1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
45 #include "complaints.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
55 #include "typeprint.h"
58 #include "exceptions.h"
60 #include "completer.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
71 #include "filestuff.h"
76 #include "gdb_assert.h"
77 #include <sys/types.h>
79 typedef struct symbol *symbolp;
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
96 static const struct objfile_data *dwarf2_objfile_data_key;
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
105 /* A descriptor for dwarf sections.
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
121 struct dwarf2_section_info
125 /* If this is a real section, the bfd section. */
127 /* If this is a virtual section, pointer to the containing ("real")
129 struct dwarf2_section_info *containing_section;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
152 DEF_VEC_I (offset_type);
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
180 /* Index data format version. */
183 /* The total length of the buffer. */
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
208 struct dwarf2_per_objfile
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
223 VEC (dwarf2_section_info_def) *types;
226 struct objfile *objfile;
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
232 /* The number of compilation units in ALL_COMP_UNITS. */
235 /* The number of .debug_types-related CUs. */
238 /* The number of elements allocated in all_type_units.
239 If there are skeleton-less TUs, we add them to all_type_units lazily. */
240 int n_allocated_type_units;
242 /* The .debug_types-related CUs (TUs).
243 This is stored in malloc space because we may realloc it. */
244 struct signatured_type **all_type_units;
246 /* Table of struct type_unit_group objects.
247 The hash key is the DW_AT_stmt_list value. */
248 htab_t type_unit_groups;
250 /* A table mapping .debug_types signatures to its signatured_type entry.
251 This is NULL if the .debug_types section hasn't been read in yet. */
252 htab_t signatured_types;
254 /* Type unit statistics, to see how well the scaling improvements
258 int nr_uniq_abbrev_tables;
260 int nr_symtab_sharers;
261 int nr_stmt_less_type_units;
262 int nr_all_type_units_reallocs;
265 /* A chain of compilation units that are currently read in, so that
266 they can be freed later. */
267 struct dwarf2_per_cu_data *read_in_chain;
269 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
270 This is NULL if the table hasn't been allocated yet. */
273 /* Non-zero if we've check for whether there is a DWP file. */
276 /* The DWP file if there is one, or NULL. */
277 struct dwp_file *dwp_file;
279 /* The shared '.dwz' file, if one exists. This is used when the
280 original data was compressed using 'dwz -m'. */
281 struct dwz_file *dwz_file;
283 /* A flag indicating wether this objfile has a section loaded at a
285 int has_section_at_zero;
287 /* True if we are using the mapped index,
288 or we are faking it for OBJF_READNOW's sake. */
289 unsigned char using_index;
291 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
292 struct mapped_index *index_table;
294 /* When using index_table, this keeps track of all quick_file_names entries.
295 TUs typically share line table entries with a CU, so we maintain a
296 separate table of all line table entries to support the sharing.
297 Note that while there can be way more TUs than CUs, we've already
298 sorted all the TUs into "type unit groups", grouped by their
299 DW_AT_stmt_list value. Therefore the only sharing done here is with a
300 CU and its associated TU group if there is one. */
301 htab_t quick_file_names_table;
303 /* Set during partial symbol reading, to prevent queueing of full
305 int reading_partial_symbols;
307 /* Table mapping type DIEs to their struct type *.
308 This is NULL if not allocated yet.
309 The mapping is done via (CU/TU + DIE offset) -> type. */
310 htab_t die_type_hash;
312 /* The CUs we recently read. */
313 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 static struct dwarf2_per_objfile *dwarf2_per_objfile;
318 /* Default names of the debugging sections. */
320 /* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
323 static const struct dwarf2_debug_sections dwarf2_elf_names =
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
334 { ".debug_addr", ".zdebug_addr" },
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
337 { ".gdb_index", ".zgdb_index" },
341 /* List of DWO/DWP sections. */
343 static const struct dwop_section_names
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
372 /* local data types */
374 /* The data in a compilation unit header, after target2host
375 translation, looks like this. */
376 struct comp_unit_head
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
382 sect_offset abbrev_offset;
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
396 cu_offset first_die_offset;
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
403 /* The type to which the method is attached, i.e., its parent class. */
406 /* The index of the method in the type's function fieldlists. */
409 /* The index of the method in the fieldlist. */
412 /* The name of the DIE. */
415 /* The DIE associated with this method. */
416 struct die_info *die;
419 typedef struct delayed_method_info delayed_method_info;
420 DEF_VEC_O (delayed_method_info);
422 /* Internal state when decoding a particular compilation unit. */
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
428 /* The header of the compilation unit. */
429 struct comp_unit_head header;
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
434 /* Non-zero if base_address has been set. */
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
441 const char *producer;
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
473 /* Backlink to our per_cu entry. */
474 struct dwarf2_per_cu_data *per_cu;
476 /* How many compilation units ago was this CU last referenced? */
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
483 /* Full DIEs if read in. */
484 struct die_info *dies;
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
510 struct dwo_unit *dwo_unit;
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base;
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
536 unsigned int has_loclist : 1;
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
544 unsigned int producer_is_gcc_lt_4_3 : 1;
545 unsigned int producer_is_icc : 1;
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
551 unsigned int processing_has_namespace_info : 1;
554 /* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
556 read_symtab_private field of the psymtab. */
558 struct dwarf2_per_cu_data
560 /* The start offset and length of this compilation unit.
561 NOTE: Unlike comp_unit_head.length, this length includes
563 If the DIE refers to a DWO file, this is always of the original die,
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
570 unsigned int queued : 1;
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
581 unsigned int is_debug_types : 1;
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
605 struct dwarf2_section_info *section;
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
609 struct dwarf2_cu *cu;
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
614 struct objfile *objfile;
616 /* When using partial symbol tables, the 'psymtab' field is active.
617 Otherwise the 'quick' field is active. */
620 /* The partial symbol table associated with this compilation unit,
621 or NULL for unread partial units. */
622 struct partial_symtab *psymtab;
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 /* Entry in the signatured_types hash table. */
651 struct signatured_type
653 /* The "per_cu" object of this type.
654 This struct is used iff per_cu.is_debug_types.
655 N.B.: This is the first member so that it's easy to convert pointers
657 struct dwarf2_per_cu_data per_cu;
659 /* The type's signature. */
662 /* Offset in the TU of the type's DIE, as read from the TU header.
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
665 cu_offset type_offset_in_tu;
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
688 typedef struct signatured_type *sig_type_ptr;
689 DEF_VEC_P (sig_type_ptr);
691 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
694 struct stmt_list_hash
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
703 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
706 struct type_unit_group
708 /* dwarf2read.c's main "handle" on a TU symtab.
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
713 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
714 struct dwarf2_per_cu_data per_cu;
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
721 /* The primary symtab.
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the primary symtab. */
724 struct symtab *primary_symtab;
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
733 /* The symbol tables for this TU (obtained from the files listed in
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
744 /* These sections are what may appear in a (real or virtual) DWO file. */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
757 VEC (dwarf2_section_info_def) *types;
760 /* CUs/TUs in DWP/DWO files. */
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
772 /* The section this CU/TU lives in, in the DWO file. */
773 struct dwarf2_section_info *section;
775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
783 /* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
787 enum dwp_v2_section_ids
792 /* Data for one DWO file.
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
805 /* The DW_AT_GNU_dwo_name attribute.
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
809 const char *dwo_name;
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
821 struct dwo_sections sections;
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
835 /* These sections are what may appear in a DWP file. */
839 /* These are used by both DWP version 1 and 2. */
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
862 /* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
865 struct virtual_v1_dwo_sections
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
874 That is recorded here, and copied to dwo_unit.section. */
875 struct dwarf2_section_info info_or_types;
878 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
883 struct virtual_v2_dwo_sections
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
909 /* Contents of DWP hash tables. */
911 struct dwp_hash_table
913 uint32_t version, nr_columns;
914 uint32_t nr_units, nr_slots;
915 const gdb_byte *hash_table, *unit_table;
920 const gdb_byte *indices;
924 /* This is indexed by column number and gives the id of the section
926 #define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
940 /* Data for one DWP file. */
944 /* Name of the file. */
947 /* File format version. */
953 /* Section info for this file. */
954 struct dwp_sections sections;
956 /* Table of CUs in the file. */
957 const struct dwp_hash_table *cus;
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
968 unsigned int num_sections;
969 asection **elf_sections;
972 /* This represents a '.dwz' file. */
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
982 struct dwarf2_section_info gdb_index;
988 /* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
991 struct exists to abstract away the constant parameters of die reading. */
993 struct die_reader_specs
995 /* The bfd of die_section. */
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1002 struct dwo_file *dwo_file;
1004 /* The section the die comes from.
1005 This is either .debug_info or .debug_types, or the .dwo variants. */
1006 struct dwarf2_section_info *die_section;
1008 /* die_section->buffer. */
1009 const gdb_byte *buffer;
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
1018 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1019 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1020 const gdb_byte *info_ptr,
1021 struct die_info *comp_unit_die,
1025 /* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1030 unsigned int total_length;
1031 unsigned short version;
1032 unsigned int header_length;
1033 unsigned char minimum_instruction_length;
1034 unsigned char maximum_ops_per_instruction;
1035 unsigned char default_is_stmt;
1037 unsigned char line_range;
1038 unsigned char opcode_base;
1040 /* standard_opcode_lengths[i] is the number of operands for the
1041 standard opcode whose value is i. This means that
1042 standard_opcode_lengths[0] is unused, and the last meaningful
1043 element is standard_opcode_lengths[opcode_base - 1]. */
1044 unsigned char *standard_opcode_lengths;
1046 /* The include_directories table. NOTE! These strings are not
1047 allocated with xmalloc; instead, they are pointers into
1048 debug_line_buffer. If you try to free them, `free' will get
1050 unsigned int num_include_dirs, include_dirs_size;
1051 const char **include_dirs;
1053 /* The file_names table. NOTE! These strings are not allocated
1054 with xmalloc; instead, they are pointers into debug_line_buffer.
1055 Don't try to free them directly. */
1056 unsigned int num_file_names, file_names_size;
1060 unsigned int dir_index;
1061 unsigned int mod_time;
1062 unsigned int length;
1063 int included_p; /* Non-zero if referenced by the Line Number Program. */
1064 struct symtab *symtab; /* The associated symbol table, if any. */
1067 /* The start and end of the statement program following this
1068 header. These point into dwarf2_per_objfile->line_buffer. */
1069 const gdb_byte *statement_program_start, *statement_program_end;
1072 /* When we construct a partial symbol table entry we only
1073 need this much information. */
1074 struct partial_die_info
1076 /* Offset of this DIE. */
1079 /* DWARF-2 tag for this DIE. */
1080 ENUM_BITFIELD(dwarf_tag) tag : 16;
1082 /* Assorted flags describing the data found in this DIE. */
1083 unsigned int has_children : 1;
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1091 /* Flag set if the SCOPE field of this structure has been
1093 unsigned int scope_set : 1;
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1098 /* Flag set if any of the DIE's children are template arguments. */
1099 unsigned int has_template_arguments : 1;
1101 /* Flag set if fixup_partial_die has been called on this die. */
1102 unsigned int fixup_called : 1;
1104 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1105 unsigned int is_dwz : 1;
1107 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1108 unsigned int spec_is_dwz : 1;
1110 /* The name of this DIE. Normally the value of DW_AT_name, but
1111 sometimes a default name for unnamed DIEs. */
1114 /* The linkage name, if present. */
1115 const char *linkage_name;
1117 /* The scope to prepend to our children. This is generally
1118 allocated on the comp_unit_obstack, so will disappear
1119 when this compilation unit leaves the cache. */
1122 /* Some data associated with the partial DIE. The tag determines
1123 which field is live. */
1126 /* The location description associated with this DIE, if any. */
1127 struct dwarf_block *locdesc;
1128 /* The offset of an import, for DW_TAG_imported_unit. */
1132 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1136 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1137 DW_AT_sibling, if any. */
1138 /* NOTE: This member isn't strictly necessary, read_partial_die could
1139 return DW_AT_sibling values to its caller load_partial_dies. */
1140 const gdb_byte *sibling;
1142 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1143 DW_AT_specification (or DW_AT_abstract_origin or
1144 DW_AT_extension). */
1145 sect_offset spec_offset;
1147 /* Pointers to this DIE's parent, first child, and next sibling,
1149 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 /* This data structure holds the information of an abbrev. */
1155 unsigned int number; /* number identifying abbrev */
1156 enum dwarf_tag tag; /* dwarf tag */
1157 unsigned short has_children; /* boolean */
1158 unsigned short num_attrs; /* number of attributes */
1159 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1160 struct abbrev_info *next; /* next in chain */
1165 ENUM_BITFIELD(dwarf_attribute) name : 16;
1166 ENUM_BITFIELD(dwarf_form) form : 16;
1169 /* Size of abbrev_table.abbrev_hash_table. */
1170 #define ABBREV_HASH_SIZE 121
1172 /* Top level data structure to contain an abbreviation table. */
1176 /* Where the abbrev table came from.
1177 This is used as a sanity check when the table is used. */
1180 /* Storage for the abbrev table. */
1181 struct obstack abbrev_obstack;
1183 /* Hash table of abbrevs.
1184 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1185 It could be statically allocated, but the previous code didn't so we
1187 struct abbrev_info **abbrevs;
1190 /* Attributes have a name and a value. */
1193 ENUM_BITFIELD(dwarf_attribute) name : 16;
1194 ENUM_BITFIELD(dwarf_form) form : 15;
1196 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1197 field should be in u.str (existing only for DW_STRING) but it is kept
1198 here for better struct attribute alignment. */
1199 unsigned int string_is_canonical : 1;
1204 struct dwarf_block *blk;
1213 /* This data structure holds a complete die structure. */
1216 /* DWARF-2 tag for this DIE. */
1217 ENUM_BITFIELD(dwarf_tag) tag : 16;
1219 /* Number of attributes */
1220 unsigned char num_attrs;
1222 /* True if we're presently building the full type name for the
1223 type derived from this DIE. */
1224 unsigned char building_fullname : 1;
1226 /* True if this die is in process. PR 16581. */
1227 unsigned char in_process : 1;
1230 unsigned int abbrev;
1232 /* Offset in .debug_info or .debug_types section. */
1235 /* The dies in a compilation unit form an n-ary tree. PARENT
1236 points to this die's parent; CHILD points to the first child of
1237 this node; and all the children of a given node are chained
1238 together via their SIBLING fields. */
1239 struct die_info *child; /* Its first child, if any. */
1240 struct die_info *sibling; /* Its next sibling, if any. */
1241 struct die_info *parent; /* Its parent, if any. */
1243 /* An array of attributes, with NUM_ATTRS elements. There may be
1244 zero, but it's not common and zero-sized arrays are not
1245 sufficiently portable C. */
1246 struct attribute attrs[1];
1249 /* Get at parts of an attribute structure. */
1251 #define DW_STRING(attr) ((attr)->u.str)
1252 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1253 #define DW_UNSND(attr) ((attr)->u.unsnd)
1254 #define DW_BLOCK(attr) ((attr)->u.blk)
1255 #define DW_SND(attr) ((attr)->u.snd)
1256 #define DW_ADDR(attr) ((attr)->u.addr)
1257 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1259 /* Blocks are a bunch of untyped bytes. */
1264 /* Valid only if SIZE is not zero. */
1265 const gdb_byte *data;
1268 #ifndef ATTR_ALLOC_CHUNK
1269 #define ATTR_ALLOC_CHUNK 4
1272 /* Allocate fields for structs, unions and enums in this size. */
1273 #ifndef DW_FIELD_ALLOC_CHUNK
1274 #define DW_FIELD_ALLOC_CHUNK 4
1277 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1278 but this would require a corresponding change in unpack_field_as_long
1280 static int bits_per_byte = 8;
1282 /* The routines that read and process dies for a C struct or C++ class
1283 pass lists of data member fields and lists of member function fields
1284 in an instance of a field_info structure, as defined below. */
1287 /* List of data member and baseclasses fields. */
1290 struct nextfield *next;
1295 *fields, *baseclasses;
1297 /* Number of fields (including baseclasses). */
1300 /* Number of baseclasses. */
1303 /* Set if the accesibility of one of the fields is not public. */
1304 int non_public_fields;
1306 /* Member function fields array, entries are allocated in the order they
1307 are encountered in the object file. */
1310 struct nextfnfield *next;
1311 struct fn_field fnfield;
1315 /* Member function fieldlist array, contains name of possibly overloaded
1316 member function, number of overloaded member functions and a pointer
1317 to the head of the member function field chain. */
1322 struct nextfnfield *head;
1326 /* Number of entries in the fnfieldlists array. */
1329 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1330 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1331 struct typedef_field_list
1333 struct typedef_field field;
1334 struct typedef_field_list *next;
1336 *typedef_field_list;
1337 unsigned typedef_field_list_count;
1340 /* One item on the queue of compilation units to read in full symbols
1342 struct dwarf2_queue_item
1344 struct dwarf2_per_cu_data *per_cu;
1345 enum language pretend_language;
1346 struct dwarf2_queue_item *next;
1349 /* The current queue. */
1350 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1352 /* Loaded secondary compilation units are kept in memory until they
1353 have not been referenced for the processing of this many
1354 compilation units. Set this to zero to disable caching. Cache
1355 sizes of up to at least twenty will improve startup time for
1356 typical inter-CU-reference binaries, at an obvious memory cost. */
1357 static int dwarf2_max_cache_age = 5;
1359 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1362 fprintf_filtered (file, _("The upper bound on the age of cached "
1363 "dwarf2 compilation units is %s.\n"),
1367 /* local function prototypes */
1369 static const char *get_section_name (const struct dwarf2_section_info *);
1371 static const char *get_section_file_name (const struct dwarf2_section_info *);
1373 static void dwarf2_locate_sections (bfd *, asection *, void *);
1375 static void dwarf2_find_base_address (struct die_info *die,
1376 struct dwarf2_cu *cu);
1378 static struct partial_symtab *create_partial_symtab
1379 (struct dwarf2_per_cu_data *per_cu, const char *name);
1381 static void dwarf2_build_psymtabs_hard (struct objfile *);
1383 static void scan_partial_symbols (struct partial_die_info *,
1384 CORE_ADDR *, CORE_ADDR *,
1385 int, struct dwarf2_cu *);
1387 static void add_partial_symbol (struct partial_die_info *,
1388 struct dwarf2_cu *);
1390 static void add_partial_namespace (struct partial_die_info *pdi,
1391 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1392 int need_pc, struct dwarf2_cu *cu);
1394 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1395 CORE_ADDR *highpc, int need_pc,
1396 struct dwarf2_cu *cu);
1398 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1399 struct dwarf2_cu *cu);
1401 static void add_partial_subprogram (struct partial_die_info *pdi,
1402 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1403 int need_pc, struct dwarf2_cu *cu);
1405 static void dwarf2_read_symtab (struct partial_symtab *,
1408 static void psymtab_to_symtab_1 (struct partial_symtab *);
1410 static struct abbrev_info *abbrev_table_lookup_abbrev
1411 (const struct abbrev_table *, unsigned int);
1413 static struct abbrev_table *abbrev_table_read_table
1414 (struct dwarf2_section_info *, sect_offset);
1416 static void abbrev_table_free (struct abbrev_table *);
1418 static void abbrev_table_free_cleanup (void *);
1420 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1421 struct dwarf2_section_info *);
1423 static void dwarf2_free_abbrev_table (void *);
1425 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1427 static struct partial_die_info *load_partial_dies
1428 (const struct die_reader_specs *, const gdb_byte *, int);
1430 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1431 struct partial_die_info *,
1432 struct abbrev_info *,
1436 static struct partial_die_info *find_partial_die (sect_offset, int,
1437 struct dwarf2_cu *);
1439 static void fixup_partial_die (struct partial_die_info *,
1440 struct dwarf2_cu *);
1442 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1443 struct attribute *, struct attr_abbrev *,
1446 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1448 static int read_1_signed_byte (bfd *, const gdb_byte *);
1450 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1452 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1454 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1456 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1459 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1461 static LONGEST read_checked_initial_length_and_offset
1462 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1463 unsigned int *, unsigned int *);
1465 static LONGEST read_offset (bfd *, const gdb_byte *,
1466 const struct comp_unit_head *,
1469 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1471 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1476 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1478 static const char *read_indirect_string (bfd *, const gdb_byte *,
1479 const struct comp_unit_head *,
1482 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1484 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1486 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1488 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1492 static const char *read_str_index (const struct die_reader_specs *reader,
1493 ULONGEST str_index);
1495 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1497 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1498 struct dwarf2_cu *);
1500 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1503 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1504 struct dwarf2_cu *cu);
1506 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1508 static struct die_info *die_specification (struct die_info *die,
1509 struct dwarf2_cu **);
1511 static void free_line_header (struct line_header *lh);
1513 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1514 struct dwarf2_cu *cu);
1516 static void dwarf_decode_lines (struct line_header *, const char *,
1517 struct dwarf2_cu *, struct partial_symtab *,
1520 static void dwarf2_start_subfile (const char *, const char *, const char *);
1522 static void dwarf2_start_symtab (struct dwarf2_cu *,
1523 const char *, const char *, CORE_ADDR);
1525 static struct symbol *new_symbol (struct die_info *, struct type *,
1526 struct dwarf2_cu *);
1528 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1529 struct dwarf2_cu *, struct symbol *);
1531 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1532 struct dwarf2_cu *);
1534 static void dwarf2_const_value_attr (const struct attribute *attr,
1537 struct obstack *obstack,
1538 struct dwarf2_cu *cu, LONGEST *value,
1539 const gdb_byte **bytes,
1540 struct dwarf2_locexpr_baton **baton);
1542 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1544 static int need_gnat_info (struct dwarf2_cu *);
1546 static struct type *die_descriptive_type (struct die_info *,
1547 struct dwarf2_cu *);
1549 static void set_descriptive_type (struct type *, struct die_info *,
1550 struct dwarf2_cu *);
1552 static struct type *die_containing_type (struct die_info *,
1553 struct dwarf2_cu *);
1555 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1556 struct dwarf2_cu *);
1558 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1560 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1562 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1564 static char *typename_concat (struct obstack *obs, const char *prefix,
1565 const char *suffix, int physname,
1566 struct dwarf2_cu *cu);
1568 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1570 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1572 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1574 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1576 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1578 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1579 struct dwarf2_cu *, struct partial_symtab *);
1581 static int dwarf2_get_pc_bounds (struct die_info *,
1582 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1583 struct partial_symtab *);
1585 static void get_scope_pc_bounds (struct die_info *,
1586 CORE_ADDR *, CORE_ADDR *,
1587 struct dwarf2_cu *);
1589 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1590 CORE_ADDR, struct dwarf2_cu *);
1592 static void dwarf2_add_field (struct field_info *, struct die_info *,
1593 struct dwarf2_cu *);
1595 static void dwarf2_attach_fields_to_type (struct field_info *,
1596 struct type *, struct dwarf2_cu *);
1598 static void dwarf2_add_member_fn (struct field_info *,
1599 struct die_info *, struct type *,
1600 struct dwarf2_cu *);
1602 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1604 struct dwarf2_cu *);
1606 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1608 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1610 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1612 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1614 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1616 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1618 static struct type *read_module_type (struct die_info *die,
1619 struct dwarf2_cu *cu);
1621 static const char *namespace_name (struct die_info *die,
1622 int *is_anonymous, struct dwarf2_cu *);
1624 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1626 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1628 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1629 struct dwarf2_cu *);
1631 static struct die_info *read_die_and_siblings_1
1632 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1635 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1636 const gdb_byte *info_ptr,
1637 const gdb_byte **new_info_ptr,
1638 struct die_info *parent);
1640 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1641 struct die_info **, const gdb_byte *,
1644 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1645 struct die_info **, const gdb_byte *,
1648 static void process_die (struct die_info *, struct dwarf2_cu *);
1650 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1655 static const char *dwarf2_full_name (const char *name,
1656 struct die_info *die,
1657 struct dwarf2_cu *cu);
1659 static const char *dwarf2_physname (const char *name, struct die_info *die,
1660 struct dwarf2_cu *cu);
1662 static struct die_info *dwarf2_extension (struct die_info *die,
1663 struct dwarf2_cu **);
1665 static const char *dwarf_tag_name (unsigned int);
1667 static const char *dwarf_attr_name (unsigned int);
1669 static const char *dwarf_form_name (unsigned int);
1671 static char *dwarf_bool_name (unsigned int);
1673 static const char *dwarf_type_encoding_name (unsigned int);
1675 static struct die_info *sibling_die (struct die_info *);
1677 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1679 static void dump_die_for_error (struct die_info *);
1681 static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 /*static*/ void dump_die (struct die_info *, int max_level);
1686 static void store_in_ref_table (struct die_info *,
1687 struct dwarf2_cu *);
1689 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1691 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1693 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1694 const struct attribute *,
1695 struct dwarf2_cu **);
1697 static struct die_info *follow_die_ref (struct die_info *,
1698 const struct attribute *,
1699 struct dwarf2_cu **);
1701 static struct die_info *follow_die_sig (struct die_info *,
1702 const struct attribute *,
1703 struct dwarf2_cu **);
1705 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1706 struct dwarf2_cu *);
1708 static struct type *get_DW_AT_signature_type (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu *);
1712 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1714 static void read_signatured_type (struct signatured_type *);
1716 /* memory allocation interface */
1718 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1720 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1722 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1725 static int attr_form_is_block (const struct attribute *);
1727 static int attr_form_is_section_offset (const struct attribute *);
1729 static int attr_form_is_constant (const struct attribute *);
1731 static int attr_form_is_ref (const struct attribute *);
1733 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1734 struct dwarf2_loclist_baton *baton,
1735 const struct attribute *attr);
1737 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1739 struct dwarf2_cu *cu,
1742 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1743 const gdb_byte *info_ptr,
1744 struct abbrev_info *abbrev);
1746 static void free_stack_comp_unit (void *);
1748 static hashval_t partial_die_hash (const void *item);
1750 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1752 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1753 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1755 static void init_one_comp_unit (struct dwarf2_cu *cu,
1756 struct dwarf2_per_cu_data *per_cu);
1758 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1759 struct die_info *comp_unit_die,
1760 enum language pretend_language);
1762 static void free_heap_comp_unit (void *);
1764 static void free_cached_comp_units (void *);
1766 static void age_cached_comp_units (void);
1768 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1770 static struct type *set_die_type (struct die_info *, struct type *,
1771 struct dwarf2_cu *);
1773 static void create_all_comp_units (struct objfile *);
1775 static int create_all_type_units (struct objfile *);
1777 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1780 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1783 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1786 static void dwarf2_add_dependence (struct dwarf2_cu *,
1787 struct dwarf2_per_cu_data *);
1789 static void dwarf2_mark (struct dwarf2_cu *);
1791 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1793 static struct type *get_die_type_at_offset (sect_offset,
1794 struct dwarf2_per_cu_data *);
1796 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1798 static void dwarf2_release_queue (void *dummy);
1800 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1801 enum language pretend_language);
1803 static void process_queue (void);
1805 static void find_file_and_directory (struct die_info *die,
1806 struct dwarf2_cu *cu,
1807 const char **name, const char **comp_dir);
1809 static char *file_full_name (int file, struct line_header *lh,
1810 const char *comp_dir);
1812 static const gdb_byte *read_and_check_comp_unit_head
1813 (struct comp_unit_head *header,
1814 struct dwarf2_section_info *section,
1815 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1816 int is_debug_types_section);
1818 static void init_cutu_and_read_dies
1819 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1820 int use_existing_cu, int keep,
1821 die_reader_func_ftype *die_reader_func, void *data);
1823 static void init_cutu_and_read_dies_simple
1824 (struct dwarf2_per_cu_data *this_cu,
1825 die_reader_func_ftype *die_reader_func, void *data);
1827 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1829 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1831 static struct dwo_unit *lookup_dwo_unit_in_dwp
1832 (struct dwp_file *dwp_file, const char *comp_dir,
1833 ULONGEST signature, int is_debug_types);
1835 static struct dwp_file *get_dwp_file (void);
1837 static struct dwo_unit *lookup_dwo_comp_unit
1838 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1840 static struct dwo_unit *lookup_dwo_type_unit
1841 (struct signatured_type *, const char *, const char *);
1843 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1845 static void free_dwo_file_cleanup (void *);
1847 static void process_cu_includes (void);
1849 static void check_producer (struct dwarf2_cu *cu);
1851 /* Various complaints about symbol reading that don't abort the process. */
1854 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1856 complaint (&symfile_complaints,
1857 _("statement list doesn't fit in .debug_line section"));
1861 dwarf2_debug_line_missing_file_complaint (void)
1863 complaint (&symfile_complaints,
1864 _(".debug_line section has line data without a file"));
1868 dwarf2_debug_line_missing_end_sequence_complaint (void)
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line "
1872 "program sequence without an end"));
1876 dwarf2_complex_location_expr_complaint (void)
1878 complaint (&symfile_complaints, _("location expression too complex"));
1882 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1885 complaint (&symfile_complaints,
1886 _("const value length mismatch for '%s', got %d, expected %d"),
1891 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1893 complaint (&symfile_complaints,
1894 _("debug info runs off end of %s section"
1896 get_section_name (section),
1897 get_section_file_name (section));
1901 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1903 complaint (&symfile_complaints,
1904 _("macro debug info contains a "
1905 "malformed macro definition:\n`%s'"),
1910 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1912 complaint (&symfile_complaints,
1913 _("invalid attribute class or form for '%s' in '%s'"),
1919 /* Convert VALUE between big- and little-endian. */
1921 byte_swap (offset_type value)
1925 result = (value & 0xff) << 24;
1926 result |= (value & 0xff00) << 8;
1927 result |= (value & 0xff0000) >> 8;
1928 result |= (value & 0xff000000) >> 24;
1932 #define MAYBE_SWAP(V) byte_swap (V)
1935 #define MAYBE_SWAP(V) (V)
1936 #endif /* WORDS_BIGENDIAN */
1938 /* Read the given attribute value as an address, taking the attribute's
1939 form into account. */
1942 attr_value_as_address (struct attribute *attr)
1946 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1948 /* Aside from a few clearly defined exceptions, attributes that
1949 contain an address must always be in DW_FORM_addr form.
1950 Unfortunately, some compilers happen to be violating this
1951 requirement by encoding addresses using other forms, such
1952 as DW_FORM_data4 for example. For those broken compilers,
1953 we try to do our best, without any guarantee of success,
1954 to interpret the address correctly. It would also be nice
1955 to generate a complaint, but that would require us to maintain
1956 a list of legitimate cases where a non-address form is allowed,
1957 as well as update callers to pass in at least the CU's DWARF
1958 version. This is more overhead than what we're willing to
1959 expand for a pretty rare case. */
1960 addr = DW_UNSND (attr);
1963 addr = DW_ADDR (attr);
1968 /* The suffix for an index file. */
1969 #define INDEX_SUFFIX ".gdb-index"
1971 /* Try to locate the sections we need for DWARF 2 debugging
1972 information and return true if we have enough to do something.
1973 NAMES points to the dwarf2 section names, or is NULL if the standard
1974 ELF names are used. */
1977 dwarf2_has_info (struct objfile *objfile,
1978 const struct dwarf2_debug_sections *names)
1980 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1981 if (!dwarf2_per_objfile)
1983 /* Initialize per-objfile state. */
1984 struct dwarf2_per_objfile *data
1985 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1987 memset (data, 0, sizeof (*data));
1988 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1989 dwarf2_per_objfile = data;
1991 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1993 dwarf2_per_objfile->objfile = objfile;
1995 return (!dwarf2_per_objfile->info.is_virtual
1996 && dwarf2_per_objfile->info.s.asection != NULL
1997 && !dwarf2_per_objfile->abbrev.is_virtual
1998 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2001 /* Return the containing section of virtual section SECTION. */
2003 static struct dwarf2_section_info *
2004 get_containing_section (const struct dwarf2_section_info *section)
2006 gdb_assert (section->is_virtual);
2007 return section->s.containing_section;
2010 /* Return the bfd owner of SECTION. */
2013 get_section_bfd_owner (const struct dwarf2_section_info *section)
2015 if (section->is_virtual)
2017 section = get_containing_section (section);
2018 gdb_assert (!section->is_virtual);
2020 return section->s.asection->owner;
2023 /* Return the bfd section of SECTION.
2024 Returns NULL if the section is not present. */
2027 get_section_bfd_section (const struct dwarf2_section_info *section)
2029 if (section->is_virtual)
2031 section = get_containing_section (section);
2032 gdb_assert (!section->is_virtual);
2034 return section->s.asection;
2037 /* Return the name of SECTION. */
2040 get_section_name (const struct dwarf2_section_info *section)
2042 asection *sectp = get_section_bfd_section (section);
2044 gdb_assert (sectp != NULL);
2045 return bfd_section_name (get_section_bfd_owner (section), sectp);
2048 /* Return the name of the file SECTION is in. */
2051 get_section_file_name (const struct dwarf2_section_info *section)
2053 bfd *abfd = get_section_bfd_owner (section);
2055 return bfd_get_filename (abfd);
2058 /* Return the id of SECTION.
2059 Returns 0 if SECTION doesn't exist. */
2062 get_section_id (const struct dwarf2_section_info *section)
2064 asection *sectp = get_section_bfd_section (section);
2071 /* Return the flags of SECTION.
2072 SECTION (or containing section if this is a virtual section) must exist. */
2075 get_section_flags (const struct dwarf2_section_info *section)
2077 asection *sectp = get_section_bfd_section (section);
2079 gdb_assert (sectp != NULL);
2080 return bfd_get_section_flags (sectp->owner, sectp);
2083 /* When loading sections, we look either for uncompressed section or for
2084 compressed section names. */
2087 section_is_p (const char *section_name,
2088 const struct dwarf2_section_names *names)
2090 if (names->normal != NULL
2091 && strcmp (section_name, names->normal) == 0)
2093 if (names->compressed != NULL
2094 && strcmp (section_name, names->compressed) == 0)
2099 /* This function is mapped across the sections and remembers the
2100 offset and size of each of the debugging sections we are interested
2104 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2106 const struct dwarf2_debug_sections *names;
2107 flagword aflag = bfd_get_section_flags (abfd, sectp);
2110 names = &dwarf2_elf_names;
2112 names = (const struct dwarf2_debug_sections *) vnames;
2114 if ((aflag & SEC_HAS_CONTENTS) == 0)
2117 else if (section_is_p (sectp->name, &names->info))
2119 dwarf2_per_objfile->info.s.asection = sectp;
2120 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2122 else if (section_is_p (sectp->name, &names->abbrev))
2124 dwarf2_per_objfile->abbrev.s.asection = sectp;
2125 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2127 else if (section_is_p (sectp->name, &names->line))
2129 dwarf2_per_objfile->line.s.asection = sectp;
2130 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2132 else if (section_is_p (sectp->name, &names->loc))
2134 dwarf2_per_objfile->loc.s.asection = sectp;
2135 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2137 else if (section_is_p (sectp->name, &names->macinfo))
2139 dwarf2_per_objfile->macinfo.s.asection = sectp;
2140 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2142 else if (section_is_p (sectp->name, &names->macro))
2144 dwarf2_per_objfile->macro.s.asection = sectp;
2145 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2147 else if (section_is_p (sectp->name, &names->str))
2149 dwarf2_per_objfile->str.s.asection = sectp;
2150 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2152 else if (section_is_p (sectp->name, &names->addr))
2154 dwarf2_per_objfile->addr.s.asection = sectp;
2155 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2157 else if (section_is_p (sectp->name, &names->frame))
2159 dwarf2_per_objfile->frame.s.asection = sectp;
2160 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2162 else if (section_is_p (sectp->name, &names->eh_frame))
2164 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2165 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2167 else if (section_is_p (sectp->name, &names->ranges))
2169 dwarf2_per_objfile->ranges.s.asection = sectp;
2170 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2172 else if (section_is_p (sectp->name, &names->types))
2174 struct dwarf2_section_info type_section;
2176 memset (&type_section, 0, sizeof (type_section));
2177 type_section.s.asection = sectp;
2178 type_section.size = bfd_get_section_size (sectp);
2180 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2183 else if (section_is_p (sectp->name, &names->gdb_index))
2185 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2186 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2189 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2190 && bfd_section_vma (abfd, sectp) == 0)
2191 dwarf2_per_objfile->has_section_at_zero = 1;
2194 /* A helper function that decides whether a section is empty,
2198 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2200 if (section->is_virtual)
2201 return section->size == 0;
2202 return section->s.asection == NULL || section->size == 0;
2205 /* Read the contents of the section INFO.
2206 OBJFILE is the main object file, but not necessarily the file where
2207 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2209 If the section is compressed, uncompress it before returning. */
2212 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2216 gdb_byte *buf, *retbuf;
2220 info->buffer = NULL;
2223 if (dwarf2_section_empty_p (info))
2226 sectp = get_section_bfd_section (info);
2228 /* If this is a virtual section we need to read in the real one first. */
2229 if (info->is_virtual)
2231 struct dwarf2_section_info *containing_section =
2232 get_containing_section (info);
2234 gdb_assert (sectp != NULL);
2235 if ((sectp->flags & SEC_RELOC) != 0)
2237 error (_("Dwarf Error: DWP format V2 with relocations is not"
2238 " supported in section %s [in module %s]"),
2239 get_section_name (info), get_section_file_name (info));
2241 dwarf2_read_section (objfile, containing_section);
2242 /* Other code should have already caught virtual sections that don't
2244 gdb_assert (info->virtual_offset + info->size
2245 <= containing_section->size);
2246 /* If the real section is empty or there was a problem reading the
2247 section we shouldn't get here. */
2248 gdb_assert (containing_section->buffer != NULL);
2249 info->buffer = containing_section->buffer + info->virtual_offset;
2253 /* If the section has relocations, we must read it ourselves.
2254 Otherwise we attach it to the BFD. */
2255 if ((sectp->flags & SEC_RELOC) == 0)
2257 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2261 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2264 /* When debugging .o files, we may need to apply relocations; see
2265 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2266 We never compress sections in .o files, so we only need to
2267 try this when the section is not compressed. */
2268 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2271 info->buffer = retbuf;
2275 abfd = get_section_bfd_owner (info);
2276 gdb_assert (abfd != NULL);
2278 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2279 || bfd_bread (buf, info->size, abfd) != info->size)
2281 error (_("Dwarf Error: Can't read DWARF data"
2282 " in section %s [in module %s]"),
2283 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2287 /* A helper function that returns the size of a section in a safe way.
2288 If you are positive that the section has been read before using the
2289 size, then it is safe to refer to the dwarf2_section_info object's
2290 "size" field directly. In other cases, you must call this
2291 function, because for compressed sections the size field is not set
2292 correctly until the section has been read. */
2294 static bfd_size_type
2295 dwarf2_section_size (struct objfile *objfile,
2296 struct dwarf2_section_info *info)
2299 dwarf2_read_section (objfile, info);
2303 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2307 dwarf2_get_section_info (struct objfile *objfile,
2308 enum dwarf2_section_enum sect,
2309 asection **sectp, const gdb_byte **bufp,
2310 bfd_size_type *sizep)
2312 struct dwarf2_per_objfile *data
2313 = objfile_data (objfile, dwarf2_objfile_data_key);
2314 struct dwarf2_section_info *info;
2316 /* We may see an objfile without any DWARF, in which case we just
2327 case DWARF2_DEBUG_FRAME:
2328 info = &data->frame;
2330 case DWARF2_EH_FRAME:
2331 info = &data->eh_frame;
2334 gdb_assert_not_reached ("unexpected section");
2337 dwarf2_read_section (objfile, info);
2339 *sectp = get_section_bfd_section (info);
2340 *bufp = info->buffer;
2341 *sizep = info->size;
2344 /* A helper function to find the sections for a .dwz file. */
2347 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2349 struct dwz_file *dwz_file = arg;
2351 /* Note that we only support the standard ELF names, because .dwz
2352 is ELF-only (at the time of writing). */
2353 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2355 dwz_file->abbrev.s.asection = sectp;
2356 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2358 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2360 dwz_file->info.s.asection = sectp;
2361 dwz_file->info.size = bfd_get_section_size (sectp);
2363 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2365 dwz_file->str.s.asection = sectp;
2366 dwz_file->str.size = bfd_get_section_size (sectp);
2368 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2370 dwz_file->line.s.asection = sectp;
2371 dwz_file->line.size = bfd_get_section_size (sectp);
2373 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2375 dwz_file->macro.s.asection = sectp;
2376 dwz_file->macro.size = bfd_get_section_size (sectp);
2378 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2380 dwz_file->gdb_index.s.asection = sectp;
2381 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2385 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2386 there is no .gnu_debugaltlink section in the file. Error if there
2387 is such a section but the file cannot be found. */
2389 static struct dwz_file *
2390 dwarf2_get_dwz_file (void)
2394 struct cleanup *cleanup;
2395 const char *filename;
2396 struct dwz_file *result;
2397 bfd_size_type buildid_len_arg;
2401 if (dwarf2_per_objfile->dwz_file != NULL)
2402 return dwarf2_per_objfile->dwz_file;
2404 bfd_set_error (bfd_error_no_error);
2405 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2406 &buildid_len_arg, &buildid);
2409 if (bfd_get_error () == bfd_error_no_error)
2411 error (_("could not read '.gnu_debugaltlink' section: %s"),
2412 bfd_errmsg (bfd_get_error ()));
2414 cleanup = make_cleanup (xfree, data);
2415 make_cleanup (xfree, buildid);
2417 buildid_len = (size_t) buildid_len_arg;
2419 filename = (const char *) data;
2420 if (!IS_ABSOLUTE_PATH (filename))
2422 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2425 make_cleanup (xfree, abs);
2426 abs = ldirname (abs);
2427 make_cleanup (xfree, abs);
2429 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2430 make_cleanup (xfree, rel);
2434 /* First try the file name given in the section. If that doesn't
2435 work, try to use the build-id instead. */
2436 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2437 if (dwz_bfd != NULL)
2439 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2441 gdb_bfd_unref (dwz_bfd);
2446 if (dwz_bfd == NULL)
2447 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2449 if (dwz_bfd == NULL)
2450 error (_("could not find '.gnu_debugaltlink' file for %s"),
2451 objfile_name (dwarf2_per_objfile->objfile));
2453 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2455 result->dwz_bfd = dwz_bfd;
2457 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2459 do_cleanups (cleanup);
2461 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2462 dwarf2_per_objfile->dwz_file = result;
2466 /* DWARF quick_symbols_functions support. */
2468 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2469 unique line tables, so we maintain a separate table of all .debug_line
2470 derived entries to support the sharing.
2471 All the quick functions need is the list of file names. We discard the
2472 line_header when we're done and don't need to record it here. */
2473 struct quick_file_names
2475 /* The data used to construct the hash key. */
2476 struct stmt_list_hash hash;
2478 /* The number of entries in file_names, real_names. */
2479 unsigned int num_file_names;
2481 /* The file names from the line table, after being run through
2483 const char **file_names;
2485 /* The file names from the line table after being run through
2486 gdb_realpath. These are computed lazily. */
2487 const char **real_names;
2490 /* When using the index (and thus not using psymtabs), each CU has an
2491 object of this type. This is used to hold information needed by
2492 the various "quick" methods. */
2493 struct dwarf2_per_cu_quick_data
2495 /* The file table. This can be NULL if there was no file table
2496 or it's currently not read in.
2497 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2498 struct quick_file_names *file_names;
2500 /* The corresponding symbol table. This is NULL if symbols for this
2501 CU have not yet been read. */
2502 struct symtab *symtab;
2504 /* A temporary mark bit used when iterating over all CUs in
2505 expand_symtabs_matching. */
2506 unsigned int mark : 1;
2508 /* True if we've tried to read the file table and found there isn't one.
2509 There will be no point in trying to read it again next time. */
2510 unsigned int no_file_data : 1;
2513 /* Utility hash function for a stmt_list_hash. */
2516 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2520 if (stmt_list_hash->dwo_unit != NULL)
2521 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2522 v += stmt_list_hash->line_offset.sect_off;
2526 /* Utility equality function for a stmt_list_hash. */
2529 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2530 const struct stmt_list_hash *rhs)
2532 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2534 if (lhs->dwo_unit != NULL
2535 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2538 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2541 /* Hash function for a quick_file_names. */
2544 hash_file_name_entry (const void *e)
2546 const struct quick_file_names *file_data = e;
2548 return hash_stmt_list_entry (&file_data->hash);
2551 /* Equality function for a quick_file_names. */
2554 eq_file_name_entry (const void *a, const void *b)
2556 const struct quick_file_names *ea = a;
2557 const struct quick_file_names *eb = b;
2559 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2562 /* Delete function for a quick_file_names. */
2565 delete_file_name_entry (void *e)
2567 struct quick_file_names *file_data = e;
2570 for (i = 0; i < file_data->num_file_names; ++i)
2572 xfree ((void*) file_data->file_names[i]);
2573 if (file_data->real_names)
2574 xfree ((void*) file_data->real_names[i]);
2577 /* The space for the struct itself lives on objfile_obstack,
2578 so we don't free it here. */
2581 /* Create a quick_file_names hash table. */
2584 create_quick_file_names_table (unsigned int nr_initial_entries)
2586 return htab_create_alloc (nr_initial_entries,
2587 hash_file_name_entry, eq_file_name_entry,
2588 delete_file_name_entry, xcalloc, xfree);
2591 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2592 have to be created afterwards. You should call age_cached_comp_units after
2593 processing PER_CU->CU. dw2_setup must have been already called. */
2596 load_cu (struct dwarf2_per_cu_data *per_cu)
2598 if (per_cu->is_debug_types)
2599 load_full_type_unit (per_cu);
2601 load_full_comp_unit (per_cu, language_minimal);
2603 gdb_assert (per_cu->cu != NULL);
2605 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2608 /* Read in the symbols for PER_CU. */
2611 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2613 struct cleanup *back_to;
2615 /* Skip type_unit_groups, reading the type units they contain
2616 is handled elsewhere. */
2617 if (IS_TYPE_UNIT_GROUP (per_cu))
2620 back_to = make_cleanup (dwarf2_release_queue, NULL);
2622 if (dwarf2_per_objfile->using_index
2623 ? per_cu->v.quick->symtab == NULL
2624 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2626 queue_comp_unit (per_cu, language_minimal);
2629 /* If we just loaded a CU from a DWO, and we're working with an index
2630 that may badly handle TUs, load all the TUs in that DWO as well.
2631 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2632 if (!per_cu->is_debug_types
2633 && per_cu->cu->dwo_unit != NULL
2634 && dwarf2_per_objfile->index_table != NULL
2635 && dwarf2_per_objfile->index_table->version <= 7
2636 /* DWP files aren't supported yet. */
2637 && get_dwp_file () == NULL)
2638 queue_and_load_all_dwo_tus (per_cu);
2643 /* Age the cache, releasing compilation units that have not
2644 been used recently. */
2645 age_cached_comp_units ();
2647 do_cleanups (back_to);
2650 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2651 the objfile from which this CU came. Returns the resulting symbol
2654 static struct symtab *
2655 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2657 gdb_assert (dwarf2_per_objfile->using_index);
2658 if (!per_cu->v.quick->symtab)
2660 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2661 increment_reading_symtab ();
2662 dw2_do_instantiate_symtab (per_cu);
2663 process_cu_includes ();
2664 do_cleanups (back_to);
2666 return per_cu->v.quick->symtab;
2669 /* Return the CU/TU given its index.
2671 This is intended for loops like:
2673 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2674 + dwarf2_per_objfile->n_type_units); ++i)
2676 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2682 static struct dwarf2_per_cu_data *
2683 dw2_get_cutu (int index)
2685 if (index >= dwarf2_per_objfile->n_comp_units)
2687 index -= dwarf2_per_objfile->n_comp_units;
2688 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2689 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2692 return dwarf2_per_objfile->all_comp_units[index];
2695 /* Return the CU given its index.
2696 This differs from dw2_get_cutu in that it's for when you know INDEX
2699 static struct dwarf2_per_cu_data *
2700 dw2_get_cu (int index)
2702 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2704 return dwarf2_per_objfile->all_comp_units[index];
2707 /* A helper for create_cus_from_index that handles a given list of
2711 create_cus_from_index_list (struct objfile *objfile,
2712 const gdb_byte *cu_list, offset_type n_elements,
2713 struct dwarf2_section_info *section,
2719 for (i = 0; i < n_elements; i += 2)
2721 struct dwarf2_per_cu_data *the_cu;
2722 ULONGEST offset, length;
2724 gdb_static_assert (sizeof (ULONGEST) >= 8);
2725 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2726 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2729 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2730 struct dwarf2_per_cu_data);
2731 the_cu->offset.sect_off = offset;
2732 the_cu->length = length;
2733 the_cu->objfile = objfile;
2734 the_cu->section = section;
2735 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
2737 the_cu->is_dwz = is_dwz;
2738 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2742 /* Read the CU list from the mapped index, and use it to create all
2743 the CU objects for this objfile. */
2746 create_cus_from_index (struct objfile *objfile,
2747 const gdb_byte *cu_list, offset_type cu_list_elements,
2748 const gdb_byte *dwz_list, offset_type dwz_elements)
2750 struct dwz_file *dwz;
2752 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2753 dwarf2_per_objfile->all_comp_units
2754 = obstack_alloc (&objfile->objfile_obstack,
2755 dwarf2_per_objfile->n_comp_units
2756 * sizeof (struct dwarf2_per_cu_data *));
2758 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2759 &dwarf2_per_objfile->info, 0, 0);
2761 if (dwz_elements == 0)
2764 dwz = dwarf2_get_dwz_file ();
2765 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2766 cu_list_elements / 2);
2769 /* Create the signatured type hash table from the index. */
2772 create_signatured_type_table_from_index (struct objfile *objfile,
2773 struct dwarf2_section_info *section,
2774 const gdb_byte *bytes,
2775 offset_type elements)
2778 htab_t sig_types_hash;
2780 dwarf2_per_objfile->n_type_units
2781 = dwarf2_per_objfile->n_allocated_type_units
2783 dwarf2_per_objfile->all_type_units
2784 = xmalloc (dwarf2_per_objfile->n_type_units
2785 * sizeof (struct signatured_type *));
2787 sig_types_hash = allocate_signatured_type_table (objfile);
2789 for (i = 0; i < elements; i += 3)
2791 struct signatured_type *sig_type;
2792 ULONGEST offset, type_offset_in_tu, signature;
2795 gdb_static_assert (sizeof (ULONGEST) >= 8);
2796 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2797 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2799 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2803 struct signatured_type);
2804 sig_type->signature = signature;
2805 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2806 sig_type->per_cu.is_debug_types = 1;
2807 sig_type->per_cu.section = section;
2808 sig_type->per_cu.offset.sect_off = offset;
2809 sig_type->per_cu.objfile = objfile;
2810 sig_type->per_cu.v.quick
2811 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct dwarf2_per_cu_quick_data);
2814 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2817 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2820 dwarf2_per_objfile->signatured_types = sig_types_hash;
2823 /* Read the address map data from the mapped index, and use it to
2824 populate the objfile's psymtabs_addrmap. */
2827 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2829 const gdb_byte *iter, *end;
2830 struct obstack temp_obstack;
2831 struct addrmap *mutable_map;
2832 struct cleanup *cleanup;
2835 obstack_init (&temp_obstack);
2836 cleanup = make_cleanup_obstack_free (&temp_obstack);
2837 mutable_map = addrmap_create_mutable (&temp_obstack);
2839 iter = index->address_table;
2840 end = iter + index->address_table_size;
2842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2846 ULONGEST hi, lo, cu_index;
2847 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2849 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2851 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2856 complaint (&symfile_complaints,
2857 _(".gdb_index address table has invalid range (%s - %s)"),
2858 hex_string (lo), hex_string (hi));
2862 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2864 complaint (&symfile_complaints,
2865 _(".gdb_index address table has invalid CU number %u"),
2866 (unsigned) cu_index);
2870 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2871 dw2_get_cutu (cu_index));
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2879 /* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2888 mapped_index_string_hash (int index_version, const void *p)
2890 const unsigned char *str = (const unsigned char *) p;
2894 while ((c = *str++) != 0)
2896 if (index_version >= 5)
2898 r = r * 67 + c - 113;
2904 /* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2909 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2914 offset_type slot, step;
2915 int (*cmp) (const char *, const char *);
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2923 const char *paren = strchr (name, '(');
2929 dup = xmalloc (paren - name + 1);
2930 memcpy (dup, name, paren - name);
2931 dup[paren - name] = 0;
2933 make_cleanup (xfree, dup);
2938 /* Index version 4 did not support case insensitive searches. But the
2939 indices for case insensitive languages are built in lowercase, therefore
2940 simulate our NAME being searched is also lowercased. */
2941 hash = mapped_index_string_hash ((index->version == 4
2942 && case_sensitivity == case_sensitive_off
2943 ? 5 : index->version),
2946 slot = hash & (index->symbol_table_slots - 1);
2947 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2948 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2952 /* Convert a slot number to an offset into the table. */
2953 offset_type i = 2 * slot;
2955 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2957 do_cleanups (back_to);
2961 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2962 if (!cmp (name, str))
2964 *vec_out = (offset_type *) (index->constant_pool
2965 + MAYBE_SWAP (index->symbol_table[i + 1]));
2966 do_cleanups (back_to);
2970 slot = (slot + step) & (index->symbol_table_slots - 1);
2974 /* A helper function that reads the .gdb_index from SECTION and fills
2975 in MAP. FILENAME is the name of the file containing the section;
2976 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2977 ok to use deprecated sections.
2979 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2980 out parameters that are filled in with information about the CU and
2981 TU lists in the section.
2983 Returns 1 if all went well, 0 otherwise. */
2986 read_index_from_section (struct objfile *objfile,
2987 const char *filename,
2989 struct dwarf2_section_info *section,
2990 struct mapped_index *map,
2991 const gdb_byte **cu_list,
2992 offset_type *cu_list_elements,
2993 const gdb_byte **types_list,
2994 offset_type *types_list_elements)
2996 const gdb_byte *addr;
2997 offset_type version;
2998 offset_type *metadata;
3001 if (dwarf2_section_empty_p (section))
3004 /* Older elfutils strip versions could keep the section in the main
3005 executable while splitting it for the separate debug info file. */
3006 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3009 dwarf2_read_section (objfile, section);
3011 addr = section->buffer;
3012 /* Version check. */
3013 version = MAYBE_SWAP (*(offset_type *) addr);
3014 /* Versions earlier than 3 emitted every copy of a psymbol. This
3015 causes the index to behave very poorly for certain requests. Version 3
3016 contained incomplete addrmap. So, it seems better to just ignore such
3020 static int warning_printed = 0;
3021 if (!warning_printed)
3023 warning (_("Skipping obsolete .gdb_index section in %s."),
3025 warning_printed = 1;
3029 /* Index version 4 uses a different hash function than index version
3032 Versions earlier than 6 did not emit psymbols for inlined
3033 functions. Using these files will cause GDB not to be able to
3034 set breakpoints on inlined functions by name, so we ignore these
3035 indices unless the user has done
3036 "set use-deprecated-index-sections on". */
3037 if (version < 6 && !deprecated_ok)
3039 static int warning_printed = 0;
3040 if (!warning_printed)
3043 Skipping deprecated .gdb_index section in %s.\n\
3044 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3045 to use the section anyway."),
3047 warning_printed = 1;
3051 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3052 of the TU (for symbols coming from TUs),
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3054 Plus gold-generated indices can have duplicate entries for global symbols,
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3056 These are just performance bugs, and we can't distinguish gdb-generated
3057 indices from gold-generated ones, so issue no warning here. */
3059 /* Indexes with higher version than the one supported by GDB may be no
3060 longer backward compatible. */
3064 map->version = version;
3065 map->total_size = section->size;
3067 metadata = (offset_type *) (addr + sizeof (offset_type));
3070 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3071 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3075 *types_list = addr + MAYBE_SWAP (metadata[i]);
3076 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3077 - MAYBE_SWAP (metadata[i]))
3081 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3082 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3083 - MAYBE_SWAP (metadata[i]));
3086 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3087 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3088 - MAYBE_SWAP (metadata[i]))
3089 / (2 * sizeof (offset_type)));
3092 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3098 /* Read the index file. If everything went ok, initialize the "quick"
3099 elements of all the CUs and return 1. Otherwise, return 0. */
3102 dwarf2_read_index (struct objfile *objfile)
3104 struct mapped_index local_map, *map;
3105 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3106 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3107 struct dwz_file *dwz;
3109 if (!read_index_from_section (objfile, objfile_name (objfile),
3110 use_deprecated_index_sections,
3111 &dwarf2_per_objfile->gdb_index, &local_map,
3112 &cu_list, &cu_list_elements,
3113 &types_list, &types_list_elements))
3116 /* Don't use the index if it's empty. */
3117 if (local_map.symbol_table_slots == 0)
3120 /* If there is a .dwz file, read it so we can get its CU list as
3122 dwz = dwarf2_get_dwz_file ();
3125 struct mapped_index dwz_map;
3126 const gdb_byte *dwz_types_ignore;
3127 offset_type dwz_types_elements_ignore;
3129 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3131 &dwz->gdb_index, &dwz_map,
3132 &dwz_list, &dwz_list_elements,
3134 &dwz_types_elements_ignore))
3136 warning (_("could not read '.gdb_index' section from %s; skipping"),
3137 bfd_get_filename (dwz->dwz_bfd));
3142 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3145 if (types_list_elements)
3147 struct dwarf2_section_info *section;
3149 /* We can only handle a single .debug_types when we have an
3151 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3154 section = VEC_index (dwarf2_section_info_def,
3155 dwarf2_per_objfile->types, 0);
3157 create_signatured_type_table_from_index (objfile, section, types_list,
3158 types_list_elements);
3161 create_addrmap_from_index (objfile, &local_map);
3163 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3166 dwarf2_per_objfile->index_table = map;
3167 dwarf2_per_objfile->using_index = 1;
3168 dwarf2_per_objfile->quick_file_names_table =
3169 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3174 /* A helper for the "quick" functions which sets the global
3175 dwarf2_per_objfile according to OBJFILE. */
3178 dw2_setup (struct objfile *objfile)
3180 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3181 gdb_assert (dwarf2_per_objfile);
3184 /* die_reader_func for dw2_get_file_names. */
3187 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3188 const gdb_byte *info_ptr,
3189 struct die_info *comp_unit_die,
3193 struct dwarf2_cu *cu = reader->cu;
3194 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3195 struct objfile *objfile = dwarf2_per_objfile->objfile;
3196 struct dwarf2_per_cu_data *lh_cu;
3197 struct line_header *lh;
3198 struct attribute *attr;
3200 const char *name, *comp_dir;
3202 struct quick_file_names *qfn;
3203 unsigned int line_offset;
3205 gdb_assert (! this_cu->is_debug_types);
3207 /* Our callers never want to match partial units -- instead they
3208 will match the enclosing full CU. */
3209 if (comp_unit_die->tag == DW_TAG_partial_unit)
3211 this_cu->v.quick->no_file_data = 1;
3220 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3223 struct quick_file_names find_entry;
3225 line_offset = DW_UNSND (attr);
3227 /* We may have already read in this line header (TU line header sharing).
3228 If we have we're done. */
3229 find_entry.hash.dwo_unit = cu->dwo_unit;
3230 find_entry.hash.line_offset.sect_off = line_offset;
3231 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3232 &find_entry, INSERT);
3235 lh_cu->v.quick->file_names = *slot;
3239 lh = dwarf_decode_line_header (line_offset, cu);
3243 lh_cu->v.quick->no_file_data = 1;
3247 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3248 qfn->hash.dwo_unit = cu->dwo_unit;
3249 qfn->hash.line_offset.sect_off = line_offset;
3250 gdb_assert (slot != NULL);
3253 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3255 qfn->num_file_names = lh->num_file_names;
3256 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3257 lh->num_file_names * sizeof (char *));
3258 for (i = 0; i < lh->num_file_names; ++i)
3259 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3260 qfn->real_names = NULL;
3262 free_line_header (lh);
3264 lh_cu->v.quick->file_names = qfn;
3267 /* A helper for the "quick" functions which attempts to read the line
3268 table for THIS_CU. */
3270 static struct quick_file_names *
3271 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3273 /* This should never be called for TUs. */
3274 gdb_assert (! this_cu->is_debug_types);
3275 /* Nor type unit groups. */
3276 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3278 if (this_cu->v.quick->file_names != NULL)
3279 return this_cu->v.quick->file_names;
3280 /* If we know there is no line data, no point in looking again. */
3281 if (this_cu->v.quick->no_file_data)
3284 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3286 if (this_cu->v.quick->no_file_data)
3288 return this_cu->v.quick->file_names;
3291 /* A helper for the "quick" functions which computes and caches the
3292 real path for a given file name from the line table. */
3295 dw2_get_real_path (struct objfile *objfile,
3296 struct quick_file_names *qfn, int index)
3298 if (qfn->real_names == NULL)
3299 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3300 qfn->num_file_names, const char *);
3302 if (qfn->real_names[index] == NULL)
3303 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3305 return qfn->real_names[index];
3308 static struct symtab *
3309 dw2_find_last_source_symtab (struct objfile *objfile)
3313 dw2_setup (objfile);
3314 index = dwarf2_per_objfile->n_comp_units - 1;
3315 return dw2_instantiate_symtab (dw2_get_cutu (index));
3318 /* Traversal function for dw2_forget_cached_source_info. */
3321 dw2_free_cached_file_names (void **slot, void *info)
3323 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3325 if (file_data->real_names)
3329 for (i = 0; i < file_data->num_file_names; ++i)
3331 xfree ((void*) file_data->real_names[i]);
3332 file_data->real_names[i] = NULL;
3340 dw2_forget_cached_source_info (struct objfile *objfile)
3342 dw2_setup (objfile);
3344 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3345 dw2_free_cached_file_names, NULL);
3348 /* Helper function for dw2_map_symtabs_matching_filename that expands
3349 the symtabs and calls the iterator. */
3352 dw2_map_expand_apply (struct objfile *objfile,
3353 struct dwarf2_per_cu_data *per_cu,
3354 const char *name, const char *real_path,
3355 int (*callback) (struct symtab *, void *),
3358 struct symtab *last_made = objfile->symtabs;
3360 /* Don't visit already-expanded CUs. */
3361 if (per_cu->v.quick->symtab)
3364 /* This may expand more than one symtab, and we want to iterate over
3366 dw2_instantiate_symtab (per_cu);
3368 return iterate_over_some_symtabs (name, real_path, callback, data,
3369 objfile->symtabs, last_made);
3372 /* Implementation of the map_symtabs_matching_filename method. */
3375 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3376 const char *real_path,
3377 int (*callback) (struct symtab *, void *),
3381 const char *name_basename = lbasename (name);
3383 dw2_setup (objfile);
3385 /* The rule is CUs specify all the files, including those used by
3386 any TU, so there's no need to scan TUs here. */
3388 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3391 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3392 struct quick_file_names *file_data;
3394 /* We only need to look at symtabs not already expanded. */
3395 if (per_cu->v.quick->symtab)
3398 file_data = dw2_get_file_names (per_cu);
3399 if (file_data == NULL)
3402 for (j = 0; j < file_data->num_file_names; ++j)
3404 const char *this_name = file_data->file_names[j];
3405 const char *this_real_name;
3407 if (compare_filenames_for_search (this_name, name))
3409 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3415 /* Before we invoke realpath, which can get expensive when many
3416 files are involved, do a quick comparison of the basenames. */
3417 if (! basenames_may_differ
3418 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3421 this_real_name = dw2_get_real_path (objfile, file_data, j);
3422 if (compare_filenames_for_search (this_real_name, name))
3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3430 if (real_path != NULL)
3432 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3433 gdb_assert (IS_ABSOLUTE_PATH (name));
3434 if (this_real_name != NULL
3435 && FILENAME_CMP (real_path, this_real_name) == 0)
3437 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3449 /* Struct used to manage iterating over all CUs looking for a symbol. */
3451 struct dw2_symtab_iterator
3453 /* The internalized form of .gdb_index. */
3454 struct mapped_index *index;
3455 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3456 int want_specific_block;
3457 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3458 Unused if !WANT_SPECIFIC_BLOCK. */
3460 /* The kind of symbol we're looking for. */
3462 /* The list of CUs from the index entry of the symbol,
3463 or NULL if not found. */
3465 /* The next element in VEC to look at. */
3467 /* The number of elements in VEC, or zero if there is no match. */
3469 /* Have we seen a global version of the symbol?
3470 If so we can ignore all further global instances.
3471 This is to work around gold/15646, inefficient gold-generated
3476 /* Initialize the index symtab iterator ITER.
3477 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3478 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3481 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3482 struct mapped_index *index,
3483 int want_specific_block,
3488 iter->index = index;
3489 iter->want_specific_block = want_specific_block;
3490 iter->block_index = block_index;
3491 iter->domain = domain;
3493 iter->global_seen = 0;
3495 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3496 iter->length = MAYBE_SWAP (*iter->vec);
3504 /* Return the next matching CU or NULL if there are no more. */
3506 static struct dwarf2_per_cu_data *
3507 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3509 for ( ; iter->next < iter->length; ++iter->next)
3511 offset_type cu_index_and_attrs =
3512 MAYBE_SWAP (iter->vec[iter->next + 1]);
3513 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3514 struct dwarf2_per_cu_data *per_cu;
3515 int want_static = iter->block_index != GLOBAL_BLOCK;
3516 /* This value is only valid for index versions >= 7. */
3517 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3518 gdb_index_symbol_kind symbol_kind =
3519 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3520 /* Only check the symbol attributes if they're present.
3521 Indices prior to version 7 don't record them,
3522 and indices >= 7 may elide them for certain symbols
3523 (gold does this). */
3525 (iter->index->version >= 7
3526 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3528 /* Don't crash on bad data. */
3529 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3530 + dwarf2_per_objfile->n_type_units))
3532 complaint (&symfile_complaints,
3533 _(".gdb_index entry has bad CU index"
3535 objfile_name (dwarf2_per_objfile->objfile));
3539 per_cu = dw2_get_cutu (cu_index);
3541 /* Skip if already read in. */
3542 if (per_cu->v.quick->symtab)
3545 /* Check static vs global. */
3548 if (iter->want_specific_block
3549 && want_static != is_static)
3551 /* Work around gold/15646. */
3552 if (!is_static && iter->global_seen)
3555 iter->global_seen = 1;
3558 /* Only check the symbol's kind if it has one. */
3561 switch (iter->domain)
3564 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3566 /* Some types are also in VAR_DOMAIN. */
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3571 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3575 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3590 static struct symtab *
3591 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3592 const char *name, domain_enum domain)
3594 struct symtab *stab_best = NULL;
3595 struct mapped_index *index;
3597 dw2_setup (objfile);
3599 index = dwarf2_per_objfile->index_table;
3601 /* index is NULL if OBJF_READNOW. */
3604 struct dw2_symtab_iterator iter;
3605 struct dwarf2_per_cu_data *per_cu;
3607 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3609 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3611 struct symbol *sym = NULL;
3612 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3614 /* Some caution must be observed with overloaded functions
3615 and methods, since the index will not contain any overload
3616 information (but NAME might contain it). */
3619 const struct blockvector *bv = BLOCKVECTOR (stab);
3620 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3622 sym = lookup_block_symbol (block, name, domain);
3625 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3627 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3633 /* Keep looking through other CUs. */
3641 dw2_print_stats (struct objfile *objfile)
3643 int i, total, count;
3645 dw2_setup (objfile);
3646 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3648 for (i = 0; i < total; ++i)
3650 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3652 if (!per_cu->v.quick->symtab)
3655 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3656 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3659 /* This dumps minimal information about the index.
3660 It is called via "mt print objfiles".
3661 One use is to verify .gdb_index has been loaded by the
3662 gdb.dwarf2/gdb-index.exp testcase. */
3665 dw2_dump (struct objfile *objfile)
3667 dw2_setup (objfile);
3668 gdb_assert (dwarf2_per_objfile->using_index);
3669 printf_filtered (".gdb_index:");
3670 if (dwarf2_per_objfile->index_table != NULL)
3672 printf_filtered (" version %d\n",
3673 dwarf2_per_objfile->index_table->version);
3676 printf_filtered (" faked for \"readnow\"\n");
3677 printf_filtered ("\n");
3681 dw2_relocate (struct objfile *objfile,
3682 const struct section_offsets *new_offsets,
3683 const struct section_offsets *delta)
3685 /* There's nothing to relocate here. */
3689 dw2_expand_symtabs_for_function (struct objfile *objfile,
3690 const char *func_name)
3692 struct mapped_index *index;
3694 dw2_setup (objfile);
3696 index = dwarf2_per_objfile->index_table;
3698 /* index is NULL if OBJF_READNOW. */
3701 struct dw2_symtab_iterator iter;
3702 struct dwarf2_per_cu_data *per_cu;
3704 /* Note: It doesn't matter what we pass for block_index here. */
3705 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3708 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3709 dw2_instantiate_symtab (per_cu);
3714 dw2_expand_all_symtabs (struct objfile *objfile)
3718 dw2_setup (objfile);
3720 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3721 + dwarf2_per_objfile->n_type_units); ++i)
3723 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3725 dw2_instantiate_symtab (per_cu);
3730 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3731 const char *fullname)
3735 dw2_setup (objfile);
3737 /* We don't need to consider type units here.
3738 This is only called for examining code, e.g. expand_line_sal.
3739 There can be an order of magnitude (or more) more type units
3740 than comp units, and we avoid them if we can. */
3742 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3746 struct quick_file_names *file_data;
3748 /* We only need to look at symtabs not already expanded. */
3749 if (per_cu->v.quick->symtab)
3752 file_data = dw2_get_file_names (per_cu);
3753 if (file_data == NULL)
3756 for (j = 0; j < file_data->num_file_names; ++j)
3758 const char *this_fullname = file_data->file_names[j];
3760 if (filename_cmp (this_fullname, fullname) == 0)
3762 dw2_instantiate_symtab (per_cu);
3770 dw2_map_matching_symbols (struct objfile *objfile,
3771 const char * name, domain_enum namespace,
3773 int (*callback) (struct block *,
3774 struct symbol *, void *),
3775 void *data, symbol_compare_ftype *match,
3776 symbol_compare_ftype *ordered_compare)
3778 /* Currently unimplemented; used for Ada. The function can be called if the
3779 current language is Ada for a non-Ada objfile using GNU index. As Ada
3780 does not look for non-Ada symbols this function should just return. */
3784 dw2_expand_symtabs_matching
3785 (struct objfile *objfile,
3786 expand_symtabs_file_matcher_ftype *file_matcher,
3787 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3788 enum search_domain kind,
3793 struct mapped_index *index;
3795 dw2_setup (objfile);
3797 /* index_table is NULL if OBJF_READNOW. */
3798 if (!dwarf2_per_objfile->index_table)
3800 index = dwarf2_per_objfile->index_table;
3802 if (file_matcher != NULL)
3804 struct cleanup *cleanup;
3805 htab_t visited_found, visited_not_found;
3807 visited_found = htab_create_alloc (10,
3808 htab_hash_pointer, htab_eq_pointer,
3809 NULL, xcalloc, xfree);
3810 cleanup = make_cleanup_htab_delete (visited_found);
3811 visited_not_found = htab_create_alloc (10,
3812 htab_hash_pointer, htab_eq_pointer,
3813 NULL, xcalloc, xfree);
3814 make_cleanup_htab_delete (visited_not_found);
3816 /* The rule is CUs specify all the files, including those used by
3817 any TU, so there's no need to scan TUs here. */
3819 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3822 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3823 struct quick_file_names *file_data;
3826 per_cu->v.quick->mark = 0;
3828 /* We only need to look at symtabs not already expanded. */
3829 if (per_cu->v.quick->symtab)
3832 file_data = dw2_get_file_names (per_cu);
3833 if (file_data == NULL)
3836 if (htab_find (visited_not_found, file_data) != NULL)
3838 else if (htab_find (visited_found, file_data) != NULL)
3840 per_cu->v.quick->mark = 1;
3844 for (j = 0; j < file_data->num_file_names; ++j)
3846 const char *this_real_name;
3848 if (file_matcher (file_data->file_names[j], data, 0))
3850 per_cu->v.quick->mark = 1;
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (!basenames_may_differ
3857 && !file_matcher (lbasename (file_data->file_names[j]),
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (file_matcher (this_real_name, data, 0))
3864 per_cu->v.quick->mark = 1;
3869 slot = htab_find_slot (per_cu->v.quick->mark
3871 : visited_not_found,
3876 do_cleanups (cleanup);
3879 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3881 offset_type idx = 2 * iter;
3883 offset_type *vec, vec_len, vec_idx;
3884 int global_seen = 0;
3886 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3889 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3891 if (! (*symbol_matcher) (name, data))
3894 /* The name was matched, now expand corresponding CUs that were
3896 vec = (offset_type *) (index->constant_pool
3897 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3898 vec_len = MAYBE_SWAP (vec[0]);
3899 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3901 struct dwarf2_per_cu_data *per_cu;
3902 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3903 /* This value is only valid for index versions >= 7. */
3904 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3905 gdb_index_symbol_kind symbol_kind =
3906 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3907 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3908 /* Only check the symbol attributes if they're present.
3909 Indices prior to version 7 don't record them,
3910 and indices >= 7 may elide them for certain symbols
3911 (gold does this). */
3913 (index->version >= 7
3914 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3916 /* Work around gold/15646. */
3919 if (!is_static && global_seen)
3925 /* Only check the symbol's kind if it has one. */
3930 case VARIABLES_DOMAIN:
3931 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3934 case FUNCTIONS_DOMAIN:
3935 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3939 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3947 /* Don't crash on bad data. */
3948 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3949 + dwarf2_per_objfile->n_type_units))
3951 complaint (&symfile_complaints,
3952 _(".gdb_index entry has bad CU index"
3953 " [in module %s]"), objfile_name (objfile));
3957 per_cu = dw2_get_cutu (cu_index);
3958 if (file_matcher == NULL || per_cu->v.quick->mark)
3959 dw2_instantiate_symtab (per_cu);
3964 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3967 static struct symtab *
3968 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3972 if (BLOCKVECTOR (symtab) != NULL
3973 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3976 if (symtab->includes == NULL)
3979 for (i = 0; symtab->includes[i]; ++i)
3981 struct symtab *s = symtab->includes[i];
3983 s = recursively_find_pc_sect_symtab (s, pc);
3991 static struct symtab *
3992 dw2_find_pc_sect_symtab (struct objfile *objfile,
3993 struct bound_minimal_symbol msymbol,
3995 struct obj_section *section,
3998 struct dwarf2_per_cu_data *data;
3999 struct symtab *result;
4001 dw2_setup (objfile);
4003 if (!objfile->psymtabs_addrmap)
4006 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4010 if (warn_if_readin && data->v.quick->symtab)
4011 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4012 paddress (get_objfile_arch (objfile), pc));
4014 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4015 gdb_assert (result != NULL);
4020 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4021 void *data, int need_fullname)
4024 struct cleanup *cleanup;
4025 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4026 NULL, xcalloc, xfree);
4028 cleanup = make_cleanup_htab_delete (visited);
4029 dw2_setup (objfile);
4031 /* The rule is CUs specify all the files, including those used by
4032 any TU, so there's no need to scan TUs here.
4033 We can ignore file names coming from already-expanded CUs. */
4035 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4037 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4039 if (per_cu->v.quick->symtab)
4041 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4044 *slot = per_cu->v.quick->file_names;
4048 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4051 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4052 struct quick_file_names *file_data;
4055 /* We only need to look at symtabs not already expanded. */
4056 if (per_cu->v.quick->symtab)
4059 file_data = dw2_get_file_names (per_cu);
4060 if (file_data == NULL)
4063 slot = htab_find_slot (visited, file_data, INSERT);
4066 /* Already visited. */
4071 for (j = 0; j < file_data->num_file_names; ++j)
4073 const char *this_real_name;
4076 this_real_name = dw2_get_real_path (objfile, file_data, j);
4078 this_real_name = NULL;
4079 (*fun) (file_data->file_names[j], this_real_name, data);
4083 do_cleanups (cleanup);
4087 dw2_has_symbols (struct objfile *objfile)
4092 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4095 dw2_find_last_source_symtab,
4096 dw2_forget_cached_source_info,
4097 dw2_map_symtabs_matching_filename,
4102 dw2_expand_symtabs_for_function,
4103 dw2_expand_all_symtabs,
4104 dw2_expand_symtabs_with_fullname,
4105 dw2_map_matching_symbols,
4106 dw2_expand_symtabs_matching,
4107 dw2_find_pc_sect_symtab,
4108 dw2_map_symbol_filenames
4111 /* Initialize for reading DWARF for this objfile. Return 0 if this
4112 file will use psymtabs, or 1 if using the GNU index. */
4115 dwarf2_initialize_objfile (struct objfile *objfile)
4117 /* If we're about to read full symbols, don't bother with the
4118 indices. In this case we also don't care if some other debug
4119 format is making psymtabs, because they are all about to be
4121 if ((objfile->flags & OBJF_READNOW))
4125 dwarf2_per_objfile->using_index = 1;
4126 create_all_comp_units (objfile);
4127 create_all_type_units (objfile);
4128 dwarf2_per_objfile->quick_file_names_table =
4129 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4131 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4132 + dwarf2_per_objfile->n_type_units); ++i)
4134 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4136 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4137 struct dwarf2_per_cu_quick_data);
4140 /* Return 1 so that gdb sees the "quick" functions. However,
4141 these functions will be no-ops because we will have expanded
4146 if (dwarf2_read_index (objfile))
4154 /* Build a partial symbol table. */
4157 dwarf2_build_psymtabs (struct objfile *objfile)
4159 volatile struct gdb_exception except;
4161 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4163 init_psymbol_list (objfile, 1024);
4166 TRY_CATCH (except, RETURN_MASK_ERROR)
4168 /* This isn't really ideal: all the data we allocate on the
4169 objfile's obstack is still uselessly kept around. However,
4170 freeing it seems unsafe. */
4171 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4173 dwarf2_build_psymtabs_hard (objfile);
4174 discard_cleanups (cleanups);
4176 if (except.reason < 0)
4177 exception_print (gdb_stderr, except);
4180 /* Return the total length of the CU described by HEADER. */
4183 get_cu_length (const struct comp_unit_head *header)
4185 return header->initial_length_size + header->length;
4188 /* Return TRUE if OFFSET is within CU_HEADER. */
4191 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4193 sect_offset bottom = { cu_header->offset.sect_off };
4194 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4196 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4199 /* Find the base address of the compilation unit for range lists and
4200 location lists. It will normally be specified by DW_AT_low_pc.
4201 In DWARF-3 draft 4, the base address could be overridden by
4202 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4203 compilation units with discontinuous ranges. */
4206 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4208 struct attribute *attr;
4211 cu->base_address = 0;
4213 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4216 cu->base_address = attr_value_as_address (attr);
4221 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4224 cu->base_address = attr_value_as_address (attr);
4230 /* Read in the comp unit header information from the debug_info at info_ptr.
4231 NOTE: This leaves members offset, first_die_offset to be filled in
4234 static const gdb_byte *
4235 read_comp_unit_head (struct comp_unit_head *cu_header,
4236 const gdb_byte *info_ptr, bfd *abfd)
4239 unsigned int bytes_read;
4241 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4242 cu_header->initial_length_size = bytes_read;
4243 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4244 info_ptr += bytes_read;
4245 cu_header->version = read_2_bytes (abfd, info_ptr);
4247 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4249 info_ptr += bytes_read;
4250 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4252 signed_addr = bfd_get_sign_extend_vma (abfd);
4253 if (signed_addr < 0)
4254 internal_error (__FILE__, __LINE__,
4255 _("read_comp_unit_head: dwarf from non elf file"));
4256 cu_header->signed_addr_p = signed_addr;
4261 /* Helper function that returns the proper abbrev section for
4264 static struct dwarf2_section_info *
4265 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4267 struct dwarf2_section_info *abbrev;
4269 if (this_cu->is_dwz)
4270 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4272 abbrev = &dwarf2_per_objfile->abbrev;
4277 /* Subroutine of read_and_check_comp_unit_head and
4278 read_and_check_type_unit_head to simplify them.
4279 Perform various error checking on the header. */
4282 error_check_comp_unit_head (struct comp_unit_head *header,
4283 struct dwarf2_section_info *section,
4284 struct dwarf2_section_info *abbrev_section)
4286 bfd *abfd = get_section_bfd_owner (section);
4287 const char *filename = get_section_file_name (section);
4289 if (header->version != 2 && header->version != 3 && header->version != 4)
4290 error (_("Dwarf Error: wrong version in compilation unit header "
4291 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4294 if (header->abbrev_offset.sect_off
4295 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4296 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4297 "(offset 0x%lx + 6) [in module %s]"),
4298 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4301 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4302 avoid potential 32-bit overflow. */
4303 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4305 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4306 "(offset 0x%lx + 0) [in module %s]"),
4307 (long) header->length, (long) header->offset.sect_off,
4311 /* Read in a CU/TU header and perform some basic error checking.
4312 The contents of the header are stored in HEADER.
4313 The result is a pointer to the start of the first DIE. */
4315 static const gdb_byte *
4316 read_and_check_comp_unit_head (struct comp_unit_head *header,
4317 struct dwarf2_section_info *section,
4318 struct dwarf2_section_info *abbrev_section,
4319 const gdb_byte *info_ptr,
4320 int is_debug_types_section)
4322 const gdb_byte *beg_of_comp_unit = info_ptr;
4323 bfd *abfd = get_section_bfd_owner (section);
4325 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4327 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4329 /* If we're reading a type unit, skip over the signature and
4330 type_offset fields. */
4331 if (is_debug_types_section)
4332 info_ptr += 8 /*signature*/ + header->offset_size;
4334 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4336 error_check_comp_unit_head (header, section, abbrev_section);
4341 /* Read in the types comp unit header information from .debug_types entry at
4342 types_ptr. The result is a pointer to one past the end of the header. */
4344 static const gdb_byte *
4345 read_and_check_type_unit_head (struct comp_unit_head *header,
4346 struct dwarf2_section_info *section,
4347 struct dwarf2_section_info *abbrev_section,
4348 const gdb_byte *info_ptr,
4349 ULONGEST *signature,
4350 cu_offset *type_offset_in_tu)
4352 const gdb_byte *beg_of_comp_unit = info_ptr;
4353 bfd *abfd = get_section_bfd_owner (section);
4355 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4357 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4359 /* If we're reading a type unit, skip over the signature and
4360 type_offset fields. */
4361 if (signature != NULL)
4362 *signature = read_8_bytes (abfd, info_ptr);
4364 if (type_offset_in_tu != NULL)
4365 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4366 header->offset_size);
4367 info_ptr += header->offset_size;
4369 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4371 error_check_comp_unit_head (header, section, abbrev_section);
4376 /* Fetch the abbreviation table offset from a comp or type unit header. */
4379 read_abbrev_offset (struct dwarf2_section_info *section,
4382 bfd *abfd = get_section_bfd_owner (section);
4383 const gdb_byte *info_ptr;
4384 unsigned int length, initial_length_size, offset_size;
4385 sect_offset abbrev_offset;
4387 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4388 info_ptr = section->buffer + offset.sect_off;
4389 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4390 offset_size = initial_length_size == 4 ? 4 : 8;
4391 info_ptr += initial_length_size + 2 /*version*/;
4392 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4393 return abbrev_offset;
4396 /* Allocate a new partial symtab for file named NAME and mark this new
4397 partial symtab as being an include of PST. */
4400 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4401 struct objfile *objfile)
4403 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4405 if (!IS_ABSOLUTE_PATH (subpst->filename))
4407 /* It shares objfile->objfile_obstack. */
4408 subpst->dirname = pst->dirname;
4411 subpst->section_offsets = pst->section_offsets;
4412 subpst->textlow = 0;
4413 subpst->texthigh = 0;
4415 subpst->dependencies = (struct partial_symtab **)
4416 obstack_alloc (&objfile->objfile_obstack,
4417 sizeof (struct partial_symtab *));
4418 subpst->dependencies[0] = pst;
4419 subpst->number_of_dependencies = 1;
4421 subpst->globals_offset = 0;
4422 subpst->n_global_syms = 0;
4423 subpst->statics_offset = 0;
4424 subpst->n_static_syms = 0;
4425 subpst->symtab = NULL;
4426 subpst->read_symtab = pst->read_symtab;
4429 /* No private part is necessary for include psymtabs. This property
4430 can be used to differentiate between such include psymtabs and
4431 the regular ones. */
4432 subpst->read_symtab_private = NULL;
4435 /* Read the Line Number Program data and extract the list of files
4436 included by the source file represented by PST. Build an include
4437 partial symtab for each of these included files. */
4440 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4441 struct die_info *die,
4442 struct partial_symtab *pst)
4444 struct line_header *lh = NULL;
4445 struct attribute *attr;
4447 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4449 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4451 return; /* No linetable, so no includes. */
4453 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4454 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4456 free_line_header (lh);
4460 hash_signatured_type (const void *item)
4462 const struct signatured_type *sig_type = item;
4464 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4465 return sig_type->signature;
4469 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4471 const struct signatured_type *lhs = item_lhs;
4472 const struct signatured_type *rhs = item_rhs;
4474 return lhs->signature == rhs->signature;
4477 /* Allocate a hash table for signatured types. */
4480 allocate_signatured_type_table (struct objfile *objfile)
4482 return htab_create_alloc_ex (41,
4483 hash_signatured_type,
4486 &objfile->objfile_obstack,
4487 hashtab_obstack_allocate,
4488 dummy_obstack_deallocate);
4491 /* A helper function to add a signatured type CU to a table. */
4494 add_signatured_type_cu_to_table (void **slot, void *datum)
4496 struct signatured_type *sigt = *slot;
4497 struct signatured_type ***datap = datum;
4505 /* Create the hash table of all entries in the .debug_types
4506 (or .debug_types.dwo) section(s).
4507 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4508 otherwise it is NULL.
4510 The result is a pointer to the hash table or NULL if there are no types.
4512 Note: This function processes DWO files only, not DWP files. */
4515 create_debug_types_hash_table (struct dwo_file *dwo_file,
4516 VEC (dwarf2_section_info_def) *types)
4518 struct objfile *objfile = dwarf2_per_objfile->objfile;
4519 htab_t types_htab = NULL;
4521 struct dwarf2_section_info *section;
4522 struct dwarf2_section_info *abbrev_section;
4524 if (VEC_empty (dwarf2_section_info_def, types))
4527 abbrev_section = (dwo_file != NULL
4528 ? &dwo_file->sections.abbrev
4529 : &dwarf2_per_objfile->abbrev);
4531 if (dwarf2_read_debug)
4532 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4533 dwo_file ? ".dwo" : "",
4534 get_section_file_name (abbrev_section));
4537 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4541 const gdb_byte *info_ptr, *end_ptr;
4543 dwarf2_read_section (objfile, section);
4544 info_ptr = section->buffer;
4546 if (info_ptr == NULL)
4549 /* We can't set abfd until now because the section may be empty or
4550 not present, in which case the bfd is unknown. */
4551 abfd = get_section_bfd_owner (section);
4553 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4554 because we don't need to read any dies: the signature is in the
4557 end_ptr = info_ptr + section->size;
4558 while (info_ptr < end_ptr)
4561 cu_offset type_offset_in_tu;
4563 struct signatured_type *sig_type;
4564 struct dwo_unit *dwo_tu;
4566 const gdb_byte *ptr = info_ptr;
4567 struct comp_unit_head header;
4568 unsigned int length;
4570 offset.sect_off = ptr - section->buffer;
4572 /* We need to read the type's signature in order to build the hash
4573 table, but we don't need anything else just yet. */
4575 ptr = read_and_check_type_unit_head (&header, section,
4576 abbrev_section, ptr,
4577 &signature, &type_offset_in_tu);
4579 length = get_cu_length (&header);
4581 /* Skip dummy type units. */
4582 if (ptr >= info_ptr + length
4583 || peek_abbrev_code (abfd, ptr) == 0)
4589 if (types_htab == NULL)
4592 types_htab = allocate_dwo_unit_table (objfile);
4594 types_htab = allocate_signatured_type_table (objfile);
4600 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 dwo_tu->dwo_file = dwo_file;
4603 dwo_tu->signature = signature;
4604 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4605 dwo_tu->section = section;
4606 dwo_tu->offset = offset;
4607 dwo_tu->length = length;
4611 /* N.B.: type_offset is not usable if this type uses a DWO file.
4612 The real type_offset is in the DWO file. */
4614 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4615 struct signatured_type);
4616 sig_type->signature = signature;
4617 sig_type->type_offset_in_tu = type_offset_in_tu;
4618 sig_type->per_cu.objfile = objfile;
4619 sig_type->per_cu.is_debug_types = 1;
4620 sig_type->per_cu.section = section;
4621 sig_type->per_cu.offset = offset;
4622 sig_type->per_cu.length = length;
4625 slot = htab_find_slot (types_htab,
4626 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4628 gdb_assert (slot != NULL);
4631 sect_offset dup_offset;
4635 const struct dwo_unit *dup_tu = *slot;
4637 dup_offset = dup_tu->offset;
4641 const struct signatured_type *dup_tu = *slot;
4643 dup_offset = dup_tu->per_cu.offset;
4646 complaint (&symfile_complaints,
4647 _("debug type entry at offset 0x%x is duplicate to"
4648 " the entry at offset 0x%x, signature %s"),
4649 offset.sect_off, dup_offset.sect_off,
4650 hex_string (signature));
4652 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4654 if (dwarf2_read_debug > 1)
4655 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4657 hex_string (signature));
4666 /* Create the hash table of all entries in the .debug_types section,
4667 and initialize all_type_units.
4668 The result is zero if there is an error (e.g. missing .debug_types section),
4669 otherwise non-zero. */
4672 create_all_type_units (struct objfile *objfile)
4675 struct signatured_type **iter;
4677 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4678 if (types_htab == NULL)
4680 dwarf2_per_objfile->signatured_types = NULL;
4684 dwarf2_per_objfile->signatured_types = types_htab;
4686 dwarf2_per_objfile->n_type_units
4687 = dwarf2_per_objfile->n_allocated_type_units
4688 = htab_elements (types_htab);
4689 dwarf2_per_objfile->all_type_units
4690 = xmalloc (dwarf2_per_objfile->n_type_units
4691 * sizeof (struct signatured_type *));
4692 iter = &dwarf2_per_objfile->all_type_units[0];
4693 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4694 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4695 == dwarf2_per_objfile->n_type_units);
4700 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4701 If SLOT is non-NULL, it is the entry to use in the hash table.
4702 Otherwise we find one. */
4704 static struct signatured_type *
4705 add_type_unit (ULONGEST sig, void **slot)
4707 struct objfile *objfile = dwarf2_per_objfile->objfile;
4708 int n_type_units = dwarf2_per_objfile->n_type_units;
4709 struct signatured_type *sig_type;
4711 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4713 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4715 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4716 dwarf2_per_objfile->n_allocated_type_units = 1;
4717 dwarf2_per_objfile->n_allocated_type_units *= 2;
4718 dwarf2_per_objfile->all_type_units
4719 = xrealloc (dwarf2_per_objfile->all_type_units,
4720 dwarf2_per_objfile->n_allocated_type_units
4721 * sizeof (struct signatured_type *));
4722 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4724 dwarf2_per_objfile->n_type_units = n_type_units;
4726 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4727 struct signatured_type);
4728 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4729 sig_type->signature = sig;
4730 sig_type->per_cu.is_debug_types = 1;
4731 if (dwarf2_per_objfile->using_index)
4733 sig_type->per_cu.v.quick =
4734 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4735 struct dwarf2_per_cu_quick_data);
4740 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4743 gdb_assert (*slot == NULL);
4745 /* The rest of sig_type must be filled in by the caller. */
4749 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4750 Fill in SIG_ENTRY with DWO_ENTRY. */
4753 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4754 struct signatured_type *sig_entry,
4755 struct dwo_unit *dwo_entry)
4757 /* Make sure we're not clobbering something we don't expect to. */
4758 gdb_assert (! sig_entry->per_cu.queued);
4759 gdb_assert (sig_entry->per_cu.cu == NULL);
4760 if (dwarf2_per_objfile->using_index)
4762 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4763 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4766 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4767 gdb_assert (sig_entry->signature == dwo_entry->signature);
4768 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4769 gdb_assert (sig_entry->type_unit_group == NULL);
4770 gdb_assert (sig_entry->dwo_unit == NULL);
4772 sig_entry->per_cu.section = dwo_entry->section;
4773 sig_entry->per_cu.offset = dwo_entry->offset;
4774 sig_entry->per_cu.length = dwo_entry->length;
4775 sig_entry->per_cu.reading_dwo_directly = 1;
4776 sig_entry->per_cu.objfile = objfile;
4777 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4778 sig_entry->dwo_unit = dwo_entry;
4781 /* Subroutine of lookup_signatured_type.
4782 If we haven't read the TU yet, create the signatured_type data structure
4783 for a TU to be read in directly from a DWO file, bypassing the stub.
4784 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4785 using .gdb_index, then when reading a CU we want to stay in the DWO file
4786 containing that CU. Otherwise we could end up reading several other DWO
4787 files (due to comdat folding) to process the transitive closure of all the
4788 mentioned TUs, and that can be slow. The current DWO file will have every
4789 type signature that it needs.
4790 We only do this for .gdb_index because in the psymtab case we already have
4791 to read all the DWOs to build the type unit groups. */
4793 static struct signatured_type *
4794 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4796 struct objfile *objfile = dwarf2_per_objfile->objfile;
4797 struct dwo_file *dwo_file;
4798 struct dwo_unit find_dwo_entry, *dwo_entry;
4799 struct signatured_type find_sig_entry, *sig_entry;
4802 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4804 /* If TU skeletons have been removed then we may not have read in any
4806 if (dwarf2_per_objfile->signatured_types == NULL)
4808 dwarf2_per_objfile->signatured_types
4809 = allocate_signatured_type_table (objfile);
4812 /* We only ever need to read in one copy of a signatured type.
4813 Use the global signatured_types array to do our own comdat-folding
4814 of types. If this is the first time we're reading this TU, and
4815 the TU has an entry in .gdb_index, replace the recorded data from
4816 .gdb_index with this TU. */
4818 find_sig_entry.signature = sig;
4819 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4820 &find_sig_entry, INSERT);
4823 /* We can get here with the TU already read, *or* in the process of being
4824 read. Don't reassign the global entry to point to this DWO if that's
4825 the case. Also note that if the TU is already being read, it may not
4826 have come from a DWO, the program may be a mix of Fission-compiled
4827 code and non-Fission-compiled code. */
4829 /* Have we already tried to read this TU?
4830 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4831 needn't exist in the global table yet). */
4832 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4835 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4836 dwo_unit of the TU itself. */
4837 dwo_file = cu->dwo_unit->dwo_file;
4839 /* Ok, this is the first time we're reading this TU. */
4840 if (dwo_file->tus == NULL)
4842 find_dwo_entry.signature = sig;
4843 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4844 if (dwo_entry == NULL)
4847 /* If the global table doesn't have an entry for this TU, add one. */
4848 if (sig_entry == NULL)
4849 sig_entry = add_type_unit (sig, slot);
4851 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4852 sig_entry->per_cu.tu_read = 1;
4856 /* Subroutine of lookup_signatured_type.
4857 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4858 then try the DWP file. If the TU stub (skeleton) has been removed then
4859 it won't be in .gdb_index. */
4861 static struct signatured_type *
4862 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864 struct objfile *objfile = dwarf2_per_objfile->objfile;
4865 struct dwp_file *dwp_file = get_dwp_file ();
4866 struct dwo_unit *dwo_entry;
4867 struct signatured_type find_sig_entry, *sig_entry;
4870 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4871 gdb_assert (dwp_file != NULL);
4873 /* If TU skeletons have been removed then we may not have read in any
4875 if (dwarf2_per_objfile->signatured_types == NULL)
4877 dwarf2_per_objfile->signatured_types
4878 = allocate_signatured_type_table (objfile);
4881 find_sig_entry.signature = sig;
4882 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4883 &find_sig_entry, INSERT);
4886 /* Have we already tried to read this TU?
4887 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4888 needn't exist in the global table yet). */
4889 if (sig_entry != NULL)
4892 if (dwp_file->tus == NULL)
4894 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4895 sig, 1 /* is_debug_types */);
4896 if (dwo_entry == NULL)
4899 sig_entry = add_type_unit (sig, slot);
4900 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4905 /* Lookup a signature based type for DW_FORM_ref_sig8.
4906 Returns NULL if signature SIG is not present in the table.
4907 It is up to the caller to complain about this. */
4909 static struct signatured_type *
4910 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4913 && dwarf2_per_objfile->using_index)
4915 /* We're in a DWO/DWP file, and we're using .gdb_index.
4916 These cases require special processing. */
4917 if (get_dwp_file () == NULL)
4918 return lookup_dwo_signatured_type (cu, sig);
4920 return lookup_dwp_signatured_type (cu, sig);
4924 struct signatured_type find_entry, *entry;
4926 if (dwarf2_per_objfile->signatured_types == NULL)
4928 find_entry.signature = sig;
4929 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4934 /* Low level DIE reading support. */
4936 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4939 init_cu_die_reader (struct die_reader_specs *reader,
4940 struct dwarf2_cu *cu,
4941 struct dwarf2_section_info *section,
4942 struct dwo_file *dwo_file)
4944 gdb_assert (section->readin && section->buffer != NULL);
4945 reader->abfd = get_section_bfd_owner (section);
4947 reader->dwo_file = dwo_file;
4948 reader->die_section = section;
4949 reader->buffer = section->buffer;
4950 reader->buffer_end = section->buffer + section->size;
4951 reader->comp_dir = NULL;
4954 /* Subroutine of init_cutu_and_read_dies to simplify it.
4955 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4956 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4959 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4960 from it to the DIE in the DWO. If NULL we are skipping the stub.
4961 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4962 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4963 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4964 STUB_COMP_DIR may be non-NULL.
4965 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4966 are filled in with the info of the DIE from the DWO file.
4967 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4968 provided an abbrev table to use.
4969 The result is non-zero if a valid (non-dummy) DIE was found. */
4972 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4973 struct dwo_unit *dwo_unit,
4974 int abbrev_table_provided,
4975 struct die_info *stub_comp_unit_die,
4976 const char *stub_comp_dir,
4977 struct die_reader_specs *result_reader,
4978 const gdb_byte **result_info_ptr,
4979 struct die_info **result_comp_unit_die,
4980 int *result_has_children)
4982 struct objfile *objfile = dwarf2_per_objfile->objfile;
4983 struct dwarf2_cu *cu = this_cu->cu;
4984 struct dwarf2_section_info *section;
4986 const gdb_byte *begin_info_ptr, *info_ptr;
4987 ULONGEST signature; /* Or dwo_id. */
4988 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4989 int i,num_extra_attrs;
4990 struct dwarf2_section_info *dwo_abbrev_section;
4991 struct attribute *attr;
4992 struct die_info *comp_unit_die;
4994 /* At most one of these may be provided. */
4995 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
4997 /* These attributes aren't processed until later:
4998 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4999 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5000 referenced later. However, these attributes are found in the stub
5001 which we won't have later. In order to not impose this complication
5002 on the rest of the code, we read them here and copy them to the
5011 if (stub_comp_unit_die != NULL)
5013 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5015 if (! this_cu->is_debug_types)
5016 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5017 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5018 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5019 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5020 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5022 /* There should be a DW_AT_addr_base attribute here (if needed).
5023 We need the value before we can process DW_FORM_GNU_addr_index. */
5025 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5027 cu->addr_base = DW_UNSND (attr);
5029 /* There should be a DW_AT_ranges_base attribute here (if needed).
5030 We need the value before we can process DW_AT_ranges. */
5031 cu->ranges_base = 0;
5032 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5034 cu->ranges_base = DW_UNSND (attr);
5036 else if (stub_comp_dir != NULL)
5038 /* Reconstruct the comp_dir attribute to simplify the code below. */
5039 comp_dir = (struct attribute *)
5040 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5041 comp_dir->name = DW_AT_comp_dir;
5042 comp_dir->form = DW_FORM_string;
5043 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5044 DW_STRING (comp_dir) = stub_comp_dir;
5047 /* Set up for reading the DWO CU/TU. */
5048 cu->dwo_unit = dwo_unit;
5049 section = dwo_unit->section;
5050 dwarf2_read_section (objfile, section);
5051 abfd = get_section_bfd_owner (section);
5052 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5053 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5054 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5056 if (this_cu->is_debug_types)
5058 ULONGEST header_signature;
5059 cu_offset type_offset_in_tu;
5060 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5062 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5066 &type_offset_in_tu);
5067 /* This is not an assert because it can be caused by bad debug info. */
5068 if (sig_type->signature != header_signature)
5070 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5071 " TU at offset 0x%x [in module %s]"),
5072 hex_string (sig_type->signature),
5073 hex_string (header_signature),
5074 dwo_unit->offset.sect_off,
5075 bfd_get_filename (abfd));
5077 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5078 /* For DWOs coming from DWP files, we don't know the CU length
5079 nor the type's offset in the TU until now. */
5080 dwo_unit->length = get_cu_length (&cu->header);
5081 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5083 /* Establish the type offset that can be used to lookup the type.
5084 For DWO files, we don't know it until now. */
5085 sig_type->type_offset_in_section.sect_off =
5086 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5090 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5093 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5094 /* For DWOs coming from DWP files, we don't know the CU length
5096 dwo_unit->length = get_cu_length (&cu->header);
5099 /* Replace the CU's original abbrev table with the DWO's.
5100 Reminder: We can't read the abbrev table until we've read the header. */
5101 if (abbrev_table_provided)
5103 /* Don't free the provided abbrev table, the caller of
5104 init_cutu_and_read_dies owns it. */
5105 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5106 /* Ensure the DWO abbrev table gets freed. */
5107 make_cleanup (dwarf2_free_abbrev_table, cu);
5111 dwarf2_free_abbrev_table (cu);
5112 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5113 /* Leave any existing abbrev table cleanup as is. */
5116 /* Read in the die, but leave space to copy over the attributes
5117 from the stub. This has the benefit of simplifying the rest of
5118 the code - all the work to maintain the illusion of a single
5119 DW_TAG_{compile,type}_unit DIE is done here. */
5120 num_extra_attrs = ((stmt_list != NULL)
5124 + (comp_dir != NULL));
5125 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5126 result_has_children, num_extra_attrs);
5128 /* Copy over the attributes from the stub to the DIE we just read in. */
5129 comp_unit_die = *result_comp_unit_die;
5130 i = comp_unit_die->num_attrs;
5131 if (stmt_list != NULL)
5132 comp_unit_die->attrs[i++] = *stmt_list;
5134 comp_unit_die->attrs[i++] = *low_pc;
5135 if (high_pc != NULL)
5136 comp_unit_die->attrs[i++] = *high_pc;
5138 comp_unit_die->attrs[i++] = *ranges;
5139 if (comp_dir != NULL)
5140 comp_unit_die->attrs[i++] = *comp_dir;
5141 comp_unit_die->num_attrs += num_extra_attrs;
5143 if (dwarf2_die_debug)
5145 fprintf_unfiltered (gdb_stdlog,
5146 "Read die from %s@0x%x of %s:\n",
5147 get_section_name (section),
5148 (unsigned) (begin_info_ptr - section->buffer),
5149 bfd_get_filename (abfd));
5150 dump_die (comp_unit_die, dwarf2_die_debug);
5153 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5154 TUs by skipping the stub and going directly to the entry in the DWO file.
5155 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5156 to get it via circuitous means. Blech. */
5157 if (comp_dir != NULL)
5158 result_reader->comp_dir = DW_STRING (comp_dir);
5160 /* Skip dummy compilation units. */
5161 if (info_ptr >= begin_info_ptr + dwo_unit->length
5162 || peek_abbrev_code (abfd, info_ptr) == 0)
5165 *result_info_ptr = info_ptr;
5169 /* Subroutine of init_cutu_and_read_dies to simplify it.
5170 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5171 Returns NULL if the specified DWO unit cannot be found. */
5173 static struct dwo_unit *
5174 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5175 struct die_info *comp_unit_die)
5177 struct dwarf2_cu *cu = this_cu->cu;
5178 struct attribute *attr;
5180 struct dwo_unit *dwo_unit;
5181 const char *comp_dir, *dwo_name;
5183 gdb_assert (cu != NULL);
5185 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5186 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5187 gdb_assert (attr != NULL);
5188 dwo_name = DW_STRING (attr);
5190 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5192 comp_dir = DW_STRING (attr);
5194 if (this_cu->is_debug_types)
5196 struct signatured_type *sig_type;
5198 /* Since this_cu is the first member of struct signatured_type,
5199 we can go from a pointer to one to a pointer to the other. */
5200 sig_type = (struct signatured_type *) this_cu;
5201 signature = sig_type->signature;
5202 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5206 struct attribute *attr;
5208 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5210 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5212 dwo_name, objfile_name (this_cu->objfile));
5213 signature = DW_UNSND (attr);
5214 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5221 /* Subroutine of init_cutu_and_read_dies to simplify it.
5222 See it for a description of the parameters.
5223 Read a TU directly from a DWO file, bypassing the stub.
5225 Note: This function could be a little bit simpler if we shared cleanups
5226 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5227 to do, so we keep this function self-contained. Or we could move this
5228 into our caller, but it's complex enough already. */
5231 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5232 int use_existing_cu, int keep,
5233 die_reader_func_ftype *die_reader_func,
5236 struct dwarf2_cu *cu;
5237 struct signatured_type *sig_type;
5238 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5239 struct die_reader_specs reader;
5240 const gdb_byte *info_ptr;
5241 struct die_info *comp_unit_die;
5244 /* Verify we can do the following downcast, and that we have the
5246 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5247 sig_type = (struct signatured_type *) this_cu;
5248 gdb_assert (sig_type->dwo_unit != NULL);
5250 cleanups = make_cleanup (null_cleanup, NULL);
5252 if (use_existing_cu && this_cu->cu != NULL)
5254 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5256 /* There's no need to do the rereading_dwo_cu handling that
5257 init_cutu_and_read_dies does since we don't read the stub. */
5261 /* If !use_existing_cu, this_cu->cu must be NULL. */
5262 gdb_assert (this_cu->cu == NULL);
5263 cu = xmalloc (sizeof (*cu));
5264 init_one_comp_unit (cu, this_cu);
5265 /* If an error occurs while loading, release our storage. */
5266 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5269 /* A future optimization, if needed, would be to use an existing
5270 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5271 could share abbrev tables. */
5273 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5274 0 /* abbrev_table_provided */,
5275 NULL /* stub_comp_unit_die */,
5276 sig_type->dwo_unit->dwo_file->comp_dir,
5278 &comp_unit_die, &has_children) == 0)
5281 do_cleanups (cleanups);
5285 /* All the "real" work is done here. */
5286 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5288 /* This duplicates the code in init_cutu_and_read_dies,
5289 but the alternative is making the latter more complex.
5290 This function is only for the special case of using DWO files directly:
5291 no point in overly complicating the general case just to handle this. */
5292 if (free_cu_cleanup != NULL)
5296 /* We've successfully allocated this compilation unit. Let our
5297 caller clean it up when finished with it. */
5298 discard_cleanups (free_cu_cleanup);
5300 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5301 So we have to manually free the abbrev table. */
5302 dwarf2_free_abbrev_table (cu);
5304 /* Link this CU into read_in_chain. */
5305 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5306 dwarf2_per_objfile->read_in_chain = this_cu;
5309 do_cleanups (free_cu_cleanup);
5312 do_cleanups (cleanups);
5315 /* Initialize a CU (or TU) and read its DIEs.
5316 If the CU defers to a DWO file, read the DWO file as well.
5318 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5319 Otherwise the table specified in the comp unit header is read in and used.
5320 This is an optimization for when we already have the abbrev table.
5322 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5323 Otherwise, a new CU is allocated with xmalloc.
5325 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5326 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5328 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5329 linker) then DIE_READER_FUNC will not get called. */
5332 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5333 struct abbrev_table *abbrev_table,
5334 int use_existing_cu, int keep,
5335 die_reader_func_ftype *die_reader_func,
5338 struct objfile *objfile = dwarf2_per_objfile->objfile;
5339 struct dwarf2_section_info *section = this_cu->section;
5340 bfd *abfd = get_section_bfd_owner (section);
5341 struct dwarf2_cu *cu;
5342 const gdb_byte *begin_info_ptr, *info_ptr;
5343 struct die_reader_specs reader;
5344 struct die_info *comp_unit_die;
5346 struct attribute *attr;
5347 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5348 struct signatured_type *sig_type = NULL;
5349 struct dwarf2_section_info *abbrev_section;
5350 /* Non-zero if CU currently points to a DWO file and we need to
5351 reread it. When this happens we need to reread the skeleton die
5352 before we can reread the DWO file (this only applies to CUs, not TUs). */
5353 int rereading_dwo_cu = 0;
5355 if (dwarf2_die_debug)
5356 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5357 this_cu->is_debug_types ? "type" : "comp",
5358 this_cu->offset.sect_off);
5360 if (use_existing_cu)
5363 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5364 file (instead of going through the stub), short-circuit all of this. */
5365 if (this_cu->reading_dwo_directly)
5367 /* Narrow down the scope of possibilities to have to understand. */
5368 gdb_assert (this_cu->is_debug_types);
5369 gdb_assert (abbrev_table == NULL);
5370 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5371 die_reader_func, data);
5375 cleanups = make_cleanup (null_cleanup, NULL);
5377 /* This is cheap if the section is already read in. */
5378 dwarf2_read_section (objfile, section);
5380 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5382 abbrev_section = get_abbrev_section_for_cu (this_cu);
5384 if (use_existing_cu && this_cu->cu != NULL)
5387 /* If this CU is from a DWO file we need to start over, we need to
5388 refetch the attributes from the skeleton CU.
5389 This could be optimized by retrieving those attributes from when we
5390 were here the first time: the previous comp_unit_die was stored in
5391 comp_unit_obstack. But there's no data yet that we need this
5393 if (cu->dwo_unit != NULL)
5394 rereading_dwo_cu = 1;
5398 /* If !use_existing_cu, this_cu->cu must be NULL. */
5399 gdb_assert (this_cu->cu == NULL);
5400 cu = xmalloc (sizeof (*cu));
5401 init_one_comp_unit (cu, this_cu);
5402 /* If an error occurs while loading, release our storage. */
5403 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5406 /* Get the header. */
5407 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5409 /* We already have the header, there's no need to read it in again. */
5410 info_ptr += cu->header.first_die_offset.cu_off;
5414 if (this_cu->is_debug_types)
5417 cu_offset type_offset_in_tu;
5419 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5420 abbrev_section, info_ptr,
5422 &type_offset_in_tu);
5424 /* Since per_cu is the first member of struct signatured_type,
5425 we can go from a pointer to one to a pointer to the other. */
5426 sig_type = (struct signatured_type *) this_cu;
5427 gdb_assert (sig_type->signature == signature);
5428 gdb_assert (sig_type->type_offset_in_tu.cu_off
5429 == type_offset_in_tu.cu_off);
5430 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5432 /* LENGTH has not been set yet for type units if we're
5433 using .gdb_index. */
5434 this_cu->length = get_cu_length (&cu->header);
5436 /* Establish the type offset that can be used to lookup the type. */
5437 sig_type->type_offset_in_section.sect_off =
5438 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5442 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5446 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5447 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5451 /* Skip dummy compilation units. */
5452 if (info_ptr >= begin_info_ptr + this_cu->length
5453 || peek_abbrev_code (abfd, info_ptr) == 0)
5455 do_cleanups (cleanups);
5459 /* If we don't have them yet, read the abbrevs for this compilation unit.
5460 And if we need to read them now, make sure they're freed when we're
5461 done. Note that it's important that if the CU had an abbrev table
5462 on entry we don't free it when we're done: Somewhere up the call stack
5463 it may be in use. */
5464 if (abbrev_table != NULL)
5466 gdb_assert (cu->abbrev_table == NULL);
5467 gdb_assert (cu->header.abbrev_offset.sect_off
5468 == abbrev_table->offset.sect_off);
5469 cu->abbrev_table = abbrev_table;
5471 else if (cu->abbrev_table == NULL)
5473 dwarf2_read_abbrevs (cu, abbrev_section);
5474 make_cleanup (dwarf2_free_abbrev_table, cu);
5476 else if (rereading_dwo_cu)
5478 dwarf2_free_abbrev_table (cu);
5479 dwarf2_read_abbrevs (cu, abbrev_section);
5482 /* Read the top level CU/TU die. */
5483 init_cu_die_reader (&reader, cu, section, NULL);
5484 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5486 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5488 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5489 DWO CU, that this test will fail (the attribute will not be present). */
5490 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5493 struct dwo_unit *dwo_unit;
5494 struct die_info *dwo_comp_unit_die;
5498 complaint (&symfile_complaints,
5499 _("compilation unit with DW_AT_GNU_dwo_name"
5500 " has children (offset 0x%x) [in module %s]"),
5501 this_cu->offset.sect_off, bfd_get_filename (abfd));
5503 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5504 if (dwo_unit != NULL)
5506 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5507 abbrev_table != NULL,
5508 comp_unit_die, NULL,
5510 &dwo_comp_unit_die, &has_children) == 0)
5513 do_cleanups (cleanups);
5516 comp_unit_die = dwo_comp_unit_die;
5520 /* Yikes, we couldn't find the rest of the DIE, we only have
5521 the stub. A complaint has already been logged. There's
5522 not much more we can do except pass on the stub DIE to
5523 die_reader_func. We don't want to throw an error on bad
5528 /* All of the above is setup for this call. Yikes. */
5529 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5531 /* Done, clean up. */
5532 if (free_cu_cleanup != NULL)
5536 /* We've successfully allocated this compilation unit. Let our
5537 caller clean it up when finished with it. */
5538 discard_cleanups (free_cu_cleanup);
5540 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5541 So we have to manually free the abbrev table. */
5542 dwarf2_free_abbrev_table (cu);
5544 /* Link this CU into read_in_chain. */
5545 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5546 dwarf2_per_objfile->read_in_chain = this_cu;
5549 do_cleanups (free_cu_cleanup);
5552 do_cleanups (cleanups);
5555 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5556 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5557 to have already done the lookup to find the DWO file).
5559 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5560 THIS_CU->is_debug_types, but nothing else.
5562 We fill in THIS_CU->length.
5564 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5565 linker) then DIE_READER_FUNC will not get called.
5567 THIS_CU->cu is always freed when done.
5568 This is done in order to not leave THIS_CU->cu in a state where we have
5569 to care whether it refers to the "main" CU or the DWO CU. */
5572 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5573 struct dwo_file *dwo_file,
5574 die_reader_func_ftype *die_reader_func,
5577 struct objfile *objfile = dwarf2_per_objfile->objfile;
5578 struct dwarf2_section_info *section = this_cu->section;
5579 bfd *abfd = get_section_bfd_owner (section);
5580 struct dwarf2_section_info *abbrev_section;
5581 struct dwarf2_cu cu;
5582 const gdb_byte *begin_info_ptr, *info_ptr;
5583 struct die_reader_specs reader;
5584 struct cleanup *cleanups;
5585 struct die_info *comp_unit_die;
5588 if (dwarf2_die_debug)
5589 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5590 this_cu->is_debug_types ? "type" : "comp",
5591 this_cu->offset.sect_off);
5593 gdb_assert (this_cu->cu == NULL);
5595 abbrev_section = (dwo_file != NULL
5596 ? &dwo_file->sections.abbrev
5597 : get_abbrev_section_for_cu (this_cu));
5599 /* This is cheap if the section is already read in. */
5600 dwarf2_read_section (objfile, section);
5602 init_one_comp_unit (&cu, this_cu);
5604 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5606 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5607 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5608 abbrev_section, info_ptr,
5609 this_cu->is_debug_types);
5611 this_cu->length = get_cu_length (&cu.header);
5613 /* Skip dummy compilation units. */
5614 if (info_ptr >= begin_info_ptr + this_cu->length
5615 || peek_abbrev_code (abfd, info_ptr) == 0)
5617 do_cleanups (cleanups);
5621 dwarf2_read_abbrevs (&cu, abbrev_section);
5622 make_cleanup (dwarf2_free_abbrev_table, &cu);
5624 init_cu_die_reader (&reader, &cu, section, dwo_file);
5625 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5627 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629 do_cleanups (cleanups);
5632 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5633 does not lookup the specified DWO file.
5634 This cannot be used to read DWO files.
5636 THIS_CU->cu is always freed when done.
5637 This is done in order to not leave THIS_CU->cu in a state where we have
5638 to care whether it refers to the "main" CU or the DWO CU.
5639 We can revisit this if the data shows there's a performance issue. */
5642 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5643 die_reader_func_ftype *die_reader_func,
5646 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5649 /* Type Unit Groups.
5651 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5652 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5653 so that all types coming from the same compilation (.o file) are grouped
5654 together. A future step could be to put the types in the same symtab as
5655 the CU the types ultimately came from. */
5658 hash_type_unit_group (const void *item)
5660 const struct type_unit_group *tu_group = item;
5662 return hash_stmt_list_entry (&tu_group->hash);
5666 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5668 const struct type_unit_group *lhs = item_lhs;
5669 const struct type_unit_group *rhs = item_rhs;
5671 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5674 /* Allocate a hash table for type unit groups. */
5677 allocate_type_unit_groups_table (void)
5679 return htab_create_alloc_ex (3,
5680 hash_type_unit_group,
5683 &dwarf2_per_objfile->objfile->objfile_obstack,
5684 hashtab_obstack_allocate,
5685 dummy_obstack_deallocate);
5688 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5689 partial symtabs. We combine several TUs per psymtab to not let the size
5690 of any one psymtab grow too big. */
5691 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5692 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5694 /* Helper routine for get_type_unit_group.
5695 Create the type_unit_group object used to hold one or more TUs. */
5697 static struct type_unit_group *
5698 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5700 struct objfile *objfile = dwarf2_per_objfile->objfile;
5701 struct dwarf2_per_cu_data *per_cu;
5702 struct type_unit_group *tu_group;
5704 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5705 struct type_unit_group);
5706 per_cu = &tu_group->per_cu;
5707 per_cu->objfile = objfile;
5709 if (dwarf2_per_objfile->using_index)
5711 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5712 struct dwarf2_per_cu_quick_data);
5716 unsigned int line_offset = line_offset_struct.sect_off;
5717 struct partial_symtab *pst;
5720 /* Give the symtab a useful name for debug purposes. */
5721 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5722 name = xstrprintf ("<type_units_%d>",
5723 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5725 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5727 pst = create_partial_symtab (per_cu, name);
5733 tu_group->hash.dwo_unit = cu->dwo_unit;
5734 tu_group->hash.line_offset = line_offset_struct;
5739 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5740 STMT_LIST is a DW_AT_stmt_list attribute. */
5742 static struct type_unit_group *
5743 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5745 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5746 struct type_unit_group *tu_group;
5748 unsigned int line_offset;
5749 struct type_unit_group type_unit_group_for_lookup;
5751 if (dwarf2_per_objfile->type_unit_groups == NULL)
5753 dwarf2_per_objfile->type_unit_groups =
5754 allocate_type_unit_groups_table ();
5757 /* Do we need to create a new group, or can we use an existing one? */
5761 line_offset = DW_UNSND (stmt_list);
5762 ++tu_stats->nr_symtab_sharers;
5766 /* Ugh, no stmt_list. Rare, but we have to handle it.
5767 We can do various things here like create one group per TU or
5768 spread them over multiple groups to split up the expansion work.
5769 To avoid worst case scenarios (too many groups or too large groups)
5770 we, umm, group them in bunches. */
5771 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5772 | (tu_stats->nr_stmt_less_type_units
5773 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5774 ++tu_stats->nr_stmt_less_type_units;
5777 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5778 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5779 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5780 &type_unit_group_for_lookup, INSERT);
5784 gdb_assert (tu_group != NULL);
5788 sect_offset line_offset_struct;
5790 line_offset_struct.sect_off = line_offset;
5791 tu_group = create_type_unit_group (cu, line_offset_struct);
5793 ++tu_stats->nr_symtabs;
5799 /* Partial symbol tables. */
5801 /* Create a psymtab named NAME and assign it to PER_CU.
5803 The caller must fill in the following details:
5804 dirname, textlow, texthigh. */
5806 static struct partial_symtab *
5807 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5809 struct objfile *objfile = per_cu->objfile;
5810 struct partial_symtab *pst;
5812 pst = start_psymtab_common (objfile, objfile->section_offsets,
5814 objfile->global_psymbols.next,
5815 objfile->static_psymbols.next);
5817 pst->psymtabs_addrmap_supported = 1;
5819 /* This is the glue that links PST into GDB's symbol API. */
5820 pst->read_symtab_private = per_cu;
5821 pst->read_symtab = dwarf2_read_symtab;
5822 per_cu->v.psymtab = pst;
5827 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5830 struct process_psymtab_comp_unit_data
5832 /* True if we are reading a DW_TAG_partial_unit. */
5834 int want_partial_unit;
5836 /* The "pretend" language that is used if the CU doesn't declare a
5839 enum language pretend_language;
5842 /* die_reader_func for process_psymtab_comp_unit. */
5845 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5846 const gdb_byte *info_ptr,
5847 struct die_info *comp_unit_die,
5851 struct dwarf2_cu *cu = reader->cu;
5852 struct objfile *objfile = cu->objfile;
5853 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5854 struct attribute *attr;
5856 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5857 struct partial_symtab *pst;
5859 const char *filename;
5860 struct process_psymtab_comp_unit_data *info = data;
5862 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5865 gdb_assert (! per_cu->is_debug_types);
5867 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5869 cu->list_in_scope = &file_symbols;
5871 /* Allocate a new partial symbol table structure. */
5872 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5873 if (attr == NULL || !DW_STRING (attr))
5876 filename = DW_STRING (attr);
5878 pst = create_partial_symtab (per_cu, filename);
5880 /* This must be done before calling dwarf2_build_include_psymtabs. */
5881 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5883 pst->dirname = DW_STRING (attr);
5885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5887 dwarf2_find_base_address (comp_unit_die, cu);
5889 /* Possibly set the default values of LOWPC and HIGHPC from
5891 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5892 &best_highpc, cu, pst);
5893 if (has_pc_info == 1 && best_lowpc < best_highpc)
5894 /* Store the contiguous range if it is not empty; it can be empty for
5895 CUs with no code. */
5896 addrmap_set_empty (objfile->psymtabs_addrmap,
5897 best_lowpc + baseaddr,
5898 best_highpc + baseaddr - 1, pst);
5900 /* Check if comp unit has_children.
5901 If so, read the rest of the partial symbols from this comp unit.
5902 If not, there's no more debug_info for this comp unit. */
5905 struct partial_die_info *first_die;
5906 CORE_ADDR lowpc, highpc;
5908 lowpc = ((CORE_ADDR) -1);
5909 highpc = ((CORE_ADDR) 0);
5911 first_die = load_partial_dies (reader, info_ptr, 1);
5913 scan_partial_symbols (first_die, &lowpc, &highpc,
5916 /* If we didn't find a lowpc, set it to highpc to avoid
5917 complaints from `maint check'. */
5918 if (lowpc == ((CORE_ADDR) -1))
5921 /* If the compilation unit didn't have an explicit address range,
5922 then use the information extracted from its child dies. */
5926 best_highpc = highpc;
5929 pst->textlow = best_lowpc + baseaddr;
5930 pst->texthigh = best_highpc + baseaddr;
5932 pst->n_global_syms = objfile->global_psymbols.next -
5933 (objfile->global_psymbols.list + pst->globals_offset);
5934 pst->n_static_syms = objfile->static_psymbols.next -
5935 (objfile->static_psymbols.list + pst->statics_offset);
5936 sort_pst_symbols (objfile, pst);
5938 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5941 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5942 struct dwarf2_per_cu_data *iter;
5944 /* Fill in 'dependencies' here; we fill in 'users' in a
5946 pst->number_of_dependencies = len;
5947 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5948 len * sizeof (struct symtab *));
5950 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5953 pst->dependencies[i] = iter->v.psymtab;
5955 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5958 /* Get the list of files included in the current compilation unit,
5959 and build a psymtab for each of them. */
5960 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5962 if (dwarf2_read_debug)
5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5966 fprintf_unfiltered (gdb_stdlog,
5967 "Psymtab for %s unit @0x%x: %s - %s"
5968 ", %d global, %d static syms\n",
5969 per_cu->is_debug_types ? "type" : "comp",
5970 per_cu->offset.sect_off,
5971 paddress (gdbarch, pst->textlow),
5972 paddress (gdbarch, pst->texthigh),
5973 pst->n_global_syms, pst->n_static_syms);
5977 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5978 Process compilation unit THIS_CU for a psymtab. */
5981 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
5982 int want_partial_unit,
5983 enum language pretend_language)
5985 struct process_psymtab_comp_unit_data info;
5987 /* If this compilation unit was already read in, free the
5988 cached copy in order to read it in again. This is
5989 necessary because we skipped some symbols when we first
5990 read in the compilation unit (see load_partial_dies).
5991 This problem could be avoided, but the benefit is unclear. */
5992 if (this_cu->cu != NULL)
5993 free_one_cached_comp_unit (this_cu);
5995 gdb_assert (! this_cu->is_debug_types);
5996 info.want_partial_unit = want_partial_unit;
5997 info.pretend_language = pretend_language;
5998 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5999 process_psymtab_comp_unit_reader,
6002 /* Age out any secondary CUs. */
6003 age_cached_comp_units ();
6006 /* Reader function for build_type_psymtabs. */
6009 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6010 const gdb_byte *info_ptr,
6011 struct die_info *type_unit_die,
6015 struct objfile *objfile = dwarf2_per_objfile->objfile;
6016 struct dwarf2_cu *cu = reader->cu;
6017 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6018 struct signatured_type *sig_type;
6019 struct type_unit_group *tu_group;
6020 struct attribute *attr;
6021 struct partial_die_info *first_die;
6022 CORE_ADDR lowpc, highpc;
6023 struct partial_symtab *pst;
6025 gdb_assert (data == NULL);
6026 gdb_assert (per_cu->is_debug_types);
6027 sig_type = (struct signatured_type *) per_cu;
6032 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6033 tu_group = get_type_unit_group (cu, attr);
6035 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6037 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6038 cu->list_in_scope = &file_symbols;
6039 pst = create_partial_symtab (per_cu, "");
6042 first_die = load_partial_dies (reader, info_ptr, 1);
6044 lowpc = (CORE_ADDR) -1;
6045 highpc = (CORE_ADDR) 0;
6046 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6048 pst->n_global_syms = objfile->global_psymbols.next -
6049 (objfile->global_psymbols.list + pst->globals_offset);
6050 pst->n_static_syms = objfile->static_psymbols.next -
6051 (objfile->static_psymbols.list + pst->statics_offset);
6052 sort_pst_symbols (objfile, pst);
6055 /* Struct used to sort TUs by their abbreviation table offset. */
6057 struct tu_abbrev_offset
6059 struct signatured_type *sig_type;
6060 sect_offset abbrev_offset;
6063 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6066 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6068 const struct tu_abbrev_offset * const *a = ap;
6069 const struct tu_abbrev_offset * const *b = bp;
6070 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6071 unsigned int boff = (*b)->abbrev_offset.sect_off;
6073 return (aoff > boff) - (aoff < boff);
6076 /* Efficiently read all the type units.
6077 This does the bulk of the work for build_type_psymtabs.
6079 The efficiency is because we sort TUs by the abbrev table they use and
6080 only read each abbrev table once. In one program there are 200K TUs
6081 sharing 8K abbrev tables.
6083 The main purpose of this function is to support building the
6084 dwarf2_per_objfile->type_unit_groups table.
6085 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6086 can collapse the search space by grouping them by stmt_list.
6087 The savings can be significant, in the same program from above the 200K TUs
6088 share 8K stmt_list tables.
6090 FUNC is expected to call get_type_unit_group, which will create the
6091 struct type_unit_group if necessary and add it to
6092 dwarf2_per_objfile->type_unit_groups. */
6095 build_type_psymtabs_1 (void)
6097 struct objfile *objfile = dwarf2_per_objfile->objfile;
6098 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6099 struct cleanup *cleanups;
6100 struct abbrev_table *abbrev_table;
6101 sect_offset abbrev_offset;
6102 struct tu_abbrev_offset *sorted_by_abbrev;
6103 struct type_unit_group **iter;
6106 /* It's up to the caller to not call us multiple times. */
6107 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6109 if (dwarf2_per_objfile->n_type_units == 0)
6112 /* TUs typically share abbrev tables, and there can be way more TUs than
6113 abbrev tables. Sort by abbrev table to reduce the number of times we
6114 read each abbrev table in.
6115 Alternatives are to punt or to maintain a cache of abbrev tables.
6116 This is simpler and efficient enough for now.
6118 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6119 symtab to use). Typically TUs with the same abbrev offset have the same
6120 stmt_list value too so in practice this should work well.
6122 The basic algorithm here is:
6124 sort TUs by abbrev table
6125 for each TU with same abbrev table:
6126 read abbrev table if first user
6127 read TU top level DIE
6128 [IWBN if DWO skeletons had DW_AT_stmt_list]
6131 if (dwarf2_read_debug)
6132 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6134 /* Sort in a separate table to maintain the order of all_type_units
6135 for .gdb_index: TU indices directly index all_type_units. */
6136 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6137 dwarf2_per_objfile->n_type_units);
6138 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6140 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6142 sorted_by_abbrev[i].sig_type = sig_type;
6143 sorted_by_abbrev[i].abbrev_offset =
6144 read_abbrev_offset (sig_type->per_cu.section,
6145 sig_type->per_cu.offset);
6147 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6148 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6149 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6151 abbrev_offset.sect_off = ~(unsigned) 0;
6152 abbrev_table = NULL;
6153 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6155 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6157 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6159 /* Switch to the next abbrev table if necessary. */
6160 if (abbrev_table == NULL
6161 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6163 if (abbrev_table != NULL)
6165 abbrev_table_free (abbrev_table);
6166 /* Reset to NULL in case abbrev_table_read_table throws
6167 an error: abbrev_table_free_cleanup will get called. */
6168 abbrev_table = NULL;
6170 abbrev_offset = tu->abbrev_offset;
6172 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6174 ++tu_stats->nr_uniq_abbrev_tables;
6177 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6178 build_type_psymtabs_reader, NULL);
6181 do_cleanups (cleanups);
6184 /* Print collected type unit statistics. */
6187 print_tu_stats (void)
6189 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6191 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6192 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6193 dwarf2_per_objfile->n_type_units);
6194 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6195 tu_stats->nr_uniq_abbrev_tables);
6196 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6197 tu_stats->nr_symtabs);
6198 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6199 tu_stats->nr_symtab_sharers);
6200 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6201 tu_stats->nr_stmt_less_type_units);
6202 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6203 tu_stats->nr_all_type_units_reallocs);
6206 /* Traversal function for build_type_psymtabs. */
6209 build_type_psymtab_dependencies (void **slot, void *info)
6211 struct objfile *objfile = dwarf2_per_objfile->objfile;
6212 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6213 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6214 struct partial_symtab *pst = per_cu->v.psymtab;
6215 int len = VEC_length (sig_type_ptr, tu_group->tus);
6216 struct signatured_type *iter;
6219 gdb_assert (len > 0);
6220 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6222 pst->number_of_dependencies = len;
6223 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6224 len * sizeof (struct psymtab *));
6226 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6229 gdb_assert (iter->per_cu.is_debug_types);
6230 pst->dependencies[i] = iter->per_cu.v.psymtab;
6231 iter->type_unit_group = tu_group;
6234 VEC_free (sig_type_ptr, tu_group->tus);
6239 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6240 Build partial symbol tables for the .debug_types comp-units. */
6243 build_type_psymtabs (struct objfile *objfile)
6245 if (! create_all_type_units (objfile))
6248 build_type_psymtabs_1 ();
6251 /* Traversal function for process_skeletonless_type_unit.
6252 Read a TU in a DWO file and build partial symbols for it. */
6255 process_skeletonless_type_unit (void **slot, void *info)
6257 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6258 struct objfile *objfile = info;
6259 struct signatured_type find_entry, *entry;
6261 /* If this TU doesn't exist in the global table, add it and read it in. */
6263 if (dwarf2_per_objfile->signatured_types == NULL)
6265 dwarf2_per_objfile->signatured_types
6266 = allocate_signatured_type_table (objfile);
6269 find_entry.signature = dwo_unit->signature;
6270 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6272 /* If we've already seen this type there's nothing to do. What's happening
6273 is we're doing our own version of comdat-folding here. */
6277 /* This does the job that create_all_type_units would have done for
6279 entry = add_type_unit (dwo_unit->signature, slot);
6280 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6283 /* This does the job that build_type_psymtabs_1 would have done. */
6284 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6285 build_type_psymtabs_reader, NULL);
6290 /* Traversal function for process_skeletonless_type_units. */
6293 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6295 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6297 if (dwo_file->tus != NULL)
6299 htab_traverse_noresize (dwo_file->tus,
6300 process_skeletonless_type_unit, info);
6306 /* Scan all TUs of DWO files, verifying we've processed them.
6307 This is needed in case a TU was emitted without its skeleton.
6308 Note: This can't be done until we know what all the DWO files are. */
6311 process_skeletonless_type_units (struct objfile *objfile)
6313 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6314 if (get_dwp_file () == NULL
6315 && dwarf2_per_objfile->dwo_files != NULL)
6317 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6318 process_dwo_file_for_skeletonless_type_units,
6323 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6326 psymtabs_addrmap_cleanup (void *o)
6328 struct objfile *objfile = o;
6330 objfile->psymtabs_addrmap = NULL;
6333 /* Compute the 'user' field for each psymtab in OBJFILE. */
6336 set_partial_user (struct objfile *objfile)
6340 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6342 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6343 struct partial_symtab *pst = per_cu->v.psymtab;
6349 for (j = 0; j < pst->number_of_dependencies; ++j)
6351 /* Set the 'user' field only if it is not already set. */
6352 if (pst->dependencies[j]->user == NULL)
6353 pst->dependencies[j]->user = pst;
6358 /* Build the partial symbol table by doing a quick pass through the
6359 .debug_info and .debug_abbrev sections. */
6362 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6364 struct cleanup *back_to, *addrmap_cleanup;
6365 struct obstack temp_obstack;
6368 if (dwarf2_read_debug)
6370 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6371 objfile_name (objfile));
6374 dwarf2_per_objfile->reading_partial_symbols = 1;
6376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6378 /* Any cached compilation units will be linked by the per-objfile
6379 read_in_chain. Make sure to free them when we're done. */
6380 back_to = make_cleanup (free_cached_comp_units, NULL);
6382 build_type_psymtabs (objfile);
6384 create_all_comp_units (objfile);
6386 /* Create a temporary address map on a temporary obstack. We later
6387 copy this to the final obstack. */
6388 obstack_init (&temp_obstack);
6389 make_cleanup_obstack_free (&temp_obstack);
6390 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6391 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6395 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6397 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6400 /* This has to wait until we read the CUs, we need the list of DWOs. */
6401 process_skeletonless_type_units (objfile);
6403 /* Now that all TUs have been processed we can fill in the dependencies. */
6404 if (dwarf2_per_objfile->type_unit_groups != NULL)
6406 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6407 build_type_psymtab_dependencies, NULL);
6410 if (dwarf2_read_debug)
6413 set_partial_user (objfile);
6415 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6416 &objfile->objfile_obstack);
6417 discard_cleanups (addrmap_cleanup);
6419 do_cleanups (back_to);
6421 if (dwarf2_read_debug)
6422 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6423 objfile_name (objfile));
6426 /* die_reader_func for load_partial_comp_unit. */
6429 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6430 const gdb_byte *info_ptr,
6431 struct die_info *comp_unit_die,
6435 struct dwarf2_cu *cu = reader->cu;
6437 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6439 /* Check if comp unit has_children.
6440 If so, read the rest of the partial symbols from this comp unit.
6441 If not, there's no more debug_info for this comp unit. */
6443 load_partial_dies (reader, info_ptr, 0);
6446 /* Load the partial DIEs for a secondary CU into memory.
6447 This is also used when rereading a primary CU with load_all_dies. */
6450 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6452 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6453 load_partial_comp_unit_reader, NULL);
6457 read_comp_units_from_section (struct objfile *objfile,
6458 struct dwarf2_section_info *section,
6459 unsigned int is_dwz,
6462 struct dwarf2_per_cu_data ***all_comp_units)
6464 const gdb_byte *info_ptr;
6465 bfd *abfd = get_section_bfd_owner (section);
6467 if (dwarf2_read_debug)
6468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6469 get_section_name (section),
6470 get_section_file_name (section));
6472 dwarf2_read_section (objfile, section);
6474 info_ptr = section->buffer;
6476 while (info_ptr < section->buffer + section->size)
6478 unsigned int length, initial_length_size;
6479 struct dwarf2_per_cu_data *this_cu;
6482 offset.sect_off = info_ptr - section->buffer;
6484 /* Read just enough information to find out where the next
6485 compilation unit is. */
6486 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6488 /* Save the compilation unit for later lookup. */
6489 this_cu = obstack_alloc (&objfile->objfile_obstack,
6490 sizeof (struct dwarf2_per_cu_data));
6491 memset (this_cu, 0, sizeof (*this_cu));
6492 this_cu->offset = offset;
6493 this_cu->length = length + initial_length_size;
6494 this_cu->is_dwz = is_dwz;
6495 this_cu->objfile = objfile;
6496 this_cu->section = section;
6498 if (*n_comp_units == *n_allocated)
6501 *all_comp_units = xrealloc (*all_comp_units,
6503 * sizeof (struct dwarf2_per_cu_data *));
6505 (*all_comp_units)[*n_comp_units] = this_cu;
6508 info_ptr = info_ptr + this_cu->length;
6512 /* Create a list of all compilation units in OBJFILE.
6513 This is only done for -readnow and building partial symtabs. */
6516 create_all_comp_units (struct objfile *objfile)
6520 struct dwarf2_per_cu_data **all_comp_units;
6521 struct dwz_file *dwz;
6525 all_comp_units = xmalloc (n_allocated
6526 * sizeof (struct dwarf2_per_cu_data *));
6528 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6529 &n_allocated, &n_comp_units, &all_comp_units);
6531 dwz = dwarf2_get_dwz_file ();
6533 read_comp_units_from_section (objfile, &dwz->info, 1,
6534 &n_allocated, &n_comp_units,
6537 dwarf2_per_objfile->all_comp_units
6538 = obstack_alloc (&objfile->objfile_obstack,
6539 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6540 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6541 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6542 xfree (all_comp_units);
6543 dwarf2_per_objfile->n_comp_units = n_comp_units;
6546 /* Process all loaded DIEs for compilation unit CU, starting at
6547 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6548 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6549 DW_AT_ranges). If NEED_PC is set, then this function will set
6550 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6551 and record the covered ranges in the addrmap. */
6554 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6555 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6557 struct partial_die_info *pdi;
6559 /* Now, march along the PDI's, descending into ones which have
6560 interesting children but skipping the children of the other ones,
6561 until we reach the end of the compilation unit. */
6567 fixup_partial_die (pdi, cu);
6569 /* Anonymous namespaces or modules have no name but have interesting
6570 children, so we need to look at them. Ditto for anonymous
6573 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6574 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6575 || pdi->tag == DW_TAG_imported_unit)
6579 case DW_TAG_subprogram:
6580 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6582 case DW_TAG_constant:
6583 case DW_TAG_variable:
6584 case DW_TAG_typedef:
6585 case DW_TAG_union_type:
6586 if (!pdi->is_declaration)
6588 add_partial_symbol (pdi, cu);
6591 case DW_TAG_class_type:
6592 case DW_TAG_interface_type:
6593 case DW_TAG_structure_type:
6594 if (!pdi->is_declaration)
6596 add_partial_symbol (pdi, cu);
6599 case DW_TAG_enumeration_type:
6600 if (!pdi->is_declaration)
6601 add_partial_enumeration (pdi, cu);
6603 case DW_TAG_base_type:
6604 case DW_TAG_subrange_type:
6605 /* File scope base type definitions are added to the partial
6607 add_partial_symbol (pdi, cu);
6609 case DW_TAG_namespace:
6610 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6613 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6615 case DW_TAG_imported_unit:
6617 struct dwarf2_per_cu_data *per_cu;
6619 /* For now we don't handle imported units in type units. */
6620 if (cu->per_cu->is_debug_types)
6622 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6623 " supported in type units [in module %s]"),
6624 objfile_name (cu->objfile));
6627 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6631 /* Go read the partial unit, if needed. */
6632 if (per_cu->v.psymtab == NULL)
6633 process_psymtab_comp_unit (per_cu, 1, cu->language);
6635 VEC_safe_push (dwarf2_per_cu_ptr,
6636 cu->per_cu->imported_symtabs, per_cu);
6639 case DW_TAG_imported_declaration:
6640 add_partial_symbol (pdi, cu);
6647 /* If the die has a sibling, skip to the sibling. */
6649 pdi = pdi->die_sibling;
6653 /* Functions used to compute the fully scoped name of a partial DIE.
6655 Normally, this is simple. For C++, the parent DIE's fully scoped
6656 name is concatenated with "::" and the partial DIE's name. For
6657 Java, the same thing occurs except that "." is used instead of "::".
6658 Enumerators are an exception; they use the scope of their parent
6659 enumeration type, i.e. the name of the enumeration type is not
6660 prepended to the enumerator.
6662 There are two complexities. One is DW_AT_specification; in this
6663 case "parent" means the parent of the target of the specification,
6664 instead of the direct parent of the DIE. The other is compilers
6665 which do not emit DW_TAG_namespace; in this case we try to guess
6666 the fully qualified name of structure types from their members'
6667 linkage names. This must be done using the DIE's children rather
6668 than the children of any DW_AT_specification target. We only need
6669 to do this for structures at the top level, i.e. if the target of
6670 any DW_AT_specification (if any; otherwise the DIE itself) does not
6673 /* Compute the scope prefix associated with PDI's parent, in
6674 compilation unit CU. The result will be allocated on CU's
6675 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6676 field. NULL is returned if no prefix is necessary. */
6678 partial_die_parent_scope (struct partial_die_info *pdi,
6679 struct dwarf2_cu *cu)
6681 const char *grandparent_scope;
6682 struct partial_die_info *parent, *real_pdi;
6684 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6685 then this means the parent of the specification DIE. */
6688 while (real_pdi->has_specification)
6689 real_pdi = find_partial_die (real_pdi->spec_offset,
6690 real_pdi->spec_is_dwz, cu);
6692 parent = real_pdi->die_parent;
6696 if (parent->scope_set)
6697 return parent->scope;
6699 fixup_partial_die (parent, cu);
6701 grandparent_scope = partial_die_parent_scope (parent, cu);
6703 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6704 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6705 Work around this problem here. */
6706 if (cu->language == language_cplus
6707 && parent->tag == DW_TAG_namespace
6708 && strcmp (parent->name, "::") == 0
6709 && grandparent_scope == NULL)
6711 parent->scope = NULL;
6712 parent->scope_set = 1;
6716 if (pdi->tag == DW_TAG_enumerator)
6717 /* Enumerators should not get the name of the enumeration as a prefix. */
6718 parent->scope = grandparent_scope;
6719 else if (parent->tag == DW_TAG_namespace
6720 || parent->tag == DW_TAG_module
6721 || parent->tag == DW_TAG_structure_type
6722 || parent->tag == DW_TAG_class_type
6723 || parent->tag == DW_TAG_interface_type
6724 || parent->tag == DW_TAG_union_type
6725 || parent->tag == DW_TAG_enumeration_type)
6727 if (grandparent_scope == NULL)
6728 parent->scope = parent->name;
6730 parent->scope = typename_concat (&cu->comp_unit_obstack,
6732 parent->name, 0, cu);
6736 /* FIXME drow/2004-04-01: What should we be doing with
6737 function-local names? For partial symbols, we should probably be
6739 complaint (&symfile_complaints,
6740 _("unhandled containing DIE tag %d for DIE at %d"),
6741 parent->tag, pdi->offset.sect_off);
6742 parent->scope = grandparent_scope;
6745 parent->scope_set = 1;
6746 return parent->scope;
6749 /* Return the fully scoped name associated with PDI, from compilation unit
6750 CU. The result will be allocated with malloc. */
6753 partial_die_full_name (struct partial_die_info *pdi,
6754 struct dwarf2_cu *cu)
6756 const char *parent_scope;
6758 /* If this is a template instantiation, we can not work out the
6759 template arguments from partial DIEs. So, unfortunately, we have
6760 to go through the full DIEs. At least any work we do building
6761 types here will be reused if full symbols are loaded later. */
6762 if (pdi->has_template_arguments)
6764 fixup_partial_die (pdi, cu);
6766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6768 struct die_info *die;
6769 struct attribute attr;
6770 struct dwarf2_cu *ref_cu = cu;
6772 /* DW_FORM_ref_addr is using section offset. */
6774 attr.form = DW_FORM_ref_addr;
6775 attr.u.unsnd = pdi->offset.sect_off;
6776 die = follow_die_ref (NULL, &attr, &ref_cu);
6778 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6782 parent_scope = partial_die_parent_scope (pdi, cu);
6783 if (parent_scope == NULL)
6786 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6790 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6792 struct objfile *objfile = cu->objfile;
6794 const char *actual_name = NULL;
6796 char *built_actual_name;
6798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6800 built_actual_name = partial_die_full_name (pdi, cu);
6801 if (built_actual_name != NULL)
6802 actual_name = built_actual_name;
6804 if (actual_name == NULL)
6805 actual_name = pdi->name;
6809 case DW_TAG_subprogram:
6810 if (pdi->is_external || cu->language == language_ada)
6812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6813 of the global scope. But in Ada, we want to be able to access
6814 nested procedures globally. So all Ada subprograms are stored
6815 in the global scope. */
6816 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6817 mst_text, objfile); */
6818 add_psymbol_to_list (actual_name, strlen (actual_name),
6819 built_actual_name != NULL,
6820 VAR_DOMAIN, LOC_BLOCK,
6821 &objfile->global_psymbols,
6822 0, pdi->lowpc + baseaddr,
6823 cu->language, objfile);
6827 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6828 mst_file_text, objfile); */
6829 add_psymbol_to_list (actual_name, strlen (actual_name),
6830 built_actual_name != NULL,
6831 VAR_DOMAIN, LOC_BLOCK,
6832 &objfile->static_psymbols,
6833 0, pdi->lowpc + baseaddr,
6834 cu->language, objfile);
6837 case DW_TAG_constant:
6839 struct psymbol_allocation_list *list;
6841 if (pdi->is_external)
6842 list = &objfile->global_psymbols;
6844 list = &objfile->static_psymbols;
6845 add_psymbol_to_list (actual_name, strlen (actual_name),
6846 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6847 list, 0, 0, cu->language, objfile);
6850 case DW_TAG_variable:
6852 addr = decode_locdesc (pdi->d.locdesc, cu);
6856 && !dwarf2_per_objfile->has_section_at_zero)
6858 /* A global or static variable may also have been stripped
6859 out by the linker if unused, in which case its address
6860 will be nullified; do not add such variables into partial
6861 symbol table then. */
6863 else if (pdi->is_external)
6866 Don't enter into the minimal symbol tables as there is
6867 a minimal symbol table entry from the ELF symbols already.
6868 Enter into partial symbol table if it has a location
6869 descriptor or a type.
6870 If the location descriptor is missing, new_symbol will create
6871 a LOC_UNRESOLVED symbol, the address of the variable will then
6872 be determined from the minimal symbol table whenever the variable
6874 The address for the partial symbol table entry is not
6875 used by GDB, but it comes in handy for debugging partial symbol
6878 if (pdi->d.locdesc || pdi->has_type)
6879 add_psymbol_to_list (actual_name, strlen (actual_name),
6880 built_actual_name != NULL,
6881 VAR_DOMAIN, LOC_STATIC,
6882 &objfile->global_psymbols,
6884 cu->language, objfile);
6888 /* Static Variable. Skip symbols without location descriptors. */
6889 if (pdi->d.locdesc == NULL)
6891 xfree (built_actual_name);
6894 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6895 mst_file_data, objfile); */
6896 add_psymbol_to_list (actual_name, strlen (actual_name),
6897 built_actual_name != NULL,
6898 VAR_DOMAIN, LOC_STATIC,
6899 &objfile->static_psymbols,
6901 cu->language, objfile);
6904 case DW_TAG_typedef:
6905 case DW_TAG_base_type:
6906 case DW_TAG_subrange_type:
6907 add_psymbol_to_list (actual_name, strlen (actual_name),
6908 built_actual_name != NULL,
6909 VAR_DOMAIN, LOC_TYPEDEF,
6910 &objfile->static_psymbols,
6911 0, (CORE_ADDR) 0, cu->language, objfile);
6913 case DW_TAG_imported_declaration:
6914 case DW_TAG_namespace:
6915 add_psymbol_to_list (actual_name, strlen (actual_name),
6916 built_actual_name != NULL,
6917 VAR_DOMAIN, LOC_TYPEDEF,
6918 &objfile->global_psymbols,
6919 0, (CORE_ADDR) 0, cu->language, objfile);
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL,
6924 MODULE_DOMAIN, LOC_TYPEDEF,
6925 &objfile->global_psymbols,
6926 0, (CORE_ADDR) 0, cu->language, objfile);
6928 case DW_TAG_class_type:
6929 case DW_TAG_interface_type:
6930 case DW_TAG_structure_type:
6931 case DW_TAG_union_type:
6932 case DW_TAG_enumeration_type:
6933 /* Skip external references. The DWARF standard says in the section
6934 about "Structure, Union, and Class Type Entries": "An incomplete
6935 structure, union or class type is represented by a structure,
6936 union or class entry that does not have a byte size attribute
6937 and that has a DW_AT_declaration attribute." */
6938 if (!pdi->has_byte_size && pdi->is_declaration)
6940 xfree (built_actual_name);
6944 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6945 static vs. global. */
6946 add_psymbol_to_list (actual_name, strlen (actual_name),
6947 built_actual_name != NULL,
6948 STRUCT_DOMAIN, LOC_TYPEDEF,
6949 (cu->language == language_cplus
6950 || cu->language == language_java)
6951 ? &objfile->global_psymbols
6952 : &objfile->static_psymbols,
6953 0, (CORE_ADDR) 0, cu->language, objfile);
6956 case DW_TAG_enumerator:
6957 add_psymbol_to_list (actual_name, strlen (actual_name),
6958 built_actual_name != NULL,
6959 VAR_DOMAIN, LOC_CONST,
6960 (cu->language == language_cplus
6961 || cu->language == language_java)
6962 ? &objfile->global_psymbols
6963 : &objfile->static_psymbols,
6964 0, (CORE_ADDR) 0, cu->language, objfile);
6970 xfree (built_actual_name);
6973 /* Read a partial die corresponding to a namespace; also, add a symbol
6974 corresponding to that namespace to the symbol table. NAMESPACE is
6975 the name of the enclosing namespace. */
6978 add_partial_namespace (struct partial_die_info *pdi,
6979 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6980 int need_pc, struct dwarf2_cu *cu)
6982 /* Add a symbol for the namespace. */
6984 add_partial_symbol (pdi, cu);
6986 /* Now scan partial symbols in that namespace. */
6988 if (pdi->has_children)
6989 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6992 /* Read a partial die corresponding to a Fortran module. */
6995 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6996 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6998 /* Add a symbol for the namespace. */
7000 add_partial_symbol (pdi, cu);
7002 /* Now scan partial symbols in that module. */
7004 if (pdi->has_children)
7005 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
7008 /* Read a partial die corresponding to a subprogram and create a partial
7009 symbol for that subprogram. When the CU language allows it, this
7010 routine also defines a partial symbol for each nested subprogram
7011 that this subprogram contains.
7013 DIE my also be a lexical block, in which case we simply search
7014 recursively for suprograms defined inside that lexical block.
7015 Again, this is only performed when the CU language allows this
7016 type of definitions. */
7019 add_partial_subprogram (struct partial_die_info *pdi,
7020 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7021 int need_pc, struct dwarf2_cu *cu)
7023 if (pdi->tag == DW_TAG_subprogram)
7025 if (pdi->has_pc_info)
7027 if (pdi->lowpc < *lowpc)
7028 *lowpc = pdi->lowpc;
7029 if (pdi->highpc > *highpc)
7030 *highpc = pdi->highpc;
7034 struct objfile *objfile = cu->objfile;
7036 baseaddr = ANOFFSET (objfile->section_offsets,
7037 SECT_OFF_TEXT (objfile));
7038 addrmap_set_empty (objfile->psymtabs_addrmap,
7039 pdi->lowpc + baseaddr,
7040 pdi->highpc - 1 + baseaddr,
7041 cu->per_cu->v.psymtab);
7045 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7047 if (!pdi->is_declaration)
7048 /* Ignore subprogram DIEs that do not have a name, they are
7049 illegal. Do not emit a complaint at this point, we will
7050 do so when we convert this psymtab into a symtab. */
7052 add_partial_symbol (pdi, cu);
7056 if (! pdi->has_children)
7059 if (cu->language == language_ada)
7061 pdi = pdi->die_child;
7064 fixup_partial_die (pdi, cu);
7065 if (pdi->tag == DW_TAG_subprogram
7066 || pdi->tag == DW_TAG_lexical_block)
7067 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
7068 pdi = pdi->die_sibling;
7073 /* Read a partial die corresponding to an enumeration type. */
7076 add_partial_enumeration (struct partial_die_info *enum_pdi,
7077 struct dwarf2_cu *cu)
7079 struct partial_die_info *pdi;
7081 if (enum_pdi->name != NULL)
7082 add_partial_symbol (enum_pdi, cu);
7084 pdi = enum_pdi->die_child;
7087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7088 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7090 add_partial_symbol (pdi, cu);
7091 pdi = pdi->die_sibling;
7095 /* Return the initial uleb128 in the die at INFO_PTR. */
7098 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7100 unsigned int bytes_read;
7102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7105 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7106 Return the corresponding abbrev, or NULL if the number is zero (indicating
7107 an empty DIE). In either case *BYTES_READ will be set to the length of
7108 the initial number. */
7110 static struct abbrev_info *
7111 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7112 struct dwarf2_cu *cu)
7114 bfd *abfd = cu->objfile->obfd;
7115 unsigned int abbrev_number;
7116 struct abbrev_info *abbrev;
7118 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7120 if (abbrev_number == 0)
7123 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7126 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7127 abbrev_number, bfd_get_filename (abfd));
7133 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7134 Returns a pointer to the end of a series of DIEs, terminated by an empty
7135 DIE. Any children of the skipped DIEs will also be skipped. */
7137 static const gdb_byte *
7138 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7140 struct dwarf2_cu *cu = reader->cu;
7141 struct abbrev_info *abbrev;
7142 unsigned int bytes_read;
7146 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7148 return info_ptr + bytes_read;
7150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7154 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7156 abbrev corresponding to that skipped uleb128 should be passed in
7157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7160 static const gdb_byte *
7161 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7162 struct abbrev_info *abbrev)
7164 unsigned int bytes_read;
7165 struct attribute attr;
7166 bfd *abfd = reader->abfd;
7167 struct dwarf2_cu *cu = reader->cu;
7168 const gdb_byte *buffer = reader->buffer;
7169 const gdb_byte *buffer_end = reader->buffer_end;
7170 const gdb_byte *start_info_ptr = info_ptr;
7171 unsigned int form, i;
7173 for (i = 0; i < abbrev->num_attrs; i++)
7175 /* The only abbrev we care about is DW_AT_sibling. */
7176 if (abbrev->attrs[i].name == DW_AT_sibling)
7178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7179 if (attr.form == DW_FORM_ref_addr)
7180 complaint (&symfile_complaints,
7181 _("ignoring absolute DW_AT_sibling"));
7184 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7185 const gdb_byte *sibling_ptr = buffer + off;
7187 if (sibling_ptr < info_ptr)
7188 complaint (&symfile_complaints,
7189 _("DW_AT_sibling points backwards"));
7190 else if (sibling_ptr > reader->buffer_end)
7191 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7197 /* If it isn't DW_AT_sibling, skip this attribute. */
7198 form = abbrev->attrs[i].form;
7202 case DW_FORM_ref_addr:
7203 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7204 and later it is offset sized. */
7205 if (cu->header.version == 2)
7206 info_ptr += cu->header.addr_size;
7208 info_ptr += cu->header.offset_size;
7210 case DW_FORM_GNU_ref_alt:
7211 info_ptr += cu->header.offset_size;
7214 info_ptr += cu->header.addr_size;
7221 case DW_FORM_flag_present:
7233 case DW_FORM_ref_sig8:
7236 case DW_FORM_string:
7237 read_direct_string (abfd, info_ptr, &bytes_read);
7238 info_ptr += bytes_read;
7240 case DW_FORM_sec_offset:
7242 case DW_FORM_GNU_strp_alt:
7243 info_ptr += cu->header.offset_size;
7245 case DW_FORM_exprloc:
7247 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7248 info_ptr += bytes_read;
7250 case DW_FORM_block1:
7251 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7253 case DW_FORM_block2:
7254 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7256 case DW_FORM_block4:
7257 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7261 case DW_FORM_ref_udata:
7262 case DW_FORM_GNU_addr_index:
7263 case DW_FORM_GNU_str_index:
7264 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7266 case DW_FORM_indirect:
7267 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7268 info_ptr += bytes_read;
7269 /* We need to continue parsing from here, so just go back to
7271 goto skip_attribute;
7274 error (_("Dwarf Error: Cannot handle %s "
7275 "in DWARF reader [in module %s]"),
7276 dwarf_form_name (form),
7277 bfd_get_filename (abfd));
7281 if (abbrev->has_children)
7282 return skip_children (reader, info_ptr);
7287 /* Locate ORIG_PDI's sibling.
7288 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7290 static const gdb_byte *
7291 locate_pdi_sibling (const struct die_reader_specs *reader,
7292 struct partial_die_info *orig_pdi,
7293 const gdb_byte *info_ptr)
7295 /* Do we know the sibling already? */
7297 if (orig_pdi->sibling)
7298 return orig_pdi->sibling;
7300 /* Are there any children to deal with? */
7302 if (!orig_pdi->has_children)
7305 /* Skip the children the long way. */
7307 return skip_children (reader, info_ptr);
7310 /* Expand this partial symbol table into a full symbol table. SELF is
7314 dwarf2_read_symtab (struct partial_symtab *self,
7315 struct objfile *objfile)
7319 warning (_("bug: psymtab for %s is already read in."),
7326 printf_filtered (_("Reading in symbols for %s..."),
7328 gdb_flush (gdb_stdout);
7331 /* Restore our global data. */
7332 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7334 /* If this psymtab is constructed from a debug-only objfile, the
7335 has_section_at_zero flag will not necessarily be correct. We
7336 can get the correct value for this flag by looking at the data
7337 associated with the (presumably stripped) associated objfile. */
7338 if (objfile->separate_debug_objfile_backlink)
7340 struct dwarf2_per_objfile *dpo_backlink
7341 = objfile_data (objfile->separate_debug_objfile_backlink,
7342 dwarf2_objfile_data_key);
7344 dwarf2_per_objfile->has_section_at_zero
7345 = dpo_backlink->has_section_at_zero;
7348 dwarf2_per_objfile->reading_partial_symbols = 0;
7350 psymtab_to_symtab_1 (self);
7352 /* Finish up the debug error message. */
7354 printf_filtered (_("done.\n"));
7357 process_cu_includes ();
7360 /* Reading in full CUs. */
7362 /* Add PER_CU to the queue. */
7365 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7366 enum language pretend_language)
7368 struct dwarf2_queue_item *item;
7371 item = xmalloc (sizeof (*item));
7372 item->per_cu = per_cu;
7373 item->pretend_language = pretend_language;
7376 if (dwarf2_queue == NULL)
7377 dwarf2_queue = item;
7379 dwarf2_queue_tail->next = item;
7381 dwarf2_queue_tail = item;
7384 /* If PER_CU is not yet queued, add it to the queue.
7385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7387 The result is non-zero if PER_CU was queued, otherwise the result is zero
7388 meaning either PER_CU is already queued or it is already loaded.
7390 N.B. There is an invariant here that if a CU is queued then it is loaded.
7391 The caller is required to load PER_CU if we return non-zero. */
7394 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7395 struct dwarf2_per_cu_data *per_cu,
7396 enum language pretend_language)
7398 /* We may arrive here during partial symbol reading, if we need full
7399 DIEs to process an unusual case (e.g. template arguments). Do
7400 not queue PER_CU, just tell our caller to load its DIEs. */
7401 if (dwarf2_per_objfile->reading_partial_symbols)
7403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7408 /* Mark the dependence relation so that we don't flush PER_CU
7410 if (dependent_cu != NULL)
7411 dwarf2_add_dependence (dependent_cu, per_cu);
7413 /* If it's already on the queue, we have nothing to do. */
7417 /* If the compilation unit is already loaded, just mark it as
7419 if (per_cu->cu != NULL)
7421 per_cu->cu->last_used = 0;
7425 /* Add it to the queue. */
7426 queue_comp_unit (per_cu, pretend_language);
7431 /* Process the queue. */
7434 process_queue (void)
7436 struct dwarf2_queue_item *item, *next_item;
7438 if (dwarf2_read_debug)
7440 fprintf_unfiltered (gdb_stdlog,
7441 "Expanding one or more symtabs of objfile %s ...\n",
7442 objfile_name (dwarf2_per_objfile->objfile));
7445 /* The queue starts out with one item, but following a DIE reference
7446 may load a new CU, adding it to the end of the queue. */
7447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7449 if (dwarf2_per_objfile->using_index
7450 ? !item->per_cu->v.quick->symtab
7451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7453 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7454 unsigned int debug_print_threshold;
7457 if (per_cu->is_debug_types)
7459 struct signatured_type *sig_type =
7460 (struct signatured_type *) per_cu;
7462 sprintf (buf, "TU %s at offset 0x%x",
7463 hex_string (sig_type->signature),
7464 per_cu->offset.sect_off);
7465 /* There can be 100s of TUs.
7466 Only print them in verbose mode. */
7467 debug_print_threshold = 2;
7471 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7472 debug_print_threshold = 1;
7475 if (dwarf2_read_debug >= debug_print_threshold)
7476 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7478 if (per_cu->is_debug_types)
7479 process_full_type_unit (per_cu, item->pretend_language);
7481 process_full_comp_unit (per_cu, item->pretend_language);
7483 if (dwarf2_read_debug >= debug_print_threshold)
7484 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7487 item->per_cu->queued = 0;
7488 next_item = item->next;
7492 dwarf2_queue_tail = NULL;
7494 if (dwarf2_read_debug)
7496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7497 objfile_name (dwarf2_per_objfile->objfile));
7501 /* Free all allocated queue entries. This function only releases anything if
7502 an error was thrown; if the queue was processed then it would have been
7503 freed as we went along. */
7506 dwarf2_release_queue (void *dummy)
7508 struct dwarf2_queue_item *item, *last;
7510 item = dwarf2_queue;
7513 /* Anything still marked queued is likely to be in an
7514 inconsistent state, so discard it. */
7515 if (item->per_cu->queued)
7517 if (item->per_cu->cu != NULL)
7518 free_one_cached_comp_unit (item->per_cu);
7519 item->per_cu->queued = 0;
7527 dwarf2_queue = dwarf2_queue_tail = NULL;
7530 /* Read in full symbols for PST, and anything it depends on. */
7533 psymtab_to_symtab_1 (struct partial_symtab *pst)
7535 struct dwarf2_per_cu_data *per_cu;
7541 for (i = 0; i < pst->number_of_dependencies; i++)
7542 if (!pst->dependencies[i]->readin
7543 && pst->dependencies[i]->user == NULL)
7545 /* Inform about additional files that need to be read in. */
7548 /* FIXME: i18n: Need to make this a single string. */
7549 fputs_filtered (" ", gdb_stdout);
7551 fputs_filtered ("and ", gdb_stdout);
7553 printf_filtered ("%s...", pst->dependencies[i]->filename);
7554 wrap_here (""); /* Flush output. */
7555 gdb_flush (gdb_stdout);
7557 psymtab_to_symtab_1 (pst->dependencies[i]);
7560 per_cu = pst->read_symtab_private;
7564 /* It's an include file, no symbols to read for it.
7565 Everything is in the parent symtab. */
7570 dw2_do_instantiate_symtab (per_cu);
7573 /* Trivial hash function for die_info: the hash value of a DIE
7574 is its offset in .debug_info for this objfile. */
7577 die_hash (const void *item)
7579 const struct die_info *die = item;
7581 return die->offset.sect_off;
7584 /* Trivial comparison function for die_info structures: two DIEs
7585 are equal if they have the same offset. */
7588 die_eq (const void *item_lhs, const void *item_rhs)
7590 const struct die_info *die_lhs = item_lhs;
7591 const struct die_info *die_rhs = item_rhs;
7593 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7596 /* die_reader_func for load_full_comp_unit.
7597 This is identical to read_signatured_type_reader,
7598 but is kept separate for now. */
7601 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7602 const gdb_byte *info_ptr,
7603 struct die_info *comp_unit_die,
7607 struct dwarf2_cu *cu = reader->cu;
7608 enum language *language_ptr = data;
7610 gdb_assert (cu->die_hash == NULL);
7612 htab_create_alloc_ex (cu->header.length / 12,
7616 &cu->comp_unit_obstack,
7617 hashtab_obstack_allocate,
7618 dummy_obstack_deallocate);
7621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7622 &info_ptr, comp_unit_die);
7623 cu->dies = comp_unit_die;
7624 /* comp_unit_die is not stored in die_hash, no need. */
7626 /* We try not to read any attributes in this function, because not
7627 all CUs needed for references have been loaded yet, and symbol
7628 table processing isn't initialized. But we have to set the CU language,
7629 or we won't be able to build types correctly.
7630 Similarly, if we do not read the producer, we can not apply
7631 producer-specific interpretation. */
7632 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7635 /* Load the DIEs associated with PER_CU into memory. */
7638 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7639 enum language pretend_language)
7641 gdb_assert (! this_cu->is_debug_types);
7643 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7644 load_full_comp_unit_reader, &pretend_language);
7647 /* Add a DIE to the delayed physname list. */
7650 add_to_method_list (struct type *type, int fnfield_index, int index,
7651 const char *name, struct die_info *die,
7652 struct dwarf2_cu *cu)
7654 struct delayed_method_info mi;
7656 mi.fnfield_index = fnfield_index;
7660 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7663 /* A cleanup for freeing the delayed method list. */
7666 free_delayed_list (void *ptr)
7668 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7669 if (cu->method_list != NULL)
7671 VEC_free (delayed_method_info, cu->method_list);
7672 cu->method_list = NULL;
7676 /* Compute the physnames of any methods on the CU's method list.
7678 The computation of method physnames is delayed in order to avoid the
7679 (bad) condition that one of the method's formal parameters is of an as yet
7683 compute_delayed_physnames (struct dwarf2_cu *cu)
7686 struct delayed_method_info *mi;
7687 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7689 const char *physname;
7690 struct fn_fieldlist *fn_flp
7691 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7692 physname = dwarf2_physname (mi->name, mi->die, cu);
7693 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7697 /* Go objects should be embedded in a DW_TAG_module DIE,
7698 and it's not clear if/how imported objects will appear.
7699 To keep Go support simple until that's worked out,
7700 go back through what we've read and create something usable.
7701 We could do this while processing each DIE, and feels kinda cleaner,
7702 but that way is more invasive.
7703 This is to, for example, allow the user to type "p var" or "b main"
7704 without having to specify the package name, and allow lookups
7705 of module.object to work in contexts that use the expression
7709 fixup_go_packaging (struct dwarf2_cu *cu)
7711 char *package_name = NULL;
7712 struct pending *list;
7715 for (list = global_symbols; list != NULL; list = list->next)
7717 for (i = 0; i < list->nsyms; ++i)
7719 struct symbol *sym = list->symbol[i];
7721 if (SYMBOL_LANGUAGE (sym) == language_go
7722 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7724 char *this_package_name = go_symbol_package_name (sym);
7726 if (this_package_name == NULL)
7728 if (package_name == NULL)
7729 package_name = this_package_name;
7732 if (strcmp (package_name, this_package_name) != 0)
7733 complaint (&symfile_complaints,
7734 _("Symtab %s has objects from two different Go packages: %s and %s"),
7735 (SYMBOL_SYMTAB (sym)
7736 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7737 : objfile_name (cu->objfile)),
7738 this_package_name, package_name);
7739 xfree (this_package_name);
7745 if (package_name != NULL)
7747 struct objfile *objfile = cu->objfile;
7748 const char *saved_package_name
7749 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7751 strlen (package_name));
7752 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7753 saved_package_name, objfile);
7756 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7758 sym = allocate_symbol (objfile);
7759 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7760 SYMBOL_SET_NAMES (sym, saved_package_name,
7761 strlen (saved_package_name), 0, objfile);
7762 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7763 e.g., "main" finds the "main" module and not C's main(). */
7764 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7765 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7766 SYMBOL_TYPE (sym) = type;
7768 add_symbol_to_list (sym, &global_symbols);
7770 xfree (package_name);
7774 /* Return the symtab for PER_CU. This works properly regardless of
7775 whether we're using the index or psymtabs. */
7777 static struct symtab *
7778 get_symtab (struct dwarf2_per_cu_data *per_cu)
7780 return (dwarf2_per_objfile->using_index
7781 ? per_cu->v.quick->symtab
7782 : per_cu->v.psymtab->symtab);
7785 /* A helper function for computing the list of all symbol tables
7786 included by PER_CU. */
7789 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7790 htab_t all_children, htab_t all_type_symtabs,
7791 struct dwarf2_per_cu_data *per_cu,
7792 struct symtab *immediate_parent)
7796 struct symtab *symtab;
7797 struct dwarf2_per_cu_data *iter;
7799 slot = htab_find_slot (all_children, per_cu, INSERT);
7802 /* This inclusion and its children have been processed. */
7807 /* Only add a CU if it has a symbol table. */
7808 symtab = get_symtab (per_cu);
7811 /* If this is a type unit only add its symbol table if we haven't
7812 seen it yet (type unit per_cu's can share symtabs). */
7813 if (per_cu->is_debug_types)
7815 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7819 VEC_safe_push (symtab_ptr, *result, symtab);
7820 if (symtab->user == NULL)
7821 symtab->user = immediate_parent;
7826 VEC_safe_push (symtab_ptr, *result, symtab);
7827 if (symtab->user == NULL)
7828 symtab->user = immediate_parent;
7833 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7836 recursively_compute_inclusions (result, all_children,
7837 all_type_symtabs, iter, symtab);
7841 /* Compute the symtab 'includes' fields for the symtab related to
7845 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7847 gdb_assert (! per_cu->is_debug_types);
7849 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7852 struct dwarf2_per_cu_data *per_cu_iter;
7853 struct symtab *symtab_iter;
7854 VEC (symtab_ptr) *result_symtabs = NULL;
7855 htab_t all_children, all_type_symtabs;
7856 struct symtab *symtab = get_symtab (per_cu);
7858 /* If we don't have a symtab, we can just skip this case. */
7862 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7863 NULL, xcalloc, xfree);
7864 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7865 NULL, xcalloc, xfree);
7868 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7872 recursively_compute_inclusions (&result_symtabs, all_children,
7873 all_type_symtabs, per_cu_iter,
7877 /* Now we have a transitive closure of all the included symtabs. */
7878 len = VEC_length (symtab_ptr, result_symtabs);
7880 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7881 (len + 1) * sizeof (struct symtab *));
7883 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7885 symtab->includes[ix] = symtab_iter;
7886 symtab->includes[len] = NULL;
7888 VEC_free (symtab_ptr, result_symtabs);
7889 htab_delete (all_children);
7890 htab_delete (all_type_symtabs);
7894 /* Compute the 'includes' field for the symtabs of all the CUs we just
7898 process_cu_includes (void)
7901 struct dwarf2_per_cu_data *iter;
7904 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7908 if (! iter->is_debug_types)
7909 compute_symtab_includes (iter);
7912 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7915 /* Generate full symbol information for PER_CU, whose DIEs have
7916 already been loaded into memory. */
7919 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7920 enum language pretend_language)
7922 struct dwarf2_cu *cu = per_cu->cu;
7923 struct objfile *objfile = per_cu->objfile;
7924 CORE_ADDR lowpc, highpc;
7925 struct symtab *symtab;
7926 struct cleanup *back_to, *delayed_list_cleanup;
7928 struct block *static_block;
7930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7933 back_to = make_cleanup (really_free_pendings, NULL);
7934 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7936 cu->list_in_scope = &file_symbols;
7938 cu->language = pretend_language;
7939 cu->language_defn = language_def (cu->language);
7941 /* Do line number decoding in read_file_scope () */
7942 process_die (cu->dies, cu);
7944 /* For now fudge the Go package. */
7945 if (cu->language == language_go)
7946 fixup_go_packaging (cu);
7948 /* Now that we have processed all the DIEs in the CU, all the types
7949 should be complete, and it should now be safe to compute all of the
7951 compute_delayed_physnames (cu);
7952 do_cleanups (delayed_list_cleanup);
7954 /* Some compilers don't define a DW_AT_high_pc attribute for the
7955 compilation unit. If the DW_AT_high_pc is missing, synthesize
7956 it, by scanning the DIE's below the compilation unit. */
7957 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7960 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7962 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7963 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7964 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7965 addrmap to help ensure it has an accurate map of pc values belonging to
7967 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7969 symtab = end_symtab_from_static_block (static_block, objfile,
7970 SECT_OFF_TEXT (objfile), 0);
7974 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7976 /* Set symtab language to language from DW_AT_language. If the
7977 compilation is from a C file generated by language preprocessors, do
7978 not set the language if it was already deduced by start_subfile. */
7979 if (!(cu->language == language_c && symtab->language != language_c))
7980 symtab->language = cu->language;
7982 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7983 produce DW_AT_location with location lists but it can be possibly
7984 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7985 there were bugs in prologue debug info, fixed later in GCC-4.5
7986 by "unwind info for epilogues" patch (which is not directly related).
7988 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7989 needed, it would be wrong due to missing DW_AT_producer there.
7991 Still one can confuse GDB by using non-standard GCC compilation
7992 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7994 if (cu->has_loclist && gcc_4_minor >= 5)
7995 symtab->locations_valid = 1;
7997 if (gcc_4_minor >= 5)
7998 symtab->epilogue_unwind_valid = 1;
8000 symtab->call_site_htab = cu->call_site_htab;
8003 if (dwarf2_per_objfile->using_index)
8004 per_cu->v.quick->symtab = symtab;
8007 struct partial_symtab *pst = per_cu->v.psymtab;
8008 pst->symtab = symtab;
8012 /* Push it for inclusion processing later. */
8013 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8015 do_cleanups (back_to);
8018 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8019 already been loaded into memory. */
8022 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8023 enum language pretend_language)
8025 struct dwarf2_cu *cu = per_cu->cu;
8026 struct objfile *objfile = per_cu->objfile;
8027 struct symtab *symtab;
8028 struct cleanup *back_to, *delayed_list_cleanup;
8029 struct signatured_type *sig_type;
8031 gdb_assert (per_cu->is_debug_types);
8032 sig_type = (struct signatured_type *) per_cu;
8035 back_to = make_cleanup (really_free_pendings, NULL);
8036 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8038 cu->list_in_scope = &file_symbols;
8040 cu->language = pretend_language;
8041 cu->language_defn = language_def (cu->language);
8043 /* The symbol tables are set up in read_type_unit_scope. */
8044 process_die (cu->dies, cu);
8046 /* For now fudge the Go package. */
8047 if (cu->language == language_go)
8048 fixup_go_packaging (cu);
8050 /* Now that we have processed all the DIEs in the CU, all the types
8051 should be complete, and it should now be safe to compute all of the
8053 compute_delayed_physnames (cu);
8054 do_cleanups (delayed_list_cleanup);
8056 /* TUs share symbol tables.
8057 If this is the first TU to use this symtab, complete the construction
8058 of it with end_expandable_symtab. Otherwise, complete the addition of
8059 this TU's symbols to the existing symtab. */
8060 if (sig_type->type_unit_group->primary_symtab == NULL)
8062 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
8063 sig_type->type_unit_group->primary_symtab = symtab;
8067 /* Set symtab language to language from DW_AT_language. If the
8068 compilation is from a C file generated by language preprocessors,
8069 do not set the language if it was already deduced by
8071 if (!(cu->language == language_c && symtab->language != language_c))
8072 symtab->language = cu->language;
8077 augment_type_symtab (objfile,
8078 sig_type->type_unit_group->primary_symtab);
8079 symtab = sig_type->type_unit_group->primary_symtab;
8082 if (dwarf2_per_objfile->using_index)
8083 per_cu->v.quick->symtab = symtab;
8086 struct partial_symtab *pst = per_cu->v.psymtab;
8087 pst->symtab = symtab;
8091 do_cleanups (back_to);
8094 /* Process an imported unit DIE. */
8097 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8099 struct attribute *attr;
8101 /* For now we don't handle imported units in type units. */
8102 if (cu->per_cu->is_debug_types)
8104 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8105 " supported in type units [in module %s]"),
8106 objfile_name (cu->objfile));
8109 attr = dwarf2_attr (die, DW_AT_import, cu);
8112 struct dwarf2_per_cu_data *per_cu;
8113 struct symtab *imported_symtab;
8117 offset = dwarf2_get_ref_die_offset (attr);
8118 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8119 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8121 /* If necessary, add it to the queue and load its DIEs. */
8122 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8123 load_full_comp_unit (per_cu, cu->language);
8125 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8130 /* Reset the in_process bit of a die. */
8133 reset_die_in_process (void *arg)
8135 struct die_info *die = arg;
8137 die->in_process = 0;
8140 /* Process a die and its children. */
8143 process_die (struct die_info *die, struct dwarf2_cu *cu)
8145 struct cleanup *in_process;
8147 /* We should only be processing those not already in process. */
8148 gdb_assert (!die->in_process);
8150 die->in_process = 1;
8151 in_process = make_cleanup (reset_die_in_process,die);
8155 case DW_TAG_padding:
8157 case DW_TAG_compile_unit:
8158 case DW_TAG_partial_unit:
8159 read_file_scope (die, cu);
8161 case DW_TAG_type_unit:
8162 read_type_unit_scope (die, cu);
8164 case DW_TAG_subprogram:
8165 case DW_TAG_inlined_subroutine:
8166 read_func_scope (die, cu);
8168 case DW_TAG_lexical_block:
8169 case DW_TAG_try_block:
8170 case DW_TAG_catch_block:
8171 read_lexical_block_scope (die, cu);
8173 case DW_TAG_GNU_call_site:
8174 read_call_site_scope (die, cu);
8176 case DW_TAG_class_type:
8177 case DW_TAG_interface_type:
8178 case DW_TAG_structure_type:
8179 case DW_TAG_union_type:
8180 process_structure_scope (die, cu);
8182 case DW_TAG_enumeration_type:
8183 process_enumeration_scope (die, cu);
8186 /* These dies have a type, but processing them does not create
8187 a symbol or recurse to process the children. Therefore we can
8188 read them on-demand through read_type_die. */
8189 case DW_TAG_subroutine_type:
8190 case DW_TAG_set_type:
8191 case DW_TAG_array_type:
8192 case DW_TAG_pointer_type:
8193 case DW_TAG_ptr_to_member_type:
8194 case DW_TAG_reference_type:
8195 case DW_TAG_string_type:
8198 case DW_TAG_base_type:
8199 case DW_TAG_subrange_type:
8200 case DW_TAG_typedef:
8201 /* Add a typedef symbol for the type definition, if it has a
8203 new_symbol (die, read_type_die (die, cu), cu);
8205 case DW_TAG_common_block:
8206 read_common_block (die, cu);
8208 case DW_TAG_common_inclusion:
8210 case DW_TAG_namespace:
8211 cu->processing_has_namespace_info = 1;
8212 read_namespace (die, cu);
8215 cu->processing_has_namespace_info = 1;
8216 read_module (die, cu);
8218 case DW_TAG_imported_declaration:
8219 cu->processing_has_namespace_info = 1;
8220 if (read_namespace_alias (die, cu))
8222 /* The declaration is not a global namespace alias: fall through. */
8223 case DW_TAG_imported_module:
8224 cu->processing_has_namespace_info = 1;
8225 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8226 || cu->language != language_fortran))
8227 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8228 dwarf_tag_name (die->tag));
8229 read_import_statement (die, cu);
8232 case DW_TAG_imported_unit:
8233 process_imported_unit_die (die, cu);
8237 new_symbol (die, NULL, cu);
8241 do_cleanups (in_process);
8244 /* DWARF name computation. */
8246 /* A helper function for dwarf2_compute_name which determines whether DIE
8247 needs to have the name of the scope prepended to the name listed in the
8251 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8253 struct attribute *attr;
8257 case DW_TAG_namespace:
8258 case DW_TAG_typedef:
8259 case DW_TAG_class_type:
8260 case DW_TAG_interface_type:
8261 case DW_TAG_structure_type:
8262 case DW_TAG_union_type:
8263 case DW_TAG_enumeration_type:
8264 case DW_TAG_enumerator:
8265 case DW_TAG_subprogram:
8267 case DW_TAG_imported_declaration:
8270 case DW_TAG_variable:
8271 case DW_TAG_constant:
8272 /* We only need to prefix "globally" visible variables. These include
8273 any variable marked with DW_AT_external or any variable that
8274 lives in a namespace. [Variables in anonymous namespaces
8275 require prefixing, but they are not DW_AT_external.] */
8277 if (dwarf2_attr (die, DW_AT_specification, cu))
8279 struct dwarf2_cu *spec_cu = cu;
8281 return die_needs_namespace (die_specification (die, &spec_cu),
8285 attr = dwarf2_attr (die, DW_AT_external, cu);
8286 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8287 && die->parent->tag != DW_TAG_module)
8289 /* A variable in a lexical block of some kind does not need a
8290 namespace, even though in C++ such variables may be external
8291 and have a mangled name. */
8292 if (die->parent->tag == DW_TAG_lexical_block
8293 || die->parent->tag == DW_TAG_try_block
8294 || die->parent->tag == DW_TAG_catch_block
8295 || die->parent->tag == DW_TAG_subprogram)
8304 /* Retrieve the last character from a mem_file. */
8307 do_ui_file_peek_last (void *object, const char *buffer, long length)
8309 char *last_char_p = (char *) object;
8312 *last_char_p = buffer[length - 1];
8315 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8316 compute the physname for the object, which include a method's:
8317 - formal parameters (C++/Java),
8318 - receiver type (Go),
8319 - return type (Java).
8321 The term "physname" is a bit confusing.
8322 For C++, for example, it is the demangled name.
8323 For Go, for example, it's the mangled name.
8325 For Ada, return the DIE's linkage name rather than the fully qualified
8326 name. PHYSNAME is ignored..
8328 The result is allocated on the objfile_obstack and canonicalized. */
8331 dwarf2_compute_name (const char *name,
8332 struct die_info *die, struct dwarf2_cu *cu,
8335 struct objfile *objfile = cu->objfile;
8338 name = dwarf2_name (die, cu);
8340 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8341 compute it by typename_concat inside GDB. */
8342 if (cu->language == language_ada
8343 || (cu->language == language_fortran && physname))
8345 /* For Ada unit, we prefer the linkage name over the name, as
8346 the former contains the exported name, which the user expects
8347 to be able to reference. Ideally, we want the user to be able
8348 to reference this entity using either natural or linkage name,
8349 but we haven't started looking at this enhancement yet. */
8350 struct attribute *attr;
8352 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8354 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8355 if (attr && DW_STRING (attr))
8356 return DW_STRING (attr);
8359 /* These are the only languages we know how to qualify names in. */
8361 && (cu->language == language_cplus || cu->language == language_java
8362 || cu->language == language_fortran))
8364 if (die_needs_namespace (die, cu))
8368 struct ui_file *buf;
8369 char *intermediate_name;
8370 const char *canonical_name = NULL;
8372 prefix = determine_prefix (die, cu);
8373 buf = mem_fileopen ();
8374 if (*prefix != '\0')
8376 char *prefixed_name = typename_concat (NULL, prefix, name,
8379 fputs_unfiltered (prefixed_name, buf);
8380 xfree (prefixed_name);
8383 fputs_unfiltered (name, buf);
8385 /* Template parameters may be specified in the DIE's DW_AT_name, or
8386 as children with DW_TAG_template_type_param or
8387 DW_TAG_value_type_param. If the latter, add them to the name
8388 here. If the name already has template parameters, then
8389 skip this step; some versions of GCC emit both, and
8390 it is more efficient to use the pre-computed name.
8392 Something to keep in mind about this process: it is very
8393 unlikely, or in some cases downright impossible, to produce
8394 something that will match the mangled name of a function.
8395 If the definition of the function has the same debug info,
8396 we should be able to match up with it anyway. But fallbacks
8397 using the minimal symbol, for instance to find a method
8398 implemented in a stripped copy of libstdc++, will not work.
8399 If we do not have debug info for the definition, we will have to
8400 match them up some other way.
8402 When we do name matching there is a related problem with function
8403 templates; two instantiated function templates are allowed to
8404 differ only by their return types, which we do not add here. */
8406 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8408 struct attribute *attr;
8409 struct die_info *child;
8412 die->building_fullname = 1;
8414 for (child = die->child; child != NULL; child = child->sibling)
8418 const gdb_byte *bytes;
8419 struct dwarf2_locexpr_baton *baton;
8422 if (child->tag != DW_TAG_template_type_param
8423 && child->tag != DW_TAG_template_value_param)
8428 fputs_unfiltered ("<", buf);
8432 fputs_unfiltered (", ", buf);
8434 attr = dwarf2_attr (child, DW_AT_type, cu);
8437 complaint (&symfile_complaints,
8438 _("template parameter missing DW_AT_type"));
8439 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8442 type = die_type (child, cu);
8444 if (child->tag == DW_TAG_template_type_param)
8446 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8450 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8453 complaint (&symfile_complaints,
8454 _("template parameter missing "
8455 "DW_AT_const_value"));
8456 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8460 dwarf2_const_value_attr (attr, type, name,
8461 &cu->comp_unit_obstack, cu,
8462 &value, &bytes, &baton);
8464 if (TYPE_NOSIGN (type))
8465 /* GDB prints characters as NUMBER 'CHAR'. If that's
8466 changed, this can use value_print instead. */
8467 c_printchar (value, type, buf);
8470 struct value_print_options opts;
8473 v = dwarf2_evaluate_loc_desc (type, NULL,
8477 else if (bytes != NULL)
8479 v = allocate_value (type);
8480 memcpy (value_contents_writeable (v), bytes,
8481 TYPE_LENGTH (type));
8484 v = value_from_longest (type, value);
8486 /* Specify decimal so that we do not depend on
8488 get_formatted_print_options (&opts, 'd');
8490 value_print (v, buf, &opts);
8496 die->building_fullname = 0;
8500 /* Close the argument list, with a space if necessary
8501 (nested templates). */
8502 char last_char = '\0';
8503 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8504 if (last_char == '>')
8505 fputs_unfiltered (" >", buf);
8507 fputs_unfiltered (">", buf);
8511 /* For Java and C++ methods, append formal parameter type
8512 information, if PHYSNAME. */
8514 if (physname && die->tag == DW_TAG_subprogram
8515 && (cu->language == language_cplus
8516 || cu->language == language_java))
8518 struct type *type = read_type_die (die, cu);
8520 c_type_print_args (type, buf, 1, cu->language,
8521 &type_print_raw_options);
8523 if (cu->language == language_java)
8525 /* For java, we must append the return type to method
8527 if (die->tag == DW_TAG_subprogram)
8528 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8529 0, 0, &type_print_raw_options);
8531 else if (cu->language == language_cplus)
8533 /* Assume that an artificial first parameter is
8534 "this", but do not crash if it is not. RealView
8535 marks unnamed (and thus unused) parameters as
8536 artificial; there is no way to differentiate
8538 if (TYPE_NFIELDS (type) > 0
8539 && TYPE_FIELD_ARTIFICIAL (type, 0)
8540 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8541 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8543 fputs_unfiltered (" const", buf);
8547 intermediate_name = ui_file_xstrdup (buf, &length);
8548 ui_file_delete (buf);
8550 if (cu->language == language_cplus)
8552 = dwarf2_canonicalize_name (intermediate_name, cu,
8553 &objfile->per_bfd->storage_obstack);
8555 /* If we only computed INTERMEDIATE_NAME, or if
8556 INTERMEDIATE_NAME is already canonical, then we need to
8557 copy it to the appropriate obstack. */
8558 if (canonical_name == NULL || canonical_name == intermediate_name)
8559 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8561 strlen (intermediate_name));
8563 name = canonical_name;
8565 xfree (intermediate_name);
8572 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8573 If scope qualifiers are appropriate they will be added. The result
8574 will be allocated on the storage_obstack, or NULL if the DIE does
8575 not have a name. NAME may either be from a previous call to
8576 dwarf2_name or NULL.
8578 The output string will be canonicalized (if C++/Java). */
8581 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8583 return dwarf2_compute_name (name, die, cu, 0);
8586 /* Construct a physname for the given DIE in CU. NAME may either be
8587 from a previous call to dwarf2_name or NULL. The result will be
8588 allocated on the objfile_objstack or NULL if the DIE does not have a
8591 The output string will be canonicalized (if C++/Java). */
8594 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8596 struct objfile *objfile = cu->objfile;
8597 struct attribute *attr;
8598 const char *retval, *mangled = NULL, *canon = NULL;
8599 struct cleanup *back_to;
8602 /* In this case dwarf2_compute_name is just a shortcut not building anything
8604 if (!die_needs_namespace (die, cu))
8605 return dwarf2_compute_name (name, die, cu, 1);
8607 back_to = make_cleanup (null_cleanup, NULL);
8609 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8611 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8613 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8615 if (attr && DW_STRING (attr))
8619 mangled = DW_STRING (attr);
8621 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8622 type. It is easier for GDB users to search for such functions as
8623 `name(params)' than `long name(params)'. In such case the minimal
8624 symbol names do not match the full symbol names but for template
8625 functions there is never a need to look up their definition from their
8626 declaration so the only disadvantage remains the minimal symbol
8627 variant `long name(params)' does not have the proper inferior type.
8630 if (cu->language == language_go)
8632 /* This is a lie, but we already lie to the caller new_symbol_full.
8633 new_symbol_full assumes we return the mangled name.
8634 This just undoes that lie until things are cleaned up. */
8639 demangled = gdb_demangle (mangled,
8640 (DMGL_PARAMS | DMGL_ANSI
8641 | (cu->language == language_java
8642 ? DMGL_JAVA | DMGL_RET_POSTFIX
8647 make_cleanup (xfree, demangled);
8657 if (canon == NULL || check_physname)
8659 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8661 if (canon != NULL && strcmp (physname, canon) != 0)
8663 /* It may not mean a bug in GDB. The compiler could also
8664 compute DW_AT_linkage_name incorrectly. But in such case
8665 GDB would need to be bug-to-bug compatible. */
8667 complaint (&symfile_complaints,
8668 _("Computed physname <%s> does not match demangled <%s> "
8669 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8670 physname, canon, mangled, die->offset.sect_off,
8671 objfile_name (objfile));
8673 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8674 is available here - over computed PHYSNAME. It is safer
8675 against both buggy GDB and buggy compilers. */
8689 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8690 retval, strlen (retval));
8692 do_cleanups (back_to);
8696 /* Inspect DIE in CU for a namespace alias. If one exists, record
8697 a new symbol for it.
8699 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8702 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8704 struct attribute *attr;
8706 /* If the die does not have a name, this is not a namespace
8708 attr = dwarf2_attr (die, DW_AT_name, cu);
8712 struct die_info *d = die;
8713 struct dwarf2_cu *imported_cu = cu;
8715 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8716 keep inspecting DIEs until we hit the underlying import. */
8717 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8718 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8720 attr = dwarf2_attr (d, DW_AT_import, cu);
8724 d = follow_die_ref (d, attr, &imported_cu);
8725 if (d->tag != DW_TAG_imported_declaration)
8729 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8731 complaint (&symfile_complaints,
8732 _("DIE at 0x%x has too many recursively imported "
8733 "declarations"), d->offset.sect_off);
8740 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8742 type = get_die_type_at_offset (offset, cu->per_cu);
8743 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8745 /* This declaration is a global namespace alias. Add
8746 a symbol for it whose type is the aliased namespace. */
8747 new_symbol (die, type, cu);
8756 /* Read the import statement specified by the given die and record it. */
8759 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8761 struct objfile *objfile = cu->objfile;
8762 struct attribute *import_attr;
8763 struct die_info *imported_die, *child_die;
8764 struct dwarf2_cu *imported_cu;
8765 const char *imported_name;
8766 const char *imported_name_prefix;
8767 const char *canonical_name;
8768 const char *import_alias;
8769 const char *imported_declaration = NULL;
8770 const char *import_prefix;
8771 VEC (const_char_ptr) *excludes = NULL;
8772 struct cleanup *cleanups;
8774 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8775 if (import_attr == NULL)
8777 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8778 dwarf_tag_name (die->tag));
8783 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8784 imported_name = dwarf2_name (imported_die, imported_cu);
8785 if (imported_name == NULL)
8787 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8789 The import in the following code:
8803 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8804 <52> DW_AT_decl_file : 1
8805 <53> DW_AT_decl_line : 6
8806 <54> DW_AT_import : <0x75>
8807 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8809 <5b> DW_AT_decl_file : 1
8810 <5c> DW_AT_decl_line : 2
8811 <5d> DW_AT_type : <0x6e>
8813 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8814 <76> DW_AT_byte_size : 4
8815 <77> DW_AT_encoding : 5 (signed)
8817 imports the wrong die ( 0x75 instead of 0x58 ).
8818 This case will be ignored until the gcc bug is fixed. */
8822 /* Figure out the local name after import. */
8823 import_alias = dwarf2_name (die, cu);
8825 /* Figure out where the statement is being imported to. */
8826 import_prefix = determine_prefix (die, cu);
8828 /* Figure out what the scope of the imported die is and prepend it
8829 to the name of the imported die. */
8830 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8832 if (imported_die->tag != DW_TAG_namespace
8833 && imported_die->tag != DW_TAG_module)
8835 imported_declaration = imported_name;
8836 canonical_name = imported_name_prefix;
8838 else if (strlen (imported_name_prefix) > 0)
8839 canonical_name = obconcat (&objfile->objfile_obstack,
8840 imported_name_prefix, "::", imported_name,
8843 canonical_name = imported_name;
8845 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8847 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8848 for (child_die = die->child; child_die && child_die->tag;
8849 child_die = sibling_die (child_die))
8851 /* DWARF-4: A Fortran use statement with a “rename list” may be
8852 represented by an imported module entry with an import attribute
8853 referring to the module and owned entries corresponding to those
8854 entities that are renamed as part of being imported. */
8856 if (child_die->tag != DW_TAG_imported_declaration)
8858 complaint (&symfile_complaints,
8859 _("child DW_TAG_imported_declaration expected "
8860 "- DIE at 0x%x [in module %s]"),
8861 child_die->offset.sect_off, objfile_name (objfile));
8865 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8866 if (import_attr == NULL)
8868 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8869 dwarf_tag_name (child_die->tag));
8874 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8876 imported_name = dwarf2_name (imported_die, imported_cu);
8877 if (imported_name == NULL)
8879 complaint (&symfile_complaints,
8880 _("child DW_TAG_imported_declaration has unknown "
8881 "imported name - DIE at 0x%x [in module %s]"),
8882 child_die->offset.sect_off, objfile_name (objfile));
8886 VEC_safe_push (const_char_ptr, excludes, imported_name);
8888 process_die (child_die, cu);
8891 cp_add_using_directive (import_prefix,
8894 imported_declaration,
8897 &objfile->objfile_obstack);
8899 do_cleanups (cleanups);
8902 /* Cleanup function for handle_DW_AT_stmt_list. */
8905 free_cu_line_header (void *arg)
8907 struct dwarf2_cu *cu = arg;
8909 free_line_header (cu->line_header);
8910 cu->line_header = NULL;
8913 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8914 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8915 this, it was first present in GCC release 4.3.0. */
8918 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8920 if (!cu->checked_producer)
8921 check_producer (cu);
8923 return cu->producer_is_gcc_lt_4_3;
8927 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8928 const char **name, const char **comp_dir)
8930 struct attribute *attr;
8935 /* Find the filename. Do not use dwarf2_name here, since the filename
8936 is not a source language identifier. */
8937 attr = dwarf2_attr (die, DW_AT_name, cu);
8940 *name = DW_STRING (attr);
8943 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8945 *comp_dir = DW_STRING (attr);
8946 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8947 && IS_ABSOLUTE_PATH (*name))
8949 char *d = ldirname (*name);
8953 make_cleanup (xfree, d);
8955 if (*comp_dir != NULL)
8957 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8958 directory, get rid of it. */
8959 char *cp = strchr (*comp_dir, ':');
8961 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8966 *name = "<unknown>";
8969 /* Handle DW_AT_stmt_list for a compilation unit.
8970 DIE is the DW_TAG_compile_unit die for CU.
8971 COMP_DIR is the compilation directory.
8972 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8975 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8976 const char *comp_dir) /* ARI: editCase function */
8978 struct attribute *attr;
8980 gdb_assert (! cu->per_cu->is_debug_types);
8982 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8985 unsigned int line_offset = DW_UNSND (attr);
8986 struct line_header *line_header
8987 = dwarf_decode_line_header (line_offset, cu);
8991 cu->line_header = line_header;
8992 make_cleanup (free_cu_line_header, cu);
8993 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8998 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9001 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9003 struct objfile *objfile = dwarf2_per_objfile->objfile;
9004 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9005 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9006 CORE_ADDR highpc = ((CORE_ADDR) 0);
9007 struct attribute *attr;
9008 const char *name = NULL;
9009 const char *comp_dir = NULL;
9010 struct die_info *child_die;
9011 bfd *abfd = objfile->obfd;
9014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9016 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9018 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9019 from finish_block. */
9020 if (lowpc == ((CORE_ADDR) -1))
9025 find_file_and_directory (die, cu, &name, &comp_dir);
9027 prepare_one_comp_unit (cu, die, cu->language);
9029 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9030 standardised yet. As a workaround for the language detection we fall
9031 back to the DW_AT_producer string. */
9032 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9033 cu->language = language_opencl;
9035 /* Similar hack for Go. */
9036 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9037 set_cu_language (DW_LANG_Go, cu);
9039 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9041 /* Decode line number information if present. We do this before
9042 processing child DIEs, so that the line header table is available
9043 for DW_AT_decl_file. */
9044 handle_DW_AT_stmt_list (die, cu, comp_dir);
9046 /* Process all dies in compilation unit. */
9047 if (die->child != NULL)
9049 child_die = die->child;
9050 while (child_die && child_die->tag)
9052 process_die (child_die, cu);
9053 child_die = sibling_die (child_die);
9057 /* Decode macro information, if present. Dwarf 2 macro information
9058 refers to information in the line number info statement program
9059 header, so we can only read it if we've read the header
9061 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9062 if (attr && cu->line_header)
9064 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9065 complaint (&symfile_complaints,
9066 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9068 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
9072 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9073 if (attr && cu->line_header)
9075 unsigned int macro_offset = DW_UNSND (attr);
9077 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
9081 do_cleanups (back_to);
9084 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9085 Create the set of symtabs used by this TU, or if this TU is sharing
9086 symtabs with another TU and the symtabs have already been created
9087 then restore those symtabs in the line header.
9088 We don't need the pc/line-number mapping for type units. */
9091 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9093 struct objfile *objfile = dwarf2_per_objfile->objfile;
9094 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9095 struct type_unit_group *tu_group;
9097 struct line_header *lh;
9098 struct attribute *attr;
9099 unsigned int i, line_offset;
9100 struct signatured_type *sig_type;
9102 gdb_assert (per_cu->is_debug_types);
9103 sig_type = (struct signatured_type *) per_cu;
9105 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9107 /* If we're using .gdb_index (includes -readnow) then
9108 per_cu->type_unit_group may not have been set up yet. */
9109 if (sig_type->type_unit_group == NULL)
9110 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9111 tu_group = sig_type->type_unit_group;
9113 /* If we've already processed this stmt_list there's no real need to
9114 do it again, we could fake it and just recreate the part we need
9115 (file name,index -> symtab mapping). If data shows this optimization
9116 is useful we can do it then. */
9117 first_time = tu_group->primary_symtab == NULL;
9119 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9124 line_offset = DW_UNSND (attr);
9125 lh = dwarf_decode_line_header (line_offset, cu);
9130 dwarf2_start_symtab (cu, "", NULL, 0);
9133 gdb_assert (tu_group->symtabs == NULL);
9136 /* Note: The primary symtab will get allocated at the end. */
9140 cu->line_header = lh;
9141 make_cleanup (free_cu_line_header, cu);
9145 dwarf2_start_symtab (cu, "", NULL, 0);
9147 tu_group->num_symtabs = lh->num_file_names;
9148 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9150 for (i = 0; i < lh->num_file_names; ++i)
9152 const char *dir = NULL;
9153 struct file_entry *fe = &lh->file_names[i];
9156 dir = lh->include_dirs[fe->dir_index - 1];
9157 dwarf2_start_subfile (fe->name, dir, NULL);
9159 /* Note: We don't have to watch for the main subfile here, type units
9160 don't have DW_AT_name. */
9162 if (current_subfile->symtab == NULL)
9164 /* NOTE: start_subfile will recognize when it's been passed
9165 a file it has already seen. So we can't assume there's a
9166 simple mapping from lh->file_names to subfiles,
9167 lh->file_names may contain dups. */
9168 current_subfile->symtab = allocate_symtab (current_subfile->name,
9172 fe->symtab = current_subfile->symtab;
9173 tu_group->symtabs[i] = fe->symtab;
9180 for (i = 0; i < lh->num_file_names; ++i)
9182 struct file_entry *fe = &lh->file_names[i];
9184 fe->symtab = tu_group->symtabs[i];
9188 /* The main symtab is allocated last. Type units don't have DW_AT_name
9189 so they don't have a "real" (so to speak) symtab anyway.
9190 There is later code that will assign the main symtab to all symbols
9191 that don't have one. We need to handle the case of a symbol with a
9192 missing symtab (DW_AT_decl_file) anyway. */
9195 /* Process DW_TAG_type_unit.
9196 For TUs we want to skip the first top level sibling if it's not the
9197 actual type being defined by this TU. In this case the first top
9198 level sibling is there to provide context only. */
9201 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9203 struct die_info *child_die;
9205 prepare_one_comp_unit (cu, die, language_minimal);
9207 /* Initialize (or reinitialize) the machinery for building symtabs.
9208 We do this before processing child DIEs, so that the line header table
9209 is available for DW_AT_decl_file. */
9210 setup_type_unit_groups (die, cu);
9212 if (die->child != NULL)
9214 child_die = die->child;
9215 while (child_die && child_die->tag)
9217 process_die (child_die, cu);
9218 child_die = sibling_die (child_die);
9225 http://gcc.gnu.org/wiki/DebugFission
9226 http://gcc.gnu.org/wiki/DebugFissionDWP
9228 To simplify handling of both DWO files ("object" files with the DWARF info)
9229 and DWP files (a file with the DWOs packaged up into one file), we treat
9230 DWP files as having a collection of virtual DWO files. */
9233 hash_dwo_file (const void *item)
9235 const struct dwo_file *dwo_file = item;
9238 hash = htab_hash_string (dwo_file->dwo_name);
9239 if (dwo_file->comp_dir != NULL)
9240 hash += htab_hash_string (dwo_file->comp_dir);
9245 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9247 const struct dwo_file *lhs = item_lhs;
9248 const struct dwo_file *rhs = item_rhs;
9250 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9252 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9253 return lhs->comp_dir == rhs->comp_dir;
9254 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9257 /* Allocate a hash table for DWO files. */
9260 allocate_dwo_file_hash_table (void)
9262 struct objfile *objfile = dwarf2_per_objfile->objfile;
9264 return htab_create_alloc_ex (41,
9268 &objfile->objfile_obstack,
9269 hashtab_obstack_allocate,
9270 dummy_obstack_deallocate);
9273 /* Lookup DWO file DWO_NAME. */
9276 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9278 struct dwo_file find_entry;
9281 if (dwarf2_per_objfile->dwo_files == NULL)
9282 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9284 memset (&find_entry, 0, sizeof (find_entry));
9285 find_entry.dwo_name = dwo_name;
9286 find_entry.comp_dir = comp_dir;
9287 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9293 hash_dwo_unit (const void *item)
9295 const struct dwo_unit *dwo_unit = item;
9297 /* This drops the top 32 bits of the id, but is ok for a hash. */
9298 return dwo_unit->signature;
9302 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9304 const struct dwo_unit *lhs = item_lhs;
9305 const struct dwo_unit *rhs = item_rhs;
9307 /* The signature is assumed to be unique within the DWO file.
9308 So while object file CU dwo_id's always have the value zero,
9309 that's OK, assuming each object file DWO file has only one CU,
9310 and that's the rule for now. */
9311 return lhs->signature == rhs->signature;
9314 /* Allocate a hash table for DWO CUs,TUs.
9315 There is one of these tables for each of CUs,TUs for each DWO file. */
9318 allocate_dwo_unit_table (struct objfile *objfile)
9320 /* Start out with a pretty small number.
9321 Generally DWO files contain only one CU and maybe some TUs. */
9322 return htab_create_alloc_ex (3,
9326 &objfile->objfile_obstack,
9327 hashtab_obstack_allocate,
9328 dummy_obstack_deallocate);
9331 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9333 struct create_dwo_cu_data
9335 struct dwo_file *dwo_file;
9336 struct dwo_unit dwo_unit;
9339 /* die_reader_func for create_dwo_cu. */
9342 create_dwo_cu_reader (const struct die_reader_specs *reader,
9343 const gdb_byte *info_ptr,
9344 struct die_info *comp_unit_die,
9348 struct dwarf2_cu *cu = reader->cu;
9349 struct objfile *objfile = dwarf2_per_objfile->objfile;
9350 sect_offset offset = cu->per_cu->offset;
9351 struct dwarf2_section_info *section = cu->per_cu->section;
9352 struct create_dwo_cu_data *data = datap;
9353 struct dwo_file *dwo_file = data->dwo_file;
9354 struct dwo_unit *dwo_unit = &data->dwo_unit;
9355 struct attribute *attr;
9357 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9360 complaint (&symfile_complaints,
9361 _("Dwarf Error: debug entry at offset 0x%x is missing"
9362 " its dwo_id [in module %s]"),
9363 offset.sect_off, dwo_file->dwo_name);
9367 dwo_unit->dwo_file = dwo_file;
9368 dwo_unit->signature = DW_UNSND (attr);
9369 dwo_unit->section = section;
9370 dwo_unit->offset = offset;
9371 dwo_unit->length = cu->per_cu->length;
9373 if (dwarf2_read_debug)
9374 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9375 offset.sect_off, hex_string (dwo_unit->signature));
9378 /* Create the dwo_unit for the lone CU in DWO_FILE.
9379 Note: This function processes DWO files only, not DWP files. */
9381 static struct dwo_unit *
9382 create_dwo_cu (struct dwo_file *dwo_file)
9384 struct objfile *objfile = dwarf2_per_objfile->objfile;
9385 struct dwarf2_section_info *section = &dwo_file->sections.info;
9388 const gdb_byte *info_ptr, *end_ptr;
9389 struct create_dwo_cu_data create_dwo_cu_data;
9390 struct dwo_unit *dwo_unit;
9392 dwarf2_read_section (objfile, section);
9393 info_ptr = section->buffer;
9395 if (info_ptr == NULL)
9398 /* We can't set abfd until now because the section may be empty or
9399 not present, in which case section->asection will be NULL. */
9400 abfd = get_section_bfd_owner (section);
9402 if (dwarf2_read_debug)
9404 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9405 get_section_name (section),
9406 get_section_file_name (section));
9409 create_dwo_cu_data.dwo_file = dwo_file;
9412 end_ptr = info_ptr + section->size;
9413 while (info_ptr < end_ptr)
9415 struct dwarf2_per_cu_data per_cu;
9417 memset (&create_dwo_cu_data.dwo_unit, 0,
9418 sizeof (create_dwo_cu_data.dwo_unit));
9419 memset (&per_cu, 0, sizeof (per_cu));
9420 per_cu.objfile = objfile;
9421 per_cu.is_debug_types = 0;
9422 per_cu.offset.sect_off = info_ptr - section->buffer;
9423 per_cu.section = section;
9425 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9426 create_dwo_cu_reader,
9427 &create_dwo_cu_data);
9429 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9431 /* If we've already found one, complain. We only support one
9432 because having more than one requires hacking the dwo_name of
9433 each to match, which is highly unlikely to happen. */
9434 if (dwo_unit != NULL)
9436 complaint (&symfile_complaints,
9437 _("Multiple CUs in DWO file %s [in module %s]"),
9438 dwo_file->dwo_name, objfile_name (objfile));
9442 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9443 *dwo_unit = create_dwo_cu_data.dwo_unit;
9446 info_ptr += per_cu.length;
9452 /* DWP file .debug_{cu,tu}_index section format:
9453 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9457 Both index sections have the same format, and serve to map a 64-bit
9458 signature to a set of section numbers. Each section begins with a header,
9459 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9460 indexes, and a pool of 32-bit section numbers. The index sections will be
9461 aligned at 8-byte boundaries in the file.
9463 The index section header consists of:
9465 V, 32 bit version number
9467 N, 32 bit number of compilation units or type units in the index
9468 M, 32 bit number of slots in the hash table
9470 Numbers are recorded using the byte order of the application binary.
9472 The hash table begins at offset 16 in the section, and consists of an array
9473 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9474 order of the application binary). Unused slots in the hash table are 0.
9475 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9477 The parallel table begins immediately after the hash table
9478 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9479 array of 32-bit indexes (using the byte order of the application binary),
9480 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9481 table contains a 32-bit index into the pool of section numbers. For unused
9482 hash table slots, the corresponding entry in the parallel table will be 0.
9484 The pool of section numbers begins immediately following the hash table
9485 (at offset 16 + 12 * M from the beginning of the section). The pool of
9486 section numbers consists of an array of 32-bit words (using the byte order
9487 of the application binary). Each item in the array is indexed starting
9488 from 0. The hash table entry provides the index of the first section
9489 number in the set. Additional section numbers in the set follow, and the
9490 set is terminated by a 0 entry (section number 0 is not used in ELF).
9492 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9493 section must be the first entry in the set, and the .debug_abbrev.dwo must
9494 be the second entry. Other members of the set may follow in any order.
9500 DWP Version 2 combines all the .debug_info, etc. sections into one,
9501 and the entries in the index tables are now offsets into these sections.
9502 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9505 Index Section Contents:
9507 Hash Table of Signatures dwp_hash_table.hash_table
9508 Parallel Table of Indices dwp_hash_table.unit_table
9509 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9510 Table of Section Sizes dwp_hash_table.v2.sizes
9512 The index section header consists of:
9514 V, 32 bit version number
9515 L, 32 bit number of columns in the table of section offsets
9516 N, 32 bit number of compilation units or type units in the index
9517 M, 32 bit number of slots in the hash table
9519 Numbers are recorded using the byte order of the application binary.
9521 The hash table has the same format as version 1.
9522 The parallel table of indices has the same format as version 1,
9523 except that the entries are origin-1 indices into the table of sections
9524 offsets and the table of section sizes.
9526 The table of offsets begins immediately following the parallel table
9527 (at offset 16 + 12 * M from the beginning of the section). The table is
9528 a two-dimensional array of 32-bit words (using the byte order of the
9529 application binary), with L columns and N+1 rows, in row-major order.
9530 Each row in the array is indexed starting from 0. The first row provides
9531 a key to the remaining rows: each column in this row provides an identifier
9532 for a debug section, and the offsets in the same column of subsequent rows
9533 refer to that section. The section identifiers are:
9535 DW_SECT_INFO 1 .debug_info.dwo
9536 DW_SECT_TYPES 2 .debug_types.dwo
9537 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9538 DW_SECT_LINE 4 .debug_line.dwo
9539 DW_SECT_LOC 5 .debug_loc.dwo
9540 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9541 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9542 DW_SECT_MACRO 8 .debug_macro.dwo
9544 The offsets provided by the CU and TU index sections are the base offsets
9545 for the contributions made by each CU or TU to the corresponding section
9546 in the package file. Each CU and TU header contains an abbrev_offset
9547 field, used to find the abbreviations table for that CU or TU within the
9548 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9549 be interpreted as relative to the base offset given in the index section.
9550 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9551 should be interpreted as relative to the base offset for .debug_line.dwo,
9552 and offsets into other debug sections obtained from DWARF attributes should
9553 also be interpreted as relative to the corresponding base offset.
9555 The table of sizes begins immediately following the table of offsets.
9556 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9557 with L columns and N rows, in row-major order. Each row in the array is
9558 indexed starting from 1 (row 0 is shared by the two tables).
9562 Hash table lookup is handled the same in version 1 and 2:
9564 We assume that N and M will not exceed 2^32 - 1.
9565 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9567 Given a 64-bit compilation unit signature or a type signature S, an entry
9568 in the hash table is located as follows:
9570 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9571 the low-order k bits all set to 1.
9573 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9575 3) If the hash table entry at index H matches the signature, use that
9576 entry. If the hash table entry at index H is unused (all zeroes),
9577 terminate the search: the signature is not present in the table.
9579 4) Let H = (H + H') modulo M. Repeat at Step 3.
9581 Because M > N and H' and M are relatively prime, the search is guaranteed
9582 to stop at an unused slot or find the match. */
9584 /* Create a hash table to map DWO IDs to their CU/TU entry in
9585 .debug_{info,types}.dwo in DWP_FILE.
9586 Returns NULL if there isn't one.
9587 Note: This function processes DWP files only, not DWO files. */
9589 static struct dwp_hash_table *
9590 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9592 struct objfile *objfile = dwarf2_per_objfile->objfile;
9593 bfd *dbfd = dwp_file->dbfd;
9594 const gdb_byte *index_ptr, *index_end;
9595 struct dwarf2_section_info *index;
9596 uint32_t version, nr_columns, nr_units, nr_slots;
9597 struct dwp_hash_table *htab;
9600 index = &dwp_file->sections.tu_index;
9602 index = &dwp_file->sections.cu_index;
9604 if (dwarf2_section_empty_p (index))
9606 dwarf2_read_section (objfile, index);
9608 index_ptr = index->buffer;
9609 index_end = index_ptr + index->size;
9611 version = read_4_bytes (dbfd, index_ptr);
9614 nr_columns = read_4_bytes (dbfd, index_ptr);
9618 nr_units = read_4_bytes (dbfd, index_ptr);
9620 nr_slots = read_4_bytes (dbfd, index_ptr);
9623 if (version != 1 && version != 2)
9625 error (_("Dwarf Error: unsupported DWP file version (%s)"
9627 pulongest (version), dwp_file->name);
9629 if (nr_slots != (nr_slots & -nr_slots))
9631 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9632 " is not power of 2 [in module %s]"),
9633 pulongest (nr_slots), dwp_file->name);
9636 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9637 htab->version = version;
9638 htab->nr_columns = nr_columns;
9639 htab->nr_units = nr_units;
9640 htab->nr_slots = nr_slots;
9641 htab->hash_table = index_ptr;
9642 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9644 /* Exit early if the table is empty. */
9645 if (nr_slots == 0 || nr_units == 0
9646 || (version == 2 && nr_columns == 0))
9648 /* All must be zero. */
9649 if (nr_slots != 0 || nr_units != 0
9650 || (version == 2 && nr_columns != 0))
9652 complaint (&symfile_complaints,
9653 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9654 " all zero [in modules %s]"),
9662 htab->section_pool.v1.indices =
9663 htab->unit_table + sizeof (uint32_t) * nr_slots;
9664 /* It's harder to decide whether the section is too small in v1.
9665 V1 is deprecated anyway so we punt. */
9669 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9670 int *ids = htab->section_pool.v2.section_ids;
9671 /* Reverse map for error checking. */
9672 int ids_seen[DW_SECT_MAX + 1];
9677 error (_("Dwarf Error: bad DWP hash table, too few columns"
9678 " in section table [in module %s]"),
9681 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9683 error (_("Dwarf Error: bad DWP hash table, too many columns"
9684 " in section table [in module %s]"),
9687 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9688 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9689 for (i = 0; i < nr_columns; ++i)
9691 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9693 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9695 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9696 " in section table [in module %s]"),
9697 id, dwp_file->name);
9699 if (ids_seen[id] != -1)
9701 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9702 " id %d in section table [in module %s]"),
9703 id, dwp_file->name);
9708 /* Must have exactly one info or types section. */
9709 if (((ids_seen[DW_SECT_INFO] != -1)
9710 + (ids_seen[DW_SECT_TYPES] != -1))
9713 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9714 " DWO info/types section [in module %s]"),
9717 /* Must have an abbrev section. */
9718 if (ids_seen[DW_SECT_ABBREV] == -1)
9720 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9721 " section [in module %s]"),
9724 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9725 htab->section_pool.v2.sizes =
9726 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9727 * nr_units * nr_columns);
9728 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9729 * nr_units * nr_columns))
9732 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9741 /* Update SECTIONS with the data from SECTP.
9743 This function is like the other "locate" section routines that are
9744 passed to bfd_map_over_sections, but in this context the sections to
9745 read comes from the DWP V1 hash table, not the full ELF section table.
9747 The result is non-zero for success, or zero if an error was found. */
9750 locate_v1_virtual_dwo_sections (asection *sectp,
9751 struct virtual_v1_dwo_sections *sections)
9753 const struct dwop_section_names *names = &dwop_section_names;
9755 if (section_is_p (sectp->name, &names->abbrev_dwo))
9757 /* There can be only one. */
9758 if (sections->abbrev.s.asection != NULL)
9760 sections->abbrev.s.asection = sectp;
9761 sections->abbrev.size = bfd_get_section_size (sectp);
9763 else if (section_is_p (sectp->name, &names->info_dwo)
9764 || section_is_p (sectp->name, &names->types_dwo))
9766 /* There can be only one. */
9767 if (sections->info_or_types.s.asection != NULL)
9769 sections->info_or_types.s.asection = sectp;
9770 sections->info_or_types.size = bfd_get_section_size (sectp);
9772 else if (section_is_p (sectp->name, &names->line_dwo))
9774 /* There can be only one. */
9775 if (sections->line.s.asection != NULL)
9777 sections->line.s.asection = sectp;
9778 sections->line.size = bfd_get_section_size (sectp);
9780 else if (section_is_p (sectp->name, &names->loc_dwo))
9782 /* There can be only one. */
9783 if (sections->loc.s.asection != NULL)
9785 sections->loc.s.asection = sectp;
9786 sections->loc.size = bfd_get_section_size (sectp);
9788 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9790 /* There can be only one. */
9791 if (sections->macinfo.s.asection != NULL)
9793 sections->macinfo.s.asection = sectp;
9794 sections->macinfo.size = bfd_get_section_size (sectp);
9796 else if (section_is_p (sectp->name, &names->macro_dwo))
9798 /* There can be only one. */
9799 if (sections->macro.s.asection != NULL)
9801 sections->macro.s.asection = sectp;
9802 sections->macro.size = bfd_get_section_size (sectp);
9804 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9806 /* There can be only one. */
9807 if (sections->str_offsets.s.asection != NULL)
9809 sections->str_offsets.s.asection = sectp;
9810 sections->str_offsets.size = bfd_get_section_size (sectp);
9814 /* No other kind of section is valid. */
9821 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9822 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9823 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9824 This is for DWP version 1 files. */
9826 static struct dwo_unit *
9827 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9828 uint32_t unit_index,
9829 const char *comp_dir,
9830 ULONGEST signature, int is_debug_types)
9832 struct objfile *objfile = dwarf2_per_objfile->objfile;
9833 const struct dwp_hash_table *dwp_htab =
9834 is_debug_types ? dwp_file->tus : dwp_file->cus;
9835 bfd *dbfd = dwp_file->dbfd;
9836 const char *kind = is_debug_types ? "TU" : "CU";
9837 struct dwo_file *dwo_file;
9838 struct dwo_unit *dwo_unit;
9839 struct virtual_v1_dwo_sections sections;
9840 void **dwo_file_slot;
9841 char *virtual_dwo_name;
9842 struct dwarf2_section_info *cutu;
9843 struct cleanup *cleanups;
9846 gdb_assert (dwp_file->version == 1);
9848 if (dwarf2_read_debug)
9850 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9852 pulongest (unit_index), hex_string (signature),
9856 /* Fetch the sections of this DWO unit.
9857 Put a limit on the number of sections we look for so that bad data
9858 doesn't cause us to loop forever. */
9860 #define MAX_NR_V1_DWO_SECTIONS \
9861 (1 /* .debug_info or .debug_types */ \
9862 + 1 /* .debug_abbrev */ \
9863 + 1 /* .debug_line */ \
9864 + 1 /* .debug_loc */ \
9865 + 1 /* .debug_str_offsets */ \
9866 + 1 /* .debug_macro or .debug_macinfo */ \
9867 + 1 /* trailing zero */)
9869 memset (§ions, 0, sizeof (sections));
9870 cleanups = make_cleanup (null_cleanup, 0);
9872 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9875 uint32_t section_nr =
9877 dwp_htab->section_pool.v1.indices
9878 + (unit_index + i) * sizeof (uint32_t));
9880 if (section_nr == 0)
9882 if (section_nr >= dwp_file->num_sections)
9884 error (_("Dwarf Error: bad DWP hash table, section number too large"
9889 sectp = dwp_file->elf_sections[section_nr];
9890 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
9892 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9899 || dwarf2_section_empty_p (§ions.info_or_types)
9900 || dwarf2_section_empty_p (§ions.abbrev))
9902 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9906 if (i == MAX_NR_V1_DWO_SECTIONS)
9908 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9913 /* It's easier for the rest of the code if we fake a struct dwo_file and
9914 have dwo_unit "live" in that. At least for now.
9916 The DWP file can be made up of a random collection of CUs and TUs.
9917 However, for each CU + set of TUs that came from the same original DWO
9918 file, we can combine them back into a virtual DWO file to save space
9919 (fewer struct dwo_file objects to allocate). Remember that for really
9920 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9923 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9924 get_section_id (§ions.abbrev),
9925 get_section_id (§ions.line),
9926 get_section_id (§ions.loc),
9927 get_section_id (§ions.str_offsets));
9928 make_cleanup (xfree, virtual_dwo_name);
9929 /* Can we use an existing virtual DWO file? */
9930 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9931 /* Create one if necessary. */
9932 if (*dwo_file_slot == NULL)
9934 if (dwarf2_read_debug)
9936 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9939 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9940 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9942 strlen (virtual_dwo_name));
9943 dwo_file->comp_dir = comp_dir;
9944 dwo_file->sections.abbrev = sections.abbrev;
9945 dwo_file->sections.line = sections.line;
9946 dwo_file->sections.loc = sections.loc;
9947 dwo_file->sections.macinfo = sections.macinfo;
9948 dwo_file->sections.macro = sections.macro;
9949 dwo_file->sections.str_offsets = sections.str_offsets;
9950 /* The "str" section is global to the entire DWP file. */
9951 dwo_file->sections.str = dwp_file->sections.str;
9952 /* The info or types section is assigned below to dwo_unit,
9953 there's no need to record it in dwo_file.
9954 Also, we can't simply record type sections in dwo_file because
9955 we record a pointer into the vector in dwo_unit. As we collect more
9956 types we'll grow the vector and eventually have to reallocate space
9957 for it, invalidating all copies of pointers into the previous
9959 *dwo_file_slot = dwo_file;
9963 if (dwarf2_read_debug)
9965 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9968 dwo_file = *dwo_file_slot;
9970 do_cleanups (cleanups);
9972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9973 dwo_unit->dwo_file = dwo_file;
9974 dwo_unit->signature = signature;
9975 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9976 sizeof (struct dwarf2_section_info));
9977 *dwo_unit->section = sections.info_or_types;
9978 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9983 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9984 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9985 piece within that section used by a TU/CU, return a virtual section
9986 of just that piece. */
9988 static struct dwarf2_section_info
9989 create_dwp_v2_section (struct dwarf2_section_info *section,
9990 bfd_size_type offset, bfd_size_type size)
9992 struct dwarf2_section_info result;
9995 gdb_assert (section != NULL);
9996 gdb_assert (!section->is_virtual);
9998 memset (&result, 0, sizeof (result));
9999 result.s.containing_section = section;
10000 result.is_virtual = 1;
10005 sectp = get_section_bfd_section (section);
10007 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10008 bounds of the real section. This is a pretty-rare event, so just
10009 flag an error (easier) instead of a warning and trying to cope. */
10011 || offset + size > bfd_get_section_size (sectp))
10013 bfd *abfd = sectp->owner;
10015 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10016 " in section %s [in module %s]"),
10017 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10018 objfile_name (dwarf2_per_objfile->objfile));
10021 result.virtual_offset = offset;
10022 result.size = size;
10026 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10027 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10028 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10029 This is for DWP version 2 files. */
10031 static struct dwo_unit *
10032 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10033 uint32_t unit_index,
10034 const char *comp_dir,
10035 ULONGEST signature, int is_debug_types)
10037 struct objfile *objfile = dwarf2_per_objfile->objfile;
10038 const struct dwp_hash_table *dwp_htab =
10039 is_debug_types ? dwp_file->tus : dwp_file->cus;
10040 bfd *dbfd = dwp_file->dbfd;
10041 const char *kind = is_debug_types ? "TU" : "CU";
10042 struct dwo_file *dwo_file;
10043 struct dwo_unit *dwo_unit;
10044 struct virtual_v2_dwo_sections sections;
10045 void **dwo_file_slot;
10046 char *virtual_dwo_name;
10047 struct dwarf2_section_info *cutu;
10048 struct cleanup *cleanups;
10051 gdb_assert (dwp_file->version == 2);
10053 if (dwarf2_read_debug)
10055 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10057 pulongest (unit_index), hex_string (signature),
10061 /* Fetch the section offsets of this DWO unit. */
10063 memset (§ions, 0, sizeof (sections));
10064 cleanups = make_cleanup (null_cleanup, 0);
10066 for (i = 0; i < dwp_htab->nr_columns; ++i)
10068 uint32_t offset = read_4_bytes (dbfd,
10069 dwp_htab->section_pool.v2.offsets
10070 + (((unit_index - 1) * dwp_htab->nr_columns
10072 * sizeof (uint32_t)));
10073 uint32_t size = read_4_bytes (dbfd,
10074 dwp_htab->section_pool.v2.sizes
10075 + (((unit_index - 1) * dwp_htab->nr_columns
10077 * sizeof (uint32_t)));
10079 switch (dwp_htab->section_pool.v2.section_ids[i])
10082 case DW_SECT_TYPES:
10083 sections.info_or_types_offset = offset;
10084 sections.info_or_types_size = size;
10086 case DW_SECT_ABBREV:
10087 sections.abbrev_offset = offset;
10088 sections.abbrev_size = size;
10091 sections.line_offset = offset;
10092 sections.line_size = size;
10095 sections.loc_offset = offset;
10096 sections.loc_size = size;
10098 case DW_SECT_STR_OFFSETS:
10099 sections.str_offsets_offset = offset;
10100 sections.str_offsets_size = size;
10102 case DW_SECT_MACINFO:
10103 sections.macinfo_offset = offset;
10104 sections.macinfo_size = size;
10106 case DW_SECT_MACRO:
10107 sections.macro_offset = offset;
10108 sections.macro_size = size;
10113 /* It's easier for the rest of the code if we fake a struct dwo_file and
10114 have dwo_unit "live" in that. At least for now.
10116 The DWP file can be made up of a random collection of CUs and TUs.
10117 However, for each CU + set of TUs that came from the same original DWO
10118 file, we can combine them back into a virtual DWO file to save space
10119 (fewer struct dwo_file objects to allocate). Remember that for really
10120 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10123 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10124 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10125 (long) (sections.line_size ? sections.line_offset : 0),
10126 (long) (sections.loc_size ? sections.loc_offset : 0),
10127 (long) (sections.str_offsets_size
10128 ? sections.str_offsets_offset : 0));
10129 make_cleanup (xfree, virtual_dwo_name);
10130 /* Can we use an existing virtual DWO file? */
10131 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10132 /* Create one if necessary. */
10133 if (*dwo_file_slot == NULL)
10135 if (dwarf2_read_debug)
10137 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10140 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10141 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10143 strlen (virtual_dwo_name));
10144 dwo_file->comp_dir = comp_dir;
10145 dwo_file->sections.abbrev =
10146 create_dwp_v2_section (&dwp_file->sections.abbrev,
10147 sections.abbrev_offset, sections.abbrev_size);
10148 dwo_file->sections.line =
10149 create_dwp_v2_section (&dwp_file->sections.line,
10150 sections.line_offset, sections.line_size);
10151 dwo_file->sections.loc =
10152 create_dwp_v2_section (&dwp_file->sections.loc,
10153 sections.loc_offset, sections.loc_size);
10154 dwo_file->sections.macinfo =
10155 create_dwp_v2_section (&dwp_file->sections.macinfo,
10156 sections.macinfo_offset, sections.macinfo_size);
10157 dwo_file->sections.macro =
10158 create_dwp_v2_section (&dwp_file->sections.macro,
10159 sections.macro_offset, sections.macro_size);
10160 dwo_file->sections.str_offsets =
10161 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10162 sections.str_offsets_offset,
10163 sections.str_offsets_size);
10164 /* The "str" section is global to the entire DWP file. */
10165 dwo_file->sections.str = dwp_file->sections.str;
10166 /* The info or types section is assigned below to dwo_unit,
10167 there's no need to record it in dwo_file.
10168 Also, we can't simply record type sections in dwo_file because
10169 we record a pointer into the vector in dwo_unit. As we collect more
10170 types we'll grow the vector and eventually have to reallocate space
10171 for it, invalidating all copies of pointers into the previous
10173 *dwo_file_slot = dwo_file;
10177 if (dwarf2_read_debug)
10179 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10182 dwo_file = *dwo_file_slot;
10184 do_cleanups (cleanups);
10186 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10187 dwo_unit->dwo_file = dwo_file;
10188 dwo_unit->signature = signature;
10189 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10190 sizeof (struct dwarf2_section_info));
10191 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10192 ? &dwp_file->sections.types
10193 : &dwp_file->sections.info,
10194 sections.info_or_types_offset,
10195 sections.info_or_types_size);
10196 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10201 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10202 Returns NULL if the signature isn't found. */
10204 static struct dwo_unit *
10205 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10206 ULONGEST signature, int is_debug_types)
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
10210 bfd *dbfd = dwp_file->dbfd;
10211 uint32_t mask = dwp_htab->nr_slots - 1;
10212 uint32_t hash = signature & mask;
10213 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10216 struct dwo_unit find_dwo_cu, *dwo_cu;
10218 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10219 find_dwo_cu.signature = signature;
10220 slot = htab_find_slot (is_debug_types
10221 ? dwp_file->loaded_tus
10222 : dwp_file->loaded_cus,
10223 &find_dwo_cu, INSERT);
10228 /* Use a for loop so that we don't loop forever on bad debug info. */
10229 for (i = 0; i < dwp_htab->nr_slots; ++i)
10231 ULONGEST signature_in_table;
10233 signature_in_table =
10234 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10235 if (signature_in_table == signature)
10237 uint32_t unit_index =
10238 read_4_bytes (dbfd,
10239 dwp_htab->unit_table + hash * sizeof (uint32_t));
10241 if (dwp_file->version == 1)
10243 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10244 comp_dir, signature,
10249 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10250 comp_dir, signature,
10255 if (signature_in_table == 0)
10257 hash = (hash + hash2) & mask;
10260 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10261 " [in module %s]"),
10265 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10266 Open the file specified by FILE_NAME and hand it off to BFD for
10267 preliminary analysis. Return a newly initialized bfd *, which
10268 includes a canonicalized copy of FILE_NAME.
10269 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10270 SEARCH_CWD is true if the current directory is to be searched.
10271 It will be searched before debug-file-directory.
10272 If successful, the file is added to the bfd include table of the
10273 objfile's bfd (see gdb_bfd_record_inclusion).
10274 If unable to find/open the file, return NULL.
10275 NOTE: This function is derived from symfile_bfd_open. */
10278 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10282 char *absolute_name;
10283 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10284 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10285 to debug_file_directory. */
10287 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10291 if (*debug_file_directory != '\0')
10292 search_path = concat (".", dirname_separator_string,
10293 debug_file_directory, NULL);
10295 search_path = xstrdup (".");
10298 search_path = xstrdup (debug_file_directory);
10300 flags = OPF_RETURN_REALPATH;
10302 flags |= OPF_SEARCH_IN_PATH;
10303 desc = openp (search_path, flags, file_name,
10304 O_RDONLY | O_BINARY, &absolute_name);
10305 xfree (search_path);
10309 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10310 xfree (absolute_name);
10311 if (sym_bfd == NULL)
10313 bfd_set_cacheable (sym_bfd, 1);
10315 if (!bfd_check_format (sym_bfd, bfd_object))
10317 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10321 /* Success. Record the bfd as having been included by the objfile's bfd.
10322 This is important because things like demangled_names_hash lives in the
10323 objfile's per_bfd space and may have references to things like symbol
10324 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10325 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10330 /* Try to open DWO file FILE_NAME.
10331 COMP_DIR is the DW_AT_comp_dir attribute.
10332 The result is the bfd handle of the file.
10333 If there is a problem finding or opening the file, return NULL.
10334 Upon success, the canonicalized path of the file is stored in the bfd,
10335 same as symfile_bfd_open. */
10338 open_dwo_file (const char *file_name, const char *comp_dir)
10342 if (IS_ABSOLUTE_PATH (file_name))
10343 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10345 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10347 if (comp_dir != NULL)
10349 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10351 /* NOTE: If comp_dir is a relative path, this will also try the
10352 search path, which seems useful. */
10353 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10354 xfree (path_to_try);
10359 /* That didn't work, try debug-file-directory, which, despite its name,
10360 is a list of paths. */
10362 if (*debug_file_directory == '\0')
10365 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10368 /* This function is mapped across the sections and remembers the offset and
10369 size of each of the DWO debugging sections we are interested in. */
10372 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10374 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10375 const struct dwop_section_names *names = &dwop_section_names;
10377 if (section_is_p (sectp->name, &names->abbrev_dwo))
10379 dwo_sections->abbrev.s.asection = sectp;
10380 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10382 else if (section_is_p (sectp->name, &names->info_dwo))
10384 dwo_sections->info.s.asection = sectp;
10385 dwo_sections->info.size = bfd_get_section_size (sectp);
10387 else if (section_is_p (sectp->name, &names->line_dwo))
10389 dwo_sections->line.s.asection = sectp;
10390 dwo_sections->line.size = bfd_get_section_size (sectp);
10392 else if (section_is_p (sectp->name, &names->loc_dwo))
10394 dwo_sections->loc.s.asection = sectp;
10395 dwo_sections->loc.size = bfd_get_section_size (sectp);
10397 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10399 dwo_sections->macinfo.s.asection = sectp;
10400 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10402 else if (section_is_p (sectp->name, &names->macro_dwo))
10404 dwo_sections->macro.s.asection = sectp;
10405 dwo_sections->macro.size = bfd_get_section_size (sectp);
10407 else if (section_is_p (sectp->name, &names->str_dwo))
10409 dwo_sections->str.s.asection = sectp;
10410 dwo_sections->str.size = bfd_get_section_size (sectp);
10412 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10414 dwo_sections->str_offsets.s.asection = sectp;
10415 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10417 else if (section_is_p (sectp->name, &names->types_dwo))
10419 struct dwarf2_section_info type_section;
10421 memset (&type_section, 0, sizeof (type_section));
10422 type_section.s.asection = sectp;
10423 type_section.size = bfd_get_section_size (sectp);
10424 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10429 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10430 by PER_CU. This is for the non-DWP case.
10431 The result is NULL if DWO_NAME can't be found. */
10433 static struct dwo_file *
10434 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10435 const char *dwo_name, const char *comp_dir)
10437 struct objfile *objfile = dwarf2_per_objfile->objfile;
10438 struct dwo_file *dwo_file;
10440 struct cleanup *cleanups;
10442 dbfd = open_dwo_file (dwo_name, comp_dir);
10445 if (dwarf2_read_debug)
10446 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10449 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10450 dwo_file->dwo_name = dwo_name;
10451 dwo_file->comp_dir = comp_dir;
10452 dwo_file->dbfd = dbfd;
10454 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10456 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10458 dwo_file->cu = create_dwo_cu (dwo_file);
10460 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10461 dwo_file->sections.types);
10463 discard_cleanups (cleanups);
10465 if (dwarf2_read_debug)
10466 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10471 /* This function is mapped across the sections and remembers the offset and
10472 size of each of the DWP debugging sections common to version 1 and 2 that
10473 we are interested in. */
10476 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10477 void *dwp_file_ptr)
10479 struct dwp_file *dwp_file = dwp_file_ptr;
10480 const struct dwop_section_names *names = &dwop_section_names;
10481 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10483 /* Record the ELF section number for later lookup: this is what the
10484 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10485 gdb_assert (elf_section_nr < dwp_file->num_sections);
10486 dwp_file->elf_sections[elf_section_nr] = sectp;
10488 /* Look for specific sections that we need. */
10489 if (section_is_p (sectp->name, &names->str_dwo))
10491 dwp_file->sections.str.s.asection = sectp;
10492 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10494 else if (section_is_p (sectp->name, &names->cu_index))
10496 dwp_file->sections.cu_index.s.asection = sectp;
10497 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10499 else if (section_is_p (sectp->name, &names->tu_index))
10501 dwp_file->sections.tu_index.s.asection = sectp;
10502 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10506 /* This function is mapped across the sections and remembers the offset and
10507 size of each of the DWP version 2 debugging sections that we are interested
10508 in. This is split into a separate function because we don't know if we
10509 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10512 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10514 struct dwp_file *dwp_file = dwp_file_ptr;
10515 const struct dwop_section_names *names = &dwop_section_names;
10516 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10518 /* Record the ELF section number for later lookup: this is what the
10519 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10520 gdb_assert (elf_section_nr < dwp_file->num_sections);
10521 dwp_file->elf_sections[elf_section_nr] = sectp;
10523 /* Look for specific sections that we need. */
10524 if (section_is_p (sectp->name, &names->abbrev_dwo))
10526 dwp_file->sections.abbrev.s.asection = sectp;
10527 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10529 else if (section_is_p (sectp->name, &names->info_dwo))
10531 dwp_file->sections.info.s.asection = sectp;
10532 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10534 else if (section_is_p (sectp->name, &names->line_dwo))
10536 dwp_file->sections.line.s.asection = sectp;
10537 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10539 else if (section_is_p (sectp->name, &names->loc_dwo))
10541 dwp_file->sections.loc.s.asection = sectp;
10542 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10544 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10546 dwp_file->sections.macinfo.s.asection = sectp;
10547 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10549 else if (section_is_p (sectp->name, &names->macro_dwo))
10551 dwp_file->sections.macro.s.asection = sectp;
10552 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10554 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10556 dwp_file->sections.str_offsets.s.asection = sectp;
10557 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10559 else if (section_is_p (sectp->name, &names->types_dwo))
10561 dwp_file->sections.types.s.asection = sectp;
10562 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10566 /* Hash function for dwp_file loaded CUs/TUs. */
10569 hash_dwp_loaded_cutus (const void *item)
10571 const struct dwo_unit *dwo_unit = item;
10573 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10574 return dwo_unit->signature;
10577 /* Equality function for dwp_file loaded CUs/TUs. */
10580 eq_dwp_loaded_cutus (const void *a, const void *b)
10582 const struct dwo_unit *dua = a;
10583 const struct dwo_unit *dub = b;
10585 return dua->signature == dub->signature;
10588 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10591 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10593 return htab_create_alloc_ex (3,
10594 hash_dwp_loaded_cutus,
10595 eq_dwp_loaded_cutus,
10597 &objfile->objfile_obstack,
10598 hashtab_obstack_allocate,
10599 dummy_obstack_deallocate);
10602 /* Try to open DWP file FILE_NAME.
10603 The result is the bfd handle of the file.
10604 If there is a problem finding or opening the file, return NULL.
10605 Upon success, the canonicalized path of the file is stored in the bfd,
10606 same as symfile_bfd_open. */
10609 open_dwp_file (const char *file_name)
10613 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10617 /* Work around upstream bug 15652.
10618 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10619 [Whether that's a "bug" is debatable, but it is getting in our way.]
10620 We have no real idea where the dwp file is, because gdb's realpath-ing
10621 of the executable's path may have discarded the needed info.
10622 [IWBN if the dwp file name was recorded in the executable, akin to
10623 .gnu_debuglink, but that doesn't exist yet.]
10624 Strip the directory from FILE_NAME and search again. */
10625 if (*debug_file_directory != '\0')
10627 /* Don't implicitly search the current directory here.
10628 If the user wants to search "." to handle this case,
10629 it must be added to debug-file-directory. */
10630 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10637 /* Initialize the use of the DWP file for the current objfile.
10638 By convention the name of the DWP file is ${objfile}.dwp.
10639 The result is NULL if it can't be found. */
10641 static struct dwp_file *
10642 open_and_init_dwp_file (void)
10644 struct objfile *objfile = dwarf2_per_objfile->objfile;
10645 struct dwp_file *dwp_file;
10648 struct cleanup *cleanups;
10650 /* Try to find first .dwp for the binary file before any symbolic links
10652 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10653 cleanups = make_cleanup (xfree, dwp_name);
10655 dbfd = open_dwp_file (dwp_name);
10657 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10659 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10660 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10661 make_cleanup (xfree, dwp_name);
10662 dbfd = open_dwp_file (dwp_name);
10667 if (dwarf2_read_debug)
10668 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10669 do_cleanups (cleanups);
10672 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10673 dwp_file->name = bfd_get_filename (dbfd);
10674 dwp_file->dbfd = dbfd;
10675 do_cleanups (cleanups);
10677 /* +1: section 0 is unused */
10678 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10679 dwp_file->elf_sections =
10680 OBSTACK_CALLOC (&objfile->objfile_obstack,
10681 dwp_file->num_sections, asection *);
10683 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10685 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10687 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10689 /* The DWP file version is stored in the hash table. Oh well. */
10690 if (dwp_file->cus->version != dwp_file->tus->version)
10692 /* Technically speaking, we should try to limp along, but this is
10693 pretty bizarre. We use pulongest here because that's the established
10694 portability solution (e.g, we cannot use %u for uint32_t). */
10695 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10696 " TU version %s [in DWP file %s]"),
10697 pulongest (dwp_file->cus->version),
10698 pulongest (dwp_file->tus->version), dwp_name);
10700 dwp_file->version = dwp_file->cus->version;
10702 if (dwp_file->version == 2)
10703 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10705 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10706 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10708 if (dwarf2_read_debug)
10710 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10711 fprintf_unfiltered (gdb_stdlog,
10712 " %s CUs, %s TUs\n",
10713 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10714 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10720 /* Wrapper around open_and_init_dwp_file, only open it once. */
10722 static struct dwp_file *
10723 get_dwp_file (void)
10725 if (! dwarf2_per_objfile->dwp_checked)
10727 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10728 dwarf2_per_objfile->dwp_checked = 1;
10730 return dwarf2_per_objfile->dwp_file;
10733 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10734 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10735 or in the DWP file for the objfile, referenced by THIS_UNIT.
10736 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10737 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10739 This is called, for example, when wanting to read a variable with a
10740 complex location. Therefore we don't want to do file i/o for every call.
10741 Therefore we don't want to look for a DWO file on every call.
10742 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10743 then we check if we've already seen DWO_NAME, and only THEN do we check
10746 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10747 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10749 static struct dwo_unit *
10750 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10751 const char *dwo_name, const char *comp_dir,
10752 ULONGEST signature, int is_debug_types)
10754 struct objfile *objfile = dwarf2_per_objfile->objfile;
10755 const char *kind = is_debug_types ? "TU" : "CU";
10756 void **dwo_file_slot;
10757 struct dwo_file *dwo_file;
10758 struct dwp_file *dwp_file;
10760 /* First see if there's a DWP file.
10761 If we have a DWP file but didn't find the DWO inside it, don't
10762 look for the original DWO file. It makes gdb behave differently
10763 depending on whether one is debugging in the build tree. */
10765 dwp_file = get_dwp_file ();
10766 if (dwp_file != NULL)
10768 const struct dwp_hash_table *dwp_htab =
10769 is_debug_types ? dwp_file->tus : dwp_file->cus;
10771 if (dwp_htab != NULL)
10773 struct dwo_unit *dwo_cutu =
10774 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10775 signature, is_debug_types);
10777 if (dwo_cutu != NULL)
10779 if (dwarf2_read_debug)
10781 fprintf_unfiltered (gdb_stdlog,
10782 "Virtual DWO %s %s found: @%s\n",
10783 kind, hex_string (signature),
10784 host_address_to_string (dwo_cutu));
10792 /* No DWP file, look for the DWO file. */
10794 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10795 if (*dwo_file_slot == NULL)
10797 /* Read in the file and build a table of the CUs/TUs it contains. */
10798 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10800 /* NOTE: This will be NULL if unable to open the file. */
10801 dwo_file = *dwo_file_slot;
10803 if (dwo_file != NULL)
10805 struct dwo_unit *dwo_cutu = NULL;
10807 if (is_debug_types && dwo_file->tus)
10809 struct dwo_unit find_dwo_cutu;
10811 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10812 find_dwo_cutu.signature = signature;
10813 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10815 else if (!is_debug_types && dwo_file->cu)
10817 if (signature == dwo_file->cu->signature)
10818 dwo_cutu = dwo_file->cu;
10821 if (dwo_cutu != NULL)
10823 if (dwarf2_read_debug)
10825 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10826 kind, dwo_name, hex_string (signature),
10827 host_address_to_string (dwo_cutu));
10834 /* We didn't find it. This could mean a dwo_id mismatch, or
10835 someone deleted the DWO/DWP file, or the search path isn't set up
10836 correctly to find the file. */
10838 if (dwarf2_read_debug)
10840 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10841 kind, dwo_name, hex_string (signature));
10844 /* This is a warning and not a complaint because it can be caused by
10845 pilot error (e.g., user accidentally deleting the DWO). */
10847 /* Print the name of the DWP file if we looked there, helps the user
10848 better diagnose the problem. */
10849 char *dwp_text = NULL;
10850 struct cleanup *cleanups;
10852 if (dwp_file != NULL)
10853 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10854 cleanups = make_cleanup (xfree, dwp_text);
10856 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10857 " [in module %s]"),
10858 kind, dwo_name, hex_string (signature),
10859 dwp_text != NULL ? dwp_text : "",
10860 this_unit->is_debug_types ? "TU" : "CU",
10861 this_unit->offset.sect_off, objfile_name (objfile));
10863 do_cleanups (cleanups);
10868 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10869 See lookup_dwo_cutu_unit for details. */
10871 static struct dwo_unit *
10872 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10873 const char *dwo_name, const char *comp_dir,
10874 ULONGEST signature)
10876 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10879 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10880 See lookup_dwo_cutu_unit for details. */
10882 static struct dwo_unit *
10883 lookup_dwo_type_unit (struct signatured_type *this_tu,
10884 const char *dwo_name, const char *comp_dir)
10886 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10889 /* Traversal function for queue_and_load_all_dwo_tus. */
10892 queue_and_load_dwo_tu (void **slot, void *info)
10894 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10895 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10896 ULONGEST signature = dwo_unit->signature;
10897 struct signatured_type *sig_type =
10898 lookup_dwo_signatured_type (per_cu->cu, signature);
10900 if (sig_type != NULL)
10902 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10904 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10905 a real dependency of PER_CU on SIG_TYPE. That is detected later
10906 while processing PER_CU. */
10907 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10908 load_full_type_unit (sig_cu);
10909 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10915 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10916 The DWO may have the only definition of the type, though it may not be
10917 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10918 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10921 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10923 struct dwo_unit *dwo_unit;
10924 struct dwo_file *dwo_file;
10926 gdb_assert (!per_cu->is_debug_types);
10927 gdb_assert (get_dwp_file () == NULL);
10928 gdb_assert (per_cu->cu != NULL);
10930 dwo_unit = per_cu->cu->dwo_unit;
10931 gdb_assert (dwo_unit != NULL);
10933 dwo_file = dwo_unit->dwo_file;
10934 if (dwo_file->tus != NULL)
10935 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10938 /* Free all resources associated with DWO_FILE.
10939 Close the DWO file and munmap the sections.
10940 All memory should be on the objfile obstack. */
10943 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10946 struct dwarf2_section_info *section;
10948 /* Note: dbfd is NULL for virtual DWO files. */
10949 gdb_bfd_unref (dwo_file->dbfd);
10951 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10954 /* Wrapper for free_dwo_file for use in cleanups. */
10957 free_dwo_file_cleanup (void *arg)
10959 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10960 struct objfile *objfile = dwarf2_per_objfile->objfile;
10962 free_dwo_file (dwo_file, objfile);
10965 /* Traversal function for free_dwo_files. */
10968 free_dwo_file_from_slot (void **slot, void *info)
10970 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10971 struct objfile *objfile = (struct objfile *) info;
10973 free_dwo_file (dwo_file, objfile);
10978 /* Free all resources associated with DWO_FILES. */
10981 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10983 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10986 /* Read in various DIEs. */
10988 /* qsort helper for inherit_abstract_dies. */
10991 unsigned_int_compar (const void *ap, const void *bp)
10993 unsigned int a = *(unsigned int *) ap;
10994 unsigned int b = *(unsigned int *) bp;
10996 return (a > b) - (b > a);
10999 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11000 Inherit only the children of the DW_AT_abstract_origin DIE not being
11001 already referenced by DW_AT_abstract_origin from the children of the
11005 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11007 struct die_info *child_die;
11008 unsigned die_children_count;
11009 /* CU offsets which were referenced by children of the current DIE. */
11010 sect_offset *offsets;
11011 sect_offset *offsets_end, *offsetp;
11012 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11013 struct die_info *origin_die;
11014 /* Iterator of the ORIGIN_DIE children. */
11015 struct die_info *origin_child_die;
11016 struct cleanup *cleanups;
11017 struct attribute *attr;
11018 struct dwarf2_cu *origin_cu;
11019 struct pending **origin_previous_list_in_scope;
11021 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11025 /* Note that following die references may follow to a die in a
11029 origin_die = follow_die_ref (die, attr, &origin_cu);
11031 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11033 origin_previous_list_in_scope = origin_cu->list_in_scope;
11034 origin_cu->list_in_scope = cu->list_in_scope;
11036 if (die->tag != origin_die->tag
11037 && !(die->tag == DW_TAG_inlined_subroutine
11038 && origin_die->tag == DW_TAG_subprogram))
11039 complaint (&symfile_complaints,
11040 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11041 die->offset.sect_off, origin_die->offset.sect_off);
11043 child_die = die->child;
11044 die_children_count = 0;
11045 while (child_die && child_die->tag)
11047 child_die = sibling_die (child_die);
11048 die_children_count++;
11050 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11051 cleanups = make_cleanup (xfree, offsets);
11053 offsets_end = offsets;
11054 child_die = die->child;
11055 while (child_die && child_die->tag)
11057 /* For each CHILD_DIE, find the corresponding child of
11058 ORIGIN_DIE. If there is more than one layer of
11059 DW_AT_abstract_origin, follow them all; there shouldn't be,
11060 but GCC versions at least through 4.4 generate this (GCC PR
11062 struct die_info *child_origin_die = child_die;
11063 struct dwarf2_cu *child_origin_cu = cu;
11067 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11071 child_origin_die = follow_die_ref (child_origin_die, attr,
11075 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11076 counterpart may exist. */
11077 if (child_origin_die != child_die)
11079 if (child_die->tag != child_origin_die->tag
11080 && !(child_die->tag == DW_TAG_inlined_subroutine
11081 && child_origin_die->tag == DW_TAG_subprogram))
11082 complaint (&symfile_complaints,
11083 _("Child DIE 0x%x and its abstract origin 0x%x have "
11084 "different tags"), child_die->offset.sect_off,
11085 child_origin_die->offset.sect_off);
11086 if (child_origin_die->parent != origin_die)
11087 complaint (&symfile_complaints,
11088 _("Child DIE 0x%x and its abstract origin 0x%x have "
11089 "different parents"), child_die->offset.sect_off,
11090 child_origin_die->offset.sect_off);
11092 *offsets_end++ = child_origin_die->offset;
11094 child_die = sibling_die (child_die);
11096 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11097 unsigned_int_compar);
11098 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11099 if (offsetp[-1].sect_off == offsetp->sect_off)
11100 complaint (&symfile_complaints,
11101 _("Multiple children of DIE 0x%x refer "
11102 "to DIE 0x%x as their abstract origin"),
11103 die->offset.sect_off, offsetp->sect_off);
11106 origin_child_die = origin_die->child;
11107 while (origin_child_die && origin_child_die->tag)
11109 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11110 while (offsetp < offsets_end
11111 && offsetp->sect_off < origin_child_die->offset.sect_off)
11113 if (offsetp >= offsets_end
11114 || offsetp->sect_off > origin_child_die->offset.sect_off)
11116 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11117 Check whether we're already processing ORIGIN_CHILD_DIE.
11118 This can happen with mutually referenced abstract_origins.
11120 if (!origin_child_die->in_process)
11121 process_die (origin_child_die, origin_cu);
11123 origin_child_die = sibling_die (origin_child_die);
11125 origin_cu->list_in_scope = origin_previous_list_in_scope;
11127 do_cleanups (cleanups);
11131 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11133 struct objfile *objfile = cu->objfile;
11134 struct context_stack *new;
11137 struct die_info *child_die;
11138 struct attribute *attr, *call_line, *call_file;
11140 CORE_ADDR baseaddr;
11141 struct block *block;
11142 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11143 VEC (symbolp) *template_args = NULL;
11144 struct template_symbol *templ_func = NULL;
11148 /* If we do not have call site information, we can't show the
11149 caller of this inlined function. That's too confusing, so
11150 only use the scope for local variables. */
11151 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11152 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11153 if (call_line == NULL || call_file == NULL)
11155 read_lexical_block_scope (die, cu);
11160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11162 name = dwarf2_name (die, cu);
11164 /* Ignore functions with missing or empty names. These are actually
11165 illegal according to the DWARF standard. */
11168 complaint (&symfile_complaints,
11169 _("missing name for subprogram DIE at %d"),
11170 die->offset.sect_off);
11174 /* Ignore functions with missing or invalid low and high pc attributes. */
11175 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11177 attr = dwarf2_attr (die, DW_AT_external, cu);
11178 if (!attr || !DW_UNSND (attr))
11179 complaint (&symfile_complaints,
11180 _("cannot get low and high bounds "
11181 "for subprogram DIE at %d"),
11182 die->offset.sect_off);
11187 highpc += baseaddr;
11189 /* If we have any template arguments, then we must allocate a
11190 different sort of symbol. */
11191 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11193 if (child_die->tag == DW_TAG_template_type_param
11194 || child_die->tag == DW_TAG_template_value_param)
11196 templ_func = allocate_template_symbol (objfile);
11197 templ_func->base.is_cplus_template_function = 1;
11202 new = push_context (0, lowpc);
11203 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11204 (struct symbol *) templ_func);
11206 /* If there is a location expression for DW_AT_frame_base, record
11208 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11210 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11212 cu->list_in_scope = &local_symbols;
11214 if (die->child != NULL)
11216 child_die = die->child;
11217 while (child_die && child_die->tag)
11219 if (child_die->tag == DW_TAG_template_type_param
11220 || child_die->tag == DW_TAG_template_value_param)
11222 struct symbol *arg = new_symbol (child_die, NULL, cu);
11225 VEC_safe_push (symbolp, template_args, arg);
11228 process_die (child_die, cu);
11229 child_die = sibling_die (child_die);
11233 inherit_abstract_dies (die, cu);
11235 /* If we have a DW_AT_specification, we might need to import using
11236 directives from the context of the specification DIE. See the
11237 comment in determine_prefix. */
11238 if (cu->language == language_cplus
11239 && dwarf2_attr (die, DW_AT_specification, cu))
11241 struct dwarf2_cu *spec_cu = cu;
11242 struct die_info *spec_die = die_specification (die, &spec_cu);
11246 child_die = spec_die->child;
11247 while (child_die && child_die->tag)
11249 if (child_die->tag == DW_TAG_imported_module)
11250 process_die (child_die, spec_cu);
11251 child_die = sibling_die (child_die);
11254 /* In some cases, GCC generates specification DIEs that
11255 themselves contain DW_AT_specification attributes. */
11256 spec_die = die_specification (spec_die, &spec_cu);
11260 new = pop_context ();
11261 /* Make a block for the local symbols within. */
11262 block = finish_block (new->name, &local_symbols, new->old_blocks,
11263 lowpc, highpc, objfile);
11265 /* For C++, set the block's scope. */
11266 if ((cu->language == language_cplus || cu->language == language_fortran)
11267 && cu->processing_has_namespace_info)
11268 block_set_scope (block, determine_prefix (die, cu),
11269 &objfile->objfile_obstack);
11271 /* If we have address ranges, record them. */
11272 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11274 /* Attach template arguments to function. */
11275 if (! VEC_empty (symbolp, template_args))
11277 gdb_assert (templ_func != NULL);
11279 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11280 templ_func->template_arguments
11281 = obstack_alloc (&objfile->objfile_obstack,
11282 (templ_func->n_template_arguments
11283 * sizeof (struct symbol *)));
11284 memcpy (templ_func->template_arguments,
11285 VEC_address (symbolp, template_args),
11286 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11287 VEC_free (symbolp, template_args);
11290 /* In C++, we can have functions nested inside functions (e.g., when
11291 a function declares a class that has methods). This means that
11292 when we finish processing a function scope, we may need to go
11293 back to building a containing block's symbol lists. */
11294 local_symbols = new->locals;
11295 using_directives = new->using_directives;
11297 /* If we've finished processing a top-level function, subsequent
11298 symbols go in the file symbol list. */
11299 if (outermost_context_p ())
11300 cu->list_in_scope = &file_symbols;
11303 /* Process all the DIES contained within a lexical block scope. Start
11304 a new scope, process the dies, and then close the scope. */
11307 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11309 struct objfile *objfile = cu->objfile;
11310 struct context_stack *new;
11311 CORE_ADDR lowpc, highpc;
11312 struct die_info *child_die;
11313 CORE_ADDR baseaddr;
11315 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11317 /* Ignore blocks with missing or invalid low and high pc attributes. */
11318 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11319 as multiple lexical blocks? Handling children in a sane way would
11320 be nasty. Might be easier to properly extend generic blocks to
11321 describe ranges. */
11322 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11325 highpc += baseaddr;
11327 push_context (0, lowpc);
11328 if (die->child != NULL)
11330 child_die = die->child;
11331 while (child_die && child_die->tag)
11333 process_die (child_die, cu);
11334 child_die = sibling_die (child_die);
11337 new = pop_context ();
11339 if (local_symbols != NULL || using_directives != NULL)
11341 struct block *block
11342 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11345 /* Note that recording ranges after traversing children, as we
11346 do here, means that recording a parent's ranges entails
11347 walking across all its children's ranges as they appear in
11348 the address map, which is quadratic behavior.
11350 It would be nicer to record the parent's ranges before
11351 traversing its children, simply overriding whatever you find
11352 there. But since we don't even decide whether to create a
11353 block until after we've traversed its children, that's hard
11355 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11357 local_symbols = new->locals;
11358 using_directives = new->using_directives;
11361 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11364 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11366 struct objfile *objfile = cu->objfile;
11367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11368 CORE_ADDR pc, baseaddr;
11369 struct attribute *attr;
11370 struct call_site *call_site, call_site_local;
11373 struct die_info *child_die;
11375 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11377 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11380 complaint (&symfile_complaints,
11381 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11382 "DIE 0x%x [in module %s]"),
11383 die->offset.sect_off, objfile_name (objfile));
11386 pc = attr_value_as_address (attr) + baseaddr;
11388 if (cu->call_site_htab == NULL)
11389 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11390 NULL, &objfile->objfile_obstack,
11391 hashtab_obstack_allocate, NULL);
11392 call_site_local.pc = pc;
11393 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11396 complaint (&symfile_complaints,
11397 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11398 "DIE 0x%x [in module %s]"),
11399 paddress (gdbarch, pc), die->offset.sect_off,
11400 objfile_name (objfile));
11404 /* Count parameters at the caller. */
11407 for (child_die = die->child; child_die && child_die->tag;
11408 child_die = sibling_die (child_die))
11410 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11412 complaint (&symfile_complaints,
11413 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11414 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11415 child_die->tag, child_die->offset.sect_off,
11416 objfile_name (objfile));
11423 call_site = obstack_alloc (&objfile->objfile_obstack,
11424 (sizeof (*call_site)
11425 + (sizeof (*call_site->parameter)
11426 * (nparams - 1))));
11428 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11429 call_site->pc = pc;
11431 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11433 struct die_info *func_die;
11435 /* Skip also over DW_TAG_inlined_subroutine. */
11436 for (func_die = die->parent;
11437 func_die && func_die->tag != DW_TAG_subprogram
11438 && func_die->tag != DW_TAG_subroutine_type;
11439 func_die = func_die->parent);
11441 /* DW_AT_GNU_all_call_sites is a superset
11442 of DW_AT_GNU_all_tail_call_sites. */
11444 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11445 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11447 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11448 not complete. But keep CALL_SITE for look ups via call_site_htab,
11449 both the initial caller containing the real return address PC and
11450 the final callee containing the current PC of a chain of tail
11451 calls do not need to have the tail call list complete. But any
11452 function candidate for a virtual tail call frame searched via
11453 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11454 determined unambiguously. */
11458 struct type *func_type = NULL;
11461 func_type = get_die_type (func_die, cu);
11462 if (func_type != NULL)
11464 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11466 /* Enlist this call site to the function. */
11467 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11468 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11471 complaint (&symfile_complaints,
11472 _("Cannot find function owning DW_TAG_GNU_call_site "
11473 "DIE 0x%x [in module %s]"),
11474 die->offset.sect_off, objfile_name (objfile));
11478 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11480 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11481 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11482 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11483 /* Keep NULL DWARF_BLOCK. */;
11484 else if (attr_form_is_block (attr))
11486 struct dwarf2_locexpr_baton *dlbaton;
11488 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11489 dlbaton->data = DW_BLOCK (attr)->data;
11490 dlbaton->size = DW_BLOCK (attr)->size;
11491 dlbaton->per_cu = cu->per_cu;
11493 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11495 else if (attr_form_is_ref (attr))
11497 struct dwarf2_cu *target_cu = cu;
11498 struct die_info *target_die;
11500 target_die = follow_die_ref (die, attr, &target_cu);
11501 gdb_assert (target_cu->objfile == objfile);
11502 if (die_is_declaration (target_die, target_cu))
11504 const char *target_physname = NULL;
11505 struct attribute *target_attr;
11507 /* Prefer the mangled name; otherwise compute the demangled one. */
11508 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11509 if (target_attr == NULL)
11510 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11512 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11513 target_physname = DW_STRING (target_attr);
11515 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11516 if (target_physname == NULL)
11517 complaint (&symfile_complaints,
11518 _("DW_AT_GNU_call_site_target target DIE has invalid "
11519 "physname, for referencing DIE 0x%x [in module %s]"),
11520 die->offset.sect_off, objfile_name (objfile));
11522 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11528 /* DW_AT_entry_pc should be preferred. */
11529 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11530 complaint (&symfile_complaints,
11531 _("DW_AT_GNU_call_site_target target DIE has invalid "
11532 "low pc, for referencing DIE 0x%x [in module %s]"),
11533 die->offset.sect_off, objfile_name (objfile));
11535 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11539 complaint (&symfile_complaints,
11540 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11541 "block nor reference, for DIE 0x%x [in module %s]"),
11542 die->offset.sect_off, objfile_name (objfile));
11544 call_site->per_cu = cu->per_cu;
11546 for (child_die = die->child;
11547 child_die && child_die->tag;
11548 child_die = sibling_die (child_die))
11550 struct call_site_parameter *parameter;
11551 struct attribute *loc, *origin;
11553 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11555 /* Already printed the complaint above. */
11559 gdb_assert (call_site->parameter_count < nparams);
11560 parameter = &call_site->parameter[call_site->parameter_count];
11562 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11563 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11564 register is contained in DW_AT_GNU_call_site_value. */
11566 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11567 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11568 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11570 sect_offset offset;
11572 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11573 offset = dwarf2_get_ref_die_offset (origin);
11574 if (!offset_in_cu_p (&cu->header, offset))
11576 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11577 binding can be done only inside one CU. Such referenced DIE
11578 therefore cannot be even moved to DW_TAG_partial_unit. */
11579 complaint (&symfile_complaints,
11580 _("DW_AT_abstract_origin offset is not in CU for "
11581 "DW_TAG_GNU_call_site child DIE 0x%x "
11583 child_die->offset.sect_off, objfile_name (objfile));
11586 parameter->u.param_offset.cu_off = (offset.sect_off
11587 - cu->header.offset.sect_off);
11589 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11591 complaint (&symfile_complaints,
11592 _("No DW_FORM_block* DW_AT_location for "
11593 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11594 child_die->offset.sect_off, objfile_name (objfile));
11599 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11600 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11601 if (parameter->u.dwarf_reg != -1)
11602 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11603 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11604 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11605 ¶meter->u.fb_offset))
11606 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11609 complaint (&symfile_complaints,
11610 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11611 "for DW_FORM_block* DW_AT_location is supported for "
11612 "DW_TAG_GNU_call_site child DIE 0x%x "
11614 child_die->offset.sect_off, objfile_name (objfile));
11619 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11620 if (!attr_form_is_block (attr))
11622 complaint (&symfile_complaints,
11623 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11624 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11625 child_die->offset.sect_off, objfile_name (objfile));
11628 parameter->value = DW_BLOCK (attr)->data;
11629 parameter->value_size = DW_BLOCK (attr)->size;
11631 /* Parameters are not pre-cleared by memset above. */
11632 parameter->data_value = NULL;
11633 parameter->data_value_size = 0;
11634 call_site->parameter_count++;
11636 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11639 if (!attr_form_is_block (attr))
11640 complaint (&symfile_complaints,
11641 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11642 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11643 child_die->offset.sect_off, objfile_name (objfile));
11646 parameter->data_value = DW_BLOCK (attr)->data;
11647 parameter->data_value_size = DW_BLOCK (attr)->size;
11653 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11654 Return 1 if the attributes are present and valid, otherwise, return 0.
11655 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11658 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11659 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11660 struct partial_symtab *ranges_pst)
11662 struct objfile *objfile = cu->objfile;
11663 struct comp_unit_head *cu_header = &cu->header;
11664 bfd *obfd = objfile->obfd;
11665 unsigned int addr_size = cu_header->addr_size;
11666 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11667 /* Base address selection entry. */
11670 unsigned int dummy;
11671 const gdb_byte *buffer;
11675 CORE_ADDR high = 0;
11676 CORE_ADDR baseaddr;
11678 found_base = cu->base_known;
11679 base = cu->base_address;
11681 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11682 if (offset >= dwarf2_per_objfile->ranges.size)
11684 complaint (&symfile_complaints,
11685 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11689 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11691 /* Read in the largest possible address. */
11692 marker = read_address (obfd, buffer, cu, &dummy);
11693 if ((marker & mask) == mask)
11695 /* If we found the largest possible address, then
11696 read the base address. */
11697 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11698 buffer += 2 * addr_size;
11699 offset += 2 * addr_size;
11705 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11709 CORE_ADDR range_beginning, range_end;
11711 range_beginning = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 range_end = read_address (obfd, buffer, cu, &dummy);
11714 buffer += addr_size;
11715 offset += 2 * addr_size;
11717 /* An end of list marker is a pair of zero addresses. */
11718 if (range_beginning == 0 && range_end == 0)
11719 /* Found the end of list entry. */
11722 /* Each base address selection entry is a pair of 2 values.
11723 The first is the largest possible address, the second is
11724 the base address. Check for a base address here. */
11725 if ((range_beginning & mask) == mask)
11727 /* If we found the largest possible address, then
11728 read the base address. */
11729 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11736 /* We have no valid base address for the ranges
11738 complaint (&symfile_complaints,
11739 _("Invalid .debug_ranges data (no base address)"));
11743 if (range_beginning > range_end)
11745 /* Inverted range entries are invalid. */
11746 complaint (&symfile_complaints,
11747 _("Invalid .debug_ranges data (inverted range)"));
11751 /* Empty range entries have no effect. */
11752 if (range_beginning == range_end)
11755 range_beginning += base;
11758 /* A not-uncommon case of bad debug info.
11759 Don't pollute the addrmap with bad data. */
11760 if (range_beginning + baseaddr == 0
11761 && !dwarf2_per_objfile->has_section_at_zero)
11763 complaint (&symfile_complaints,
11764 _(".debug_ranges entry has start address of zero"
11765 " [in module %s]"), objfile_name (objfile));
11769 if (ranges_pst != NULL)
11770 addrmap_set_empty (objfile->psymtabs_addrmap,
11771 range_beginning + baseaddr,
11772 range_end - 1 + baseaddr,
11775 /* FIXME: This is recording everything as a low-high
11776 segment of consecutive addresses. We should have a
11777 data structure for discontiguous block ranges
11781 low = range_beginning;
11787 if (range_beginning < low)
11788 low = range_beginning;
11789 if (range_end > high)
11795 /* If the first entry is an end-of-list marker, the range
11796 describes an empty scope, i.e. no instructions. */
11802 *high_return = high;
11806 /* Get low and high pc attributes from a die. Return 1 if the attributes
11807 are present and valid, otherwise, return 0. Return -1 if the range is
11808 discontinuous, i.e. derived from DW_AT_ranges information. */
11811 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11812 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11813 struct partial_symtab *pst)
11815 struct attribute *attr;
11816 struct attribute *attr_high;
11818 CORE_ADDR high = 0;
11821 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11824 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11827 low = attr_value_as_address (attr);
11828 high = attr_value_as_address (attr_high);
11829 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11833 /* Found high w/o low attribute. */
11836 /* Found consecutive range of addresses. */
11841 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11844 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11845 We take advantage of the fact that DW_AT_ranges does not appear
11846 in DW_TAG_compile_unit of DWO files. */
11847 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11848 unsigned int ranges_offset = (DW_UNSND (attr)
11849 + (need_ranges_base
11853 /* Value of the DW_AT_ranges attribute is the offset in the
11854 .debug_ranges section. */
11855 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11857 /* Found discontinuous range of addresses. */
11862 /* read_partial_die has also the strict LOW < HIGH requirement. */
11866 /* When using the GNU linker, .gnu.linkonce. sections are used to
11867 eliminate duplicate copies of functions and vtables and such.
11868 The linker will arbitrarily choose one and discard the others.
11869 The AT_*_pc values for such functions refer to local labels in
11870 these sections. If the section from that file was discarded, the
11871 labels are not in the output, so the relocs get a value of 0.
11872 If this is a discarded function, mark the pc bounds as invalid,
11873 so that GDB will ignore it. */
11874 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11883 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11884 its low and high PC addresses. Do nothing if these addresses could not
11885 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11886 and HIGHPC to the high address if greater than HIGHPC. */
11889 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11890 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11891 struct dwarf2_cu *cu)
11893 CORE_ADDR low, high;
11894 struct die_info *child = die->child;
11896 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11898 *lowpc = min (*lowpc, low);
11899 *highpc = max (*highpc, high);
11902 /* If the language does not allow nested subprograms (either inside
11903 subprograms or lexical blocks), we're done. */
11904 if (cu->language != language_ada)
11907 /* Check all the children of the given DIE. If it contains nested
11908 subprograms, then check their pc bounds. Likewise, we need to
11909 check lexical blocks as well, as they may also contain subprogram
11911 while (child && child->tag)
11913 if (child->tag == DW_TAG_subprogram
11914 || child->tag == DW_TAG_lexical_block)
11915 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11916 child = sibling_die (child);
11920 /* Get the low and high pc's represented by the scope DIE, and store
11921 them in *LOWPC and *HIGHPC. If the correct values can't be
11922 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11925 get_scope_pc_bounds (struct die_info *die,
11926 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11927 struct dwarf2_cu *cu)
11929 CORE_ADDR best_low = (CORE_ADDR) -1;
11930 CORE_ADDR best_high = (CORE_ADDR) 0;
11931 CORE_ADDR current_low, current_high;
11933 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL))
11935 best_low = current_low;
11936 best_high = current_high;
11940 struct die_info *child = die->child;
11942 while (child && child->tag)
11944 switch (child->tag) {
11945 case DW_TAG_subprogram:
11946 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11948 case DW_TAG_namespace:
11949 case DW_TAG_module:
11950 /* FIXME: carlton/2004-01-16: Should we do this for
11951 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11952 that current GCC's always emit the DIEs corresponding
11953 to definitions of methods of classes as children of a
11954 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11955 the DIEs giving the declarations, which could be
11956 anywhere). But I don't see any reason why the
11957 standards says that they have to be there. */
11958 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
11960 if (current_low != ((CORE_ADDR) -1))
11962 best_low = min (best_low, current_low);
11963 best_high = max (best_high, current_high);
11971 child = sibling_die (child);
11976 *highpc = best_high;
11979 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11983 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11984 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11986 struct objfile *objfile = cu->objfile;
11987 struct attribute *attr;
11988 struct attribute *attr_high;
11990 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11993 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11996 CORE_ADDR low = attr_value_as_address (attr);
11997 CORE_ADDR high = attr_value_as_address (attr_high);
11999 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12002 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12006 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12009 bfd *obfd = objfile->obfd;
12010 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12011 We take advantage of the fact that DW_AT_ranges does not appear
12012 in DW_TAG_compile_unit of DWO files. */
12013 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12015 /* The value of the DW_AT_ranges attribute is the offset of the
12016 address range list in the .debug_ranges section. */
12017 unsigned long offset = (DW_UNSND (attr)
12018 + (need_ranges_base ? cu->ranges_base : 0));
12019 const gdb_byte *buffer;
12021 /* For some target architectures, but not others, the
12022 read_address function sign-extends the addresses it returns.
12023 To recognize base address selection entries, we need a
12025 unsigned int addr_size = cu->header.addr_size;
12026 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12028 /* The base address, to which the next pair is relative. Note
12029 that this 'base' is a DWARF concept: most entries in a range
12030 list are relative, to reduce the number of relocs against the
12031 debugging information. This is separate from this function's
12032 'baseaddr' argument, which GDB uses to relocate debugging
12033 information from a shared library based on the address at
12034 which the library was loaded. */
12035 CORE_ADDR base = cu->base_address;
12036 int base_known = cu->base_known;
12038 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12039 if (offset >= dwarf2_per_objfile->ranges.size)
12041 complaint (&symfile_complaints,
12042 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12046 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12050 unsigned int bytes_read;
12051 CORE_ADDR start, end;
12053 start = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12055 end = read_address (obfd, buffer, cu, &bytes_read);
12056 buffer += bytes_read;
12058 /* Did we find the end of the range list? */
12059 if (start == 0 && end == 0)
12062 /* Did we find a base address selection entry? */
12063 else if ((start & base_select_mask) == base_select_mask)
12069 /* We found an ordinary address range. */
12074 complaint (&symfile_complaints,
12075 _("Invalid .debug_ranges data "
12076 "(no base address)"));
12082 /* Inverted range entries are invalid. */
12083 complaint (&symfile_complaints,
12084 _("Invalid .debug_ranges data "
12085 "(inverted range)"));
12089 /* Empty range entries have no effect. */
12093 start += base + baseaddr;
12094 end += base + baseaddr;
12096 /* A not-uncommon case of bad debug info.
12097 Don't pollute the addrmap with bad data. */
12098 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12100 complaint (&symfile_complaints,
12101 _(".debug_ranges entry has start address of zero"
12102 " [in module %s]"), objfile_name (objfile));
12106 record_block_range (block, start, end - 1);
12112 /* Check whether the producer field indicates either of GCC < 4.6, or the
12113 Intel C/C++ compiler, and cache the result in CU. */
12116 check_producer (struct dwarf2_cu *cu)
12119 int major, minor, release;
12121 if (cu->producer == NULL)
12123 /* For unknown compilers expect their behavior is DWARF version
12126 GCC started to support .debug_types sections by -gdwarf-4 since
12127 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12128 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12129 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12130 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12132 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12134 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12136 cs = &cu->producer[strlen ("GNU ")];
12137 while (*cs && !isdigit (*cs))
12139 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12141 /* Not recognized as GCC. */
12145 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12146 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12149 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12150 cu->producer_is_icc = 1;
12153 /* For other non-GCC compilers, expect their behavior is DWARF version
12157 cu->checked_producer = 1;
12160 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12161 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12162 during 4.6.0 experimental. */
12165 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12167 if (!cu->checked_producer)
12168 check_producer (cu);
12170 return cu->producer_is_gxx_lt_4_6;
12173 /* Return the default accessibility type if it is not overriden by
12174 DW_AT_accessibility. */
12176 static enum dwarf_access_attribute
12177 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12179 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12181 /* The default DWARF 2 accessibility for members is public, the default
12182 accessibility for inheritance is private. */
12184 if (die->tag != DW_TAG_inheritance)
12185 return DW_ACCESS_public;
12187 return DW_ACCESS_private;
12191 /* DWARF 3+ defines the default accessibility a different way. The same
12192 rules apply now for DW_TAG_inheritance as for the members and it only
12193 depends on the container kind. */
12195 if (die->parent->tag == DW_TAG_class_type)
12196 return DW_ACCESS_private;
12198 return DW_ACCESS_public;
12202 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12203 offset. If the attribute was not found return 0, otherwise return
12204 1. If it was found but could not properly be handled, set *OFFSET
12208 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12211 struct attribute *attr;
12213 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12218 /* Note that we do not check for a section offset first here.
12219 This is because DW_AT_data_member_location is new in DWARF 4,
12220 so if we see it, we can assume that a constant form is really
12221 a constant and not a section offset. */
12222 if (attr_form_is_constant (attr))
12223 *offset = dwarf2_get_attr_constant_value (attr, 0);
12224 else if (attr_form_is_section_offset (attr))
12225 dwarf2_complex_location_expr_complaint ();
12226 else if (attr_form_is_block (attr))
12227 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12229 dwarf2_complex_location_expr_complaint ();
12237 /* Add an aggregate field to the field list. */
12240 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12241 struct dwarf2_cu *cu)
12243 struct objfile *objfile = cu->objfile;
12244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12245 struct nextfield *new_field;
12246 struct attribute *attr;
12248 const char *fieldname = "";
12250 /* Allocate a new field list entry and link it in. */
12251 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12252 make_cleanup (xfree, new_field);
12253 memset (new_field, 0, sizeof (struct nextfield));
12255 if (die->tag == DW_TAG_inheritance)
12257 new_field->next = fip->baseclasses;
12258 fip->baseclasses = new_field;
12262 new_field->next = fip->fields;
12263 fip->fields = new_field;
12267 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12269 new_field->accessibility = DW_UNSND (attr);
12271 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12272 if (new_field->accessibility != DW_ACCESS_public)
12273 fip->non_public_fields = 1;
12275 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12277 new_field->virtuality = DW_UNSND (attr);
12279 new_field->virtuality = DW_VIRTUALITY_none;
12281 fp = &new_field->field;
12283 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12287 /* Data member other than a C++ static data member. */
12289 /* Get type of field. */
12290 fp->type = die_type (die, cu);
12292 SET_FIELD_BITPOS (*fp, 0);
12294 /* Get bit size of field (zero if none). */
12295 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12298 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12302 FIELD_BITSIZE (*fp) = 0;
12305 /* Get bit offset of field. */
12306 if (handle_data_member_location (die, cu, &offset))
12307 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12308 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12311 if (gdbarch_bits_big_endian (gdbarch))
12313 /* For big endian bits, the DW_AT_bit_offset gives the
12314 additional bit offset from the MSB of the containing
12315 anonymous object to the MSB of the field. We don't
12316 have to do anything special since we don't need to
12317 know the size of the anonymous object. */
12318 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12322 /* For little endian bits, compute the bit offset to the
12323 MSB of the anonymous object, subtract off the number of
12324 bits from the MSB of the field to the MSB of the
12325 object, and then subtract off the number of bits of
12326 the field itself. The result is the bit offset of
12327 the LSB of the field. */
12328 int anonymous_size;
12329 int bit_offset = DW_UNSND (attr);
12331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12334 /* The size of the anonymous object containing
12335 the bit field is explicit, so use the
12336 indicated size (in bytes). */
12337 anonymous_size = DW_UNSND (attr);
12341 /* The size of the anonymous object containing
12342 the bit field must be inferred from the type
12343 attribute of the data member containing the
12345 anonymous_size = TYPE_LENGTH (fp->type);
12347 SET_FIELD_BITPOS (*fp,
12348 (FIELD_BITPOS (*fp)
12349 + anonymous_size * bits_per_byte
12350 - bit_offset - FIELD_BITSIZE (*fp)));
12354 /* Get name of field. */
12355 fieldname = dwarf2_name (die, cu);
12356 if (fieldname == NULL)
12359 /* The name is already allocated along with this objfile, so we don't
12360 need to duplicate it for the type. */
12361 fp->name = fieldname;
12363 /* Change accessibility for artificial fields (e.g. virtual table
12364 pointer or virtual base class pointer) to private. */
12365 if (dwarf2_attr (die, DW_AT_artificial, cu))
12367 FIELD_ARTIFICIAL (*fp) = 1;
12368 new_field->accessibility = DW_ACCESS_private;
12369 fip->non_public_fields = 1;
12372 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12374 /* C++ static member. */
12376 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12377 is a declaration, but all versions of G++ as of this writing
12378 (so through at least 3.2.1) incorrectly generate
12379 DW_TAG_variable tags. */
12381 const char *physname;
12383 /* Get name of field. */
12384 fieldname = dwarf2_name (die, cu);
12385 if (fieldname == NULL)
12388 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12390 /* Only create a symbol if this is an external value.
12391 new_symbol checks this and puts the value in the global symbol
12392 table, which we want. If it is not external, new_symbol
12393 will try to put the value in cu->list_in_scope which is wrong. */
12394 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12396 /* A static const member, not much different than an enum as far as
12397 we're concerned, except that we can support more types. */
12398 new_symbol (die, NULL, cu);
12401 /* Get physical name. */
12402 physname = dwarf2_physname (fieldname, die, cu);
12404 /* The name is already allocated along with this objfile, so we don't
12405 need to duplicate it for the type. */
12406 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12407 FIELD_TYPE (*fp) = die_type (die, cu);
12408 FIELD_NAME (*fp) = fieldname;
12410 else if (die->tag == DW_TAG_inheritance)
12414 /* C++ base class field. */
12415 if (handle_data_member_location (die, cu, &offset))
12416 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12417 FIELD_BITSIZE (*fp) = 0;
12418 FIELD_TYPE (*fp) = die_type (die, cu);
12419 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12420 fip->nbaseclasses++;
12424 /* Add a typedef defined in the scope of the FIP's class. */
12427 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12428 struct dwarf2_cu *cu)
12430 struct objfile *objfile = cu->objfile;
12431 struct typedef_field_list *new_field;
12432 struct attribute *attr;
12433 struct typedef_field *fp;
12434 char *fieldname = "";
12436 /* Allocate a new field list entry and link it in. */
12437 new_field = xzalloc (sizeof (*new_field));
12438 make_cleanup (xfree, new_field);
12440 gdb_assert (die->tag == DW_TAG_typedef);
12442 fp = &new_field->field;
12444 /* Get name of field. */
12445 fp->name = dwarf2_name (die, cu);
12446 if (fp->name == NULL)
12449 fp->type = read_type_die (die, cu);
12451 new_field->next = fip->typedef_field_list;
12452 fip->typedef_field_list = new_field;
12453 fip->typedef_field_list_count++;
12456 /* Create the vector of fields, and attach it to the type. */
12459 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12460 struct dwarf2_cu *cu)
12462 int nfields = fip->nfields;
12464 /* Record the field count, allocate space for the array of fields,
12465 and create blank accessibility bitfields if necessary. */
12466 TYPE_NFIELDS (type) = nfields;
12467 TYPE_FIELDS (type) = (struct field *)
12468 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12469 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12471 if (fip->non_public_fields && cu->language != language_ada)
12473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12475 TYPE_FIELD_PRIVATE_BITS (type) =
12476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12477 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12479 TYPE_FIELD_PROTECTED_BITS (type) =
12480 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12481 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12483 TYPE_FIELD_IGNORE_BITS (type) =
12484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12485 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12488 /* If the type has baseclasses, allocate and clear a bit vector for
12489 TYPE_FIELD_VIRTUAL_BITS. */
12490 if (fip->nbaseclasses && cu->language != language_ada)
12492 int num_bytes = B_BYTES (fip->nbaseclasses);
12493 unsigned char *pointer;
12495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12496 pointer = TYPE_ALLOC (type, num_bytes);
12497 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12498 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12499 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12502 /* Copy the saved-up fields into the field vector. Start from the head of
12503 the list, adding to the tail of the field array, so that they end up in
12504 the same order in the array in which they were added to the list. */
12505 while (nfields-- > 0)
12507 struct nextfield *fieldp;
12511 fieldp = fip->fields;
12512 fip->fields = fieldp->next;
12516 fieldp = fip->baseclasses;
12517 fip->baseclasses = fieldp->next;
12520 TYPE_FIELD (type, nfields) = fieldp->field;
12521 switch (fieldp->accessibility)
12523 case DW_ACCESS_private:
12524 if (cu->language != language_ada)
12525 SET_TYPE_FIELD_PRIVATE (type, nfields);
12528 case DW_ACCESS_protected:
12529 if (cu->language != language_ada)
12530 SET_TYPE_FIELD_PROTECTED (type, nfields);
12533 case DW_ACCESS_public:
12537 /* Unknown accessibility. Complain and treat it as public. */
12539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12540 fieldp->accessibility);
12544 if (nfields < fip->nbaseclasses)
12546 switch (fieldp->virtuality)
12548 case DW_VIRTUALITY_virtual:
12549 case DW_VIRTUALITY_pure_virtual:
12550 if (cu->language == language_ada)
12551 error (_("unexpected virtuality in component of Ada type"));
12552 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12559 /* Return true if this member function is a constructor, false
12563 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12565 const char *fieldname;
12566 const char *typename;
12569 if (die->parent == NULL)
12572 if (die->parent->tag != DW_TAG_structure_type
12573 && die->parent->tag != DW_TAG_union_type
12574 && die->parent->tag != DW_TAG_class_type)
12577 fieldname = dwarf2_name (die, cu);
12578 typename = dwarf2_name (die->parent, cu);
12579 if (fieldname == NULL || typename == NULL)
12582 len = strlen (fieldname);
12583 return (strncmp (fieldname, typename, len) == 0
12584 && (typename[len] == '\0' || typename[len] == '<'));
12587 /* Add a member function to the proper fieldlist. */
12590 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12591 struct type *type, struct dwarf2_cu *cu)
12593 struct objfile *objfile = cu->objfile;
12594 struct attribute *attr;
12595 struct fnfieldlist *flp;
12597 struct fn_field *fnp;
12598 const char *fieldname;
12599 struct nextfnfield *new_fnfield;
12600 struct type *this_type;
12601 enum dwarf_access_attribute accessibility;
12603 if (cu->language == language_ada)
12604 error (_("unexpected member function in Ada type"));
12606 /* Get name of member function. */
12607 fieldname = dwarf2_name (die, cu);
12608 if (fieldname == NULL)
12611 /* Look up member function name in fieldlist. */
12612 for (i = 0; i < fip->nfnfields; i++)
12614 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12618 /* Create new list element if necessary. */
12619 if (i < fip->nfnfields)
12620 flp = &fip->fnfieldlists[i];
12623 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12625 fip->fnfieldlists = (struct fnfieldlist *)
12626 xrealloc (fip->fnfieldlists,
12627 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12628 * sizeof (struct fnfieldlist));
12629 if (fip->nfnfields == 0)
12630 make_cleanup (free_current_contents, &fip->fnfieldlists);
12632 flp = &fip->fnfieldlists[fip->nfnfields];
12633 flp->name = fieldname;
12636 i = fip->nfnfields++;
12639 /* Create a new member function field and chain it to the field list
12641 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12642 make_cleanup (xfree, new_fnfield);
12643 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12644 new_fnfield->next = flp->head;
12645 flp->head = new_fnfield;
12648 /* Fill in the member function field info. */
12649 fnp = &new_fnfield->fnfield;
12651 /* Delay processing of the physname until later. */
12652 if (cu->language == language_cplus || cu->language == language_java)
12654 add_to_method_list (type, i, flp->length - 1, fieldname,
12659 const char *physname = dwarf2_physname (fieldname, die, cu);
12660 fnp->physname = physname ? physname : "";
12663 fnp->type = alloc_type (objfile);
12664 this_type = read_type_die (die, cu);
12665 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12667 int nparams = TYPE_NFIELDS (this_type);
12669 /* TYPE is the domain of this method, and THIS_TYPE is the type
12670 of the method itself (TYPE_CODE_METHOD). */
12671 smash_to_method_type (fnp->type, type,
12672 TYPE_TARGET_TYPE (this_type),
12673 TYPE_FIELDS (this_type),
12674 TYPE_NFIELDS (this_type),
12675 TYPE_VARARGS (this_type));
12677 /* Handle static member functions.
12678 Dwarf2 has no clean way to discern C++ static and non-static
12679 member functions. G++ helps GDB by marking the first
12680 parameter for non-static member functions (which is the this
12681 pointer) as artificial. We obtain this information from
12682 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12683 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12684 fnp->voffset = VOFFSET_STATIC;
12687 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12688 dwarf2_full_name (fieldname, die, cu));
12690 /* Get fcontext from DW_AT_containing_type if present. */
12691 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12692 fnp->fcontext = die_containing_type (die, cu);
12694 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12695 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12697 /* Get accessibility. */
12698 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12700 accessibility = DW_UNSND (attr);
12702 accessibility = dwarf2_default_access_attribute (die, cu);
12703 switch (accessibility)
12705 case DW_ACCESS_private:
12706 fnp->is_private = 1;
12708 case DW_ACCESS_protected:
12709 fnp->is_protected = 1;
12713 /* Check for artificial methods. */
12714 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12715 if (attr && DW_UNSND (attr) != 0)
12716 fnp->is_artificial = 1;
12718 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12720 /* Get index in virtual function table if it is a virtual member
12721 function. For older versions of GCC, this is an offset in the
12722 appropriate virtual table, as specified by DW_AT_containing_type.
12723 For everyone else, it is an expression to be evaluated relative
12724 to the object address. */
12726 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12729 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12731 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12733 /* Old-style GCC. */
12734 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12736 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12737 || (DW_BLOCK (attr)->size > 1
12738 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12739 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12741 struct dwarf_block blk;
12744 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12746 blk.size = DW_BLOCK (attr)->size - offset;
12747 blk.data = DW_BLOCK (attr)->data + offset;
12748 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12749 if ((fnp->voffset % cu->header.addr_size) != 0)
12750 dwarf2_complex_location_expr_complaint ();
12752 fnp->voffset /= cu->header.addr_size;
12756 dwarf2_complex_location_expr_complaint ();
12758 if (!fnp->fcontext)
12759 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12761 else if (attr_form_is_section_offset (attr))
12763 dwarf2_complex_location_expr_complaint ();
12767 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12773 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12774 if (attr && DW_UNSND (attr))
12776 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12777 complaint (&symfile_complaints,
12778 _("Member function \"%s\" (offset %d) is virtual "
12779 "but the vtable offset is not specified"),
12780 fieldname, die->offset.sect_off);
12781 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12782 TYPE_CPLUS_DYNAMIC (type) = 1;
12787 /* Create the vector of member function fields, and attach it to the type. */
12790 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12791 struct dwarf2_cu *cu)
12793 struct fnfieldlist *flp;
12796 if (cu->language == language_ada)
12797 error (_("unexpected member functions in Ada type"));
12799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12800 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12801 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12803 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12805 struct nextfnfield *nfp = flp->head;
12806 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12809 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12810 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12811 fn_flp->fn_fields = (struct fn_field *)
12812 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12813 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12814 fn_flp->fn_fields[k] = nfp->fnfield;
12817 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12820 /* Returns non-zero if NAME is the name of a vtable member in CU's
12821 language, zero otherwise. */
12823 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12825 static const char vptr[] = "_vptr";
12826 static const char vtable[] = "vtable";
12828 /* Look for the C++ and Java forms of the vtable. */
12829 if ((cu->language == language_java
12830 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12831 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12832 && is_cplus_marker (name[sizeof (vptr) - 1])))
12838 /* GCC outputs unnamed structures that are really pointers to member
12839 functions, with the ABI-specified layout. If TYPE describes
12840 such a structure, smash it into a member function type.
12842 GCC shouldn't do this; it should just output pointer to member DIEs.
12843 This is GCC PR debug/28767. */
12846 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12848 struct type *pfn_type, *domain_type, *new_type;
12850 /* Check for a structure with no name and two children. */
12851 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12854 /* Check for __pfn and __delta members. */
12855 if (TYPE_FIELD_NAME (type, 0) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12857 || TYPE_FIELD_NAME (type, 1) == NULL
12858 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12861 /* Find the type of the method. */
12862 pfn_type = TYPE_FIELD_TYPE (type, 0);
12863 if (pfn_type == NULL
12864 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12865 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12868 /* Look for the "this" argument. */
12869 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12870 if (TYPE_NFIELDS (pfn_type) == 0
12871 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12872 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12875 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12876 new_type = alloc_type (objfile);
12877 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12878 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12879 TYPE_VARARGS (pfn_type));
12880 smash_to_methodptr_type (type, new_type);
12883 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12887 producer_is_icc (struct dwarf2_cu *cu)
12889 if (!cu->checked_producer)
12890 check_producer (cu);
12892 return cu->producer_is_icc;
12895 /* Called when we find the DIE that starts a structure or union scope
12896 (definition) to create a type for the structure or union. Fill in
12897 the type's name and general properties; the members will not be
12898 processed until process_structure_scope. A symbol table entry for
12899 the type will also not be done until process_structure_scope (assuming
12900 the type has a name).
12902 NOTE: we need to call these functions regardless of whether or not the
12903 DIE has a DW_AT_name attribute, since it might be an anonymous
12904 structure or union. This gets the type entered into our set of
12905 user defined types. */
12907 static struct type *
12908 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12910 struct objfile *objfile = cu->objfile;
12912 struct attribute *attr;
12915 /* If the definition of this type lives in .debug_types, read that type.
12916 Don't follow DW_AT_specification though, that will take us back up
12917 the chain and we want to go down. */
12918 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12921 type = get_DW_AT_signature_type (die, attr, cu);
12923 /* The type's CU may not be the same as CU.
12924 Ensure TYPE is recorded with CU in die_type_hash. */
12925 return set_die_type (die, type, cu);
12928 type = alloc_type (objfile);
12929 INIT_CPLUS_SPECIFIC (type);
12931 name = dwarf2_name (die, cu);
12934 if (cu->language == language_cplus
12935 || cu->language == language_java)
12937 const char *full_name = dwarf2_full_name (name, die, cu);
12939 /* dwarf2_full_name might have already finished building the DIE's
12940 type. If so, there is no need to continue. */
12941 if (get_die_type (die, cu) != NULL)
12942 return get_die_type (die, cu);
12944 TYPE_TAG_NAME (type) = full_name;
12945 if (die->tag == DW_TAG_structure_type
12946 || die->tag == DW_TAG_class_type)
12947 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12951 /* The name is already allocated along with this objfile, so
12952 we don't need to duplicate it for the type. */
12953 TYPE_TAG_NAME (type) = name;
12954 if (die->tag == DW_TAG_class_type)
12955 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12959 if (die->tag == DW_TAG_structure_type)
12961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12963 else if (die->tag == DW_TAG_union_type)
12965 TYPE_CODE (type) = TYPE_CODE_UNION;
12969 TYPE_CODE (type) = TYPE_CODE_CLASS;
12972 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12973 TYPE_DECLARED_CLASS (type) = 1;
12975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12978 TYPE_LENGTH (type) = DW_UNSND (attr);
12982 TYPE_LENGTH (type) = 0;
12985 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
12987 /* ICC does not output the required DW_AT_declaration
12988 on incomplete types, but gives them a size of zero. */
12989 TYPE_STUB (type) = 1;
12992 TYPE_STUB_SUPPORTED (type) = 1;
12994 if (die_is_declaration (die, cu))
12995 TYPE_STUB (type) = 1;
12996 else if (attr == NULL && die->child == NULL
12997 && producer_is_realview (cu->producer))
12998 /* RealView does not output the required DW_AT_declaration
12999 on incomplete types. */
13000 TYPE_STUB (type) = 1;
13002 /* We need to add the type field to the die immediately so we don't
13003 infinitely recurse when dealing with pointers to the structure
13004 type within the structure itself. */
13005 set_die_type (die, type, cu);
13007 /* set_die_type should be already done. */
13008 set_descriptive_type (type, die, cu);
13013 /* Finish creating a structure or union type, including filling in
13014 its members and creating a symbol for it. */
13017 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13019 struct objfile *objfile = cu->objfile;
13020 struct die_info *child_die = die->child;
13023 type = get_die_type (die, cu);
13025 type = read_structure_type (die, cu);
13027 if (die->child != NULL && ! die_is_declaration (die, cu))
13029 struct field_info fi;
13030 struct die_info *child_die;
13031 VEC (symbolp) *template_args = NULL;
13032 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13034 memset (&fi, 0, sizeof (struct field_info));
13036 child_die = die->child;
13038 while (child_die && child_die->tag)
13040 if (child_die->tag == DW_TAG_member
13041 || child_die->tag == DW_TAG_variable)
13043 /* NOTE: carlton/2002-11-05: A C++ static data member
13044 should be a DW_TAG_member that is a declaration, but
13045 all versions of G++ as of this writing (so through at
13046 least 3.2.1) incorrectly generate DW_TAG_variable
13047 tags for them instead. */
13048 dwarf2_add_field (&fi, child_die, cu);
13050 else if (child_die->tag == DW_TAG_subprogram)
13052 /* C++ member function. */
13053 dwarf2_add_member_fn (&fi, child_die, type, cu);
13055 else if (child_die->tag == DW_TAG_inheritance)
13057 /* C++ base class field. */
13058 dwarf2_add_field (&fi, child_die, cu);
13060 else if (child_die->tag == DW_TAG_typedef)
13061 dwarf2_add_typedef (&fi, child_die, cu);
13062 else if (child_die->tag == DW_TAG_template_type_param
13063 || child_die->tag == DW_TAG_template_value_param)
13065 struct symbol *arg = new_symbol (child_die, NULL, cu);
13068 VEC_safe_push (symbolp, template_args, arg);
13071 child_die = sibling_die (child_die);
13074 /* Attach template arguments to type. */
13075 if (! VEC_empty (symbolp, template_args))
13077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13078 TYPE_N_TEMPLATE_ARGUMENTS (type)
13079 = VEC_length (symbolp, template_args);
13080 TYPE_TEMPLATE_ARGUMENTS (type)
13081 = obstack_alloc (&objfile->objfile_obstack,
13082 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13083 * sizeof (struct symbol *)));
13084 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13085 VEC_address (symbolp, template_args),
13086 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13087 * sizeof (struct symbol *)));
13088 VEC_free (symbolp, template_args);
13091 /* Attach fields and member functions to the type. */
13093 dwarf2_attach_fields_to_type (&fi, type, cu);
13096 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13098 /* Get the type which refers to the base class (possibly this
13099 class itself) which contains the vtable pointer for the current
13100 class from the DW_AT_containing_type attribute. This use of
13101 DW_AT_containing_type is a GNU extension. */
13103 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13105 struct type *t = die_containing_type (die, cu);
13107 TYPE_VPTR_BASETYPE (type) = t;
13112 /* Our own class provides vtbl ptr. */
13113 for (i = TYPE_NFIELDS (t) - 1;
13114 i >= TYPE_N_BASECLASSES (t);
13117 const char *fieldname = TYPE_FIELD_NAME (t, i);
13119 if (is_vtable_name (fieldname, cu))
13121 TYPE_VPTR_FIELDNO (type) = i;
13126 /* Complain if virtual function table field not found. */
13127 if (i < TYPE_N_BASECLASSES (t))
13128 complaint (&symfile_complaints,
13129 _("virtual function table pointer "
13130 "not found when defining class '%s'"),
13131 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13136 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13139 else if (cu->producer
13140 && strncmp (cu->producer,
13141 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13143 /* The IBM XLC compiler does not provide direct indication
13144 of the containing type, but the vtable pointer is
13145 always named __vfp. */
13149 for (i = TYPE_NFIELDS (type) - 1;
13150 i >= TYPE_N_BASECLASSES (type);
13153 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13155 TYPE_VPTR_FIELDNO (type) = i;
13156 TYPE_VPTR_BASETYPE (type) = type;
13163 /* Copy fi.typedef_field_list linked list elements content into the
13164 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13165 if (fi.typedef_field_list)
13167 int i = fi.typedef_field_list_count;
13169 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13170 TYPE_TYPEDEF_FIELD_ARRAY (type)
13171 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13172 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13174 /* Reverse the list order to keep the debug info elements order. */
13177 struct typedef_field *dest, *src;
13179 dest = &TYPE_TYPEDEF_FIELD (type, i);
13180 src = &fi.typedef_field_list->field;
13181 fi.typedef_field_list = fi.typedef_field_list->next;
13186 do_cleanups (back_to);
13188 if (HAVE_CPLUS_STRUCT (type))
13189 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13192 quirk_gcc_member_function_pointer (type, objfile);
13194 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13195 snapshots) has been known to create a die giving a declaration
13196 for a class that has, as a child, a die giving a definition for a
13197 nested class. So we have to process our children even if the
13198 current die is a declaration. Normally, of course, a declaration
13199 won't have any children at all. */
13201 while (child_die != NULL && child_die->tag)
13203 if (child_die->tag == DW_TAG_member
13204 || child_die->tag == DW_TAG_variable
13205 || child_die->tag == DW_TAG_inheritance
13206 || child_die->tag == DW_TAG_template_value_param
13207 || child_die->tag == DW_TAG_template_type_param)
13212 process_die (child_die, cu);
13214 child_die = sibling_die (child_die);
13217 /* Do not consider external references. According to the DWARF standard,
13218 these DIEs are identified by the fact that they have no byte_size
13219 attribute, and a declaration attribute. */
13220 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13221 || !die_is_declaration (die, cu))
13222 new_symbol (die, type, cu);
13225 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13226 update TYPE using some information only available in DIE's children. */
13229 update_enumeration_type_from_children (struct die_info *die,
13231 struct dwarf2_cu *cu)
13233 struct obstack obstack;
13234 struct die_info *child_die = die->child;
13235 int unsigned_enum = 1;
13238 struct cleanup *old_chain;
13240 obstack_init (&obstack);
13241 old_chain = make_cleanup_obstack_free (&obstack);
13243 while (child_die != NULL && child_die->tag)
13245 struct attribute *attr;
13247 const gdb_byte *bytes;
13248 struct dwarf2_locexpr_baton *baton;
13250 if (child_die->tag != DW_TAG_enumerator)
13253 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13257 name = dwarf2_name (child_die, cu);
13259 name = "<anonymous enumerator>";
13261 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13262 &value, &bytes, &baton);
13268 else if ((mask & value) != 0)
13273 /* If we already know that the enum type is neither unsigned, nor
13274 a flag type, no need to look at the rest of the enumerates. */
13275 if (!unsigned_enum && !flag_enum)
13277 child_die = sibling_die (child_die);
13281 TYPE_UNSIGNED (type) = 1;
13283 TYPE_FLAG_ENUM (type) = 1;
13285 do_cleanups (old_chain);
13288 /* Given a DW_AT_enumeration_type die, set its type. We do not
13289 complete the type's fields yet, or create any symbols. */
13291 static struct type *
13292 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13294 struct objfile *objfile = cu->objfile;
13296 struct attribute *attr;
13299 /* If the definition of this type lives in .debug_types, read that type.
13300 Don't follow DW_AT_specification though, that will take us back up
13301 the chain and we want to go down. */
13302 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13305 type = get_DW_AT_signature_type (die, attr, cu);
13307 /* The type's CU may not be the same as CU.
13308 Ensure TYPE is recorded with CU in die_type_hash. */
13309 return set_die_type (die, type, cu);
13312 type = alloc_type (objfile);
13314 TYPE_CODE (type) = TYPE_CODE_ENUM;
13315 name = dwarf2_full_name (NULL, die, cu);
13317 TYPE_TAG_NAME (type) = name;
13319 attr = dwarf2_attr (die, DW_AT_type, cu);
13322 struct type *underlying_type = die_type (die, cu);
13324 TYPE_TARGET_TYPE (type) = underlying_type;
13327 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13330 TYPE_LENGTH (type) = DW_UNSND (attr);
13334 TYPE_LENGTH (type) = 0;
13337 /* The enumeration DIE can be incomplete. In Ada, any type can be
13338 declared as private in the package spec, and then defined only
13339 inside the package body. Such types are known as Taft Amendment
13340 Types. When another package uses such a type, an incomplete DIE
13341 may be generated by the compiler. */
13342 if (die_is_declaration (die, cu))
13343 TYPE_STUB (type) = 1;
13345 /* Finish the creation of this type by using the enum's children.
13346 We must call this even when the underlying type has been provided
13347 so that we can determine if we're looking at a "flag" enum. */
13348 update_enumeration_type_from_children (die, type, cu);
13350 /* If this type has an underlying type that is not a stub, then we
13351 may use its attributes. We always use the "unsigned" attribute
13352 in this situation, because ordinarily we guess whether the type
13353 is unsigned -- but the guess can be wrong and the underlying type
13354 can tell us the reality. However, we defer to a local size
13355 attribute if one exists, because this lets the compiler override
13356 the underlying type if needed. */
13357 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13359 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13360 if (TYPE_LENGTH (type) == 0)
13361 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13364 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13366 return set_die_type (die, type, cu);
13369 /* Given a pointer to a die which begins an enumeration, process all
13370 the dies that define the members of the enumeration, and create the
13371 symbol for the enumeration type.
13373 NOTE: We reverse the order of the element list. */
13376 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13378 struct type *this_type;
13380 this_type = get_die_type (die, cu);
13381 if (this_type == NULL)
13382 this_type = read_enumeration_type (die, cu);
13384 if (die->child != NULL)
13386 struct die_info *child_die;
13387 struct symbol *sym;
13388 struct field *fields = NULL;
13389 int num_fields = 0;
13392 child_die = die->child;
13393 while (child_die && child_die->tag)
13395 if (child_die->tag != DW_TAG_enumerator)
13397 process_die (child_die, cu);
13401 name = dwarf2_name (child_die, cu);
13404 sym = new_symbol (child_die, this_type, cu);
13406 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13408 fields = (struct field *)
13410 (num_fields + DW_FIELD_ALLOC_CHUNK)
13411 * sizeof (struct field));
13414 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13415 FIELD_TYPE (fields[num_fields]) = NULL;
13416 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13417 FIELD_BITSIZE (fields[num_fields]) = 0;
13423 child_die = sibling_die (child_die);
13428 TYPE_NFIELDS (this_type) = num_fields;
13429 TYPE_FIELDS (this_type) = (struct field *)
13430 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13431 memcpy (TYPE_FIELDS (this_type), fields,
13432 sizeof (struct field) * num_fields);
13437 /* If we are reading an enum from a .debug_types unit, and the enum
13438 is a declaration, and the enum is not the signatured type in the
13439 unit, then we do not want to add a symbol for it. Adding a
13440 symbol would in some cases obscure the true definition of the
13441 enum, giving users an incomplete type when the definition is
13442 actually available. Note that we do not want to do this for all
13443 enums which are just declarations, because C++0x allows forward
13444 enum declarations. */
13445 if (cu->per_cu->is_debug_types
13446 && die_is_declaration (die, cu))
13448 struct signatured_type *sig_type;
13450 sig_type = (struct signatured_type *) cu->per_cu;
13451 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13452 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13456 new_symbol (die, this_type, cu);
13459 /* Extract all information from a DW_TAG_array_type DIE and put it in
13460 the DIE's type field. For now, this only handles one dimensional
13463 static struct type *
13464 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13466 struct objfile *objfile = cu->objfile;
13467 struct die_info *child_die;
13469 struct type *element_type, *range_type, *index_type;
13470 struct type **range_types = NULL;
13471 struct attribute *attr;
13473 struct cleanup *back_to;
13475 unsigned int bit_stride = 0;
13477 element_type = die_type (die, cu);
13479 /* The die_type call above may have already set the type for this DIE. */
13480 type = get_die_type (die, cu);
13484 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13486 bit_stride = DW_UNSND (attr) * 8;
13488 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13490 bit_stride = DW_UNSND (attr);
13492 /* Irix 6.2 native cc creates array types without children for
13493 arrays with unspecified length. */
13494 if (die->child == NULL)
13496 index_type = objfile_type (objfile)->builtin_int;
13497 range_type = create_static_range_type (NULL, index_type, 0, -1);
13498 type = create_array_type_with_stride (NULL, element_type, range_type,
13500 return set_die_type (die, type, cu);
13503 back_to = make_cleanup (null_cleanup, NULL);
13504 child_die = die->child;
13505 while (child_die && child_die->tag)
13507 if (child_die->tag == DW_TAG_subrange_type)
13509 struct type *child_type = read_type_die (child_die, cu);
13511 if (child_type != NULL)
13513 /* The range type was succesfully read. Save it for the
13514 array type creation. */
13515 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13517 range_types = (struct type **)
13518 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13519 * sizeof (struct type *));
13521 make_cleanup (free_current_contents, &range_types);
13523 range_types[ndim++] = child_type;
13526 child_die = sibling_die (child_die);
13529 /* Dwarf2 dimensions are output from left to right, create the
13530 necessary array types in backwards order. */
13532 type = element_type;
13534 if (read_array_order (die, cu) == DW_ORD_col_major)
13539 type = create_array_type_with_stride (NULL, type, range_types[i++],
13545 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13549 /* Understand Dwarf2 support for vector types (like they occur on
13550 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13551 array type. This is not part of the Dwarf2/3 standard yet, but a
13552 custom vendor extension. The main difference between a regular
13553 array and the vector variant is that vectors are passed by value
13555 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13557 make_vector_type (type);
13559 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13560 implementation may choose to implement triple vectors using this
13562 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13565 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13566 TYPE_LENGTH (type) = DW_UNSND (attr);
13568 complaint (&symfile_complaints,
13569 _("DW_AT_byte_size for array type smaller "
13570 "than the total size of elements"));
13573 name = dwarf2_name (die, cu);
13575 TYPE_NAME (type) = name;
13577 /* Install the type in the die. */
13578 set_die_type (die, type, cu);
13580 /* set_die_type should be already done. */
13581 set_descriptive_type (type, die, cu);
13583 do_cleanups (back_to);
13588 static enum dwarf_array_dim_ordering
13589 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13591 struct attribute *attr;
13593 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13595 if (attr) return DW_SND (attr);
13597 /* GNU F77 is a special case, as at 08/2004 array type info is the
13598 opposite order to the dwarf2 specification, but data is still
13599 laid out as per normal fortran.
13601 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13602 version checking. */
13604 if (cu->language == language_fortran
13605 && cu->producer && strstr (cu->producer, "GNU F77"))
13607 return DW_ORD_row_major;
13610 switch (cu->language_defn->la_array_ordering)
13612 case array_column_major:
13613 return DW_ORD_col_major;
13614 case array_row_major:
13616 return DW_ORD_row_major;
13620 /* Extract all information from a DW_TAG_set_type DIE and put it in
13621 the DIE's type field. */
13623 static struct type *
13624 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13626 struct type *domain_type, *set_type;
13627 struct attribute *attr;
13629 domain_type = die_type (die, cu);
13631 /* The die_type call above may have already set the type for this DIE. */
13632 set_type = get_die_type (die, cu);
13636 set_type = create_set_type (NULL, domain_type);
13638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13640 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13642 return set_die_type (die, set_type, cu);
13645 /* A helper for read_common_block that creates a locexpr baton.
13646 SYM is the symbol which we are marking as computed.
13647 COMMON_DIE is the DIE for the common block.
13648 COMMON_LOC is the location expression attribute for the common
13650 MEMBER_LOC is the location expression attribute for the particular
13651 member of the common block that we are processing.
13652 CU is the CU from which the above come. */
13655 mark_common_block_symbol_computed (struct symbol *sym,
13656 struct die_info *common_die,
13657 struct attribute *common_loc,
13658 struct attribute *member_loc,
13659 struct dwarf2_cu *cu)
13661 struct objfile *objfile = dwarf2_per_objfile->objfile;
13662 struct dwarf2_locexpr_baton *baton;
13664 unsigned int cu_off;
13665 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13666 LONGEST offset = 0;
13668 gdb_assert (common_loc && member_loc);
13669 gdb_assert (attr_form_is_block (common_loc));
13670 gdb_assert (attr_form_is_block (member_loc)
13671 || attr_form_is_constant (member_loc));
13673 baton = obstack_alloc (&objfile->objfile_obstack,
13674 sizeof (struct dwarf2_locexpr_baton));
13675 baton->per_cu = cu->per_cu;
13676 gdb_assert (baton->per_cu);
13678 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13680 if (attr_form_is_constant (member_loc))
13682 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13683 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13686 baton->size += DW_BLOCK (member_loc)->size;
13688 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13691 *ptr++ = DW_OP_call4;
13692 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13693 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13696 if (attr_form_is_constant (member_loc))
13698 *ptr++ = DW_OP_addr;
13699 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13700 ptr += cu->header.addr_size;
13704 /* We have to copy the data here, because DW_OP_call4 will only
13705 use a DW_AT_location attribute. */
13706 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13707 ptr += DW_BLOCK (member_loc)->size;
13710 *ptr++ = DW_OP_plus;
13711 gdb_assert (ptr - baton->data == baton->size);
13713 SYMBOL_LOCATION_BATON (sym) = baton;
13714 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13717 /* Create appropriate locally-scoped variables for all the
13718 DW_TAG_common_block entries. Also create a struct common_block
13719 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13720 is used to sepate the common blocks name namespace from regular
13724 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13726 struct attribute *attr;
13728 attr = dwarf2_attr (die, DW_AT_location, cu);
13731 /* Support the .debug_loc offsets. */
13732 if (attr_form_is_block (attr))
13736 else if (attr_form_is_section_offset (attr))
13738 dwarf2_complex_location_expr_complaint ();
13743 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13744 "common block member");
13749 if (die->child != NULL)
13751 struct objfile *objfile = cu->objfile;
13752 struct die_info *child_die;
13753 size_t n_entries = 0, size;
13754 struct common_block *common_block;
13755 struct symbol *sym;
13757 for (child_die = die->child;
13758 child_die && child_die->tag;
13759 child_die = sibling_die (child_die))
13762 size = (sizeof (struct common_block)
13763 + (n_entries - 1) * sizeof (struct symbol *));
13764 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13765 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13766 common_block->n_entries = 0;
13768 for (child_die = die->child;
13769 child_die && child_die->tag;
13770 child_die = sibling_die (child_die))
13772 /* Create the symbol in the DW_TAG_common_block block in the current
13774 sym = new_symbol (child_die, NULL, cu);
13777 struct attribute *member_loc;
13779 common_block->contents[common_block->n_entries++] = sym;
13781 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13785 /* GDB has handled this for a long time, but it is
13786 not specified by DWARF. It seems to have been
13787 emitted by gfortran at least as recently as:
13788 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13789 complaint (&symfile_complaints,
13790 _("Variable in common block has "
13791 "DW_AT_data_member_location "
13792 "- DIE at 0x%x [in module %s]"),
13793 child_die->offset.sect_off,
13794 objfile_name (cu->objfile));
13796 if (attr_form_is_section_offset (member_loc))
13797 dwarf2_complex_location_expr_complaint ();
13798 else if (attr_form_is_constant (member_loc)
13799 || attr_form_is_block (member_loc))
13802 mark_common_block_symbol_computed (sym, die, attr,
13806 dwarf2_complex_location_expr_complaint ();
13811 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13812 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13816 /* Create a type for a C++ namespace. */
13818 static struct type *
13819 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13821 struct objfile *objfile = cu->objfile;
13822 const char *previous_prefix, *name;
13826 /* For extensions, reuse the type of the original namespace. */
13827 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13829 struct die_info *ext_die;
13830 struct dwarf2_cu *ext_cu = cu;
13832 ext_die = dwarf2_extension (die, &ext_cu);
13833 type = read_type_die (ext_die, ext_cu);
13835 /* EXT_CU may not be the same as CU.
13836 Ensure TYPE is recorded with CU in die_type_hash. */
13837 return set_die_type (die, type, cu);
13840 name = namespace_name (die, &is_anonymous, cu);
13842 /* Now build the name of the current namespace. */
13844 previous_prefix = determine_prefix (die, cu);
13845 if (previous_prefix[0] != '\0')
13846 name = typename_concat (&objfile->objfile_obstack,
13847 previous_prefix, name, 0, cu);
13849 /* Create the type. */
13850 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13852 TYPE_NAME (type) = name;
13853 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13855 return set_die_type (die, type, cu);
13858 /* Read a C++ namespace. */
13861 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13863 struct objfile *objfile = cu->objfile;
13866 /* Add a symbol associated to this if we haven't seen the namespace
13867 before. Also, add a using directive if it's an anonymous
13870 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13874 type = read_type_die (die, cu);
13875 new_symbol (die, type, cu);
13877 namespace_name (die, &is_anonymous, cu);
13880 const char *previous_prefix = determine_prefix (die, cu);
13882 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13883 NULL, NULL, 0, &objfile->objfile_obstack);
13887 if (die->child != NULL)
13889 struct die_info *child_die = die->child;
13891 while (child_die && child_die->tag)
13893 process_die (child_die, cu);
13894 child_die = sibling_die (child_die);
13899 /* Read a Fortran module as type. This DIE can be only a declaration used for
13900 imported module. Still we need that type as local Fortran "use ... only"
13901 declaration imports depend on the created type in determine_prefix. */
13903 static struct type *
13904 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13906 struct objfile *objfile = cu->objfile;
13907 const char *module_name;
13910 module_name = dwarf2_name (die, cu);
13912 complaint (&symfile_complaints,
13913 _("DW_TAG_module has no name, offset 0x%x"),
13914 die->offset.sect_off);
13915 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13917 /* determine_prefix uses TYPE_TAG_NAME. */
13918 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13920 return set_die_type (die, type, cu);
13923 /* Read a Fortran module. */
13926 read_module (struct die_info *die, struct dwarf2_cu *cu)
13928 struct die_info *child_die = die->child;
13931 type = read_type_die (die, cu);
13932 new_symbol (die, type, cu);
13934 while (child_die && child_die->tag)
13936 process_die (child_die, cu);
13937 child_die = sibling_die (child_die);
13941 /* Return the name of the namespace represented by DIE. Set
13942 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13945 static const char *
13946 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13948 struct die_info *current_die;
13949 const char *name = NULL;
13951 /* Loop through the extensions until we find a name. */
13953 for (current_die = die;
13954 current_die != NULL;
13955 current_die = dwarf2_extension (die, &cu))
13957 name = dwarf2_name (current_die, cu);
13962 /* Is it an anonymous namespace? */
13964 *is_anonymous = (name == NULL);
13966 name = CP_ANONYMOUS_NAMESPACE_STR;
13971 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13972 the user defined type vector. */
13974 static struct type *
13975 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13977 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13978 struct comp_unit_head *cu_header = &cu->header;
13980 struct attribute *attr_byte_size;
13981 struct attribute *attr_address_class;
13982 int byte_size, addr_class;
13983 struct type *target_type;
13985 target_type = die_type (die, cu);
13987 /* The die_type call above may have already set the type for this DIE. */
13988 type = get_die_type (die, cu);
13992 type = lookup_pointer_type (target_type);
13994 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13995 if (attr_byte_size)
13996 byte_size = DW_UNSND (attr_byte_size);
13998 byte_size = cu_header->addr_size;
14000 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14001 if (attr_address_class)
14002 addr_class = DW_UNSND (attr_address_class);
14004 addr_class = DW_ADDR_none;
14006 /* If the pointer size or address class is different than the
14007 default, create a type variant marked as such and set the
14008 length accordingly. */
14009 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14011 if (gdbarch_address_class_type_flags_p (gdbarch))
14015 type_flags = gdbarch_address_class_type_flags
14016 (gdbarch, byte_size, addr_class);
14017 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14019 type = make_type_with_address_space (type, type_flags);
14021 else if (TYPE_LENGTH (type) != byte_size)
14023 complaint (&symfile_complaints,
14024 _("invalid pointer size %d"), byte_size);
14028 /* Should we also complain about unhandled address classes? */
14032 TYPE_LENGTH (type) = byte_size;
14033 return set_die_type (die, type, cu);
14036 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14037 the user defined type vector. */
14039 static struct type *
14040 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14043 struct type *to_type;
14044 struct type *domain;
14046 to_type = die_type (die, cu);
14047 domain = die_containing_type (die, cu);
14049 /* The calls above may have already set the type for this DIE. */
14050 type = get_die_type (die, cu);
14054 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14055 type = lookup_methodptr_type (to_type);
14056 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14058 struct type *new_type = alloc_type (cu->objfile);
14060 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14061 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14062 TYPE_VARARGS (to_type));
14063 type = lookup_methodptr_type (new_type);
14066 type = lookup_memberptr_type (to_type, domain);
14068 return set_die_type (die, type, cu);
14071 /* Extract all information from a DW_TAG_reference_type DIE and add to
14072 the user defined type vector. */
14074 static struct type *
14075 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14077 struct comp_unit_head *cu_header = &cu->header;
14078 struct type *type, *target_type;
14079 struct attribute *attr;
14081 target_type = die_type (die, cu);
14083 /* The die_type call above may have already set the type for this DIE. */
14084 type = get_die_type (die, cu);
14088 type = lookup_reference_type (target_type);
14089 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14092 TYPE_LENGTH (type) = DW_UNSND (attr);
14096 TYPE_LENGTH (type) = cu_header->addr_size;
14098 return set_die_type (die, type, cu);
14101 /* Add the given cv-qualifiers to the element type of the array. GCC
14102 outputs DWARF type qualifiers that apply to an array, not the
14103 element type. But GDB relies on the array element type to carry
14104 the cv-qualifiers. This mimics section 6.7.3 of the C99
14107 static struct type *
14108 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14109 struct type *base_type, int cnst, int voltl)
14111 struct type *el_type, *inner_array;
14113 base_type = copy_type (base_type);
14114 inner_array = base_type;
14116 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14118 TYPE_TARGET_TYPE (inner_array) =
14119 copy_type (TYPE_TARGET_TYPE (inner_array));
14120 inner_array = TYPE_TARGET_TYPE (inner_array);
14123 el_type = TYPE_TARGET_TYPE (inner_array);
14124 cnst |= TYPE_CONST (el_type);
14125 voltl |= TYPE_VOLATILE (el_type);
14126 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14128 return set_die_type (die, base_type, cu);
14131 static struct type *
14132 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14134 struct type *base_type, *cv_type;
14136 base_type = die_type (die, cu);
14138 /* The die_type call above may have already set the type for this DIE. */
14139 cv_type = get_die_type (die, cu);
14143 /* In case the const qualifier is applied to an array type, the element type
14144 is so qualified, not the array type (section 6.7.3 of C99). */
14145 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14146 return add_array_cv_type (die, cu, base_type, 1, 0);
14148 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14149 return set_die_type (die, cv_type, cu);
14152 static struct type *
14153 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14155 struct type *base_type, *cv_type;
14157 base_type = die_type (die, cu);
14159 /* The die_type call above may have already set the type for this DIE. */
14160 cv_type = get_die_type (die, cu);
14164 /* In case the volatile qualifier is applied to an array type, the
14165 element type is so qualified, not the array type (section 6.7.3
14167 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14168 return add_array_cv_type (die, cu, base_type, 0, 1);
14170 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14171 return set_die_type (die, cv_type, cu);
14174 /* Handle DW_TAG_restrict_type. */
14176 static struct type *
14177 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14179 struct type *base_type, *cv_type;
14181 base_type = die_type (die, cu);
14183 /* The die_type call above may have already set the type for this DIE. */
14184 cv_type = get_die_type (die, cu);
14188 cv_type = make_restrict_type (base_type);
14189 return set_die_type (die, cv_type, cu);
14192 /* Extract all information from a DW_TAG_string_type DIE and add to
14193 the user defined type vector. It isn't really a user defined type,
14194 but it behaves like one, with other DIE's using an AT_user_def_type
14195 attribute to reference it. */
14197 static struct type *
14198 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14200 struct objfile *objfile = cu->objfile;
14201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14202 struct type *type, *range_type, *index_type, *char_type;
14203 struct attribute *attr;
14204 unsigned int length;
14206 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14209 length = DW_UNSND (attr);
14213 /* Check for the DW_AT_byte_size attribute. */
14214 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14217 length = DW_UNSND (attr);
14225 index_type = objfile_type (objfile)->builtin_int;
14226 range_type = create_static_range_type (NULL, index_type, 1, length);
14227 char_type = language_string_char_type (cu->language_defn, gdbarch);
14228 type = create_string_type (NULL, char_type, range_type);
14230 return set_die_type (die, type, cu);
14233 /* Assuming that DIE corresponds to a function, returns nonzero
14234 if the function is prototyped. */
14237 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14239 struct attribute *attr;
14241 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14242 if (attr && (DW_UNSND (attr) != 0))
14245 /* The DWARF standard implies that the DW_AT_prototyped attribute
14246 is only meaninful for C, but the concept also extends to other
14247 languages that allow unprototyped functions (Eg: Objective C).
14248 For all other languages, assume that functions are always
14250 if (cu->language != language_c
14251 && cu->language != language_objc
14252 && cu->language != language_opencl)
14255 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14256 prototyped and unprototyped functions; default to prototyped,
14257 since that is more common in modern code (and RealView warns
14258 about unprototyped functions). */
14259 if (producer_is_realview (cu->producer))
14265 /* Handle DIES due to C code like:
14269 int (*funcp)(int a, long l);
14273 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14275 static struct type *
14276 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14278 struct objfile *objfile = cu->objfile;
14279 struct type *type; /* Type that this function returns. */
14280 struct type *ftype; /* Function that returns above type. */
14281 struct attribute *attr;
14283 type = die_type (die, cu);
14285 /* The die_type call above may have already set the type for this DIE. */
14286 ftype = get_die_type (die, cu);
14290 ftype = lookup_function_type (type);
14292 if (prototyped_function_p (die, cu))
14293 TYPE_PROTOTYPED (ftype) = 1;
14295 /* Store the calling convention in the type if it's available in
14296 the subroutine die. Otherwise set the calling convention to
14297 the default value DW_CC_normal. */
14298 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14300 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14301 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14304 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14306 /* We need to add the subroutine type to the die immediately so
14307 we don't infinitely recurse when dealing with parameters
14308 declared as the same subroutine type. */
14309 set_die_type (die, ftype, cu);
14311 if (die->child != NULL)
14313 struct type *void_type = objfile_type (objfile)->builtin_void;
14314 struct die_info *child_die;
14315 int nparams, iparams;
14317 /* Count the number of parameters.
14318 FIXME: GDB currently ignores vararg functions, but knows about
14319 vararg member functions. */
14321 child_die = die->child;
14322 while (child_die && child_die->tag)
14324 if (child_die->tag == DW_TAG_formal_parameter)
14326 else if (child_die->tag == DW_TAG_unspecified_parameters)
14327 TYPE_VARARGS (ftype) = 1;
14328 child_die = sibling_die (child_die);
14331 /* Allocate storage for parameters and fill them in. */
14332 TYPE_NFIELDS (ftype) = nparams;
14333 TYPE_FIELDS (ftype) = (struct field *)
14334 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14336 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14337 even if we error out during the parameters reading below. */
14338 for (iparams = 0; iparams < nparams; iparams++)
14339 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14342 child_die = die->child;
14343 while (child_die && child_die->tag)
14345 if (child_die->tag == DW_TAG_formal_parameter)
14347 struct type *arg_type;
14349 /* DWARF version 2 has no clean way to discern C++
14350 static and non-static member functions. G++ helps
14351 GDB by marking the first parameter for non-static
14352 member functions (which is the this pointer) as
14353 artificial. We pass this information to
14354 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14356 DWARF version 3 added DW_AT_object_pointer, which GCC
14357 4.5 does not yet generate. */
14358 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14360 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14363 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14365 /* GCC/43521: In java, the formal parameter
14366 "this" is sometimes not marked with DW_AT_artificial. */
14367 if (cu->language == language_java)
14369 const char *name = dwarf2_name (child_die, cu);
14371 if (name && !strcmp (name, "this"))
14372 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14375 arg_type = die_type (child_die, cu);
14377 /* RealView does not mark THIS as const, which the testsuite
14378 expects. GCC marks THIS as const in method definitions,
14379 but not in the class specifications (GCC PR 43053). */
14380 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14381 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14384 struct dwarf2_cu *arg_cu = cu;
14385 const char *name = dwarf2_name (child_die, cu);
14387 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14390 /* If the compiler emits this, use it. */
14391 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14394 else if (name && strcmp (name, "this") == 0)
14395 /* Function definitions will have the argument names. */
14397 else if (name == NULL && iparams == 0)
14398 /* Declarations may not have the names, so like
14399 elsewhere in GDB, assume an artificial first
14400 argument is "this". */
14404 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14408 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14411 child_die = sibling_die (child_die);
14418 static struct type *
14419 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14421 struct objfile *objfile = cu->objfile;
14422 const char *name = NULL;
14423 struct type *this_type, *target_type;
14425 name = dwarf2_full_name (NULL, die, cu);
14426 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14427 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14428 TYPE_NAME (this_type) = name;
14429 set_die_type (die, this_type, cu);
14430 target_type = die_type (die, cu);
14431 if (target_type != this_type)
14432 TYPE_TARGET_TYPE (this_type) = target_type;
14435 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14436 spec and cause infinite loops in GDB. */
14437 complaint (&symfile_complaints,
14438 _("Self-referential DW_TAG_typedef "
14439 "- DIE at 0x%x [in module %s]"),
14440 die->offset.sect_off, objfile_name (objfile));
14441 TYPE_TARGET_TYPE (this_type) = NULL;
14446 /* Find a representation of a given base type and install
14447 it in the TYPE field of the die. */
14449 static struct type *
14450 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14452 struct objfile *objfile = cu->objfile;
14454 struct attribute *attr;
14455 int encoding = 0, size = 0;
14457 enum type_code code = TYPE_CODE_INT;
14458 int type_flags = 0;
14459 struct type *target_type = NULL;
14461 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14464 encoding = DW_UNSND (attr);
14466 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14469 size = DW_UNSND (attr);
14471 name = dwarf2_name (die, cu);
14474 complaint (&symfile_complaints,
14475 _("DW_AT_name missing from DW_TAG_base_type"));
14480 case DW_ATE_address:
14481 /* Turn DW_ATE_address into a void * pointer. */
14482 code = TYPE_CODE_PTR;
14483 type_flags |= TYPE_FLAG_UNSIGNED;
14484 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14486 case DW_ATE_boolean:
14487 code = TYPE_CODE_BOOL;
14488 type_flags |= TYPE_FLAG_UNSIGNED;
14490 case DW_ATE_complex_float:
14491 code = TYPE_CODE_COMPLEX;
14492 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14494 case DW_ATE_decimal_float:
14495 code = TYPE_CODE_DECFLOAT;
14498 code = TYPE_CODE_FLT;
14500 case DW_ATE_signed:
14502 case DW_ATE_unsigned:
14503 type_flags |= TYPE_FLAG_UNSIGNED;
14504 if (cu->language == language_fortran
14506 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14507 code = TYPE_CODE_CHAR;
14509 case DW_ATE_signed_char:
14510 if (cu->language == language_ada || cu->language == language_m2
14511 || cu->language == language_pascal
14512 || cu->language == language_fortran)
14513 code = TYPE_CODE_CHAR;
14515 case DW_ATE_unsigned_char:
14516 if (cu->language == language_ada || cu->language == language_m2
14517 || cu->language == language_pascal
14518 || cu->language == language_fortran)
14519 code = TYPE_CODE_CHAR;
14520 type_flags |= TYPE_FLAG_UNSIGNED;
14523 /* We just treat this as an integer and then recognize the
14524 type by name elsewhere. */
14528 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14529 dwarf_type_encoding_name (encoding));
14533 type = init_type (code, size, type_flags, NULL, objfile);
14534 TYPE_NAME (type) = name;
14535 TYPE_TARGET_TYPE (type) = target_type;
14537 if (name && strcmp (name, "char") == 0)
14538 TYPE_NOSIGN (type) = 1;
14540 return set_die_type (die, type, cu);
14543 /* Parse dwarf attribute if it's a block, reference or constant and put the
14544 resulting value of the attribute into struct bound_prop.
14545 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14548 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14549 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14551 struct dwarf2_property_baton *baton;
14552 struct obstack *obstack = &cu->objfile->objfile_obstack;
14554 if (attr == NULL || prop == NULL)
14557 if (attr_form_is_block (attr))
14559 baton = obstack_alloc (obstack, sizeof (*baton));
14560 baton->referenced_type = NULL;
14561 baton->locexpr.per_cu = cu->per_cu;
14562 baton->locexpr.size = DW_BLOCK (attr)->size;
14563 baton->locexpr.data = DW_BLOCK (attr)->data;
14564 prop->data.baton = baton;
14565 prop->kind = PROP_LOCEXPR;
14566 gdb_assert (prop->data.baton != NULL);
14568 else if (attr_form_is_ref (attr))
14570 struct dwarf2_cu *target_cu = cu;
14571 struct die_info *target_die;
14572 struct attribute *target_attr;
14574 target_die = follow_die_ref (die, attr, &target_cu);
14575 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14576 if (target_attr == NULL)
14579 if (attr_form_is_section_offset (target_attr))
14581 baton = obstack_alloc (obstack, sizeof (*baton));
14582 baton->referenced_type = die_type (target_die, target_cu);
14583 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14584 prop->data.baton = baton;
14585 prop->kind = PROP_LOCLIST;
14586 gdb_assert (prop->data.baton != NULL);
14588 else if (attr_form_is_block (target_attr))
14590 baton = obstack_alloc (obstack, sizeof (*baton));
14591 baton->referenced_type = die_type (target_die, target_cu);
14592 baton->locexpr.per_cu = cu->per_cu;
14593 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14594 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14595 prop->data.baton = baton;
14596 prop->kind = PROP_LOCEXPR;
14597 gdb_assert (prop->data.baton != NULL);
14601 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14602 "dynamic property");
14606 else if (attr_form_is_constant (attr))
14608 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14609 prop->kind = PROP_CONST;
14613 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14614 dwarf2_name (die, cu));
14621 /* Read the given DW_AT_subrange DIE. */
14623 static struct type *
14624 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14626 struct type *base_type, *orig_base_type;
14627 struct type *range_type;
14628 struct attribute *attr;
14629 struct dynamic_prop low, high;
14630 int low_default_is_valid;
14631 int high_bound_is_count = 0;
14633 LONGEST negative_mask;
14635 orig_base_type = die_type (die, cu);
14636 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14637 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14638 creating the range type, but we use the result of check_typedef
14639 when examining properties of the type. */
14640 base_type = check_typedef (orig_base_type);
14642 /* The die_type call above may have already set the type for this DIE. */
14643 range_type = get_die_type (die, cu);
14647 low.kind = PROP_CONST;
14648 high.kind = PROP_CONST;
14649 high.data.const_val = 0;
14651 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14652 omitting DW_AT_lower_bound. */
14653 switch (cu->language)
14656 case language_cplus:
14657 low.data.const_val = 0;
14658 low_default_is_valid = 1;
14660 case language_fortran:
14661 low.data.const_val = 1;
14662 low_default_is_valid = 1;
14665 case language_java:
14666 case language_objc:
14667 low.data.const_val = 0;
14668 low_default_is_valid = (cu->header.version >= 4);
14672 case language_pascal:
14673 low.data.const_val = 1;
14674 low_default_is_valid = (cu->header.version >= 4);
14677 low.data.const_val = 0;
14678 low_default_is_valid = 0;
14682 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14684 attr_to_dynamic_prop (attr, die, cu, &low);
14685 else if (!low_default_is_valid)
14686 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14687 "- DIE at 0x%x [in module %s]"),
14688 die->offset.sect_off, objfile_name (cu->objfile));
14690 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14691 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14693 attr = dwarf2_attr (die, DW_AT_count, cu);
14694 if (attr_to_dynamic_prop (attr, die, cu, &high))
14696 /* If bounds are constant do the final calculation here. */
14697 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14698 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14700 high_bound_is_count = 1;
14704 /* Dwarf-2 specifications explicitly allows to create subrange types
14705 without specifying a base type.
14706 In that case, the base type must be set to the type of
14707 the lower bound, upper bound or count, in that order, if any of these
14708 three attributes references an object that has a type.
14709 If no base type is found, the Dwarf-2 specifications say that
14710 a signed integer type of size equal to the size of an address should
14712 For the following C code: `extern char gdb_int [];'
14713 GCC produces an empty range DIE.
14714 FIXME: muller/2010-05-28: Possible references to object for low bound,
14715 high bound or count are not yet handled by this code. */
14716 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14718 struct objfile *objfile = cu->objfile;
14719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14720 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14721 struct type *int_type = objfile_type (objfile)->builtin_int;
14723 /* Test "int", "long int", and "long long int" objfile types,
14724 and select the first one having a size above or equal to the
14725 architecture address size. */
14726 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14727 base_type = int_type;
14730 int_type = objfile_type (objfile)->builtin_long;
14731 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14732 base_type = int_type;
14735 int_type = objfile_type (objfile)->builtin_long_long;
14736 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14737 base_type = int_type;
14742 /* Normally, the DWARF producers are expected to use a signed
14743 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14744 But this is unfortunately not always the case, as witnessed
14745 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14746 is used instead. To work around that ambiguity, we treat
14747 the bounds as signed, and thus sign-extend their values, when
14748 the base type is signed. */
14750 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14751 if (low.kind == PROP_CONST
14752 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14753 low.data.const_val |= negative_mask;
14754 if (high.kind == PROP_CONST
14755 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14756 high.data.const_val |= negative_mask;
14758 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14760 if (high_bound_is_count)
14761 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14763 /* Ada expects an empty array on no boundary attributes. */
14764 if (attr == NULL && cu->language != language_ada)
14765 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14767 name = dwarf2_name (die, cu);
14769 TYPE_NAME (range_type) = name;
14771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14773 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14775 set_die_type (die, range_type, cu);
14777 /* set_die_type should be already done. */
14778 set_descriptive_type (range_type, die, cu);
14783 static struct type *
14784 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14788 /* For now, we only support the C meaning of an unspecified type: void. */
14790 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14791 TYPE_NAME (type) = dwarf2_name (die, cu);
14793 return set_die_type (die, type, cu);
14796 /* Read a single die and all its descendents. Set the die's sibling
14797 field to NULL; set other fields in the die correctly, and set all
14798 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14799 location of the info_ptr after reading all of those dies. PARENT
14800 is the parent of the die in question. */
14802 static struct die_info *
14803 read_die_and_children (const struct die_reader_specs *reader,
14804 const gdb_byte *info_ptr,
14805 const gdb_byte **new_info_ptr,
14806 struct die_info *parent)
14808 struct die_info *die;
14809 const gdb_byte *cur_ptr;
14812 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14815 *new_info_ptr = cur_ptr;
14818 store_in_ref_table (die, reader->cu);
14821 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14825 *new_info_ptr = cur_ptr;
14828 die->sibling = NULL;
14829 die->parent = parent;
14833 /* Read a die, all of its descendents, and all of its siblings; set
14834 all of the fields of all of the dies correctly. Arguments are as
14835 in read_die_and_children. */
14837 static struct die_info *
14838 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14839 const gdb_byte *info_ptr,
14840 const gdb_byte **new_info_ptr,
14841 struct die_info *parent)
14843 struct die_info *first_die, *last_sibling;
14844 const gdb_byte *cur_ptr;
14846 cur_ptr = info_ptr;
14847 first_die = last_sibling = NULL;
14851 struct die_info *die
14852 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14856 *new_info_ptr = cur_ptr;
14863 last_sibling->sibling = die;
14865 last_sibling = die;
14869 /* Read a die, all of its descendents, and all of its siblings; set
14870 all of the fields of all of the dies correctly. Arguments are as
14871 in read_die_and_children.
14872 This the main entry point for reading a DIE and all its children. */
14874 static struct die_info *
14875 read_die_and_siblings (const struct die_reader_specs *reader,
14876 const gdb_byte *info_ptr,
14877 const gdb_byte **new_info_ptr,
14878 struct die_info *parent)
14880 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14881 new_info_ptr, parent);
14883 if (dwarf2_die_debug)
14885 fprintf_unfiltered (gdb_stdlog,
14886 "Read die from %s@0x%x of %s:\n",
14887 get_section_name (reader->die_section),
14888 (unsigned) (info_ptr - reader->die_section->buffer),
14889 bfd_get_filename (reader->abfd));
14890 dump_die (die, dwarf2_die_debug);
14896 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14898 The caller is responsible for filling in the extra attributes
14899 and updating (*DIEP)->num_attrs.
14900 Set DIEP to point to a newly allocated die with its information,
14901 except for its child, sibling, and parent fields.
14902 Set HAS_CHILDREN to tell whether the die has children or not. */
14904 static const gdb_byte *
14905 read_full_die_1 (const struct die_reader_specs *reader,
14906 struct die_info **diep, const gdb_byte *info_ptr,
14907 int *has_children, int num_extra_attrs)
14909 unsigned int abbrev_number, bytes_read, i;
14910 sect_offset offset;
14911 struct abbrev_info *abbrev;
14912 struct die_info *die;
14913 struct dwarf2_cu *cu = reader->cu;
14914 bfd *abfd = reader->abfd;
14916 offset.sect_off = info_ptr - reader->buffer;
14917 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14918 info_ptr += bytes_read;
14919 if (!abbrev_number)
14926 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14928 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14930 bfd_get_filename (abfd));
14932 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14933 die->offset = offset;
14934 die->tag = abbrev->tag;
14935 die->abbrev = abbrev_number;
14937 /* Make the result usable.
14938 The caller needs to update num_attrs after adding the extra
14940 die->num_attrs = abbrev->num_attrs;
14942 for (i = 0; i < abbrev->num_attrs; ++i)
14943 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14947 *has_children = abbrev->has_children;
14951 /* Read a die and all its attributes.
14952 Set DIEP to point to a newly allocated die with its information,
14953 except for its child, sibling, and parent fields.
14954 Set HAS_CHILDREN to tell whether the die has children or not. */
14956 static const gdb_byte *
14957 read_full_die (const struct die_reader_specs *reader,
14958 struct die_info **diep, const gdb_byte *info_ptr,
14961 const gdb_byte *result;
14963 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14965 if (dwarf2_die_debug)
14967 fprintf_unfiltered (gdb_stdlog,
14968 "Read die from %s@0x%x of %s:\n",
14969 get_section_name (reader->die_section),
14970 (unsigned) (info_ptr - reader->die_section->buffer),
14971 bfd_get_filename (reader->abfd));
14972 dump_die (*diep, dwarf2_die_debug);
14978 /* Abbreviation tables.
14980 In DWARF version 2, the description of the debugging information is
14981 stored in a separate .debug_abbrev section. Before we read any
14982 dies from a section we read in all abbreviations and install them
14983 in a hash table. */
14985 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14987 static struct abbrev_info *
14988 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14990 struct abbrev_info *abbrev;
14992 abbrev = (struct abbrev_info *)
14993 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14994 memset (abbrev, 0, sizeof (struct abbrev_info));
14998 /* Add an abbreviation to the table. */
15001 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15002 unsigned int abbrev_number,
15003 struct abbrev_info *abbrev)
15005 unsigned int hash_number;
15007 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15008 abbrev->next = abbrev_table->abbrevs[hash_number];
15009 abbrev_table->abbrevs[hash_number] = abbrev;
15012 /* Look up an abbrev in the table.
15013 Returns NULL if the abbrev is not found. */
15015 static struct abbrev_info *
15016 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15017 unsigned int abbrev_number)
15019 unsigned int hash_number;
15020 struct abbrev_info *abbrev;
15022 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15023 abbrev = abbrev_table->abbrevs[hash_number];
15027 if (abbrev->number == abbrev_number)
15029 abbrev = abbrev->next;
15034 /* Read in an abbrev table. */
15036 static struct abbrev_table *
15037 abbrev_table_read_table (struct dwarf2_section_info *section,
15038 sect_offset offset)
15040 struct objfile *objfile = dwarf2_per_objfile->objfile;
15041 bfd *abfd = get_section_bfd_owner (section);
15042 struct abbrev_table *abbrev_table;
15043 const gdb_byte *abbrev_ptr;
15044 struct abbrev_info *cur_abbrev;
15045 unsigned int abbrev_number, bytes_read, abbrev_name;
15046 unsigned int abbrev_form;
15047 struct attr_abbrev *cur_attrs;
15048 unsigned int allocated_attrs;
15050 abbrev_table = XNEW (struct abbrev_table);
15051 abbrev_table->offset = offset;
15052 obstack_init (&abbrev_table->abbrev_obstack);
15053 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15055 * sizeof (struct abbrev_info *)));
15056 memset (abbrev_table->abbrevs, 0,
15057 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15059 dwarf2_read_section (objfile, section);
15060 abbrev_ptr = section->buffer + offset.sect_off;
15061 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15062 abbrev_ptr += bytes_read;
15064 allocated_attrs = ATTR_ALLOC_CHUNK;
15065 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15067 /* Loop until we reach an abbrev number of 0. */
15068 while (abbrev_number)
15070 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15072 /* read in abbrev header */
15073 cur_abbrev->number = abbrev_number;
15074 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15075 abbrev_ptr += bytes_read;
15076 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15079 /* now read in declarations */
15080 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15083 abbrev_ptr += bytes_read;
15084 while (abbrev_name)
15086 if (cur_abbrev->num_attrs == allocated_attrs)
15088 allocated_attrs += ATTR_ALLOC_CHUNK;
15090 = xrealloc (cur_attrs, (allocated_attrs
15091 * sizeof (struct attr_abbrev)));
15094 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15095 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15096 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15098 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15099 abbrev_ptr += bytes_read;
15102 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15103 (cur_abbrev->num_attrs
15104 * sizeof (struct attr_abbrev)));
15105 memcpy (cur_abbrev->attrs, cur_attrs,
15106 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15108 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15110 /* Get next abbreviation.
15111 Under Irix6 the abbreviations for a compilation unit are not
15112 always properly terminated with an abbrev number of 0.
15113 Exit loop if we encounter an abbreviation which we have
15114 already read (which means we are about to read the abbreviations
15115 for the next compile unit) or if the end of the abbreviation
15116 table is reached. */
15117 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15119 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15120 abbrev_ptr += bytes_read;
15121 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15126 return abbrev_table;
15129 /* Free the resources held by ABBREV_TABLE. */
15132 abbrev_table_free (struct abbrev_table *abbrev_table)
15134 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15135 xfree (abbrev_table);
15138 /* Same as abbrev_table_free but as a cleanup.
15139 We pass in a pointer to the pointer to the table so that we can
15140 set the pointer to NULL when we're done. It also simplifies
15141 build_type_psymtabs_1. */
15144 abbrev_table_free_cleanup (void *table_ptr)
15146 struct abbrev_table **abbrev_table_ptr = table_ptr;
15148 if (*abbrev_table_ptr != NULL)
15149 abbrev_table_free (*abbrev_table_ptr);
15150 *abbrev_table_ptr = NULL;
15153 /* Read the abbrev table for CU from ABBREV_SECTION. */
15156 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15157 struct dwarf2_section_info *abbrev_section)
15160 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15163 /* Release the memory used by the abbrev table for a compilation unit. */
15166 dwarf2_free_abbrev_table (void *ptr_to_cu)
15168 struct dwarf2_cu *cu = ptr_to_cu;
15170 if (cu->abbrev_table != NULL)
15171 abbrev_table_free (cu->abbrev_table);
15172 /* Set this to NULL so that we SEGV if we try to read it later,
15173 and also because free_comp_unit verifies this is NULL. */
15174 cu->abbrev_table = NULL;
15177 /* Returns nonzero if TAG represents a type that we might generate a partial
15181 is_type_tag_for_partial (int tag)
15186 /* Some types that would be reasonable to generate partial symbols for,
15187 that we don't at present. */
15188 case DW_TAG_array_type:
15189 case DW_TAG_file_type:
15190 case DW_TAG_ptr_to_member_type:
15191 case DW_TAG_set_type:
15192 case DW_TAG_string_type:
15193 case DW_TAG_subroutine_type:
15195 case DW_TAG_base_type:
15196 case DW_TAG_class_type:
15197 case DW_TAG_interface_type:
15198 case DW_TAG_enumeration_type:
15199 case DW_TAG_structure_type:
15200 case DW_TAG_subrange_type:
15201 case DW_TAG_typedef:
15202 case DW_TAG_union_type:
15209 /* Load all DIEs that are interesting for partial symbols into memory. */
15211 static struct partial_die_info *
15212 load_partial_dies (const struct die_reader_specs *reader,
15213 const gdb_byte *info_ptr, int building_psymtab)
15215 struct dwarf2_cu *cu = reader->cu;
15216 struct objfile *objfile = cu->objfile;
15217 struct partial_die_info *part_die;
15218 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15219 struct abbrev_info *abbrev;
15220 unsigned int bytes_read;
15221 unsigned int load_all = 0;
15222 int nesting_level = 1;
15227 gdb_assert (cu->per_cu != NULL);
15228 if (cu->per_cu->load_all_dies)
15232 = htab_create_alloc_ex (cu->header.length / 12,
15236 &cu->comp_unit_obstack,
15237 hashtab_obstack_allocate,
15238 dummy_obstack_deallocate);
15240 part_die = obstack_alloc (&cu->comp_unit_obstack,
15241 sizeof (struct partial_die_info));
15245 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15247 /* A NULL abbrev means the end of a series of children. */
15248 if (abbrev == NULL)
15250 if (--nesting_level == 0)
15252 /* PART_DIE was probably the last thing allocated on the
15253 comp_unit_obstack, so we could call obstack_free
15254 here. We don't do that because the waste is small,
15255 and will be cleaned up when we're done with this
15256 compilation unit. This way, we're also more robust
15257 against other users of the comp_unit_obstack. */
15260 info_ptr += bytes_read;
15261 last_die = parent_die;
15262 parent_die = parent_die->die_parent;
15266 /* Check for template arguments. We never save these; if
15267 they're seen, we just mark the parent, and go on our way. */
15268 if (parent_die != NULL
15269 && cu->language == language_cplus
15270 && (abbrev->tag == DW_TAG_template_type_param
15271 || abbrev->tag == DW_TAG_template_value_param))
15273 parent_die->has_template_arguments = 1;
15277 /* We don't need a partial DIE for the template argument. */
15278 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15283 /* We only recurse into c++ subprograms looking for template arguments.
15284 Skip their other children. */
15286 && cu->language == language_cplus
15287 && parent_die != NULL
15288 && parent_die->tag == DW_TAG_subprogram)
15290 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15294 /* Check whether this DIE is interesting enough to save. Normally
15295 we would not be interested in members here, but there may be
15296 later variables referencing them via DW_AT_specification (for
15297 static members). */
15299 && !is_type_tag_for_partial (abbrev->tag)
15300 && abbrev->tag != DW_TAG_constant
15301 && abbrev->tag != DW_TAG_enumerator
15302 && abbrev->tag != DW_TAG_subprogram
15303 && abbrev->tag != DW_TAG_lexical_block
15304 && abbrev->tag != DW_TAG_variable
15305 && abbrev->tag != DW_TAG_namespace
15306 && abbrev->tag != DW_TAG_module
15307 && abbrev->tag != DW_TAG_member
15308 && abbrev->tag != DW_TAG_imported_unit
15309 && abbrev->tag != DW_TAG_imported_declaration)
15311 /* Otherwise we skip to the next sibling, if any. */
15312 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15316 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15319 /* This two-pass algorithm for processing partial symbols has a
15320 high cost in cache pressure. Thus, handle some simple cases
15321 here which cover the majority of C partial symbols. DIEs
15322 which neither have specification tags in them, nor could have
15323 specification tags elsewhere pointing at them, can simply be
15324 processed and discarded.
15326 This segment is also optional; scan_partial_symbols and
15327 add_partial_symbol will handle these DIEs if we chain
15328 them in normally. When compilers which do not emit large
15329 quantities of duplicate debug information are more common,
15330 this code can probably be removed. */
15332 /* Any complete simple types at the top level (pretty much all
15333 of them, for a language without namespaces), can be processed
15335 if (parent_die == NULL
15336 && part_die->has_specification == 0
15337 && part_die->is_declaration == 0
15338 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15339 || part_die->tag == DW_TAG_base_type
15340 || part_die->tag == DW_TAG_subrange_type))
15342 if (building_psymtab && part_die->name != NULL)
15343 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15344 VAR_DOMAIN, LOC_TYPEDEF,
15345 &objfile->static_psymbols,
15346 0, (CORE_ADDR) 0, cu->language, objfile);
15347 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15351 /* The exception for DW_TAG_typedef with has_children above is
15352 a workaround of GCC PR debug/47510. In the case of this complaint
15353 type_name_no_tag_or_error will error on such types later.
15355 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15356 it could not find the child DIEs referenced later, this is checked
15357 above. In correct DWARF DW_TAG_typedef should have no children. */
15359 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15360 complaint (&symfile_complaints,
15361 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15362 "- DIE at 0x%x [in module %s]"),
15363 part_die->offset.sect_off, objfile_name (objfile));
15365 /* If we're at the second level, and we're an enumerator, and
15366 our parent has no specification (meaning possibly lives in a
15367 namespace elsewhere), then we can add the partial symbol now
15368 instead of queueing it. */
15369 if (part_die->tag == DW_TAG_enumerator
15370 && parent_die != NULL
15371 && parent_die->die_parent == NULL
15372 && parent_die->tag == DW_TAG_enumeration_type
15373 && parent_die->has_specification == 0)
15375 if (part_die->name == NULL)
15376 complaint (&symfile_complaints,
15377 _("malformed enumerator DIE ignored"));
15378 else if (building_psymtab)
15379 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15380 VAR_DOMAIN, LOC_CONST,
15381 (cu->language == language_cplus
15382 || cu->language == language_java)
15383 ? &objfile->global_psymbols
15384 : &objfile->static_psymbols,
15385 0, (CORE_ADDR) 0, cu->language, objfile);
15387 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15391 /* We'll save this DIE so link it in. */
15392 part_die->die_parent = parent_die;
15393 part_die->die_sibling = NULL;
15394 part_die->die_child = NULL;
15396 if (last_die && last_die == parent_die)
15397 last_die->die_child = part_die;
15399 last_die->die_sibling = part_die;
15401 last_die = part_die;
15403 if (first_die == NULL)
15404 first_die = part_die;
15406 /* Maybe add the DIE to the hash table. Not all DIEs that we
15407 find interesting need to be in the hash table, because we
15408 also have the parent/sibling/child chains; only those that we
15409 might refer to by offset later during partial symbol reading.
15411 For now this means things that might have be the target of a
15412 DW_AT_specification, DW_AT_abstract_origin, or
15413 DW_AT_extension. DW_AT_extension will refer only to
15414 namespaces; DW_AT_abstract_origin refers to functions (and
15415 many things under the function DIE, but we do not recurse
15416 into function DIEs during partial symbol reading) and
15417 possibly variables as well; DW_AT_specification refers to
15418 declarations. Declarations ought to have the DW_AT_declaration
15419 flag. It happens that GCC forgets to put it in sometimes, but
15420 only for functions, not for types.
15422 Adding more things than necessary to the hash table is harmless
15423 except for the performance cost. Adding too few will result in
15424 wasted time in find_partial_die, when we reread the compilation
15425 unit with load_all_dies set. */
15428 || abbrev->tag == DW_TAG_constant
15429 || abbrev->tag == DW_TAG_subprogram
15430 || abbrev->tag == DW_TAG_variable
15431 || abbrev->tag == DW_TAG_namespace
15432 || part_die->is_declaration)
15436 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15437 part_die->offset.sect_off, INSERT);
15441 part_die = obstack_alloc (&cu->comp_unit_obstack,
15442 sizeof (struct partial_die_info));
15444 /* For some DIEs we want to follow their children (if any). For C
15445 we have no reason to follow the children of structures; for other
15446 languages we have to, so that we can get at method physnames
15447 to infer fully qualified class names, for DW_AT_specification,
15448 and for C++ template arguments. For C++, we also look one level
15449 inside functions to find template arguments (if the name of the
15450 function does not already contain the template arguments).
15452 For Ada, we need to scan the children of subprograms and lexical
15453 blocks as well because Ada allows the definition of nested
15454 entities that could be interesting for the debugger, such as
15455 nested subprograms for instance. */
15456 if (last_die->has_children
15458 || last_die->tag == DW_TAG_namespace
15459 || last_die->tag == DW_TAG_module
15460 || last_die->tag == DW_TAG_enumeration_type
15461 || (cu->language == language_cplus
15462 && last_die->tag == DW_TAG_subprogram
15463 && (last_die->name == NULL
15464 || strchr (last_die->name, '<') == NULL))
15465 || (cu->language != language_c
15466 && (last_die->tag == DW_TAG_class_type
15467 || last_die->tag == DW_TAG_interface_type
15468 || last_die->tag == DW_TAG_structure_type
15469 || last_die->tag == DW_TAG_union_type))
15470 || (cu->language == language_ada
15471 && (last_die->tag == DW_TAG_subprogram
15472 || last_die->tag == DW_TAG_lexical_block))))
15475 parent_die = last_die;
15479 /* Otherwise we skip to the next sibling, if any. */
15480 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15482 /* Back to the top, do it again. */
15486 /* Read a minimal amount of information into the minimal die structure. */
15488 static const gdb_byte *
15489 read_partial_die (const struct die_reader_specs *reader,
15490 struct partial_die_info *part_die,
15491 struct abbrev_info *abbrev, unsigned int abbrev_len,
15492 const gdb_byte *info_ptr)
15494 struct dwarf2_cu *cu = reader->cu;
15495 struct objfile *objfile = cu->objfile;
15496 const gdb_byte *buffer = reader->buffer;
15498 struct attribute attr;
15499 int has_low_pc_attr = 0;
15500 int has_high_pc_attr = 0;
15501 int high_pc_relative = 0;
15503 memset (part_die, 0, sizeof (struct partial_die_info));
15505 part_die->offset.sect_off = info_ptr - buffer;
15507 info_ptr += abbrev_len;
15509 if (abbrev == NULL)
15512 part_die->tag = abbrev->tag;
15513 part_die->has_children = abbrev->has_children;
15515 for (i = 0; i < abbrev->num_attrs; ++i)
15517 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15519 /* Store the data if it is of an attribute we want to keep in a
15520 partial symbol table. */
15524 switch (part_die->tag)
15526 case DW_TAG_compile_unit:
15527 case DW_TAG_partial_unit:
15528 case DW_TAG_type_unit:
15529 /* Compilation units have a DW_AT_name that is a filename, not
15530 a source language identifier. */
15531 case DW_TAG_enumeration_type:
15532 case DW_TAG_enumerator:
15533 /* These tags always have simple identifiers already; no need
15534 to canonicalize them. */
15535 part_die->name = DW_STRING (&attr);
15539 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15540 &objfile->per_bfd->storage_obstack);
15544 case DW_AT_linkage_name:
15545 case DW_AT_MIPS_linkage_name:
15546 /* Note that both forms of linkage name might appear. We
15547 assume they will be the same, and we only store the last
15549 if (cu->language == language_ada)
15550 part_die->name = DW_STRING (&attr);
15551 part_die->linkage_name = DW_STRING (&attr);
15554 has_low_pc_attr = 1;
15555 part_die->lowpc = attr_value_as_address (&attr);
15557 case DW_AT_high_pc:
15558 has_high_pc_attr = 1;
15559 part_die->highpc = attr_value_as_address (&attr);
15560 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15561 high_pc_relative = 1;
15563 case DW_AT_location:
15564 /* Support the .debug_loc offsets. */
15565 if (attr_form_is_block (&attr))
15567 part_die->d.locdesc = DW_BLOCK (&attr);
15569 else if (attr_form_is_section_offset (&attr))
15571 dwarf2_complex_location_expr_complaint ();
15575 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15576 "partial symbol information");
15579 case DW_AT_external:
15580 part_die->is_external = DW_UNSND (&attr);
15582 case DW_AT_declaration:
15583 part_die->is_declaration = DW_UNSND (&attr);
15586 part_die->has_type = 1;
15588 case DW_AT_abstract_origin:
15589 case DW_AT_specification:
15590 case DW_AT_extension:
15591 part_die->has_specification = 1;
15592 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15593 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15594 || cu->per_cu->is_dwz);
15596 case DW_AT_sibling:
15597 /* Ignore absolute siblings, they might point outside of
15598 the current compile unit. */
15599 if (attr.form == DW_FORM_ref_addr)
15600 complaint (&symfile_complaints,
15601 _("ignoring absolute DW_AT_sibling"));
15604 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15605 const gdb_byte *sibling_ptr = buffer + off;
15607 if (sibling_ptr < info_ptr)
15608 complaint (&symfile_complaints,
15609 _("DW_AT_sibling points backwards"));
15610 else if (sibling_ptr > reader->buffer_end)
15611 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15613 part_die->sibling = sibling_ptr;
15616 case DW_AT_byte_size:
15617 part_die->has_byte_size = 1;
15619 case DW_AT_calling_convention:
15620 /* DWARF doesn't provide a way to identify a program's source-level
15621 entry point. DW_AT_calling_convention attributes are only meant
15622 to describe functions' calling conventions.
15624 However, because it's a necessary piece of information in
15625 Fortran, and because DW_CC_program is the only piece of debugging
15626 information whose definition refers to a 'main program' at all,
15627 several compilers have begun marking Fortran main programs with
15628 DW_CC_program --- even when those functions use the standard
15629 calling conventions.
15631 So until DWARF specifies a way to provide this information and
15632 compilers pick up the new representation, we'll support this
15634 if (DW_UNSND (&attr) == DW_CC_program
15635 && cu->language == language_fortran)
15636 set_objfile_main_name (objfile, part_die->name, language_fortran);
15639 if (DW_UNSND (&attr) == DW_INL_inlined
15640 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15641 part_die->may_be_inlined = 1;
15645 if (part_die->tag == DW_TAG_imported_unit)
15647 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15648 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15649 || cu->per_cu->is_dwz);
15658 if (high_pc_relative)
15659 part_die->highpc += part_die->lowpc;
15661 if (has_low_pc_attr && has_high_pc_attr)
15663 /* When using the GNU linker, .gnu.linkonce. sections are used to
15664 eliminate duplicate copies of functions and vtables and such.
15665 The linker will arbitrarily choose one and discard the others.
15666 The AT_*_pc values for such functions refer to local labels in
15667 these sections. If the section from that file was discarded, the
15668 labels are not in the output, so the relocs get a value of 0.
15669 If this is a discarded function, mark the pc bounds as invalid,
15670 so that GDB will ignore it. */
15671 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15673 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15675 complaint (&symfile_complaints,
15676 _("DW_AT_low_pc %s is zero "
15677 "for DIE at 0x%x [in module %s]"),
15678 paddress (gdbarch, part_die->lowpc),
15679 part_die->offset.sect_off, objfile_name (objfile));
15681 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15682 else if (part_die->lowpc >= part_die->highpc)
15684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15686 complaint (&symfile_complaints,
15687 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15688 "for DIE at 0x%x [in module %s]"),
15689 paddress (gdbarch, part_die->lowpc),
15690 paddress (gdbarch, part_die->highpc),
15691 part_die->offset.sect_off, objfile_name (objfile));
15694 part_die->has_pc_info = 1;
15700 /* Find a cached partial DIE at OFFSET in CU. */
15702 static struct partial_die_info *
15703 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15705 struct partial_die_info *lookup_die = NULL;
15706 struct partial_die_info part_die;
15708 part_die.offset = offset;
15709 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15715 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15716 except in the case of .debug_types DIEs which do not reference
15717 outside their CU (they do however referencing other types via
15718 DW_FORM_ref_sig8). */
15720 static struct partial_die_info *
15721 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15723 struct objfile *objfile = cu->objfile;
15724 struct dwarf2_per_cu_data *per_cu = NULL;
15725 struct partial_die_info *pd = NULL;
15727 if (offset_in_dwz == cu->per_cu->is_dwz
15728 && offset_in_cu_p (&cu->header, offset))
15730 pd = find_partial_die_in_comp_unit (offset, cu);
15733 /* We missed recording what we needed.
15734 Load all dies and try again. */
15735 per_cu = cu->per_cu;
15739 /* TUs don't reference other CUs/TUs (except via type signatures). */
15740 if (cu->per_cu->is_debug_types)
15742 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15743 " external reference to offset 0x%lx [in module %s].\n"),
15744 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15745 bfd_get_filename (objfile->obfd));
15747 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15750 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15751 load_partial_comp_unit (per_cu);
15753 per_cu->cu->last_used = 0;
15754 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15757 /* If we didn't find it, and not all dies have been loaded,
15758 load them all and try again. */
15760 if (pd == NULL && per_cu->load_all_dies == 0)
15762 per_cu->load_all_dies = 1;
15764 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15765 THIS_CU->cu may already be in use. So we can't just free it and
15766 replace its DIEs with the ones we read in. Instead, we leave those
15767 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15768 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15770 load_partial_comp_unit (per_cu);
15772 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15776 internal_error (__FILE__, __LINE__,
15777 _("could not find partial DIE 0x%x "
15778 "in cache [from module %s]\n"),
15779 offset.sect_off, bfd_get_filename (objfile->obfd));
15783 /* See if we can figure out if the class lives in a namespace. We do
15784 this by looking for a member function; its demangled name will
15785 contain namespace info, if there is any. */
15788 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15789 struct dwarf2_cu *cu)
15791 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15792 what template types look like, because the demangler
15793 frequently doesn't give the same name as the debug info. We
15794 could fix this by only using the demangled name to get the
15795 prefix (but see comment in read_structure_type). */
15797 struct partial_die_info *real_pdi;
15798 struct partial_die_info *child_pdi;
15800 /* If this DIE (this DIE's specification, if any) has a parent, then
15801 we should not do this. We'll prepend the parent's fully qualified
15802 name when we create the partial symbol. */
15804 real_pdi = struct_pdi;
15805 while (real_pdi->has_specification)
15806 real_pdi = find_partial_die (real_pdi->spec_offset,
15807 real_pdi->spec_is_dwz, cu);
15809 if (real_pdi->die_parent != NULL)
15812 for (child_pdi = struct_pdi->die_child;
15814 child_pdi = child_pdi->die_sibling)
15816 if (child_pdi->tag == DW_TAG_subprogram
15817 && child_pdi->linkage_name != NULL)
15819 char *actual_class_name
15820 = language_class_name_from_physname (cu->language_defn,
15821 child_pdi->linkage_name);
15822 if (actual_class_name != NULL)
15825 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15827 strlen (actual_class_name));
15828 xfree (actual_class_name);
15835 /* Adjust PART_DIE before generating a symbol for it. This function
15836 may set the is_external flag or change the DIE's name. */
15839 fixup_partial_die (struct partial_die_info *part_die,
15840 struct dwarf2_cu *cu)
15842 /* Once we've fixed up a die, there's no point in doing so again.
15843 This also avoids a memory leak if we were to call
15844 guess_partial_die_structure_name multiple times. */
15845 if (part_die->fixup_called)
15848 /* If we found a reference attribute and the DIE has no name, try
15849 to find a name in the referred to DIE. */
15851 if (part_die->name == NULL && part_die->has_specification)
15853 struct partial_die_info *spec_die;
15855 spec_die = find_partial_die (part_die->spec_offset,
15856 part_die->spec_is_dwz, cu);
15858 fixup_partial_die (spec_die, cu);
15860 if (spec_die->name)
15862 part_die->name = spec_die->name;
15864 /* Copy DW_AT_external attribute if it is set. */
15865 if (spec_die->is_external)
15866 part_die->is_external = spec_die->is_external;
15870 /* Set default names for some unnamed DIEs. */
15872 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15873 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15875 /* If there is no parent die to provide a namespace, and there are
15876 children, see if we can determine the namespace from their linkage
15878 if (cu->language == language_cplus
15879 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15880 && part_die->die_parent == NULL
15881 && part_die->has_children
15882 && (part_die->tag == DW_TAG_class_type
15883 || part_die->tag == DW_TAG_structure_type
15884 || part_die->tag == DW_TAG_union_type))
15885 guess_partial_die_structure_name (part_die, cu);
15887 /* GCC might emit a nameless struct or union that has a linkage
15888 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15889 if (part_die->name == NULL
15890 && (part_die->tag == DW_TAG_class_type
15891 || part_die->tag == DW_TAG_interface_type
15892 || part_die->tag == DW_TAG_structure_type
15893 || part_die->tag == DW_TAG_union_type)
15894 && part_die->linkage_name != NULL)
15898 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15903 /* Strip any leading namespaces/classes, keep only the base name.
15904 DW_AT_name for named DIEs does not contain the prefixes. */
15905 base = strrchr (demangled, ':');
15906 if (base && base > demangled && base[-1] == ':')
15912 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15913 base, strlen (base));
15918 part_die->fixup_called = 1;
15921 /* Read an attribute value described by an attribute form. */
15923 static const gdb_byte *
15924 read_attribute_value (const struct die_reader_specs *reader,
15925 struct attribute *attr, unsigned form,
15926 const gdb_byte *info_ptr)
15928 struct dwarf2_cu *cu = reader->cu;
15929 bfd *abfd = reader->abfd;
15930 struct comp_unit_head *cu_header = &cu->header;
15931 unsigned int bytes_read;
15932 struct dwarf_block *blk;
15937 case DW_FORM_ref_addr:
15938 if (cu->header.version == 2)
15939 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15941 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15942 &cu->header, &bytes_read);
15943 info_ptr += bytes_read;
15945 case DW_FORM_GNU_ref_alt:
15946 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15947 info_ptr += bytes_read;
15950 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15951 info_ptr += bytes_read;
15953 case DW_FORM_block2:
15954 blk = dwarf_alloc_block (cu);
15955 blk->size = read_2_bytes (abfd, info_ptr);
15957 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15958 info_ptr += blk->size;
15959 DW_BLOCK (attr) = blk;
15961 case DW_FORM_block4:
15962 blk = dwarf_alloc_block (cu);
15963 blk->size = read_4_bytes (abfd, info_ptr);
15965 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15966 info_ptr += blk->size;
15967 DW_BLOCK (attr) = blk;
15969 case DW_FORM_data2:
15970 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15973 case DW_FORM_data4:
15974 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15977 case DW_FORM_data8:
15978 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15981 case DW_FORM_sec_offset:
15982 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15983 info_ptr += bytes_read;
15985 case DW_FORM_string:
15986 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15987 DW_STRING_IS_CANONICAL (attr) = 0;
15988 info_ptr += bytes_read;
15991 if (!cu->per_cu->is_dwz)
15993 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15995 DW_STRING_IS_CANONICAL (attr) = 0;
15996 info_ptr += bytes_read;
16000 case DW_FORM_GNU_strp_alt:
16002 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16003 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16006 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16007 DW_STRING_IS_CANONICAL (attr) = 0;
16008 info_ptr += bytes_read;
16011 case DW_FORM_exprloc:
16012 case DW_FORM_block:
16013 blk = dwarf_alloc_block (cu);
16014 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16015 info_ptr += bytes_read;
16016 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16017 info_ptr += blk->size;
16018 DW_BLOCK (attr) = blk;
16020 case DW_FORM_block1:
16021 blk = dwarf_alloc_block (cu);
16022 blk->size = read_1_byte (abfd, info_ptr);
16024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16025 info_ptr += blk->size;
16026 DW_BLOCK (attr) = blk;
16028 case DW_FORM_data1:
16029 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16033 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16036 case DW_FORM_flag_present:
16037 DW_UNSND (attr) = 1;
16039 case DW_FORM_sdata:
16040 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16041 info_ptr += bytes_read;
16043 case DW_FORM_udata:
16044 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16045 info_ptr += bytes_read;
16048 DW_UNSND (attr) = (cu->header.offset.sect_off
16049 + read_1_byte (abfd, info_ptr));
16053 DW_UNSND (attr) = (cu->header.offset.sect_off
16054 + read_2_bytes (abfd, info_ptr));
16058 DW_UNSND (attr) = (cu->header.offset.sect_off
16059 + read_4_bytes (abfd, info_ptr));
16063 DW_UNSND (attr) = (cu->header.offset.sect_off
16064 + read_8_bytes (abfd, info_ptr));
16067 case DW_FORM_ref_sig8:
16068 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16071 case DW_FORM_ref_udata:
16072 DW_UNSND (attr) = (cu->header.offset.sect_off
16073 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16074 info_ptr += bytes_read;
16076 case DW_FORM_indirect:
16077 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16078 info_ptr += bytes_read;
16079 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16081 case DW_FORM_GNU_addr_index:
16082 if (reader->dwo_file == NULL)
16084 /* For now flag a hard error.
16085 Later we can turn this into a complaint. */
16086 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16087 dwarf_form_name (form),
16088 bfd_get_filename (abfd));
16090 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16091 info_ptr += bytes_read;
16093 case DW_FORM_GNU_str_index:
16094 if (reader->dwo_file == NULL)
16096 /* For now flag a hard error.
16097 Later we can turn this into a complaint if warranted. */
16098 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16099 dwarf_form_name (form),
16100 bfd_get_filename (abfd));
16103 ULONGEST str_index =
16104 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16106 DW_STRING (attr) = read_str_index (reader, str_index);
16107 DW_STRING_IS_CANONICAL (attr) = 0;
16108 info_ptr += bytes_read;
16112 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16113 dwarf_form_name (form),
16114 bfd_get_filename (abfd));
16118 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16119 attr->form = DW_FORM_GNU_ref_alt;
16121 /* We have seen instances where the compiler tried to emit a byte
16122 size attribute of -1 which ended up being encoded as an unsigned
16123 0xffffffff. Although 0xffffffff is technically a valid size value,
16124 an object of this size seems pretty unlikely so we can relatively
16125 safely treat these cases as if the size attribute was invalid and
16126 treat them as zero by default. */
16127 if (attr->name == DW_AT_byte_size
16128 && form == DW_FORM_data4
16129 && DW_UNSND (attr) >= 0xffffffff)
16132 (&symfile_complaints,
16133 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16134 hex_string (DW_UNSND (attr)));
16135 DW_UNSND (attr) = 0;
16141 /* Read an attribute described by an abbreviated attribute. */
16143 static const gdb_byte *
16144 read_attribute (const struct die_reader_specs *reader,
16145 struct attribute *attr, struct attr_abbrev *abbrev,
16146 const gdb_byte *info_ptr)
16148 attr->name = abbrev->name;
16149 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16152 /* Read dwarf information from a buffer. */
16154 static unsigned int
16155 read_1_byte (bfd *abfd, const gdb_byte *buf)
16157 return bfd_get_8 (abfd, buf);
16161 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16163 return bfd_get_signed_8 (abfd, buf);
16166 static unsigned int
16167 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16169 return bfd_get_16 (abfd, buf);
16173 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16175 return bfd_get_signed_16 (abfd, buf);
16178 static unsigned int
16179 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16181 return bfd_get_32 (abfd, buf);
16185 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16187 return bfd_get_signed_32 (abfd, buf);
16191 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16193 return bfd_get_64 (abfd, buf);
16197 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16198 unsigned int *bytes_read)
16200 struct comp_unit_head *cu_header = &cu->header;
16201 CORE_ADDR retval = 0;
16203 if (cu_header->signed_addr_p)
16205 switch (cu_header->addr_size)
16208 retval = bfd_get_signed_16 (abfd, buf);
16211 retval = bfd_get_signed_32 (abfd, buf);
16214 retval = bfd_get_signed_64 (abfd, buf);
16217 internal_error (__FILE__, __LINE__,
16218 _("read_address: bad switch, signed [in module %s]"),
16219 bfd_get_filename (abfd));
16224 switch (cu_header->addr_size)
16227 retval = bfd_get_16 (abfd, buf);
16230 retval = bfd_get_32 (abfd, buf);
16233 retval = bfd_get_64 (abfd, buf);
16236 internal_error (__FILE__, __LINE__,
16237 _("read_address: bad switch, "
16238 "unsigned [in module %s]"),
16239 bfd_get_filename (abfd));
16243 *bytes_read = cu_header->addr_size;
16247 /* Read the initial length from a section. The (draft) DWARF 3
16248 specification allows the initial length to take up either 4 bytes
16249 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16250 bytes describe the length and all offsets will be 8 bytes in length
16253 An older, non-standard 64-bit format is also handled by this
16254 function. The older format in question stores the initial length
16255 as an 8-byte quantity without an escape value. Lengths greater
16256 than 2^32 aren't very common which means that the initial 4 bytes
16257 is almost always zero. Since a length value of zero doesn't make
16258 sense for the 32-bit format, this initial zero can be considered to
16259 be an escape value which indicates the presence of the older 64-bit
16260 format. As written, the code can't detect (old format) lengths
16261 greater than 4GB. If it becomes necessary to handle lengths
16262 somewhat larger than 4GB, we could allow other small values (such
16263 as the non-sensical values of 1, 2, and 3) to also be used as
16264 escape values indicating the presence of the old format.
16266 The value returned via bytes_read should be used to increment the
16267 relevant pointer after calling read_initial_length().
16269 [ Note: read_initial_length() and read_offset() are based on the
16270 document entitled "DWARF Debugging Information Format", revision
16271 3, draft 8, dated November 19, 2001. This document was obtained
16274 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16276 This document is only a draft and is subject to change. (So beware.)
16278 Details regarding the older, non-standard 64-bit format were
16279 determined empirically by examining 64-bit ELF files produced by
16280 the SGI toolchain on an IRIX 6.5 machine.
16282 - Kevin, July 16, 2002
16286 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16288 LONGEST length = bfd_get_32 (abfd, buf);
16290 if (length == 0xffffffff)
16292 length = bfd_get_64 (abfd, buf + 4);
16295 else if (length == 0)
16297 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16298 length = bfd_get_64 (abfd, buf);
16309 /* Cover function for read_initial_length.
16310 Returns the length of the object at BUF, and stores the size of the
16311 initial length in *BYTES_READ and stores the size that offsets will be in
16313 If the initial length size is not equivalent to that specified in
16314 CU_HEADER then issue a complaint.
16315 This is useful when reading non-comp-unit headers. */
16318 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16319 const struct comp_unit_head *cu_header,
16320 unsigned int *bytes_read,
16321 unsigned int *offset_size)
16323 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16325 gdb_assert (cu_header->initial_length_size == 4
16326 || cu_header->initial_length_size == 8
16327 || cu_header->initial_length_size == 12);
16329 if (cu_header->initial_length_size != *bytes_read)
16330 complaint (&symfile_complaints,
16331 _("intermixed 32-bit and 64-bit DWARF sections"));
16333 *offset_size = (*bytes_read == 4) ? 4 : 8;
16337 /* Read an offset from the data stream. The size of the offset is
16338 given by cu_header->offset_size. */
16341 read_offset (bfd *abfd, const gdb_byte *buf,
16342 const struct comp_unit_head *cu_header,
16343 unsigned int *bytes_read)
16345 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16347 *bytes_read = cu_header->offset_size;
16351 /* Read an offset from the data stream. */
16354 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16356 LONGEST retval = 0;
16358 switch (offset_size)
16361 retval = bfd_get_32 (abfd, buf);
16364 retval = bfd_get_64 (abfd, buf);
16367 internal_error (__FILE__, __LINE__,
16368 _("read_offset_1: bad switch [in module %s]"),
16369 bfd_get_filename (abfd));
16375 static const gdb_byte *
16376 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16378 /* If the size of a host char is 8 bits, we can return a pointer
16379 to the buffer, otherwise we have to copy the data to a buffer
16380 allocated on the temporary obstack. */
16381 gdb_assert (HOST_CHAR_BIT == 8);
16385 static const char *
16386 read_direct_string (bfd *abfd, const gdb_byte *buf,
16387 unsigned int *bytes_read_ptr)
16389 /* If the size of a host char is 8 bits, we can return a pointer
16390 to the string, otherwise we have to copy the string to a buffer
16391 allocated on the temporary obstack. */
16392 gdb_assert (HOST_CHAR_BIT == 8);
16395 *bytes_read_ptr = 1;
16398 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16399 return (const char *) buf;
16402 static const char *
16403 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16405 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16406 if (dwarf2_per_objfile->str.buffer == NULL)
16407 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16408 bfd_get_filename (abfd));
16409 if (str_offset >= dwarf2_per_objfile->str.size)
16410 error (_("DW_FORM_strp pointing outside of "
16411 ".debug_str section [in module %s]"),
16412 bfd_get_filename (abfd));
16413 gdb_assert (HOST_CHAR_BIT == 8);
16414 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16416 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16419 /* Read a string at offset STR_OFFSET in the .debug_str section from
16420 the .dwz file DWZ. Throw an error if the offset is too large. If
16421 the string consists of a single NUL byte, return NULL; otherwise
16422 return a pointer to the string. */
16424 static const char *
16425 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16427 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16429 if (dwz->str.buffer == NULL)
16430 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16431 "section [in module %s]"),
16432 bfd_get_filename (dwz->dwz_bfd));
16433 if (str_offset >= dwz->str.size)
16434 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16435 ".debug_str section [in module %s]"),
16436 bfd_get_filename (dwz->dwz_bfd));
16437 gdb_assert (HOST_CHAR_BIT == 8);
16438 if (dwz->str.buffer[str_offset] == '\0')
16440 return (const char *) (dwz->str.buffer + str_offset);
16443 static const char *
16444 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16445 const struct comp_unit_head *cu_header,
16446 unsigned int *bytes_read_ptr)
16448 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16450 return read_indirect_string_at_offset (abfd, str_offset);
16454 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16455 unsigned int *bytes_read_ptr)
16458 unsigned int num_read;
16460 unsigned char byte;
16468 byte = bfd_get_8 (abfd, buf);
16471 result |= ((ULONGEST) (byte & 127) << shift);
16472 if ((byte & 128) == 0)
16478 *bytes_read_ptr = num_read;
16483 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16484 unsigned int *bytes_read_ptr)
16487 int i, shift, num_read;
16488 unsigned char byte;
16496 byte = bfd_get_8 (abfd, buf);
16499 result |= ((LONGEST) (byte & 127) << shift);
16501 if ((byte & 128) == 0)
16506 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16507 result |= -(((LONGEST) 1) << shift);
16508 *bytes_read_ptr = num_read;
16512 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16513 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16514 ADDR_SIZE is the size of addresses from the CU header. */
16517 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16519 struct objfile *objfile = dwarf2_per_objfile->objfile;
16520 bfd *abfd = objfile->obfd;
16521 const gdb_byte *info_ptr;
16523 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16524 if (dwarf2_per_objfile->addr.buffer == NULL)
16525 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16526 objfile_name (objfile));
16527 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16528 error (_("DW_FORM_addr_index pointing outside of "
16529 ".debug_addr section [in module %s]"),
16530 objfile_name (objfile));
16531 info_ptr = (dwarf2_per_objfile->addr.buffer
16532 + addr_base + addr_index * addr_size);
16533 if (addr_size == 4)
16534 return bfd_get_32 (abfd, info_ptr);
16536 return bfd_get_64 (abfd, info_ptr);
16539 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16542 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16544 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16547 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16550 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16551 unsigned int *bytes_read)
16553 bfd *abfd = cu->objfile->obfd;
16554 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16556 return read_addr_index (cu, addr_index);
16559 /* Data structure to pass results from dwarf2_read_addr_index_reader
16560 back to dwarf2_read_addr_index. */
16562 struct dwarf2_read_addr_index_data
16564 ULONGEST addr_base;
16568 /* die_reader_func for dwarf2_read_addr_index. */
16571 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16572 const gdb_byte *info_ptr,
16573 struct die_info *comp_unit_die,
16577 struct dwarf2_cu *cu = reader->cu;
16578 struct dwarf2_read_addr_index_data *aidata =
16579 (struct dwarf2_read_addr_index_data *) data;
16581 aidata->addr_base = cu->addr_base;
16582 aidata->addr_size = cu->header.addr_size;
16585 /* Given an index in .debug_addr, fetch the value.
16586 NOTE: This can be called during dwarf expression evaluation,
16587 long after the debug information has been read, and thus per_cu->cu
16588 may no longer exist. */
16591 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16592 unsigned int addr_index)
16594 struct objfile *objfile = per_cu->objfile;
16595 struct dwarf2_cu *cu = per_cu->cu;
16596 ULONGEST addr_base;
16599 /* This is intended to be called from outside this file. */
16600 dw2_setup (objfile);
16602 /* We need addr_base and addr_size.
16603 If we don't have PER_CU->cu, we have to get it.
16604 Nasty, but the alternative is storing the needed info in PER_CU,
16605 which at this point doesn't seem justified: it's not clear how frequently
16606 it would get used and it would increase the size of every PER_CU.
16607 Entry points like dwarf2_per_cu_addr_size do a similar thing
16608 so we're not in uncharted territory here.
16609 Alas we need to be a bit more complicated as addr_base is contained
16612 We don't need to read the entire CU(/TU).
16613 We just need the header and top level die.
16615 IWBN to use the aging mechanism to let us lazily later discard the CU.
16616 For now we skip this optimization. */
16620 addr_base = cu->addr_base;
16621 addr_size = cu->header.addr_size;
16625 struct dwarf2_read_addr_index_data aidata;
16627 /* Note: We can't use init_cutu_and_read_dies_simple here,
16628 we need addr_base. */
16629 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16630 dwarf2_read_addr_index_reader, &aidata);
16631 addr_base = aidata.addr_base;
16632 addr_size = aidata.addr_size;
16635 return read_addr_index_1 (addr_index, addr_base, addr_size);
16638 /* Given a DW_FORM_GNU_str_index, fetch the string.
16639 This is only used by the Fission support. */
16641 static const char *
16642 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16644 struct objfile *objfile = dwarf2_per_objfile->objfile;
16645 const char *objf_name = objfile_name (objfile);
16646 bfd *abfd = objfile->obfd;
16647 struct dwarf2_cu *cu = reader->cu;
16648 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16649 struct dwarf2_section_info *str_offsets_section =
16650 &reader->dwo_file->sections.str_offsets;
16651 const gdb_byte *info_ptr;
16652 ULONGEST str_offset;
16653 static const char form_name[] = "DW_FORM_GNU_str_index";
16655 dwarf2_read_section (objfile, str_section);
16656 dwarf2_read_section (objfile, str_offsets_section);
16657 if (str_section->buffer == NULL)
16658 error (_("%s used without .debug_str.dwo section"
16659 " in CU at offset 0x%lx [in module %s]"),
16660 form_name, (long) cu->header.offset.sect_off, objf_name);
16661 if (str_offsets_section->buffer == NULL)
16662 error (_("%s used without .debug_str_offsets.dwo section"
16663 " in CU at offset 0x%lx [in module %s]"),
16664 form_name, (long) cu->header.offset.sect_off, objf_name);
16665 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16666 error (_("%s pointing outside of .debug_str_offsets.dwo"
16667 " section in CU at offset 0x%lx [in module %s]"),
16668 form_name, (long) cu->header.offset.sect_off, objf_name);
16669 info_ptr = (str_offsets_section->buffer
16670 + str_index * cu->header.offset_size);
16671 if (cu->header.offset_size == 4)
16672 str_offset = bfd_get_32 (abfd, info_ptr);
16674 str_offset = bfd_get_64 (abfd, info_ptr);
16675 if (str_offset >= str_section->size)
16676 error (_("Offset from %s pointing outside of"
16677 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16678 form_name, (long) cu->header.offset.sect_off, objf_name);
16679 return (const char *) (str_section->buffer + str_offset);
16682 /* Return the length of an LEB128 number in BUF. */
16685 leb128_size (const gdb_byte *buf)
16687 const gdb_byte *begin = buf;
16693 if ((byte & 128) == 0)
16694 return buf - begin;
16699 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16707 cu->language = language_c;
16709 case DW_LANG_C_plus_plus:
16710 cu->language = language_cplus;
16713 cu->language = language_d;
16715 case DW_LANG_Fortran77:
16716 case DW_LANG_Fortran90:
16717 case DW_LANG_Fortran95:
16718 cu->language = language_fortran;
16721 cu->language = language_go;
16723 case DW_LANG_Mips_Assembler:
16724 cu->language = language_asm;
16727 cu->language = language_java;
16729 case DW_LANG_Ada83:
16730 case DW_LANG_Ada95:
16731 cu->language = language_ada;
16733 case DW_LANG_Modula2:
16734 cu->language = language_m2;
16736 case DW_LANG_Pascal83:
16737 cu->language = language_pascal;
16740 cu->language = language_objc;
16742 case DW_LANG_Cobol74:
16743 case DW_LANG_Cobol85:
16745 cu->language = language_minimal;
16748 cu->language_defn = language_def (cu->language);
16751 /* Return the named attribute or NULL if not there. */
16753 static struct attribute *
16754 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16759 struct attribute *spec = NULL;
16761 for (i = 0; i < die->num_attrs; ++i)
16763 if (die->attrs[i].name == name)
16764 return &die->attrs[i];
16765 if (die->attrs[i].name == DW_AT_specification
16766 || die->attrs[i].name == DW_AT_abstract_origin)
16767 spec = &die->attrs[i];
16773 die = follow_die_ref (die, spec, &cu);
16779 /* Return the named attribute or NULL if not there,
16780 but do not follow DW_AT_specification, etc.
16781 This is for use in contexts where we're reading .debug_types dies.
16782 Following DW_AT_specification, DW_AT_abstract_origin will take us
16783 back up the chain, and we want to go down. */
16785 static struct attribute *
16786 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16790 for (i = 0; i < die->num_attrs; ++i)
16791 if (die->attrs[i].name == name)
16792 return &die->attrs[i];
16797 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16798 and holds a non-zero value. This function should only be used for
16799 DW_FORM_flag or DW_FORM_flag_present attributes. */
16802 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16804 struct attribute *attr = dwarf2_attr (die, name, cu);
16806 return (attr && DW_UNSND (attr));
16810 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16812 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16813 which value is non-zero. However, we have to be careful with
16814 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16815 (via dwarf2_flag_true_p) follows this attribute. So we may
16816 end up accidently finding a declaration attribute that belongs
16817 to a different DIE referenced by the specification attribute,
16818 even though the given DIE does not have a declaration attribute. */
16819 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16820 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16823 /* Return the die giving the specification for DIE, if there is
16824 one. *SPEC_CU is the CU containing DIE on input, and the CU
16825 containing the return value on output. If there is no
16826 specification, but there is an abstract origin, that is
16829 static struct die_info *
16830 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16832 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16835 if (spec_attr == NULL)
16836 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16838 if (spec_attr == NULL)
16841 return follow_die_ref (die, spec_attr, spec_cu);
16844 /* Free the line_header structure *LH, and any arrays and strings it
16846 NOTE: This is also used as a "cleanup" function. */
16849 free_line_header (struct line_header *lh)
16851 if (lh->standard_opcode_lengths)
16852 xfree (lh->standard_opcode_lengths);
16854 /* Remember that all the lh->file_names[i].name pointers are
16855 pointers into debug_line_buffer, and don't need to be freed. */
16856 if (lh->file_names)
16857 xfree (lh->file_names);
16859 /* Similarly for the include directory names. */
16860 if (lh->include_dirs)
16861 xfree (lh->include_dirs);
16866 /* Add an entry to LH's include directory table. */
16869 add_include_dir (struct line_header *lh, const char *include_dir)
16871 /* Grow the array if necessary. */
16872 if (lh->include_dirs_size == 0)
16874 lh->include_dirs_size = 1; /* for testing */
16875 lh->include_dirs = xmalloc (lh->include_dirs_size
16876 * sizeof (*lh->include_dirs));
16878 else if (lh->num_include_dirs >= lh->include_dirs_size)
16880 lh->include_dirs_size *= 2;
16881 lh->include_dirs = xrealloc (lh->include_dirs,
16882 (lh->include_dirs_size
16883 * sizeof (*lh->include_dirs)));
16886 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16889 /* Add an entry to LH's file name table. */
16892 add_file_name (struct line_header *lh,
16894 unsigned int dir_index,
16895 unsigned int mod_time,
16896 unsigned int length)
16898 struct file_entry *fe;
16900 /* Grow the array if necessary. */
16901 if (lh->file_names_size == 0)
16903 lh->file_names_size = 1; /* for testing */
16904 lh->file_names = xmalloc (lh->file_names_size
16905 * sizeof (*lh->file_names));
16907 else if (lh->num_file_names >= lh->file_names_size)
16909 lh->file_names_size *= 2;
16910 lh->file_names = xrealloc (lh->file_names,
16911 (lh->file_names_size
16912 * sizeof (*lh->file_names)));
16915 fe = &lh->file_names[lh->num_file_names++];
16917 fe->dir_index = dir_index;
16918 fe->mod_time = mod_time;
16919 fe->length = length;
16920 fe->included_p = 0;
16924 /* A convenience function to find the proper .debug_line section for a
16927 static struct dwarf2_section_info *
16928 get_debug_line_section (struct dwarf2_cu *cu)
16930 struct dwarf2_section_info *section;
16932 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16934 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16935 section = &cu->dwo_unit->dwo_file->sections.line;
16936 else if (cu->per_cu->is_dwz)
16938 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16940 section = &dwz->line;
16943 section = &dwarf2_per_objfile->line;
16948 /* Read the statement program header starting at OFFSET in
16949 .debug_line, or .debug_line.dwo. Return a pointer
16950 to a struct line_header, allocated using xmalloc.
16952 NOTE: the strings in the include directory and file name tables of
16953 the returned object point into the dwarf line section buffer,
16954 and must not be freed. */
16956 static struct line_header *
16957 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16959 struct cleanup *back_to;
16960 struct line_header *lh;
16961 const gdb_byte *line_ptr;
16962 unsigned int bytes_read, offset_size;
16964 const char *cur_dir, *cur_file;
16965 struct dwarf2_section_info *section;
16968 section = get_debug_line_section (cu);
16969 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16970 if (section->buffer == NULL)
16972 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16973 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16975 complaint (&symfile_complaints, _("missing .debug_line section"));
16979 /* We can't do this until we know the section is non-empty.
16980 Only then do we know we have such a section. */
16981 abfd = get_section_bfd_owner (section);
16983 /* Make sure that at least there's room for the total_length field.
16984 That could be 12 bytes long, but we're just going to fudge that. */
16985 if (offset + 4 >= section->size)
16987 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16991 lh = xmalloc (sizeof (*lh));
16992 memset (lh, 0, sizeof (*lh));
16993 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16996 line_ptr = section->buffer + offset;
16998 /* Read in the header. */
17000 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17001 &bytes_read, &offset_size);
17002 line_ptr += bytes_read;
17003 if (line_ptr + lh->total_length > (section->buffer + section->size))
17005 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17006 do_cleanups (back_to);
17009 lh->statement_program_end = line_ptr + lh->total_length;
17010 lh->version = read_2_bytes (abfd, line_ptr);
17012 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17013 line_ptr += offset_size;
17014 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17016 if (lh->version >= 4)
17018 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17022 lh->maximum_ops_per_instruction = 1;
17024 if (lh->maximum_ops_per_instruction == 0)
17026 lh->maximum_ops_per_instruction = 1;
17027 complaint (&symfile_complaints,
17028 _("invalid maximum_ops_per_instruction "
17029 "in `.debug_line' section"));
17032 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17034 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17036 lh->line_range = read_1_byte (abfd, line_ptr);
17038 lh->opcode_base = read_1_byte (abfd, line_ptr);
17040 lh->standard_opcode_lengths
17041 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17043 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17044 for (i = 1; i < lh->opcode_base; ++i)
17046 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17050 /* Read directory table. */
17051 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17053 line_ptr += bytes_read;
17054 add_include_dir (lh, cur_dir);
17056 line_ptr += bytes_read;
17058 /* Read file name table. */
17059 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17061 unsigned int dir_index, mod_time, length;
17063 line_ptr += bytes_read;
17064 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17068 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17069 line_ptr += bytes_read;
17071 add_file_name (lh, cur_file, dir_index, mod_time, length);
17073 line_ptr += bytes_read;
17074 lh->statement_program_start = line_ptr;
17076 if (line_ptr > (section->buffer + section->size))
17077 complaint (&symfile_complaints,
17078 _("line number info header doesn't "
17079 "fit in `.debug_line' section"));
17081 discard_cleanups (back_to);
17085 /* Subroutine of dwarf_decode_lines to simplify it.
17086 Return the file name of the psymtab for included file FILE_INDEX
17087 in line header LH of PST.
17088 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17089 If space for the result is malloc'd, it will be freed by a cleanup.
17090 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17092 The function creates dangling cleanup registration. */
17094 static const char *
17095 psymtab_include_file_name (const struct line_header *lh, int file_index,
17096 const struct partial_symtab *pst,
17097 const char *comp_dir)
17099 const struct file_entry fe = lh->file_names [file_index];
17100 const char *include_name = fe.name;
17101 const char *include_name_to_compare = include_name;
17102 const char *dir_name = NULL;
17103 const char *pst_filename;
17104 char *copied_name = NULL;
17108 dir_name = lh->include_dirs[fe.dir_index - 1];
17110 if (!IS_ABSOLUTE_PATH (include_name)
17111 && (dir_name != NULL || comp_dir != NULL))
17113 /* Avoid creating a duplicate psymtab for PST.
17114 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17115 Before we do the comparison, however, we need to account
17116 for DIR_NAME and COMP_DIR.
17117 First prepend dir_name (if non-NULL). If we still don't
17118 have an absolute path prepend comp_dir (if non-NULL).
17119 However, the directory we record in the include-file's
17120 psymtab does not contain COMP_DIR (to match the
17121 corresponding symtab(s)).
17126 bash$ gcc -g ./hello.c
17127 include_name = "hello.c"
17129 DW_AT_comp_dir = comp_dir = "/tmp"
17130 DW_AT_name = "./hello.c" */
17132 if (dir_name != NULL)
17134 char *tem = concat (dir_name, SLASH_STRING,
17135 include_name, (char *)NULL);
17137 make_cleanup (xfree, tem);
17138 include_name = tem;
17139 include_name_to_compare = include_name;
17141 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17143 char *tem = concat (comp_dir, SLASH_STRING,
17144 include_name, (char *)NULL);
17146 make_cleanup (xfree, tem);
17147 include_name_to_compare = tem;
17151 pst_filename = pst->filename;
17152 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17154 copied_name = concat (pst->dirname, SLASH_STRING,
17155 pst_filename, (char *)NULL);
17156 pst_filename = copied_name;
17159 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17161 if (copied_name != NULL)
17162 xfree (copied_name);
17166 return include_name;
17169 /* Ignore this record_line request. */
17172 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17177 /* Subroutine of dwarf_decode_lines to simplify it.
17178 Process the line number information in LH. */
17181 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17182 struct dwarf2_cu *cu, struct partial_symtab *pst)
17184 const gdb_byte *line_ptr, *extended_end;
17185 const gdb_byte *line_end;
17186 unsigned int bytes_read, extended_len;
17187 unsigned char op_code, extended_op, adj_opcode;
17188 CORE_ADDR baseaddr;
17189 struct objfile *objfile = cu->objfile;
17190 bfd *abfd = objfile->obfd;
17191 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17192 const int decode_for_pst_p = (pst != NULL);
17193 struct subfile *last_subfile = NULL;
17194 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17197 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17199 line_ptr = lh->statement_program_start;
17200 line_end = lh->statement_program_end;
17202 /* Read the statement sequences until there's nothing left. */
17203 while (line_ptr < line_end)
17205 /* state machine registers */
17206 CORE_ADDR address = 0;
17207 unsigned int file = 1;
17208 unsigned int line = 1;
17209 unsigned int column = 0;
17210 int is_stmt = lh->default_is_stmt;
17211 int basic_block = 0;
17212 int end_sequence = 0;
17214 unsigned char op_index = 0;
17216 if (!decode_for_pst_p && lh->num_file_names >= file)
17218 /* Start a subfile for the current file of the state machine. */
17219 /* lh->include_dirs and lh->file_names are 0-based, but the
17220 directory and file name numbers in the statement program
17222 struct file_entry *fe = &lh->file_names[file - 1];
17223 const char *dir = NULL;
17226 dir = lh->include_dirs[fe->dir_index - 1];
17228 dwarf2_start_subfile (fe->name, dir, comp_dir);
17231 /* Decode the table. */
17232 while (!end_sequence)
17234 op_code = read_1_byte (abfd, line_ptr);
17236 if (line_ptr > line_end)
17238 dwarf2_debug_line_missing_end_sequence_complaint ();
17242 if (op_code >= lh->opcode_base)
17244 /* Special operand. */
17245 adj_opcode = op_code - lh->opcode_base;
17246 address += (((op_index + (adj_opcode / lh->line_range))
17247 / lh->maximum_ops_per_instruction)
17248 * lh->minimum_instruction_length);
17249 op_index = ((op_index + (adj_opcode / lh->line_range))
17250 % lh->maximum_ops_per_instruction);
17251 line += lh->line_base + (adj_opcode % lh->line_range);
17252 if (lh->num_file_names < file || file == 0)
17253 dwarf2_debug_line_missing_file_complaint ();
17254 /* For now we ignore lines not starting on an
17255 instruction boundary. */
17256 else if (op_index == 0)
17258 lh->file_names[file - 1].included_p = 1;
17259 if (!decode_for_pst_p && is_stmt)
17261 if (last_subfile != current_subfile)
17263 addr = gdbarch_addr_bits_remove (gdbarch, address);
17265 (*p_record_line) (last_subfile, 0, addr);
17266 last_subfile = current_subfile;
17268 /* Append row to matrix using current values. */
17269 addr = gdbarch_addr_bits_remove (gdbarch, address);
17270 (*p_record_line) (current_subfile, line, addr);
17275 else switch (op_code)
17277 case DW_LNS_extended_op:
17278 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17280 line_ptr += bytes_read;
17281 extended_end = line_ptr + extended_len;
17282 extended_op = read_1_byte (abfd, line_ptr);
17284 switch (extended_op)
17286 case DW_LNE_end_sequence:
17287 p_record_line = record_line;
17290 case DW_LNE_set_address:
17291 address = read_address (abfd, line_ptr, cu, &bytes_read);
17293 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17295 /* This line table is for a function which has been
17296 GCd by the linker. Ignore it. PR gdb/12528 */
17299 = line_ptr - get_debug_line_section (cu)->buffer;
17301 complaint (&symfile_complaints,
17302 _(".debug_line address at offset 0x%lx is 0 "
17304 line_offset, objfile_name (objfile));
17305 p_record_line = noop_record_line;
17309 line_ptr += bytes_read;
17310 address += baseaddr;
17312 case DW_LNE_define_file:
17314 const char *cur_file;
17315 unsigned int dir_index, mod_time, length;
17317 cur_file = read_direct_string (abfd, line_ptr,
17319 line_ptr += bytes_read;
17321 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17322 line_ptr += bytes_read;
17324 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17325 line_ptr += bytes_read;
17327 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17328 line_ptr += bytes_read;
17329 add_file_name (lh, cur_file, dir_index, mod_time, length);
17332 case DW_LNE_set_discriminator:
17333 /* The discriminator is not interesting to the debugger;
17335 line_ptr = extended_end;
17338 complaint (&symfile_complaints,
17339 _("mangled .debug_line section"));
17342 /* Make sure that we parsed the extended op correctly. If e.g.
17343 we expected a different address size than the producer used,
17344 we may have read the wrong number of bytes. */
17345 if (line_ptr != extended_end)
17347 complaint (&symfile_complaints,
17348 _("mangled .debug_line section"));
17353 if (lh->num_file_names < file || file == 0)
17354 dwarf2_debug_line_missing_file_complaint ();
17357 lh->file_names[file - 1].included_p = 1;
17358 if (!decode_for_pst_p && is_stmt)
17360 if (last_subfile != current_subfile)
17362 addr = gdbarch_addr_bits_remove (gdbarch, address);
17364 (*p_record_line) (last_subfile, 0, addr);
17365 last_subfile = current_subfile;
17367 addr = gdbarch_addr_bits_remove (gdbarch, address);
17368 (*p_record_line) (current_subfile, line, addr);
17373 case DW_LNS_advance_pc:
17376 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17378 address += (((op_index + adjust)
17379 / lh->maximum_ops_per_instruction)
17380 * lh->minimum_instruction_length);
17381 op_index = ((op_index + adjust)
17382 % lh->maximum_ops_per_instruction);
17383 line_ptr += bytes_read;
17386 case DW_LNS_advance_line:
17387 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17388 line_ptr += bytes_read;
17390 case DW_LNS_set_file:
17392 /* The arrays lh->include_dirs and lh->file_names are
17393 0-based, but the directory and file name numbers in
17394 the statement program are 1-based. */
17395 struct file_entry *fe;
17396 const char *dir = NULL;
17398 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17399 line_ptr += bytes_read;
17400 if (lh->num_file_names < file || file == 0)
17401 dwarf2_debug_line_missing_file_complaint ();
17404 fe = &lh->file_names[file - 1];
17406 dir = lh->include_dirs[fe->dir_index - 1];
17407 if (!decode_for_pst_p)
17409 last_subfile = current_subfile;
17410 dwarf2_start_subfile (fe->name, dir, comp_dir);
17415 case DW_LNS_set_column:
17416 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17417 line_ptr += bytes_read;
17419 case DW_LNS_negate_stmt:
17420 is_stmt = (!is_stmt);
17422 case DW_LNS_set_basic_block:
17425 /* Add to the address register of the state machine the
17426 address increment value corresponding to special opcode
17427 255. I.e., this value is scaled by the minimum
17428 instruction length since special opcode 255 would have
17429 scaled the increment. */
17430 case DW_LNS_const_add_pc:
17432 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17434 address += (((op_index + adjust)
17435 / lh->maximum_ops_per_instruction)
17436 * lh->minimum_instruction_length);
17437 op_index = ((op_index + adjust)
17438 % lh->maximum_ops_per_instruction);
17441 case DW_LNS_fixed_advance_pc:
17442 address += read_2_bytes (abfd, line_ptr);
17448 /* Unknown standard opcode, ignore it. */
17451 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17453 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17454 line_ptr += bytes_read;
17459 if (lh->num_file_names < file || file == 0)
17460 dwarf2_debug_line_missing_file_complaint ();
17463 lh->file_names[file - 1].included_p = 1;
17464 if (!decode_for_pst_p)
17466 addr = gdbarch_addr_bits_remove (gdbarch, address);
17467 (*p_record_line) (current_subfile, 0, addr);
17473 /* Decode the Line Number Program (LNP) for the given line_header
17474 structure and CU. The actual information extracted and the type
17475 of structures created from the LNP depends on the value of PST.
17477 1. If PST is NULL, then this procedure uses the data from the program
17478 to create all necessary symbol tables, and their linetables.
17480 2. If PST is not NULL, this procedure reads the program to determine
17481 the list of files included by the unit represented by PST, and
17482 builds all the associated partial symbol tables.
17484 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17485 It is used for relative paths in the line table.
17486 NOTE: When processing partial symtabs (pst != NULL),
17487 comp_dir == pst->dirname.
17489 NOTE: It is important that psymtabs have the same file name (via strcmp)
17490 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17491 symtab we don't use it in the name of the psymtabs we create.
17492 E.g. expand_line_sal requires this when finding psymtabs to expand.
17493 A good testcase for this is mb-inline.exp. */
17496 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17497 struct dwarf2_cu *cu, struct partial_symtab *pst,
17498 int want_line_info)
17500 struct objfile *objfile = cu->objfile;
17501 const int decode_for_pst_p = (pst != NULL);
17502 struct subfile *first_subfile = current_subfile;
17504 if (want_line_info)
17505 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17507 if (decode_for_pst_p)
17511 /* Now that we're done scanning the Line Header Program, we can
17512 create the psymtab of each included file. */
17513 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17514 if (lh->file_names[file_index].included_p == 1)
17516 const char *include_name =
17517 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17518 if (include_name != NULL)
17519 dwarf2_create_include_psymtab (include_name, pst, objfile);
17524 /* Make sure a symtab is created for every file, even files
17525 which contain only variables (i.e. no code with associated
17529 for (i = 0; i < lh->num_file_names; i++)
17531 const char *dir = NULL;
17532 struct file_entry *fe;
17534 fe = &lh->file_names[i];
17536 dir = lh->include_dirs[fe->dir_index - 1];
17537 dwarf2_start_subfile (fe->name, dir, comp_dir);
17539 /* Skip the main file; we don't need it, and it must be
17540 allocated last, so that it will show up before the
17541 non-primary symtabs in the objfile's symtab list. */
17542 if (current_subfile == first_subfile)
17545 if (current_subfile->symtab == NULL)
17546 current_subfile->symtab = allocate_symtab (current_subfile->name,
17548 fe->symtab = current_subfile->symtab;
17553 /* Start a subfile for DWARF. FILENAME is the name of the file and
17554 DIRNAME the name of the source directory which contains FILENAME
17555 or NULL if not known. COMP_DIR is the compilation directory for the
17556 linetable's compilation unit or NULL if not known.
17557 This routine tries to keep line numbers from identical absolute and
17558 relative file names in a common subfile.
17560 Using the `list' example from the GDB testsuite, which resides in
17561 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17562 of /srcdir/list0.c yields the following debugging information for list0.c:
17564 DW_AT_name: /srcdir/list0.c
17565 DW_AT_comp_dir: /compdir
17566 files.files[0].name: list0.h
17567 files.files[0].dir: /srcdir
17568 files.files[1].name: list0.c
17569 files.files[1].dir: /srcdir
17571 The line number information for list0.c has to end up in a single
17572 subfile, so that `break /srcdir/list0.c:1' works as expected.
17573 start_subfile will ensure that this happens provided that we pass the
17574 concatenation of files.files[1].dir and files.files[1].name as the
17578 dwarf2_start_subfile (const char *filename, const char *dirname,
17579 const char *comp_dir)
17583 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17584 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17585 second argument to start_subfile. To be consistent, we do the
17586 same here. In order not to lose the line information directory,
17587 we concatenate it to the filename when it makes sense.
17588 Note that the Dwarf3 standard says (speaking of filenames in line
17589 information): ``The directory index is ignored for file names
17590 that represent full path names''. Thus ignoring dirname in the
17591 `else' branch below isn't an issue. */
17593 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17595 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17599 start_subfile (filename, comp_dir);
17605 /* Start a symtab for DWARF.
17606 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17609 dwarf2_start_symtab (struct dwarf2_cu *cu,
17610 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17612 start_symtab (name, comp_dir, low_pc);
17613 record_debugformat ("DWARF 2");
17614 record_producer (cu->producer);
17616 /* We assume that we're processing GCC output. */
17617 processing_gcc_compilation = 2;
17619 cu->processing_has_namespace_info = 0;
17623 var_decode_location (struct attribute *attr, struct symbol *sym,
17624 struct dwarf2_cu *cu)
17626 struct objfile *objfile = cu->objfile;
17627 struct comp_unit_head *cu_header = &cu->header;
17629 /* NOTE drow/2003-01-30: There used to be a comment and some special
17630 code here to turn a symbol with DW_AT_external and a
17631 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17632 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17633 with some versions of binutils) where shared libraries could have
17634 relocations against symbols in their debug information - the
17635 minimal symbol would have the right address, but the debug info
17636 would not. It's no longer necessary, because we will explicitly
17637 apply relocations when we read in the debug information now. */
17639 /* A DW_AT_location attribute with no contents indicates that a
17640 variable has been optimized away. */
17641 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17643 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17647 /* Handle one degenerate form of location expression specially, to
17648 preserve GDB's previous behavior when section offsets are
17649 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17650 then mark this symbol as LOC_STATIC. */
17652 if (attr_form_is_block (attr)
17653 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17654 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17655 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17656 && (DW_BLOCK (attr)->size
17657 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17659 unsigned int dummy;
17661 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17662 SYMBOL_VALUE_ADDRESS (sym) =
17663 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17665 SYMBOL_VALUE_ADDRESS (sym) =
17666 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17667 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17668 fixup_symbol_section (sym, objfile);
17669 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17670 SYMBOL_SECTION (sym));
17674 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17675 expression evaluator, and use LOC_COMPUTED only when necessary
17676 (i.e. when the value of a register or memory location is
17677 referenced, or a thread-local block, etc.). Then again, it might
17678 not be worthwhile. I'm assuming that it isn't unless performance
17679 or memory numbers show me otherwise. */
17681 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17683 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17684 cu->has_loclist = 1;
17687 /* Given a pointer to a DWARF information entry, figure out if we need
17688 to make a symbol table entry for it, and if so, create a new entry
17689 and return a pointer to it.
17690 If TYPE is NULL, determine symbol type from the die, otherwise
17691 used the passed type.
17692 If SPACE is not NULL, use it to hold the new symbol. If it is
17693 NULL, allocate a new symbol on the objfile's obstack. */
17695 static struct symbol *
17696 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17697 struct symbol *space)
17699 struct objfile *objfile = cu->objfile;
17700 struct symbol *sym = NULL;
17702 struct attribute *attr = NULL;
17703 struct attribute *attr2 = NULL;
17704 CORE_ADDR baseaddr;
17705 struct pending **list_to_add = NULL;
17707 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17709 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17711 name = dwarf2_name (die, cu);
17714 const char *linkagename;
17715 int suppress_add = 0;
17720 sym = allocate_symbol (objfile);
17721 OBJSTAT (objfile, n_syms++);
17723 /* Cache this symbol's name and the name's demangled form (if any). */
17724 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17725 linkagename = dwarf2_physname (name, die, cu);
17726 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17728 /* Fortran does not have mangling standard and the mangling does differ
17729 between gfortran, iFort etc. */
17730 if (cu->language == language_fortran
17731 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17732 symbol_set_demangled_name (&(sym->ginfo),
17733 dwarf2_full_name (name, die, cu),
17736 /* Default assumptions.
17737 Use the passed type or decode it from the die. */
17738 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17739 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17741 SYMBOL_TYPE (sym) = type;
17743 SYMBOL_TYPE (sym) = die_type (die, cu);
17744 attr = dwarf2_attr (die,
17745 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17749 SYMBOL_LINE (sym) = DW_UNSND (attr);
17752 attr = dwarf2_attr (die,
17753 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17757 int file_index = DW_UNSND (attr);
17759 if (cu->line_header == NULL
17760 || file_index > cu->line_header->num_file_names)
17761 complaint (&symfile_complaints,
17762 _("file index out of range"));
17763 else if (file_index > 0)
17765 struct file_entry *fe;
17767 fe = &cu->line_header->file_names[file_index - 1];
17768 SYMBOL_SYMTAB (sym) = fe->symtab;
17775 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17777 SYMBOL_VALUE_ADDRESS (sym)
17778 = attr_value_as_address (attr) + baseaddr;
17779 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17780 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17781 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17782 add_symbol_to_list (sym, cu->list_in_scope);
17784 case DW_TAG_subprogram:
17785 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17787 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17788 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17789 if ((attr2 && (DW_UNSND (attr2) != 0))
17790 || cu->language == language_ada)
17792 /* Subprograms marked external are stored as a global symbol.
17793 Ada subprograms, whether marked external or not, are always
17794 stored as a global symbol, because we want to be able to
17795 access them globally. For instance, we want to be able
17796 to break on a nested subprogram without having to
17797 specify the context. */
17798 list_to_add = &global_symbols;
17802 list_to_add = cu->list_in_scope;
17805 case DW_TAG_inlined_subroutine:
17806 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17808 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17809 SYMBOL_INLINED (sym) = 1;
17810 list_to_add = cu->list_in_scope;
17812 case DW_TAG_template_value_param:
17814 /* Fall through. */
17815 case DW_TAG_constant:
17816 case DW_TAG_variable:
17817 case DW_TAG_member:
17818 /* Compilation with minimal debug info may result in
17819 variables with missing type entries. Change the
17820 misleading `void' type to something sensible. */
17821 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17823 = objfile_type (objfile)->nodebug_data_symbol;
17825 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17826 /* In the case of DW_TAG_member, we should only be called for
17827 static const members. */
17828 if (die->tag == DW_TAG_member)
17830 /* dwarf2_add_field uses die_is_declaration,
17831 so we do the same. */
17832 gdb_assert (die_is_declaration (die, cu));
17837 dwarf2_const_value (attr, sym, cu);
17838 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17841 if (attr2 && (DW_UNSND (attr2) != 0))
17842 list_to_add = &global_symbols;
17844 list_to_add = cu->list_in_scope;
17848 attr = dwarf2_attr (die, DW_AT_location, cu);
17851 var_decode_location (attr, sym, cu);
17852 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17854 /* Fortran explicitly imports any global symbols to the local
17855 scope by DW_TAG_common_block. */
17856 if (cu->language == language_fortran && die->parent
17857 && die->parent->tag == DW_TAG_common_block)
17860 if (SYMBOL_CLASS (sym) == LOC_STATIC
17861 && SYMBOL_VALUE_ADDRESS (sym) == 0
17862 && !dwarf2_per_objfile->has_section_at_zero)
17864 /* When a static variable is eliminated by the linker,
17865 the corresponding debug information is not stripped
17866 out, but the variable address is set to null;
17867 do not add such variables into symbol table. */
17869 else if (attr2 && (DW_UNSND (attr2) != 0))
17871 /* Workaround gfortran PR debug/40040 - it uses
17872 DW_AT_location for variables in -fPIC libraries which may
17873 get overriden by other libraries/executable and get
17874 a different address. Resolve it by the minimal symbol
17875 which may come from inferior's executable using copy
17876 relocation. Make this workaround only for gfortran as for
17877 other compilers GDB cannot guess the minimal symbol
17878 Fortran mangling kind. */
17879 if (cu->language == language_fortran && die->parent
17880 && die->parent->tag == DW_TAG_module
17882 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17883 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17885 /* A variable with DW_AT_external is never static,
17886 but it may be block-scoped. */
17887 list_to_add = (cu->list_in_scope == &file_symbols
17888 ? &global_symbols : cu->list_in_scope);
17891 list_to_add = cu->list_in_scope;
17895 /* We do not know the address of this symbol.
17896 If it is an external symbol and we have type information
17897 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17898 The address of the variable will then be determined from
17899 the minimal symbol table whenever the variable is
17901 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17903 /* Fortran explicitly imports any global symbols to the local
17904 scope by DW_TAG_common_block. */
17905 if (cu->language == language_fortran && die->parent
17906 && die->parent->tag == DW_TAG_common_block)
17908 /* SYMBOL_CLASS doesn't matter here because
17909 read_common_block is going to reset it. */
17911 list_to_add = cu->list_in_scope;
17913 else if (attr2 && (DW_UNSND (attr2) != 0)
17914 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17916 /* A variable with DW_AT_external is never static, but it
17917 may be block-scoped. */
17918 list_to_add = (cu->list_in_scope == &file_symbols
17919 ? &global_symbols : cu->list_in_scope);
17921 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17923 else if (!die_is_declaration (die, cu))
17925 /* Use the default LOC_OPTIMIZED_OUT class. */
17926 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17928 list_to_add = cu->list_in_scope;
17932 case DW_TAG_formal_parameter:
17933 /* If we are inside a function, mark this as an argument. If
17934 not, we might be looking at an argument to an inlined function
17935 when we do not have enough information to show inlined frames;
17936 pretend it's a local variable in that case so that the user can
17938 if (context_stack_depth > 0
17939 && context_stack[context_stack_depth - 1].name != NULL)
17940 SYMBOL_IS_ARGUMENT (sym) = 1;
17941 attr = dwarf2_attr (die, DW_AT_location, cu);
17944 var_decode_location (attr, sym, cu);
17946 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17949 dwarf2_const_value (attr, sym, cu);
17952 list_to_add = cu->list_in_scope;
17954 case DW_TAG_unspecified_parameters:
17955 /* From varargs functions; gdb doesn't seem to have any
17956 interest in this information, so just ignore it for now.
17959 case DW_TAG_template_type_param:
17961 /* Fall through. */
17962 case DW_TAG_class_type:
17963 case DW_TAG_interface_type:
17964 case DW_TAG_structure_type:
17965 case DW_TAG_union_type:
17966 case DW_TAG_set_type:
17967 case DW_TAG_enumeration_type:
17968 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17969 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17972 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17973 really ever be static objects: otherwise, if you try
17974 to, say, break of a class's method and you're in a file
17975 which doesn't mention that class, it won't work unless
17976 the check for all static symbols in lookup_symbol_aux
17977 saves you. See the OtherFileClass tests in
17978 gdb.c++/namespace.exp. */
17982 list_to_add = (cu->list_in_scope == &file_symbols
17983 && (cu->language == language_cplus
17984 || cu->language == language_java)
17985 ? &global_symbols : cu->list_in_scope);
17987 /* The semantics of C++ state that "struct foo {
17988 ... }" also defines a typedef for "foo". A Java
17989 class declaration also defines a typedef for the
17991 if (cu->language == language_cplus
17992 || cu->language == language_java
17993 || cu->language == language_ada)
17995 /* The symbol's name is already allocated along
17996 with this objfile, so we don't need to
17997 duplicate it for the type. */
17998 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17999 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18004 case DW_TAG_typedef:
18005 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18006 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18007 list_to_add = cu->list_in_scope;
18009 case DW_TAG_base_type:
18010 case DW_TAG_subrange_type:
18011 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18013 list_to_add = cu->list_in_scope;
18015 case DW_TAG_enumerator:
18016 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18019 dwarf2_const_value (attr, sym, cu);
18022 /* NOTE: carlton/2003-11-10: See comment above in the
18023 DW_TAG_class_type, etc. block. */
18025 list_to_add = (cu->list_in_scope == &file_symbols
18026 && (cu->language == language_cplus
18027 || cu->language == language_java)
18028 ? &global_symbols : cu->list_in_scope);
18031 case DW_TAG_imported_declaration:
18032 case DW_TAG_namespace:
18033 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18034 list_to_add = &global_symbols;
18036 case DW_TAG_module:
18037 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18038 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18039 list_to_add = &global_symbols;
18041 case DW_TAG_common_block:
18042 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18043 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18044 add_symbol_to_list (sym, cu->list_in_scope);
18047 /* Not a tag we recognize. Hopefully we aren't processing
18048 trash data, but since we must specifically ignore things
18049 we don't recognize, there is nothing else we should do at
18051 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18052 dwarf_tag_name (die->tag));
18058 sym->hash_next = objfile->template_symbols;
18059 objfile->template_symbols = sym;
18060 list_to_add = NULL;
18063 if (list_to_add != NULL)
18064 add_symbol_to_list (sym, list_to_add);
18066 /* For the benefit of old versions of GCC, check for anonymous
18067 namespaces based on the demangled name. */
18068 if (!cu->processing_has_namespace_info
18069 && cu->language == language_cplus)
18070 cp_scan_for_anonymous_namespaces (sym, objfile);
18075 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18077 static struct symbol *
18078 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18080 return new_symbol_full (die, type, cu, NULL);
18083 /* Given an attr with a DW_FORM_dataN value in host byte order,
18084 zero-extend it as appropriate for the symbol's type. The DWARF
18085 standard (v4) is not entirely clear about the meaning of using
18086 DW_FORM_dataN for a constant with a signed type, where the type is
18087 wider than the data. The conclusion of a discussion on the DWARF
18088 list was that this is unspecified. We choose to always zero-extend
18089 because that is the interpretation long in use by GCC. */
18092 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18093 struct dwarf2_cu *cu, LONGEST *value, int bits)
18095 struct objfile *objfile = cu->objfile;
18096 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18097 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18098 LONGEST l = DW_UNSND (attr);
18100 if (bits < sizeof (*value) * 8)
18102 l &= ((LONGEST) 1 << bits) - 1;
18105 else if (bits == sizeof (*value) * 8)
18109 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18110 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18117 /* Read a constant value from an attribute. Either set *VALUE, or if
18118 the value does not fit in *VALUE, set *BYTES - either already
18119 allocated on the objfile obstack, or newly allocated on OBSTACK,
18120 or, set *BATON, if we translated the constant to a location
18124 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18125 const char *name, struct obstack *obstack,
18126 struct dwarf2_cu *cu,
18127 LONGEST *value, const gdb_byte **bytes,
18128 struct dwarf2_locexpr_baton **baton)
18130 struct objfile *objfile = cu->objfile;
18131 struct comp_unit_head *cu_header = &cu->header;
18132 struct dwarf_block *blk;
18133 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18134 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18140 switch (attr->form)
18143 case DW_FORM_GNU_addr_index:
18147 if (TYPE_LENGTH (type) != cu_header->addr_size)
18148 dwarf2_const_value_length_mismatch_complaint (name,
18149 cu_header->addr_size,
18150 TYPE_LENGTH (type));
18151 /* Symbols of this form are reasonably rare, so we just
18152 piggyback on the existing location code rather than writing
18153 a new implementation of symbol_computed_ops. */
18154 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18155 (*baton)->per_cu = cu->per_cu;
18156 gdb_assert ((*baton)->per_cu);
18158 (*baton)->size = 2 + cu_header->addr_size;
18159 data = obstack_alloc (obstack, (*baton)->size);
18160 (*baton)->data = data;
18162 data[0] = DW_OP_addr;
18163 store_unsigned_integer (&data[1], cu_header->addr_size,
18164 byte_order, DW_ADDR (attr));
18165 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18168 case DW_FORM_string:
18170 case DW_FORM_GNU_str_index:
18171 case DW_FORM_GNU_strp_alt:
18172 /* DW_STRING is already allocated on the objfile obstack, point
18174 *bytes = (const gdb_byte *) DW_STRING (attr);
18176 case DW_FORM_block1:
18177 case DW_FORM_block2:
18178 case DW_FORM_block4:
18179 case DW_FORM_block:
18180 case DW_FORM_exprloc:
18181 blk = DW_BLOCK (attr);
18182 if (TYPE_LENGTH (type) != blk->size)
18183 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18184 TYPE_LENGTH (type));
18185 *bytes = blk->data;
18188 /* The DW_AT_const_value attributes are supposed to carry the
18189 symbol's value "represented as it would be on the target
18190 architecture." By the time we get here, it's already been
18191 converted to host endianness, so we just need to sign- or
18192 zero-extend it as appropriate. */
18193 case DW_FORM_data1:
18194 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18196 case DW_FORM_data2:
18197 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18199 case DW_FORM_data4:
18200 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18202 case DW_FORM_data8:
18203 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18206 case DW_FORM_sdata:
18207 *value = DW_SND (attr);
18210 case DW_FORM_udata:
18211 *value = DW_UNSND (attr);
18215 complaint (&symfile_complaints,
18216 _("unsupported const value attribute form: '%s'"),
18217 dwarf_form_name (attr->form));
18224 /* Copy constant value from an attribute to a symbol. */
18227 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18228 struct dwarf2_cu *cu)
18230 struct objfile *objfile = cu->objfile;
18231 struct comp_unit_head *cu_header = &cu->header;
18233 const gdb_byte *bytes;
18234 struct dwarf2_locexpr_baton *baton;
18236 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18237 SYMBOL_PRINT_NAME (sym),
18238 &objfile->objfile_obstack, cu,
18239 &value, &bytes, &baton);
18243 SYMBOL_LOCATION_BATON (sym) = baton;
18244 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18246 else if (bytes != NULL)
18248 SYMBOL_VALUE_BYTES (sym) = bytes;
18249 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18253 SYMBOL_VALUE (sym) = value;
18254 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18258 /* Return the type of the die in question using its DW_AT_type attribute. */
18260 static struct type *
18261 die_type (struct die_info *die, struct dwarf2_cu *cu)
18263 struct attribute *type_attr;
18265 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18268 /* A missing DW_AT_type represents a void type. */
18269 return objfile_type (cu->objfile)->builtin_void;
18272 return lookup_die_type (die, type_attr, cu);
18275 /* True iff CU's producer generates GNAT Ada auxiliary information
18276 that allows to find parallel types through that information instead
18277 of having to do expensive parallel lookups by type name. */
18280 need_gnat_info (struct dwarf2_cu *cu)
18282 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18283 of GNAT produces this auxiliary information, without any indication
18284 that it is produced. Part of enhancing the FSF version of GNAT
18285 to produce that information will be to put in place an indicator
18286 that we can use in order to determine whether the descriptive type
18287 info is available or not. One suggestion that has been made is
18288 to use a new attribute, attached to the CU die. For now, assume
18289 that the descriptive type info is not available. */
18293 /* Return the auxiliary type of the die in question using its
18294 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18295 attribute is not present. */
18297 static struct type *
18298 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18300 struct attribute *type_attr;
18302 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18306 return lookup_die_type (die, type_attr, cu);
18309 /* If DIE has a descriptive_type attribute, then set the TYPE's
18310 descriptive type accordingly. */
18313 set_descriptive_type (struct type *type, struct die_info *die,
18314 struct dwarf2_cu *cu)
18316 struct type *descriptive_type = die_descriptive_type (die, cu);
18318 if (descriptive_type)
18320 ALLOCATE_GNAT_AUX_TYPE (type);
18321 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18325 /* Return the containing type of the die in question using its
18326 DW_AT_containing_type attribute. */
18328 static struct type *
18329 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18331 struct attribute *type_attr;
18333 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18335 error (_("Dwarf Error: Problem turning containing type into gdb type "
18336 "[in module %s]"), objfile_name (cu->objfile));
18338 return lookup_die_type (die, type_attr, cu);
18341 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18343 static struct type *
18344 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18346 struct objfile *objfile = dwarf2_per_objfile->objfile;
18347 char *message, *saved;
18349 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18350 objfile_name (objfile),
18351 cu->header.offset.sect_off,
18352 die->offset.sect_off);
18353 saved = obstack_copy0 (&objfile->objfile_obstack,
18354 message, strlen (message));
18357 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18360 /* Look up the type of DIE in CU using its type attribute ATTR.
18361 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18362 DW_AT_containing_type.
18363 If there is no type substitute an error marker. */
18365 static struct type *
18366 lookup_die_type (struct die_info *die, const struct attribute *attr,
18367 struct dwarf2_cu *cu)
18369 struct objfile *objfile = cu->objfile;
18370 struct type *this_type;
18372 gdb_assert (attr->name == DW_AT_type
18373 || attr->name == DW_AT_GNAT_descriptive_type
18374 || attr->name == DW_AT_containing_type);
18376 /* First see if we have it cached. */
18378 if (attr->form == DW_FORM_GNU_ref_alt)
18380 struct dwarf2_per_cu_data *per_cu;
18381 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18383 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18384 this_type = get_die_type_at_offset (offset, per_cu);
18386 else if (attr_form_is_ref (attr))
18388 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18390 this_type = get_die_type_at_offset (offset, cu->per_cu);
18392 else if (attr->form == DW_FORM_ref_sig8)
18394 ULONGEST signature = DW_SIGNATURE (attr);
18396 return get_signatured_type (die, signature, cu);
18400 complaint (&symfile_complaints,
18401 _("Dwarf Error: Bad type attribute %s in DIE"
18402 " at 0x%x [in module %s]"),
18403 dwarf_attr_name (attr->name), die->offset.sect_off,
18404 objfile_name (objfile));
18405 return build_error_marker_type (cu, die);
18408 /* If not cached we need to read it in. */
18410 if (this_type == NULL)
18412 struct die_info *type_die = NULL;
18413 struct dwarf2_cu *type_cu = cu;
18415 if (attr_form_is_ref (attr))
18416 type_die = follow_die_ref (die, attr, &type_cu);
18417 if (type_die == NULL)
18418 return build_error_marker_type (cu, die);
18419 /* If we find the type now, it's probably because the type came
18420 from an inter-CU reference and the type's CU got expanded before
18422 this_type = read_type_die (type_die, type_cu);
18425 /* If we still don't have a type use an error marker. */
18427 if (this_type == NULL)
18428 return build_error_marker_type (cu, die);
18433 /* Return the type in DIE, CU.
18434 Returns NULL for invalid types.
18436 This first does a lookup in die_type_hash,
18437 and only reads the die in if necessary.
18439 NOTE: This can be called when reading in partial or full symbols. */
18441 static struct type *
18442 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18444 struct type *this_type;
18446 this_type = get_die_type (die, cu);
18450 return read_type_die_1 (die, cu);
18453 /* Read the type in DIE, CU.
18454 Returns NULL for invalid types. */
18456 static struct type *
18457 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18459 struct type *this_type = NULL;
18463 case DW_TAG_class_type:
18464 case DW_TAG_interface_type:
18465 case DW_TAG_structure_type:
18466 case DW_TAG_union_type:
18467 this_type = read_structure_type (die, cu);
18469 case DW_TAG_enumeration_type:
18470 this_type = read_enumeration_type (die, cu);
18472 case DW_TAG_subprogram:
18473 case DW_TAG_subroutine_type:
18474 case DW_TAG_inlined_subroutine:
18475 this_type = read_subroutine_type (die, cu);
18477 case DW_TAG_array_type:
18478 this_type = read_array_type (die, cu);
18480 case DW_TAG_set_type:
18481 this_type = read_set_type (die, cu);
18483 case DW_TAG_pointer_type:
18484 this_type = read_tag_pointer_type (die, cu);
18486 case DW_TAG_ptr_to_member_type:
18487 this_type = read_tag_ptr_to_member_type (die, cu);
18489 case DW_TAG_reference_type:
18490 this_type = read_tag_reference_type (die, cu);
18492 case DW_TAG_const_type:
18493 this_type = read_tag_const_type (die, cu);
18495 case DW_TAG_volatile_type:
18496 this_type = read_tag_volatile_type (die, cu);
18498 case DW_TAG_restrict_type:
18499 this_type = read_tag_restrict_type (die, cu);
18501 case DW_TAG_string_type:
18502 this_type = read_tag_string_type (die, cu);
18504 case DW_TAG_typedef:
18505 this_type = read_typedef (die, cu);
18507 case DW_TAG_subrange_type:
18508 this_type = read_subrange_type (die, cu);
18510 case DW_TAG_base_type:
18511 this_type = read_base_type (die, cu);
18513 case DW_TAG_unspecified_type:
18514 this_type = read_unspecified_type (die, cu);
18516 case DW_TAG_namespace:
18517 this_type = read_namespace_type (die, cu);
18519 case DW_TAG_module:
18520 this_type = read_module_type (die, cu);
18523 complaint (&symfile_complaints,
18524 _("unexpected tag in read_type_die: '%s'"),
18525 dwarf_tag_name (die->tag));
18532 /* See if we can figure out if the class lives in a namespace. We do
18533 this by looking for a member function; its demangled name will
18534 contain namespace info, if there is any.
18535 Return the computed name or NULL.
18536 Space for the result is allocated on the objfile's obstack.
18537 This is the full-die version of guess_partial_die_structure_name.
18538 In this case we know DIE has no useful parent. */
18541 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18543 struct die_info *spec_die;
18544 struct dwarf2_cu *spec_cu;
18545 struct die_info *child;
18548 spec_die = die_specification (die, &spec_cu);
18549 if (spec_die != NULL)
18555 for (child = die->child;
18557 child = child->sibling)
18559 if (child->tag == DW_TAG_subprogram)
18561 struct attribute *attr;
18563 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18565 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18569 = language_class_name_from_physname (cu->language_defn,
18573 if (actual_name != NULL)
18575 const char *die_name = dwarf2_name (die, cu);
18577 if (die_name != NULL
18578 && strcmp (die_name, actual_name) != 0)
18580 /* Strip off the class name from the full name.
18581 We want the prefix. */
18582 int die_name_len = strlen (die_name);
18583 int actual_name_len = strlen (actual_name);
18585 /* Test for '::' as a sanity check. */
18586 if (actual_name_len > die_name_len + 2
18587 && actual_name[actual_name_len
18588 - die_name_len - 1] == ':')
18590 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18592 actual_name_len - die_name_len - 2);
18595 xfree (actual_name);
18604 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18605 prefix part in such case. See
18606 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18609 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18611 struct attribute *attr;
18614 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18615 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18618 attr = dwarf2_attr (die, DW_AT_name, cu);
18619 if (attr != NULL && DW_STRING (attr) != NULL)
18622 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18624 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18625 if (attr == NULL || DW_STRING (attr) == NULL)
18628 /* dwarf2_name had to be already called. */
18629 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18631 /* Strip the base name, keep any leading namespaces/classes. */
18632 base = strrchr (DW_STRING (attr), ':');
18633 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18636 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18637 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18640 /* Return the name of the namespace/class that DIE is defined within,
18641 or "" if we can't tell. The caller should not xfree the result.
18643 For example, if we're within the method foo() in the following
18653 then determine_prefix on foo's die will return "N::C". */
18655 static const char *
18656 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18658 struct die_info *parent, *spec_die;
18659 struct dwarf2_cu *spec_cu;
18660 struct type *parent_type;
18663 if (cu->language != language_cplus && cu->language != language_java
18664 && cu->language != language_fortran)
18667 retval = anonymous_struct_prefix (die, cu);
18671 /* We have to be careful in the presence of DW_AT_specification.
18672 For example, with GCC 3.4, given the code
18676 // Definition of N::foo.
18680 then we'll have a tree of DIEs like this:
18682 1: DW_TAG_compile_unit
18683 2: DW_TAG_namespace // N
18684 3: DW_TAG_subprogram // declaration of N::foo
18685 4: DW_TAG_subprogram // definition of N::foo
18686 DW_AT_specification // refers to die #3
18688 Thus, when processing die #4, we have to pretend that we're in
18689 the context of its DW_AT_specification, namely the contex of die
18692 spec_die = die_specification (die, &spec_cu);
18693 if (spec_die == NULL)
18694 parent = die->parent;
18697 parent = spec_die->parent;
18701 if (parent == NULL)
18703 else if (parent->building_fullname)
18706 const char *parent_name;
18708 /* It has been seen on RealView 2.2 built binaries,
18709 DW_TAG_template_type_param types actually _defined_ as
18710 children of the parent class:
18713 template class <class Enum> Class{};
18714 Class<enum E> class_e;
18716 1: DW_TAG_class_type (Class)
18717 2: DW_TAG_enumeration_type (E)
18718 3: DW_TAG_enumerator (enum1:0)
18719 3: DW_TAG_enumerator (enum2:1)
18721 2: DW_TAG_template_type_param
18722 DW_AT_type DW_FORM_ref_udata (E)
18724 Besides being broken debug info, it can put GDB into an
18725 infinite loop. Consider:
18727 When we're building the full name for Class<E>, we'll start
18728 at Class, and go look over its template type parameters,
18729 finding E. We'll then try to build the full name of E, and
18730 reach here. We're now trying to build the full name of E,
18731 and look over the parent DIE for containing scope. In the
18732 broken case, if we followed the parent DIE of E, we'd again
18733 find Class, and once again go look at its template type
18734 arguments, etc., etc. Simply don't consider such parent die
18735 as source-level parent of this die (it can't be, the language
18736 doesn't allow it), and break the loop here. */
18737 name = dwarf2_name (die, cu);
18738 parent_name = dwarf2_name (parent, cu);
18739 complaint (&symfile_complaints,
18740 _("template param type '%s' defined within parent '%s'"),
18741 name ? name : "<unknown>",
18742 parent_name ? parent_name : "<unknown>");
18746 switch (parent->tag)
18748 case DW_TAG_namespace:
18749 parent_type = read_type_die (parent, cu);
18750 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18751 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18752 Work around this problem here. */
18753 if (cu->language == language_cplus
18754 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18756 /* We give a name to even anonymous namespaces. */
18757 return TYPE_TAG_NAME (parent_type);
18758 case DW_TAG_class_type:
18759 case DW_TAG_interface_type:
18760 case DW_TAG_structure_type:
18761 case DW_TAG_union_type:
18762 case DW_TAG_module:
18763 parent_type = read_type_die (parent, cu);
18764 if (TYPE_TAG_NAME (parent_type) != NULL)
18765 return TYPE_TAG_NAME (parent_type);
18767 /* An anonymous structure is only allowed non-static data
18768 members; no typedefs, no member functions, et cetera.
18769 So it does not need a prefix. */
18771 case DW_TAG_compile_unit:
18772 case DW_TAG_partial_unit:
18773 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18774 if (cu->language == language_cplus
18775 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18776 && die->child != NULL
18777 && (die->tag == DW_TAG_class_type
18778 || die->tag == DW_TAG_structure_type
18779 || die->tag == DW_TAG_union_type))
18781 char *name = guess_full_die_structure_name (die, cu);
18786 case DW_TAG_enumeration_type:
18787 parent_type = read_type_die (parent, cu);
18788 if (TYPE_DECLARED_CLASS (parent_type))
18790 if (TYPE_TAG_NAME (parent_type) != NULL)
18791 return TYPE_TAG_NAME (parent_type);
18794 /* Fall through. */
18796 return determine_prefix (parent, cu);
18800 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18801 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18802 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18803 an obconcat, otherwise allocate storage for the result. The CU argument is
18804 used to determine the language and hence, the appropriate separator. */
18806 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18809 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18810 int physname, struct dwarf2_cu *cu)
18812 const char *lead = "";
18815 if (suffix == NULL || suffix[0] == '\0'
18816 || prefix == NULL || prefix[0] == '\0')
18818 else if (cu->language == language_java)
18820 else if (cu->language == language_fortran && physname)
18822 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18823 DW_AT_MIPS_linkage_name is preferred and used instead. */
18831 if (prefix == NULL)
18833 if (suffix == NULL)
18839 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18841 strcpy (retval, lead);
18842 strcat (retval, prefix);
18843 strcat (retval, sep);
18844 strcat (retval, suffix);
18849 /* We have an obstack. */
18850 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18854 /* Return sibling of die, NULL if no sibling. */
18856 static struct die_info *
18857 sibling_die (struct die_info *die)
18859 return die->sibling;
18862 /* Get name of a die, return NULL if not found. */
18864 static const char *
18865 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18866 struct obstack *obstack)
18868 if (name && cu->language == language_cplus)
18870 char *canon_name = cp_canonicalize_string (name);
18872 if (canon_name != NULL)
18874 if (strcmp (canon_name, name) != 0)
18875 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18876 xfree (canon_name);
18883 /* Get name of a die, return NULL if not found. */
18885 static const char *
18886 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18888 struct attribute *attr;
18890 attr = dwarf2_attr (die, DW_AT_name, cu);
18891 if ((!attr || !DW_STRING (attr))
18892 && die->tag != DW_TAG_class_type
18893 && die->tag != DW_TAG_interface_type
18894 && die->tag != DW_TAG_structure_type
18895 && die->tag != DW_TAG_union_type)
18900 case DW_TAG_compile_unit:
18901 case DW_TAG_partial_unit:
18902 /* Compilation units have a DW_AT_name that is a filename, not
18903 a source language identifier. */
18904 case DW_TAG_enumeration_type:
18905 case DW_TAG_enumerator:
18906 /* These tags always have simple identifiers already; no need
18907 to canonicalize them. */
18908 return DW_STRING (attr);
18910 case DW_TAG_subprogram:
18911 /* Java constructors will all be named "<init>", so return
18912 the class name when we see this special case. */
18913 if (cu->language == language_java
18914 && DW_STRING (attr) != NULL
18915 && strcmp (DW_STRING (attr), "<init>") == 0)
18917 struct dwarf2_cu *spec_cu = cu;
18918 struct die_info *spec_die;
18920 /* GCJ will output '<init>' for Java constructor names.
18921 For this special case, return the name of the parent class. */
18923 /* GCJ may output suprogram DIEs with AT_specification set.
18924 If so, use the name of the specified DIE. */
18925 spec_die = die_specification (die, &spec_cu);
18926 if (spec_die != NULL)
18927 return dwarf2_name (spec_die, spec_cu);
18932 if (die->tag == DW_TAG_class_type)
18933 return dwarf2_name (die, cu);
18935 while (die->tag != DW_TAG_compile_unit
18936 && die->tag != DW_TAG_partial_unit);
18940 case DW_TAG_class_type:
18941 case DW_TAG_interface_type:
18942 case DW_TAG_structure_type:
18943 case DW_TAG_union_type:
18944 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18945 structures or unions. These were of the form "._%d" in GCC 4.1,
18946 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18947 and GCC 4.4. We work around this problem by ignoring these. */
18948 if (attr && DW_STRING (attr)
18949 && (strncmp (DW_STRING (attr), "._", 2) == 0
18950 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18953 /* GCC might emit a nameless typedef that has a linkage name. See
18954 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18955 if (!attr || DW_STRING (attr) == NULL)
18957 char *demangled = NULL;
18959 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18961 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18963 if (attr == NULL || DW_STRING (attr) == NULL)
18966 /* Avoid demangling DW_STRING (attr) the second time on a second
18967 call for the same DIE. */
18968 if (!DW_STRING_IS_CANONICAL (attr))
18969 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18975 /* FIXME: we already did this for the partial symbol... */
18977 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18978 demangled, strlen (demangled));
18979 DW_STRING_IS_CANONICAL (attr) = 1;
18982 /* Strip any leading namespaces/classes, keep only the base name.
18983 DW_AT_name for named DIEs does not contain the prefixes. */
18984 base = strrchr (DW_STRING (attr), ':');
18985 if (base && base > DW_STRING (attr) && base[-1] == ':')
18988 return DW_STRING (attr);
18997 if (!DW_STRING_IS_CANONICAL (attr))
19000 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19001 &cu->objfile->per_bfd->storage_obstack);
19002 DW_STRING_IS_CANONICAL (attr) = 1;
19004 return DW_STRING (attr);
19007 /* Return the die that this die in an extension of, or NULL if there
19008 is none. *EXT_CU is the CU containing DIE on input, and the CU
19009 containing the return value on output. */
19011 static struct die_info *
19012 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19014 struct attribute *attr;
19016 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19020 return follow_die_ref (die, attr, ext_cu);
19023 /* Convert a DIE tag into its string name. */
19025 static const char *
19026 dwarf_tag_name (unsigned tag)
19028 const char *name = get_DW_TAG_name (tag);
19031 return "DW_TAG_<unknown>";
19036 /* Convert a DWARF attribute code into its string name. */
19038 static const char *
19039 dwarf_attr_name (unsigned attr)
19043 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19044 if (attr == DW_AT_MIPS_fde)
19045 return "DW_AT_MIPS_fde";
19047 if (attr == DW_AT_HP_block_index)
19048 return "DW_AT_HP_block_index";
19051 name = get_DW_AT_name (attr);
19054 return "DW_AT_<unknown>";
19059 /* Convert a DWARF value form code into its string name. */
19061 static const char *
19062 dwarf_form_name (unsigned form)
19064 const char *name = get_DW_FORM_name (form);
19067 return "DW_FORM_<unknown>";
19073 dwarf_bool_name (unsigned mybool)
19081 /* Convert a DWARF type code into its string name. */
19083 static const char *
19084 dwarf_type_encoding_name (unsigned enc)
19086 const char *name = get_DW_ATE_name (enc);
19089 return "DW_ATE_<unknown>";
19095 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19099 print_spaces (indent, f);
19100 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19101 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19103 if (die->parent != NULL)
19105 print_spaces (indent, f);
19106 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19107 die->parent->offset.sect_off);
19110 print_spaces (indent, f);
19111 fprintf_unfiltered (f, " has children: %s\n",
19112 dwarf_bool_name (die->child != NULL));
19114 print_spaces (indent, f);
19115 fprintf_unfiltered (f, " attributes:\n");
19117 for (i = 0; i < die->num_attrs; ++i)
19119 print_spaces (indent, f);
19120 fprintf_unfiltered (f, " %s (%s) ",
19121 dwarf_attr_name (die->attrs[i].name),
19122 dwarf_form_name (die->attrs[i].form));
19124 switch (die->attrs[i].form)
19127 case DW_FORM_GNU_addr_index:
19128 fprintf_unfiltered (f, "address: ");
19129 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19131 case DW_FORM_block2:
19132 case DW_FORM_block4:
19133 case DW_FORM_block:
19134 case DW_FORM_block1:
19135 fprintf_unfiltered (f, "block: size %s",
19136 pulongest (DW_BLOCK (&die->attrs[i])->size));
19138 case DW_FORM_exprloc:
19139 fprintf_unfiltered (f, "expression: size %s",
19140 pulongest (DW_BLOCK (&die->attrs[i])->size));
19142 case DW_FORM_ref_addr:
19143 fprintf_unfiltered (f, "ref address: ");
19144 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19146 case DW_FORM_GNU_ref_alt:
19147 fprintf_unfiltered (f, "alt ref address: ");
19148 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19154 case DW_FORM_ref_udata:
19155 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19156 (long) (DW_UNSND (&die->attrs[i])));
19158 case DW_FORM_data1:
19159 case DW_FORM_data2:
19160 case DW_FORM_data4:
19161 case DW_FORM_data8:
19162 case DW_FORM_udata:
19163 case DW_FORM_sdata:
19164 fprintf_unfiltered (f, "constant: %s",
19165 pulongest (DW_UNSND (&die->attrs[i])));
19167 case DW_FORM_sec_offset:
19168 fprintf_unfiltered (f, "section offset: %s",
19169 pulongest (DW_UNSND (&die->attrs[i])));
19171 case DW_FORM_ref_sig8:
19172 fprintf_unfiltered (f, "signature: %s",
19173 hex_string (DW_SIGNATURE (&die->attrs[i])));
19175 case DW_FORM_string:
19177 case DW_FORM_GNU_str_index:
19178 case DW_FORM_GNU_strp_alt:
19179 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19180 DW_STRING (&die->attrs[i])
19181 ? DW_STRING (&die->attrs[i]) : "",
19182 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19185 if (DW_UNSND (&die->attrs[i]))
19186 fprintf_unfiltered (f, "flag: TRUE");
19188 fprintf_unfiltered (f, "flag: FALSE");
19190 case DW_FORM_flag_present:
19191 fprintf_unfiltered (f, "flag: TRUE");
19193 case DW_FORM_indirect:
19194 /* The reader will have reduced the indirect form to
19195 the "base form" so this form should not occur. */
19196 fprintf_unfiltered (f,
19197 "unexpected attribute form: DW_FORM_indirect");
19200 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19201 die->attrs[i].form);
19204 fprintf_unfiltered (f, "\n");
19209 dump_die_for_error (struct die_info *die)
19211 dump_die_shallow (gdb_stderr, 0, die);
19215 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19217 int indent = level * 4;
19219 gdb_assert (die != NULL);
19221 if (level >= max_level)
19224 dump_die_shallow (f, indent, die);
19226 if (die->child != NULL)
19228 print_spaces (indent, f);
19229 fprintf_unfiltered (f, " Children:");
19230 if (level + 1 < max_level)
19232 fprintf_unfiltered (f, "\n");
19233 dump_die_1 (f, level + 1, max_level, die->child);
19237 fprintf_unfiltered (f,
19238 " [not printed, max nesting level reached]\n");
19242 if (die->sibling != NULL && level > 0)
19244 dump_die_1 (f, level, max_level, die->sibling);
19248 /* This is called from the pdie macro in gdbinit.in.
19249 It's not static so gcc will keep a copy callable from gdb. */
19252 dump_die (struct die_info *die, int max_level)
19254 dump_die_1 (gdb_stdlog, 0, max_level, die);
19258 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19262 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19268 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19272 dwarf2_get_ref_die_offset (const struct attribute *attr)
19274 sect_offset retval = { DW_UNSND (attr) };
19276 if (attr_form_is_ref (attr))
19279 retval.sect_off = 0;
19280 complaint (&symfile_complaints,
19281 _("unsupported die ref attribute form: '%s'"),
19282 dwarf_form_name (attr->form));
19286 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19287 * the value held by the attribute is not constant. */
19290 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19292 if (attr->form == DW_FORM_sdata)
19293 return DW_SND (attr);
19294 else if (attr->form == DW_FORM_udata
19295 || attr->form == DW_FORM_data1
19296 || attr->form == DW_FORM_data2
19297 || attr->form == DW_FORM_data4
19298 || attr->form == DW_FORM_data8)
19299 return DW_UNSND (attr);
19302 complaint (&symfile_complaints,
19303 _("Attribute value is not a constant (%s)"),
19304 dwarf_form_name (attr->form));
19305 return default_value;
19309 /* Follow reference or signature attribute ATTR of SRC_DIE.
19310 On entry *REF_CU is the CU of SRC_DIE.
19311 On exit *REF_CU is the CU of the result. */
19313 static struct die_info *
19314 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19315 struct dwarf2_cu **ref_cu)
19317 struct die_info *die;
19319 if (attr_form_is_ref (attr))
19320 die = follow_die_ref (src_die, attr, ref_cu);
19321 else if (attr->form == DW_FORM_ref_sig8)
19322 die = follow_die_sig (src_die, attr, ref_cu);
19325 dump_die_for_error (src_die);
19326 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19327 objfile_name ((*ref_cu)->objfile));
19333 /* Follow reference OFFSET.
19334 On entry *REF_CU is the CU of the source die referencing OFFSET.
19335 On exit *REF_CU is the CU of the result.
19336 Returns NULL if OFFSET is invalid. */
19338 static struct die_info *
19339 follow_die_offset (sect_offset offset, int offset_in_dwz,
19340 struct dwarf2_cu **ref_cu)
19342 struct die_info temp_die;
19343 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19345 gdb_assert (cu->per_cu != NULL);
19349 if (cu->per_cu->is_debug_types)
19351 /* .debug_types CUs cannot reference anything outside their CU.
19352 If they need to, they have to reference a signatured type via
19353 DW_FORM_ref_sig8. */
19354 if (! offset_in_cu_p (&cu->header, offset))
19357 else if (offset_in_dwz != cu->per_cu->is_dwz
19358 || ! offset_in_cu_p (&cu->header, offset))
19360 struct dwarf2_per_cu_data *per_cu;
19362 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19365 /* If necessary, add it to the queue and load its DIEs. */
19366 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19367 load_full_comp_unit (per_cu, cu->language);
19369 target_cu = per_cu->cu;
19371 else if (cu->dies == NULL)
19373 /* We're loading full DIEs during partial symbol reading. */
19374 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19375 load_full_comp_unit (cu->per_cu, language_minimal);
19378 *ref_cu = target_cu;
19379 temp_die.offset = offset;
19380 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19383 /* Follow reference attribute ATTR of SRC_DIE.
19384 On entry *REF_CU is the CU of SRC_DIE.
19385 On exit *REF_CU is the CU of the result. */
19387 static struct die_info *
19388 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19389 struct dwarf2_cu **ref_cu)
19391 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19392 struct dwarf2_cu *cu = *ref_cu;
19393 struct die_info *die;
19395 die = follow_die_offset (offset,
19396 (attr->form == DW_FORM_GNU_ref_alt
19397 || cu->per_cu->is_dwz),
19400 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19401 "at 0x%x [in module %s]"),
19402 offset.sect_off, src_die->offset.sect_off,
19403 objfile_name (cu->objfile));
19408 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19409 Returned value is intended for DW_OP_call*. Returned
19410 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19412 struct dwarf2_locexpr_baton
19413 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19414 struct dwarf2_per_cu_data *per_cu,
19415 CORE_ADDR (*get_frame_pc) (void *baton),
19418 struct dwarf2_cu *cu;
19419 struct die_info *die;
19420 struct attribute *attr;
19421 struct dwarf2_locexpr_baton retval;
19423 dw2_setup (per_cu->objfile);
19425 if (per_cu->cu == NULL)
19429 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19431 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19432 offset.sect_off, objfile_name (per_cu->objfile));
19434 attr = dwarf2_attr (die, DW_AT_location, cu);
19437 /* DWARF: "If there is no such attribute, then there is no effect.".
19438 DATA is ignored if SIZE is 0. */
19440 retval.data = NULL;
19443 else if (attr_form_is_section_offset (attr))
19445 struct dwarf2_loclist_baton loclist_baton;
19446 CORE_ADDR pc = (*get_frame_pc) (baton);
19449 fill_in_loclist_baton (cu, &loclist_baton, attr);
19451 retval.data = dwarf2_find_location_expression (&loclist_baton,
19453 retval.size = size;
19457 if (!attr_form_is_block (attr))
19458 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19459 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19460 offset.sect_off, objfile_name (per_cu->objfile));
19462 retval.data = DW_BLOCK (attr)->data;
19463 retval.size = DW_BLOCK (attr)->size;
19465 retval.per_cu = cu->per_cu;
19467 age_cached_comp_units ();
19472 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19475 struct dwarf2_locexpr_baton
19476 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19477 struct dwarf2_per_cu_data *per_cu,
19478 CORE_ADDR (*get_frame_pc) (void *baton),
19481 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19483 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19486 /* Write a constant of a given type as target-ordered bytes into
19489 static const gdb_byte *
19490 write_constant_as_bytes (struct obstack *obstack,
19491 enum bfd_endian byte_order,
19498 *len = TYPE_LENGTH (type);
19499 result = obstack_alloc (obstack, *len);
19500 store_unsigned_integer (result, *len, byte_order, value);
19505 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19506 pointer to the constant bytes and set LEN to the length of the
19507 data. If memory is needed, allocate it on OBSTACK. If the DIE
19508 does not have a DW_AT_const_value, return NULL. */
19511 dwarf2_fetch_constant_bytes (sect_offset offset,
19512 struct dwarf2_per_cu_data *per_cu,
19513 struct obstack *obstack,
19516 struct dwarf2_cu *cu;
19517 struct die_info *die;
19518 struct attribute *attr;
19519 const gdb_byte *result = NULL;
19522 enum bfd_endian byte_order;
19524 dw2_setup (per_cu->objfile);
19526 if (per_cu->cu == NULL)
19530 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19532 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19533 offset.sect_off, objfile_name (per_cu->objfile));
19536 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19540 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19541 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19543 switch (attr->form)
19546 case DW_FORM_GNU_addr_index:
19550 *len = cu->header.addr_size;
19551 tem = obstack_alloc (obstack, *len);
19552 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19556 case DW_FORM_string:
19558 case DW_FORM_GNU_str_index:
19559 case DW_FORM_GNU_strp_alt:
19560 /* DW_STRING is already allocated on the objfile obstack, point
19562 result = (const gdb_byte *) DW_STRING (attr);
19563 *len = strlen (DW_STRING (attr));
19565 case DW_FORM_block1:
19566 case DW_FORM_block2:
19567 case DW_FORM_block4:
19568 case DW_FORM_block:
19569 case DW_FORM_exprloc:
19570 result = DW_BLOCK (attr)->data;
19571 *len = DW_BLOCK (attr)->size;
19574 /* The DW_AT_const_value attributes are supposed to carry the
19575 symbol's value "represented as it would be on the target
19576 architecture." By the time we get here, it's already been
19577 converted to host endianness, so we just need to sign- or
19578 zero-extend it as appropriate. */
19579 case DW_FORM_data1:
19580 type = die_type (die, cu);
19581 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19582 if (result == NULL)
19583 result = write_constant_as_bytes (obstack, byte_order,
19586 case DW_FORM_data2:
19587 type = die_type (die, cu);
19588 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19589 if (result == NULL)
19590 result = write_constant_as_bytes (obstack, byte_order,
19593 case DW_FORM_data4:
19594 type = die_type (die, cu);
19595 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19596 if (result == NULL)
19597 result = write_constant_as_bytes (obstack, byte_order,
19600 case DW_FORM_data8:
19601 type = die_type (die, cu);
19602 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19603 if (result == NULL)
19604 result = write_constant_as_bytes (obstack, byte_order,
19608 case DW_FORM_sdata:
19609 type = die_type (die, cu);
19610 result = write_constant_as_bytes (obstack, byte_order,
19611 type, DW_SND (attr), len);
19614 case DW_FORM_udata:
19615 type = die_type (die, cu);
19616 result = write_constant_as_bytes (obstack, byte_order,
19617 type, DW_UNSND (attr), len);
19621 complaint (&symfile_complaints,
19622 _("unsupported const value attribute form: '%s'"),
19623 dwarf_form_name (attr->form));
19630 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19634 dwarf2_get_die_type (cu_offset die_offset,
19635 struct dwarf2_per_cu_data *per_cu)
19637 sect_offset die_offset_sect;
19639 dw2_setup (per_cu->objfile);
19641 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19642 return get_die_type_at_offset (die_offset_sect, per_cu);
19645 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19646 On entry *REF_CU is the CU of SRC_DIE.
19647 On exit *REF_CU is the CU of the result.
19648 Returns NULL if the referenced DIE isn't found. */
19650 static struct die_info *
19651 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19652 struct dwarf2_cu **ref_cu)
19654 struct objfile *objfile = (*ref_cu)->objfile;
19655 struct die_info temp_die;
19656 struct dwarf2_cu *sig_cu;
19657 struct die_info *die;
19659 /* While it might be nice to assert sig_type->type == NULL here,
19660 we can get here for DW_AT_imported_declaration where we need
19661 the DIE not the type. */
19663 /* If necessary, add it to the queue and load its DIEs. */
19665 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19666 read_signatured_type (sig_type);
19668 sig_cu = sig_type->per_cu.cu;
19669 gdb_assert (sig_cu != NULL);
19670 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19671 temp_die.offset = sig_type->type_offset_in_section;
19672 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19673 temp_die.offset.sect_off);
19676 /* For .gdb_index version 7 keep track of included TUs.
19677 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19678 if (dwarf2_per_objfile->index_table != NULL
19679 && dwarf2_per_objfile->index_table->version <= 7)
19681 VEC_safe_push (dwarf2_per_cu_ptr,
19682 (*ref_cu)->per_cu->imported_symtabs,
19693 /* Follow signatured type referenced by ATTR in SRC_DIE.
19694 On entry *REF_CU is the CU of SRC_DIE.
19695 On exit *REF_CU is the CU of the result.
19696 The result is the DIE of the type.
19697 If the referenced type cannot be found an error is thrown. */
19699 static struct die_info *
19700 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19701 struct dwarf2_cu **ref_cu)
19703 ULONGEST signature = DW_SIGNATURE (attr);
19704 struct signatured_type *sig_type;
19705 struct die_info *die;
19707 gdb_assert (attr->form == DW_FORM_ref_sig8);
19709 sig_type = lookup_signatured_type (*ref_cu, signature);
19710 /* sig_type will be NULL if the signatured type is missing from
19712 if (sig_type == NULL)
19714 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19715 " from DIE at 0x%x [in module %s]"),
19716 hex_string (signature), src_die->offset.sect_off,
19717 objfile_name ((*ref_cu)->objfile));
19720 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19723 dump_die_for_error (src_die);
19724 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19725 " from DIE at 0x%x [in module %s]"),
19726 hex_string (signature), src_die->offset.sect_off,
19727 objfile_name ((*ref_cu)->objfile));
19733 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19734 reading in and processing the type unit if necessary. */
19736 static struct type *
19737 get_signatured_type (struct die_info *die, ULONGEST signature,
19738 struct dwarf2_cu *cu)
19740 struct signatured_type *sig_type;
19741 struct dwarf2_cu *type_cu;
19742 struct die_info *type_die;
19745 sig_type = lookup_signatured_type (cu, signature);
19746 /* sig_type will be NULL if the signatured type is missing from
19748 if (sig_type == NULL)
19750 complaint (&symfile_complaints,
19751 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19752 " from DIE at 0x%x [in module %s]"),
19753 hex_string (signature), die->offset.sect_off,
19754 objfile_name (dwarf2_per_objfile->objfile));
19755 return build_error_marker_type (cu, die);
19758 /* If we already know the type we're done. */
19759 if (sig_type->type != NULL)
19760 return sig_type->type;
19763 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19764 if (type_die != NULL)
19766 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19767 is created. This is important, for example, because for c++ classes
19768 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19769 type = read_type_die (type_die, type_cu);
19772 complaint (&symfile_complaints,
19773 _("Dwarf Error: Cannot build signatured type %s"
19774 " referenced from DIE at 0x%x [in module %s]"),
19775 hex_string (signature), die->offset.sect_off,
19776 objfile_name (dwarf2_per_objfile->objfile));
19777 type = build_error_marker_type (cu, die);
19782 complaint (&symfile_complaints,
19783 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19784 " from DIE at 0x%x [in module %s]"),
19785 hex_string (signature), die->offset.sect_off,
19786 objfile_name (dwarf2_per_objfile->objfile));
19787 type = build_error_marker_type (cu, die);
19789 sig_type->type = type;
19794 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19795 reading in and processing the type unit if necessary. */
19797 static struct type *
19798 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19799 struct dwarf2_cu *cu) /* ARI: editCase function */
19801 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19802 if (attr_form_is_ref (attr))
19804 struct dwarf2_cu *type_cu = cu;
19805 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19807 return read_type_die (type_die, type_cu);
19809 else if (attr->form == DW_FORM_ref_sig8)
19811 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19815 complaint (&symfile_complaints,
19816 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19817 " at 0x%x [in module %s]"),
19818 dwarf_form_name (attr->form), die->offset.sect_off,
19819 objfile_name (dwarf2_per_objfile->objfile));
19820 return build_error_marker_type (cu, die);
19824 /* Load the DIEs associated with type unit PER_CU into memory. */
19827 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19829 struct signatured_type *sig_type;
19831 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19832 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19834 /* We have the per_cu, but we need the signatured_type.
19835 Fortunately this is an easy translation. */
19836 gdb_assert (per_cu->is_debug_types);
19837 sig_type = (struct signatured_type *) per_cu;
19839 gdb_assert (per_cu->cu == NULL);
19841 read_signatured_type (sig_type);
19843 gdb_assert (per_cu->cu != NULL);
19846 /* die_reader_func for read_signatured_type.
19847 This is identical to load_full_comp_unit_reader,
19848 but is kept separate for now. */
19851 read_signatured_type_reader (const struct die_reader_specs *reader,
19852 const gdb_byte *info_ptr,
19853 struct die_info *comp_unit_die,
19857 struct dwarf2_cu *cu = reader->cu;
19859 gdb_assert (cu->die_hash == NULL);
19861 htab_create_alloc_ex (cu->header.length / 12,
19865 &cu->comp_unit_obstack,
19866 hashtab_obstack_allocate,
19867 dummy_obstack_deallocate);
19870 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19871 &info_ptr, comp_unit_die);
19872 cu->dies = comp_unit_die;
19873 /* comp_unit_die is not stored in die_hash, no need. */
19875 /* We try not to read any attributes in this function, because not
19876 all CUs needed for references have been loaded yet, and symbol
19877 table processing isn't initialized. But we have to set the CU language,
19878 or we won't be able to build types correctly.
19879 Similarly, if we do not read the producer, we can not apply
19880 producer-specific interpretation. */
19881 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19884 /* Read in a signatured type and build its CU and DIEs.
19885 If the type is a stub for the real type in a DWO file,
19886 read in the real type from the DWO file as well. */
19889 read_signatured_type (struct signatured_type *sig_type)
19891 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19893 gdb_assert (per_cu->is_debug_types);
19894 gdb_assert (per_cu->cu == NULL);
19896 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19897 read_signatured_type_reader, NULL);
19898 sig_type->per_cu.tu_read = 1;
19901 /* Decode simple location descriptions.
19902 Given a pointer to a dwarf block that defines a location, compute
19903 the location and return the value.
19905 NOTE drow/2003-11-18: This function is called in two situations
19906 now: for the address of static or global variables (partial symbols
19907 only) and for offsets into structures which are expected to be
19908 (more or less) constant. The partial symbol case should go away,
19909 and only the constant case should remain. That will let this
19910 function complain more accurately. A few special modes are allowed
19911 without complaint for global variables (for instance, global
19912 register values and thread-local values).
19914 A location description containing no operations indicates that the
19915 object is optimized out. The return value is 0 for that case.
19916 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19917 callers will only want a very basic result and this can become a
19920 Note that stack[0] is unused except as a default error return. */
19923 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19925 struct objfile *objfile = cu->objfile;
19927 size_t size = blk->size;
19928 const gdb_byte *data = blk->data;
19929 CORE_ADDR stack[64];
19931 unsigned int bytes_read, unsnd;
19937 stack[++stacki] = 0;
19976 stack[++stacki] = op - DW_OP_lit0;
20011 stack[++stacki] = op - DW_OP_reg0;
20013 dwarf2_complex_location_expr_complaint ();
20017 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20019 stack[++stacki] = unsnd;
20021 dwarf2_complex_location_expr_complaint ();
20025 stack[++stacki] = read_address (objfile->obfd, &data[i],
20030 case DW_OP_const1u:
20031 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20035 case DW_OP_const1s:
20036 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20040 case DW_OP_const2u:
20041 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20045 case DW_OP_const2s:
20046 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20050 case DW_OP_const4u:
20051 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20055 case DW_OP_const4s:
20056 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20060 case DW_OP_const8u:
20061 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20066 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20072 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20077 stack[stacki + 1] = stack[stacki];
20082 stack[stacki - 1] += stack[stacki];
20086 case DW_OP_plus_uconst:
20087 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20093 stack[stacki - 1] -= stack[stacki];
20098 /* If we're not the last op, then we definitely can't encode
20099 this using GDB's address_class enum. This is valid for partial
20100 global symbols, although the variable's address will be bogus
20103 dwarf2_complex_location_expr_complaint ();
20106 case DW_OP_GNU_push_tls_address:
20107 /* The top of the stack has the offset from the beginning
20108 of the thread control block at which the variable is located. */
20109 /* Nothing should follow this operator, so the top of stack would
20111 /* This is valid for partial global symbols, but the variable's
20112 address will be bogus in the psymtab. Make it always at least
20113 non-zero to not look as a variable garbage collected by linker
20114 which have DW_OP_addr 0. */
20116 dwarf2_complex_location_expr_complaint ();
20120 case DW_OP_GNU_uninit:
20123 case DW_OP_GNU_addr_index:
20124 case DW_OP_GNU_const_index:
20125 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20132 const char *name = get_DW_OP_name (op);
20135 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20138 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20142 return (stack[stacki]);
20145 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20146 outside of the allocated space. Also enforce minimum>0. */
20147 if (stacki >= ARRAY_SIZE (stack) - 1)
20149 complaint (&symfile_complaints,
20150 _("location description stack overflow"));
20156 complaint (&symfile_complaints,
20157 _("location description stack underflow"));
20161 return (stack[stacki]);
20164 /* memory allocation interface */
20166 static struct dwarf_block *
20167 dwarf_alloc_block (struct dwarf2_cu *cu)
20169 struct dwarf_block *blk;
20171 blk = (struct dwarf_block *)
20172 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20176 static struct die_info *
20177 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20179 struct die_info *die;
20180 size_t size = sizeof (struct die_info);
20183 size += (num_attrs - 1) * sizeof (struct attribute);
20185 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20186 memset (die, 0, sizeof (struct die_info));
20191 /* Macro support. */
20193 /* Return file name relative to the compilation directory of file number I in
20194 *LH's file name table. The result is allocated using xmalloc; the caller is
20195 responsible for freeing it. */
20198 file_file_name (int file, struct line_header *lh)
20200 /* Is the file number a valid index into the line header's file name
20201 table? Remember that file numbers start with one, not zero. */
20202 if (1 <= file && file <= lh->num_file_names)
20204 struct file_entry *fe = &lh->file_names[file - 1];
20206 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20207 return xstrdup (fe->name);
20208 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20213 /* The compiler produced a bogus file number. We can at least
20214 record the macro definitions made in the file, even if we
20215 won't be able to find the file by name. */
20216 char fake_name[80];
20218 xsnprintf (fake_name, sizeof (fake_name),
20219 "<bad macro file number %d>", file);
20221 complaint (&symfile_complaints,
20222 _("bad file number in macro information (%d)"),
20225 return xstrdup (fake_name);
20229 /* Return the full name of file number I in *LH's file name table.
20230 Use COMP_DIR as the name of the current directory of the
20231 compilation. The result is allocated using xmalloc; the caller is
20232 responsible for freeing it. */
20234 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20236 /* Is the file number a valid index into the line header's file name
20237 table? Remember that file numbers start with one, not zero. */
20238 if (1 <= file && file <= lh->num_file_names)
20240 char *relative = file_file_name (file, lh);
20242 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20244 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20247 return file_file_name (file, lh);
20251 static struct macro_source_file *
20252 macro_start_file (int file, int line,
20253 struct macro_source_file *current_file,
20254 const char *comp_dir,
20255 struct line_header *lh, struct objfile *objfile)
20257 /* File name relative to the compilation directory of this source file. */
20258 char *file_name = file_file_name (file, lh);
20260 if (! current_file)
20262 /* Note: We don't create a macro table for this compilation unit
20263 at all until we actually get a filename. */
20264 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20266 /* If we have no current file, then this must be the start_file
20267 directive for the compilation unit's main source file. */
20268 current_file = macro_set_main (macro_table, file_name);
20269 macro_define_special (macro_table);
20272 current_file = macro_include (current_file, line, file_name);
20276 return current_file;
20280 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20281 followed by a null byte. */
20283 copy_string (const char *buf, int len)
20285 char *s = xmalloc (len + 1);
20287 memcpy (s, buf, len);
20293 static const char *
20294 consume_improper_spaces (const char *p, const char *body)
20298 complaint (&symfile_complaints,
20299 _("macro definition contains spaces "
20300 "in formal argument list:\n`%s'"),
20312 parse_macro_definition (struct macro_source_file *file, int line,
20317 /* The body string takes one of two forms. For object-like macro
20318 definitions, it should be:
20320 <macro name> " " <definition>
20322 For function-like macro definitions, it should be:
20324 <macro name> "() " <definition>
20326 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20328 Spaces may appear only where explicitly indicated, and in the
20331 The Dwarf 2 spec says that an object-like macro's name is always
20332 followed by a space, but versions of GCC around March 2002 omit
20333 the space when the macro's definition is the empty string.
20335 The Dwarf 2 spec says that there should be no spaces between the
20336 formal arguments in a function-like macro's formal argument list,
20337 but versions of GCC around March 2002 include spaces after the
20341 /* Find the extent of the macro name. The macro name is terminated
20342 by either a space or null character (for an object-like macro) or
20343 an opening paren (for a function-like macro). */
20344 for (p = body; *p; p++)
20345 if (*p == ' ' || *p == '(')
20348 if (*p == ' ' || *p == '\0')
20350 /* It's an object-like macro. */
20351 int name_len = p - body;
20352 char *name = copy_string (body, name_len);
20353 const char *replacement;
20356 replacement = body + name_len + 1;
20359 dwarf2_macro_malformed_definition_complaint (body);
20360 replacement = body + name_len;
20363 macro_define_object (file, line, name, replacement);
20367 else if (*p == '(')
20369 /* It's a function-like macro. */
20370 char *name = copy_string (body, p - body);
20373 char **argv = xmalloc (argv_size * sizeof (*argv));
20377 p = consume_improper_spaces (p, body);
20379 /* Parse the formal argument list. */
20380 while (*p && *p != ')')
20382 /* Find the extent of the current argument name. */
20383 const char *arg_start = p;
20385 while (*p && *p != ',' && *p != ')' && *p != ' ')
20388 if (! *p || p == arg_start)
20389 dwarf2_macro_malformed_definition_complaint (body);
20392 /* Make sure argv has room for the new argument. */
20393 if (argc >= argv_size)
20396 argv = xrealloc (argv, argv_size * sizeof (*argv));
20399 argv[argc++] = copy_string (arg_start, p - arg_start);
20402 p = consume_improper_spaces (p, body);
20404 /* Consume the comma, if present. */
20409 p = consume_improper_spaces (p, body);
20418 /* Perfectly formed definition, no complaints. */
20419 macro_define_function (file, line, name,
20420 argc, (const char **) argv,
20422 else if (*p == '\0')
20424 /* Complain, but do define it. */
20425 dwarf2_macro_malformed_definition_complaint (body);
20426 macro_define_function (file, line, name,
20427 argc, (const char **) argv,
20431 /* Just complain. */
20432 dwarf2_macro_malformed_definition_complaint (body);
20435 /* Just complain. */
20436 dwarf2_macro_malformed_definition_complaint (body);
20442 for (i = 0; i < argc; i++)
20448 dwarf2_macro_malformed_definition_complaint (body);
20451 /* Skip some bytes from BYTES according to the form given in FORM.
20452 Returns the new pointer. */
20454 static const gdb_byte *
20455 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20456 enum dwarf_form form,
20457 unsigned int offset_size,
20458 struct dwarf2_section_info *section)
20460 unsigned int bytes_read;
20464 case DW_FORM_data1:
20469 case DW_FORM_data2:
20473 case DW_FORM_data4:
20477 case DW_FORM_data8:
20481 case DW_FORM_string:
20482 read_direct_string (abfd, bytes, &bytes_read);
20483 bytes += bytes_read;
20486 case DW_FORM_sec_offset:
20488 case DW_FORM_GNU_strp_alt:
20489 bytes += offset_size;
20492 case DW_FORM_block:
20493 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20494 bytes += bytes_read;
20497 case DW_FORM_block1:
20498 bytes += 1 + read_1_byte (abfd, bytes);
20500 case DW_FORM_block2:
20501 bytes += 2 + read_2_bytes (abfd, bytes);
20503 case DW_FORM_block4:
20504 bytes += 4 + read_4_bytes (abfd, bytes);
20507 case DW_FORM_sdata:
20508 case DW_FORM_udata:
20509 case DW_FORM_GNU_addr_index:
20510 case DW_FORM_GNU_str_index:
20511 bytes = gdb_skip_leb128 (bytes, buffer_end);
20514 dwarf2_section_buffer_overflow_complaint (section);
20522 complaint (&symfile_complaints,
20523 _("invalid form 0x%x in `%s'"),
20524 form, get_section_name (section));
20532 /* A helper for dwarf_decode_macros that handles skipping an unknown
20533 opcode. Returns an updated pointer to the macro data buffer; or,
20534 on error, issues a complaint and returns NULL. */
20536 static const gdb_byte *
20537 skip_unknown_opcode (unsigned int opcode,
20538 const gdb_byte **opcode_definitions,
20539 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20541 unsigned int offset_size,
20542 struct dwarf2_section_info *section)
20544 unsigned int bytes_read, i;
20546 const gdb_byte *defn;
20548 if (opcode_definitions[opcode] == NULL)
20550 complaint (&symfile_complaints,
20551 _("unrecognized DW_MACFINO opcode 0x%x"),
20556 defn = opcode_definitions[opcode];
20557 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20558 defn += bytes_read;
20560 for (i = 0; i < arg; ++i)
20562 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20564 if (mac_ptr == NULL)
20566 /* skip_form_bytes already issued the complaint. */
20574 /* A helper function which parses the header of a macro section.
20575 If the macro section is the extended (for now called "GNU") type,
20576 then this updates *OFFSET_SIZE. Returns a pointer to just after
20577 the header, or issues a complaint and returns NULL on error. */
20579 static const gdb_byte *
20580 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20582 const gdb_byte *mac_ptr,
20583 unsigned int *offset_size,
20584 int section_is_gnu)
20586 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20588 if (section_is_gnu)
20590 unsigned int version, flags;
20592 version = read_2_bytes (abfd, mac_ptr);
20595 complaint (&symfile_complaints,
20596 _("unrecognized version `%d' in .debug_macro section"),
20602 flags = read_1_byte (abfd, mac_ptr);
20604 *offset_size = (flags & 1) ? 8 : 4;
20606 if ((flags & 2) != 0)
20607 /* We don't need the line table offset. */
20608 mac_ptr += *offset_size;
20610 /* Vendor opcode descriptions. */
20611 if ((flags & 4) != 0)
20613 unsigned int i, count;
20615 count = read_1_byte (abfd, mac_ptr);
20617 for (i = 0; i < count; ++i)
20619 unsigned int opcode, bytes_read;
20622 opcode = read_1_byte (abfd, mac_ptr);
20624 opcode_definitions[opcode] = mac_ptr;
20625 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20626 mac_ptr += bytes_read;
20635 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20636 including DW_MACRO_GNU_transparent_include. */
20639 dwarf_decode_macro_bytes (bfd *abfd,
20640 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20641 struct macro_source_file *current_file,
20642 struct line_header *lh, const char *comp_dir,
20643 struct dwarf2_section_info *section,
20644 int section_is_gnu, int section_is_dwz,
20645 unsigned int offset_size,
20646 struct objfile *objfile,
20647 htab_t include_hash)
20649 enum dwarf_macro_record_type macinfo_type;
20650 int at_commandline;
20651 const gdb_byte *opcode_definitions[256];
20653 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20654 &offset_size, section_is_gnu);
20655 if (mac_ptr == NULL)
20657 /* We already issued a complaint. */
20661 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20662 GDB is still reading the definitions from command line. First
20663 DW_MACINFO_start_file will need to be ignored as it was already executed
20664 to create CURRENT_FILE for the main source holding also the command line
20665 definitions. On first met DW_MACINFO_start_file this flag is reset to
20666 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20668 at_commandline = 1;
20672 /* Do we at least have room for a macinfo type byte? */
20673 if (mac_ptr >= mac_end)
20675 dwarf2_section_buffer_overflow_complaint (section);
20679 macinfo_type = read_1_byte (abfd, mac_ptr);
20682 /* Note that we rely on the fact that the corresponding GNU and
20683 DWARF constants are the same. */
20684 switch (macinfo_type)
20686 /* A zero macinfo type indicates the end of the macro
20691 case DW_MACRO_GNU_define:
20692 case DW_MACRO_GNU_undef:
20693 case DW_MACRO_GNU_define_indirect:
20694 case DW_MACRO_GNU_undef_indirect:
20695 case DW_MACRO_GNU_define_indirect_alt:
20696 case DW_MACRO_GNU_undef_indirect_alt:
20698 unsigned int bytes_read;
20703 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20704 mac_ptr += bytes_read;
20706 if (macinfo_type == DW_MACRO_GNU_define
20707 || macinfo_type == DW_MACRO_GNU_undef)
20709 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20710 mac_ptr += bytes_read;
20714 LONGEST str_offset;
20716 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20717 mac_ptr += offset_size;
20719 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20720 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20723 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20725 body = read_indirect_string_from_dwz (dwz, str_offset);
20728 body = read_indirect_string_at_offset (abfd, str_offset);
20731 is_define = (macinfo_type == DW_MACRO_GNU_define
20732 || macinfo_type == DW_MACRO_GNU_define_indirect
20733 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20734 if (! current_file)
20736 /* DWARF violation as no main source is present. */
20737 complaint (&symfile_complaints,
20738 _("debug info with no main source gives macro %s "
20740 is_define ? _("definition") : _("undefinition"),
20744 if ((line == 0 && !at_commandline)
20745 || (line != 0 && at_commandline))
20746 complaint (&symfile_complaints,
20747 _("debug info gives %s macro %s with %s line %d: %s"),
20748 at_commandline ? _("command-line") : _("in-file"),
20749 is_define ? _("definition") : _("undefinition"),
20750 line == 0 ? _("zero") : _("non-zero"), line, body);
20753 parse_macro_definition (current_file, line, body);
20756 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20757 || macinfo_type == DW_MACRO_GNU_undef_indirect
20758 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20759 macro_undef (current_file, line, body);
20764 case DW_MACRO_GNU_start_file:
20766 unsigned int bytes_read;
20769 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20770 mac_ptr += bytes_read;
20771 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20772 mac_ptr += bytes_read;
20774 if ((line == 0 && !at_commandline)
20775 || (line != 0 && at_commandline))
20776 complaint (&symfile_complaints,
20777 _("debug info gives source %d included "
20778 "from %s at %s line %d"),
20779 file, at_commandline ? _("command-line") : _("file"),
20780 line == 0 ? _("zero") : _("non-zero"), line);
20782 if (at_commandline)
20784 /* This DW_MACRO_GNU_start_file was executed in the
20786 at_commandline = 0;
20789 current_file = macro_start_file (file, line,
20790 current_file, comp_dir,
20795 case DW_MACRO_GNU_end_file:
20796 if (! current_file)
20797 complaint (&symfile_complaints,
20798 _("macro debug info has an unmatched "
20799 "`close_file' directive"));
20802 current_file = current_file->included_by;
20803 if (! current_file)
20805 enum dwarf_macro_record_type next_type;
20807 /* GCC circa March 2002 doesn't produce the zero
20808 type byte marking the end of the compilation
20809 unit. Complain if it's not there, but exit no
20812 /* Do we at least have room for a macinfo type byte? */
20813 if (mac_ptr >= mac_end)
20815 dwarf2_section_buffer_overflow_complaint (section);
20819 /* We don't increment mac_ptr here, so this is just
20821 next_type = read_1_byte (abfd, mac_ptr);
20822 if (next_type != 0)
20823 complaint (&symfile_complaints,
20824 _("no terminating 0-type entry for "
20825 "macros in `.debug_macinfo' section"));
20832 case DW_MACRO_GNU_transparent_include:
20833 case DW_MACRO_GNU_transparent_include_alt:
20837 bfd *include_bfd = abfd;
20838 struct dwarf2_section_info *include_section = section;
20839 struct dwarf2_section_info alt_section;
20840 const gdb_byte *include_mac_end = mac_end;
20841 int is_dwz = section_is_dwz;
20842 const gdb_byte *new_mac_ptr;
20844 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20845 mac_ptr += offset_size;
20847 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20849 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20851 dwarf2_read_section (dwarf2_per_objfile->objfile,
20854 include_section = &dwz->macro;
20855 include_bfd = get_section_bfd_owner (include_section);
20856 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20860 new_mac_ptr = include_section->buffer + offset;
20861 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20865 /* This has actually happened; see
20866 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20867 complaint (&symfile_complaints,
20868 _("recursive DW_MACRO_GNU_transparent_include in "
20869 ".debug_macro section"));
20873 *slot = (void *) new_mac_ptr;
20875 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20876 include_mac_end, current_file,
20878 section, section_is_gnu, is_dwz,
20879 offset_size, objfile, include_hash);
20881 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20886 case DW_MACINFO_vendor_ext:
20887 if (!section_is_gnu)
20889 unsigned int bytes_read;
20892 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20893 mac_ptr += bytes_read;
20894 read_direct_string (abfd, mac_ptr, &bytes_read);
20895 mac_ptr += bytes_read;
20897 /* We don't recognize any vendor extensions. */
20903 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20904 mac_ptr, mac_end, abfd, offset_size,
20906 if (mac_ptr == NULL)
20910 } while (macinfo_type != 0);
20914 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20915 const char *comp_dir, int section_is_gnu)
20917 struct objfile *objfile = dwarf2_per_objfile->objfile;
20918 struct line_header *lh = cu->line_header;
20920 const gdb_byte *mac_ptr, *mac_end;
20921 struct macro_source_file *current_file = 0;
20922 enum dwarf_macro_record_type macinfo_type;
20923 unsigned int offset_size = cu->header.offset_size;
20924 const gdb_byte *opcode_definitions[256];
20925 struct cleanup *cleanup;
20926 htab_t include_hash;
20928 struct dwarf2_section_info *section;
20929 const char *section_name;
20931 if (cu->dwo_unit != NULL)
20933 if (section_is_gnu)
20935 section = &cu->dwo_unit->dwo_file->sections.macro;
20936 section_name = ".debug_macro.dwo";
20940 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20941 section_name = ".debug_macinfo.dwo";
20946 if (section_is_gnu)
20948 section = &dwarf2_per_objfile->macro;
20949 section_name = ".debug_macro";
20953 section = &dwarf2_per_objfile->macinfo;
20954 section_name = ".debug_macinfo";
20958 dwarf2_read_section (objfile, section);
20959 if (section->buffer == NULL)
20961 complaint (&symfile_complaints, _("missing %s section"), section_name);
20964 abfd = get_section_bfd_owner (section);
20966 /* First pass: Find the name of the base filename.
20967 This filename is needed in order to process all macros whose definition
20968 (or undefinition) comes from the command line. These macros are defined
20969 before the first DW_MACINFO_start_file entry, and yet still need to be
20970 associated to the base file.
20972 To determine the base file name, we scan the macro definitions until we
20973 reach the first DW_MACINFO_start_file entry. We then initialize
20974 CURRENT_FILE accordingly so that any macro definition found before the
20975 first DW_MACINFO_start_file can still be associated to the base file. */
20977 mac_ptr = section->buffer + offset;
20978 mac_end = section->buffer + section->size;
20980 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20981 &offset_size, section_is_gnu);
20982 if (mac_ptr == NULL)
20984 /* We already issued a complaint. */
20990 /* Do we at least have room for a macinfo type byte? */
20991 if (mac_ptr >= mac_end)
20993 /* Complaint is printed during the second pass as GDB will probably
20994 stop the first pass earlier upon finding
20995 DW_MACINFO_start_file. */
20999 macinfo_type = read_1_byte (abfd, mac_ptr);
21002 /* Note that we rely on the fact that the corresponding GNU and
21003 DWARF constants are the same. */
21004 switch (macinfo_type)
21006 /* A zero macinfo type indicates the end of the macro
21011 case DW_MACRO_GNU_define:
21012 case DW_MACRO_GNU_undef:
21013 /* Only skip the data by MAC_PTR. */
21015 unsigned int bytes_read;
21017 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21018 mac_ptr += bytes_read;
21019 read_direct_string (abfd, mac_ptr, &bytes_read);
21020 mac_ptr += bytes_read;
21024 case DW_MACRO_GNU_start_file:
21026 unsigned int bytes_read;
21029 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21030 mac_ptr += bytes_read;
21031 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21032 mac_ptr += bytes_read;
21034 current_file = macro_start_file (file, line, current_file,
21035 comp_dir, lh, objfile);
21039 case DW_MACRO_GNU_end_file:
21040 /* No data to skip by MAC_PTR. */
21043 case DW_MACRO_GNU_define_indirect:
21044 case DW_MACRO_GNU_undef_indirect:
21045 case DW_MACRO_GNU_define_indirect_alt:
21046 case DW_MACRO_GNU_undef_indirect_alt:
21048 unsigned int bytes_read;
21050 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21051 mac_ptr += bytes_read;
21052 mac_ptr += offset_size;
21056 case DW_MACRO_GNU_transparent_include:
21057 case DW_MACRO_GNU_transparent_include_alt:
21058 /* Note that, according to the spec, a transparent include
21059 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21060 skip this opcode. */
21061 mac_ptr += offset_size;
21064 case DW_MACINFO_vendor_ext:
21065 /* Only skip the data by MAC_PTR. */
21066 if (!section_is_gnu)
21068 unsigned int bytes_read;
21070 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21071 mac_ptr += bytes_read;
21072 read_direct_string (abfd, mac_ptr, &bytes_read);
21073 mac_ptr += bytes_read;
21078 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21079 mac_ptr, mac_end, abfd, offset_size,
21081 if (mac_ptr == NULL)
21085 } while (macinfo_type != 0 && current_file == NULL);
21087 /* Second pass: Process all entries.
21089 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21090 command-line macro definitions/undefinitions. This flag is unset when we
21091 reach the first DW_MACINFO_start_file entry. */
21093 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21094 NULL, xcalloc, xfree);
21095 cleanup = make_cleanup_htab_delete (include_hash);
21096 mac_ptr = section->buffer + offset;
21097 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21098 *slot = (void *) mac_ptr;
21099 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21100 current_file, lh, comp_dir, section,
21102 offset_size, objfile, include_hash);
21103 do_cleanups (cleanup);
21106 /* Check if the attribute's form is a DW_FORM_block*
21107 if so return true else false. */
21110 attr_form_is_block (const struct attribute *attr)
21112 return (attr == NULL ? 0 :
21113 attr->form == DW_FORM_block1
21114 || attr->form == DW_FORM_block2
21115 || attr->form == DW_FORM_block4
21116 || attr->form == DW_FORM_block
21117 || attr->form == DW_FORM_exprloc);
21120 /* Return non-zero if ATTR's value is a section offset --- classes
21121 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21122 You may use DW_UNSND (attr) to retrieve such offsets.
21124 Section 7.5.4, "Attribute Encodings", explains that no attribute
21125 may have a value that belongs to more than one of these classes; it
21126 would be ambiguous if we did, because we use the same forms for all
21130 attr_form_is_section_offset (const struct attribute *attr)
21132 return (attr->form == DW_FORM_data4
21133 || attr->form == DW_FORM_data8
21134 || attr->form == DW_FORM_sec_offset);
21137 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21138 zero otherwise. When this function returns true, you can apply
21139 dwarf2_get_attr_constant_value to it.
21141 However, note that for some attributes you must check
21142 attr_form_is_section_offset before using this test. DW_FORM_data4
21143 and DW_FORM_data8 are members of both the constant class, and of
21144 the classes that contain offsets into other debug sections
21145 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21146 that, if an attribute's can be either a constant or one of the
21147 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21148 taken as section offsets, not constants. */
21151 attr_form_is_constant (const struct attribute *attr)
21153 switch (attr->form)
21155 case DW_FORM_sdata:
21156 case DW_FORM_udata:
21157 case DW_FORM_data1:
21158 case DW_FORM_data2:
21159 case DW_FORM_data4:
21160 case DW_FORM_data8:
21168 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21169 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21172 attr_form_is_ref (const struct attribute *attr)
21174 switch (attr->form)
21176 case DW_FORM_ref_addr:
21181 case DW_FORM_ref_udata:
21182 case DW_FORM_GNU_ref_alt:
21189 /* Return the .debug_loc section to use for CU.
21190 For DWO files use .debug_loc.dwo. */
21192 static struct dwarf2_section_info *
21193 cu_debug_loc_section (struct dwarf2_cu *cu)
21196 return &cu->dwo_unit->dwo_file->sections.loc;
21197 return &dwarf2_per_objfile->loc;
21200 /* A helper function that fills in a dwarf2_loclist_baton. */
21203 fill_in_loclist_baton (struct dwarf2_cu *cu,
21204 struct dwarf2_loclist_baton *baton,
21205 const struct attribute *attr)
21207 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21209 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21211 baton->per_cu = cu->per_cu;
21212 gdb_assert (baton->per_cu);
21213 /* We don't know how long the location list is, but make sure we
21214 don't run off the edge of the section. */
21215 baton->size = section->size - DW_UNSND (attr);
21216 baton->data = section->buffer + DW_UNSND (attr);
21217 baton->base_address = cu->base_address;
21218 baton->from_dwo = cu->dwo_unit != NULL;
21222 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21223 struct dwarf2_cu *cu, int is_block)
21225 struct objfile *objfile = dwarf2_per_objfile->objfile;
21226 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21228 if (attr_form_is_section_offset (attr)
21229 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21230 the section. If so, fall through to the complaint in the
21232 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21234 struct dwarf2_loclist_baton *baton;
21236 baton = obstack_alloc (&objfile->objfile_obstack,
21237 sizeof (struct dwarf2_loclist_baton));
21239 fill_in_loclist_baton (cu, baton, attr);
21241 if (cu->base_known == 0)
21242 complaint (&symfile_complaints,
21243 _("Location list used without "
21244 "specifying the CU base address."));
21246 SYMBOL_ACLASS_INDEX (sym) = (is_block
21247 ? dwarf2_loclist_block_index
21248 : dwarf2_loclist_index);
21249 SYMBOL_LOCATION_BATON (sym) = baton;
21253 struct dwarf2_locexpr_baton *baton;
21255 baton = obstack_alloc (&objfile->objfile_obstack,
21256 sizeof (struct dwarf2_locexpr_baton));
21257 baton->per_cu = cu->per_cu;
21258 gdb_assert (baton->per_cu);
21260 if (attr_form_is_block (attr))
21262 /* Note that we're just copying the block's data pointer
21263 here, not the actual data. We're still pointing into the
21264 info_buffer for SYM's objfile; right now we never release
21265 that buffer, but when we do clean up properly this may
21267 baton->size = DW_BLOCK (attr)->size;
21268 baton->data = DW_BLOCK (attr)->data;
21272 dwarf2_invalid_attrib_class_complaint ("location description",
21273 SYMBOL_NATURAL_NAME (sym));
21277 SYMBOL_ACLASS_INDEX (sym) = (is_block
21278 ? dwarf2_locexpr_block_index
21279 : dwarf2_locexpr_index);
21280 SYMBOL_LOCATION_BATON (sym) = baton;
21284 /* Return the OBJFILE associated with the compilation unit CU. If CU
21285 came from a separate debuginfo file, then the master objfile is
21289 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21291 struct objfile *objfile = per_cu->objfile;
21293 /* Return the master objfile, so that we can report and look up the
21294 correct file containing this variable. */
21295 if (objfile->separate_debug_objfile_backlink)
21296 objfile = objfile->separate_debug_objfile_backlink;
21301 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21302 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21303 CU_HEADERP first. */
21305 static const struct comp_unit_head *
21306 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21307 struct dwarf2_per_cu_data *per_cu)
21309 const gdb_byte *info_ptr;
21312 return &per_cu->cu->header;
21314 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21316 memset (cu_headerp, 0, sizeof (*cu_headerp));
21317 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21322 /* Return the address size given in the compilation unit header for CU. */
21325 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21327 struct comp_unit_head cu_header_local;
21328 const struct comp_unit_head *cu_headerp;
21330 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21332 return cu_headerp->addr_size;
21335 /* Return the offset size given in the compilation unit header for CU. */
21338 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21340 struct comp_unit_head cu_header_local;
21341 const struct comp_unit_head *cu_headerp;
21343 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21345 return cu_headerp->offset_size;
21348 /* See its dwarf2loc.h declaration. */
21351 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21353 struct comp_unit_head cu_header_local;
21354 const struct comp_unit_head *cu_headerp;
21356 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21358 if (cu_headerp->version == 2)
21359 return cu_headerp->addr_size;
21361 return cu_headerp->offset_size;
21364 /* Return the text offset of the CU. The returned offset comes from
21365 this CU's objfile. If this objfile came from a separate debuginfo
21366 file, then the offset may be different from the corresponding
21367 offset in the parent objfile. */
21370 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21372 struct objfile *objfile = per_cu->objfile;
21374 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21377 /* Locate the .debug_info compilation unit from CU's objfile which contains
21378 the DIE at OFFSET. Raises an error on failure. */
21380 static struct dwarf2_per_cu_data *
21381 dwarf2_find_containing_comp_unit (sect_offset offset,
21382 unsigned int offset_in_dwz,
21383 struct objfile *objfile)
21385 struct dwarf2_per_cu_data *this_cu;
21387 const sect_offset *cu_off;
21390 high = dwarf2_per_objfile->n_comp_units - 1;
21393 struct dwarf2_per_cu_data *mid_cu;
21394 int mid = low + (high - low) / 2;
21396 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21397 cu_off = &mid_cu->offset;
21398 if (mid_cu->is_dwz > offset_in_dwz
21399 || (mid_cu->is_dwz == offset_in_dwz
21400 && cu_off->sect_off >= offset.sect_off))
21405 gdb_assert (low == high);
21406 this_cu = dwarf2_per_objfile->all_comp_units[low];
21407 cu_off = &this_cu->offset;
21408 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21410 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21411 error (_("Dwarf Error: could not find partial DIE containing "
21412 "offset 0x%lx [in module %s]"),
21413 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21415 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21416 <= offset.sect_off);
21417 return dwarf2_per_objfile->all_comp_units[low-1];
21421 this_cu = dwarf2_per_objfile->all_comp_units[low];
21422 if (low == dwarf2_per_objfile->n_comp_units - 1
21423 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21424 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21425 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21430 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21433 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21435 memset (cu, 0, sizeof (*cu));
21437 cu->per_cu = per_cu;
21438 cu->objfile = per_cu->objfile;
21439 obstack_init (&cu->comp_unit_obstack);
21442 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21445 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21446 enum language pretend_language)
21448 struct attribute *attr;
21450 /* Set the language we're debugging. */
21451 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21453 set_cu_language (DW_UNSND (attr), cu);
21456 cu->language = pretend_language;
21457 cu->language_defn = language_def (cu->language);
21460 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21462 cu->producer = DW_STRING (attr);
21465 /* Release one cached compilation unit, CU. We unlink it from the tree
21466 of compilation units, but we don't remove it from the read_in_chain;
21467 the caller is responsible for that.
21468 NOTE: DATA is a void * because this function is also used as a
21469 cleanup routine. */
21472 free_heap_comp_unit (void *data)
21474 struct dwarf2_cu *cu = data;
21476 gdb_assert (cu->per_cu != NULL);
21477 cu->per_cu->cu = NULL;
21480 obstack_free (&cu->comp_unit_obstack, NULL);
21485 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21486 when we're finished with it. We can't free the pointer itself, but be
21487 sure to unlink it from the cache. Also release any associated storage. */
21490 free_stack_comp_unit (void *data)
21492 struct dwarf2_cu *cu = data;
21494 gdb_assert (cu->per_cu != NULL);
21495 cu->per_cu->cu = NULL;
21498 obstack_free (&cu->comp_unit_obstack, NULL);
21499 cu->partial_dies = NULL;
21502 /* Free all cached compilation units. */
21505 free_cached_comp_units (void *data)
21507 struct dwarf2_per_cu_data *per_cu, **last_chain;
21509 per_cu = dwarf2_per_objfile->read_in_chain;
21510 last_chain = &dwarf2_per_objfile->read_in_chain;
21511 while (per_cu != NULL)
21513 struct dwarf2_per_cu_data *next_cu;
21515 next_cu = per_cu->cu->read_in_chain;
21517 free_heap_comp_unit (per_cu->cu);
21518 *last_chain = next_cu;
21524 /* Increase the age counter on each cached compilation unit, and free
21525 any that are too old. */
21528 age_cached_comp_units (void)
21530 struct dwarf2_per_cu_data *per_cu, **last_chain;
21532 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21533 per_cu = dwarf2_per_objfile->read_in_chain;
21534 while (per_cu != NULL)
21536 per_cu->cu->last_used ++;
21537 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21538 dwarf2_mark (per_cu->cu);
21539 per_cu = per_cu->cu->read_in_chain;
21542 per_cu = dwarf2_per_objfile->read_in_chain;
21543 last_chain = &dwarf2_per_objfile->read_in_chain;
21544 while (per_cu != NULL)
21546 struct dwarf2_per_cu_data *next_cu;
21548 next_cu = per_cu->cu->read_in_chain;
21550 if (!per_cu->cu->mark)
21552 free_heap_comp_unit (per_cu->cu);
21553 *last_chain = next_cu;
21556 last_chain = &per_cu->cu->read_in_chain;
21562 /* Remove a single compilation unit from the cache. */
21565 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21567 struct dwarf2_per_cu_data *per_cu, **last_chain;
21569 per_cu = dwarf2_per_objfile->read_in_chain;
21570 last_chain = &dwarf2_per_objfile->read_in_chain;
21571 while (per_cu != NULL)
21573 struct dwarf2_per_cu_data *next_cu;
21575 next_cu = per_cu->cu->read_in_chain;
21577 if (per_cu == target_per_cu)
21579 free_heap_comp_unit (per_cu->cu);
21581 *last_chain = next_cu;
21585 last_chain = &per_cu->cu->read_in_chain;
21591 /* Release all extra memory associated with OBJFILE. */
21594 dwarf2_free_objfile (struct objfile *objfile)
21596 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21598 if (dwarf2_per_objfile == NULL)
21601 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21602 free_cached_comp_units (NULL);
21604 if (dwarf2_per_objfile->quick_file_names_table)
21605 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21607 /* Everything else should be on the objfile obstack. */
21610 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21611 We store these in a hash table separate from the DIEs, and preserve them
21612 when the DIEs are flushed out of cache.
21614 The CU "per_cu" pointer is needed because offset alone is not enough to
21615 uniquely identify the type. A file may have multiple .debug_types sections,
21616 or the type may come from a DWO file. Furthermore, while it's more logical
21617 to use per_cu->section+offset, with Fission the section with the data is in
21618 the DWO file but we don't know that section at the point we need it.
21619 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21620 because we can enter the lookup routine, get_die_type_at_offset, from
21621 outside this file, and thus won't necessarily have PER_CU->cu.
21622 Fortunately, PER_CU is stable for the life of the objfile. */
21624 struct dwarf2_per_cu_offset_and_type
21626 const struct dwarf2_per_cu_data *per_cu;
21627 sect_offset offset;
21631 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21634 per_cu_offset_and_type_hash (const void *item)
21636 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21638 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21641 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21644 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21646 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21647 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21649 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21650 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21653 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21654 table if necessary. For convenience, return TYPE.
21656 The DIEs reading must have careful ordering to:
21657 * Not cause infite loops trying to read in DIEs as a prerequisite for
21658 reading current DIE.
21659 * Not trying to dereference contents of still incompletely read in types
21660 while reading in other DIEs.
21661 * Enable referencing still incompletely read in types just by a pointer to
21662 the type without accessing its fields.
21664 Therefore caller should follow these rules:
21665 * Try to fetch any prerequisite types we may need to build this DIE type
21666 before building the type and calling set_die_type.
21667 * After building type call set_die_type for current DIE as soon as
21668 possible before fetching more types to complete the current type.
21669 * Make the type as complete as possible before fetching more types. */
21671 static struct type *
21672 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21674 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21675 struct objfile *objfile = cu->objfile;
21677 /* For Ada types, make sure that the gnat-specific data is always
21678 initialized (if not already set). There are a few types where
21679 we should not be doing so, because the type-specific area is
21680 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21681 where the type-specific area is used to store the floatformat).
21682 But this is not a problem, because the gnat-specific information
21683 is actually not needed for these types. */
21684 if (need_gnat_info (cu)
21685 && TYPE_CODE (type) != TYPE_CODE_FUNC
21686 && TYPE_CODE (type) != TYPE_CODE_FLT
21687 && !HAVE_GNAT_AUX_INFO (type))
21688 INIT_GNAT_SPECIFIC (type);
21690 if (dwarf2_per_objfile->die_type_hash == NULL)
21692 dwarf2_per_objfile->die_type_hash =
21693 htab_create_alloc_ex (127,
21694 per_cu_offset_and_type_hash,
21695 per_cu_offset_and_type_eq,
21697 &objfile->objfile_obstack,
21698 hashtab_obstack_allocate,
21699 dummy_obstack_deallocate);
21702 ofs.per_cu = cu->per_cu;
21703 ofs.offset = die->offset;
21705 slot = (struct dwarf2_per_cu_offset_and_type **)
21706 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21708 complaint (&symfile_complaints,
21709 _("A problem internal to GDB: DIE 0x%x has type already set"),
21710 die->offset.sect_off);
21711 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21716 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21717 or return NULL if the die does not have a saved type. */
21719 static struct type *
21720 get_die_type_at_offset (sect_offset offset,
21721 struct dwarf2_per_cu_data *per_cu)
21723 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21725 if (dwarf2_per_objfile->die_type_hash == NULL)
21728 ofs.per_cu = per_cu;
21729 ofs.offset = offset;
21730 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21737 /* Look up the type for DIE in CU in die_type_hash,
21738 or return NULL if DIE does not have a saved type. */
21740 static struct type *
21741 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21743 return get_die_type_at_offset (die->offset, cu->per_cu);
21746 /* Add a dependence relationship from CU to REF_PER_CU. */
21749 dwarf2_add_dependence (struct dwarf2_cu *cu,
21750 struct dwarf2_per_cu_data *ref_per_cu)
21754 if (cu->dependencies == NULL)
21756 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21757 NULL, &cu->comp_unit_obstack,
21758 hashtab_obstack_allocate,
21759 dummy_obstack_deallocate);
21761 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21763 *slot = ref_per_cu;
21766 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21767 Set the mark field in every compilation unit in the
21768 cache that we must keep because we are keeping CU. */
21771 dwarf2_mark_helper (void **slot, void *data)
21773 struct dwarf2_per_cu_data *per_cu;
21775 per_cu = (struct dwarf2_per_cu_data *) *slot;
21777 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21778 reading of the chain. As such dependencies remain valid it is not much
21779 useful to track and undo them during QUIT cleanups. */
21780 if (per_cu->cu == NULL)
21783 if (per_cu->cu->mark)
21785 per_cu->cu->mark = 1;
21787 if (per_cu->cu->dependencies != NULL)
21788 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21793 /* Set the mark field in CU and in every other compilation unit in the
21794 cache that we must keep because we are keeping CU. */
21797 dwarf2_mark (struct dwarf2_cu *cu)
21802 if (cu->dependencies != NULL)
21803 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21807 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21811 per_cu->cu->mark = 0;
21812 per_cu = per_cu->cu->read_in_chain;
21816 /* Trivial hash function for partial_die_info: the hash value of a DIE
21817 is its offset in .debug_info for this objfile. */
21820 partial_die_hash (const void *item)
21822 const struct partial_die_info *part_die = item;
21824 return part_die->offset.sect_off;
21827 /* Trivial comparison function for partial_die_info structures: two DIEs
21828 are equal if they have the same offset. */
21831 partial_die_eq (const void *item_lhs, const void *item_rhs)
21833 const struct partial_die_info *part_die_lhs = item_lhs;
21834 const struct partial_die_info *part_die_rhs = item_rhs;
21836 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21839 static struct cmd_list_element *set_dwarf2_cmdlist;
21840 static struct cmd_list_element *show_dwarf2_cmdlist;
21843 set_dwarf2_cmd (char *args, int from_tty)
21845 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21850 show_dwarf2_cmd (char *args, int from_tty)
21852 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21855 /* Free data associated with OBJFILE, if necessary. */
21858 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21860 struct dwarf2_per_objfile *data = d;
21863 /* Make sure we don't accidentally use dwarf2_per_objfile while
21865 dwarf2_per_objfile = NULL;
21867 for (ix = 0; ix < data->n_comp_units; ++ix)
21868 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21870 for (ix = 0; ix < data->n_type_units; ++ix)
21871 VEC_free (dwarf2_per_cu_ptr,
21872 data->all_type_units[ix]->per_cu.imported_symtabs);
21873 xfree (data->all_type_units);
21875 VEC_free (dwarf2_section_info_def, data->types);
21877 if (data->dwo_files)
21878 free_dwo_files (data->dwo_files, objfile);
21879 if (data->dwp_file)
21880 gdb_bfd_unref (data->dwp_file->dbfd);
21882 if (data->dwz_file && data->dwz_file->dwz_bfd)
21883 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21887 /* The "save gdb-index" command. */
21889 /* The contents of the hash table we create when building the string
21891 struct strtab_entry
21893 offset_type offset;
21897 /* Hash function for a strtab_entry.
21899 Function is used only during write_hash_table so no index format backward
21900 compatibility is needed. */
21903 hash_strtab_entry (const void *e)
21905 const struct strtab_entry *entry = e;
21906 return mapped_index_string_hash (INT_MAX, entry->str);
21909 /* Equality function for a strtab_entry. */
21912 eq_strtab_entry (const void *a, const void *b)
21914 const struct strtab_entry *ea = a;
21915 const struct strtab_entry *eb = b;
21916 return !strcmp (ea->str, eb->str);
21919 /* Create a strtab_entry hash table. */
21922 create_strtab (void)
21924 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21925 xfree, xcalloc, xfree);
21928 /* Add a string to the constant pool. Return the string's offset in
21932 add_string (htab_t table, struct obstack *cpool, const char *str)
21935 struct strtab_entry entry;
21936 struct strtab_entry *result;
21939 slot = htab_find_slot (table, &entry, INSERT);
21944 result = XNEW (struct strtab_entry);
21945 result->offset = obstack_object_size (cpool);
21947 obstack_grow_str0 (cpool, str);
21950 return result->offset;
21953 /* An entry in the symbol table. */
21954 struct symtab_index_entry
21956 /* The name of the symbol. */
21958 /* The offset of the name in the constant pool. */
21959 offset_type index_offset;
21960 /* A sorted vector of the indices of all the CUs that hold an object
21962 VEC (offset_type) *cu_indices;
21965 /* The symbol table. This is a power-of-2-sized hash table. */
21966 struct mapped_symtab
21968 offset_type n_elements;
21970 struct symtab_index_entry **data;
21973 /* Hash function for a symtab_index_entry. */
21976 hash_symtab_entry (const void *e)
21978 const struct symtab_index_entry *entry = e;
21979 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21980 sizeof (offset_type) * VEC_length (offset_type,
21981 entry->cu_indices),
21985 /* Equality function for a symtab_index_entry. */
21988 eq_symtab_entry (const void *a, const void *b)
21990 const struct symtab_index_entry *ea = a;
21991 const struct symtab_index_entry *eb = b;
21992 int len = VEC_length (offset_type, ea->cu_indices);
21993 if (len != VEC_length (offset_type, eb->cu_indices))
21995 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21996 VEC_address (offset_type, eb->cu_indices),
21997 sizeof (offset_type) * len);
22000 /* Destroy a symtab_index_entry. */
22003 delete_symtab_entry (void *p)
22005 struct symtab_index_entry *entry = p;
22006 VEC_free (offset_type, entry->cu_indices);
22010 /* Create a hash table holding symtab_index_entry objects. */
22013 create_symbol_hash_table (void)
22015 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22016 delete_symtab_entry, xcalloc, xfree);
22019 /* Create a new mapped symtab object. */
22021 static struct mapped_symtab *
22022 create_mapped_symtab (void)
22024 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22025 symtab->n_elements = 0;
22026 symtab->size = 1024;
22027 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22031 /* Destroy a mapped_symtab. */
22034 cleanup_mapped_symtab (void *p)
22036 struct mapped_symtab *symtab = p;
22037 /* The contents of the array are freed when the other hash table is
22039 xfree (symtab->data);
22043 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22046 Function is used only during write_hash_table so no index format backward
22047 compatibility is needed. */
22049 static struct symtab_index_entry **
22050 find_slot (struct mapped_symtab *symtab, const char *name)
22052 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22054 index = hash & (symtab->size - 1);
22055 step = ((hash * 17) & (symtab->size - 1)) | 1;
22059 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22060 return &symtab->data[index];
22061 index = (index + step) & (symtab->size - 1);
22065 /* Expand SYMTAB's hash table. */
22068 hash_expand (struct mapped_symtab *symtab)
22070 offset_type old_size = symtab->size;
22072 struct symtab_index_entry **old_entries = symtab->data;
22075 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22077 for (i = 0; i < old_size; ++i)
22079 if (old_entries[i])
22081 struct symtab_index_entry **slot = find_slot (symtab,
22082 old_entries[i]->name);
22083 *slot = old_entries[i];
22087 xfree (old_entries);
22090 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22091 CU_INDEX is the index of the CU in which the symbol appears.
22092 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22095 add_index_entry (struct mapped_symtab *symtab, const char *name,
22096 int is_static, gdb_index_symbol_kind kind,
22097 offset_type cu_index)
22099 struct symtab_index_entry **slot;
22100 offset_type cu_index_and_attrs;
22102 ++symtab->n_elements;
22103 if (4 * symtab->n_elements / 3 >= symtab->size)
22104 hash_expand (symtab);
22106 slot = find_slot (symtab, name);
22109 *slot = XNEW (struct symtab_index_entry);
22110 (*slot)->name = name;
22111 /* index_offset is set later. */
22112 (*slot)->cu_indices = NULL;
22115 cu_index_and_attrs = 0;
22116 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22117 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22118 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22120 /* We don't want to record an index value twice as we want to avoid the
22122 We process all global symbols and then all static symbols
22123 (which would allow us to avoid the duplication by only having to check
22124 the last entry pushed), but a symbol could have multiple kinds in one CU.
22125 To keep things simple we don't worry about the duplication here and
22126 sort and uniqufy the list after we've processed all symbols. */
22127 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22130 /* qsort helper routine for uniquify_cu_indices. */
22133 offset_type_compare (const void *ap, const void *bp)
22135 offset_type a = *(offset_type *) ap;
22136 offset_type b = *(offset_type *) bp;
22138 return (a > b) - (b > a);
22141 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22144 uniquify_cu_indices (struct mapped_symtab *symtab)
22148 for (i = 0; i < symtab->size; ++i)
22150 struct symtab_index_entry *entry = symtab->data[i];
22153 && entry->cu_indices != NULL)
22155 unsigned int next_to_insert, next_to_check;
22156 offset_type last_value;
22158 qsort (VEC_address (offset_type, entry->cu_indices),
22159 VEC_length (offset_type, entry->cu_indices),
22160 sizeof (offset_type), offset_type_compare);
22162 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22163 next_to_insert = 1;
22164 for (next_to_check = 1;
22165 next_to_check < VEC_length (offset_type, entry->cu_indices);
22168 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22171 last_value = VEC_index (offset_type, entry->cu_indices,
22173 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22178 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22183 /* Add a vector of indices to the constant pool. */
22186 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22187 struct symtab_index_entry *entry)
22191 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22194 offset_type len = VEC_length (offset_type, entry->cu_indices);
22195 offset_type val = MAYBE_SWAP (len);
22200 entry->index_offset = obstack_object_size (cpool);
22202 obstack_grow (cpool, &val, sizeof (val));
22204 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22207 val = MAYBE_SWAP (iter);
22208 obstack_grow (cpool, &val, sizeof (val));
22213 struct symtab_index_entry *old_entry = *slot;
22214 entry->index_offset = old_entry->index_offset;
22217 return entry->index_offset;
22220 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22221 constant pool entries going into the obstack CPOOL. */
22224 write_hash_table (struct mapped_symtab *symtab,
22225 struct obstack *output, struct obstack *cpool)
22228 htab_t symbol_hash_table;
22231 symbol_hash_table = create_symbol_hash_table ();
22232 str_table = create_strtab ();
22234 /* We add all the index vectors to the constant pool first, to
22235 ensure alignment is ok. */
22236 for (i = 0; i < symtab->size; ++i)
22238 if (symtab->data[i])
22239 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22242 /* Now write out the hash table. */
22243 for (i = 0; i < symtab->size; ++i)
22245 offset_type str_off, vec_off;
22247 if (symtab->data[i])
22249 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22250 vec_off = symtab->data[i]->index_offset;
22254 /* While 0 is a valid constant pool index, it is not valid
22255 to have 0 for both offsets. */
22260 str_off = MAYBE_SWAP (str_off);
22261 vec_off = MAYBE_SWAP (vec_off);
22263 obstack_grow (output, &str_off, sizeof (str_off));
22264 obstack_grow (output, &vec_off, sizeof (vec_off));
22267 htab_delete (str_table);
22268 htab_delete (symbol_hash_table);
22271 /* Struct to map psymtab to CU index in the index file. */
22272 struct psymtab_cu_index_map
22274 struct partial_symtab *psymtab;
22275 unsigned int cu_index;
22279 hash_psymtab_cu_index (const void *item)
22281 const struct psymtab_cu_index_map *map = item;
22283 return htab_hash_pointer (map->psymtab);
22287 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22289 const struct psymtab_cu_index_map *lhs = item_lhs;
22290 const struct psymtab_cu_index_map *rhs = item_rhs;
22292 return lhs->psymtab == rhs->psymtab;
22295 /* Helper struct for building the address table. */
22296 struct addrmap_index_data
22298 struct objfile *objfile;
22299 struct obstack *addr_obstack;
22300 htab_t cu_index_htab;
22302 /* Non-zero if the previous_* fields are valid.
22303 We can't write an entry until we see the next entry (since it is only then
22304 that we know the end of the entry). */
22305 int previous_valid;
22306 /* Index of the CU in the table of all CUs in the index file. */
22307 unsigned int previous_cu_index;
22308 /* Start address of the CU. */
22309 CORE_ADDR previous_cu_start;
22312 /* Write an address entry to OBSTACK. */
22315 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22316 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22318 offset_type cu_index_to_write;
22320 CORE_ADDR baseaddr;
22322 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22324 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22325 obstack_grow (obstack, addr, 8);
22326 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22327 obstack_grow (obstack, addr, 8);
22328 cu_index_to_write = MAYBE_SWAP (cu_index);
22329 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22332 /* Worker function for traversing an addrmap to build the address table. */
22335 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22337 struct addrmap_index_data *data = datap;
22338 struct partial_symtab *pst = obj;
22340 if (data->previous_valid)
22341 add_address_entry (data->objfile, data->addr_obstack,
22342 data->previous_cu_start, start_addr,
22343 data->previous_cu_index);
22345 data->previous_cu_start = start_addr;
22348 struct psymtab_cu_index_map find_map, *map;
22349 find_map.psymtab = pst;
22350 map = htab_find (data->cu_index_htab, &find_map);
22351 gdb_assert (map != NULL);
22352 data->previous_cu_index = map->cu_index;
22353 data->previous_valid = 1;
22356 data->previous_valid = 0;
22361 /* Write OBJFILE's address map to OBSTACK.
22362 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22363 in the index file. */
22366 write_address_map (struct objfile *objfile, struct obstack *obstack,
22367 htab_t cu_index_htab)
22369 struct addrmap_index_data addrmap_index_data;
22371 /* When writing the address table, we have to cope with the fact that
22372 the addrmap iterator only provides the start of a region; we have to
22373 wait until the next invocation to get the start of the next region. */
22375 addrmap_index_data.objfile = objfile;
22376 addrmap_index_data.addr_obstack = obstack;
22377 addrmap_index_data.cu_index_htab = cu_index_htab;
22378 addrmap_index_data.previous_valid = 0;
22380 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22381 &addrmap_index_data);
22383 /* It's highly unlikely the last entry (end address = 0xff...ff)
22384 is valid, but we should still handle it.
22385 The end address is recorded as the start of the next region, but that
22386 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22388 if (addrmap_index_data.previous_valid)
22389 add_address_entry (objfile, obstack,
22390 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22391 addrmap_index_data.previous_cu_index);
22394 /* Return the symbol kind of PSYM. */
22396 static gdb_index_symbol_kind
22397 symbol_kind (struct partial_symbol *psym)
22399 domain_enum domain = PSYMBOL_DOMAIN (psym);
22400 enum address_class aclass = PSYMBOL_CLASS (psym);
22408 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22410 return GDB_INDEX_SYMBOL_KIND_TYPE;
22412 case LOC_CONST_BYTES:
22413 case LOC_OPTIMIZED_OUT:
22415 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22417 /* Note: It's currently impossible to recognize psyms as enum values
22418 short of reading the type info. For now punt. */
22419 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22421 /* There are other LOC_FOO values that one might want to classify
22422 as variables, but dwarf2read.c doesn't currently use them. */
22423 return GDB_INDEX_SYMBOL_KIND_OTHER;
22425 case STRUCT_DOMAIN:
22426 return GDB_INDEX_SYMBOL_KIND_TYPE;
22428 return GDB_INDEX_SYMBOL_KIND_OTHER;
22432 /* Add a list of partial symbols to SYMTAB. */
22435 write_psymbols (struct mapped_symtab *symtab,
22437 struct partial_symbol **psymp,
22439 offset_type cu_index,
22442 for (; count-- > 0; ++psymp)
22444 struct partial_symbol *psym = *psymp;
22447 if (SYMBOL_LANGUAGE (psym) == language_ada)
22448 error (_("Ada is not currently supported by the index"));
22450 /* Only add a given psymbol once. */
22451 slot = htab_find_slot (psyms_seen, psym, INSERT);
22454 gdb_index_symbol_kind kind = symbol_kind (psym);
22457 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22458 is_static, kind, cu_index);
22463 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22464 exception if there is an error. */
22467 write_obstack (FILE *file, struct obstack *obstack)
22469 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22471 != obstack_object_size (obstack))
22472 error (_("couldn't data write to file"));
22475 /* Unlink a file if the argument is not NULL. */
22478 unlink_if_set (void *p)
22480 char **filename = p;
22482 unlink (*filename);
22485 /* A helper struct used when iterating over debug_types. */
22486 struct signatured_type_index_data
22488 struct objfile *objfile;
22489 struct mapped_symtab *symtab;
22490 struct obstack *types_list;
22495 /* A helper function that writes a single signatured_type to an
22499 write_one_signatured_type (void **slot, void *d)
22501 struct signatured_type_index_data *info = d;
22502 struct signatured_type *entry = (struct signatured_type *) *slot;
22503 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22506 write_psymbols (info->symtab,
22508 info->objfile->global_psymbols.list
22509 + psymtab->globals_offset,
22510 psymtab->n_global_syms, info->cu_index,
22512 write_psymbols (info->symtab,
22514 info->objfile->static_psymbols.list
22515 + psymtab->statics_offset,
22516 psymtab->n_static_syms, info->cu_index,
22519 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22520 entry->per_cu.offset.sect_off);
22521 obstack_grow (info->types_list, val, 8);
22522 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22523 entry->type_offset_in_tu.cu_off);
22524 obstack_grow (info->types_list, val, 8);
22525 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22526 obstack_grow (info->types_list, val, 8);
22533 /* Recurse into all "included" dependencies and write their symbols as
22534 if they appeared in this psymtab. */
22537 recursively_write_psymbols (struct objfile *objfile,
22538 struct partial_symtab *psymtab,
22539 struct mapped_symtab *symtab,
22541 offset_type cu_index)
22545 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22546 if (psymtab->dependencies[i]->user != NULL)
22547 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22548 symtab, psyms_seen, cu_index);
22550 write_psymbols (symtab,
22552 objfile->global_psymbols.list + psymtab->globals_offset,
22553 psymtab->n_global_syms, cu_index,
22555 write_psymbols (symtab,
22557 objfile->static_psymbols.list + psymtab->statics_offset,
22558 psymtab->n_static_syms, cu_index,
22562 /* Create an index file for OBJFILE in the directory DIR. */
22565 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22567 struct cleanup *cleanup;
22568 char *filename, *cleanup_filename;
22569 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22570 struct obstack cu_list, types_cu_list;
22573 struct mapped_symtab *symtab;
22574 offset_type val, size_of_contents, total_len;
22577 htab_t cu_index_htab;
22578 struct psymtab_cu_index_map *psymtab_cu_index_map;
22580 if (dwarf2_per_objfile->using_index)
22581 error (_("Cannot use an index to create the index"));
22583 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22584 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22586 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22589 if (stat (objfile_name (objfile), &st) < 0)
22590 perror_with_name (objfile_name (objfile));
22592 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22593 INDEX_SUFFIX, (char *) NULL);
22594 cleanup = make_cleanup (xfree, filename);
22596 out_file = gdb_fopen_cloexec (filename, "wb");
22598 error (_("Can't open `%s' for writing"), filename);
22600 cleanup_filename = filename;
22601 make_cleanup (unlink_if_set, &cleanup_filename);
22603 symtab = create_mapped_symtab ();
22604 make_cleanup (cleanup_mapped_symtab, symtab);
22606 obstack_init (&addr_obstack);
22607 make_cleanup_obstack_free (&addr_obstack);
22609 obstack_init (&cu_list);
22610 make_cleanup_obstack_free (&cu_list);
22612 obstack_init (&types_cu_list);
22613 make_cleanup_obstack_free (&types_cu_list);
22615 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22616 NULL, xcalloc, xfree);
22617 make_cleanup_htab_delete (psyms_seen);
22619 /* While we're scanning CU's create a table that maps a psymtab pointer
22620 (which is what addrmap records) to its index (which is what is recorded
22621 in the index file). This will later be needed to write the address
22623 cu_index_htab = htab_create_alloc (100,
22624 hash_psymtab_cu_index,
22625 eq_psymtab_cu_index,
22626 NULL, xcalloc, xfree);
22627 make_cleanup_htab_delete (cu_index_htab);
22628 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22629 xmalloc (sizeof (struct psymtab_cu_index_map)
22630 * dwarf2_per_objfile->n_comp_units);
22631 make_cleanup (xfree, psymtab_cu_index_map);
22633 /* The CU list is already sorted, so we don't need to do additional
22634 work here. Also, the debug_types entries do not appear in
22635 all_comp_units, but only in their own hash table. */
22636 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22638 struct dwarf2_per_cu_data *per_cu
22639 = dwarf2_per_objfile->all_comp_units[i];
22640 struct partial_symtab *psymtab = per_cu->v.psymtab;
22642 struct psymtab_cu_index_map *map;
22645 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22646 It may be referenced from a local scope but in such case it does not
22647 need to be present in .gdb_index. */
22648 if (psymtab == NULL)
22651 if (psymtab->user == NULL)
22652 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22654 map = &psymtab_cu_index_map[i];
22655 map->psymtab = psymtab;
22657 slot = htab_find_slot (cu_index_htab, map, INSERT);
22658 gdb_assert (slot != NULL);
22659 gdb_assert (*slot == NULL);
22662 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22663 per_cu->offset.sect_off);
22664 obstack_grow (&cu_list, val, 8);
22665 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22666 obstack_grow (&cu_list, val, 8);
22669 /* Dump the address map. */
22670 write_address_map (objfile, &addr_obstack, cu_index_htab);
22672 /* Write out the .debug_type entries, if any. */
22673 if (dwarf2_per_objfile->signatured_types)
22675 struct signatured_type_index_data sig_data;
22677 sig_data.objfile = objfile;
22678 sig_data.symtab = symtab;
22679 sig_data.types_list = &types_cu_list;
22680 sig_data.psyms_seen = psyms_seen;
22681 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22682 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22683 write_one_signatured_type, &sig_data);
22686 /* Now that we've processed all symbols we can shrink their cu_indices
22688 uniquify_cu_indices (symtab);
22690 obstack_init (&constant_pool);
22691 make_cleanup_obstack_free (&constant_pool);
22692 obstack_init (&symtab_obstack);
22693 make_cleanup_obstack_free (&symtab_obstack);
22694 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22696 obstack_init (&contents);
22697 make_cleanup_obstack_free (&contents);
22698 size_of_contents = 6 * sizeof (offset_type);
22699 total_len = size_of_contents;
22701 /* The version number. */
22702 val = MAYBE_SWAP (8);
22703 obstack_grow (&contents, &val, sizeof (val));
22705 /* The offset of the CU list from the start of the file. */
22706 val = MAYBE_SWAP (total_len);
22707 obstack_grow (&contents, &val, sizeof (val));
22708 total_len += obstack_object_size (&cu_list);
22710 /* The offset of the types CU list from the start of the file. */
22711 val = MAYBE_SWAP (total_len);
22712 obstack_grow (&contents, &val, sizeof (val));
22713 total_len += obstack_object_size (&types_cu_list);
22715 /* The offset of the address table from the start of the file. */
22716 val = MAYBE_SWAP (total_len);
22717 obstack_grow (&contents, &val, sizeof (val));
22718 total_len += obstack_object_size (&addr_obstack);
22720 /* The offset of the symbol table from the start of the file. */
22721 val = MAYBE_SWAP (total_len);
22722 obstack_grow (&contents, &val, sizeof (val));
22723 total_len += obstack_object_size (&symtab_obstack);
22725 /* The offset of the constant pool from the start of the file. */
22726 val = MAYBE_SWAP (total_len);
22727 obstack_grow (&contents, &val, sizeof (val));
22728 total_len += obstack_object_size (&constant_pool);
22730 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22732 write_obstack (out_file, &contents);
22733 write_obstack (out_file, &cu_list);
22734 write_obstack (out_file, &types_cu_list);
22735 write_obstack (out_file, &addr_obstack);
22736 write_obstack (out_file, &symtab_obstack);
22737 write_obstack (out_file, &constant_pool);
22741 /* We want to keep the file, so we set cleanup_filename to NULL
22742 here. See unlink_if_set. */
22743 cleanup_filename = NULL;
22745 do_cleanups (cleanup);
22748 /* Implementation of the `save gdb-index' command.
22750 Note that the file format used by this command is documented in the
22751 GDB manual. Any changes here must be documented there. */
22754 save_gdb_index_command (char *arg, int from_tty)
22756 struct objfile *objfile;
22759 error (_("usage: save gdb-index DIRECTORY"));
22761 ALL_OBJFILES (objfile)
22765 /* If the objfile does not correspond to an actual file, skip it. */
22766 if (stat (objfile_name (objfile), &st) < 0)
22769 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22770 if (dwarf2_per_objfile)
22772 volatile struct gdb_exception except;
22774 TRY_CATCH (except, RETURN_MASK_ERROR)
22776 write_psymtabs_to_index (objfile, arg);
22778 if (except.reason < 0)
22779 exception_fprintf (gdb_stderr, except,
22780 _("Error while writing index for `%s': "),
22781 objfile_name (objfile));
22788 int dwarf2_always_disassemble;
22791 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22792 struct cmd_list_element *c, const char *value)
22794 fprintf_filtered (file,
22795 _("Whether to always disassemble "
22796 "DWARF expressions is %s.\n"),
22801 show_check_physname (struct ui_file *file, int from_tty,
22802 struct cmd_list_element *c, const char *value)
22804 fprintf_filtered (file,
22805 _("Whether to check \"physname\" is %s.\n"),
22809 void _initialize_dwarf2_read (void);
22812 _initialize_dwarf2_read (void)
22814 struct cmd_list_element *c;
22816 dwarf2_objfile_data_key
22817 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22819 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22820 Set DWARF 2 specific variables.\n\
22821 Configure DWARF 2 variables such as the cache size"),
22822 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22823 0/*allow-unknown*/, &maintenance_set_cmdlist);
22825 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22826 Show DWARF 2 specific variables\n\
22827 Show DWARF 2 variables such as the cache size"),
22828 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22829 0/*allow-unknown*/, &maintenance_show_cmdlist);
22831 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22832 &dwarf2_max_cache_age, _("\
22833 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22834 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22835 A higher limit means that cached compilation units will be stored\n\
22836 in memory longer, and more total memory will be used. Zero disables\n\
22837 caching, which can slow down startup."),
22839 show_dwarf2_max_cache_age,
22840 &set_dwarf2_cmdlist,
22841 &show_dwarf2_cmdlist);
22843 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22844 &dwarf2_always_disassemble, _("\
22845 Set whether `info address' always disassembles DWARF expressions."), _("\
22846 Show whether `info address' always disassembles DWARF expressions."), _("\
22847 When enabled, DWARF expressions are always printed in an assembly-like\n\
22848 syntax. When disabled, expressions will be printed in a more\n\
22849 conversational style, when possible."),
22851 show_dwarf2_always_disassemble,
22852 &set_dwarf2_cmdlist,
22853 &show_dwarf2_cmdlist);
22855 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22856 Set debugging of the dwarf2 reader."), _("\
22857 Show debugging of the dwarf2 reader."), _("\
22858 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22859 reading and symtab expansion. A value of 1 (one) provides basic\n\
22860 information. A value greater than 1 provides more verbose information."),
22863 &setdebuglist, &showdebuglist);
22865 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22866 Set debugging of the dwarf2 DIE reader."), _("\
22867 Show debugging of the dwarf2 DIE reader."), _("\
22868 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22869 The value is the maximum depth to print."),
22872 &setdebuglist, &showdebuglist);
22874 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22875 Set cross-checking of \"physname\" code against demangler."), _("\
22876 Show cross-checking of \"physname\" code against demangler."), _("\
22877 When enabled, GDB's internal \"physname\" code is checked against\n\
22879 NULL, show_check_physname,
22880 &setdebuglist, &showdebuglist);
22882 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22883 no_class, &use_deprecated_index_sections, _("\
22884 Set whether to use deprecated gdb_index sections."), _("\
22885 Show whether to use deprecated gdb_index sections."), _("\
22886 When enabled, deprecated .gdb_index sections are used anyway.\n\
22887 Normally they are ignored either because of a missing feature or\n\
22888 performance issue.\n\
22889 Warning: This option must be enabled before gdb reads the file."),
22892 &setlist, &showlist);
22894 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22896 Save a gdb-index file.\n\
22897 Usage: save gdb-index DIRECTORY"),
22899 set_cmd_completer (c, filename_completer);
22901 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22902 &dwarf2_locexpr_funcs);
22903 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22904 &dwarf2_loclist_funcs);
22906 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22907 &dwarf2_block_frame_base_locexpr_funcs);
22908 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22909 &dwarf2_block_frame_base_loclist_funcs);