per_objfile;
24982 struct objfile *objfile = dwarf2_per_objfile->objfile;
24983 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24985 if (attr_form_is_section_offset (attr)
24986 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24987 the section. If so, fall through to the complaint in the
24989 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24991 struct dwarf2_loclist_baton *baton;
24993 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24995 fill_in_loclist_baton (cu, baton, attr);
24997 if (cu->base_known == 0)
24998 complaint (_("Location list used without "
24999 "specifying the CU base address."));
25001 SYMBOL_ACLASS_INDEX (sym) = (is_block
25002 ? dwarf2_loclist_block_index
25003 : dwarf2_loclist_index);
25004 SYMBOL_LOCATION_BATON (sym) = baton;
25008 struct dwarf2_locexpr_baton *baton;
25010 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25011 baton->per_cu = cu->per_cu;
25012 gdb_assert (baton->per_cu);
25014 if (attr_form_is_block (attr))
25016 /* Note that we're just copying the block's data pointer
25017 here, not the actual data. We're still pointing into the
25018 info_buffer for SYM's objfile; right now we never release
25019 that buffer, but when we do clean up properly this may
25021 baton->size = DW_BLOCK (attr)->size;
25022 baton->data = DW_BLOCK (attr)->data;
25026 dwarf2_invalid_attrib_class_complaint ("location description",
25027 SYMBOL_NATURAL_NAME (sym));
25031 SYMBOL_ACLASS_INDEX (sym) = (is_block
25032 ? dwarf2_locexpr_block_index
25033 : dwarf2_locexpr_index);
25034 SYMBOL_LOCATION_BATON (sym) = baton;
25038 /* Return the OBJFILE associated with the compilation unit CU. If CU
25039 came from a separate debuginfo file, then the master objfile is
25043 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25045 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25047 /* Return the master objfile, so that we can report and look up the
25048 correct file containing this variable. */
25049 if (objfile->separate_debug_objfile_backlink)
25050 objfile = objfile->separate_debug_objfile_backlink;
25055 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25056 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25057 CU_HEADERP first. */
25059 static const struct comp_unit_head *
25060 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25061 struct dwarf2_per_cu_data *per_cu)
25063 const gdb_byte *info_ptr;
25066 return &per_cu->cu->header;
25068 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25070 memset (cu_headerp, 0, sizeof (*cu_headerp));
25071 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25072 rcuh_kind::COMPILE);
25077 /* Return the address size given in the compilation unit header for CU. */
25080 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25082 struct comp_unit_head cu_header_local;
25083 const struct comp_unit_head *cu_headerp;
25085 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25087 return cu_headerp->addr_size;
25090 /* Return the offset size given in the compilation unit header for CU. */
25093 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25095 struct comp_unit_head cu_header_local;
25096 const struct comp_unit_head *cu_headerp;
25098 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25100 return cu_headerp->offset_size;
25103 /* See its dwarf2loc.h declaration. */
25106 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25108 struct comp_unit_head cu_header_local;
25109 const struct comp_unit_head *cu_headerp;
25111 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25113 if (cu_headerp->version == 2)
25114 return cu_headerp->addr_size;
25116 return cu_headerp->offset_size;
25119 /* Return the text offset of the CU. The returned offset comes from
25120 this CU's objfile. If this objfile came from a separate debuginfo
25121 file, then the offset may be different from the corresponding
25122 offset in the parent objfile. */
25125 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25127 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25129 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25132 /* Return DWARF version number of PER_CU. */
25135 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25137 return per_cu->dwarf_version;
25140 /* Locate the .debug_info compilation unit from CU's objfile which contains
25141 the DIE at OFFSET. Raises an error on failure. */
25143 static struct dwarf2_per_cu_data *
25144 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25145 unsigned int offset_in_dwz,
25146 struct dwarf2_per_objfile *dwarf2_per_objfile)
25148 struct dwarf2_per_cu_data *this_cu;
25152 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25155 struct dwarf2_per_cu_data *mid_cu;
25156 int mid = low + (high - low) / 2;
25158 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25159 if (mid_cu->is_dwz > offset_in_dwz
25160 || (mid_cu->is_dwz == offset_in_dwz
25161 && mid_cu->sect_off + mid_cu->length >= sect_off))
25166 gdb_assert (low == high);
25167 this_cu = dwarf2_per_objfile->all_comp_units[low];
25168 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25170 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25171 error (_("Dwarf Error: could not find partial DIE containing "
25172 "offset %s [in module %s]"),
25173 sect_offset_str (sect_off),
25174 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25176 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25178 return dwarf2_per_objfile->all_comp_units[low-1];
25182 this_cu = dwarf2_per_objfile->all_comp_units[low];
25183 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25184 && sect_off >= this_cu->sect_off + this_cu->length)
25185 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25186 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25191 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25193 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25194 : per_cu (per_cu_),
25196 has_loclist (false),
25197 checked_producer (false),
25198 producer_is_gxx_lt_4_6 (false),
25199 producer_is_gcc_lt_4_3 (false),
25200 producer_is_icc (false),
25201 producer_is_icc_lt_14 (false),
25202 producer_is_codewarrior (false),
25203 processing_has_namespace_info (false)
25208 /* Destroy a dwarf2_cu. */
25210 dwarf2_cu::~dwarf2_cu ()
25215 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25218 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25219 enum language pretend_language)
25221 struct attribute *attr;
25223 /* Set the language we're debugging. */
25224 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25226 set_cu_language (DW_UNSND (attr), cu);
25229 cu->language = pretend_language;
25230 cu->language_defn = language_def (cu->language);
25233 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25236 /* Increase the age counter on each cached compilation unit, and free
25237 any that are too old. */
25240 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25242 struct dwarf2_per_cu_data *per_cu, **last_chain;
25244 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25245 per_cu = dwarf2_per_objfile->read_in_chain;
25246 while (per_cu != NULL)
25248 per_cu->cu->last_used ++;
25249 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25250 dwarf2_mark (per_cu->cu);
25251 per_cu = per_cu->cu->read_in_chain;
25254 per_cu = dwarf2_per_objfile->read_in_chain;
25255 last_chain = &dwarf2_per_objfile->read_in_chain;
25256 while (per_cu != NULL)
25258 struct dwarf2_per_cu_data *next_cu;
25260 next_cu = per_cu->cu->read_in_chain;
25262 if (!per_cu->cu->mark)
25265 *last_chain = next_cu;
25268 last_chain = &per_cu->cu->read_in_chain;
25274 /* Remove a single compilation unit from the cache. */
25277 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25279 struct dwarf2_per_cu_data *per_cu, **last_chain;
25280 struct dwarf2_per_objfile *dwarf2_per_objfile
25281 = target_per_cu->dwarf2_per_objfile;
25283 per_cu = dwarf2_per_objfile->read_in_chain;
25284 last_chain = &dwarf2_per_objfile->read_in_chain;
25285 while (per_cu != NULL)
25287 struct dwarf2_per_cu_data *next_cu;
25289 next_cu = per_cu->cu->read_in_chain;
25291 if (per_cu == target_per_cu)
25295 *last_chain = next_cu;
25299 last_chain = &per_cu->cu->read_in_chain;
25305 /* Cleanup function for the dwarf2_per_objfile data. */
25308 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25310 struct dwarf2_per_objfile *dwarf2_per_objfile
25311 = static_cast<struct dwarf2_per_objfile *> (datum);
25313 delete dwarf2_per_objfile;
25316 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25317 We store these in a hash table separate from the DIEs, and preserve them
25318 when the DIEs are flushed out of cache.
25320 The CU "per_cu" pointer is needed because offset alone is not enough to
25321 uniquely identify the type. A file may have multiple .debug_types sections,
25322 or the type may come from a DWO file. Furthermore, while it's more logical
25323 to use per_cu->section+offset, with Fission the section with the data is in
25324 the DWO file but we don't know that section at the point we need it.
25325 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25326 because we can enter the lookup routine, get_die_type_at_offset, from
25327 outside this file, and thus won't necessarily have PER_CU->cu.
25328 Fortunately, PER_CU is stable for the life of the objfile. */
25330 struct dwarf2_per_cu_offset_and_type
25332 const struct dwarf2_per_cu_data *per_cu;
25333 sect_offset sect_off;
25337 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25340 per_cu_offset_and_type_hash (const void *item)
25342 const struct dwarf2_per_cu_offset_and_type *ofs
25343 = (const struct dwarf2_per_cu_offset_and_type *) item;
25345 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25348 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25351 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25353 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25354 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25355 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25356 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25358 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25359 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25362 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25363 table if necessary. For convenience, return TYPE.
25365 The DIEs reading must have careful ordering to:
25366 * Not cause infite loops trying to read in DIEs as a prerequisite for
25367 reading current DIE.
25368 * Not trying to dereference contents of still incompletely read in types
25369 while reading in other DIEs.
25370 * Enable referencing still incompletely read in types just by a pointer to
25371 the type without accessing its fields.
25373 Therefore caller should follow these rules:
25374 * Try to fetch any prerequisite types we may need to build this DIE type
25375 before building the type and calling set_die_type.
25376 * After building type call set_die_type for current DIE as soon as
25377 possible before fetching more types to complete the current type.
25378 * Make the type as complete as possible before fetching more types. */
25380 static struct type *
25381 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25383 struct dwarf2_per_objfile *dwarf2_per_objfile
25384 = cu->per_cu->dwarf2_per_objfile;
25385 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25386 struct objfile *objfile = dwarf2_per_objfile->objfile;
25387 struct attribute *attr;
25388 struct dynamic_prop prop;
25390 /* For Ada types, make sure that the gnat-specific data is always
25391 initialized (if not already set). There are a few types where
25392 we should not be doing so, because the type-specific area is
25393 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25394 where the type-specific area is used to store the floatformat).
25395 But this is not a problem, because the gnat-specific information
25396 is actually not needed for these types. */
25397 if (need_gnat_info (cu)
25398 && TYPE_CODE (type) != TYPE_CODE_FUNC
25399 && TYPE_CODE (type) != TYPE_CODE_FLT
25400 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25401 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25402 && TYPE_CODE (type) != TYPE_CODE_METHOD
25403 && !HAVE_GNAT_AUX_INFO (type))
25404 INIT_GNAT_SPECIFIC (type);
25406 /* Read DW_AT_allocated and set in type. */
25407 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25408 if (attr_form_is_block (attr))
25410 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25411 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25413 else if (attr != NULL)
25415 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25416 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25417 sect_offset_str (die->sect_off));
25420 /* Read DW_AT_associated and set in type. */
25421 attr = dwarf2_attr (die, DW_AT_associated, cu);
25422 if (attr_form_is_block (attr))
25424 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25425 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25427 else if (attr != NULL)
25429 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25430 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25431 sect_offset_str (die->sect_off));
25434 /* Read DW_AT_data_location and set in type. */
25435 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25436 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25437 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25439 if (dwarf2_per_objfile->die_type_hash == NULL)
25441 dwarf2_per_objfile->die_type_hash =
25442 htab_create_alloc_ex (127,
25443 per_cu_offset_and_type_hash,
25444 per_cu_offset_and_type_eq,
25446 &objfile->objfile_obstack,
25447 hashtab_obstack_allocate,
25448 dummy_obstack_deallocate);
25451 ofs.per_cu = cu->per_cu;
25452 ofs.sect_off = die->sect_off;
25454 slot = (struct dwarf2_per_cu_offset_and_type **)
25455 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25457 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25458 sect_offset_str (die->sect_off));
25459 *slot = XOBNEW (&objfile->objfile_obstack,
25460 struct dwarf2_per_cu_offset_and_type);
25465 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25466 or return NULL if the die does not have a saved type. */
25468 static struct type *
25469 get_die_type_at_offset (sect_offset sect_off,
25470 struct dwarf2_per_cu_data *per_cu)
25472 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25473 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25475 if (dwarf2_per_objfile->die_type_hash == NULL)
25478 ofs.per_cu = per_cu;
25479 ofs.sect_off = sect_off;
25480 slot = ((struct dwarf2_per_cu_offset_and_type *)
25481 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25488 /* Look up the type for DIE in CU in die_type_hash,
25489 or return NULL if DIE does not have a saved type. */
25491 static struct type *
25492 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25494 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25497 /* Add a dependence relationship from CU to REF_PER_CU. */
25500 dwarf2_add_dependence (struct dwarf2_cu *cu,
25501 struct dwarf2_per_cu_data *ref_per_cu)
25505 if (cu->dependencies == NULL)
25507 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25508 NULL, &cu->comp_unit_obstack,
25509 hashtab_obstack_allocate,
25510 dummy_obstack_deallocate);
25512 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25514 *slot = ref_per_cu;
25517 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25518 Set the mark field in every compilation unit in the
25519 cache that we must keep because we are keeping CU. */
25522 dwarf2_mark_helper (void **slot, void *data)
25524 struct dwarf2_per_cu_data *per_cu;
25526 per_cu = (struct dwarf2_per_cu_data *) *slot;
25528 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25529 reading of the chain. As such dependencies remain valid it is not much
25530 useful to track and undo them during QUIT cleanups. */
25531 if (per_cu->cu == NULL)
25534 if (per_cu->cu->mark)
25536 per_cu->cu->mark = true;
25538 if (per_cu->cu->dependencies != NULL)
25539 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25544 /* Set the mark field in CU and in every other compilation unit in the
25545 cache that we must keep because we are keeping CU. */
25548 dwarf2_mark (struct dwarf2_cu *cu)
25553 if (cu->dependencies != NULL)
25554 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25558 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25562 per_cu->cu->mark = false;
25563 per_cu = per_cu->cu->read_in_chain;
25567 /* Trivial hash function for partial_die_info: the hash value of a DIE
25568 is its offset in .debug_info for this objfile. */
25571 partial_die_hash (const void *item)
25573 const struct partial_die_info *part_die
25574 = (const struct partial_die_info *) item;
25576 return to_underlying (part_die->sect_off);
25579 /* Trivial comparison function for partial_die_info structures: two DIEs
25580 are equal if they have the same offset. */
25583 partial_die_eq (const void *item_lhs, const void *item_rhs)
25585 const struct partial_die_info *part_die_lhs
25586 = (const struct partial_die_info *) item_lhs;
25587 const struct partial_die_info *part_die_rhs
25588 = (const struct partial_die_info *) item_rhs;
25590 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25593 struct cmd_list_element *set_dwarf_cmdlist;
25594 struct cmd_list_element *show_dwarf_cmdlist;
25597 set_dwarf_cmd (const char *args, int from_tty)
25599 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25604 show_dwarf_cmd (const char *args, int from_tty)
25606 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25609 int dwarf_always_disassemble;
25612 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25613 struct cmd_list_element *c, const char *value)
25615 fprintf_filtered (file,
25616 _("Whether to always disassemble "
25617 "DWARF expressions is %s.\n"),
25622 show_check_physname (struct ui_file *file, int from_tty,
25623 struct cmd_list_element *c, const char *value)
25625 fprintf_filtered (file,
25626 _("Whether to check \"physname\" is %s.\n"),
25631 _initialize_dwarf2_read (void)
25633 dwarf2_objfile_data_key
25634 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25636 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25637 Set DWARF specific variables.\n\
25638 Configure DWARF variables such as the cache size"),
25639 &set_dwarf_cmdlist, "maintenance set dwarf ",
25640 0/*allow-unknown*/, &maintenance_set_cmdlist);
25642 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25643 Show DWARF specific variables\n\
25644 Show DWARF variables such as the cache size"),
25645 &show_dwarf_cmdlist, "maintenance show dwarf ",
25646 0/*allow-unknown*/, &maintenance_show_cmdlist);
25648 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25649 &dwarf_max_cache_age, _("\
25650 Set the upper bound on the age of cached DWARF compilation units."), _("\
25651 Show the upper bound on the age of cached DWARF compilation units."), _("\
25652 A higher limit means that cached compilation units will be stored\n\
25653 in memory longer, and more total memory will be used. Zero disables\n\
25654 caching, which can slow down startup."),
25656 show_dwarf_max_cache_age,
25657 &set_dwarf_cmdlist,
25658 &show_dwarf_cmdlist);
25660 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25661 &dwarf_always_disassemble, _("\
25662 Set whether `info address' always disassembles DWARF expressions."), _("\
25663 Show whether `info address' always disassembles DWARF expressions."), _("\
25664 When enabled, DWARF expressions are always printed in an assembly-like\n\
25665 syntax. When disabled, expressions will be printed in a more\n\
25666 conversational style, when possible."),
25668 show_dwarf_always_disassemble,
25669 &set_dwarf_cmdlist,
25670 &show_dwarf_cmdlist);
25672 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25673 Set debugging of the DWARF reader."), _("\
25674 Show debugging of the DWARF reader."), _("\
25675 When enabled (non-zero), debugging messages are printed during DWARF\n\
25676 reading and symtab expansion. A value of 1 (one) provides basic\n\
25677 information. A value greater than 1 provides more verbose information."),
25680 &setdebuglist, &showdebuglist);
25682 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25683 Set debugging of the DWARF DIE reader."), _("\
25684 Show debugging of the DWARF DIE reader."), _("\
25685 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25686 The value is the maximum depth to print."),
25689 &setdebuglist, &showdebuglist);
25691 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25692 Set debugging of the dwarf line reader."), _("\
25693 Show debugging of the dwarf line reader."), _("\
25694 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25695 A value of 1 (one) provides basic information.\n\
25696 A value greater than 1 provides more verbose information."),
25699 &setdebuglist, &showdebuglist);
25701 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25702 Set cross-checking of \"physname\" code against demangler."), _("\
25703 Show cross-checking of \"physname\" code against demangler."), _("\
25704 When enabled, GDB's internal \"physname\" code is checked against\n\
25706 NULL, show_check_physname,
25707 &setdebuglist, &showdebuglist);
25709 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25710 no_class, &use_deprecated_index_sections, _("\
25711 Set whether to use deprecated gdb_index sections."), _("\
25712 Show whether to use deprecated gdb_index sections."), _("\
25713 When enabled, deprecated .gdb_index sections are used anyway.\n\
25714 Normally they are ignored either because of a missing feature or\n\
25715 performance issue.\n\
25716 Warning: This option must be enabled before gdb reads the file."),
25719 &setlist, &showlist);
25721 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25722 &dwarf2_locexpr_funcs);
25723 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25724 &dwarf2_loclist_funcs);
25726 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25727 &dwarf2_block_frame_base_locexpr_funcs);
25728 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25729 &dwarf2_block_frame_base_loclist_funcs);
25732 selftests::register_test ("dw2_expand_symtabs_matching",
25733 selftests::dw2_expand_symtabs_matching::run_test);